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Abstract

Estimating tail risk measures for portfolios of complex Variable Annuities (VA) is an
important enterprise risk management task which usually requires nested simulation. In
the nested simulation, the outer simulation stage involves projecting scenarios of key risk
factors under the real world measure, while the inner stage is used to value payoffs under
guarantees of varying complexity, under a risk neutral measure.

In this thesis we propose and analyze three different two-stage simulation procedures
that improve the computation efficiency of nested simulation. All three proposals allocate
the inner simulations to the specific outer scenarios that are most likely to generate larger
losses. These scenarios are identified using a proxy evaluation in the Stage 1 simulation.
The proxy evaluation is used only to rank the outer scenarios, not to estimate the tail risk
measure directly. The proxy evaluation can be based on a closed-form calculation which
works very efficiently for simpler contracts, or a pilot nested simulation using likelihood
ratio estimators which accommodates very complex path-dependent contracts. Then in
the Stage 2 simulation we allocate the remaining computational budget to the scenarios
identified in Stage 1. Our numerical experiments show that, in the VA context, our pro-
posals are significantly more efficient than a standard Monte Carlo experiment, measured
by relative mean squared errors (RMSE), when both are given the same computational
budget.
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Chapter 1

Introduction

1.1 Variable Annuities

Variable Annuities (VA) are long-term insurance contracts that are widely used for wealth
accumulation and for providing retirement income. Annual sales of VAs in the U.S. in 2019
were $102 billion, and assets under management of inforce VA contracts at the end of 2019
totaled around $2.2 trillion (Insurance Information Institute, 2020).

A VA contract works in many ways like a mutual fund investment with an embedded
option. The premium of the contract, which, typically, is a lump sum at the start of the
contract, is deposited into a mutual-fund like vehicle called the sub-account. The sub-
account is invested in financial assets such as bonds and stocks. The insurer periodically
deducts fees from the sub-account, and in exchange offers death and/or living benefits to
the policyholder. The VA benefits are linked to the value of underlying investment in the
sub-account, subject to a guaranteed minimum. The guaranteed minimum benefits protect
policyholders from downside market risk of their investment.

1.1.1 Types of VA guarantees

The major types of benefits provided by Variable Annuities in the market today include:

Guaranteed Minimum Maturity Benefit (GMMB) In the simplest GMMB, the
contract pays a maturity benefit equal to the greater of the sub-account value and a fixed
guarantee value. In many cases, the guarantee value is set as a percentage, say 75% or
100%, of the initial premium.

1



Guaranteed Minimum Death Benefit (GMDB) A GMDB contract is similar to a
GMMB contract with the only difference being the timing of payoff. The payoff of a
GMDB contract occurs at the time of policyholder’s death rather than at maturity of the
contract. GMDBs are sometimes offered as a standalone VA contract, but more often, they
are offered together with other guaranteed benefits in a VA contract.

Guaranteed Minimum Accumulation Benefit (GMAB) In a GMAB contract, re-
newals are scheduled during the term of the policy. At each renewal, if the sub-account
value exceeds the guarantee value, then the guarantee value is reset to the level of fund
value. On the other hand, if the guarantee value exceeds the fund value at renewal, then
the insurer will pay to increase the fund value to that of the guarantee value. The contract
also has a maturity benefit equal to the greater of the sub-account value and the guarantee
value. Compared to a GMMB contract, the GMAB contract gives the policyholder an
opportunity to lock-in investment gain, and requires the insurer to make up for some in-
vestment loss during the course of the contract. As such, the guaranteed benefit in GMAB
is richer than the guaranteed benefit in GMMB.

Guaranteed Minimum Withdrawal Benefit (GMWB) A GMWB contract guar-
antees the minimum amount of periodic withdrawal the policyholder can take from the
sub-account until maturity. The insurer guarantees to pay the minimum withdrawal ben-
efit each year even if the sub-account value reduces to zero. The minimum withdrawal
benefit is typically a fixed percentage of the guarantee value. The guarantee value will
decrease accordingly if the withdrawal exceeds the guaranteed minimum. The GMWB
is typically offered with a flexible or fixed accumulation period. During the accumulation
period, no withdrawals are made. A GMDB benefit is usually offered during the accumula-
tion period. Additional features offered with the GMWB include roll-up, ratchet, and reset
(Geneva Association, 2013). With roll-up, the guarantee value grows at a pre-determined
rate. Typically, the roll-up feature is only offered during the accumulation period. With
ratchet, the guarantee value is periodically set to the sub-account value if the sub-account
value becomes higher similarly to the GMAB. With reset, the guarantee value can be reset
to the higher of the current and the original sub-account value. The guaranteed mini-
mum periodic withdrawal feature makes the GMWB contract a useful tool for providing
retirement income.

Guaranteed Lifetime Withdrawal Benefit (GLWB) A GLWB contract is similar to a
GMWB contract, with the only difference being the length of the payoff period. The payoff
of a GLWB contract ends at the time of policyholder’s death rather than at maturity of
the contract. Compared to the GMWB contract, the GLWB also protects the policyholder
from longevity risk.
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Guaranteed Minimum Income Benefit (GMIB) A GMIB contract is similar to a
GLWB contract. Instead of providing a guaranteed minimum withdrawal benefit for life,
GMIB provides a guaranteed income benefit for life through annuitization. After annuiti-
zation, the contract becomes a fixed payout annuity. The policyholder cannot withdraw
any funds exceeding the annuity benefit, nor can they access any remaining sub-account
value at the time of death. Therefore, compared to a GLWB contract, the GMIB contract
restricts liquidity significantly from policyholder’s perspective, but offers higher income on
average.

According to Geneva Association (2013), by the third quarter of 2012, among all VA
sales in the U.S., GMWBs and GLWBs accounted for 41%, GMIBs accounted for 16%,
GMABs accounted for 3% while non-living benefit accounted for 35%.

1.1.2 Pricing and valuation of Variable Annuities

From the insurers’ perspective, the various guaranteed benefits listed above can be viewed
as financial options embedded in these VA contracts. Early work on pricing and valua-
tion of VA includes Boyle and Schwartz (1977); Boyle and Hardy (1997, 2003). Boyle and
Schwartz (1977) pioneer the theoretical framework for pricing death and maturity benefit
guarantees in equity-linked life insurance contracts as financial options. They also present
how a hedging strategy can be constructed by insurers to minimize investment risk expo-
sure in these equity-linked contracts. Boyle and Hardy (1997) present two approaches to
reserve for maturity benefit guarantees in VA (also known as Segregated Funds in Canada):
a stochastic simulation approach and an option pricing approach. Under the stochastic
simulation approach, the distribution of portfolio values and the value of guaranteed ma-
turity benefit is projected using Monte Carlo simulation. Then the reserve is set at an
level such that with high probability, e.g. 99%, the reserve will be sufficient to meet the
obligation of maturity benefit guarantee. Under the option pricing approach, the maturity
benefit guarantee is viewed as a put option, and the underlying investment risk can be
hedged accordingly. The reserve is then set as the sum of the price of put option plus the
transaction cost associated with hedging. In Boyle and Hardy (2003), the authors present
a pricing model for Guaranteed Annuity Options, which is similar to a GMIB VA contract.
The pricing model incorporates interest rate risk, equity risk, and mortality risk of the
guaranteed benefits.

Bauer et al. (2008) propose a universal pricing framework for various guaranteed ben-
efits, including GMDB, GMAB, GMWB and GMIB. The proposed pricing framework can
accommodate modeling of stochastic policyholder behavior. Marshall et al. (2010) focus on
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the pricing of GMIBs. They extend the work of Bauer et al. (2008) by including stochastic
interest rate model, reflecting the practical fee structure, and separately quantifying the
fair price of different product features such as roll-up or ratchet. They conclude that roll-
up is an expensive feature while ratchet is not. They also show interest rate and lapse rate
has significant impact on the fair price of the GMIB. Dai et al. (2008) develop a stochastic
control model for pricing GMWBs and consider policyholders’ optimal withdrawal strategy
to maximize the expected discounted cashflow from the contract. They suggest that the
flexibility for policyholders to dynamically withdraw in a GMWB contract is an expensive
option offered by the insurer. They also discussed several optimal withdrawal strategies
derived from the model. Piscopo and Haberman (2011) introduce a valuation model for
GLWBs which incorporates a stochastic mortality model. They show that the fair value
of the GLWB is sensitive to mortality risk as well as model and parameter selection.

1.1.3 Risk factors of Variable Annuities

As alluded to in the works listed above, the various guaranteed minimum benefits pose
significant risks to insurance companies issuing VAs. The most prominent risk factors
include equity market performance, interest rate, policyholder behavior, and longevity
experience. Fung et al. (2014) generalizes the valuation framework for GMWB presented
in Kolkiewicz and Liu (2012) to the GLWB under static withdrawal assumption. They
integrate a stochastic mortality model in the valuation framework to reflect longevity risk.
The sensitivity of the fair price, risk measure and profit-and-loss (P&L) of the GLWB
contract are examined. The authors find that the fair market price of the GLWB increases
significantly with increasing mortality volatility, longevity risk, and equity exposure. The
fair market price is negatively correlated to interest rates and is highly sensitive in a
low interest rate environment. They also show that tail losses of GLWBs increase when
longevity risk is present. In addition, the loss distribution is sensitive to parameter risk
and model risk.

Geneva Association (2013) also recognizes the key risks associated with VAs as longevity
risk, equity risk, interest rate risk, persistency risk, and benefit utilization risk. Drexler
et al. (2017); Chahboun and Hoover (2019) echo these findings, and identify hedge risk as
another key risk of VA. We will discuss this next. Drexler et al. (2017) also point out low
interest rates exacerbate the risks associated with VAs.

The risk associated with policyholder behavior refers to the deviation of assumed and
actual policyholder behavior, such as lapse/surrender of the contract, the amount of with-
drawal benefit made (Steinorth and Mitchell, 2015; Moenig and Bauer, 2016), the length of
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the accumulation period (Huang et al., 2014), etc. A unique feature of VAs in terms of pol-
icyholder behavior, is policyholders’ propensity to lapse the contract when the guarantee
value is substantially below the sub-account value (i.e. when the contract is out-of-the-
money), in order to obtain a new policy with a higher guarantee value. Conversely, when
the guarantee value is above the sub-account value (i.e. when the contract is in-the-money),
policyholders tend to be more reluctant to lapse the contract. The impact of this feature
of VAs is that the policyholder’s behavior is dependent on financial market performance.
This is a well studied topic in VA research. See, for example, Bernard et al. (2014b);
Knoller et al. (2016); Moenig and Zhu (2018); Bernard et al. (2014a).

1.1.4 Dynamic hedging of Variable Annuities

Given the significant market risk exposure of VA, insurance companies very often use dy-
namic hedging to mitigate their risks. Dynamic hedging uses a portfolio of assets whose
value moves in tandem to the direction of the value of liability associated with the guaran-
teed minimum benefits. As a result, the gain or loss from the hedging portfolio is expected
to offset, at least to some extent, the liability under the guaranteed minimum benefit.
The hedging portfolio is rebalanced frequently due to changes in the liability and hedging
portfolio component values. The composition of hedge portfolio is determined based on
the “Greeks” of the liability. Typical Greeks used in a dynamic hedging program of VAs
include:

Delta Sensitivity of the liability associated with guaranteed minimum benefit to changes
in the price of underlying asset, e.g. equity investment in the sub-account.

Gamma Sensitivity of the Delta to changes in the price of underlying asset.

Rho Sensitivity of the liability associated with guaranteed minimum benefit to changes
in interest rate.

Vega Sensitivity of the liability associated with guaranteed minimum benefit to changes
in the market implied volatility of underlying asset.

1.1.5 Hedging effectiveness of Variable Annuities

Under the ideal conditions of the Black-Scholes-Merton world, the dynamic hedging strat-
egy would be self financing, with no requirement for additional economic or regulatory
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capital. In practice, there will always be gaps between the evolution of the hedge portfolio
and the hedge position required for the liability, which makes slippages in hedge portfolios
inevitable. At each rebalancing point of the hedging portfolio, the value of the hedging
portfolio brought forward from the previous period may be different from value of the
hedging portfolio required for the subsequent period. Hence, at each rebalancing point,
the insurer may incur additional costs if the hedge brought forward from the last period is
insufficient to fund the hedge required for the next time period. Hardy (2003) discusses in
detail dynamic hedging of Variable Annuities.

The study done by Sun et al. (2016) found that “hedging programs are 92% effective
in reducing P&L volatility and 96% effective in offsetting losses from market movements”.
Causes for slippage in hedge portfolio effectiveness include basis risk, discrete hedge rebal-
ancing intervals, and the effects of policyholder behavior.

Basis risk refers to the risk that the price movements of underlying investment in the
sub-account of VA contracts do not exactly follow the price movement of the hedging
instrument. Trottier et al. (2018) and Ankirchner et al. (2014) examine basis risk and
liquidity risk in VA hedging. Liquidity risk refers to the risk that insurers need to borrow
to finance the set up of VA hedging portfolio, given the premium structure of VAs (periodic
rather than upfront fee deduction). They propose a numerical framework for quantifying
hedging errors in presence of basis and liquidity risk. They show that, based on their model,
even with a high correlation of 0.99 between the risk source and the hedging instrument,
14% of the volatility in price movement still cannot be hedged.

In Kling et al. (2011), the authors study various features of GLWB benefits and impact
of different hedging strategies on an insurer’s P&L. They find that different product fea-
tures have vastly different impact on the composition of hedging portfolio and the insurers
risk exposure after hedging. They also show that the insurer’s risk exposure could vary
significantly in presence of model risk and stochastic volatility.

Kling et al. (2014) extend the work of Kling et al. (2011) and incorporate policy-
holder behavior in their valuation framework for GLWB. The policyholder behavior they
consider is the policyholder’s decision to either withdraw the guaranteed minimum with-
drawal amount, or to withdraw the entire sub-account value, i.e. a full surrender of the
VA contract. They use this model to study the fair price of different product features in
presence of policyholder behavior. They also study the impact of policyholder behavior on
hedging efficiency, insurer’s expected profit and risk exposure. They find that deviation
between assumed and actual policyholder behavior has a material impact on insurers’ ex-
pected profit and risk exposure after hedging, particularly for product without a ratchet
feature. Augustyniak and Boudreault (2015) use a GMMB example to study the impact
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on hedging error under a few scenarios including (1) not reflecting policyholder behavior
in hedging; (2) reflecting the policyholder behavior perfectly in hedging; (3) reflecting the
policyholder behavior in hedging with some imperfection. They found significant impact on
hedging error, especially in the tail risk measure when policyholder behavior is not reflected
in hedging. Reflecting the policyholder behavior in hedging, even with some imperfection,
provides sizable relief to hedging error.

1.2 Risk Measures

Quantifying tail risk is an important task in risk management of insurance and other
financial industries. Two commonly used tail risk measures are Value-at-Risk (VaR) and
Conditional Tail Expectation (CTE1).

For a random loss L, the α-VaR, where 0 ≤ α ≤ 1, is defined as

VaRα = inf {Q : Pr[L ≤ Q] ≥ α}

Let Qv denote the v-VaR of L, then the CTEα is defined as

CTEα =
1

1− α

∫ 1

α

Qvdv

In the above definitions, and for the rest of the thesis, we assume that losses lie in the
right tail of the distribution whereas gains lie in the left tail of the distribution.

Tail risk measures such as VaR and CTE are widely used for setting regulatory and
economic capital. Regulatory capital is the amount of capital each institution must hold
as prescribed by regulator, whereas economic capital is the amount of capital that the
institution judges is necessary to cover its risk (Tiesset and Troussard, 2005).

In the insurance industry Solvency II EIOPA (2014) is the regulatory capital require-
ment applicable to insurers in the European Union. Solvency II requires evaluating the
99.5% Value at Risk (VaR) of the change in surplus each year. In Canada, the regulatory
capital requirement for Variable Annuities, as prescribed in OSFI (2017), is the difference

1The CTEα, which was introduced in Wirch and Hardy (1999), is identical to the TailVaRα or Expected
Shortfall1−α, which is based on (but not identical to) a measure introduced in Artzner et al. (1999). Both
terms are used to mean the expected value of a loss, conditional on the loss falling in the upper (1 − α)
part of its distribution.
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between the Total Gross Calculated Requirement, which is set at the 95% CTE, and the
reserve, which is set between the 60% and 80% CTEs (CIA, 2017). In the US, the stochas-
tic component of the reserve of VAs uses a 70% CTE (NAIC, 2020) and the Total Asset
Requirement uses a 98% CTE (NAIC, 2016).

In the banking industry, under Basel III (Basel Committee on Banking Supervision,
2019), the regulatory capital requirement for market risk is the 97.5% Expected Shortfall
over a 10-day horizon under the internal models approach, replacing the 99% VaR required
under Basel II.

1.3 Nested Simulation

Estimating the tail risk measures of VA liabilities, including the hedging error, is of prime
interest to risk management and regulatory capital assessment. In most cases the evaluation
of these risk measures is computationally burdensome, requiring nested, path-dependent
Monte Carlo simulation (also known as two-tier or stochastic-on-stochastic simulation).
Therefore, developing more efficient and accurate methods for the valuation and risk man-
agement of embedded options is a topic of considerable interest to insurers , and has appli-
cations more broadly in financial risk management. In Feng (2016), a Society of Actuaries’
survey participated by 18 insurance companies with over $100 billion in assets combined,
none of the participants adopted nested stochastic modeling at the time the survey was
conducted. The majority of the participants identified run time and difficulty of modeling
as the primary reasons for not doing so, but most expressed a desire to implement it in
the future.

The nested Monte Carlo simulation process for assessing the tail risk measure of a
dynamically hedged VA requires two levels of simulation.

• The outer level simulation projects the underlying risk factors to quantify the loss
distribution under the real world measure. In many finance applications, the pro-
jection involves only a single step, but in our context the outer level projections are
multi-period, e.g. 20 or 40 years, with a time step based on the assumed hedge re-
balancing frequency, e.g. monthly. The outer level simulated paths are known as the
scenarios, and may include simulated asset returns, guarantee value, interest rates,
policyholder behaviour, and longevity experience.

• The inner level simulations are used to estimate the fair market value of the guar-
anteed liability, i.e. the embedded options of VA contracts, at each future date,
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conditional on the outer level scenarios up to each valuation date. In other words,
the inner level simulation target is an expectation, conditional on the outer scenario
state variables. As this is a valuation step, a risk neutral pricing measure is used.

In Figure 1.1 we illustrate the nested simulation process both for the single period and
multi-period case. The entire figure represents the multi-period case considered in this
thesis while the portion circled in the green represents the single period case considered
in most other research into this subject, including Gordy and Juneja (2010); Lan et al.
(2010); Broadie et al. (2011, 2015); Bauer et al. (2012).

Figure 1.1: Nested simulation structure

One major reason that nested simulations are required is that the hedge calculations
of VA generally use stochastic volatility models, because of the long term nature of the
contracts, and because the guarantee costs are highly dependent on the tail outcomes
of the underlying asset distribution. Constant or deterministic volatility models do not
provide a good fit to stock prices in the long term, and are particularly poor at capturing
tail dynamics (Hardy, 2001). The introduction of more sophisticated, dynamic models
of policyholder behavior also adds to the computational burden associated with VA risk
modeling. In general, this level of complexity and dimensionality can only be solved using
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stochastic simulation, and it is now standard practice in the insurance industry to use
Monte Carlo simulation to model Variable Annuities.

For insurers, large scale nested simulations for assessing VA losses will take considerable
run time. A large number of outer level simulations are needed in order to estimate the
extreme tails needed for VaR or CTE calculations, and a large number of inner simulations
are needed at each time step, because the embedded options are often far out-of-the-money.
Furthermore, the calculations have to be repeated for each VA contract, or cluster of con-
tracts, in force. Consider a single VA contract with 20-year maturity, which is dynamically
hedged with rebalancing at monthly intervals. A Monte Carlo projection, based on a two-
level nested simulation with 5,000 outer scenarios and 1,000 single step inner simulations,
at each monthly rebalancing point, will require 20× 12× 5000× 1000 = 1.2× 109 total
simulated asset or liability values; If each simulated value takes 1 µs (10−6 seconds) to
complete, then it would take around 20 minutes to simulate the cash flows for a single
policy. If the inner simulations are stepwise to the end of the 20-year term, the total num-
ber of simulated cash flows increases by a factor of around 120. Given the computational
burden, many insurers are very interested in variance reduction techniques for nested sim-
ulation models that can achieve accurate results within a limited computational budget
(Feng, 2016). Feng (2018) offers a detailed description of nested simulation of VA and
some existing techniques to address the computational challenge of nested simulation. We
will detail a few of these techniques in Section 1.4.

Similar nested simulation challenges arise in banking, where exotic options and in-
tractable pricing measures make the assessment of the VaR or CTE measures too complex
for analytic calculation. Holton (2003) points out that large scale nested simulation is
too time consuming for practical, everyday risk analysis, where risk exposures may be re-
quired with only a few minutes notice. Compromises, such as limiting the choice of pricing
models, or prematurely terminating simulations, are usually insufficiently accurate for tail
risks, and can produce unacceptably biased estimators.

1.4 Literature Review

Research aimed at improving the computational efficiency of nested simulations mainly
addresses the issue from two different angles: (1) by considering nested simulation of each
model contract, or (2) by considering large portfolios of contracts. Proposals in the first
category typically involve a modified simulation procedure than a standard nested simu-
lation. Proposals in the second category typically retain the standard nested simulation
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structure but try to reduce the number of contracts in the portfolio to be processed through
nested simulation. Our proposed work fits in the first category.

The literature on nested simulations of model contracts focuses either on an efficient
allocation of computational budget between outer and inner simulations (e.g. Gordy and
Juneja (2010)), or on methods to improve the efficiency of inner simulations. In Gordy and
Juneja (2010), the authors demonstrate how a fixed computation budget can be allocated
between inner and outer simulations to minimize the mean squared error of various tail
risk measures. They derive convergence analysis results for the mean squared errors of the
tail risk measures. In addition, they illustrate how the jackknife method can be applied
to reduce bias in the estimated tail risk measure. Their methods are useful in nested
simulations where the number of outer scenarios are not pre-determined and can vary from
one experiment to another.

On the other hand, among the work that aims at improving the efficiency of inner
simulations, two different approaches have been proposed. The first uses proxy models to
replace the inner simulation step, and the second uses a dynamic, non-uniform allocation
of the inner simulation budget. Some work use a combination of the two approaches.

Proxy models are tractable analytic functions that replace the inner simulation stage of
a nested simulation. Proxies may be empirical – i.e. intrinsic to the simulation process, or
may be extrinsic. Extrinsic proxy functions are selected to be close to the inner simulation
values, and therefore require detailed information about the payoffs that are evaluated in
the inner simulation step. See Aggarwal et al. (2016) for other examples.

Empirical proxies are constructed using an initial pilot simulation to develop factors
or functionals that can subsequently be used in place of the inner simulation. Hardy and
Wirch (2004) use a factor approach. They propose a linear interpolation for calculating
risk measures over multiple periods in the time horizon for profit testing purposes. A
grid of risk measures factors are pre-calculated using standard nested simulation based on
different term-to-maturity and moneyness ratio. Then the risk measure at future times
are projected as linear interpolation of the pre-calculated risk measures. This approach is
useful in simpler contracts where the relationship between risk measures and moneyness
ratio is close to being linear.

Another prominent empirical proxy method discussed in research is the least squares
Monte Carlo (LSMC) method (following Longstaff and Schwartz (2001)), for example in
Cathcart and Morrison (2009); Bauer and Ha (2015); Krah et al. (2018); Broadie et al.
(2015). The work in Cathcart and Morrison (2009) is motivated by the nested simulation
required for risk based capital requirement of VAs such as Solvency II. They demonstrate
how the LSMC method can be used to replace inner simulations. They show that with
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simple input variables, such as the sub-account value, interest rate, and guarantee value,
the LSMC method can estimate liabilities accurately for complex VA contracts such as
GMWBs. Bauer and Ha (2015) apply the LSMC method in a nested simulation of GMIBs.
They study the convergence of the LSMC algorithm, particularly for estimating VaR. They
show that the left singular functions of the valuation operator present the optimal basis
functions in the LSMC method. The authors point out that the choice of basis function
could significantly affect the accuracy of results, particularly when the complexity and
dimensionality of the problem increase. Complexity and high dimensionality are indeed
features of the multi-period nested simulation that we consider in this thesis. Thus we are
exploring other options for improving the efficiency of multi-period nested simulation in this
thesis. Krah et al. (2018) consider the LSMC method in a nested simulation for quantifying
the Statutory Capital Requirement under Solvency II for life insurance contracts. They
present an adaptive algorithm to build up basis functions. They also discuss processes
for validating the proxy built with the basis functions. Broadie et al. (2015) apply the
LSMC method in a nested simulation to quantify risk measures in a portfolio of financial
assets whose prices are driven by multiple risk factors such as stock and commodity prices,
interest rates, currency exchange rates, etc. They analyze the convergence of MSE of the
risk measure estimator based on LSMC method, and show that the performance of the
estimator does not depend on the dimension of the problem if basis functions are well-
chosen. They also suggest that expert knowledge about the problem is helpful in choosing
basis functions. In addition, the authors present a weighted LSMC method for tail risk
measure estimation that can further reduce bias. In the weighted method, more weights are
given to scenario in the tail region of the loss distribution in the least squares regression.
This is along a similar line of thought as the methods we are proposing in this thesis. More
specifically, in implementing the weighted method, the authors suggest a two-stage process:
The first stage carries out an unweighted regression whose output is used to determine the
weights assigned to each outer scenario in the weighted regression in the second stage.

Other forms of intrinsic proxy include Gaussian process regression (Risk and Ludkovski,
2018), analytical solutions for the inner simulation output (Feng and Jing, 2017), and re-
placing the inner simulation by solving PDEs (Li and Feng, 2021). The focus of Feng
and Jing (2017) is not nested simulation but the authors derive analytical solution for the
risk-neutral liability and delta of a plain-vanilla GLWB contract in a geometric Brown-
ian motion asset model. The analytical solution uses a technique of fitting exponential
sums to a mortality density function. The analytical solution presented can be used as
an intrinsic proxy to replace inner simulations of a nested simulation. Li and Feng (2021)
provide an overview of multi-period nested simulation for regulatory purposes in insurance
applications, and propose a PDE method to replace inner simulation of nested simula-
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tions for complex GMWB contracts in a realistic modeling setting. The study finds the
PDE methods superior in computational efficiency when compared with standard Monte
Carlo method, least-squares Monte Carlo, or preprocessed inner simulations. Our propos-
als in this thesis for improving the efficiency of nested simulations remain in the traditional
nested simulation framework, for its adaptability and widespread utilization in the insur-
ance industry. Nevertheless, the PDE method proposed by Li and Feng (2021) can be
incorporated into the proxy method that we propose.

In general, empirical proxies requiring trial inner simulations do not transfer well to
path-dependent VA contracts, because the VA options are typically far out-of-the-money.
As a result, a small number of trial inner simulations will not give an adequate assessment of
the hedging losses in the general case, although in some specific cases importance sampling
within the inner simulations could mitigate this problem.

The second approach to improve the efficiency of inner simulations, namely methods
utilising a dynamics allocation of the computational budget of a nested simulation, have
been developed by Lan et al. (2010), Liu and Staum (2010), Bauer et al. (2012),Broadie
et al. (2011) and Risk and Ludkovski (2018). Assume that we have a fixed number of
inner simulations that will be distributed across the outer scenarios. This is the inner
simulation budget. The uniform nested simulation method allocates the inner simulation
budget equally across all the scenarios. We discuss this process in more detail in Chapter 2.
Dynamic allocation involves non-uniform allocation of the inner simulation budget. Lan
et al. (2010) suggest a two stage process: In the first stage, results from a small number
of initial inner simulations, uniformly allocated, are used to signal which scenarios were
likely to have the most impact on the risk measure. The remainder of the inner simulation
budget is then allocated only to these scenarios in the second stage simulation. After that
the simulation output from the second stage is used to construct a confidence interval for
expected shortfall. This is also similar to our proposal. We will discuss in Section 6.2
the applicability of their method in the multi-period nested simulation problem we study.
Liu and Staum (2010) propose a three-stage process based on stochastic kriging: In the
first stage, a stochastic kriging metamodel is built with a pilot inner simulation, on a
set of design points (outer scenarios). In the second stage, an additional set of design
points is identified, based on the metamodel from the first stage. In the third stage,
the remaining computation budget is spent on inner simulation for all the design points
identified in the first two stages. The resulting metalmodel is then used to estimate the
losses of each prediction point (outer scenario), and subsequently to estimate the tail risk
measure. This method is useful when there is flexibility in the choice of outer scenarios in
the experiment design. This may not be the case in the context of regulatory reporting for
which multi-period nested simulation is often required. Risk and Ludkovski (2018) develop
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a k-round sequential algorithm that uses a Gaussian Process emulator as empirical proxy in
each round and adaptively allocates inner simulation budget. The allocation of simulation
budget is determined based on results from the previous round of simulation. Methods
using Gaussian Process regression or stochastic kriging can also be useful in multi-period
nested simulation. However, we need to first study how to choose appropriate design
points for stochastic kriging at each time step in a multi-period nested simulation. We
do not address this issue in the thesis but it will be a topic of future research. Broadie
et al. (2011) also use a smaller number of initial trial simulations, but their method then
proceeds sequentially, determining which individual scenario should be allocated the next
simulation from the remaining inner simulation budget. Bauer et al. (2012) adapt and
extend the idea of Gordy and Juneja (2010) and Lan et al. (2010) to nested simulation for
quantifying the Solvency II Statutory Capital Requirement for equity-linked life insurance
contracts.

It is worth noting that in all these papers, except Li and Feng (2021), the problem
involves a single-step outer scenario, compared with the multi-period problem that we are
considering. Typically, an insurer might project risk factors many years ahead, in weekly
or monthly time steps, and new inner level simulations (which may be single or multi-
period, depending on path dependency of the embedded options) are required at each
time step of each scenario, as illustrated in Figure 1.1. The main challenge in applying
the methods developed for single-period nested simulation to multi-period problem is the
increase in dimension of the problem being considered, due to the number of time steps
at which the inner simulation needs to be repeated. The multi-period problem has signif-
icantly higher variance arising from multiple iterations of inner simulations. Therefore in
the pilot simulation, in order to utilize methods proposed in the literature listed above,
a significant amount of computation would be required to produce any meaningful signal
as to which scenarios belong to the tail. This would dampen the computational savings
from these methods. Feng et al. (2016) summarize a few existing methods discussed above,
including optimal budget allocation, sequential allocation of inner loops, linear interpola-
tion of preprocessed inner loops, least-squares Monte Carlo and using PDE methods to
replace inner loop simulation. They demonstrate how they can be applied in multi-period
nested simulation for life insurance contracts and evaluate their performances. Their main
findings are: (1) In modeling simple contracts with small computation budget, all these
methods are more accurate than a standard Monte Carlo nested simulation, although the
improvement is less prominent when a large computation budget is allowed. (2) In model-
ing complex contracts, analytical and numerical PDE methods have the best performance
in terms of efficiency and accuracy. Linear interpolation of preprocessed inner loops and
least squares Monte Carlo work well in low dimension problems but suffer from the curse
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of dimensionality.

Among the work discussed above, Bauer et al. (2012); Cathcart and Morrison (2009);
Bauer and Ha (2015); Krah et al. (2018); Feng et al. (2016); Feng and Jing (2017); Li and
Feng (2021) consider nested simulation in the life insurance context while others consider
nested simulation for portfolio risk management in a finance context.

All the papers discussed above consider nested simulation of a single model contract.
As discussed, the other research angle on VA nested simulation is simulation of a large
portfolio of insurance policies. Gan (2013, 2015); Gan and Lin (2015, 2017); Gan and
Valdez (2019) propose various metamodeling approaches to select representative policies
and use functional approximations to predict the values of the entire portfolio, to reduce
the number of model points for the portfolio. Lin and Yang (2020b,a) also consider nested
simulation of a large portfolio, with Lin and Yang (2020b) in the single-period and Lin
and Yang (2020a) in the multi-period nested simulation setting. They propose using a
cube sampling algorithm to select representative policies and using clustering to select
representative outer scenarios. Functional approximations are then used to predict liability
of the portfolio. In their work, the vast majority (approximately 98%) of computational
savings arise from policy reduction in the simulation model.

In our work, we are interested in improving the efficiency of the simulation for each
model policy, so this work can be combined with the representative policy methods.
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Chapter 2

Standard Nested Simulation for Tail
Risk Measures of Variable Annuity

In this chapter, we present a few common types of Variable Annuity guarantees, and discuss
how a VA contract with a dynamic hedging program is modeled via a nested simulation.
We also introduce the notation and assumptions used throughout this thesis. We limit
discussion to research pertaining to the topic of this thesis. For a comprehensive review of
different types of guarantees offered in VA contracts, hedging of the embedded guarantees,
and modeling of the contracts, we refer readers to Hardy (2003).

2.1 Variable Annuity Payouts

Consider a generic VA contract whose time to maturity is TM ≥ 0 periods, e.g. TM

months. Suppose the policyholder of the VA contract dies at time τ . Let T = min(TM , τ),
the earlier of the contract maturity and death of the policyholder, be the time the contract
expires. Note that at any given time t, the time to death τ is a random variable whereas
the time to maturity TM is a constant.

Let Ft and Gt be the sub-account value and the guarantee value, respectively, at time
t = 0, 1, 2, . . . , T − 1, T .

Let ηg be the gross rate at which management fee is deducted from the fund value each
period. We assume the amount of management fee collected as income by the insurer is
different from the gross amount deducted from the fund, with the difference offsetting the
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regular investment expenses incurred. Let ηn < ηg be the net rate at which management
fee income is received by the insurer each period.

Let Dt be the present value at time 0 of $1 payable at time t, discounted at the risk-free
rate.

We will describe the payouts of the major types of VA benefits described in Section 1.1
more formally.

Guaranteed Minimum Maturity Benefit (GMMB) In the simplest form of the guar-
antee, the GMMB provides a fixed guarantee value, G, say, at the contract expiration. Typ-
ically G = F0, the initial premium of the contract. The insurer’s payout on the GMMB
contract is (G− FT )+ at time T (the expiry date), and insurer’s liability, net of fee income,
at time t, t = 1, 2, . . . , T , is

Vt =
DT

Dt

(G− FT )+ −
T∑

s=t+1

Ds

Dt

Fsη
n

This is similar to the payoff of a put option on the underlying investment.

Guaranteed Minimum Death Benefit (GMDB) The insurer’s payout on the GMDB
contract is (G− Fτ )+ at time τ and insurer’s liability net of fee income at time t is

Vt =
Dτ

Dt

(G− Fτ )+ −
τ∑

s=t+1

Ds

Dt

Fsη
n, t < τ ≤ TM

Guaranteed Minimum Accumulation Benefit (GMAB) Suppose the GMAB con-
tract has one renewal at time T1 < T , then

For t ≤ T1 : Gt = G0

For t > T1 : Gt = max (FT1 , G0)

Insurer payout at T1 : (G0 − FT1)
+

Insurer payout at T : (max (FT1 , G0)− FT )+

Thus, the insurer’s liability of the GMAB contract at time t is

Vt =
DT1

Dt

(G0 − FT1)+ +
DT

Dt

(max (FT1 , G0)− FT )+ −
T∑

s=t+1

Ds

Dt

Fsη
n
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Guaranteed Minimum Withdrawal Benefit (GMWB) Suppose the guaranteed min-
imum withdrawal rate is γ per period. Let It = γGt denote the amount of guaranteed min-
imum withdrawal benefit payable at time t. The insurer’s payout on the GMWB contract
consists of all the guaranteed minimum withdrawal benefit paid after the sub-account value
depletes, i.e.

∑T
s=1(Is − Fs)+. Then the present value at t < T of the GMWB liability is

Vt where

Vt =
T∑

s=t+1

Ds

Dt

(Is − Fs)+ −
T∑

s=t+1

Ds

Dt

Fsη
n1{Fs > 0} (2.1)

Here we assume that the deduction of management fee coincides with the payment of
withdrawal benefit. 1{·} is an indicator function.

Guaranteed Lifetime Withdrawal Benefit (GLWB) Suppose the policyholder of
the GLWB contract dies at time τ , then the insurer’s payout of the GLWB contract is∑τ

s=1(Is − Fs)+, and insurer’s liability net of fee of the GLWB contract Vt at time t is

Vt =
τ∑

s=t+1

Ds

Dt

(Is − Fs)+ −
τ∑

s=t+1

Ds

Dt

Fsη
n1{Fs > 0}, t < τ ≤ TM (2.2)

In this thesis, we study the nested simulation of GMMB, GMAB, and GMWB.

2.2 Dynamic Hedging for Variable Annuities

As discussed in Section 1.1, insurers commonly use dynamic hedging to mitigate the market
risk associated with the embedded options in VA contracts. In a dynamic hedging program,
a hedging portfolio is set up for a block of VA contracts using futures and other derivatives
(Geneva Association, 2013). The hedging portfolio is rebalanced periodically, responding
to changes in market conditions and in the demographics of the block of contracts. More
specifically, we consider a delta hedge for a single VA contract in this thesis. We choose to
focus on delta hedge in this thesis since the most common hedge strategy in VA involves
hedging delta and rho (Sun et al., 2016). The proposals in this thesis can be adapted to
model a delta/rho hedging strategy.

In this section we present the mechanism of dynamic hedging for a generic VA liability.
We assume the time to expiration of the VA is T months. We also assume that the VA
sub-account invests in a stock index, and that the hedging portfolio is rebalanced every
month, coinciding with the deduction of management fee and the payment of benefits when
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applicable. At any t ≤ T , let St be the underlying stock price at time t. Then in absence
of any withdrawal, the sub-account value Ft evolves as

Ft = Ft−1 ×
St
St−1

× (1− ηg).

The evolution of sub-account value involving withdrawals is discussed in Section 5.4.

We assume that the delta hedge for the VA embedded option is composed of ∆t units
in the underlying stock, and a sum Bt in a risk free zero coupon bond maturing at T . The
value of the delta hedge portfolio at t− 1 is then

Ht−1 = ∆t−1St−1 +Bt−1

At time t, the value of this hedge has changed to

Hbf
t = ∆t−1St +Bt−1

Dt−1

Dt

and this is the hedge brought forward at time t (we assume no rebalancing between times
t − 1 and t). The cash flow incurred by the insurer, which we call the hedging error, is
the difference between the cost of the hedge at time t and the value of the hedge brought
forward.

HEt = Ht −Hbf
t . (2.3)

The costs to set up the initial hedge portfolio, the periodic hedging gains and losses due
to rebalancing at each date, t = 1, 2, . . . , T , the final unwinding of the hedge, the payment
of guaranteed benefit, and the management fee income, are recognized as part of the profit
and loss (P&L) of the VA contract. The present value of these cash flows, discounted at
the risk free rate of interest, constitutes the insurer’s overall (gain)/loss from the VA; this
is the loss random variable to which we apply a suitable risk measure.

More concretely, at time 0, the insurer’s overall (gain)/loss L of the VA contract and
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its dynamic hedging program is:

L = H0 +
T−1∑
t=1

HEt ·Dt −Hbf
T DT + V0 (2.4)

= H0 +
T−1∑
t=1

Dt

(
Ht −Hbf

t

)
−Hbf

T DT + V0

= B0 + S0∆0 +
T−1∑
t=1

Dt

(
Bt + St∆t −Bt−1

Dt−1

Dt

− St∆t−1

)
−DTST∆T−1 + V0

=
T−1∑
t=0

∆t(DtSt −Dt+1St+1) + V0 (2.5)

Note, as indicated in the previous section, V0 represents the discounted payoff of the VA
contract as of time 0, net of fee income, in the absence of hedging. The first three terms

H0 +
T−1∑
t=1

HEt ·Dt −Hbf
T DT in Equation (2.4) represent the (gain)/loss from the hedg-

ing program: H0 is the initial cost of setting up the hedge,
T−1∑
t=1

HEt ·Dt represents the

(gain)/loss from all the rebalancing trades in the dynamic hedging program, while Hbf
T DT

represents the proceeds from unwinding the hedging program.

Equation (2.5) shows that in the bond holdings of the hedging portfolio, all the interim
bond trades cancel out, because the interest rate at which the bond value accumulates is
the same as the rate at which profit and loss from bond trades are discounted. In the stock
holdings of the hedging portfolio, the (gain)/loss arises from the initial set up of the stock
future holding, as well as the profit and loss from each stock future trade. Computationally,
Equation (2.5) is more efficient than (2.4) because the interim hedging portfolio values Ht

for t = 0, . . . , T − 1 are not required.

In Equation (2.5), ∆t is determined using risk neutral pricing under probability measure
Q, while the tail risk measure of the loss random variable L is determined under the real
world probability measure P. If we are interested in estimating the tail risk measure of
L using Monte Carlo simulation, then we need either an analytical solution for ∆t, or
a nested simulation where the outer scenarios are generated under real world measures
to estimate the loss distribution, and the inner sample paths are generated under a risk
neutral measure to estimate ∆t.
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2.3 Multi-period uniform nested simulation for tail

risk measures

In this section, we describe a standard multi-period nested simulation for the tail risk
measures that we consider in this thesis. We refer to this kind of nested simulation as a
uniform nested simulation because it allocates the same number of inner simulations at
each time step to each outer scenario.

In a nested simulation, we define the following notation:

• Xt ∈ Rd, for d ≥ 1, t = 1, 2, . . . , T is a random vector, representing the outer scenario
state variable at time t in the nested simulation.

In the VA example we discussed in Section 2.2, each Xt is a vector consisting of the
stock index price, and possibly the sub-account and guarantee values under the P
measure at time t.

• Yt,t′ for t = 1, 2, . . . , T and t′ = t, . . . , T , is the inner simulation state variable at time
t′, originating from Xt.

In the VA example,Yt,t′ is a vector consists of the stock index price, and possibly the
sub-account and guarantee values under the Q measure at time t′, given Xt. It is not
an essential detail that X and Y are evaluated under different probability measures,
but it is a common feature of losses relating to dynamic hedging programs.

• Yt = (Yt,t, . . . , Yt,T ) is the entire path of inner simulation state variables, given Xt.

• µt(Xt) is a pricing or valuation functional evaluated at time t given Xt.

In the VA example, µt(Xt) = ∆t, the delta of the contract at time t, which is
an expectation of a function of the inner simulation state variables Yt, conditional
on Xt. From here on, we specify that µt(Xt) = ∆t = E [f(Yt|Xt)]. We use the
Infinite Perturbation Analysis (IPA) method for sensitivity estimation Broadie and
Glasserman (1996); Glasserman (2013).

• L is the loss random variable. In particular, we assume L is a function of µt(Xt), for
t = 0, 1, . . . , T . That is,

L = h (µ0(X0), . . . , µT (XT ))

where h is a function that maps µ0(X0), . . . , µT (XT ) to L.
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In the VA example, L is the overall loss of the VA contract and its dynamic hedging
program, as defined in Equation (2.5). More specifically, L is a function of the stock
index prices and the delta’s at each future hedge rebalancing date, up to the expiry
of the contract.

We assume Xt and Yt,t′ both follow discrete time Markov processes. The discrete time
assumption is fitting in our simulation context. In addition, most models used in practice
for evaluating insurance portfolios are Markov or can be treated as Markov by expanding
the state variable space.

Our objective is to estimate the appropriate tail risk measure of L. Here µt(Xt) can
be evaluated analytically where feasible, or using Monte Carlo simulation where analytical
solutions are not available. If we use Monte Carlo simulation for this step, then we require
inner level simulations to estimate µt(Xt), t = 0, 1, . . . , T .

Assuming no analytical solution for µt(Xt) exists, we use a multi-period nested simula-
tion with a horizon of T periods and time step of 1 period to estimate the tail risk measure
of L. In the context of a dynamically hedged VA contract, we assume the time steps
coincide with the re-balancing frequency of the hedging portfolio and with the payment
frequency of guaranteed benefits.

We define some more notations for the nested simulation:

• M is the number of outer scenarios sample path in the nested simulation.

• N is the number of inner simulations invoked at each time step along each of the M
outer scenarios.

• X(i)
t , for t = 1, 2, . . . , T , i = 1, . . . ,M , is the sample value of Xt in the ith outer

scenario.

• X(i) = (X
(i)
0 , X

(i)
1 , X

(i)
2 , . . . , X

(i)
T ), i = 1, . . . ,M is the ith outer scenario.

• Y (i)
t,t′ , for t′ = t, . . . , T , is random variable Yt,t′ , conditional on X

(i)
t .

• Y
(i)
t =

(
Y

(i)
t,t , Y

(i)
t,t+1, . . . , Y

(i)
t,T

)
is the entire path of random vector Y

(i)
t,t′ , t

′ = t, . . . , T .

• Y (i,j)
t,t′ , t = 1, 2, . . . , T , t′ = t, . . . , T , i = 1, . . . ,M , j = 1, . . . , N , is the sample value

at time t′ on the jth inner simulation sample path, conditional on X
(i)
t .
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• Y
(i,j)
t =

(
Y

(i,j)
t,t , . . . , Y

(i,j)
t,T

)
, t = 1, 2, . . . , T , i = 1, . . . ,M , j = 1, . . . , N , is the entire

j-th inner sample path, conditional on X
(i)
t .

• g(i)
t (Y

(i,j)
t ) is the probability density function of Y

(i,j)
t , conditional on X

(i)
t , that is,

g
(i)
t (y) = g(y|X(i)

t ).

In a Monte Carlo simulation, Y
(i,j)
t

i.i.d.∼ g
(i)
t (y), for all j = 1, . . . , N .

Then in a standard Monte Carlo simulation with N inner simulations at time t in outer

scenario i, µt

(
X

(i)
t

)
can be estimated as µ̂t

(
X

(i)
t

)
=

1

N

N∑
j=1

f
(
Y

(i,j)
t

)
.

Suppose the tail risk measure of interest is CTEα. Given M equally likely scenarios
from a Monte Carlo simulation, denote the (unknown) true loss in each given scenario

by Li = h
(
µ0(X

(i)
0 ), . . . , µ0(X

(i)
T )
)

, i = 1, . . . ,M , and let L(1) ≤ L(2) ≤ · · · ≤ L(M) be

the corresponding ordered losses. For a prescribed confidence level α (assume αM is an
integer), the CTEα is given by

CTEα =
1

(1− α)M

M∑
i=αM+1

L(i) =
1

(1− α)M

∑
i∈T(1−α)M

Li, (2.6)

where T(1−α)M = {X(i) : Li > L(αM)} is the set of the (1 − α)M true tail scenarios that
are included in the calculation of CTEα in (2.6).

Using the estimated inner simulation outputs µt(X
(i)
t ) for i = 1, . . . ,M and t = 0, . . . , T ,

the loss random variables Li, i = 1, . . . ,M can be estimated by

L̂NS
i = h

(
µNS

0 (X
(i)
0 ), µNS

1 (X
(i)
1 ), . . . , µNS

T (X
(i)
T )
)
, i = 1 . . . ,M.

Denote the corresponding ordered losses by L̂NS
(1)NS ≤ L̂NS

(2)NS ≤ · · · ≤ L̂NS
(M)NS , then the CTEα

can be estimated by

ĈTE
NS

α =
1

(1− α)M

M∑
i=αM+1

L̂NS
(i)NS =

1

(1− α)M

∑
i∈T̂ NS

(1−α)M

L̂NS
i , (2.7)

where T̂ NS
(1−α)M = {X(i) : L̂NS

i > L̂NS
(αM)NS} is the set of the (1− α)M nested simulation tail

scenarios that are included in the calculation of ĈTE
NS

α in (2.7)
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Note that both (2.7) and (2.6) are based on the same given set of M outer scenarios,
so their difference is only due to the inner simulation noise. The inner simulation noise
affects the accuracy of (2.7) in two ways:

1. Classification of tail scenarios. Due to the inner simulation noise, the estimated
losses L̂NS

i may differ from true losses Li. As a result, these losses may have different
rankings so the nested simulation tail scenarios may be different from the true tail
scenarios. The consequence is two-fold: some true tail scenarios are missed from the
estimated CTE and some true non-tail scenarios are included.

2. Estimation of tail losses. If the tail scenarios could somehow be identified, we see
that it is important to accurately estimate the losses for the tail scenarios. Non-tail
scenarios’ losses are irrelevant for estimating the CTE; this is also true for other tail
risk measures.

The simulation procedures we propose in this thesis are specifically designed to address
both the above observations. We will discuss them in detail in later chapters.

We refer to the multi-period uniform nested simulation that we described in this section
as standard Monte Carlo (SMC) nested simulation. Algorithm 1 outlines the steps of a
SMC nested simulation for estimating the CTEα of losses for a Delta-hedged VA contract.

For example, in a GMMB contract, X(i) is the sub-account value in the i-th outer
scenario while Y

(i,j)
t is the sub-account value in the j-th inner simulation sample path.

Y
(i,j)
t originates from X

(i)
t , the sub-account value at time t in outer scenario i. Using the

IPA method, the j-th inner sample derivative of VA payoff at time t in outer scenario i is

f(Y
(i,j)
t ) = −DT

Dt

·
Y

(i,j)
t,T

S
(i)
t

· 1{G > Y
(i,j)
t,T } −

T∑
s=t+1

Ds

Dt

Y
(i,j)
t,s

S
(i)
t

ηn.

Algorithm 1 can easily be extended to hedging strategies that depend on other sensi-
tivities, e.g. Gamma, Rho, Theta, etc. In these cases, the inner simulation model would
be extended to estimate the relevant Greeks, resulting in hedging portfolios that may con-
sist of additional assets such as options, forwards, VIX and others. See L’Ecuyer (1990);
Glasserman (2013); Fu et al. (2015) for more information on estimating greeks using Monte
Carlo simulation.

The evolution in Algorithm 1 of state variables such as Ft and Gt in Line 2, and the inner
simulation model in Line 3, can be adapted to a range of VA guarantees and assumptions.
In some cases, the hedge portfolio at each time point can be determined analytically, as
we demonstrate in Section 2.4 below.
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Algorithm 1: Standard multi-period nested simulation for estimating CTEα of
losses in a dynamically hedged VA contract.

Input: α : CTE confidence level
M : numbers of outer scenarios.
N : numbers of inner simulations.
X0 : initial state variables of the VA.
T : Number of time periods in the VA contract term.

1 for i = 1, . . . ,M do

2 Set X
(i)
0 = X0 then simulate under the real-world measure the i-th outer

scenario X(i) = (X
(i)
0 , X

(i)
1 , . . . , X

(i)
T ).

3 for t = 0, 1, . . . , T do
4 for j = 1, . . . , N do

5 Set Y
(i,j)
t,t = X

(i)
t , then simulate under the risk-neutral measure the j-th

inner sample path of state variables: Y
(i,j)
t =

(
Y

(i,j)
t,t , Y

(i,j)
t,t+1, . . . , Y

(i,j)
t,T

)
.

6 Calculate the j-th inner sample derivative of VA payoff f
(
Y

(i,j)
t

)
.

7 end
8 Estimate the Greeks of VA at t in outer scenario i using the IPA method as

µ̂
(
X

(i)
t

)
= 1

N

∑N
j=1 f

(
Y

(i,j)
t

)
.

9 end

10 Estimate the VA loss in outer scenario i as L̂i = h
(
µ̂0

(
X

(i)
0

)
, . . . , µ̂T

(
X

(i)
T

))
.

11 end

12 Sort the M simulated losses in ascending order to give L̂(1) ≤ L̂(2) ≤ · · · ≤ L̂(M).

13 Estimate the CTEα of the loss by ĈTEα =
1

(1− α)M

M∑
i=αM+1

L̂(i).

We refer to the total number of inner simulation replications in a simulation procedure
as the simulation budget and denote it by Γ. Let NSMC denote the number of inner
simulations required at each time step in each outer scenario, and let Cinner denote the
number of calculations required at each time step in a inner simulation for estimating the
conditional expectation µt(Xt). Then to estimate the CTEα, using the standard Monte
Carlo nested simulation in Algorithm 1, the simulation budget required is:

ΓSMC =
M ×NSMC × T × (T + 1)

2
× Cinner (2.8)
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Here the factor
T × (T + 1)

2
represents the sum of number of times the inner simulation

needs to be repeated, which is the sum of the sequence T, T − 1, . . . , 1.

As discussed in Section 1.3, the simulation budget Γ required in a typical VA valuation
using the standard nested simulation procedure is prohibitively large.

2.4 Analytic hedge calculations using Black-Scholes

In the case where the risk neutral measure is assumed to be Geometric Brownian Motion,
and where the guarantee is a GMMB with fixed guarantee, or GMAB with fixed initial
guarantee, then the hedge portfolio can be determined analytically, without requiring the
inner simulation step.

Consider first the GMMB, with a fixed guarantee G. We ignore mortality, fees and
expenses, and assume for convenience that F0 = S0. The maturity payoff is a simple
European put option, so the hedge at t under the ith outer simulation, H

(i)
t , can be

determined from the Black-Scholes formula for a put option, where r is the risk free rate of
interest continuously compounded, per time unit, and σ is the volatility of the risk neutral
GBM, expressed per time unit:

H
(i)
t = Ge−r(T−t)Φ(−d2(t, T ))− S(i)

t Φ(−d1(t, T )), ∆
(i)
t = −Φ(−d1(t, T )) (2.9)

where Φ(x) is the cumulative function of the standard Normal random variable and

d1(t, T ) =
ln
(
S
(i)
t

G

)
+ (r + σ2/2) (T − t)

σ
√
T − t

d2(t, T ) = d1(t, T )− σ
√
T − t. (2.10)

The GMAB payoff(s) have the same structure as a tandem put option in finance. We
derive formulas for the hedge of a European tandem option, with F0 = S0, with a single
renewal point T1 and final maturity T . The initial guarantee is G0; the second guarantee
is max(G0, ST1). We consider two different cases: hedge at t < T1 and hedge at t ≥ T1.

I. H
(i)
t when t < T1

When t < T1, we have F
(i)
t = S

(i)
t . Then the payout at time T1 is

(
G0 − S(i)

T1

)+

. The

sub-account value immediately after the payout at time T1 is F
(i)

T+
1

= max
(
G0, S

(i)
T1

)
,
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and the guarantee value after T1 is also max
(
G0, S

(i)
T1

)
. Then the payout at time T

is (
max

(
G0, S

(i)
T1

)
− F (i)

T

)+

=

(
max

(
G0, S

(i)
T1

)
−max

(
G0, S

(i)
T1

)
× S

(i)
T

S
(i)
T1

)+

= max
(
G0, S

(i)
T1

)
×

(
1− S

(i)
T

S
(i)
T1

)+

We define p∗ to denote the value at T1 of an at-the-money option, with unit strike
and stock price, expiring at T . That is

p∗ = e−r(T−T1) Φ(−d∗2)− Φ(−d∗1) (2.11)

where d∗1 =
(r + σ2/2)(T − T1)

σ
√
T − T1

d∗2 = d∗1 − σ
√
T − T1 (2.12)

Note that p∗ is a constant with respect to the underlying stock price process. This
is a useful function in our derivation below.

Hence, the full GMAB guarantee hedge at t < T1 is the expectation of the sum of
discounted payout at time T1 and T , under risk neutral probability measure.

H
(i)
t =Et

[
e−r(T1−t)

(
G0 − S(i)

T1

)+

+ e−r(T−t) max
(
G0, S

(i)
T1

)(
1− S

(i)
T

S
(i)
T1

)+]
(2.13)

=Et
[
e−r(T1−t)

(
G0 − S(i)

T1

)+
]

+ Et
[
e−r(T1−t)

((
G0 − S(i)

T1

)+

+ S
(i)
T1

)
p∗
]

=Et
[
e−r(T1−t)

(
G0 − S(i)

T1

)+
]

(1 + p∗) + Et
[
e−r(T1−t)S

(i)
T1

]
p∗

=
(
G0e

−r(T1−t)Φ (−d2(t, T1))− S(i)
t Φ (−d1(t, T1)) + S

(i)
t

)
(1 + p∗)− S(i)

t

Hence, the Delta of the GMAB guarantee is

∆
(i)
t = − (Φ(−d1(t, T1))− 1) (1 + p∗)− 1 = p∗Φ(d1(t, T1))− Φ(−d1(t, T1)) (2.14)

where d1(t, T1) and d2(t, T1) are as defined in Equations (2.10).

II. H
(i)
t when t ≥ T1
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When t ≥ T1, the hedge portfolio is identical to the GMMB case, with guarantee G =

max(G0, ST1) and with maturity T . The fund value at t ≥ T1 is F
(i)
t = S

(i)
t

(
max

(
1,
G0

S
(i)
T1

))
,

and this replaces S
(i)
t in Equations (2.9) and (2.10).

This derivation can also be found in (Hardy, 2003, Appendix B).

We can see from Equations (2.10) that delta of the GMAB contract could be positive
when t < T1 and the contract is out of the money. However, immediately after the same
contract renews at time T1, the contract becomes a GMMB contract, which has has a
negative delta. This reveals significant gamma risk embedded in the GMAB contract,
particularly around the time of renewal.

In practice, the analytic expressions from the Black-Scholes model may not be suffi-
ciently accurate for tail risk measures of the hedge costs. Introducing a stochastic volatility
model for the hedge costs can make analytic evaluation unwieldy or impossible, and when
dynamic lapse assumptions are incorporated the only feasible approach is Monte Carlo
simulation. But the analytic Black-Scholes hedge costs are expected to be correlated with
the true values, so we could use the analytic expressions as our first stage analysis to screen
out the outer scenarios that are very unlikely to contribute to the CTE, and run the inner
simulation part of the nested simulation algorithm only for those scenarios deemed suffi-
ciently important after the first screening. The two-stage process is described more fully
in the following chapter.
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Chapter 3

Importance-Allocated Nested
Simulation

3.1 Introduction

In this chapter, we will present the Importance-Allocated Nested Simulation (IANS) pro-
cedure. The IANS procedure is a two-stage process which exploits the fact that the CTE
calculation only uses the largest (1−α)M simulated loss values, so the inner simulation
budget can be concentrated on the scenarios which are most likely to generate the largest
losses. In the IANS procedure, the Stage 1 simulation uses an analytical proxy evaluation
to identify the scenarios most likely to contribute to the CTE risk measure, while Stage 2
involves inner simulation only for the scenarios identified in the first stage.

For many VA guarantees, especially those with a simpler structure, we can identify
an extrinsic proxy which is likely to be adequate for ranking scenarios. The proxy model
values are not used directly in the estimation of the risk measure, they are only used to
determine the allocation of the inner simulation budget. Hence, the proxy model does
not have to provide an accurate valuation of the underlying losses; it only has to provide
an accurate ranking of the values of the underlying losses. If the proxy is perfect at
ranking scenarios, because the proxy valuation and the full inner simulation valuation are
comonotonic, then we can strategically allocate the inner simulation budget to exactly the
scenarios that generate the losses required for the CTE calculation. If, as is likely, the
proxy is not perfect, then we use it to identify a larger set of scenarios that will, with high
probability, contain the true tail scenarios. In this case, there is some wastage of inner
simulation budget. If the proxy is very poor, then the scenario set may have to be very
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large to ensure that the tail scenarios are included, and there may be minimal or zero
efficiency gains compared to the full uniform nested simulation method.

Our application is specifically the estimation of the CTE for cash flows associated
with embedded VA options, but the methodology should be applicable to a wider range of
problems. In particular, there is a high flexibility in the choice of proxy models, as they are
only used to identify tail scenarios; it is not necessary for the proxy to accurately measure
the costs arising in these scenarios, as that will be determined using the inner simulation.

Our numerical experiments show that, in the VA context, IANS can be up to 30
times more accurate than a standard Monte Carlo experiment, measured by relative mean
squared errors (RMSE), when both are assigned the same computational budget.

3.2 Importance-Allocated Nested Simulation (IANS)

Method

In this section, we present the Importance-Allocated Nested Simulation (IANS) procedure
for estimating the CTEα of a VA GMMB or GMAB, using a nested simulation with screen-
ing approach. We provide an outline in Section 3.2.1 and supply the details in subsequent
sections.

3.2.1 Outline of the IANS procedure

Algorithm 2: Importance-Allocated Nested Simulation of losses for a Delta-
hedged VA contract.

input : – Underlying real world and risk neutral asset models with parameters.
– VA contract, term T , and fully specified dynamic hedging program.
– The risk measure and level, e.g. CTEα.

output: CTEα for the losses from Delta-hedging the VA contract of interest.
Initialization: Simulate M outer scenarios; each is a T -period simulated stock
price sample path under the real-world measure.
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Algorithm 2: Importance-Allocated Nested Simulation of losses for a Delta-
hedged VA contract (continued).

Stage I: Identification of proxy tail scenarios

(I.1) Select a proxy financial derivative and associated asset model which provide
tractable, analytic hedge costs, and for which the payoff which is expected to be
well-correlated to the VA guarantee costs. See Section 3.2.2.

(I.2) Calibrate the proxy asset model to the underlying risk-neutral asset model in
inner-level simulations. See Section 3.2.3.

(I.3) Implement Algorithm 1 but with the analytic hedge calculations for the proxy
derivative and asset model replacing the inner simulation step. Calculate loss, LPi ,
given scenario X(i), i = 1, 2, . . . ,M , based on the proxy model.

(I.4) Identify a set of m proxy tail scenarios, T Pm , where

X(i) ∈ T Pm ⇔ LPi > LP(M−m)

for some m ≥ (1− α)M , where LP(j) denotes the jth ranked value of LPi . See
Section 3.2.6.

Stage II: Nested simulation with concentrated computation budget

(II.1) Allocate the remaining computational budget to the m proxy tail scenarios in T Pm .

(II.2) Implement the inner simulation step of Algorithm 1, with the original risk neutral
asset model and VA payoff, but only for the m scenarios identified in Step (I.4).

Denote the simulated loss in this step as mL̂i, for each X(i) ∈ T Pm .

(II.3) Identify the (1− α)M largest values of mL̂i.

(II.4) Compute the ĈTEα as the output using

ĈTEα =
1

(1− α)M

m∑
j=m−(1−α)M+1

mL̂(j) (3.1)
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3.2.2 Selection of proxies

Unlike the proxy approaches in the existing literature, such as least-squares Monte Carlo,
preprocessed inner simulations, analytical or PDE solutions, the proxy tail scenarios do not
need to accurately assess the liability values for those scenarios – what we use the proxy
step for is to ascertain a ranking of the liabilities by outer scenarios. This means that the
IANS procedure is expected to perform well as long as the rankings of losses between the
proxies and original models are highly correlated, even if the losses themselves are not.

To identify a suitable proxy model, we first consider why the inner simulation step
is needed. Typically, the complexity in the valuation, leading to the need for the guar-
antee cost to be determined using simulation rather than analytically, comes from some
combination of the following issues.

(1) An intractable risk-neutral measure; this is a common problem, as the contracts are
very long term, and models used often involve stochastic volatility, for which analytic
valuation formulae may not be available.

(2) Dynamic lapse assumptions; insurers typically assume that lapses are (somewhat)
dependent on the moneyness of the guarantee. A popular version of the dynamic
lapse model, from NAIC (2020), is described in Section 3.3.3. Incorporating dynamic
lapses creates a path dependent option valuation that is not analytically tractable.

(3) The option payoff is too complex for analytic valuation.

The proxy model should be a tractable model that is close enough to the more complex
model to give an approximate ranking of the scenarios. We might construct the proxy
by using a tractable risk-neutral measure in place of the stochastic volatility model, to
cover point (1) above; we might use a simplified lapse rate assumption, to deal with point
(2) above, and we might replace a complex payoff with a simpler one that captures most
of the costs to cover point (3) above. We reiterate that the proxy does not have to give
an accurate estimate of the option costs based on the more complex assumptions; it is
sufficient that the scenarios generating the highest losses under the proxy model overlap
significantly with the scenarios generating the highest losses under the full inner simulation
approach. If a suitable extrinsic proxy is not available, it may be replaced with an intrinsic
proxy based, for example, on pilot simulations. We consider this issue in more detail in
Chapter 5.

In most VA portfolios, the key benefits contributing to the risk are the living benefits.
The GMMB and GMAB are among the simpler forms of living benefits, and we will
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consider these here. More complex living benefits, in particular those with annuity-type
benefits, require more complicated proxy models, such as the semi-analytical solutions for
risk-neutral pricing of GMWB and GLWB in Feng and Volkmer (2016) and Feng and Jing
(2017), and maybe less suited to this approach. We consider an extension for these cases
in Chapter 5, in the context of a GMWB. For the GMMB and GMAB, the put option and
tandem put option identified in Section 2.4 are obvious proxy derivatives, as the option
payoffs are identical to the guarantee payoffs, if we ignore complications of policyholder
behaviour.

3.2.3 Calibration of proxy asset model

Using a Black Scholes (risk neutral Geometric Brownian Motion (GBM)) model as the
proxy asset model allows us to use the analytic option formulas from Section 2.4 in proxy
calculations at negligible computational cost. GBM is inconsistent with important features
of observed stock returns, including extreme left-tail (extreme loss) events, volatility clus-
tering, and association of high volatility and low returns. Therefore, it is not a good model
to use (in real world or equivalent risk neutral form) in any practical long term application
where tail risk is the main consideration. To capture the correlations and fatter tails of real
world stock price growth, more advanced asset models such as regime switching lognor-
mal (RSLN) (Hardy, 2001) and generalized autoregressive conditional heteroskedasticity
(GARCH) models (Bollerslev (1986), Duan (1995)) are often used. We consider both of
these asset models in our numerical studies, both for the outer, real world scenarios, and
also, in an equivalent risk neutral form, for the inner scenarios.

For the proxy model volatility at time t, say, we set the GBM volatility equal to the
expected volatility based on the full inner simulation model, which may be dependent on the
outer simulation path up to time t for stochastic volatility models. Detailed descriptions of
a RSLN model with two regimes and a GARCH(1,1) model are given next in Section 3.2.4.
The corresponding volatility calibrations of these two models are given in Section 3.2.5.

3.2.4 Advanced asset models

In this section we describe the two advanced stochastic asset models we consider in this
chapter: two-regime switching lognormal model and GARCH(1,1) model. Let Rt =
ln (St+1/St) be the log-return process of stock price. The stochastic asset models describe
the process of Rt.
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Regime Switching Lognormal (RSLN) Model

The first stochastic asset process we consider is the regime-switching lognormal (RSLN)
model with two regimes. Each regime in the regime-switching model is characterized by
a lognormal model with a different set of parameters. The regime-switching model was
introduced to the actuarial literature by Hardy (2001).

Definition 3.2.1. Let ρt = 1, 2, be the regime in the period [t, t+ 1).

In a RSLN model with two regimes, the log return process is defined as

Rt|ρt ∼ N
(
µρt , σ

2
ρt

)
where µh, σ

2
h are the mean and variance parameter of the hth regime.

We assume the switching between two regimes takes place at the end of each period,
following a Markov process. The transition probabilities of regime switching is

pij = Pr [ρt+1 = j|ρt = i] , i, j = 1, 2.

The two-regime RSLN model “provides a very good fit to the stock index data relevant
to equity-linked insurance” (Hardy, 2003).

There are six parameters in an RSLN model with two regimes under real world measure
P. The six parameters used in our numerical studies are summarized in Table 3.2.

The financial market is incomplete in the regime-switching model, thus its risk neutral
measure Q is not unique (Hardy, 2001). Given the real-world measure in the regime-
switching model, we employ the risk-neutral model studied in Bollen (1998); Hardy (2001).
The change of measure from P to Q is achieved by changing the log return mean parameter
from µi under the P measure to r − σ2

i /2 for i = 1, 2.

GARCH(1,1) Model

The generalized autoregressive conditional heteroskedasticity (GARCH) model was first
developed by Bollerslev (1986), and is still one of the most popular asset models due to its
flexibility and good fit for many econometric applications. In this chapter we consider a
GARCH(1,1) model of the monthly log return of the stock price. The GARCH(1,1) model
is a class of GARCH model frequently considered in the econometrics and option pricing
literature (Augustyniak et al., 2017).
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Definition 3.2.2. In a GARCH(1,1) model, the log return process is defined as

Rt = µ+ σtεt, εt
i.i.d.∼ N(0, 1),

σ2
t = α0 + α1σ

2
t−1ε

2
t−1 + βσ2

t−1.

Given the log return process under the P measure in Definition 3.2.2, the log return of
the stock price and variance under the risk-neutral measure Q are given by (Duan, 1995):

R̃t = r − 1

2
σ2
t + σtε̃t, ε̃t

i.i.d.∼ N(0, 1),

σ2
t = α0 + α1σ

2
t−1ε̃

2
t−1 + βσ2

t−1.
(3.2)

The parameters for the GARCH(1,1) model used in our numerical studies are summa-
rized in Table 3.3.

3.2.5 Proxy model volatility calibration

To implement the IANS procedure, we are interested in calibrating the volatility of the
proxy Black-Scholes model to that in the true asset model. We show the calculation of the
average volatility in the period [t1, t2) conditioning on the current state at time t0, where
t0 ≤ t1 < t2. This is the Black-Scholes implied volatility used in the proxy model.

For GMMBs and GMABs with no further renewal date, we set the Black-Scholes volatil-
ity between t and maturity T to the average volatility of the true asset model in the same
period, conditioning on the state variables at time t.

For GMABs whose valuation date is prior to the renewal date t < T1, we calibrate two
volatilities: (1) the average volatility of the true asset model between t and T1, conditioning
on the state variables at time t and (2) the average volatility of the true asset model
between T1 and T , conditioning on the state variables at time t. These two volatilities can
be different and are used to calculate d’s in Equation (2.10) and d∗’s in Equation (2.12).

Regime Switching Lognormal (RSLN) Model

Let Q(t1, t2) be the number of sojourns in regime 1 in [t1, t2). The probability function
of Q(t1, t2) given the regime at time t1, can be calculated via backward recursion (Hardy,
2001). These are useful quantities for volatility calibrations in the IANS method.
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To calibrate the implied volatility in the Black-Scholes proxy model to the RSLN model,
we consider the average volatility in the period [t1, t2) conditioning on the information at
time t0, where t0 ≤ t1 < t2.

Let Ft denote the information at time t.

Definition 3.2.3. For any time t1 and t2 such that t0 ≤ t1 < t2, we define R(t1, t2) to be
the log-return process between t1 and t2 so that R(t1, t2) = ln (St2/St1). We also define

σ̃(t1, t2|t0) =

√
1

t2 − t1
V[R(t1, t2)|Ft0 ]

to be the average volatility of R(t1, t2) conditioning on the information at time t0.

Proposition 3.2.4. In two-regime risk-neutral regime-switching lognormal model, whose
mean conditional log return is r − σ2

i /2 for i = 1, 2

σ̃2(t1, t2|t0) =σ2
2 +

(σ2
1 − σ2

2)

t2 − t1

(
E
[
Q(t1, t2)|ρt0

]
+

1

4
(σ2

1 − σ2
2)
(
E
[
V [Q(t1, t2)|ρt1 ] |ρt0

]
+ V

[
E[Q(t1, t2)|ρt1 ]|ρt0

]))
,

where

E
[
Q(t1, t2)

∣∣ρt0] = E
[
E[Q(t1, t2)|ρt1 ]

∣∣ρt0] =
2∑
i=1

E[Q(t1, t2)|ρt1 = i]× Pr[ρt1 = i|ρt0 ],

E
[
V [Q(t1, t2)|ρt1 ]

∣∣ρt0] =
2∑
i=1

V [Q(t1, t2)|ρt1 = i]× Pr[ρt1 = i|ρt0 ], and

V
[
E[Q(t1, t2)|ρt1 ]

∣∣ρt0] =
2∑
i=1

E[Q(t1, t2)2|ρt1 = i]× Pr[ρt1 = i|ρt0 ]− E
[
Q(t1, t2)

∣∣ρt0]2
Proof. Let n = t2 − t1.

In a two-regime regime-switching lognormal model, where µi and σ2
i are the mean and

variance parameter of the ith regime, i = 1, 2, by definition

R(t1, t2)|Q(t1, t2) ∼ N
(
Q(t1, t2)µ1 + (n−Q(t1, t2))µ2, Q(t1, t2)σ2

1 + (n−Q(t1, t2))σ2
2

)
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Hence

V[R(t1, t2)]

=E [V[R(t1, t2)|Q(t1, t2)]] + V [E[R(t1, t2)|Q(t1, t2)]]

=E
[
Q(t1, t2)σ2

1 + (n−Q(t1, t2))σ2
2

]
+ V [Q(t1, t2)µ1 + (n−Q(t1, t2))µ2]

=nσ2
2 + (σ2

1 − σ2
2)E [Q(t1, t2)] + (µ1 − µ2)2V [Q(t1, t2)]

=nσ2
2 + (σ2

1 − σ2
2)E [Q(t1, t2)] + (µ1 − µ2)2V [Q(t1, t2)]

=nσ2
2 + (σ2

1 − σ2
2)E [Q(t1, t2)] +

1

4
(σ2

1 − σ2
2)2V [Q(t1, t2)] since µi = r − σ2

i /2

Now if we consider V[R(t1, t2)|ρt0 ], we have

V[R(t1, t2)|ρt0 ]

=nσ2
2 + (σ2

1 − σ2
2)E [Q(t1, t2)|ρt0 ] +

1

4
(σ2

1 − σ2
2)2V

[
Q(t1, t2)

∣∣ρt0]
=(t2 − t1)σ2

2 + (σ2
1 − σ2

2)E
[
E[Q(t1, t2)|ρt1 ]

∣∣ρt0]
+

1

4
(σ2

1 − σ2
2)2
(
V
[
E[Q(t1, t2)|ρt1 ]

∣∣ρt0]+ E
[
V[Q(t1, t2)|ρt1 ]

∣∣ρt0])
Thus

σ̃2(t1, t2|t0) =
1

t2 − t1
V[R(t1, t2)|ρt0 ]

=σ2
2 +

(σ2
1 − σ2

2)

t2 − t1

(
E
[
Q(t1, t2)|ρt0

]
+

1

4
(σ2

1 − σ2
2)
(
E
[
V [Q(t1, t2)|ρt1 ] |ρt0

]
+ V

[
E[Q(t1, t2)|ρt1 ]|ρt0

]))
This completes the proof.

GARCH(1,1) Model

To calibrate the implied volatility in the Black-Scholes proxy model to the GARCH(1,1)
model, we consider the average expected volatility in the period [t1, t2) conditioning on the
information at time t0, where t0 ≤ t1 < t2.
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Definition 3.2.5. In the GARCH(1,1) model under risk neutral measure in Equation (3.2),
for any time t1 and t2 such that t0 ≤ t1 < t2, we define

σ̄(t1, t2|t0) =

√√√√ 1

t2 − t1

t2∑
t=t1

E
[
V[R̃t|Ft−1]

∣∣Ft0]
to be the average expected volatility of R(t1, t2) conditioning on the information at
time t0.

Note that the average expected volatility σ̄(t1, t2|t0) for calibrating the proxy implied
volatility to the GARCH(1,1) model is defined differently from the average volatility
σ̃(t1, t2|t0) for calibrating the proxy implied volatility to the RSLN model. We choose
a different definition for different asset models so that the proxy implied volatility can be
calculated with little computation and is sufficiently accurate to identify tail scenarios in
the IANS methods. Note that in the GARCH(1,1) model under the risk neutral measure
defined in Equation (3.2),

σ̄(t1, t2|t0) =

√√√√ 1

t2 − t1

t2∑
t=t1

E
[
V[R̃t|Ft−1]

∣∣Ft0] <
√√√√ 1

t2 − t1

t2∑
t=t1

V
[
R̃t

∣∣Ft0]
As a result, the Black-Scholes implied volatility in the proxy model is slightly understated.
However, as we will show in numerical examples, the proxy implied volatility still performs
well in the IANS method.

Proposition 3.2.6. In a GARCH(1,1) model of the monthly log return of the stock price:

R̃t = r − 1

2
σ2
t + σtε̃t, ε̃t

i.i.d.∼ N(0, 1),

σ2
t = α0 + α1σ

2
t−1ε̃

2
t−1 + βσ2

t−1.

For any time t1 and t2 such that t0 ≤ t1 < t2,

σ̄2(t1, t2|t0) =
α0

1− α1 − β
+

(α1 + β)t1−t0−1

t2 − t1

(
σ2
t0+1 −

α0

1− α1 − β

)
1− (α1 + β)t2−t1

1− α1 − β

Proof. For t ≥ t1,
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E
[
σ2
t |Ft0

]
=E

[
α0 + α1σ

2
t−1ε̃

2
t−1 + βσ2

t−1|Ft0
]

=α0 + E
[
(α1ε̃

2
t−1 + β)σ2

t−1|Ft0
]

=α0 + E
[
(α1ε̃

2
t−1 + β)|Ft0

]
× E

[
σ2
t−1|Ft0

]
=α0 + (α1 + β)E

[
σ2
t−1|Ft0

]
since E[ε̃2

t ] = 1

...

=α0

t−t0−2∑
i=0

(α1 + β)i + (α1 + β)t−t0−1E
[
σ2
t0+1|Ft0

]
=
α0(1− (α1 + β)t−t0−1)

1− α1 − β
+ (α1 + β)t−t0−1σ2

t0+1

Therefore,

σ̄2(t1, t2|t0) =
1

t2 − t1

t2∑
t=t1

E
[
V[R̃t|Ft−1]

∣∣Ft0] =
1

t2 − t1

t2−1∑
t=t1

E[σ2
t |Ft0 ]

=
1

t2 − t1

t2−1∑
t=t1

(
α0(1− (α1 + β)t−t0−1)

1− α1 − β
+ (α1 + β)t−t0−1σ2

t0+1

)
=

α0

1− α1 − β
+

(α1 + β)t1−t0−1

t2 − t1

(
σ2
t0+1 −

α0

1− α1 − β

)
1− (α1 + β)t2−t1

1− α1 − β

3.2.6 Safety margin for tail scenario identifications

The proxies selected in Step (I.2) of Algorithm 2 cannot perfectly capture the complexities
of the original asset model and VA contract of interest, resulting in potential misclassifi-
cation of tail scenarios. Therefore we select the proxy tail scenario set T Pm in Step (I.4)
with some safety margin, that is, m ≥ (1 − α)M , to ensure the outer scenarios with the
largest (1− α)M losses based on inner simulations are included in T Pm . So, the proxy tail
scenarios are the m > (1 − α)M outer scenarios with the largest simulated losses based
on the proxy calculations; we use these to identify the largest (1 − α)M simulated losses
based on the inner simulations, assuming that, with high confidence, the (1 − α)M true
tail scenarios are a subset of the m proxy tail scenarios.
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The size of the proxy tail scenario set m is an experiment design parameter in IANS. If
m is very large, the likelihood of capturing the true tail scenarios is high, but at the cost of
spreading the inner simulations over a larger number of scenarios. With a fixed budget for
the inner simulations, this will generate higher mean square errors in the loss values and
CTE estimates. On the other hand, if m is close to (1 − α)M ,then the inner simulation
budget is focused on fewer scenarios, so those that are included will have more accurate
loss valuations, but some tail scenarios will be wrongly omitted, because the proxy loss
ranking is not comonotonic with the true loss ranking. Hence there is a tradeoff between a
high likelihood of including the true tail scenarios ( when m→M) and high concentration
of simulation budget in Stage 2 (when m→ (1−α)M). In this work an arbitrary selection
of m = (1−α+5%)M for the proxy tail scenario set is included in the numerical examples.
In Chapter 4 we consider a more structured approach to the selection of m.

3.3 Numerical Experiments

To illustrate the performance of the IANS procedure, we use it to estimate CTEs at different
confidence levels for GMMB and GMAB liabilities, using different asset models, and under
different lapse assumptions. A few simplifying assumptions are made, consistently with
the development of previous sections; specifically

• No transaction costs in the hedging program.

• The initial premium is invested in a stock index, with no transfers between funds.

• There are no subsequent premiums.

• We ignore mortality and other decrements unless otherwise stated.

• No management or guarantee rider fees are deducted from the fund.

• The risk is delta hedged at monthly intervals.

Under these assumptions, the loss random variable of the VA contracts consist only of the
gain and loss from the hedging program, i.e. the initial cost of the hedging portfolio and
the present value of periodic hedging errors, plus any payout under the guaranteed benefit.
In practice, fee income, expenses, commissions, decrements, and costs due to basis risk are
likely to make up a proportion of the loss. Nonetheless, the IANS procedure still offers
useful insights because the loss from hedging is the only quantity for which we need the
inner simulation part of a nested simulation.
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We consider two risk measures, CTE80% and CTE95%, as these are commonly used in
valuation and economic capital setting in Canada, consistent with regulatory standards.
See OSFI (2017) and CIA (2017). As discussed above, we consider a GMMB and GMAB
in the numerical experiments, using the parameters specified in Table 3.1.

Description Notation Value

Maturity of Contract and Projection Period T 240 months
Time of Renewal (for GMAB only) T1 End of the 120th month

Initial Fund Value F0 1000
Initial Level of Guarantee G0 100% of F0

Table 3.1: Parameters for VA Contracts

The RSLN and GARCH(1,1) model parameters under the P measure are provided
in Table 3.2 and Table 3.3. We derive the parameters under the Q measure accordingly
based on the change of measure described in Section 3.2.4. Parameters in the RSLN model
were taken from those estimated based on TSE 300 data in Hardy (2001), with some
modification to the log mean return slightly more distinctive between the two regimes.
The value of α0 is chosen such that long-run average volatility in this GARCH(1,1) models
equals the long-run average volatility in the RSLN model, with the parameters in Table 3.2.

(Monthly rate) Real World

Risk-free Rate: r 0.002
Mean - Regime 1 (ρ = 1): µ1 0.0085
Mean - Regime 2 (ρ = 2): µ2 -0.0200

Standard Deviation - Regime 1: σ1 0.035
Standard Deviation - Regime 2: σ2 0.080

Transition Probability - from Regime 1: p12 0.04
Transition Probability - from Regime 2: p21 0.20

Table 3.2: Parameters in the regime-switching lognormal model in numerical examples in
Section 3.3 under the P measure

The use of a stochastic interest rate model can also play a critical role in the valuation
of VAs (Peng et al., 2012; Shevchenko and Luo, 2017; Augustyniak and Boudreault, 2017;
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(Monthly rate) Real World

r 0.002
µ 0.00375
α0 0.0002094225
α1 0.1
β 0.8

σ0 0.0457627
ε0 0

Table 3.3: Parameters in the GARCH(1,1) model in numerical examples in Section 3.3
under the P measure

Molent, 2020). We use a constant risk-free rate in this work. In future work, we will extend
our proposal to incorporate stochastic interest rate models.

We assess the IANS procedure by assuming a fixed computational budget for simulation,
and compare the accuracy of the resulting CTE estimates with estimators produced with
the same computational budget, using the standard nested Monte Carlo (SMC) simulation
in Algorithm 1. Section 3.3.2 presents numerical experiments under static lapse, and
experiments for dynamic lapse are presented in Section 3.3.3.

3.3.1 Benchmarking Large Scale Nested Simulations

In order to assess the relative mean squared errors (RMSE) of different estimators we first
conduct a large-scale nested simulation, with 10,000 inner-level simulations and 10,000
outer-level simulations, to obtain accurate estimates for the CTEs of interest. We say
that this large scale nested simulation takes a computational budget of 10, 000× 10, 000×
(1 + 12 × 20) × (12 × 20) ÷ 2 = 2.892 × 1012. Hereinafter these estimates are referred to
(for convenience) as the true value of the CTEs; and the scenarios generating the largest
(1− α)M losses are referred to as the true tail scenarios.

To illustrate the first stage of the IANS procedure, we replace the inner simulations with
closed-form formulas based on the put option (GMMB) and tandem put option (GMAB)
proxy derivatives, with the GBM asset model and examine how many true tail scenarios
are correctly identified by the proxies.

In Figure 3.1 we compare the losses that are simulated by the full nested simulation
and those generated by the proxy simulation. We can see that the values of the simulated
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losses produced by these two methods are highly correlated. This indicates that Stage 1 of
the IANS procedure is able to correctly identify most true tail scenarios without any inner
simulation. Table 3.4 summarizes this observation quantitatively. We see that the closed-
form proxy calculation, along with the safety margin in Stage 1 of the IANS procedure,
identifies the true tail scenarios in the nested simulation very accurately, for different CTE
levels, different asset models, and different VA types. This robust and accurate identifica-
tion of tail scenarios leads to the high performance of the IANS procedure, as showcased
in subsequent experiments. Note though the accurate identification of tail scenarios does
come at the cost of the additional scenarios included in the safety margin. For example,
for CTE95% estimation, 10% or 1,000 outer scenarios are included in the safety margin.
Table 3.4 shows that all 500 true tail scenarios are included in the safety margin, which
suggests that 500 non-tail scenarios are included in the Stage 2 simulation. Similarly, for
CTE80% estimation, 25% or 2,500 outer scenarios are included in the safety margin. Data
in Table 3.4 then imply between 500 to 515 non-tail scenarios are included in the Stage 2
simulation.

#(%) of Correctly Identified Tail Scen.

RSLN GARCH(1,1)

CTE Level # Tail Scen. GMMB GMAB GMMB GMAB

80% 2,000 2,000 1,998 1,992 1,985
(100.00%) (99.90%) (99.60%) (99.25%)

95% 500 500 500 500 500
(100.00%) (100.00%) (100.00%) (100.00%)

Table 3.4: Tail scenario identification by the proxy simulation (with safety margin) in Stage
1 of the IANS procedure under static lapse assumption.Correctly identified tail scenarios
are the true tail scenarios included in the safety margin in Stage 1 of the IANS procedure.

3.3.2 Dynamic Hedging under Static Lapse

To demonstrate the efficiency of the IANS method, we compare it to three standard nested
simulation experiments that use the same computational budget, but with different allo-
cation between inner and outer level simulations, as shown in Table 3.5. The computation
effort required in the proxy calculation is negligible. Thus it is omitted in the calculation of
computational budget. The fixed simulation budget in all cases is 1% of that in the bench-
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(a) Simulated losses for GMMB.
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(b) Simulated losses for GMAB.

Misclassification

Worst 5%: by Sim, not by Proxy
Worst 5%: by Proxy, not by Sim

Worst 20%: by Sim, not by Proxy
Worst 20%: by Proxy, not by Sim

Figure 3.1: Simulated losses in 10,000 outer scenarios under the RSLN model. The x and
y coordinates of each point in the figures represent the loss in a scenario, simulated by the
IANS proxy simulation and by the true nested simulation, respectively.

mark simulation in Section 3.3.1. By design, the SMC-5,000-200 experiment has a larger
number of outer-level projections and the SMC-200-5,000 experiment has a larger number
of inner projections. The SMC-1,000-1,000 experiment is designed with a more balanced
number of inner and outer-level projections. For the IANS estimators, we set M = 5, 000.
The number of inner projections required using IANS is set to m = (1− α+ 5%)M . Each
of the experiment designs is repeated independently 100 times to produce 100 estimates of
CTEs at both 80% and 95% levels, for both the GMMB and GMAB contracts.

Figure 3.2 and 3.3 depict the CTE estimates in different experiment designs for the
GMMB where the true asset model is RSLN. The solid red line in each graph indicates the
true value estimated using the large scale simulation discussed in Section 3.3.1. Comparing
Figure 3.2a with Figure 3.2b and 3.2c, and Figure 3.3a with Figure 3.3b and 3.3c, we see
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(a) (b) (c) Nested Simulation
Experiment M N m Computational Budget Γ

SMC-5,000-200, CTE α 5,000 200 n/a (a)× (b)× (1+12×20)×(12×20)
2

= 2.892× 1010

SMC-1000-1000, CTE α 1,000 1,000 n/a (a)× (b)× (1+12×20)×(12×20)
2

= 2.892× 1010

SMC-200-5,000 CTE α 200 5,000 n/a (a)× (b)× (1+12×20)×(12×20)
2

= 2.892× 1010

IANS, CTE α = 80% 5,000 800 1,250 (b)× (c)× (1+12×20)×(12×20)
2

= 2.892× 1010

IANS, CTE α = 95% 5,000 2,000 500 (b)× (c)× (1+12×20)×(12×20)
2

= 2.892× 1010

Table 3.5: Number of simulations in each numerical experiment shown in Section 3.3.2

that using a larger number of outer-level simulations reduces the variance, while using
a larger number of inner-level simulations appears to reduce the bias. These results are
consistent with, for example, Broadie et al. (2011), Gordy and Juneja (2010). A larger
number of outer-level simulations reduces variation in extreme losses simulated from one
experiment to another, which reduces the variance. On the other hand, a larger number of
inner-level simulations ensures a more consistent distribution of number of contracts renews
or matures in-the-money, which reduces the bias in the hedging error. Figures 3.2 and 3.3
show that the IANS method achieves lower bias than the SMC-5,000-200 experiment,
and lower variance than the SMC-1,000-1,000 and SMC-200-5,000 experiment. Figure 3.4
and 3.5 illustrate the results from the same experiments for the GMAB contract under the
GARCH(1,1) asset model, where similar patterns are found.

Table 3.6 summarizes the RMSE for different experiment designs. Each RMSE is
calculated as

RMSE =
1

n

n∑
i=1

(µ̂esti − µ)2

µ
(3.3)

where n = 100, µ̂esti is the estimated CTE in the ith independent repeated experiment and
µ is the corresponding CTE value estimated by large scale nested simulation discussed in
Section 3.3.1. The RMSEs are then decomposed into relative bias in Table 3.7 and relative
variance in Table 3.8, for the different experiment designs. The relative bias is calculated

as
( 1
n

∑n
i=1 µ̂

est
i − µ)

µ
, and the relative variance is calculated as

1

n

n∑
i=1

(µ̂esti − 1
n

∑n
i=1 µ̂

est
i )2

µ
.

Table 3.6 demonstrates that, for these examples, the IANS procedure achieves smaller
RMSEs compared with straightforward nested simulation, given the same simulation bud-
get. For both 80% and 95% confidence levels, we see from Table 3.6 that the SMC-5,000-
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Figure 3.2: Estimated CTE80% of simulated GMMB losses under Regime-Switching Model
in 100 independent repeated experiments. The solid red line in each graph indicates the
true value estimated by the large scale simulation discussed in Section 3.3.1.
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Figure 3.3: Estimated CTE95% of simulated GMMB losses under Regime-Switching Model
in 100 independent repeated experiments. The solid red line in each graph indicates the
true value estimated by the large scale simulation discussed in Section 3.3.1.
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Figure 3.4: Estimated CTE80% of simulated GMAB losses under GARCH(1,1) Model in
100 independent repeated experiments. The solid red line in each graph indicates the true
value estimated by the large scale simulation discussed in Section 3.3.1.
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Figure 3.5: Estimated CTE95% of simulated GMAB losses under GARCH(1,1) Model in
100 independent repeated experiments. The solid red line in each graph indicates the true
value estimated by the large scale simulation discussed in Section 3.3.1.
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RSLN GARCH(1,1)

Experiment Design GMMB GMAB GMMB GMAB

SMC-5,000-200, CTE 80% 2.56% 6.57% 7.61% 13.17%
SMC-1,000-1,000, CTE 80% 1.96% 5.51% 1.57% 4.30%

SMC-200-5,000, CTE 80% 10.79% 21.95% 10.18% 19.29%
IANS, CTE 80% 0.44% 0.94% 0.41% 1.07%

SMC-5,000-200, CTE 95% 8.32% 15.44% 10.65% 26.33%
SMC-1,000-1,000, CTE 95% 5.38% 25.93% 5.78% 16.58%

SMC-200-5,000, CTE 95% 25.50% 101.76% 42.69% 99.67%
IANS, CTE 95% 1.28% 5.34% 1.32% 4.40%

Table 3.6: Relative mean square errors (RMSEs) in the CTEs at α = 80% and 95%, for
different experiment designs assuming static lapses.

RSLN GARCH(1,1)

Experiment Design GMMB GMAB GMMB GMAB

SMC-5,000-200, CTE 80% 1.42% 1.46% 2.69% 2.24%
SMC-1,000-1,000, CTE 80% 0.09% -0.07% 0.32% 0.38%

SMC-200-5,000, CTE 80% -0.05% -0.22% -0.39% 0.34%
IANS, CTE 80% 0.01% 0.04% 0.39% -0.05%

SMC-5,000-200, CTE 95% 2.34% 1.89% 2.82% 2.70%
SMC-1,000-1,000, CTE 95% 0.51% -0.47% 0.25% 0.06%

SMC-200-5,000, CTE 95% -0.24% -1.18% -1.06% -0.17%
IANS, CTE 95% 0.17% -0.41% -0.21% 0.20%

Table 3.7: Relative bias in the CTEs at α = 80% and 95%, for different experiment designs
assuming static lapses.

200 experiments have significantly smaller RMSEs than those of the other corresponding
SMC experiments. Table 3.8 further shows that the smaller RMSEs in the SMC-5,000-
200 experiments are mostly attributed to the smaller relative variance. This indicates the
importance of the outer-level simulations relative to the inner-level simulations; this obser-
vation is consistent with other studies in nested simulations (Broadie et al., 2011; Gordy
and Juneja, 2010).
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RSLN GARCH(1,1)

Experiment Design GMMB GMAB GMMB GMAB

SMC-5,000-200, CTE 80% 0.34% 1.00% 0.25% 0.97%
SMC-1,000-1,000, CTE 80% 1.95% 5.50% 1.47% 3.96%

SMC-200-5,000, CTE 80% 10.79% 21.83% 10.02% 19.01%
IANS, CTE 80% 0.44% 0.94% 0.26% 1.06%

SMC-5,000-200, CTE 95% 1.20% 4.32% 1.07% 5.26%
SMC-1,000-1,000, CTE 95% 5.05% 25.26% 5.70% 16.57%

SMC-200-5,000, CTE 95% 25.43% 97.46% 41.34% 99.58%
IANS, CTE 95% 1.24% 4.81% 1.26% 4.28%

Table 3.8: Relative variance in the CTEs at α = 80% and 95%, for different experiment
designs assuming static lapses.

The RMSEs indicate that the mean squared errors in the IANS experiments are within
0-5% of the true CTE values, whereas the mean squared errors in a few SMC experiments
are much higher relative to the true values. Compared to the SMC-1,000-1,000 and SMC-
200-5,000 experiments, we observe in Table 3.6 and Table 3.8 that the reduction in RMSEs
in the IANS experiments are mostly due to the reduction in relative variance. In fact, the
level of reduction in this case is similar for both 80% and 95% confidence level experiments
because the reduction in relative variance is driven by the increase in the number of outer
scenarios considered in the IANS experiments, compared with the SMC-1,000-1,000 and
SMC-200-5,000 experiments, which is the same at 80% and 95% confidence levels. In con-
trast, compared to the SMC-5,000-200 experiments, we observe in Table 3.6 and Table 3.7
that the reduction in RMSEs in the IANS experiments are mostly due to the reduction in
relative bias, because they use more inner simulations.

Among the IANS experiments, the 95% confidence level experiments use more inner
simulations than the 80% confidence level experiments. However, the magnitude of im-
provement in relative bias and RMSEs in the 95% confidence level IANS experiment is
smaller than those in the 80% confidence level experiments. This is due to the fact that
the sensitivity of bias to the number of inner simulations varies by CTE levels and by con-
tract types. This is also evident when comparing the relative bias among SMC experiments
with different inner simulations.

The results for GMAB contracts in Table 3.6 are consistent with those of GMMB
contracts. The GMAB contract is more complicated than the GMMB, so the simulated
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losses are more volatile, resulting in higher RMSEs in general.

3.3.3 Dynamic Hedging of VAs under Dynamic Lapse

To further demonstrate the robustness of the IANS procedure, we conducted large scale
nested simulations, similar to those in Section 3.3.1, for both GMMB and GMAB contracts
using a dynamic lapse model. We simulate the cashflows under both the regime-switching
and the GARCH models. The goal of these experiments is to test the effectiveness of the
proxy model in identifying the tail scenarios in more realistic settings.

The dynamic lapse model is as follows.

• The fund value F and guarantee value G are reduced proportionally by lapse.

• 1
12
ql
x+ t

12

, the monthly lapse rate from time t to t+ 1 is:

1
12
qlx+ t

12
= min

(
1,max

(
0.5, 1− 1.25×

(
Gt

Ft
− 1.1

)))
× 1

12
qbasex+ t

12
(3.4)

where

1
12
qbasex+ t

12
=

{
0.00417 if t < 84,
0.00833 if t ≥ 84.

(3.5)

This dynamic lapse multiplier applied to the base lapse rate is taken from the NAIC’s
Valuation Manual 21 (NAIC, 2020). A dynamic lapse multiplier of this form is commonly
used in practice to model simpler VA contracts such as GMMBs and GMABs. Whether or
not this dynamic lapse assumption is the most suitable for modeling GMMB and GMAB
contract is outside the scope of this thesis; our focus is to demonstrate the effectiveness
of the IANS procedure based on a model that is similar to industry practice, and more
complex than the plain vanilla cases above.

We use the same proxy calculations as those in Section 3.3.2 despite the additional
complexity of dynamic lapse; the proxy calculation uses a static lapse assumption equal to
the base lapse rate. The reason why a static lapse rate works well in the proxy calculation
is that the tail scenarios we focus on are scenarios with large hedging losses. Furthermore,
many large hedging losses occur during periods with large stock price movement, particu-
larly when the contracts are close to at-the-money and are close to renewal and maturity.
According to the dynamic lapse model, under these circumstances, the fund values are
more likely to deplete at the base lapse rate.
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In Figure 3.6, we compare the losses simulated by the full nested simulation and those
from the IANS procedure’s proxy simulation, for both GMMB and GMAB contracts, under
the dynamic lapse model.

Similar to the results of the benchmark runs with no lapses, for both GMMB and
GMAB contracts, and under both asset models, the (1−α)M tail scenarios from the nested
simulations overlap almost entirely with the m proxy tail scenarios. This is also illustrated
numerically in Table 3.9. Such overlapping suggest that the IANS method remains effective
in this more complex setting, using the simple proxy model. Another intriguing observation
in Figure 3.6 is that the simulated losses under the nested simulation and under the proxy
calculation can be significantly different. Nonetheless, the rankings of the simulated losses
remains similar, so the proxy model can still effectively identify the true tail scenarios.
Comparison of different experiment designs under the same computational budget with
the dynamic lapse assumption, similar to those illustrated in Section 3.3.2, are shown in
Section 4.3 using the DIANS method in Chapter 4.

#(%) of Correctly Identified Tail Scen.

RSLN GARCH(1,1)

CTE Level # Tail Scen. GMMB GMAB GMMB GMAB

80% 2,000 1,989 1,987 1,957 1,919
(99.45%) (99.35%) (97.85%) (95.95%)

95% 500 500 492 499 478
(100.00%) (98.40%) (99.80%) (95.6%)

Table 3.9: Tail scenario identification by the proxy simulation (with safety margin) in
Stage I of the IANS procedure under dynamic lapse assumption. Correctly identified tail
scenarios are the true tail scenarios included in the safety margin in Stage 1 of the IANS
procedure.

3.4 Conclusion

In this chapter, we illustrated a simulation procedure for estimating the CTE of loss in
a VA dynamic hedging strategy. The Importance-Allocated Nested Simulation procedure
takes advantage of the special structure of the CTE by first identifying a small set of
potential tail scenarios, based on a proxy model of losses, calculated from a closed-form
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(a) GMMB RSLN
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(b) GMAB RSLN
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(c) GMMB GARCH(1,1)
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(d) GMAB GARCH(1,1)

Misclassification

Worst 5%: by Sim, not by Proxy
Worst 5%: by Proxy, not by Sim

Worst 20%: by Sim, not by Proxy
Worst 20%: by Proxy, not by Sim

Figure 3.6: Simulated losses in 10,000 outer scenarios with dynamic lapses. The x and y
coordinates of each point in the figures represent the loss in a scenario, simulated by the
IANS proxy simulation and by the true nested simulation, respectively.
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solution. We then focus the simulation budget on only those scenarios. We conduct exten-
sive numerical experiments on GMMB and GMAB contracts. The numerical results show
significant improvement in efficiency using the IANS procedure compared to a standard
nested simulation.

One area for improvement in the IANS method is the choice for the size of the proxy
tail scenario set. In this chapter, an arbitrary selection of m is used. In the next chapter,
we will consider a more rigorous and systematic approach in selecting m, the size of the
proxy tail scenario set to be considered for nested simulations.
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Chapter 4

Dynamic Importance-Allocated
Nested Simulation

4.1 Introduction

In this chapter we introduce a dynamic importance allocated nested simulation (DIANS)
methodology, which is an extension of the IANS method. In Chapter 3, a fixed margin
of 5%M was used to determine the number of proxy scenarios to include in the proxy
tail scenario set. In this chapter, we remove that arbitrary margin, and replace it with a
dynamic algorithm, based on the relationship between the proxy model and inner simu-
lation rankings for a trial subset of scenarios; if the relationship is not sufficiently close,
the subset of scenarios assigned to the tail set is increased iteratively. The closeness of
rankings is measured using the empirical copula to generate moments of concomitant of
order statistics (David, 1973) for the proxy model in relation to the inner simulation model.
The dynamic methodology not only reduces the need for subjective input, it also provides
a measure for assessing the performance of the extrinsic proxy. If the iterative process
indicates a need to incorporate a very large number of scenarios into the tail set, that
signals that the proxy is not performing adequately, reducing the reliance on backtesting.
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4.2 Dynamic Importance Allocated Nested Simula-

tion (DIANS)

The DIANS procedure is similar to the IANS procedure except for the determination of m,
the size of the proxy tail scenario set. In the IANS procedure, the proxy is successful if the
ranking of scenarios based on the proxy model corresponds closely with the true ranking of
the scenarios, which we estimate using simulation. A natural way to explore how close the
rankings are is through the empirical copulas of the bivariate random variables comprised
of the proxy loss and the simulated loss.

Consider the bivariate random variable (LPi , Li), representing the proxy loss and the
random loss generated by the ith scenario, where X(i) ∈ T Pm . Let (UP

i , Ui) represent the
uniform random variables generated by applying the marginal distribution functions to LPi
and Li, that is

(UP
i , Ui) =

(
FLP (LPi ), (FL(Li)

)
We assume, for convenience, that the losses are continuous; it is straightforward to adapt
the method for mixed distributions. If we take a random sample of m pairs of (UP

i , Ui),
and order them by the UP

i values, from smallest to largest, we will have the ordered sample

(UP
(1), U[1]), (UP

(2), U[2]), . . . , (U
P
(m), U[m])

where UP
(j) is the j-th smallest (or j-th order statistic) of the UP

i values, and U[j] is known

as the concomitant of the jth order statistic (David, 1973).

Let Rj:m denote the rank of the value of Ui corresponding to the jth smallest value in
a sample of m values of UP

i (or equivalently, the rank of the value of Li corresponding to
the jth smallest value of LPi ). Then, for example, the rank of U[1] amongst the Ui sample
is denoted R1:m, and, in general,(

UP
(j), U[j]

)
=
(
UP

(j), U(Rj:m)

)
If UP and U are comonotonic, then Rj:m = j, and we have a perfect proxy in terms of
ranking of losses. If not, then we can use results from David et al. (1977) and O’Connell
(1974) to derive formulae for moments of Rj:m, in terms of the copula function and the
copula density function of UP and U , denoted C(uP , u) and c(uP , u) respectively. We
also need the density function of the rth order statistic among an i.i.d. sample of m
Uniform(0,1) random variables, which is

fj:m(u) =
m!

(j − 1)!(m− j)!
uj−1(1− u)m−j.
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Proposition 4.2.1. Let U , V denote U(0, 1) random variables, with joint distribution
function C(U, V ) and joint density function c(u, v). Let Rj:m denote the rank of the con-
comitant of the jth order statistic of U , from a random sample of size m, and let fj:m
denote the density function defined above.

E[Rj:m] = 1 +m


1∫

0

 1∫
0

C(u, v)c(u, v)dv

 fj−1:m−1(u)du

+

1∫
0

 1∫
0

(
v − C(u, v)

)
c(u, v)dv

 fj:m−1(u)du



E[R2
j:m] = 3E[Rj:m]− 2 +m(m− 1)


1∫

0

 1∫
0

(
C(u, v)

)2
c(u, v)dv

 fj−2:m−2(u)du

+

1∫
0

 1∫
0

(
v − C(u, v)

)2
c(u, v)dv

 fj:m−2(u)du

+2

1∫
0

 1∫
0

C(u, v)
(
v − C(u, v)

)
c(u, v)dv

 fj−1:m−2(u)du


The proof of Proposition 4.2.1 is included in Section 4.2.1.

We use this proposition to quantify how well the proxy works at ranking the losses.
First, we set an initial value for the number of proxy tail scenarios, denoted m0. We
allocate a portion of the inner simulation budget to run, say, N0 inner simulations for each
scenario in T Pm0

. We then assess the closeness of the ranking of proxy losses and simulated
losses for scenarios in T Pm0

, using the moments of rank of the concomitant for a specific
order statistic. If the test (described below) is not satisfied, then we increase the number of
scenarios in the set and apply N0 inner simulations to the newly added proxy tail scenarios.
If the proxy is working, our process will cease after a few iterations, and the remaining
inner simulation budget is applied to the final proxy tail scenario set T Pm̃ . If the iterations
continue, creating tail scenario sets that are larger than a prescribed maximum, this will
signal that the proxy is inadequate.

The test for increasing the sample size, or not, at each iteration proceeds as follows.
Assume that there are mk scenarios in the proxy tail scenario set on the kth iteration. We
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have preliminary inner simulation results for each scenario, from which we can construct
the empirical copula and copula density functions.

From these we can calculate the mean and standard deviation of the rank of a sim-
ulated loss concomitant to any given ranked proxy loss. We choose to consider the
d = m0 − (1− α)Mth ranked proxy loss (this value stays the same through the iterations
of mk). For the initial iteration of the process, the number of scenarios in the tail scenario
set is m0 = (1 − α)M + d, so d represents the additional scenarios included beyond the
minimum of (1− α)M in the initial iteration.

We use the mean and standard deviation of the rank of concomitant of the dth ranked
proxy loss to calculate a one-sided upper 95% bound for the concomitant rank,

bk = E[Rd:mk ] + 1.645
√
V [Rd:mk ]. (4.1)

If this upper bound is greater than mk − (1− α)M , then we increase the sample size, to

mk+1 = (1− α)M + bk,

and repeat the test.

Note that Equation (4.1) effectively assumes that Rd:mk has a normal distribution. Even
though this is a loose assumption, we will demonstrate in Section 4.3 that the upper bound
in Equation (4.1) is very effective and reasonably precise in capturing true tail scenarios.
An alternative to making the normality assumption is to use the Cantelli’s inequality to
build a wider upper bound for Rd:mk . More specifically, based on Cantelli’s inequality, we
have

Pr

[
Rd:mk ≤ E[Rd:mk ] +

√
0.95

1− 0.95
× V [Rd:mk ]

]
≥ 0.95 (4.2)

Hence we can use an alternative one-sided upper 95% bound for the concomitant rank

bCantelli
k = E[Rd:mk ] +

√
19× V [Rd:mk ]. (4.3)

With the wider upper bound in Equation (4.3), the DIANS procedure will include many
more proxy tail scenarios in nested simulation. Under a fixed computation budget, this
would dilute the simulation budget for each proxy tail scenarios and result in less accurate
estimate of CTEs. We will demonstrate this in numerical examples in Section 4.3.

Algorithm 3 describes the Dynamic Importance-Allocated Nested Simulation proce-
dure.
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Algorithm 3: Dynamic proxy tail scenario selection procedure.

Input: X(i), i = 1, . . . ,M : all outer scenarios.
m0 ≥ (1− α)M : initial number of scenarios in proxy tail scenario set.
d = m0 − (1− α)M : initial threshold scenario ranking for CTE calculation.
mmax : max. number of proxy tail scenarios for an acceptable proxy model.
Γ : overall simulation budget.
N0 : number of inner simulations in pilot runs.
hP (X) : function that returns the proxy loss of an outer scenario X.

1 Calculate the proxy losses LPi = hP (X(i)) for all scenarios X(i), i = 1, . . . ,M .

2 Identify the proxy tail scenario set T Pm0
corresponding to the m0 largest proxy losses.

3 Set m−1 = 0, T Pm−1
= ∅, and k ← 0.

4 while mk > mk−1 do
5 for X(i) ∈ T Pmk

\ T Pmk−1
do

6 Invoke the multi-period inner simulation procedure for scenario X(i), using N0

independent replications at every time step of size h.
7 Pair the simulated loss L̂i with the proxy loss LPi for (LPi , L̂i).

8 end

9 Convert the pairs (LPi , L̂i) to (UPi , Ui) by applying the marginal distribution function of LPi
and L̂i respectively, for all X(i) ∈ T Pmk

; sort the pairs in ascending order of UPi ’s to get
(UP(j), U[j]), j = 1, . . . ,mk.

10 Calibrate the empirical copula C(uP , u) and copula density function c(uP , u) using (UPi , Ui),

for all X(i) ∈ T Pmk
.

11 Calculate an approximate upper 95% bound for Rd:mk
as in Equation (4.1), i.e.,

bk = E[Rd:mk
] + 1.645

√
V [Rd:mk

].
12 Calculate the required number of proxy tail scenarios mk+1 = (1− α)M + bk
13 if mk+1 ≥ mmax then
14 Stop. Proxy model is inadequate.
15 end
16 k ← k + 1

17 end

18 Return proxy tail scenario set T Pm̃ = T Pmk
, simulated losses L̂i for all X(i) ∈ T Pm̃ , and remaining

simulation budget Γ′ = Γ− m̃×N0 × T/h×(T/h+1)
2 .

19 for X(i) ∈ T Pm̃ do
20 Invoke the multi-period inner simulation procedure for scenario X(i), using

N ′ = b 2Γ′

T/h×(T/h+1)×m̃c inner simulations.

21 Store simulated loss L̂′i scenario X(i).

22 Update L̂i := N0

N0+N ′ L̂i + N ′

N ′+N0
L̂′i

23 end

24 Sort the m̃ simulated losses in ascending order to give L̂(1) ≤ L̂(2) ≤ · · · ≤ L̂(m̃).

25 Estimate the CTEα of the loss by ĈTEα = 1
(1−α)M

∑m̃
i=m̃−(1−α)M+1 L̂(i).
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The choice of d = m0 − (1 − α)M in the test for adequacy of T Pmk is a convenient
heuristic. Intuitively, (assuming positive correlation between proxy and true losses), we
might prefer to use the lowest available order statistic (the minimum for which the mean
and variance of the rank of the concomitant can be calculated is d = 3), but this will be
more unstable, due to the higher uncertainty at the boundary of the empirical copula. In
the numerical experiments illustrated in Section 4.3, we chose d = 150, which is 0.03M , as
the initial and minimum margin.

The initial number of inner simulations, N0, is a design variable that needs to be chosen
carefully. If N0 is too low, then the simulated losses will be subject to greater sampling
variability, leading to greater variability in Rj:m. This will tend to generate a higher number
of tail scenarios (mk), which is wasteful of the inner simulation budget. On the other hand,
if N0 is too high, then we may run out of computation budget. One approach is to set N0

to be the minimum number of inner simulations required for an adequate assessment of
the losses, which will depend on the nature and moneyness of the embedded option.

Note from Line 14 of the algorithm that it may stop without calculating the CTE,
if the number of proxy tail scenarios selected exceeds mmax. A valuable feature of the
algorithm is that it signals when the proxy and the simulated losses have diverged such
that the number of proxy tail scenarios required to capture the true tail scenarios would be
large, meaning that the inner simulation budget would be spread too thinly for accurate
evaluation of the tail risk measure. An example is shown in the following section. Setting
mmax = M removes the stopping point, so that, if necessary, the algorithm continues until
all M scenarios are included in the inner simulation set. In this case, the DIANS procedure
becomes a standard nested simulation.

Another useful feature of the algorithm is each round of iteration provides the sample
size for the next round. Even though statistics such as Spearman’s rho or Kendall’s tau
also give an indication of the level of rank dependency, they provide no guidance on the
sample size increment, nor do they offer any objective criteria for when the iteration could
stop.

The algorithm specifically targets the CTEα estimate, but it can be easily adapted to
other tail risk measures such as the VaRα. The only change required in the algorithm is
to replace the CTE estimator in Line 25 by a VaR estimator such as the one proposed
by Hyndman and Fan (1996),

V̂ aRα = (1− γ)L̂(m̃−(M−g)) + γL̂(m̃−(M−g)+1) (4.4)

where g = b(M + 1
3
)α+ 1

3
c and γ = (M + 1

3
)α+ 1

3
− g. See Kim and Hardy (2007) or Risk

and Ludkovski (2018) for a fuller account of bias reduction in VaR estimation.
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4.2.1 Proof of Proposition 4.2.1

For a general bivariate distribution of (U, V ), from David et al. (1977) we have

E[Rj:m] = 1 +m

( −∞∫
∞

 −∞∫
∞

θ1f(v|u)dv

 fUj−1:m−1
(u)du+

−∞∫
∞

 −∞∫
∞

θ3f(v|u)dv

 fUj:m−1
(u)du

)
(4.5)

where

θ1 = P [U < u, V < v], θ2 = P [U < u, V > v], θ3 = P [U > u, V < v], θ4 = P [U > u, V > v]

If (U, V ) has a bivariate uniform distribution, we have

f(v|u) =
f(u, v)

fU(u)
= f(u, v) = c(u, v)

θ1 = C(u, v) θ2 = u− C(u, v)

θ3 = v − C(u, v) θ4 = 1− u− v + C(u, v)

where

C(u, v) is the copula function of U = u and V = v.

c(u, v) is the density function of C(U, V ).

fUj:m(u) represents the density function of the jth order statistic among m U ’s:

fUj:m(u) =
m!

(j − 1)!(m− j)!
uj−1(1− u)m−j.

Therefore, in this case Equation (4.5) is equivalent to

E[Rj:m]

= 1 +m

( 1∫
0

 1∫
0

C(u, v)c(u, v)dv

 fUj−1:m−1
(u)du+

1∫
0

 1∫
0

(
v − C(u, v)

)
c(u, v)dv

 fUj:m−1
(u)du

)
(4.6)
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To derive the second moment of Rj:m, we first derive the second moment of Rj:m for a
general bivariate pair, (X, Y ), i.e. not specifically bivariate uniform distributed. We use
the same factorial moment method as in O’Connell (1974).

First we have,

E[R2
j:m] =

m∑
s=1

s2P [Rj:m = s] (4.7)

=
m−1∑
s=0

(s+ 1)2P [Rj:m = s+ 1]

=
m−1∑
s=0

P [Rj:m = s+ 1] + 2
m−1∑
s=0

sP [Rj:m = s+ 1] +
m−1∑
s=0

s2P [Rj:m = s+ 1]

=1 + 2(E[Rj:m]− 1) +
m−1∑
s=0

s2P [Rj:m = s+ 1]

More specifically,

m−1∑
s=0

s2P [Rj:m = s+ 1] =
m−1∑
s=0

s2m

∞∫
−∞

∞∫
−∞

t∑
k=0

Ckθ
k
1θ

j−1−k
2 θs−k3 θm−j−s+k4 f(x, y)dxdy (4.8)

where Ck =

(
m− 1

j − 1

)(
j − 1

k

)(
m− j
s− k

)
Let i = s− k, then

m−1∑
s=0

s2P [Rj:m = s+ 1] (4.9)

=
m−1∑
s=0

s2m

∞∫
−∞

∞∫
−∞

t∑
k=0

Ckθ
k
1θ

j−1−k
2 θs−k3 θm−j−s+k4 f(x, y)dxdy

= n

(
m− 1

j − 1

) ∞∫
−∞

∞∫
−∞

j−1∑
k=0

m−j∑
i=0

(k + i)2

(
j − 1

k

)(
m− j
i

)
θk1θ

j−1−k
2 θi3θ

m−j−i
4 f(x, y)dxdy

= m

(
m− 1

j − 1

) ∞∫
−∞

∞∫
−∞

j−1∑
k=0

m−j∑
i=0

(k2 + i2 + 2ki)

(
j − 1

k

)(
m− j
i

)
θk1θ

j−1−k
2 θi3θ

m−j−i
4 f(x, y)dxdy

63



Furthermore,

m

(
m− 1

j − 1

) ∞∫
−∞

∞∫
−∞

j−1∑
k=0

m−j∑
i=0

k2

(
j − 1

k

)(
m− j
i

)
θk1θ

j−1−k
2 θi3θ

m−j−i
4 f(x, y)dxdy (4.10)

= m

(
m− 1

j − 1

) ∞∫
−∞

∞∫
−∞

j−1∑
k=0

m−j∑
i=0

k(k − 1)

(
j − 1

k

)(
m− j
i

)
θk1θ

j−1−k
2 θi3θ

m−j−i
4 f(x, y)dxd

+m

(
m− 1

j − 1

) ∞∫
−∞

∞∫
−∞

j−1∑
k=0

m−j∑
i=0

k

(
j − 1

k

)(
m− j
i

)
θk1θ

j−1−k
2 θi3θ

m−j−i
4 f(x, y)dxdy

= m

(
m− 1

j − 1

) ∞∫
−∞

∞∫
−∞

j−1∑
k=0

k(k − 1)

(
j − 1

k

)
θk1θ

j−1−k
2

m−j∑
i=0

(
m− j
i

)
θi3θ

m−j−i
4 f(x, y)dxdy

+m

(
m− 1

j − 1

) ∞∫
−∞

∞∫
−∞

j−1∑
k=0

k

(
j − 1

k

)
θk1θ

j−1−k
2

m−j∑
i=0

(
m− j
i

)
θi3θ

m−j−i
4 f(x, y)dxdy

= m

∞∫
−∞

∞∫
−∞

(
m− 1

j − 1

)
(j − 1)(j − 2)θ2

1[FX(x)]j−3[1− FX(x)]m−jf(x, y)dxdy

+m

∞∫
−∞

∞∫
−∞

(
m− 1

j − 1

)
(j − 1)θ1[FX(x)]j−2[1− FX(x)]m−jf(x, y)dxdy

= m(m− 1)

∞∫
−∞

∞∫
−∞

θ2
1

f(x, y)

fX(x)
fj−2:m−2(x)dxdy +m

∞∫
−∞

∞∫
−∞

θ1
f(x, y)

fX(x)
fj−1:m−1(x)dxdy

= m(m− 1)

∞∫
−∞

 ∞∫
−∞

θ2
1f(y|x)dy

 fj−2:m−2(x)dx+m

∞∫
−∞

 ∞∫
−∞

θ1f(y|x)dy

 dy]fj−1:m−1(x)dx
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Similarly,

m

(
m− 1

j − 1

) ∞∫
−∞

∞∫
−∞

j−1∑
k=0

m−j∑
i=0

i2
(
j − 1

k

)(
m− j
i

)
θk1θ

j−1−k
2 θi3θ

m−j−i
4 f(x, y)dxdy (4.11)

= m(m− 1)

∞∫
−∞

 ∞∫
−∞

θ2
3f(y|x)dy

 fj:m−2(x)dx+m

∞∫
−∞

 ∞∫
−∞

θ3f(y|x)dy

 dy]fj:m−1(x)dx

And

m

(
m− 1

j − 1

) ∞∫
−∞

∞∫
−∞

j−1∑
k=0

m−j∑
i=0

ki

(
j − 1

k

)(
m− j
i

)
θk1θ

j−1−k
2 θi3θ

m−j−i
4 f(x, y)dxdy (4.12)

= m(m− 1)

∞∫
−∞

 ∞∫
−∞

θ1θ3f(y|x)dy

 fj−1:m−2(x)dx

Substitute (4.10), (4.11) and (4.12) back in (4.9), we have

m−1∑
s=0

s2P [Rj:m = s+ 1] (4.13)

= m(m− 1)

∞∫
−∞

 ∞∫
−∞

θ2
1f(y|x)dy

 fj−2:m−2(x)dx+m

∞∫
−∞

 ∞∫
−∞

θ1f(y|x)dy

 dy]fj−1:m−1(x)dx

+m(m− 1)

∞∫
−∞

 ∞∫
−∞

θ2
3f(y|x)dy

 fj:m−2(x)dx+m

∞∫
−∞

 ∞∫
−∞

θ3f(y|x)dy

 dy]fj:m−1(x)dx

+ 2m(m− 1)

∞∫
−∞

 ∞∫
−∞

θ1θ3f(y|x)dy

 fj−1:m−2(x)dx

= m(m− 1)
( ∞∫
−∞

 ∞∫
−∞

θ2
1f(y|x)dy

 fj−2:m−2(x)dx+

∞∫
−∞

 ∞∫
−∞

θ2
3f(y|x)dy

 fj:m−2(x)dx

+ 2

∞∫
−∞

 ∞∫
−∞

θ1θ3f(y|x)dy

 fj−1:m−2(x)dx
)

+ E[Rr:m]− 1
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Substitute (4.13) back in (4.7), we have

E[R2
j:m] = 3E[Rj:m]− 2 +m(m− 1)×

( ∞∫
−∞

 ∞∫
−∞

θ2
1f(y|x)dy

 fj−2:m−2(x)dx (4.14)

+

∞∫
−∞

 ∞∫
−∞

θ2
3f(y|x)dy

 fj:m−2(x)dx+ 2

∞∫
−∞

 ∞∫
−∞

θ1θ3f(y|x)dy

 fj−1:m−2(x)dx
)

In the case of bivariate uniform distribution of (U, V ), we have

E[R2
j:m] = 3E[Rj:m]− 2 +m(m− 1)×

( 1∫
0

 1∫
0

(
C(u, v)

)2
c(u, v)dv

 fUj−2:m−2
(u)du

+

1∫
0

 1∫
0

(
v − C(u, v)

)2
c(u, v)dv

 fUj:m−2
(u)du

+ 2

1∫
0

 1∫
0

C(u, v)
(
v − C(u, v)

)
c(u, v)dv

 fUj−1:m−2
(u)du

)

4.3 Numerical Experiments

4.3.1 Setup and assumptions

We illustrate the DIANS procedure by applying it to estimate the CTE95% of the hedging
costs for a GMMB and GMAB contract under a Markov regime-switching lognormal asset
model, with a dynamic lapse assumption.

Both the GMMB and GMAB contracts are 240-month, single premium policies. The
premium is 1,000. The risk is managed using delta hedging, rebalanced at monthly inter-
vals.

In the GMMB example, the contract has a guaranteed return of premium at maturity.
A gross management fee of 1.75% per annum is deducted monthly from the sub-account
value, of which 0.30% per annum is returned as net fee income for the insurer. The
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remaining fee of 1.45% per annum is assumed to pay for expenses that are not modeled
explicitly.

In the GMAB example, the contract has a renewal in 120-months’ time, and matures
in 240 months. A gross management fee of 2.00% per annum is deducted monthly from
the sub-account value, of which 0.60% per annum is counted as net fee income for the
insurer. The remaining fee of 1.40% per annum is assumed to pay for expenses that are
not modeled explicitly.

To simplify the presentation, we assume that there are no transactions costs and we
ignore mortality.

Returns on the sub-account funds, under the real world measure, are modelled as a
2-regime lognormal process with monthly time steps. The model parameters are given in
Table 3.2 in Section 3.3. The dynamic lapse behaviour of policyholders is modelled using
the NAIC formula described in Section 3.3.3.

The proxy liabilities are calculated using the Black-Scholes put option formula, so
the proxy model assumes geometric Brownian motion for the stock return process with
volatility recalibrated at each time t, depending on X

(i)
t . Under the proxy model, lapse

rates are assumed to be constant, equal to the base rates of the dynamic lapse rate model.

4.3.2 Proxy losses versus true losses

We conduct a large scale, full uniform nested simulation as a benchmark, against which
we will compare the results of the DIANS method.

We use 5,000 outer scenarios, with 10,000 inner simulations at each time step of each
scenario. We assume (after some testing) that this is sufficient to give a very accurate
evaluation of the loss for each scenario X(i), so for convenience, we will designate these the
“true” losses associated with each X(i), denoted Li.

We also apply the proxy model to each of the 5,000 scenarios, generating proxy losses,
LPi . In Figure 4.1 we show the proxy losses (x -axis) plotted against the true losses (y-axis).

We assume that we are interested in the 95% CTE, which involves the largest 250
losses from the 5,000 scenarios. The “+”’s in Figure 4.1 represent T250 \ T P250, that is, the
losses that are ranked in the top 5% of the Li, but are not in the top 5% of the proxy
loss estimates. The “∗”’s represent T P250 \ T250. Losses that lie on the right of the vertical
line correspond to the worst 5% proxy losses, while losses that lie above the horizontal line
correspond to the worst 5% true losses.
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(a) GMMB

(b) GMAB

Figure 4.1: Simulated losses in 5,000 outer scenarios, by proxy valuation (x axis) and by
inner simulation (y axis). Region above the horizontal line indicates the worst 5% loss by
inner simulation. Region to the right of the vertical line indicates the worst 5% loss by
proxy valuations.
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In Figure 4.2 we show the P-P plots of the simulated losses presented in Figure 4.1. It
suggests that the ranking of losses from inner simulation are reasonably well correlated to
the ranking of losses from the proxy model.

We note from Figure 4.1 and Figure 4.2 that although the proxy model produces sim-
ilar ranking of losses to the ‘true’ losses, the actual values of the losses produced by the
proxy model are very different to the accurate inner simulation model losses; the points
in Figure 4.1 deviate significantly from the y = x line in each plot. This means that we
cannot simply use the proxy estimates of loss in the risk measure – we must proceed to
the inner simulation step of the algorithm.

In addition, Figure 4.3 illustrates the final empirical copula used in applying the DIANS
procedure to the 5,000 scenarios presented in Figure 4.1. The empirical copula suggests the
proxy and inner simulation losses within the proxy tail scenarios set T Pm̃ are also fairly well
correlated, with the correlation in the empirical copula of the GMMB being stronger than
that of GMAB. This has an impact on the number of proxy tail scenarios identified by the
DIANS algorithm for the two different types of contracts, as we will see in Section 4.3.4.

4.3.3 Identifying T Pm̃
We explore the variables m∗ and m̃, where T Pm∗ is the smallest set of proxy tail scenarios
containing T250, and m̃ is the number of proxy tail scenarios identified by the DIANS
algorithm. To do this, we run 20 repetitions of the DIANS algorithm, each using the same
set of M = 5, 000 scenarios as used in the full uniform nested simulation, and each with
the following input parameters:

Γ = 5, 000× 200 = 106, N0 = 1000, m0 = 400, mmax = 5, 000, d = 150

Note that we have set mmax = M , which means that we have allowed the algorithm to
continue to find an unconstrained value of m̃. In practice, mmax is a design variable that
the user of the DIANS procedure would choose, based on the minimum acceptable number
of inner simulations.

From the full scale uniform nested simulation, we know that the minimum number of
proxy tail scenarios required to capture all the true tail scenarios, m∗ = min{m : T250 ⊂ T Pm },
is m∗ = 557 in the GMMB example and m∗ = 787 in the GMAB example.

From the DIANS algorithm, for each repetition we record m̃, which is the final number
of scenarios in the proxy tail scenario set.
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Figure 4.2: P-P plots of the simulated loss cumulative distribution functions in 5,000 outer
scenarios, by proxy valuation (x axis) and by inner simulation (y axis); GMMB (top figure)
and GMAB (bottom figure). The vertical and horizontal line represent the respective 95%
quantile on the x and y axis.
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(a) GMMB

(b) GMAB

Figure 4.3: Empirical copula of simulated losses within the proxy tail scenarios set T Pm̃ .
The same legends as in Figure 4.1 are used.
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The results are illustrated in Figure 4.4. Each column represents a separate repeti-
tion of the DIANS valuation. In each column, the triangle represents m̃, which is the
number of scenarios included in the tail scenario set using DIANS. The dots (which
are the same in each column) represent the quantities M − Rj:M , for M = 5000, and
j = 4751, 4752, . . . , 5000. Here, Rj,M is the concomitant rank of the jth true tail losses, so
M −Rj:M indicates the number of proxy tail scenarios required to capture the top M − j
true tail scenarios. The maximum value of M − Rj:M (i.e. the top dot in each column) is
m∗, which is the number of proxy tail scenarios required to capture the scenarios generating
the top 5% of true losses.

We see from the figure that m̃ remains relatively stable across the experiments. We also
see that for both the GMMB and the GMAB, in each of the 20 experiments the threshold
generated by the DIANS algorithm (the triangle) lies above the maximum required to
capture all the true tail scenarios (represented by the uppermost dot), meaning that the
algorithm generated a proxy tail set that included all the true tail scenarios. On the
one hand, this is encouraging - the algorithm, here, does a good job of capturing all
the true tail scenarios. On the other hand, in the GMMB case, the number of proxy
tail scenarios selected is significantly greater than the number required to capture the
true tail scenarios, signalling that we might be wasting computational effort. There is a
trade-off here, between ensuring that the true tail scenarios are all captured, and ensuring
that the inner simulation budget is sufficiently concentrated to give reliable results. The
balance between these competing objectives can be adjusted by increasing or decreasing
the confidence level used for the bound in Algorithm 3.
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Figure 4.4: Actual inverse rank of concomitant of true tail losses and m̃ (threshold gen-
erated by DIANS), for 20 repeated experiments described in Section 4.3.3; GMMB (top),
GMAB (bottom).
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4.3.4 CTE Estimation

In this section we compare CTE95% estimates of the losses for both the GMMB and the
GMAB described in Section 4.3.1. We fix the inner simulation budget, and apply the
following estimation methods:

(a) DIANS, as described in Algorithm 3, parameters as in the previous section.
(b) DIANS, as in (a) but using the upper bound based on Cantelli’s inequality in Equa-

tion (4.3).
(c) Fixed (non-dynamic) importance allocation nested simulation (See Chapter 3) with

(c1) m = 0.15×M = 750.
(c2) m = 0.10×M = 500.
(c3) m = 0.05×M = 250.

(d) Standard nested simulation with equal number of inner simulation.

Each experiment is repeated 100 times. The outer scenarios used for each repetition of
each experiment are the same, so the differences between the results arise solely from tail
scenario selection, and sampling variability, at the inner simulation stage. The scenarios are
also the same as those used for the large scale nested simulations illustrated in Figure 4.1,
which were used to calculate the accurate CTE estimate used as the basis for the RMSE
values below.

The inner simulation budget is fixed at Γ = 106. Using importance allocated nested
simulation, with a fixed number of scenarios, m say, in the proxy tail scenario set, means
that each scenario in the tail scenario set would be allocated 106/m inner simulations, at
each time step of the scenario. Rather than a prescribed fixed number of proxy tail sce-
narios, a main improvement in DIANS is to search for the proxy tail scenarios dynamically
based on concomitants. Computationally, we observe in our numerical experiments that
this dynamic search algorithm takes negligible runtime (roughly the simulation runtime for
2 outer scenarios in the uniform inner simulation experiment with 200 inner simulations).
So running the different experiments with the same simulation budget is a fair comparison.

The results for the GMMB experiments are summarized in Table 4.1, and in the box-
and-whisker plot in Figure 4.5. The results for the GMAB experiments are summarized in
Table 4.2, and are illustrated in the box-and-whisker plot in Figure 4.6.
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Average % of
True Tail Scenarios
Scenarios Used in

Experiment m N RMSE CTE Estimation
(a) Dynamic IANS, m0 = 400 ≈ 654 ≈ 1, 528 0.0072% (0.0010%) 96% (0.1%)

(b) DIANS (Cantelli), m0 = 400 ≈ 948 ≈ 1, 055 0.0130% (0.0019%) 95% (0.1%)

(c1) Fixed IANS 750 1,333 0.0088% (0.0013%) 96% (0.1%)

(c2) Fixed IANS 500 2,000 0.0069% (0.0011%) 96% (0.1%)

(c3) Fixed IANS 250 4,000 7.8604% (0.0274%) 78% (0.0%)

(d) Uniform inner simulation 5, 000 200 0.2234% (0.0212%) 90% (0.1%)

Table 4.1: Results from 100 repetitions of fixed and dynamic IANS process, and standard
nested simulation, GMMB example, with standard errors. All values are based on a single
outer scenario set.

Figure 4.5: Box-and-whisker plot of results from 100 repetitions of fixed and dynamic IANS
process, and standard nested simulation, GMMB example.
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In the final column of Table 4.1 we show the percentage of true tail scenarios used
in the CTE95% estimation of the GMMB experiments. In experiments (a), (b) and (c1),
although Tm̃ captured all the true tail scenarios, the ranking of the tail scenarios in each
case is not identical to the benchmark run, due to inner simulation noise. As a result,
only 95− 96% of the true tail scenarios were used in the actual CTE calculation. We note
from Figure 4.1 that, close to the threshold of the top 5% of true losses, the values of the
losses immediately above the threshold are very close to the losses immediately below the
threshold, so a small amount of replacement, in this example, makes little difference to the
CTE estimation.

In this example, the RMSE results suggest that the dynamic IANS procedure achieves
significantly higher accuracy than IANS with fixed m = 250. The DIANS results are similar
compared with IANS, with fixed m = 750 or m = 500, and significantly outperforms the
uniform inner simulation method.

The RMSEs in methods (a), (b), (c1) and (c2) are similar because the minimum number
of proxy tail scenarios required to capture the full set of true tail scenarios is m∗ = 557
(for this set of X). Thus, any importance allocation method with m > 557 would capture
all the true tail scenarios, and that includes the DIANS case (m exceeded 557 in each of
the 100 repetitions) and the fixed IANS case with m = 750. For the fixed IANS case with
m = 500 < 557, some true tail scenarios are omitted from the inner simulation stage; from
the top plot in Figure 4.4, by looking at the number of dots lying above the y = 500 line, we
see that using 500 proxy tail scenarios will miss just two true tail scenarios. Even though
the true tail scenarios are all, or almost all captured in experiments (a), (b), (c1) and (c2),
the losses for the tail scenarios are estimated with different numbers of inner simulations
in each of the four experiments. The difference in RMSE between experiments (a), (b)
and (c1) is driven entirely by the difference in the number of inner simulations deployed to
each scenario in Tm; all methods capture all the true tail scenarios, but the DIANS method
in experiment (a) does so with less redundancy, and therefore more accuracy in the loss
estimation. In contrast, the DIANS method based on the Cantelli inequality in experiment
(b) uses more conservative set of proxy tail scenarios, and results in less accurate loss
estimation. This is illustrated in Figure 4.5, which shows that both experiments appear to
generate unbiased estimators, but the variance of (c1) is a little greater than the variance
of (a). Experiment (c2) misses two true tail scenarios, but achieves more accurate results
for those that it does capture. Because it misses some true tail scenarios, the CTE estimate
is biased low (as we can see in Figure 4.5). However, in this case, the bias is compensated
by the low variance in the RMSE calculation.

In contrast, the RMSE under experiment (c3) is close to 1,000 times that of the DIANS
result. Experiment (c3) uses a fixed m of only 250, allowing no cushion for losses that

76



are in the top 5% under the accurate calculation, but are below the top 5% by the proxy
calculation. The evaluation of loss for each scenario in the proxy tail set will be more
accurate, using 4,000 inner simulations, but many true tail scenarios are missed in this
experiment. The missed tail scenarios are replaced with others that are lesser ranked,
based on the initial simulation values, so the CTE estimate is, again, biased low – much
more significantly than in (c2). Note that, comparing the result from method (c3) with the
uniform nested simulation result, in method (d), we see that if the importance allocation
method misses too many true tail scenarios the result is actually worse than using a uniform
allocation of inner simulation under the same budget. This underscores the usefulness of
using the dynamic IANS procedure to ensure sufficient tail scenario coverage, rather than
a fixed IANS method. In practice, we do not know the value of m∗; the advantage of the
dynamic IANS procedure is that we eliminate the subjectivity involved in selecting a fixed
m.

Note that the positive bias indicated in the uniform nested simulation approach (method
(d)), results from evaluating discrete hedging errors for out-of-the-money options with a
small number of simulations (Boyle and Emanuel, 1980).

Average % of
True Tail Scenarios
Scenarios Used in

Experiment m N RMSE CTE Estimation
(a) Dynamic IANS, m0 = 400 ≈ 826 ≈ 1, 210 0.0515% (0.0052%) 92% (0.1%)

(b) DIANS (Cantelli), m0 = 400 1,000 1,000 0.0668% (0.0074%) 91% (0.1%)

(c1) Fixed IANS 750 1,333 0.0329% (0.0042%) 92% (0.1%)

(c2) Fixed IANS 500 2,000 0.1978% (0.0121%) 89% (0.1%)

(c3) Fixed IANS 250 4,000 38.1046% (0.1007%) 57% (0.0%)

(d) Uniform inner simulation 5, 000 200 1.7094% (0.0849%) 82% (0.2%)

Table 4.2: Results from 100 repetitions of fixed and dynamic IANS process, and standard
nested simulation, GMAB example, Standard errors in brackets.
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Figure 4.6: Box-and-whisker plot of results from 100 repetitions of fixed and dynamic IANS
process, and standard nested simulation, GMAB example.

In the GMAB case, the greater volatility in estimated losses for each scenario means
that a larger number of additional proxy tail scenarios are required to capture all 250 true
tail scenarios. GMABs involve very significant gamma risk (Hardy, 2003), particularly
at the renewal dates, when the delta of the option can decline sharply from positive to
negative. There is, therefore, significantly more hedging error from a delta hedge of a
GMAB than of the GMMB. For this set of scenarios, the number of proxy tail scenarios
required to capture all 250 true tail scenarios is m∗ = 787. The DIANS method in (a)
captures all these scenarios, with an average m of 826, but with only (on average) 1210
inner simulations allocated to the valuation for each step in each scenario; this number is
relatively small, leading to a small positive bias in the estimation. The DIANS method
based on Cantelli’s inequality for GMAB effectively becomes a fixed IANS experiment with
m = 1, 000 because in all 100 repetitions, the search procedure stops at m = mmax = 1, 000
because of the more conservative bound for rank of concomitant. The fixed IANS method
with m = 750 captures all but one of the true tail scenarios, and has a slightly higher inner
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simulation budget than the DIANS method, with the result that the RMSE is slightly
better than the DIANS method. Experiments (c2) and (c3) both have values of m that are
too small, missing a significant number of true tail scenarios, creating an estimate that is
biased low, with much larger RMSEs. The result for the uniform nested simulation method
is similar to the GMMB case.

In both GMMB and GMAB examples, we see that the DIANS method using Cantelli
inequality is less efficient than the DIANS method proposed in Algorithm 3. Under the
DIANS method using Cantelli inequality, the proxy tail scenario set identified is overly
conservative, which results in wastage of computation budget on too many non-tail sce-
narios.

4.3.5 VaR Estimation

In this section, we repeat the DIANS (experiment (a)) and standard nested simulation
(experiment (d)) in Section 4.3.4, but for a VaR99% estimation. The purpose of these
experiments is the demonstrate the gain in computation efficiency of applying the DIANS
procedure in a quantile risk measure estimation further into the tail region of the loss
distribution.

We apply the same experiment setting, and used the same sets of outer scenarios
for GMMB and GMAB, respectively, as in Section 4.3.4. The DIANS experiment was
conducted using Algorithm 3 with α = 99% and the VaR estimator in Equation (4.4).

The parameters and results of the experiments are summarized in Table 4.3. The results
are also illustrated in the box-and-whisker plots in Figure 4.7.

Experiment m N RMSE
GMMB

Dynamic IANS, m0 = 200 ≈ 324 ≈ 3, 083 0.0861% (0.0117%)

Uniform inner simulation 5, 000 200 0.4316% (0.0549%)

GMAB
Dynamic IANS, m0 = 200 ≈ 368 ≈ 2, 773 0.4390% (0.0507%)

Uniform inner simulation 5, 000 200 2.8224% (0.2387%)

Table 4.3: 99% VaR results from 100 repetitions of dynamic IANS process and standard
nested simulation. Standard error of the results indicated in bracket. All values are based
on a single outer scenario set.
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Figure 4.7: Box-and-whisker plot of 99% VaR results from 100 repetitions of dynamic IANS
process, and standard nested simulation, GMMB (left) and GMAB (right) example.

Given the same computation budget, the DIANS procedure achieves an RMSE 5-6
times smaller than using the standard nested simulation method. The improvement is less
significant than that observed in the CTE estimation. There are two main reasons for
this. The first is that in nested simulations, as the number of inner simulation increases,
the bias of the estimated CTE reduces faster than bias of the estimated VaR. See the
convergence results derived in Gordy and Juneja (2010). The second reason is that there
is more variance in the VaR estimate than the CTE estimate. CTE is estimated by taking
the average of all relevant tail scenario loss, which smooths out some variations in losses
of individual tail scenarios. In contrast, VaR is only a weighted average of losses in two
individual tail scenarios.
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4.3.6 Identifying a bad proxy

With all methods based on proxy modelling, there is a risk that, over time, the relationship
between the true loss and the proxy loss can deteriorate; the simplifications used in the
proxy model may drift too far from the real world experience, or the proxy model parame-
ters may need to be updated. An advantage of the DIANS approach is that the suitability
of the proxy model can be assessed directly using the DIANS output, without the need for
additional backtesting.

To illustrate, we repeat the GMMB experiment from Section 4.3.3, but with very dif-
ferent parameters for the fund returns, specified in Table 4.4. These parameters generate
prolonged periods of very poor mean returns and very high volatility.

(Monthly rate) Real World

Risk-free Rate: r 0.002
Mean - Regime 1 (ρ = 1): µ1 0.0085
Mean - Regime 2 (ρ = 2): µ2 -0.0500

Standard Deviation - Regime 1: σ1 0.035
Standard Deviation - Regime 2: σ2 0.200

Transition Probability - from Regime 1: p12 0.10
Transition Probability - from Regime 2: p21 0.20

Table 4.4: Parameters in Shocked Regime-Switching Model

The results are shown in Figure 4.8. As in Figure 4.4, each column represents a rep-
etition of the DIANS procedure under shocked parameters. The highest dot marks m∗,
the minimum number of proxy scenarios required to capture the true 5% tail scenarios,
and the triangle represents the cut-off identified by the DIANS algorithm, but without the
constraint in line 14 of Algorithm 3, that mk ≤ mmax. In fact, in all cases, the algorithm
would be stopped as mk exceeds the maximum of 1,000 scenarios. A small amount of
investigation in this case indicates that the constant lapse assumption used in the proxy is
not sufficiently accurate when the fund returns are consistently poor for long periods, as is
the case under the new parameters. A small change to the lapse assumption restores the
proxy model as an adequate signal for the tail scenarios.

Checking how close m̃ is to mmax is only one way that the DIANS procedure signals an
inadequate proxy. Other indicators include the following.

• The Spearman rank correlation can be calculated for the m̃ proxy losses and simulated
losses in the proxy tail scenario set. A strong proxy will have a rank correlation,
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Figure 4.8: Actual inverse rank of concomitant of true tail scenarios and and m̃ (thresh-
old generated by DIANS), in 20 repeated experiments in Section 4.3.6 (sensitivity test).
GMMB example.

greater than, say, 0.75. An adequate proxy will have a rank correlation of at least
around 0.6. Lower correlations indicate that the proxy needs to be updated.

• The plots of (UP
j , Ûj) (which are p−p plots for the proxy and simulated losses),

generated by successive iterations of mk, can give a visual signal of the proxy model
adequacy. If the proxy is working well, then the p−p plots will show strong clustering
around the y = x line through successive iterations. If there are a significant number
of outliers, that could indicate that the proxy is systematically missing some of the
true tail scenarios.

In Figure 4.9 we show examples of copulas generated by successful and unsuccessful
proxies. In each case, M = 5, 000 and m0 = 400. Figure 4.9a shows the same copula in the
GMMB experiment as in Figure 4.3a. As discussed in Section 4.3.2, the proxy is a good
indicator of the ranking of the losses. The Spearman correlation coefficient was ρs = 0.6
on the first iteration of the algorithm, and ρs = 0.8 on the third and final iteration, and
m̃ ended at 652 scenarios.

Figure 4.9b shows the copula from the GMAB experiment. As mentioned earlier, this
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is a less accurate proxy than the GMMB case. The Spearman correlation coefficient was
ρs = 0.4 on the first iteration of the algorithm, and ρs = 0.6 on the third and final iteration,
and m̃ ended at 823 scenarios.

In Figure 4.9c, the P-P plot indicates that the proxy is not a good indicator of the
ranking of the simulated losses. The Spearman correlation coefficient in this example was
ρs = 0.2 on the first iteration of the algorithm, and ρs = 0.3 on the fourth and final
iteration. The final m̃ was around 1,300 scenarios.

In Figure 4.9d, the copula indicates that the proxy is capturing some of the tail sce-
narios, but is also misclassifying some. This can happen, for example, for more complex
payouts with two triggers, and where the proxy only captures one trigger. The Spearman
correlation coefficient in this case was ρs = 0.55 on the first iteration, and ρs = 0.56 on the
seventh and final iteration. The final number of scenarios in T Pm̃ was just under 600, which
would not indicate that the proxy was inadequate. The only signals here of an inadequate
proxy are the Spearman’s rho and the P-P plot.
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(a) GMMB benchmark example (b) GMAB benchmark example

(c) Unsuccessful proxy 1 (d) Unsuccessful proxy 2

Figure 4.9: Examples of empirical copulas for Proxy Tail Scenario Sets
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4.4 Conclusion

The DIANS method provides a powerful tool for nested simulation in insurance liability
measurement, and has potential for application to a wider range of problems, including,
for example, assessing semi-static hedging strategies, estimating multi-period risk mea-
sures (Hardy and Wirch (2004), Devolder and Lebègue (2017)), and calculating Solvency
II regulatory capital requirements (Bauer et al., 2012). It is particularly useful for path
dependent problems, where the non-uniform allocation approaches of Gordy and Juneja
(2010) and Broadie et al. (2011) are not directly applicable. Compared with full proxy
model approaches, the DIANS offers more accurate calculation, and also signals an inad-
equate or ineffective proxy. The extra calculations involved in the process of finding the
appropriate size for the proxy tail scenario set is minor, compared with the computational
cost of additional simulations.

The identification and implementation of a suitable proxy model is a large part of
this methodology. For most VA guarantees with lump sum benefits (that is, excluding
GMWBs and GMIBs) the Black-Scholes option pricing framework provides the obvious
resource. Complex VA guarantees can be mapped to formulas or numerical approximations
developed for exotic options; for example, the GMMB with resets is very similar to a
‘put-on-the-max’, or high water mark option, for which a valuation formula was provided
in Goldman et al. (1979).

Where no tractable Black-Scholes valuation approach is available, the proxy model is
most likely to be generated intrinsically. This may involve a regular calibration exercise
to construct empirical valuation functions based on key scenario variables. The PDE
valuation method of Feng (2014) could be used to construct a proxy model, which can
then be combined with targeted inner simulations. In the next chapter, the proxy model
is replaced with a pilot simulation using common set of inner simulations, with the inner
simulation probabilities adjusted for each scenario using a likelihood ratio approach.
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Chapter 5

Nested Simulation using Likelihood
Ratio Methods

5.1 Introduction

In this chapter, we use the likelihood ratio method to improve the efficiency of nested
simulation. Inspired by the green simulation (Feng and Staum, 2017) design paradigm,
which reuses simulation outputs in repeated experiments, we reuse the inner sample paths
in nested simulation procedures across scenarios. To do this, we employ the so-called
mixture likelihood ratio (MLR) estimator that pools inner replications across all outer
scenarios to improve the accuracy for each scenario’s inner simulation output. The MLR
estimator is applicable to both single and multi period nested simulations.

As in the IANS and DIANS method, we propose a two-stage nested simulation proce-
dure for tail risk estimation. The first stage uses a fraction of the simulation budget to
identify some tail scenarios. Unlike the IANS and DIANS method, which uses an extrinsic
proxy model to identify tail scenarios, here we use an intrinsic proxy based on results from
the first stage pilot simulation. In the second stage, we concentrate the remaining simula-
tion budget on the tail scenarios identified in the first stage. We do not use the standard
Monte Carlo method in the second stage, as in the case of the IANS and DIANS method.
Instead, we apply the MLR estimator to simulation output in the second stage.

Recall from Section 1.1.1, the GMWB contract offers annuity-type of guaranteed ben-
efits where the benefit amount could potentially increase over time, depending on the
stock price path. In this case, the GMWBs are path-dependent contracts for which the
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modeling is materially different from the GMMBs and GMABs we study in the previous
chapters. The IANS and DIANS method we present in previous chapters do not work
well on path-dependent annuity-type contracts like the GMWBs, because there is no clear
effective proxy model for these contracts. In this chapter, we first adapt the MLR estima-
tors to accommodate path-dependency in complex VA contract such as the Guaranteed
Minimum Withdrawal Benefit (GMWB). Then we apply the adapted MLR estimator in
the two-stage simulation procedure for tail risk estimation.

Our proposed procedure only requires the asset model to be a Markov process. It can
be applied in other path-dependent contract such as the GLWBs, GMIBs, and financial
derivatives with path-dependent payoffs. Numerical studies show that the proposed pro-
cedure can produce much more accurate estimates of tail risk measures than a standard
nested simulation, given the same computation budget.

5.2 Nested Simulation for Tail Risk Measures Using

the Likelihood Ratio Method

5.2.1 Nested simulations using likelihood ratios

The green simulation design paradigm proposed by Feng and Staum (2017) reuses simula-
tion outputs in temporally repeated experiments so simulation outputs in past simulation
experiments can be used to improve the efficiency in future experiments. Here we describe
how green simulation estimators, particularly the likelihood ratio based estimators, can be
applied in the context of nested simulations.

We presented details of the standard Monte Carlo nested simulation in Section 2.3
and discussed the computation burden of the procedure. To improve the efficiency of the
standard Monte Carlo nested simulation, we propose applying likelihood ratio estimators
to reuse inner simulation outputs in all scenarios at each time t = 0, . . . , T − 1.

Recall the following definitions and notations from Section 2.3 for describing nested
simulations.

• M is the number of outer scenarios sample paths in the nested simulation.

• N is the number of inner simulation invoked at each time step along each of the M
outer scenarios.
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• X(i)
t , for t = 1, 2, . . . , T , i = 1, . . . ,M , is the sample value of Xt in the ith outer

scenario.

• X(i) = (X
(i)
0 , X

(i)
1 , X

(i)
2 , . . . , X

(i)
T ), i = 1, . . . ,M is the ith outer scenario.

• Y (i)
t,t′ , for t′ = t, . . . , T , is random variable Yt,t′ , conditional on X

(i)
t .

• Y
(i)
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(i)
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(i)
t,T
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is the entire paths of random vector Y
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′ = t, . . . , T .

• Y (i,j)
t,t′ , t = 1, 2, . . . , T , t′ = t, . . . , T , i = 1, . . . ,M , j = 1, . . . , N , is the sample value

at time t′ on the jth inner simulation sample path, conditional on X
(i)
t .
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(i,j)
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(i,j)
t,T

)
, t = 1, 2, . . . , T , i = 1, . . . ,M , j = 1, . . . , N , is the entire

j-th inner sample path, conditional on X
(i)
t .

• g(i)
t (Y

(i,j)
t ) is the probability density function of Y

(i,j)
t , conditional on X

(i)
t ), that

is, g
(i)
t (y) = g(y|X(i)

t ). In a Monte Carlo simulation, Y
(i,j)
t

i.i.d.∼ g
(i)
t (y), for all j =

1, . . . , N .

• µt(X(i)
t ) = E

[
f(Y

(i)
t |X

(i)
t )
]

is the pricing or valuation functional evaluated via inner

simulation at time t given X
(i)
t . In the VA hedging loss context, µt(X

(i)
t ) = ∆

(i)
t , the

delta of the hedging portfolio at time t in outer scenario i.

Assumption 5.2.1 makes sure that the likelihood ratio estimators in this thesis are
well-defined.

Assumption 5.2.1. The conditional probability density functions, g
(i)
t (y), are well-defined

and can be calculated for all t = 0, 1, . . . , T − 1 and all i = 1, . . . ,M . Moreover, for each
t = 0, 1, . . . , T − 1, the supports of g

(i)
t (y) are identical for all i = 1, . . . ,M .

Given Assumptions 5.2.1, we have the following identity

µt(X
(i)
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t )
]
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]
, (5.1)
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Equation (5.1) leads to the likelihood ratio (LR) estimator of µt(X
(i)
t ), using scenario X

(k)
t

inner simulations:

µ̂LR
t,k (X

(i)
t ) =

1

N

N∑
j=1

f
(
Y

(k,j)
t

) g(i)
t

(
Y

(k,j)
t

)
g

(k)
t

(
Y

(k,j)
t

) , Y
(k,j)
t

i.i.d.∼ g
(k)
t (y),∀j = 1, . . . , N. (5.2)

We refer to scenario X
(k)
t in this case as the sampling scenario and scenario X

(i)
t as the

target scenario.

The intuition behind the likelihood ratio estimators is appropriately reweighting the

inner simulation outputs in scenario X
(k)
t (scenario k), i.e., f

(
Y

(k,j)
t

)
, j = 1, . . . , N , to

estimate scenario i’s expected inner simulation output µt(X
(i)
t ) = E

[
f(Yt|X(i)

t )
]
.

We see from Equation (5.2) that the likelihood ratio method is mathematically identi-
cal to the importance sampling variance reduction method, but they differ in means and
goals. The main difference in means is the choice of the sampling distribution. Impor-
tance sampling seeks the best sampling distribution to reduce the estimation variance. In
contrast, the likelihood ratio method has no control over the sampling distribution but
reweight previously simulated outputs via likelihood ratios to form unbiased estimators for
a different target distribution. In the context of nested simulation, our goal is to reuse inner
simulation outputs across different outer scenarios to improve the estimation accuracy for
each scenario, whereas in importance sampling, the goal is to reduce estimation variance.

Figure 5.1 illustrates the reuse of simulation outputs. The solid lines represent simulated
sample paths. Scenario X

(i)
t represents the target scenario whereas scenario X

(k)
t and X

(M)
t

represent two different sampling scenarios. The dashed lines represent the inner sample
outputs being reused from the sampling scenarios to the target scenario. As shown in
Figure 5.1, reusing simulation outputs in different sampling scenarios effectively increases
the number of inner sample paths applied to the target scenario.
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Figure 5.1: Likelihood Ratio Estimator

Computationally, reusing the output f
(
Y

(k,j)
t

)
for different target scenarios requires

the likelihood ratio
g
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)
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) . If the calculation of the likelihood ratio
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)
g
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t

(
Y

(k,j)
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)
is faster than simulating a new inner path Y

(i)
t and calculating its output f

(
Y

(i)
t

)
, then

reusing the simulation output via the likelihood ratio estimator is more efficient than
increasing the number of inner simulations for each scenario.

The likelihood ratio
g

(i)
t

(
Y

(k,j)
t

)
g

(k)
t

(
Y

(k,j)
t

) requires calculating the joint pdf for the whole inner

sample path, Y
(k,j)
t , conditioning on the outer scenario X

(i)
t or X

(k)
t . But this calculation

simplifies to
g

(i)
t

(
Y

(k,j)
t,t+1

)
g

(k)
t

(
Y

(k,j)
t,t+1

) when the state process is Markov. This simplification further

reduces the computations needed in our reusing of simulation outputs.

Proposition 5.2.2. If Assumption 5.2.1 holds, and the concatenated stochastic process
(Xt, Yt,t+1, . . . , Yt,T ) is Markov, then the likelihood ratio estimator in (5.2) can be written
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as

µ̂LR
t,k (X

(i)
t ) =

1

N

N∑
j=1

f
(
Y

(k,j)
t

) g(i)
t

(
Y

(k,j)
t,t+1

)
g

(k)
t

(
Y

(k,j)
t,t+1

) , Y
(k,j)
t

i.i.d.∼ g
(k)
t (y),∀j = 1, . . . , N. (5.3)

Proof. By the Markov property of (Xt, Yt,t+1, . . . , Yt,T ) , the likelihood ratio in (5.3) can
be simplified as

g
(i)
t

(
Y

(k,j)
t

)
g

(k)
t

(
Y

(k,j)
t

) =
g
(
Y

(k,j)
t,t+1 , . . . , Y

(k,j)
t,T

∣∣X(i)
t

)
g
(
Y

(k,j)
t,t+1 , . . . , Y

(k,j)
t,T

∣∣X(k)
t

) =
g
(
Y

(k,j)
t,t+2 , . . . , Y

(k,j)
t,T

∣∣Y (k,j)
t,t+1

)
· g
(
Y

(k,j)
t,t+1

∣∣X(i)
t

)
g
(
Y

(k,j)
t,t+2 , . . . , Y

(k,j)
t,T

∣∣Y (k,j)
t,t+1

)
· g
(
Y

(k,j)
t,t+1

∣∣X(k)
t

)
=
g

(i)
t

(
Y

(k,j)
t,t+1

)
g

(k)
t

(
Y

(k,j)
t,t+1

) ,
as desired.

Proposition 5.2.2 shows that, even though the entire inner simulation path Y
(k,j)
t is

simulated and fed through the inner simulation model f (Yt), we only need to calculate
the likelihood ratio for the one-step transition densities from time t to t + 1. This means
that the likelihood ratio calculation can be very efficient even for embedded options with
complex path-dependent payoff structures.

We propose to reuse the simulation outputs from every sampling scenario k = 1, . . . ,M ,
for each target scenario i = 1, . . . ,M . That is, each scenario serves as a sampling scenario
for all other scenarios and every scenario reuses samples from all other scenarios. This
way, every simulation output is calculated only once but is reused M times, once for each
target scenario.

One way to reuse the outputs from all scenarios is to equally weight all these likelihood

ratio estimators, i.e., µ̂ILR
t (X

(i)
t ) =

1

M

M∑
k=1

µ̂LR
t,k (X

(i)
t ). This is the individual likelihood ratio

(ILR) estimator in Feng and Staum (2017). The main drawback of using the ILR estimator
is its potentially large or even infinite variance when one or more sampling scenarios are
significantly different from the target scenario (Feng and Staum, 2017). We will illustrate
an example where the ILR esimator results in large estimation variance in Section 5.2.2.
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5.2.2 Nested simulations using mixture likelihood ratio

A remedy proposed by Feng and Staum (2017) is the mixture likelihood ratio (MLR) esti-
mator, which is given by

µ̂MLR
t (X

(i)
t ) =

1

MN

M∑
k=1

N∑
j=1

f
(
Y

(k,j)
t

) g(i)
t

(
Y

(k,j)
t

)
ḡM

(
Y

(k,j)
t

) , (5.4)

where the mixture density function for the inner paths is defined as

ḡM

(
Y

(k,j)
t

)
=

1

M

M∑
i=1

g
(i)
t

(
Y

(k,j)
t

)
.

In this chapter, we assume the outer scenarios X(i), i = 1, . . . ,M are given, so for notational
convenience they are omitted from the mixture density function.

Proposition 5.2.3. If Assumption 5.2.1 holds, and the concatenated stochastic process
(Xt, Yt,t+1, . . . , Yt,T ) is Markov, then the likelihood ratio estimator in (5.4) can be written
as

µ̂MLR
t (X

(i)
t ) =

1

MN

M∑
k=1

N∑
j=1

f
(
Y

(k,j)
t

) g(i)
t

(
Y

(k,j)
t,t+1

)
ḡM

(
Y

(k,j)
t,t+1

) ,
where ḡM (y) =

1

M

M∑
i=1

g
(i)
t (y), and Y

(k,j)
t

i.i.d.∼ g
(k)
t (y) for all j = 1, . . . , N , for every k =

1, . . . ,M .

Proof. The proof is almost identical to the proof for Proposition 5.2.2, by applying the
Markov property to all conditional densities (including those in the mixture density) in
the likelihood ratio calculation.

The intuition behind the MLR estimator (5.4) is similar to that for the likelihood ratio
estimator (5.2), where we reweight the simulation outputs by the appropriate likelihood
ratios, but they differ in the interpretations of the sampling distributions for inner sample
paths. The likelihood ratio estimator (5.2), and the ILR estimator, view the inner sample

paths
{
Y

(k,j)
t , j = 1, . . . , N

}
, for k = 1, 2, . . . ,M separately, as M different samples, with

conditional distributions g
(k)
t (y) for sampling scenario k. The MLR estimator, in contrast,
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views all the inner sample paths
{
Y

(k,j)
t , k = 1, . . . ,M, j = 1, . . . , N

}
, collectively, as one

(stratified) sample from the mixture distribution ḡM(y).

The MLR produces more stable estimates than the ILR because the mixture likelihood
ratio is always bounded when reusing samples from finite number of sampling distributions
while the individual likelihood ratio can be unbounded. Consider a GMMB. Under the
Black-Scholes model with r = 2% and σ = 30%, the inner simulation (risk-neutral) condi-
tional distribution g(St,t+1|St) is a lognormal distribution with mean ln(St) + r − σ2

2
and

standard deviation σ. Suppose we have two outer scenarios at time t = 1, S
(1)
1 = 651 and

S
(2)
1 = 1525, and an inner simulation sample path S

(2,1)
1 = (S

(2)
1 , S

(2,1)
1,2 ) = (1525, 592) which

originates from scenario k = 2 at time t = 1. Suppose we reuse the inner sample path
S

(2,1)
1 to estimate delta for target scenario i = 1 at time 1, that is, ∆

(1)
1 . In the sampling

scenario k = 2, transitioning from S
(2)
1 = 1525 to S

(2,1)
1,2 = 592 is unlikely but plausible in

an inner simulation model. In this case, the individual likelihood ratio (ILR) is

g(S
(2,1)
1,2 = 592|S(1)

1 = 651)

g(S
(2,1)
1,2 = 592|S(2)

1 = 1525)
=

1.2941

0.0119
= 109.

These extremely high likelihood ratios occur when the two outer scenarios are significantly
different (S

(1)
1 = 651 and S

(2)
1 = 1525 in this example), and they may distort the ILR

estimate. We can avoid this problem by using the MLR estimator; the mixture likelihood
ratio (MLR) for reusing the above sample path is

g(S
(2,1)
1,2 = 592|S(1)

1 = 651)

1
2

[
g(S

(2,1)
1,2 = 592|S(1)

1 = 651) + g(S
(2,1)
1,2 = 592|S(2)

1 = 1525)
] = 1.98,

which is a much more reasonable value. The MLR estimator has been shown to have
superior accuracy, compared to the ILR estimator. See Hesterberg (1988); Veach and
Guibas (1995), and Feng and Staum (2017), for examples.

We use the MLR estimator to improve simulation efficiency in our two-stage procedure,
which is described in Section 5.3.

Applying the MLR estimator in a nested simulation involves a small scale, standard
nested simulation at first, to generate the inner simulation sample paths, and then applying
the MLR estimator to estimate each µt(X

(i)
t ). Suppose the number of calculations required

to calculate one likelihood ratio adjusted inner sample is CLR. Then the total simulation
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budget required for a nested simulation using the MLR estimator is

ΓMLR =
M ×NMLR × T × (T + 1)

2
× Cinner︸ ︷︷ ︸

sample paths generation

+M2 ×NMLR × T × CLR︸ ︷︷ ︸
likelihood calculation

(5.5)

Here M is typically large compared to T . Therefore, the likelihood calculation portion
dominates the overall computation cost of nested simulation using the MLR estimator.
In fact, Equation (5.5) suggests that ΓMLR = O(M2), which means that the computation
cost of nested simulations using the MLR estimator can be significant if M is large. This
is a disadvantage in using the MLR estimator, and provides motivation for the two-stage
nested simulation design, which is discussed in detail in Section 5.3.

Compared to the computation cost for a standard nested simulation, the nested sim-
ulation using the MLR estimator can achieve significant savings in computation when T
is relatively large and NMLR is relatively small. More specifically, assuming CLR

Cinner
= O(1)

and NMLR � NSMC, then
ΓMLR

ΓSMC

∝ M ×NMLR

NSMC × T
(5.6)

The impact on the computational efficiency through using the MLR estimator, com-
pared to a standard nested simulation, is illustrated in the numerical experiments in Sec-
tion 5.5.

5.3 Two-stage Nested Simulation for Tail Risk Mea-

sures Using Mixture Likelihood Ratio Estimator

The motivation behind the two-stage simulation design is as follows. First of all, similar to
the rationale behind the IANS and DIANS procedure, we want to focus the computation
budget on tail scenarios that are relevant to tail risk measure estimation. Secondly, since
the computation required in the MLR estimation grows quadratically with the number of
outer scenarios being considered, it is more efficient to consider all M outer scenarios in
the first stage to get a reasonable estimate of the ranking of each scenario’s loss, for which
fewer inner simulations are required, and then to consider only the outer scenarios that are
highly likely to be included in the CTE estimation in the second stage, when we estimate
the value of losses in these highly likely tail scenarios more accurately.

We assume that the set of outer scenarios X(i), i = 1, . . . ,M , and the simulation budget
Γ, are given.
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The procedure can be broken down into the following steps.

1. Classification of tail scenarios. In this stage, we use a fraction of the simulation
budget to identify a set of tail scenarios that is highly likely to include the true tail
scenarios set T(1−α)M . The number of inner simulations N1 is a design parameter
selected by the user.

(1.A) For each outer scenario X(i), i = 1, . . . ,M , simulate N1 inner sample paths at
each time t = 0, 1, . . . , T − 1.

(1.B) Use the MLR estimator µ̂MLR
t (X

(i)
t ) to estimate µt(X

(i)
t ), for all t = 0, 1, . . . , T − 1.

Note that the inner sample size for each scenario is N1 and the MLR estimator
reuses inner sample paths in all M outer scenarios.

(1.C) Use the estimates µ̂MLR
t (X

(i)
t ), t = 0, 1, . . . , T − 1 in Step (1.B) to estimate the

loss Li in scenario X(i). In the VA dynamic hedging context, µ̂MLR
t (X

(i)
t ) =

∆̂
(i)MLR
t .

L̂MLR
i =

T−1∑
t=0

∆̂
(i)MLR
t

(
DtS

(i)
t −Dt+1S

(i)
t+1

)
+ V

(i)
0 , i = 1, . . . ,M.

(1.D) Sort the estimated losses L̂MLR
(1)HL ≤ L̂MLR

(2)HL ≤ · · · ≤ L̂MLR
(M)HL then identify the set of

highly likely (HL) tail scenarios T̂ HL
M∗ = {X(i) : L̂MLR

i > L̂MLR
(M−M∗)HL}, where the

number tail size M∗ ≥ (1− α)M is a design parameter selected by the user.

2. Estimation of tail losses. In this stage, we concentrate the remaining simulation
budget to the highly likely tail scenarios to improve the estimation of these tail losses.
We solve for NMLR using Equation (5.5), given the remaining computation budget
and with M = M∗. Then let N2 = NMLR be the (rounded) average inner sample
paths for the highly likely tail scenarios.

(2.A) Similar to Step (1.A), but only run inner simulations for the highly likely tail

scenarios, i.e., X(i) for i ∈ T̂ HL
M∗ .

(2.B) Similar to Step (1.B), but use the MLR estimator µ̂MLR
t (X

(i)
t ) to estimate

µt(X
(i)
t ) for X(i) ∈ T̂ HL

M∗ ; also, only reuse the inner sample paths in these sce-

narios. The inner sample size for each scenario in T̂ HL
M∗ is N1 + N2, as we also

reuse the inner sample paths simulated in Stage 1.

(2.C) Similar to Step (1.C), but estimate the losses L̂
(MLR2)
i for all X(i) ∈ T̂ HL

M∗ using

µt(X
(i)
t ) estimated in Step (2.B).
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(2.D) Sort the estimated losses L̂MLR2
(1)MLR ≤ L̂MLR2

(2)MLR ≤ · · · ≤ L̂MLR2
(M∗)MLR for the highly

likely tail scenarios. Then estimate the α-CTE by

ĈTE
MLR

α =
1

(1− α)M

M∑
i=αM+1

L̂MLR2
(i)MLR =

1

(1− α)M

∑
i∈T̂ MLR

(1−α)M

L̂MLR2
i , (5.7)

where the set of MLR tail scenarios is

T̂ MLR
(1−α)M = {X(i) ∈ T̂ HL

M∗ : L̂MLR2
i > L̂MLR2

(M∗−(1−α)M)MLR}.

In other words, T̂ MLR
(1−α)M are the (1−α)M scenarios, among the M∗ highly likely

tail scenarios, with the largest estimated losses.

We see that Steps (2.A)–(2.C) are similar to Steps (1.A)–(1.C), but the simulation and
estimation focus only on the highly likely tail scenarios. Also, the CTEα estimator (5.7)
averages the largest (1− α)M losses among those in the highly likely tail scenarios.

We find that a judicious choice of the design parameters N1 and M∗ can be valuable.
Here we provide some guidelines based on our experience:

• The number of inner simulations per scenario in Stage 1, N1, should be very small,
for example, 1 or 2. In Stage 1, the goal is to identify the highly likely tail scenarios.
So we can afford coarse estimates for the values of the scenario losses, as long as their
relative rankings are similar to the rankings of the true losses. The MLR estimator
reuses the inner sample paths from all M scenarios, thus every µMLR

t (Xt) is estimated
using MN1 inner sample paths; so a small N1 suffices for our purpose in Stage 1.
Moreover, the smaller N1 is, the larger the remaining simulation budget is for more
accurate estimation in Stage 2.

• The number of tail scenarios, M∗, can be the desired number of true tail scenarios,
i.e., (1 − α)M , plus a small safety margin, e.g., 5% of the outer scenarios. Due
to simulation noise, the rankings of the MLR estimates of losses may be different
from the rankings of the true losses. So, we should select M∗ ≥ (1 − α)M to,

with high confidence, include the (1 − α)M true tail scenarios in T̂ HL
M∗ . However,

if M∗ is too large, the remaining simulation budget will be less concentrated in
Stage 2. The appropriate safety margin varies for different applications. In our
experiments, we test a few safety margins and find that M∗ = (1− α)M + 5%M to
M∗ = (1− α)M + 10%M strikes a good balance for including the true tail scenarios
in Stage 1 and concentrating the simulation budget in Stage 2.
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We choose to use an arbitrary selection of safety margin in the two-stage nested simulation
using MLR estimator in this chapter. This is the drawback of the IANS method that
we addressed in the DIANS method. However, the DIANS method is not helpful in this
case because by applying the MLR estimator in each iteration of the search for proxy tail
scenarios in the DIANS method, we need to re-calculate the likelihood ratio in every
sampling scenario for each target scenario in the proxy tail scenario set, even if only
a handful of scenarios are added to the proxy tail scenario set in the iteration. The
computation required to re-calculate the likelihood ratio can be significant. Thus, we
choose not to apply the DIANS method in the two-stage nested simulation using MLR
estimator.

We see that both design parameters N1 and M∗ affects the classification of tail scenarios
and estimation of tail losses. The optimal selection of these parameters will be considered
in future studies.

5.4 Nested Simulation for Tail Risk Measures of Guar-

anteed Minimum Withdrawal Benefit (GMWB)

In this section we apply the two-stage nested simulation procedure using MLR estimators
to estimate the tail risk of the hedging loss for Guaranteed Minimum Withdrawal Ben-
efit (GMWB). We see that, even though the financial modeling of the embedded option
(Section 5.4.1) is much more complicated than the GMMBs or GMABs, little adjustment
(Section 5.4.2) is needed to apply our procedure.

5.4.1 Financial Modeling and Dynamic Hedging for GMWB

In Section 2.1, we briefly discussed the mechanism of various VA guarantees including the
GMWB. In this section, we will describe in more detail the VA GMWB contract with
ratchet feature that we focus on in this chapter. We will then illustrate how the liability
of this contract, including the gain and loss from a dynamic delta hedging portfolio, is
modeled.

Consider a single premium GMWB contract with a term to maturity of T = 240
months. We assume the sub-account value is denoted by Ft at time t, and the sub-account
invests a stock index with price St at time t. Let ηg be the gross rate at which management
fee is deducted from the sub-account each month. Let ηn < ηg be the net rate at which
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management fee income is received by the insurer each month. For simplicity, we assume
that the withdrawal benefit starts immediately after the contract commences. Let Gt be
the guarantee value at time t. The contract offers a guaranteed monthly withdrawal benefit
in the amount of It = γGt for some fixed percentage γ.

At the inception of the contract, i.e., t = 0, we assume that the whole premium is
invested in the stock index and the guarantee base is set to the sub-account value, so
mathematically,

F0 = S0 = G0.

Also, set I0 = 0 as the first withdrawal starts at time 1. For clarity, we use Ft and Ft+ to
denote the sub-account value just before and just after the withdrawal at time t.

At each time t = 1, . . . , T , the follow events take place in order:

1. The (remaining) sub-account value changes according to the growth of the underlying
stock and the management fee is deducted, that is,

Ft = (Ft−1 − It−1)+ · St
St−1

(1− ηg) = (Ft−1+)+ · St
St−1

(1− ηg), (5.8)

Thus the insurer’s income at time t is Ftη
n.

2. The guarantee value ratchets up if the sub-account value exceeds the previous guar-
antee value, i.e.,

Gt = max{Gt−1, Ft}. (5.9)

3. The withdrawal is made and is deducted from the sub-account value, i.e.,

Ft+ = Ft − It, where It = γGt. (5.10)

We see from the above modeling that the status of a GMWB at any time t can be
summarized by the triplet Xt = (St, Ft, Gt), so we treat this triplet as the state variable
for modeling. The evolution of the triplet is driven by the stochasticity of the stock price
process St. This means the likelihood ratio calculations are minimally impacted by the
more complicated payoff structure.

For clarity of exposition, we do not consider mortality, lapse, or excess withdrawal.
We assume all these factors are deterministic given the stock price sample paths; this is
an assumption consistent with current industry modeling practice. Our procedure easily
applies to simulation models that incorporate these factors, by adding them to the state
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variable. Interested readers are encouraged to refer to, e.g. Fung et al. (2014); Piscopo
and Haberman (2011); Bauer et al. (2017); Bernard et al. (2014b); Moenig and Zhu (2018);
Knoller et al. (2016) for the impacts of these factors to the risk profile of VAs.

The insurer’s liability in a GMWB contract is the present value of all the withdrawal
benefits paid after the depletion of the sub-account Ft, offset by the present value of all
the net management fees Ftη

n collected as income. See Section 2.1. Mathematically, the
PV of the unhedged liability of the GMWB contract at time t is

Vt =
T∑

s=t+1

e−r(s−t)
[
(Is − Fs)+ − Fsηn

]
.

Given the evolution of Xt = (St, Ft, Gt), shown in Equation (5.8)-(5.10), we see that
the GMWB liability is path-dependent. That is, the value depends on the entire path
{Xt, Xt+1, . . . , XT}.

Consider a dynamic delta hedging program for this GMWB contract. The insurer con-
structs and maintains (by periodic rebalancing) a hedge portfolio at times t = 0, . . . , T − 1
to offset the delta of the GMWB’s future liabilities. Similar to delta hedging the GMMB
and GMAB examples in previous chapters, the time t hedge portfolio consists of ∆t units
of underlying stock St, where ∆t is the sensitivity of the GMWB’s future liability beyond
time t with respect to the time t stock price St.

Following Cathcart et al. (2015), given an outer scenario at time t, Xt = (St, Ft, Gt), the
pathwise estimator of ∆t of the GMWB liability is estimated from a single inner simulation
path as

f (St,Ft,Gt) =
T∑

s=t+1

e−r(s−t)
[
1 {It,s > Ft,s} ·

(
dIt,s
dSt
− dFt,s

dSt

)
− dFt,s

dSt
ηn
]

(5.11)

where St = {St,t+1, . . . , St,T}, Ft = {Ft,t+1, . . . , Ft,T} and Gt = {Gt,t+1, . . . , Gt,T} are the
inner simulation sample paths for stock price, sub-account value, and guarantee value,
respectively. Using Equations (5.8)–(5.10), at each time step s = t+1, . . . , T (in the inner

sample paths), the sensitivities
dFs
dSt

,
dGs

dSt
and

dIs
dSt

are calculated recursively as

dFt,s
dSt

= 1{It,s−1 < Ft,s−1}
(
dFt,s−1

dSt
− dIs−1

dSt

)
· St,s
St,s−1

· (1− ηg), (5.12)

dGt,s

dSt
= 1{Gt,s−1 < Fs}

dFt,s
dSt

+ 1{Gt,s−1 ≥ Ft,s}
dGt,s−1

dSt
, (5.13)

dIt,s
dSt

= γ
dGt,s

dSt
. (5.14)
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The initial condition of these recursions are determined as follows.

• Each inner simulation sample path at time t is initialized by setting

(St,t, Ft,t, Gt,t) = (St, Ft, Gt).

• Before any withdrawal at time t, Ft is proportional to St. Hence
dFt,t
dSt

=
dFt
dSt

=
Ft
St

.

• Before any withdrawal at time t, Gt and It are constant. Hence
dGt,t

dSt
=
dGt

dSt
= 0 and

dIt,t
dSt

= γ
dGt,t

dSt
= 0.

To summarize, the initial conditions of the above recursion are

dFt,t
dSt

=
Ft
St
,
dGt,t

dSt
= 0, and

dIt,t
dSt

= 0.

Interestingly, we observe that calculations are unnecessary when Ft ≤ γGt = It. When
Ft ≤ It, the sub-account is depleted at or before time t, so the GMWB’s future liabilities
beyond time t no longer depend on the stock; and thus no hedge is needed. In such cases,
we can skip the recursive calculations and simply set ∆t = 0 without any simulation (or
set all the corresponding inner simulation outputs f (St,Ft,Gt) = 0 for reusing purpose).

In summary, for each outer scenario
(
S

(i)
t , F

(i)
t , G

(i)
t

)
, the time t pathwise delta estimator

for GMWB in a standard nested simulation is given by

∆̂
(i)NS
t =


0, if F

(i)
t ≤ γG

(i)
t ,

1

N

N∑
j=1

f
(
S

(i,j)
t ,F

(i,j)
t ,G

(i,j)
t

)
, if F

(i)
t > γG

(i)
t ,

(5.15)

where S
(i,j)
t

i.i.d.∼ g
(i)
t (st) all all j = 1, . . . , N .

Using the this delta estimator for GMWB, a standard multi-period nested simulation
procedure for the tail risk estimation for the hedging loss for this GMWB contract is
analogous to that for the GMMBs and GMABs, but with the extended state variable and
the new liability structure. Specifically, for each of the given scenarios X(i), i = 1, . . . ,M ,
the GMWB’s hedging loss is

L̂NS
i =

T−1∑
t=0

∆̂
(i)NS
t [e−rtS

(i)
t − e−r(t+1)S

(i)
t+1] +

T∑
t=1

e−rt
[
(I

(i)
t − F

(i)
t )+ − F (i)

t ηn
]
. (5.16)
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These estimated losses are sorted and the CTEα is estimated by averaging the largest
(1− α)M estimated loses.

5.4.2 Adapting the Likelihood Ratio Method to the GMWB Loss

Due to some special features of the GMWB’s liability, a few subtle yet important adapta-
tions to the likelihood ratio method are needed before it can be applied to estimating the
tail risk of the hedging loss.

Recall from Figure 5.1 that, when reusing inner simulation outputs from sampling
scenarios k to a target scenario i, we effectively concatenate the inner sample paths from
time t to T in scenarios k, Y

(k,j)
t , to the outer scenario i, X

(i)
t . In the modeling of GMWB

(Section 5.4.1) we established the state variable Xt = (Ft, Gt, St). Therefore, concatenating
the jth inner sample path from sampling scenario k to target scenario i we get(

S
(i)
t , F

(i)
t , G

(i)
t

)
︸ ︷︷ ︸

X
(i)
t

,
(
S

(k,j)
t,t+1, F

(k,j)
t,t+1, G

(k,j)
t,t+1

)
, . . . ,

(
S

(k,j)
t,T , F

(k,j)
t,T , G

(k,j)
t,T

)
︸ ︷︷ ︸

Y
(k,j)
t

.

The problem is that some concatenated paths are invalid, as they are impossible in
the context of the GMWB. According to Equation (5.9), the guarantee value Gt is the
running maximum of the sub-account value Ft. A concatenated sample path can violate
this condition in two ways:

(I) G
(i)
t > G

(k,j)
t,t+1: Since Gt is the running maximum of all sub-account values, it should

never decrease, therefore any concatenated sample path with G
(i)
t > G

(k,j)
t,t+1 is invalid.

(II) G
(i)
t < G

(k,j)
t,t+1 but G

(k,j)
t,t+1 6= F

(k,j)
t,t+1: Since in the concatenated sample path, G
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)
, G

(i)
t < G

(k,j)
t,t+1 requires that G

(k,j)
t,t+1 = F

(k,j)
t,t+1.

We do not want to remove all the invalid concatenated paths, as this wastes simulation
outputs. Instead, when reusing inner sample paths from sampling scenario k to target
scenario i, we adjust the inner sample paths as

(
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 (5.17)
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With this adjustment, in the concatenated sample path, G̃
(k,j)
t,t+1 = G

(k,j)
t,t+1 ×

G
(i)
t

G
(k)
t

≥ G
(i)
t

always holds because G
(k,j)
t,t+1 ≥ G

(k)
t by definition of Gt. We re-examine the two cases of

violation in the adjusted concatenated sample paths.

(I) G
(i)
t > G̃

(k,j)
t,t+1: This case no longer occurs in the adjusted concatenated sample paths.

(II) G
(i)
t < G̃
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t,t+1 but G̃
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still holds so the contradiction no longer exists.

The adjustment made to the stock price path S
(k,j)
t+1 is to align with the adjustments to

F
(k,j)
t+1 and G

(k,j)
t+1 described above. More specifically, by Equation (5.8) and 5.17, we have
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Then we can deduct that

S̃
(k,j)
t,t+1 = S

(k,j)
t,t+1 ·

G
(i)
t

G
(k)
t

· S
(i)
t

S
(k)
t

· (F
(k)
t − I

(k)
t )+

(F
(i)
t − I

(i)
t )+

(5.18)

For subsequent stock price S̃
(k,j)
t,s where s ≥ t + 2, we assume the log-return of S̃

(k,j)
t,s is

identical to that of S
(k,j)
t,s .

We need to consider the effects of this adjustment on the likelihood ratio calculation
and on the estimated deltas. As alluded to in Section 5.4.1, the stochasticity of GMWB
state variable is driven by the underlying stock St, so the likelihood ratio calculation is
based on the conditional densities of inner sample paths St, given the outer scenarios.
Moreover, both the conditional density function and the mixture density function remain
unchanged under the adjustment. The arguments for the likelihood calculations change
from the unadjusted inner path S

(k,j)
t to the adjusted inner path S̃

(k,j)
t . Mathematically,

the adjusted likelihood ratio is then given by
g

(i)
t
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)
ḡM
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) . For the delta calculations,

note that the proposed adjustment implies
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for all
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j = 1, . . . , N and all s = t+1, . . . , T . Therefore, for all j = 1, . . . , N and all s = t+1, . . . , T ,
using the chain rule, we have
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Using the chain rule, we also have, for all j = 1, . . . , N and all s = t + 1, . . . , T ,
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Consequently, the adjusted simulation output for scenario k and target scenario i is
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, ∀j = 1, . . . , N,
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or equivalently in the context of modeling a delta-hedged VA contract,
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, ∀j = 1, . . . , N.

Based on the above discussions, the adjusted MLR estimator for the time t delta in
scenario i is given by
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Computationally, we only need to compute the unadjusted outputs ∆̂
(k,j)
t once, then reuse

themM times in different target scenarios; the adjustment ·F
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adds minimal computations. Lastly, the adjustment does not affect the Markov property
of the state process, so the likelihood ratio calculation can be further simplified for Markov
asset models; see Proposition 5.4.1.

Proposition 5.4.1. If Assumption 5.2.1 holds, and the concatenated stochastic process
(Xt, Yt,t+1, . . . , Yt,T ) is Markov, then the likelihood ratio estimator in (5.20) can be written
as
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104



Proof. The proof is identical to the proof for Proposition 5.2.3.

In Appendix A, we use a simplified and hypothetical GMWB example to demonstrate
step-by-step the calculations required in Stage 1 inner simulation of the Section 5.3 algo-
rithm using the MLR estimator in Equation (5.21), as well as all the necessary adjustments
outlined in Section 5.4.2.

In Section 5.5, we conduct numerical studies to examine the performance of this two-
stage procedure, with adjustments, for the tail risk evaluation of a GMWB.

5.5 Numerical Experiments

We use a standard, multi-period nested simulation and our two-stage procedure to estimate
the CTE95% of the hedging losses for a delta-hedged GMWB contract. We set up the
experiments so that these two procedures use similar runtimes to compare the accuracy of
the results.

The GMWB allows the policyholder to make monthly withdrawals of γ = 0.375% of the
guarantee value Gt, which is reset (ratcheted) monthly to the higher of the previous month’s
guarantee value and the current month’s sub-account value prior to the withdrawal. The
initial sub-account value is F0 =1,000, which is also the initial guarantee value G0 =1,000.
The GMWB contract has a 20-year maturity and is hedged monthly, so T = 240. A
management fee of ηg = 0.2% is deducted monthly from the sub-account value and half of
it is treated as income for the contract guarantees, i.e., ηn = 0.1%.

Similar to the numerical experiments in previous chapters, we assume that the underly-
ing stock follows a regime-switching lognormal (RSLN) asset model with two regimes and
parameters as specified in Table 3.2 in Section 3.3.

We first simulated M = 10, 000 scenarios S(i), i = 1, . . . ,M for the underlying stock,
and use these scenarios to compute the scenario paths for the sub-account F (i) and the
guarantee value G(i). All experiments in this section will use these scenarios.

As the hedging loss for the GMWB contract under the RSLN model cannot be calcu-
lated analytically, we first run a large scale standard nested simulation with N = 10, 000
inner simulations in each scenario to obtain accurate estimates for the hedging loss. These
accurate estimates are used as benchmarks to assess the accuracies for different simula-
tion procedures. We are interested in estimating the CTE95% of these benchmark losses,
which is the average of the largest 500 benchmark losses corresponding to the “true tail
scenarios”.
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We first provide a holistic view of the performance of the two-stage procedure. Consider
a two-stage procedure with N1 = 2 inner sample paths per scenario in Stage 1, and M∗ =
1, 500 highly likely tail scenarios (that is, 10%M safety margin). Under this design, in
Stage 1, although only N1 = 2 inner sample paths are generated in each of the M =
10, 000 outer scenarios, all N1 ·M = 20, 000 inner sample paths are reused, through the
likelihood ratio method, in estimating every outer scenario’s loss. Similarly, in Stage 2,
(N1 +N2) ·M∗ = 1, 500(N2 +N1) inner sample paths are reused for each outer scenario.

A common diagnostic for the likelihood ratio estimator is the so-called effective sample
size, which is the number of i.i.d. samples that would have achieved the same level of
accuracy, measured by variance or mean squared error, as the likelihood ratio estimator of
interest. Interested readers can refer to Owen (2013), Liu (1996) and Kong (1992).

In Kong (1992) and Liu (1996), under some technical assumptions, it can be shown

that the effective sample size, Ñ , of a likelihood ratio estimator can be estimated by

Ñ
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t =

(∑M
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)2
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)
ḡM

(
S̃

(k,j)
t

) is the likelihood ratio in the MLR estimator context. We will

use this to estimate the effective sample size of the MLR estimator in our numerical studies.

Figure 5.2a depicts the estimated losses in Stage 1 versus the benchmark losses. We
see that, with only 2 inner simulations per scenario, the MLR estimates of the losses are
close to the benchmark losses, as the points in Figure 5.2a are near the 45-degree line.
Moreover, 497 of the 500 true tail scenarios are included in the M∗ = 1, 500 highly likely
tail scenarios.

In Stage 2, each of the 1,500 highly likely tail scenarios are assigned an additional
N2 = 80 inner simulations. Figure 5.2b shows the estimated losses in Stage 2 versus the
benchmark losses. We see that, with the concentrated simulation budget, the Stage 2
simulation significantly improves the accuracy of the loss estimates in the highly likely tail
scenarios, which will in turn improve the accuracy of the CTE estimate.

The subfigure in Figure 5.2b zooms into the border between tail and non-tail scenarios:
the scenarios that are included in the CTE estimate in our two-stage procedure are labeled
by squares. In this illustration, the CTE estimate included 481 of the 500 true tail scenarios.
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(a) Simulated losses by Stage 1 simulation (x axis) and by the benchmark simulation (y axis).

(b) Simulated losses by Stage 2 simulation (x axis) and by the benchmark simulation (y axis).

Figure 5.2: Illustration of the proposed two-stage simulation procedure.
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Among the 19 tail scenarios that were not included in the CTE estimate, 3 were missed in
Stage 1, and 16 were missed in Stage 2.

Next we examine the performance of the two-stage procedure in more details. We
repeat the following four experiments 100 times:

Experiment (a): The proposed two-stage procedure with

(a1) N1 = 2, M∗ = 1, 500, and N2 = 80 (the same configuration as in Figures 5.2a
and 5.2b),

(a2) N1 = 2, M∗ = 1, 000, and N2 = 170, and

(a3) N1 = 2, M∗ = 500, and N2 = 620.

Experiment (b): Standard multi-period nested simulation with N = 350 inner simu-
lations for each outer scenario.

We use the same set of M = 10, 000 outer scenarios for each repetition of each method
listed above. They are also the same set of outer scenarios in the benchmark experiment
shown in Figure 5.2a-5.2b. Thus, the repetitions are solely capturing the sampling vari-
ability at the inner simulation stage. In addition, all experiments using two-stage nested
simulation with MLR estimators share the same 100 independent repetitions of Stage 1
output.

We selected the above configurations so that the average runtime for all the experiments
are similar. Within each experiment design, we illustrate in Table 5.1 the proportion of
total computation budget spent on the sample path generation steps, Step (1.A) and (2.A),
and the likelihood calculation steps, Step (1.B) and (2.B) of the algorithm in Section 5.3,
respectively.
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Stage 1 Stage 2

Sample Sample

Paths Likelihood Paths Likelihood

Experiment Design Generation Calculation Generation Calculation

(a) Two-stage using MLR:

a1. N1 = 2, M∗ = 1, 500, N2 = 80 1% 51% 4% 45%
a2. N1 = 2, M∗ = 1, 000, N2 = 170 1% 51% 5% 44%
a3. N1 = 2, M∗ = 500, N2 = 620 1% 51% 9% 39%

(b) Standard nested sim. with N = 350 100% n/a n/a n/a

Table 5.1: Proportion of total computation budget deployed in each step of the simulation
procedure.

We can see from Table 5.1 that in experiment (a1), (a2) and (a3), Stage 1 uses about
52% of total computation budget while the remaining 48% are spent in Stage 2. In both
stages, the majority of the computation budget is spent on likelihood calculation. The
amount of computation budget spent in Stage 1 is the same for all experiments using MLR
estimators because they use the same stage 1 output. In Stage 2, as the number of highly
likely tail scenarios M∗ decreases, a higher proportion of computation budget is allocated
to the sample paths generation step in this stage because the amount of computation
required in likelihood calculation decreases with M∗.

Each of the 100 repetitions of the above experiments produces a CTE95% estimate.
By comparing these estimates with the benchmark CTE95% estimate we can estimate the
RMSE for each of the four experiments. The relative biases and relative variances for the
four experiments can also be estimated. Table 5.2 summarizes these performance measures.
The same results are also presented in Figure 5.3.

We make the following observations from Table 5.2.

Experiment (b), standard nested simulation, has high relative bias and high relative
variance. In our experiment, this is caused by insufficient number of inner simulations,
which is much smaller than the number of outer simulations. The standard Monte Carlo
experiment has a significant positive bias because of insufficient number of inner simulations
used, which is consistent with findings in Gordy and Juneja (2010). The intuition is that
the small number of inner simulations causes significant noise in the number of out-of-
the-money inner simulation paths, and subsequently in the individual loss estimation from
each outer scenario. Because the CTE estimation picks up the highest ranked (1 − α)M
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Figure 5.3: Box-and-whisker plot of results from 100 repetitions of two-stage nested simu-
lation using MLR estimators, and standard nested simulation, GMWB example.
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Experiment Design RMSE Relative Bias Relative Variance

(a) Two-stage procedures
a1. N1 = 2, M∗ = 1, 500, N2 = 80 0.0168% -0.002% 0.017%
a2. N1 = 2, M∗ = 1, 000, N2 = 170 0.0171% -0.069% 0.013%
a3. N1 = 2, M∗ = 500, N2 = 620 1.5826% -1.405% 0.026%

(b) Standard nested sim. with N = 350 1.2578% 1.201% 0.121%

Table 5.2: Accuracy measures from 100 repetitions of different configurations of the two-
stage procedure and the standard nested simulation

individual losses, the individual losses end up in the CTE estimation tend to be the ones
that are higher than its true loss value due to inner simulation noise. Therefore, the CTE
estimation is inherently biased high when there are insufficient number of inner simulations.

The higher variance in the standard nested simulation experiments is also due to in-
sufficient number of inner simulations. Gordy and Juneja (2010) found that the variance
in nested simulation is primarily caused by an insufficient number of outer scenarios in
independent repetitions with newly generated outer scenarios in each repetition. However,
in our experiment, we limit ourselves to the same set of 10,000 outer scenarios in all ex-
periments. In our SMC experiment, the inner simulation noise causes sampling variance
in the loss estimation of each scenario.

In Experiment (a1) and (a2), even though the number of inner simulations in the
highly likely tail scenarios (N1 + N2 = 82 and 172, respectively) are smaller than that
in the standard nested simulation (N = 350), the CTE95% estimate in experiment (a1)
and (a2) are more accurate than those in experiment (b), because the estimated effective
sample size of inner simulations in (a1) and (a2) is bigger than N = 350. In Figure 5.4,
we illustrate the estimated effective sample size over time in one of the repetitions under
different experiment designs.
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Figure 5.4: Estimated effective sample size (in log scale) in one repetition of Stage 1 MLR,
Stage 2 MLR, and SMC experiment.

We can see from Figure 5.4 that in the Stage 1 experiment, which is shared among all
three MLR experiment designs, the estimated effective sample size starts atN1 ·M = 20, 000
(ln(20, 000) = 9.90) and decreases as time progresses along the outer scenarios. The state
variables in outer scenarios cause the effective sample size to decrease over time. Towards
the end of the simulation, the effective sample size increases because in many scenario, the
sub-account of the GMWB has depleted so the state variables start to converge at this
point. The smallest estimated effective sample size in Stage 1 is slightly below 1,000, still
higher than the N = 350 inner simulations used in the standard Monte Carlo simulation.
In the Stage 2 experiment, the estimated effective sample size follows similar trend as in
Stage 1 in all three experiment designs. The lowest estimated effective sample size is close
to 5,000 in experiment (a1) and (a2), and slightly above 12,000 in experiment (a3).

With a reasonable safety margin, the two-stage procedure produces accurate CTE95%

estimates. The number of highly likely tail scenarios in Experiments (a1) and (a2) areM∗ =
1, 500 and M∗ = 1, 000, which represent 5%M and 10%M safety margins, respectively.
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Both of these two experiments produces CTE95% estimates that are orders of magnitudes
more accurate than that in the standard nested simulation (74 and 94 times smaller MSEs,
respectively). The RMSEs, relative biases, and relative variances for Experiments (a1) and
(a2) are all significantly smaller than those for the standard nested simulation. But if no
safety margin is given, as in Experiment (a3), the two-stage procedure could miss many
true tail scenario in Stage 1, thus poorly estimate tail risk measures.

The negative bias in the two-stage procedure is caused by the misclassification of tail
scenario. The highly likely tail scenarios in Stage 1 may exclude some true tail scenarios
(with large losses). Some non-tail scenarios’ small losses will be accurately estimated in
Stage 2 and be included in the CTE95% estimate. This observation reiterates the impor-
tance of setting reasonable safety margins.

To further examine the misclassification of tail scenarios in the two-stage procedure,
Table 5.3 summarizes the number of the true tail scenarios included in Stage 2 simula-
tion and in CTE estimation, in each of the 100 repeated experiments. In the standard
nested simulation, the tail scenario set in the CTE estimate includes merely 434.4 true tail
scenarios on average. When no safety margin is added, as in Experiment (a3), none of
the 100 repeated experiments captures all 500 true tail scenarios in the highly likely tail
scenario set T̂ HLM∗ , which on average includes 438.6 of the 500 true tail scenarios. While
this is number higher (thus better) than the standard nested simulation, there is signifi-
cant room for improvement. Increasing the safety margin to 5%M , as in Experiment (a2),
drastically reduces the misclassification of tail scenarios. On average, 498.0 (99.6%) true

tail scenarios are included in the highly likely tail scenario set T̂ HLM∗ . Moreover, in 17 of 100

repeated experiments, the highly likely tail scenario set T̂ HLM∗ includes all true tail scenarios.
Experiment (a2) includes 478.9 true tail scenarios in the CTE estimate on average, which
is much higher than that in the standard nested simulation. Lastly, when the number of
highly likely tail scenarios is further increased to M∗ = 1, 500, as in Experiment (a1), all

tail scenarios are included in T̂ HLM∗ in 66 of the 100 repeated experiments. As we see from
Table 5.2, the slightly different misclassification between Experiments (a1) and (a2) has
little effect on their RMSEs.

5.6 Conclusion

In this chapter, we present a two-stage nested simulation procedure for estimating the tail
risks of dynamically hedged complex VA contracts. The mixture likelihood ratio estimator
is used in both stages to reuse simulation outputs and to improve the estimation accuracy.
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# of repetitions

# true tail T̂ HLM∗ includes all # true tail

Experiment Design scen. in T̂ HLM∗ true tail scenarios scen. in T̂ MLR
(1−α)M

(a) Two-stage procedures

a1. N1 = 2, M∗ = 1, 500, N2 = 80 499.6 66/100 476.9
a2. N1 = 2, M∗ = 1, 000, N2 = 170 498.0 17/100 478.9
a3. N1 = 2, M∗ = 500, N2 = 620 438.6 0/100 438.6

(b) Standard nested sim. with N = 350 n/a n/a 434.4

Table 5.3: True tail scenarios captured in 100 repetitions of two-stage nested simulation us-
ing MLR estimator of different configurations of the two-stage procedure and the standard
nested simulation. Standard error indicated in brackets.

It eliminates the need for extrinsic proxy models used in the IANS and DIANS method.
In an in-depth numerical study, we apply the proposed two-stage procedure on the Guar-
anteed Minimum Withdrawal Benefit (GMWB). With a similar runtime, our procedure
produces CTE estimates that are significantly more accurate than that of the standard
nested simulation.
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Chapter 6

Future Work

In this chapter, we discuss a few methods that could potentially further improve the meth-
ods of the previous chapters. We first introduce a simulation procedure that combines the
IANS procedure with the MLR estimator. Then we discuss a screening procedure that is
similar to Stage 1 of our proposed nested simulation procedures. After that, we illustrate
how the jackknife method proposed in the literature can be applied to reduce bias and
further improve the accuracy of tail risk measure estimation.

6.1 IANS Procedure with MLR Estimator

As we presented in Algorithm 2, Stage 1 of the IANS procedure uses a closed-form proxy to
identify a set of proxy tail scenarios, while Stage 2 carries out standard nested simulation
on these proxy tail scenarios. In fact, when we have a reliable extrinsic proxy, we can
replace the Stage 2 simulation in the IANS procedure with nested simulation using the
MLR estimator on the proxy tail scenarios to achieve even greater computation efficiency.
In other words, we can replace Line (II.1) to (II.4) Algorithm 2 with Step (2.A) to (2.D)
of the two-stage nested simulation using MLR estimators.

We have conducted a numerical experiment using this IANS procedure with MLR
estimator. We use the same GMMB with dynamic lapse example as in Section 4.3. Similar
to all experiments in Section 4.3, the experiment uses the same M = 5, 000 outer scenarios
as in the benchmark experiment in Section 4.3.2. The proxy tail scenario set T Pm has
m = 750, that is m = 15%M . In the Stage 2 simulation, N2 = 90 inner simulations were
conducted for each scenario in T P750. This experiment uses about 50% of the computation
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budget as the experiments listed in Table 4.1. We repeat this experiment 100 times using
the IANS procedure with MLR estimator, same as the experiments listed in Table 4.1.

Table 6.1 summarizes results from the 100 repetitions. Compared to the results in

Experiment m N2 RMSE

Fixed IANS with MLR estimator 750 90 0.0140% (0.0022%)

(a) Dynamic IANS, m0 = 400 ≈ 654 ≈ 1, 528 0.0072% (0.0010%)

(c1) Fixed IANS 750 1,333 0.0088% (0.0013%)

(c2) Fixed IANS 500 2,000 0.0069% (0.0011%)

(c3) Fixed IANS 250 4,000 7.8604% (0.0274%)

Table 6.1: Results from 100 repetitions of fixed IANS procedure with MLR estimator, fixed
and dynamic IANS process, GMMB example, Standard error of the results indicated in
bracket. All values are based on a single outer scenario set, X. Results from the fixed and
dynamic IANS process are identical to those in Table 4.1.

all experiments listed in Table 4.1, the IANS procedure with MLR estimator achieves
similar level of accuracy as the experiments with the most accurate CTE estimate in
Table 4.1 (experiment (a), (c1) and (c2)), but uses only 50% of the computation budget
used by experiments in Table 4.1. This improvement demonstrates the additional gain in
computation efficiency by incorporating MLR estimator in the IANS procedure.

Compared to the fixed IANS procedure, we can choose a more relaxed proxy tail scenario
set size m in IANS procedure using MLR estimator because the computation effort spent
on the extra proxy tail scenarios is not entirely “wasted” when the inner simulation output
is estimated by an MLR estimator. Inner simulation output from these extra proxy tail
scenarios is also included in the MLR estimator.

Note that even though as discussed in Chapter 5, the DIANS procedure is more robust
than the IANS procedure in the sense that it gives statistical assurance that sufficient
number of true tail scenarios have been captured, it is inefficient to incorporate MLR
estimator in the DIANS procedure because of the iterative additive nature of the DIANS
process.

6.2 Screening Procedure for Likely Tail Scenarios

Lan et al. (2010) introduced a two-stage nested simulation design similar to our proposal,
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but in a single-period nested simulation setting. In this setting, the loss is defined as an
expectation, e.g. the expected value of a portfolio based on risk neutral valuation. In their
design, the Stage 1 simulation uses results from a small pilot standard nested simulation
(as few as 30 inner simulations based on their suggestion) to select the scenarios that are
highly likely to be the true tail scenarios. In Stage 2 more standard nested simulation is
carried out only to the highly likely tail scenarios to build a confidence interval for the
CTE estimate.

In theory, their screening procedure for highly likely tail scenarios could replace the
Stage 1 simulation of our proposed procedure. More precisely in the context of our multi-
period nested simulation problem, the loss random variable L is a linear function of various
conditional expectations µt(Xt) = E[f(Y |Xt)]. In Equation (2.5), given a outer scenario,
L is a linear function of ∆t’s, which are conditional expectations given the outer scenario
state variables. As such, in cases where all the ∆t’s are estimated with the same number of
inner simulations, we can express the loss random variable L as an expectation of a linear
function of f(Y |Xt). That is, based on Equation (2.5)

L =
T−1∑
t=0

∆t(DtSt −Dt+1St+1) + V0 =
T−1∑
t=0

E[f(Y |Xt)](DtSt −Dt+1St+1) + V0 (6.1)

= E

[
T−1∑
t=0

f(Y |Xt)(DtSt −Dt+1St+1)

]
+ V0

(6.2)

According to Lan et al. (2010), since L is an expectation, we can apply a pair-wise

student-t test to each L̂i, i = 1, . . . ,M from Stage 1 inner simulation samples, regardless
of the nested simulation procedure used. The student-t test will then indicate, at a given
confidence level, which outer scenario has a sample mean smaller than (1− α)M or fewer
outer scenarios, which means that the scenario is in T(1−α)M at the specified confidence
level.

However, in practice, when we applied the screening procedure in a multi-period set-
ting, it ends up screening out only a small portion of the outer scenarios, given a small
computation budget allocated to the screening procedure. For the GMWB contract, we
apply the Lan et al. (2010) screening procedure to Stage 1 simulation output from the
MLR procedure described in Section 5.5. The resulting highly likely tail scenario set has a
size of 53%M , which does not allow for sufficient Stage 2 inner simulations under a fixed
computation budget.
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Similarly, when we apply the screening procedure to the GMMB with dynamic lapses
from Section 4.3, with 30 inner simulation in the pilot simulation, the screening procedure
did not screen out any scenarios. In other words, the suggested highly likely tail scenario
set has a size of M . When we apply 900 inner simulations in the pilot simulation, the
screening procedure gives a set of 467 scenarios out of 5,000 scenarios at 99% confidence
level. This set includes all true tail scenarios. but this pilot simulation alone uses 4.5 times
as much computation budget as the experiments in Section 4.3.4.

Moreover, the pairwise student-t test requires estimating the standard errors for M(M−1)
2

pairs of scenarios. For M = 10, 000 in our numerical study, the screening procedure itself
takes longer to run than our entire two-stage procedure.

It is obvious based on these experiments that the screening procedure proposed in Lan
et al. (2010) is not very useful in the multi-period nested simulation setting that we are
considering. As we consider dynamic hedging for complex variable annuities, i.e., multi-
period nested simulation with path-dependent embedded option, the estimated losses in
Stage 1 have large sample variances. As noted in Lan et al. (2010), large sample variances
make it more difficult to screen out scenarios using their pairwise student-t test.

We also note that not all losses in nested simulation can be expressed as an expectation
of linear function. For example, in the NAIC Valuation Manual 21, the loss is defined as the
greatest present value of the projected accumulated deficiencies over the projection horizon
(NAIC, 2020). In this case, the screening procedure cannot be applied in the multi-period
nested simulation case because the overall loss L cannot be defined as an expectation.

6.3 Jackknife Method

In Gordy and Juneja (2010), the authors show how the jackknife method can be applied in
a single-period nested simulation setting, to reduce bias in the tail risk measure estimation.
Again, in this setting, the loss is defined as an expectation.

According to Gordy and Juneja (2010), the jackknife method is applied in a nested
simulation of tail risk measure as follows. Given our nested simulation procedure with N
inner simulations, we divide the N inner simulation sample output into Z partition, and we
have N/Z inner samples in each partition (assuming N/Z is an integer). Let CTE−z denote
the CTE estimate by omitting the inner samples in the z-th partition, where z = 1, . . . Z,
that is, by pretending the N/Z inner simulation samples in the z-th partition do not exist.
Let CTEN denote the CTE estimate based on all N inner simulation sample output. Then

118



the bias-corrected jackknife CTE estimate is

CTEJK = CTEN +
Z − 1

Z

Z∑
z=1

(CTEN − CTE−z) (6.3)

As discussed in Section 6.2, the loss L that we consider in this thesis can be defined
as an expectation of linear function, so the jackknife estimator can be applied at virtually
no additional computation cost in standard nested simulations, and all of our proposed
procedures.

We have conducted some numerical experiments using the jackknife method on GMWB
contract described in Section 5.5. We conducted 20 repetitions for each of the following
experiment:

(a) Two-stage nested simulation using MLR estimator, with M∗ = 1, 500, N1 = 2,
N2 = 10

(b) Standard nested simulation with N = 200 inner simulations for all outer scenarios

These two sets of experiments have similar run time. We do not apply the jackknife method
directly to the simulation output from numerical experiments in Section 5.5 because the
bias in the MLR experiments are either negligible or are caused by the missing true tail
scenarios, which cannot be remedied by the jackknife method.

The RMSE, relative bias and relative variance of CTE95% from the two sets of experi-
ments are summarized in Table 6.2.

Experiment Design RMSE Bias Variance

Without jackknife
(a) Two-stage MLR 0.4850% (0.0842%) 0.701% 0.098%
(b) SMC 4.3849% (0.3994%) 2.309% 0.180%

With jackknife
(a) Two-stage MLR 0.1279% (0.0417%) -0.191% 0.099%
(b) SMC 0.2653% (0.0885%) 0.058% 0.263%

Table 6.2: Results from 20 repetitions of two-stage nested simulation using MLR estima-
tor, and standard nested simulation, GMWB example, jackknife method applied in CTE
estimate. Standard error of RMSE are indicated in bracket. All values are based on the
same outer scenario set, X.
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We can see from Table 6.2 that the jackknife method reduces bias, and consequently, the
RMSE of the CTE estimation in both standard nested simulation and nested simulation
using MLR. However, the reduction in bias and RMSE is more prominent in standard
nested simulation than in the MLR case. Designing a more effective bias reduction method
for the MLR procedure, as well as the impact of applying the jackknife estimator on RMSE
based on different configurations of the MLR and standard nested simulation procedures
will be a topic for future study.

6.4 Other Future Work

Future research topics that continue this work can be roughly split into two categories:

1. Further refinements to the methods developed in this thesis.

2. Adapting or developing methodology for a wider range of financial risk management
applications.

Further refinements to our proposals in this thesis include the following.

• We have worked under the premise of a fixed set of outer scenarios in this thesis.
This is consistent with commonly used practice in insurance companies. However, it
is worthwhile to consider the impact of outer-level simulation design on computation
efficiency in a nested simulation.

• We will consider convergence analysis in each stage of our proposed procedure. This
will help us identify the optimal design variables, such us the number of outer and
inner simulations, and the size of proxy tail scenario set.

• We will consider additional variance and bias reduction techniques that complement
our procedures, to further improve accuracy.

To adapt the procedures for a wider range of financial applications, we will focus on
extending the MLR method to other simulation-based calculations in financial reporting
and risk management practice. To facilitate decision-making and fulfill regulatory require-
ment, many practice areas in insurance companies and other financial institutions now rely
on real-time or near real-time calculation of various financial and risk metrics. Due to the
sophisticated nature of today’s financial contracts, many of these calculations are based
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on simulation models. The likelihood ratio method can be extended to pre-process the
simulation and calculate the financial and risk metrics based on real-time market variables
whenever results are required. This will help significantly reduce the time required to com-
plete simulation-based calculations. In addition to the likelihood ratio method, machine
learning techniques such as stochastic kriging and neural networks may be explored to
recycle simulation output for fast computation.

In addition, we will consider other types of nested simulation. As we described in this
thesis, in most of the existing literature on nested simulation, the first-level simulation
estimates the tail risk measure of a loss distribution or probability of large loss while the
second-level simulation estimates the mean of a distribution. However, in other nested
simulation applications, for example, under the Principle-Based Reserving regime in the
U.S., some pricing calculations require the first-level simulation to estimate the mean of
a distribution and the second-level simulation to estimate the tail of a distribution, while
other applications require both levels of simulation to estimate the tail of a distribution
(iterated risk measures). Under these circumstances, existing proposals in the literature
that use various regression-based proxy methods to replace the second-level simulation are
likely to fail, because they are less effective for estimating the tail of a distribution rather
than the mean. In these cases, methods to accurately identify tail scenarios will be more
general and useful. For example, machine learning methods can be used for choosing tail
scenarios versus non-tail scenarios. Such methods will then be useful not only in a nested
simulation setting, but also in applications where only one layer of Monte Carlo simulation
is used to determine tail risk measures.
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Chapter 7

Conclusion

In both insurance and finance, risk management of more complex products, with longer
horizons, and with more complex economic capital requirements is creating computational
complexity that challenge even the most sophisticated computing environments. The de-
velopment of efficient, accurate and implementable computational tools is important and
timely.

In this thesis, we have presented two variations of two-stage nested simulation proce-
dures for estimating tail risk measures of Variable Annuities: an Importance Allocated
Nested Simulation (IANS) procedures in Chapter 3 and 4, and the mixture likelihood ratio
estimator in Chapter 5. Both procedures take advantage of the special structure of the
CTE by first identifying a small set of potential tail scenarios from the Stage 1 simulation,
based on a proxy for loss. The proxy is either evaluated from a closed-form calculation,
or based on a pilot nested simulation using MLR estimator. We then focus the simulation
budget on only those scenarios in the Stage 2 simulation.

In cases where a closed-form proxy can be easily derived, as we’ve shown for the GMMB
and GMAB VA contracts, the IANS procedure is significantly more efficient than standard
nested simulation. Furthermore, we have developed the Dynamic Importance Allocated
Nested Simulation procedure to dynamically determine the number of proxy tail scenarios
to be included in Stage 2 simulation. The DIANS method is a systematic approach that
helps us find all true tail scenarios with high confidence.

In cases where a closed-form proxy cannot be easily derived, for example in the case
of a GMWB contract with ratchet feature, we adapt the two-stage procedure to use only
intrinsic information, with the MLR estimator. Nested simulation with MLR is not limited
to any contract type, as long as the asset and/or any other stochastic state variables follow
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a Markov process. We first use output from a rough MLR nested simulation with very few
inner simulations as a proxy for identifying tail scenarios. Then in Stage 2 simulation, we
apply the MLR nested simulation again but with more inner simulations to achieve a more
accurate tail risk measure estimate. The two-stage nested simulation using MLR estimator
is also much more efficient than the standard nested simulation procedure.

These new proposals are developed for multi-period nested simulations used in insur-
ance applications, particularly for estimating tail risk measures of VAs. They reduce the
computational burden of multi-period nested simulations that many existing techniques
cannot address or at least not as efficiently because most of the existing techniques are
designed for single-period nested simulation.

123



References

Aggarwal A, Beck MB, Cann M, Ford T, Georgescu D, Morjaria N, Smith A, Taylor Y,
Tsanakas A, Witts L, et al. (2016). “Model risk-daring to open up the black box.”
British Actuarial Journal, 21(2), 229–296.

Ankirchner S, Schneider JC, Schweizer N (2014). “Cross-hedging minimum return guar-
antees: Basis and liquidity risks.” Journal of Economic Dynamics and Control, 41,
93–109.

Artzner P, Delbaen F, Eber JM, Heath D (1999). “Coherent measures of risk.” Mathe-
matical Finance, 9(3), 203–228.

Augustyniak M, Boudreault M (2015). “On the importance of hedging dynamic lapses in
variable annuities.” Risks & Rewards, Society of Actuaries, 66, 12–16.

Augustyniak M, Boudreault M (2017). “Mitigating interest rate risk in variable annu-
ities: An analysis of hedging effectiveness under model risk.” North American Actuarial
Journal, 21(4), 502–525.

Augustyniak M, Godin F, Simard C (2017). “Assessing the effectiveness of local and global
quadratic hedging under GARCH models.” Quantitative Finance, 17(9), 1305–1318.

Basel Committee on Banking Supervision (2019). “Minimum capital requirements for
market risk.” Technical report, Basel Committee on Banking Supervision. URL https:

//www.bis.org/bcbs/publ/d457.pdf.

Bauer D, Gao J, Moenig T, Ulm ER, Zhu N (2017). “Policyholder exercise behavior in life
insurance: the state of affairs.” North American Actuarial Journal, 21(4), 485–501.

Bauer D, Ha H (2015). “A least-squares Monte Carlo approach to the calculation of capital
requirements.” In World Risk and Insurance Economics Congress, Munich, Germany,

124

https://www.bis.org/bcbs/publ/d457.pdf
https://www.bis.org/bcbs/publ/d457.pdf


August, pp. 2–6. URL https://danielbaueracademic.files.wordpress.com/2018/

02/habauer_lsm.pdf.

Bauer D, Kling A, Russ J (2008). “A Universal Pricing Framework for Guaranteed Mini-
mum Benefits in Variable Annuities.” ASTIN Bulletin: The Journal of the IAA, 38(2),
621–651.

Bauer D, Reuss A, Singer D (2012). “On the calculation of the solvency capital requirement
based on nested simulations.” ASTIN Bulletin: The Journal of the IAA, 42(2), 453–499.

Bernard C, Hardy M, MacKay A (2014a). “State-dependent fees for variable annuity
guarantees.” ASTIN Bulletin: The Journal of the IAA, 44(3), 559–585.

Bernard C, MacKay A, Muehlbeyer M (2014b). “Optimal surrender policy for variable
annuity guarantees.” Insurance: Mathematics and Economics, 55, 116–128.

Bollen NP (1998). “Valuing options in regime-switching models.” The Journal of Deriva-
tives, 6(1), 38–49.

Bollerslev T (1986). “Generalized autoregressive conditional heteroskedasticity.” Journal
of econometrics, 31(3), 307–327.

Boyle P, Hardy M (2003). “Guaranteed annuity options.” ASTIN Bulletin: The Journal
of the IAA, 33(2), 125–152.

Boyle PP, Emanuel D (1980). “Discretely adjusted option hedges.” Journal of Financial
Economics, 8(3), 259–282.

Boyle PP, Hardy MR (1997). “Reserving for maturity guarantees: Two approaches.”
Insurance: Mathematics and Economics, 21(2), 113–127.

Boyle PP, Schwartz ES (1977). “Equilibrium prices of guarantees under equity-linked
contracts.” Journal of Risk and Insurance, pp. 639–660.

Broadie M, Du Y, Moallemi CC (2011). “Efficient risk estimation via nested sequential
simulation.” Management Science, 57(6), 1172–1194.

Broadie M, Du Y, Moallemi CC (2015). “Risk estimation via regression.” Operations
Research, 63(5), 1077–1097.

Broadie M, Glasserman P (1996). “Estimating security price derivatives using simulation.”
Management Science, 42(2), 269–285.

125

https://danielbaueracademic.files.wordpress.com/2018/02/habauer_lsm.pdf
https://danielbaueracademic.files.wordpress.com/2018/02/habauer_lsm.pdf


Cathcart M, Morrison S (2009). “Variable annuity economic capital: The least-squares
Monte Carlo approach.” Life & Pensions, pp. 36–40.

Cathcart MJ, Lok HY, McNeil AJ, Morrison S (2015). “Calculating variable annuity
liability greeks using Monte Carlo simulation.” ASTIN Bulletin: The Journal of the
IAA, 45(2), 239–266.

Chahboun I, Hoover N (2019). “Variable Annuities: Underlying Risks and Sensitivities.”
FRB Boston Risk and Policy Analysis Unit Paper No. RPA, pp. 19–1.

CIA (2017). “Standards of Practice, Part 2000 - Insurance.” Technical report, Cana-
dian Institute of Actuaries. URL http://www.cia-ica.ca/docs/default-source/

standards/si020317e.pdf?sfvrsn=2.

Dai M, Kuen Kwok Y, Zong J (2008). “Guaranteed minimum withdrawal benefit in variable
annuities.” Mathematical Finance, 18(4), 595–611.

David H (1973). “Concomitants of order statistics.” Bulletin of the International Statistical
Institute, 45(1), 295–300.

David H, O’Connell M, Yang S (1977). “Distribution and expected value of the rank of a
concomitant of an order statistic.” The Annals of Statistics, pp. 216–223.
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Appendix A

Calculation Illustration: GMWB
with Dynamic Hedging Using
Various Nested Simulation Procedure

In this GMWB example, we make the following assumptions:

• S0 = F0 = G0 = 1, 000

• T = 3 years

• It = 30%Gt for t = 1, 2, 3

• The guarantee value Gt ratchets up annually such that Gt = max(Gt−1, Ft) for t =
1, 2, 3

• No management fee deduction or other expenses, i.e. ηg = ηn = 0.

• No decrements due to lapse or mortality

• Delta hedging program is rebalanced every year

Other than the above assumptions, we assume the GMWB contract is as defined in Sec-
tion 5.4.

We use a standard nested simulation with M = 2 outer scenarios and N = 3 inner
simulations to illustrate the calculation of estimated loss L̂ of the delta-hedged GMWB
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contract. We assume a risk free rate of r = 2%, and a Black-Scholes model with volatility
σ = 30% for the inner simulation stock price. Hence, the inner simulation (risk-neutral)
conditional distribution g(St,t+1|St) is a lognormal distribution with mean ln(St)+r− σ2

2
=

lnSt − 0.025 and standard deviation σ = 30%.

Again, given the highly simplified assumptions and very rough simulation model, the
following calculation illustration should only be used to help understand the mechanism of
various likelihood ratio estimators presented in this section. The calculation results should
not be interpreted as characteristics of a GMWB contract or of dynamic hedging program.

Table A.1 shows the simulated outer scenarios X(i) =
(
S(i), F (i), G(i)

)
. The stochas-

ticity of the outer scenarios comes from the stock price St. Other components can be
calculated deterministically based on our model and the stock price. See Equation (5.8)-
(5.10).

For example,

F
(1)
2 =

(
F

(1)
1 − I(1)

1

)+

× S
(1)
2

S
(1)
1

= (512− 300)+ × 786

512
= 325

G
(1)
2 = max

(
G

(1)
1 , F

(1)
2

)
= max(1, 000, 325) = 1, 000

I
(1)
2 = γG

(1)
2 = 30%× 1000 = 300

Table A.2 shows the inner simulation sample paths: S
(i,j)
t,t′ , F

(i,j)
t,t′ , G

(i,j)
t,t′ , and I

(i,j)
t,t′ . The

inner simulation stock price sample path S
(i,j)
t,t′ is simulated according to Step (1.A) in the

Section 5.3 algorithm. Each inner simulation starts at t′ = t, so S
(i,j)
t,t′ = S

(i)
t . The sub-

account value F
(i,j)
t,t′ , guarantee value G

(i,j)
t,t′ , and withdrawal benefit amount I

(i,j)
t,t′ , in the

inner simulation sample paths are calculated using Equation (5.8)-(5.10). For example,

F
(2,3)
1,2 =

(
F

(2,3)
1,1 − I(2,3)

1,1

)+

×
S

(2,3)
1,2

S
(2,3)
1,1

= (1, 024− 307)+ × 1, 945

1, 024
= 1, 362

G
(2,3)
1,2 = max

(
F

(2,3)
1,2 , G

(2,3)
1,1

)
= max(1, 362, 1, 024) = 1, 362

I
(2,3)
1,2 = γG

(2,3)
1,2 = 30%× 1, 362 = 408

Table A.3 show the value of partial derivatives calculated based on inner simulation
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S
(i)
t t = 0 t = 1 t = 2 t = 3

i = 1 1,000 512 786 928
i = 2 1,000 1,024 1,237 1,176

(a) Stock price S
(i)
t

F
(i)
t t = 0 t = 1 t = 2 t = 3

i = 1 1,000 512 325 30
i = 2 1,000 1,024 866 531

(b) Fund value F
(i)
t

G
(i)
t t = 0 t = 1 t = 2 t = 3

i = 1 1,000 1,000 1,000 1,000
i = 2 1,000 1,024 1,024 1,024

(c) Guarantee value G
(i)
t

I
(i)
t t = 0 t = 1 t = 2 t = 3

i = 1 0 300 300 300
i = 2 0 307 307 307

(d) Withdrawal benefit I
(i)
t

Table A.1: Outer Scenario

sample path values using Equation (5.12)-(5.14). For example,

dF
(2,3)
1,2

dS
(2)
1

= 1{
I
(2,3)
1,1 <F

(2,3)
1,1

}
(
dF

(2,3)
1,1

dS
(2)
1

−
dI

(2,3)
1,1

dS
(2)
1

)
×
S

(2,3)
1,2

S
(2,3)
1,1

= 1{307<1024} (1− 0)× 1, 945

1, 024
= 1.899

dG
(2,3)
1,2

dS
(2)
1

= 1{
G

(2,3)
1,1 <F

(2,3)
1,2

}dF (2,3)
1,2

dS
(2)
1

+ 1{
G

(2,3)
1,1 ≥F

(2,3)
1,2

}dG(2,3)
1,1

dS
(2)
1

= 1{1,024<1,362} × 1.899 + 1{1,024≥1,362} × 0 = 1.899

dI
(2,3)
1,2

dS
(2)
1

= γ
dG

(2,3)
1,2

dS
(2)
1

= 30%× 1.899 = 0.570

These partial derivatives are then used to calculate the estimated delta’s.
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Table A.4 shows the unadjusted sample delta ∆̂
(k,j)
t , as well as delta ∆̂

(i)SMC
t and loss

L̂SMC
2 estimated using standard Monte Carlo simulation. They are calculated using Equa-

tion (5.11), (5.15) and (5.16), respectively. For example,

∆̂
(2,3)
1 =

3∑
s=2

e−2%(s−1) × 1{
I
(2,3)
1,s >F

(2,3)
1,s

}
(
dI

(2,3)
1,s

dS
(2)
1

−
dF

(2,3)
1,s

dS
(2)
1

)
=
(
e−2%×(2−1) × 1{408>1,362} (0.570− 1.899) + e−2%×(3−1) × 1{408>1,018} (0.570− 1.420)

)
= 0.000

∆̂
(2)SMC
1 =

1

N

N∑
j=1

∆̂
(2,j)
1 =

1

3
× (−0.713− 0− 0) = −0.238

L̂SMC
2 =

T−1∑
t=0

∆̂
(2)SMC
t

(
e−rtS

(2)
t − e−r(t+1)S

(2)
t+1

)
+

T∑
t=1

e−rt
(
I

(2)
t − F

(2)
t

)+

=0.000× (1, 000− e−2% × 1, 024)− 0.238× (e−2% × 1, 024− e−2×2% × 1, 237)

+ 0.000× (e−2×2% × 1, 237− e−3×2% × 1, 176) + e−2%(307− 1, 024)+

+ e−2×2%(307− 1, 237)+ + e−3×2%(307− 1, 176)+ = 44

Next we demonstrate how the MLR estimator is applied in this example.

If we are interested in estimating, say ∆̃
(2)
1 , using the MLR estimator, we will reweight

each inner simulation sample paths at t = 1 for target outer scenario i = 2. As an example,
the inner sample paths for target scenario i = 2 at time t = 1 without any adjustment are

shown in Table A.5. It is obvious the unadjusted inner sample paths
(
S

(1,j)
1,t′ , F

(1,j)
1,t′ , G

(1,j)
1,t′

)
in Table A.5 are inconsistent with the dynamic of sub-account value and guarantee value
described in Equation (5.8)-(5.10). For example, the guarantee value decreases from t′ = 1
to t′ = 2. Hence we need to apply the adjustments discussed earlier in Section 5.4.2 to
these inner sample paths before we can use them in the MLR estimator.

Table A.6 shows the adjusted stock price S̃
(k,j)
t,t+1, the adjusted sub-account value F̃

(k,j)
t,t+1,

the adjusted guarantee base G̃
(k,j)
t,t+1 and adjusted sample delta ∆̃

(k,j)
t used in the MLR

estimator. The adjusted inner sample paths
(
S̃

(k,j)
t,t+1, F̃

(k,j)
t,t+1, G̃

(k,j)
t,t+1

)
are calculated using

Equation (5.17). The adjusted sample deltas are calculated using Equation (5.19). For

135



example,

S̃
(1,2)
1,2 = S

(1,2)
1,2 ×

G
(2)
1

G
(1)
1

= 1, 152× 1, 024

1, 000
= 1, 180

F̃
(1,2)
1,2 = F

(1,2)
1,2 × G

(2)
1

G
(1)
1

= 477× 1, 024

1, 000
= 488

G̃
(1,2)
1,2 = G

(1,2)
1,2 ×

G
(2)
1

G
(1)
1

= 1, 000× 1, 024

1, 000
= 1, 024

∆̃
(1,2)
1 = ∆̂

(1,2)
1 × G

(2)
1

G
(1)
1

× F
(2)
1

F
(1)
1

× S
(1)
1

S
(2)
1

= −2.533× 1, 024

1, 000
× 1, 024

512
× 512

1, 024
= −2.594

From Table A.6, we can verify that these adjusted inner sample paths are consistent with
the dynamic of sub-account value and guarantee value in Equation (5.8)-(5.10). In addition,
we can also verify that the return on stock price remain the same as the unadjusted inner
sample paths after time t + 1 for inner sample paths starting at time t. In other words,
the Markov property of the inner sample path is preserved.

The probability density function g
(i)
t (S̃

(k,j)
t,t+1) in Table A.7 are calculated based on the

the Black-Scholes inner simulation asset model, i.e. the lognormal model with a standard
deviation of σ = 30% and mean of ln(S

(i)
t ) + r − σ2

2
= ln(S

(i)
t ) − 0.025. Subsequently,

the probability density function ḡM(S̃
(k,j)
t,t+1) is calculated based on Proposition 5.2.3. For

example, for target scenario i = 2,

g
(2)
1

(
S̃

(1,2)
1,2

)
= φ

(
ln
(
S̃

(1,2)
1,2

)
; ln
(
S

(2)
1

)
− 0.025, 30%

)
= φ (ln(1, 180); ln(1, 024)− 0.025, 30%) = 1.1400

where φ(x;µ, σ) is the probability density function of a normal distribution with mean of
µ and standard deviation of σ. And

gm

(
S̃

(1,2)
1,2

)
=

1

2

(
g

(1)
1

(
S̃

(1,2)
1,2

)
+ g

(2)
1

(
S̃

(1,2)
1,2

))
=

1

2
(0.0274 + 1.1400) = 0.5837

Table A.8 shows the MLR adjusted sample delta ∆̃
(k,j)
t

g
(1)
t

(
S̃
(k,j)
t,t+1

)
ḡM

(
S̃
(k,j)
t,t+1

) , delta estimated using

MLR method ∆̂
(i)MLR
t , and the loss estimated using MLR method L̂MLR

i . These values are
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calculated based on Proposition 5.4.1. For example, for target scenario i = 2,

∆̃
(1,3)
1

g
(2)
1

(
S̃

(1,3)
1,2

)
ḡM

(
S̃

(1,3)
1,2

) =− 1.720× 1.2649

0.7387
= −2.9448

∆̂
(2)MLR
1 =

1

MN

M∑
k=1

N∑
j=1

∆̃
(k,j)
t

g
(2)
t

(
S̃

(k,j)
t,t+1

)
ḡM

(
S̃

(k,j)
t,t+1

)
=

1

2× 3
(−2.9577− 5.0665− 2.9448− 0.3204 + 0.0000 + 0.0000) = −1.882

L̂MLR
2 =

T−1∑
t=0

∆̂
(2)MLR
t

(
e−rtS

(2)
t − e−r(t+1)S

(2)
t+1

)
+

T∑
t=1

e−rt
(
I

(2)
t − F

(2)
t

)+

=0.000× (1, 000− e−2% × 1, 024)− 1.882× (e−2% × 1, 024− e−2×2% × 1, 237)

− 0.226× (e−2×2% × 1, 237− e−3×2% × 1, 176) + e−2%(307− 1, 024)+

+ e−2×2%(307− 1, 237)+ + e−3×2%(307− 1, 176)+ = 329
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t = 0 t = 1 t = 2

j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

S
(i,j)
t,t′

, i = 1

t′ = 0 1,000 1,000 1,000
t′ = 1 993 985 1,040 512 512 512
t′ = 2 1,019 1,132 1,054 924 1,152 887 786 786 786
t′ = 3 978 1,312 1,273 865 1,350 895 651 800 919
i = 2
t′ = 0 1,000 1,000 1,000
t′ = 1 969 1,218 1,150 1,024 1,024 1,024
t′ = 2 973 1,337 1,421 605 1,845 1,945 1,237 1,237 1,237
t′ = 3 837 1,258 1,494 760 1,950 2,077 1,036 1,324 1,171

F
(i,j)
t,t′

, i = 1

t′ = 0 1,000 1,000 1,000
t′ = 1 993 985 1,040 512 512 512
t′ = 2 711 787 738 383 477 367 325 325 325
t′ = 3 395 565 514 77 207 68 21 26 30
i = 2
t′ = 0 1,000 1,000 1,000
t′ = 1 969 1,218 1,150 1,024 1,024 1,024
t′ = 2 672 936 995 424 1,292 1,362 866 866 866
t′ = 3 320 537 683 146 956 1,018 468 598 529

G
(i,j)
t,t′

, i = 1

t′ = 0 1,000 1,000 1,000
t′ = 1 1,000 1,000 1,040 1,000 1,000 1,000
t′ = 2 1,000 1,000 1,040 1,000 1,000 1,000 1,000 1,000 1,000
t′ = 3 1,000 1,000 1,040 1,000 1,000 1,000 1,000 1,000 1,000
i = 2
t′ = 0 1,000 1,000 1,000
t′ = 1 1,000 1,218 1,150 1,024 1,024 1,024
t′ = 2 1,000 1,218 1,150 1,024 1,292 1,362 1,024 1,024 1,024
t′ = 3 1,000 1,218 1,150 1,024 1,292 1,362 1,024 1,024 1,024

I
(i,j)
t,t′

, i = 1

t′ = 0 0 0 0
t′ = 1 300 300 312 300 300 300
t′ = 2 300 300 312 300 300 300 300 300 300
t′ = 3 300 300 312 300 300 300 300 300 300
i = 2
t′ = 0 0 0 0
t′ = 1 300 365 345 307 307 307
t′ = 2 300 365 345 307 387 408 307 307 307
t′ = 3 300 365 345 307 387 408 307 307 307

Table A.2: Inner simulation sample paths
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t = 0 t = 1 t = 2

j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

dF
(i,j)

t,t′

dS
(i)
t

, i = 1

t′ = 0 1.000 1.000 1.000
t′ = 1 0.993 0.985 1.040 1.000 1.000 1.000
t′ = 2 1.019 1.132 0.738 1.805 2.250 1.732 0.414 0.414 0.414
t′ = 3 0.978 1.312 0.514 1.689 2.637 1.748 0.343 0.421 0.484
i = 2
t′ = 0 1.000 1.000 1.000
t′ = 1 0.969 1.218 1.150 1.000 1.000 1.000
t′ = 2 0.973 0.936 0.995 0.591 1.802 1.899 0.700 0.700 0.700
t′ = 3 0.837 0.537 0.683 0.742 1.333 1.420 0.586 0.749 0.663

dG
(i,j)

t,t′

dS
(i)
t

, i = 1

t′ = 0 0.000 0.000 0.000
t′ = 1 0.000 0.000 1.040 0.000 0.000 0.000
t′ = 2 0.000 0.000 1.040 0.000 0.000 0.000 0.000 0.000 0.000
t′ = 3 0.000 0.000 1.040 0.000 0.000 0.000 0.000 0.000 0.000
i = 2
t′ = 0 0.000 0.000 0.000
t′ = 1 0.000 1.218 1.150 0.000 0.000 0.000
t′ = 2 0.000 1.218 1.150 0.000 1.802 1.899 0.000 0.000 0.000
t′ = 3 0.000 1.218 1.150 0.000 1.802 1.899 0.000 0.000 0.000

dI
(i,j)

t,t′

dS
(i)
t

, i = 1

t′ = 0 0.000 0.000 0.000
t′ = 1 0.000 0.000 0.312 0.000 0.000 0.000
t′ = 2 0.000 0.000 0.312 0.000 0.000 0.000 0.000 0.000 0.000
t′ = 3 0.000 0.000 0.312 0.000 0.000 0.000 0.000 0.000 0.000
i = 2
t′ = 0 0.000 0.000 0.000
t′ = 1 0.000 0.365 0.345 0.000 0.000 0.000
t′ = 2 0.000 0.365 0.345 0.000 0.541 0.570 0.000 0.000 0.000
t′ = 3 0.000 0.365 0.345 0.000 0.541 0.570 0.000 0.000 0.000

Table A.3: Partial derivatives in inner simulation sample paths
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t = 0 t = 1 t = 2

j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

i = 1

∆̂
(1,j)
t 0.000 0.000 0.000 -1.623 -2.533 -1.680 -0.336 -0.413 -0.475

∆̂
(1)SMC
0 = 0.000 ∆̂

(1)SMC
1 = −1.945 ∆̂

(1)SMC
2 = −0.408

L̂SMC
1 = 795

i = 2

∆̂
(2,j)
t 0.000 0.000 0.000 -0.713 0.000 0.000 0.000 0.000 0.000

∆̂
(2)SMC
0 = 0.000 ∆̂

(2)SMC
1 = −0.238 ∆̂

(2)SMC
2 = 0.000

L̂SMC
2 = 44

Table A.4: Standard nested simulation output: ∆̂
(i,j)
t , ∆̂

(i)SMC
t and L̂SMC

i

t = 1

j = 1 j = 2 j = 3

k = 1
t′ = 1 (1,024, 1,024, 1,024) (1,024, 1,024, 1,024) (1,024, 1,024, 1,024)
t′ = 2 (924, 383, 1,000) (1,152, 477, 1,000) (887, 367, 1,000)
t′ = 3 (865, 77, 1,000) (1,350, 207, 1,000) (895, 68, 1,000)

k = 2
t′ = 1 (1,024, 1,024, 1,024) (1,024, 1,024, 1,024) (1,024, 1,024, 1,024)
t′ = 2 (605, 424, 1,024) (1,845, 1,292, 1,292) (1,945, 1,362, 1,362)
t′ = 3 (760, 146, 1,024) (1,950, 956, 1,292) (2,077, 1,018, 1,362)

Table A.5: Unadjusted inner sample paths
(
S

(k,j)
1,t′ , F

(k,j)
1,t′ , G

(k,j)
1,t′

)
for target scenario i = 2
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t = 0 t = 1 t = 2

j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

S̃
(k,j)
t,t+1

i = 1, k = 1 993 985 1,040 924 1,152 887 651 800 919
i = 1, k = 2 969 1,218 1,150 591 1,802 1,899 1,012 1,293 1,144
i = 2, k = 1 993 985 1,040 946 1,180 908 667 819 941
i = 2, k = 2 969 1,218 1,150 605 1,845 1,945 1,036 1,324 1,171

F̃
(k,j)
t,t+1

i = 1, k = 1 993 985 1,040 383 477 367 21 26 30
i = 1, k = 2 969 1,218 1,150 414 1,261 1,330 457 584 516
i = 2, k = 1 993 985 1,040 392 488 376 22 27 30
i = 2, k = 2 969 1,218 1,150 424 1,292 1,362 468 598 529

G̃
(k,j)
t,t+1

i = 1, k = 1 1,000 1,000 1,040 1,000 1,000 1,000 1,000 1,000 1,000
i = 1, k = 2 1,000 1,218 1,150 1,000 1,261 1,330 1,000 1,000 1,000
i = 2, k = 1 1,000 1,000 1,040 1,024 1,024 1,024 1,024 1,024 1,024
i = 2, k = 2 1,000 1,218 1,150 1,024 1,292 1,362 1,024 1,024 1,024

∆̃
(k,j)
t

i = 1, k = 1 0.000 0.000 0.000 -1.623 -2.533 -1.680 -0.336 -0.413 -0.475
i = 1, k = 2 0.000 0.000 0.000 -0.696 0.000 0.000 0.000 0.000 0.000
i = 2, k = 1 0.000 0.000 0.000 -1.662 -2.594 -1.720 -0.582 -0.715 -0.821
i = 2, k = 2 0.000 0.000 0.000 -0.713 0.000 0.000 0.000 0.000 0.000

Table A.6: Mixture Likelihood Ratio methods: adjusted inner sample paths(
S̃

(k,j)
t,t+1, F̃

(k,j)
t,t+1, G̃

(k,j)
t,t+1

)
and adjusted sample delta ∆̃

(k,j)
t
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t = 0 t = 1 t = 2

j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

g
(i)
t

(
S̃

(k,j)
t,t+1

)
i = 1
k = 1 1.3274 1.3291 1.2997 0.1622 0.0274 0.2125 1.1464 1.3164 1.1078
k = 2 1.3295 1.0108 1.1436 1.1364 0.0001 0.0001 0.8671 0.2914 0.5468
i = 2
k = 1 1.3274 1.3291 1.2997 1.3084 1.1400 1.2649 0.1882 0.5784 0.9438
k = 2 1.3295 1.0108 1.1436 0.3293 0.1640 0.1127 1.1690 1.2675 1.3232

ḡM

(
S̃

(k,j)
t,t+1

)
k = 1 1.3274 1.3291 1.2997 0.7353 0.5837 0.7387 0.6673 0.9474 1.0258
k = 2 1.3295 1.0108 1.1436 0.7329 0.0821 0.0564 1.0180 0.7794 0.9350

Table A.7: Mixture Likelihood Ratio method: probability density function g
(i)
t

(
S̃

(k,j)
t,t

)
and

ḡM

(
S̃

(k,j)
t,t+1

)
t = 0 t = 1 t = 2

j = 1 j = 2 j = 3 j = 1 j = 2 j = 3 j = 1 j = 2 j = 3

i = 1

∆̃
(k,j)
t

g
(1)
t

(
S̃

(k,j)
t,t+1

)
ḡM
(
S̃

(k,j)
t,t+1

)
k = 1 0.0000 0.0000 0.0000 -0.3581 -0.1189 -0.4832 -0.5775 -0.5740 -0.5125
k = 2 0.0000 0.0000 0.0000 -1.0798 0.0000 0.0000 0.0000 0.0000 0.0000

∆̂
(1)MLR
0 = 0.000 ∆̂

(1)MLR
1 = −0.340 ∆̂

(1)MLR
2 = −0.277

L̂MLR
1 = 373

i = 2

∆̃
(k,j)
t

g
(2)
t

(
S̃

(k,j)
t,t+1

)
ḡM
(
S̃

(k,j)
t,t+1

)
k = 1 0.0000 0.0000 0.0000 -2.9577 -5.0665 -2.9448 -0.1642 -0.4366 -0.7558
k = 2 0.0000 0.0000 0.0000 -0.3204 0.0000 0.0000 0.0000 0.0000 0.0000

∆̂
(2)MLR
0 = 0.000 ∆̂

(2)MLR
1 = −1.882 ∆̂

(2)MLR
2 = −0.226

L̂MLR
2 = 329

Table A.8: MLR nested simulation output
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