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Abstract

This thesis collects much of the work I have done over the last four years as a PhD
student. It has two focuses. Part I discusses gravitational radiation emitted from two
maximally charged black holes in Einstein—-Maxwell-dilaton theory, while Part II focuses
on cosmological probes of late-universe physics.

Black holes are some of the most interesting solutions to Einstein’s equations, the equa-
tions that govern the curvature of the spacetime we inhabit. The gravitational field around
them is stronger than around any other astrophysical object, and the interaction of two
black holes can cause strong disturbances in the spacetime, leading to the radiation of
gravitational waves. Gravitational radiation is usually a complex problem that must be
studied numerically, and analytic solutions are rare. However, in Einstein—-Maxwell (EM)
theory, where the Einstein equations are supplemented with the Maxwell equations gov-
erning the behaviour of electromagnetic fields, there exists a configuration of black holes
which have electric charge which causes a repulsive force that counteracts their gravita-
tional attraction. These black holes can be evolved quasi-statically leading to gravitational
radiation that can be analytically approximated. In Chapter 3 of this thesis we analytically
approximate the radiation when the EM equations are further supplemented with a dilaton
(scalar) field.

The second part of this thesis relates to work I have done in relation to late-universe
probes and secondary cosmic microwave background (CMB) effects, in particular motivated
by the upcoming Simons Observatory and CMB-S4 CMB surveys. The CMB has been
detected and mapped with exquisite detail by the Planck satellite on arcminute scales, and
these experiments will extend to even smaller angular scales. In this regime “secondary”
effects sourced in the late universe will dominate, in particular CMB lensing due to large
masses and the interaction of the CMB with electrons (the Sunyaev—Zel’dovich effect). We
also get closer to the regime in which the cosmic infrared background (CIB), sourced by
thermal radiation from dust in star-forming galaxies, starts to dominate over the CMB.
Robust and consistent modelling is required to understand how the different signals relate
to and correlate with each other.

In this thesis we consider how various combinations of these phenomena correlate in
different ways. Chapter 7 discusses how the correlation between CMB lensing and the
CIB can be used to improve models of the latter. Chapter 8 discusses how CIB maps
can be combined with Sunyaev-Zel’dovich probes to reconstruct the velocity field of the
universe on the largest scales. In Chapters 9 and 10 we discuss how complex late-universe
interactions can bias the inference of fundamental physics from the CMB lensing and lensed
CMB maps, and develop several mitigation methods to ensure unbiased inference.
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Chapter 1

Introduction

During the 20th Century, cosmology and astrophysics developed into precise sciences with
improving observations of the sky driving theory to explain what we see. One of the most
important theory developments of this period was the development of General Relativity
(GR) by Einstein in 1916. This theory, which relates the presence of mass-energy to the
curvature of the spacetime manifold we inhabit, generalized Newton’s theory of gravity
and allowed us to understand anomolous measurements that had already been made.

The revolutionary nature of GR lay not in its predictions of slight deviations from the
previous theory, but the qualitatively new phenomena it predicted, which led to a new era
in astrophysics. A black hole solution was discovered by Schwarzschild only months after
Einstein developed the central equations of GR (the “Einstein equations”), describing a
mass so dense that it cannot allow light to escape and creates a causally disconnected region
of spacetime. Wave solutions were found by Einstein, where disturbances in the curvature
of spacetime itself radiate energy at the speed of light. Despite seeming exotic when they
were introduced, black holes were subsequently found in the sky by astronomers during
the 20th century [6], and it is almost taken for granted now that there is a supermassive
black hole at the centre of most galaxies. More recently, gravitational radiation from black
hole mergers—where two black holes collide—has been detected by the gravitational wave
interferometers of LIGO [7], 100 years after Einstein’s prediction. We also have our first
“photo” of a black hole, from only 2019 [3].

GR is a non-linear theory and the modelling of waveforms from binary black holes
is usually done numerically, with significant effort, and requires much computing power.
The existence of analytic approximations to gravitational waves is unusual, and interesting
especially as it can serve to develop physical intuition as well as to compare with numerical



results in situations where we have access to both. Some early work of my PhD related to
the development of analytic approximations to gravitational waves; this work is presented
in Chapter 3.

The remainder of this thesis focuses on cosmology, the name given to the study of
the history and large-scale structure of our universe. As well as the developments in
astrophysics precipitated by GR as described above, GR has allowed the field of cosmology
to have a mathematical foundation for the first time. We can write down a metric for
the spacetime of the universe and use the Einstein equations to understand its behaviour.
GR, along with the developments in particle physics of the 20th Century, has allowed
us to build precise, quantitative models that describe our universe. The simultaneous
developments in observation and instrumentation have allowed us to test those models
quantitatively. In particular, the detection of the cosmic microwave background (CMB)
radiation in the 1960s [9] and its fluctuations in the 1990s [10] have allowed us to see
light that last interacted with matter when the universe was around 380,000 years old.
We now have full-sky maps of the CMB temperature on arcminute scales from the Planck
satellite [11], and the CMB remains most our most important probe of early-universe
cosmology.

These developments in observational cosmology have led to a widely accepted model
for the universe that we live in: an expanding spacetime, filled with radiation, matter, and
“dark energy”. Most of the matter is “dark” matter—where by “dark” we mean it does
not interact with the electromagnetic force, and so we cannot see directly any of its effects;
however, it interacts gravitationally and accounts for the strong gravitational fields we
observe that cannot be due to the visible matter alone. Observations indicating that the
universe’s expansion has recently started to accelerate have motivated the inclusion of the
dark energy component, represented by A. The name we give to this cosmological model
is ACDM, with “CDM” standing for “cold dark matter”. This theory describes much of
what we observe, including the fluctuations of the CMB and the clustering of matter on
large scales, with only 6 free parameters, that can be measured precisely by comparison
with data.

In the coming decade and further, we will continue to improve the observations we
make of the CMB. Higher resolution CMB maps are being made already by the Atacama

Cosmology Telescope (ACT) [12, 13] and the South Pole Telescope (SPT) [14, 15]; soon
the Simons Observatory (SO) [16] will make high resolution maps on large fractions of the
sky, and CMB-S4 [17] will improve even further on this. The smaller angular scales we will

access with these experiments will probe a new regime of CMB physics: that where CMB
secondary effects, processes that have changed the CMB in the late universe, dominate over
the primary properties that it had upon its release. For example, the scattering of CMB



photons from electrons in the late universe, known as the Sunyaev—Zel’dovich (SZ) effect,
starts to become important, and so does gravitational interaction between CMB photons
and large masses that caused the CMB to be lensed. These effects contain information
about the distribution of electrons and masses that cause them, which can be accessed
through the CMB map. In this regime, the CMB starts to be a late-universe probe, from
which we can learn about the large scale structure of the universe today and its recent
evolution.

Measuring and interpreting these secondary effects is a key goal of the upcoming CMB
surveys. In particular, high-resolution CMB maps can used to directly map the intervening
matter responsible for their lensing, and the SZ effects can be used to map the electron
distribution of the late universe. These will have many potential applications, both on
their own, and in combination with each other and other late-universe probes. However,
a detailed understanding of the signals will be required to achieve these potentials. Much
of the work presented in Part II of this Thesis concerns work towards the modelling and
applications of these probes.

One late-universe property of relevance is the cosmic infrared background (CIB), a
diffuse background which is sourced by the thermal radiation from small dust particles
in unresolved star-forming galaxies. As a tracer of these distant galaxies, the CIB is
an interesting cosmological probe that contains information about the clustering of these
galaxies. The CIB also contains information about astrophysics, as the star formation rate
of galaxies is correlated with their dust content and hence their infrared emission. Also, the
CIB is important to consider in high resolution measurements of the CMB: on the smallest
scales accessed by SO and CMB-54 it will be brighter than the CMB and its separation
will be important to make clean CMB maps. Modelling of the CIB is considered explicitly
in this thesis; the work presented in Chapter 7 shows how CMB lensing mass maps can
be combined with CIB maps to learn directly about the CIB and improve on current CIB
models.

The CIB is also considered in Chapter 8, this time as a cosmological probe that can
be combined with the SZ signal from a CMB survey. In particular, the kinetic SZ (kSZ)
effect is sourced when CMB photons scatter off of a moving electron, and the kSZ signal
we receive contains information about the distribution of electrons and also about their
velocity. Through the cross-correlation of the kSZ signal with another density tracer,
a map of the large-scale electron velocity field can be made, turning the small-scale SZ
signal into a large-scale probe, which contains information about the primordial universe.
In Chapter 8 we show how the CIB can be used as this density tracer and how we can
measure the velocity in this way with upcoming experiments.



The final two chapters of this thesis, Chapters 9 and 10, concern the effects of baryons on
CMB lensing. In particular, our current models of the clustering matter neglect to include
complicated effects due to star formation, gas cooling, and feedback induced baryons—ie,
the “ordinary” matter such as protons, electrons, and neutrons. We quantify explicitly
in Chapter 9 how this will bias measurements of the neutrino mass from CMB lensing
maps, which is an important goal of these upcoming surveys. We present several ways to
avoid these baryonic effects to achieve a clean measurement of the neutrino mass. We also
consider in Chapter 10 how these effects will bias measurements from the CMB itself, and
again show how they can be avoided.

This body of this thesis is presented in two parts. Part I focuses on gravitational waves,
with Chapter 2 serving as an introduction of the theory of gravitational waves and black
holes, and 3 representing work done early in my PhD to find analytic approximations to
gravitational waves in certain configurations. Part II focuses on topics related to cosmology.
The first three chapters of this Part serve as backgrounds and summaries of theory found
that can be found in various textbooks or review papers. We begin with an introduction
to the modern theory of cosmology and perturbation theory in Chapter 4, followed by an
introduction to the halo model used to model various observables in Chapter 5. Chapter 6
introduces the likelihood and Fisher formalism used for forecasting errors on parameters
inferred from future experiments. We then present the original work done during the latter
half of my PhD: in Chapter 7 we discuss the potential of upcoming CMB lensing surveys
to improve constraints on CIB models; in Chapter 8 we present an estimator that will
extract the large-scale velocity field of the universe from the combination of the small-scale
CMB and CIB maps; and in Chapters 9 and 10 we discuss late-universe effects on CMB
lensing models and mitigation of modelling uncertainty to constrain fundamental physics
parameters in unbiased ways, with Chapter 9 dealing with inference from CMB lensing
mass maps and Chapter 10 dealing with inference from lensed CMB maps.

All CMB and linear matter power spectrum calculations throughout are done with
CAMB! [15].

1.1 Conventions and notation
The following conventions are used throughout the thesis.

e A (—,+,+,+) signature for the spacetime metric.

http://camb.info


http://camb.info

Greek indices (eg p,v) refer to 4-dimensional (spacetime) quantities; Latin indices
(eg i,j,k) refer to 3-dimensional spatial quantities. The spacetime dimensions are
indexed by (0, 1,2, 3) and the spatial ones by (1,2,3). The Einstein summation con-
vention is assumed, whereby upper and lower repeated indices are summed over:
'z, = Zi:o a#z,. Greek indices are (raised) lowered with the 4-dimensional (in-
verse) metric (¢") gt 2* = ¢"xy, T = G’ 9"“gor = 0¥ where 8% is the identity.

Spatial 3-vectors and angular 2-vectors are denoted with bold text and an over-arrow,
eg k, &, a. Unit vectors are denoted with bold text and a hat, eg n.

Partial derivatives with respect to a coordinate x® are denoted 0,.

Covariant derivatives with respect to a coordinate x® are denoted either by V, or
with a subscript .,.

For all Fourier transformations,

B(F) = [ dxe ) (1.1)
3 L o —

d(x) :/ d k3eik'x®(k). (1.2)

(2m)

For all spherical harmonic expansions,

oo m={
S(R) =D bumYim(R) (1.3)

(=0 m=—
o = [ ERY (@)o(), (1.4)

where the Yy, are the spherical harmonic functions which satisfy the 2-dimensional
Laplace equation on the unit sphere (and * refers to complex conjugation). The Y,
are normalized as follows:

/ PR (R)Y5 (1) = Gy (1.5)
Subscript Os refer to quantities at the present day, eg Hy is the Hubble parameter
H(t) today.
Superscript Os refer to initial conditions, ie @y is the value of ® at ¢t — 0.

Superscript ) refers to background quantities, eg p() is the background (homoge-
neous) density; while dp is the perturbation.
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Exact Gravitational Wave Signatures
from Extremal Black Holes



Chapter 2

Gravitational waves and black holes

The theory of General Relativity (GR) had not long been introduced before it was realized
that it admits wave-like solutions in the vacuum. In this Chapter we will introduce the
basics of the linearized gravity that results in this conclusion, and in particular present
the quadrupole formula for gravitational radiation. We will also present some common
black hole solutions that are relevant for Chapter 3. As a very basic introduction to GR,
various of the concepts introduced in this Chapter will be relevant for the cosmological
perturbation theory discussed in Part II of this thesis.

The Chapter is organized as follows. In Section 2.1 we present the central equations
of GR, the Einstein Equations. In Section 2.2 we present the Einstein Hilbert action,
from which the Einstein equations can be derived. In Section 2.3 we present the geodesic
equation, the equation for the worldline followed by all particles moving under the influ-
ence of gravity alone. In Section 2.4 we linearize the Einstein equations and present the
“quadrupole formula” for gravitational radiation. Finally, in Section 2.5 we present various
basic black hole solutions.

2.1 The Einstein equations

The idea of GR is that spacetime is a curved manifold with a metric g,,, where the curvature
of the spacetime and the distribution of stress-energy are related by the Einstein Equations,

G = 81GT), (2.1)



where G, is the Einstein tensor

1
G;w = R,uu - §Rg,u1/ (22)

with R, the Ricci tensor and R the Ricci scalar. R, and R can be obtained from the
Riemann tensor according to

R,ul/ = Uual/;
R =R",.
The Riemann tensor R’,,, can be calculated from the Christoffel symbols

Ryo = 0,1, — 0,10, + 10T —T0 T, (2.5)

where the Christoffel symbols I'g can be calculated directly from derivatives of the metric
ga)\

5y = 75 059x + 019x5 — 0r955) - (2.6)

In Equation (2.1), G is Newton’s gravitational constant, which describes the strength of
the gravitational interaction.

2.2 The Einstein—Hilbert action

The Einstein equations are derivable from extremizing an action known as the Einstein—
Hilbert action. It is given by

1
SEH = — R\/ —gd4x, (27)
8t

where R is the Ricci scalar and g is the determinant of the metric g = det g,,.

2.3 The geodesic equation

Objects experiencing no external forces follow geodesics —the “shortest paths”—in the
spacetime. That is, their worldlines obey the geodesic equation
P, da® da?
+ _— =
dx2 P dN dA

(2.8)
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where z# represents the spacetime coordinates of the object’s path (its “worldline”), and
A is an affine parameter that parametrizes its path.

There are three types of geodesics: those on which the interval ds* = g, dztdz” is
greater than, less than, or equal to zero. Physical particles are constrained to travel on
time-like geodesics, for which ds®* < 0. Light travels on light-like geodesics, for which
ds* = 0. Paths along space-like geodesics, for which ds? > 0, are unphysical. This can
be restated as a constraint on the object’s 4-velocity u# = %: for light-like geodesics
uu, = 0 and for timelike geodesics u#u, = —1, where ¢ is the proper time along the
particle’s trajectory.

2.4 Linearized gravity and wave solutions

The vacuum Einstein equations are given by Equation (2.1) with 7}, = 0:
G =0. (2.9)

Given a solution gg]y) of the Einstein equations—such as the Minowski metric 7,,,, which is

a trivial solution to the vacuum equations—one can perform perturbation theory around

gfg,) to find the behaviour of any perturbation, for example

Guv = N + huu (210)

where |h,,|< [1]. To linear order in perturbations, the Einstein tensor for (2.10) is

1 _
Gy = = 5020 Ty (2.11)

where BW is the trace-reversed perturbation Buv = hy — "g”h with A the trace of hy,, ie
h = h*,, and where h,,, is in the Lorentz gauge

Doh™ = 0. (2.12)

In a vacuum, the Einstein equations are G, = 0; for Equation (2.11) this permits wave
solutions B .
Ry = Re [A, e ] (2.13)

where k¢ is a null vector, ie £k, = 0; and it is orthogonal to A,,, ie k,A4,% = 0.



If there are perturbations also to the stress-energy, then the Einstein equations require
G,, = 8rG1T,,, where T, are these perturbations. The solution to this, given Equa-

uvs
tion (2.11), is
Pl,8) = e 4,0 @) (2.14)
LX) = ———=q. (% .
g sRape |,
where R = |# — &'| and ¢, is the mass quadrupole tensor
G =3 / TOxHa” dPa:; (2.15)

the derivative is calculated at the retarded time t,.s =t — R.

From (2.15), we can see that a configuration with a time-varying quadrupole causes
gravitational waves at a distance.

2.5 Black hole solutions

Black hole solutions are solutions to the Einstein equations in which there is a region of
spacetime in which no time-like or light-like geodesics reach the “asymptotic infinities” of
the spacetime. As such, there are no physical paths to leave these regions, even for light.
As black holes have been detected in our universe, they are important astrophysically as
well as being extremely interesting due to their non-trivial causal structures.

2.5.1 Stationary solutions
Schwarzschild

One of the simplest solutions to the vacuum Einstein equations is the Schwarzschild solution

1
f(r)

where f(r) = ( — M), M is the mass of the black hole, and d2? is the standard 2-sphere

T

metric dQ? = df? + sin® 0dp?. f(r) = 0 defines the presence of a horizon in the spacetime,
inside of which no physical matter can leave.

ds* = —f(r)dt* + dr® + r*d§Q)? (2.16)
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Reissner—Nordstrom

The Einstein equations can be supplemented with the Maxwell equations for an electro-
magnetic field potential A, with field strength

F,=V,A -V,A, (2.17)
where V, is the covariant derivative; the Maxwell equations are

P =0 (2.18)
Fluva) =0 (2.19)

where the square brackets [] indicate that one should antisymettrize the enclosed indices.
The combination of the Einstein equations and the Maxwell equations are the Einstein—
Maxwell equations; they admit a black hole solution known as the Reissner-Nordstrom
(RN) solution which takes a similar form to (2.16) but with

fr)=1-=—+= (2.20)

where @) is the charge of the black hole. The electromagnetic field is given by

. Q
A=<t (2.21)

Note that () < M, and black holes with () = M are referred to as “extremal”.

Kerr

It is important to note that astrophysical black holes are not expected to have a significant
electromagnetic charge ); however, they can have non-zero have angular momentum, in
which case the spherically-symmetric solution (2.16) is not appropriate. In this case, the
Kerr metric

A : 20 2
ds* = —= (dt — asin’ 9d¢)2 + sm2 ((r* +a®) do — adt)2 + 'Ozdr2 +p%do?  (2.22)
p p
with
p* =r® + a® cos® b; (2.23)
A =r* — 2Mr + d?, (2.24)
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where a = % is the angular momentum per unit mass, is a solution that is expected to
be a better description for astrophysical black holes; it can also be generalized to include

non-zero charge, in which case it is known as the Kerr—Newmann metric.

The black hole solutions introduced in this Section are all stationary, and as such
they do not have any time-varying quadrupole and do not emit gravitational radiation. To
achieve a time-varying quadrupole one typically considers binary systems, whereby two (or
more) black holes rotate around each other, losing energy (which is emitted as gravitational
radiation) and eventually colliding. This is the sort of system that has been observed in
the gravitational wave mergers detected by LIGO, and in general they are not analytical
solutions but instead must be evolved numerically on a computer with great effort.

Multi-black-hole solution: Majumdar—Papapetrou

While the above solutions have all been for single black holes, Majumdar and Papapetrou
introduced a multi-black-hole extension to the Reissner-Nordstrom solution where all the
black holes are extremal and with the same sign charge, and the gravitational attraction
is “balanced out” by the electromagnetic repulsion; thus this remains a static solution.
This solution will be presented in the following Chapter, and is the basis for the system
we consider.

12



Chapter 3

Dilatonic imprints on exact
gravitational wave signatures

3.1 Introduction

The great discovery made by LIGO on September 14, 2015 [7] provided the first direct
confirmation that strong gravitational waves are emitted in the process of the coalescence
of two black holes. The detection of a neutron star-neutron star collision [19], has also
marked the beginning of the age of “multi-messenger astronomy” where we can “see” an
event both in electromagnetic (EM) detectors and in gravitational wave detectors.

To understand a black hole merger (or scattering) and the associated emission of grav-
itational waves is a complicated problem in which strong field dynamical effects play an
important role. For this reason, there is little hope for attacking this problem exactly, and

various approximations [20] and/or numerical studies [21, 22, 23, 2] have been considered;
for example, a number of analytic predictions of gravitational waves have been computed
within the Post-Newtonian (PN) approximation (see e.g. [20] and references therein).

In this chapter we calculate the gravitational wave signature of two colliding black
holes surrounded by a dilatonic field. Such a problem was recently studied numerically for
weakly charged black holes where the dilatonic field vanishes at infinity [25] and in the PN
approximation for non-vanishing asymptotic values of the dilaton [26] (see also [27] for a
discussion of collisions of dilatonic black holes with angular momentum).

We study this problem from a different perspective, analytically calculating the grav-
itational wave signature in an approximation that is applicable in the strong field regime

13



and for any black hole mass ratio. To carry out this procedure it is necessary that the
two black holes be extremally charged and that the system evolve adiabatically, through a
series of approximately static configurations — the so called moduli space approximation
(MSA) [28, 29]. We thereby generalize recent results for the Einstein-Maxwell case [30)],
finding imprints of the dilatonic field on the gravitational wavefront. As we shall see, such
imprints depend crucially on the value of the dilatonic coupling constant a. Interesting
analytic results can be obtained at least in two cases: i) (low energy) string theoretic black
holes, characterized by a = 1, for which there are no coalescence orbits and only a memory
effect is observed; and ii) an intermediate value a = 1/+/3 of the coupling. We show that
the late-time wavefront in the latter case becomes exponentially suppressed, in notable
contrast to the polynomial decay in the case without a dilaton [30].

The outline of this Chapter is as follows. In the next Section (Section 3.2), we review
the evolution of a black hole binary system in the MSA in Einstein—-Maxwell theory. Fol-
lowing [30], the corresponding gravitational wavefront is calculated in Section 3.3. The
main results of the chapter are gathered in Section 3.4 where the dilatonic case is studied.
We conclude in Section 3.5.

3.2 Black hole merger in moduli space approximation

To describe a black hole merger in the MSA in Einstein—-Maxwell theory, we start with
the static multi black hole solution due to Majumdar and Papapetrou (MP) [31, 32]. The
MP solution represents a static configuration of n extremally charged black holes, each of
mass m; and position &;; for n = 1 it reduces to the familiar extremal Reissner—Nordstrom
spacetime. The solution reads

ds® = —p2dt* + *dE - d, (3.1)
A=—(1—yHdt.

Here, A is the Maxwell vector potential, and the metric function 1 is given by
p=14+> —. (3.3)

In what follows, and in Equation (3.3), we often write d& - d% = dr* + r*dQ?, with r =
V& - & = |&|. We also have r; = |7;|= |& — &;|.
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The MP solution is static. To describe a dynamical system, we promote the black hole
positions &; in (3.3) to functions of time, &; = &;(t), and further employ the MSA, requir-
ing that the system moves through configurations with small velocities, always remaining
approximately static. This amounts to perturbing the solution and treating the black holes
as slowly moving. To second order in velocities one obtains the moduli space metric, in

which the motion of black holes is geodesic [28, 29]. In particular the following Lagrangian
1 — —
L= 5:“7(7012) v-v (34)

describes the centre of mass motion of two black holes, with the centre-of-mass motion

subtracted. Here M = m; + my and p = 72 are the total and reduced black hole

— — — — dr . . .
masses, and 7,, = &1 — ¥z and ¥ = —2 are the relative black hole separation and velocity.

The conformal factor v(r,,) takes the form

M\?®  2uM>
=|14+—) — . 3.5
i) = (155 ) =23 (3.5)
The approximation holds for [29]
Zwﬁ» V2, (3.6)

where v, is the absolute value of the velocity at large 715, and so will certainly break down
in the final stages of the black hole coalescence, although note that by choosing small v
we can get arbitrarily close to the complete merger.

All we have to do to study the black hole merger or scattering is to solve the equations
of motion
de,, bV

_ =0 3.7
&t ) (3.7)

(dd_t> ’ v<°°> (mbj)ri “1) =0 (38)

that follow from (3.4). Conservation of energy £ = %M v% and angular momentum [ = buy,
follow straightforwardly, with v, the relative velocity at infinite separation of the black
holes, and b the impact parameter. Without loss of generality we can confine the motion
to a plane ¢ = 7 due to the spherical symmetry of v(r,).

These equations of motion allow for both coalescing and scattering orbits, depending
on the value of the impact parameter: if b > b , scattering will occur, and for b < b
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there will be a merger. For any mass ratio, b.; is obtained by computing the degenerate
positive root in the effective potential in (3.8), yielding

203

crit b2

3 \/g crit

M for equal mass black holes.

M +2uM> =0, (3.9)

343

which becomes beiy = =5

There are two limiting cases of physical interest for which trajectories can be found: i)
r,, > M when the black holes are widely separated (corresponding to early times of the
interaction, t — —oo, or late times of the black hole scattering, ¢ — 4+00) and ii) r, < M
for late times for black hole coalescence.

In the first regime, Equations (3.7) and (3.8) become (using an overdot to indicate
differentiation with respect to t)

, 3 : buo €2
where e = M /r,, < 1, yielding
3
7nlzearly/laute = :Fvoot - iMlOg(:F’Uoot/TO) s
b
¢12early/late = _r.ot + ¢120 ) (311)
For late time coalescing orbits, equations (3.7) and (3.8) read
. V€2V M ¢ buso€ (3.12)
Ty = ——F— =i o :
12 \/m Y 12 M(M _ 2“) )
where now € = r,, /M < 1, giving
AM2(M — 2p) 4b
715 coalescing — UgotQ y ¢1200alescing = _r.ot y (313)

disregarding the integration constants.

These simple expressions will allow us to find analytic approximations for the early-
and late-time radiation. For the ‘intermediate times’ we shall solve Eqs. (3.7) and (3.8)
numerically, to plot the trajectories for various values of b. We depict the solutions in
Figure 3.1, which provides an illustration of trajectories just above and just below the
critical impact parameter for a collision.
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Figure 3.1: Black hole trajectories for a = 0. Trajectories are illustrated for equal
mass black holes and various impact parameters. In red we have plotted a head-on (b =
0) collision. The blue solid line corresponds to a slightly-below-critical collision: b =
0.999D.,3y = 2.36 M, whereas the black dashed line to a slightly-above-critical scattering:
b= 1.01buix = 2.39M. We set up the two near-critical collisions with otherwise identical
initial conditions. Recall that b.y = %M ~ 2.367M.
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3.3 Gravitational radiation to leading order

Following closely the discussion in [30], let us now study the gravitational radiation from
the binary black hole system described by the moduli space approximation.

To leading order, gravitational radiation experienced by an observer at radial coordinate
r is given by the quadrupole formula

rr_ 2 &

= dt?QTT : (3.14)

tret

Here, h is the metric perturbation describing the gravity wave, () is the mass quadrupole,
TT denotes the transverse-traceless projection, and ¢, = t — r is the retarded time. For
a metric such as (3.1), it is easy to read off @ due to its asymptotically Cartesian mass-
centred form (see Section XI of [33] for a definition of this form). In the centre of mass
frame, the expansion of g, gives

2M  3M?  AMP  pr? 6w 2 ; _ 1
Gu=—l4——+— =+ ?(62%2}/22— §Y2°+e”’12Y2 2)+O(F>’

(3.15)

where the mass quadrupole moments Is,, are

2 .
Iy1 = 24/ %Mﬁiemm ; (3.16)

@ 2

_[20 =—4 1—5MT12, (317)
obtained by comparing with equation (11.4a) of [33]. The transverse traceless projection
of Q7T is

1 .
Q™" =~ (g —2Yao + Lo —2Ya0 + I3 Y2 _5) ég + c.c., (3.18)

4

where c.c. stands for complex conjugate, ég is the circular polarisation tensor

sy =
GR—\/E(
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and _,Y},, are the spin-weighted spherical harmonics of spin-weight —2:

1 /5 4 0
= 2 (5))
1 /15
,2}/20 = Z % Sil’l29,
1 /5 ., 0
_2}/2_2 = 5\/j€_22¢ Sin4 <§> . (320)
T

(0, ¢) are the angular coordinates of the observer. To simplify matters, we can choose an
observer on the north pole (6, ¢) = (0,0) (so _2Y20 =0 = _2Y5_5) and

2 d2 —2ip12\ 2
RTT = Vo di? (r? e ?12) ép + c.c. (3.21)

All that remains to calculate the gravitational radiation is to solve (3.8) for r,, and ¢,,.
This can easily be done numerically, or, for early and late times, analytically, using the
results of the previous section. Using (3.11) we find

2002 3 M .
hZaj;ly/late \/_MUOO (1 + 5—) 672“1)12 éR + c.c., (322)

where the upper/lower signs correspond to early/late time scattering orbits. As noted
in [30], (3.22) provides a clear illustration of the gravitational memory effect: h™™ takes
different values at early and late times and we have

202 | ”
AhTT _ \/_/;UOO <6—21¢{2 _ 6_22(]512) éR + c.c., <323)

where (b; and ¢{2 are the respective initial and final angular separations. For coalescing
orbits at late times (3.13) we recover

LT B 160V 2 M*(M — 2p)

coalescing

2
—2i¢12 5

e er + c.c., 3.24
rtévd, R ( )
and we note that, at late times of a coalescence, the t-dependence of ¢15 is too small to
appear at this order in A*7. Note also the ¢~ fall-off, characteristic for Einstein-Maxwell
theory. As we shall see in the next section, this becomes very different in the presence of
a dilaton.
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The h{T signatures can be seen in Figure 3.2, where we have plotted the numerically
calculated signatures for orbits with impact parameters b = 0, b = 0.999b.,;;, and b =
1.01be5. See also Figure 3.5, where we plot the logarithm of the numerically calculated
wavefront for a head-on and a near-critical merger and include the early- and late-time
analytic expressions for comparison purposes; the analytic predictions are followed closely.
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Figure 3.2: Gravitational wave signatures for ¢ = 0. We have plotted the hl”
wavefronts for the three different orbits depicted in Figure 3.1. The top graph illustrates
the wavefront emitted upon the head-on (b = 0) merger, the middle graph the wavefront
emitted upon the below-critical coalescence, and the bottom graph the wavefront emitted
upon the scattering interaction.
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3.4 Coupling to a dilaton

Let us now consider the following generalization of the Einstein—-Maxwell theory |

, 35]:
S = / d'zv/=g (~R+2(V¢)* + e 2?F?) (3.25)

with ¢ a dilatonic scalar field and a the corresponding coupling constant. This action
describes a broad range of fundamental theories: a = 0 yields Einstein-Maxwell theory,
a = 1 gives the low energy action of string theory, and a = v/3 corresponds to KaluzaKlein
theory. The corresponding static multi-black hole solution [36] is given by

2

2 _2
ds? = — o TR+ T A - dE

1 2a2
A= ———pldt, e 729 = pl+" . 3.26
—; (3.20)
where n
m;
=1+ (14 a? —, 3.27
ve=1+(1+a) 30 (327

i=1
and reduces to the MP solution (3.3) for a = 0.

In order to find the quadrupole moment for this metric, we need to perform an expan-
sion of g4, similar to (3.15), obtaining in general a-dependent coefficients of expansion.
The structures of equation (3.26) and (3.27) ensure that the quadrupole moments are
a-independent and are still given by (3.16) and (3.17).

Let us now promote the static metric to a dynamical setting, using the MSA approx-
imation. The corresponding moduli space metric for general a [37] yields a description of
the motion of two black holes via the Lagrangian (3.4) where now!

3 — CL2 3 - 2(117:22) ’Fl . ’FQ
i) = L+ M) [ daa )T (3.28)
with the integration variable & = 7| — 75 and is non-trivial to integrate for generic a.
Of course, for a = 0 we obtain (3.5). For the Kaluza Klein case, a = /3, the moduli
space metric vanishes and there is no interaction between the black holes at this order of
expansion—to get non-trivial results one would have to go to higher order in velocities.

Note that this reduces to equation (IV.9) in ref. [26] for the weak field 1, — 1 approximation.
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In what follows we focus on two cases where we can perform analytically the integration
in (3.28): the string-theoretic case a = 1 for which [37]

2M
7a:1 = 1 + 9 (329)

12

and the case a = \/Lg, where we find

M 2M 2) | (3.30)

=14+ (—+
Ta=J5 3 <7“12 3r2
Note that these are both independent of u, in contrast to what happens in the Einstein-
Maxwell case. In other words, in our approximation and for these two special cases the
gravitational wave signature will only depend on the total mass of the system but not on
the binary mass ratio.

3.4.1 String theory black holes: a =1

When a = 1, ¢ does not contribute at all to the integral in (3.28). Interestingly, there is
no value of b for which the black holes merge. At least within the MSA, all trajectories are
scattering, including the head-on collision [37] (although it is not unreasonable to suspect
that mergers could happen when the approximation is taken to higher order in v?). As
such, no oscillatory waveforms exist, and we only observe a memory effect, according to

b
¢12 early/late — _?.ot + ..., (331)
le early/late = :FUOOt - Mlog (ZFUOOt) + R (332>
and so S
2 M )
hg;fly/late = /;UOO (1 + m) 6_2Z¢12éR +c.c.. (333)

The memory effect can be seen in Figure 3.3.

3.4.2 Intermediate coupling: a = -

V3

Fora = \/ig the p-independence of y(r,,) in (3.30) implies that wavefronts emitted by binary
pairs of arbitrary mass ratio yield the same gravitational wave signature, albeit rescaled
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Figure 3.3: The memory effect for a« = 1. For this case there are no merging orbits
and no oscillatory behaviour in hT7. However we do see very clearly a memory effect.

by p; this is not true for a = 0, for which the equations of motion explicitly depend on pu.
The critical impact parameter by iS berit = =M.

3
Using (3.30) to solve (3.8) yields

4M
T'15 early/late = FUsolt — ? 1Og (:Fvoot) + ..., (334)
b
¢12 early/late — _@ +.. (335)

for the separation at early and late times, when r,, > M. Hence

pIT _ V22 (1 + 4 M

early /late r 3 vt

) e H12én +coc.. (3.36)

For coalescing orbits at late times we find

3q Voot
715 coalescing = T0 exp(_l_ﬁﬁ) s (337)
9 bust
¢12 coalescing — EW + ... 5 (338)

where 7 is the separation at some ¢y, and we abbreviated ¢ = /16 — 962/ M? ; in particu-
lar, note that ¢,, is no longer small at late times. This implies an exponentially decaying
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Figure 3.4: Gravitational wave signatures for a = \/Lg We plot here graphs analagous
to those in Figure 3.2. The top graph illustrates the wavefront emitted upon a head-on
collision (b = 0), the middle a sub-critical case (b = 0.999b.;; = 1.332M), and the bottom
a scattering event (b = 1.01b.,; = 1.34667M ). The inset in the middle depicts near-critical
coalescence to make the exponentially decaying behaviour more explicit.

signature:
9 uv2riv? . 3 Vool ,
TT _ 7 0%o (012 — 9p2 M (__oo M >A
hcoalescence 64  rMA (8 90" + 3ib Q) exXp ] M2 ( q-+ 3Zb) €r + c.c

(3.39)

We show the logarithm of the wavefront of coalescing orbits for different values of b
in Figure 3.5(b), where the b-dependence of the fall-off is seen. The exponential fall-off
behaviour is also clearly shown, in contrast to the =% behaviour evident in Figure 3.5
(a) for the Einstein—Maxwell case. Note that the electromagnetic radiation would also be
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Figure 3.5: Comparison of analytic expressions with numerical results. Left:
a=0. Right: a = \/Lg
Above we have plotted the behaviour log(’h£T|) as a function of time for head-on and
below-critical collisions, with the numerically calculated solution in red and the analytical
predictions for large and small ™ in black. On the left is @ = 0 and on the right is
for a = \/ig We notice a numbelr2 of things on the log plot that are difficult to see on
the previous graphs: the % for a = 0 behaviour can be directly contrasted with the e~

behaviour for a = \/Lg We also notice the lack of b-dependence for the a = 0 case, as

predicted, and the obvious b-dependence for a = \/ig

expected to have an exponential fall-off, as it takes a similar form as gravitational radiation

(see [30]).

3.5 Conclusion

The presence of a dilaton can make a significant imprint on the gravitational waveforms
emitted in black hole collisions and scattering events. By analytically computing expres-
sions for the gravitational wavefronts emitted by the collision of two extremally charged
dilatonic black holes, we have been able to compare the general relativistic (Einstein—
Maxwell) wavefronts with those occurring in a string-theoretic case (¢ = 1) and a more
general dilatonic theory (a = 1/4/3 ). In the latter case the gravitational waveforms are
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exponentially suppressed in time, whereas in general relativity the wavefronts decay with
t=5. However the gravitational memory effect for scattering is the same for all values of a,
including the a = 0 Einstein-Maxwell case.

Our results complement those of recent studies of dilatonic black hole mergers [25, 20],
and illustrate a qualitative difference between cases with and without a dilaton.

It would be interesting to develop this technique to spacetimes with general coupling
constant a between the dilaton and the Maxwell field as we have only been able to do this
so far for the specific values of a = 0, \/Lg, 1,v/3; we leave this question for a future study.
Likewise, more detailed studies of non-extremal dilatonic black holes over a broad range of
parameter space need to be carried out to see where the most interesting phenomenological
possibilities lie.
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Part 11

Cosmology from CMB secondaries
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Chapter 4

Background cosmology, perturbation
theory, and power spectra

Much of what we understand about the evolution of the universe comes from linear per-
turbation theory, whereby the Einstein equations are used to evolve a perturbed FLRW
(Friedmann-Lemaitre-Robertson—Walker) metric in the presence of scalar perturbations.
In this Chapter, we discuss the zeroth order dynamics of our universe, and use perturbation
theory to describe the various observables we see.

The Chapter is organized as follows. In Section 4.1 we introduce the FLRW metric
and the theory that describes the history of our universe’s expansion. In Section 4.2
we give a qualitative history of the thermal properties of our universe. In Section 4.3
we introduce cosmological perturbation theory. We focus first on density perturbations,
explicitly introducing the density and velocity power spectra and discussing their properties
today; then we discuss the anisotropy spectrum of the observed CMB including primary and
secondary effects. We then discuss the secondary effects in more detail, with Section 4.4
focusing on CMB lensing, and Section 4.5 focusing on the Sunyaev—Zel’dovich effects.
Most of this Chapter is a summary of standard material that can be found in textbooks;
references used in particular throughout are [33, 39, 10].

4.1 Dynamics of a homogeneous universe

The first order FLRW metric is
ds? = —dt* + a(t)*dS3 = a(n)® (—dn* + dS3) (4.1)
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where 7 is the conformal time (related to the more intuitive coordinate time t by dn = %)
and a is the (time-dependent) scale factor. dS? describes the spatial geometry of the
universe and can take one of three options:

dr?

dSz = + r?dQ)? (4.2)

r2
5
where 7y is some (arbitrary) scale radius, with k& € (—1,0,1) describing hyperbolic (open),
flat, and spherical (closed) space respectively; dQ? is the standard 2-sphere metric d2* =
df? + sin® 0dg?.

(4.1) is the most general spherically symmetric homogeneous spacetime; it is required
by the assumption of the cosmological principle which states that our place in the universe
is not special—i.e. that the universe is homogeneous and isotropic so that the it should
look the same no matter where we observe it from.

The Einstein equations
G = 81GT), (4.3)

relate the metric g, to the presence of stress-energy: the Einstein tensor G, is defined in
Section 2.1 where we first discussed the Einstein equations. T}, is the stress energy tensor
which describes the presence of any energy, momentum, or shear density.

For a perfect fluid, T},, takes on a very simple form for an observer with 4-velocity u*:
T = (p+ P)uyu, + Py, (4.4)

where p is the energy density of the fluid and P is its pressure; in particular for an observer
at rest with respect to the fluid v* = (1,0,0,0) so for the metric (4.1)

T, = (4.5)

ooo%
o o My o
ogo o
o o o

In general, the Einstein equations (4.3) for the FLRW metric (4.1), along with a relation
P = P(p) (the “equation of state”), can be solved to understand the dynamics of a and p:
relations a = a(t) and p = p(a). The Einstein equations for the FLRW metric are known
as the Friedmann equations:

k TG
H*+ = = —p; 4,
+ 5P (4.6)
a e
Z=_ 3P 4.7
=T (p+3P) (4.7)
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where the Hubble parameter H (t) = < Equation (4.6) is the ¢t component of the Einstein
a

equations, and equation (4.7) comes from the trace of the Einstein equations.
Equation (4.6) allows us to define a critical density for the universe

_ 3H?
Ye.

Pe (4.8)
(note that time dependence of H is assumed on the right hand side and so p. is a time-
dependent quantity). If the energy density of the universe p is equal to the critical density
at any time ¢, the spatial curvature k£ of the universe must be exactly 0. We can summarize
this by defining a quantity §2

p

Q o (4.9)
if 2 = 1 then k£ must be 0; 2 > 1 implies & > 0; and 2 < 1 implies £ < 0. Most
measurements of the energy density today are consistent with {2 = 1, indicating that the
spatial curvature of the universe is close to 0.

Different types of energy (ie, with different equations of state) cause the metric to
evolve in different ways by affecting the time-dependence of a; this in turn causes the
density of the respective energies to evolve in different ways with time. In particular the a-
dependence of common different forms of stress-energy (radiation, non-relativistic matter,
and a cosmological constant A) are presented in Table 4.1.

’ Energy type ‘ Equation of State ‘ Evolution of density ‘ Time-evolution of a ‘
Radiation P=1/3p poxa? a ot o1
Matter P=0 po<ca? a ot o n
Cosmological Constant (A) P=—p p x a’ = const a oc eflt

Table 4.1: The evolution of energy density and scale factor in a universe containing various
different energy components.

In general the energy density of the universe is a combination of these components:

P = Pr+ Pm + P (4.10)

where the subscripts {r, m, A} refer to radiation, matter, and A respectively. From the
properties in Table 4.1 we can understand the history of the expansion of our universe:
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given the energy densities today py = pro + pmo + pao, and defining the scale factor today
to be a(tg) = 1 we can write

p= procf4 + pmoa*ij’ ~+ pao- (4.11)

Understanding the evolution of different energy components with a leads us to the
inevitable conclusion that in the distant future (as a increases) the energy density of the
universe will be completely dominated by pa, while in the distant past it was dominated by
pr. In between there was a period of matter-domination when p,, was the most important
energy-density component. Indeed, we have only recently left this era and entered the
period of A-domination; noting the time-evolution of @ in such a universe, we see that this
is a period of accelerated expansion where a is beginning to grow exponentially (this should
be contrasted with the power-law growth of a during the time of matter and radiation
domination).

Note that we can also separate the {2 parameter into its different components:

Q=Q,+Q,+Q (4.12)
where €, = ’;—f; the energy contribution due to spatial curvature {2 can be defined as
Q) = Q — 1. This also inspires a definition p;, = %a%, ie the identification of the spatial

curvature component of the Friedmann equation (4.6) as an energy density due to spatial

curvature that evolves as a~2.

4.1.1 Distance measures

As we look far away, we see the universe as it was in the past. There are a number
of quantities we can use to measure distance (or equivalently, age), for example: the
scale factor; the coordinate time ¢; the conformal time 7 (also known as the “light travel
time”); the coordinate distance in Mpc! (“comoving distance”); the physical distance; the
redshift of a photon emitted a long time ago. These all have 1-to-1 relationships and so
are equally valid as distance measures, but in different contexts some are more useful than
others. We will discuss some of the most commonly used ones here, and they will be used
interchangeably where appropriate throughout.

LAt least in a universe that is always expanding, the coordinate distance has a monotonic relationshipw
with the other measurements mentioned; in a universe that recollapses this will not be the case.
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Physical distance and coordinate distance

The universe has not always been the same size. Two galaxies that are a certain distance
X from each other today were closer together in the past, by a factor of the scale factor a:

X(t) = a(t)y (4.13)

where x is the comoving distance (which is constant in time) and X is the physical
(“proper”) distance. As the scale factor is defined to be 1 today, the comoving distance is
given by the proper distance today. The comoving distance is the coordinate distance r,
for the coordinates (7,0, ¢) in Equation (4.1).

When we see a distance galaxy, what is the comoving distance between us and it? We
can consider the distance along which the light has travelled. Light travels along geodesics
defined by ds? = 0, so a photon travelling radially obeys the equation dt = adr = ady.
Integrating the coordinate (comoving) distance gives

dt da dt “ da
dx= | —= [ —— = —_—. 4.14
X / a / a da /0 a’H(a) (4.14)

This can be integrated with Equation (4.6), (using the expression (4.11) for p to find
explicitly H(a)), to find the relation x(a), which in general is dependent on the values of
the Pz0-

Redshift

The redshift of a photon as it travels in an expanding universe is an extremely useful
distance measure, because it can be measured directly by comparing the frequency of
photons (if one assumes that all photons of interest are the same frequency when they are
emitted).

Because the speed of light is constant, photons are redshifted in an expanding universe
as their physical wavelength increases. If a photon is emitted with wavelength A, and
observed with wavelength \,, the redshift z is defined as

Ao — A

= : 4.1
= (4.15)

With the metric (4.1) for a photon emitted at a; and observed at as it is easy to show that
a2

Za2,a1 = CL_ - 17 (416)
1
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for photons detected today we have as = 1 so the scale factor at which the photon was

emitted is given by
1

a= :

142
So, given a redshift measurement z, we can convert to a and then to comoving distance
with Equation (4.14) which is an expression for x(a).

(4.17)

4.1.2 The cosmological parameters

Our cosmological model, ACDM, has 6 free parameters which must be measured from the
data: the expansion rate of the universe today Hy, the density of cold dark matter €., the
density of baryonic matter €2, the initial amplitude of scalar fluctuations Ay, the scalar
spectral index n,, and the optical depth to the CMB 7. At times we will refer to Hy in terms
of the dimensionless parameter h through the definition Hy = 100 hkm/s/Mpc. Through-
out, we use the best-fit values of [11]: {Hy = 67.32 km/s/Mpc, Qh* = 0.022383,Q.h% =
0.12011, n, = 0.96605, A, = 2.1 x 1079, 7 = 0.0543}.

4.2 A qualitative history of the universe

Within the standard cosmological model, the universe has been expanding as described in
the previous section since ¢t — 0, perhaps preceded by a period of exponential expansion
referred to as inflation. With our knowledge of particle physics, we can describe what
happened during the expansion with much detail, at least from a time slightly after ¢ = 0.
In this Section we will briefly describe some of the important events that occured during
the expansion.

We model the universe as beginning with all the particles of the Standard Model of
particle physics in thermal equilibrium. The particles that contribute to the radiation
density p, are the massless particles; in particular, the photons (although the neutrinos also
contribute if they are massless). As the universe expands, the temperature of the photons
decreases as T' % While we have good knowledge from particle collider experiments of
the standard model interactions up to 1"~ O(100 GeV), the higher temperature regime is
beyond our models.

After the temperature reached 7' ~ O(100 MeV), we have detailed knowledge of the
interactions of the standard model and we can understand how the particles interacted
with each other. In brief, we expect that at very high temperatures the quarks and gluons
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were unconfined and the universe consisted of a quark—gluon plasma; but around this time
they became confined into the familiar protons and neutrons.

The neutrinos stopped interacting with the remaining particles when the weak inter-
action rate become lower than the expansion rate of the universe; they have been free-
streaming through the universe since then without interacting with the other particles.
Within the standard model, the neutrinos are massless, but it is known from flavour oscil-
lation experiments that they must have some small mass; when the temperature reached
T ~ M, where M, is their mass, the neutrinos started to behave as matter as opposed to
radiation, and to contribute to p,, instead of p,.

For much of the early universe, the photons and the electrons were coupled through
the Compton scattering process whereby photons scatter off of free electrons. During this
time, the mean free path of a photon was small. However, as the temperature lowered
to below the ionisation energy of Hydrogen, the electrons and the protons formed stable
atomic Hydrogen; this event is known as recombination. At this point the photons could
no longer interact with the electron-proton sector, and they have been travelling without
scattering since that time. These photons make up what is known as the Cosmic Microwave
Background (CMB), and they have temperature 7"~ 2.7K today. They contain much
information about the early universe and they have been mapped in ever-increasing detail
over the past few decades in efforts to access this. We refer to the surface that we “see”
when we detect these photons as the surface of last scattering, and it is at a redshift of
z ~ 1100.

For a long time after recombination, the atomic Hydrogen remained neutral and didn’t
interact with the photons; as we cannot see much from this time it is referred to as the
“dark ages”, although 21cm Hydrogen line intensity mapping offers a way to potentially
probe this era, by taking advantage of the low-energy photon emitted during the hyperfine
transition of atomic Hydrogen (a process which occurs at a rate of ~ 3 x 10715571 for every
atom).

As the universe was expanding, the matter was gravitationally clustering and small
overdensities were growing and becoming more dense. At some point, the overdensities
were such that the first stars formed in them, and at this point the Hydrogen gas became
reionized due to the complex interactions occuring in the baryon? sector. There were
some free electrons and a small number of CMB photons scattered off of these, a process
called the Sunyaev-Zel’dovich (SZ) effect. Meanwhile, the overdensities continued to grow
and galaxies and galaxy clusters formed. By taking galaxy surveys—mapping the angular
positions of galaxies on the sky—we can learn about the properties of the late universe.

2“Baryon” refers to all the ordinary matter: protons, neutrons, and electrons
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We can even make quasi three-dimensional galaxy surveys by measuring the redshift of
galaxies we see, either by taking “photometric” redshifts where the overall colour of the
galaxy is considered, or more precise (but more difficult) spectroscopic redshifts where the
frequency of known atomic emission lines can be measured in the spectrum of the galaxy
and compared to the un-redshifted versions.

It is important to note that most of the matter in the universe does not consist of
standard model particles, but instead some other component known as cold dark matter
(CDM). It does not interact with any other particle except gravitationally, and so does not
display the complex behaviour of the ordinary (“baryonic”) matter such as the formation
of stars and galaxies.

In the following Sections, we will introduce the cosmological perturbation theory used
to describe the evolution of fluctuations in the mean energy density. We will describe
the spectrum of fluctuations we see today in the matter density field, and in the mean
temperature of the CMB.

4.3 Perturbations

The universe is not entirely homogeneous. It contains perturbations seeded by quantum
fluctuations stretched during inflation. These perturbations are observed in both the mat-
ter density field—as perturbations to the mean density—and in the radiation field (in
particular as perturbations to the mean temperature of the CMB).

Due to gravitational instability, perturbations to the background matter density that
were initially small (~ 1075 times the mean density) have grown today to be O(1) times the
mean density, leading to the dramatic inhomogeneities we observe today like galaxies. On
the other hand, the perturbations in photon temperature 7' remain small, ~ 1075 times the
mean temperature; despite this, they have been detected and mapped extremely precisely.

While the equations that govern the evolution of perturbations—the Boltzmann equa-
tions and the Einstein equations—are generally not soluble analytically, they can be lin-
earized and evolved numerically. Thus we have precise predictions for their evolution,
which are valid in the regime that the perturbation is much less than the background
quantity. This is true for the CMB, where % < 1 and the expansion in small % is
always valid. For matter overdensities on large scales, this is also true; but on small scales
the overdensities have reached the nonlinear regime and linear perturbation theory fails.
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4.3.1 Scalar perturbations
First order perturbed metric

Density perturbations induce perturbations induced in the metric. We work in the confor-
mal Newtonian gauge, where the scalar perturbations to the metric are defined by

ds® = (— (1 +2®) dt* + (1 +20) &;a(t)*dz'dz’) . (4.18)

In this gauge, half of the perturbation to —gq, ie 59% = &, is known as the Newtonian
potential.

First order perturbed stress energy tensor

The entire expression for the first-order perturbed stress-energy tensor (4.4) includes per-
turbations to p, P, and four-velocity u*. These can be denoted dp, 0P, and du* =

(5u0, %) respectively, with u# = (1 + du®, %)
du’ is characterized entirely in terms of the metric perturbations by means of the
normalization condition w*u, = —1, so

Su’ = —. (4.19)

After imposing this, it is easy to show that the perturbation 67, =T, — T, ,58) (where the

background value is TL(L(,}), although note that this split into perturbation and background
is gauge-dependent) is

—dp a(t) (PO + p) 5
ST oP 0 0
T, = )4 D 4.20
_W O 5P 0 ( )
0 0 oP

where the first index corresponds to the rows and the second index to the columns (thus
note that §7°; # 6T%). We can relate the stress-energy perturbations to the metric
perturbations with the Einstein equations.

The density perturbations we are interested in are those of the matter distribution dp,,
and of the radiation distribution dp, (with corresponding pressure perturbation § P = 5%).
In general we can define a dimensionless overdensity d by

0Pz

0
0

Oz (4.21)

36



where p&o) is the background value of the density and dp is the (gauge-dependent) perturba-
tion. We mostly use Equation (4.21) when referring to matter overdensity, so henceforward
0 with no subscript refers to the matter overdensity.

Note that the matter overdensity is composed of the perturbation to cold dark matter
0. and to the baryon density d,. These behave qualitatively differently because 9, is coupled
to d,, while . evolves independently (other than the coupling due to gravity).

Perturbed Einstein equations

The perturbed metric and the perturbed stress energy tensor can be related with the
Einstein equations, which can be solved order-by-order. The first order Einstein equations
are

—V2U + 3a2H <\If . H(I)) = 4nGa®p,  (4.22)

%V2 (U + @) — % (U + @), + 6H*® + 40H + 2HO — 6HY — 20 = 87GSP  (4.23)
(4@ —alr) =4nGa? () +PO) o' (424)

(w4 P), = 87GOT,;  (4.25)

where V? is the three-dimensional flat-space Laplacian operator. Equation (4.22) is the
(t,t) component of the Einstein equations; Equation (4.23) is the (i, 7) component for i = j;
Equation (4.24) is the (¢,7) component; and Equation (4.25) is the (7,j) component for
i g
In the perfect fluid regime where 077 oc 8%, we have from Equation (4.25) that
U= . (4.26)

Thus Equations (4.22), (4.23), and (4.24) can be written entirely in terms of ® (after also
Fourier transforming so that V? — —k?) as

k20— 3a°H (ch n <i>> — 47Ga2p, (4.27)
b+ AHO + (3H2 + 2H> ® = 4nGSP, (4.28)
(a®,) = 4rGa® (p© + PO) v (4.29)
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Super- and sub-horizon modes and horizon crossing

Given initial conditions for § and ®, we can evolve them with the Einstein equations
through radiation and matter domination to understand their distribution today. This can
be done numerically to high accuracy, but analytic insight can be gained in some regimes
by making approximations. In particular, we can consider the large-scale and small-scale
modes separately, where “large” and “small” is meant with respect to the Hubble scale of
of the universe. In particular, modes with physical wavelength ¢ > H ~1 are large-scale
(“super-horizon”), and ¢ < H~' are small-scale (“sub-horizon”). A general conclusion is
that large-scale modes are “frozen out” and do not evolve; but, as the Hubble scale grows
faster than a during both matter and radiation domination, modes than initially start
super-horizon “cross the horizon” when HTfl ~ k and begin to evolve.

4.3.2 Power spectrum and two point function

Within the linear regime, given a set of initial conditions and their evolution equations,
we can make predictions about the observed anisotropies today. The initial conditions are
generally provided by inflation; in particular, many models of inflation predict an almost-
scale invariant distribution of inhomogeneities. Note that this is a statistical statement, in
that we do not have a prediction for the exact distribution of inhomogeneities 0(Z), but
we can say things about their statistics; in particular the mean (§(&)) and the variance
(6(€)0(&")). In the simplest case—that of a Gaussian distribution—this describes the en-
—/ =/

tire statistics of the field, as higher order statistics such as the bispectrum (6(&)d(Z')5(&")),
trispectrum, etc... are expressible in terms of the mean and the variance.

In general the mean is not an interesting quantity, as it is just one number and can be
subtracted from the quantity one is considering such that its mean is 0 by definition (this
has already been done in the definition of §). The variance (two-point function), however,
is an interesting quantity that depends in general on the vector ¥ = & — &'; this motivates
the definition of the 2-point function

(0(@)0(z — 7)) = () = £(r). (4.30)

The Fourier transform of £(r), the power spectrum, is commonly worked with as it is
diagonal in Fourier space:

—/

<5(1€§)5*(k )> — 2n)* P(k)8%(k — k). (4.31)
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Note that £(7) = £(r) and <5(E)5*(k: )> = f(k)63(k — E,) are results of the assumptions of
statistical homogeneity and isotropy. We can see that, with these definitions, {(r) and P(k)
are Fourier conjugates by explicitly Fourier transforming and evaluating Equation (4.30):

£(r) = (3(@)0(& — 7)) = < [ o meresm) [ 6_2-,;«@_?>5*(,;)>

(27?)3 (27T)3
Bk Bk ik-G—ik (&-7) [ (NS (B
-/ 2 / Pt (s()e (8
3_’ ! P = o o N i)
:/ (;l 1;:3 / @R EEE @ Pt (k- K )
T
d3I;; Z'ﬂ.F
:/(2ﬂ)3ek P(k), 432)

which is the definition of the Fourier transform (see Equation (1.2)).

In order to understand the power spectrum today, we need to understand the initial
overdensity spectrum P(k,t = 0); and how the overdensities evolved both through the
radiation dominated era and through the matter domination era. We will consider the
initial conditions in the next Section, and then consider the evolution in these different
regimes.

4.3.3 Initial conditions for P(k): inflation

The initial perturbations in our universe are thought to be seeded by inflation, whereby the
universe underwent a rapid exponential increase which resulted in initially small quantum
fluctuations being stretched to super-horizon scales. It is these quantum fluctuations which
are thought to have seeded the structure of our universe. Inflation has also been invoked
as a way of providing the “initial conditions” for the big bang framework—it also solves
various other cosmological problems, in particular the horizon problem: why do distant
parts of the universe, which have seemingly not been in causal contact, seem to have been
in thermal equilibrium in the past?; and the flatness problem: why is the density of our
universe so close to the critical density?

The inflation paradigm posits that before the radiation-domination era of the standard
“big bang” paradigm, there was a period of exponential expansion of the scale factor (this
is to be contrasted with the a o< t* growth of matter- and radiation-domination, see Table
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4.1). Exponential expansion allows for a tiny portion of the universe—which could be
in thermal equilibrium—to grow at such a rate that, when looked at today, portions of
the universe that seem extremely distant in fact used to be much closer together. This
solves the horizon problem, as it means that seemingly un-causally-connected regions of
spacetime would have been causally connected before inflation; it also solves the flatness
problem as any initial spatial curvature would have been stretched super-horizon.

Many theories of inflation predict that the universe was seeded with an almost scale-
invariant curvature spectrum

k3 Pyo (k E\™ !

where Pgo(k) is the initial spectrum of inhomogeneities in the Newtonian potential @
(note that, as we live in three spatial dimensions, P(k) oc k=2 is scale invariant). The
scalar spectral index ng quantifies the departure from scale invariance, with ngy = 1 being
exactly scale invariant. Many inflation models predict ng close to but below 1; current
constraints from the Planck satellite (which combine measurements of the CMB with other
late-universe probes) give ny = 0.96540.004 [12] (note that exact scale invariance has been
ruled out). The amplitude of scalar fluctuations Ay is the name given to the constant of
proportionality in (4.33) when the pivot scale ko is 0.05 Mpc™'; it is constrained by Planck
to be A, = 2.17003) x 107°.

Initial conditions for §: adiabaticity

To write the initial spectrum of density perturbations, we need to relate the initial matter
and radiation overdensities to ®°, for which we have the initial condition (4.33).

We can do this by noting first that all modes of interest today were super-horizon
initially, and taking the large-scale relation between ® and ¢ from Equation (4.27), which
states that

—3a*H® = 47Ga*dp; (4.34)

along with the background Friedmann equation (4.6) for p(*) we get that, on super-horizon
scales,
6PE—>0
p(©)
Initially p was dominated by by radiation so we can neglect J,, and say that the initial
condition for ¢, is exactly

— 20, (4.35)

—0°

oy = 2. (4.36)
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To get the initial condition for d, we make the assumption of adiabaticity: constant entropy
per baryon % where S is the entropy and ng is the baryon number density. This results
in the relation

3 3
60 =) = ——". 4.37
(& 4 T 2 ( )
With these initial conditions, we see that the initial matter power spectrum was scale

invariant just like Pgo(k):
9

We will see below that this scale invariance is preserved until the modes cross the horizon.

4.3.4 Evolution of density perturbations

All density perturbations that we measure today are sub-horizon, and crossed the horizon
either during radiation domination or during matter domination (neglecting the very recent
period when dark energy started to become relevant). The largest-scale modes we see have
only recently crossed the horizon, during the period of matter domination. During this
period, we can neglect radiation density and solve the Einstein equations assuming p = p,.

The radiation-domination period is more complicated, because dp is dominated by dp,
and so the Einstein equations give the evolution of §,. During this period, we can find the
behaviour of d. by using the conservation of its the stress-energy tensor 7",., = 0, which
is conserved independently of the behaviour of radiation as the CDM and the radiation do
not interact; although note that the baryon overdensities are coupled to the radiation and
so this is not true for ¢, (although during this time 7*,,, = 0 is true separately for the
radiation+baryon stress energy tensor).

Density inhomogeneities in a matter dominated universe

In a matter dominated universe, the Einstein equations are solved by
Pz(t) = By (4.39)

0p(t) = ——— "%k _ 2B, (4.40)
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where By is the Fourier transform of an arbitrary spatially varying function B(Z). Note
that there is no time-dependence on the right hand side of Equation (4.39)3: on all scales,
the Newtonian potential is constant in matter dominated universes. On superhorizon

scales, § is constant and given by § = —2®; on small scales, Equation (4.40) becomes
—3K*2/3 B,
= k. (4.41)

We see from Equation (4.41) that the small scale overdensity modes grow with time: a
gravitational instability. We also see that their spectrum is (0505 ) ~ t4/3k* <5,%(5%> =

a’k? <5%(5}%> (as a o< t*/3 during matter domination) and so modes that crossed the horizon
after matter-radiation equality obey a power spectrum

P(k,t) oc a(t)?k* Py (k,t — toy) (4.42)

where we have denoted <B,;BE/> = Pg(k,t — toq), ie the power spectrum of ® just after
matter-radiation equality. We will see below that the super-horizon behaviour of ® during
radiation domination is scale-independent, and so Pg(k,t — teq) < Pyo(k) oc k73, Thus
for modes that have crossed the horizon since matter-radiation equality we have

P(k) x k. (4.43)

The Newtonian potential in a radiation dominated universe

To understand the behaviour of CDM perturbations that crossed the horizon during ra-
diation domination, we need to solve the energy-conservation equations 7#,., = 0 for the
CDM fluid during this time. The Newtonian potential can be considered as an external
source that is unaffected by d., but it will be necessary to know how it evolves. In this
regime, ®; is solved by

V3 sin 2kVE) 2k~/t cos LY
2(t) =99 ( Vs ) ( Vs ) : (4.44)

® k QJ343/2

where CID% is its value as t — 0.

3In fact, there is another solution to & which is time-dependent and can be added to the constant
solution, but as it decays with time it is of no relevance today.
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On super-horizon scales, (4.44) is constant:

b = DY (4.45)

k—0 k—0

(this justifies the statement below Equation (4.42) that the superhorizon spectrum of @
has no scale dependence induced during radiation domination). However, once the mode
crosses the horizon - ie, kn > 1, the function (4.44) starts to decay; this is in contrast to
the matter-domination case where ® was constant both super- and sub-horizon.

CDM perturbations in a radiation dominated universe

To understand how ¢, behaved during this radiation domination, we can use the conserva-
tion of the energy-momentum tensor

T, =0, (4.46)

in the metric of (4.18) with ® obeying Equation (4.44). As the CDM and the baryon/radiation
plasma do not interact except gravitationally, conservation of T}, is true separately for the
CDM stress energy tensor—ie, the part that does not interact with radiation—and the
stress energy tensor of the fluid composed of the radiation and the baryons.

The conservation of energy-momentum leads to the following equations:

—

op op+ 6P p + PON V.o p© 4+ PO .
LY ff s -3 b =0 4.47
PO ( 0 ) * ( 0 . 0 (4.47)
1 .
V2P + =0, (a* (0 + P) V- 5) + (o9 + PO) V2@ =0, (4.48)

where Equation (4.47) is the t-component, ie the energy conservation equation; and Equa-
tion (4.48) is the spatial divergence of the spatial components, ie the momentum conserva-
tion equations (note that in Equation (4.48) d; denotes the partial derivative with respect
to the coordinate time t).

For the cold dark matter fluid, P = 0 = 6P and p® « a=3, and Equations (4.47)
and (4.48) become

) <a2 (3ci> - 5)) — B0 =0, (4.49)

One can solve this to show that the result is that the overdensity modes that cross the
horizon during the radiation era modes grow approximately logarithmically:

be ~ 62 — 98" log (kn) — 5.75@" (4.50)
where §° is their value at t — 0. Thus the power spectrum of these modes is
P(k) o< Pgo(k) (logk)? o< k=3 (log k)” . (4.51)
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4.3.5 The matter power spectrum today

The matter power spectrum today, calculated numerically with CAMB, is shown in Fig-
ure 4.1. This is of course much more accurate than the approximations we have made,
but the scale behaviour we found in Equations (4.43) and (4.51) is shown on the plot for
comparison.

On the largest scales, we see the P(k) o k dependence we expect for modes that crossed
the horizon during matter domination; on smaller scales we see the k=3 (log k)2 behaviour
we expect for modes that crossed during radiation domination. There is a turnover in the
power spectrum at the scale corresponding to matter-radiation equality, ~ 100 Mpc.

For modes that crossed the horizon before recombination, there are slight wiggles in
the power spectrum: these are baryonic acoustic oscillations (BAOs), and they result from
the interaction between the baryons and the radiation.

4.3.6 The velocity power spectrum

On sub-horizon scales, the Einstein equations (4.22) and (4.24) can be combined to give

§— v (4.52)

a

Writing 6 in terms of a growth factor such that 6(t) = D(t)dp with &y the overdensity
today, we can explicitly write
—ia 0
—D: 4.53
b, (1.53)
rearranging and switching the derivative with respect to time to one with respect to a, and
defining

v =

_dlnD

= 4.54
f= (4.54)
we can write o H

v = __Zf: (4.55)

where g is the matter overdensity today. So the velocity power spectrum is directly related
to the matter power spectrum as

P (k) = (f 2H)2 Pss (k). (4.56)
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Figure 4.1: The matter power spectrum today. The solid blue line is the linear P(k)
calculated with CAMB; overlaid are the analytical approximations P(k) o< k and P(k)
k=3 (log 1{7)2. The modes that crossed the horizon after matter-radiation equality follow
P(k) o k; the modes which crossed before follow P(k) oc k3 (logk)®. There is a peak
in between these modes corresponding to the scale at matter-radiation equality, indicated
with a vertical dashed line on the plot. Also shown for comparison is the nonlinear matter
power spectrum, calculated with CAMB using HMCode; large scales remain linear but the
smallest scales are expected to have extra power than would be indicated by the linear
calculation.

4.3.7 Anisotropies in the CMB

We can probe the perturbations in the radiation field by measuring the temperature fluc-
tuations in the CMB. There are differences, however, in how we probe the radiation field
compared to how we probe the matter field. We have some access to probes of the matter
perturbations at different redshifts to our own, by—for example—making galaxy surveys
of distant galaxies. By contrast, when we map the CMB we are measuring the radiation
overdensity at our own position and at our own cosmological time; however, there is infor-
mation in the different photon propogation directions, as they have mostly been travelling
without scattering since they left the surface of last scattering. As such, we can look in
different directions and map the photon temperature across the sky.
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When we measure the temperature, we are measuring 7'(n, Zg, ty), where n is a unit
vector describing the direction we look in; and @&y and ty describe our location in space and
time. The analogue of the power spectrum in this case is the angular correlation function
(where the & and ¢ dependence is now suppressed)

() = <§—f(ﬂ>§—f(ﬁ’>> (4.57)

where n-n' = cos ), and Tj is the mean CMB temperature. Instead of Fourier transforming
we project onto spherical harmonics:

T =3 Y anYin (@) (458)

£=0 m=—¢

This is a very convenient basis because the assumption of statistical homogeneity and
anisotropy tells us that
<azma’f’m’> = 55[’5mm’CZ (459)

where

Cy = (Jam|*) (4.60)

encodes the information about fluctuations on angular scales 6 ~ 7.

4.3.8 The Boltzmann equation

When we look at the CMB, we see photons that have been travelling without scattering
since recombination. In this regime, the fluid approximation—in which only two quantities,
the spatially dependent density and velocity fields, describe the perturbations—breaks
down. As such, we cannot use the conservation of the perfect fluid energy-momentum
tensor to describe the evolution of the radiation field since recombination. Instead, we
can use the more general Boltzmann equation, which states that for particles that evolve
without collisions
df

dt
where f is the distribution function, that gives the particle density in phase space: the
number of particles in a phase-space volume element dzd®p is

0 (4.61)

dN = f(&,p,t)d*zd’p. (4.62)
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The statement that % = 0 states that the number of particles in a phase-space volume is
conserved?.

Equation (4.61) can be generalized to allow for collisions by adding a collision term C'|[f]
on the right hand side. Prior to recombination, the photons interact with the baryons and
so C[f] # 0 and instead should describe Compton scattering. In this regime, however, the
photons and baryons act as an (imperfect) fluid, and can be described with a stress-energy
tensor T# for an imperfect fluid (a generalization of Equation (4.4) including anisotropic
stress terms on the off-diagonal spatial components) which obeys T*,., = 0°. The initial
conditions for radiation in Section 4.3.3 can be evolved with these equations to find a
distribution for the radiation overdensity at recombination t,.

To understand how these overdensities propogate towards us after recombination, we
can write down the Boltzmann Equation (4.61) in the perturbed FLRW metric (4.18). The
distribution function of the photons is Planckian:

[(Z,P,t) = — . (4.63)

To zeroth order T is homogeneous and decays with time according to T é The

perturbed distribution function is

F(@,5.) = - (4.64)

To+ AT(&,p,t) _ 4

where Tj is the background quantity. AT is dependent not only on & but on the photons’
direction of propagation p.

For the FLRW metric and the distribution function (4.64), the Boltzmann equation is

0 o, AT 0P
O=|—+4+p'=— —+d ) —2—. 4.65
(%*p%)<T*‘) o1 (465)
Going to Fourier space, and defining y = k - p (where hats indicate unit vectors such that
k = kk) , this is
0 AT 0P
0=(—=—+1iuk — 4+ P ) —2—. 4.66
(G ) (F+0) =25 (40

4This follows as the phase-space volume itself is conserved along the path of a particle due to Louiville’s
theorem.
®in this regime, T%,,, = 0 coincides with the Boltzmann equations for photons and baryons.

47



The operator ( 420 ) is a total time derivative along the photon’s path, and so

a Ox*

we can integrate Equation (4.65):

AT
Sl ——2/—dt. (4.67)
T
In particular, in a matter-dominated universe, %—‘f =0 and
AT
Ea + ¢ = const. (4.68)

Neglecting the contribution to due time-varying ® contribution, this means that the pho-
tons an observer at (1o, £o) sees in the direction n have temperature

AT

AT o (
T

_(7707 Lo, n) -

T nr7£r7ﬁ) + (I)(’I']T,f,.) - ‘I)(770750)- (469)

The monopole ®(ny, &) is unobservable: it is the same for all photons we detect, and need
not be considered. Without this, we see that the temperature perturbations we observe
are given by the temperature perturbations plus the Newtonian potential at recombina-
tion; this is the Sachs—Wolfe (SW) effect. The contribution due to time-varying ® is the
integrated Sachs—Wolfe (ISW) effect; this is relevant in our universe as the potentials were
in fact still varying a small bit at the time of recombination due to the presence of radia-
tion, contributing to an early ISW effect; and as the dark matter has recently started to
dominate today, contributing to a late ISW effect.

There is also a Doppler term, which is due to the relative velocity between the observer
and the velocity of the photon-baryon fluid at recombination v,:

AT L. L . ., .
T(%, Lo, n) =n- (/Ub(nm wr) - U(an wo)) : (470)

We see a significantly Doppler-shifted CMB due to our motion with respect to its frame of
reference.

4.3.9 The primary CMB power spectrum

The power spectrum of fluctuations in CMB temperature is shown in Fig 4.2. This is an

extremely useful probe of the cosmological parameters, as many of them have different
effects on the power spectrum. We will discuss the qualitative features below.
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Large scales

The fluctuations on large scales are due only to the SW, ISW, and Doppler effects; we
expect scale-independence in these scales as these modes were not in causal contact at
the time of recombination and as such were super-horizon at that time. Indeed, the flat
behaviour at low ¢ is indicative of a scale-independent spectrum (as, in two dimensions, a
scale independent spectrum is ~ £72%; note that £(£+ 1)C, is plotted ); these modes are still
following the scale-independent behaviour seeded by inflation, as these are modes which
were superhorizon at the time of release of the CMB.

Temperature anisotropies at 143 GHz

104
i
=107
<
: Primary CMB
< 100 === Lensed CMB
i — tSZ

L kSZ
101 102 107 104

Figure 4.2: The power spectra of the fluctuations in observed CMB temperature C}7.
Primary anisotropies are indicated in blue (with the lensed spectrum in dashed blue); the
secondary kSZ and tSZ anisotropies are indicated in orange and green.

Intermediate scales

On intermediate scales, baryon acoustic oscillations are evident—significantly more so than
in the matter power spectrum. This is due to the modulation of . at recombination by a
cosine function, due to the interaction with the baryon fluid prior to recombination. The
positions and heights of the Doppler peaks are strongly dependent on the value of the
baryon density 2.
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Small scales

On the small scales, the CMB power is exponentially suppressed, as the photons had time
to come to equilibrium, removing all fluctuations. This is known as Silk damping, and this
part of the power spectrum (¢ = afew 1000) is sometimes referred to as the “damping tail”

of the CMB.

4.3.10 The secondary CMB anisotropies

If there were no other structure in the universe, the CMB that we see would have a power
spectrum as described above. However, much happens to the CMB photons as they travel
from the surface of last scattering to us. They interact with the structure that has formed in
the late universe: they are gravitationally lensed by matter, and they scatter off of the free
electrons that start to appear in the universe after their reionization at a redshift of z > 7,
in a process known as the Sunyaev-Zel’dovich (SZ) effect [13]. This leads to observable
features in the CMB known as the secondary CMB anisotropies (to be contrasted with
the primary CMB anisotropies, which we would see if it didn’t interact after its release at
recombination). The sizes of the secondary signals are indicated in Figure 4.2, to compare
with the primary signal; in particular the lensed CMB power spectrum, and the thermal
and kinetic SZ effects (to be discussed below) are shown.

We will discuss CMB lensing and the SZ effects in the following Sections.

4.4 CMB lensing

As the CMB passes by matter, it is lensed. This induces many changes in the observed
CMB, shifting power from large to small scales, and inducing coupling between different
modes—ie Cyp X . Because this is caused by the clustering of matter, on large scales
CMB lensing is mostly a linear effect, with non-linearities becoming important on smaller
scales. CMB lensing is a very useful way of probing the matter power spectrum, as it
is sensitive to all matter—unlike galaxy surveys, which are not directly sensitive to dark
matter—and because its theory is very well understood.

When we measure the temperature in the direction n we do not see the temperature
emitted at n but instead the temperature emitted elsewhere that has been deflected into
the path of m; the deflection angle can be denoted & such that the observed (lensed)
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temperature T is related to the emitted (unlensed) temperature T' by

T(R) = T(R+ &). (4.71)

The measured CMB power spectrum is thus the lensed power spectrum C77lensed = CTT,
The deflection angle can be calculated by explicitly integrating the null geodesic equation
in the metric (4.1); in the small-angle regime the integral can be done over the undeflected
photon path (the “Born approximation”) and the result is that the deflection angle & be
written as the derivative of a potential ¢

—

a=Vvo (4.72)

where V is the angular gradient, and ¢ is given by a weighted integral over the Newtonian
potential along the line of sight®

o(R) = —2 / P WP (), X) (4.73)

where xg is the comoving distance of the surface of last scattering. In a flat universe, the

lensing efficiency kernel is

_Xs—X
XsX

W (x) (4.74)

4.4.1 Qualitative effects on the observed CMB

CMB lensing has many effects on the CMB we observe. It shifts power from large to small
scales, blurring the acoustic peaks and inducing mode coupling such that it is no longer
true that (agpnaem) X Oppmm. It also significantly changes the observed polarization
spectrum of the CMB. In Figure 4.2 it is clear that much of the CMB signal on multipoles
¢ 2 afew x 1000 is due to lensing.

The non-Gaussianity induced in the CMB by lensing can be used to reconstruct the
lensing potential ¢(n) from the observed CMB map, for example by the use of quadratic
estimators [11]. The effects of lensing can also be “undone” in a process known as “delens-
ing”, with high-fidelity measurements of either ¢(mn) or other highly correlated proxies of
it, to get access to the underlying unlensed CMB map [15, 16, 17, 18].

As it is a projection of the matter power spectrum, the angular power spectrum of ¢(n)
is a powerful probe of P(k); this will be discussed below.

6Strictly speaking, ¢ is an integral of the Weyl potential ® — ¥, but we work in the regime where
U =—9.
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4.4.2 The CMB lensing power spectrum

CMB lensing is a very useful way to probe the matter power spectrum. In particular, as
the CMB is lensed by all the matter between us and the surface of last scattering—all the
structures in the universe, essentially—we can use the lensed CMB to make a 2-dimensional
map of this integrated mass distribution and study the power spectrum of this, instead
of the 3-dimensional matter power spectrum. In this Section we discuss the CMB lensing
power spectrum.

Projection of the three-dimensional matter power spectrum to 2 dimensions

The angular power spectrum of ¢, denoted C’f ¢, is defined as follows:

(Dtm @) = CF 00O (4.75)

where ¢y, are the multipole moments of the real-space field ¢(n2) projected onto a spherical
harmonic basis. In (4.75), the Kronecker deltas dy 0.,y are a result of the assumption of
statistical isotropy (analagously to the appearance of the Dirac delta in the definition
of P(k) (4.31)) and the angular power spectrum C§? is only a function of the primary
wavenumber ¢ and not the angular momentum number m (again analagously to P(k)
being a function only of |k]).

Using the definition Equation (4.73) along with the explicit Fourier and spherical har-
monic decompositions allows one to express Cf ¢ in terms of the three-dimensional power
spectrum P(k); the expression is derived explicitly in Appendix A.1 and the result is

2 . .
€ == [ W OWE () [ KaPa()jit0i k), (4.76)
where Pg (k) is the power spectrum of the Newtonian potential ® and j,(x) are the spherical

Bessel functions of degree /.

This can be simplified significantly by taking the Limber approximation [19] (derived
in Appendix A.2), which is valid in the large-¢ limit:

D 2 1/2
- dXWX#P@ (k: _ % z) | (4.77)

This is much easier to integrate numerically than (4.76), which contains highly oscillatory
Bessel functions that require many sampling points for the integration over k.
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Note that we can relate C’Z’ ¢ t0 an integral directly over the matter power spectrum (as
opposed to Pg(k)), using the Poisson equation relation between Py and Pg:

1 3 H2Q0 \? (+1/2
et = 5 [ (50—> W ()F, (kz N ) (473)

where (€ + %)4 has been replaced by ¢* (which is a valid approximation as we are working
already in the high-¢ limit).
4.4.3 Lensing potential to lensing convergence

As well as the lensing potential ¢, the CMB lensing convergence « is also commonly used,
where

K(R) = _71v &= —%v%. (4.79)
In spherical harmonic space, k and ¢ are related as follows:
K= @qﬁ. (4.80)
Thus, the power spectrum of « is
Crr = ad I 1))20f¢; (4.81)
in the high-¢ limit this means that
Crr = ;1 / dxx’ (g Hgfg“>2 W (x)*Ps (k = Hxl/ 2) : (4.82)
This allows us to define a new lensing convergence kernel W*(x) such that
cpr = / %W“(X)QP(; (k - +><1/ 2) ; (4.83)

this is also the power spectrum (in the high-¢ limit) of the overdensity field projected along
a redshift kernel W*(y)

K= / dxW*"(x)é(xm, x) (4.84)
where W"(x) is given by
3 X X
f(x)=HFW = (1—= ). 4.
Wi = a0 X (1- X ) (4.85)
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4.4.4 Redshift distribution

The redshift distribution (4.85) is very well understood, making the interpretation of the
convergence map also quite straightforward. The redshift kernel W*(z) is plotted in Fig-
ure 4.3; note that W*(z) is defined by

k(n) = /de”(z)é(X'fL,X), (4.86)

and as such differs from W*(y) by a factor of i%' The power spectrum Cj” is also shown
in Figure 4.3, on the right.

CMB lensing efficiency redshift distribution CMB lensing convergence power spectrum

1077F

1079 L

0 10 100 1000

Figure 4.3: Left: The redshift distribution of the CMB lensing efficiency; while this peaks
at redshift z ~ 2 there is a very broad kernel with significant support at much higher
redshift than this. (Note that the z-axis scales as log(1+ z).) Right: The power spectrum
of the CMB lensing convergence.

4.4.5 CMB lensing as a probe of P(k)

Because the redshift distribution of ¢ is so well understood, and because it is sensitive to
the dark matter as well as ordinary matter, C’Z’ ?isa very useful probe of the matter power
spectrum P(k). This is in contrast to galaxy surveys, where the modelling of the redshift
distribution of galaxies must be considered, along with the differences between the galaxy
and the dark matter distributions.
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There exist a number of methods to extract ¢(n) from a CMB map, in particular by
exploiting the statistical anisotropy it induces in the as,: for a lensed CMB map, it is not
true that (apmaem) X dprdmm. It becomes easier to extract the lensing information from
higher-resolution CMB experiments, and signal-dominated ¢(n) maps are some of the key
goals of the upcoming SO and CMB-S4 experiments.

4.5 The Sunyaev—Zel’dovich effects

In the late universe, there are free electrons, and the CMB photons Compton scatter off
of them [13, 50]. The Sunyaev—Zel'dovich (SZ) effect is the name given for the scattering
of the CMB photons off of these electrons. This induces observable effects in the CMB.
The thermal SZ (tSZ) effect, when photons off of high-temperature electrons, induces a
spectral distortion the CMB. The kinetic SZ (kSZ) effect, when photons scatter off of
electrons moving with some velocity with respect to the CMB, is a blackbody effect that
is the dominant blackbody effect on angular scales ¢ 2 4000.

4.5.1 The thermal Sunyaev—Zel’dovich effect

The tSZ contribution to the temperature anisotropy is [13]

S ) = g(h) (1.87)

where y(n) is the Compton y parameter and g, is the spectral function of the tSZ effect
x
g, = x coth 5" 4 (4.88)

where x = hv/kgTepp. y(n) is given by the integral of the electron pressure over the line
of sight at n, ie

or

y(h) = / a(x) dy P.(x. 7) = / a(x) dy yan (. 2) (4.89)

MeC2

where o is the Thompson scattering cross section, m, is the mass of the electron, c is
the speed of light, and P,(y,n) is the electron pressure; the three-dimensional Compton-y
field is defined as the rescaling of the electron pressure field ysp = ;755 Pe(x, 7).
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4.5.2 The kinetic Sunyaev—Zel’dovich effect

The kSZ temperature anisotropy is given by

AT(7
2= or [ e Waton et (4.90)

where o is the Thompson scattering cross section, 7() is the optical depth to x, n.(x, n)
is the electron density at ym, and ¥ is the velocity of the electron at (x,7); note that
the kSZ temperature anisotropy is not sensitive to the transverse velocity field but instead
only the radial velocity field v, = v - n.

On linear scales, the velocity field is related to the matter overdensity field by (see
Section 4.3.6)

p = el s (4.91)
K
where f = 40D
oy — pUL s (4.92)
K
— kr

where = .

Because the kSZ temperature anisotropy is sourced both by the velocity field and
the electron density, its power spectrum is a 4-point function ~ (v,v,0.0.) where J. is
the electron overdensity defined by n.(x,n) = fi.(x) (1 + dc(x,™)). As such, its power
spectrum is not as straightforward to write down as the two-point quantities we have
considered elsewhere.

At large ¢, kSZ power spectrum is dominated by an integral over the transverse mo-
mentum power spectrum P, as follows [51]:

1 forneoN? [ dx _,. (4+1/2
@:5(‘”"0)/ Xerp, (k: /,Z(X>> (4.93)

c x2a* X

where P, depends on the four-point function Pjss,, but can be approximated by [52]

k(k — 2K p)(1 — pi®)
k2 (k2 + k2 — 2kk'p)”

2 d3 k‘l li -/ li ’
qikz—affcw/‘ PR — K2 RO, (4.94)

The kSZ and tSZ effects probe the electron distribution and (in the case of kSZ) the
velocity distribution of the universe. However, they are non-linear effects, and modelling
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the electron power spectrum requires going beyond perturbation theory. They will be
discussed further in Chapter 5.

Figure 4.2 indicates the scale dependence of the secondary CMB signals at 143 GHz.
The tSZ effect can be separated from the primary CMB by means of it spectral dependence,
by taking measurements at different frequencies; however, just like the primary CMB, the
kSZ effect is a black-body effect and can’t be subtracted in this way. It becomes the
dominant signal on angular scales of ¢ = 4000.
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Chapter 5

Nonlinear power spectra: the halo
model

The most straightforward way to calculate power spectra is to do so with perturbation
theory, where calculations can be done by expanding in small perturbations . However,
at late times and on small scales, this does not suffice as the gravitational instability that
leads to structure formation causes the matter overdensities ¢ to increase with time, to the
point where § < 1 is no longer true and the small-d linear expansion fails. The linear power
spectrum is thus expected to be inaccurate on scales smaller than some (time-dependent)
scale ky 7, and we must model the power spectrum another way. To this end, in this Chapter
we introduce the halo model and discuss its use for modelling non-linear power spectra. In
Figure 4.1, both the linear power spectrum and a non-linear model of the power spectrum
(calculated using CAMB [18] with HMCode [53]) are shown; as expected, we see that
on scales with k& > 0.1Mpc ™! the linear power spectrum is significantly smaller than the
non-linear power spectrum.

As well as this, some quantities that we are interested in modelling are intrinsically
non-linear; for these quantities the halo model is also very useful. One of the most obvious
observables we have access to are maps of galaxy density, and indeed in upcoming years
there will be many higher-density galaxy surveys over large fractions of the sky such as the
Legacy Survey of Space and Time (LSST) by the Rubin Observatory [54].

The halo model provides a useful prescription for calculating matter and galaxy power
spectra, and other quantities of interest such as the electron distribution (which is relevant
for the SZ effects) and the cosmic infrared background (CIB), on large and also on non-
linear scales. The main idea behind the halo model is to consider, instead of the smooth
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overdensity field ¢, just the peaks of 6. Within this model, all of the matter in the universe
is placed in these peaks—the “halos”. The correlations between observables can then
be split into the large-scale correlations between two different halos, and the small-scale
correlations within a single halo (as the distance between halos is larger than the typical

size of a halo):
PXY(k, z) = PXY(k, 2)*" + P*Y (k, 2)™", (5.1)

where P?" refers to the inter-halo correlations (“the two-halo term”) and P'" to the intra-
halo correlations ( “the one-halo term”). This Chapter is organized as follows. In Section 5.1
we will introduce some of the functions used to model halo distributions. In Section 5.2
we will present the halo power spectrum and express the matter power spectrum using
the halo model. In Section 5.3 we will discuss the modelling of the galaxy distribution
within the halo model. In Section 5.4 we will discuss the modelling of the CIB, and in
Section 5.5 we will discuss the modelling of electron distributions. Finally in Section 5.6
we state expressions the cross power spectra of the quantities we have discussed.

5.1 Properties of halos

Halos formed from the gravitational evolution and collapse of overdensities in the initial
density field of the universe. As these are objects that evolve in time, their properties will
have some dependence on their age; as such we can label the halos by their redshift z. It
is also useful to label halos by their mass, as their number density depends on their mass:
more massive peaks in  are rarer than less massive peaks.

A review of the halo model is given in [55]. In this Section we introduce the halo mass
function, the halo bias, and the halo density profile, and we refer to [55] and references
therein for further details.

5.1.1 The halo mass function

The distribution of halos of different masses is described by the halo mass function j—]\]\/’[ (M, z)

which gives the differential number density of halos of mass M at redshift z. The integral
over all masses gives the total number density N(z) of halos at z:

N(z) = / dM%(M, o) (5.2)

'With these conventions, 4 has dimensions of [mass™!][distance ).
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Note that j—]]\\/f[ depends on the mass M and the redshift of the halo.

Forms of g—]\]\; were first calculated by Press and Schechter [56] whose formalism was

generalized by Sheth and Torman [57]. Within these formalisms, 4% is not parametrized

by the mass of the halo but instead by the peak height, defined by
Oc
o(M)
where §. ~ 1.686 is the critical density required for collapse, and (M) is the variance of

the initial density field smoothed with a tophat filter of a size similar to the the radius of
the halo:

(5.3)

V=

dk k3P(k, 2)
2 _ ’ 2
012 = [ TS WER) (5.4
where W (kR) is the Fourier transform of a tophat function
3 .
W(zx) = g (sinz — x cos x) (5.5)
and R is given by
1
3M \3
pe () -

where p,, is the comoving matter density (which is constant with z). The halo mass
function can then be expressed in terms of the halo multiplicity function f(v) through

AN _ pm (V)dln’/
dM M dM

Various prescriptions have been given for f(v). Press and Schechter [50] gave

flv) = \/VQ_W exp (-”;) . (5.8)
I

Sheth and Torman generalized this to |

where A ~ 0.322, a = 0.707, and p = 0.3, or, following [58, 59],

(5.7)

f(v) =rva (1 + (ﬁu)72¢> 1/2776_(#) (5.10)

In all calculations, we use the halo mass function of Tinker [58]; in this reference the
authors fit to N-body simulations to find the values of the parameters {a, 8, ¢,n,v} of
Equation (5.10); the values of the parameters are presented in Appendix B.

60



5.1.2 Halo bias

We have linear perturbation theory predictions about the evolution of and statistics of the
continuous dark matter overdensity 6. However, within the halo model, we are interested
not in describing ¢ but in describing the density of discrete halos d;,. These form where
there are peaks in 9, and in general the peaks of a field are biased with respect to the
underlying field:

op = bd (5.11)

where the bias b is some number. For dark matter halos, the bias is scale-dependent (on
large scales) and dependent on the mass and redshift of a halo

(M, z) =b(M, 2)0. (5.12)
It is a requirement that dark matter is unbiased with respect to itself:
dN M
dM ——b(M,z) =1 5.13
[ bons) =1, (5.13)

which is equivalent to the assumption that all of the dark matter is contained within the
halos. Note that this can also be written as

/dln vb(v)f(v) = 1. (5.14)

As Equation (5.14) contains both f(v) and b(M, z) it is essential that these quantities
are defined consistently with respect to each other. We use the halo bias of Tinker [58], in
which

a

br)=1—A + B’ + Cv~. (5.15)

Ve + 8o
where 6. ~ 1.686 is again the critical density required for collapse; the values of the

parameters {A, a, B,b, C, c} in Equation (5.15) are given in Appendix B.

5.1.3 The halo density profile

Knowledge of the halo density profile p(r), which describes the density at a distance r
from the centre of a halo, is essential for understanding halo properties and behaviour on
scales around the size of the halo. A common parametrization is the Navarro—Frenk—White

(NFW) [60] profile
Ps

(r/rs) (14 7“/7‘5)2
61

(5.16)

p(r) =



which is parametrized by the scale radius r; and the density at rg, ps. In practice r is
replaced by the concentration parameter ¢ = % where R is the halo radius.

The Fourier transform of p(r) is necessary for the computation of power spectra (which
are the Fourier transforms of the 2-point correlation function):

_ [ d@p(@)e*T

k,M) = 5.17
u(k, M) T Pip(@) (5.17)
1 [ ink
= M/o dr47r7’2812rrp(r), (5.18)

where R is the radius at which you truncate the halo. The integral (5.18) can be done
exactly for the NF'W profile:

M) = i) — {Sm(m) Si([1 + JkR) — Si (kR)] — %
4 cos (kR) [Ci ([L + JkR) — Ci(kR)] |  (5.19)
where
Ci(z) = — /Oo Cojxd:c; (5.20)
Si(z) = /fmSizxdm (5.21)

In all calculations throughout, to calculate u(k, M) we use the parametric concentration
relations of [61], which are described in further detail in Appendix B.

5.2 The halo power spectrum and the matter power
spectrum

Within the halo model, power spectra split into large scale 2-halo power spectra—describing
inter-halo correlations (ie, between two different halos)—and small scale 1-halo power
spectra—describing intra-halo correlations (ie, within a single halo).

The 2-halo power spectra are computed from the underlying linear dark matter power
spectrum Py, (k)—ie, the power spectrum of the continuous underlying dark matter field,
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computed with linear perturbation theory. From Equation (5.12) we see the power spec-
trum between two halos of masses M; and Ms is

Pun(My, My, 21, z2) = b(Mn, 21)b(Ms, 22) Pin(k, 21, 22). (5.22)
Extending this to halos of all masses—the halo power spectrum—gives

Pk, 2) = ( / de—Z(M,z)b(M, z)>2PHn(k,z) (5.23)

5.2.1 Matter power spectrum

To calculate the mass power spectrum we weight the halos by mass and also include the
radial density profile of the halo:

2 () — AN oL, A
P2 (k) = ( / AM (M) =~ (k,M)) Pin(k) (5.24)

(where the z-dependence has been suppressed). The 1-halo term is

P (k) = /dM;l—]\j\/; (%u(k, M))Q. (5.25)

The matter power spectrum computed with the halo model is shown in Figure 5.1. The
linear and non-linear matter spectra computed with CAMB are shown on the same plot
for comparison.

5.3 Galaxies and the halo occupation distribution

5.3.1 Galaxy properties from halo properties

In order to describe observables related to galaxies, such as the galaxy power spectrum,
using the halo model, we need to connect the properties of galaxies to the properties of
the halos they form in. Within the halo model, we assume that galaxies form in halos,
with one galaxy per parent halo. Galaxy formation is a complicated and highly non-linear
process, the understanding of which is currently an area of active study. However, a general
conclusion is that many galaxy properties (such as galaxy luminosity) depend on the stellar

63



=== 2 halo term 73 I
p(CAMB

)(k.)/Pmm (k)

25k nonlin
— Pu(k)/P (k)

— 10%t ] - ’
! el 20 — P“(k)/Pmm(k)
R s
3L =EismimmiEm=i \§ i D.‘ 15- ]
— 99 ( 1 =
Poh) ) = ,
] A

—+= 1 halo term

P(k)[Mpc?

— Pe(k) \ I —— === ==
102 F o — mm (I ‘
) 0.5 \
- n(mlin(k:) (CAl\[B)
1 ) ) . L% ) ) . .
9o 1073 1072 107! 10° 10! Ofy= 1073 1072 107! 100 10!
k[Mpc’l] k[Mpc‘l]

Figure 5.1: Matter, galaxy, and electron power spectra (at z = 0) from the halo model.
The 1-halo and 2-halo terms are shown separately (although note that the 1-halo power
spectra have been artificially set to zero on scales larger than k = 1072 Mpc_l). On large
scales P99(k) is a scale-dependent multiple of the P™™(k), ie P9 = b2P™"(k), although
this fails on small scales. The nonlinear matter power spectrum computed with HMCode
in CAMB is also shown in dashed red for comparison with the matter power spectrum,
although it is hard to distinguish as they agree to ~percent levels. Note that on small
scales, the electrons are suppressed with respect to the matter power spectrum.

mass of the galaxy M,. These galaxy masses are correlated with the host halo mass M.
Thus we can relate galaxy properties to the host halo mass, although note that there
is some scatter in any M — M, relation due to their imperfect correlation, in particular
because M, will depend on the history of the galaxy formation such as any mergers it has
undergone, its angular momentum, and baryonic processes such as feedback.

The mass of a host halo is a few orders of magnitude greater than the stellar mass
of its galaxy. For instance, a typical halo mass today is around M ~ 10¥M,, where
My, is the stellar mass of our Sun; a typical galactic mass corresponding to this would be
M, ~ 10" M. Also, as halos are formed mostly of dark matter, they can be modelled and
studied with N-body simulations; galaxies are more complicated.

Abundance Matching
Stellar mass can be related to halo mass via abundance matching, whereby it is assumed

that the M, — M relation is monotonic, and a halo mass function that describes the number
density of halos of mass M is related to a galactic stellar mass function, which describes
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the number density of galaxies of mass M,. With the assumption that each halo (above
a certain minimum threshold mass) hosts exactly one galaxy, the total number density
of galaxies and halos should be equal, and M, — M relation can be constructed from the
galactic mass function and the halo mass function. In particular, we can write

M /dN ) M , )
dM'—(M') = (M, )dM 5.26
| on = [ e (5.26)
Where—jﬁ is the halo mass function and ®(M,) is the galactic stellar mass function. The

left hand side of Equation (5.26) defines a function @, (M) and the right hand side ®,(M,);
the M, — M relation is

M(M,) =
M.(M)

I
A,

n (M) (5.27)
CH(@r(M)). (5.28)

The real M, — M relation is expected to not be truly monotonic, due to the imperfect
correlation between M, and M; this can be accounted for by including a scatter in the
abundance matching (for more details see the discussion of scatter in [(2]).

Knowledge of both the halo mass function and the galactic stellar mass function is
required for abundance matching. Halo mass functions can be measured from N-body
simulations, while galactic stellar mass functions must be measured by directly taking
measurements; a scatter can be included in the abundance-matching process. In particu-
lar, [62] gives an M, — M relation that relates the halo mass function of [58] to measured
galactic stellar mass functions. This is the relation that we use throughout when we cal-
culate M, (M).

Subhalos and satellite galaxies

In N-body simulations, large halos are found to contain smaller bound density peaks within
their virial radii. These are referred to as subhalos, and galaxies that form within them
are referred to as satellite galaxies of the larger parent halo (the galaxy that forms at the
centre of the parent halo is referred to by contrast as a “central galaxy”). The subhalos
formed separately and are accreted onto the larger halos, and the properties of the satellite
galaxies are found to correlate with the mass of the subhalo at the time of accretion (the
total mass of the subhalo is found to decrease after accretion due to tidal effects, which are
not expected to affect the stellar mass of the satellite galaxy M.,), and so they are labeled
by this M.
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Thus the total number of galaxies within a halo of mass M is
N&Y (M, z) = N“(M, z) + N (M, z), (5.29)

where the number of central galaxies N°" is either 0 or 1 and N®** depends on the number
of subhalos that host galaxies.

5.3.2 The halo occupation distribution

The specific relations N (M, z) and N**(M, z) is known as the halo occupation distri-
bution (HOD) [63]. In general, it is expected that there is some threshold stellar mass
Mresh helow which galaxies cannot form. If this were true, we could write

N (M) = O(M, — MLPreh) (5.30)

where O(z) is the Heavisde step function and here (and in all equations to follow) by M, we
mean M, (M). To allow for a smooth transition between 0 and 1 galaxies, and for realistic
effects, scatter can be included, and we can write the mean number of central galaxies in
a galaxy of mass M as [(4]

- 1
N (M) = L_ §erf (

(5.31)

logyg M:hres}l — logy M*(M)>
2

\/ﬁo-log M,

where erf(x) is the error function, ie the Gaussian integral from 0 to z, and the parameter
Ol0g M, describes the scatter around the threshold stellar mass; 014 17, = 0 corresponds to
N.(M) =1 for M,(M) > M%Pet and N, (M) = 0 for M,(M) < MMt Note that, for
power-law stellar mass functions, Equation (5.31) can be simplified to be of the form

— —erf —
2 \/éa—logM

where M,,;, is the halo mass corresponding to a stellar mass of MMt and Olog M 1s the
scatter in halo mass as opposed to in stellar mass.

Neen(Af) = (5.32)

1
2

Nt (M) depends on the number of subhalos hosted by a parent halo that are large

enough to host a satellite galaxy. [(4] gives the following functional form for N8 (M ):
\7sat \Tcen M\ —Mecut /M
(M) = N(M) ( e~ Mewe/M (5.33)
sat
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where Mg,i, Oat, and My, are parameters that depend on MMt Note that is an expres-
sion for the total number of satellite galaxies, and any information about their masses is
lost; if we want to know the mass distribution of these galaxies, the subhalo mass function

% is a useful quantity, where
dN
Ng(M) = | ——(M, Mg)dM, 5 34
is the number of subhalos hosted by a halo of mass M. [65] fits a parametric form to %
and finds that for a host halo of mass M
dN MS -0.7 MS 2.5
S (Mo M) =03 =2 _g9(Ms | |

The threshold mass M,

Galaxy surveys do not detect every single galaxy, but instead all galaxies above a certain
luminosity. This is a z-dependent quantity, as distant galaxies must be more luminous
to be detected. This can be incorporated into the HOD to find the galaxy distribution
detected by a given survey, by adjusting the threshold mass M, (with the assumption that
the most luminous galaxies are also the most massive, such that a threshold luminosity
corresponds to a threshold mass).

M™resh can be chosen to match a given galaxy survey with knowledge of the expected
redshift distribution ¥ of the survey. For example, for the LSST gold sample [54] we

dz
expect [60]
AN o 2 \ L.01
Fre exp( (53) ) (5.36)

where n, = 26 arcmin™2. This can be related to the total number density 7,(z) through

dN . 2 dX _ )
477'% =X Eng, (537)

choosing the z-dependent Mesh 5o that Equation (5.37) is satisfied specifies M™Presh for
the LSST survey.
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5.3.3 Galaxy power spectra

For a galaxy survey the galaxy clustering power spectra are

Pigh:( JEE TR Ns(at)(M” >> Pan(k) (5.38)
. AN 2 (N (M)N (1)) u(k, M) + (N**(M)(N* (M) — 1)) u(k, M)?
Yo = (/ Mo g (2)? )

(5.39)
where ) N t
igal = / AM e (N2(M) + N (A1) (5.40)

is the mean number density of galaxies at z. The angular brackets indicate the expectations
of the quantities inside them; we take [55]

(N (M)N*™(M)) = N*(M)N**(M); (5.41)
(N***(M)(N®(M) — 1)) = N*(M)>. (5.42)

Note that there is no term oc N°*(M)? in the 1-halo term Equation (5.39). However,
this term ¢s present in measured power—it is the “Poissonian” term sourced by self-pairs
of galaxies, and is constant (ie, independent of k). It can also be referred to as the “shot
noise” of the power spectrum, and decreases with higher number density of galaxies n,.

The galaxy power spectrum at z = 0 expected from LSST is shown in Figure 5.1, along
with the ratio P99/P™" where we see that on large scales the galaxy power spectrum is a
constant multiple of the matter power spectrum, with this bias becoming scale-dependent
on small scales.

5.4 The cosmic infrared background

Small particles of dust in star-forming galaxies absorb light and emit thermally in the
infrared. We detect this emission as a diffuse background in the infrared, and refer to it as
the cosmic infrared background (CIB). Anisotropies in the CIB trace the anisotropies of
the dusty star-forming galaxies, which are found at all redshifts since reionization, although
the emissivity peaks at z ~ 2, when the star formation rate density of the universe was
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highest. To model the CIB correlations within the halo model, we use the prescription
of [67] wherein halos are assigned infrared luminosities in a mass-dependent way.

The CIB intensity density at frequency v is given by [68]

1,(R) = / dxa(x)j, (x. ) (5.43)

where j,(x, ") is the emissivity density at (x,n). in general it is given by

JvO6M) = 7,(x) (1 + 04, (x, 1)) (5.44)

where j,(x) is the mean emissivity density at y and §7j, are the fluctuations. The mean
can be calculated by assigning a mass-dependent luminosity density L, (M, z) to all halos
and integrating over halo mass:

_ AN 14 (M, z
],,<z):/deM 1+ >47§ ), (5.45)

Note that emission we detect at frequency v is redshifted from its frequency at emission
(1+2)v.

Assigning luminosity density to halos

By using L£(M,, z) to denote the luminosity of a galaxy with stellar mass M., we can
write explicitly

chen/sat
Leenfsat (g ) — / aM, (M, M) L8 (M., 2) (5.46)
where WC{M* is the number of central or satellite galaxies of stellar mass between

M, and M, + dM* hosted by a halo of mass M (an assumption has been made in Equation
(5.46) that satellite galaxies and central galaxies obey the same stellar mass-luminosity
density relation L&(M,, 2)).

The central luminosity has a simple expression: galaxies only host one or zero central
galaxies, of stellar mass M,, and so

LE™(M, 2) = N™(M) L& (M, 2) (5.47)
where N°" is given by Equation (5.31).
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To calculate the satellite luminosity, it is helpful to assign the satellite galaxies to
subhalos of mass Mg, which have accreted onto the host halo. These satellite galaxies
host centrals whose galaxies properties correlate to Mg in the same way that the central
galaxies correlate to M. In that case we can write

N
LM, 2) = / dMSd—Ncen(MS)L,%al(M*, 2) (5.48)
dMg

where M, is fsyyr(Ms) and % is the subhalo mass function.

5.4.1 A parametric model for L, (M, z)

A host of models for L& (M, z) exist in the literature. A prescription introduced in [(7]
that assigns luminosity to halos based on halo mass separates the dependence on M, z,
and v, according to

LE ., (M, 2) = Le®(2)S(M)O((1 + 2)v) (5.49)

where ®(z) and X(M) are parametric functions that control the z- and M-dependence
of L,(M, z) respectively; O((1 + z)v) is the spectral energy distribution (SED) which is
usually given by a modified black body spectrum which may be tempered by a power-law
tail at high frequency; and Ly is an overall normalization factor. This model is useful as it
bypasses the need for modelling M, (M) by assigning luminosity based on host halo mass
as opposed to stellar mass. This model has been fit to the power spectrum of the observed
CIB both by the Planck satellite and by the Herschel satellite. We discuss the parametric
forms of the functions in Equation (5.49) below.

Redshift evolution: ®(z)

®(z) controls the redshift dependence of the normalization of the L — M relation and
should be increasing with redshift, motivated by observations that the star formation rate
was increases with redshift. It is parametrized as

d(z) = (1+2)°. (5.50)
In the fit to Planck CIB power spectra, § = 3.6 was found [09].

Various implementations [67, 70] of this parametric model also consider another pa-
rameter z, at which the L — M relation plateaus; in such a case
1+2)° z<z
O(z) = ( )5 P (5.51)
(1+2)" 222z
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This break is motivated by observational evidence of such a plateau in the L — M relation,
at z ~ 2.

Mass dependence: (M)

(M) controls the dependence of luminosity on halo mass. Motivated by observations that
star formation is suppressed at low and high masses, and taking the simplifying assumption
that L/M takes a log-normal form, (M) is given by

(M) = L o~ os10 M—loga Mer)* 207 1. (5.52)

1/27Tcr%/M

Y (M) is specified by two parameters: Mg, the peak of the specific IR emissivity (L/M);
and o /a» Which controls the range of halo masses that produce the emissivity. [69] found
that Mg = 10'26M,, and ai/M =0.5.

IR SEDs: O(v, 2)
Finally, the SED © is a modified black body, which may be tempered by a power-law tail

at high frequencies
SB,(T, <
0 x {” (Ta(2)) v <w (5.53)

v v >,

where B, (T) is the Planck function at temperature 7" and T,(z) is the dust temperature

at redshift z, parametrized as
Ty=To(1+2)". (5.54)

The power-law tail accounts for the gray-body emission from dust at higher temperatures
than T, [71, 72]. In (5.53), vy is the (z-dependent) frequency satisfying the continuous
derivative relation

dInO(v, z)
SRR — (5.55)
dlnv|,_
[69], which used the normalization condition
v )7 Bulu)
= —vi-a\®/) v <
O — <Vo> By (Ta(2)) 0 (5.56)

1% 77 >
()7 e
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found = 1.75, v = 1.7, Ty = 24.4K and « = 0.36.

Thus there are four parameters that control the SED: the gray-body emissivity factor
[, the high-frequency power-law exponent ~, the dust temperature today Ty, and «, which
controls the redshift evolution of the temperature.

5.4.2 Other models for L,(M, z)

Other models take advantage of the relationship between star formation rate (SFR) and
luminosity. The Kennicutt relation states that [73]

SFR = KLg (5.57)

where L;p is the total infrared luminosity (integrated over all wavelengths, ie L;jp =
[ dvL,). Some models parametrize SFR instead of L,; additionally, the model of [71] is
notable in that it requires no parametrization and fitting to any CIB data and instead uses
externally measured SF R models to model the CIB power spectra, with good agreement
to the Planck CIB power spectra found.

5.4.3 The CIB power spectrum

The angular power spectrum of the CIB is given, from Equation (5.43), as a Limber integral
over the emmissivity power spectrum

Cy” = /dxazpiy(xf%y/ (k - HXI/Q’Z(X)) o)

where P;}”/(k, z) is the power spectrum of fluctuations §7; this we can model with the halo
model in a similar way to how we wrote the galaxy power spectrum, by comparing the
expression (5.45) for emissivity density to the expression (5.40) for galaxy number density.
In particular, by defining a CIB luminosity profile according to

Ly (M) + L (M)u(k, M)

uj, (M, 2) = () (5.59)

we can write
P2 (k, 2) =Dy(2) Dy (2) Piin (k); (5.60)
Pk, z) = (/ dM;i—]]\\;ujy(M, z)uj,, (M, z)) (5.61)
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e Dy (2) = ( / dMs—AA;b(M)uju(M, z)) (5.62)

and where the L®" — L term in Equation (5.61) contributes to shot noise as opposed to
a clustering term.

The CIB power spectra computed within the halo model using the models of [74] (see
Section 5.4.2) and [09] (see Section 5.4.1) are shown in Figure 5.2. The power spectra
calculated directly from the CIB maps from [75] are also shown for comparison; in this
work the high frequency Planck data was used to make maps of the CIB on large (~ 25%)
of the sky.
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Figure 5.2: The CIB power spectrum at 353, 545, and 857 GHz, with the model from [69]
(PXXX) in solid lines and from [71] (Wu & Doré) in dashed lines. The power spectra
measured directly from the CIB maps in [75] are shown in paler colours, although note

that the instrumental noise dominates over the signal on the smallest scales, especially at
353 GHz.

5.5 Electron distributions

We can model the tSZ and kSZ effects within the halo model by assigning radially-
dependent electron density profiles to a halo.
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5.5.1 The electron distribution for kSZ

The power spectrum of the kSZ effect is given in Equation (4.93). From Equation (4.94),
it is clear that one needs to model the non-linear electron power spectrum to calculate
the kSZ power; in addition, this is necessary for kSZ cross-correlations such as those to be
discussed in Chapter 8.

A radially-dependent electron gas profile pg.s(k, M, 2) can be assigned to halos in a
mass dependent way; in particular, parametric fits to various different models are given
in [76]. When we calculate the electron power spectrum throughout, we use the “AGN”
profiles of this reference. The electron power spectrum is given by expressions similar to
the matter power spectrum, Equations (5.24) and (5.25), but with w(k, M) modified to
account for the different distribution of electrons; in particular

P = ([ v 000 k. 30)) ) (563

(where the z-dependence has been suppressed). The 1-halo term is

P (k) = / dM% (pﬁmugas(k,M)Y. (5.64)

where ugas(k, M, 2) is the Fourier transform of pg,s(k, M, z).

The electron power spectrum at z = 0 is plotted in Figure 5.1 and compared to the
matter power spectrum. On large scales, the electrons trace the matter, but on small scales
baryonic effects become relevant and the electrons are suppressed relative to the DM.

5.5.2 The tSZ effect

The tSZ effect is sourced by electrons with high temperature and requires different profiles
to those used in the kSZ effect, which is not affected by electron temperature.

The Compton y-parameter was given in Section 4.5.1 as

y(n) = /G(X) dx ysp(x,n) (5.65)
where the three-dimensional Compton-y field a rescaling electron pressure field given by
ysp = ;755 Pe(x,n). The angular power spectrum of y(n) can then be computed via a
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Limber integral (see Appendix A.2) [77, 78]

a’d (41/2
cr = [“5r (k=22 0) (5.66)

where P, (k, z) is the three-dimensional power spectrum of ysp.

P,,(k, z) can be computed within the halo model by assigning to each halo a radially
dependent pressure profile P,(r) and Fourier transforming this; in particular

AN ?
2h
P, (k z) = (/ dMWb(M)uy(k;,M, z)) Pin(k, 2) (5.67)
dN

Pyt (k, z) = / de—Muy(k’, M, z)? (5.68)

where (K
Uy = /dgFeik'Fy(F, M) = /d’r’47rr2sm( r)y(r, M) (5.69)

r

where in the last line we assumed spherical symmetry of y(7).

The tSZ power spectrum, computed using the parametric pressure profiles of [79], is
shown in Figure 5.3. The tSZ is dominated by high mass halos at low redshift, and as such
its power spectrum is predominantly a 1-halo signal except for at the very largest scales.
Note that to get the tSZ power spectrum from C}¥ one must multiply by the spectral
function of the tSZ given by Equation (4.88).

tSZ angular power spectrum (143 GHz)

—— 2 halo term
—— 1 halo term

00+ 1)Cy/(27)

10! 10? 10° 10

Figure 5.3: The tSZ power spectrum, computed with the parametric pressure profiles of [79]
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5.6 Cross power spectra

The power spectra we have discussed in the above sections are of the form
Py (k,2) = Dx(k, z) Dx (k, 2) Pin(k, 2) (5.70)

spectrum and Dy (k, z) is

Dx(k,z) = /dM;l—]\]\;bh(M 2ux (M, k, z). (5.71)

ux (M, k, z) is specific to the observable X and describes the (Fourier-transformed) radial
profile of X within the halo. The 1-halo power spectra are given by

dN
P = [ dM——ux(M,k,z 5.72
= [ av sk 2P, (5.72)
where for the correlation of two discrete sources the k-independent term can be moved into
a separate shot-noise term as it does not provide information about clustering. We can
write the cross power as

Pt (k,2) = Dx(k, z) Dy (k, 2) Pin(k, 2) (5.73)
and
Py = de—MuX(M, k,2)uy (M, k, z). (5.74)
The profiles for the different observables are
um (M, k, z) = < )ukMz (5.75)
Ncen Nsat M k’
fig(2)
ue(M, k, z) ( )ugas (k, M, z) (5.77)
Lcen M Lsat M k M
wy, (M, k, 2) = )+ Ly (M)ulk, M) (5.78)

47TJV( )
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Chapter 6

Likelihoods and the Fisher formalism

Many cosmological experiments take measurements of observables—such as the CMB or
the matter power spectrum—mnot just out of interest in mapping these quantities but with
the hope of using them to say something about the underlying physical theory, such as
the value of a set of parameters or to compare different models. This has led to many
developments in the statistics of these observational experiments, in particular with regards
to Bayesian statistics whereby we take data and construct a probability distribution for
the parameters of a theory. The value of the parameter can be expected to be somewhere
where the probability distribution is peaked, and the width of the distribution gives an
idea of the “error” on the parameter.

This Chapter is organized as follows. In Section 6.1 we introduce the commonly-
used likelihood function, which gives the probability for measuring certain data given
an underlying cosmological theory and we discuss Bayes’ theorem whereby the likelihood
function can be converted into a probability distribution for the parameters of a theory
given the measurement of certain data. In Section 6.2 we introduce the Fisher formalism
whereby the errors on parameters can be predicted by understanding the curvature space
of a theory, without taking any data, and we discuss explicitly of the calculations of the
mode and bandpower Fisher matrices in Section 6.3. Finally in Section 6.4 we discuss the
noise power spectrum for intensity experiments.
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6.1 Bayes’ theorem and the likelihood function

The likelihood L£(d|IT) is the probability of measuring a set of data d given an underlying
theory described by the parameters II:

P(d|TT) = £(d|TI). (6.1)

Bayes’ theorem states that the probability of two events A and B occuring, P(AN B), is
given by the probability that B occurs times the probability that A occurs given B has
occurred (denoted P(A|B)), and vice versa:

P(A|B)P(B) = P(B|A)P(A). (6.2)

Given a likelihood for data given a theory, we can construct the probability of a theory
given some data using Equation (6.2):

P(d|TI) P(IT)

P(IIld) = =5

(6.3)

The denominator is not important as it does not depend on II, and indeed we can write
P(II|d) x L (6.4)

in the case where the prior probability P(II) is uniform; note that this might not be
the case though, and in general the prior is relevant. In particular, one can put external
knowledge about the theory there.

If a likelihood can be constructed that will be a function of some parameters II and d,
one can measure d and find the values of II that maximize L£(d|II)P(II); these represent
the peak of the probability distribution P(II|d).

The simplest form of a likelihood is Gaussian. Consider a theory that predicts data
points d, and some measurements d we would like the likelihood to be maximized around
d = d and so we write

L= \/%exp (—% (ci— J) -CTt (cf— J)) (6.5)

where C'is the covariance of the data points, which encodes (for example) the errors of the
measurements. |C| is the determinant of C'; it appears in the prefactor of £ to ensure that
the integral over II is 1, as required by probability theory.
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6.2 Fisher matrix

The likelihood function (6.5) can only be maximized with knowledge of the data d. How-
ever, when fitting parameters, the values of Il that maximize £ is not the only quantity of
interest: one also wants to know the errors on II, ie the size of the region Il & ¢ in which
one can move about in parameter space and have confidence that the values still represent
the “true” underlying values of II.

For Gaussian likelihoods, this region ¢ turns out to be calculable without the data,
as it is dependent only on the size of the curvature of the likelihood in parameter space.
More intuitively—we want to maximize the likelihood, or equivalently minimize the y?
(pronounced “chi-squared”) where x? is the related to the term in the exponent of Equa-
tion (6.5) according to

1 1
L= exp (——X2> 6.6

V2rC 2 (6.6)
If the minimum is very sharp (ie spans a small region in parameter space) this will be
much easier than if it is shallow (see Figure 6.1). The data can tell us the position of the
minimum, but we can learn about the curvature without them.

With this in mind, the error on the parameter IT* can be calculated in advance of taking
any data by computing the curvature of the likelihood. Allowing for a multidimensional
parameter space, this is given by the inverse of the Fisher matrix, which is defined by

oC ., oC .|
o o’ }

1
Fj=-Tr l (6.7)
2
where the covariance matrix C' includes both signal and noise; although note that the
noise is usually independent of the model parameters Il such that the derivatives are only
taken of the signal covariance matrix (not the noise). From Equation (6.7), the error on a

parameter ¢ is
o(Il;) =/ Fy;* (6.8)

and the covariance between two parameters ¢ and j is
—1

Note that this gives a lower bound for the error from the true experiment (which may not
achieve this lower bound due to, eg, non-Gaussianities in the likelihood function). Also,
it is important that in (6.12) the Fisher matrix must be inverted before taking the square

root of the diagonal, which is not equivalent to taking \/% This is due to degeneracies
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Figure 6.1: x? for a model with high curvature (blue) and small curvature (orange). it
is much easier to constrain the blue model; the two minima II° and II' are clearly dis-
tinguishable with little overlap between the two curves. The same cannot be said of the
orange model; it is much easier to “move around” in parameter space (the z-axis without
changing much the value of the likelihood (in particular the value of x*(II') is much closer
to the value of x%(I1°)) for the orange model than the blue model. This translates into a
larger error on the parameters of the orange model than the blue model, independently of
the location of the minimum.

between the parameters, which must be taken into account; this is known as marginalizing
over the other parameters in II.

It is useful to be able to calculate the errors in advance of taking data, as one can know
what to look for before constructing an experiment, which is useful because experiments
are expensive.

6.3 Calculating Fisher matrices

6.3.1 Mode Fisher matrix

Many measurements we take are 2-dimensional spherical maps, such as the CMB tem-
perature AT(n); or the angular galaxy density ¢9(nn). When we write these as spherical
harmonic expansions, the data one considers can thus be labeled {aj},,} (where i runs from
1 to the total number of fields considered N); in this case the covariances are given by the
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angular power spectra:

<a€1m1a > - 0615515267%17712 + N,

lomo l1lamima

(6.10)

Conveniently, (assuming N;’ X 0p,0,0m,m, ), the covariance C'is diagonal in this basis,

l1lomims
and the Fisher matrix is given by
_ (20+1) oCy ., 10C; 4
Fy=Y_ o T oG o G (6.11)

14

where the factor of 2¢ 4+ 1 appears due to the the sum over m from —/ to . Note that the
trace is taken of an N x N matrix at each [, where N is the number of fields considered.

The expression (6.11) is true for a field that is measured on the whole sky. It is easy
to modify for the case of partial sky coverage: we can simply multiply by the sky fraction
fsky that we expect to have access to—the assumption being that we only have access to
a proportion fg, of the modes, which are independent. This assumption breaks down on
the largest scales (scales ~ the area of the survey), where mode coupling effects correlate
the different ay,,s and it is no longer true that <a§1m 1a52m2> N

From the Fisher matrix (6.11) the parameter errors can be calculated:

(6.12)

6.3.2 Bandpower Fisher matrix

In the mode Fisher formalism, one considers as data the fields a!, . In the bandpower
Fisher formalism, one instead measures the fields, calculates their power spectra, and uses

these power spectra as data. In this case, the N x N covariance matrices C’z] between N

N+1)  N(N+D)
2

fields at each [ are replaced by i 5 covariance matrices

1
(204 1) foxy

where all the Cy on the right hand side include noise; Fj; is now given by

o acT . oC,
A —~ ot oI

C (égﬁ, 075) - (c;”c,f‘s + 05505”) (6.13)

(6.14)

where C] denotes the transpose of Cy. The usefulness of this method is that one can
explicity consider only the cross-correlation between two fields without considering their
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auto-correlation; this is useful when there are some biases we may not understand in the
auto power spectra. For example, we measure the power spectrum of the CMB temperature
CIT and its E-mode polarization CF¥, with covariance Cf*. In this case the data vector
would be

A =A{Tyn, Eon} (6.15)
with covariance matrix
crrCrE

There are some foregrounds to the T field that add power on small scales that are not
issues with the E field; we can avoid these by removing small-scale information in 7. In
the mode formalism this means that we must remove all T" information and the data vector
becomes just {Ep,} with covariance matrix CF¥. However, in the bandpower formalism,
the data vector is

A= {CIT,CTE CPPY (6.17)
with covariance matrix

C (CFT,CITY,C (CIT,CLE) ,C (CFT, CEF)
C,= | C(crE cITy,c(CrE crE) C (CFE CcPE) | . (6.18)
C (CEE CIT) C (CEE CTE) C (CEE CEF)

The Fisher matrix calculated from (6.14) for (6.18) agrees with the one calculated from (6.11)
for (6.16); however now we have the ability to remove C/” on small scales while still using
some T information through keeping C7 ¥, where there are no biases as the foregrounds in
T are uncorellated with those in E.

6.4 Instrumental Noise

In general, when we measure a field ay,, there will be some noise with the measurement:
we will not measure precisely the underlying ay,,. Ideally the noise should be uncorrelated
with the signal and it should not mimic the signal one is looking for, as it would bias the
inferences.

Many signals are measured—for example the CMB or the CIB—by taking an intensity
map of the sky. As well as noise, there are beam effects, due to the finite resolution of any
experiment. As such, our data is not ay,, but instead we measure

dfm = Bfmgﬁm + Nm (619)
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where By, is the beam window function and ng, is the noise. Thus, assuming that the
noise is uncorrelated with the signal, and assuming for simplicity that By, = By (ie the
beam is only a function of ¢, which is not an unreasonable assumption) the variance is

<€Lgmdglm/> == B?Cg + <ngmng/m/> . (620)

For noise that is uncorrelated between pixels, the noise is diagonal and this can be written

(QpmGpm) = BiCy + Ny. (6.21)
For symmetrical Gaussian beams with a full width at half maximum (FWHM) of ©, By is
given by
—(?0?

B} = 22
and so it falls off exponentially at high angular scales. After beam-deconvolving, the signal
is 262

g G ) = C Ny, 6.23
(Qem o) ¢ 1+ exp (810g2) ¢ (6.23)

and so any noise will swamp the signal on small scales. In particular, beam deconvolved
white noise—where N, is constant—grows exponentially up at high ¢, and dominates over
all underlying signals.

The SO and CMBS4 experiments will improve over Planck by having smaller beam
sizes as well as lower white noise levels; although they will have higher noise on very large
scales as they are ground-based and experience atmospheric effects which Planck, being
a space-based satellite, did not. The noise levels expected from SO [16] and CMBS4 [30)]
are shown on Figure 6.2; they have been calculated by combining the noise at different

frequencies using an internal linear combination (ILC) (e.g., [31, 82]) and include both
instrumental and atmospheric noise as well as contributions from foregrounds such as the
and tSZ, kSZ effects and the CIB (full details can be found in [16, 80]). For comparison

with the Planck experiment, the beam-deconvolved white noise in the 143 GHz Planck
channel is shown.

The noise expected on the measurement of the Cj* is more complicated to calculate
than by a simple procedure such as that in Equation (6.23). We show on the right hand
side of Figure 6.2 the noise on the CMB lensing convergence power spectrum expected
from the upcoming experiments, along with the noise power spectrum from the Planck
measurement. Future experiments will bring much better measurement of the C*, with
many modes being measured with signal-to-noise greater than 1.
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Noise on CMB lensing surveys

Noise on CMB experiments 105
: : -

10°F — CIT (lensed) — N0 (ILC) | — "
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Figure 6.2: Left: The CMB signal and the noise expected from the SO and CMBS4
experiments.  Right: The CMB lensing signal and the nosie expected from the SO and

CMBS4 experiments.
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Chapter 7

Improving CIB models with CMB

lensing maps

7.1 Introduction

Star forming galaxies contain particles of dust that absorb ultraviolet light and emit ther-
mally in the infrared (IR). This IR emission sources the cosmic infrared background (CIB),
a diffuse, unresolved background that traces star-forming galaxies. Dust content in galax-
ies is correlated with the star formation rate, and the CIB emissivity peaks at around
redshift z ~ 2 where the star formation rate is high. Anisotropies in the CIB trace
anisotropies in the star-forming galaxy distribution [68] and give insight into the physics
of star formation. The CIB, and the CIB anisotropies, have been detected at numerous
wavelengths [33] by IRIS [81], Herschel [70], SPT [72], Planck [35, 69] and ACT [36, 87].
Various theoretically motivated parametric models have been fit to the data measuring the
CIB (e.g. [74, 88, 69, 70, 89]). Improving these models is not just useful for understand-
ing star formation history itself, but also because the CIB appears as a foreground to the
cosmic microwave background (CMB) at lower frequencies.

Gravitational lensing of the CMB offers an unbiased probe of the total matter content
of the universe. While the CMB is sourced at very high redshift z ~ 1100, it is well known
that the CMB we detect has been lensed by intervening matter [90]. The lensing kernel of
the CMB peaks at z ~ 2, close to where the CIB intensity density peaks (see Figure 7.1),
and as the galaxies sourcing the CIB trace the dark matter primarily responsible for CMB
lensing, it is expected (and confirmed empirically e.g. [91, 92, 93]) that the CMB lensing
potential and the CIB are correlated. This high degree of correlation has been exploited for
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improving the science return from CMB experiments, e.g., by using the CIB as (or as part

of) a template [9] for the lensing signal itself, allowing one to undo the effect of the lensing
signal. Delensing the CMB in this way [95, 18] allows us to more clearly reveal underlying
cosmological signals of interest, e.g. B-modes from primordial gravitational waves [96] or
new relativistic species [18].
0-5 L I L L L L I L L L L I L L L) L) 1 L) L) L) L) 1 L) L) L) L)
[ —— 217 GHz
i —— 353 GHz ]
0.4 —— 545 GHz .
m —— 857 GHz ]
-
= [ —— 3000 GHz ]
; 0.3 A CMB lensing W*(z)
©
=
= [
E. 0.2 [
3|8
0.1
0.0 1 2 3 4 5 6
z

Figure 7.1: Left: The redshift distribution of the CMB lensing kernel and the CIB. The
redshift distribution of the CIB monopole % is shown with all kernels normalized so that
foﬁ W (z)dz = 1; the (similarly normalized) CMB lensing efficiency kernel W*(z) is also
shown in black.

In this chapter, we explore the potential for obtaining improved models of the CIB
from cross-correlations of the CMB lensing signal with existing measurements of the CIB
from Planck and future high-resolution measurements from CCAT-prime [97, 98]. Such
improvements will enhance our understanding of high-redshift star formation and will relax
degeneracies encountered in the damping tail of the CMB temperature power spectrum.
As an example of the latter, inferences of the amplitude of the kinetic Sunyaev-Zeldovich
effect (e.g. [99]) can be affected by model bias in the CIB contribution.

The CMB lensing potential can be reconstructed from statistical anisotropies in the
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CMB [14]: the Planck collaboration has reconstructed the lensing potential on about 70%
percent of the sky [100] with signal-to-noise per mode close to unity near the peak of the
power spectrum, but otherwise generally noise-dominated. High-resolution ground-based
CMB experiments like ACT and SPT are now making CMB maps that are significantly
signal dominated over a larger range of scales (albeit currently on small fractions of the

SkY) [ ) ]

Over the next decade however, the CMB lensing potential will be imaged with high
fidelity to even higher L than at present over large fractions of the sky [16, 17]. We
also expect improvements in CIB measurements in coming years, with experiments such
as CCAT-prime [97, 98], and Simons Observatory in its highest frequency channels [16],
measuring the small-scale CIB to higher accuracy. The CMB lensing / CIB cross correlation
has already been used to fit large-scale (linear) models of the CIB [91, 88, 102]; our work
here forecasts the improved parameter constraints on the parametric halo model for the
CIB introduced in [67], which was fit to Planck+IRIS CIB power spectrum data in [69].
While the CMB lensing potential does not depend on the CIB model parameters, we expect
improvements due to the cross-correlation depending on the redshift distribution of the CIB
as well as due to sample-variance cancellation (see e.g. [103]), where measuring the CMB
lensing potential on the same patch of sky as the CIB intensity can afford improvements
in the CIB model due to their high correlation.

CIB models have previously been cross-correlated with CMB lensing maps to infer CIB
model parameters [91, 88, | and also with other external large-scale-structure probes
such as the Sloan Digital Sky Survey (SDSS) galaxies [104]. In this work we quantify the
potential improvements of employing such external cross-correlations in particular as we
get access to better CMB lensing data.

In all calculations in this Chapter, we use the cosmology of [105]:{Q,,, Qa, Qph%, 10°A,, h,
nst = {0.3175,0.6825,0.022068, 2.2,0.6711,0.9624}. We explore constraints from subsets
of measurements of the CIB made by Planck at 217, 353, 545, 857 GHz, IRIS at 3000
GHz [31] and future CCAT-prime measurements [97, 98] at {220, 280, 350, 410, 850} GHz
, with improvements from CMB lensing measured by Planck or future Simons Observatory-
like [16] and CMB-S4-like [17] experiments. For all CMB lensing fields, we impose a max-
imum multipole of L = 1000; for Planck+IRIS CIB forecasts we use a multipole range of
186 < L < 2649, and for CCAT-prime we include L < 10000. Our baseline forecasts are
on 2240 square degrees of sky, with the 3000 GHz IRIS field only included on 183 square
degrees, mimicking the analysis of [69]. CMB lensing reconstruction maps are assumed
to have full overlap with these 2240 square degrees, but we also explore the possibility of
including the CIB / CMB lensing cross-correlations over larger fractions of the sky with-
out including the CIB auto-spectrum (which may have larger systematics due to Galactic
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dust).

7.2 The CIB-CIB and CIB-CMB lensing power spec-
tra within the halo model

7.2.1 CIB emissivity power spectrum

We model the CIB emission power spectrum with the halo model of Chapter 5.4, where
the CIB intensity density was expressed as

I(h) = /0 " dyal)i (o i) (7.1)

with angular power spectrum
vv! dX = = vv! L
= /FaQJV(z)jV/(z)]Dj (k = ) (7.2)

where P '(k, z) is the three-dimensional power spectrum of the fluctuations in j,. The
power spectrum is presented explicitly in Chapter 5.4.3, and can be split into a 1- and
2-halo term

v/ __ pwvv'2—halo vv'1—halo
The 2-halo term is given by
(2 () Py 2700k, 2) = Dy(2) Dyr (2) Pin (K, 2) (7.4)
where
N Len (M, z) + L3t (M, z)u(k, M, =
Dy (z,k) = /dM;l—Mb(M 2) ( (M 2) (2 (M, 2Jul ) (7.5)
s

with u(k, M, z) the normalized Fourier transform of the halo density profile, and L°" and
L the total luminosity due to central and satellite galaxies respectively. The 1-halo term
is
dN 1
vv'1—halo cen sat
] ( )jV( )P (ka ) /deM( ) (L(1+z) L(H—z V/’LL(k‘,M, Z)

+ L'(:iiz V’Lszli+z)u (k M Z) + LS?Jrz L??Erz W (ka M7 Z>> .
(7.6)
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Note that the auto-correlations (~ Lﬁiz)f) have not been included in the 1-halo term;

these instead contribute to a scale-independent shot noise term to be discussed below.

Poissonian term: shot noise

There is also a shot noise component in the power spectrum, arising from the discrete
nature of the sources. This is present in both the v = v/ power spectra and the v/ spectra
with v 2 1/, as the same source can contribute to the intensity at different frequencies.

The shot noise is scale independent and is given by an integral over the flux density S,
of all sources at frequency v up to a cutoff flux S.,; at which point sources are removed:

St L dN
_ 2
Cp = /0 S0 35, 1S (7.7)

4% is the distribution of flux densities such that 4¥-AS, is the (angular) number density

of sources with flux between S, and S, + AS,,.

The shot noise can be calculated from the CIB emissivity model and Eq. (7.7). However,
as this term is more sensitive to scatter in the L — M relation, there is more error induced in
the step going between the integration over S, (or equivalently L.y, than for the 1-halo

and 2-halo power spectra. In practice, this can be dealt with by introducing explicitly a
term to describe that scatter (see e.g. Appendix A of [100]):

dN B dN
dlnS dln M

P(In S|ln M) (7.8)

where P(In S|ln M) follows a normal distribution with some width ¢; ¢ — 0 recovers
‘fi—g — j—]\]\;. o could be chosen to fit the observed shot noise in a data set. However, in [69],
due to the increased modelling uncertainty in computing the shot noise, the values of the
shot noise were not calculated from the halo model prescription and instead were calculated
from the model of [107] and also included radio point source contributions from [108]. As
such, the calculated shot noise had no dependence on the CIB model parameters that were
being varied in the analysis; moreover, the shot noise contribution at each frequency pair
was marginalized over by allowing the value to vary in the analysis. With this in mind, we
perform no calculations for the shot noise, and instead use as our fiducial values for the
shot noise the best-fit values of [09] (see Table 7.1), and marginalize over these values in
our Fisher forecasts.
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| v,/ [ 217353 [ 545 | 857 | 3000 |

217 || 21 | 54 | 121 | 181 95
353 262 | 626 | 953 | 411
045 1690 | 2702 | 1449
857 0364 | 4158
3000 9585
Table 7.1: Shot noise values of [69], in Jy?/sr. The frequencies are in GHz and are the

frequencies for which the CIB power spectra were measured and used to fit the model.

Point source removal and S

At current angular resolutions, the CIB is a diffuse, unresolved emission; however it is
composed of discrete point sources—galaxies. If a single galaxy is bright enough, it can
appear in a map as a point source and be removed. In each CIB map there is a (frequency-
dependent) threshold flux density S.,; above which the point sources can be removed.
Considering that flux S, can be expressed in terms of luminosity L), by

L(1+z)1/

T An(l+ 22 (7.9)

v
a flux-cut is equivalent to a z-dependent luminosity cut, which should be imposed in the
calculations of C. We implement the flux cut by removing all halos with total luminosity

greater than that corresponding to the flux limit in Equation (7.9) where S is replaced
by the flux cut of the experiment in question.

7.2.2 The CIB-CMB lensing cross power spectrum

The angular power spectrum of the CMB lensing potential ¢ is discussed in detail in
Section 4.4.2. It is given in the Limber approximation by

4 d L
09 = = [ AWr()2Pom (k ==, z) (7.10)

W (y) = g (ﬂ)Q LN (1 _ 1) (7.11)



where yg is the comoving distance of the source of the CMB at z ~ 1080 and Py (k, 2)
is the matter power spectrum. The matter power spectrum can be computed within the
halo model by

P (k, 2) = (/ de—]@p%mb(M, 2)u(k, M, z)) Pin(k, 2) (7.12)

(with p,, the matter density today); the 1-halo term can also be written:
dn (M 2
dM \ pp,

The cross power between ¢ and the CIB is given by a Limber integration over the
emissivity-matter cross-power spectrum Py, (k, z)

2 dx - L
v _ v —
CL - ﬁ X2 WK(X)(’Z(X)]V(Z)P’IHJ (k - ;7 Z) ) (714)
where
s v 2—halo dn M
77(2) Py ik, 2) = D,(z) dep—b(M, 2)u(k, M, z) | Bin(k, 2) (7.15)
and
SV v —halo d?’L M 1 cen sa
P (Z)ij<k, Z)l halo __ /dep—mU(k}, M, Z)E (L(1+z)u + L(liz)UU‘(k’ M, Z)) . (716)

7.3 A parametric L — M relation

We use the parametric L, (M, z) model described in Section 5.4.1, using the best-fit values
of Planck [09] in our fiducial model. We also parametrize the number of central galaxies
hosted by a halo as

0 M< Mmin

(7.17)
1 M 2 Mmin

NCeIl(M’ Z) — {

where M., the minimum halo mass to host a galaxy, is one of the parameters of the
model; in the fiducial model, we use My, = 10°M.
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This luminosity-mass relation we consider was introduced in [67]. The parametric model
has been fit to several data sets with various subsets of the parameters allowed to vary; for
fits to SPIRE data see [70] and for fits to Planck data see [69)].

The L — M relation is parameterized by making the simplifying assumption that its
dependence on mass and redshift can be separated and specifying

Lgal

(Lo = Lo@()B(M)O((1 + 2)v); (7.18)

Ly is an overall normalization factor, which can be allowed to vary as a parameter in the
model; ®(z) determines the redshift evolution of the L — M relation; ¥(M) determines the
mass dependence; and © is the spectral energy distribution (SED). Their explicit forms
are given in Section 5.4.2. The fiducial values we use for the CIB model parameters are

the best-fit ones of [69]'. These values are summarized in Section 7.3 and Table 7.2.
’ Parameter ‘ Parameter description ‘ Value ‘
Q@ Redshift evolution of dust temperature 0.36 + 0.05
Th Dust temperature at z =0 244+19K
6] Emissivity index of SED 1.75£0.06
~y Power law index of SED at high frequency 1.74+0.2
) Redshift evolution of L — M normalization 3.6 +0.2
log,o Mot/ Mg, | Most efficient halo mass 126 +0.1
10g10 Mmin/ M | Minimum halo mass to host a galaxy unconstrained
Ly normalization of L — M relation 6.4 x 10-8Jy MPc*/M,,
o7 /M Size of halo masses sourcing CIB emission 0.5 (not varied)

Table 7.2: Best-fit parameters for the luminosity model of [69)]

Fiducial values of the parameters

We consider the model of [69], which was fit to the CIB power spectra at {217, 353, 545,
857, 3000} GHz. In this model, the parameters §, 3, Ty, 7, @, logg M, 10g,o Meg, and
Ly were varied; 0% s was fixed at 0.5. There is no plateau in the L — M relation: (2)

behaves as (1 + z)? at all redshifts. The parameters are summarized and their values are

'The value of Lg is not listed in [69] and so we choose a value that reproduces the amplitude of the
CIB power spectra and intensities therein.
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given in Table 7.2. The values of the shot noises in the power spectra were also allowed
vary as parameters, and marginalized over; their best-fit values are given in Table 7.1.
With the SED normalized as in Equation (5.56), the fiducial value we use for Ly is Ly =
6.4 x 1078Jy MPc*/ Mg = 1.49 x 107 L /M.

1.0 v —rr .
—-:= SO —— 217 GHz
=== 54 —— 353 GHz |

0.8_’— Perfect Reconstruction —— 545 GHz A

B —— 857 GHz
[ —— 3000 GHz |
0.6
= f

0.4

0.2

0.0

Figure 7.2: The correlation coefficients between the CIB maps from Planck+IRIS with
CMB lensing maps from various experiments. The calculation includes instrumental and
foreground noise in the CIB maps. The perfect reconstruction case corresponds to no noise
on the CMB lensing reconstruction.

7.4 Fisher forecasts

We perform various Fisher forecasts to investigate whether inclusion of CIB/CMB lensing
data has power to improve constraints on CIB models. We consider two experimental
configurations for the CIB: one corresponding to the Planck+IRIS experiments, at {217,
353, 545, 857, 3000} GHz, and one corresponding to the upcoming CCAT-prime [95] survey,
which will measure the CIB on small angular scales at {220, 280, 350, 410, 850} GHz.
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We are considering improvements in only the parameters of the CIB model; the CMB
lensing power spectrum is not dependent on any of the parameters we are including in
our forecast?. However, the CMB lensing power spectrum and the CIB power spectra are
C—Zd). Due to the
high correlation coefficient, measuring these two fields on the same patch of sky can yield
improvements in a model describing one field even if the other is not dependent on this
model through the cancellation of sample-variance shared by the two fields [103]. Addi-
tionally, knowledge of the redshift distribution of the CIB is contained in the correlation or
lack thereof [109] with the CMB lensing matter distribution, whose redshift dependence is
precisely known. Due to this, we expect the inclusion of CMB lensing in the CIB analysis

to yield improvements in the CIB parameters.

correlated; see Figure 7.2 for plots of the correlation coefficients r} =

7.4.1 Fisher matrix formalism

We consider at each L an (N + 1) x (N + 1) covariance matrix , where N is the number
of frequency channels at which the CIB is measured:

Cuu’ CV¢
C, = ( G e ) (7.19)

C¥' is an N x N covariance matrix of the auto- and cross-power spectra of the CIB, CZ¢
is an N-dimensional vector of the cross power spectra between the CIB and CMB lensing,
and C’}f¢ is the CMB lensing power spectrum.

We consider a vector of parameters
Hi = (CY, TO) 57 77& loglo Meff/M®7 loglo Mmin/M®7 LOa SVXV,) (720)

where S¥*¥" denotes the w shot noise parameters. The Fisher matrix for the param-
eters is

B (2L +1) 00, ;00
Fij _;TfskyTr C; WCL BIit (7.21)

where fq, is the sky fraction covered by the experiment. C; ' includes both signal and
noise. Within this setup, the fully marginalized forecast 1o error on a parameter i is given

by /),

2In particular, we assume cosmological parameters are known to much better precision than the CIB
model parameters considered here.
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At times, we refer to forecasts where we remove the CIB auto power spectra from our
forecasts, and consider only the cross power spectra Cf” and the lensing auto-power Ci’m.
We do this by instead employing the bandpower Fisher formalism, where the Fisher matrix
is computed from the covariance of the power spectra; in this case the data is considered
to be the power spectra (as opposed to the fields themselves) and we consider the data
vector

O = (CZ"", v, c#) (7.22)

with covariance matrix

R A 1
ap v\ oy ay B Bé ad ad By By .
(C<CL Nes) ) = —(2L+1)fskyl(CL + Ny )(CL + Ny ) + (C3° + Np°) ((JL + Ny )}
(7.23)
F;; is now given by
B ocT . ,0Cy
o= 2 om e om (7.24)

(where CT denotes the transpose of Cr). This Fisher formalism is equivalent to the one
that results in Equation (7.21); however, it allows us to explicitly remove power spectra
from the analysis by taking only the entries we are interested in in (7.22), something is not
possible when we are computing Equation (7.21).

7.4.2 The CIB power spectra and CMB lensing: signal and noise
CIB noise specifications

There is instrumental noise in the v = v/ power spectra, which we include as

L(LA1)Ofwiny

Ny =N(L)e  smz ™ (7.25)

where N (L) is the value of the noise and Opwy is the beam Full Width at Half Maximum
in radians. For Planck and IRIS we use only white noise N(L) = Nypite. The values of
Nynite and Opwyy are given in Table 7.3. For CCAT-prime we consider both large-scale
frequency dependent “red” noise and white noise corresponding to the specifications given
in [98]:

Oknee
N<L) = Nred ( ) + Nwhitea (726)

L knee
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where Ligee is 1000 and aypee 18 3.5. We emphasize that just as with Simons Observatory
and CMB-S4 configurations considered below, the noise specifications correspond to one of
many possible configurations that CCAT-prime could observe in. The values of Nyeq, Nunite,
and Opwmy are given in Table 7.3 3 (note that we consider the noise levels corresponding to
the configuration in which CCAT-prime observes 15,000 sq. deg., but we only use 2240 sq.
deg. of these). We show in Figure 7.3 the signal and noise at the frequencies measured by
Planck. We show in Figure 7.4 a summary of the signal and noise at all of the CCAT-prime
frequencies.

Frequency || Beam (arcmin) 5 Noise -
Jy* /st ‘ pK-arcmin

217 GHz 5.01 72 60.12

353 GHz 4.86 305 208.98

545 GHz 4.84 369 1137

857 GHz 4.63 369 29075

3000 GHz 4.3 305 6.7 x 10%®
Frequency || Beam (arcmin) ‘ White noise ‘ ‘Red’ noise

Jy? [sr \ pK-arcmin Jy? [sr \ pK-arcmin
220 GHz o7 4.2 14.6 3.7 x 10° 435
280 GHz 45 11.8 27.5 2.0 x 10% 1140
350 GHz 35 85.1 105 2.5 x 10° 5648.8
410 GHz 30 468 377 6.6 x 10° 14174
850 GHz 14 69483 575000 1.5 x 107 | 8.5 x 10°
Table 7.3: Noise levels and beam sizes for the Planck [111] , IRIS [34], and one of many

possible CCAT-prime [98] configurations.

CMB lensing noise specifications

The lensing potential can be reconstructed from CMB temperature and polarization
maps [11]. We consider various reconstruction noise scenarios including reconstruction
noise in line with that of Planck, with a Simons Observatory-like scenario (specifically the
‘goal” configuration from [16]), and a Stage-4 (S4) like scenario such as [17]. Additionally,

3At Planck frequencies, we change between pK and Jy using the conversion factors in [110]. See
Appendix C for more details.
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we also compare to the case when there is no noise on the lensing reconstruction out to
L = 1000. The signal and noise for the various lensing scenarios are plotted on the right
of Figure 7.4. In all cases we assume that the CMB lensing potential is measured reliably
in the multipole region 186 < L < 1000.

With the signal and noise expected from these experiments, we can calculate the forecast
errors on the measurement of the CIB/lensing cross correlation. The error-bars on Cf”
can be calculated from the bandpower covariance matrix of Equation (10.8) with o =
v =k and 0 = f = v. Assuming independence of the L-modes measured (which may be
slightly optimistic due to mode-coupling induced by partial-sky effects) we can calculate
the covariance of the C'"

2 1 2
A ¢>V> _ v NV ( b N¢¢> ( V¢>) 92
( CL AL<2L i 1)fsky |:(CL + L ) CL + L + CL (7 7)
where AL is the width of the bins over which C}? is measured; in [91] the bandpowers

are given in bins of width AL = 126. See Figure 7.5 for plots of the predicted errors, the
fiducial model, and the data of [91].

7.4.3 Foregrounds

We include contributions from foregrounds as noise in the covariance matrices. The domi-
nant foreground at high frequencies is emission from Galactic dust; however by restricting
our baseline analysis to the cleanest 2240 sq. deg. used in [(9] and to angular scales with
L > 186, we substantially reduce the noise contribution from dust, and therefore do not
include it in our forecasts. The main contaminant at low frequencies is the CMB, which is
dominant over the CIB at 217 and 353 GHz. Note, however, that for the analysis in [69)]
the CMB was subtracted from these maps, using a template of the CMB measured at 143
GHz.

We include the entire CMB power (computed with CAMB) in our forecasts at all
frequencies, and find this has little effect on our forecast except for the predicted errors on
the measured cross-power at CMB-dominated frequencies (see Figure 7.5). We also include
the early- and late-time kinetic Sunyaev—Zeldovich (kSZ) effect, the thermal Sunyaev—
Zeldovich (tSZ) effect, and radio point sources as foregrounds [86, 112, 10].
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7.5 Forecast results

7.5.1 Constraints on CIB model parameters

First we consider only Planck+IRIS-like CIB data: v = {217,353,545,857,3000} GHz,
with noise specifications corresponding to those in Table 7.3. For the CIB power spec-
tra, we sum over all multipoles 186 < L < 2649, corresponding to the multipoles used
to fit the data in [09]; for the CMB lensing power spectra we sum only over 186 <
L < 1000. We consider a sky fraction of 2240 square degrees for the Planck frequen-
cies v = {217, 353,545,857} GHz, and 183 square degrees for the 3000 GHz IRIS data,
corresponding to the sky areas used in the Planck analysis [09]. We assume full overlap
between all maps, and the CMB lensing potential reconstruction. Motivated by the priors
used in [09], we include Gaussian priors in the Fisher matrix with widths of 20 K for Tj
and 0.5 for ; we also include Gaussian priors on the shot noise parameters with widths
given by the 1o errors in Tables 6 and 7 of [69]. We assume the flux cuts in Table 1 of [69]

The forecast constraints on the parameters, and improvements upon including the
different lensing scenarios, are given in Table 7.4. A bar graph of the improvement factors
is also presented in Figure 7.6. Triangle plots of the covariances of the parameters are
given in Figure 7.7.

CIB only Forecast Improvement

Parameter Reported Constraint Forecast o NE" planck Ni%so NiFfsy Nrf =
Value Percentage oCIB ociB/o ocis/o || ocis/o | Percentage ociB/o

a 0.05 13.89 % 0.03 1.11 1.63 2.47 2.96 % 3.34

To[K] 1.9 7.79 % 1.04 1.22 1.89 2.46 1.73 % 2.88

0.06 3.43 % 0.02 1.03 1.14 1.25 1.04 % 1.34

o 0.2 11.76 % 0.06 1.04 1.1 1.14 2.86 % 1.18

é 0.2 5.56 % 0.29 1.17 1.59 1.85 4.42 % 2.02

logo(Meg) 0.1 0.79 % 0.17 1.08 1.2 1.28 1.05 % 1.37

% None 0.23 1.19 1.62 1.87 12.45 % 2.04

logm((}\/[min) unconstrained 47.81 1.06 1.38 1.87 255.99 % 2.36

Table 7.4: Constraints and improvement factors ocrg/o on this model when only incorpo-
rating Planck data. In the columns labelled ‘Percentage’ we report the size of the constraint
as a percentage of the fiducial parameter value.

Second we consider CCAT-prime+IRIS-like data. As CCAT-prime is noise dominated
at low L, we include the low-L data from Planck in this forecast as well. Thus we consider
a forecast at v = {220, 280, 350, 410, 545, 850, 3000} GHz, although the 545 and 3000 GHz
data is only signal-dominated at low L, and the 410 and 280 GHz data are only signal
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CIB: N Z’/CCAT_prime Forecast Improvement
Parameter | Forecast Constraint || N/ panck "s0 754 Ni® =0
OCIB ocs/0 || ocs/o || ocs/o | Percentage | oc/o
Q 0.02 1.06 1.38 1.99 2.66 % 2.75
To[K] 0.72 1.1 1.54 2.06 1.42 % 2.52
15} 0.02 1.01 1.08 1.14 0.78 % 1.18
¥ 0.05 1.01 1.06 1.09 2.61 % 1.12
) 0.22 1.1 1.52 1.96 3.12 % 2.29
logyo(Mesr) 0.13 1.08 1.34 1.55 0.67 % 1.69
Ly 0.17 1.1 1.53 1.95 8.84 % 2.26
logyo(Min) 37.67 1.05 1.33 1.88 200.05 % 2.58

Table 7.5: 1o constraints and improvement factors on the parameters when including both

Planck and CCAT-prime data.

dominated at high L. At 220, 350, and 850 GHz respectively we consider Planck noise
levels appropriate to 217, 353, and 857 GHz.

We must also include shot noise values in the CCAT-prime forecast. We consider flux
cuts similar to the Planck experiment; as the flux cuts could be smaller and the shot noises
lower, our forecast is conservative in this regard. We choose the shot noise parameters
from those in Table 7.1, where we have in every case rounded up the relevant CCAT-prime
frequency if it does not appear in the table. Forecast 1o constraints are shown in Table 7.5.

7.5.2 Impact of the high-frequency data

The forecasts in Section 7.5 included 3000 GHz data on around 8% of the sky area on
which the low-frequency fields are measured. The 3000 GHz field is qualitatively different
to the low frequency fields: it probes the high-frequency end of the SED (5.53) and as such
informs the parameter v while the lower frequency fields do not. It is also sourced at lower
redshift (see Figure 7.1) and thus is less correlated with the rest of the CIB and can provide
more independent information. As well as providing all the information on v, including the
3000 GHz field on even this small sky fraction provides significant constraining power on
the parameters relating to the dust temperature («, Ty), improving the constraints on these
parameters by up to 100%. Because of this, it is important to include the high-frequency
information in any CIB model fitting.
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7.5.3 Galaxies as an external tracer

The Rubin Observatory [51] will measure the clustering of billions of galaxies and their
photometric redshifts in their LSST (Legacy Survey of Space and Time) survey. While the
CMB lensing kernel is highly correlated with the CIB, both peaking at redshift z ~ 2, it
is interesting to see what low-redshift information can add to the CIB, particularly as the
3000 GHz field (which is sourced at lower redshift) helps significantly with some parameters
(as discussed in Section 7.5.2). In this Section we consider how a low-redshift galaxy sample
from the Rubin Observatory can help improve parameter constraints. A similar analysis
was done in [104] where a CIB halo model was fit to the cross power spectra of the CIB
and SDSS galaxies in a narrow redshift bin, in order to isolate redshift behaviour of the
CIB.

The angular galaxy clustering power-spectrum for a photometric redshift bin between
redshifts z; and z; (comoving distances x; and x)

1 [ dy L
099 = / 2p (k == z) : 7.28
L AXQ X2 99 X ( )

Xi

where Ax = xy — x; is the extent of the bin in comoving distance and P9 is the galaxy
power spectrum. We choose to consider only one photometric redshift bin, from z = 0 to
z = 1, and use only the two-halo galaxy power spectrum, which can be written as

P (k, 2) = by Rin(k, 2), (7.29)

where the galaxy bias b, is defined as

AN N#\(M, 2)
b = [ dM —2b(M, z). .
() = [ ) (7.30)
For the galaxy density field predicted for the LSST Gold sample [5]
dn 9 z
7, % exp <_ﬁ> (7.31)

with a total number density of 40 arcmin™2. We calculate N% with the model described
in Chapter 5.3.2, with the threshold stellar mass for galaxy detection chosen to reproduce
the distribution (7.31).

As we do not wish to focus on uncertainties in the non-linear galaxy HOD, we restrict
our galaxy clustering information to scales where only the two-halo term is relevant by
using an L,,q, of 500 for the galaxy survey and neglecting the 1-halo terms.
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We can write the two-halo cross-power spectrum between galaxies and the CIB emis-
sivity as
J(2) P20 (k, 2) = by(2) Dy (2) Pin(k, 2) (7.32)

with D, (z) the CIB bias. The angular power spectra can be computed from the Limber

approximation
1 [d L
cr=— | Zjpy (k —_— z) . (7.33)
Ax Jy, X X
We perform a forecast with the same formalism as in Section 10.3 where we now consider
a covariance matrix with galaxy clustering included:

CZV/ CZ¢ C«Zg
Co=| cv oy oy |. (7.34)
cy oy oF

The cross-power spectra between lensing and galaxies Cf‘z’ is

1 d L
b9 _ X _
cr -5 / a0, W0 B (k — ;,z) . (7.35)
To account for the uncertainties in the modelling of our galaxy power spectra, when we
include galaxies in the forecast we marginalize over the galaxy bias by introducing a pa-
rameter A such that C% = A2CY, C9% = ACY?, and C¥ = ACY” with A = 1 in the
fiducial case.

We assume full overlap between the galaxy field, the CIB fields, and the CMB lensing
field (although we restrict the 3000 GHz field to 183 square degrees as before). We find
that some CIB model parameters can be constrained much more strongly when including
galaxies; similarly to when the 3000 GHz field was included, the CIB dust temperature
parameters a and Ty are improved significantly, as well as the parameter controlling the
redshift evolution of the L— M normalization ¢, indicating that the low-redshift information
helps to inform these parameters.

7.6 Constraints on star formation history

The source of the energy of the dust particles emitting the CIB is irradiation by ultraviolet
(UV) light emitted by the star-forming galaxies. The star formation rate (SFR) can be
measured directly with UV detections; however these measurements must be corrected for
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the dust attenuation, as much of the UV emission is indeed absorbed and re-emitted in the
IR (see [113] for a review of cosmic star formation history). In [ 14], UV measurements are
used to constrain the SFRD at redshifts up to z = 4.5. Direct measurements of total IR
emission of galaxies are also used to constrain SFR [115, 116]. As the CIB emission traces
all galaxies (not just those luminous enough to be resolved as sources), it can provide a
complementary probe of the SFR, particularly at high redshift.

The star formation rate (SFR) can be related very simply to the total infrared lumi-
nosity of galaxies through the Kennicutt relation [73]:

SFR = K Lig (7.36)

with K the Kennicutt constant K = 1.7 x 107 M, yr~!. The total infrared luminosity is
simply the luminosity density integrated over its entire IR emission spectrum:

Lip = / dvL, (7.37)

—as the only v-dependence is in the SED this can be written equivalently as
L,=06,Lr (7.38)

with the SED ©(v) normalized such that [ dv ©(r) = 1*. The definition of emissivity (5.45)
can then be written

]V(Z) = @(1+z)u/dLIR__ (739)

with d‘f:% the IR luminosity function such that %dLIR gives the number density of halos
with total IR luminosity between Lig and Lir + dLig. Due to the Kennicutt relation, the
integral in (7.39) gives the mean star formation rate density (SFRD) pspr:

@(1+z)zx PSFR(Z)

A
47 K (7 0)

Ju(2) =

This can be written in terms of the effective SED s, o, the flux density from a halo with
luminosity of 1L

1L,
veff = ) P R Y N 7.41
et T P e (1 1 ) (741)
such that 2(1
jy(Z) _ pSFR<Z)5V,effX ( + Z>‘ (742)

K

4Note that this is a different normalization to the SED in Section 5.4.1.
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In modelling the star formation rate, an alternative approach to using a parametric SED
is to use for s, externally measured SEDs such as those of [107]. Indeed, in [33] CIB
and CMB lensing data are used to constrain the pspg in this way. This approach has the
advantages of being able to incorporate different types of galaxies with different SEDs [117]
such as those undergoing a starburst phase or the more common main sequence galaxies.

We can use the parametric halo model to compute pspr(2z) by using for the parametric
SED of Equation (5.53) in (7.41) to compute s, ¢ (note it must be normalized to integrate
to 1 over all frequencies). We can then forecast the constraints on pspr(z) by drawing
parameters from the covariance matrix defined by F~!, the inverse of the Fisher matri-
ces discussed above. We show in Figure 7.8 how the inclusion of lensing data improve
constraints on pspr through this model; as it is difficult to see the improvements on a
logarithmic scale we include a linear plot of the constraints divided by the fiducial value
of psrr. We define the 1o errors as the area within which 68% of 1000 realisations fell,
centered on the median value.

7.7 Discussion

In this Chapter, we explored the possibility of using cross-correlations of CMB lensing mass
maps with maps of the CIB to improve physical models of the latter. We have shown that
inclusion of CMB lensing data can lead to up to 2x improvement in constraints on the
dust temperature and its redshift evolution, and on the redshift evolution of the relation
between CIB galaxy luminosity and mass, in particular. Since cosmological parameters
like the amplitude of matter fluctuations are known to much better precision than the as-
trophysical parameters of interest here, we have not varied them in our forecasts (although
see [118] for a CIB-only forecast which varies the cosmological parameters along with the
CIB parameters). Therefore, the CMB lensing potential does not depend on the param-
eters under consideration. Due to this, improvements in parameter constraints will come
from either the redshift overlap or cancellation of sample variance, as described below.

We have calculated explicitly the constraints for a CIB-only scenario with zero fore-
grounds and instrumental noise, and we find that in the realistic forecast, while not all of
the parameters have reached their sample variance limit, for many of them the inclusion of
SO- or S4-like lensing improves the constraint to such an extent that they are better than
the “perfect” sample-variance limited CIB-only case. However, we note that this effect
might not be due solely to sample variance cancellation, but that the well-understood red-
shift kernel of the CMB lensing field may be helping to constrain the redshift dependence
of the CIB fields by breaking parameter degeneracies.
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In order to be conservative and facilitate comparisons with earlier work, the improve-
ments we have presented are calculated for the small sky areas (~ 5%) used for the analysis
in [09]. It is possible to consider larger sky areas for the CIB maps than was done here; [75]
produced maps with improved treatment of galactic dust using HI data and recommended
sky fractions of {18.7%, 16.3%, 14.4%} at {353, 545, 857} GHz for auto-power spectrum
analysis. Accounting for the partial sky covered by typical ground-based surveys however
reduces the area available for cross-correlation (necessary for improvements from sample
variance cancellation) to {6.4%, 8.4%, 9.8%}, respectively.

The requirements on foreground cleaning for the CIB maps are more stringent for an
auto-power-spectrum analysis than for a cross-correlation with CMB lensing. Much of
the foreground contamination is sourced by Galactic dust, which will introduce spurious
correlations in the auto-spectrum from the spatially dependent two-point correlation of
Galactic emission, which can be significantly brighter than the CIB. On the other hand,
in a cross-correlation of CMB lensing (calculated through quadratic estimators of the form
(T071%0) " where T is the CMB temperature field as measured at 150 GHz that dom-
inates near-term experiments) with the CIB biases enter through bispectra of the form
(TEOTIOTHEY where T is the Galactic dust emission at 150 GHz and T8 is the
Galactic emission at high frequencies used for CIB maps. These are suppressed relative to
the biases in the CIB auto-spectrum for several reasons that include (1) the SED of dust
being such that T2 is significantly smaller than T;3¢" and (2) contributions from Galac-
tic dust blobs being further reduced in the high-resolution CMB map through mitigation
techniques like point source bias hardening [119]. As such, the sky area available for the
cross-correlation between the CIB and CMB lensing is larger; the largest maps of [75] have
a total sky area of 34.2% with roughly 20% overlap with typical wide-area ground based
high-resolution CMB experiments from which CMB lensing maps will be available. To
understand the impact of sky area, we show in Figure 7.9 the improvement in the con-
straints as the lensing field is added on top of the baseline forecast. The area on which the
CIB auto power spectrum is measured is not changed in Figure 7.9, and the lensing field is
added first on the IRIS+ Planck fields, then on the Planck fields, and then on extra sky but
without any CIB auto-power spectrum measured beyond the baseline 2240 sq. deg. We
find that for some parameters like the SED emissivity index 3, substantial improvements
can be obtained by including CIB/lensing cross-correlations in larger fractions of the sky,
without having to measure the CIB auto-spectrum beyond 2240 sq. deg. We note however
that our forecasts do not include the increased scatter on large scales from Galactic dust
contamination that is encountered when including larger sky areas [75].

We have checked that forecasts with the auto-spectrum of the CMB lensing map

removed—i.e., with only C¥' and C¥® as data—and have found that there is negligi-
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ble degradation in the forecast parameter improvements. As such, one will not need to
measure the auto-spectrum of the lensing potential to achieve model improvements.

We find that the inclusion of the 3000 GHz field, even on a small fraction of the sky
area, is key for constraining the CIB model. This is not only due to the fact that it is the
only field that informs the high-frequency part of the SED, but also because it is the only
low-redshift tracer included in the survey, as evidenced in Figure 7.1. As such, it provides
information that is independent of the low-frequency fields. We have also demonstrated
that the inclusion of another low-redshift tracer (such as galaxy clustering out to z ~ 1,
say from the Rubin Observatory [51, 120]) can improve parameters even further. As in
the case for when lensing is included, the galaxy density must be measured on the same
patch of sky to provide improvement. This is an interesting possibility; however, we note
that we have presented rough optimistic forecasts as an illustrative example of the power
of correlating the CIB with other low z tracers to improve the CIB model.

For robustness, our baseline forecasts have restricted analyses mostly to the mostly two-
halo regime by using the multipole range 186 < L < 2649. We have however also considered
improvements to a CIB model made with CIB maps of higher angular resolution exploring
the one-halo regime, in particular those that will be made by CCAT-prime. While the
HOD we use is not expected to be very accurate on such small scales, it is interesting that
there is still improvement factors up to ~ 2 for the S4 case in these forecasts when the
large-scale lensing cross-correlation is included.

Studying the CIB is interesting for a variety of reasons. First, from an astrophysical
perspective, it contains interesting information about star formation history. We have
shown what improvements can be made to measurements of the star formation rate density
through including lensing data in Section 7.6. While the model we use as our fiducial
model may not reproduce very accurately other measurements of the star formation rate
(perhaps due to the crude parametric SED used), it is possible that alternative models
of the CIB, such as the simpler single-parameter halo model used in [39] (which uses
externally measured SEDs) will be improved similarly by including lensing data. The CIB
is also an interesting cosmological signal: as a tracer of large scale structure, the CIB
carries interesting information [121, 3] and having a more accurate model can allow us to
exploit further its cosmological information.

Secondly, the CIB is important to understand as a foreground to other signals of in-
terest. The CIB is a significant foreground to the CMB at small angular scales and its
accurate modelling is necessary to make unbiased measurements of signals that are relevant
to the small-scale CMB such as the kSZ power-spectrum [99], as well as extensions to the
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ACDM model deriving significant information from the damping tail®>. We leave detailed
exploration of the potential improvements to physics in the temperature damping tail to
future work. The tSZ effect is also a significant foreground to the CMB at small angular
resolution, and must also be mitigated or modeled; as discussed in [39], the tSZ/CIB corre-
lations can be consistently modelled with the halo model approach presented in Section 7.2.
As we find that significantly more accurate models of the CIB can be built by including
external tracers, in particular the CMB lensing potential, in the data analysis, this method
of constraining models of the CIB will be of great use in improving our knowledge of star
formation as well as potentially physics in the damping tail.

5Tt should be noted that as the polarization sensitivity of ground-based experiments improves, pa-
rameters like the number of relativistic species Neg will increasingly derive their information from the
polarization TE and EE spectra. Thus, CIB-related model bias to extensions of the ACDM model (like
Negr) will likely be less of an issue, since the CIB is not significantly polarized.
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Figure 7.3: The predicted CIB signal at Planck frequencies is shown here in solid blue
along with beam-deconvolved instrumental noise (orange dashed) and total foreground
power (red dotted). Also shown in purple are the power spectra of the CIB maps of [75]
(for 353, 545 and 857 GHz), corrected for the beam and partial sky coverage. When
available at a nearby frequency, the beam-deconvolved CCAT-prime instrumental noise
(one of many possible configurations) is also shown. This Figure shows that our signal and
noise power spectra account fairly well for the observed CIB power in [75].
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power spectrum shown against various reconstruction noise levels from the Planck satellite,
a Simons Observatory-like configuration and a CMB-S4-like configuration (note that we
plot the lensing convergence power spectrum which is related to the lensing potential power

spectrum through C7* = WC’#).
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Chapter 8

Velocity reconstruction with the CIB
and the kSZ effect

8.1 Introduction

The Cosmic Microwave Background (CMB) temperature anisotropies have been measured
with ever-improving angular resolution and sentitivity, from COBE’s [10), | measure-
ments of ~ 10uK fluctuations on angular scales of ~ 10°, to the Planck satellite [123] and
ground-based CMB experiments such as SPT and ACT measuring ~ 102K fluctuations
on ~ 1’ scales. These experiments have extracted almost all of the information from the
primary CMB — anisotropies sourced primarily at the surface of last scattering, where
the CMB was released. However, there remains much information to be extracted from
CMB secondaries: anisotropies generated through the interaction of CMB photons with
mass (lensing) or charges (the Sunyaev—Zel’dovich (SZ) effect) throughout the universe.
These effects are on the resolution/sensitivity frontier, and while they have been detected
with moderate significance thus far, future experiments such as Simons Observatory [10]
(S), CCAT-prime [1241], CMB-54 [17], PICO [125], or CMB-HD [126] will provide highly
significant measurements of the secondary CMB.

The kinetic Sunyaev Zel’dovich (kSZ) effect is one such secondary temperature anisotropy,
induced by the scattering of CMB photons off electrons with non-zero CMB dipole in their
rest frame [50]. The kSZ effect is the dominant blackbody component of the CMB on
angular scales corresponding to [ = 4000, and has been detected at the > 4o level [127,

, , , , , |. The kSZ effect is interesting from a cosmological perspec-
tive because of its dependence on the remote dipole field, the CMB dipole observed at
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different locations in the universe. The remote dipole field can be reconstructed using
the correlations between CMB temperature and a tracer of density, a technique known as
tomography [134, , , , , ; ; , |. Forecasts [110, , ] indi-
cate that the remote dipole field can be reconstructed with high signal-to-noise through
cross-correlation of next-generation CMB experiments and a large redshift survey such as
LSST [51]. These measurements of the remote dipole field have the potential to improve
constraints on primordial non-Gaussianity [113], determine the physical nature of various
anomalies in the primary CMB [111] (e.g. the lack of power on large scales, the hemi-
spherical power asymmetry, the alignment of low multipoles), provide precision tests of
gravity [145, 146], and constrain the state of the universe before inflation [1383].

In this Chapter we adapt the techniques of Ref. [110] to define a quadratic estimator for
the remote dipole field from a 2-dimensional tracer of structure in cross-correlation with
CMB temperature maps. In particular we consider as the 2-dimensional tracer the Cos-
mic Infrared Background (CIB), infrared radiation from dusty star-forming galaxies. The
anisotropies in the CIB trace the distribution of large scale structure (LSS), and have been
measured with increasing accuracy from balloon (e.g. BLAST [117]) and ground-based
facilities (e.g. SPT [72, 133] and ACT [118]) as well as satellite missions (e.g. Herschel [70]
and Planck [69]) over a wide range of frequencies (~ 100—1200 GHz). In principle, the CIB
can provide constraints on cosmology. However, the main obstruction to using the CIB
as a competitive cosmological probe (e.g. to measure primordial non-Gaussianity [119])
is the lack of maps on large fractions of the sky with sufficiently low foreground residuals
(see e.g. [75]). Although, by virtue of its large correlation with the lensing potential [150],
the CIB has proven to be a useful tool for de-lensing CMB polarization maps to obtain
improved constraints on primordial gravitation waves [151].

To obtain a high fidelity reconstruction of the remote dipole field, it is necessary to
measure the clustered component of the tracer (here the CIB) on angular scales of ¢ ~
3000 — 4000, where kSZ becomes comparable in amplitude to the primary CMB [110; 112].
This resolution/sensitivity has been achieved for the CIB with existing experiments, e.g.
SPT [133], albeit on small areas of the sky. The CIB at a fixed frequency samples structure
over a wide range of redshifts, and only a significantly coarse-grained reconstruction of the
remote dipole field can be obtained using kSZ tomography. This coarse-grained dipole field
has structure primarily on large angular scales, which means that measurements of the CIB
on large fractions of the sky are necessary for kSZ tomography. If future measurements
can achieve this, the course-grained remote dipole field provided by kSZ tomography will
probe the homogeneity of the universe on the very largest scales. This can be used to
constrain various models of early-universe physics 114, .

To assess the utility of the CIB for kSZ tomography, we perform a set of simplified
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forecasts for the Planck satellite and for a future experiment with specifications similar
to a stage-4 CMB experiment [I7]. In our forecasts, we assume that the CIB can be
perfectly separated from the blackbody component (the lensed primary CMB and kSZ)
in each channel, as well as from other foregrounds. We further assume data on the full
sky, Gaussian beam, and white instrumental noise. We perform a principal component
analysis to identify which modes of the CMB dipole field we can hope to reconstruct from
the CIB and find that reconstruction of a linear combination (in redshift space) of the
remote dipole will be possible for modes with redshift-weightings corresponding to that of
the CIB integration kernel. Under these assumptions, we find that the remote dipole can
be reconstructed with an overall signal-to-noise of order one using Planck-quality data.
We also perform a forecast for a next-generation experiment; for an idealistic case with
no foregrounds, we find that a full-sky survey could in principle perform a mode-by-mode
reconstruction of the remote dipole field on large-scales with high signal-to-noise (> O(10)
for ¢ < 10), and obtain an overall signal-to-noise of @(1000 — 10000).

The remote dipole field can also be reconstructed using future galaxy redshift surveys.
We demonstrate that the CIB-based reconstruction of the remote dipole field is highly
correlated with the galaxy-based reconstruction. While this implies that there is limited
additional cosmological information to mine from the CIB-based reconstruction, the meth-
ods developed in this Chapter to obtain CIB information are interesting nevertheless. First,
as we wait for LSST-like galaxy surveys to become available to use for tomography, alter-
native methods are worth investigating as the density tracer maps might become available
earlier than LSST. Secondly, the large correlation can be used to address the optical depth
degeneracy [70, , |: the modelling uncertainty in the correlation between electrons
and the tracer used for the reconstruction. The optical depth degeneracy manifests as
a redshift-dependent bias on the reconstructed dipole field, different for each tracer. By
correlating the CIB-based and galaxy-based reconstructions, it is possible to measure the
ratio of optical depth bias parameters with arbitrary accuracy. Such a measurement could
both help extract cosmology from reconstructions of the remote dipole field, as well as
provide insight into physical models of both the CIB and electron distribution.

This Chapter is organized as follows. In Section 8.2 we derive the quadratic estima-
tors we use; in Section 8.3 we will describe our forecast; in Section 8.4 we will present
the results of our forecasts for Planck-quality data and a next-generation experiment; in
Section 8.5 we explore the correlations between the CIB-based and galaxy-based remote
dipole reconstructions; we conclude in section 8.7.
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8.2 KSZ tomography: reconstruction via a 2-dimensional
field

We wish to reconstruct the remote dipole field by cross-correlating the CMB temperature
anisotropies with the CIB intensity, which is a two-dimensional field defined by the line-of-
site integral over the 3-dimensional CIB emissivity density. Ref. [110] derived a minimum
variance quadratic estimator for the remote dipole field using a 3-dimensional tracer (galaxy
redshifts) and the CMB temperature anisotropies. Here, we adapt this analysis for the 2-
dimensional case. Following [110], we use the cross-correlation between the kSZ-induced
CMB temperature and our tracer to derive this estimator.

Neglecting optical depth effects, the kSZ-induced temperature anisotropy in the direc-
tion n is given by
AT ) Xre o A
T (H) = dX T (Il, X) Ueft (Il, X) (81)
kSZ 0

The integral over comoving radial distance x is done out to reionization at y... The remote
dipole field veg (0, x) is defined by

Vefr (flv X) = Z @71n (ﬁ7 X) Yim (ﬁ) ) (82)

m=—1

O () = [ ! Ol i) Yin (i) (8.3

where O(n, x,n’) is the CMB temperature the electron at (n, x) sees along direction n’,
O(n, x,n’) = Osw + Osw + Opep, With the usual contributions from Sachs-Wolfe (SW),
Integrated Sachs-Wolfe (ISW), and Doppler (Dop) effects. The dominant contribution to
the remote dipole field at any point in spacetime is the Doppler effect from the peculiar ve-
locity field, and therefore one can approximate veg ~ v -n unless long-distance correlations
of the remote dipole field are considered. Such correlations will be relevant to our discus-
sion below, and so we consider all contributions to the remote dipole field. A more detailed
description of the properties of the remote dipole field can be found in Refs. [139, ].
The differential optical depth 7(x,n) is defined by

7 (x, ) = —ora(x)ne (x,0); (8.4)

here o is the Thompson scattering cross section, which governs the rate of the scattering
of the photons and electrons; a(x) is the scale factor at comoving distance y; n. (x,n) is
the comoving electron number density.
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We proceed by defining N redshift bins, labelled by o where o € 1--- N, each with
comoving-distance boundaries x%; , xo... The optical depth 7¢ in each bin is thus defined
as

7(n) = /Xmax dx7 (x,n) . (8.5)

The bin-averaged dipole field is -
o 1 Xmax .
Ugg () = ey /xmm dx vest (X, 1) (8.6)
with
Vet (X 1) = 0gg(0) (1 4 dve (x*, 1)) - (8.7)

Contributions from dveg are small, due to cancelations along the line-of-sight, and we
therefore have

T(ﬁ) ~ > T (0) 05 (). (8.8)

The CIB brightness I,(n) at frequency v is given by a line-of-sight integral over emis-
sivity density j,(x,n) (see e.g. [68]):

Xre
@) = [ el (v, (59
0
We model the CIB with the halo model following the “minimally empirical” model for the
mean emissivity density of [71]; for further details see Chapter 5.4.3.

We now compute the cross-correlation between the kSZ temperature anisotropy (8.8)
and CIB brightness (8.9). We work in spherical harmonic space with the conventions

O() = 3 0 Yo () (.10)
ot — / R O(R)Y, (B); (8.11)

0¢m are the coefficients of the expansion, which we denote for temperature as a,, and CIB
intensity as jj,. The cross-correlation is given by

<a£m1]€V2m2> = Z Z @%2M2 <T21M1j2/2m2>

o LiMiLaMo

[ Y (02 () (1), (8.12)
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We take the vy, term out of the ensemble average because the dominant contribution to
(T8 0 0ty Jbom, ) comes from Tpong (T8 apdbm, ) [139]. Using statistical isotropy to write
angular power (77, jZ:m2> as

<sz1[y* > = Cglya5€1£25m1m2, (813)

lomo

or (T8 i dtems) = (=1)™2C7*8, 0,0, ,—my, and performing the angular integration in (8.12),
gives us

. i [CUA DG T DL +1) (1 1 L
<a£m1jfzm2>: Z (_1) ’ \/ AT 01 02 0

a; Lo Mo

( gl 62 ]\32 ) E%MQCZQVQ (814)

—my; —Mma

m mip Mo

where ( £h b ) are the Wigner 3J symbols. We then define

o _ J@OUF1)206L+1)RL+T) (b by L .
T = \/ = 0 0 0 0 (8.15)
such that
37 mi+mo o 14 14 L —o
<a£m1j€2m2> = Z (=™ me;( —77111 _;12 M ) Urm- (8.16)
a; LM

8.2.1 Defining an estimator for the dipole field
We want to define a minimum variance quadratic estimator for o as in [110]. Note, however,
the key difference that in [110] the CMB temperature was being cross-correlated with a

3-D field that could itself be binned into redshift bins just as we bin the optical depth, and
constrast this to the case we have here, where we cross-correlate the CMB temperature
field with a 2-D field that cannot be redshift-binned. This difference manifests itself in the
sum over « on the right hand side of (8.16).

We can proceed by defining an estimator

o § : @ T SV
ULM - WLM€1m1€2m2a£1m1jngn2 (817)

£imiloms
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that minimizes the variance, but dropping the constraint that it must be unbiased; i.e. we
have

(0%ar) # Vin- (8.18)
We can then build unbiased estimators from linear combinations of v*, using the techniques
of [153]; we will find that
(0331) = RasUpn (8.19)
for some rotation matrix R,g. This will allow us to define an unbiased quadratic estimator
Of by

Ofar = (R7") 5 Orar (8.20)

which will have
<®?M> = Urn- (8.21)
Of course, this will not necessarily be a minimum variance estimator; it will have variance
(S ) = (R7) ) (R s Neg O barar (8.22)

where the variance of the original estimator 0¢,, is given by

<@gM@§,M,> = N, 800 0aa- (8.23)
To find the (biased) minimum variance estimator for each bin, we can follow [11] and
rewrite the M-dependence of the weights Wiy, . .., 0 terms of the Wigner 3J-symbols
along with a normalization A and ¢-coupling term wg,, ; such that
- « gl 62 L « v
0fa = AT (-1)M Z ( my my —M ) We, g1, azmljmeS (8.24)
limibomo

we find (using (8.16)) that the mean is

. AT N _
<ULM> = 27, i 1 Z WeyeoL FZ@L UEM- (8-25)
HAYS)

As we have no requirements on what the mean should be, we can choose to “ignore” the
contributions to the mean from the terms in the sum over § where § # « and, so that we
can follow closely the standard procedure of [110], define the normalization A% as

2L +1

AT =
L — « o '
ZMQ ANV YN

(8.26)
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We can now proceed to minimize the variance of the estimator to solve for wg ,,;; we find
that
g 1 (8.27)

b1l L — ) .

1£2 CETlTCé;V
where C}T is the temperature angular power spectrum and C%” is the angular power
spectrum of the CIB brightness. Thus the (biased) minimum variance estimator in each
bin is

6, 0 L g m, Jt
~ o M 1 2 Ie% l1miJlamo
S D DI (ol V) [ P L CE D
£imiloms 1 2
where . . e re
O18o L~ 0102 L
I 1£2 1als 8.929
Ay T 2L+ 1 ;z: CITCyr (8.29)

We define the noise NJ5; as the variance in the absence of signal <@% N M,>; we find

« & A
| AxAY 3 AN (8.30)

aBL — TT vy
2L +1 4= CITCy,

8.2.2 Debiasing 0
0 is biased since (0¢,,) # 0%,,; indeed, we find that its mean is
1 N
l18a L~ L1465 L -3 (831)

v .
o 2 TT v LM
= (Dt £z GO
ata \ GITCp

<17%M> =

This allows us to read off the “rotation matrix” R,z of (8.19) as

R . 1 FZZQLFZKQL i 8 32
aff — I 2 Z CITCwv ( ) )
3 ( 0051 ) v 0 Yo
L1L2 CTT v
I L2

we can then define an estimator ¢'* via (8.20), with variance given by (8.22).

Henceforward we will drop the prime and refer to the set of unbiased estimators as 0.
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8.3 Signal-to-noise forecasts

8.3.1 Signal model

Our signal model follows [139]. We wish to compute the bin-averaged dipole field power
spectrum C7?, which is given by

_ dk _ _
oL = / ——k*P(k)Aur(k)Apr (k) (8.33)
(2m)
with A?; the bin-averaged dipole field transfer function
_ 1 Xmax
B =~ [ ey (8.:34)
Xmax — Xmin Xoin
and AY (k, x) defined by
N Pk, ~
Ui = | 3 ALk ) i(k) Yo (k). (8.35)
(2m)
AY (k, x) has contributions from a Sachs—Wolfe (SW), integrated Sachs—Wolfe (ISW), and
Doppler term as given in References [139, |. As we will see below, it is necessary to

include all contributions to properly model the bin-averaged remote dipole reconstructed
using the CIB.

8.3.2 Noise model

The reconstruction noise depends on models for C}*, C¥”, and C7¥ (which appear in (8.30)
and (8.32) via I'},,,;). We assume that the blackbody contribution to the CMB can be
perfectly separated from the CIB, and that all foregrounds for both the CMB and CIB can
be perfectly removed.

The CMB temperature anisotropy power spectrum C77 is a sum of the lensed primary
CMB, the kSZ contribution, and the instrumental noise:

CET — Cl}ensed + CécSZ + NeTT (836)
Clensed is computed with CAMB [154] and CF57 is computed using the model described in
Ref. [112]. The instrumental noise Ny is given by
((0+1)0?
Ny= N —_— .
) T exp ( SIn2 (8.37)
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where Nr is the noise per pixel squared and © is the (Gaussian) beam Full Width at Half
Maximum.

Within the halo model-based approach we follow (see e.g. Ref. [55] for a review of the
halo model), C}” comprises four terms: a one-halo term, a two-halo term, a “shot-noise”
term corresponding to self-pairs of galaxies, and an instrumental noise term:

Cé/u — Zulh + OZVQh + CEVVShOtNOise + Né/l/ (838)

The instrumental noise is as in (8.37). The shot noise depends on the flux cut for removing
point sources, which is a function of the resolution and sensitivity of an experiment. The
optical depth-CIB correlation function C7” is also computed within the halo model; details
are in Chapter 5.6.

8.3.3 Signal-to-noise

Because the reconstruction noise N7, and signal C%; are both correlated between redshift
bins, we perform a Principal Component Analysis (PCA) to isolate uncorrelated modes
t'®. The PCA consists of changing our basis from 9% to 9'* via a linear transformation A®%
such that C?'" = ACY"A~! is diagonal with entries equal to the signal-to-noise of each
principal component. We then define the signal-to-noise per mode of the remote dipole
field for each principal component « as

1
a fsky 17’0’ 2\ .
(/NN = (52 (i) ) s (8.39)
the total signal-to-noise for the reconstructed remote dipole field is
1
fsky 15’5’ 2\ °
SIN =Y Hr L+ ( ggjL) . (8.40)
a;L

Note that the total signal-to-noise is simply the Fisher information, which is a basis-
independent quantity unaffected by our PCA; we have confirmed that an identical total
signal-to-noise is obtained using the original, non-diagonal basis.
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Forecast signal to noise per mode, Planck Forecast signal to noise per mode, Future experiment

10°

353GHz
545GHz |
857GHz

Figure 8.1: The signal-to-noise per mode of the first few principal components of the remote
dipole field on the full sky. The dashed grey line corresponds to a signal-to-noise of 1. Left
is Planck-quality data, right is the future experiment No mode can be reconstructed at
signal-to-noise greater than 1 using Planck, while for the future experiments it is possible
to perform reconstruction at high fidelity for the large-angular scale modes.

] Frequency \ 143 GHz \ 353 GHz \ 545 GHz \ 857 GHz ‘
Noise (uKZ,5) | 4.8 x 107° | 1.30 x 107 | 4.10 x 107 23.5

Table 8.1: Noise and resolution used for the Planck forecast, from [155].
8.4 Forecast results

8.4.1 Planck

We first perform a signal-to-noise forecast using values for the experimental noise (8.37)
appropriate for the Planck experiment, to see if there is in principle sufficient statistical
power in existing data to reconstruct the remote dipole field using the CIB. As such, we use
the specifications for the High-Frequency Instrument from Table 12 of [155]. We choose
the 143-GHz channel for the CMB and we consider the CIB at 353, 545, and 857 GHz.
We further assume data on the full sky, neglect foregrounds, and assume that the CIB and
CMB can be perfectly separated. Our noise values are given in Table 8.1.

For our redshift-binning scheme, we employ 12 bins of equal comoving width between
0.1 < z < 6. This choice of redshift range includes most of the signal in the CIB and kSZ
anisotropies. Increasing the number of bins does not increase the total signal-to-noise. For
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Planck-quality data, we find that the signal-to-noise per mode is below one for all principal
components; see Figure 8.1. Summing over all modes and principal components, the total
signal-to-noise for the 353, 545, and 857 GHz channels the total signal-to-noise ratios are
(0.63, 0.97, 1.5) respectively. We note that the contribution from the monopole (I = 0) of
the reconstructed dipole field accounts for up to half the cumulative signal-to-noise. Since
the different frequency bands of the CIB are highly correlated, it is unlikely that these can
be combined to reach a signal-to-noise greater than 1.

To date, the largest foreground-cleaned CIB maps [75] have fq, ~ 0.25. Naively, from
Eq. (8.40), this reduces the total signal-to-noise by a factor of two. An alternative measure
of the degradation in total signal-to-noise due to partial sky coverage is to assume that the
dipole field can only be reconstructed above a minimum multipole L,,;,. In Figure 8.2, we
plot the total signal-to-noise as a function of a minimum multipole L., in the sum over L
in (8.40). However, because most of the signal-to-noise is on the largest angular scales, the
penalty can be significantly larger than expected from fq.,, especially at high frequencies.
We note, however, that because kSZ tomography uses small angular scale modes of the
CIB to reconstruct the remote dipole field on large angular scales, it may be possible to
use less aggressive sky cuts and retain a larger fraction of the CIB than has been used in
previous analyses.

S/N against minimum L; Planck S/N against minimum L; future experiment

353 GHz
545 GHz |
853 GHz

10— ————— —

-1l
%1()

353 GHz

545 GHz
102 853 GHz 10Ok e o]
0 5 10 15 20 0 10 20 30 40 50
Lmiu Lmiu

Figure 8.2: Total signal-to-noise as a function of the minimum multipole L,,;, of the first
principal component of the remote dipole field that can be reconstructed. Left is for
Planck-quality data, right is for the future experiment. We see that as we lose access to
the remote dipole field on large angular scales (say by having partial-sky data) the total
signal-to-noise drops significantly. However, for the future experiments the high signal-
to-noise even with low L., indicates it would be possible to make a detection even for
significant sky cuts.
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It is interesting that there is one principal component that is reconstructed with signif-
icantly higher signal-to-noise than the rest (see Figure 8.1). To get insight into what this
linear combination is, we can plot the (normalized) components of this mode in the original
basis against redshift; see Figure 8.3. We also plot the power contributed to the CIB from
each redshift WFTB(x), defined by C/f = [ dxWFTB(x), at the relevant frequencies. The
first principal component closely traces W8 (x), with the lower frequency getting infor-
mation from more distant redshifts. This is as expected, since the ability to reconstruct
the remote dipole field at given redshift using kSZ tomography depends on the presence of
measurable CIB fluctuations from that redshift.

353 GHz
545 GHz
857 GHz

Normalized CIB window function for I =1500

— 353GHz
—— 545GHz
—— 857GHz

Werp

Redshift

Figure 8.3: The first principal component of the remote dipole field ©'* in the original
0* basis for Planck-quality data at L = 1 (left). For comparison, we plot the power
contributed from each redshift to the CIB at ¢ = 1500 (curves do not strongly depend on
the choice of /), defined by C{* = [dxWETP(x). As expected, the principal components
appropriately weight redshift bins according to their contribution to the observed CIB.

8.4.2 Future experiments

Although Planck-quality data is not sufficient to reconstruct the remote dipole field using
the correlation between the CIB and kSZ temperature anisotropies, future experiments
stand to greatly improve these measurements. Here, we consider a hypothetical experiment
that measures the CMB and CIB at Planck frequencies with noise a factor of 10 lower
than the values in Table 8.1 at a resolution of 1 arcminute. This is roughly consistent
with proposals such as CMB-S4 and CMB-HD. We also lower the flux cuts above which
point sources will be removed by a factor of 10 in the calculation of the shot noise, thus
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(in principle) lowering the shot noise on the CIB, although the effect is negligible. For
comparison, flux cuts used for SPT analysis [133] are a factor of ~ 50 lower than Planck [69].

Upon considering these noise specifications, we find clear improvements in our signal-
to-noise forecasts. For 12 redshift bins, and assuming full-sky data, no foregrounds, and
perfect separation of the CMB and CIB, the total signal-to-noise at (353, 545, 857) GHz
goes from (0.63, 0.97, 1.5) to (2600, 4366, 7100). For data of this quality, it is possible to
achieve signal-to-noise per mode far greater than one on large angular scales. We plot the
signal-to-noise per mode S/N¢ in Figure 8.1 (right hand side) for the first four principal
components. A high-fidelity map of the first principal component could be reconstructed
up to L ~ 20. The shape of the first principal component in the redshift basis is shown
in Figure 8.4. Comparing with Figure 8.3, we see that there is relatively more weight
at lower redshift for the high frequency channels than for Planck-quality data. We also
explore the dependence of the total signal-to-noise on the minimum multipole L,,;, that
can be reconstructed in Figure 8.2. Even for relatively large L;,, it is still possible to
obtain a total signal-to-noise greater than one with a future experiment. We conclude that
achievable future experiments will in principle have the statistical power to perform kSZ
tomography using the CIB.

The modes that can be reconstructed with the highest fidelity are on the largest angular
scales. To properly interpret the reconstruction on these scales, it is important to include
all of the contributions to the remote dipole field, as described in Section 8.2. In particular,
it is not a good approximation to replace veg ~ ¥ - fi. For the monopole and dipole of the
first principal component, the doppler contribution is of the same order as the SW and
ISW terms. The SW and ISW contributions reach the percent-level only for ¢ > 5. Any
analysis using the largest angular scales of the CIB-based reconstruction should therefore
include all contributions to the remote dipole field.

8.5 Correlations with remote dipole reconstruction
from a galaxy redshift survey

8.5.1 Information content

Previous work [139, , , ] demonstrated that a high fidelity reconstruction of the

remote dipole field over a range of redshifts will be possible using future CMB experiments

in concert with large galaxy redshift surveys, such as LSST. The constraining power of these
future measurements for a variety of cosmological scenarios was subsequently explored
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Figure 8.4: The first principal component of the dipole field computed using noise prop-
erties of a future experiment; compare with Figure 8.3.

in Refs. [138, , , , , |. Given that the remote dipole field will already
be reconstructed quite well, it is natural to ask if the very coarse-grained reconstruction
provided by the CIB will provide any useful new information. A quantitative measure of
the information content in a set of correlated observables is given by the Fisher information:

2L+1 _ -
F:Z B Tr [CL(CL+NL) 1CL(CL+NL) 1} . (841)
L

We construct an (Npip + 1) X (Npin + 1) covariance matrix C;, which includes the auto- and
cross-correlation between v¢,, in Ny, redshift bins reconstructed using a galaxy survey and
the first principal component v’ IL s from the reconstruction using the CIB (other principal
components have far lower signal-to-noise). We assume that the noise covariance matrix N,
is diagonal, with the reconstruction noise on v';,, calculated using the specs for the future
experiment from above and reconstruction noise on the v$,, computed using LSST [51] as
our proxy for a galaxy survey, as in Ref. [110] . We project out various observables by
sending the corresponding noise to infinity.

The Fisher information Eq. (8.41) for the CIB-based reconstruction at 353 GHz is
Feis = 19.3. The Fisher information for the galaxy-based reconstruction is significantly
larger, F, = 74.3, due to the larger number of modes that are reconstructed at appreciable
signal-to-noise. If the information in the CIB-based reconstruction were independent of
that in the galaxy-based reconstruction (as might be expected from the redshift weight-
ing of the first principal component, as in Figure 8.4), the combined Fisher information

!The reconstruction noise depends on our model of the galaxy bias and the shot noise for LSST. We
assume the galaxy bias is b = 0.95/D(z), where D(z) is the growth function, and that the number density
of galaxies per arcmin?® is n(z) = (nga1/220)(2/20)% exp(—2z/zp) with zy = 0.3 and ng, = 40 arcmin >
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would simply be the sum of these two. However, at the large angular scales on which
it can be reconstructed, the remote dipole field has a significant correlation length (see
e.g. Ref. [110]). Accounting for these correlations, the Fisher information using the full
set of observables is Fycmp = 76.5, implying that only roughly 11% of the information in
the CIB-based reconstruction is independent. We therefore expect the CIB-based recon-
struction to offer limited improvements in the constraints on cosmological models beyond
what is possible using the galaxy-based reconstruction. However, we emphasize that this
analysis only accounts for statistical error, and that the systematics associated with the
CIB-based reconstruction could be less severe, or complementary, to the galaxy-based re-
construction. In this case, the additional information from the CIB-based reconstruction
could be important for deriving cosmological constraints from the remote dipole field. A
study of mock data, which we refer to future work, will be able to quantify better the effect
of systematics on each case.

8.5.2 Optical depth degeneracy

A significant obstruction to using kSZ tomography for cosmology arises from the inability
to perfectly model the correlations between the optical depth and the tracer being used
in the reconstruction, in this case the CIB intensity (e.g. the power spectrum Eq. (8.13),
which is a necessary component for the dipole field estimator). This model uncertainty
manifests itself as a redshift-dependent linear bias on the reconstructed dipole field, and is
known as the “optical depth degeneracy”; see Refs. |70, , | for a detailed discussion.
This optical depth bias is degenerate with the amplitude and growth of structure, making
it difficult to derive cosmological constraints from the reconstructed dipole field alone.
However, we can utilize the fact that both the galaxy-based and CIB-based reconstructions
trace the same realization of the remote dipole field to measure the ratio of the optical depth
bias of the two tracers as a function of redshift. This is an example of sample variance
cancelation [103, |, and in principle the ratio of bias parameters can be measured
arbitrarily well in the limit of vanishing reconstruction noise — e.g. without cosmic variance.

We can investigate this by considering again the ( Ny, +1) X (Npin+ 1) covariance matrix
Cy, with Ny;,s columns corresponding to galaxy reconstruction and the remaining column
to the first principal component. We include the optical depth modelling-bias parameters
by and b¢;p in the covariance matrix using the definitions:

vy =050, g = D b p0° (8.42)
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where v is the true dipole field in bin o and ¢* is the eigenvector of the first principal
component. The introduced optical-depth “bias” b* parameters (which are unrelated to
the bias that appears in the power spectrum) quantify modelling uncertainties in the
electron—galaxy or electron—CIB cross-corellations.

We consider a simplified analysis, where the amplitude of the primordial power spec-
trum A, is allowed to vary, but the other ACDM parameters are held fixed. The bias
parameters are each totally degenerate with A,, which is the manifestation of the optical
depth degeneracy. We therefore define a reduced parameter space characterized by:

N = %IB/b;‘ B = by Ag (8.43)
We compute the forecaste 1-sigma constraints on % and v from the Fisher matrix:

4, 0Cy,
o114

4, 0Cy,
olB

(CL+Nyp) (8.44)

2L +1
=3 2 [(cL N
L

where IT4 is our 2/NVy,;,-dimensional parameter vector. We use 12 bins and assume fiducial
values of b = 1, bg;5 = 1, and A, = 2.2 (the factor of 107 is absorbed into the definition
of the dipole field), translating to v = 1 and p* = 2.2. The 1l-sigma marginalized
constraints y/(F 1), , for 3% and y* are shown in Figure 8.5. We have assumed the noise
properties of the future experiment described above, along with galaxy number densities
consistent with those expected from LSST. Note that we have not included the covariance
between the different frequency channels, presenting each as a separate forecast. For all
frequencies, the constraint on v is order ~ 10% in the redshift range 1 < z < 3, which is
where the galaxy-based reconstruction noise is lowest. The best constraint on v* reaches
the ~ 3%-level, for the 857 GHz channel at z ~ 1. This is expected, since the first
principal component of the dipole field reconstructed using the 857 GHz channel has the
highest correlation coefficient with the galaxy-based reconstruction, peaking around z ~ 1.
Percent level constraints on by can be obtained by correlating the remote dipole field with
another tracer, such as the distribution of fast radio bursts [152] or the large-scale modes
of a galaxy survey [115]. It therefore seems likely that percent-level measurements of b2, 5
itself will be possible, allowing for cosmological information to be harvested from the CIB-
based dipole field reconstruction. Such measurements would also provide information on
galaxy formation and evolution, e.g. through constraints on the parameters in the halo
model.
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Figure 8.5: 1o constraints on the optical depth bias. We plot the results of our Fisher
forecast for the 1 — o constraints on the bias parameters 3% = b5 Ag (solid line) and
7" = bgrp/by (dashed line). We performed three separate forecasts, one at each frequency.

8.6 Reconstruction on mock data

As an illustration of our technique, we can apply our estimator to mock (simulated) data.
In particular, we consider the Websky simulations [157], which provides a three-dimensional
halo catalogue out to z = 4.6 and converts these to intensity maps corresponding to kSZ
emission, CIB emission, and various other processes. The velocities of each halo are also
provided from the halo catalogue. As such, we can apply our estimator to the CIB and
kSZ maps provided, and check its fidelity by comparing the reconstructed velocity with
the “true” velocity field of the simulation.

Note that the model used for the CIB in the Websky simulations differs slightly from
that we have used previously, in that it uses the parametric fit of [70]. As such, we use
this model to compute the C7” when computing the filters in the estimators.

We take 6 bins in our reconstruction, with boundaries z = (0.01,0.32,0.71,1.2,1.9,2.9,
3.7,4.6). The signal in each bin is plotted in Figure 8.6. The power spectrum of the mode
we expect to reconstruct—ie, the principal component with high signal to noise—is also
shown in this Figure in Figure 8.6, along with its redshift distribution (on the right). The
map of the velocity field itself is shown in Figure 8.7.

After applying our estimator, we reconstruct the map on the right hand side of Fig-
ure 8.7. It is clear that, by eye, there is a high correlation between these maps. Their
correlation coefficient is shown in Figure 8.10; a correlation coefficient of r;, = 1 corre-
sponds to exact reconstruction. Note that it is clear from the left hand side Figure 8.10,
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Principle component coefficients Velocity power spectra from Websky
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Figure 8.6: Left: The coefficients ¢; corresponding to the well-reconstructed mode from the
Websky analysis (with the 545 GHz CIB map). The mean redshift of each bin is plotted on
the x axis, with vertical gray lines indicating the bin boundaries. We expect to reconstruct
Zle c;v; where ¢; is plotted on the y axis. Right: The power spectra of the signal we want
to reconstruct from Websky. The velocity power spectrum of each bin is shown, along with
the power spectrum of the principal component we expect to reconstruct from the CIB, ie
the power spectrum of the field >° ¢;v;.

True velocity map Reconstructed velocity map

| ———— EEE————— ]
-0.000241064 0.00022253 -0.000127213 0.000130609

Figure 8.7: Left: The large scale mode of the velocity field, as read directly from the simu-
lations Right: The recovered density field, as reconstructed with the quadratic estimator.
By-eye, a strong correlation is seen between the two on large scales, indicating that the
estimator is indeed recovering the signal we expect it to.

where the power spectra of each map is plotted, that we are not recovering the true field
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exactly; we expect this to be due to an issue in the modelling of our binned cross power
spectra between the electrons and the CIB; these uncertainties should be incorporated by
the borp formalism we considered in Section 8.5.2. Indeed, given the true velocities, we can
attempt to fit for the six b%,5 parameters using a Markov—Chain—-Monte—Carlo (MCMC)
process; in particular we explore the likelihood

6 6 6 6
1 1 L ) o o . o
L= il exp— ((Z Ebpvy — Y cv) Cc! (Z Ebpty — Y cv)) (8.45)
i=1 i=1 i=1 i=1
where C~1 is given by the estimator noise
Cruvmr = NLopp O (8.46)

to find the 6 parameters b;, and their 1-¢ errors, where v! is the true velocity map in bin
i, and 9 is the reconstruction. These are shown in Figure 8.9. The power spectrum of the
field >, b goi is shown in Figure 8.10, along with is correlation coefficient with the true
velocity map.

1082 Reconstruction efficiency
—— True power spectrum LoF ™ T T T
—— Reconstructed )
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10° 10! 0045 5 10 15 20
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Figure 8.8: The correlation coefficient between the maps in Figure 8.7, ie the reconstructed
and the true velocity maps. A correlation coefficient of r;, = 1 indicates 100% fidelity in
the reconstruction.

We find that the bias parameters are not equal to 1—this is indicative that there is
some modelling issue in Cj”. Of course, this is surprising in the case where we are using
simulations and so should have a full understanding of the modelling; however we note
that we do not have access to the binned CIB, and so we cannot test our models, although
we find that we can reproduce the measured power spectrum. Thus, while this serves as
a useful proof-of-principle, further tests on simpler simulations will be required; this is
ongoing work.
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Figure 8.9: The bias parameters b, for each redshift bin i. There is a dotted line
representing the unbiased scenario where boyg = 1. The error bars are calculated by
computing the interquartile range of the MCMC chain. The dots represent the values that
minimize the likelihood (8.45)
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Figure 8.10: The correlation coefficient between the maps in Figure 8.7, ie the reconstructed
and the true velocity maps, when the best-fit biases are incorporated. A correlation coef-
ficient of r;, = 1 indicates 100% fidelity in the reconstruction.

8.7 Conclusions

We have constructed a quadratic estimator for the remote dipole field based on the CIB
and CMB temperature, generalizing previous work on kSZ tomography to two-dimensional
tracers of large scale structure. Existing datasets of the CMB and CIB nearly have the
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sensitivity, resolution, and sky coverage to make a statistically significant detection of the
remote dipole field. Our forecast for datasets with comparable sensitivity and resolution
to the Planck satellite indicate that a detection of signal-to-noise of order one could be
made in the absence of foregrounds and sky cuts. However, an idealised future experiment
with roughly an order of magnitude better sensitivity, a beam of one arcminute, and
lower flux-cut for point-source removal could in principle make a detection with total
signal-to-noise of @(1000). Next-generation experiments such as Simons Observatory [16],
CCAT-prime [121], CMB-54 [17], PICO [125], or CMB-HD [120] fall somewhere between
Planck and such a future instrument, making it likely that even with complications such as
foreground removal, partial sky coverage, instrumental systematics etc. that a high-fidelity
CIB-based reconstruction of the coarse-grained remote dipole field will be achievable.

Because of the wide redshift window sampled by the CIB at a fixed frequency, it is only
possible to reconstruct the remote dipole field averaged over a very large volume. When
considering correlations over such large scales, it is not sufficient to approximate the remote
dipole field by the local Doppler shift induced by peculiar velocities — the Sachs Wolfe, In-
tegrated Sachs Wolfe, and primordial Doppler components must be retained. The remote
dipole field on such large scales contains information about early-universe physics, and
future experiments could meaningfully constrain a number of scenarios, as considered in
Ref. [144]. The CIB samples a different range of redshifts at different frequencies, allowing
the remote dipole field to be reconstructed over different, overlapping volumes/redshifts.
Although the reconstructed fields will be significantly correlated, if the CIB could be sam-
pled densely in frequency, it may be possible to extract some information about the growth
rate of structure from the remote dipole field or contribute meaningful constraints on pri-
mordial non-Gaussianity [113] and modified gravity [110]. In addition, it may be possible
to use the reconstructed remote dipole field to isolate General Relativistic corrections to
the observed CIB on the largest angular scales [119, 115].

There is significant model uncertainty in the reconstructed remote dipole field, arising
from our imperfect knowledge of the CIB-optical depth cross-spectrum C}T (which is a
function of redshift). This manifests itself as a bias on the amplitude of the reconstructed
remote dipole field, known as the optical depth bias (see Ref. [112] for a detailed overview).
Correlations with a galaxy-based reconstruction of the remote dipole field can be used to
constrain the optical depth bias at the ~ 10%-level over a range of redshifts, yielding
information on the CIB and distribution of electrons.

Given the potential high-significance reconstruction of the remote dipole field using kSZ
tomography with the CIB, the present investigation motivates preliminary investigation
with existing data to obtain constraints, and analysis of future data to obtain high fidelity
reconstructions.
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Chapter 9

Avoiding baryonic feedback effects on
neutrino mass measurements from

CMB lensing

9.1 Introduction

With improving measurements of the CMB, a cosmological measurement of the sum of
the neutrino masses is envisioned within the next decade. Within the standard model of
particle physics, the three neutrinos are massless particles; thus, the first measurements of
neutrino flavour oscillations [158, |, a process that only occurs if there exist mass differ-
ences between the species, were key developments in the search for beyond-standard-model
physics. Neutrino oscillation experiments are sensitive to the difference in the squares of

the masses of neutrinos, Am?j =m? — m?; however, a cosmological neutrino detection will

be sensitive to the sum of the neutrino masses M, = Zle m;, and thus will be important
in setting the overall scale of the neutrino masses. The current lower limit on M, (from
neutrino oscillation experiments) is M, 2 60meV [160]. Until now, cosmological exper-
iments have only placed upper limits on M,; the best is that of the Planck survey [12],
which gives M, < 120 meV.

Massive neutrinos have a well-understood effect on the matter power spectrum P, (k, z).
After becoming non-relativistic when their temperature T, was comparable to their mass,
they started contributing to P,,(k, z); however, due to their small masses, they do not
cluster on small scales, instead free-streaming, leading to a suppression of power on small
scales. See [161, 162] for reviews on the cosmological effects of neutrinos.
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Planck’s upper bound on the neutrino mass was obtained from a joint analysis of
the CMB temperature and polarisation maps, CMB lensing maps, and baryonic acoustic
oscillation (BAO) measurements. As the neutrinos were still relativistic at the time of
recombination when the CMB was released, the majority of a CMB survey’s constraining
power on M, comes from the CMB lensing information, which is sensitive to large-scale
structure at all redshifts. In coming years, experiments such as the Simons Observatory
(SO) [16], SPT-3G [15], and, further in the future, CMB-S4 [17], will make better mea-
surements of the CMB lensing power spectrum, and have been forecast to measure the
neutrino mass to between 20 and 30 meV [16, 163, 17].

To be able to reach this level of constraint, the CMB lensing power spectrum must be
well understood theoretically. In particular, the lensing power spectrum is a projection of
the matter power spectrum P, (k, z) over all redshifts; however, there are certain effects
that currently limit our understanding of P,,(k, z), in particular effects due to baryonic
processes (such as gas cooling and feedback from supernovae and active galactic nuclei
(AGN)) in the universe. Most predictions of P, (k, z) only account for gravitational forces,
neglecting the complex baryonic interactions that we know exist; our current best method
for understanding P,,(k, z) including baryonic physics is to perform large hydrodynamical
simulations. Measurements of P,,(k, z) from different simulations differ due to different nu-
merical schemes and phenomenological implementations of baryonic processes that cannot
be directly simulated at a given resolution. While the “true” impact of baryonic effects on
the matter power spectrum is not known, a general conclusion is that baryons contribute
to a suppression of power on small scales (e.g. 0.1 < k < O(few x 10) at z = 0).

Uncertainty due to baryonic feedback has been extensively studied in the context of

cosmic shear surveys [164, , , , , , , |, as the scales affected by
feedback directly correspond to the scales that current shear surveys are most sensitive to.
However, Ref. [169] and recently Ref. [172] found that uncertainty from baryonic effects

can also be important in the search for neutrino masses from CMB lensing, in spite of
the higher redshifts and larger length scales involved. If we are to trust a measurement of
M, from CMB lensing, it will be important to have an inference that is robust to these
baryonic effects. Furthermore, the sensitivity of CMB lensing to baryonic effects implies
that we could learn about the latter from observations of the former, an avenue explored
for cosmic shear in Refs. [173, , , 176].

Ref. [172] explored the lensing power spectrum suppression and associated bias on
neutrino mass from a suite of recent hydrodynamic simulations, finding that the range in
possible biases is non-negligible comapared with expected statistical uncertainties. They
found a significant scatter between different simulations, comparable to the statistical
uncertainty in the measurement. In this paper, we consider various methods of mitigating
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this bias on the inference of M, from CMB lensing surveys similar to SO and CMB-
S4. We describe various techniques to remove the sensitivity to the relevant baryonic
processes and test, using Fisher forecasts, how these techniques will reduce the bias for the
series of simulations examined by Ref. [172]. The first mitigation method we consider is
a simple scale cut, where the smallest scales of the CMB lensing convergence (which are
most sensitive to baryonic effects) are removed from the analysis. Second, we consider a
method of using external cosmic shear measurements to estimate and subtract the low-z
contribution to the CMB lensing potential—as baryonic effects are relatively late-universe
phenomena, we expect the high-z portion of the CMB lensing potential to be less sensitive
to them, while still retaining sensitivity to M,. Finally, we ask whether marginalizing over
the parameters of a general model for baryonic effects will reduce the bias while preserving
the M, constraints.

We find that imposing a scale cut of L., ~ 1000 on the lensing multipoles used
for constraining M, can reduce the bias from baryonic effects by up to a factor of 2, with
more aggressive cuts significantly increasing the statistical uncertainty. On the other hand,
combining this scale cut with subtraction of a low-z tracer, or marginalizing over a baryonic
model (with or without a scale cut) will be much more effective in eliminating the bias,
reducing it by at least a factor of 5 in the first case and 10 in the second case for all
simulations we consider. The maximum residual bias associated with these simulations is
~3 meV in either case, well below the level that would interfere with a high-significance
detection of the minimum allowed neutrino mass sum.

This Chapter is organized as follows. In Section 9.2 we discuss the CMB lensing power
spectrum C7" and review the range of possible baryonic effects as represented by current
hydrodynamical simulations. In Section 9.3 we present our Fisher forecast formalism for
calculating the forecast constraint and biases on the inference of M, from these simulations.
In Section 9.4 we discuss the effects of a small angular-scale cutoff in C7*. In Section 9.5 we
discuss the effect of “subtracting” a low-z tracer to isolate the high-z contribution to the
CMB lensing map. In Section 9.6 we discuss the effect of marginalizing over parameters
that describe the baryonic effects on the matter power spectrum. We discuss our results
in Section 10.5.

9.2 CMB Lensing and baryons

The CMB photons we detect have been gravitationally lensed by any matter they encounter
along the paths they have travelled since their “release” during recombination, at z ~ 1100.
Structures at any redshift after recombination can act as lenses, making CMB lensing a
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powerful probe of the evolution of the matter content of the universe. We mainly quantify
this information via the convergence power spectrum C7*, which is a line-of-sight integral

over the matter power spectrum P, (k, z) (see e.g. [90]),
XCMB Wwe 2 L 1/2
cp = [ a0, (- B2 ), 0.1
0 X X
where Wy (x) is the CMB lensing efficiency kernel
3 Ho)2 X XoMB — X
Wk =-0,, | — 9.2
CMB (X) 9 < c G(X) XCMB ( )

with Hy the Hubble constant today, ¢ the speed of light, €2, the density of matter today,
Xcump the comoving distance to the surface of last scattering (at which the CMB was
released), and a(y) = 1++(x) the scale factor at comoving distance x. Equation (9.1)
assumes the Limber approximation [19], which is valid in the small-scale, flat-sky limit;
and the Born approximation, where the integral is taken over the photon’s undeflected

path, valid in the small-deflection limit [177, ].

To make an accurate inference of M, from a CMB lensing survey, we need to trust our
theoretical model of the lensing convergence; i.e., we need to understand every component
of Equation (9.1). The cosmological ingredients that enter CMB lensing kernel W*(y) are
well understood. On the other hand, P,,(k,z) is most commonly computed from linear
gravitational perturbation theory on large scales, supplemented on small scales by non-
linear extensions of gravitational perturbation theory, phenomenological models, N-body
simulations, or emulators. Generally, these only account for gravitational interactions
between the matter; i.e. they treat all matter as “dark”.

However, about 15% of matter is not dark but baryonic, and has complex interactions
with itself and with light. These interactions effect changes to how matter clusters on ~Mpc
and smaller scales: as examples, gas cooling and AGN feedback cause matter to condense
and expand respectively (e.g. [179]). Our models currently lack a first-principles calculation
of the power spectrum P,,(k, z) incorporating these interactions, and they are typically
neglected when considering CMB lensing surveys. However, some of the baryonic effects
on P, (k,z)—particularly the suppression of power on small scales—mimic the effects of
massive neutrinos, and neglecting these in the theoretical modelling of Cf* can lead to
significant biases on the neutrino mass inference [169, 172].

In Figure 9.1, we illustrate the suppression of the CMB lensing power spectrum by
baryonic effects, as computed in Ref. [172]' for a selection of recent hydrodynamical simu-
lations (see Section 9.3.3). At large scales, the power spectra coincide, while the baryonic

!These computations are available from http://github.com/sjforeman/cmblensing_baryons.
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suppression becomes relevant at L > 1000. We also show the effect of a non-zero neutrino
mass on the lensing power spectrum, by plotting the ratio of the fiducial M, = 60 meV
power spectrum to one where M, = O0meV (with all other cosmological parameters un-
changed). In this case, we see a power suppression with much milder scale-dependence
than for baryonic effects. This difference indicates that it may be possible to disentangle
the two types of suppression, motivating the methods we consider in this Chapter.

1.100

OWLS-AGN ——— Horizon-AGN

LOT5F . BAHAMAS —— TNG100
—— BAHAMAS-LowAGN TNG300

BAHAMAS-HighAGN

Cary/Ci pMO
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Figure 9.1: The effect of baryons on the CMB lensing power spectrum C}* |,y in a selection
of large hydrodynamical simulations (see Section 9.3.3), as computed in Ref. [172], shown
as a ratio with the spectrum for dark matter only, C5*|pyo. The effect of non-zero M, is
also shown. The different scale dependences of baryonic and neutrino-mass effects indicate
that it may be possible to distinguish between the two in lensing measurements.

9.3 Neutrino mass: constraints and bias

9.3.1 Forecasting the 10 constraints

We consider an analysis where M, is allowed to vary along with other cosmological param-
eters; as such we consider a parameter vector

0 = (h, Qh? Q.12 7, n,, Ay, M,) (9.3)

with fiducial values {h = 0.675, Q,h? = 0.0222,Q.h? = 0.1197,7 = 0.06,n, = 0.9655, A, =
2.2 x 1079, M,, = 0.06 eV} corresponding to the best-fit parameters of the Planck analy-

sis [12] for the first six parameters, namely, the Hubble parameter in units of 100 km s~ Mpc™
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the physical baryon density, the physical cold dark matter density, the optical depth to
recombination, the primordial scalar fluctuation slope and amplitude (with a pivot scale
of 0.05 Mpc™). We take a fiducial value of 60 meV (the minimum allowed value) for
the sum of the neutrino mass M,. We compute the fiducial matter power spectrum with
CAMB [151], with the nonlinearities and treatment of neutrinos given by the extended
halo model from Ref. [53].

As the cosmological parameters will also be constrained from the primary CMB, we
include information from the primary CMB temperature and polarization as measured by
the experiment we are forecasting for (see Section 9.3.4), as well as a prior from BAO
measurements from DESI [180], which improves the analysis by breaking the geometric
degeneracy in the CMB.

To compute the information from the CMB and CMB lensing, we use the Fisher for-
malism, in which the Fisher matrix F' approximates the inverse covariance matrix of the
parameters, with the diagonals of F'~! giving the squares of the expected 1o uncertainties
on each parameter (with all other parameters marginalized over). We calculate F' according
to

20+1 oCMB ~1 OCPMB 1
CMB _ ¢ CMB ¢ CMB

F;‘j - 2{: Tfsky Tr |: aez (Cé ) W (Cg ) . (94)
In Equation (9.4), fqy is the fraction of sky area which the surveys cover and CSMB is the

covariance matrix of the CMB:

cIT cfr crs
CMB = | ofF CoFF CFx (9.5)
ofs cPr o Cpn

where C/T is the power spectrum of the observed temperature anisotropies (including
noise); CF¥ is the power spectrum of the observed E-mode polarisation anisotropies (also
including noise); and C7* is their cross power spectrum. C5* includes the reconstruction
noise for CMB lensing. Although the CMB we measure is lensed, we use the unlensed
primary CMB power spectra C7 7, CFF and C}* to avoid double-counting of the lens-
ing information. A proper treatment including lensed CMB power spectra would involve
including the covariances between the CMB power spectra induced by lensing, and also
the covariances between the lensing convergence and the CMB power spectra [131, l;
neglecting the extra information on M, that comes from the lensed CMB power spectra
makes our calculation conservative. C/* and CF*, the cross power spectra of CMB lensing
with CMB temperature and E-mode polarization respectively, are non-zero only on very
large scales due to correlations induced by the late-universe effects on the CMB such as
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the Integrated Sachs—-Wolfe (ISW) effect [183] and polarization generated after reioniza-
tion [1&84], but can be neglected in our analysis as we restrict to multipoles ¢ > 300 for the
primary CMB.

We also include a prior on 7, the optical depth to reionization, which will be an im-
portant limiting factor in the inference of M, from lensing surveys [163]. We consider two
different scenarios: the Planck design sensitivity opio(7) = 0.006 (equal to the value
achieved by the analysis of Planck data in Ref. [185]) and the cosmic variance limit
Oprior(7) = 0.002 [17]. We include this as a Gaussian prior with width ope (7). The
final Fisher matrix we use for forecasting is

F=FM 4Ot (9.6)

prior

where Cpior is the sum of the BAO prior and the 7 prior. Note that F CMB ontains both

primary CMB and lensing information, as it is calculated from the covariance matrix in
Equation (9.5); however, as the cross power spectra between the primary CMB and the
CMB lensing potential are set to zero, this can be separated as a sum of an inverse prior
from the primary CMB and a Fisher matrix due to lensing alone.

Within this setup, the lower bound on the marginalized constraint on parameter i is

o; =/ (F . (9.7)

9.3.2 Calculating the baryonic bias

Predictions for the CMB lensing power spectrum are typically computed with the dark-
matter-only? (DMO) nonlinear matter power spectrum Ppyio(k,2). However, since the
true power spectrum includes (unknown) baryonic effects, the deviation from the DMO
prediction that these effects induce might mimic the neutrino mass signal and result in
an incorrect (“biased”) inference of the mass. If we can compute the power spectrum
incorporating a given model of baryonic effects (Poary (K, 2)), we can calculate the bias that

would be induced in the inference of the parameter 6" by (e.g. [169])
20+ 1 oCFMB -1 -1
_ -1 ¢ CMB CMB
B;=F % 5 oo Tt { 5 (CFMP) T AC (CMP) (9.8)

2“Dark-matter-only” computations could perhaps be more accurately described as “gravity-only”, since
these computations do not neglect the baryonic contribution to the universe’s matter content, but instead
treat baryonic identically to dark matter, with only gravitational forces at play. However, “dark-matter-
only” is the term most commonly seen in the literature, so we also adopt it.
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where ACY is the change in the covariance matrix due to baryonic effects
AC, = O£|bary - C€|DMO' (9.9)

Note that of all the power spectra in the covariance matrix (9.5), only C;* is affected by
the baryons, and ACXY = 0 for XY # sk (the kT and kFE correlations are too small to
be relevant). Thus, Equation (9.8) simplifies to

2041, oCys 1
By =F"! Sy ACT" . 9.10
%: 2 Fey o (Cre2 =t (9.10)
We use the forecasting code from Ref. [130]* to compute the Fisher matrices and biases in

our forecasts.

To obtain a range of possible forms for Py, and therefore ACF", we turn to hydrody-
namical simulations, as described in the next subsection.

9.3.3 Simulations

We use C§* computations from Ref. [172], which considers 7 baryonic scenarios from 4 dif-
ferent families of large hydrodynamical simulations (see Ref. [172] for further descriptions):

e the “AGN” member of the OWLS simulation suite [187, , 189];

e the base BAHAMAS simulation [190, , |, along with the “Low-AGN” and
“High-AGN” versions that respectively contain weaker and stronger AGN feedback
than the base simulation;

e the “AGN” member of the Horizon simulation suite [192, , ]; and

e the TNG100 and TNG300 runs of the IlustrisTNG simulations [195, , , ,
, 200].

The matter power spectrum P (k, z) is measured from the simulation outputs at several
different redshifts, both from DMO runs (which treat baryons and dark matter identically)
and from runs that include baryonic processes along with gravity. The measured power
spectra have considerable uncertainty due to sample variance arising from the finite number
of modes within each simulated volume, but the majority of this sample variance arises

3https://github.com/msyriac/pyfisher
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from randomness in the initial conditions that manifests primarily at large scales. Each
pair of DMO and full-hydro runs begins with the same initial conditions (i.e. amplitudes
and phases of modes at the initial time), and therefore the sample variance errors mostly
cancel? in the ratio

R, ) = Do (K:2) - (9.11)
Pono(k, 2)

The corresponding CMB lensing power spectrum C’f"“|bary can then be computed by using

A

Poury (, 2) = Paa(k, 2)R(k, 2) (9.12)

in Equation (9.1), where Pyq(k, 2) is the fiducial DMO prediction for the matter power spec-
trum. Note that the different simulations have been run with different cosmological mod-
els, while we compute Pjq using a single cosmology in our forecasts. Refs. [202, , ]
have found that R(k, z) has only a weak dependence on background cosmology, so Equa-
tion (9.12) is sufficient for our forecasts, while for work requiring percent-level accuracy,
the cosmology-dependence of ]A%(k, z) should be carefully accounted for.

9.3.4 Experimental configurations

Several CMB experiments are planned or being built that will begin observations this
decade and that are aimed at measuring CMB fluctuations on small scales, for gravitational
lensing reconstruction and other secondary anisotropies. Here, we consider an experiment
similar to the Simons Observatory (SO) [16], due to begin taking data in the first half of
the 2020s. The large aperture telescope for this experiment will have a 6 m diameter and
will observe large fractions of the sky at high angular resolution in six frequency channels.
We also consider an experiment like CMB-S4 [17, |, which will have comparable angular
resolution and frequency coverage, but higher sensitivity; it is expected to begin taking
data on a later timeline than SO. We include Gaussian instrumental white noise on the
CMB power spectra:

(DO iy

Ny = Npe~ sm2 ot (9.13)

4The ratio ]A%(k;,z) will itself have some sample variance, because it is dominated by baryonic effects
on the highest-mass halos within a given simulation volume, and the set of such halos will depend on
the initial conditions. Ref. [201] quantified the sample variance in R(k, z) for a subset of the simulations
considered in this Chapter, finding it to be at the few-percent level for & < 20 (Refs. [194, | reached
similar conclusions.). This is acceptable for our work, which is focused on the range of R(k, z) between
different simulations rather than the absolute precision of any one simulation.
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Figure 9.2: Demonstrating mitigation strategy 1: the calculated biases on M, plotted
against the maximum CMB lensing multipole L., included in the forecast for the different
simulations. In each case the 1o constraint is shown as a dotted line. Note that the TNG100
and TNG300 lines are almost identical.

where Nr is the noise variance and Opwiy is the beam size of the experiment. For both
experiments, we use Opwnm = 1.4'; for SO, we use Ny corresponding to a map noise level
of 6 uK-arcmin and for 5S4 we use Ny corresponding to 1 pK-arcmin.

For C}", we include reconstruction noise N;* corresponding to the minimum-variance
reconstruction of Ref. [11] relevant to the experiment we are considering (SO or S4). We
include multipoles 90 < L < 3100 in the lensing power spectra, with the upper limit chosen
based on where the statistical sensitivity drops off, and the lower limit having negligible
impact on the results. For the primary CMB, we include multipoles 300 < ¢ < 3000
for CJ7 and 300 < ¢ < 5000 for CF¥ with the upper limits based on where uncleaned
foregrounds are expected to become significant in the lensing reconstruction [205, .

9.4 Strategy 1: Small angular-scale cut-off

The forecasts in Ref. [172] considered all scales over which future CMB surveys will have
appreciable sensitivity to the lensing power spectrum—ie, a summation over multipoles
90 < L < 3100. However, baryonic effects are concentrated at a different (though not
disjoint) range of scales than the neutrino mass constraint (see Figure 9.1).

With this in mind, the first mitigation strategy we implement is a simple L., cut-off,
where L. is the maximum lensing multipole included in the analysis. In Figure 9.2, we
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show the behaviour of the 1o constraint on M, as well as the biases from different models
of baryonic effects as we introduce this cut-off. It is clear that for all of the experimental
setups, the constraints saturate at around L., ~ 1000 and there is no benefit to including
multipoles L 2 1000; this happens because the suppression of C7* is roughly constant
for L z 1000, while the experimental errorbars on C}" increase with L over the same
range (compare Figure 9.1 of this work with Figure 1 of Ref. [172]). Meanwhile, we see
that including higher multipoles does indeed increase the bias, and imposing L.x ~ 1000
can reduce the bias by a factor of ~ 2 in some cases. However, in particular for the most
advanced experimental configuration, the biases can still be of the same order of magnitude
as the expected constraint, and so further mitigation methods will be needed to reduce the
bias to an acceptable level.

9.5 Strategy 2: Subtraction of external tracers

9.5.1 Isolating the low-z contribution to the CMB lensing po-
tential

Baryonic phenomena begin to imprint themselves on structure formation at a much later
time in cosmological history than neutrino mass effects. As the CMB lensing kernel is
an integral over all redshifts, we receive (weighted) information from all of cosmological
history since recombination. However, if we could “subtract” the low-z contribution to
the lensing map to isolate the high-z effects, we could potentially remove most of the bias
while still being sensitive to M,,.

To illustrate the ideal outcome of such a procedure, we define a high-z CMB lensing
field by where xmi, is some lower bound of the integration; xmi, = 0 corresponds to the
standard CMB lensing scenario. We forecast the 1o errors and baryonic biases on M, as in
Section 9.3 but replacing C7* with C7""" and we consider their dependences on the lower
limit of integration Y.

We show in Figure 9.3 the behaviour of the constraints and the biases plotted against
Zmin = Z(Xmin). Here we see explicitly that the biases are introduced in the late universe
at around z < 2, while the constraints on M, come from a much larger redshift range. It
is clear that if we could isolate the portion of the lensing map that is sourced at z 2 2
we could remove a significant portion of the baryonic bias on M, without sacrificing much
constraining power on M,,.
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Figure 9.3: The biases (solid lines) and the forecast 1o constraints on M, plotted against
the minimum z z,;, used to integrate the CMB lensing kernel, assuming that perfect
removal of the z < z,;, contribution is possible. We see that the baryonic bias starts to
become relevant at z,;, ~ 2. However, constraining information for M, comes from higher
z. Note that the x-axis is scaled logarithmically in (1 + z).

Of course, we do not have direct access to measurements of the field x;, and so the
configuration in Figure 9.3 is simply a toy model for illustrative purposes. However, through
cross-correlation with a low-z external tracer X (such as a cosmic shear map), we could
remove the low-z portion of the CMB lensing field by defining a new field

Ci(m_‘_Ni(n R

~sub ~
(L) = k(L) - Sxx X%
CXX T NX

(L), (9.14)
where £(L) is the original CMB lensing convergence, and in this subsection we use hats
to denote quantities that include noise (i.e. CAB = CAB + NAB). In Equation (9.14), we
weight X with a matched filter designed to extract the portion of X correlated with &,
assuming that this correlation is dominated by low redshifts. Note that in our implemen-
tation, we will assume that the filter is computed using theoretical expressions with the
fixed fiducial cosmological parameters, such that it is not varied in our Fisher calculations.

To see how Equation (9.14}) accomplishes our goal, observe that if the weights perfectly
match the true statistics of X and &, the power spectrum of A, reduces to

(O + Ni®)*

C'%sub’%sub — CHH + NNK/ _ ]
L N o N

(9.15)
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Furthermore, if we decompose x into uncorrelated pieces sourced by low and high redshifts,
K = Klow + Khigh, and assume that X (L) = T'(L)kiow (L), so that X is perfectly correlated
with Koy with a transfer function 7'(L), Equation (9.15) becomes
Cfsub/%sub _ CfLﬂowmow + Czhighnhigh + Np*
(T(L)Czlowmow 4 Ni(n)Z
N T(L)2Ciwrow 1 NXX

(9.16)

With high noise on X, we recover C#*, but in the low-noise limit (N7¥* N — 0), we

obtain o
C”Zsubnsub — Czhigh‘%high + NE’H7 (917)

and therefore the low-z contribution to the lensing power spectrum is perfectly subtracted.’

In reality, for a tracer we can directly measure, such as cosmic shear, the assumption
of perfect and exclusive correlation with the low-z contribution to CMB lensing does not
exactly hold; however, if this correlation is sufficiently high, we expect that we can still
subtract a significant portion of the unwanted low-z contribution to a lensing map. We
consider an explicit example in the following sections.

9.5.2 Cosmic shear from the Rubin Observatory

Cosmic shear is an ideal candidate for an external tracer X that we can use to isolate and
subtract the low-redshift contribution to CMB lensing maps. As light rays from distant
galaxies travel through the universe, their paths are deflected by the intervening matter
(just as the CMB is lensed), and this introduces correlated ellipticities in the observed
images of these galaxies. These correlations, either amongst these galaxies or between the
galaxies and another tracer of large-scale structure, are most commonly measured directly
from catalogs of observed galaxy shapes. In our forecasts, we will assume that these
catalogs can be converted into lensing convergence maps®, and take X to refer to such a
map constructed from galaxies in a given redshift bin.

5An alternative strategy to the map-level subtraction we have considered here would be to perform the
forecasts when including all auto- and cross-power spectra between the lensing map and the other tracer,
as performed in, e.g., Refs.[207, , ] in the context of using CMB lensing to mitigate systematic effects
seen in cosmic shear surveys. However, this method is more sensitive to the baryonic biases sourced at
low-z, and should be implemented with a mechanism for marginalizing over baryonic models, which we do
not consider in this section for simplicity (although we will consider such a mechanism for the CMB-lensing
alone case in Section 9.6).

SFor recent work on such “mass-mapping” techniques for cosmic shear, see Refs. [210, , , 1,
several of which are extensions to the method first presented in Ref. [214].
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The lensing efficiency for a source galaxy at comoving distance xg is given by Equa-
tion (10.3) with xcwmp replaced by xg:

& _3 Ho\™ X Xxs—Xx
W(X,Xs)—29m< ) 0D xe (9.18)

In practice, galaxies are binned into photometric redshift bins with a finite extent in redshift
space, and so we measure the cosmic shear from galaxies at a range of sources. To calculate
the shear efficiency for such a bin of galaxies, we integrate over the redshift extent of the
bin and weight by the galaxy distribution le—

dn

f
. Xi
Wi = [ s W ) (9.19)

for a bin i between ! and X{ , where n; is the total number density of the bin n; = f X’ dx d”

We consider explicitly the distribution predicted for the Rubin Observatory’s LSST (Legacy
Survey of Space and Time) Gold sample of galaxies [51], a sample that will be used to
measure cosmic shear. We take the distribution from Ref. [60]

d 1.01
d_Z = ngz'*exp [— (%) ], (9.20)
with a total number density n, = 26 arcmin 2. Zn can be found from Equation (9.20) by
computing Z—X = ‘2—23—;.
The shear power spectrum of bin ¢ is given by
() L+1/2
Okt = / dx (3‘) P (k _Lxip z) . (9.21)
0 X X

We consider a survey with N source bins containing equal numbers of galaxies for the cosmic
shear fields, and as we wish to use them to subtract as much of the low-z contribution to
the CMB lensing kernel as possible, we combine them in such a way to maximize their
correlation with the CMB lensing convergence. As such, we consider a linear combination

of shear fields ) R
X =) eX; (9.22)

where X; is the convergence map of bin 7. The coefficients ¢; are chosen to maximize
the correlation coefficient between X and the CMB lensing potential; we compute them
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following the linear-algebraic methods of Ref. [10] (see their Appendix A)”. The ¢; that

. . . - : . _ o
maximize the correlation coefficient of X with the CMB lensing potential r; = Jorvor
are
o= (Cp o, (9.23)
J
where C74"F is the covariance matrix of the cosmic shear fields (including noise), and
C7/" ™" is the cross-power spectrum between the cosmic shear field j and the CMB lensing
convergence. The elements of C74"F are
W)W L+1/2 oo
Cp™Pyy = /dx—(x>2 Wp, (k e ’z> + N, (9.24)
X X

with shear noise power spectrum N, given by
NF*I = 5ij—f (9.25)
(2
where o, is the intrinsic shape noise (we take o. = 0.26 [06]) and n; is the total angular
number density of bin . The cross power spectrum between CMB lensing convergence and
cosmic shear in bin ¢ is given by

KjKCMB __
Cy =

(9.26)

dXWj(X)MggMB<X>Pm <k _ L+1/2 z)

X X

where Wz (x) is the CMB lensing efficiency kernel given in Equation (10.3).

9.5.3 Intrinsic alignments

It is a non-trivial exercise to separate the apparent ellipticities induced by cosmic shear
from the inherent ellipticities of galaxies. Under the assumption that the galaxies have
a random distribution of ellipticities, this is not a problem, as taking a high number of
galaxies in the sample ensures that the average intrinsic alignment averages to zero and
there is no bias to the signal (although Poissonian noise remains). However, if there is an
intrinsic alignment to the galaxies’ true ellipticities (e.g. as caused by alignment with the
large-scale tidal field), this will bias one’s inference of a lensing signal. With this in mind,

"Such a map, combining samples in the mid-infrared and far-infrared from WISE and Planck to be
maximally correlated with CMB lensing, was generated in Ref. [215].
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we introduce an intrinsic alignment contribution to our forecasts involving cosmic shear to
ensure that the effect of intrinsic alignments on the ability of cosmic shear to subtract the
low-z information of the CMB lensing kernel is accounted for.

To quantify the intrinsic alignment contribution, the observed ellipticity v can be sep-
arated into a part induced by gravity 7“ and a part that is intrinsic 77,

7=+, (9.27)
such that the two-point correlation of v with itself is

(v) = () + () + () + () (9.28)

In terms of the angular power spectra between the ellipticities of galaxies in two redshift
bins labelled by ¢ and j, we can write

CyY =7 ofth ot opt (9.29)

Correlations between the tidal field responsible for the intrinsic alignments of foreground
galaxies and the gravitational field lensing the images of distant galaxies can cause Cfilj
to be non-zero when the redshift bin j is in front of bin 7 (negligibly small contributions,
which are exactly zero in the Limber approximation, come in the case when ¢ is in front
of 7). This extra contribution to the correlation is also present in the CMB lensing-cosmic
shear cross power spectra:

C’ZMCMB _ ijHCMB + Cij”CMB_ (9.30)

The gravitational contributions C’f “ and Cf INCMB are the cosmic shear expressions
given in Egs. (9.24) and (9.26). For the other terms, the power spectrum of intrinsic shear
Pri(k, z) must be introduced. Then, the [ — I correlations in redshift bin i are given (within
the Limber approximation) by an integral over the redshift bin, weighted by the galaxy

density:
f 2
1 [ d L+1/2
Ol = —2/ dx (—n> Prr (k; - +—/,z) . (9.31)
ni X? dXS X

The cross power spectra between bins C’flj is zero (within the Limber approximation) for
i # 7, as the redshift window functions do not overlap. For the cross-term C¢! we introduce
the cross power spectrum between matter and intrinsic ellipticities Py, (k, z) such that

f i
T 1 X d v L+1/2
Cfll] = dX ( - ) il (QX) PI,m (k = il / 72) ) (932)
dxs) X X

i JIx
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where () can be replaced by W& (x) to get Cij "OMB - As mentioned earlier, this is
only non-zero for j in front of ¢ as W¥(y) is zero for y > le , ie over the integration range
of Equation (9.32) if bin j is behind bin 7.

A simple model for the power spectrum Pj;(k, z) assumes that (on large scales) galaxies
are aligned with their host dark matter halos, which are given ellipticities by their local
tidal field, implying that, in the linear regime [216, 217],

9\ 2

Pin(k, z) = (%) Plin(k, z) (9.33)

where p is the mean matter density of the universe at redshift z, D = @ where D(z) is the

growth factor normalized to 1 today; and Pi*(k, 2) is the linear matter power spectrum. C;

is a constant amplitude C; = 5 x 107#h~2M_"Mpc?, chosen to match the TA amplitude of

superCOSMOS in [218] and Aj4 is an overall normalization parameter with a fiducial value

of unity which should be marginalized over due to uncertainty in the overall amplitude of

the intrinsic alignment power. The cross spectrum between the intrinsic ellipticities and
the matter power spectrum Py, (k, ) is given (again in the linear regime) by

. A 4O pa® .
O e L) (9.34)
In [217] this linear alignment model was extended to a “non-linear linear alignment model”

by replacing Pi*(k, z) with the non-linear P,,(k, z). We use this latter model in our fore-
casts.

In cosmic shear analyses, it is customary to use a very wide prior on the normalization
Aja. However, recent shear surveys have been successful in constraining this parameter
in combination with photometric or spectroscopic galaxy clustering: for example, when
ignoring galaxy colors, the Dark Energy Survey obtained o(Ar4) ~ 0.33 with its year-1
data [219], and the KiDS survey achieved o(A;4) =~ 0.5 in Ref. [220], with both surveys
also able to distinguish the amount of intrinsic alignments associated with red and blue
galaxies (see also Ref. [221]). Future shear surveys are expected to improve upon this,
especially if accompanied by coordinated wide-field spectroscopy (e.g. [222]). Thus, in our
baseline forecasts we include a prior of 25% of the fiducial value of A;,, but we also explore
the dependence of our results on this choice.

9.5.4 Impact of shear subtraction on neutrino mass inference

Subtracting the optimally-combined shear map of Section 9.5.2 from the CMB lensing
map results in a significant reduction of the baryonic bias on M, without an appreciable
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Figure 9.4: Demonstrating mitigation strategy 2: the decrease in the bias when an optimal
combination of Ny,s cosmic shear bins is subtracted from the CMB lensing map. With the
exception of Nppps = 0 (which corresponds to the no-subtraction case), the total redshift
extent and number of galaxies are held constant, with Ny;,s controlling the slice thickness.
On top is for an analysis with L,,,, of 3100; on bottom we have applied a scale cut of L., =
1000 (as well as subtracting cosmic shear). All curves shown include marginalization over
intrinsic alignments for cosmic shear, with a 25% prior on the intrinsic alignment amplitude.
It is clear that the bias on M, can be reduced significantly in the latter case, without
appreciably loosening the constraint on M,,.

increase in the statistical uncertainty. We show some results in Figure 9.4, where we plot
the constraints and bias on M, against Ny;,s, the number of galaxy redshift bins we use to
construct X . Increasing Ny;ns does not increase the number of galaxies in the analysis, but
it does have the effect of increasing our redshift resolution and allowing us to weight the
galaxy kernels to match the CMB lensing kernel better. Note, however, that at some value
of Npins, photometric redshift errors will not allow for increasing Np,s to give us better
redshift resolution, and we expect the curves to saturate around this point in a treatment
where photometric redshifts are included. However, for the redshift errors expected of the
Rubin Observatory’s LSST, we expect to be able to significantly subtract the bias on M,
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with this method even with a small number of bins, in which case photometric redshift
errors will likely be insignificant due to the wide extents of the bins.

Figure 9.4 shows that, with L., = 3100 for CMB lensing, implementing the shear
subtraction generally decreases the bias on M, associated with all but one simulation by
factors of 3 to 7 for SO, and a factor of ~2 for S4 (we denote the no-subtraction case by
Npins = 0 in the figure). With L.« = 1000, we similar improvements for SO, but closer
to a factor of 5 improvement for S4, in addition to the factor of 2 improvement arising
from the L., cut. In all cases, the bulk of the improvement can be obtained with only
2 shear redshift bins (with boundaries z = [0, 0.93, 4]) for the LSST specifications we use.
Concurrent with the decrease in bias is an increase in the statistical uncertainty on M,
by at most ~20%.

Most simulations in Figure 9.4 display similar behavior, with the bias on M, decreasing
with Npins, but Horizon-AGN exhibits the opposite trend, with the bias increasing as more
redshift bins are used for the subtraction. This is due to the stronger effect of baryons
on high-redshift (z > 3) clustering observed in Horizon-AGN as compared to the other
simulations (contrast Figure 2 of Ref. [191] with results from other simulations summarized
in Refs. [189, 201]). If the high-redshift clustering in Horizon-AGN (primarily driven by gas
pressure delaying the collapse of dark matter into halos, rather than AGN feedback [191]),
as opposed to that in the other simulations (in which the effect of baryons at high z is
much more mild) is reproduced in the actual universe, isolating the high-z part of a CMB
lensing map will not be sufficient to mitigate the impact of baryons on a neutrino mass
constraint.

In Figure 9.5, we show the effect of varying the prior on the intrinsic alignment ampli-
tude A;4 on the uncertainty and bias on M, for Ny, = 5 and the bias associated with the
OWLS-AGN simulation. For CMB-S4 with the tighter 7 prior, loosening o(A;4) from 0.25
to 3 degrades the expected errorbar on M, by 15% for L,.x = 3100 or 40% for L., = 1000,
and increases the bias on M, by a factor of ~2 compared to the o(A;4) = 0.25 case. Thus,
with the wider A;4 prior, the shear subtraction combined with the L., cut is generally
still able to reduce the bias on M, by a factor of ~5-6 compared to the case with no
mitigation strategy. On the other hand, exact knowledge of A;4 leads to improvements
in the uncertainty and bias on M, of a few tens of percents. Note that the nonlinear
alignment model we have used for intrinsic alignments will likely be superseded by more
detailed models for future shear surveys (e.g. [223, 221]), but our exploration of priors on
Ara can be taken as indicative of how one’s knowledge of intrinsic alignments affects the
shear subtraction procedure we have described.
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Figure 9.5: The effect of marginalizing over the intrinsic alignment amplitude. If a prior
is not included the constraint on o(M,) can increase significantly, as is shown on the left;
the bias also increases, as is shown on the right for OWLS-AGN.

9.6 Strategy 3: marginalization over additional pa-
rameters

The mitigation strategies we considered above involved removing portions of the data most
sensitive to baryons, via scale cuts and/or subtracting proxies for low-redshift information
in CMB lensing, while retaining as much constraining power on M,, as possible. However, as
biased constraints on M,, arise from neglecting baryonic effects in the theoretical modelling
of the matter power spectrum, one can instead incorporate a model for these effects; by
marginalizing over the associated parameters, we can hope to reduce the bias on M, without
requiring precise knowledge of the impact of baryons. Examples of such models include
perturbation theory [225, 226, 227], extended halo models [228, 202, 53, 229, 230, 231],
empirical fitting functions [173, 189] or principal-component decompositions [232, 233, 23]
for the matter power spectrum from simulations, “baryonification” algorithms that modify
the outputs of N-body simulations [235, 236, 237, 238], emulators [239], or approaches
based on machine learning [210, 241].

We choose to test this marginalization approach using the model from Ref. [53]. This
model is based on the halo model (e.g. [55]), with a modified 1-halo term for the matter
power spectrum. Baryonic effects are parameterized by two parameters. The first, A, is
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the amplitude of the halo concentration-mass relationship c¢(M, z):

c(M,z)=A T
z

; (9.35)
where z(M) is the formation redshift of halos of mass M; this is designed to capture the
effects of processes such as gas cooling, which can cause increased halo concentration. The
second parameter, 7, alters the (Fourier-transformed) halo density profile u(k, M) via

u(k, M) = u(v"k, M), (9.36)
where v = 0(554) with . the critical density required for spherical collapse and o (M)
variance in the initial density fluctuation field when smoothed with a tophat filter with
the size of the virial radius of the halo. For positive 1, the modification (9.36) “puffs out”
higher-mass halos (v > 1) and contracts lower mass halos, and as such 7 is referred to as
the “halo bloating parameter”. This is intended to capture some of the effects of AGN
feedback on halo profiles. By fitting A and 1 to the OWLS simulations, Ref. [202] found
that it was adequate to use a single redshift-independent value for A, while the redshift
dependence of n was well-captured by

n(z) = ny — 0.303(2) (9.37)

with a single 79, where og is the variance of density fluctuations over a sphere with radius
8, and we use those choices in our calculations.

To ensure that the parameter space of A and 7y sufficiently describes the baryonic
effects in the simulations we are considering, in Appendix D we fit these parameters to
the Poary/Ppymo ratios from each simulation, and compare the “best-fit” predictions with
the simulations’ measurements. We indeed find that the model is able to reproduce all
simulation results with a precision of ~5% over the scales we are concerned with, which is
an acceptable level since we are more concerned with the range of simulation results rather
than exactly reproducing any one simulation. This agreement also justifies our use of the
model from Ref. [53] as opposed to turning to more recent updates (e.g. [229, 230]).

To include this model in our forecasts, we use the same formalism as in Section 9.3,
but expanding the vector of parameters in Equation (9.3) to include A and ny:

0 = (h, Wh%, Q2 7,14, Ay, My; A1) - (9.38)

The fiducial values we use for A and 7y are A = 3.13 and 79 = 0.60, corresponding to those
fit to the DMO run of OWLS in Ref. [202]. We do not assume any prior knowledge of
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Expt | oprior(T) o(My) [meV] Simulation Bias AM, [meV] AM, [o(My)
no marg. [ after marg. no marg. [ after marg. no marg. [ after marg.
OWLS-AGN 7.2 0.14 0.32 0.0060
BAHAMAS 6.6 0.74 0.29 0.031
BAHAMAS-LowAGN 3.8 0.43 0.17 0.018
SO 0.006 22 24 BAHAMAS-HighAGN 12 1.4 0.55 0.059
Horizon-AGN 0.88 -0.81 0.039 -0.033
TNG100 0.92 0.090 0.041 0.0038
TNG300 0.92 0.088 0.042 0.0037
OWLS-AGN 16 0.39 0.76 0.018
BAHAMAS 13 1.1 0.65 0.052
BAHAMAS-LowAGN 7.7 0.67 0.38 0.031
S4 0.006 20 22 BAHAMAS-HighAGN 24 2.4 1.2 0.11
Horizon-AGN 3.2 -0.78 0.16 -0.036
TNG100 2.0 0.22 0.098 0.010
TNG300 2.1 0.20 0.10 0.0091
OWLS-AGN 14 0.37 1.2 0.027
BAHAMAS 12 1.2 1.0 0.083
BAHAMAS-LowAGN 7.2 0.68 0.59 0.049
S4 0.002 12 14 BAHAMAS-HighAGN 22 2.4 1.8 0.18
Horizon-AGN 2.8 -0.89 0.23 -0.064
TNG100 1.9 0.21 0.15 0.015
TNG300 2.0 0.19 0.16 0.014

Table 9.1: Expected uncertainty and bias on M, with and without marginalization over the
A and 7y parameters of modified halo model from Ref. [53], using CMB lensing multipoles
up to Ly = 3100. With marginalization, the biases are reduced by a factor of ~10 in
most cases, while the uncertainty is only degraded by ~15% at most.
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the true values of these parameters, which is a conservative choice given the multitude of
other datasets which could likely constrain them at some level. Upon marginalizing over
A and 7y, along with the other cosmological parameters, we find the results in Table 9.1.
In particular, we find that the uncertainty on M, is degraded by only ~10% compared to
the case where baryonic effects are ignored in the modelling (equivalent to fixing A and 7
to their fiducial values), while the biases on M, are drastically reduced, by factors of ~10
or more. In particular, for CMB-S4 with the tightest 7 prior, the bias corresponding to
BAHAMAS-HighAGN is roughly 0.20, while for all other simulations it is less than 0.1c;
without marginalization, there are 3 simulations that induce a bias exceeding 1lo.

To understand why this prescription works so well at removing the bias while preserving
the constraining power, it is helpful to plot the derivatives of C}* with respect to A, 7o,
and M,; see Figure 9.6. We see that A and 7y have significantly different effects on
the shape of the lensing power spectrum than M,: since they only modify the 1-halo
term in the matter power spectrum, they have the strongest impact at small scales, while
neutrino mass suppresses structure growth over a wider range of scales (recall Figure 9.1).
This lack of degeneracy implies that the M, constraint is not degraded when A and 7y
are marginalized over; furthermore, since the model covers the space of baryonic effects
well, the marginalization is effective at removing the associated bias from a determination
of M,. These conclusions are consistent with other studies of cosmic shear [170), ,

], which have found that when priors from the primary CMB or other observations are
included, marginalizing over a baryonic model with only a few parameters enables unbiased
constraints on neutrino mass without large increases in uncertainty.

9.7 Discussion & Conclusion

Upcoming measurements of CMB lensing have great promise to measure the sum of neu-
trino masses (M, ), but this measurement will only be possible if each of several systematic
effects are tightly controlled. In this Chapter, we considered one such systematic, related
to the impact of “baryonic effects” (the name given to astrophysical processes like gas cool-
ing and AGN feedback) on the lensing power spectrum. Recent simulations indicate that
uncertainty in these effects can bias a neutrino mass measurement from CMB lensing by
a sizeable fraction of the statistical errorbar if they are not incorporated in the modelling
or mitigated in some other way [172].

We investigated three strategies for mitigating this bias, using Fisher forecasts that
combine expected CMB lensing and primary CMB measurements from upcoming exper-
iments, BAO constraints expected from DESI, and a prior on the mean optical depth 7,
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Figure 9.6: The derivatives of the lensing power spectrum with respect to the parameters
of the model for baryonic effects from Ref. [53], and also M, all normalized by their own
values at L = 1000. M, is tending towards a scale-independent effect on C}" across a wide
range of scales, while A and 7, are significantly scale dependent, becoming increasingly
important on small scales.

either from current Planck constraints or assuming a cosmic-variance-limited measurement.
Our chosen strategies and results are as follows:

1. Decreasing the largest multipole L., (smallest physical distance) used
for neutrino mass constraints (Section 9.4): Baryonic effects are stronger at
smaller scales, so one can attempt to reduce sensitivity to these effects by excluding
smaller scales from an analysis. We found that keeping L., = 1000 is necessary to
avoid sacrificing significant constraining power on M,,, and that setting L., = 1000
can reduce the bias on M, by as much as a factor of 2 (compared to our fiducial
forecast with L., = 3100). However, this reduction still allows the bias be of the
same order as the statistical errorbar on M, so further mitigation is needed.

2. Removing the low-redshift contribution to the lensing map using external
tracers (Section 9.5): CMB lensing probes structures over a wide redshift range,
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Figure 9.7: A summary of the efficacy of our mitigation methods. For each experimental
configuration and each mitigation method, we show the forecast error bars for M, centred
on the fiducial value of 60 meV but offset by the bias forecast for each simulation. Without
any mitigation, the biases are substantial and have differing values for different simulations
[172]. However, it can be seen that L.y reduction and shear subtraction each reduce the
biases to some extent, and that when both methods are performed the biases are almost
completely removed. Marginalization over baryonic parameters also does an excellent job

of almost completely removing the biases.

while simulations indicate that baryonic effects should only have a sizeable effect
on clustering at the lower end of this range. Thus, one can attempt to remove
the low-z contribution from a CMB lensing map, and use the resulting map for a
neutrino mass analysis. We have implemented this proposal using a weighted sum
of cosmic shear measurements in different source redshift bins. We found that, with
Limax = 1000, subtracting a combination of 2 shear redshift bins (modeled on the
Rubin Observatory’s LSST) from a CMB lensing map is sufficient to reduce the bias
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on M, by factors of 5 or more, down to 3 meV for the most extreme simulation we
consider. We also considered the effect of intrinsic alignments in the LSST-like data
on this procedure, and found a minor impact, when assuming the priors that are
expected.

3. Marginalizing over a parameterization of baryonic effects (Section 9.6): If
the effects of neutrino mass and baryonic processes are sufficiently nondegenerate in
the lensing power spectrum, one can consider including a simple parameterization
of the latter in the matter power spectrum model, and marginalizing over the corre-
sponding parameters. After checking that the modified halo model from Ref. [53] can
describe our set of simulations with appropriate accuracy, we found that marginaliz-
ing over the model’s two parameters only degrades the constraining power on M, by
about 15%, while reducing the bias on M, by factors of 10 or more, down to ~2 meV
for the most extreme simulation. This is true even without a reduction in L.

We conclude that either of strategies 2 or 3 should be sufficient to reduce the bias in M,
from baryons to an acceptable level (AM, < 0.20(M,)) for CMB-S4. These results are
summarized in Figure 9.7.

There is a fourth mitigation strategy that we have not explored in this Chapter: using
external measurements to constrain or fix the form of baryonic effects on CMB lensing.
It has been shown that the matter power spectrum suppression seen in a range of hy-
drodynamical simulations is strongly correlated with the mean baryon fraction of group-
and cluster-scale halos (M, ~ 10Mh™ M) [189, 231], so an external constraint on this
quantity would likely give a much sharper picture of how much power suppression to in-
clude in the modelling. This constraint may be achievable with future X-ray observations

of groups and clusters (e.g. [213]). For example, when using the model for baryonic ef-
fects from Ref. [230], Ref. [171] finds that gas fraction measurements by the upcoming
eROSITA telescope [244], combined with cluster mass estimates from Fuclid weak lensing,

will significantly reduce the uncertainty on M, from a combination of cosmic shear and
Planck CMB measurements. However, inference of gas fractions from X-ray measurements
requires a measure of the total halo mass, and the various methods to obtain this (e.g.
assuming hydrostatic equilibrium or using weak lensing of background galaxies) each come
with their own caveats. Furthermore, X-ray measurements are most sensitive to hot gas
in a halo’s interior, while Refs. [235, ] have shown that gas at the outskirts of groups
and clusters has an important effect on the matter power spectrum.

This fainter, more diffuse gas can be probed using the thermal and kinetic Sunyaev-
Zel’dovich (SZ) effects. Mean gas fractions can be extracted from cross-correlations be-
tween CMB maps and group/cluster catalogs [130), , , |, or more generally, stacked
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gas and pressure profiles can be measured directly from these cross-correlations [218, ,

, ], with upcoming surveys promising to provide much more powerful measure-
ments [252, ]. Further constraints are possible by correlating thermal SZ maps and
cosmic shear [251, 255] or CMB lensing itself [250], helping to break degeneracies between
baryonic effects and neutrino mass. Clearly, there are many avenues for independent con-
straints of baryonic effects, which can be incorporated into an analysis of CMB lensing.
However, the strategies presented in this paper do not depend on any such constraints,
and therefore represent a promising approach to pursue in parallel.

Finally, it is worth noting that we have made specific choices when implementing these
strategies in our forecasts, but other choices are possible. For instance, one could choose a
low-redshift tracer other than cosmic shear to implement the map-level subtraction from
Section 9.5; another option would be to use spectroscopic or photometric galaxy catalogs,
although galaxy bias and selection effects would need to be carefully accounted for in
the subtraction procedure. One could also consider marginalizing over other models for
baryonic effects, such as effective-field-theory—based perturbation theory, which Ref. [227]
found to be capable of describing baryonic effects on CMB lensing at L < 2000 with
suitable accuracy for CMB-S4. Regardless of these specific choices, we expect our general
conclusions about these strategies to hold. Therefore, it appears that baryonic effects
on a neutrino mass constraint from CMB lensing can be straightforwardly reduced to a
negligible level.
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Chapter 10

Primary CMB measurements
without baryon bias

10.1 Introduction

Measurements of the cosmic microwave background (CMB) temperature and polarization
anisotropy power spectra have revolutionized our understanding of cosmology in the past
few decades (e.g., [257, 123, 13, 258]). Upcoming CMB anisotropy measurements promise to
build upon this success, with unprecedented sensitivity to signals of new physics in the early
universe [10, 80]. Key to this success is the robust theoretical foundation upon which CMB
anisotropy power spectrum calculations rest. In particular, the primary CMB fluctuations
are described to very high accuracy by linear cosmological perturbation theory. As first
recognized long ago (e.g., [259, 260, 261, 262]), high-precision measurements combined with
this robust theoretical foundation allow constraints on all of the fundamental cosmological
parameters (in ACDM) to be inferred solely from the CMB. Upcoming experiments will
utilize this power to put leading constraints on many new-physics parameters, including
the effective number of relativistic species (Neg), the sum of the neutrino masses (M),
the running of the spectral index of primordial perturbations, models to resolve the H
tension, and many other scenarios. All of these constraints rely on the precise modeling of
the CMB power spectra within linear perturbation theory.

However, on small angular scales in the CMB, crucial assumptions in this picture begin
to break down. Gravitational lensing of CMB photons, which distorts their paths as they
travel from the surface of last scatter to our telescopes, leads to subtle but non-negligible
changes to the CMB power spectra (for a comprehensive review of CMB lensing, see [90]).
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In particular, gravitational lensing smooths the acoustic peaks and pushes anisotropy power
into the high-multipole “Silk damping tail” of the CMB power spectra [2063, , ].
Thus, due to lensing, the primary CMB is influenced by the properties of the matter
density field at low redshifts, as captured in the CMB lensing potential field, which is a
particular redshift-weighted projection of the density field along the line-of-sight (LOS).
The CMB lensing potential field is well-described by linear perturbation theory on angular

scales greater than ~ 10 arcmin [90], but on smaller scales it is affected by nonlinear
gravitational evolution and processes associated with baryons, such as feedback from active
galactic nuclei (AGN) [2606, , , , , , , , , , 4]. Thus, one may

wonder to what extent these highly nonlinear processes could affect the primary CMB
itself through gravitational lensing, and whether these effects could influence cosmological
parameter inference from upcoming high-resolution CMB experiments.

In this Chapter, we show that nonlinear and baryonic effects can indeed produce sig-
nificant biases in the analysis of data from upcoming CMB experiments. The small-scale
(multipoles ¢ = 3000) CMB receives sufficiently large contributions from the small-scale
(L Z 2000) CMB lensing potential field that these effects cannot be ignored. We consider
a range of models for the effects of nonlinear evolution and baryonic feedback on the small-
scale CMB lensing power spectrum, and compute their effects on the primary CMB power
spectra. We then propagate these models through a Fisher analysis to forecast biases on
cosmological parameters that would be inferred when assuming an incorrect (but currently
standard) model. To be concise, we focus on the ACDM and ACDM+ Nz models, where
Neg is the effective number of relativistic species. The latter is of particular interest, as
constraints on Ng are strongly driven by measurements of the damping tail in the primary
CMB power spectra, which is also the region most altered by the effects identified in this
Chapter. However, similar biases for other parameters (e.g., the sum of the neutrino masses
or the running of the spectral index) are also likely to exist, and should be considered (and
mitigated) in upcoming CMB data analyses.

A brief summary of our results is as follows. We show that constraints on N.g from the
upcoming Simons Observatory (SO) [16] and CMB-S4 [80] experiments could be biased by
up to 0.40 and 1.20, respectively, due to the neglect of baryonic feedback in modeling of
the primary CMB power spectra. Similarly, constraints on the physical cold dark matter
density, Q.h?, could be biased by up to 1.00 (SO) and 1.60 (CMB-S4) in ACDM, or up
to 0.80 (SO) and 2.00 (CMB-S4) in ACDM+N.g. The Hubble constant Hy, which is a
derived parameter in the analysis of CMB data, could be biased by up to 1.00 (SO) and
1.60 (CMB-S4) in ACDM. In general, the bias on a given parameter depends on the model
under consideration, as parameter degeneracies will change. Table 10.1 summarizes the
biases on the cosmological parameters for SO and CMB-S4 in the ACDM and ACDM+ Ng
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SO CMB-54
ACDM \ ACDM+ Ny | ACDM \ ACDM++ Neg
H 0.96 0.15 1.6 0.035
Oh? | 0.070 0.27 0.44 0.56
Q.h? 1.0 0.96 1.6 2.0
T 0.37 0.42 0.28 0.42
As 0.57 0.68 0.52 0.81
N 0.36 0.16 0.48 0.69
Neg 0.44 1.2

Table 10.1: Fractional biases (in units of the forecast lo statistical error bar) on each of
the parameters in the various setups, if baryonic effects are ignored. Note that the biases
are different for the same parameters in the ACDM and ACDM+ N.g models due to effects
of the marginalization over Nyg. We assume a maximum multipole £,,,, = 5000 here, with
noise power spectra for SO and CMB-S4 shown in Figure 10.1. The OWLS-AGN [187, 189]
baryonic model is assumed here.

models.

We suggest multiple mitigation strategies to avoid these potentially significant baryonic
feedback-induced biases. The simplest approach is to explicitly discard all high-¢ TT
power spectrum data. At a fixed multipole in the damping tail, the small-scale TT" power
spectrum is most affected by the lensing contributions described above (compared to T'E
or FF), due to the larger gradient in the unlensed 7" field as compared to E. Moreover, due
to the much larger amplitude of the 7T signal, CMB experiments measure more signal-
dominated modes in the T'T" damping tail than in TE or EE (even after accounting for
foregrounds). Thus, the biases that we compute are generally driven most strongly by
TT. Explicitly, we find that biases on all parameters investigated here can be kept to
< 0.30 if all T'T data at £ 2 3000 are discarded (see Figure 10.6 and Table 10.2). However,
discarding the T'T" data comes at the price of increased statistical error bars on cosmological
parameters. Fortunately, the increase is not dramatic: at most ~ 21% for Q.h? and ~ 13%
for Neg.

Another mitigation approach is to explicitly parameterize the nonlinear /baryonic effects
on the CMB lensing power spectrum, and subsequently marginalize over these parameters
in the cosmological analysis of the primary CMB power spectra (e.g., as done in Chapter
9 for the cosmological analysis of the CMB lensing power spectrum). We perform this
exercise in our Fisher calculations below. We find that this approach can successfully
mitigate the biases, but, like the approach suggested above, comes at the price of increased
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error bars on cosmological parameters. However, we note that this can likely be improved
by performing a joint analysis of the primary CMB power spectra with the reconstructed
CMB lensing potential power spectrum itself. This will require a precise treatment of the
joint covariance between these probes [275].

Finally, the most data-driven approach would be to “delens” the temperature and
polarization anisotropy maps using the measured CMB lensing potential, e.g., as recon-
structed using quadratic estimators [270, 277] or maximum-likelihood methods [278, 279],
or as traced by external probes like the cosmic infrared background [15, 16, 95, 94]. If the
delensing operation were 100% efficient, then because delensing uses the observed (true)
lensing potential field to undo the lensing effects, it is clear that all biases related to mod-
eling of the late-time density field would be removed in the primary CMB power spectra
(since no such modeling would be required). Assessing the fidelity of this operation for re-
alistic experimental configurations, which will yield less-than-perfect delensing efficiencies,
will be a useful exercise in upcoming work. In particular, the feasibility of delensing on such
small scales has not yet been explored. It is interesting to note that due to the effects iden-
tified here, in addition to statistical optimality arguments identified in earlier work [230],
delensing now appears to be an important operation not only for enabling precise con-
straints on the tensor-to-scalar ratio r [15, , 16, 80], but also for enabling unbiased
constraints on Neg and other new-physics parameters in upcoming CMB experiments.

The remainder of this Chapter is organized as follows. In Section 10.2 we discuss
gravitational lensing of the CMB and how uncertainties in the lensing power spectrum can
propagate to uncertainties in the lensed power spectra. In Section 10.3 we introduce the
Fisher formalism we use to forecast error bars and systematic biases. In Section 10.4 we
discuss biases from the mismodeling of unknown baryonic effects, and present several ways
to remove these biases. We discuss our results and conclude in Section 10.5.

All of our power spectrum calculations are performed with CAMB [18]. We assume
a fiducial cosmology throughout of {H, = 67.32 km/s/Mpc, Qh? = 0.022383,Q.h? =
0.12011,n, = 0.96605, A, = 2.1 x 1072, 7 = 0.0543, M,, = 0.06 eV, Noyg = 3.046}, corre-
sponding to the best-fit values of the six primary ACDM parameters found in Table 1 of
[11] along with the minimum allowed value of the neutrino mass M,, and the standard value
of the effective number of neutrino species Neg (which are the values assumed in [11]).

10.2 The lensed CMB power spectra

Significant cosmological analysis is performed with the two-point statistics of the observed
CMB, for which we have well-understood theoretical predictions. In particular, we consider
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the power spectrum of the CMB intensity anisotropies, C7 7, and the power spectrum of the
E-mode CMB polarization anisotropies, CF¥. As these probes are not fully independent
(the CMB is roughly 10% polarized), we also consider their cross-power spectrum, C7*.
The effect of gravitational lensing on these quantities is shown in Figure 10.1. We provide a
brief summary of the relevant physics here, and refer the reader to Ref. [90] for full details.
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Figure 10.1: The lensed (blue) and unlensed (orange) CMB T'T (top left), EE (top right),
and TE (bottom left) power spectra and their ratios (bottom right). We see in the lensed
spectra an increase of power on small scales, also clearly illustrated in the bottom right
plot. We also see the smoothing effect of lensing, in the lowering of peak heights and the
raising of trough heights. The post-component-separation noise power spectra (including
residual foregrounds) expected from SO [16] and CMB-S4 [30], both including Planck data
as well, are also indicated on the C¥7 and CF¥ plots (see Sec. 10.3 for details). It is
clear that for precision cosmology with these experiments we will need to have an accurate
calculation of the lensed CMB power.
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The lensed power spectra, C}"*d are functions of the unlensed power spectra Cynlensed,
and the lensing potential power spectrum, C’f‘ﬁ. It is also common to consider, instead of
C’Zw, the lensing convergence power spectrum C7*, which is related to C’# in harmonic
space by

L(L+1))?
O = %Cﬁ’? (10.1)
C7* is given in the Limber [19] and Born approximations by
xs (W 2 L+1/2
crr :/ dx (—CMB(X)) P, (k _Lr1p ,z), (10.2)
0 X X
where P, (k, z) is the matter power spectrum and W5 (x) is the CMB lensing efficiency
kernel )
3 Ho\™ X Xs—X
W (x) = 20, (—) X 10.3
CMB( ) 2 c G(X) s ( )

with yg the comoving distance to the surface of last scattering.

The lensing potential affects the observed temperature anisotropies. In particular,
when we look in a direction m, we do not observe the temperature emitted at n but the
temperature that has been lensed into that direction, which was in fact sourced in the
direction nm + &, where the total deflection angle induced by lensing & is given by the
gradient (in the plane of the sky) of the lensing potential ¢. Section 4 of Ref. [90] provides
a thorough review of the calculation of the C}¢d from Cjpmlensed and CZ’ ¢ and we refer the
interested reader to Section 4.2 of that paper for details of the exact calculation. Note,
however, that to first order in Cf ¢ (~ to second order in &) the lensed temperature power
spectrum can be expressed as a convolution between the unlensed temperature power
spectrum and the lensing potential power spectrum

C«ZTlensed ~ (1 . €2R¢) C«ETunlensed

Pl s T umtensea

where R? is given by

1 al
RO = — | —0CY°. 10.5

4T / l ¢ ( )
In the small-scale limit, while the expansion in small C’f ¢ is not accurate, the fact that the
unlensed power is so small and can be described by a single gradient term also allows for

an approximation:
CETTlensed ~ €2Cg>¢R9 (106)
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where

1 4
© 4 ~TTunlensed
=— [ —/ . 10.
w7 C; (10.7)
For details of the above approximations we refer the reader to Section 4.1 of [90] and refer-

ences therein; the calculation of the exact lensed T'T" spectrum by means of the correlation
function, which is the method used in CAMB and CLASS, is also discussed in Section 4.2
of that reference. Similarly, the lensing of the E'F spectrum is discussed in Section 5.3
of [90]. There are a number of important aspects to consider in the accurate calculation
of C%* (and thus the accurate calculation of the lensed Cf*, C7* and CF¥). Upcoming
CMB surveys, including SO and CMB-S4, will be sufficiently sensitive that seemingly small
effects need to be taken into account (our modeling of the noise for these surveys is dis-
cussed in the next section). Inaccuracies in the modeling of P, (k, z) due to gravitational
non-linearities and baryonic feedback effects will become sufficiently important as to affect
not only the interpretation of the reconstructed lensing power spectrum [274], but also the
lensed primary CMB power spectra themselves. We will quantify this statement in the
following sections.

The linear matter power spectrum is computed with cosmological perturbation theory,
with non-linearities incorporated through, e.g., a halo-model-based fitting function such as
Halofit [282, 283] or HMCode [281, 285]. HMCode further includes free parameters intended
to capture the effects of complex baryonic phenomena on the matter power spectrum,
including gas cooling and AGN and supernova feedback. These baryonic effects significantly
alter the clustering of matter on < 10Mpc scales. We do not currently have a first-
principles calculation of such effects, and as such they are sources of systematic error in
the modeling of non-linear power spectra. To gain some understanding of the effects of
baryonic interactions on matter clustering, we can perform cosmological hydrodynamics
simulations (e.g., [270, , |); indeed, hydrodynamical simulations are used to construct
the parametric HMCode model. However, one should keep in mind that the true non-linear
power spectrum in our universe could (and likely does) differ at some level from these
models (see, e.g., [2806, 287]). As we will show, accounting for this uncertainty will be
important in upcoming CMB experiments focused on the small-scale primary CMB power
spectra.
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10.3 Inference of cosmological parameters: statistical
and systematic errors

10.3.1 The Fisher matrix formalism

The Fisher matrix formalism is widely used to calculate the uncertainties expected from
statistical error alone on the analysis of a given parameter, assuming a (theoretical) calcu-
lation of the covariance of the data expected, including noise contributions. We summarize
this approach briefly here.

We take as a data vector the (lensed) CMB power spectra: We calculate the theoretical
Cy with CAMB. The covariances between the different C,’s are given by

1

(&) = @i

(7 Ny (4 ) (it ) () |
(10.8)

where N;*¥ is the noise on the measurement of C*| including contributions from the
instrument, atmosphere, and residual foregrounds after component separation. We assume
the noise on the polarization and intensity measurements to be uncorrelated, i.e., NJ'¥ = 0.
Finally, in Equation (10.8) fuy is the sky fraction covered by the survey; we take fgy, = 0.4
for SO and fay = 0.45 for CMB-54.

We include post-component-separation noise power spectra N7 and NF¥, as computed
for either SO (using the “Goal” noise levels)! [16] or CMB-S4? [30], both in combination
with Planck data. The noise power spectra include contributions from instrumental and
atmospheric noise, as well as residual foregrounds after multi-frequency internal linear com-
bination (ILC) foreground cleaning has been applied in the harmonic domain (e.g., [31, 82]).
The foregrounds include models for Galactic dust and synchrotron in both temperature
and polarization, as well as Galactic free-free, Galactic spinning dust, extragalactic radio
and infrared point sources, the thermal and kinematic Sunyaev-Zel’dovich effects, and the
cosmic infrared background in temperature, with realistic correlations amongst the con-
stituent Galactic and extragalactic components (full details can be found in [16, 80]). While
the modeling of these components is not perfectly known, this uncertainty will only affect
the post-component-separation noise power spectra in Figure 10.1 at the ~ 10% level; the
biases computed in this Chapter will thus be expected to differ slightly in practice compared

Ihttps://simonsobservatory.org/assets/supplements/20180822_S0_Noise_Public.tgz
’https://cmb-s4.uchicago.edu/wiki/index.php/Survey_Performance_Expectations
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to our forecasts, but not dramatically so. However, we note that in a fully realistic analysis
of multi-frequency power spectrum data, the contributions from various foregrounds would
be parameterized and explicitly marginalized over in the likelihood (e.g., [30, 288]). If
the foregrounds are sufficiently orthogonal to the primary CMB (as is the case with non-
blackbody foregrounds probed in multiple frequency channels) and the model has sufficient
flexibility, then the foregrounds will not bias cosmological parameter estimation, and their
effect is primarily to contribute to the noise power captured in our post-ILC noise curves?.
Non-Gaussian contributions of the foregrounds to the post-ILC noise covariance matrix, as
well as the question of whether currently used foreground models are sufficiently flexible
so as to not bias cosmological parameters are outside the scope of this work. Similarly, in
this Chapter, we do not include contributions from non-Gaussian covariance due to lensing
and super-sample variance [275, 18, ], which would especially be of importance in a
mitigation strategy involving joint analysis with the CMB lensing four-point function (see
Sec. 10.4.2).

The Fisher matrix for the parameter vector II° can be calculated from the covariance
C, and derivatives of the data vector Cy with respect to IT%:*

i = 2o ar

(10.9)

Within this formalism, the forecast statistical error on the parameter ¢, marginalized over
the other parameters in II, is
o(IT") = \/(F1) (10.10)

Note that Equation (10.10) represents a lower bound on the true error bars, with the true
error bar approaching /(F~1),, in the case of Gaussian covariances.

The standard Fisher formalism above can be extended to consider errors that are not
statistical, but instead are caused by a systematic miscalculation of the theoretical signal,
e.g., an incorrect theory model. If we perform data analysis with incorrect theoretical
power spectra — let us call this Cfiduial — the dependence of Cfidual on the parameters
IT* will be different to those of the true theory (C}™°), and we will get a biased inference

of IT. The size of the bias is given by the bias vector (see, e.g., [290, ]
8Cﬁducial,T
iy _ -l } : ¢ -1

14

3This statement was explicitly verified for SO forecasts by comparing the post-ILC effective noise curve
approach to a full, parametric likelihood calculation in Sec. 4.1.2 of Ref. [16].

4Here we have assumed that the covariance matrix C does not depend on the parameters, i.e., it is
computed at a fixed cosmology.

171



where

AC, = Cpe — optvel, (10.12)

Equation (10.11) thus allows us to compute systematic errors in the Fisher formalism,
arising due to differences between the correct and assumed theoretical power spectra.

10.3.2 Constraints from upcoming surveys

We can use the Fisher formalism to predict the statistical error bars on cosmological
parameters for upcoming experiments, e.g., SO and CMB-S4. In particular, we show in
Figure 10.2 the predicted CMB-54 constraints on the six parameters of the ACDM model,
and on an extension of this model where the effective number of relativistic species Nqg is
allowed to vary. We sum over all multipoles from £,;, = 100 to ¢,,.y, the quantity labeled
on the z-axis. We also include a Gaussian prior on the parameter 7 of 0.0543 4 0.007,
which is constrained to this level by the large-scale Planck FE data [11]°. From the
figure, it is clear that CMB-S4 can constrain all parameters in the base ACDM model
to sub-percent precision (except 7), and Neg to near-percent precision, solely using the
primary CMB power spectra. As expected, the constraints begin to saturate once /., is
greater than the multipole at which CMB-S4 is cosmic-variance-limited (roughly ¢ = 3500
in T and ¢ ~ 3000 in F'E, as shown in Figure 10.1). For experiments with even lower
noise levels than CMB-5S4, these constraints would continue to improve with increasing
lmax (e.g., [292, 293]). While we only show the £,,.,-dependence of the CMB-54 statistical
forecast here for brevity, we note that SO will yield very precise constraints as well (prior to
the start of the CMB-S4 survey), e.g., with a forecast error bar on N.g of roughly 2% [16];
the values of the constraints that we calculate are listed in Tables 10.4 and 10.5. Thus, it
is well-motivated to consider both experiments in our analysis.

10.4 Physical systematics: mismodeling of baryons

10.4.1 Quantifying the bias from baryons

The lensed CMB power spectra are sensitive to non-linearities in the CMB lensing poten-
tial. On small scales, poorly understood “baryonic” processes, caused by the behavior of
complex visible (“baryonic”) matter (such as AGN feedback and gas cooling) can cause a

5The SO and CMB-S4 large aperture telescopes are not expected to measure the largest-scale modes
on the sky due to atmospheric 1/f noise [16, 80], which necessitates the use of our prior on 7 here.
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Figure 10.2: The forecast CMB-S4 constraints on the parameters of the ACDM model
(dashed) and of ACDM+ N (solid), plotted against the maximum multipole included in
the analysis. The constraints are shown as the fractional statistical uncertainty on each
parameter, in units of percent.

non-negligible suppression in the matter power spectrum P, (k), and therefore the lensing
power spectrum C7"; this lends uncertainties to the modeling that propagate to the lensed
CMB power spectra.

As we do not have first-principles calculations of these effects, much of our current
understanding comes from performing large numerical simulations, and comparing runs
with and without baryonic effects included, to measure the power spectrum suppression.
In this section we explore the bias induced by not incorporating these effects into the
analysis of the lensed CMB.

In Figure 10.3, we show the suppression in C7" induced by baryonic feedback effects
in various hydrodynamical simulations [274, 1].5 The figure also shows how the baryonic
suppression in the CMB lensing power spectrum propagates to suppression in the lensed
primary CMB power spectra. We show results for the OWLS-AGN simulation [187, 189],
the fiducial BAHAMAS simulation as well as its “low-AGN” and “high-AGN” variants [139,
270, 294], the Horizon-AGN simulation [295, 296, 272], and the TNG100 and TNG300
runs from the Hustris-TNG simulation suite [297, 271, 298, 299, 300, 301]. All of the
simulations yield qualitatively similar predictions for the power suppression due to baryonic

6The CMB lensing power spectrum suppression calculations are available at https://github.com/
sjforeman/cmblensing_baryons.
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Figure 10.3: Suppression in power due to baryonic feedback effects in various different
hydrodynamical simulations. The top left panel shows the suppression in the CMB lensing
power spectrum relative to a (non-linear) dark-matter-only calculation. The other panels
show the resulting impact on the lensed primary CMB power spectra (TT/TE/EE), as
labeled.

feedback on the range of scales of interest here; however, the exact shape and amplitude of
the suppression varies depending on the exact implementation (e.g., comparing the three
BAHAMAS runs, one can see that the stronger the feedback prescription, the larger the
predicted suppression, as gas is blown further out of halos into the intergalactic medium).
We consider all seven of these baryonic models in the following, although our tabulated
numerical results (e.g., Table 10.1) will generally focus on the OWLS-AGN run from the
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OWLS simulation suite [187, 189].

The power suppression can be computed from each simulation by comparing the power
spectrum from a “dark-matter-only” (DMO) run with the full baryonic physics (“AGN”)
run. The measured power spectrum ratio,

R PAGN k, z)
Rk, = 202
PPMO(E, 2)

(10.13)

can be constrained from the simulations much better than either of the power spectra
PPMOAGN (L o) directly, as much of the sample variance in the measurements of the sep-
arate power spectra cancel in their ratio. We can then incorporate baryons into the non-
linear matter power spectrum by modifying a theoretically calculated PPMO(k, 2) according
to

P*Y (k, z) = R(k, z)PPMO(k, 2). (10.14)

While R(k, z) has some dependence on the cosmology [189] we do not consider this effect
here; this is sufficient for our forecasts, particularly as derivatives with respect to power
spectra computed with R(k, z) are never computed.

By using P"®¥(k,z) in Equation (9.1), we compute the CMB lensing power spec-
trum incorporating baryonic feedback, C#*Pa¥. We then use the CAMB to obtain the
CfPTEEEbary from CsbayT We then define our AC to be used in Equation (10.11),

AC, = CP™ — CPMO, (10.15)

where C,PMO is the fiducial C/ """ computed with C5*PMO. Note that the Fisher matrix
(Equation (10.9)) in this section is always computed by taking derivatives of CPMO | as this
is the fiducial model that would be used in data analysis in this scenario (and indeed, this

is the fiducial model used in standard CMB analyses to date)®.

Figure 10.4 presents a key result of this Chapter. In this plot, we show the fractional
biases (in units of o) on the parameters in the ACDM and ACDM+ Nz models induced
by neglecting the baryonic suppression in C7", using the method described above. We use
the OWLS-AGN baryonic model here, and show results for the CMB-S4 post-ILC noise
power spectra presented in Figure 10.1. The biases are presented as a function of /.,
the maximum multipole considered in the analysis of the TT', TE, and EFE power spectra

"We have explicitly checked that the output of this function when using CZHDMO agrees with the usual
CAMB output for the lensed CMB power spectra, i.e., the DM-only model here matches that in fiducial
CAMB calculations.

8Note that the default HMCode setting in CAMB, as of writing, is a DM-only model.
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Figure 10.4: Baryonic-feedback-induced fractional biases (in absolute value) on the infer-
ences of parameters in the ACDM and ACDM+ N.g models, as a fraction of the forecast
lo constraints (which are shown in Figure 10.2), plotted against the maximum multipole
included in the analysis, fp.x. Results are shown specifically for CMB-S4 here (see Ta-
ble 10.1 for numerical results, including for SO). The baryonic model used here is from the
OWLS-AGN simulation.

(lmax s taken to be the same for all three spectra here). At high ¢,., the biases become
increasingly significant, with some parameter biases exceeding their forecast statistical
error bar. For example, with /., = 5000, the bias on Hj reaches 1.60 in ACDM, while
the bias on N.g reaches 1.20 in ACDM+N.s. The exact numerical values are given in
Table 10.1 for £, = 5000, along with analogous results computed for SO. These results
clearly illustrate that these biases are potentially significant for upcoming high-precision,
high-resolution CMB experiments.

10.4.2 Strategies to mitigate the baryonic biases

Removing small-scale 7T information

If unaccounted for, baryonic feedback effects will bias cosmological parameter inference
from the primary CMB; these systematic effects will require mitigation. A simple approach
is to impose a lower £, cut than 5000 on the data used for the analysis; it is clear from

Figure 10.2 that there is not much constraining power at £ 2 3000, while in Figure 10.4 we
see that the biases increase significantly on these scales. Indeed, if one removes only the
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Figure 10.5: The impact of the various mitigation methods — a strict £, = 3000 cut on
TT and marginalization over baryonic feedback parameters (A, n) — on the constraints in
the ACDM+ N.g model. The errors are only marginally increased in both cases, with the
biggest increase seen in Q.h?; similar conclusions hold for the ACDM model analysis. Note
that the horizontal axis here has the same meaning as in Figure 10.4, but that (17 _is not
increased above 3000 in the case shown in the dash-dotted curves.

TT information at ¢ > 3000, while keeping the T'E' and E'E spectra in the analysis, the
bias is significantly reduced, as we now show.

The forecast constraints with 7T data discarded at ¢ > 3000 are shown in Figure 10.5
in the dash-dotted curves for the ACDM+ Ng model (the results for the ACDM model are
similar). For comparison, the previous case where TT data are included up to ¢ = 5000
is shown in the solid curves. While it is clear that the marginalized parameter error bars
increase somewhat, the overall penalty is generally mild (< 5%, except for Q.h?, which is
impacted somewhat more than this). Numerical results for this increase in error bars are
collected in Tables 10.4 (ACDM) and 10.5 (ACDM+Neg).

The parameter biases in this case (when no 77T information is considered above ¢ =
3000) are shown in Figure 10.6 for all eight baryonic physics models. It is clear from the
flattening of the bias curves at ¢ 2 3000, above which 77" data are excluded, that most of
the bias is incurred from C77 in this small-scale regime. Thus, the baryonic biases can be
controlled with a strict £, cut on T7T. Numerical results for this approach, analogous to
those in Table 10.1, are collected in Table 10.2 (for the OWLS-AGN simulation).

There are two primary reasons why the baryonic biases are dominated by the T'T" power
spectrum: (1) SO and CMB-54 will measure more signal-dominated modes in temperature
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Figure 10.6: The /,,,x dependence of the biases for each parameter in the ACDM model, and
also for Neg in the ACDM+ Ngg model, for the different simulations shown in Figure 10.3.
The solid curves show the unmitigated biases (as in Figure 10.4 for OWLS-AGN), while
the dashed curves show the results after mitigating the biases by imposing an ¢11 = 3000

cut. All results here are computed for CMB-54.

SO (/IT =3000) | CMB-S4 ( /ZT_= 3000)

ACDM | ACDM+N,; | ACDM | ACDM+Neq
H, | 0.098 0.25 0.18 0.23
Qh? | 0.13 0.085 0.15 0.065
QR | 012 0.12 0.20 0.05
T | 0.15 0.11 0.19 0.15
A, [ 018 0.076 0.23 0.15
ns | 0.016 0.19 0.0084 0.18
Nt 0.24 0.23

Table 10.2: Fractional biases from the OWLS-AGN model (in units of the forecast lo
statistical error bar) on each of the parameters in the various setups, when an /11 = 3000

cutoff is imposed (to be compared with Table 10.1.)
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than in polarization (see the noise curves in Figure 10.1); (2) at a given multipole in the
damping tail, the fractional contribution of lensing to the total power is larger in 77" than
in TE or EFE, due to the larger gradient in the unlensed temperature field. Thus, since
the high-¢ T'T" data are more sensitive to lensing (at fixed ¢), and a greater number of such
modes are measured in temperature than in polarization, the baryonic feedback biases that
enter via CMB lensing will be dominated by their effects on TT. Explicitly discarding the
TT data on small scales is thus a simple and relatively robust approach to mitigate these
biases.

In fact, this approach is consistent with the methodology often used in forecasts to
account for the presence of extragalactic foregrounds at ¢ > 3000 in T'T', i.e., the data in this
region are frequently assumed to be unusable for primary CMB science. This approach was
used for the SO forecasting analysis, which set /11 = 3000, /ZE = 5000, and (£E = 5000
(see Sec. 4 of Ref. [16]). However, for the CMB-S4 forecasting analysis, it was assumed that
lrmax = D000 for all of the spectra, including 7T (see Sec. A.2.4 of Ref. [30]). In addition,
the Atacama Cosmology Telescope (ACT) DR4 CMB likelihood considers TT/TE/EE
data to lyax = 4325 for all of the spectra (see Table 18 of Ref. [37]). Our results provide
motivation to explicitly discard the 7T data at ¢ > 3000 when performing primary CMB

data analysis.

Marginalizing over a model for baryons

An alternative way to avoid biases from mismodeling baryons is to incorporate them into
the model for C7*, as was done in Chapter 9.6 when we considered the inference of M,
from C7*. The two extra parameters, A and 7y can be included in our Fisher matrix and
we can marginalize over them in order to mitigate the impact of baryons in a parametric
manner.

Figure 10.5 (dashed curves) shows the effect of this marginalization on the ACDM+ N
parameter constraints for CMB-S4. In contrast to the approach of discarding high-¢ TT
data, this method increases the error bars somewhat more noticeably. However, the penal-
ties are still relatively mild, generally < 10%. Numerical results illustrating the increase
in error bars are collected in Tables 10.4 (ACDM) and 10.5 (ACDM+ N.g). We note that
these penalties could be decreased by performing a joint analysis of the primary CMB
power spectra with C7* inferred from the CMB four-point function; the latter observable
would constrain (A, 7o), thus yielding a smaller penalty when marginalizing over these pa-
rameters in the analysis. However, a careful treatment of the joint covariance [18, ]
would be required, which we defer to a dedicated analysis of this method.
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Figure 10.7: The /,,.x dependence of the biases for each parameter in the ACDM model,
computed for the different hydrodynamical simulations shown in Figure 10.3. The solid
curves show the unmitigated biases (as in Figure 10.4 for OWLS-AGN), while the dashed
curves show the results after mitigating the biases by marginalizing over baryonic feedback
parameters (A,7n). We also include (bottom right) the biases on Neg in the ACDM+ Nog
model. All results here are computed for CMB-54.

In Figure 10.7, we show the effect of this marginalization on the baryonic-feedback biases
for CMB-54 for the ACDM parameters and also for Ng for the full set of baryonic models;
the biases generally decrease by factors of > 100, illustrating that the marginalization is
extremely effective. Numerical results for this approach (for OWLS-AGN), analogous to
those in Table 10.1, are given in Table 10.3.

Overall, we conclude that this method is very promising, although one may worry that
if there is a significant mismatch between the assumed parameterization and the actual
baryonic effects in our universe, its effectiveness could be curtailed (note that Figure 10.7
provides evidence against this concern). A range of hydrodynamical simulations should be
used to ensure its robustness in upcoming high-precision CMB analyses.
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SO CMB-54
ACDM \ ACDM+Ng | ACDM \ ACDM++ Neg
Hy | 0.0028 0.0022 0.0030 0.0026
Qph? | 0.00048 0.00098 0.00030 0.00060
Q.h? | 0.0028 0.00091 0.0031 0.0012
T 0.0026 0.0025 0.0038 0.0036
As | 0.0035 0.0031 0.0051 0.0046
N 0.0014 0.0015 0.0016 0.0018
Negr 0.00091 0.0011

Table 10.3: Fractional biases from the OWLS-AGN model (in units of the forecast 1o
statistical error bar) on each of the parameters in the various setups, when the baryonic
parameters A, 7y are marginalized over (to be compared with Table 10.1).

Delensing

Delensing is the process of “undoing” the effects of gravitational lensing on the CMB. It
requires knowledge of the actual CMB lensing potential on our sky, as derived from a
reconstructed lensing map — or proxies for it, such as the measured CIB field or galaxy
surveys (e.g., [15, 16, 17]). In the ideal case, the “delensed” CMB maps will recover the
unlensed CMB temperature and polarization fields. This procedure is very important for
enabling tight constraints on the tensor-to-scalar ratio in upcoming B-mode surveys [30].
For T and E-mode maps, delensing can provide slightly improved constraints on some of
the parameters [13], but we note here that it is to be expected that it will provide unbiased
constraints on the parameters as well, as sensitivity to low-z baryonic feedback effects will
be reduced (or, ideally, removed).

Note that as we want to delens the high-¢ power spectra here, a good proxy of the
high-L. CMB lensing potential will be required. In particular, Equation (10.4) indicates
that to delens the CMB spectra up to ¢ ~ 5000, we will need to have knowledge of C’Zw also
out to L ~ 5000. This is a much smaller-scale regime than has been focused on in most
previous delensing work, e.g., for primordial B-mode delensing. The reconstructed CMB
lensing potential maps from SO or CMB-S4 are unlikely to have high fidelity at L ~ 5000
(e.g., see Figure 6 of Ref. [10]), although improved small-scale estimators could help to
some extent [302]. Fortunately, external delensing tracers could be reasonably effective
in this domain. In particular, dense galaxy samples from LSST and other photometric
surveys may present a feasible option — see, e.g., Appendix B of Ref. [17]. However, a
dedicated study would be needed to forecast the effectiveness of small-scale delensing.
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One advantage of the delensing approach is that (at least in an ideal case), a model of the
baryon-affected non-linear lensing power would no longer be needed for the interpretation;
if one delensed the maps perfectly, then clearly there would be no need for a model of the
nonlinear lensing power to interpret the primary CMB data at all. In a more pessimistic
case in which the delensing efficiency is much less than 100%, it may simply introduce more
complexity to consider the delensing operation for mitigating baryonic biases, and one may
prefer to simply use a forward model of the nonlinear lensing power as we considered in the
previous two subsections. We leave to future work the calculation of the baryonic feedback
biases from delensed CMB power spectra.

1o error [%]: SO 1o error [%]: CMB-S4
T =5000 [ ¢TT =3000 | ¢TT =5000+ A+n || ¢IT =5000 [ ¢IT =3000 [ /LT =5000+ A+n
Ho 0.40 0.43 0.44 0.34 0.37 0.38
Qph2 0.22 0.23 0.23 0.15 0.15 0.16
Qch? 0.58 0.63 0.64 0.50 0.55 0.56
T 10 10 10 9.3 9.3 9.5
A 0.95 0.97 1.0 0.86 0.87 0.90
s 0.26 0.27 0.27 0.23 0.23 0.23

Table 10.4: Forecast constraints (as percentages of the fiducial parameter values) for the
ACDM parameters, for the various mitigation methods for SO and CMB-54.

1o error [%]: SO 1o error [%]: CMB-S4
IT =5000 [ ¢TT =3000 [ /I =5000+ A+n || LT =5000 [ ¢IT =3000 [ ¢IT =5000+A+n
Hy 0.74 0.75 0.82 0.58 0.60 0.63
Qph2 0.33 0.33 0.33 0.22 0.23 0.23
Qch2 0.95 1.1 1.1 0.72 0.87 0.87
T 10 10 10 9.3 9.4 9.5
A, 1.0 1.0 11 0.89 0.91 0.92
s 0.47 0.48 0.50 0.39 0.40 0.41
Nogr 2.0 2.2 2.3 15 1.7 1.7

Table 10.5: Forecast constraints (as percentages of the fiducial parameter values) for the
ACDM+ Ngg model parameters, for the various mitigation methods for SO and CMB-54.

10.5 Discussion and conclusions

In this Chapter, we have shown that inadequate modeling of baryonic feedback can lead
to significant biases on cosmological parameters inferred from the primary CMB power
spectra. The biases enter through the gravitational lensing contribution in the damping
tail of the CMB power spectra, which in turn is dependent on the matter power spectrum
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and hence susceptible to mismodeling of non-linear and baryonic feedback effects. As can
be seen from Table 10.1, for the number of light relativistic species Neg, the biases are
as large as 0.380 (1.20) for SO (CMB-S4). For the Hubble constant Hy in a fit to the
ACDM model, they are as large as 0.960 (1.620) for SO (CMB-S4). These biases are
estimated by assuming that the OWLS-AGN baryonic feedback model is the true model
that describes the matter power spectrum in our universe, while the parameter inference
is performed assuming no baryonic feedback prescription. The OWLS-AGN model is a
reasonable prescription to consider in this context, given the large spread of predictions
from various subgrid prescriptions and AGN feedback strengths in modern hydrodynamical
simulations (see, e.g., [273, 189]).

We have suggested multiple mitigation methods to avoid these uncertain late-universe
effects in the primary CMB. Our first recommendation is to explicitly discard all data
at £ > 3000 in the TT spectra; we find that this choice reduces the biases on parameters
considered here to be no more than 30% of the statistical error bar (for both SO and CMB-
S4). Alternatively, or in addition, we show that one can marginalize over a two-parameter
model describing the effects of baryonic feedback. We find that this procedure reduces
the biases on cosmological parameters by factors of O(100 — 1000). For both of these
mitigation strategies, the size of the statistical uncertainties on cosmological parameters
increases, albeit not dramatically (generally < 10%, with a maximum increase of 21%
on Q.h?; the Nz error bar increases by 13% for CMB-S4). For the baryonic-parameter-
marginalization approach, the increase could be mitigated by performing a joint analysis
with C7". It is conceivable that delensing will be useful as a data-driven solution —
that is, a solution without marginalization over a baryonic feedback model — to avoid
these biases. However, this will require significant delensing of the small-scale maps (¢ >
3000); we leave to future work a quantitative study of the effectiveness of delensing with
efficiencies expected for SO and CMB-S4 in combination with Planck CIB and galaxy
surveys. Finally, we note that in the coming decade, cross-correlations between CMB
experiments like SO and CMB-S4 and galaxy surveys like DESI and LSST will allow for
percent-level measurements of the distribution of ionized electrons across a wide range of
redshifts through the kinematic Sunyaev-Zel’dovich (kSZ) effect (e.g., [303, , , ,

, , , , , , ]). In tandem, percent-level measurements of the ionized
gas pressure across a wide range of halo masses and redshifts will be enabled by cross-
correlations of these galaxy surveys with thermal Sunyaev-Zel’dovich (tSZ) maps (e.g., [128,

, 312,313,314, 315, 316, 317, 318, 319]), enabling joint constraints on all thermodynamic
quantities describing the ionized gas in and around galaxies [320]. A wide variety of other
probes will also be crucial in this endeavor, including X-ray measurements, fast radio burst
dispersion measures, absorption line measurements, intensity-mapping measurements, and
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more. These measurements will significantly reduce uncertainties on baryonic feedback
models, thus motivating joint analyses of CMB power spectra and the kSZ and tSZ effects,
as well as folding in external information from the full complement of baryonic probes.

Given the non-negligible size of the baryonic-feedback biases for upcoming experiments,
it is possible that ongoing experiments like ACT and the South Pole Telescope (SPT) that
probe the CMB damping tail could also be mildly impacted by these effects. While recent
SPT analyses have either used ¢, = 3000 [321] or excluded T'T" data altogether [322, 258],
the recent ACT DR4 analysis [13, 87] used T'T data out to ¢ = 4325. However, we expect
any biases in analyses to date to be well below the 0.2 level given that (a) the uncertainties
on Hy are more than five times larger than the forecast for SO (with a bias from baryonic
feedback of AHy = 0.960, c.f. Table 10.1) and (b) the absolute bias should also be lower
than found here since the instrument noise level is larger in comparison with the gravita-
tional lensing contribution to the power spectra. We also emphasize that these biases are
irrelevant for Planck CMB power spectra, which do not probe multipoles ¢ = 3000 where
the baryonic effects become important. These considerations do, however, highlight that

mitigation strategies should be adopted for upcoming analyses from Advanced ACT [12]
and SPT-3G [323, 324, 325].

Our work has only considered the ACDM parameters and the N.g parameter, but
similar considerations may apply to other parameters that affect the damping tail of the
CMB. Inference of the sum of the neutrino masses may be of concern, but we note that
the dominant constraint on this parameter comes from a more direct reconstruction of
the gravitational lensing signal through the four-point function of the CMB, where the
contribution from small scales in the matter power spectrum is easier to control (see [/]
for a detailed study). Inference of blackbody secondary anisotropy parameters like the
amplitude of the kSZ power spectrum (both late-time as well as from the reionization
epoch) could also be affected, as these parameters can be degenerate with the primary
cosmological parameters (which can be biased, as we have shown). For the same reason,
free parameters in the blackbody components in the foreground model (e.g., the kSZ power
spectrum amplitude) could also mitigate the baryonic feedback biases considered in this
Chapter to some extent, by absorbing their effects (at the cost of a biased inference of the
kSZ amplitude). We leave investigation of these issues to future work.

Several decades of cosmological inference from the primary CMB have benefited from
the simplicity of the linear physics responsible for the observed temperature and polariza-
tion anisotropies. This will change in the coming decade with the next generation of CMB
surveys. While these surveys extract new cosmological and astrophysical information from
late-time effects, the primary CMB signal also becomes increasingly sensitive to uncer-
tain astrophysical phenomena. A careful consideration of mitigation strategies, including
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delensing and/or joint analyses with the kSZ and tSZ effects, will therefore be of great
importance in the coming decade of CMB surveys.
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Chapter 11

Conclusions and future directions

This thesis (in particular Part II) consists of a compilation of various projects completed
during my PhD. They are connected in that they all relate to upcoming CMB surveys and
the new data products we will have. In many cases, a “future direction” is obvious: apply
the methods developed here to the data products when they become available.

In Chapter 7 we discussed how CIB models can be improved through cross-correlation
with CMB lensing data. One other aspect of how this cross-correlation is interesting is the
possibility of using it to constrain primordial non-Gaussianity, by using large-scale maps
to detect the scale dependent bias of the dusty galaxies sourcing the CIB [326]. A large-
scale scale-dependent bias is a very promising way to detect primordial non-Gaussianity,
an effect that has implications for discriminating between different inflationary theories.
The signal of interest is strongest on very large scales and for objects with high bias; the
star-forming CIB galaxies are ideal candidates for the second condition but it is difficult to
make large-scale CIB maps due to the contamination of galactic dust potentially biasing
the measured signal. However, this is a systematic that is not so important in the cross-
correlation between the CIB and CMB lensing, and so it is possible that we could access
larger scales.

In Chapter 8, we developed an estimator to reconstruct the large-scale remote dipole
field through cross-correlation between the kSZ and the CIB. Work is ongoing to create
a pipeline to apply this estimator on realistic datasets, including real-world effects such
as a masked sky, instrumental noise, and foregrounds. We plan to apply this to existing
datasets from Planck and ACT, and eventually (when they become available) from the
Simons Observatory, with the hope of detecting the remote dipole field in this manner. The
formalism that we developed is also applicable for reconstruction with any two-dimensional
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tracer (not only the CIB) such as galaxy surveys with little redshift resolution, and could
also be applied to such datasets to make a detection of the remote dipole field.

In Chapters 9 and 10 we discussed mitigation techniques to mitigate the baryonic bias
on CMB lensing and primary CMB measurements and inference. For some work that
directly follows on for this, it will be of interest to quantify how much of the baryonic
bias can be removed from the lensed 2-point CMB power spectra through delensing. In
particular, delensing has not been demonstrated on the small scales necessary to remove
the baryonic information from the CMB, but with a high-density galaxy survey this could
be possible. This would be analagous to the mitigation strategy in Chapter 9.5 where we
“subtracted” the low-z contribution to the cosmic shear kernel with external tracers.

On a wider note, it will be important to consider the joint analysis of the lensed CMB
and the CMB lensing fields, to understand whether the neutrino mass marginalization
might incorporate all the bias from the baryons, removing the bias from the other parame-
ters. Also, a drawback of the approaches currently taken is that they assume fiducial CIB
and SZ foregrounds, although minimized through the ILC procedure; however allowing
for the significant modelling uncertainty by incorporating parameters for the physical CIB
and SZ models and marginalizing over them would be appropriate (currently all CIB and
SZ foregrounds are treated with precomputed templates). As well as this, the SZ has the
potential to map the baryons to such a degree that we will perhaps not need to mitigate
bias; a combined study of these surveys would be interesting to understand to what level
we will be able to reduce baryonic uncertainty in the small-scale CMB.
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Appendix A

Projection of three-dimensional
power spectra to two dimensions

A.1 3-dimensional to 2-dimensional power

Many cosmological observables are three dimensional quantities that are projected and
integrated along our line of sight. In this Appendix we describe how to calculate the two-
dimensional angular power spectrum C;'% of two such quantities A and B by taking the
CMB lensing angular power spectrum as an example.

Consider the CMB lensing potential ¢:
o) = [ e 2. ). (A1)

Its angular power spectrum is defined as C’f ¢ by

<¢zm¢2m/> = Cf¢5ff’5mm/- (AQ)

Using the spherical harmonic decompositions (1.4), this can be explicitly evaluated:
Omni) = [ ERERY (0) Vo () () ()

- /dQﬁdQﬁ’YZH(ﬁ)n/m/(ﬁ’)/dxdx’Wq)(X)Wq)*(X') <<I>(Xﬁ,x)<1>*(x'ﬁ’,x')>.
(A.3)
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Using the three-dimensional Fourier space conventions (1.2), and dropping the conjugation
on W?(x) as it is real, this becomes

(Gomhe) = / AR Y, (7)Y (1) / dxd W ()W (x)

/%%eiﬁye_zé’y <@(E)<I>* (E’)> 7 (A.4)

where (xm, y) = X. Using the definition of the power spectrum,

1

<c1>(122)<1>*<k )> — 2n)* P(k)5*(k — k), (A.5)

—/
and performing the integration over k we get

(i) = [ R i (V5 ) [ WWP ) [ SRR )
' (A.6)
From here we use the projection formula
¢FF = dm Y ok Y, (B) Vi (&), (A7)

Im

where j,(z) are the spherical Bessel functions of degree ¢, such that
2 -
(Omtin) = > [ a0V (0)5,00) [ W OW () [ PRPulE)
T
> T ()es (RX )Yy () Yty () Ve, ()Y, (8). - (A8)
limibloamo

. . . ~ A .
Performing the integration over n and n' gives

i) == [ AW OWH) [ ERPa(E)

Z 2{1782]-@1 (kX)]EQ (kX/)YZrnl (’%>}/€2m2 (’2:)5551 5mm1 55’5257”'7112 (A9>

Limyplama

and performing the sum gives

(i) = = [ dAVWPCOWC) [ ERPR) G0 o)V (6) Vo ).
(A.10)
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Writing the k integration as an integration over modulus and angle gives

2 .
(Omti) = = [ty woowey) [ [ &k
Py (k)i jolkx)jor (kX )Y (k) Yo (), (A.11)
and performing the integration over the angle gives

2 / / p—p . . /
(Bem i) = p / dxdx' W (x)W?®(x) / k2dk Py (k)" jo(kx)je (kX )00wOmmr;  (A.12)

comparison with (A.2) tells us that

cp =2 / dxdx' W ()W () / K2k Py (k)jo(kx) je(k). (A.13)

A.2 Limber Approximation

In general, Equation (A.1) is difficult to integrate numerically: there are three separate
integrals (over y, x/, and k), and the highly oscillatory behaviour of the j,(z) (particularly
at high /) requires that a high number of k£ sample points are taken in the numerical
integration. Fortunately there exists a widely-used simplifying assumption, the Limber

approzimation [19], which is valid in the small-scale (high-l) limit; using
T
] —_— 1/2 — A.14
we get
o9 = / dxdx' W ()W (x') / dekRp(k)m(S(E +1/2 = kx)6(0+1/2 — k')
0+1/2 1
_ @ o _
_/dx/kdk;W (W ( g ) Palk) 6+ 1/2 = k)
[ 2 1/92
:/dXWX(QX) Py (k’ = trij2 +X/ ) (A.15)
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The final expression (A.15) can be generalized to a z-dependent power spectrum P(k, z)

P 2 1/2
Cy? = /dx—WX(QX) Py (kz _ i +X/ Z) ; (A.16)

this is an extremely convenient and easily integrated expression, given P(k,z). More
generally we can Limber approximate the angular power spectra between any projected
observables defined by

A7) = / WA (x) A% (x7, ) (A17)

by projecting the known three-dimensional power spectrum of the 3-dimensional observ-
ables according to

CAB = / dXWA<Xi?/B(X)PAB (k - Hxl/ 2,2) (A.18)

where P,p is the three-dimensional cross power-spectrum between the 3-dimensional ob-
servables A and B.
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Appendix B

Parametric expressions within the
halo model

When we calculate quantities within the halo model, we use the halo mass function and
bias of Tinker [58]; in this Appendix we present their parametric forms. Prior to doing
this, we will discuss some subtleties in the definition of halo mass.

B.1 Definitions of halo mass

The halo model is “split” whereby the continuous density field is replaced by the discrete
halos and regions of empty space. However, this is artificial: the true Universe is described
by a continuous density field. It is clear that the most overdense regions should be replaced
by halos when going from the continuous to the discrete picture; but when doing so, how
do we define the boundary of the halo? In general the mass within a radius R is given by

M(R):/O drdmr®p(r) (B.1)

where p(r) is the halo density profile. Thus different prescriptions of halo-boundary (spec-
ifications of R) correspond to a different halo masses M (defined as the mass contained
within the chosen halo boundary).

Given a halo density profile p(r) some common ways of defining the halo boundary /
mass are:
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e The mass within a sphere of radius Ra,, that has mean density equal to some constant
factor A times the mean matter density; in this case the M — R relation is

47

Ram
Mam = / dramr?p(r) = ?R‘Zmpm(z). (B.2)
0

e The mass within a sphere of radius Ra. that has mean density equal to some constant
factor A times the critical density; in this case the M — R relation is

47

Rac
Ma, = / dramr?p(r) = ?R‘Zcpc(z). (B.3)
0

e The mass within the sphere of radius R,;. at which the halo is virialized:

Ryir 9 47-‘- 3
My, = dramrsp(r) = ?Rvirpvir(z). (B.4)
0
pvir(2), the mean density within the virial radius, is defined as being Ay p.(2), such
that 4
Mvir == %RiirAvirpc<z> (B5)
where Ay, is a z-dependent function given in Equation (6) of [327]:
Ayiy = 187 + 827 — 322° (B.6)
. m 2)3
where z = Q(2) — 1 with Q(z) = Qm(fiz)(;j:(l)_gzm).

Note that while each M — R relation is given independently of the halo-density profile
p(r), to convert between two different mass definitions—eg to find the Ma. of a halo given
the Ma,,—knowledge of p(r) is needed and Equation (B.1) must be integrated.

B.2 Explicit expressions for the halo mass function,
bias, and concentration

B.2.1 Halo mass function and bias

We use the halo mass function of [58], with the Msgq,, definition of halo mass.
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The halo multiplicity function is given by

(2
fv) =va (1 + (BV)_2¢> Ve ( 2 ) (B.7)
with
B=0.589 (1+2)"*; (B.8)
¢=—0.729(1+2) "%, (B.9)
n=—0.243 (1 +2)*%"; (B.10)
v =0.864 (1 +2)""". (B.11)
While these parameters are redshift-dependent, [58] cautions that these are not valid to

arbitrarily high z and recommends to use the z = 3.5 values for z > 3.5. Finally, the
parameter « is not specified; in fact it is found by imposing the consistency relation

/b(y)f(l/)dlny =1 (B.12)

at all redshifts!, where b(v) is the halo bias, discussed below. For A = 200, « is equal to
0.368 at z = 0 but decreases by up to 30% as z — 3.5.

The halo mass function j—M can be calculated from f(v) according to
AN pp dInv
— = : 1
ant = Y anr (B.13)
B.2.2 Halo bias
We use the halo bias of Tinker [58], which is defined consistently with the halo mass
function above. [58] finds that
_1-a B ‘. B.14
b(v) V“+5g+ v’ +Cv ( )
where d, ~ 1.686 is again the critical density required for collapse. Defining
y = logy A (B.15)

Tt has been a point of contention whether this should be imposed at all redshifts or just at z = 0;
while it does not make physical sense to only impose this at z = 0, an inclarity of [58] on the matter led
this to be (erroneously) imposed only at z = 0 in many cases in the literature. Thanks to Boris Bolliet,
Colin Hill, Matt Johnson, and Mat Madhavacheril for discussions on this issue.
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where A is the factor used in the definition of the halo mass (we use A = 200) the values
of the parameters are

A =10+ 0.24ye" /v’ (B.16)
a=0.44y — 0.88 (B.17)
B =0.183 (B.18)
b=15 (B.19)
C =0.0109 + 0.107y + 0.19¢~ &/ (B.20)
c=24. (B.21)

B.2.3 Concentration

To calculate the halo mass profile, as well as to convert between different definitions of
halo mass, one needs the concentration relation. We use the concentration relations of [(1]
which gives parametrized expressions for the concentration for different mass definitions,
and will be different depending on the mass definition being used. In general ¢ has a
parametric form

Bx
Cx = AX (M ) (1 + Z)CX, (B22)
pivot

where in all cases Mot = 2x 102071 M. Values of { Ax, Bx, Cx} for X = {200m, 200c, vir}
are given in Table B.1.

’ Parameter H MQOOm ‘ MZOOC ‘ Mvir ‘

A 10.14 | 5.71 7.85
B -0.081 | -0.084 | -0.081
C -1.01 | -0.47 | -0.71

Table B.1: Values of the parameters for the parametric halo concentration relation (B.22)
from [61].
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Appendix C

Conversion between K and Jy

We have presented the CIB power spectra throughout in Jy, a unit of surface intensity
commonly used for CIB measurements and in radio astronomy. However, we quote the
CMB lensing power spectra in uKeyp; additionally, some of the instrumental noise levels
we quote are in K. Thus, as it is convenient to have a formula to convert between these
units Jy and pKcyg, we present one in this Appendix.

| v[Ghz] | U[Jy Koy |

217 483.69
353 287.45
245 58.04
857 2.27

Table C.1: Conversion factors between Jy and pKcup, from [110].

The surface brightness of a black body is given by the Planck formula

2h3 1
B,(T) = . C.1
M) =2 — )
To convert from brightness to temperature we use
2h2 4 he
dB,(T) = — (C.2)

2
c2kT? (e% — 1)
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Defining
hv v[GHz]

= = C.3
"= WToms  56.233GHz (€3)
and using the definition of a Jansky Jy = 1072 we can write
z (V[GHZ]>4
00 ) _
dB,[MJy] = 968— 2/ K. (C.4)
(e —1)

While this formula is useful, in general a more accurate conversion between the units
is dependent on the specifications (spectral response, etc) of the instrument used and so
for Planck frequencies we use the units quoted in [110]; see Table C.1.
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Appendix D

Comparison of simulations and
parametric model for baryonic effects

In Section 9.6, we investigated whether including a model for baryonic effects in the predic-
tion for the matter power spectrum can reduce the bias on M, after marginalization over
the model’s parameters. For this to be a valid method, we must be reasonably confident
that the model can capture a realistic range of baryonic effects. In this appendix, we check
this for the hydrodynamical simulations we use, assuming that this set of simulations itself
spans a realistic range of effects. More detailed comparisons between these simulations and
observations will likely be required to fully justify this assumption, but this is beyond the
scope of this thesis.

A

We compare model predictions from Ref. [53] with the power spectrum ratios R(k, z)
measured from simulations, using the following statistic:

Pm<kiazj;A7770))2
PDMO(kia Zj) ’

A(Am) =) (fa(ki?zj) —

1,J

(D.1)

where Ppyo is evaluated with the fiducial values of A and 7y from Sec. 9.6. We sum over
k and z points at which simulation measurements are available over 0 < z < 2 and 1 <
k <10, chosen to correspond roughly to the ranges in which baryonic effects significantly
affect Ct* for L < 3000 [172]. Eq. (D.1) is equivalent to a x? statistic that weights all
points equally, motivated by other work that has found sample-variance uncertainties on R
to be roughly scale-independent [194, , |. Our goal is only to examine the “best-fit”
predictions of the model for each simulation, rather than fully quantify the goodness of fit
(which we cannot do without better knowledge of the uncertainties on Ii’), so we simply use
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Figure D.1: Contour plots in the A, 1y plane. We show contours of A(A, 1), where A(A, 1)
is defined in Eq. (D.1). The points that minimize A(A,ny) are shown, and the contours
are filled in for values of A(A, ) which A(A,19) < Apin +5 x 1072, corresponding to the
separate A, for each simulation.

unit weights in Eq. (D.1). We evaluate P,, and Ppyio at our fiducial cosmology, because
our goal is to check how well the model from Ref. [53] can reproduce our range of R curves
with cosmology held fixed.

In Fig. D.1, we show contour plots of A(A,n) for each simulation. These plots clearly
imply a degeneracy between A and 7y for each simulation, roughly consistent with the
degeneracy directions seen in the fits in Ref. [202] (see their Fig. 6). Fig. D.2 shows
the “best-fitting” predictions for R(k,z) from minimizing A(A,n) with respect to the
two parameters, at a few representative redshifts. We find that for all simulations, the
model can describe the power spectrum suppression to better than ~ 5% over the scales
of interest, with better fits at lower z. While other models have been shown to match a
subset of these simulations at higher precision (e.g. [230]), the ~ 5% precision we find for
the model from Ref. [53] is sufficient to use it our proof-of-concept forecast in Sec. 9.6. To
see this, note that 5% systematic errors in P, over the scales we fit for translate into ~2%
errors in Cf* (see Fig. D.3), and Fig. 9.1 shows that the simulation-derived C}* curves are
still distinguishable from the effect of massive neutrinos even with this level of errors.
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Figure D.2:  Top: The response functions R(k, z) measured from the simulations (solid
lines) and the R(A,no; k, z) (from the baryonic model) that minimize A(A,np), at various
redshifts. Bottom: Ratios of “best-fit” and measured R functions. A dashed vertical line
is shown at the k that is equivalent to 3100/x(z) at each redshift, i.e. the maximum & used
to calculate C'}* in the Limber approximation at each z.
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Figure D.3: Left: The ratio of the baryonic lensing power spectra to the DMO power
spectra, computed with the P(k, z; A, 1) at the “best fit” values found for each simulation
(in dashed lines). Also shown (in solid lines) is the ratio of the power spectra with the
response function R(k’, z) measured directly from the simulations. Right: The ratio of the
lensing power spectra computed at the “best-fit” A,ny and that computed with R(k,z)
from the simulations. We find that the model is capable of reproducing the simulation
measurements at better than 2% accuracy for L < 3100.
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