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Abstract 

The loss of kidney function, or chronic kidney disease, causes over a million deaths 

worldwide every year. The ideal treatment would be a kidney transplant, however there are 

insufficient kidney donors for every patient that requires treatment. Therefore, the most 

common form of treatment is hemodialysis. Conventional hemodialysis is a large time 

commitment and is associated with various adverse effects. A wearable and continuous 

hemodialysis system can address many of these problems. This thesis aims to design a 

hemodialyzer that can be used such a system. 

Using previous work as inspiration, various plate-type microfluidic designs were created 

to suit these needs. The geometry and dimensions were optimized by analyzing its microfluidics, 

as well as the restrictions in terms of fabrication and operation. A stackable serpentine design 

was determined based on these considerations. A track-etched polycarbonate membrane was 

chosen to be used in the hemodialyzer for its straightforward structure and superior performance 

compared to the cellulose membrane. This membrane is then functionalized with polyethylene 

glycol to provide antibiofouling properties which can help in decreasing the adverse effects 

experienced by the patient. 

This thesis demonstrates that the performance of this polycarbonate membrane has a 

mass transfer coefficient of around 4.1 μm/s, and when used in a continuous setting (168 

hours/week) can be comparable to some commercial hollow-fibre hemodialyzers, such as the 

Fresenius F4 with a mass transfer coefficient of around 8.9 μm/s (12 hours/week). This research 
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provides a platform for the development of a continuous, wearable hemodialysis system that can 

provide adequate dialysis with the implementation of flow rates increased to that of a 

commercial system, and the employment of its modular design for an increased surface area.  
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Chapter 1 — Introduction 

1.1 The Kidney 

The kidneys are important organs that serve to eliminate waste, regulate electrolyte 

levels, and blood volume.1 The functional unit of the kidney is the nephron which performs these 

functions.2 The blood enters the glomerulus where it is filtered through into the Bowman’s 

capsule.2 This filtrate then travels through various ducts and loops to undergo selective solute 

reabsorption and secretion of waste products into and from the circulation.2 This final filtrate is 

then transported to the bladder for excretion.2 These selective reabsorption and secretion steps 

allow the elimination of waste as well as the regulation of physiological parameters. This 

eliminated waste includes both endogenous waste products as well as exogenous drugs and 

toxins.1 Of these endogenous waste products eliminated by the kidneys, urea is the most 

abundant and originates as a product of protein metabolism.3, 4 After proteins are metabolized 

into their substituent amino acids, they are deaminated to form ammonia.4 To prevent the toxic 

effects of the ammonia, it is converted in the liver into the less harmful compound urea, which is 

then excreted via the kidneys.5 Human kidney function is estimated by the glomerular filtration 

rate (GFR), with normal values around 120–130 mL/min/1.73 m2 in younger populations, 

declining with age.6 However, with reduced GFR, urea and other waste products accumulate in 

the blood, resulting in uremia, which is mainly associated with chronic kidney disease (CKD).7 
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Figure 1. Schematic of the flow in a kidney and nephron. The left shows the general flow 

within the kidney, with the right showing the flow within the nephron.8 

1.2 Chronic Kidney Disease 

Chronic kidney disease is a condition where a patient has an irreversible loss of kidney 

function that occurs over months or years.9 Its formal definition as defined by international 

guidelines is the exhibition of markers of kidney damage such as albuminuria or structural 

abnormalities, or a GFR of less than 60 mL/min/1.73 m2, or both, sustaining over at least three 

months.9 Chronic kidney disease is prevalent, with an estimated 697 million people suffering 

from it worldwide in 2019, where the regions of North America, Latin America-Caribbean, 

Europe-Central Asia, and East Asia-Pacific have a prevalence rate of over 10% of the population.10 

In the same year, there were an estimated 1.43 million deaths from CKD worldwide, constituting 

over 2.5% of global deaths.10 Chronic kidney disease is categorized into stages based on kidney 

function. The fifth and final stage of CKD, also known as end-stage renal disease (ESRD), is defined 



3 

 

as a GFR below 15 mL/min/1.73 m2 and the kidney is considered to be no longer able to sustain 

the patient’s life in the long term.9 When a patient has ESRD, they need to be treated with a form 

of renal replacement therapy (RRT), which includes hemodialysis and renal transplantation.11 

There were an estimated 2.6 million patients receiving RRT worldwide in 2010, 

approximately 2.1 million of which were receiving dialysis.11 While renal transplantation is 

generally more ideal, there is a severe shortage of kidney donors with only around 16% of 

American ESRD patients receiving a transplantation in 2017, resulting in the large majority of 

patients undergoing hemodialysis.12, 13 It was also estimated that there were between 4.9–9.7 

million patients who required RRT in 2010, while only around 2.6 million people were receiving 

it.11 This suggests that there are millions of patients who are not receiving the treatment that 

they need.11 The use of RRT worldwide was projected to more than double to around 5.4 million 

people by 2030, but the patients that will still be unable to access RRT will remain a significant 

proportion of the population as the number of people requiring it will increase as well.11 The 

largest disparity between the number of patients needing and receiving RRT in terms of 

geographical region is Africa, followed by Asia, and in terms of income levels, low-income families, 

followed closely by the lower-middle income level.11 Even at the upper-middle income level, the 

number of patients requiring RRT was around two to five times the number of patients receiving 

it.11 This makes it abundantly evident that there is an urgent need for the development of RRT 

that has a lower cost and is more accessible to everyone.  



4 

 

1.3 Hemodialysis 

Hemodialysis is a procedure in which blood from a patient is passed through a 

hemodialyzer to remove uremic waste and excess fluids.14 This hemodialyzer contains a 

semipermeable membrane between the blood and the dialysate – a buffer and electrolyte 

solution with similar concentrations as in blood that is used to collect the waste.15 The solutes 

diffuse from the blood to the dialysate along a concentration gradient.15 Typically, to maximize 

the concentration gradient between the blood and the dialysate, they are made to flow in 

opposite directions, or countercurrently.16 With countercurrent flow, the maximum possible 

clearance would be 100%, whereas with cocurrent flow, the maximum possible clearance would 

only be 50% since it will reach equilibrium (Figure 3). 

A 

 

B 

 

Figure 2. Schematic diagram of water treatment and hemodialysis. The left (A) depicts an 

example of the treatment required to purify water for the making dialysate prior to adding 

electrolytes and storage in large tanks.17 RO1 and RO2 are two reverse osmosis systems. 
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Copyright © 2007 Karger Publishers, Basel, Switzerland. The right (B) depicts a general schematic 

of hemodialysis.18 

100% Countercurrent Flow Near 0% 

 

Near 100%  0% 

100% Cocurrent Flow Near 50% 

 

0%  Near 50% 

Figure 3. Cocurrent flow compared to countercurrent flow. The percentage refers to the 

concentration of diffusible solutes in solution, with 100% (red) being the concentration in the 

blood prior to dialysis, and 0% (blue) being the concentration in the dialysate prior to dialysis. 

Hemodialysis was used to treat almost 90% of all new patients of ESRD in the United 

States in 2020 and has been significantly increasing the probability of survival of these patients.19 

However, conventional hemodialysis devices are considerably large and cumbersome devices 

that require physicians and nurses to operate, an extensive water purification system (Figure 2A), 

and treatment quality management, so these are usually situated in a hospital or dialysis centre, 

where patients will go to for dialysis treatments lasting for around 3–4 hours per session, three 

times a week.20, 21 This considerable time commitment can significantly reduce the patient’s 

quality of life, which, as a result, increases the rate of noncompliance and nonadherence to the 

treatment schedule.22 Additionally, the frequency of conventional hemodialysis has been 

demonstrated to be insufficient since urea and other toxins can accumulate significantly between 

hemodialysis treatment sessions. The accumulation of these toxins is significant enough to cause 

uremic symptoms in hemodialysis patients.23 
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In contrast, portable hemodialysis devices are able to mitigate many of these issues. Since 

the device is connected to the patient, there should be no problems with the time commitment 

required for hemodialysis treatment, and of course, the associated nonadherence. Portable 

hemodialysis can give patients freedom of movement and allow them to engage in everyday 

activities that would otherwise be impossible for them. More frequent hemodialysis sessions 

have been shown to alleviate the uremia associated with conventional hemodialysis,23 and 

therefore, a portable device that dialyzes the blood continuously should prevent any uremic 

symptoms. In addition to uremia, daily hemodialysis has also been shown to better control blood 

pressure and hematocrit problems to the point where some patients were able to reduce or 

discontinue taking antihypertensive drugs and erythropoietin, respectively.24 Daily hemodialysis 

was also shown to have beneficial effects on nutrition, mental health, energy, patient survival, 

and decreased morbidity.25 Likewise, it was shown to improve the patient’s long-term health-

related quality of life, such as physical and social functioning and vitality.26 Frequent hemodialysis 

can also prevent the occurrence of dialysis disequilibrium syndrome. This syndrome, while 

uncommon, is a very serious complication of hemodialysis – patients during or immediately after 

their hemodialysis treatment may experience neurological deterioration, with symptoms 

suggestive of increased intracranial pressure including restlessness, mental confusion, and 

coma.27 While this syndrome is not well understood, it is thought that if a significant amount of 

urea is removed during hemodialysis, an osmotic pressure gradient can be generated between 

the brain, an area where urea diffuses more slowly, and the blood.27 Continuous hemodialysis in 
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the form of a portable hemodialysis system can prevent these large interdialytic fluctuations of 

uremic toxins, which in turn can reduce these problems. 

Portable hemodialysis devices are already being developed by other groups, the most 

well-known of which is the Wearable Artificial Kidney™ (WAK). The WAK is a complete hemo-

dialysis system that is situated on a belt and includes pumps for blood and dialysate flow, as well 

as pumps for fluid removal and infusion of substances such as heparin.28, 29 It uses a commercially 

available hemodialyzer and has a system to regenerate the dialysate, therefore only requiring 

400 mL of dialysate.28 Similar systems such as those developed by Nanodialysis and EasyDial are 

also based on a commercially available dialyzer.30, 31 

1.4 Commercial Hemodialyzers 

Commercially available hemodialyzers typically use synthetic materials such as 

polysulfones or polyethersulfones, and usually make use of hollow fibre membrane systems, 

where the blood flows through the hollow centre of the fibre and the dialysate flows 

countercurrently in a large chamber which encloses all of the hollow fibres.32 However, these 

membranes can have many drawbacks. 

Polysulfone and polyethersulfone membranes are hydrophobic, which can cause 

membrane biofouling by allowing the adsorption of proteins and other nonpolar or hydrophobic 

particles, as well as bacteria onto the surface of the membrane.33, 34 Biofouling is not ideal for 

two main reasons. Firstly, when there are proteins or other foulants covering the exchange 

surface, the ability of the hemodialyzer to remove the solutes decreases.35 Secondly, when 
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proteins and blood cells are adsorbed onto the hemodialyzer surface, immune responses can be 

triggered.35 This tendency of experiencing membrane fouling is compounded with the usage of a 

hollow fibre membrane system. This membrane configuration intrinsically has a higher frequency 

of membrane fouling, in part due to the internal diameter of each fibre being only 200 μm and 

each dialyzer having large surface areas of 1–2 m2.32, 36, 37 

The manufacturing processes used to fabricate the hollow fibre membranes are also more 

expensive relative to other types of membrane systems.36 This results in an increased cost for the 

entire hemodialyzer which in turn lends to higher reuse of the same hemodialyzer in a clinical 

setting. While hollow fibre hemodialyzers are designed to be reused, there exists the concern 

that the disinfection required between uses may leave residual chemicals which are harmful to 

the patient.38 Furthermore, the chemicals that are used in the disinfection process may alter the 

membrane integrity and allow blood proteins such as albumin to cross the membrane.39 These 

concerns are realized in a meta-analysis on hemodialyzer reuse which shows an increased relative 

risk of hospitalization when the dialyzer was reused.40 There is also the potential problem of 

inconsistent flow control since there are approximately 10,000 hollow fibre which cannot be 

controlled individually.37 Zones of lower flow rates can decrease clearance or even result in 

increased fouling due to the increased residence time in the hemodialyzer.41 Conversely, there 

may be certain fibres with much higher speeds, exerting a larger shear stress, which could result 

in shear-induced hemolysis.42 

Synthetic membranes are typically considered to be biocompatible in hemodialysis as 

compared to other types of membranes.43 One common method of testing the biocompatibility 
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is investigating its complement activation. The complement system is a part of the immune 

system which initiates phagocytosis to remove bacteria and attacks their cell membranes.44 

There are multiple paths that can trigger the complement system, but they all eventually result 

in the cleavage of complement component 3, C3.45 When this occurs, a cascade of enzymatic 

cleavages occur which ultimately leads to the formation of pores in the pathogen membrane and 

its cell death.45 However, the activation of this complement system leads to inflammation and 

can also damage host tissues, so ideally, it is not triggered during hemodialysis.45 

1.5 The Microfluidics of Hemodialysis 

In order to optimize the performance of the hemodialyzer, it was necessary to investigate 

the mechanisms behind the process of hemodialysis. The transport of the solutes (such as urea) 

from the blood to the dialysate primarily occur via a combination of two mechanisms: diffusion 

and convection.46 

In diffusion-based transport, the solute is transported across the membrane mainly by its 

chemical concentration gradient.46 This solute flux can be described by Equation 1: 

 𝐽𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 =
𝐾𝑝∙𝐷∙𝜀∙Δ𝐶

𝐿
 (1)  

where 𝐾𝑝  is the membrane solute partition coefficient, 𝐷  is the membrane solute diffusion 

coefficient, 𝜀 is the membrane porosity, Δ𝐶 is the transmembrane concentration gradient, and 𝐿 

is the membrane thickness.47 The solute travels down its concentration gradient (from the side 

of higher concentration to the side of lower concentration) due to random molecular 

movement.48 Diffusive clearance is independent of fluid flow, and occurs naturally without any 
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flow through the membrane, in which case, the concentration on either side would eventually 

equilibrate and become the same. In hemodialysis, most of the uremic waste is removed via 

diffusion.48 

In convection-based transport, the solute is transported along with its solvent and is 

driven mainly by the transmembrane pressure gradient in the process of ultrafiltration.46 In the 

case of hemodialysis, the solvent would be the blood plasma (without any of the components 

that are unable to pass the membrane, such as large proteins). This permeate flux can be 

described by Equation 2: 

 𝐽𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 =
Δ𝑃

𝜇𝑅ℎ
 (2) 

where Δ𝑃 is the transmembrane pressure, 𝜇 is the dynamic viscosity of the fluid, and 𝑅ℎ is the 

membrane hydraulic resistance.49 Convective clearance is independent of any solute 

concentrations and can even occur without any solute since it is simply the transport of fluid 

according to the transmembrane pressure gradient. This transmembrane pressure is the 

observed difference in pressure between the blood and dialysate sides, and it consists of two 

components. The first component is the difference in pressures of the blood and dialysate 

channels.46 The second is the osmotic pressure gradient generated by the blood proteins and 

other molecules found in the blood.46 This pressure acts in the direction opposite to the desired 

direction of filtration due to the much lower concentration of solutes in the dialysate, but 

fortunately, does not overcome the dynamic pressure. Additionally, in order to cause more 

convection, the transmembrane pressure can be manipulated. One way of accomplishing this is 
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to increase the blood flow rate to increase the dynamic pressure on the blood side, which would 

increase the transmembrane pressure.46 Similarly, the pressure on the dialysate side can be 

reduced to increase the transmembrane pressure to increase the convective clearance. In 

commercial hemodialysis systems, the pressure on the dialysate side is decreased to increase the 

convective clearance in a process called ultrafiltration. 

Countercurrent flow is nearly universally used in hemodialysis. Therefore, the pressure 

difference across the membrane changes along the length of the channel. At the end where the 

blood enters at high pressure and the dialysate leaves at low pressure, the pressure gradient 

drives the solutes towards the dialysate side. However, at the end of the dialyzer where the 

dialysate enters at high pressure and the blood leaves at low pressure, the pressure gradient is 

reversed, and the solutes are driven towards the blood side, causing so-called back-filtration.50 

Back-filtration is not an issue in terms of clearance, as the dialysate on the side that experiences 

back-filtration should essentially have no uremic toxins yet. However, it can be an issue since any 

impurities within the dialysate such as endotoxin fragments and bacterial substances can enter 

the blood stream of the patient, which can happen even when the bacterial counts and endotoxin 

concentrations are well within accepted concentrations.51 

Another more comprehensive equation can be used to describe permeate flux and 

essentially expands upon the hydraulic resistance term in Equation 2: 

 𝐽𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 =
𝜀∙𝑑𝑚

2

32∙𝐿∙𝜏

Δ𝑃

𝜇
 (3) 
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where 𝜀  is the porosity, 𝑑𝑚  is the pore size, 𝐿  is the membrane thickness, and 𝜏  is the 

tortuosity.52 This formula elaborates by showing how the convective clearance is dependent on 

the membrane pore size as well as the membrane thickness. The tortuosity term describes how 

convoluted the path may be for the molecules to diffuse from one side to another. This shows 

that the performance of the hemodialyzer is dependent on the membrane pore sizes, with a 

higher pore size leading to higher clearance. However, it is very important to carefully control the 

pore sizes of the membrane as they control not only which solutes can pass, but perhaps more 

importantly, which solutes remain in the blood. There are many important molecules in the blood 

which need to be retained, including proteins such as albumin. Therefore, pore sizes of the 

membrane must be large enough to allow uremic waste to pass, but small enough to retain these 

important molecules. Additionally, due to the dependence of both the diffusive and convective 

clearance on the membrane thickness, it would be ideal to minimize the thickness of the 

membrane to maximize the clearance. 

1.5 Objective of Project 

The objective of the overall project is to create a functional portable hemodialysis system 

using a microfluidic platform. More specifically, for this project, the primary objective was to 

design a well-functioning microfluidic hemodialyzer which would be usable in a wearable 

hemodialysis system and is able to remove urea and other uremic waste, with little loss of larger 

physiologically important molecules. With this design, a method of fabricating the hemodialyzer 

would need to be developed to create a consistent and durable dialyzer and a protocol for testing 

the dialyzer would also need to be created. The fabrication process and testing of the dialyzer 
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would need to be able to accommodate changes so that any future innovations will be able to be 

fabricated and tested in a similar fashion and be comparable to previous data. 

1.6 Previous Work 

Previous work has been done by members of this group on a microfluidic hemodialyzer.53 

Their design was modeled to mimic the function of the renal corpuscle. It was made from two 

polydimethylsiloxane (PDMS) chambers separated by a regenerated cellulose membrane. Similar 

to a renal corpuscle, one side was designed to have winding channels for the blood-mimicking 

fluid (BMF), to mimic the complex network of blood vessels in the glomerulus. The other side was 

designed to be one large chamber for the dialysate to mimic the Bowman’s capsule. As with most 

other hemodialysis systems, the direction of the flow was countercurrent to generate a larger 

concentration gradient across the membrane for optimal clearance. The entire device was 

assembled and held together using a poly(methyl methacrylate) (PMMA) casing.
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Chapter 2 — Design and Fabrication of the Microfluidic Hemodialyzer 

2.1 Optimization of Hemodialyzer Configuration 

Using the previous work as inspiration for its configuration, more designs were made and 

experimented with to optimize its geometry and other specifications to achieve a better 

hemodialysis performance. Many various designs were experimented with since the original 

rectangular channel design. 

The first problem that was identified was the lack of flow control in the dialysate side of 

the hemodialyzer – the part mimicking the glomerulus. Due to its large chamber design, which 

was essentially an extremely wide channel, contrasted with the narrow tubing used for the inlets 

and outlets of this chamber, large portions of this chamber were dead zones. The flow in these 

regions was minimal and any solutes that had diffused into these areas were not efficiently 

removed from the system. This results in a decreased performance in the hemodialyzer. This is 

also a problem faced by conventional hemodialyzers where the inlets and outlets are commonly 

both on one side of the hemodialyzer.54 This has been addressed in more recent hemodialyzers 

by employing a so-called moiré pattern, where each hollow fibre is made with a slightly 

undulating shape to decrease the amount of contact between adjacent fibres.54 This pattern is 

able to diffuse the dialysate flow, yielding a more homogeneous dialysate flow distribution within 

the dialyzer.54 Since this is not possible in hemodialyzers with a plate-like configuration, the flow 

had to be controlled by other means. Therefore, designs with the dialysis channels mirrored from 

the blood channels were made. 
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With the configuration of the blood and dialysate channels decided, the specific geometry 

of the channels needed to be improved. Many designs were considered for the channels, 

however only a few were experimentally tested. One such design was a branched serpentine 

structure (Figure 4A). This design was created to maximize the usage of the membrane surface 

area within one hemodialyzer unit. This design was tested for its urea clearance, which was 

around 0.070 mL/min with a flow rate of 10 mL/min in both the dialysate and BMF channels. The 

BMF side flow rate was adjusted to four times the original flow rate in an attempt to increase the 

transmembrane pressure and, in turn, the clearance, however the clearance seemed to decrease 

instead. This suggested that there may not have been any convective clearance and that the 

reduced residence time of the BMF in the dialyzer resulted in lower diffusive clearance. The 

ultrafiltration was then analyzed for confirmation by measuring the volumes before and after 

dialysis. However, the volumes did not measurably change over the course of over three hours, 

indicating that there was very little convective clearance, if any at all. 

The beaded design (Figure 4B), which was originally designed with the intention of 

inducing vortices to increase the mixing within the channel and convective clearance, as well as 

the square design (Figure 4C), which resembled the design of the previous work, were then tested 

under the same conditions. The beaded design performed slightly better than the square design, 

but most likely only due to the increased amount of exposed membrane surface area. When 

taking the surface area into consideration, the beaded design had a much lower clearance 

compared to the square design. Additionally, the branched serpentine design performed better 

than the square design even when taking into consideration the increased surface area. These 
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results determined that any future designs should be more similar to the serpentine design than 

the other two since superfluous designs seemed to only yield more dead zones in the flow and 

inefficient use of the membrane surface area. 

A   B   C 

  

Figure 4. Various microfluidic channel designs. The opposite side is mirrored, with some 

slight changes to accommodate different flow paths. These designs are referred to as branched 

serpentine (A), beaded (B), and square (C). 

Additionally, the option of increasing the surface area of the hemodialyzer without 

changing the geometry of the design was considered. This could be achieved by stacking multiple 

layers of the channels. With this implementation, further changes needed to be made to the 

overall configuration of the channels. Previously, the BMF had entered on the same face of the 

hemodialyzer as it exited, and likewise for the dialysate, but on the opposite face. However, to 

accommodate the option of stacking multiple layers, it would be ideal for the inlets of both the 

BMF and dialysate to enter from the same face, and the outlets to exit from the opposite face. 

This way, the outlets of the first unit can flow directly into the next unit. This was accomplished 

by designing the channels such that the BMF and dialysate channels would split apart at either 

end. Since they no longer occupied the same vertical space, they could be extended into the next 

layer. The stacked units can also be aligned to flow in series or in parallel. By aligning the outlets 

to their respective inlets, the length of the channel is effectively multiplied by the number of 
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stacked units. This would allow more waste to be removed from the blood before it leaves the 

hemodialyzer. On the other hand, by aligning the respective inlets and outlets with each other, 

the resulting hemodialyzer would closer resemble having multiple hemodialyses running 

concurrently. In a hemodialyzer that is stacked in series, each set of two layers would be flowing 

countercurrently with respect to each other, however the layers in between these two sets would 

be flowing cocurrently. This will result in reduced performance as the concentration gradient in 

cocurrently flowing channels is lower than that of countercurrently flowing channels. However, 

in a hemodialyzer stacked in parallel, all adjacent layers would be flowing countercurrently, 

resulting in the middle BMF channels having double the surface area due to having a dialysate 

channel on either side. This should result in an increased performance compared to stacking the 

layers in series. Furthermore, a hemodialyzer in parallel would be able to support a higher overall 

flow rate than one in series as there are more channels for the solution to flow through. So, for 

stacked-unit hemodialyzers, a parallel configuration is preferred over a series one. The addition 

of this feature also affects the geometry of the channels. Since the middle channels in the stack 

need to be through-cut, branching channels will be difficult to properly align as the design would 

then contain floating pieces. Therefore, the final channel geometry must be unbranched. 

To conclude, the BMF and dialysate channels will be mirrored versions of each other for 

better flow control, with a diverging portion at either end so that the inlets and outlets can each 

be on one face of the hemodialyzer. The geometry of the channels will be serpentine to 

effectively use of the membrane surface area, but unbranched to allow for the option of stacking 

multiple layers. 
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2.2 Optimization of Channel Dimensions 

After the overall geometry of the channels was determined, it was necessary to optimize 

the dimensions of these channels so that they would yield the most optimal hemodialysis 

efficiency. These optimizations were determined by analyzing various microfluidic equations as 

well as using computational simulations. These designs were further narrowed by considering 

the ease of fabrication as well as the price and availability of these materials. The dimensions of 

the channels were decided upon when the hemodialyzer was still fabricated with PDMS channels, 

with the option of additional inner layers made of through-cut PMMA for a stacked design, so 

both materials were taken into consideration. 

The height of the channel was simply chosen to be as small as possible to maximize its 

aspect ratio and thereby maximize the surface area which could be in contact with the dialysis 

membrane for exchange. If the height of the channel is too large, the bulk solution flowing 

through the channel will not dialyze efficiently. For the 3D-print molded PDMS channels, the 

height was only limited by the layer height of the 3D printer, along with considerations of the 

deformation of the PDMS which could cause the channel to be smaller when compressed. 

However, for the PMMA channels, the height is mainly limited by the handleability of the PMMA 

sheets used in the fabrication. With PMMA sheets that are too thin, such as 0.3 mm PMMA, the 

pieces become too fragile to use consistently in fabrication. Since the PMMA would be the 

limiting factor for the height of the channel, it was determined that the channel height would be 

0.5 mm for both the PDMS and PMMA channels for consistency, and that the relatively durable 

0.5 mm PMMA would be used. 
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With the height of the channels established, the width of the channels was next to be 

determined. The width of the microfluidic channel was mainly constrained by the shear stress 

that would be experienced by the blood at the walls of the channels. Under high shear stress, the 

erythrocytes in the blood are susceptible to hemolysis. The threshold for hemolysis has been 

demonstrated to be around 1500 dyne/cm2.42 Therefore, in order to minimize the amount of 

hemolysis in the hemodialyzer, the dimensions of the channel must be designed such that the 

maximum shear stress within does not exceed this threshold. For the incompressible two-

dimensional flow of a Newtonian fluid in a rectangular channel where the width is significantly 

larger than the height, the wall shear rate can be modeled by the following equation:55 

 𝛾̇𝑤 =
6𝑄

𝑤ℎ2 (4) 

The wall shear stress, therefore, would be this value multiplied by the dynamic viscosity of the 

fluid. Since blood is a shear-thinning fluid, this value can serve as the upper limit of the wall shear 

stress experienced by the blood. Based on this equation, with a fixed height and flow rate, the 

wall shear stress decreases as the channel width increases. This is consistent with the intuition 

that the velocity will decrease with a larger cross-sectional area. With this analysis, multiple 

designs were made with increasing channel widths. The designs that used channel widths that 

were too large resulted multiple issues. The spacing between the turns of the channels needed 

to be relatively large in order to have sufficient structural integrity of the material for ease of 

handling and fabrication, which resulted in inefficient use of the membrane surface area. 

Furthermore, the wide channels required large diameter tubing for the inlets of the hemodialyzer 

to maintain a laminar flow as it enters the microfluidic channels. Large diameter tubing could 
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result in larger volumes of blood being required to fill the system, and in turn, more blood 

removed from the patient while in use. Based on these factors, a channel width of 3 mm was 

chosen, especially since it would be easily compatible with the common 1/8” inner diameter 

tubing. 

Finally, the length of the channels needed to be defined. This was determined by the 

maximum pressure that the assembled device could handle before failure of the adhesive holding 

the device together. In order to determine this, the pressure drop of the microfluidic channel was 

estimated mathematically. The main failure point of the design at the time was between the 

molded PDMS and the membrane, which was secured using a double-sided adhesive. Therefore, 

the phenomenon that was investigated to signify the whether the adhesive bond had failed was 

the formation of Saffman–Taylor fingers. Saffman–Taylor fingers are dendritic structures that 

develop at the interface between a between two fluids when the less viscous fluid displaces the 

more viscous fluid. In this case, the fingers can form when the water displaces the adhesive at 

high pressures. The maximum pressure that an adhesive bond between PDMS and adhesive tape 

was determined by Thompson et al. to be around 200–350 kPa for three different brands of 

adhesive tapes.56 The length was calculated using the lower end of this range, since we were 

unable to ascertain the pressures that our own adhesive could withstand. The viscosity of human 

whole blood has been demonstrated to be around 2.8 to 7.3 cP for shear rates from 1,000 to 

1 s–
 

1.57 Using fairly generous numbers for each parameter to ensure that the threshold for the 

formation of these fingers, the maximum length of the channel was determined using the Hagen–

Poiseuille equation (Equation 5). This was further rounded down to 60 cm, since additional tubing 
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will need to be attached to the outlet of these channels, which would itself add to the pressure 

of the system. 

 𝐿 =
ℎ3𝑤Δ𝑃

12𝜇𝑄
(1 − 0.630

ℎ

𝑤
) (5) 

 𝐿 =
(0.5 𝑚𝑚)3(3 𝑚𝑚)(200 𝑘𝑃𝑎)

12(8 𝑚𝑃𝑎∙𝑠)(45 𝑚𝐿/𝑚𝑖𝑛)
(1 − 0.630 (

0.5 𝑚𝑚

3 𝑚𝑚
)) ≈ 93 𝑐𝑚 (6) 

  

Figure 5. The wide channel serpentine channel design. The left is used for the BMF and the right 

for the dialysate. 

2.2.1 Fabrication Methods 

The fabrication was adapted from the previous work with some changes based on 

availability of materials and equipment. The initial designs were composed of two layers of PDMS 

with trenches that acted as the microfluidic channels. The PDMS layers (Sylgard® 184 Silicone 

Elastomer Kit) were casted in a mould made of acrylonitrile butadiene styrene (ABS) created via 

three-dimensional (3D)-printing on a Stratasys F370. These two sets of channels were separated 

by a regenerated cellulose membrane (14,000 molecular weight cut-off, Sigma). The PDMS-to-

cellulose interfaces were adhered with a 1:10 uncured PDMS/toluene mixture as a glue and 

allowed to cure in the oven overnight. 
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Additional layers in stacked devices were added in the middle and assembled with PDMS 

layers on either end (Figure 6). The middle layers were made from PMMA sheets cut with a laser 

cutter (BOSS LS-1416, 30W) to form the channels and other required aspects such as through-

holes for inlets and outlets. The PMMA-to-cellulose interfaces were adhered with a double-sided 

acrylic adhesive (3M OCA 8213) which was applied to the surface prior to laser cutting. The casing 

that enclosed the entire hemodialysis unit was made of laser cut PMMA and fastened with nuts 

and bolts. Tygon tubing (Tygon S3™ E-3603) was attached to the casing with an epoxy adhesive. 

The latest design of the hemodialyzer forgoes the PDMS layers and instead uses a full 

piece of PMMA with holes only for inlets and outlets to cap the top and bottom layers. The 

PMMA-to-membrane interface was changed to also use the double-sided acrylic adhesive, 

regardless of the membrane used in the fabrication. Overall, PMMA sheets for the channel layers 

are covered with a double-sided adhesive on both sides. After the application of the adhesive, 

the sheets are heated in an oven at 70°C overnight to strengthen the adhesive bond. Then, all 

the PMMA pieces are cut with a laser cutter. These pieces are assembled with a membrane, using 

the attached double-sided adhesive. This entire cartridge is returned to the oven at 70°C 

overnight again to ensure a secure adhesive bond. This cartridge is placed between two PDMS 

sheets into its housing to prevent any leakages. Finally, the casing is further reinforced with an 

aluminum plate on either side so that the pressure is distributed evenly across the entire 

hemodialysis unit, to prevent the deformation that was occurring when fastening the casing with 

nuts and bolts. 
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A B

  

Figure 6. Schematics of dialysate and blood flow. The left (A) shows a hemodialyzer unit 

with one blood channel and one dialysate channel using the square microfluidic channel design. 

The right (B) shows the modular design of these hemodialyzers. 

2.3 Hemolysis Simulations 

These designs were further analyzed via computational simulations to confirm that they 

would not cause hemolysis in practical use. The simulations were performed using the simulation 

software COMSOL, with the viscosity of blood simulated based on a shear rate-dependent model 

so that its non-Newtonian behaviour could be captured in the simulation. For these simulations, 

the Quemada model at 45% hematocrit was used: 

 𝜇(𝛾̇) = (0.0012 𝑃𝑎 ∙ 𝑠) ∙ (1 −
1

2
∙

4.33+2.07√
𝛾̇

1.88 𝑠−1

1+√
𝛾̇

1.88 𝑠−1

∙ 0.45)

−2

 (7) 

where 𝜇  is the viscosity and 𝛾̇  is the shear rate.58 The Quemada model was chosen for its 

flexibility over a large range of shear rates. Hemolysis has been determined in literature to occur 

at shear stress of greater than 1,500 dynes/cm2.42 Therefore, this value was used for the 
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threshold in the analysis. The entire microfluidic channel was simulated using the expected flow 

rates of 10 mL/min that would be used in the experiments. This resulted in a maximum wall shear 

stress of around 71 dyne/cm2, which would not cause any hemolysis. Further simulations were 

performed at higher flow rates, and even at flow rates of 150 mL/min, the shear stress in the 

channels had still not reached the threshold for hemolysis. This assured that the microfluidic 

channels would not be a cause for concern with respect to hemolysis. 

 

Figure 7. Shear stress simulation of the entire microfluidic channel. This simulation was 

performed at 10 mL/min. The numbers above and below the scale bar show the maximum and 

minimum wall shear stress, respectively. 

However, there was another point of concern that had emerged as the fabrication process 

was started. The laser-cut PMMA pieces were unable to be cut with a perfectly smooth edge, 

which resulted in some surface roughness of the laser-cut channel walls. By introducing a 

randomness function into the geometry, the surface roughness of the laser-cut channels was 

approximated for further simulation of the shear stress. For these simulations, only the 180-

degree bend was simulated since it was the region of highest shear stress in the previous 
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simulations. At 10 mL/min, the maximum wall shear stress was around 170 dyne/cm2, which 

again is still much lower than the threshold for hemolysis. Similarly, higher flow rates were 

simulated to determine the maximum possible flow rates. For these rougher channels, the flow 

rates could reach nearly 100 mL/min prior to reaching the shear stress threshold for hemolysis. 

From these simulations, it was determined that for the geometry of these microfluidic 

channels should not cause hemolysis at the flow rates intended to be used of 10 mL/min, 

regardless of the surface roughness introduced by the laser cutting. Higher flow rates such as 80 

mL/min would also be possible without reaching this threshold.
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Chapter 3 — Prototype Hemodialyzer and Performance Evaluation 

3.1 Introduction 

In addition to the determination of the microfluidic channels and fabrication of the 

hemodialyzer, a complete hemodialysis system needs to be assembled and tested so that the 

performance of each dialyzer can be evaluated and compared. To evaluate the performance of 

the dialyzer and the membrane, a blood-mimicking solution containing urea or other biologically 

significant molecules such as bovine serum albumin (BSA) can be flowed through the device while 

collecting the outlet solution. By measuring the concentration of these solutes, the rate at which 

they are removed from the blood-mimicking solution can be calculated and compared. 

The performance of a hemodialyzer is typically measured in one of two ways.  The first of 

which is its clearance. This is the volume of blood that is completely cleared of a substance per 

unit time and is typically expressed in millilitres per minute. For these devices, the main solute of 

interest is urea, so the urea clearance will be the main measurement to evaluate dialyzer 

performance, which is also the most commonly used measure of the hemodialyzer efficiency. 

This value is typically measured by passing a fresh blood solution of known urea concentration 

and a fresh dialysate solution through a dialyzer and measuring the decrease in concentration 

between the blood solution prior to and after passing through the dialyzer. Then, the clearance 

(𝐾) can be calculated with the following equation: 

 𝐾 = 𝑄𝐵 (
𝐶𝐵𝑝𝑟𝑒−𝐶𝐵𝑝𝑜𝑠𝑡

𝐶𝐵𝑝𝑟𝑒

) + 𝑄𝑢𝑓 (
𝐶𝐵𝑝𝑜𝑠𝑡

𝐶𝐵𝑝𝑟𝑒

) (8) 
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where 𝑄𝐵 is the blood flow rate, and 𝐶𝐵𝑝𝑟𝑒
 and 𝐶𝐵𝑝𝑜𝑠𝑡

 are the concentrations of the solute in the 

blood prior to and after dialysis respectively, and 𝑄𝑢𝑓 is the ultrafiltration rate.59 However, this 

clearance value actually changes depending on the flow rates of the blood and dialysate: the 

higher the flow rates, the better the clearance.60, 61 Typically, the dialysate flow rate is at least 

twice that of the blood flow rate. This is to maintain the maximum concentration gradient 

between the blood side and dialysate side to improve its dialysis performance. 

The second measure of a hemodialyzer’s performance is its mass transfer–area 

coefficient, or 𝐾0𝐴 (typically rendered as KoA). This is a membrane-, solute-, and dialyzer-specific 

measure that can be considered the hemodialyzer’s maximum clearance when the blood and 

dialysate flow rates are infinite.59 This is the multiplicative product between the mass transfer 

coefficient 𝐾0 and the membrane surface area 𝐴, however the KoA is the most common form 

used for comparing hemodialyzers. This value can be determined by measuring the clearance of 

a specific solute in the hemodialyzer at a specific flow rates of blood (𝑄𝐵) and dialysate (𝑄𝐷) and 

calculated using Equation 9. Additionally, by rearranging this formula, the clearance at any set of 

dialysate and blood flow rates can be predicted. 

 𝐾0𝐴 =
𝑄𝐵𝑄𝐷

𝑄𝐵−𝑄𝐷
ln (

𝑄𝐷(𝑄𝐵−𝐾)

𝑄𝐵(𝑄𝐷−𝐾)
) (9) 

3.2 Materials and Methods 

3.2.1 Cellulosic Membranes 

While most modern hemodialyzers typically use synthetic membranes, cellulose 

membrane hemodialyzers exist as well.62 Cellulose is a naturally occurring polymer found in most 
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plants, and the surface of its disaccharide monomer, cellobiose, is rich with hydroxyl groups. 

Cellulose membranes themselves are commonly used in laboratory dialysis since they are 

inexpensive and easily purchasable in various molecular weight cut-offs. In a study of unmodified 

cellulose membranes in hemodialysis compared to other membranes, the unmodified cellulose 

membrane resulted in a significantly greater reduction in urea than the synthetic membranes.63 

For these reasons, a cellulose membrane was used in the previous work. However, the surface 

hydroxyl groups of unmodified cellulose membranes are considered to be the cause of significant 

activation of the complement system when blood comes into contact with it,47 along with its 

associated leukopenia.64, 65 Despite these claims of lower biocompatibility, there is a lack of 

clinical evidence that there is any significant benefit of using synthetic membranes over cellulose 

in terms of mortality and other adverse symptoms related to dialysis.62 However, to prevent any 

problems that could arise in the future, it would be ideal to address this issue regardless. 

Fortunately, it is not difficult to use the hydroxyl groups themselves to functionalize the 

membrane to attenuate the issue of complement activation. Cellulose can be functionalized with 

bulky groups, such as diethylaminoethyl, which can provide steric shielding from the complement 

activation.66 Similarly, smaller functional groups such as acetate can also be used, but most of 

the hydroxyl groups would need to be replaced to achieve a similar effect.47 Finally, since the 

hemodialyzer is of a plate-like configuration instead of hollow fibres, cellulose membranes would 

be less expensive. 
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A   B   C 

 

Figure 8. SEM images of the cellulose membrane. (A) The surface of the membrane. (B) 

The side of the membrane. (C) The expected pore structure cross section of the membrane. 

Adapted from MilliporeSigma.67 

3.2.2 Polycarbonate Membranes 

Polycarbonate membranes are another type of membrane that have been shown to be 

used in hemodialysis. Studies comparing between polycarbonate membranes and regenerated 

cellulose membranes show that there was decreased complement activation, decreased 

leukopenia, and decreased release of granulocyte-derived elastase in the polycarbonate 

membrane when compared to the regenerated cellulose membrane.68 These results indicate that 

the polycarbonate membranes are more biocompatible than unmodified cellulose membranes. 

Polycarbonate membranes are also quite commonly used in the laboratory in the form of 

track-etched polycarbonate membranes for filtration. These track-etched membranes have 

consistent, cylindrical pores that are perpendicular to the membrane surface. This allows the 

membranes to be predictable in terms of the transport of the solutes through the membrane and 

increases the membrane transport as the path length is decreased. In comparison, the structure 

of cellulosic membranes is more sponge-like, with pores that are not easily defined. This makes 

predicting the dialysis through a cellulose membrane much more difficult. Furthermore, 
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polycarbonate membranes are commercially available much thinner than cellulose membranes, 

most likely due to an increased burst resistance, which can result in better hemodialytic 

performance. 

A   B   C

  

Figure 9. SEM images of the polycarbonate membrane. (A) The surface of the membrane. 

(B) The side of the membrane. (C) The expected pore structure cross section of the 

membrane. Reprinted from Ref. 69, Copyright (2017), with permission from Elsevier.69 

3.2.3 Experimental Methods 

Each hemodialyzer that was fabricated was tested for its performance in hemodialysis 

under multiple conditions. After the hemodialysis system was assembled, attached to the 

peristaltic pumps, and run with water to ensure membrane hydration and the absence of any 

leakages, a BMF and a dialysate are flowed through the hemodialyzer countercurrently, and 

samples of the dialysate are taken at regular intervals. The BMF may consist of 100 mM of urea 

and 3.5 g/dL of BSA to represent two biologically significant molecules – one that should be 

removed during hemodialysis and one that should be retained during hemodialysis. The dialysate 

is simply the same solution as the BMF without the urea or BSA. The dialysate-side needs to 

mimic the blood-side in terms of electrolytes and other small molecules so that these chemicals 

will not diffuse into the blood which may disrupt the homeostasis of the body. Furthermore, this 
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ensures that there is no osmotic pressure generated from the presence of other compounds 

which would artificially increase the observed performance of the hemodialyzer and make it 

difficult to compare with existing technology. 

The flow rates of the dialysate and BMF were by default both 10 mL/min. This was a 

restriction of the peristaltic pumps that were being used since their range of flow rates was 

relatively limited. The flow rate of 10 mL/min was chosen so that the flow rate could be halved 

or doubled and still be within the range of the capability of the pump. Furthermore, the peristaltic 

pump needed to be manually calibrated to the correct flow rate. This was done by measuring the 

volume output of the pump after one minute and adjusting as necessary. By using 10 mL/min, 

the output could be measured with a 10-mL graduated cylinder which was graduated to every 

0.1 mL, which allows for higher accuracy of the flow rate measurement. Moreover, it has been 

shown that increased peristaltic pump speeds lead to higher rates of hemolysis. Therefore, the 

default flow rate was determined to be 10 mL/min. 

The hemodialysis system was also changed to a closed-loop system for both the dialysate 

and blood sides so that the volumes could be minimized during testing and so that the clearance 

experiments could be run for much longer periods of time, such as 24 hours, without requiring 

large volumes of solutions to be made. With this change, it was decided that it would be more 

reasonable to measure the concentration of the dialysate instead of the BMF. The BMF would 

eventually become an increasingly complex solution, and the chances of having interfering 

compounds and other factors would increase by using the more complex solution between the 

dialysate and BMF to determine the solute concentration. Furthermore, a sample would need to 



32 

 

be taken from the dialysate for the determination of albumin loss regardless, so this would 

remove the requirement of taking samples from both sides. This change, however, required that 

the formula for calculating the clearance needed to be adjusted to compensate for this. First, the 

clearance formula would need to be adjusted to consider the volume of blood being used in the 

closed-loop system since it would affect the amount of urea there is to remove. Since this now 

reflects the concentrations in a human body during hemodialysis, a formula used to model 

physiological concentrations and clearance can be used:  

 
𝑑(𝑉×𝐶)

𝑑𝑡
= 𝐺 − 𝐾 × 𝐶 (10) 

where 𝑉 is the total body water, 𝐶 is the concentration of the solute in the blood, 𝑡 is time, 𝐺 is 

the generation rate of the solute, and 𝐾  is the clearance whether by the kidneys or a 

hemodialyzer. The volume in the hemodialysis unit is constant with respect to time, therefore it 

can be factored out. Urea is not generated in the hemodialysis system, therefore the generation 

rate would be zero. With some rearranging of this formula, it becomes:  

 𝐾 = −
𝑉𝐵

𝐶𝐵

𝑑𝐶𝐵

𝑑𝑡
 (11) 

where the subscript 𝐵 refers to the BMF. The −𝑑𝐶𝐵/𝑑𝑡 can be determined from the increase in 

urea concentration in the dialysate. By considering the differences in dilution of the solute 

between the BMF and the dialysate due to the volume differences, the increase in concentration 

of the dialysate can be used instead of the decrease in concentration of the BMF. Due to the 

diminishing concentration gradient between the dialysate and the BMF as they approach 

equilibrium, this rate of change will decrease as well. Therefore, the concentration of the 
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dialysate over time can be modelled with an increasing exponential decay function with an 

asymptote at the average concentration. The derivative of this function can then be used to 

determine the rate of change. By using the rate of change at the beginning of the dialysis, the 

initial concentration of the BMF can be used for 𝐶𝐵. This yields the final equation:  

 𝐾 =
𝑉𝐷

𝐶𝐵0

𝑑𝐶𝐷

𝑑𝑡
|

𝑡=0
 (12) 

where the subscript 𝐷  refers to the dialysate, 𝐶𝐵0
 is the initial BMF concentration, and 

𝑑𝐶𝐷/𝑑𝑡|𝑡=0 refers to the initial rate of change of 𝐶𝐷. The urea concentration in the dialysate is 

also very linear at the beginning of the hemodialysis experiment, and the slope of a linear 

regression can instead be used to estimate 𝑑𝐶𝐷/𝑑𝑡, yielding a slightly lower clearance than if 

calculated with the actual initial rate of change. 

3.2.4 Assays 

The concentration of urea was determined with an assay that first uses the enzyme urease 

to decompose the urea into ammonia and carbonic acid.70 The ammonia then reacts with sodium 

hydroxide, sodium hypochlorite, phenol, and sodium nitroprusside to form a deep blue coloured 

compound.70 The resultant solution is read with an ultraviolet–visible (UV–vis) spectrophoto-

meter (SpectraMax® M2e) and the concentration of the urea in the initial sample is determined 

with a standard curve. 

The concentration of albumin was detected with a Bradford protein assay using the dye 

Coomassie blue G-250. The initial red cationic form of the dye forms a complex with protein 

molecules through electrostatic and hydrophobic interactions, which stabilizes in its blue anionic 
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form.71 This intensity of this blue colour is correlated to the amount of protein in the sample. The 

sample solutions incubated with this dye are read similarly with a UV–vis spectrophotometer to 

determine the concentration of BSA with a corresponding standard curve. 

The interference of urea and albumin on each other’s assay was also investigated since 

there would be clearance experiments using both in solution. Samples were prepared with 1 mM 

urea spiked with 0, 2.5, 5.0, and 10.0 g/dL of BSA and 0.1 g/dL of BSA spiked with 0, 25, 50, and 

100 mM of urea and their respective assays were performed. The urea assay seemed to 

experience slight interference in the presence of BSA. The observed concentration of urea was 

raised by roughly 0.4 mM when there was 10.0 g/dL of BSA added, with a seemingly linear 

regression. This level of interference should not be too significant since it is relatively low 

compared to the typical concentrations of urea, however it should be kept in mind. The Bradford 

assay seemed to be unaffected by the presence of urea. 

3.3 Experimental Results and Discussion 

3.3.1 Urea and Albumin Clearance 

The hemodialyzers fabricated with the wide serpentine channels and a regenerated 

cellulose membrane were tested using 100 mM of urea in phosphate-buffered saline (PBS) buffer. 

The flow rate of the dialysate and BMF were both set to 10 mL/min. The average clearance over 

four separate trials that was achieved was around 0.19 mL/min, which was more than double 

that of the branched serpentine design which only had a clearance of 0.070 mL/min. This 

demonstrates that this wide-channel hemodialyzer design is a significant improvement over the 

previous design. 
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An additional set of experiments were performed similarly using a BMF consisting of only 

BSA in PBS buffer to test for the diffusion of albumin across the cellulose membrane. The 

resulting dialysate was analyzed with a Bradford assay to visualize the presence of any proteins. 

This assay showed that there was no detectable amount of protein present in the dialysate over 

a three-hour period, indicating that albumin was unable to diffuse through the regenerated 

cellulose membrane. This outcome is ideal, as albumin is an important blood protein which 

should not be removed during hemodialysis, but also expected as the molecular weight cut-off 

for this membrane was 14 kDa, which is much smaller than BSA. 

 

Figure 10. The dialysate urea concentration of the cellulose membrane hemodialyzer. 

A longevity experiment of a hemodialyzer unit was performed by taking advantage of the 

university lockdown. The entire hemodialysis system was kept assembled at room temperature 

and filled with a 0.1% solution of sodium azide to maintain its hydration but prevent bacterial 

growth. After access to the laboratory was restored, which was well over six months since the 
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hemodialyzer was last used, another identical clearance experiment was performed on the same 

unit after thoroughly rinsing out the sodium azide. The urea clearance from this experiment was 

0.13 mL/min, which indicated that the hemodialyzer was relatively stable for long periods of time, 

even while stored under a non-sterile solution. The hemodialysis system also did not suffer from 

any leaks or malfunctions, which was a testament to the reliability of the revised fabrication 

process. 

However, this clearance value was still considerably low. Hence, in order to increase the 

clearance of the hemodialyzer, an alternate membrane with better properties was sought out to 

replace the regenerated cellulose membrane that was being used until now. One readily available 

membrane was a track-etched polycarbonate membrane with a 0.05 μm pore size. Hemo-

dialyzers were fabricated using this membrane and tested with 100 mM urea in water. These 

experiments were conducted using 500 mL of dialysate and BMF and the experiments were 

carried out for 3 hours. The average clearance that was achieved from this set of experiments 

was around 0.35 mL/min, which is almost double the urea clearance that was achieved by the 

regenerated cellulose membrane. This showed that urea was able to be transported through the 

polycarbonate membrane much more easily than through the regenerated cellulose membrane. 
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Figure 11. The urea clearance of the polycarbonate membrane hemodialyzer. 

The performance of this hemodialyzer unit also needed to be tested in conditions that 

would be more realistic to actual hemodialysis such as in a solution with a physiological 

concentration of albumin which would be much more viscous than in water or buffer and possibly 

affect its convective transport, and eventually actual human blood to evaluate its effects on blood 

such as hemolysis. In preparation for the experiments that would be using whole blood, the 

volumes required for a clearance experiment were reduced to 100 mL of dialysate and BMF and 

the trial duration was reduced to 90 minutes. The volumes were reduced in anticipation of using 

blood to reduce the amount of blood that would need to be used, both to reduce the cost and to 

reduce the effects of contamination should any accidents occur. The duration was decreased as 

the samples would need to be taken more frequently due to the reduced volume, and there was 

no longer the need for a three-hour experiment. A set of experiments were conducted using this 

reduced volume and reduced duration with 100 mM urea in PBS buffer to confirm that the 
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reduction in volume did not impact the clearance values that would be calculated from the 

experiment. These experiments yielded an average urea clearance of 0.38 mL/min which is not 

statistically different from the previous data (p = 0.3931), demonstrating that the adjusted 

experiment would be consistent with the experiments using the previous conditions. This also 

incidentally confirms that the formula used for calculating the urea clearance is correct and scales 

properly as the variables are adjusted. 

 

Figure 12. The urea clearance of the polycarbonate membrane hemodialyzer with reduced 

dialysate volume. 

Using these new conditions, a set of experiments were conducted using a BMF that 

contained both 100 mM urea and 3.5 g/dL BSA to ensure that the presence of albumin and the 

associated change in viscosity does not significantly affect the function of the hemodialyzer, and 

again, to ensure that albumin does not easily diffuse across the polycarbonate membrane. The 

urea clearance was around 0.41 mL/min, which is also not significantly different from the 
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previous experiments (p = 0.6329). This indicated that the presence of the albumin did not 

significantly affect the performance of the hemodialyzer in terms of urea clearance. 

 

Figure 13. The urea clearance of the polycarbonate membrane hemodialyzer with BSA. 

 

Figure 14. The BSA clearance of the polycarbonate membrane hemodialyzer. 
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Unlike the regenerated cellulose membrane, there was some loss of albumin into the 

dialysate with the polycarbonate membrane. A similar calculation was performed for the BSA, 

and its clearance was found to be 0.026 mL/min, which is more than 10 times lower than the 

clearance of urea. While ideally, there should be no loss of albumin at all, this indicates that there 

is at least already a natural difference in clearance between urea and albumin, which is to be 

expected, based on their significant difference in size. These results also imply that the 

polycarbonate membrane is capable of dialyzing beta-2 microglobulin, which is a 11.8-kDa 

immune system protein that is associated with a syndrome called “hemodialysis-related 

amyloidosis.”72, 73 This syndrome is so named since many forms of conventional hemodialysis 

were unable to remove molecules of this size, leading to aggregation of this protein which forms 

amyloid plaques in skeletal joints. Considering that the 66-kDa BSA is partially dialyzable with this 

membrane, it is quite likely that the much smaller beta-2 microglobulin can also be cleared with 

this membrane. 

The polycarbonate membrane device was also tested with human whole blood to 

estimate its actual performance when being used with a human patient. The blood reservoir was 

placed in a 37°C water bath to simulate the body temperature of the patient, while the rest of 

the hemodialysis system remained at room temperature. The human whole blood was spiked 

with an extremely concentrated solution of urea so that the final concentration of the urea would 

be 100 mM assuming there was no urea present already present in the blood. Since the Bradford 

assay that was being used to detect albumin cannot differentiate between proteins, the analysis 

would have to group together all the blood plasma proteins. To take advantage of this 
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experiment which simulates a real hemodialysis session, the experiment was extended to a 

duration of four days. An additional sample was taken just before 24 hours, and the dialysate was 

replaced with a fresh solution. The blood was unchanged over the four days and the 

concentration of the blood was calculated from the concentration of urea in the dialysate at 24 

hours. Some hemolysis was expected as extended storage of blood results in depleted energy 

sources such as 2,3-diphosphoglycerate which leads to the loss of cell membrane integrity and 

hemolysis.74, 75 Additionally, peristaltic pumps can cause small amounts of hemodialysis.76 Since 

previous tests using whole blood on a smaller scale did not lead to any noticeable hemolysis, and 

there have been studies of storing anticoagulant-added whole blood for 72 hours at 25°C with 

minimal (0.13%) hemolysis, the experiment was started with a control blood which would be 

subject to the same temperatures but not dialyzed. 

Unfortunately, the amount of hemolysis that occurred during the trial was much more 

than anticipated. There seemed to already be urea or other interferents present in the blood as 

the observed concentration of urea in the dialysate after the first 24 hours was around 63 mM, 

which should not be possible as the highest expected concentration would be 50% of the 

concentration of urea in the blood, or around 50 mM urea. This seemed to imply that there was 

around 126 mM of urea or “urea equivalents” in the blood. Additionally, with the relatively large 

pore size of the polycarbonate membrane, the hemoglobin subunits or perhaps hemoglobin 

molecules themselves from the hemolysis of the blood had also diffused across the membrane. 

The Bradford assay detected all the extra hemoglobin that had migrated into the dialysate and 

was therefore unable to even determine the concentration of blood plasma proteins. The 
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dialysate of the second day equilibrated to around 14 mM of “urea equivalents,” which is much 

lower than what should have been remaining in the blood. On the third day, the observed urea 

concentration in the dialysate seemed to have reached equilibrium after the first 90 minutes of 

dialysis. And finally, on the last day, there was no observed urea over all 90 minutes of dialysis. 

These results are challenging to interpret, but some conclusions can be made. The observed urea 

concentrations of the first 90 minutes of the experiment when the hemolysis was still minimal 

looked to be relatively similar to the concentrations in previous experiments, suggesting that the 

urea clearance may have been similar. The dialysate had observationally taken on a deep red 

colour after each day, including the 90 minutes of the last day, implying that hemoglobin or its 

subunits were able to pass through the membrane and that there was no complete clogging of 

the pores despite the last day having no observed urea clearance. Due to the difference in 

observed urea concentration at the end of the first and second days, it seems that the urea is 

being removed from the system in some other way. Since there have not been previous 

experiments that have been run for over 48 hours, it may be possible that some part of the 

hemodialysis system itself is able to adsorb urea when exposed to long periods of time. Another 

possibility is that some component of the blood, such as the cellular debris, is able to sequester 

the urea over time. Regardless of the reason for these unusual results, the numerical data from 

this experiment cannot be used for analysis of performance. 
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Figure 15. The urea clearance of the polycarbonate membrane hemodialyzer in whole blood. 

3.3.2 Discussion of Hemodialyzer Performance 

Using the data from the experiments with a BMF containing both urea and BSA, as the 

numerical data from the blood experiment is nonsensical, the urea clearance of the device is 

around 0.41 mL/min. Since the flow rates of the BMF and dialysate are much lower than normal, 

it would be ideal to calculate this as a KoA to compare with other hemodialyzers. The original 

equation for KoA has a condition where the flow rate of the dialysate cannot be the same as the 

flow rate of the blood due to the difference between the two being in the denominator. Since 

the two flow rates used in these experiments are the same, the equation must be rearranged so 

that it can be used. This yields the following formula for determining the KoA at equal 𝑄𝐵 and 𝑄𝐷:  

 𝐾0𝐴 = −
𝐾×𝑄𝐵

𝐾−𝑄𝐵
, where 𝑄𝐵 = 𝑄𝐷 (13) 
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Using this new formula, the KoA of this hemodialyzer can be calculated to be approximately 

0.43 mL/min. While this does make it more easily comparable, there is still a very significant 

difference in membrane surface area between this microfluidic hemodialyzer (17.55 cm2) and 

commercial hemodialyzers which are typically around 1 m2 (10,000 cm2) large. Therefore, the 

area must be divided from the KoA to leave only the membrane mass transfer coefficient for urea 

of 4.1 μm/s. When compared to a low-flux commercial dialyzer such as the Fresenius F4 which 

has a calculated mass transfer coefficient of 8.9 μm/s, the polycarbonate membrane is still 

around half as permeable to urea. However, despite it appearing to be insufficient for adequate 

urea clearance, this microfluidic hemodialyzer is intended to be used in a continuous 

hemodialysis system that would be worn everyday instead of used for 12 hours per week. That 

means that the microfluidic hemodialysis system would on average be in use for 14 times longer 

than the conventional hemodialysis system. Therefore, the polycarbonate membrane should still 

be viable for continuous hemodialysis even after functionalization and further manipulation of 

the membrane to enhance its other properties. 

Another comparison that can be made is to the glomerular filtration rate of the kidney. 

Again, this is the rate at which fluid passes from the glomerulus into the Bowman’s capsule. For 

solutes which freely diffuse through like urea, this is equivalent to the rate at which a solution at 

the same concentration as the blood passes from the glomerulus side into the Bowman’s capsule 

side. In comparison, the urea clearance value is the rate at which blood is completely cleared of 

its urea, which is also equivalent to the rate at which a solution at the same concentration as the 

blood passes from the blood side into the dialysate side. Therefore, these two values can be 
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compared. Again, the surface area of the exchange area will need to be considered in both cases. 

The clearance per surface area of the hemodialyzer presented here is 234 mL/min/m2. For the 

kidney, the healthy range of GFR is 90–120 mL/min/1.73 m2. Since this is given over the average 

body surface area, it will instead need to be divided by the filtration area of the glomerulus, which 

is around 516.2 cm2.77 This yields a clearance per unit area of around 1744–2325 mL/min/m2. 

This value does not consider the reabsorption of urea that occurs downstream of the Bowman’s 

capsule before it is excreted. The tubular fluid exiting the inner medullary collecting duct contains 

only approximately 50% of the filtered urea,78 therefore the effective clearance is only around 

half of the values above. Regardless, the current membrane is not yet as efficient as the kidney 

in removing urea, and more progress will need to be made to achieve that. 

Finally, the current experimental system uses a closed-loop configuration for the dialysate 

to conserve the dialysate used for testing. However, this change does not have to be constricted 

to the experimental set-up. The urea clearance of the hemodialyzer does not deviate significantly 

from the linear regression within the dialysate urea concentration range from zero to half of the 

BMF urea concentration. For comparison, the average hemodialysis patient undergoes around 

12–15 hours of hemodialysis weekly,79 and typically employs a dialysate flow rate of 500 mL/min 

which means at least 360 litres of dialysate are required per week for hemodialysis.80 Clinical 

guidelines state that the serum urea concentration should be reduced by at least 65% per 

hemodialysis treatment session,81 and most hemodialysis patients have a serum urea 

concentration of 201–300 mg/dL (33.5–50.0 mM) prior to treatment.82 Using the average volume 

of distribution as a percentage of body weight 42.1%,83 and the average weight of 58,106 
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hemodialysis patients,84 the urea distribution volume is around 34 L. Therefore, the highest 

concentration of used dialysate would only be around 28 mg/dL (4.7 mM). This is an excessive 

use of water and would also not be feasible for a wearable hemodialysis system. Recycling the 

dialysate until a substantial concentration has been achieved prior to disposal would immensely 

reduce the dialysate required for hemodialysis and turns out to have been suggested for 

situations where water needs to be conserved.85
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Chapter 4: Membrane Surface Functionalization 

4.1 Introduction 

Biological fouling, or biofouling, is the adsorption of biomolecules or microorganisms onto 

any surface exposed to biological fluids or tissue.86 This problem can occur in most biomedical 

devices and systems, including hemodialysis. Adsorption of biomolecules such as proteins can 

cause immunological responses and even cause promote the adhesion of microorganisms which 

could lead to infection.86 Furthermore, in membrane systems, biofouling on the membrane can 

result in blockages of the membrane pores, which would affect the permeability of the 

membrane and therefore its efficiency.87 One extremely widely used method of preventing 

biofouling is the functionalization of the surface with polymers. The most common of these 

polymers is poly(ethylene glycol) (PEG).86 PEG, which has been dubbed the “gold standard” 

polymer for antibiofouling, is favoured for this purpose in part owing to its low intrinsic toxicity 

and hydrophilicity.88 The electrical neutrality of the added PEG is able to reduce protein fouling 

by reducing the electrostatic interactions that would be able to occur between the membrane 

surface and the charged protein domains.86 The hydrophilicity of PEG can also reduce the 

nonpolar interactions between hydrophobic surfaces and nonpolar protein domains. Additionally, 

with PEG molecules of sufficient length, it can also provide further prevention of protein 

adsorption through steric hindrance. 

The PEG can be grafted onto the membrane in many ways, including adding a linker onto 

which the PEG can be crosslinked. One possible method is to use linker chemistry to couple the 
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PEG to the surface of the membrane. For example, a carboxy-functionalized PEG, such as O-(2-

carboxyethyl)polyethylene glycol, can be coupled to an amine group on the surface of a 

membrane by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxy-

succinimide (NHS). The addition of PEG on a cellulose membrane can increase its biocompatibility 

by displacing the hydroxyl groups and shielding the remaining groups from activating the 

complement system, in addition to being an antibiofouling surface.47 

The cellulose membrane was functionalized in previous work.53 First, the amine linker 3-

aminopropyltriethoxysilane (APTES) was added onto the cellulose membrane surface via 

adsorption and condensation.89 Once the surface of the cellulose membrane had been 

functionalized with amine groups, these groups can be coupled with carboxy-PEG using EDC–NHS 

chemistry. 

 

Figure 16. General scheme of the reaction between APTES and cellulose. Adapted from 

Magalhães et al.90 
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Figure 17. Scheme of membrane functionalization using EDC–NHS carbodiimide chemistry. 

Adapted from Bart et al.91 

4.2 Materials and Methods 

The polycarbonate membrane surface was functionalized similarly to the previous work 

by first aminating the surface. The membrane was reacted with hexamethylenediamine 

(HMDA),92 which operates by cleaving the polymer at the carbonate ester and slowly consumes 

the surface of the membrane.93 Therefore, this step needed to be carefully controlled so that the 

membrane is not completely consumed. After the surface has been decorated with amine groups, 

it was coupled with O-(2-carboxyethyl)polyethylene glycol, a carboxylated PEG, with the same 

EDC–NHS chemistry as was performed in the previous work. 

 



50 

 

Figure 18. Scheme of the amination of polycarbonate. The left is the polycarbonate surface with 

the carbonate groups emphasized. The final polycarbonate is functionalized with amine groups 

on the surface.93 

4.3 Experimental Results and Discussion 

The functionalization of the polycarbonate membrane was performed in a small-scale 

experiment to assess its viability. During the amination step, at HMDA concentrations that were 

too high or reaction times that were too long, the resulting membrane would disintegrate or have 

a very low burst strength. Therefore, the concentration and reaction time needed to be 

experimented with to result in a membrane that is still viable after functionalization. The contact 

angle of the polycarbonate membrane surface was measured to visualize its progress. Prior to 

any functionalization, the contact angle of the membrane was around 101°. After the amination 

reaction, the contact angle had reduced to around only 54°. Finally, after the addition of PEG, it 

reduced to 20°, indicating that the functionalization was successful. The antibiofouling properties 

of this PEG-functionalized membrane have yet to be tested, therefore, it must be extrapolated 

from the previous work. 

The PEG-functionalized cellulose membrane from the previous work was demonstrated 

to be able to significantly lower the incidence of biofouling. Fluorescently-labelled platelets were 

incubated with cellulose membranes with and without PEG functionalization. The platelet counts 

on the functionalized membrane were 86% lower than the unmodified membrane.53 This 

demonstrates that the addition of the PEG layer was able to significantly reduce biofouling on 

the surface. By considering this antibiofouling performance of PEG on the cellulose membrane 
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and the fact that PEG is hailed as the gold standard for antibiofouling, there is little concern that 

it would differ on the polycarbonate surface. 

A

 

  B

 

  C

  

Figure 19. Contact angles of the polycarbonate membrane. (A) The untreated polycarbonate 

membrane. (B) The polycarbonate membrane aminated with HMDA. (C) The polycarbonate 

membrane functionalized with PEG. 

While PEG is quite popular for its antibiofouling properties, other polymers have been 

proposed for similar purposes. One possible family of polymers are the zwitterionic polymers.94 

These polymers have been proposed as an alternative to PEG since it contains charged groups 

which can result in a stronger hydration layer and therefore more easily prevent biofouling. 

Therefore, in addition to experimentation with PEG, these zwitterionic polymers can also be 

considered for the antibiofouling functionalization.
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Chapter 5: Summary and Future Work 

5.1 Summary 

Due to the benefits of continuous wearable hemodialysis compared to conventional 

hemodialysis, a small microfluidic hemodialyzer was designed for these needs. By testing the 

clearance of various geometries, a simple serpentine-channeled geometry was chosen for its 

efficient use of the surface area. The dimensions of these serpentine channels were determined 

by balancing the optimization for performance with the efficiency of fabrication and prevention 

of hemolysis. 

Using both cellulose and polycarbonate membranes, the clearance of each were 

determined under various conditions. It was concluded that the polycarbonate membranes 

performed better and therefore polycarbonate was chosen for the membrane. The membrane 

in this microfluidic hemodialyzer was shown to be comparable to some commercial hollow-fibre 

hemodialyzers when it is used in a continuous setting. While the overall hemodialyzer urea 

clearance does not reach that of a commercial hemodialyzer, the mass transfer coefficient of the 

membrane shows that it has the potential to provide adequate dialysis when the flow rates are 

increased to that of a commercial system, ultrafiltration is applied, and the modular design is 

made use of to provide an increased surface area. This microfluidic hemodialyzer also uses less 

expensive materials and fabrication processes and can be easily modified in terms of 

functionalization to provide any additional surface properties that would make it more desirable.  
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5.2 Future Work 

In addition to these findings, there are many other improvements for the polycarbonate 

membrane and the overall wearable hemodialysis system for which investigation has been 

started. 

5.2.1 Pore Size Manipulation 

The pore size of the current polycarbonate membrane is a bit too large as it is still able to 

allow the passage of important proteins such as albumin. One option to improve this is to reduce 

the size of these pores by depositing a thin layer of material at an angle such that it occludes part 

of the pore entrance. The layer needs to be uniform and anisotropic to prevent the pores from 

being closed. A preliminary test of depositing a 40-nm layer of chromium, followed by a 200-nm 

layer of gold was performed at 0°, 6°, and 12° to attempt to reduce the pore size. Unfortunately, 

the experiment results in completely occluded pores, possibly due to the layer being too thick 

and formed surface structures possibly due to the accumulation of surface charge. 

Another method of having smaller pores is to track-etch a polycarbonate membrane in-

house. If a custom track-etched polycarbonate membrane could be made, then the pore density 

and pore size could be carefully controlled, which could result in better performance. 

5.2.2 Dialysate Regeneration 

An important aspect of creating a portable hemodialysis system is the dialysate usage. As 

discussed, conventional hemodialysis uses extremely large amounts of water to achieve the 

performance required to treat ESRD patients. While recycling the dialysate as is can reduce the 
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volumes needed, the dialysate would still eventually need to be replaced. For wearable 

hemodialysis, a system to remove the urea along with other waste products would be required 

to regenerate the dialysate for reuse. One option that is already in used by the WAK is the usage 

of a filter which uses activated carbon and ion exchange to regenerate the dialysate. Another 

possible option is to use electrochemical oxidation to break down the urea into nitrogen gas and 

carbon dioxide, which has previously been used in wastewater treatment.95 However, a very 

preliminary test was conducted and was not able to decompose urea and more research needs 

to be done since the presence of chloride ions may result in the generation of toxic substances.95 

5.2.3 Blood–plasma separation 

One novel aspect that can be introduced into the portable hemodialysis system is the 

separation of the blood into plasma and a blood cell-enriched solution. As one of the restrictions 

of the channel parameters is the generated shear stress due to hemolysis, one possible way to 

mitigate this is to use another microfluidic device to first separate most of the plasma from the 

blood cells and to dialyze the plasma alone prior to recombining with the extracted cells. This 

could also increase the urea clearance since the transport of urea is dependent upon the viscosity 

of the solution. 

Many computational simulations have been done in an attempt to design a microfluidic 

blood–plasma separator. Some designs were successful in separating all blood cells, however the 

yield of cell-free plasma was very low and probably not efficient for hemodialysis. Furthermore, 

these results were only tested in silico, and therefore may not completely reflect the problems 
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that could be encountered in vitro. Therefore, more research into better designs as well as actual 

in vitro experiments will need to be conducted. 

5.2.4 Other Solutes 

Currently only urea and albumin are being tested for simplicity. However, in the future, 

more solutes should be added into the BMF and experimented with to gain a more 

comprehensive view of the membrane performance. One molecule that was previously 

mentioned was beta-2 microglobulin, which has a molecular weight of 11.8 kDa. This molecule 

would probably serve as the upper bound of what should be removed from the BMF. Currently, 

we are using the Bradford assay to determine the albumin concentrations, but if there are other 

proteins introduced, this would not be a viable option. The Bradford assay has already been 

demonstrated to be ineffective when dealing with whole blood, so an alternative method of 

quantifying the amount of albumin will need to be used. Preliminary tests can be performed by 

only performing experiments with one protein per experiment, but it would be ideal to be able 

to determine the concentrations of each individual protein in complex solutions. This can be done 

with assay kits specific to each protein, but these are costly and may sometimes still fail in 

complex media such as blood. 

Another molecule that can be added to the BMF is creatinine, a breakdown product 

produced during muscle metabolism. This molecule is already commonly used to determine renal 

function. Preliminary experiments of an assay to detect creatinine have already been performed 

(Appendix B). However, this assay would still be prone to interference from some other solutes, 

so clearance studies with only compatible solutes may need to be performed. 
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Appendices 

Appendix A: Reduction of Membrane Thickness 

As discussed while examining the equations for diffusive and convective transport in 

hemodialysis, the thickness of the membrane factors into both the diffusive and convective 

clearance of the resulting hemodialyzer. As the thickness of the membrane increases, so does 

the path length of the solutes that need to be transported across the membrane. This results in 

decreased flux of that solute and therefore, decreased clearance. The reduction of membrane 

thickness was investigated for both the cellulose and polycarbonate membranes. 

The cellulose membrane that was being used for hemodialysis was around 50 μm thick 

when hydrated. One option to reduce the thickness was to slowly etch the surface layer away 

until a desirable thickness was reached. Preliminary tests were performed using plasma etching 

with a gas flow rate of 20 sccm, a pressure of 50 mTorr, and a radio frequency power of 100 W. 

This resulted in an etching rate of 1.5 μm/min which was performed for 18 min, decreasing the 

thickness by from 50 μm to around 27 μm. The first test was performed on a small piece of 

cellulose membrane. This thickness of this piece of cellulose membrane seemed to be reduced 

significantly and it had also changed from clear to translucent during the etching process. This 

opacity change may have occurred due to the introduction of surface morphology. As more 

surface roughness was introduced, the surface would diffuse the incoming light more, leading to 

a translucent appearance. This piece of membrane also became more fragile after the processing. 

The fabrication would have been more difficult as the membrane would be much more 
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susceptible to tearing. Therefore, a second test was performed with the membrane adhered to 

one side of PDMS as structural support prior to the plasma etching. The similarly small piece of 

cellulose membrane attached to PDMS was treated with oxygen plasma to test for any changes 

during the treatment, such as a loss of adhesion. As this did not seem to compromise the 

adhesion, a full-sized PDMS-mounted cellulose membrane was prepared for treatment with 

oxygen plasma. However, at this full size, the cellulose membrane seemed to shrink noticeably, 

causing the PDMS to curve inwards. This may be caused due to using excessive power or oxygen 

during the plasma treatment which possibly caused the collapse of the pore structure of the 

cellulose, which may be corrected with an adjusted protocol. However, with the replacement of 

the 50-μm cellulose membrane with a 10-μm polycarbonate membrane, it seemed that it would 

not be possible to reduce the thickness of the cellulose membrane such that it could outperform 

the new polycarbonate membrane. 

The polycarbonate was only 10 μm thick, however experiments that attempted to further 

reduce the thickness were performed. While investigating the chemical reaction used to 

functionalize the polycarbonate membrane with amine groups, it was noted that the reaction 

was destructive and results in polymer scission. This meant that this reaction would be able to 

etch the surface of the polycarbonate membrane. Thus, a small-scale test was performed to 

measure the reduction of the membrane thickness. A small piece of polycarbonate membrane 

was reacted in 5% and 10% solutions of HMDA for 24 hours. The membrane in the 10% solution 

had a complete loss of structural integrity and was not possible to handle as it fell apart with any 

contact, however the membrane in the 5% solution was still easily handleable. Therefore, a 
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scanning electron microscope (SEM) micrograph was taken of an unmodified polycarbonate 

membrane and the membrane reacted with 5% HMDA for 24 hours. This thinned membrane had 

a reduced thickness of around 4 μm and appeared to be much more handleable than the plasma-

etched regenerated cellulose membrane. There also seemed to be the side effect of pore 

widening, with the pores increasing from around 50 nm to around 120 nm. Despite the increased 

size of the pores, an experiment was performed where an assembled polycarbonate 

hemodialysis unit was thinned and functionalized in-situ using the same protocol. However, after 

the functionalization was complete and the excess HMDA was being rinsed from the unit, the 

membrane ruptured catastrophically from the transmembrane pressure generated from the 

pumps. While reinspecting the membranes from the small-scale test, it was noticed that the long 

reaction times in the HMDA had resulted in a significant loss of tensile strength in the membrane. 

This unfortunately suggested that chemical etching to reduce the thickness of the polycarbonate 

membrane was not an option. Retrospectively, disregarding of the shrinkage of the plasma-

etched cellulose membrane, its fragility suggests that it likely would not have been able to 

withstand these pressures either.
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Appendix B: Creatinine Assay 

The creatinine assay was adapted from published assays using the Jaffe reaction.96, 97 A 

solution of 2.5 mg/mL creatinine HCl was prepared as a standard. An additional solution of 

0.75 M sodium hydroxide (NaOH) was prepared. In a 96-well plate, 150 μL of the sample was 

added, followed 50 μL of a 1:1 mixture of 1% picric acid and 0.75 M NaOH. After 20 minutes, the 

samples were read with a spectrophotometer at 550 nm. This resulted in a very well-defined 

curve with a linear region of around 0–0.5 mg/mL. 


