
Continuous Spatial and Temporal

Representations in Machine Vision

by

Thomas Lu

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2021

© Thomas Lu 2021

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the

Examining Committee is by majority vote.

Supervisor: Chris Eliasmith

Professor, Dept. of Philosophy and Systems Design Engineering

Cross-Appointed to Dept. of Computer Science

University of Waterloo

Internal Member: Justin Wan

Professor, Dept. of Computer Science

University of Waterloo

Internal-External Member: Bryan Tripp

Associate Professor, Dept. of Systems Design Engineering

University of Waterloo

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

This thesis explores continuous spatial and temporal representations in machine vision.

For spatial representations, we explore the Spatial Semantic Pointer as a biologically plausi-

ble representation of continuous space its use in performing spatial memory and reasoning

tasks. We show that SSPs can be used to encode visual images into high dimensional

memory vectors. These vectors can be used to store, retrieve, and manipulate spatial in-

formation, as well as perform search and scanning tasks within the vector algebra space.

We also demonstrate the psychological plausibility of these representations by qualitatively

reproducing Kosslyn’s famous map scanning experiment.

For temporal representations, we extend the original 1D Legendre Memory Unit to

take multi-dimensional input signals and compare its ability to store temporal information

against the Long Short-Term Memory Unit on the task of video action recognition. We

show that the multi-dimensional LMU is able to match the LSTM in representing visual

data over time. In particular, we demonstrate that the LMU is able to achieve much

better performance when the total number of parameters is limited and that the LMU

architecture allows it to continue operating at with fewer parameters than the LSTM.

iv

Acknowledgements

The writing of this thesis would not have been possible without the support of the

many people who helped me along the way. First and foremost I would like to thank my

supervisor, Chris Eliasmith, for his guidance and support through my research. I would

also like to thank all the members of the CNRG lab for all their help in discussions and

brainstorming. Finally I would like to thank Justin Wan and Bryan Tripp for taking the

time to be readers for this thesis.

v

Dedication

This thesis is dedicated to my family and friends for their unending love and support.

vi

Table of Contents

List of Figures x

List of Tables xiii

1 Introduction 1

2 Background 3

2.1 Spatial Representation . 4

2.1.1 Vector Symbolic Architecture . 5

2.1.2 Semantic Pointer Architecture . 6

2.2 Temporal Representation . 7

2.2.1 Recurrent Neural Networks . 7

2.2.2 Convolutional Neural Networks . 9

3 Methods 11

3.1 Spatial Semantic Pointers . 11

vii

3.2 Legendre Memory Units . 16

3.2.1 Multi-dimensional LMUs . 18

3.2.2 Gates . 20

3.2.3 LSTMs . 21

3.3 Summary . 22

4 Spatial Reasoning with Spatial Semantic Pointers 24

4.1 Overview . 24

4.2 Experimental Design . 24

4.3 Architecture . 26

4.3.1 Dataset . 26

4.3.2 Visual Attention . 28

4.3.3 Object Classification . 30

4.3.4 Spatial Semantic Pointer Encoding 30

4.3.5 Query Generation . 32

4.3.6 Information Extraction . 32

4.3.7 Location Cleanup . 34

4.3.8 Scanning Memory . 34

4.4 Results . 37

4.4.1 Spatial Relation Queries . 37

4.4.2 Image Scanning . 39

4.5 Discussion . 40

viii

5 Temporal Representation with Legendre Memory Units 43

5.1 Overview . 43

5.2 Experimental Design . 43

5.3 UCF 101 . 44

5.4 Preprocessing . 44

5.5 Legendre Memory Unit Model Training . 46

5.6 Long Short-Term Memory Model Training 46

5.7 Results . 47

5.7.1 3D Preprocessing . 47

5.7.2 2D Preprocessing . 48

5.8 Discussion . 51

6 Conclusion 53

References 55

ix

List of Figures

2.1 Dataflow diagram for a Recurrent Neural Network unit. At each timestep,

the cell takes the current input signal xt as well as the previous time step

output of ht−1 to produce a new hidden vector ht using a function f . ht is

then fed through a function g to produce a final output yt. The f and g

functions depend on the specific implementation of the RNN. 8

3.1 Region Shift Example Demonstration of shifting a rectangular region (top

panel), to a point encoded as an SSP (middle panel), resulting in a new

region vector shifted in relation to the point (bottom panel). 15

3.2 Dataflow diagram of an LMU cell. Squares represent variables, matrices

along an arrow represent matrix multiplication, and
⊕

represents summa-

tion of inputs. At each timestep, the cell takes the current input xt as well

as the previous time step outputs of ht−1 and mt−1. ex, eh, em are encoder

vectors used to produce the intermediate input signal vector ut. A and B are

the state-space matrices used to optimally project the input vectors into the

the output mt. Wx,Wh,Wm are weight kernels used to produce the input

to the nonlinear function (in this case tanh is used) to produce the output ht. 19

4.1 Example randomly generated MNIST image. A possible question could be

“What is down and to the right of the ‘0’?”, in which case ‘7’ would be the

correct response. If the question was instead “What is up and to the left of

the ‘7’?”, then both ‘0’ and ‘4’ would both be correct responses. 27

x

4.2 Gaussian blur matrix used to blur input images using matrix cross-correlation

in order to generate a saliency map. 28

4.3 Visual Attention Simulation. The top left panel shows an example randomly

generated MNIST image given as an input the model. The Gaussian blur

from Figure 4.2 is applied to the input to generate a saliency map (top

right). The point of highest saliency in the saliency map is chosen to focus

on and a high resolution crop is taken of the area (bottom left). In this

case, a ‘6’ is observed and encoded into the SSP memory. Finally, a mask

is applied to remove the already “observed” object from the saliency map

(bottom right) and the process is repeated. 29

4.4 Region Shift Example. 10× 10 rectangular region representing a down and

to the right (top panel) can be shifted by convolution with a single point

(middle panel) resulting in the final query region to be searched (bottom

panel). 33

4.5 Dataflow diagram for the Spatial Relation Queries model. Input images are

fed through a classification network and encoded as SSP memory vectors.

The query digit’s location is extracted and cleaned up, then bound with the

region representing the direction to produce a region SSP vector representing

the query. The image memory is then searched to produce the unknown

target digit. 35

4.6 Dataflow diagram for the Image Scanning model. In this model, both the

origin and the target digit are known and their locations are extracted from

memory. Then the direction vector is produced and the image memory is

scanned starting from the origin location until the known target object is

found. 36

4.7 Comparison of Kosslyn map scanning results and Image Scanning model.

Results from the original mental map scanning experiment performed by

Stephen Kosslyn [21] (top panel). Results from our reproduction of the

experiment performed by our image scanning model over 100 trials (bottom

panel). 41

xi

5.1 Dataflow for LMU action classification model 45

xii

List of Tables

3.1 Vector Dimensionality Changes for Multi-Dimensional LMUs 20

4.1 Experiment results for spatial relation queries. 37

4.2 p-values for differences between representations. 38

5.1 LSTM Model Parameters for the 40 time step 2D InceptionNet preprocessed

Dataset. Parameters refers to the total number of trainable parameters

within the model. Note that in the standard LSTM model the Hidden and

Memory Units are equal in size. 48

5.2 LMU Model Parameters for the 40 time step 2D InceptionNet preprocessed

Dataset. Parameters refers to the total number of trainable parameters

within the model. Note that because each memory unit is composed of

its own memory vector of length Order, the size of the entire memory vec-

tor for the LMU is the product of the Memory Units and Memory Order.

Because the LMU encodes its memory with precalculated optimal matri-

ces, the model is able to have much larger memory vectors for similar total

parameter counts compared to the LSTM. 49

5.3 2D Models Test Accuracy. Top N Accuracy refers to whether the model

predicts the correct category within its top N predictions for each trial. All

models were trained for 1000 epochs, unless tagged with ‘-4000’, in which

case they were trained for 4000 epochs. 50

xiii

Chapter 1

Introduction

In order to tackle the ever expanding amount of data being generated by the current fast-

paced, data-driven world, artificial intelligence and neural networks need efficient ways

to represent and compress data about the world around us. With robots and computers

moving about in the world, from self driving cars to robotic vacuums and lawn mowers,

being able to capture and reason about space becomes all the more important. They

need to be able to build an internal map of where they are, where goals and obstacles

are in relation to them, and be able to plan accordingly. In order to be able to trust the

implementation of these artificial systems, we need to know that they can think and reason

well.

Similarly, as points of data become streams of data, being able to capture temporal

information over extended time periods becomes increasingly vital. Machines may need to

connect current data to data from minutes, hours, days, even weeks ago or longer. Can a

home care device understand the difference and danger between someone sitting still for a

few minutes and someone sitting still for a few hours. Can a security system recognize and

respond differently to an accidental bump and a full blown fight? Humans are inherently

dynamic creatures and our machines need to be able to adapt to those dynamics.

Space and time share the fact that in our best physical theories, both are represented

as continuous values. Whether or not they are, at their most basic level, continuous is a

1

matter for theoretical physics. Nevertheless, extremely successful physical theories, includ-

ing our best theories of motion (Newtonian and otherwise) are cast in terms of continuous

space and time. So it should be unsurprising that our theories of how intelligent system

represent space and time assume continuity as well. However, this has not generally been

the case in the past, especially in the context of contemporary machine learning and neural

networks. Because these approaches have been implemented on discrete computers, they

largely assume that time and space are discrete. In this thesis we examine representations

of space and time that are continuous and apply them to problems in machine intelligence.

For spatial representations, we apply Spatial Semantic Pointers in spatial reasoning

tasks by building a model that can manipulate space and answer queries. Our goal is

to demonstrate that Spatial Semantic Pointers are a biologically plausible representation

for reasoning with continuous spatial data. For temporal representations we implement

a Legendre Memory Unit model on a video action recognition task and comparing its

performance against the long short-term memory model. Our goal is to demonstrate that

Legendre Memory Units can be used to represent visual data over time and can compete

with state of the art models in processing video data.

We begin by providing a background on the problems at hand and discuss the represen-

tations being proposed as the solutions. We look at what the representations are and how

they work as well as their mathematical properties. For each representation we detail the

experiments and criteria used to evaluate them. We then describe the specific elements of

the architectures being used in each experiment. Following that we provide the results of

the experiments and discuss the implications. Finally we discuss the overall findings and

identify future work.

2

Chapter 2

Background

Representing space and performing spatial reasoning have been long standing challenges for

artificial neural networks and machine learning models [3, 12]. However, spatial cognition

has been studied in depth within natural cognition. These studies have lead to proposals

suggesting that mental representations of space are stored in a continuous metric space

and can be manipulated like physical images [21]. Such representations are believed to

be shifted, scanned, and queried for spatial relational information. In a psychological

study, Kosslyn showed participants maps of landmarks and asked them to mentally scan

from one landmark to another. He demonstrated that the time it took to perform the

scan was proportional to the actual distance on the map. Similarly, Fink and Pinker

showed participants a series of dots on an image, then showed an arrow after removing

the dots, and asked participants which dot the arrow pointed to [9]. The response time

for this experiment was also proportional to the distance between the arrows and the dots,

reinforcing the idea that space is stored as a traversable metric space in the memory as

opposed to a list of objects and locations, for example.

While there have been many debates over the exact form of representation in the mind,

Komer [19] has recently proposed a biologically inspired representation with strong poten-

tial for use in artificial network models called Spatial Semantic Pointers. Spatial Semantic

Pointers work by storing spatial information in a high-dimensional vector space. Objects

and properties can be assigned to high-dimensional vectors and bound to these spatial

pointers within the same metric space. This allows a visual memory to be represented

3

within a metric space that is constant in size of vector regardless of the number of objects

contained. In this thesis we examine how these representations may be able to account for

the kinds of metric space mental processing posited by Kosslyn.

Likewise, capturing information over long periods of time is another long standing chal-

lenge for artificial neural networks [26]. With modern datastreams providing huge amounts

of data in real time, it has become necessary for neural networks to be able to remember

incoming data over long periods of time. Recurrent neural networks, as well as more re-

cent developments and variations such as Long Short-Term Memory Networks (LSTMs)

[15] and Gated Recurrent Units (GRUs) [8] try to solve the problem by allowing neural

networks to “remember” information over multiple time steps. However, these networks

generally only perform well in the short term and often fail over extended time steps [22].

Furthermore, current models have difficulty capturing context clues and understanding

actions that occur over multiple time steps [20].

Once again, there has been a new, recently proposed biologically plausible represen-

tation called the Legendre Memory Unit [34]. The Legendre Memory Unit attempts to

solve the problem of representing temporal information by projecting the input signal into

the Legendre polynomial space. In this way, the temporal information is optimally repre-

sented within the Legendre basis space without issue of forgetting information over long

time spans. In this thesis, we examine how this novel representation of continuous time

can improve the performance of a deep neural network on a video processing task.

2.1 Spatial Representation

Contemporary artificial intelligence models have become proficient at answering specific

questions about specific objects and representing objects and their properties. However

that proficiency does not transfer well into understanding relationships between objects and

their properties [18]. Efficient methods of representation are a vital part of the computing

pipeline and there is a crucial dearth in efficient representations of object relationships.

The traditional method of storing objects and their relationships is through databases

and graphs, using symbols and logical connectors. Haugeland dubbed this approach as

4

Good Old Fashioned AI (GOFAI) [14]. Databases rely on storing properties of each object

separately and computing their relationships through a series logical operations. Each

new property results in at least one new field for one hot encoding representations. Graphs

scale up quadratically in size and complexity as the number of objects and the relationships

being considered increase [24], with an increasing amount of redundant connections. Small

changes in relationships being considered can result in an entire new set of connections

being required.

In either case, the size of the representations and the number and complexity of op-

erations scale up incredibly fast quadratically with the amount of data and complexity

of relationships. Modifying the kind of relationships being considered leads to increased

complexity in the data stored or the complexity of logical operations required [18]. Con-

sider that people do not have to check whether every single object in the room is red to

determine which objects on a desk are red, nor does it need to check every single object for

its location to determine which object is on top of another object. In artificial intelligence,

this “frame problem” examines enabling logic based reasoning architectures to isolate the

relevant information required for a task without having to examine the entire corpus [28].

These traditional methods of representing objects and their relationships quickly becomes

insufficient as artificial intelligence systems are asked to to answer increasingly complex

questions about the world.

2.1.1 Vector Symbolic Architecture

An alternative method for representing relationships that tries to overcome some of the

disadvantages of the traditional representations is the Vector Symbolic Architecture (VSA)

[10]. In a VSA, information is stored as a single fixed-length high-dimensional vector. Re-

gardless of the kind of information represented and how many objects are included, the

size of the representation does not change. The encoding and manipulation of information

is done through algebras defined on these high-dimensional vector spaces. Using this rep-

resentation, properties of objects can be bound mathematically to the respective objects

and encoded within the same vector space. Information is stored and manipulated across

a large high-dimensional space and relationships between concepts is described by their

relationships and distances within this algebra. Compared to traditional representations,

where specific bits represent specific properties or units of information, VSAs distribute

5

the information across all bits [11], similar to how biological systems distribute its rep-

resentation and processing of information across many neurons within a neural network

(Distributed Information Processing in Biological and Computational Systems). In this

work we leverage these advantages for spatial representation.

2.1.2 Semantic Pointer Architecture

The Semantic Pointer Architecture (SPA) uses a specific form of VSA that specifies the

methods required to perform complex cognitive functions within a biologically plausible

cognitive model. The high-dimensional vectors or ‘Semantic Pointers’ represent large pop-

ulations of neurons, and all computations are done within this population of neurons. In

particular, the SPA, following holographic reduced representations [27], defines three basic

operations within the algebra space [1]:

1. Superposition: For any two vectors v and w, they can be superimposed by an addition

operation to create a new vector that is similar to both of the original vectors.

u = v + w

2. Binding: For any two vectors v and w, they can be bound together by a circular

convolution operation to create a new vector representing the bound vectors that is

dissimilar to both of the original vectors.

u = v ~ w

3. Unbinding: For a vector u representing the original vectors v and w bound together,

one of the original vectors can be unbinded from the new vector by a circular convo-

lution with the approximate inverse to recover a vector that is similar to the other

original vector.

v ≈ u~ w−1

Additionally, in order to interpret the these high-dimensional vectors, the SPA defines

a similarity function, cosine similarity, which represents how close two semantic pointer

vectors are within this algebra.

6

Similarity(v, w) =
v · w
‖v‖‖w‖

In this thesis, we examine the use of Spatial Semantic Pointers for performing spatial

memory and reasoning tasks. Spatial Semantic Pointers (SSPs) extend the SPA to allow

for the encoding of continuous spatial information into high-dimensional metric spaces.

The implementation of this representation is described in section 3.1, Spatial Semantic

Pointers.

2.2 Temporal Representation

2.2.1 Recurrent Neural Networks

Current state-of-the-art methods1 of representing information over time and performing

reasoning generally involve some variation of Recurrent Neural Networks (RNNs). RNNs

are neural networks that represent temporal information in a hidden internal state vec-

tor that is recurrently connected for each time step. Specifically, at each time step, the

recurrent neural network will take the hidden internal state vector generated in the pre-

vious time step and update it with new input information. This updated hidden internal

state vector is then used to generate the required output and also recurrently passed to

the next time step, repeating the process (see Figure 2.1). In general, an RNN unit is

mathematically described by the following equations:

h(t) = f(x(t), h(t− 1)) (2.1)

y(t) = g(h(t)) (2.2)

1Recently, transformers have been gaining popularity as an alternative to RNNs for processing sequential

data, especially within the field of Natural Language Processing [33]. However, the vast majority of work

in the video action recognition field focuses on convolutional networks or RNNs. Very recently, there are

some transformer models being proposed for video processing, but they have yet to reach state-of-the-

art performance [23]. Thus, we focus on comparisons to LSTMs, although LMUs have been shown to

outperform transformers in some cases as well [6].

7

Figure 2.1: Dataflow diagram for a Recurrent Neural Network unit. At each timestep, the

cell takes the current input signal xt as well as the previous time step output of ht−1 to

produce a new hidden vector ht using a function f . ht is then fed through a function g to

produce a final output yt. The f and g functions depend on the specific implementation

of the RNN.

where x(t) and y(t) are the inputs and outputs of the system respectively, and f(·, ·) and

g(·) are neural network layers that depend on the specific implementation of the RNN, see

Figure 2.1. In a basic RNN, these would be dense layers followed by activation functions.

In more complex architectures like the LSTM or GRU these functions would include input

and output activations gates or calculations of additional internal states.

As with other neural networks, RNNs are trained through backpropagation and gradient

descent. At each training step, the neural network seeks to reduce the error between the

network’s output and the correct output by minimizing the network’s loss function. This is

done by calculating the gradient of the loss function, by propagating the error backwards

from the output of the network back through all the layers of the network, and by modifying

each layer’s weights accordingly.

8

However, because Recurrent Neural Networks have a recurrent connection from one

layer’s output to a previous layer’s inputs, that loss gets propagated backwards through

each time step. The danger is that certain gradients will increase in magnitude with ev-

ery propagation while other gradients will decrease in magnitude with every propagation.

This is already an issue in training very large deep neural networks where the gradients

are propagated through a large number of layers, and becomes exacerbated by the recur-

rent backpropogation in an RNN. Naturally, as the number of time steps increases, the

magnitudes of these gradients will either explode towards infinity or vanish towards zero.

While variations like the LSTM models seek to alleviate the severity of these issues, push-

ing memory capacity up to around 1000 timesteps [22], they are not able to completely

eliminate the problem of vanishing and exploding gradients.

As the world becomes increasingly digitized, data streams are becoming larger in vol-

ume as well as higher in frequency. Neural networks are required to process vast amounts

of data at a near constant rate. The problem of vanishing and exploding gradients be-

comes impossible to ignore as the number of timesteps trends towards infinity. In this

thesis, we examine a new approach to encoding temporal information within an RNN, the

Legendre Memory Unit. This architecture attempts to circumvent the issue of vanishing

and exploding gradients by optimally encoding temporal information within the Legendre

basis domain as described in Section 3.2, Legendre Memory Units.

2.2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are the most commonly used neural network ar-

chitecture for analysing visual imagery [32]. More recently, however, they have been used

broadly to process temporal data, such as speech [2]. CNNs use convolutional filters and

kernels to convert a feature map with some number of input channels into a new feature

map with a new set of feature channels. Often they are used to compress large images into

a smaller set of features to process. However, convolutional layers can also be applied to

the time axis of a data set [31], compressing the temporal information into a set of features

in the time dimension. Successive sets of convolution can compress a long set of temporal

data into a short set of features for further processing.

Using CNNs in the time domain grants all the advantages of CNNs in the visual domain.

9

The convolutional layers in the temporal domain are very good at extracting features and

relationships within the size of the convolutional kernel. However, the compression is a

function of size of the convolutional kernel. Unlike the RNN, which updates a fixed internal

layer and outputs a fixed sized vector regardless of how many time steps are processed,

convolutional layers have outputs that scale in size with the inputs. While the RNN does

not scale well into large time steps due to backpropogation and gradient descent challenges,

the CNN does not scale well due to output sizes scaling with the input. An N-fold increase

in number of time steps will result in an N-fold increase in amount of features output by

the CNN that need to be processed by the rest of the neural network.

In order to deal with converting longer and longer time length data sets into features,

CNNs need to be incredibly large or stacked incredibly high. Either way, the sizes of the

networks become excessive. Alternatively, the CNNs can be used as preprocessing and the

output features in the time domain are then further fed through RNNs, but this leads to

the same issues vanilla RNNs have as time steps tend towards infinity. As a result, in this

thesis we combine LMUs with CNNs to process time varying visual data, i.e., video. We

describe this experiment and results in Section 5, Temporal Representation with Legendre

Memory Units.

10

Chapter 3

Methods

3.1 Spatial Semantic Pointers

In order to represent information in continuous space with high dimensional vectors, we

employ a generalization of the Vector Semantic Architectures (VSAs) used by the Semantic

Pointer Architecture (SPA). This generalization allows us to process continuous spaces via

a method called fractional binding that constructs Spatial Semantic Pointers as proposed

by Komer et al. [19]. In order to bind vectors together, the SPA makes use of circular

convolution as proposed by Plate [27], which is an element-wise product of vectors in

Fourier space. So, if we repeatedly bind a vector to itself, we can write:

Bk = B ~B ~B ~ ...~B ~B︸ ︷︷ ︸
Binding k Bs together

. (3.1)

However, as originally defined, ’k’ can only take on integer values. The natural extension

of this product into continuous space is an element-wise exponentiation of vectors in Fourier

space. Supposing B is a fixed d-dimensional vector, fractional binding B by a real valued

scalar k is defined by expressing the binding in the complex domain:

Bk = F−1
{
F {B}k

}
, k ∈ R, (3.2)

11

Here F {·} is the Fourier transform and F−1 {·} is the inverse Fourier transform, and

exponentiation of a vector is done element-wise. This extends the domain of k from the

original binding definition from the integers to fractions and real values. An important

mathematical property of this method is that we have similar algebraic properties as regular

exponentiation. In particular, products of exponents:

Bk1 ~Bk2 = Bk1+k2 . (3.3)

Associativity:

A~B = B ~ A. (3.4)

And the property of unbinding:

A~B ~B−1 ≈ A. (3.5)

Here, the inverse refers to the approximate inverse used for circular convolution. Specif-

ically, for a vector v = (v0, v1, v2, ..., vn−1, vn):

v−1 = (v0, vn, vn−1, ..., v2, v1). (3.6)

We can further extend this representation to allow for the mapping of continuous spaces,

R, to high dimensional vectors, Rd. This, in turn, allows for the mapping of 2-D coordinate

spaces, (x, y) ∈ R2, to high dimensional vectors, S(x, y), by binding two such vectors

together, each representing one part of a coordinate:

S(x, y) = Xx ~ Y y, (3.7)

where X and Y are arbitrary high dimensional vectors representing each axis. Similarly,

this method can be extended to represent 3D space or any other multi-dimensional space.

12

A set of multiple points, P , can then be summed together in order to create a SSP

memory of multiple locations in space within a single vector:

M =
∑

(x,y)∈P

S(x, y). (3.8)

Furthermore, objects can be assigned locations in space by binding a vector OBJ with

the SSP representing the point in space S(x, y):

M = OBJ ~ S(x, y). (3.9)

In order to represent a set of m objects in this space together as a single memory vector,

we can super impose the SSP vectors with summation:

M =
m∑
i=1

OBJi ~ S(xi, yi). (3.10)

Returning to the property of unbinding, we can extract pointers from memory by

unbinding from the memory either a location, to extract the object, or an object, to

extract the location. As the SSP space is high dimensional and each individual pointer is

nearly orthogonal, the output will be approximately what was bound with the input:

M ~ S(xk, yk)
−1 ≈ OBJk, (3.11)

where OBJk is any of the m objects originally encoded into M in Equation 3.10. This

representation of points in space can be further extended to continuous regions represented

by some infinite set of points R, (e.g., a rectangle or a circle). We can represent a region

in SSP space by taking the integral:

S(R) =

∫
(x,y)∈R

Xx ~ Y y dx dy. (3.12)

13

This allows us to not only encode information to specific regions in space, but also

decode information from specific regions. Furthermore, using the algebraic properties from

above, we can manipulate regions in SSP space. For example, we can shift the region

vector in space by multiplying the vector by the SSP vector representing the shift. For

example, to shift some region, R, by a in the x direction and b in the y direction, we take

the convolution:

S(R2) = S(R) ~ S(a, b). (3.13)

Another property resulting from this method is the ability to directly calculate the vec-

tor representing rectangular regions using Euler’s formula. Specifically, using the property

that:

∫ b

a

eikxdi =

{
i(eika−eikb)

k
for k 6= 0

b− a for k = 0
(3.14)

Let X ′ be the fourier space representation of an SSP axis vector X and θ be a vector

of the respective angles of X ′. The i-th element of the integral of X ′ from a to b is given

by:

∫ b

a

X ′i
xdx =

{
i(X′

i
b−X′

i
a)

θi
for θi 6= 0

b− a for θi = 0
(3.15)

And subsequently, the integral of a region is given by the product of the integrals of

each axis:

∫ d

c

∫ b

a

Xx ~ Y ydxdy = (

∫ b

a

Xxdx) ~ (

∫ d

c

Y ydy). (3.16)

See Figure 3.1 for an example of using these techniques to shift a rectangular region to

a new location with a single convolution.

14

4 2 0 2 4

4

2

0

2

4

Encoded Region

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

4 2 0 2 4

4

2

0

2

4

Single Point

0.0

0.2

0.4

0.6

0.8

4 2 0 2 4

4

2

0

2

4

Shifted Region

0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Figure 3.1: Region Shift Example Demonstration of shifting a rectangular region (top

panel), to a point encoded as an SSP (middle panel), resulting in a new region vector

shifted in relation to the point (bottom panel).

15

3.2 Legendre Memory Units

The current method that is standard for learning temporal dependencies is some version

of an RNN. In particular, LSTMs are a popular choice used in a variety of machine learn-

ing applications including action recognition [7], machine translation [38], and anomaly

detection [25].

However typical RNNs are prone to vanishing and exploding gradients, which cause

instabilities as the length of time sequence increases. The success of LSTMs is largely due

to their being less susceptible to these gradient problems. However, they are typically good

only up to time series windows of about 500-1000 datapoints [22]. While the LSTM may

work for simpler applications, modern data streams are trending towards being continuous

in nature, making larger sample windows critical, and demanding architectures that are

able to cope with much longer time windows.

The Legendre Memory Unit, LMU, proposed by Voelker [34] seeks to break this upper

limit for T . Taking inspiration from the way biological neurons encode temporal informa-

tion, the LMU is a recurrent architecture that optimally encodes continuous time signals

onto an orthogonal basis over time. Unlike traditional RNNs, the LMU is able to maintain

stability even as T −→∞ due to its encoding matrices having been optimally derived from

the Legendre basis.

The Legendre Memory Unit encodes temporal information within a memory cell, using

encoding matrices derived from the ordinary differential equation:

θṁ(t) = Am(t) +Bu(t), (3.17)

where m(t) represents the d−dimensional memory state vector at time t and u(t) represents

a real valued input signal at time t and θ represents the length of the sliding window of

time. A and B are the state-space matrices used to optimally project the encoded matrices

into the Legendre polynomial space, making m a sliding window of u projected into d− 1

degrees of Legendre polynomials. The A and B matrices are defined as:

A = [a]ij ∈ Rd×d, aij = (2i+ 1)

{
−1 i < j

(−1)i−k+1 i ≥ j
(3.18)

16

B = [b]i ∈ Rd×1, bi = (2i+ 1)(−1)i, (3.19)

for i, j ∈ [0, d− 1]

Given m, we can recover the original signal u approximated via the first d− 1 degrees

of Legendre polynomials:

u(t− θ′) ≈
d−1∑
i=0

Pi(
θ′

θ
)mi(t), 0 ≤ θ′ ≤ θ, (3.20)

where Pn(x) is a scaled n-th degree Legendre polynomial defined as:

Pn(x) = (−1)n
n∑
k=0

(
n

k

)(
n+ k

k

)
(−x)k. (3.21)

The discretized version of the LMU is given by:

mt = A′mt−1 +B′ut, (3.22)

where A′ and B′ are discretized versions of the above A and B matrices in equations (3.18)

and (3.19) obtained using an ODE solver. In particular, solving with Euler’s method for

sufficiently small ∆t:

A′ = (∆t/θ)A+ I, (3.23)

B′ = (∆t/θ)B. (3.24)

Note that we will be referring to the discretized versions of the Legendre Memory Unit

for the implementation in this thesis.

The full Legendre Memory Unit neural network layer takes an input xt representing the

signal value at timestep t and calculates the memory vector m as well as a hidden state h.

17

At each time step the input signal xt as well as the memory and hidden states of the

previous time steps are encoded into an input signal ut for memory.

ut = eᵀxxt + eᵀhht−1 + eᵀmmt−1, (3.25)

where ex, eh, and em are learned encoder vectors.

The memory vector m is updated with the new input ut using the A and B matrices:

mt = Amt−1 +But. (3.26)

The hidden state is then calculated using the current input xt, the current memory

vector mt, and the previous hidden vector ht−1:

ht = f(W ᵀ
xxt +W ᵀ

hht−1 +W ᵀ
mmt), (3.27)

where Wx, Wh, and Wm are learned weight kernels and f is a nonlinearity, in this case we

use tanh.

See Figure 3.2 for the full dataflow of an LMU layer.

3.2.1 Multi-dimensional LMUs

The original Legendre Memory Unit proposed by Voelker encoded inputs into one dimen-

sional inputs through time. However, for our experiment, the LMU is required to process

multiple features at each timestep and remember multiple features at each timestep. Stack-

ing a separate memory unit for each input feature and processing each feature separately is

a possible solution, but realistically not every feature needs to be remembered and features

need to be considered in the context of other features to determine what the model needs

to remember.

Our solution for memorizing a dx-dimensional input signal was to extend the dimension

of the internal encoders and decoders by du, the new size for the internal feature memory ut.

18

Figure 3.2: Dataflow diagram of an LMU cell. Squares represent variables, matrices along

an arrow represent matrix multiplication, and
⊕

represents summation of inputs. At each

timestep, the cell takes the current input xt as well as the previous time step outputs of

ht−1 and mt−1. ex, eh, em are encoder vectors used to produce the intermediate input signal

vector ut. A and B are the state-space matrices used to optimally project the input vectors

into the the output mt. Wx,Wh,Wm are weight kernels used to produce the input to the

nonlinear function (in this case tanh is used) to produce the output ht.

19

Variable Original Dimensions New Dimensions

x dx × 1 dx × 1

u 1× 1 du × 1

h dh × 1 dh × 1

m do × 1 do × du
ex dx × 1 dx × du
eh dh × 1 dh × du
em do × 1 do × du × du
Wx dx × dh dx × dh
Wh dh × dh dh × dh
Wm do × dh do × du × dh

Table 3.1: Vector Dimensionality Changes for Multi-Dimensional LMUs

Now, rather than memorizing a single value at each timestep, the LMU instead encodes

the dx-dimensional input signals into a du-dimensional signal for memory. The size of

the LMU memory state mt is extended in a new dimension by du to accommodate the

increased dimensionality of u. And the sizes of the recurrent connections are also increased

by a factor of du. Encoding the new vector u into memory is done with the same A and B

vectors in parallel across all du units.

Table 3.1 shows the dimensionality changes of the different vectors. Note that do refers

to the order of the memory vector, that is the number of degrees of Legendre polynomials

used in the approximation. The crucial difference in the new memory vector size is the

product of the number of memory units and the order of the memory.

3.2.2 Gates

Because not every timestep is necessarily important for memorization, we explored adding

an input gate architecture to the LMU. This is inspired by the use of gates in the LSTM,

which increases the quality of the information being stored into the memory state by

selectively storing only the information that passes through the gate. To do this, an

additional vector it is calculated at each timestep consistent with the standard input gates

found in the LSTM:

20

it = σs(W
ᵀ
xxt +W ᵀ

hht + b), (3.28)

where σs(x) is the sigmoid function:

σs(x) =
1

1 + e−x
. (3.29)

This input gate is applied to the memory state, modifying the memory state formula

to:

mt = Amt−1 + it ◦But, (3.30)

where ◦ is the element-wise product. Here it is either in Rdu , where each dimension of u

gets a separate gate applied in parallel across the orthogonal time dimensions in memory,

or in Rdu×do , where each dimension of u and each dimension of time gets its own gate

applied.

3.2.3 LSTMs

In this thesis, we employ the standard LSTM [15] with input and forget gates as a point

of comparison to the LMU. The LSTM neural network layer takes an input vector xt, and

maintains a hidden state ht and a memory state mt at every time step.

At each time step the input signal xt as well as the previous hidden state ht−1 are

encoded into an input signal ut:

ut = σt(exxt + ehht−1 + b), (3.31)

where σt(x) is the hyperbolic tangent function, tanh(x):

σt(x) =
ex − e−x

ex + e−x
. (3.32)

21

Three activation vectors representing the“gates” are calculated using the input vector

xt and the previous hidden state ht and passed through sigmoids.

ft = σs(Wfxxt +Wfhht−1 + bf), (3.33)

it = σs(Wixxt +Wihht−1 + bi), (3.34)

ot = σs(Woxxt +Wohht−1 + bo). (3.35)

The memory cell mt is calculated by applying the forget gate ft to the previous memory

cell mt−1 and the input gate it to the current input signal ut:

mt = ft ◦mt−1 + it ◦ ut. (3.36)

The hidden state is then calculated by applying the output gate o to the hidden state

after being applied to a nonlinearity, in this case tanh:

ht = ot ◦ σt(ct). (3.37)

Training for both the LMU and LSTM is done using categorical cross-entropy loss with

the Adam optimizer [17].

3.3 Summary

This chapter surveys the methods and architectures that we implement in the models we

build for our experiments in the following chapters. Specifically we discuss the reasoning

behind choosing these methods as well as the underlying mathematical properties of the

methods.

22

In Section 3.1 we describe the mathematics behind the SSP that allow us to encode

and decode information to and from the SSP memory vectors. We then the mathematical

properties that allow us to manipulate space within this representation, including creating

vectors representing continuous regions as well as shift objects around in space.

In Section 3.2 we describe the shortcomings of traditional RRN models and how the

LMU aims to overcome these issues. We detail the architecture of the LMU and how we

extended to multiple dimensions for our models. We also describe the architecture of the

LSTM in comparison to the LMU. Furthermore, we examine a possible extension to the

LMU by adding gates, consistent with their use in the LSTM.

23

Chapter 4

Spatial Reasoning with Spatial

Semantic Pointers

4.1 Overview

In this section, we apply Spatial Semantic Pointers in spatial reasoning tasks to demon-

strate that SSPs are effective in performing reasoning on continuous spatial data and can

also be used as a model for human cognition. We begin by describing the experimental

designs, focusing on two spatial relationship tasks involving asking relational questions

about a given image map. We then detail each of the elements of the architecture used for

each of the experiments and how they integrate together to perform the tasks. Finally, we

present the results and discuss the findings.

4.2 Experimental Design

Our experimental design for testing the usefulness of the Spatial Semantic Pointers focuses

on examining the representation’s ability to support spatial reasoning while remaining

biological plausible. For the first experiment, we adopt a task similar to that proposed by

24

Weiss et al. [37] in which we use the SSP architecture to answer spatial relational queries

based on input images. Specifically, we construct a set of input images by randomly placing

objects, in this case numerical digits, onto a visual space. We then randomly choose two

of the digits placed in each image. One is assigned as the target goal for the model which

is not given to the model, the other is assigned as the query object which is given to the

model. Additionally, we give the model the rough direction from the given object to the

target object. The purpose of the model is to identify the goal object given the query

object plus a direction. In our experiment, we use 4 directions as the possible queries,

either up and to the right, up and to the left, down and to the right, and down and to the

left (see Figure 4.1). We allow the model to answer with a any digit that is in the correct

direction in relation to the query.

For the second task, we examine the representation’s biological plausibility by using it

to perform a visual scanning experiment based on Kosslyn’s work [21]. In Kosslyn’s map

experiment, participants are given a simple map to memorize, after which they are asked

to picture the map starting at a given spot and scan towards a target location. Kosslyn

found that the time it took participants to scan between locations scaled linearly with the

physical distance of the locations on the map, suggesting that spatial representation in the

human brain has a metric and scales linearly.

For our experiment, we perform the same task given by Kosslyn by re-using the gener-

ated images in the previous task as our maps and the digits as our location objects. The

model is given an origin object and a target object as a query, and it is required to extract

the location of the origin object and travel from that object to the target object within

the SSP representation space. For example, if using Figure 4.1, the model might be asked

to scan from the ’4’ to the ’7’. While Kosslyn compared physical distance against time

in seconds, we will be comparing pixel distance against time steps, with each movement

within the space performed by the model constituting one time step.

Furthermore, as scanning requires repeated operations to move around in memory, this

experiment will also serve to investigate the robustness of the model. Outside of cleaning

the initially extracted location vectors, all intermediate vectors used for scanning will be

generated by the SSP location shifting operations. Completion of the scanning tasks will

demonstrate that SSP models can be shifted repeatedly and still behave as expected.

25

4.3 Architecture

In this section, we go in depth into each of the components of the spatial relationship

memory model used to perform the tasks described in the experimental design section. We

detail each of the components and their functions as well as describe the flow of information

through from the visual cue input to the final response output.

4.3.1 Dataset

Since the focus of the research and experiments is the visual memory of the model and its

ability to perform spatial relational queries rather than image classification, we are using

simple MNIST digits for our objects. Each digit corresponds to one of ten distinct objects

in the memory dictionary.

The images used for the experiments are generated by selecting batches of k = 2 : 4

digits randomly selected 28x28 pixel images from the MNIST database and placing them

onto a 120×120 pixel visual field (see Figure 4.1). In order to restrict the selected digits

for each image to be unique, we sample by uniformly drawing digits from the MNIST

database, tossing out any digits already picked, until the required number of objects has

been placed in the image.

To ensure objects are not cut off by the edges of the visual field, coordinates for the

center of each digit are picked from the inside 96×96 area of the visual field. We also limit

the coordinates to not only be too close in order to avoid visual overlap between digits.

Furthermore, because the experiment queries are limited to the four diagonal directions,

coordinates are selected such that the vertical and horizontal coordinates of the objects

are not too close to ensure no ambiguity in direction. We do this by dividing the sample

space into m×m blocks. For each of k objects in a batch, we sample without replacement

a row and a column from the m×m blocks, then coordinates for the objects are sampled

from within each block.

26

Sample MNIST Digits Image

Figure 4.1: Example randomly generated MNIST image. A possible question could be

“What is down and to the right of the ‘0’?”, in which case ‘7’ would be the correct

response. If the question was instead “What is up and to the left of the ‘7’?”, then both

‘0’ and ‘4’ would both be correct responses.

27

0 5 10 15 20 25

0

5

10

15

20

25

Gaussian Blur

Figure 4.2: Gaussian blur matrix used to blur input images using matrix cross-correlation

in order to generate a saliency map.

4.3.2 Visual Attention

We employ the use of visual saliency maps in order to decode the input images into objects

for memory. Research has shown that human vision consists of a high resolution fovea at

the center of each eye’s visual field surrounded by a very low resolution peripheral vision

[16]. Capturing visual information consists of presaccadic processing to create a saliency

map from which saccadic eye movements are used to attend to various parts of the visual

field and snapshot information while saccadic suppression at each step is used to prevent

revisiting a target [35].

This system is simulated in our model using a gaussian blur (See Figure 4.2 to generate

a saliency map representing the low resolution vision. The highest saliency point in the

map at each step is selected for our visual system to observe at each step, with a mask

being applied afterwards to prevent revisiting. Observing consists of cropping out the

28x28 block centered at the point of attention and feeding the cropped image to the object

classification system representing the high resolution fovea. The attention mask is a simple

element wise multiplication mask of 0s where the crops occur and 1s everywhere else. This

process is displayed in Figure 4.3.

28

0 20 40 60 80 100

0

20

40

60

80

100

Sample Image

0 20 40 60 80 100

0

20

40

60

80

100

Saliency Map

0 5 10 15 20 25

0

5

10

15

20

25

Focused Area

0 20 40 60 80 100

0

20

40

60

80

100

Updated Saliency Map

Figure 4.3: Visual Attention Simulation. The top left panel shows an example randomly

generated MNIST image given as an input the model. The Gaussian blur from Figure 4.2

is applied to the input to generate a saliency map (top right). The point of highest saliency

in the saliency map is chosen to focus on and a high resolution crop is taken of the area

(bottom left). In this case, a ‘6’ is observed and encoded into the SSP memory. Finally, a

mask is applied to remove the already “observed” object from the saliency map (bottom

right) and the process is repeated.

29

4.3.3 Object Classification

We employ a basic convolutional neural network in order to classify the cropped images

from the visual attention module. The architecture of the network is as follows:

1. 2D Convolutional Layer, 32x3x3 filters.

2. Batch Normalization Layer

3. 2D Convolutional Layer, 64x3x3 filters.

4. 2D Max Pool Layer, 2x2

5. Dense Layer, 128 units

6. Dense Layer, 10 units

During training, Dropout layers of 0.2 and 0.4 are used after the Max Pool layer and

the first Dense layer respectively. The network is trained for 12 epochs on the MNIST

training set, reaching a final test accuracy of 99.12%.

4.3.4 Spatial Semantic Pointer Encoding

For our model, we chose to use 512-dimension semantic pointer vectors to represent our

visual memory. Each of the 10 different digits as well as each of two axis vectors used

for encoding location is represented by a randomly 512-dimensional SSP vector. Vectors

are generated randomly at the beginning of each experiment and stay the same for each

sample. No hand picking or crafting of vectors was required for our results.

The identified objects from the previous steps were passed on along with their coordi-

nates. The coordinates are mapped from the 120× 120 visual field to a 10× 10 continuous

space, specifically the intervals of x ∈ [−5, 5] and y ∈ [−5, 5] and converted to the corre-

sponding spatial semantic pointer.

30

We experimented with both point and region representations for the objects. For point

representations, the spatial pointers are left as is. For region representations, the points

are bound with a 1 × 1 box around the origin to convert the point to a region vector

representing approximately the area of space the object was located. The idea is that it

is more intuitive to remember and recall an area where an object is located rather than

a single, specific point in space, such as its centre of mass. Mathematically, the query

region is more similar to a small subregion compared to a singular point within the region,

increasing the likelihood that the object location in the region can be extracted.

Recall that unbinding location from memory returns approximately the original object

bound to that location with some noise from the other objects in memory. Similarly,

unbinding a region that is close to but not the same as the point to which an object is

bound produces an output that is close to but not the same as the object that was bound.

Binding the original object to a small region should make the location more similar to the

region query, which should in turn make the output more similar to the original object and

increase overall accuracy.

Given either the point or square region spatial semantic pointers, the SSPs are then

bound through circular convolution with each corresponding object vector and summed to-

gether to form a 512-dimensional spatial semantic pointer representing the model’s memory

of the visual information.

For example, given an image with the following: 3 at (36,60), 9 at (60,12), and 8 at

(90, 90), the coordinates are normalized to (-2,0), (0, -4), and (2.5, 2.5) respectively. Now

let THREE,NINE, and EIGHT represent randomly generated vectors for each digit,

and X and Y be the axis vectors for a 512-dimensional SSP vector space. Let SQUARE

be 1 × 1 square region around the origin calculated using equation 3.14. We construct a

square region represented memory vector M by binding each digit vector to axis vectors

raised to the normalized coordinates and summing them together:

M =THREE ~ SQUARE ~X−2 ~ Y 0

+NINE ~ SQUARE ~X0 ~ Y −4

+ EIGHT ~ SQUARE ~X2.5 ~ Y 2.5

.

(4.1)

31

4.3.5 Query Generation

The queries are composed of two parts, an object to start from and a direction to look

in memory. For each sample image, one digit is randomly selected as the given starting

object and a different digit is randomly selected as the target digit. The full query given

is the starting object represented as a SSP vector and the direction to the target object,

each represented as one-hot encoded vectors. The directions in this case are simplified to

four directions encoded as a 2 by 2 vector: Up and Left, Up and Right, Down and Left,

Down and Right. For example, in Figure 4.1, we could select ’0’ as the given digit and ’7’

as the target digit, and provide the query: Down and to the Right of ’0’. This is encoded

as:

x = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

D =

[
0 0

0 1

]
,

where x is the encoded given digit and D is the encoded given direction.

4.3.6 Information Extraction

In order to extract the response to a query, first the query must be converted to Spatial

Semantic Pointer form. The object in the given query represents the location from which to

start the search. Unbinding the object SSP from the memory SSP via inverse convolution

gives us the location of the object. The location is then put through a cleanup before being

converted to a search region.

In order to convert the Spatial Semantic Pointer from a location to a region, a pre-

computed 10x10 rectangular SSP representing the quadrant corresponding to the direction

given in the query is bound to the SSP. 10x10 is chosen as the maximum distance that

needs to be searched in the space in any given direction. Note that a single 10x10 rectan-

gle can be precomputed and shifted along the X and Y axes accordingly to each of the 4

quadrants making this step very fast. (See Figure 4.4)

32

4 2 0 2 4

4

2

0

2

4

Encoded Region

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

4 2 0 2 4

4

2

0

2

4

Single Point

0.0

0.2

0.4

0.6

0.8

4 2 0 2 4

4

2

0

2

4

Shifted Region

0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Figure 4.4: Region Shift Example. 10 × 10 rectangular region representing a down and

to the right (top panel) can be shifted by convolution with a single point (middle panel)

resulting in the final query region to be searched (bottom panel).

33

The end result is a rectangular SSP representing the area to be searched. Unbinding

this SSP from the memory object gives us a value representing the objects found in this

area. Comparing the output with the dictionary provides the query response. The entire

data pipeline from initial input image to final output result is shown in Figure 4.5

4.3.7 Location Cleanup

For the above experiment, cleanup on each extracted location vector was performed using

a precomputed cleanup dictionary. The visual space is divided evenly into 100x100 coor-

dinates and the SSP vector representing each point is computed and stored in an array.

During each experiment, whenever location vectors are extracted, they are converted to a

clean vector by picking the SSP vector within the precomputed cleanup dictionary with

the highest dot product similarity with the extracted location vector. Since the vectors are

precomputed, this is a very quick parallel matrix computation.

4.3.8 Scanning Memory

For the other experiment, replicating Kosslyn’s spatial map scanning task, we extended

the previous relational query model by adding a means of scanning memory. Specifically,

we reuse the previous architecture to generate an SSP memory vector representing the

model’s memory of the map image. We first unbind the two objects from the memory in

order to extract their locations, and use location cleanup to get clean vectors. Using these

two location vectors, we can calculate the direction vector V required to travel from the

origin (xo, yo) to the target (xt, yt):

V = (Xxt ~ Y yt) ~ (Xxo ~ Y yo)−1. (4.2)

We then normalize this vector, shrinking it to a 0.05 unit step scan vector. Using

this scan direction vector, we start at the origin location vector and scan the memory by

repeatedly binding the scan direction vector to current location to generate a new location

vector and unbinding the new vector from memory to extract or the objects at the location.

34

Figure 4.5: Dataflow diagram for the Spatial Relation Queries model. Input images are fed

through a classification network and encoded as SSP memory vectors. The query digit’s

location is extracted and cleaned up, then bound with the region representing the direction

to produce a region SSP vector representing the query. The image memory is then searched

to produce the unknown target digit.

The scan ends when the model reaches the target object. For this we used dot product

similarity to determine what objects are extracted from a given location and a similarity

threshold of 0.8 was used to determine when the target object has been reached. This

process is shown in Figure 4.6

In order to make the most direct comparison between the SSP architecture and Koss-

lyn’s experiment results, we ensure that the objects are classified correctly prior to insertion

into memory. This ensures that classification errors are not considered and that only the

architectures ability to navigate through space in memory is tested. Thus the MNIST

classification neural network is replaced by directly feeding in the correct digit.

35

Figure 4.6: Dataflow diagram for the Image Scanning model. In this model, both the origin

and the target digit are known and their locations are extracted from memory. Then the

direction vector is produced and the image memory is scanned starting from the origin

location until the known target object is found.

36

2 Digits 3 Digits 4 Digits 5 Digits

Point Representation

Accuracy
98.06% 91.98% 88.26% 78.52%

Standard Error 0.1951% 0.3841% 0.4552% 0.5808%

Region Representation

Accuracy
97.98% 92.48% 90.42% 80.26%

Standard Error 0.1990% 0.3729% 0.4162% 0.5629%

Baseline probability 100.00% 71.76% 62.60% 57.84%

Table 4.1: Experiment results for spatial relation queries.

4.4 Results

4.4.1 Spatial Relation Queries

For the spatial relation queries, we ran 5,000 randomly generated experiments for each of

2 to 5 digits for both point and region representations (Table 4.1). Accuracy was based

on whether the model can output an object in the specified direction from the query. As

unique answers are not forced during the random query generation, it is possible that there

could be multiple correct answers for a given query. For example in Figure 4.1, both the

digit ‘0’ and the digit ‘7’ would count as acceptable correct answers for the query “What

is above and to the right of the digit ‘5’?”

The baseline performance the models are compared against is the probability of ran-

domly selecting the answer from the other digits in the memory given a digit. For example

in the previous example in Figure 4.1, given the query “What is above and to the right

of the digit ‘5’?”, the remaining digits are ‘4’, ‘0’, and ‘7’ and there is a 2/3 chance of

selecting a correct response out of them. Similarly, the model would be correct guessing

any of the remaining digits given the query “What is below and to the right of the digit

‘4’?”. This baseline was chosen as it is the minimum probability if the model can correctly

remember the digits in the image but not where they are.

The baseline probability is calculated by dividing the average number of correct answers

in each image by one less than the total number of digits in each image. For the 2 digit

37

2 Digits 3 Digits 4 Digits 5 Digits

Difference 0.08% 0.50% 2.16% 1.74%

Standard Error 0.2786% 0.5354% 0.6168% 0.8088%

p-value 38.70% 17.52% 0.02311% 1.573%

Table 4.2: p-values for differences between representations.

case, this is trivially 1 correct digit out of 1 other digit, 100%. The baseline probabilities

for each case are inherently very high due to the broadness of our queries.

The 2 digit case is not extremely interesting as the baseline probability is 100%. The

model is expected to have perfect accuracy if it is able to correctly encode the visual image

into the memory and extract the two objects. The results show just that, we see that the

model is able to correctly identify the other digit in the image given the query digit about

98% of the time. Given that the classifier itself has a 99.1% accuracy when classifying the

digits in the visual image, this result suggests that with just 2 objects, this model meets

the expectation of at least being able to store and recall the objects, spatial location aside,

with most of the error due to classification error. The accuracies of the two models are

close enough that there is no discernible benefit or harm to encoding an object as a point

or region with so little outside noise in memory.

Moving onto the 3 to 5 digit cases, it is now not sufficient to just remember the objects

but to also correctly encode and extract their locations within the Spatial Semantic Pointer

memory. The memory models were able to exceed the 3, 4, and 5 digit experiment baseline

probabilities by 20.2%, 25.7%, and 20.7% respectively in the point representation model,

and by 20.7%, 27.8%, 22.4% in the region representation case. Beating the baseline by

such a wide margin confirms that the model can successfully convert the visual space into

memory and perform spatial relational reasoning from the memory.

Outside of the 2 digit trivial case, the region representation outperforms the point

representation (Table 4.2), with p-values less than 2% for the 4 and 5 digit cases. This

confirms the hypothesis that binding objects to squares that are closer in shape and size

to the regions used for queries compared to singular points improves the rate of successful

unbinding and extraction from the memory. Mathematically, we know that the closer the

original binding SSP is to the query unbinding SSP, the higher the similarity will be between

the original target SSP and the output. The findings confirm that this is happening in

38

practice. Conversely, this also suggests that more focused, smaller queries would be easier

to answer than the broad, wide area queries asked in this experiment.

While the accuracy does decrease as the number of digits goes up, this is expected as

more possible digits means a lower chance of guessing correctly and a higher difficulty in

the task. Mathematically, the greater the number of objects in memory, the greater the

amount of noise in the output. Decodeability of SSPs, and VSAs in general, tend to drop

as a function of objects in memory.

Both models are able to effectively store, recall, and perform spatial reasoning with

reasonable accuracy when given visual fields with 4 objects. However, the large drop in

accuracy in both models of about 10% when increasing from 4 to 5 digits suggests that the

memory models are reaching capacity in terms of what can be readily stored and recalled.

This is consistent with human spatial cognition, as human working memory is estimated

to have a capacity of about 3-4 items [4].

4.4.2 Image Scanning

For the image scanning task, we ran 100 random trials each with a different randomly

generated map, with each map consisting of 4 objects placed on a visual field from which

one is chosen as the origin and one is chosen as the target. The maps in this experiment

were generated with the same method as the relation query experiment, with the digits

representing the landmarks. Each trial also used different randomly generated SSP object

and axis vectors to represent different subjects. Pixel distance is calculated based on

Euclidean distance between object centers, and each step consists of a single movement

and extraction cycle. An experiment ends when the target object is found, which occurs

when the extracted object has a similarity value of at least 0.8 with the target object.

The results in Figure 4.7 show a strict linear relationship between object distance and

time steps required to scan with a Pearson’s R value of 0.9989 and a p-value of 2× 10−132.

We can see that the model is able to continuously apply small shifts to the location vector

without the vector deteriorating. While we know mathematically that location vectors can

be shifted without losing accuracy, this experiment shows that the operations are robust

against numerical computation errors. Location cleanup was only used on the extracted

39

locations for the origin and target object, the intermediate location vector used in scanning

was not cleaned after each shift. This experiment shows that these location vectors still

behave as expected after over 100 location shift operations.

Furthermore, we see that none of the trials timed out. Each target object was suc-

cessfully found, demonstrating that given precise and direct queries, the Spatial Semantic

Pointer architecture is able to store and extract spatial information to a high degree of

accuracy with four objects in memory. This also reinforces the earlier suggestion that

tighter, more focused queries yield higher success rates. In this case, a specific vector

direction results in improved performance compared to searching an entire quadrant.

From a biological standpoint, the image scanning experiment further demonstrates

the capability of the Spatial Semantic Pointer memory model to capture the cognitive

behaviours of human working memory. The SSP model is able to successfully replicate

Kosslyn’s findings that human spatial memory is a metric space. Kosslyn found that the

time for the human mind to scan from object to object scaled linearly with distance on

top of a flat reaction time before scanning took place. Our results chart is nearly identical,

with the only difference being the intercept is closer to 0. However this can be explained by

the time steps only counting time spent scanning and not the flat amount of time required

to process the query and produce the relevant vectors before scanning begins. This time

is not easily converted into time steps but would make up for the missing flat time spent

to match our results with Kosslyn’s.

4.5 Discussion

In this chapter we examined the effectiveness of Spatial Semantic Pointers as a biologically

plausible representation for performing spatial reasoning tasks. The spatial relation queries

experiment showed the architecture is able to perform tasks based on vague imprecise

relational queries that encompass large regions of the visual space. The image scanning

task demonstrated the representation’s robustness while performing precise tasks involving

many repeated binding operations to navigate from one portion of the memory to another.

The spatial relation queries experiment showed that the architecture is able perform

spatial reasoning within the semantic pointer space to a higher degree of accuracy with up

40

20 30 40 50 60 70 80
Distance (pixels)

20

40

60

80

100

120

140

160

St
ep

s

Steps vs Distance

Figure 4.7: Comparison of Kosslyn map scanning results and Image Scanning model.

Results from the original mental map scanning experiment performed by Stephen Kosslyn

[21] (top panel). Results from our reproduction of the experiment performed by our image

scanning model over 100 trials (bottom panel).

41

to 4 objects, and maintain a reasonable degree of accuracy at 5 objects, consistent with our

expectations from human spatial cognition and human working memory. Spatial Semantic

Pointers can fit seamlessly into a full computer vision pipeline spanning from processing

pixel images with neural network to creating working spatial memory and answering queries

based on memory.

In addition to the results of the spatial relation queries experiment being consistent

with the size of human working memory, the image scanning experiment further reinforces

the biological plausibility of the architecture as a model of human cognition. While Vector

Symbolic Architectures have been proposed in the past to model human working memory,

these experiments show that the Spatial Semantic Pointer architecture in particular can

be used to model human spatial cognition.

42

Chapter 5

Temporal Representation with

Legendre Memory Units

5.1 Overview

In this section, we apply our expanded multi-dimensional Legendre Memory Unit to per-

form video action recognition and compare its effectiveness against similarly sized Long

Short-Term Memory models. We introduce the UCF 101 dataset that we use for our

experiment as well as the describe the preprocessing performed. We outline the model

architecture and training parameters used. At the end, we present the results and discuss

the findings.

5.2 Experimental Design

In order to test the LMU’s effectiveness at capturing spatial temporal information over

time, we chose to implement it in action recognition in videos. The model is required to

remember contextual information from visual data across multiple time frames in order to

best determine what action is occurring in a given video. Specifically, the model is given

43

video data as images frame by frame and tasked with classifying the action being taken in

the video once all the frames are given. The dataflow diagram for the model is shown in

Figure 5.1, the specific elements of the model will be explained in the sections following.

To maintain consistency when comparing models, the only change between models is in

the Legendre Memory Unit layer within the dataflow diagram. For LMU models, we tested

layers of varying sizes of the internal hidden and memory units, as well as a variant of the

LMU using gates. For the comparison with LSTM models, the LMU layer is swapped

directly with an LSTM layer using default Keras LSTM parameters. The only change was

in the number of internal hidden and memory units.

5.3 UCF 101

The UCF 101 dataset published by the University of Central Florida [29] consists of 13320

videos spanning 101 action categories, extending the previous UCF50 dataset. Actions

come from a wide variety of categories and include brushing teeth, biking, playing the

violin, and taking soccer penalty shots. In addition to the wide variety of actions, each video

contains further variations in terms of camera placement, lighting, background clutter,

scale, object appearance etc. This simulates real world noisy data as opposed to generated

data with standardized background and lighting. The videos in the dataset have also been

preprocessed for easy integration into Python saving on computation time. The artificial

neural network model needs to be able to remember the visual information and pick out

the correct context clues to identify the correct action.

5.4 Preprocessing

Preprocessing was done using Harvey’s UCF101 training code [13]. Video from the UCF101

dataset was first extracted into individual frame images and converted into python read-

able matrices. Each video’s length was standardized by selecting 40 frames evenly spaced

through each video’s time span; videos under 40 frames were not considered. Image size

was standardized into 224x224 pixel matrices with 3 colour channels.

44

Figure 5.1: Dataflow for LMU action classification model

In order to compare the models purely on their ability to process information across

time, the models are given features from the same pre-trained classification networks. Thus

neither model has an advantage in image processing and the only comparison is between

the LMU and the LSTM parts of the model. For feature generation, we chose two state-of-

the-art classification networks, the Inception 2D network and the Inception 3D network.

The Inception 2D network is a state-of-the-art network used for static image classifica-

tion [30]. For preprocessing purposes, the top classification network was removed and the

previous feature layer is used as the output. Each video then becomes 40 time steps of

2048 features which are fed into each of our models.

We also took a look at using the Inception 3D network as preprocessing [5]. While

the network was designed to classify whole videos without recurrent networks by using

3D convolutional networks, there is evidence that improvements can be made by feeding

the few output timesteps through a final LSTM layer before classification [36]. While this

kind of network requires the entire video sequence at once and isn’t feasible for real time

applications, we thought it would provide another point of comparison between the LMU

and LSTM. Feeding in the video data and removing the top classification layer of the

45

network reduces the 40 input frames of video to 4 time steps of 1024 features.

The UCF101 dataset is already pre-split into a training set of 9,537 samples and a

testing set of 3,783 samples. We further randomly selected 20% of the training set to be a

validation set.

5.5 Legendre Memory Unit Model Training

As shown in Figure 3.2, Dropout was used to prevent overfitting on the data, with differing

values applied to both the input features, the hidden memory vector, and the internal LMU

memory vector. Redundant connections that did not affect accuracy were also removed.

Parameter tuning was performed manually on the size of the hidden vectors, the presence

of gates, and the amount of dropout in order to maximize accuracy while minimizing model

size.

The InceptionNet preprocessed features are passed through a dropout layer before being

input to an LMU cell, returning only the final layer for classification. The output is then

fed through a dense softmax layer for classification. All LMU models also have an internal

hidden unit dropout parameter of 0.5 and memory unit dropout parameter of 0.05.

5.6 Long Short-Term Memory Model Training

The default tensorflow implementation of the LSTM was used for our comparison model.

The architecture of the model is identical to the LMU model, with the only difference

being the LMU cell is swapped for an LSTM cell. The InceptionNet preprocessed sequence

is fed into a standard LSTM layer with dropout returning only the final value of the

sequence. The output from the LSTM layer is then fed through a dense softmax layer for

classification. All LSTM models also have an internal dropout parameter of 0.5.

46

5.7 Results

Multiple models with a variety of parameters were trained on the UCF-101 dataset with

identical train, test, validation splits for every model, enforced with a fixed seed for split-

ting. All models are trained for 1000 epochs, smaller faster training models are also trained

for 4000 epochs. Due to computational constraints, we are not able to produce multiple

runs for the different models. Both top 1, top 3, and top 5 categorical accuracies were used

to determine performance as there is some variance between papers on which metrics to

use.

Training time comparisons are based on epochs to train. As different models were

trained in different GPU servers with different GPU loads while training, it is not possible

to make any comparisons based on wall clock time taken.

5.7.1 3D Preprocessing

The initial models were trained on the output of the Google 3D InceptionNet with only 4

steps of 1024 features. However, it was quickly discovered that because the 3D InceptionNet

was already trained for the purpose of action recognition, there was very little difference

between the performance of the LSTM and the LMU. In general, regardless of the model

placed as the final layer, we saw a top 1 accuracy of about 87 − 88%, top 3 accuracy of

95− 96% and top 5 accuracy of 97− 98%. The original 3D InceptionNet by itself was able

to achieve 98.0% top 5 accuracy so it is clear that the LMU and LSTM networks are not

performing significant work, especially with just 4 time steps after preprocessing. As such,

the results of these initial experiments were not meaningful to the comparison of the LMU

and LSTM and not included.

One thing to note is that while both ended up with the same accuracies, the LSTM

trained in fewer epochs than the LMU. This could be explained by the 3D InceptionNet

being originally already trained to perform action classification on video. As such the bulk

of the action classification work is already done by the 3D network. The LSTM architecture

by default passes the information forward as is to the dense classification layer compared

to the LMU which needs to first learn to decode from the compressed Legendre space.

47

Model Hidden Units Memory Units Parameters

LSTM128 128 128 1,127,653

LSTM28 28 28 235,553

LSTM13 13 13 108,638

Table 5.1: LSTM Model Parameters for the 40 time step 2D InceptionNet preprocessed

Dataset. Parameters refers to the total number of trainable parameters within the model.

Note that in the standard LSTM model the Hidden and Memory Units are equal in size.

5.7.2 2D Preprocessing

In order to make a better comparison in performance for learning visual dynamics over

time, we switched to training on the output of the Google 2D InceptionNet, which converts

the 40 frames of video into 40 time steps of 2048 features. As the 2D inception network was

trained to classify images rather than video, all the time dependent action classification

work is done by the LMU and LSTM.

For the LSTM models (Table 5.1), we looked at a large model with 128 hidden units and

1.1 million parameters overall and a smaller model with 28 hidden units and 235 thousand

units overall. Larger networks did not have a significant impact on accuracy, reducing the

size of the network further below the LSTM28 caused the model to fail to learn the task.

For the LMU models (Table 5.2), we looked at a large model with 128 hidden units,

128×4 memory units, and 701 thousand parameters overall, as well as a gated model with

128 hidden units, 64 × 4 memory units, and 619 thousand parameters. While these have

fewer parameters than the LSTM model, larger models did not improve performance and

were significantly slower to train so were not included. On the other end, we also examined

a smaller models with just 64 hidden units, 32 × 4 memory units, and just 221 thousand

parameters to compare to the smaller LSTM model. Furthermore, we also decreased the

parameter count even further with 32 hidden units, 16 × 4 memory units, and just 106

thousand parameters to test the limits of the architecture.

The final test results after training can be seen in Table 5.3. For the larger models,

the LSTM outperformed the LMU in all cases. With 71% accuracy compared to 69% in

the Top 1 category and just over 1% improvement in the top 3 and top 5 categories. The

48

Model Hidden Units Memory Units Memory Order Theta Parameters

LMU128 128 128 4 16 701,177

LMUGated128 128 64 4 16 619,321

LMU64 64 32 4 16 221,605

LMU32 32 16 4 16 106,265

LMUGated24 24 12 4 16 106,265

Table 5.2: LMU Model Parameters for the 40 time step 2D InceptionNet preprocessed

Dataset. Parameters refers to the total number of trainable parameters within the model.

Note that because each memory unit is composed of its own memory vector of length

Order, the size of the entire memory vector for the LMU is the product of the Memory

Units and Memory Order. Because the LMU encodes its memory with precalculated

optimal matrices, the model is able to have much larger memory vectors for similar total

parameter counts compared to the LSTM.

Gated LMU performed almost identically to the LMU128 model with half the memory

units, only performing slightly worse in top 3 accuracy.

For the models in the 200k parameter range, the LMU outperformed the LSTM across

every metric after 1000 epochs, even with fewer parameters. As both models had not

flattened out on training accuracies and training loss, and both models were small enough

to train quickly, we are able to extend the training to 4000 epochs instead. Both models

improved in this case and the LSTM was able to catch up in performance, slightly beating

the LMU in the top 5 category by 0.4%, and losing to the LMU in top 3 and top 1 by 0.7%

and 1.8% respectively.

For the smallest models with just over 100 thousand parameters, we see the LMU32

significantly outperform the LSTM13 across every metric. Over 10% worse performance

in the top 1 after 1000 epochs, 8.5% better in the top 3, and 7.4% better in top 5. These

differences continue through 4000 epochs of training, with a 9.9% advantage in top 1

accuracy, 5.7% in top 5, and 3.6%. In fact, the LMU is more accurate across every metric

after 1000 epochs than the LSTM after 4000 epochs.

49

Model Top 1 Accuracy Top 3 Accuracy Top 5 Accuracy Parameters

LMU128 68.97% 85.22% 89.67% 701,177

LMUGated128 68.99% 84.59% 89.59% 619,321

LMU64 62.27% 80.88% 86.57% 221,605

LMU64-4000 67.67% 83.74% 88.56% 221,605

LMU32 56.02% 75.24% 82.50% 106,265

LMU32-4000 64.18% 79.64% 85.41% 106,265

LMUGated24 48.80% 68.68% 76.81% 103,741

LMUGated24-4000 57.53% 75.72% 83.21% 103,741

LSTM128 71.14% 86.68% 90.81% 1,127,653

LSTM28 55.60% 74.56% 82.00% 235,553

LSTM28-4000 65.90% 83.08% 88.99% 235,553

LSTM13 45.88% 66.77% 75.14% 108,638

LSTM13-4000 54.30% 73.95% 81.81% 108,638

Table 5.3: 2D Models Test Accuracy. Top N Accuracy refers to whether the model predicts

the correct category within its top N predictions for each trial. All models were trained for

1000 epochs, unless tagged with ‘-4000’, in which case they were trained for 4000 epochs.

50

5.8 Discussion

The LMU architecture was developed to optimally encode information over a large number

of time steps without the issue of vanishing or exploding gradients, so it is not surprising

that the LSTM was still able to beat the LMU when it comes to the larger models with

just 40 time steps, well within the limits of the LSTM. Perhaps with larger dataset with

longer length videos, we will be able to see the advantages of the LMU come into play.

Furthermore, while the task involves classifying actions from video, many of the actions

are simple enough that a human can identify the action from just a single frame, so it

is possible that classification becomes just a matter of remembering a few time steps as

opposed to learning the dynamics over the entire time frame.

However, for smaller network sizes the LMU was able to perform much better than

the LSTM across the majority of categories. The LMU not only trained faster, showing

significantly better performance after 1000 epochs, but also topped out higher with on av-

erage better results than the LSTM after 4000 epochs, while requiring 6% fewer parameters

overall. The LMU32 model was also able to slightly beat the LSTM28 model after 1000

epochs, showing that the LMU is much more efficient as the parameter count is pushed

lower.

The reason for this difference in performance in smaller networks can be seen in the ar-

chitectures of the two networks. The LMU optimally encodes temporal information using

precalculated matrices derived from the Legendre polynomials, whereas the LSTM encodes

temporal information using gates, each of which requires learning large matrix multiplica-

tions in order to calculate. The result is the LSTM has to spend a significant portion of its

parameter budget on the matrices for computing the gates required to construct its mem-

ory vector whereas the LMU precomputes those matrices for free. This allows the LMU

to have much larger internal vectors for the same number of parameters. Although high

end performance is important, real world applications often have restrictions in hardware

requirements and running time, creating a need for efficient smaller models.

While the LSTM128 model has 60% more parameters than the LMU128 model, the

LMU128 model is able to have the same number of hidden units and a memory vector

4 times larger, 128 × 4 compared to 128. In similar parameter counts of just over 200

thousand, the LMU is able to have double the hidden units, 64 compared to 28, and over

51

four times the memory units, 32 × 4 compared to 28. For the 100 thousand parameter

models, we have the LSTM able to have just 13 hidden and memory units, while the LMU

can have 32 hidden units and 16 × 4 memory units. This parameter efficiency allows the

LMU to do much more with less compared to the LSTM.

The gated LMU has potential, matching the performance of the LMU128 model with

a slightly lower parameter count. The difference being the gated LMU had half the mem-

ory units while requiring new matrices to produce the input gate. The similar levels of

performance suggest that the gate makes up for the missing memory units by allowing the

network to be more selective in the information being encoded into the memory. However,

the results are close enough that it is impossible to say if the parameter trade off in re-

ducing internal unit sizes is worth it for the addition of gates in the LMU. Similar to how

the LSTM gates allow it to remain stable for longer lengths of timesteps compared to the

simpler RNNs, the LMU gates may lead to greater performance in longer time step data

sets.

52

Chapter 6

Conclusion

In this thesis we examined the Spatial Semantic Pointer and the Legendre Memory Unit

as biologically plausible methods of representing and processing continuous spatial and

temporal information respectively within artificial intelligence applications. For spatial

representations, we demonstrated that SSPs can be used to represent space in a spatial

reasoning model. We showed that we can process visual image maps into an SSP memory

vector, store and retrieve spatial information, manipulate space in memory, as well as

perform search and scanning tasks. Our SPA model was able to perform the spatial

relations reasoning task by extracting spatial information from memory and using that

spatial information to locate target objects based on their spatial relationship to the original

object.

Furthermore, our model succesfully replicated Kosslyn’s famous map scanning experi-

ment by performing in memory scanning from origin object to target object. While Vector

Symbolic Architectures have been proposed in the past to model human working memory,

these experiments show that Spatial Semantic Pointers in particular can be used to model

human spatial cognition.

For temporal representations, we expanded the original LMU architure to be able to

have multi-dimensional input signals and multi-dimensional internal memory states. We

demonstrated that this new multi-dimensional LMU is able to match the LSTM in rep-

resenting visual data over time. While the LSTM performed slightly better with high

53

parameter counts, we showed that the LMU is able to outperform the LSTM as the pa-

rameter count shrinks. Furthermore, the internal structure of the LMU allows it to obtain

much lower total parameter counts even with larger internal state vectors. We also showed

that the LMU can be augmented with gates similar to the LSTM, at the cost of an in-

creased number of parameters. While this did not improve accuracy in our experiments,

it is possible that these gates will have a larger impact for data with much larger numbers

of timesteps.

Our model examined the use of Spatial Semantic Pointers as a continuous representa-

tion of space within a neural network model. All spatial reasoning after the initial data

preprocessing by neural network was performed using the SSP operations. It is possible

to encompass the entire pipeline within a deep neural network model by training a neural

network to encode visual spatial information directly into high dimensional SSP vectors

and also training the neural network to perform the SSP vector operations required for

spatial reasoning.

The dataset used was a simple visual map built from randomly placing MNIST images

onto a visual field. This was chosen to ensure that the results were focused on the SSP

architecture’s ability to process spatial data in memory and not the neural network’s ability

to pre-process the image. Many object detection neural networks are able to process more

complex images into objects and their coordinates. The SSP architecture can easily be

added onto these models to enable them to output SSP memory vectors that can be used

to perform spatial relations reasoning tasks.

We compared the LMU to the LSTM on the UCF101 dataset with sets of 40 frames

extracted from short videos a few seconds long. However, the LMU truly shines over the

LSTM when the number of timesteps is much higher, on the order of 1000s or more. Fur-

thermore, the actions within the dataset, such as golfing or typing, can often be identified

by a human from just a single frame. As such it is hard to make any comments on the

ability of either model to capture context over extended time. Given much more compu-

tational power, it would be interesting to train comparison models on much longer videos

that are minutes or hours long where robust memory and the ability to capture context

would be much more important. For example the detection of irregularities in security

tapes where relevant events, such as someone leaving with an item they did not enter with,

could occur minutes or hours apart.

54

References

[1] Introduction to the semantic pointer architecture. https://www.nengo.ai/

nengo-spa/user-guide/spa-intro.html.

[2] O. Abdel-Hamid, A. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu. Convolutional

neural networks for speech recognition. IEEE/ACM Transactions on Audio, Speech,

and Language Processing, 22(10):1533–1545, 2014.

[3] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh.

Vqa: Visual question answering. In 2015 IEEE International Conference on Computer

Vision (ICCV), pages 2425–2433, 2015.

[4] Timothy J. Buschman, Markus Siegel, Jefferson E. Roy, and Earl K. Miller. Neural

substrates of cognitive capacity limitations. Proceedings of the National Academy of

Sciences, 2011.

[5] J. Carreira and A. Zisserman. Quo vadis, action recognition? a new model and

the kinetics dataset. In 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 4724–4733, 2017.

[6] Narsimha Chilkuri and Chris Eliasmith. Parallelizing legendre memory unit training,

2021.

[7] Chuankun Li, Pichao Wang, Shuang Wang, Yonghong Hou, and Wanqing Li. Skeleton-

based action recognition using lstm and cnn. In 2017 IEEE International Conference

on Multimedia Expo Workshops (ICMEW), pages 585–590, 2017.

55

https://www.nengo.ai/nengo-spa/user-guide/spa-intro.html
https://www.nengo.ai/nengo-spa/user-guide/spa-intro.html

[8] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Empirical

evaluation of gated recurrent neural networks on sequence modeling. In NIPS 2014

Workshop on Deep Learning, December 2014, 2014.

[9] Ronald A. Finke and Steven Pinker. Spontaneous imagery scanning in mental ex-

trapolation. Journal of Experimental Psychology: Learning, Memory, and Cognition,

8(2):142–147, 1982.

[10] R. Gayler. Vector symbolic architectures answer jackendoff’s challenges for cognitive

neuroscience. ArXiv, abs/cs/0412059, 2004.

[11] Ross Gayler and Simon Levy. A distributed basis for analogical mapping. 01 2009.

[12] M. Haldekar, A. Ganesan, and T. Oates. Identifying spatial relations in images using

convolutional neural networks. In 2017 International Joint Conference on Neural

Networks (IJCNN), pages 3593–3600, 2017.

[13] Matt Harvey. Five video classification methods implemented in keras and tensor-

flow. https://github.com/harvitronix/five-video-classification-methods,

Sep 2017.

[14] John Haugeland. Artificial Intelligence: The Very Idea. Cambridge: MIT Press, 1985.

[15] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput.,

9(8):1735–1780, November 1997.

[16] M. Ibbotson and B. Krekelberg. Visual perception and saccadic eye movements. Curr

Opin Neurobiol, 21(4):553–558, Aug 2011.

[17] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,

2017.

[18] Denis Kleyko. Pattern Recognition with Vector Symbolic Architectures. PhD thesis,

03 2016.

[19] Brent Komer, Terrence C. Stewart, Aaron R. Voelker, and Chris Eliasmith. A neural

representation of continuous space using fractional binding. In 41st Annual Meeting

of the Cognitive Science Society, Montreal, QC, 2019. Cognitive Science Society.

56

https://github.com/harvitronix/five-video-classification-methods

[20] Yu Kong and Yun Fu. Human action recognition and prediction: A survey. CoRR,

abs/1806.11230, 2018.

[21] Stephen M. Kosslyn. Image and Brain. MIT Press, 1984.

[22] S. Li, W. Li, Chris Cook, C. Zhu, and Y. Gao. Independently recurrent neural network

(indrnn): Building a longer and deeper rnn. 2018 IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 5457–5466, 2018.

[23] Xinyu Li, Yanyi Zhang, Chunhui Liu, Bing Shuai, Yi Zhu, Biagio Brattoli, Hao Chen,

Ivan Marsic, and Joseph Tighe. Vidtr: Video transformer without convolutions, 2021.

[24] Giuseppe Liotta, Roberto Tamassia, and Ioannis G. Tollis. Graph Algorithms and

Applications 5. World Scientific Publishing Company, 2006.

[25] Pankaj Malhotra, Anusha Ramakrishnan, Gaurangi Anand, Lovekesh Vig, Puneet

Agarwal, and Gautam Shroff. Lstm-based encoder-decoder for multi-sensor anomaly

detection, 2016.

[26] A.K. Pani and G.P. Bhattacharjee. Temporal representation and reasoning in artificial

intelligence: A review. Mathematical and Computer Modelling, 34(1):55–80, 2001.

[27] Tony A Plate. Holographic reduced representations. IEEE Transactions on Neural

networks, 6(3):623–641, 1995.

[28] Murray Shanahan. The frame problem. https://plato.stanford.edu/archives/

spr2016/entries/frame-problem/, Feb 2004.

[29] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101

human actions classes from videos in the wild, 2012.

[30] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–9, 2015.

[31] László Tóth. Combining time- and frequency-domain convolution in convolutional

neural network-based phone recognition. pages 190–194, 05 2014.

57

https://plato.stanford.edu/archives/spr2016/entries/frame-problem/
https://plato.stanford.edu/archives/spr2016/entries/frame-problem/

[32] M.V. Valueva, N.N. Nagornov, P.A. Lyakhov, G.V. Valuev, and N.I. Chervyakov.

Application of the residue number system to reduce hardware costs of the convolu-

tional neural network implementation. Mathematics and Computers in Simulation,

177:232–243, 2020.

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,

U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-

nett, editors, Advances in Neural Information Processing Systems, volume 30. Curran

Associates, Inc., 2017.

[34] Aaron R. Voelker. Dynamical Systems in Spiking Neuromorphic Hardware. Phd thesis,

University of Waterloo, 2019.

[35] Wei Wang, Cheng Chen, Yizhou Wang, Tingting Jiang, Fang Fang, and Yuan Yao.

Simulating human saccadic scanpaths on natural images. pages 441 – 448, 07 2011.

[36] Xianyuan Wang, Zhenjiang Miao, Ruyi Zhang, and Shanshan Hao. I3d-lstm: A new

model for human action recognition. IOP Conference Series: Materials Science and

Engineering, 569:032035, 08 2019.

[37] Eric Weiss, Brian Cheung, and Bruno Olshausen. A neural architecture for repre-

senting and reasoning about spatial relationships. Proceedings of the International

Conference on Learning Representations (ICLR), Workshop Trak,, 2016.

[38] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff

Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan

Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian,

Nishant Patil, Wei Wang, Cliff Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol

Vinyals, Greg Corrado, Macduff Hughes, and Jeffrey Dean. Google’s neural machine

translation system: Bridging the gap between human and machine translation, 2016.

58

	List of Figures
	List of Tables
	Introduction
	Background
	Spatial Representation
	Vector Symbolic Architecture
	Semantic Pointer Architecture

	Temporal Representation
	Recurrent Neural Networks
	Convolutional Neural Networks

	Methods
	Spatial Semantic Pointers
	Legendre Memory Units
	Multi-dimensional LMUs
	Gates
	LSTMs

	Summary

	Spatial Reasoning with Spatial Semantic Pointers
	Overview
	Experimental Design
	Architecture
	Dataset
	Visual Attention
	Object Classification
	Spatial Semantic Pointer Encoding
	Query Generation
	Information Extraction
	Location Cleanup
	Scanning Memory

	Results
	Spatial Relation Queries
	Image Scanning

	Discussion

	Temporal Representation with Legendre Memory Units
	Overview
	Experimental Design
	UCF 101
	Preprocessing
	Legendre Memory Unit Model Training
	Long Short-Term Memory Model Training
	Results
	3D Preprocessing
	2D Preprocessing

	Discussion

	Conclusion
	References

