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Abstract 13 

A simplified method is proposed for evaluating the stability of multi-storey, steel semi-braced and unbraced frames 14 

with semi-rigid connections. The proposed method decomposes a frame into individual storeys and evaluates the 15 

lateral stiffness of each storey via the storey-based stability approach with explicit, closed form solutions. Lateral 16 

sway instability occurs when the lateral stiffness of any storey diminishes to zero, and the storey for which this 17 

occurs can be considered the weakest storey in the frame. The results of the proposed method are theoretically 18 

verified via comparison to the results of finite element analyses. Use of the proposed decomposition method requires 19 

assuming the buckled shape of the frame, which is shown to provide satisfactory approximations of critical loads for 20 

engineering practice. Parametric studies are conducted to assess the sensitivity of the results to the corresponding 21 

buckling shape parameters. The assumption of asymmetric buckling, which is generally consistent with the sway 22 

buckling mode in semi-braced frames, produces reliable results in the proposed decomposition method.  23 
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1 Introduction 26 

In current practice, the analysis of multi-storey structures is commonly completed in design by assessing the 27 

capacity of the individual members. However, in reality the members often interact especially when semi-rigid or 28 

rigid connections exist. The holistic consideration of individual storeys within multi-storey buildings as entire 29 

structural systems of framing members is more realistic as it accounts for these interactions between members and 30 

may result in more cost-effective design solutions. The consideration of overall stability in a structure can also be 31 

overlooked when the members are considered individually. Designers may alternatively opt to choose among the 32 

many existing advanced computer models for evaluating the stability of structures. However, it can be difficult for 33 

users to verify or interpret the results in sophisticated analysis packages. The numerical procedures and 34 

computational algorithms often employed by modern programs can be difficult for normal practitioners to 35 

understand, and seem like black boxes that are prone to technical glitches or inaccurate results if the users employ 36 

the wrong assumptions during creation of the models.  37 

Presented in this paper is a storey-based method for evaluating the stability of multi-storey frames with semi-rigid 38 

connections.  The proposed method is a much more simplistic and meaningful representation of the solution of the 39 

problem, presented in closed form, while also considering global stability via the interaction of rotational stiffness 40 

between stories. All of the variables in the proposed equations have physical meanings which can be easy to 41 

understand for users.  42 

The scope of this study is limited to semi-braced and unbraced frames. Semi-braced frames are defined as those with 43 

limited amounts of lateral bracing present but still experience significant lateral sway in the buckling mode (Ma 44 

2020). Unbraced frames have no lateral bracing present and similarly experience lateral sway in the buckling mode. 45 

Semi-braced frames also tend to have critical loads between the values obtained by either removing the bracing or 46 

providing infinite bracing. As the use of semi-rigid connections is becoming more popular in practice (Bahaz et al. 47 

2017), the method can be applied towards both semi-rigid and idealized pinned and rigid connections.  48 

The method supersedes the storey-based stability approach of decomposition originally developed by Liu and Xu 49 

(2005) and applied in Xu and Wang (2007), which also involves the decomposition of frames into individual storeys 50 

and evaluating the lateral stiffness of each storey. In simple terms, the decomposition process involves replacing 51 

members with equivalent rotational springs at the ends of their connecting members until only the columns within a 52 

single storey of the frame remain. In short, the Liu and Xu (2005) method is not realistic as it neglects part of the 53 
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beam contribution to the rotational stiffness at the column ends, resulting in inaccurate solutions. Closed-form and 54 

explicit equations are derived in this paper to appropriately consider the rotational stiffness interactions between 55 

upper and lower columns in sway frames, which significantly affect the end conditions of columns (Bridge and 56 

Fraser 1987; Hellesland and Bjorhovde 1996; Webber et al. 2015; Meghezzi-Larafi and Tati 2016; Li et al. 2016). In 57 

addition, the effect of axial forces on both lateral and rotational column stiffness are considered, and is also known 58 

to significantly affect stability analyses (Bridge and Fraser 1987). The consideration of semi-braced frames is also 59 

included in addition to the unbraced frames studied in Liu and Xu (2005).  60 

The proposed method is based on the fact that instability in a frame occurs when the lateral stiffness of any one 61 

storey diminishes to zero has been adopted in many previous formulations of storey-based stability. This was 62 

expressed explicitly in the single-storey-stability methods of Xu (2001) and Xu and Liu (2002), storey-63 

decomposition method (Liu and Xu 2005), and further extensions of the storey-based stability method to account for 64 

column imperfections (Ma and Xu 2019a), temperature (Ma and Xu 2019b) and shear deformations (Ma & Xu 65 

2019c). As such, the critical loads of a frame can be determined using the proposed method under various 66 

proportional loading schemes via root finding. Moreover, the storey which first reaches zero lateral stiffness can be 67 

considered to be a weak storey (Teresa Guevara-Perez 2012; Bahaz et al. 2017). The proposed method is shown to 68 

be theoretically accurate via comparison to the results of finite element analysis (FEA). As the proposed method also 69 

requires assuming the buckled shape of the frame at the critical loads, the results of a parametric study on the 70 

sensitivity of the obtained critical loads to the proposed buckling shape parameters are presented to validate the 71 

buckled shape for engineering practice.  72 

2 Background 73 

The storey-based stability approach was initially proposed by Yura (1971). It involves considering the simultaneous 74 

lateral buckling of all columns in a storey rather than the individual buckling loads of the columns. The approach is 75 

useful as it considers the interactions among all members in a storey, which are neglected in analysis methods of 76 

individual member capacity such as the alignment chart method which is widely adopted in structural design 77 

standards (CSA 2014; AISC 2017). These interactions have been shown to have significant effects, both beneficial 78 

and detrimental to the buckling loads of members (Bridge and Fraser 1987; Hellesland and Bjorhovde 1996; Webber 79 

et al. 2015; Meghezzi-Larafi and Tati 2016; Li et al. 2016). The approach was continually developed over the next 80 

few decades. LeMessurier (1977) and Lui (1992) subsequently used the concept to develop matrix-based methods 81 
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for evaluating storey-based stability. Following this, Xu (2001) and Xu and Liu (2002) developed closed-form 82 

equations for evaluating storey-based stability. Xu (2001) proposed a method to evaluate the storey-based stability 83 

of a single storey frame with considering the effect of axial force on the lateral stiffness of a member, whereby the 84 

lateral stiffness of a single unbraced storey frame, ΣS, is given in Eq. (1), and represents the instantaneous ratio of 85 

force to lateral displacement in the storey. 86 
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In Eq. (1), ϕ = Lc(Nc/EcIc)0.5 is the axial load coefficient of a column, and n is the number of columns in the frame. 92 

The properties E, I and L refer to the modulus of elasticity, moment of inertia and length, respectively, and the 93 

subscript c relates to the columns of the frame. Nc is the axial compressive force in the column. S∆,j is the lateral 94 

stiffness of column j. ru and rl are the end fixities of the upper and lower ends of the columns, respectively, obtained 95 

via Eq. (2) (Monforton and Wu 1963). 96 
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In Eq. (2), R is the total rotational stiffness of the members connected to the corresponding end of the column. The 98 

value of r ranges between zero for pinned connections and unity for fixed connections. The value of β is positive if 99 

the column can withstand its axial load by itself. β = 0 corresponds to the instance during which the column no 100 

longer offers resistance and begins to lean on the system. It can also be negative, which indicates that the column 101 

relies on the lateral stiffness of other columns in the storey in order to maintain stability. Further background 102 

information regarding the behaviour of this coefficient is included in Appendix A. The storey is considered unstable 103 

when ΣS diminishes to zero. Note that the use of Eqs. (1) requires the assumption that the upper ends of the columns 104 

in the frame experience the same lateral deflection, which is valid for the assumption of rigid floor and roof systems 105 

(Xu 2001). This idealization also neglects the diaphragm rotation which, to some degree, may be present in real 106 

structures.   107 
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In an attempt to extend the storey-based stability method towards multi-storey analysis, Liu and Xu (2005) proposed 108 

a method to decompose the frames into a series of single storey frames, each to be analyzed separately using the Xu 109 

(2001) method. The process of decomposing a multi-storey frame into individual storeys is illustrated in Fig. 1 110 

below, whereby the columns and beams connected to each end of each column in storey i (shown with dashed lines) 111 

are replaced with equivalent springs of rotational stiffness Ru and Rl. The values of Ru and Rl can subsequently be 112 

transformed into the end fixity factors, ru and rl, via Eq. (2) for use in Eq. (1). If the lower end of the column is 113 

attached to the base foundation then Rl is the rotational stiffness of the base connection. 114 

Fig. 1. Illustration of decomposition model for general multi-storey frame 115 

The decomposition procedure can be completed for each storey, and instability occurs when the lateral stiffness, ΣS, 116 

in Eq. (1) for any single storey diminishes to zero (Liu and Xu 2005). Columns that have negative values of SΔ rely 117 

on other columns to remain stable (Xu 2001). The value of the column end rotational stiffness, R (either Ru or Rl), 118 

was proposed in Liu and Xu’s (2005) as Eq. (3).  119 
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In Eq. (3), nconn is the number of members (beams and columns) connected at the corresponding end of the column 122 

for which R is being evaluated, and R’k is the equivalent rotational stiffness provided by member k at the 123 

corresponding connection. zN,k and zF,k are the near-end and far-end member-connection fixities of the kth connected 124 

member, calculated in Eq. (4) with Z being the rotational stiffness of the corresponding connection. A pinned 125 

connection has Z = 0 and z = 0 while a rigid connection has Z = ∞ corresponding to z = 1. 126 
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The member-connection fixity factor, z, is similar to the end fixity factor in that it ranges from zero to unity, but 129 

quantifies the rotational stiffness of the actual connection between two adjoining members (Z) rather than the 130 

equivalent rotational stiffness to the end of column provided by adjoining members or ground connections (R). To 131 

illustrate this difference, a column whose upper end is rigidly connected to other deformable members will have a 132 

finite value of Ru since its upper end will rotate, but Zu = ∞ since the connection is rigid. vFN,k is the ratio of far-end 133 
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to near-end connection rotations of the kth connected member, based on the assumed deformed shape of the frame, 134 

corresponding to the buckling mode. According to Liu and Xu (2005), if member k is a beam, then μk is a 135 

distribution factor that partitions R’k to the two column ends joined at their connection with the beam, based on the 136 

relative stiffness of the columns. If member k is a column then μk = 1 since partitioning is only applicable for the 137 

beams (Liu and Xu 2005). For beams, μk is expressed in Eq. (5). 138 
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In Eq. (5), R’c is the rotational stiffness of column for which R is being calculated and R’c’ is the rotational stiffness 140 

of the other connecting column at the joint, both obtainable via Eq. (3b). However, Eq. (3b) neglects the effect of 141 

column axial loads towards reducing the rotational stiffness of the contributing column, and thus overestimates the 142 

end rotational stiffness contribution of columns. Moreover, the derivation for Eq. (3b) neglects the differential 143 

lateral displacement (DLD) between the ends of member k (Monforton and Wu 1963). In the sway buckling mode, 144 

which generally governs in semi-braced and unbraced frames and corresponds to the failure mode detected in the 145 

storey-based stability method (Xu 2001), this differential lateral displacement of the columns cannot be neglected, as 146 

the analysis would otherwise correspond to that of a braced frame. That is, DLD occurs in the columns of unbraced 147 

and semi-braced frames, but not in braced frames. Finally, the use of the distribution factor, μk, in Liu and Xu (2005) 148 

is not realistic as it is based on an assumption that all columns reach their individual buckling loads simultaneously 149 

with the ends of the members in the frame rotating by the same magnitude (Duan and Chen 1999), and neglects a 150 

portion of the beam contribution to the column end rotational stiffness. As the decomposition of a frame into 151 

individual storeys requires replacing all of the members immediately connected to the columns in a given storey 152 

with equivalent rotational springs (as shown in Fig. 1), the total rotational stiffness of the members being replaced 153 

should be considered rather than just a portion, μk, thereof.  Unlike the Liu and Xu (2005) method, in the proposed 154 

method, the end fixity factors of the columns in a storey are obtained by calculating R as the summation of the 155 

rotational stiffness of all connected members at the column end without using the distribution factor, μk.  The 156 

column-to-column end rotational stiffness contribution is properly accounted for via a derivation of the rotational 157 

stiffness with considering both the axial load and chord rotation experienced by the connected column. It is 158 

demonstrated via finite element analysis that the proposed equations yield exact results of these values using these 159 

modifications. 160 
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It is also noted that apart from Liu and Xu (2005), a number of other studies have been conducted on the stability of 161 

multi-storey steel frames. Similar stability methods (Georgios and Gantes 2006; Webber et al. 2015; Meghezzi-162 

Larafi and Tati 2016; Gunaydin and Aydin 2019) have isolated columns in multi-storey frames for individual 163 

effective length analysis, with accounting for rotational stiffness interactions with connecting members. However, 164 

the determination of effective length of separate columns does not consider the lateral stiffness interactions between 165 

columns of the same storey and often requires very complicated solutions. Hellesland (2009) proposed an 166 

approximate storey-based analysis method to evaluate the second-order effects relating to column imperfections 167 

(which do not affect stability according to Ziemian (2010) and Ma and Xu (2019a)) on the deformations of storeys 168 

within multi-storey frames. Finite element analysis and matrix methods have also been proposed by Kim and Choi 169 

(2015) and Li et al. (2016) for the storey-based analysis of frames, but require matrix-based solutions instead of 170 

providing closed-form, explicit solutions. Overall, the idea of decomposing a frame into individual storeys to be 171 

analyzed for instability corresponding to zero lateral stiffness is easy to understand but has only been addressed by 172 

Liu & Xu (2005), in which the aforementioned shortcomings result in only approximate equations unlike the 173 

equations in the proposed method. Nevertheless, approximations can be useful if accurate results can still be 174 

produced. In particular, it has been widely demonstrated in previous studies of storey-based stability (Xu and Liu 175 

2002; Liu and Xu 2005; Li et al. 2016; Ma and Xu 2019a; Ma and Xu 2019c) that the buckled shapes of the frames 176 

are not readily pre-determinable and need to be assumed in the proposed method. The diminishing of the lateral 177 

stiffness to zero in a semi-braced or unbraced frame corresponds to the sway buckling mode (Xu 2001) and the 178 

asymmetrical buckling mode generally governs for sway frames (Bažant and Xiang 1997). As such, the case of 179 

asymmetrical buckling has been commonly assumed to determine the buckling lengths of columns (Duan and Chen 180 

1999; Gil-Martín and Hernández-Montes 2012), required bracing stiffness (Bažant and Xiang 1997), as well as in 181 

storey-based stability analysis (Xu and Liu 2002). As consistent with the aforementioned studies on storey-based 182 

stability, this assumption was found to closely approximate the critical loads in the proposed method as well. 183 

3 Decomposition of an m-storey Frame into Individual Storeys  184 

Consider first the continuous column within the span of a single storey, located in a planar multi-storey frame shown 185 

in the left of Fig. 2. The columns in the frame are indexed from left to right as j from 1 to n, and the storeys indexed 186 

from bottom to top as i from 1 to m. Also, the subscripts c and b will refer to the properties of the columns and 187 

beams, respectively.  188 
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Fig. 2. Schematic of typical column in multi-storey frame 189 

3.1 End Fixity Factors 190 

Column (i,j) has upper and lower end fixities ru,i,j and rl,i,j, which are determined via Eq. (2). The values of R in Eq. 191 

(2) are influenced by axial forces in the connected members shown in dashed grey lines to the right of Fig. 2, which 192 

are represented in Fig. 3. The connected members provide rotational restraint to the ends of column (i,j), which can 193 

be quantified using the end fixity factors via Eq. (2). As shown to the right of Fig. 2, the member in Fig. 3 194 

representing a connected beam or column will be replaced by equivalent rotational springs at the ends of the 195 

columns that it is connected to. Note that Fig. 3 is similar to the one used in the derivation of Monforton and Wu 196 

(1963) except that it is subjected to an axial load N. Its end moments are MA and MB, and the subscripts A and B 197 

correspond to the respective ends of the member. The transverse reactions YA and YB are also present at the ends. As 198 

consistent with traditional stability analysis, loads are assumed to be applied only at the joints of the frame (Yura 199 

1971; Xu 2001; Xu and Liu 2002). 200 

Fig. 3. Deformation of a typical member with considering axial load effects 201 

The transverse displacement is denoted by y and the chord rotation is simply the change to the angle between the 202 

ends of the member.  θ is the rotation at the ends of  the semi-rigid member, while Φ is the connection rotation at 203 

each end.  To be clear, a semi-rigid member is defined as consisting of the flexurally-deformable portion with EI as 204 

well as the connections shown in Fig. 3. As such, the rotation at the ends of the flexurally-deformable portion is θ- 205 

Φ. By applying the external equilibrium of forces and moments, the following relations can be obtained. 206 

 AB YY −=  (6a) 207 

 0)( =+−++ LYyyNMM BABBA  (6b) 208 

MA and MB are expressed as the following functions of the end connection rotation stiffness, ZA and ZB. 209 

 AAA ZM =  (7a) 210 

 BBB ZM =  (7b) 211 

The internal bending moment in the member in Fig. 2 is expressed via the Euler-Bernoulli equation in Eq. (8). Shear 212 

deformations are neglected as they are generally insignificant for members of typical slenderness. 213 

 xYMyxyNEIy AAA −+−=− ))((''  (8) 214 

Substituting Eq. (6a) and Eq. (7a) into Eq. (8) and solving the differential equation for y yields Eq. (9). 215 
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There are four boundary conditions for Eq. (9), listed below. 217 

 Ayy =)0(  (10a) 218 

 ByLy =)(  (10b) 219 

 AAy −= )0('  (10c) 220 

 BBLy −= )('  (10d) 221 

Substituting Eqs. (10) into Eqs. (9) and Eqs. (7) into Eq. (6b) yields a system of five linear equations in terms of the 222 

coefficients C1 and C2, the connection rotations ΦA, ΦB, and YB. As such, system of equations can be solved to 223 

express the above five variables (C1, C2, ΦA, ΦB, and YB) in terms of all other variables. The solutions for ΦA and ΦB 224 

can be multiplied by ZA and ZB, respectively, to express the end moments in Eq. (7) as linear equations with respect 225 

to θA, θB, yA and yB in Eq. (11). 226 
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In Eq. (11), C2×4 is a rotational stiffness coefficient matrix formed by arranging the solutions of ZAΦA and ZBΦB into 228 

linear combinations of θA, θb, yA and yB. Transforming ZA and ZB into the member-connection fixity factors in Eq. (4) 229 

and then dividing Eq. (11) by θA yields the following result for RA = MA/θA, which is the equivalent rotational 230 

stiffness provided to a connecting member at end A. 231 
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In Eq. (12), zA and zB are the member-connection fixity factors of the member in Fig. 3, ϕ = L(N/EI)0.5 is the axial 233 

load coefficient of the member, a1, a2 and a3 are given in Eq. (1c) through (1e) except with the end fixity factors 234 

replaced with zA and zB, and the shape coefficients corresponding to the deformed shape of the frame, vBA and wBA, 235 

are defined in Eq. (13), where vBA is the ratio between end rotations at B and A, while wBA is the ratio between the 236 

chord rotation and the rotation of end A. 237 

 ABBAv  /=  (13a) 238 
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The subscripts A and B should be replaced by the appropriate subscripts corresponding to the ends of the member. 240 

The exact values of vBA and wBA can be expressed as functions of the relative stiffness of the adjoining members on 241 

either end of the member in Fig. 2, derived in Appendix B. However, there is no closed form solution to solve for 242 
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the shape coefficients as they are complicated transcendental functions of the end fixity factors of the adjoining 243 

members. Alternatively, the shape coefficients corresponding to the critical loading condition can be estimated by 244 

assuming the buckled shape of the frame, discussed in Section 3.4 and shown provide accurate approximations of 245 

the results in Section 5, as well as in the literature (Xu & Liu 2002; Li et al. 2016). It should also be noted that in the 246 

absence of axial loading (N = 0), Eq. (12) converges to the linear analysis equation derived by Monforton and Wu 247 

(1963), shown in Eq. (14). 248 
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Eq. (14) is similar to Eq. (3b) proposed in Liu and Xu (2005) except that Eq. (3b) neglects the chord rotation via wBA 250 

= 0, which should not be neglected for columns buckling in the lateral sway mode. Finally, the rotational stiffness 251 

provided to the member connected at end B, R’B, can be obtained by swapping the subscripts A and B in Eq. (12) and 252 

Eq. (14). Thus, the values of R in Eq. (2) for column (i,j) can be expressed via Eq. (15). 253 
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In Eq. (15), nb is the number of beam ends connected to the corresponding column end and R’b,k is the rotational 257 

stiffness of the connected beam k. The subscripts b and c correspond to the properties of the connected beams and 258 

columns, respectively. The subscripts F and N correspond to the far and near ends of the connected member with 259 

respect to the connection, respectively. Eq. (15b) is the first-order elastic stiffness since the beams are assumed not 260 

to be axially loaded. As consistent with Xu (2001) and required in order to use Eq. (1), the beams are also assumed 261 

to be axially rigid. R’c in Eq. (15c) is the rotational stiffness of the connected column, which considers that the 262 

columns are axially loaded. Note that Liu & Xu (2005) propose the following equation for R’c, which differs 263 

significantly from Eq. (15c) because the corresponding derivation for Eq. (16) neglects the presence of lateral 264 

reactions at the ends of the connecting column.  265 
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In Eq. (16), RF is the rotational stiffness of the far end of the column. It will be shown in Section 4.1.1 that Eq. (15c) 267 

is theoretically accurate, while Eq. (16) is inaccurate.  Anyway, a couple simplifications can be made to Eqs. (15). 268 

First, the effect of differential axial shortening between adjacent columns can be neglected, resulting in ψ = 0, and 269 

therefore, wFN,b = 0 for all beams in Eq. (15b). Secondly, with assuming that all column splices are continuous, zF = 270 

zN = 1 in Eq. (15c). Even at the bottom and upper ends of continuous columns, z = 1 should be taken, because the 271 

rotation of the corresponding end of the column is equal to that of the equivalent rotational spring produced by 272 

summing the rotational stiffness contributed by the other connected members at that end (with stiffness Ru or Rl). In 273 

other words, the end of the column is technically fixed to the equivalent rotational spring representing the 274 

decomposed members at that end. Anyway, the end fixity factors of the columns in the frame in Fig. 1 can be 275 

obtained by substituting R from Eq. (15a) into Eq. (2). 276 

3.2 Lateral Bracing 277 

For semi-braced frames, it is demonstrated in Xu and Liu (2001) that the lateral stiffness of bracing Kb,i in storey i 278 

can be added to the total lateral stiffness of that storey via Eq. (17). 279 
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As with Eq. (1), Eq. (17) assumes that all of the columns in the frame have the same deflection. In a multi-storey 281 

frame, Eq. (17) is valid as long as the lateral bracing stiffness Kb is only related solely to the deformation of its 282 

corresponding storey. 283 

3.3 Inelastic Buckling 284 

To approximately account for inelastic buckling, the elastic modulus Ec may be adjusted using empirical relations 285 

such as that proposed by Yura and Helwig (2005), presented in Eq. (18) below. 286 
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In Eq. (18), Ny = Afy is the yielding load, N is the axial load, A is the cross-sectional area of the column, and fy is the 288 

yield stress. If this approach is used, then failure occurs when the lateral stiffness of any storey in Eq. (17) 289 

diminishes to zero with the reductions in Eq. (18) applied. This model is commonly used in design codes (CSA 290 

2014; AISC 2017). 291 
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Note that the effects of imperfections on the results of the storey-based stability were studied by Ma & Xu (2019a), 292 

who concluded that they do not affect the results of the lateral stiffness equation, but rather influence the magnitudes 293 

of deflections causing premature failure due to excessive stresses in the materials. 294 

3.4 Discussion of Shape Coefficients 295 

In the proposed method, the use of assumed values of the shape coefficients v and w is recommended due to the 296 

transcendental relationships between these variables and the end fixity factors of the columns in the frame. Xu 297 

(2001) assumed vFN,b = 1 for all beams in the storey-based stability method, in accordance to the assumption of 298 

asymmetrical buckling in the frame. Xu and Liu (2001) also demonstrated that the assumption of vFN,b = 1 did not 299 

significantly affect the results of the storey-based stability method  for single storeys. The asymmetrical buckling 300 

mode generally corresponds to the lateral sway failure mode consistent with the loss of lateral stiffness in an 301 

unbraced or semi-braced frame. In other words, asymmetrical bucking generally governs over other failure modes 302 

such as symmetrical buckling (Bažant and Xiang 1997). Similarly, Gil-Martín and Hernández-Montes (2012) and Li 303 

et al (2016) have all assumed vFN = 1 for all members in their proposed methods of calculating the buckling loads 304 

and buckling length coefficients for sway frames, respectively. The alignment chart method also assumes 305 

asymmetric buckling for unbraced frames (Duan and Chen 1999). As such, the current study also proposes the use 306 

of vFN = 1 for all members to provide an approximate solution to the lateral stiffness equation for each storey. As for 307 

wFN, the previous storey-based stability formulations have all neglected the differential axial shortening of columns 308 

within the frames by assuming wFN,b = 0 for beams and provided accurate results. As such, the same will be assumed 309 

in the proposed method. As for the columns, it will be shown that the assumption of asymmetrical buckling (vFN = 310 

1) effectively constrains w within finite values. Illustrated in Fig. 4 is a simplification of Fig. 3 in the typical buckled 311 

shape of a continually spliced column in the asymmetrical buckling mode. The chord rotation is ψ and the end 312 

rotations are θu and θl. With assuming asymmetrical buckling, let θu = θl = θ, corresponding to vul = vlu = v = 1.  313 

Define the following relationship: 314 

 k=
−


 (18) 315 

In Eq. (18), k is the ratio between the end rotation, θ, to the angle between the chord and end rotation, ψ-θ. It would 316 

typically be expected that k can range from zero to infinity, with k = ∞ corresponding to the column end being 317 

aligned with the chord, and k = 0 corresponding to the column end being aligned with the vertical axis. 318 

Fig. 4. Buckled shape of continually spliced column in the asymmetrical buckling mode 319 
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Although not impossible, negative values of k are rarely encountered as they would correspond to additional slope 320 

reversals and/or higher energy modes. With k typically ranging from zero to infinity, the value of wul = wlu = w is 321 

confined within the limits zero and unity via Eq. (19), which is the result of rearranging Eq. (18). 322 
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 (19)  323 

Finally, by inspection of Eq. (12) the effective rotational stiffness provided by the column decreases with respect to 324 

w, so taking w = 1 produces the most conservative result, while taking w = 0 produces the least conservative result 325 

and is only valid for braced frames whereby the deflection between storeys is zero. Therefore, it is recommended 326 

that in the proposed method, in lieu of more accurate analyses, v = w = 1 can be assumed to estimate the lower 327 

bound rotational stiffness of a column, and subsequently the lower bound critical loads of a frame. It is finally noted 328 

that this assumption of v = w = 1 also results in R’c = 0 via substitution in Eq. (12), which is equivalent to 329 

neglecting the contribution of rotational stiffness from the columns altogether. The conservativeness of this 330 

assumption, as well as the sensitivity of the results of the proposed method to the values of the shape coefficients are 331 

further investigated in Section 5. 332 

3.5 Column Rotational Buckling 333 

It also should be noted that the lateral stiffness equation in Eq. (1a) becomes discontinuous when a column reaches 334 

its rotational buckling load, i.e. N = Nu (Xu 2003), corresponding to the buckling load if the column were to be fully 335 

laterally braced. For most cases, this mode corresponds to S∆ = -∞, and the lateral stiffness S∆ monotonically 336 

decreases towards -∞ as Ni,j approaches Nu,i,j, as shown for a typical column in Fig. 5. In Fig. 5, β0 is the value of β 337 

corresponding to ϕ = 0. 338 

Fig. 5. Typical lateral stiffness versus axial load plot; adapted from Ma and Xu (2019a) 339 

The asymptotic relationship between S∆ and the axial load can be explained by noting that a column that is fully 340 

braced from lateral sway will still buckle at the rotational buckling load (Xu 2001). As such, once the rotational 341 

buckling load is reached, it is impossible to maintain stability of the column, regardless of the amount of lateral 342 

bracing provided to the column. As S∆ decreases towards negative infinity, the demand for lateral bracing stiffness 343 

from other columns in order to maintain stability of the column in the storey (i.e. ΣS > 0) increases towards infinity. 344 

The only exception to this behaviour, shown in Fig. 5, is for a column with rl = ru, whereby instability occurs at Ni = 345 

Nu,i,j via a removable discontinuity as demonstrated in Ma and Xu (2019a). In such a case, SΔ does not gradually 346 

decrease towards -∞, as shown Fig. 5. Rather, at the removable discontinuity there is an instantaneous loss of 347 
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stiffness at the buckling load. In any case, for loads exceeding the rotational buckling load Nu, SΔ can potentially 348 

return a positive value via Eq. (1) but would be invalid since rotational buckling has already occurred. Care should 349 

be taken to ensure that the rotational buckling load has not been exceeded during the analysis as it represents an 350 

upper bound for the column buckling load. According to Newmark (1949), the rotational buckling load of a column, 351 

Nu, can be approximated via Eq. (20). However, root-finding for the axial load during which the denominator in Eq. 352 

(1a) first reaches zero is required in order to obtain an exact solution.  353 
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In Eq. (20), ϕu is the axial load coefficient corresponding to the rotational buckling load Nu, and Kapp is an 356 

approximation of the effective length of the column. Note that the end fixity factors, ru and rl, are obtained from Eq. 357 

(2) with R based on Eqs. (15) as the connecting columns may be subject to lateral displacement. Note that a further 358 

discussion of the behaviour of the lateral stiffness equation during rotational buckling is included in Appendix A.  359 

3.6 Computational Procedure  360 

The following computational procedure can be used to estimate the critical loads of a multi-storey frame in 361 

accordance with the proposed decomposition method. 362 

1. Input the constant parameters of the members in the frame (L, A, I, E0, fy), member-connection fixities (z), 363 

lateral bracing stiffness (Kb), and boundary conditions such as the end fixity factors corresponding to the 364 

column-to-ground connections (rl,j on Storey 1). 365 

2. Assume that the most conservative case of asymmetrical buckling occurs (vFN = 1 for all members, wFN = 1 for 366 

columns and wFN = 0 for beams). 367 

3. Determine the proportional loading scheme and assign loads to the columns. Calculate the axial loads, N, in 368 

each column at each storey level. 369 

4. Decompose the beams of the frame into equivalent rotational springs at the ends of the columns at each storey 370 

level via Eq. (15b).  371 

5. Analyze each storey by calculating R’c of the columns directly above and below the storey via Eq. (15c), 372 

summing the rotational stiffness via Eq. (15a), calculating the end fixity factors via Eq. (2) and then the lateral 373 

stiffness, ΣS, in Eqs. (1) or (17).  374 
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6. Increase the loads until the lateral stiffness of any single storey reaches zero, and record the corresponding 375 

critical loads.  376 

7. Ensure that the rotational buckling load, Nu, in Eq. (20) has not been reached during the analysis. Otherwise, 377 

the loads corresponding to Nu represent the upper bound for the critical loads of the frame.  378 

4 FEA Validation 379 

The proposed method is by derivation an exact theoretical solution to account for nonlinear geometric effects (P-Δ), 380 

the accuracy of which is verified via the finite element analyses in this section. The equations associated with the 381 

proposed decomposition method were validated using ABAQUS. The critical loads of two example frames under 382 

proportional loading schemes were computed and compared with those obtained in ABAQUS. In each case, the 383 

calibrated values of the shape coefficients v and w obtained from the buckled shapes in the FEA were then used in 384 

the proposed equations to verify the exactness of the respective solutions.  385 

4.1 Example 1  386 

The first example is a two-storey (m = 2), two bay (n = 3) frame with rigid connections (rN = rF = 1 for all beams, 387 

and all columns continuously spliced) first introduced in Lui (1992) and subsequently adopted in Liu and Xu (2005) 388 

and Xu and Wang (2007) as a benchmark for verification and computational demonstration. The frame is shown in 389 

Fig. 6 and is loaded in proportion to the ratios shown at each node (i,j). For the purpose of comparison, the frame is 390 

assumed by all of the aforementioned researchers to behave elastically with E = 200 GPa and I = 83.246×106 mm4. 391 

The frame is fixed to the ground (ru = 1). A finite element model of the frame was constructed in ABAQUS using 392 

B23 Euler-Bernoulli linear cubic wireframe elements, and the elastic buckling load was obtained by solving for the 393 

eigenvalues in the linear perturbation buckling step. The buckling loads of the frame total 112,470 kN in the finite 394 

element model, and the buckled shape of the frame is shown in Fig. 7. 395 

Fig. 6. Two-bay, two-storey rigidly connected frame for Example 1 396 

Fig. 7. Buckled shape in elastic buckling FEA of Example 1 397 

From the buckled shape, it is observed that the deformations in the first storey are more severe compared to those of 398 

the second storey, suggesting the presence of a weak first storey. To verify the theoretical accuracy of the proposed 399 

equations of the proposed method in Section 3, calibrated values of the shape parameters (v and w) were obtained 400 

from the nodal rotations of the buckled shape in the finite element model, which were then used to calculate the end 401 

fixity factors for each column using the proposed method. The instability condition was determined by increasing 402 
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the loads proportionally until the lateral stiffness of either storey diminished to zero. The values of the calibrated 403 

shape parameters for the beams in the frame are presented in Table 1. The values of the calibrated shape parameters 404 

and end fixity factors during instability for each of the column in the frame are presented in Table 2.  405 

Table 1. Calibrated beam shape parameters for Example 1 406 

Table 2. Calibrated column shape parameters and end fixity factors for Example 1 407 

The values in Table 2 marked with the (*) symbol correspond to shape parameters that are not needed for any of the 408 

calculations of the column end fixity factors but are included for the sake of completeness. The reason for this is that 409 

the shape parameters are only necessary for calculating R’c via Eq. (15c), which is only required at the column splice 410 

at level i = 1. As such, the near end subscript N in calculating vFN and wFN corresponds to either the upper ends of 411 

the columns in Storey i = 1 (hence requiring vlu and wlu) or the lower ends of the columns in Storey i = 2 (hence 412 

requiring vul and wul).  A form of asymmetrical buckling exists throughout the frame since all of the vFN values are 413 

greater or equal to zero, indicating that the ends of the members rotate in the same direction – also apparently via 414 

observation of Fig. 7. Note that the negative value of rl for Column (2,1) in Table 2 is the result of R’c in Column 415 

(1,1) returning a negative value. It is possible for R’c to become negative in some cases (Bridge and Fraser 1987), as 416 

the end moment Mi of a member is in actuality a function of all four deformation parameters, {θi, θj, yi, yj}, via Eq. 417 

(11), rather than just θi. R’c is thus an effective value of the rotational stiffness which must also consider the rotation 418 

of the other end as well as the relative deflections on both ends. Nevertheless, it will be shown that carrying the 419 

negative values of R’c through the analyses returns the correct critical loads corresponding to the instability 420 

condition. In some other situations, it can be seen in Eq. (12) that R’c can also become negative if the columns are 421 

heavily loaded (high ϕ values), resulting in a dependency on the rotational stiffness of other members in order to 422 

maintain stability. This is similar to the concept of negative lateral stiffness in columns discussed in (Xu 2001). 423 

Based on the results, the first storey (i = 1) reached (ΣS)1 = 0, becoming unstable when the total load reached 424 

112,479 kN, while the second storey still maintained a residual lateral stiffness of (ΣS)2 = 3,580 kN/m, as shown in 425 

Fig. 8. As such, it is confirmed that the first storey is a weak storey in this instability mode. Note that the values of 426 

the lateral stiffness may not be accurate at loads besides the critical load level since the calibrated values of the 427 

shape parameters only correspond to the critical load level, and are shown to change based on the loading in 428 

Appendix B. 429 
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Fig. 8. Decomposition method results for Example 1 with calibrated shape parameters constant 430 

The difference in total load corresponding to the instability condition between the proposed method (with the 431 

calibrated shape parameters) and the FEA is therefore within 0.008%, which is virtually exact. As such, the 432 

equations from both the proposed method produce exact results when the calibrated shape parameters are used. 433 

4.1.1 Comparison with Previous Method 434 

For this example, it has been shown that the proposed equations of effective rotational stiffness produce exact results 435 

of the critical loads if the shape parameters are calibrated, and as such, are theoretically accurate. The Liu & Xu 436 

(2005) method, however, yields only approximate results. The critical load of the frame reported in Liu & Xu (2005) 437 

is only 108.2 MN, but involves several additional simplifications including the use of a Taylor series expansion to 438 

approximate the lateral stiffness, and vFN = 1 for all members. 439 

As such, some further work was required to appropriately compare the results based on the Liu & Xu (2005) method 440 

with the results of the proposed equations as follows. Repeating the Liu & Xu (2005) method but without adopting 441 

the Taylor series simplification and using the calibrated values of vFN obtained from the FEA (instead of vFN = 1) 442 

yields a critical total load of 132.6 MN, which is corresponds to an 18% error from both the FEA results and the 443 

proposed equations (both 112.5 MN). However, the critical load of 132.6 MN was obtained from calculating R’c via 444 

Eq. (16), which was proposed in Liu & Xu (2005) and is inaccurate. If the corrected version of Eq. (16) shown in 445 

Eq. (15c) is used in the Liu & Xu (2005) method then the total critical load becomes 99.8 MN, which is still 446 

inaccurate compared to the proposed equations (112.5 MN), due to the remaining assumption of Eq. (5) adopted in 447 

the Liu & Xu (2005) method.  448 

4.1.2 Simplified Analysis 449 

The analysis of the two-bay, two-storey frame was repeated but with the proposed values of the shape parameters 450 

based on the most conservative asymmetrical buckling assumption discussed in Section 3.4 (vFN = 1 for all members, 451 

wFN = 1 for columns and wFN = 0 for beams). The proposed decomposition method returns a critical total load of 452 

114,487 kN using this assumption, which corresponds to an error of only 1.8% from the calibrated result. A further 453 

discussion of the errors related to the assumption of asymmetrical buckling under the proposed decomposition 454 

method is provided in Section 5. 455 

4.2 Example 2  456 
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The second example is an original three-storey (m = 3), one-bay (n = 2) frame with semi-rigid beam-to-column 457 

connections (Z = 25×106 Nm/rad for all beam-to-column connections) shown in Fig. 9. 458 

Fig. 9. One-bay, three-storey semi-rigidly connected semi-braced frame for Example 2 459 

Tension-only diagonal bracing of Kb = 105 N/m exists in either direction at each storey level (comparable to the 460 

lateral stiffness provided by a ¼” steel bar). All column splices are assumed to be continuous and the frame is 461 

rigidly connected to the ground (rl = 1). The purpose of this example is to demonstrate the use of the proposed 462 

equations towards semi-braced frames with semi-rigid connections, in addition to applying the tangent modulus 463 

theory in Eq. (18). The proportional loading ratios are shown in Fig. 9 whereby I = 83.246×106 mm4, A = 7,420 464 

mm2, E0 = 2×105 MPa and fy = 350 MPa. The slenderness ratios of the columns within the storey heights range from 465 

55 to 86. Given this range of slenderness, the columns are in the range of inelastic buckling whereby the tangent 466 

modulus in Eq. (18) is applicable to the analysis. A finite element model of the frame was constructed in ABAQUS 467 

using B23 Euler-Bernoulli linear cubic wireframe elements, and the critical load was obtained by solving for the 468 

minimum eigenvalue in the linear perturbation buckling step. Due to the linear nature of the eigenvalue analysis, the 469 

values of the elastic modulus in each column needed to be manually entered based on the resulting critical loads. 470 

The total buckling load accounting for inelasticity obtained in the FEA converged to 4,885.70 kN, and the buckled 471 

shape in Fig. 10 corresponds to sway buckling.  472 

Fig. 10. Buckled shape obtained from FEA for Example 2 473 

To show that the frame is semi-braced, Fig. 11 illustrates the total buckling loads obtained by repeating the analysis 474 

in FEA with the value of Kbr varied from 100 to 109 N/m. 475 

Fig. 11. Buckling load obtained from FEA for varying lateral bracing stiffness, Kbr 476 

The plot in Fig. 11 is similar to the one shown in Ma and Xu (2019b), whereby a semi-braced frame is defined as 477 

having a critical load within the transition zone shown. For values of Kbr to the left of the transition zone, the critical 478 

load is not significantly affected by the lateral bracing and the frame can be treated as unbraced. Similarly, for 479 

values of Kbr to the right of the transition zone, the critical load approaches the rotational buckling load 480 

corresponding to braced frames. Although the limits of the transition zone are not officially defined, Kbr = 105 N/m 481 

is clearly within the transition zone as the critical load of 4,885.70 kN is well in between the unbraced critical load 482 

(4,599 kN) and rotational buckling load (5,366 kN). Also, note that according to CSA S16 (CSA 2014), a frame with 483 

bracing may be considered as fully braced if its sway stiffness is at leaset five times greater than that obtained with 484 
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the bracing removed. In the absence of the bracing Kbr, the first storey would have the lowest lateral stiffness at 485 

5.23×105 N/m (approximated with assuming vFN = 1 for all members, wFN = 1 for columns, wFN = 0 for beams). 486 

Thus, adding the bracing of Kbr = 105 N/m to the first storey results in a lateral stiffness only 1.19 times that of the 487 

frame without bracing, demonstrating that the frame is semi-braced. 488 

The proposed decomposition method was utilized to confirm the buckling load of the frame using the calibrated 489 

values of the shape parameters obtained from the FEA and based on the buckling shape shown in Fig. 10. Fig. 12 490 

plots the computed values of decomposed storey-based lateral stiffness, ΣS, for the three storeys. However, the 491 

calibrated shape parameters, vFN and wFN, are held constant and independent of the increasing loads, when in reality 492 

they vary depending on the loads and cannot be easily determined due to the transcendental relationships, shown in 493 

Appendix B. This assumption results in inaccurate values of the storey lateral stiffness at loads other than the critical 494 

load. In other words, unless the shape parameters are derived at each load level, the results in Fig. 12 cannot be 495 

relied upon at any load level other than the critical load. In fact, the trend of increasing lateral stiffness with load for 496 

Storeys 2 and 3 in Fig. 12 does not make sense. For this reason, as is one of the purposes of this section, it is 497 

demonstrated that use of the calibrated parameters is not recommended for practice, and only serves to validate the 498 

proposed method. As discussed in Section 3.4 and shown later in Section 5, the adoption of the standard 499 

asymmetrical buckling assumption produces more reliable and practical results. To be clear, the values of the 500 

calibrated shape parameters used to plot Fig. 12 were taken based on the buckled shape in FEA corresponding to a 501 

total critical load of 4,885.70 kN.   502 

Fig. 12. Decomposition method results for Example 2 with shape parameters constant and corresponding to the 503 

critical load 504 

In Fig. 12, the decomposition method correctly identifies the instability of the first storey with a total load of exactly 505 

4,885.70 kN (exact to the FEA result).  As discussed previously, the plotted behaviour of Storeys 2 and 3 at load 506 

levels other than the critical load is inaccurate because the shape parameters v and w for the members of the frame 507 

are not constant and actually vary based on the magnitudes of the applied loads. Especially, in cases such as this 508 

example where the tangent elastic modulus and column end fixity factors can change dramatically with increases to 509 

the applied loads via Eq. (18), the values of the shape coefficients will be highly influenced by the load level. As 510 

such, the lateral stiffness plot in Fig. 12 may be highly inaccurate at any load level other than the failure load of 511 

4,885.7 kN, to which the shape parameters are calibrated. The lateral stiffness of zero indicating the failure of Storey 512 
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1 shown at the total load of 4,885.7 kN in Fig. 12, however, is valid and correct since the calibrated shape 513 

parameters correspond to that loading level.  514 

It can also be observed that R’c in Eq. (15c) can even become arbitrarily negative if inaccurate values of the shape 515 

parameters are adopted. As the calibrated values of the shape parameters cannot easily be determined at any given 516 

loading level, a simplification is necessary for the proposed decomposition method to be of any use in practice. It 517 

will be shown in the following sections that if the assumption of asymmetrical buckling discussed in Section 3.4 is 518 

adopted, the lateral stiffness of the storeys will always decrease with the applied loading, unlike the behaviour 519 

shown in Fig. 12, while maintaining an acceptable degree of accuracy. As such, the asymmetrical buckling 520 

assumption is recommended over the use of calibrated or otherwise estimated shape parameters in the proposed 521 

method as the later can lead to inaccurate results.  522 

4.2.1 Simplified Analysis 523 

With assuming the most conservative case of asymmetrical buckling (vFN = 1 for all members, wFN = 1 for columns 524 

and wFN = 0 for beams), the analysis of the three-storey frame in Fig. 9 was repeated using the proposed method. 525 

The resulting total critical load was 4,876.48 kN, as shown in Fig. 13. 526 

Fig. 13. Un-calibrated analysis results of proposed decomposition method for Example 2  527 

As expected and shown in Fig. 13, the lateral stiffness of the storeys decrease monotonically with applied loading 528 

under this assumption. Using the assumed shape parameters in this case resulted in an error of only 0.2% to the 529 

critical load (4,885.70 kN obtained from the calibrated analysis). The simplified analysis also correctly predicts the 530 

presence of a weak first storey in this case. 531 

5 Parametric Analyses 532 

The purpose of this section is to investigate the sensitivity of the shape parameters to the solution of the proposed 533 

method in determining the critical loads of multi-storey frames. Two studies are conducted on the frame in Example 534 

1. The first study assesses the effect of varying the shape parameters on the elastic critical total load of the frame 535 

under the original proportional loading case. The second study is a stochastic analysis that investigates the error 536 

associated with assuming the most conservative case of asymmetrical buckling shape of the frame discussed in 537 

Section 3.4 (vFN = 1 for all members, wFN = 1 for columns and wFN = 0 for beams) while randomly varying the 538 

properties of the frame. The main focus of the study is on the effect of the w factor, since a parametric study on v has 539 
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already been conducted by Xu and Liu (2002), which concluded that using values of vFN from -1.0 to 1.0 generally 540 

has an insignificant effect on the critical loads of frames and thus provides good estimates of the results. 541 

5.1 Effect of Varying Shape Parameters on Example 1 542 

Given that the proposed method should ideally be usable without needing to calibrate the shape parameters via FEA, 543 

some preliminary values of the shape parameters are assumed in a reanalysis of the frame in Example 1. 544 

Asymmetrical elastic buckling corresponding to the sway failure mode is assumed with vFN = 1 for all members. Let 545 

wFN = wNF = w0 bounded between zero and unity for each column, as consistent with the conclusion of Section 3.4. 546 

In this parametric study, w0 is constant for all of the columns in the frame. The resulting lateral stiffness is plotted 547 

versus the total load in the frame for the applicable values of w0 incremented by 0.2 in Fig. 14. 548 

Fig. 14. Product of storey lateral stiffness versus total load with varying w0 549 

As observed in Fig. 14, the total load of the frame during elastic instability varies between 114.5 MN and 118.3 MN, 550 

with the most conservative estimate at w0 = 1 and the least conservative estimate at w0 = 0. These results are 551 

consistent with the conclusion in Section 3.4 that w0 = 1 is the most conservative simplification. However, since the 552 

critical load of the frame reported in the previous section is 112.5 MN, assuming w0 = 1 still overestimates the 553 

critical load by 1.8%, while w0 = 0 results in a 5.2% overestimation of the critical total load. The overestimation is 554 

due to the assumption of the asymmetrical buckling shape in the beams via vFN,b = 1, while the bounds for w0 only 555 

apply to the buckled shapes of the columns. As such, the error in estimation of the critical loads due to assuming 556 

vFN,b = 1 accounts for the overestimation of the critical load. Underestimations and overestimations of the critical 557 

load resulting from assuming vFN,b = 1 were also observed in Xu and Liu (2002). 558 

Note that if asymmetrical buckling is not assumed then wul and wlu cannot be bounded within reasonable limits. 559 

Further discussion regarding the conservativeness of assuming the most conservative case of asymmetrical buckling 560 

is provided in Section 5.2. Nevertheless, this assumption still provides a reasonably accurate estimate of the critical 561 

total load (within 1.8% error) for the frame in Example 1. 562 

5.2 Stochastic Error Analysis 563 

In order to assess the sensitivity of the errors in the total loads corresponding to the instability condition that can 564 

potentially be encountered with assuming the most conservative case of asymmetrical buckling, some of the 565 

properties of frame in Example 1 were randomly varied in a stochastic analysis. 1,000 randomized realizations of the 566 

frame were created. In each realization, the moment of inertia of the columns and beams were randomly selected 567 
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between 1.0 I to 11.0 I via a uniform distribution. The beam-to-column rotational stiffness (Z) was randomly 568 

selected from zero to 108 Nm/rad via a uniform distribution. Each column-to-ground connection also had its 569 

rotational stiffness (Rl,1,j) randomly selected from 101 to 1012 Nm/rad, with the exponent being uniformly distributed. 570 

Finally, the values of the proportional applied loading ratios at each storey level of each column were randomly 571 

distributed between zero and unity. In each realization, the elastic critical load was obtained via FEA and with using 572 

the proposed method. Each of the finite element models were set up in a similar way to that described in Section 5.1. 573 

The error between the results was compared using Eq. (22). 574 
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In Eq. (22), Pcr,prop is the critical total load obtained via the proposed method and Pcr,FEA is the critical load obtained 576 

via the eigenvalue buckling analysis in ABAQUS. A negative error corresponds to a conservative underestimation 577 

of the critical load using the proposed method, while a positive error corresponds to an un-conservative 578 

overestimation of the critical load using the proposed method. Based on the 1,000 test cases, a histogram of the 579 

errors calculated via Eq. (22) is plotted in Fig. 15. 580 

Fig. 15. Difference between critical loads under the most conservative asymmetrical buckling assumption versus 581 

FEA 582 

The mean error from the sample data was -5.6%, showing in the majority of cases the proposed method 583 

underestimates the critical load. The standard deviation was 14.8%, with 78.6% of the sample data within one 584 

standard deviation (from -20.3% to +9.3%) and 96.5% of the sample data within two standard deviations of the 585 

mean (from -35.2% to +24.1%). Based on the 1,000 data samples, the 95% confidence intervals for the mean and 586 

standard deviation were between -6.5% and -4.6% for the mean, and between 14.2% and 15.5% for the standard 587 

deviation, indicating that the mean and standard deviations are reliable. The critical load was underestimated by over 588 

25% only 5.5% of the time, while the critical load was overestimated by over 10% only 11.6% of the time. The 589 

reason that the critical load is sometimes overestimated despite assuming wFN,c = 1 is due to the error associated 590 

with assuming the values of vFN,b, which were demonstrated in both Section 5.1 and (Xu and Liu 2002) to potentially 591 

result in slight overestimations or underestimations of the critical loads. Note also that if the analyses in this section 592 

were repeated for Example 2, the errors would be generally be expected to decrease as the introduction of the 593 

tangent modulus causes the elastic modulus to decrease very quickly and the critical load becomes less sensitive to 594 
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the shape parameters. This is exemplified in the simplified analysis of Example 2 in Section 5.2, where the error as a 595 

result of using the assumed shape parameters was within 0.1%, as well as in some further analyses conducted in Ma 596 

(forthcoming). Anyway, from the results of this parametric study it can be concluded that assuming the most 597 

conservative case of asymmetrical buckling (v = 1 for all members, w = 1 for columns and w = 0 for beams) can 598 

provide reasonable and generally conservative estimates of the critical load of a sway frame.  599 

6 Conclusion 600 

A frame decomposition method for evaluating the stability of multi-storey, semi-rigidly connected steel sway frames 601 

has been established. Idealized connections can also be analyzed using the proposed method as they correspond to 602 

special cases of semi-rigid connections. As soon as the lateral stiffness of any individual storey diminishes to zero, 603 

the frame is considered to be unstable. The proposed equations for calculating the lateral stiffness are shown to be 604 

theoretically accurate upon comparison with FEA results.  Practically, the proposed method can be used to identify 605 

the critical loads and the weakest storey in a frame, defined as the first storey that reaches a lateral stiffness of zero. 606 

The solutions of the proposed decomposition method are sensitive to the shape of the buckling mode, which is 607 

difficult to solve and may be assumed. The method involves adopting a set of buckling shape parameters derived in 608 

this paper which can be used to approximate the critical loads within reasonable accuracy. The assumption of the 609 

worst case of asymmetrical buckling in the sway mode is recommended as it provides good estimates for the lower 610 

bound critical loads of the frames, demonstrated via parametric studies and numerical examples. Based on the 611 

results of the parametric studies, the critical loads of the example frames can be reasonably estimated via the most 612 

conservative asymmetrical buckling assumption, with errors between -20.3% to +9.3% occurring in 78.6% of the 613 

test cases. A negative error corresponds to an underestimation of the critical load, whereas a positive error 614 

corresponds to an overestimation of the critical load. Therefore, the proposed decomposition method produces 615 

accurate approximations of the critical loads when the asymmetrical buckling assumption is adopted.  It is finally a 616 

theoretical advancement in storey-based buckling, adding to the knowledge and background that is crucial towards 617 

the future development of future storey-based stability methods. The proposed shape parameters make it possible to 618 

simplify and quantify the contribution of all connected members at the ends of a column as equivalent rotational 619 

springs. 620 
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Appendix A Behaviour of β 692 

The β coefficient introduced in Eq. (1) is a modifier to the lateral stiffness of a column which accounts for the 693 

effects of the axial force (ϕ) and end connections (ru and rl). Its behaviour is studied in Ma (2020) and summarized 694 

in this appendix. In Figs. A.1 and A.2, the value of β is plotted with respect to the ϕ (proportional to N0.5) and 695 

varying end fixity factors.  696 

Figure A.1 – Behaviour of β with respect to ϕ and ru with rl = 1 (adopted from Ma 2020) 697 

Figure A.2 – Behaviour of β with respect to ϕ and ru with rl = 0 (adopted from Ma 2020) 698 

When β diminishes to zero, the column no longer offers resistance and begins to lean on the system. This occurs 699 

earlier for lower values of the end fixity factors. Of course, for a pinned-pinned column (rl = ru = 0), the column has 700 

no lateral stiffness (β=0 in Fig. A.2). In contrast, a fixed-fixed column (rl = ru = 1) begins to lean when ϕ = π. The 701 

maximum value of β for columns in compression is unity, as shown in Fig. A.1, and corresponds to a lateral stiffness 702 

of 12EI/L3 for the column.  Note that for the purpose of this paper tensile loads can be conservatively represented 703 

using ϕ = 0. A derivation for the expression of β with respect to tensile loads is included in Ma (2020). 704 

Finally, the plots of β become discontinuous at the rotational buckling load, discussed in Section 3.5 and studied in 705 

Ma (2020). The rotational buckling load is the load at which a fully-braced column with the same end conditions 706 

buckles. A laterally-braced pinned-pinned column (rl = ru = 0) buckles when ϕ = π , while the same phenomenon 707 

occurs for a laterally-braced fixed-fixed column when ϕ = 2π. 708 

Appendix B Expressions of Shape Coefficients 709 

Exact expressions of the shape coefficients in the rotational stiffness equation with considering the effects of axial 710 

loads are presented in the derivation of the proposed method are derived in this appendix. Consider first the 711 

deformed shape of a semi-rigidly connected column in Fig. B.1 resulting from axial load N and lateral load Q.  712 
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 713 

Figure B.1 – Semi-rigidly connected column subjected to axial and lateral load 714 

By applying the external equilibrium of forces and moments, the following relation can be obtained. 715 

 QLNMM ul +=+  (B.1) 716 

With assuming that the semi-rigid connections behave linearly, the end moments are given in Eq. (B.2).  717 

 lll RM =  (B.2a) 718 

 uuu RM =  (B.2b) 719 

The internal bending moment is expressed via the Euler-Bernoulli equation in Eq. (B.3).  720 

 NyQxMEIy l ++−=− ''  (B.3) 721 

Substituting Eq. (B.2a) into Eq. (B.3) and solving the differential equation for y yields Eq. (B.4). 722 
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There are four boundary conditions for Eq. (B.4), which are listed in Eq. (B.5). 724 
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Substituting Eq. (B.5) into Eq. (B.4) and Eq. (B.2) into Eq. (B.1) provides five equations which are used to solve for 729 

the variables ∆, θl, θu, C1 and C2 in terms of all other variables. The resulting expressions for ∆, θl, and θu are thus 730 

presented in Eq. (B.6). 731 
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The shape coefficients v and w can therefore be expressed via Eq. (B.7) as follows: 735 
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Note that Eq. (B.7) is valid as long as the column end rotation is equal to the rotation of the end of the connecting 740 

column (i.e. Φ = 0 in Fig. (2)), since by definition the shape coefficients are functions of the end rotations, θ, outside 741 

of the connection shown in Fig. 3, rather than the end rotation of the current column, θ-Φ. This requirement is 742 

satisfied when zu = zl = 1, which is globally satisfied if the columns are continuously spliced, as per the discussion 743 

in Section 3.1. Note also that rearranging for Q/∆ in Eq. (B.6a) yields S∆ in Eq. (1a), the lateral stiffness of the 744 

column derived in (Xu 2001). Similarly, define Sθ,u and Sθ,l as the stiffness against rotation at the upper and lower 745 

column ends with respect to the lateral force Q, in Eq. (B.8). 746 
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Finally, for beams, vFN,b must be calculated with respect to the rotations of the connected columns and is thus 750 

derived in Eq. (B.9), as consistent with the assumption that all columns in the frame have the same deflection. 751 
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In Eq. (B.9), QF and QN are the portions of an arbitrarily applied lateral load Q at the top of the storey partitioned 753 

among the columns of the frame, and F and N refer to the far-end and near-end columns. The shape parameters in 754 

Eq. (B.7) and Eq. (B.9) are exact but cannot easily be solved due to being transcendental in ru and rl of the columns. 755 
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Table 1. Calibrated beam shape parameters for Example 1 757 

Beam (i,j) vRL wRL wLR 

(1,1) 0.17 0.00 0.00 

(1,2) 3.60 0.00 0.00 

(2,1) 6.95 0.00 0.00 

(2,2) 0.02 0.00 0.00 

Table 2. Calibrated column shape parameters and end fixity factors for Example 1 758 

Column  (i,j) vul vlu wul wlu ru rl 

(1,1) ∞* 0.00 ∞* 1.78 0.683 1.00 

(1,2) ∞* 0.00 ∞* 10.5 0.945 1.00 

(1,3) ∞* 0.00 ∞* 2.93 0.838 1.00 

(2,1) 0.01 67.2* 0.45 30.5* 0.915 -0.560 

(2,2) 0.62 1.63* 2.69 4.38* 0.854 0.853 

(2,3) 0.00  336.1* 0.75  242.6* 0.995 0.709 

* Denotes a value that was not needed in any of the computations 759 
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