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Abstract 
 

The effect of fold initiator design on the performance of axial crush rails fabricated using ultra high 

strength steels (UHSS) is examined in a combined experimental-numerical-analytical study. Of 

particular interest is the effect of fold initiator pattern and spacing in promoting stable folding. A key 

factor in introducing UHSS into energy absorbing components is the loss of ductility with increases in 

strength. Thus, the effect of material fracture limit on the ability of crush structures to fold is also 

considered.  

     The UHSS steel grade considered for the majority of this research (and all of the experiments) was 

hot stamped Ductibor® 1000-AS, with a thickness of 1.2 or 1.6 mm and tensile strength of 1000 MPa. 

In addition, performance metrics, developed as part of this research, are applied to a broader range of 

steel grades spanning strengths in the range of 270-1500 MPa.   

     Ductibor® 1000-AS double hat sections were hot stamped, spot welded and tested in axial crush 

under quasi-static and dynamic loading conditions. A baseline fold initiator pattern was first evaluated 

on axial crush rails that incorporated rudimentary single initiators indented on two opposing faces. 

Dynamic crush tests considering this baseline pattern repeatedly showed a global buckling mode, 

parent metal fracture and spot weld failure. The numerical models demonstrated close agreement with 

the observed buckling and failure modes and the measured force-displacement response.   

     Following these baseline results, a numerical parametric study was undertaken to evaluate the effect 

of six different fold initiator patterns on the dynamic axial crush response. These patterns consider 

different design variables such as fold initiator location, sequence, orientation, spacing and symmetry. 

The progressive folding mode was predicted for three of the six patterns considered. The most stable 

pattern corresponded to that identified by Wierzbicki and Abramowicz (1983) within their 

Superfolding Element analysis. This pattern utilizes fold initiators placed on the channel section faces 

and flanges in an alternating fashion to promote a rolling (serpentine) collapse of the flange. The effect 

of fold initiator spacing on stability (for the most stable initiator pattern) was further examined for each 

sheet thickness. The numerical models revealed a strong dependence on initiator spacing and served 

to identify a specific initiator spacing for each thickness that resulted in stable folding and largely 

suppressed fracture within the tight folds that form during axial crush; moreover, these initiator spacing 

values agreed well with those predicted using the analytical model of Wierzbicki and Abramowicz 

(1983). 
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     Experimental assessment of the model predictions was undertaken by performing quasi-static and 

dynamic axial crush experiments for a subset of the parametric cases comprising the baseline and stable 

folding initiator patterns and a range of initiator spacing. In general, the crush response of the 1.6 mm 

specimens agreed extremely well with the model predictions and served to validate the predicted effect 

of fold initiator pattern and spacing on folding stability and fracture suppression. The 1.2 mm 

specimens exhibited a global buckling instability that was not predicted by the numerical models. The 

cause of this instability was attributed to the fold initiator forming process which resulted in significant 

distortion of the cross-section and a loss of buckling resistance. Subsequent numerical models that 

combined detailed simulation of the indentation process and mapped the forming predictions onto the 

crush simulations were able to capture the observed buckling response. 

     As part of the continued analysis of axial crush results, three metrics were developed to predict axial 

crush performance and potentially serve as design tools for screening material selection and initiator 

design. One metric, termed the “Relative Bending Limit,” was derived from the ratio of the measured 

plastic work in V-bend fracture characterization tests to the predicted plastic work in the Superfolding 

Element analysis. This metric was successfully demonstrated to be a predictor of the fracture extent 

observed in crush columns made of different materials. Another metric, termed the “Folding Transition 

Indicator,” was derived from the ratio of the measured slenderness ratio of the crush specimens to the 

theoretical critical slenderness ratio. The metric strongly reflected the various collapse modes observed 

in these axial columns. By plotting the two metrics on the same graph, a 2D response map was 

constructed that successfully captured the overall trends in the fracture extent vs. deformation mode 

response.  

     This research demonstrates that the analytical design approach in configuring fold initiator patterns 

has significant potential in promoting progressive folding in hot stamped UHSS. By adopting a 

carefully designed fold initiator pattern and analytically determined fold initiator spacing, improved 

folding stability was achieved without significant sacrifice in absorbed energy. The results support the 

application of Ductibor® 1000-AS in frontal crush structures, but point to the need for considerable 

care in design of fold initiators for which the current performance metrics should serve as design tools. 

The current findings are tempered by the fact the axial crush specimens, particularly the thinner 1.2 

mm samples, were subject to shape distortion due to the indentation method in producing the fold 

initiators. In future work, as well as in industrial hot stamping practice, these specimens should be 

fabricated with fold initiators integrated within the hot stamping dies in order to limit distortion and 

further improve the axial crush performance of hot stamped Ductibor® 1000-AS components.   
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𝑊𝑆𝐸,𝑏𝑒𝑛𝑑   Theoretical prediction of the plastic bending energy in the horizontal bending 

zone of the Superfolding Element 

𝑊𝑣,𝑏𝑒𝑛𝑑  Measured plastic work in the V-bend specimen using Equation (52) due to 

Noder et al. (2020)  

Z Mid-shell perimeter of single or double hat cross section, which is 

approximated as 2𝑎 + 2𝑏 + 4𝑓 

𝛼𝑆𝐸,𝑖, 𝛼𝑆𝐸,𝑓, 𝛼𝑆𝐸  Initial, final, and current crush angle of Superfolding Element defined in 

Figure A.1 

𝛼̅ Transition angle at which the deformation mode of Superfolding Element 

switches from the quasi-static inextensional mode to extensional mode. 

𝛿𝑒 Effective crush distance   

𝜀1, 𝜀2 Major and minor true strain 

𝜀𝑆𝐸,1, ..., 𝜀𝑆𝐸,3 Theoretical prediction of final plastic strain in outer surfaces of toroidal, 

horizontal and inclined bending zones, defined in Equations (A.2.4) and 

(A.2.5) 

𝜀𝑓̅ Effective (or equivalent) plastic fracture limit strain 

𝜀𝑝̅ Effective (or equivalent) plastic strain 

𝜀̇ Strain rate 

𝜀𝑎̇𝑣𝑔, 𝜀0̇   Average and reference strain rate 

𝜂 Stress triaxiality 
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𝜂𝑐𝑟𝑢𝑠ℎ  Crush energy efficiency defined in Equation (50) 

𝜂𝑓𝑜𝑙𝑑  Folding Transition Indicator defined in Equation (67) 

𝜃𝑖, 𝜃𝑓, 𝜃  Initial, final, and current bend angle of the V-bend specimen defined in Figure 

135c 

𝜇 Friction coefficient 

𝜎𝑐𝑟
𝑐𝑜𝑙 Critical column plastic buckling stress 

𝜎𝑦 Yield strength 

𝜎𝑈𝑇𝑆 Ultimate tensile strength 

𝜎𝑆𝐸 Predicted mean crushing stress obtained by the Superfolding Element 

Analysis 

𝜎𝑆𝐸,1,..., 𝜎𝑆𝐸,3 Energy equivalent plastic flow stress in surface element (1) to (3) of the 

Superfolding Element, defined in Equation (A.2.1) to (A.2.3) 

𝜎 Effective (or equivalent) plastic flow stress  

𝜒𝑏𝑒𝑛𝑑  Relative Bending Limit defined in Equation (58) 

𝜑𝑜 Initial corner angle of the Superfolding Element defined in Figure A.1. 
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1.0 Introduction 
 

In recent years, increasing concerns regarding automotive fuel efficiency and occupant safety have led 

to strict government regulations. For example, the Corporate Average Fuel Economy (CAFE) 

standards established by the National Highway Traffic Safety Administration (NHTSA) mandate 

increases in the minimum fuel efficiency of passenger cars from the 2016 level of 34.7 mpg to 42.4 

mpg by 2025 (NHTSA, 2021). With such demands, the automotive industry has begun an unrelenting 

quest to reduce vehicle body weight, promoting the development of Ultra High Strength Steel (UHSS).  

UHSS can be categorized into several groups. The cold formable 3rd generation steels, such as 

enhanced Dual Phase (DP) or Quench and Partition (Q&P) steels (Edmonds et al., 2006), aim to retain 

both high strength and ductility at room temperature. Hot stamped steel, a focus of the current thesis, 

utilizes forming and quenching in a one-step process. The maximum tensile strength of hot stamped 

steels, such as Usibor® 2000-AS, exceeds 1800 MPa and allows a reduction in the sheet thickness and 

weight of structural sheet components while maintaining similar load carrying capacity (ArcelorMittal, 

2016d).  

However, hot stamped UHSS exhibits relatively low ductility, which stems from less ductile 

microstructures required to achieve ultra-high strength. The consequence can be limited folding 

stability and fracture resistance in axial crush loading due to the formation of brittle martensitic 

microstructures after quenching blanks from their austenitization temperature during forming in water-

cooled dies (Mori et al., 2017; Omer, 2017a).  

While the high tensile strength of hot stamped UHSS makes them ideal candidates for anti-intrusion 

structural components, which require high rigidity, their lower ductility can make them inappropriate 

for application in energy absorption components for vehicle frontal or rear body applications. In Figure 

1, the evident case of parent metal fracture present in Usibor® 1500-AS is compared to that of stable 

folding present in the lower strength grade hot stamped steel, namely Ductibor® 500-AS.  
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(a) hot stamped Usibor® 1500-AS 

(Omer et al., 2017b) 

(b) hot stamped Ductibor® 500-AS 

(Peister, 2019) 

Figure 1: Comparison of axial crash specimens, fabricated from the hot stamped steel grades: (a) 

Usibor® 1500-AS and (b) Ductibor® 500-AS. 

 

A number of manufacturing methods exist to improve the folding stability of hot stamped UHSS 

structures, such as tailored in-die heating (IDH) (Omer et al., 2017b). Such a method promotes phase 

transformation to softer microstructures; hence, increasing ductility by decreasing the cooling rate in 

regions of interest. Another method is to utilize tailor-welded blanks (TWB), which comprise UHSS 

on one side of the sheet and a more ductile material on the other side. To this end, newer grades of hot 

stamping alloys, such as Ductibor® 1000-AS, offer intermediate combinations of strength (1000 MPa) 

and ductility. Recent experience (Tummers, 2020) has suggested that such alloys can be used in frontal 

and rear energy absorbing structures; however, it has become evident that design tools are required to 

optimize the folding stability and avoid fracture of such alloys. 

Motivated by these requirements, the current thesis aims to develop methods to design structures that 

promote stable folding and enhance the potential to use hot stamped UHSS in energy absorption 

structures through improved analysis and design methods. To meet this aim, the overall scope of the 

thesis consists of a multi-step approach. Axial crush experiments and supporting numerical models 

were developed that considered a hot stamped UHSS material, Ductibor® 1000-AS. Parametric studies 

were performed that considered a wide range of fold initiator patterns to ascertain their effect on 

progressive folding stability and fracture suppression. Next, analytical models of axial crush were 

applied to develop performance metrics to predict axial crush response in terms of folding stability, 

global buckling onset and fracture during tight bending within folds. These metrics were applied to a 

wide range of steel alloys with strengths ranging from 270-1500 MPa and represent a first step to the 

development of design guidelines for UHSS axial crush structures.  
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1.1. Automotive Sheet Steel 
 

The decades-long pursuit of weight reduction has led to the emergence of lightweight materials in 

vehicle bodies such as aluminum and magnesium alloys, as well as carbon fiber composites. 

Nevertheless, modern automobile bodies still consist primarily of steel which makes up over 50% of 

total mass (Hovorun et al., 2017). This predominance can be attributed to the exceptional strength and 

relative low cost of steel, which places steel as a top contender for stamped structural components. The 

strength levels of steels found in the vehicle body-in-white (BIW), however, vary significantly 

depending on the location, as demonstrated in Figure 2. 

 

 

Figure 2: Different steel grades in the BIW for 2016 Honda Civic, from Honda (2019). Tensile 

strength of the steels ranges from 270 MPa to 1500 MPa based on the location. 

 

Different components within an automotive structure serve different functions. Hence, the mechanical 

properties of materials inevitably vary across the vehicle body. In general, material selection for the 

vehicle structure considers three functions: dent resistance, anti-intrusion and energy absorption (Billur, 

2019). 

 

  

 

Figure 3: Illustration of vehicle structures (highlighted in blue) with different functions: (a) dent 

resistant components such as hoods (b) anti-intrusion components such as b-pillars and (c) 

energy absorption components such as front rails. The images are adapted from Hilfrich and 

Seidner (2008) 
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For dent resistant components in which shape retention is of concern, high yield strength is the desired 

material property. For anti-intrusion components, high ultimate tensile strength (UTS) is required to 

protect passengers in the event of a crash. Lastly, energy absorption components require both high 

UTS and high post uniform elongation because the area under the stress-strain curve determines the 

specific energy absorption (Billur, 2019).  

     Over the decades, steels have evolved to meet improved formability and mechanical properties. 

From mild steel to advanced high strength steel (AHSS), different UTS and uniform elongation levels 

are achieved by controlling alloying elements and heat treatments. Nowadays, the list of commonly 

found steels in the vehicle BIW may include, but is not limited to, mild steel, high strength low alloy 

(HSLA) steel, dual phase (DP) steel, transformation induced plasticity (TRIP) steel, hot stamping 

boron steel and 3rd generation (Gen 3) steel. These steels show a general trend of increasing strength 

as ductility (i.e. uniform elongation) decreases, as shown in Figure 4. 

 

 

Figure 4: Comparison of various steel grades in tensile strength and elongation, adapted from 

Billur et al., (2015). The properties of ArcelorMittal hot stamping steel grades (after die-

quenching) are shown including the main focus of the thesis, Ductibor® 1000-AS. 

 

Mild steels display a primarily ferritic microstructure, imparting a very high ductility, but sacrificing 

strength. HSLA steels are carbon-manganese steels with additional alloying elements such as 

vanadium and titanium. At a microstructural level, the strength of HSLA is attributed to precipitation 

hardening and grain refinement which improves strength but results in a total elongation as low as 16% 

(POSCO, 2014). The mechanical behaviour of dual phase (DP) steels is explained by the presence of 

martensite islands in a ferrite matrix (ArcelorMittal, 2019), resulting in strong work hardening and 

good ductility. TRIP steels, on the other hand, consist partially of retained austenite that undergoes 
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gradual martensitic phase transformation when subject to plastic deformation (Li et al., 2003). Because 

of the TRIP effect, the material generally exhibits higher work hardening and elongation compared to 

DP steels (Samek and Krizan, 2012); however, these steels have seen only limited commercial 

application due to high cost and poor weldability. Gen 3 steels were introduced to improve formability 

relative to previous generation AHSS. For example, Q&P steels undergo an interrupted quench stage 

to produce a microstructure with stabilized retained austenite and carbon-depleted martensite (Speer 

et al., 2003). Finally, hot stamping steels, such as 22MnB5, have high formability during high 

temperature stamping and are capable of reaching a UTS above 1500 MPa through a fully martensitic 

transformation during the hot stamping process (Samek and Krizan, 2012). The advantages of hot 

stamping steels include reduced springback by holding the formed part in its final configuration (in-

die) past the martensite finish temperature (Nakagawa et al., 2018) and controlled ductility based on 

the quench rate (Samadian et al., 2020). Ductibor® 1000-AS, a material of focus in the current thesis, 

also belongs to the family of hot stamping steels and offers a somewhat reduced strength but higher 

ductility after hot stamping than Usibor® 1500-AS. The following section discusses the manufacturing 

process and mechanical properties associated with hot stamping steel grades. 

 

1.1.1. Hot Stamping Process 
 

Hot stamping was first patented by a Swedish company for manufacturing lawnmower blades in 1977 

(Karbasian and Tekkaya, 2010). The automotive industry eventually recognized the strong benefit in 

light-weighting, and the first vehicle to consist of hot stamped parts emerged in 1984 (Berglund, 2008). 

Since then, the usage of hot stamped components in vehicles has rapidly increased. VOLVO vehicles, 

for example, have increased the mass percentage of total BIW in XC90 models from 7% in 2003 to 

40% in 2014, according to Mori et al. (2017). Today, the list of common hot stamped components 

includes bumpers, roof rails, A-pillars and B-pillars. 

      Modern hot stamping technology is broken down into two different methods: (i) direct hot stamping 

and (ii) indirect hot stamping, as illustrated in Figure 5. In the direct hot stamping method, the blank 

is heated in a furnace above the Ac3-temperature of approximately 850°C (Merklein et al., 2009). Once 

the blank is fully austenitized, it is quickly transferred to a die in which forming and quenching take 

place simultaneously. In order to ensure the required minimum cooling rate, water-cooled dies are used 

in the forming process (George, 2011). In the indirect method, the blank is cold stamped prior to the 

furnace stage, and the subsequent process follows the same steps.  
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Figure 5: Illustration of (a) direct hot stamping and (b) indirect hot stamping processes, adapted 

from Karbasian and Tekkaya (2010) 

 

     The high strength of hot stamped components is mainly attributed to the martensite phase 

transformation during forming and in-die quenching that increases the flow stress of material 

(Karbasian and Tekkaya, 2010).  For this reason, the cooling rate of the blank during the forming stage 

plays a crucial role. In order to predict the resulting microstructures for a given cooling rate, a 

continuous cooling temperature (CCT) diagram can be referenced, as shown in Figure 6. For 22MnB5 

steel, which is the most commonly studied hot stamping alloy, the critical cooling rate to avoid the 

bainite and ferrite transformation is 27 K/s, according to Tekkaya et al. (2007). 

 

 

Figure 6: CCT diagram for 22MnB5, adapted from Tekkaya et al. (2007) 
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1.1.2. Hot Stamping Process Parameters 
 

     Understanding the key parameters controlling the rate of heat transfer between the workpiece and 

die, normally quantified by the heat transfer coefficient (HTC), is essential in controlling the cooling 

rate. For heat transfer between the tooling and blank during hot stamping, die tonnage or contact 

pressure govern the HTC (Shapiro, 2008). At the microscopic level, the surfaces of the blank and tool 

are not entirely in contact due to surface irregularities. Contact spots experience direct metal 

conduction, while the rest of the surface experiences radiative or conductive heat transfer through an 

air gap (see Figure 7). Since the thermal conductivity via direct metal conductance is significantly 

larger than that via an air gap or fluid-filled interstices, as noted by Fenech (1959), the majority of the 

heat transfer will occur at the contact points, and thus, HTC in during hot stamping is primarily 

governed by the area of spot contacts. In general, by increasing the die tonnage or contact pressure, 

surface asperities become more flattened, and the total area of contact increases, giving a rise in HTC.  

 

 

Figure 7: Illustration of contact surface between blank and die at the microscopic level, adapted 

from George (2011) 

 

The significance of contact pressure in determining HTC was pointed out and studied by numerous 

authors (Merklein and Lechler, 2008; Salomonsson et al., 2009; Oldenburg and Lindkvist, 2011; 

George et al., 2012; Caron et al., 2013; Omer et al., 2020). Merklein and Lechler (2008) adopted an 

analytical approach in determining the HTC of Usibor® 1500-AS at different contact pressures. In that 

study, the temperature history of the blanks was measured during quenching and fit to theoretical heat 

transfer equations. Their results have shown that the averaged HTC approximately increased in a linear 

relationship from 700 W/m2K to 3000 W/m2K with varying contact pressure from 0 MPa to 40 MPa. 

Similarly, the experimental characterization by Omer et al. (2020) of HTC of Usibor® 1500-AS 

showed a linear relationship with the contact pressure from 0 to 30 MPa. On the other hand, 
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Salomonsson et al. (2009) conducted an inverse analysis in determining HTC. The experimental setup 

was modelled in numerical simulation using LS-Dyna, and optimization analyses were conducted so 

that the measured temperature history of the blanks was reproduced in the model. 

 

1.1.1. Hot Stamping Steel Alloys 
 

Hot stamping steels are commonly referred to as boron steels. As the name suggests, such steels utilize 

boron as an alloying element for improved hardenability. The underlying mechanism has been 

characterized as the segregation of boron on the austenite grain boundary which results in suppression 

of ferrite nucleation (Taylor and Hansen, 1990; Taylor, 1992). As a result, more austenite remains at 

lower temperatures during quenching and is available for martensite formation. 

     The hot stamping steel considered in this research is Ductibor® 1000-AS, manufactured by 

ArcelorMittal. The carbon content of Ductibor® 1000-AS falls between the two other steel grades from 

the manufacturer, namely Usibor® 1500-AS and Ductibor® 500-AS, as shown in Table 1. The 

maximum boron content in Ductibor® 1000-AS is the same as Usibor® 1500-AS and Usibor® 2000-

AS, which creates a predominantly martensitic microstructure after hot stamping, as reported by 

Samadian and Abedini (2020). 

 

Table 1: Chemical composition (maximum weight %) of ArcelorMittal hot stamping steels, from 

ArcelorMittal (2021) 

 

Material C  B Mn P S Si Cr Al Ti  Nb N Fe 

Ductibor® 

500-AS 
0.08 0.001 1.70 0.030 0.01 0.35 0.2 0.06 0.09 0.1 0.01 remaining 

Ductibor® 

1000-AS 
0.10 0.005 1.80 0.030 0.01 0.60 0.2 0.06 0.05 0.1 0.01 remaining 

Usibor® 

1500-AS 
0.25 0.005 1.40 0.030 0.01 0.40 0.5 0.06 0.05 - 0.01 remaining 

Usibor® 

2000-AS 
0.36 0.005 0.80 0.030 0.01 0.80 0.5 0.06 0.06 0.07 0.01 remaining 

 

The mechanical properties of Ductibor® 1000-AS also fall between the two (of three) other steel grades, 

as shown in Table 2.  
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Table 2: Mechanical properties of ArcelorMittal hot stamping steels after hot stamping and paint 

baking, from ArcelorMittal (no date; 2016a; 2016b; 2016c; 2016d) 

 

Material 

Yield 

Strength  

(MPa) 

 Ultimate Tensile 

Strength  

(MPa) 

Fracture 

Elongation 

Bending 

Angle 

(°) 

Ductibor® 

500-AS 
408 

 
657 0.189 ≥90 

Ductibor® 

1000-AS 
849 

 
1067 0.056 ≥75 

Usibor® 

1500-AS 
1141 

 
1553 0.046 ≥50 

Usibor® 

2000-AS 
1462 

 
1848 0.054 ≥45 

 

Usibor® 1500-AS belongs to a family of 22MnB5 alloys, with UTS above 1500 MPa. Several authors 

have extensively studied the flow and fracture behaviour of die-quenched 22MnB5 (Bardelcik et al., 

2012; ten Kortenaar, 2016; Östlund et al., 2016, Samadian et al., 2020). Among these researchers, 

Samadian et al. (2020) specifically investigated the effect of quench rate on the resultant 

microstructures. Fully austenitized samples were oil-, forced-air-, and air-cooled separately and yielded 

100% martensite, a mixture of bainite and martensite and 100% bainite microstructures, respectively. 

The fracture loci and flow curves of the multi-phase (forced-air-cooled) microstructures were modelled 

through a mean field homogenization approach in which the macroscopic mechanical properties are 

calculated by statistical averaging of the phases present in the microstructure. On the other hand, 

Bardelcik et al. (2012) predicted the flow response of the multi-phase microstructure based on the 

measured Vickers hardness. Given the extensive past research on this alloy, 22MnB5 currently serves 

as the benchmark in the list of boron steels.  

Ductibor® 500, on the other hand, exhibits a UTS up to 810 MPa, depending upon the quench rate, 

and substantially higher fracture elongation than Usibor® 1500-AS (Samadian et al., 2018). The 

fracture behaviour of the alloy also has been studied by Samadian et al. (2019). Ductibor® 1000-AS 

carries a very little published literature on the characterization of constitutive and fracture behaviour 

to-date and is the topic of ongoing work by researchers at the University of Waterloo.  

     One approach to tailoring the local properties within a hot stamped component is achieved using a 

blank comprising different steel grades and gauges joined by a laser welding process. Such a blank is 

commonly referred to as a Tailor Welded Blank (TWB). The main advantage of TWBs is the weight 

reduction by strategically placing the higher strength or thicker gauge portion at BIW areas where 
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structural stiffness is desired (Merklein et al., 2014). In studying the potential applications of TWBs in 

vehicle structures, Múnera et al. (2008) demonstrated a 20 % weight-saving in a door ring comprising 

tailor welded Usibor® 1500-AS and Ductibor® 500-AS. Similarly, the numerical studies by Tummers 

(2020) demonstrated a 27.6% weight-saving in the front sub-assembly of a commercial SUV using 

tailor welded Ductibor® 1000-AS and Usibor® 1500-AS. The axial crush experiments by Peister et 

al. (2018) considered double hat channels comprising tailor-welded Ductibor® 500-AS and Usibor® 

1500-AS. They reported a 12% increase in energy absorption compared to non-tailored channels 

composed entirely of Ductibor® 500-AS. 

 

1.2. Material Modelling for Sheet Steel 
 

In the vehicle design cycle, the development of a new material is followed by material modelling for 

finite element implementation within forming and crashworthiness simulations. In this section, 

different approaches in modelling the plasticity and fracture response of sheet steel are discussed. The 

discussion is tailored towards consideration of material characterization and modelling appropriate for 

a UHSS sheet. 

 

1.2.1. Plasticity Response 

 

Linear elasticity and infinitesimal strain assumptions have their merits in structural analysis for 

simplicity; yet, many challenging problems—such as metal forming or crash simulations—involve 

plasticity to a greater extent. For that reason, the automotive industry has a need for accurate plasticity 

modelling in finite element implementations. 

     In general, there are two approaches in modelling plasticity: physics-based approaches versus 

phenomenological-based approaches. The physics-based approach studies the movement of atoms and 

deformation of grains at the microscopic level, while the phenomenological approach mathematically 

models the measured material behaviour at the macroscopic or continuum level (Khan and Huang, 

1995). Adopting a mesh size as small as the size of grains in polycrystalline is computationally costly 

in many industrial applications in which problems are usually simulated at the macroscopic scale. 

Hence, the phenomenological approach is usually adopted. 

Phenomenological plasticity, at its core, is built upon three cornerstones: (i) the yield surface, which 

sets the boundary between the plastic and elastic deformation states (ii) the hardening law, which 
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determines how the yield surface evolves following onset of yielding, and (iii) the flow rule, which 

relates the stress and plastic strain rate (Krabbenhoft, 2002).  

 

1.2.1.1. Hardening Behaviour 
 

In the physical description, hardening behaviour stems from the mechanism of dislocations. As more 

dislocations are generated during deformation, a higher amount of stress is required to sustain 

dislocation motion along slip planes (Bergström, 2015). Taylor (1934) was perhaps the first to 

physically describe the hardening behaviour of metals in terms of dislocation density: 

 

 ( )flow Gb   =  (1) 

 

Where 𝜎𝑓𝑙𝑜𝑤 is the flow stress, 𝛼 is a hardening parameter, 𝐺 is the shear modulus, 𝑏 is the magnitude 

of the Burgers vector, 𝜀 is the true strain and 𝜌 is the dislocation density. 

As noted by van den Boogaard (2002), the key aspect in modelling work hardening lies in predicting 

the evolution of dislocation density, and authors including Bergström (1983) have developed models 

for predicting the dislocation evolution based on several mechanisms such as immobilization, 

remobilization and annihilation. While the remaining section focuses on phenomenological 

descriptions of work hardening, a detailed summary is presented by Bergström (2015). 

     Phenomenologically, the hardening rate 𝑑𝜎𝑓𝑙𝑜𝑤/𝑑𝜀 decreases continuously from a high value to 

zero for polycrystalline metals (van den Boogaard, 2002). Over the decades, many authors (Holloman, 

1945; Voce, 1948; Zerilli and Armstrong, 1987) developed models to capture such saturation 

behaviour in various forms. One example is the model, developed by Hockett and Sherby (1975), that 

describes flow stress saturation at large strain under room temperature conditions using the following 

relationship 

 

 ( )( ) ( )exp
m

flow sat p sat yN    = − − −  (2) 

 

Where 𝜎𝑠𝑎𝑡 is the saturation stress, 𝜀𝑝 is the equivalent plastic strain, 𝜎𝑦 is the yield strength and 𝑁 and 

𝑚 are calibration coefficients, respectively.  
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In addition to the plastic strain, the flow stress of a metal is governed by other variables such as 

temperature and strain rate. To account for the effects of these variables, Johnson and Cook (1983) 

assumed a multiplicative form of three functions as follows: 

 

 0

0 0

1 ln 1

m

n

flow p

m

T T
A B C

T T


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

     −
   = + + −      −        

 (3) 

 

The first function describes power law hardening with yield stress 𝐴 and hardening parameters 𝐵 and 

𝑛. The second function accounts for the strain rate sensitivity through coefficient 𝐶 and the reference 

strain rate 𝜀0̇ . Lastly, the temperature sensitivity is described by the third function with thermal 

softening coefficient 𝑚  and reference temperature 𝑇0  and melting temperature Tm. (Note that the 

parameter m has differing meanings in Equations (2) and (3).) Due to the multiplicative coupling 

assumption inherent in the Johnson-Cook model, it fails to capture complex material behaviour such 

as that of Al-7039, as reported by Gray et al. (1994). Nonetheless, the model is widely used for its 

simplicity and has been extended in different forms (Børvik et al., 2001). 

     Phenomenological characterization of the hardening behaviour of hot stamped steels takes two steps: 

(1) conducting uniaxial tension testing until diffuse necking and (2) extrapolating the stress-strain data 

to account for large strain. Although the tensile data can be fitted in hardening models beyond the 

experimental range, such a method can cause a significant deviation in post necking behaviour based 

on the choice of model. A recent analytical method by Rahmaan et al. (2017) presents a solution in 

which one conducts a complementary coupon test that does not develop a necking instability such as 

simple shear and then extrapolates the tensile data using the stress ratio between shear stress (from the 

simple shear test) and equivalent stress (from the uniaxial tensile test). The ratio is obtained by plastic 

work equivalence analysis, and detailed description of this approach is provided by Rahmaan et al., 

2017. The extrapolated curve is fitted to hardening models with additional constraints such as the 

Considère criterion that equates the hardening rate to the true stress. Finally, the fitted model with the 

least error is selected.  

     The hardening behaviour of hot stamped steels varies significantly under different quench 

conditions. To perform tensile and simple shear tests on a broad range of as-quenched specimens is 

time-consuming and repetitive. For such problems, the Tailor Crash Models I and II (Bardelcik et al., 

2012; Bardelcik et al., 2014) offer a convenient solution in which the flow stress is predicted by the 

measured Vickers hardness following quenching. The use of Vickers hardness was justified by the 
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observed linear dependency with the area fraction of martensite, banitie and ferrite phases in the 

quenched specimens. 

Figure 8 shows the hardening behaviour of Usibor® 1500-AS and Ductibor® 500-AS under a water-

cooled, die-quenched condition. The Usibor® 1500-AS data was fitted to a Voce model and multiplied 

by an exponential-type strain rate sensitive function due to Børvik et al. (2001) by Bardelcik et al. 

(2012). The quasi-static hardening curve of Ductibor® 500-AS was modelled by Samadian et al. (2018) 

and modified to include strain rate sensitivity using the Johnson-Cook function by Abedini (2019). 

 

 

Figure 8: Flow curve of water-cooled, die-quenched Usibor® 1500-AS by Bardelcik et al. (2012) 

and Ductibor® 500-AS by Samadian et al. (2018) and Abedini (2019) 

 

1.2.1.2. Yield Criterion 
 

Due to the intrinsic properties of rolled sheets, some level of anisotropy is inevitable in sheet steels. 

Austenitizing at high temperatures, such as 950 °C, largely removes planar anisotropy for 22MnB5, as 

reported by Hu et al. (2017). For this reason, much research towards modelling hot stamped steel 

(Östlund, 2015; ten Kortenaar, 2016; Samadian et al., 2020) assumes isotropic yield functions to this 

day. One of the earliest and most famous example of such isotropic yield criteria is due to von Mises 

(1913), with the following expression:  

 

 ( ) ( ) ( ) 
1

2

2 1 2 1 3 2 3

1
3

2
eq J      = = − + − + −

2 22

 (4) 

 

Where 𝐽2 is the second deviatoric stress invariant and 𝜎1, 𝜎2, 𝜎3 are the principal stresses.  
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Yield criteria often describe what is considered as a “yield surface” in principle stress space as a 

convenient approach to visualizing the material stress state resulting in plastic flow. A point in principle 

stress space can either be inside (elastic loading) or outside (plastic loading) the surface. However, the 

latter case is not physical since plastic loading is accompanied by distortion (hardening) of the yield 

surface such that the stress state remains on the expanding yield surface. In mathematical form, this 

condition can be expressed as 

 

 0eq − =  (5) 

 

in which 𝜎𝑒𝑞 is the equivalent stress, calculated by a yield criterion, and 𝜎 is the flow stress, obtained 

from a hardening response of materials. 

 

1.2.1.3. Flow Rule 
 

The last constituent of the phenomenological plasticity model is the flow rule. Like Hooke’s law that 

relates strain increment to stress in the theory of elasticity, the flow rule relates plastic strain increment 

to stress in the theory of plasticity. In the flow rule, however, the direction of plastic strain increment 

is governed by a separate function known as the plastic potential 𝜓. Furthermore, its magnitude is 

calibrated by the plastic multiplier 𝑑𝜆 through the following relationship 

 

 d d=






p


 (6) 

 

The partial derivative term  
𝜕𝜓

𝜕𝝈
 enforces the requirement that the yield surface will grow in the normal 

direction to the 𝜓 function. In the associated flow rule (AFR), the plastic potential function is assumed 

to coincide with the yield function. In the case of the von Mises (1913) yield criterion, Equation (6) 

reduces to  

 

 d d= p N  (7) 

 

in which N, the normal to the yield surface, becomes 

 

 eq
=

σ


N  (8) 

Equations (4) to (8) are examples of so-called “constitutive relations” in describing the plasticity 

behaviour of materials and are commonly solved computationally in finite element problems.  
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1.2.2. Fracture Response 
 

In predicting the fracture response of ductile metals, three categories of models exist: (i) micro-

mechanical damage models, (ii) Continuum Damage Models (CDM) and (iii) phenomenological 

models. In micromechanical damage models, the effect of void growth or coalescence at the microscale 

is incorporated into a constitutive relation. Such an example is the Gurson (1977) model, with the idea 

of narrowing the yield surface as the volume fraction of voids increases. In contrast, the two latter 

models aim to express the fracture response of a bulk material or “continuum” element at the 

macroscopic scale. In CDM, the interplay of such microscale defects is represented as a scalar variable, 

damage. As explained by Lemaitre (1985), the presence of microcracks in the continuum element with 

normal vector 𝒏 gives damaged area 𝑆𝐷 from the total cross-sectional area 𝑆, as shown in Figure 9. 

 

Figure 9: Illustration of a continuum element with damage caused by microcracks (Lemaitre, 

1985) 

 

A decrease in cross-sectional area corresponds to a reduced load-carrying capacity; hence, the effect 

of damage should increase. From this notion, the definition of damage is expressed below.  

 

 DS
D

S
=  (9) 

 

A value of damage equal to unity corresponds to the onset of failure. For damage below unity, the 

effective stress of the element under traction 𝑻 is defined in terms of damage and Cauchy stress tensor 

(𝝈 ∙ 𝒏 = 𝑻) by the following relation:  

 

 
1 D

σ
σ =

−
 (10) 

     In phenomenological models, fracture in a continuum element is perceived as a sudden event that 

occurs when the equivalent plastic strain, 𝜀𝑝̅, reaches the fracture strain, 𝜀𝑓̅, that is governed by the 
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strain path or stress state (Abedini, 2018). The two key parameters in describing the stress state are 

stress triaxiality (𝜂) and Lode angle (𝜃) whose expressions follow 
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Where 𝜎ℎ𝑦𝑑  is the hydrostatic stress, 𝜎𝑒𝑞  is the von Mises equivalent stress, 𝐼1  is the first stress 

invariant and  𝐽2, 𝐽3  are the second and third deviatoric stress invariants. The Lode angle 𝜃 is also 

related to the normalized Lode angle 𝜃̅ or the Lode parameter 𝜉 whose expressions follow 
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     Early studies by several authors (McClintock, 1968; Rice and Tracey, 1969; Gurson, 1977; 

Tvergaard and Needleman, 1984; Johnson and Cook, 1985) all have shown the strong effect of stress 

triaxiality on ductile fracture. In particular, Rice and Tracey (1969) studied the growth of a spherical 

void in an infinite matrix subject to uniaxial tension and concluded the relationship with material 

constant 𝛼: 
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 (15) 

 

Equation (15) was later visited by Hancock and Mackenzie (1976) to postulate that the failure strain 

shall be inversely proportional to the hole growth-rate and thus, the following relationship holds:  
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Since then, the exponential dependency of stress triaxiality became a foundation for subsequent 

fracture models developed by Johnson and Cook (1985), Wierzbicki and Xue (2005) and Bai and 

Wierzbicki (2008). 

Recent studies, however, further pointed out Lode angle-dependence on ductile fracture (Wierzbicki 

and Xue, 2005; Bai and Wierzbicki, 2010). One example that considers both parameters is the model 

developed by Bai and Wierzbicki (2008) in which fracture strain is assumed to have an exponential 

dependence on triaxiality and parabolic dependence on Lode angle: 
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 
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in which 𝐷1 to 𝐷6 are calibration constants. The above relationship gives rise to visualizing a fracture 

locus in 3D space, as shown in Figure 10.  

 

 

Figure 10: Example of a fracture surface (Basaran et al., 2010) 

 

For plane stress conditions, Wierzbicki and Xue (2005) showed that an additional relation holds 

between stress triaxiality and Lode parameter given by 

 

 227 1

2 3

 
= − − 

 
    (18) 

 

Combining Equations (13) and (18) with Equation (17) results in direct dependence of fracture strain 

on triaxiality (for plane stress conditions) and generates a plane stress fracture locus that lines within 

the generalized fracture surface, as shown in Figure 10. Consequently, for sheet metal, for which a 
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predominantly plane stress condition exists, fracture loci are often simplified into 2D curves expressed 

solely as a function of stress triaxiality. Typical examples of 2D fracture loci are shown in Figure 11 

for different quenched conditions of Usibor® 1500-AS (Samadian et al., 2020). To construct 

phenomenological fracture loci, fracture strains at various triaxial stress states are obtained by 

performing calibration tests. Such tests consist of, but are not limited, to shear, uniaxial tensile, plane 

strain dome or v-bend, and biaxial dome tests with different punch diameters.  

 

    

Figure 11: Fracture loci of Usibor® 1500-AS in two different quench conditions, adapted from 

Samadian et al. (2020). Experimental points were obtained from butterfly, hole expansion, plane 

strain tension dome, v-bend and biaxial tension dome tests. The dashed and solid lines represent 

fracture curves based on the plane strain tension dome and v-bend tests, respectively.   

 

     Unlike calibration tests, most problems in metal forming and crashworthiness involve severely 

nonlinear strain paths. In order to predict fracture in such problems, one solution is to utilize an 

incremental CDM approach such as the Generalized Incremental Stress State-dependent damage 

MOdel (GISSMO) developed by Neukamm et al. (2009). In the GISSMO approach, the incremental 

damage is described as: 
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where 𝑑𝐷 is the incremental damage, 𝑑𝜀̅𝑝 is the incremental plastic strain, 𝑛 is the damage exponent 

to allow nonlinear accumulation and 𝜀𝑓̅ is the equivalent fracture strain, which can be obtained from 

the phenomenological fracture locus. When the damage reaches a value of unity, the corresponding 

element in finite element simulation is deemed to no longer possess load-carrying capacity. This 
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damage treatment is available in commercial finite element software, such as in LS-Dyna (Livermore 

Software Technology Corporation, 2016) which was used in the current research, to trigger element 

deletion due to material fracture (*MAT_ADD_EROSION keyword). 

     Mesh (element) sizes also need to be taken into account in predicting fracture. Mesh convergence 

in the finite element method states that as the element size decreases, the solution converges (Fish and 

Belytschko, 2007); however, mesh convergence is often not achieved for fracture prediction. Consider 

the simulation of a plane strain dome in Figure 12 in which Eller et al. (2014) showed that equivalent 

plastic strain increases with decreasing element size. Since the phenomenological fracture strain 

remains constant for a given stress triaxiality, damage would accumulate faster with increasing 

equivalent plastic strain according to Equation (19). Thus, a smaller element would reach fracture 

sooner, which is not physical.  

 

 

Figure 12: Effect of mesh refinement on equivalent plastic strain during plane strain simulation 

in LS-Dyna (Eller et al., 2014) 

 

One approach to account for or limit the effect of element size on fracture prediction is by performing 

mesh regularization. In the mesh regularization process, fracture calibration tests are numerically 

simulated with different element sizes within the actual coupon geometry. Then, the phenomenological 

fracture curve is scaled accordingly for each mesh size such that numerical response, such as the 

predicted limiting dome height or force-displacement at failure, matches that of the test results. Figure 

13 shows an example of mesh-regularized fracture curves for fully martensitic 22MnB5. 
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Figure 13: Mesh regularized fracture curves of martensitic 22MnB5 for three different element 

sizes (L), adapted from Eller et al. (2014) 

 

1.3. Crashworthiness and Axial Crush of Hot Stamped Steels 
 

The first record of documented crash experiments dates as far as back as 1924 with the aim of 

evaluating aircraft safety (Waldock, 1997). At that time, aerospace engineers were trying to minimize 

the risk of occupant injury through the design of the cockpit. The term crashworthiness emerged from 

the aerospace industry in the 1950s (Paluszny, 1992). 

     The concept of crashworthiness is equally important in the automotive industry. According to 

McGregor et al. (1993), a crashworthy vehicle serves three functions: (i) dissipate the kinetic energy 

of the impact in a controlled manner; (ii) minimize the force and acceleration to the occupants; and (iii) 

retain a survival space for occupants. For vehicle frontal or rear impact structures, the compliance of 

the first two functions is validated through axial crush tests. In particular, measurements of energy 

absorption and peak force assess the compliance with the first and second functions, respectively. The 

last function is usually achieved using high strength, “anti-intrusion” components that maintain 

occupant “survival space”. These three metrics constitute the criteria used in vehicle crash safety design.  

For every new material considered for application in automotive structures, its crashworthiness must 

be validated. The ideal axial crush test involves the actual vehicle components; however, new materials 

may present a challenge in the forming stage—resulting in new tools and processes. For this reason, 

simple geometric components such as square or hat channel tubes are often used to validate the 

crashworthiness of new materials in axial crush tests. 
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1.3.1. Axial Crush Experiments 
 

There has been a significant amount work in studying the axial crush behaviour of hot stamped steel 

grades using double hat channel specimens. Omer et al. (2017b) studied the dynamic axial crush 

performance of Usibor® 1500-AS specimens under different in-die heated tailored quench conditions. 

The fully cooled (martensitic) specimens exhibited the greatest extent of fracture and spot weld failure, 

with little repeatability in deformation modes, as shown in Figure 14.  

 

 

Figure 14: Dynamic axial crush specimens of Usibor® 1500-AS under the fully martensitic 

condition, adapted from Omer et al. (2017b)  

 

In addition to the fully cooled (quenched) condition, three tailored quench conditions were obtained in 

which one-half of the die set was fully cooled while the tool in the other half (zone) was heated. Three 

heated conditions were considered with the die temperatures designated as single soft zone 400°C, 

single soft zone 700°C and graded soft zone, which was divided into 400°C and 700°C zones (see 

Figure 15).  

The microstructures of the heated zones revealed bainite and ferrite phases with a larger amount of 

ferrite present in the single soft zone 700°C configuration. The axial crush results showed a clear trend 

of improved folding behaviour as the ductility of specimens improved, as shown in Figure 16. 
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Figure 15: Four different quenched conditions of Usibor® 1500-AS specimens, adapted from 

Omer et al. (2017b) 

 

    

(a) fully cooled (b) single soft zone 

400°C 

(c) single soft zone 

700°C 

(d) graded soft zone 

Figure 16: Crush mode comparison of various IDH specimens, adapted from Omer et al. (2017b) 

 

Among all specimens, the graded soft zone exhibited the most consistent progressive folding mode 

with the least scatter in energy absorption. The presence of the two stronger regions was hypothesized 

to reduce the effective column length and reduce the global buckling tendency. However, the average 

absorbed energy of graded soft zone specimens (12.6 kJ) was lower than that of the fully cooled 

specimens (14.8 kJ) despite the extensive fracture of the fully cooled specimens.  

     Peister (2019) studied the crush performance of hot stamped axial crush specimens fabricated using 

both monolithic Ductibor® 500-AS and TWBs comprising Ductibor® 500-AS laser welded to 

Usibor® 1500-AS, as shown in Figure 17. The monolithic specimens did not exhibit parent metal 

fracture due to the high ductility of Ductibor® 500-AS. The specimens exhibited global buckling 

tendencies, however, after initial folding. The TWB specimens exhibited a stable folding mode without 

global buckling although some parent metal fracture initiated in the Usibor® 1500-AS region late in 

the crush experiment.  
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Figure 17: Dynamic axial crush specimens from Peister (2019): (a) 1.2mm Ductibor® 500-AS 

and (b) 1.2mm TWB consisting of Ductibor® 500-AS welded to Usibor® 1500-AS 

 

1.3.2. Numerical Modelling of Axial Crush 
 

Conducting full-scale crash tests is time-consuming and expensive. Consequently, the automotive 

industry relies on numerical modelling to predict vehicle crash behaviour and reduce the number of 

required crash tests. For boundary value problems whose time scale is less than a fraction of a second, 

the computational efficiency of explicit analysis, such as central difference methods (James et al., 

1985), provides advantage over implicit analysis, such as the Newmark method (Newmark, 1959), in 

solving the discretized form of the structural dynamic equilibrium equation, 

 

        ( )t = +F K d M d  (20) 
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matrices, respectively. In either solution scheme, [𝑴]−1  can be cheaply approximated by using a 

lumped mass matrix or more accurately by using a consistent mass matrix (Archer, 1965). Figure 18 

shows various numerical models of dynamic axial crush using explicit solvers.  
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(a) double hat channel 

(Peister, 2019) 

(b) polygonal column 

(Zhang and Huh, 2010) 

(c) square column 

(Fyllingen et al., 2010) 

Figure 18: Examples of dynamic axial crush numerical models: (a) double hat channel with shell 

elements (b) polygonal column with shell elements and (c) square column with solid elements. 

All models were solved using the non-linear, explicit finite element code LS-Dyna (Livermore 

Software Technology Corporation, 2016).  

 
     For numerical problems whose total simulation time is much larger than the explicit time step, 

selective mass scaling is commonly adopted (Langseth et al., 1999; Pan et al., 2006; Toksoy and Güden, 

2010). The method artificially increases the density of elements who possess the lowest time step, 

thereby increasing the critical time step (Courant et al., 1928) and reducing computational cost.  

Another approach to improve efficiency is time scaling in which the tool velocities (in metal forming) 

are increased. Although both methods introduce artificial dynamic effects and hence, require 

engineering judgement, several forming and crash studies (Santosa et al., 2000; Lorenz and Haufe, 

2008; Suresh and Regalla, 2014; Omer, 2014; Peister, 2019) have successfully demonstrated the 

accuracy of obtained numerical results.  

     A key aspect of modelling crash is the prediction of spot weld behavior since automotive structures 

commonly contain thousands of spot welds. For numerical simulation of spot welds, one common 

method in the literature is to utilize beam elements (Matzenmiller et al., 1994; Dreas, 1988). Beams 

are created between two shell elements to transmit forces and moments. In contrast, a volume element-

modelling approach has been studied to represent the spot weld nugget in 3D (Chen and Deng, 2000; 
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Xiang et al., 2006). Figure 19 demonstrates such an approach by Tummers (2020) in which a spot weld 

is modelled by eight hexahedral elements. Another important aspect, failure criteria, should also be 

added to account for failures in shear, bending and normal loads and considerable previous research 

has aimed to calibrate different failure models (Malcolm and Nutwell, 2007; O’Keeffe, 2018; Tolton, 

2020).  

 

 
 

(a) Beam element (b) Hexahedral elements 

Figure 19: Comparison of (a) a spot weld using a beam element (Park et al., 2018) and (b) a spot 

weld using eight hexagonal solid elements (Tummers, 2020).  

 

Recent studies by Chen et al. (2014) and Mohamadizadeh et al. (2020) have introduced an improved 

level of detail in weld failure modelling using a meso-scale approach. This approach utilizes fine solid 

elements, as shown in Figure 20, with the aim to capture the effect of local variations in weld 

microstructure on failure. For example, the elements across the Heat Affected Zone (HAZ) are assigned 

varying hardening curves based on the measured micro-Vickers Hardness (Chen et al., 2014). The 

principal challenge in utilizing such an approach in structural crash safety modelling is the high 

computation cost associated with such fine discretization of spot welds. 

 

 

Figure 20: Meso-scale modelling of spot weld nuggets, adapted from Chen et al. (2014). 
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     Tummers (2020) modelled the axial crush of a commercial SUV sub-assembly, which is referred to 

as the front end module, as shown in Figure 21. The front end module consisted of components such 

as the front bumper, side frame member, shock tower and shock tower support. The level of 

completeness and efforts in boundary condition modelling is demonstrated by several features 

including the wood attenuator modelled using solid elements, the load cells modelled as linear elastic 

beams and several bolted connections modelled as plastic beam elements with pre-tension due to bolt 

torque.  

 

 

Figure 21: Numerical model setup of front end module (left) and bolt connection between the 

battery base and side frame member, using constrained nodal rigid bodies (right),  adapted from 

Tummers (2020) 

 

1.3.3. Triggering Methods in Axial Crush 
 

Ideal axial crush structures are required to show good repeatability in the deformation mode; however, 

geometric defects or fracture-susceptible material behaviour can result in a lack of repeatability. One 

method to improve repeatability is to control fold initiation and mode of deformation by introducing 

triggering mechanisms. These mechanisms are sometimes referred to as fold initiators and are 

generally broken down into mechanical or thermal means of structural modification. 

The most common method to produce mechanical fold initiators is by local indentation, as illustrated 

in Figure 22. Often, a row of two indents is inserted on opposite walls of the double hat specimens 

either asymmetrically (Chen, 2001) or symmetrically (Omer et al., 2017b). Numerous axial crush 

studies of hot stamped steel (Omer et al., 2017b; Peister, 2019; Tummers et al., 2018) consistently 

adopted the symmetrical form; hence, this will be referred to as the “standard fold initiator trigger” to 

serve as a baseline comparison throughout the balance of this thesis. 
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Figure 22: Asymmetric (left) and symmetric (right) insertion of fold initiators near the top end 

of double hat channel crush specimens, adapted from Chen (2001) 

 

Other types of mechanical fold initiators take the forms of notches, beads, grooves, holes or pulling 

strips, as shown in Figure 23. Similar to indentation, studies of these fold initiators (Lee et al., 1999; 

Witteman, 1999; Hosseinipour and Daneshi, 2003; Eren et al., 2009; Zhang et al., 2009) all showed a 

significant decrease in the initial peak force and more stable folding modes without much change in 

energy absorption, compared to specimens without fold initiators. 

      In contrast to mechanical triggering, “thermal triggering” induces change in the microstructure by 

localized heating. Local heating can introduce soft zones where hinge line formation could occur. 

Peixinho et al. (2012) introduced thermal triggers at various locations of AA6061-T5 aluminum square 

tubes by a laser treatment. The Vickers micro-hardness measurement confirmed the softening at the 

heated zones and the thermal triggers successfully assisted in fold formations at the heated locations. 

Similar to mechanical triggering, a significant decrease in peak force and a slight decrease in energy 

absorption were also observed in the thermal triggered specimens, compared to those without triggers.  

 

 

(a)  

(Eren et al., 

2009) 

(b)  

(Eren et al., 

2009) 

(c)  

(Lee et al., 

1999) 

(d)  

(Hosseinipour 

and Daneshi, 

2003) 

(e)  

(Witteman, 

1999) 

(f)  

(Zhang et al., 

2009) 

Figure 23: Different forms of mechanical fold initiators: (a) corner notches on steel square tubes 

(b) beads for steel square tubes (c) machined dents for 6063 aluminum square tubes (d) machine 

grooves for mild steel circular tubes (e) holes for mild steel square tubes and (f) pulling strips for 

6063 aluminum square tubes 
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      The effect of trigger spacing plays an important role in axial crush performance. Lee et al. (1999) 

varied the indent spacing along the length of rectangular aluminum crush tubes under quasi-static 

loading. The important finding was that specimens with trigger indents, introduced at the pre-estimated 

sites by elastic folding analysis, experienced a significant decrease in initial peak force and a slight 

decrease in absorbed energy compared to the specimens without or randomly distributed dents. Also, 

the effect of two different indent sizes, namely half indents and full indents, were studied. The 

specimens containing half indents absorbed higher energy than those with full indents due to an 

increase in the plastic work required for hinge line formation. The number of plastic hinges and overall 

deformation, however, did not vary between the two sizes. 

      Najafi and Rais-Rohani (2008, 2011) studied the effect of triggering location on square aluminum 

tubes that were 400 mm in length under dynamic loading. The specimens considered a symmetric 

trigger configuration, as in Figure 22b, but the location of the indents varied from 5mm to 30mm from 

the impact-end. The location was found to have a little effect on the peak force and absorbed energy. 

      All of the fold initiator studies mentioned in this section considered ductile materials such as low 

strength steel or aluminum alloys. No published literature to date has considered fold initiators within 

UHSS specimens. Secondly, these studies only considered a single pair of fold initiators, with little 

systematic study of fold initiator patterns and spacing. The findings of Lee et al. (1999) suggest that 

fold initiators should be placed at pre-estimated sites; however, the locations were estimated by elastic 

folding analysis whereas real axial crush problems exhibit plastic folding. The lack of relevant 

literature in developing an improved triggering methodology based on kinematic folding analysis 

signifies the novelty of the current research, which investigates the design of fold initiators, suitable 

for UHSS axial crush specimens, to promote stable folding. 

 

1.4. Crush Mechanics of Thin-Walled Structures 

 

Many analytical models (Reid and Reddy, 1986; Grzebieta, 1990; Xue, 2003; Ye et al., 2011) exist to 

predict the axial collapse response of different-shaped, thin-walled structures. The most notable models 

originate back to the work of Alexander (1960) on circular tubes and the work of Abramowicz and 

Wierzbicki (1989) on multi-corner tubes. In essence, these studies aimed to identify and isolate the 

repeating patterns within tubes undergoing axial crush (see Figure 24) based on observed experimental 

phenomena, break down the pattern into different regions of distinct deformation mode and calculate 

the dissipated energy associated with each region.  
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(a) aluminum square tube (b) mild steel square tube  

Figure 24: Final deformed images of (a) axially crushed hydroformed aluminum alloy tubes 

(Williams et al., 2010) and (b) non-hydroformed steel tubes (Abramowicz and Jones, 1984). 

Different repeating modes within each tube are highlighted in red. 

 

1.4.1. Crush Mechanics of multi-corner elements  
 

The work of Wierzbicki and Abramowicz (1983) and Abramowicz and Wierzbicki (1989) on multi-

corner elements assumes two principal deformation paths that a corner element could take: extensional 

or inextensional, as shown in Figure 25. 

 

 

Figure 25: Inextensional and extensional deformation of corner elements (Hayduk and 

Wierzbicki, 1984) 

 

In inextensional deformation, hinge lines such as AB in Figure 25a stay rotate and/or translate without 

change in length, imparting a rigid body motion to adjacent elements. On the other hand, the 

extensional deformation path consists of extending or “stretching” of hinge lines, resulting in shape 

distortion of adjacent elements. By considering the principle of minimum energy, the preferred mode 
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of deformation would be inextensional because a considerably higher amount of energy is required for 

extensional deformation (i.e. bending vs. in-plane stretching). Physically though, some level of 

extension is inevitable to ensure material continuity, hence, making every inextensional deformation 

path virtually quasi-inextensional (Hayduk and Wierzbicki, 1984).  

      By observing repeated collapse patterns of corner elements in multi-corner tubes, Abramowicz and 

Wierzbicki (1989) presented two major folding modes, which are designated as quasi-inextensional 

and extensional modes. 

 

 
(a) Quasi-inextensional mode 

(Abramowicz and Wierzbicki, 1989) 

(b) Extensional mode 

(Najafi and Rais-Rohani, 2011) 

Figure 26: (a) Quasi-inextensional mode and (b) extensional mode of corner elements  

 

These folding modes consist of several surface elements (numbered 1 to 3 in Figure 26), whose 

deformation mainly follows either inextensional or extensional paths. In the quasi-inextensional mode, 

one side deforms outward while the other deforms inward. As reflected by the name of this mode, it 

consists largely of inextensional elements with the exception of the one small toroidal surface 

(numbered 1 in Figure 26a). The extensional mode, however, consists of shape-distorted conical 

surfaces (numbered 3 in Figure 26b) as well as a toroidal surface (numbered 1 in Figure 26b). These 

deformation regions are portrayed with hinge lines to illustrate the kinematics of the crush mechanism 

in Figure 27. 
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(a) Quasi-inextensional 

mechanism 

(Abramowicz and Jones, 1984) 

(b) Extensional mechanism 

(Abramowicz and Wierzbicki, 

1989) 

Figure 27: (a) Quasi-inextensional mechanism and (b) extensional mechanism of corner 

elements 

 

In the quasi-inextensional mechanism, lines 𝐴𝑖𝐵𝑖 and 𝐵𝑖𝐶𝑖 represent the horizontal plastic hinge lines. 

As the element crushes, 𝐴0𝐵0 and 𝐵0𝐶0 translate downward, and the initially vertical lines such as 

𝐴0𝐴1 and 𝐶0𝐶1 become gradually inclined. Simultaneously, point 𝐵1 moves to 𝐵1′, and the material 

flows from left-side surfaces 𝐴0𝐵0𝐵1′𝐴1 and 𝐴2𝐵2𝐵1′𝐴1  to right-side surfaces 𝐵0𝐶0𝐶1𝐵1′  and 

𝐵2𝐶2𝐶1𝐵1′, respectively, crossing inclined hinge lines 𝐵0𝐵1
′  and 𝐵2𝐵1′.  

In the extensional mechanism, the initially straight line 𝐿𝐷𝑂 splits into four inclined lines 𝐿𝐵, 𝐿𝐵̅, etc., 

and line 𝐵𝐵̅ stretches circumferentially. Consequently, conical surfaces 𝐿𝐵𝐵̅ and 𝑂𝐵𝐵̅  undergo large 

shape distortions and cause adjacent elements (once rectangular) to transform into a trapezoidal shape. 

In general, obtuse elements are controlled by the extensional deformation mode, while acute elements 

are controlled by the quasi-inextensional mode (Abramowicz, 2003). 

      Further experimental observations made by Abramowicz and Wierzbicki (1989) suggested co-

existence of the quasi-inextensional mode and the extensional mode during the crushing process of 

columns. Motivated to capture the two folding modes in a more generalized mechanism, they presented 

a superfolding element (SE), which captures the quasi-inextensional mode and extensional mode in a 

series manner with angle parameter 𝛼 as shown in Figure 28.  
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(a) Superfolding element  (b) Folding mechanism 

Figure 28: Illustration of: (a) superfolding element and (b) its folding mechanism 

 

The parameter 𝛼, referred to herein as the crush angle, defines the stage of the crushing process. An 

uncrushed SE would have an initial height of 2H and its initial state can be expressed as 𝛼 = 0. Once 

the collapse begins, 𝛼 increases from 0 and eventually reaches the terminal value of 𝛼𝑓. In a simplified 

kinematic analysis, the final state results in complete flattening and corresponds to 𝛼𝑓 = 𝜋/2. A 

transition angle 𝛼̅  is defined as the angle at which a change in mode takes place from quasi-

inextensional to extensional mode. When 𝛼̅ = 0 , the superfolding element undergoes a purely 

extensional mode, while 𝛼̅ = 𝛼𝑓 gives a purely inextensional mode. 

There are four different classifications of surface elements in the SE, as shown in Figure 28a.  The first 

three groups are developed during the quasi-inextensional stage. Group 1 represents a toroidal surface 

with extensional deformation in the circumferential direction; group 2 represents cylindrical surfaces, 

which undergo bending without any extensional deformation; group 3 represents cylindrical surfaces 

that are bent around inclined hinge lines and undergo inextensional deformation. Lastly, group 4 

represents conical surfaces developed during the second extensional stage. The unnumbered surfaces 

experience rigid body motion. 

The mechanism of the SE follows that of the quasi-inextensional mode except when switching between 

modes takes place, as-inclined lines 𝐵0𝐵1′ and 𝐵2𝐵1′ become “locked” in place. Subsequently, the 

initially straight line 𝐵0𝐷 and 𝐵2𝐷 split into four lines 𝐵0𝐷̅, 𝐵2𝐷̅ , etc.  ̧ and create conical surfaces 

𝐵0𝐷𝐷̅ and 𝐵2𝐷𝐷̅. 

      The SE analysis (Abramowicz and Wierzbicki, 1989) begins with identifying the internal energy 

contribution from two different modes as below:  
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Kinematically admissible velocity fields, which impose continuity in the velocity distribution over the 

structure except permissible discontinuity at plastic hinge lines (Lu and Yu, 2003), are assumed over 

the entire SE domain. Then, the velocity of each hinge line and the corresponding strain rates are found. 

The rate of internal energy dissipation (𝐸̇𝑖𝑛𝑡) in Equation (21) can now be expressed in terms of the 

strain rates present in the continuous (over the membranes) and discontinuous (at hinge lines) velocity 

fields, respectively. 
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where 𝑆 denotes the mid shell of membranes and 𝐿 represents the length of 𝑖𝑡ℎ plastic hinge line over 

the total number 𝑛. In the first integrand, 𝜅̇ and 𝜆̇ are the rate of rotation and rate of extension tensors, 

respectively. The corresponding conjugate generalized stress tensors are 𝑀𝛼𝛽 and 𝑁𝛼𝛽 . In the second 

integrand, 𝑀𝑜
𝑖  and 𝜃̇𝑖 represent the bending moment and rotation rate of the hinge line, respectively.  

On the other hand, the external work applied to axially crush the element is represented by   

 

 2ext mW P H=  (23) 

 

where 𝑃𝑚 is the mean crushing force over the crushing length 2𝐻. The analysis continues with the 

energy balance  

 

 intextW E=  (24) 

 

and the closed form solution for 𝑃𝑚 is obtained. For simplicity, the subsequent solution procedure is 

omitted in this section and the reader is referred to Wierzbicki and Abramowicz (1983) for further 

details.  

      For perfectly plastic, square columns undergoing a purely quasi-inextensional crush mode, 

Wierzbicki and Abramowicz (1983) assumed that the element flattens to zero height and presented a 

final solution of Equation (24) as   
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5/3 1/39.56m yP t b=  (25) 

where 𝜎𝑦 is the yield strength of the material, 𝑡 is the sheet thickness, and 𝑏 is the side length of the 

square cross section.  

One important conclusion drawn from Equation (25) is the ratio of internal energy. Wierzbicki and 

Abramowicz (1983) stated that the thickness term 𝑡5/3 indicates that one-third of the dissipated energy 

is from the extensional collapse mechanism (i.e. the toroidal surface), while the remaining two-third 

stems from the other elements, which experience the inextensional mechanism (i.e. bending).  

 

1.4.2. Effective Crush Distance 
 

In the superfolding element analysis, its terminal stage, corresponding to complete consolidation of the 

folding cell, is defined by 𝛼𝑓, as shown in Equation (21). The simplified folding analysis assumes 𝛼𝑓 =

𝜋/2 and the element be completely flattened out. The effective crush distance, 𝛿𝑒𝑓𝑓,  would be 2H in 

this case, neglecting the sheet wall thickness and using the following relation 

 

 eff ini f  = −  (26) 

 

where 𝛿𝑖𝑛𝑖 and 𝛿𝑓 are the final and initial vertical length of the superfolding element, respectively.  

A schematic comparison of idealized folding and more physical folding is shown in Figure 29. In actual 

collapse of thin-walled structures, complete flattening (see Figure 29a) does not occur due to the 

presence of finite radii of the toroidal elements (Wierzbicki and Abramowicz, 1983). The expected 

crush distance would be smaller and 𝛼𝑓 will increase by a small amount, as shown in Figure 29b. 

Several authors (Ohkubo et al., 1974; Abramowicz, 1983; Abramowicz and Jones, 1984; Abramowicz 

and Wierzbicki, 1989) reported this phenomenon based on experimental observation.  
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Figure 29: Progressive collapse of hat structure flange: (a) idealized folding where 𝜶𝒇 = 𝝅/𝟐 and 

(b) actual folding where 𝜶𝒇 ≥ 𝝅/𝟐 , adapted from Ohkubo et al. (1974) 

 

There are several analytical approaches studied in determining the effective crush distance of different 

shaped structures. In the case of a cylindrical shell, Wierzbicki et al. (1992) represented a fully crushed 

SE by densely packed circles, as shown in Figure 30. If the size of the lobes are equal, the effective 

crush distance ratio 𝛿𝑒𝑓𝑓/2𝐻 reduces to 0.81.  

 

 

Figure 30: Representation of fully crushed superfolding element by densely packed circles of 

equal size (Wierzbicki et al., 1992) 

 

For square columns undergoing progressive folding, Abramowicz (1983) idealized the collapse as two 

subsequent bends about orthogonal axes with radius r and R. In the first bend, the maximum height is 

2r whereas that in second bending is 2r + 2R as shown in Figure 31. 
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Figure 31: Progressive folding of square columns idealized as a flat sheet undergoing two 

subsequent bends with radius r and R, respectively (Abramowicz, 1983) 

 

From this analysis, the final crush distance can be obtained by solving the maximum height of the first 

and second bends. The subsequent analysis treated each bend as a beam buckling problem with plastic 

flow concentrated at the center zone and the rest of the beam as a rigid zone. The effective crush 

distance ratio 𝛿𝑒𝑓𝑓/2𝐻  was calculated as 0.7, approximately. The later experimental work of 

Abramowicz and Jones (1984) confirmed the ratio as 0.73 for quasi-inextensional elements and 0.77 

for extensional elements. 

      Another way to measure the effective crush distance in axial crush is by observing the force-

displacement curve. As noted by Najafi (2009), the structure would require a substantial increase in 

the crush force after full consolidation. The onset of such an event would correspond to 𝛿𝑒𝑓𝑓  and 

measured by the point of force spike in the curve, as shown in Figure 32. 

 

 

Figure 32: A typical force-displacement (F-D) curve of axial crush models. The crush force spikes 

after full consolidation. 
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1.4.3. Crushing of Square Tubes and Hat Channels 
 

For axial crushing of square tubes, Abramowicz and Jones (1984, 1986) conducted a series of tests and 

observed three different collapse modes, as shown in Figure 33. 

 

 

(a) Symmetric mode (b) Asymmetric mixed mode A (c) Asymmetric mixed mode B 

Figure 33: Paper models of three collapse modes for axial crushing of square tubes (Abramowicz 

and Jones, 1984) 

 

They identified that each mode can be assembled by different combinations of quasi-inextensional and 

extensional elements. For example, the symmetric mode consists of four quasi-inextensional elements 

over one folding wavelength (2H). The crush mean force would be the same as Equation (25), but 

Abramowicz and Jones (1986) considered a physical effective crush ratio of 0.73, which gave  

 

 5/3 1/313.06m yP t b=  (27) 

 

In contrast, the asymmetric mixed mode A consists of six quasi-inextensional and two extensional 

elements, while the mode B consists of seven quasi-inextensional and one extensional elements over 

two folding wavelengths (4H). The energy balance analyses gave  

 

 5/3 1/3 4/3 2/3 210.73 0.79 0.51m y y yP t b t b t  = + +  (28) 

 

and 

 

 5/3 1/3 4/3 2/3 211.48 0.44 0.26m y y yP t b t b t  = + +  (29) 

 

for modes A and B, respectively. 
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Although Equations (27) to (29) are different expressions, they give similar results over the practical 

range of b/t ratio (Ma, 2011). Another key finding was that what gives rises to the event of one mode 

than the other is the loading case (i.e. static vs. dynamic) and the ratio of sidewall length to thickness 

(b/t). 

      Motivated to expand theoretical work to consider top hat and double hat cross sections, White et 

al. (1999) predicted the mean crushing force by identifying that top hat and double hat cross sections 

consist of four and eight, SEs undergoing quasi-inextensional modes, respectively, as shown in Figure 

34. The top hat section consists of an additional rectangular backing plate that undergoes pure bending.  

 

 

Figure 34: (a) Cross-section of a single top hat and (b) double top hat geometry. (c) Four SEs and 

a backing plate forming the single top hat profile and (d) Eight SEs forming the double top hat 

collapse profile (White et al., 1999).  

 
The predicted mean force equation for the top hat section was 

 

 5/3 1/38.22m yP t Z=  (30) 
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and for the double hat section was 

 

 5/3 1/313.05m yP t Z=  (31) 

 

in which 𝑍 is the middle surface perimeter of the cross-section, which can be approximated as 2𝑎 +

2𝑏 + 4𝑓, as illustrated in Figure 34.  

Their analytical prediction was validated in an experimental study with several design parameters 

consisting of the column length and flange size (White and Jones, 1999). The key observation was that 

rolling deformation of the flange is crucial in promoting progressive collapse (see Figure 35a), and in-

plane deformation of the flange leads to irregular folding in the double hat channel (see Figure 35b).  

 

 
Figure 35: Two collapse modes of double hat specimens: (a) rolling deformation of flange during 

progressive collapse and (b) in-plane deformation of plane leading to irregular folding¸ adapted 

from White and Jones (1999) 

 

Although a reasonable agreement in the mean force was shown between the experiential and theoretical 

results using Equation (30) and (31), a major shortcoming of the theoretical analysis was apparent: the 

SE analysis assumed progressive collapse mode while physical axial crush tests revealed other modes 

such as Euler buckling or irregular folding, as shown in Figure 35b.  

Several sources of in-plane deformation of the flange were identified as asymmetry of spot weld 

positions in the specimens and a short flange length (f), giving a low stability ratio. Interestingly, 

irregular folding specimens often exhibited simultaneous lobe formation at the top–end and bottom-

end of specimens. Concluding remarks on the design insights were that (1) single hat structures exhibit 
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a more stable progressive collapse than double hat structures and (2) collapse stability generally 

improved as the flange length increased.  

      The analyses on rectangular or hat channels introduced so far were made under the perfectly plastic 

assumption. To consider the material strain hardening effect in the energy balance analysis, White et 

al. (1999) assumed a power law for the stress-strain relationship 
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 (32) 

 

in which 𝜎𝑢 is the UTS, 𝜀𝑢 is the ultimate tensile strain (the strain at UTS) and 𝑛 is the strain hardening 

exponent. For mild steel with 𝜀𝑢 = 0.3 and 𝑛 = 0.1, the predicted mean force was 

 

 1.71 0.298.89m uP σ t Z=  (33) 

 

for the top hat section and 

 

 1.71 0.2913.05m uP σ t Z=  (34) 

 

for the double hat section. An alternative approach to consider the strain hardening effect was 

suggested by Santosa et al. (2000) to adopt an energy equivalent flow stress 𝜎𝑜 in the following form 
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Lastly, the theoretical work was expanded to predict mean force 𝑃𝑚
𝑑  under dynamic axial crush, 

accounting for material strain rate sensitivity, by White and Jones (1999) using the Cowper-Symonds 

relation as follows 
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in which 𝜀𝑎̇𝑣 is the average strain rate in the Superfolding element and D, 𝜌 are material constants. 
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1.5. Summary of Previous Work and Scope of Thesis  
 

The preceding literature review shows that a considerable effort has been expended on the analysis of 

the crush mechanics of thin-walled structures undergoing progressive folding, as well as the axial crush 

performance of hot stamped components. While crush components made of low strength, high ductility 

steel alloys predominantly showed progressive or irregular folding, it is evident that those fabricated 

with fully quenched 1500 MPa hot stamped grades, for example, instead exhibited fracture or global 

buckling. Much of this unstable crush response can be attributed to the low ductility of parent metal. 

Prior studies have examined the folding stability of crush components, but have not considered the 

systematic optimization of fold initiator patterns nor has the effect of fracture on folding stability of 

crush structures been examined in a rigorous manner. 

This thesis addresses these deficits in the literature by systematically investigating the effect of fold 

initiator pattern and spacing on the folding stability of hot stamped Ductibor® 1000-AS axial crush 

rails. The thesis also addresses the development of metrics that can predict axial crush performance in 

terms of three criteria: energy absorption, extent of fracture, and deformation mode, which are 

characterized in terms of three performance metrics: “Crush Energy Efficiency”, “Relative Bending 

Limit” and “Folding Transition Indicator”, respectively. To this end, a wider range of steel grades are 

considered, in addition to Ductibor® 1000-AS, drawing on axial crush results taken from the literature 

for strengths in the range 270-1500 MPa. 

     Accordingly, the remainder of the thesis presents research undertaken to address these objectives 

and is organized as follows. Chapter 2 presents the experimental testing program, including the 

methods used for specimen preparation, the test setup for the dynamic and quasi-static axial crush 

experiments, and the test matrices capturing the scope of the experiments. Chapter 3 presents the 

numerical models developed herein to simulate the axial crush experiments. The results obtained from 

the numerical models and axial crush experiments considering Ductibor® 1000-AS are presented in 

Chapter 4, while Chapter 5 presents the development of the axial crush performance metrics. Lastly, 

Chapter 6 presents conclusions stemming from this research and recommendations for future work. 
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2.0 Experimental Methods 
 

This chapter presents the experimental methods used in this research, including specimen fabrication 

and test setup. Three sets of axial crush experiments were performed, and the corresponding test 

matrices for each, referred to as Parts 1, 2 and 3, are presented. The chapter is organized as follows. 

Section 2.1 presents an overview of the experimental program and the scope of each part of the testing 

program. Section 2.2 describes the methods used to manufacture and indent the axial crush specimens. 

Lastly, Sections 2.3 and 2.4 describe the test setup for the dynamic and quasi-static axial crush 

experiments.  

 

2.1. Overview of Experimental Studies 

 

A three-part experimental program, each comprising a set of axial crush experiments, is employed. 

The interrelationship between each part (i.e. study) is illustrated in the flowchart in Figure 36. The 

corresponding test matrices are shown in Table 3, which summarizes the test conditions.  

 

 

Figure 36: Flowchart outlining the experimental studies 

 

As shown in the flowchart, the program entails a sequential progression of fold initiator designs. In 

Part 1, the specimen geometry to be used throughout the thesis is established as a baseline pattern, 
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corresponding to the “standard” trigger configuration (introduced in Section 1.3.3). In Part 2, several 

kinds of repeating fold initiator patterns are introduced in the specimen. One of the results stemming 

from Part 2 is a unique fold initiator pattern, namely pattern TF, in which the fold initiators are 

strategically located on the faces of the double hat channel to improve on the baseline crush 

performance. Based on pattern TF, Part 3 investigated the effect of fold initiator spacing on folding 

stability. In particular, the initiator spacing is varied in a parametric fashion, and the resulting crush 

stability was compared to that corresponding to the analytically predicted folding wavelength using 

the methodology of Abramowicz and Wierzbicki (1989). Sections 2.1.1 to 2.1.3 detail each aspect of 

the fold initiator patterns. 

 

Table 3: Test matrices devised for the experimental studies. The length of the dynamic and quasi-

static crush specimens are 500 mm and 375 mm, respectively. The detailed parametric aspects 

for each study are presented in Section 2.1.1 to 2.1.3. 

 
Specimen 

Designation 

  

Numerical (N) 

Experimental (E) 

  

Dynamic (D) 

Quasi-Static (Q) 

Thickness (mm) Fold Initiator Spacing, 2H (mm) 

1.2 1.6 20 25 27.5 30 35 

Part 1. Baseline Study 

BA N E D   ✓ 
 - 

BA_TWB N E D  ✓  - 

Part 2. Fold Initiator Pattern Study 

TCS N   D   ✓ 
     

✓ 

TCA N E D   ✓ 
  

✓ 
 

  
FCS N   D   ✓ 

         ✓ 

FCA N   D   ✓ 
  

✓ 
   

TF N E D   ✓ 
  

✓ 
   

TFO N   D   ✓ 
  

✓  

 
 

Part 3. Fold Initiator Spacing Study 

SP-D12-200 N E  Q ✓   ✓ 
    

SP-D12-275 N E  Q ✓     
✓ 

  
SP-D12-350 N E   Q ✓           ✓ 

SP-D16-200 N E  Q  
✓ ✓ 

 

   
SP-D16-250 N E  Q  

✓ 
 

✓ 
   

SP-D16-300 N E  Q  
✓ 

 

  ✓ 
 

SP-D16-350 N E   Q   ✓         ✓ 
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 Note that the experiments in Parts 1 and 2 considered dynamic (impact) loading in view of the crash 

nature of the application. In Part 3, quasi-static loading was considered in order to improve the quality 

of imaging and data acquisition and also to prevent clouds of Al-Si dust, ejected from the specimen 

surface, from obscuring the folding patterns. Furthermore, the specimen length in Part 3 was reduced 

to 375 mm to reduce the likelihood of global buckling. 

 

2.1.1. Part 1: Baseline Study 

 

     For the purposes of this study, the “Baseline” specimen is considered to be a double hat channel in 

which two fold initiators are inserted, one on each top face of two opposing channel sections, 

positioned in a symmetrical fashion, located 70 mm from the impact end as shown in Figure 37a. In 

addition to the Baseline specimens, a number of TWB samples, shown in Figure 37b, were tested. Note 

that the major focus of this research was on the monolithic Ductibor® 1000-AS samples and only a 

limited number of tests were performed on TWB samples.  

 

 

 

 

 
(a) Monolithic configuration (b) TWB configuration 

Figure 37: Baseline fold initiator pattern in two configurations: (a) monolithic and (b) TWB.  

 
 

The cross-sectional geometry shown in Figure 38 was common to all of the current experiments, as 

well as previous axial crush studies on hot stamping steels by Omer et al. (2017b) and Peister (2019).  
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(a) Hat channel cross section (b) Double hat channel 

Figure 38: Geometric parameters of (a) a hat channel cross-section and (b) a double hat channel. 

Dimensions are in millimeters. The entire perimeter of the cross-section, Z, is 200 mm for top 

hat and 400 mm for double hat geometry, respectively.  

 

The height (𝑏) and flange length (𝑓) of the specimens are defined in the cross-sectional view, while 

the length (𝐿) refers to the longest dimension along the axis. The top face refers to the face furthest 

from the flanges in the cross-section, while the flange face is shown in Figure 38a. For convenience, a 

“rail” refers to a spot-welded double hat channel specimen assembly. 
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2.1.2. Part 2: Fold Initiator Pattern Study 

 

Figure 39 shows the set of five design variables considered in the fold initiator patterns: (i) location 

(top face vs. flange face); (ii) sequence (consecutive vs. non-consecutive); (iii) symmetric vs. non-

symmetric; (iv) in vs. out; and (v) spacing of the fold initiators.  

 

 

Figure 39:  Illustration of different design variables considered in the fold initiator patterns 

 

After considering different combinations, a total of six fold initiator patterns were selected and 

compared to the baseline pattern, as shown in Figure 40. In patterns TCA (Top-Consecutive-

Asymmetric) and TCS (Top-Consecutive-Symmetric), fold initiators were added along the top face in 

a symmetric or asymmetric arrangement in an attempt to invoke the symmetric mode and the 

asymmetric mode of the SE pattern, as can be seen in Figure 24. Additionally, fold initiators were 

considered on the flange face. For FCA (Flange-Consecutive-Asymmetric) and FCS (Flange-

Consecutive-Symmetric), fold initiators were added on the flanges only in a symmetric or asymmetric 

arrangement. 
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Double hat channel (a) Baseline (b) TCS 

   

(c) TCA (f) FCS (g) FCA 

  

 

(e) TF (f) TFO (offset)  

Figure 40. Schematic diagrams of the seven selected fold initiator patterns in a double hat 

channel. The red-highlighted patterns were chosen for dynamic sled tests.  
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In addition to placing initiators on just the top face or flange, the TF (Top-Flange) pattern is introduced, 

which resembles a combination of the TCA and FCA patterns. In this pattern, the flange fold initiators 

and top fold initiators from the TCA and FCA patterns were merged in a collinear arrangement, with 

the corresponding flange and top face initiators facing towards the same direction, as shown in Figure 

41. 

 

 

Figure 41: Illustration of pattern TF: isometric view (left) and side view (right). Flange and top 

fold initiators are collinear and facing towards the same direction.  

 

To investigate the effect of the alignment of the flange and top fold initiators on the crush performance, 

an additional pattern, TFO (Top-Flange-Offset), was created in which the flange fold initiators were 

offset from the top face fold initiators by a one-half spacing, 𝐻, as shown in Figure 42.  

 

 

Figure 42: Comparison of TF pattern (left) and TFO pattern (right). In TFO pattern, flange fold 

initiators are translated down with relative to top fold initiators by the half spacing, 𝑯  

 

     It is important to note that the fold initiator spacing (2𝐻) of all patterns, except for the TCS and 

FCS patterns, were set at 25 mm as a reference. This value is close to the analytical solution using the 

SE equations, as discussed in Section 2.1.3. Additionally, all fold initiator patterns begin 70 mm away 
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from the impact end and run down along the length up to 300 mm, approximately. Note that an internal 

boss and external clamp assembly is mounted at the impact end of the rail and has the effect of clamping 

the first 25 mm of the rail, as described in Section 2.3.  

 

2.1.3. Part 3: Fold Initiator Spacing Study 

 

     In selecting a fold initiator spacing, there may exist an “optimal” value that would result in the most 

stable progressive folding. Such conjecture gave motivation to search for an analytical solution for the 

optimal spacing. Figure 43b shows the Superfolding Element due to White et al. (1999) overlaid on 

pattern TF, undergoing the asymmetric folding mode. By assuming that the asymmetric folding mode 

in the double hat channel can be modelled as an assembly of eight Superfolding Elements (see Figure 

43a), a critical inference can be made: the height of the SE (2𝐻) is one-half of the span from a top fold 

initiator to the next one (4𝐻). Similarly, the flange fold initiator spacing would be equal to the height 

of the SE. Such an observation implies that the analytical solution, 2𝐻, from the SE analysis may be 

the optimal spacing value, that is, the wavelength at which fold lines form and crush in the most stable 

fashion. To this end, the flange initiator pattern aligns with the serpentine folding sequence that the 

flange experiences during this asymmetric folding mode.  

 

  

(a) Asymmetric folding of double hat channel  

(White et al., 1999) 

(b) Superfolding Element overlaid on pattern 

TF 

Figure 43: (a) a double hat channel modelled as 8 SEs and (b) a SE overlaid on pattern TF.  

 

The following hypothesis was considered:  

 

A TF pattern—with its fold initiator spacing equal to the SE wavelength—will result in the most 

stable progressive folding. As the fold initiator spacing deviates from the SE wavelength (too coarse 

or too narrow), the pattern will result in an unstable folding. 
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The solutions to the SE wavelength are given by Equation (37) (White et al., 1999), which relates the 

half-folding wavelength (𝐻) and the sheet thickness (𝑡) as follows:  

 

 

2/3

0.247
H Z

t t

 
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 
 (37) 

 

in which 𝑍 is the double hat cross-section perimeter (note that 𝑍 ≈ 400 mm for all double hat sections 

considered in this research). The solution procedure of the SE analysis is provided in Appendix A. 

     The folding wavelength (2𝐻) from Equation (37), which corresponds to the SE flange initiator 

spacing, was calculated to be 27.5 mm and 30 mm for the 1.2 mm and 1.6 mm thickness specimens, 

respectively. To examine the effect of initiator spacing, crush tubes with initiator spacings in the range 

from 20 mm to 35 mm were considered, as shown in Figure 44. For consistency, the number of fold 

initiators was kept as 3 per top face and 6 per flange face, and the first fold initiator was placed 70 mm 

away from the impact end.  

 

 

     

(a) 20 mm 

(SP-D12-200 /  

SP-D16-200) 

(b) 25 mm 

(SP-D16-250) 

(c) 27.5 mm 

(SP-D12-275)  

(d) 30 mm 

(SP-D16-300) 

(e) 35 mm 

(SP-D12-350 /  

SP-D16-350) 

Figure 44: Five different fold initiator spacings considered: (a) 20 mm (b) 25 mm (c) 27.5 mm (d) 

30 mm and (e) 35 mm. The sheet thicknesses considered are indicated as either white (1.2 mm) 

or grey (1.6 mm) above for each pattern. Inside the parenthesis are the corresponding specimen 

designations listed in the test matrix in Table 3. 
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2.2. Specimen Fabrication 

 

The process for specimen fabrication follows five major stages: forming, pre-weld indentation, spot-

welding and post-welding indentation, as shown in Figure 45. The fold initiators are strategically 

located at the top and flange faces. For convenience, the top face was indented prior to spot-welding 

(termed pre-weld indentation). The flange face, on the other hand, was indented after the spot welding.  

 

 

 

Figure 45: Five stages of axial crush specimen fabrication in the thesis 

 

2.2.1. Forming 

 

The forming process used to produce the hat channels was developed by Omer (2017b) and Peister 

(2019) in axial crush studies concerning Usibor® 1500-AS and Ductibor® 500-AS. Hence, the same 

equipment and procedure were used in the current work. The dimensions of a blank prior to forming 

are shown in Figure 46. These blanks were water-jet cut with two tabs remaining at each end to serve 

as locating holes for die pins in the transfer stage.  
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Figure 46: Drawing of a pre-formed blank. All units are in mm.  

 

2.2.1.1. Die Set, Press, Furnace, and Transfer System 

 

The overall forming set up consists of (i) a press, whose platen descends with an upper die; (ii) a die 

set, which is installed in the press; (iii) a furnace, which heats the blank; and (iv) a transfer system 

which moves the blank in and out of the furnace and places it in the tool, as shown in Figure 47. 

Additionally, the setup features a safety guard and a light curtain system programmed to stop the press 

stroke upon sensing entry into the press area.  

 

 

Figure 47: Overview of forming setup, adapted from Peister (2019) 

 

The hydraulic press is manufactured by Macrodyne Technologies Inc. and incorporates an actuator, 

which provides a maximum force of 125 tons and a platen velocity up to 250 mm/s to which an upper 
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die is mounted. The die set, designed by George (2012), includes an upper die, a lower binder and a 

punch with two locating pins. To rapidly cool blanks, water channels run inside the upper die and the 

punch, as shown in Figure 48.  

 

  

(a) CAD geometry of the die set (b) actual image of the die set 

Figure 48: Illustration of a die set: (a) CAD and (b) actual image, adapted from Peister (2019) 

 

During the forming stroke, the punch remains stationary and the upper die descends with the press. 

Four nitrogen-filled springs below the binder provide a total resistive force of 23.5 kN upon contact 

with the upper die.  

The furnace is manufactured by Deltech Inc. and installed directly adjacent to the press. There are six 

electric elements inside the furnace with a total heating capacity of 18kW. The elements are spread 

over three control compartments—front, middle, and rear—which allow uniform heat distribution. The 

furnace door opens and closes by a foot pedal or automatically through a programming sequence.  

The pneumatic transfer system was designed by ACRP Ltd. and is shown in Figure 49. Two guide rails 

are installed on the parallel sides of the press. A transfer cart features linear bearings which slide along 

the rails. The ceramic gripper is placed at the end of the cart to grip and hold onto a blank during the 

transfer stage.  
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Figure 49: Overview of a transfer system, adapted from Peister (2019) 

 

2.2.1.2. Process 

 

By utilizing the above forming tools, the hot stamping process occurs over four main stages, shown in 

Figure 50:  

1. The blank is austenitized in the oven at 930°C for 7 minutes.  

2. The transfer system pulls the blank out of the oven and drops it on the lower binder. The 

locating pins on the binder align the heated blank in the correct position.  

3. The upper die descends and forms the rail.  

4. Once the die reaches its maximum displacement, the press is held for additional 10 seconds to 

quench the blank. Then, the tool opens. 

Afterwards, the operator manually retrieves the hot-stamped rail with two long needle nose pliers.  
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Figure 50. Forming process flow of a hat channel rail, adapted from University of Waterloo 

Forming and Crash Lab (2018).  

 

2.2.2. Indenting 

 

New indenter fixtures were designed to account for the large number of fold initiators to be formed 

and improve repeatability of the fold initiator locations. Figure 51a shows the fixture for top-face 

indentation, consisting of an aluminum base, a top boss and heat-treated H13 indenter punch and 

indenter inserts. The indenter punch measures 25 mm x 10 mm with a 5 mm spherical tip (see Figure 

51g). The insert keeps the specimen profile from collapsing under the indenter load. Additionally, a 7 

mm gauge block was placed between the inserts to control the depth of all fold initiators. Two toggle 

clamps were mounted on the base to secure the specimens. Figure 51c shows the fixture for flange face 

indentation in which the two side bosses are used, without the toggle clamps. The side bosses are 

designed to keep the rails from rotating about their axis across the length.  
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(a) pre-weld indentation fixture (b) pre-weld indentation setup 

  
(c) post-weld indentation fixture (d) post-weld indentation setup 

  
(e) pre-weld fixture (as-fabricated) (f) post-weld fixture (as-fabricated) 

 
 

(g) geometry of indenter punch (h) indenter punch (as-fabricated) 

Figure 51. Illustrations of pre-weld indentation (a) fixture (b) setup, and post-weld indentation 

(c) fixture and (d) setup. As-fabricated indentation fixtures are shown in (e) for pre-weld and (f) 

for post-weld. The (g) indenter punch geometry (h) and its as-fabricated condition is shown as 

well. 
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Other parts used for indentation were inner bosses, as shown in Figure 52. These inner bosses were fit 

inside the rails in attempt to minimize the distortion of the rails during the indenting process. 

 

  

(a) CAD geometry of inner bosses (b) Fabricated inner bosses 

Figure 52: Illustration of inner bosses: (a) CAD and (b) as-fabricated  

 

     The indenting operation utilizes a manual hand press at the University of Waterloo Engineering 

Machine Shop, as shown in Figure 53. The fixture is installed on the press base and secured by two C-

clamps at the front and the back. The pump handle allows the descent of the indenter. Once the indenter 

is in contact with the rail, the increase in pressure is read from the pressure gauge. The pressures at the 

desired depth (3 mm) of fold initiators were recorded and consistently used for all indenting operations. 

  

 

Figure 53: Indentation setup, utilizing manual hydraulic press at the University of Waterloo 

Engineering Machine Shop 
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     One significant challenge that arose from the indenting process was distortion of rail cross-sections, 

which became more severe in thinner rails with multiple fold initiators. Figure 54 shows the baseline 

and TF pattern specimens (each using 1.2 mm thick sheets) after the indenting process and their 

imprints at the impact-end to demonstrate this phenomenon. While indenting the top face caused a 

minor geometric change, indenting the flange face caused a severe in-plane deformation that resulted 

in a “concave” shape. As such, the draft angle of the rail cross-section was affected, as shown in the 

imprints. 

 

 

(a) baseline pattern (b) TF pattern 

  

(c) baseline imprint (d) TF pattern imprint 

Figure 54: Illustration of in-plane distortion in baseline and TF specimens after indentation; and, 

sectional imprints at the impact-end for (c) baseline specimen and (d) TF specimen 

 

To measure the distortion severity, (i) the width spanning from one flange to the other and (ii) the draft 

angle were measured along the length using a Vernier caliper and a protractor, as shown in Figure 55a 
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and Figure 55c. The two measurement results from 1.2mm thickness specimens in Figure 55b and 

Figure 55d show their variation up to 12% and 13%, respectively, from the nominal values. Although 

the distortion effect was still present for rails with 1.6 mm thickness, it was less severe than for the 1.2 

mm rails.  

 

 
 

(a) flange to flange width of a rail  (b) flange to flange width measurement results 

 
 

(c) draft angle of a rail (d) draft angle measurement results 

Figure 55: Illustration of (a) the flange to flange width (b) its measurement results and (c) the 

draft angle and (d) its results for 1.2mm Baseline and TF specimens. Along the x-axis, the 0 mm 

position refers to the impact-end of the specimens.  

 

2.2.3. Spot Welding 

 

The spot welding process was performed at the Promatek Research Centre, one of the research project 

sponsors. To establish the proper location of spot welds, a spacer was fabricated from Mica insulation 

material, as shown in Figure 56a. The spacer features linearly arrayed holes and sits on the specimen 
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flange with the spring clamps. Because the spot weld spacing also varies according to the fold initiator 

spacing, multiple spacers with the appropriate spacings were fabricated. The aluminum-silicon (Al-Si) 

coating remained intact on the flanges prior to welding, meaning the flanges were left in the as-hot-

stamped condition and not sandblasted up to this stage of specimen fabrication.  

 

  

(a) Spacer (b) Spot-weld setup 

Figure 56: Images of spot weld (a) spacer (b) setup at the Promatek Research Centre 

 

The spot weld schedule for the hot-stamped Ductibor® 1000-AS specimens was provided by 

Mohamadizadeh (2018), and is shown in Table 4. The electrode tip diameter used in the process is 6 

mm. 

 

Table 4: Spot weld schedule used for the hot-stamped Ductibor® 1000-AS rail specimens 

 

Thickness  

(mm) 

Pre-pulse Weld 
Force 

(kN) 
Time 

(ms) 

Curent 

(kA) 

Time 

(ms) 

Curent 

(kA) 

1.2 33 8 400 7 3.5 

1.6 33 10 400 7 4 

 

     Two key parameters are the spot weld-pitch and location relative to the fold initiators. Figure 57 

and Figure 58 show the spot weld drawings for the baseline and TF pattern specimens, respectively. 

The spot weld pitch for the baseline rail configuration specimen was selected as 25 mm, which was 

consistent with the studies by Omer (2017b) and Peister (2019), as illustrated in Figure 57. For all 

other patterns (e.g. TF), the spot weld pitch was set equal to the fold initiator spacing (2𝐻), which 

varies between 20 mm to 35 mm in Part 3. Moreover, the spot welds in the indented region were placed 
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halfway between adjacent pairs of flange fold initiators (see Figure 58). This approach was adopted 

because it provided the largest flat region for spot welding. In addition, the resulting spot weld was 

located away from the tight fold region, thereby reducing bending strains experienced by the spot weld, 

at least for configurations that exhibited stable folding. Further optimization of the spot weld spacing 

and location was judged outside of the thesis scope.  

 

 

Figure 57: Spot weld drawing for the baseline pattern.  

 

 

Figure 58: Spot weld drawing for the fold initiator pattern TF. For all patterns, the spot weld 

pitch for un-indented regions remained 25 mm while that of indented region was set equal to the 

fold initiator spacing, 𝟐𝐇. 

 

2.2.4. Sandblasting 

 

Specimens were also sandblasted twice to remove the aluminum-silicon (Al-Si) coating, as shown in 

Figure 59. Removal of the coating reduces the formation of dust clouds due to loss of the coating during 

impact which would otherwise obscure video recordings during testing. The inner surface of the top 

hats was first sandblasted prior to spot welding, while the outer surfaces of the welded rails were 
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sandblasted after welding. When sandblasting the inner surface of the top hats, the flange regions were 

covered with masking tape to protect the coating. This approach is consistent with hot-stamping 

industrial practice in which the Al-Si coating is left on hot stamped sheets prior to spot welding. 

 

 

Figure 59: Sandblasted top hat channels before spot welding. Flanges were protected with 

masking tape to retain the aluminum silicon coating for the subsequent spot weld operation.  
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2.3. Dynamic Axial Crush Setup 

 

The dynamic axial crush tests were conducted using a Seattle Safety D780-3.7 crash sled at the 

University of Waterloo Structural Crashworthiness Sled Facility (Figure 60). The crash sled features 

two onboard accelerometers, and is propelled by a pneumatic system in which a rope attached to the 

sled is pulled by a piston. The movement of the piston relies on the compressed air release from a 

reservoir, which allows a maximum initial velocity of 91 km/hr. For all dynamic tests considered in 

the thesis, an impact velocity of 10.6 m/s and a sled mass of 855 kg were used.  

 

 

Figure 60: Crash sled at the University of Waterloo for dynamic axial crash tests, adapted from 

Peister (2019) 

 

To mount the specimens to the barrier wall, custom fixtures, designed by Omer et al. (2017b), were 

used, as shown in Figure 61. The mounting fixtures consist of two inner bosses and two outer clamps 

that feature holes or slots to mount the rail specimen in a consistent position with regard to the sled. 

The bosses and clamps at the wall are 50 mm in length (𝐿), while those at the impact-end are 25 mm.  
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(a) clamp set (b) clamp sets 

Figure 61: CAD geometry of a (a) clamp set designed by Omer et al. (2017b) and (b) clamp sets 

with rail, forming a “rail assembly” 

 

     The bosses and clamps are mounted to a steel plate using M8 bolts, as shown in Figure 62. To avoid 

metal-to-metal contact with the sled and dampen the vibration upon the impact, the impact plate is 

faced with a 19 mm (¾ inch) thick sheet of plywood. Once the rail is clamped to the impact plate, the 

rail assembly was mounted to a supporting plate.  

On the fixed barrier wall, three 120kN Kistler 9731B piezoelectric load cells are attached in a triangular 

pattern to measure the crush force, (see Figure 62c). Additionally, two stacks of honeycomb arrestors 

were mounted on each side of the rail to stop a crash sled. The honeycomb arrestors are made of 

Plascore 5056 aluminum cells with a crush strength of 3.7 MPa (535 psi). The dimensions of the first 

and second stacks were 140 mm x 140 mm x 170 mm and 160 mm x 160 mm x 195 mm, respectively. 

The stacked honeycomb arrestors were mounted on the wall such that there is “free crush distance” of 

165 mm, which corresponds to the distance traveled by the sled from the moment of its impact with 

the crush specimen up to the engagement of the honeycomb arrestors.  
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(a) Clamp and bosses at wall-end (b) Clamp and bosses at impact-end 

 

(c) rail assembly mounted to a barrier wall 

Figure 62: Mounting plate with clamps at the (a) wall-end, (b) impact-end, and (c) entire rail 

assembly mounted to the fixed barrier wall. Three piezoelectric load cells measure the crush 

force. Honeycomb arrestors provide 165 mm free crush distance. 

 

Figure 63 illustrates the lighting and camera setup for dynamic crush tests. One Photron SA-4 high-

speed camera and two Photron AX-100 high-speed cameras were mounted directly above and next to 

the rail assembly to capture images at 5000 frames per second. To illuminate the rail assembly, two 

large lighting sources were placed at a far distance, in addition to a small lighting source placed directly 

below the specimen. Still images obtained from each camera during setup are shown in Figure 64.  
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Figure 63: Dynamic axial crush test setup, highlighting various test equipment: (i) one Photron 

SA-4 high speed camera, (ii) two Photron AX-100 high speed cameras, (iii) various lighting 

sources, (iv) a laser trigger system, and (v) a laser displacement sensor.  

 

   

(a) top view (b) left view (c) right view 

Figure 64: Still initial images of the dynamic axial crush test specimen from (a) top view (b) left 

view, and (c) right view 

 

     The data acquired during dynamic crush tests includes crush load, sled displacement, and sled 

deceleration. The crush load is measured by the three piezoelectric load cells sampled at 10,000 Hz 

(data points per second), while the sled deceleration is measured by the two onboard accelerometers at 

the same frequency. The load data from each cell is summed to calculate a total resultant load, while 
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the sled displacement is calculated using the initial velocity and double integrating the measured 

deceleration. A Keyence LK 507 laser displacement sensor is placed on the barrier wall as a redundant 

measurement of sled displacement. Initiation of the data logging and camera image acquisition is 

accomplished by a laser trigger system, activated by the sled, which sends a signal to the data 

acquisition unit (DAC) and camera controller PC. The data logging duration was set for a 1-second 

interval, to begin 0.5 seconds before the sensor detects the sled.  

The measured crush force (𝐹) and crush displacement (𝑑) were plotted against each other to develop 

the crush force vs. crush displacement plot (F-D), and the absorbed energy (𝐸) was calculated using 

the relation 

 

 dE F d=   (38) 

 

which was numerically integrated using the trapezoidal rule.  
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2.4. Quasi-Static Axial Crush Setup 

 

Figure 65 illustrates the quasi-static axial crush test setup, utilizing a hydraulic test frame with a load 

capacity and a displacement span of 496 kN and 250 mm, respectively. An MTS Flex Test SE 

controller controls the actuator displacement. Crush force and displacement data are obtained by a data 

acquisition board, which interfaces with the LabVIEW program on a PC.  

     A rail assembly was fixed on the frame bed by two forged steel step clamps encircled in Figure 65. 

Two video cameras were used to capture the front and the side view of a specimen. To illuminate the 

specimen, four small lighting sources were carefully placed nearby.  

 

  

(a) Overview (b) Mounted specimen 

Figure 65: Quasi-static axial crush test setup: (a) overview and (b) mounted specimen.  

 

     By utilizing this test setup, quasi-static axial crush tests were conducted in three steps: (i) the press 

cylinder was brought down close to the specimen, leaving a few millimeter gap; (ii) a customized 

LabVIEW program was executed to move the press down for 230 mm at a constant velocity of 0.3 

mm/s; and lastly, (iii) the Vic-Snap program was executed to record data and videos at 1 Hz.   
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3.0 Numerical Models 
 

A key aspect of the research work was the development of numerical models to simulate the quasi-

static and dynamic axial crush experiments. The chapter is organized into three sections that present 

three primary aspects of the modeling scope: (i) development of a material model capturing the 

constitutive behaviour of Ductibor® 1000-AS sheet in the hot-stamped condition; (ii) development of 

finite element (FE) models that simulate the indentation process used to form the fold initiators; and 

lastly, (iii) FE models of the axial crush tests.  

    The flow chart in Figure 66 illustrates the overall scope of numerical models developed as part of 

the thesis activity. The material model aims to describe two main mechanical responses, which are the 

constitutive (stress-strain) and fracture limit response. To this end, numerous researchers contributed 

to the characterization of these properties, as detailed in Section 3.1. Modelling of the fold initiator 

patterns is described in Section 3.2. Two different modeling approaches are considered to reproduce 

the indented geometry in the specimens by either displacing the nodes at the desired locations of hat 

channel mesh or numerically simulating the indentation processes. The actual axial crush models are 

described in Sections 3.3. Here, the various axial crush rails (detailed in the previous chapter) are 

subjected to either a dynamic or quasi-static loading condition at 10.6 m/s or 0.00035 m/s initial impact 

velocity or constant velocity, respectively.  

     Note that all the finite element models presented in this thesis were developed using the commercial 

FE code LS-Dyna version 9.2 (Livermore Software Technology Corporation, 2016). 
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Figure 66: Flowchart illustrating the overall scope of the numerical models presented in this 

thesis. Two different approaches were considered to create the fold initiator patterns in the FE 

simulations. 

 

3.1. Material Model for Hot Stamped Ductibor® 1000-AS 
 

The material model used for the Ductibor® 1000-AS sheet in the hot stamped condition was developed 

as part of a larger collaborative research project at the University of Waterloo that was sponsored by 

Honda R&D Americas, Promatek Research Centre, and ArcelorMittal. The data presented in the 

balance of this section, comprising measured constitutive (stress-strain) response, rate sensitivity and 

fracture limit strains, stems from a number of as yet unpublished research studies undertaken within 

the project team, as documented in the following.  

To provide readers an overview of the project scope from a material characterization perspective and 

to properly cite the source of the data, Table 5 and Table 6 list the various characterization tasks and 

the corresponding investigator(s). The tasks highlighted in red represent those undertaken in part by 

the author of this thesis, which consisted of (i) fitting the experimental stress-strain curve into a 

hardening model and (ii) conducting finite element mesh regularization of the fracture locus. 
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Table 5: List of tasks and the corresponding researchers responsible for constitutive characterization 

of die-quenched Ductibor® 1000-AS. The highlighted tasks (in red) represent contributions of the 

author of this thesis. 

 

Task Apparatus Author 

1. Quasi-static Constitutive Characterization Tests & Modeling 

     Quasi-static tensile test  

Abedini (2018)      Quasi-static shear test 
MTS Criterion Model 45 Tensile 

Frame 

     High strain extrapolation - 

     Hardening model fitting - 
Abedini and 
Lee (2019) 

2. Strain Rate Sensitive Constitutive Characterization Tests & Modeling 

     High strain rate tensile test  
     (1, 10, 100s-1) 

Hydraulic Intermediate Strain 
Rate Apparatus Zhumagulov and 

Imbert (2018)       Hopkinson bar test  
     (1000s-1) 

Tensile Split Hopkinson Bar 
Apparatus 

     Strain rate sensitive hardening  
     model fitting 

- 
Abedini and  

Lee (2019) 

 

Table 6: List of tasks and the corresponding researchers responsible for fracture locus calibration of 

Ductibor® 1000-AS. The highlighted tasks represent contributions of the author of this thesis. 

 

Task Apparatus Author 

1. Fracture Characterization Tests 

     Mini shear test 
Hydraulic Instron Model 1331 Tensile 

Apparatus 
Abedini (2018) 

     Hole expansion test MTS Formability Press Samadian (2018) 

     V-bend test Inverted VDA238-100 Bend Test Apparatus Cheong (2019) 

     50 mm Nakazima dome test MTS Formability Press Samadian (2018) 

     5 mm Equi-biaxial dome test MTS Formability Press Cheong (2019) 

2. Fracture Locus Calibration & Mesh Regularisation 

     Fracture locus calibration - 
Abedini and 

Butcher (2020) 
     Modeling 50mm Nakazima     

     dome test 
- Lee (2020) 

     Finite element mesh     

     regularization 
- Lee (2020) 
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3.1.1. Constitutive Behaviour 

 

For the purposes of the current work, the hot-stamped Ductibor® 1000-AS was assumed to obey the 

von Mises (1913) yield criterion with isotropic hardening response. 

The Al-Si coating thickness on each face of the sheet was taken as 0.025 mm, as reported by Samadian 

et al. (2020). Because the Al-Si coating is brittle and has significantly less load-carrying capacity than 

the parent metal, the total coating thickness of 0.05 mm was subtracted from the nominal sheet 

thickness, such that a net thickness of 1.15 mm and 1.55 mm was considered in the models for the 1.2 

and 1.6 mm sheet, respectively. 

 

3.1.2. Quasi-Static Hardening Response 

 

The constitutive model for as-hot stamped Ductibor® 1000-AS was developed using uniaxial and shear 

stress-strain data acquired by Abedini (2018). Figure 67 shows the stress-strain curves obtained from 

tensile and mini shear tests, using testing methodologies similar to that reported by Abedini et al. 

(2018). These quasi-static tests were conducted at an equivalent strain rate of 0.01 s-1.  

 

  

(a) Tensile test (b) Shear test 

Figure 67: Stress vs. strain responses of die-quenched Ductibor® 1000-AS from (a) uniaxial 

tensile test (with five repeats) and (b) shear test (with six repeats) performed by Abedini (2018)  

 

The uniaxial tensile uniform elongation (UE) of this material is quite low, only 0.04, as seen in Figure 

67a. As a result, the measured shear stress-strain data was used by Abedini (2018) to extend the 

effective stress-strain response to larger strain levels (Figure 67b) using the work-equivalence method 
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developed by Rahmaan et al. (2017). The resulting effective stress versus effective plastic strain 

response is shown in Figure 68. 

 

 

Figure 68: Equivalent stress vs. equivalent plastic strain curve for Ductibor® 1000-AS, extended 

to larger strain levels by Abedini (2018) based on tensile and shear data. 

 

The measured quasi-static hardening response in Figure 68 was fit to a modified form of Hockett-

Sherby (1975) equation due to Noder and Butcher (2019): 

 

 ( )( )4

1 1 2 3 5( )exp
C

p pσ C C C C ε C ε= − − − +  (39) 

 

in which 𝐶1 to 𝐶5 are calibration parameters, 𝜀𝑝̅ is the equivalent strain and 𝜎 is the flow stress. The 

fitting was performed as part of the current work using a custom MATLAB script provided by Butcher 

(2019). The calibrated constants and the mean square error (R-sq) are listed in Table 7. 

 

Table 7: Calibrated constants for die-quenched Ductibor® 1000-AS using modified Hockett-

Sherby equation (see Equation (39)) 

 

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 R-sq 

1183.57 731.55 29.37 0.67 57.84 0.992 
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3.1.2.1. Strain Rate Effects 

 

Elevated strain rate tensile testing was performed on this alloy by Imbert and Zhumagulov (2018) to 

account for the effect of strain rate on flow stress. This data was acquired using the tensile Split-

Hopkinson bar apparatus (1000 s-1) and hydraulic intermediate strain rate apparatus (1-100 s-1) at the 

University of Waterloo, using the methodologies documented by Rahmaan (2015). The measured data 

is shown in Figure 69 as solid lines with the quasi-static curve at 0.01 𝑠−1, shown in Figure 68 using 

the shear extrapolation technique. Overall, a moderate strain rate sensitivity is exhibited by the die-

quenched Ductibor® 1000-AS sheet steel.  

 

 

Figure 69: Measured and predicted flow stress vs. equivalent plastic strain for a range of strain 

rates (0.01 s-1, 1 s-1, 10 s-1, 100 s-1 and 1000 s-1) for die-quenched Ductibor® 1000-AS (solid curves). 

The symbols are from the fit using Equation (40).  

 

In order to account for this material rate effect, a logarithmic strain rate sensitivity term, first proposed 

by Johnson and Cook (1983), was introduced to Equation (39), which assumes a multiplicative 

coupling or scaling of the quasi-static stress-strain response: 

 

 ( )( )4

1 1 2 3 5 6

0

( )exp 1 ln
C

p p

ε
σ C C C C ε C ε C

ε

   
= − − − + +        

 (40) 

 

Here, 𝜀𝑂̇ is a reference strain rate (taken as 0.01 s-1), and 𝜀̇ is the actual strain rate. 𝐶6 is a strain-rate 

calibration constant that was determined using the data shown in Figure 70 in which the flow stress at 
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a strain of 0.04 is plotted as function of strain rate (log-plot).  The flow stress at each strain rate is 

normalized by the flow stress at the reference strain rate of 0.01 s-1. The strain-rate calibration constant 

(𝐶6) was determined by a linear line of best fit of the normalized stress versus log-strain rate data.  The 

resulting values for all of the material parameters in Equation (40) are listed in Table 8. Figure 69 also 

shows the predicted stress-strain response using Equation (40) for strain rate in the range 0.001 s-1 to 

1000 s-1. The predicted curves are shown to agree well with the measured tensile results. 

 

 

Figure 70: Normalized stresses vs. strain rates for various strain rates. The normalization ratio 

was obtained with respect to the 0.01 s-1 UTS. Note that the strain rates deviate to some degree 

from their nominal values as the test results revealed lower rates than the nominal values (see 

Appendix E). 

 

Table 8: Calibrated constants for the die-quenched Ductibor® 1000-AS using the strain rate 

sensitive model given by Equation (40). 

 

𝐶1 (MPa) 𝐶2 (MPa) 𝐶3 𝐶4 𝐶5 (MPa) 𝐶6 𝜀𝑂̇  

(s-1) 

1183.57 731.55 29.37 0.67 57.84 0.011 0.01 

 

Lastly, the predicted strain rate sensitive flow stress response in Figure 69 is taken as an input to a pre-

existing elasto-plastic material model in LS-Dyna (*MAT_PIECEWISE_LINEAR_PLASTICITY, 

MAT 24).   
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3.1.3. Fracture Response 

 

To characterize the fracture response of as-hot stamped Ductibor® 1000-AS, fracture limit strains 

under different strain paths were obtained by five characterization tests using the specimen geometries 

shown in Figure 71. These tests consist of the simple shear test, hole expansion test, V-bend test, 50 

mm Nakazima dome biaxial tension and 5 mm dome equi-biaxial tension tests. The equivalent fracture 

limit strain obtained from each test is listed in Table 9 with sources for each result. The testing 

methodologies used are similar to those reported by Samadian et al. (2020).  

 

 
 

 

(a) simple shear 

(Peirs et al., 2012) 

(b) hole expansion 

(ISO, 2017) 

(c) V-bend (VDA, 2017) 

(d) 50mm dome Nakazima 

biaxial  (Nakazima et al., 1968) 

(e) 5mm dome equi-biaxial 

(Cheong, 2019a) 

Figure 71: Specimen geometries used for the fracture limit characterization tests of die-quenched 

Ductibor® 1000-AS (1.2mm sheet steel) 
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Table 9: List of idealized stress triaxiality and the measured average fracture strain (equivalent 

plastic strain) obtained from each fracture characterization test, and (the names of responsible 

researchers). For 50 mm dome test, stress triaxiality was estimated using Equation (41) to (43). 

Likewise, the fracture strain of 50 mm dome test was damage integrated by Butcher (2020) 

 

Fracture limit characterization test 

(performed by) 

Idealized or 

[averaged] stress 

triaxiality, 𝜼 

Measured or 

[damage 

integrated] 

fracture strain 𝜺̅𝒇 

simple shear                         (Abedini, 2018) 0.0000 0.75 

hole expansion                  (Samadian, 2018) 0.3333 0.79 

V-bend                                  (Cheong, 2019) 0.5774 0.67 

50 mm Nakazima dome      

biaxial tension                   (Samadian, 2018) 
[0.6580]  0.53 [0.79] 

5 mm dome biaxial tension  (Cheong, 2019) 0.6666 1.31 

 

In Table 9, the stress triaxiality for each test is nominal, meaning that the path of continuum traveled 

in stress triaxiality vs. equivalent plastic strain (𝜂 𝑣𝑠. 𝜀𝑝̅) domain is linear (and vertical), except for the 

50 mm biaxial Nakazima dome test. The measured 50 mm dome test data rather showed a strong 

nonlinear stress triaxiality-equivalent plastic strain path. As a result, its stress triaxiality was estimated 

by the following relations (Jia and Bai, 2016) that are derived with the plane stress and von Mises yield 

criterion assumptions 
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in which 𝛽 is a function of 𝛼, which is the ratio of major strain increment (∆𝜀1) and minor strain 

increment (∆𝜀2) 
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The fracture limit strain for each test was determined from the measured strain components at the onset 

of fracture, corresponding to the last image obtained by DIC techniques before visual cracking was 
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observed. Non-linear strain path effects on the fracture loci (except for those from the 50 mm Nakazima 

dome biaxial tension test) were not taken into account in the current work. 

     The measured (and damage-integrated) fracture limit strains and triaxiality values in Table 9 were 

used to calibrate the Bai-Wierzbicki (2007) fracture model in Equation (44). The calibration was 

performed by Abedini and Butcher (2020), who excluded the 5 mm (sharp radius) dome test data, to 

obtain a fit to the plane-stress fracture locus in the following form: 

 

 ( ) ( )6 62 4 2 42

1 5 3 1 5 3

1 1

2 2

D DD D D D

f D e D e D e D e D e D e
− −− − − − 

= + − + − + 
 

        (44) 

 

 
6 2

1 1 arccos


 
 

= − = −  (45) 

 

where 𝐷1 to 𝐷6 are calibration parameters, 𝜂 is the stress triaxiality, 𝜃̅ is the normalized Lode angle 

defined due to Bai and Wierzbicki (2008) which is related to the Lode angle (𝜃) or the third deviatoric 

stress invariant (𝜉). The resulting values for all of the material parameters in Equation (44) are listed 

in Table 10.  

 

Table 10: Calibrated constants for the die-quenched Ductibor® 1000-AS using the Bai-

Wierzbicki (2008) fracture model given by Equation (44). 

 

𝐷1 𝐷2 𝐷3 𝐷4 𝐷5 𝐷6 

0.7051 0.0493 0.7013 -0.3869 0.8300 -0.7276 

 

The calibrated fracture locus in terms of von Mises effective fracture strain versus stress triaxiality is 

plotted in Figure 72.   
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Figure 72: Plane stress fracture locus of the die-quenched Ductibor® 1000-AS sheet. The 

measured fracture and damage integrated strains in Table 9, excluding 5 mm Nakazima dome 

test, were used to calibrate the Bai and Wierzbicki (2008) fracture model, described in Equation 

(44), due to Abedini and Butcher (2020). 

 

3.1.3.1. Mesh Regularization 

 

     It should be noted that the calibrated fracture locus is not immediately applicable to the finite 

element analysis due to the prevalence of finite element mesh sensitivity. In general, the predicted 

fracture strains in necking zones of a forming model can be significantly different based on the element 

size, as demonstrated by Eller et al. (2014). As a result, a process known as ‘mesh regularization’ was 

performed to account for the effect of element size on fracture prediction.  

In the mesh regularization process herein, the 50 mm dome Nakazima biaxial tension test by Samadian 

(2018) was numerically modeled with four different element sizes within the blank mesh, 0.6 mm, 1.2 

mm, 2.5 mm and 5.0 mm. In each model, a scaling factor was applied to the calibrated fracture locus 

(Figure 72 and Table 10) such that each predicted limiting dome height at failure matches that in the 

experiments. One important aspect considered in the numerical modeling of the Nakazima dome test 

was incorporating the die lock-bead geometry used in the test. Without the lock-bead, the correlation 

between the measured and the predicted responses in the punch load vs. punch height worsened 

significantly. The details of the Nakazima model setup are documented in Appendix F for brevity.  
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     The predicted punch load vs. punch height response for each element size after applying the 

regularization is overlaid with the measured punch load vs. punch height response in Figure 73(b). 

Also shown in the figure is the punch load vs. punch height response with the as-calibrated fracture 

locus without regularization Figure 73(a). The applied scaling factor or regularization factor for each 

element size is shown in Figure 74.  

 

 
(a) without regularization 

 
(b) with regularization 

Figure 73: Predicted punch force vs. punch height response from Nakazima 50 mm dome biaxial 

tension simulation of the die-quenched Ductibor® 1000-AS: (a) without and (b) with 

regularization. The measured response by Samadian (2018) is overlaid with the predicted 

responses. The 0 mm punch height refers to the first point of contact between the punch and the 

specimen.  
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Figure 74: Regularization factor for calibrated fracture locus of die-quenched Ductibor® 1000-

AS.  

 

An interesting observation in Figure 74 is that the regularization factors are insensitive to the element 

sizes in the Nakazima 50 mm dome simulations, unlike the regularization factors for die-quenched 

Usibor® 1500-AS reported by Omer et al. (2017b). Lastly, the calibrated fracture locus in Figure 72 

and the regularization factors in Figure 74 are taken as an input to the pre-existing GISSMO model in 

LS-Dyna (*MAT_ADD_EROSION). The additional parameters used for the GISSMO are listed in 

Table 11.   

 

Table 11: GISSMO parameters used for the calibrated fracture locus of die-quenched Ductibor® 

1000-AS 

 

NUMFIP ECRIT DMGEXP DCRIT FADEXP SHRF BIAXF 

-70 0 2 1 2 1 0 

 

     Mesh regularization may lead to excessive damage accumulation in the shell elements under 

compression (i.e. 𝜂 < 0) since the scale factors would be applied to the entire fracture locus (i.e. 𝜂 <

2/3). To avoid this, the shear regularization factor “SHRF” in *MAT_ADD_EROSION was set to 1, 

which prevents the compression (and shear) region of fracture locus from being scaled (Livermore 

Software Technology Corporation). The biaxial regularization factor “BIAXF” was set to 0 so that the 

rest of the region in fracture locus (i.e. 0 < 𝜂 < 2/3) is scaled.  
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3.1.4. Spot Weld Response 

 

The material model adopted for the Ductibor® 1000-AS spot welds is documented in this section. All 

of the experiments and calibration work was performed by Tolton (2020) whose thesis topic is 

dedicated to spot welds. The spot weld model is named *MAT_SPOTWELD_DA, provided from the 

LS-Dyna material library (Livermore Software Technology Corporation, 2016), and consists of a spot 

weld failure model defined as  
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in which 𝑓 is a failure parameter, and 𝜎𝑛
𝐹, 𝜎𝑏

𝐹  , 𝜏𝐹 are the normal, bending, shear strengths and 𝜎𝑛, 𝜎𝑏  , 

𝜏 are the normal, bending, shear stresses. The failure parameter (𝑓) of unity represents the onset of spot 

weld failure, upon which the damage parameter (D) begins to accumulate via 
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2
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D

GFAD
=  (47) 

 

and 𝐺𝑢𝑠𝑒𝑑  is the internal work done by the spot weld element after the failure (i.e. f reaches 1), and 

GFAD is the fading energy parameter. Damage parameter D should not be confused with 𝑓, since the 

former represents the accumulated rupture of spot welds once the failure initiates. Spot weld elements 

can only be deleted once D reaches a value of unity. 

     In Equation (47), GFAD also deserves particular attention because it controls the load-carrying 

capacity after the failure, which would otherwise result in an instant element deletion. The load 

supported by the spot weld is decreased by a scale factor of 1 − 𝐷 (Livermore Software Technology 

Corporation, 2016). Thus, a higher value of GFAD would correspond to a lower damage accumulation 

(due to Equation (47)), which in turn, would result in a higher scale factor (Livermore Software 

Technology Corporation, 2016). The calibrated parameters described in Equations (46) and (47) are 

listed in Table 12 for the die-quenched Ductibor® 1000-AS. Note that the onset of bending failure in 

the spot welds was not calibrated by Tolton (2020) and was suppressed by assigning a high value to 

the bending strength parameters.  
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Table 12: Calibrated parameter for the spot weld model, *MAT_SPOTWELD_DA (Livermore 

Software Technology Corporation), by Tolton (2020).  The spot weld diameter was assumed as 

6.0 mm.  

 

Sheet  

thickness 

(mm) 

Normal  

strength 

(MPa) 

Bending  

strength 

(MPa) 

Shear  

strength 

(MPa) 

Normal  

exponent 

Bending  

exponent 

Shear  

exponent 
GFAD 

1.2 235 1.00 x 1014 800 1 1.00 x 1014 1 192 

1.6 435  1.00 x 1014 875 1 1.00 x 1014 1 120 
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3.2. Fold Initiator Treatment 
 

In introducing the fold initiator patterns within the FE models, two different modeling approaches were 

considered, termed the “displacement approach” and “indentation approach”. In the displacement 

approach models, the nodes of the double hat mesh at the appropriate locations were displaced by 3 

mm, which is the fold initiator depth during the indentation processes. In the indentation approach, the 

fold initiator patterns were modeled by simulating the top and flange indentation processes undertaken 

during the specimen fabrication. These approaches are detailed in the following. 

     It is important to note that the majority of the numerical models utilized the displacement approach 

to introduce the fold initiators. The indentation approach was considered as an alternative to simulate 

some of the Part 2 and 3 experiments in an effort to account for significant distortion of the crush rails 

that incorporated multiple fold initiators.  

 

3.2.1. Finite Element Mesh of Single Hat Section 

 

The main input to the numerical models for creating fold initiator patterns is a discretized FE mesh of 

the single hat section. As shown in Figure 75, the single hat section mesh consists of uniform 2.5 mm 

quadrilateral elements. The length of the single hat section mesh is 500 mm for all dynamic crush 

models used to simulate the experiments in Parts 1 and 2 of the test matrix. For the quasi-static crush 

models in Part 3 of the experiments, the length of the single hat channel was reduced to 375 mm to 

reduce the likelihood of global buckling. 

 

 

Figure 75: Illustration of the finite element mesh used to model the single hat channel subjected 

to dynamic loading. The unclamped length was reduced to 375 mm for the quasi-static load cases. 
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3.2.2. Displacement Approach to Introduce Fold Initiators 

 

To illustrate the displacement approach in which nodes were simply translated to introduce fold 

initiators without modelling the resulting strains and stresses, the FE mesh for the TF fold initiator 

pattern is shown in Figure 76. The nodes at the locations corresponding to the fold initiators are 

displaced in the y-direction by 3 mm, which is the depth of the initiators in the experiments.  

 

 

Figure 76: Illustration of the displacement approach used to recreate the TF pattern in the FE 

model. 

 

3.2.3. Indentation Approach to Introduce Fold Initiators 

 

The indentation approach simulates the plastic deformation process used to form the fold initiators in 

the flanges and/or top face of the channel sections, essentially mimicking the physical process adopted 

in the experiments. The indentation approach is considerably more complicated and requires meshing 

of the indentor tooling (described in Section 2.2.2) and modelling the indentation of each fold initiator, 

as described in this section of the thesis. The process of modeling indentation follows the specimen 

fabrication process with the following three steps:  

 

1. Top fold initiators are indented on two single hat channel models, separately. 

2. The two single hat models from Step 1 are joined by spot weld elements to form a double hat 

channel model 

3. For patterns with flange initiator patterns, the initiators are indented on the double hat model 

as was done in the physical sample preparation. 

 



86 
 

To demonstrate the steps above, Figure 77 illustrates the workflow adopted within the numerical 

models of the TF (Top-Flange) pattern indentation in which the top face is first indented and the flange 

fold initiators after the hat sections are joined. A critical distinction between the top and flange 

indentation model is the half-symmetry about the y-z plane assumed for the top initiators, while the 

full geometry is modelled while simulating the flange initiator indentation process. In this case, the 

half-symmetry models were reflected after the top face indentation but before the flange indentation. 

 

 

Figure 77:  Illustrations of the workflow within the numerical models of the TF (Top-Flange) 

pattern indentation, using the indentation approach. Each fold initiator is indented one at a time.  

 

The fold initiators were indented one at a time, meaning one indentation simulation forms one fold 

initiator. After each simulation, the single or double hat models were translated in the z-direction by 

twice the targeted fold initiator spacing (4H). During flange indentation, fold initiators were formed 

on one flange at a time (as illustrated in Figure 78) to reproduce the actual sequence taken during 

preparation of the physical specimens. As a result, after one flange was completely indented, the double 

hat models were rotated about the y-axis and then the z-axis after which the fold initiators were formed 

on the next flange.  
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Figure 78: Illustration of the indenting sequence taken within the numerical models of flange 

indentation. Numbers indicate the sequence from the first to last.  

 

     As noted, this process is quite laborious and it is noted that a far more effective approach would be 

to incorporate the initiator geometry within the hot stamping tooling. Moreover, the excessive 

distortion observed in the specimens incorporating numerous fold initiators (Figure 54) would be 

significantly reduced by forming the initiators within the hot stamping tool. Unfortunately, the high 

cost of fabricating hot stamping tooling capturing all of the initiator patterns and spacings was 

prohibitive and the current manual indentation process was adopted in the experiments. The main 

purpose of the indention approach models was to assess the effect of the local thinning, work hardening 

and distortion due to the indentation process on the axial crush response of the rail assemblies. 

  

3.2.3.1. Indentation Model Setup and Boundary Conditions 

 

     All the numerical simulations of indentation were performed using the static implicit formulation 

within LS-Dyna (Livermore Software Technology Corporation, 2016). Figure 79 illustrates the 

numerical model setup for top and flange indentation. Both setups consist of a fixture and an indenter. 

Additionally, the top indentation setup consists of a toggle clamp used to constrain the single hat 

specimens.  
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(a) Pre-weld (top) indentation model setup  (b) Post-weld (flange) indentation model setup 

Figure 79:  Illustration of the indentation model setup: (a) pre-weld and (b) post-weld  

 

     All tools are modelled as rigid parts with quadrilateral shell elements to discretize the tool surfaces. 

The element size used for the fixtures and indenter was an order of magnitude smaller than the initial 

element size of a hat channel, as shown in Figure 80. 

 

 

Figure 80: Close-up image of the mesh used for fixture and the indenter for the flange indentation 

model  

 

The fixtures are fully constrained in all degrees of freedom and the indenter was prescribed a sinusoidal 

velocity profile capturing the indentation motion. The hat channels were assigned a gravitational load 

and the clamp was given a constant force of 250 N, which represents the actual clamping force.   
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A surface-to-surface, penalty-based contact algorithm was defined between the hat channels and 

tooling components, with a friction coefficient of 0.4.   

 

3.2.3.2. Adaptive Mesh, Coarsening, and Springback for the Indentation Approach Models  

 

The hat channels in the indentation approach were meshed with an initial element size of 2.5 mm; 

however, an adaptive mesh refinement algorithm was utilized in LS-Dyna. The algorithm refines those 

elements for which the total angle change between adjacent element edges exceeds 20°. A refinement 

level of three was used, meaning the smallest element size was 0.625 mm. Once the indentation stage 

was completed, the refined elements were combined using a coarsening algorithm in LS-Dyna to re-

establish the nominal element size of 2.5 mm. To illustrate the refinement-coarsening process, Figure 

81 shows one of the indented zones in a hat channel model following indentation as well as following 

application of the coarsening algorithm. Mesh coarsening was used to improve crash simulation run 

time and to keep the element size consistent with industrial crash safety practice. 

 

 
 

(a) before applying the coarsening algorithm (b) after applying the coarsening algorithm 

Figure 81: Illustration of an indented zone to demonstrate the effect of the coarsening algorithm: 

(a) before and (b) after applying the coarsening algorithm. 

 

After simulating indentation, all tools were removed and a springback analysis was performed on the 

indented hat models. In the springback analysis, a number of nodes adjacent to the potential datum 

locations in the hat model (e.g. the locating holes) were chosen and boundary constraints were applied 

to eliminate rigid body modes, as shown in Figure 82.  
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Figure 82: Constrained nodes for a springback analysis of a double hat channel, which follows 

the flange indentation simulation 

 

It is important to note that in the indentation approach, the effect of the previous forming history (e.g. 

damage variable, effective plastic strain, residual stress and thinning) was taken into account by 

utilizing the *INTERFACE_SPRINGBACK keyword in the LS-Dyna software. This keyword creates 

a file named “dynain” which contains the forming history variables after each simulation. The dynain 

file was used to initialize each subsequent indentation simulation and, finally, the axial crush 

simulation.  
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3.2.3.3. Validation of the Indentation Approach Models 

 

One important phenomenon observed during indentation was the significant geometric distortion of 

the flanges, as shown in Figure 54. The indentation models should closely replicate the same effect; 

hence, the model results must be validated. For that reason, Figure 83 shows two indented specimens 

from Part 3 of the tests matrix (SP-D12-275 and SP-D16-300) and their numerical counterparts 

developed by the indentation approach. Overall, the models well reproduced the concave shape of the 

flanges and the smooth, continuous surfaces at the fold initiator regions.  

 

  

(a) Indented model (b) Test specimens 

Figure 83: Indented shapes of the 1.2 mm (left) and 1.6 mm (right) specimens (SP-D12-275 and 

SP-D16-300) in Part 2: (a) numerical models and (b) actual tested samples 

 

To quantify the accuracy of the indenter models in predicting the geometric distortion, the flange-to-

flange widths (see Figure 55 for definition of this measurement) were taken from the indented models 

and plotted against the measured values from the test specimens, as shown in Figure 84. Both the 1.2 

mm and 1.6 mm model predictions of flange-to-flange width are in very good agreement with the 

measured values. The indented 1.2 mm model (left) slightly over predicted the draw-in of the flange 

with a maximum error of 1.6 % (on the total flange-to-flange width) while the 1.6 mm model (right) 

under-predicted with the maximum error of 0.84 %. 
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(a) 1.2mm (b) 1.6mm 

Figure 84: The measurements of flange-to-flange width (see Figure 55 for definition of this 

measurement) taken from the indented numerical models and test specimens for (a) 1.2 mm (SP-

D12-275) and (b) 1.6 mm (SP-D16-300) specimens. The x-axis origin corresponds to the impact-

end of the specimens.   
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3.3. Axial Crush Models 
 

3.3.1. Dynamic Axial Crush Model 

 

In this section, the numerical model setup for the dynamic axial crush simulations is described. All 

axial crush simulations were performed using the explicit, dynamic time integration formulation in the 

LS-Dyna software (Livermore Software Technology Corporation, 2016). In the pre-processing stage, 

Altair Hypermesh and LS-PrePost were utilized for meshing the geometry and assigning the boundary 

conditions, respectively. Note that the quasi-static models used the same meshing and boundary 

conditions as the dynamic models, with changes to account for the displacement-controlled loading (as 

opposed to impact) and time scale, as detailed in Section 3.3.2. 

 

3.3.1.1. Boundary Conditions 

 

An overview of the axial crush model is shown in Figure 85. The model consists of a double hat channel, 

with fold initiators introduced using either the displacement or indentation approach, the impact sled, 

and various clamps and bosses.  

 

 

 

(a) Overview of Axial Crash Model (b) Clamps 

Figure 85: Illustrations for (a) overview of axial crush model and (b) various clamps and bosses 

used in the axial crush tests. The double channel hat model is obtained from the previous fold 

initiator modeling stage, either using the “displacement approach” or the “indentation 

approach”.  
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Two boundary conditions were introduced in the model. Firstly, the crash sled was assigned a mass of 

855 kg and an initial velocity of 10.6 m/s using the *PART_INERTIA keyword. Secondly, the nodes 

of the fixed barrier wall were constrained in all six degrees of freedom. The resultant crush force is 

obtained by the total reaction force of the fixed nodes by utilizing the *DATABASE_SPCFORC 

keyword.  

 

3.3.1.2. Mesh, Element Formulation 

 

Plate, Clamp and Boss 

 

A major effort of the modelling work was meshing the various fixture components, as shown in Figure 

86. All fixtures were meshed with first-order brick elements except for the clamps and bosses at the 

wall end. The wall-end clamps were meshed with rigid, shell elements. On the other hand, the wall-

end bosses were meshed with fully integrated, first-order elastic, shell elements with seven through-

thickness integration points (highlighted in Figure 86). The neighboring elements around the holes 

were meshed in a cylindrical pattern about the geometric centres. 
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(a) Impactor plate 

 
 

(b) clamps and bosses (impact-end) (c) Clamps and bosses (wall-end) 

Figure 86. Illustration of mesh for (a) impactor plate, clamps and bosses at (b) impact end (c) 

and wall end. The inner shells were given a thickness of 4 mm and increased density to achieve 

the similar mass properties as the actual bosses, and showing the outer surfaces after accounting 

the shell thickness. 

 

Bolts and Spot welds 

 

The joining methods used in the mounting fixtures in the experimental setup are bolts used to tighten 

the bosses and clamps. One common approach in simplifying the meshing effort is utilizing beam 

elements to simulate the bolts. To demonstrate this, Figure 87 illustrates one of the bolts modeled as a 

beam element between the clamps and bosses at the wall-end (Figure 87c) and another at the impact-

end (Figure 87b). The ends of the beam element coincide with either a nodal rigid body (Figure 87b) 

or a node that is strategically located at the geometric centre of the bolt holes (Figure 87c). 
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(b) bolt connection for impact side clamps 

 

(a) overview (c) bolt connection for wall side clamps 

Figure 87: Illustration of bolt connection using a beam element, joined by either nodal rigid 

bodies or a node, strategically located at the geometric center of holes. (a) wall clamps and (b) 

impact clamps.  

 

Similarly, 16 bolts were modelled as beam elements to join the clamps to the impactor plate. All bolts 

were assigned an estimated pre-tension of 24.9 kN by utilizing the *INITIAL_AXIAL_FORCE 

_BEAM keyword.  

The spot welds used to join the two hat sections were modeled as eight hexagonal elements by utilizing 

the *CONTROL_SPOTWELD_BEAM keyword card. This keyword allows each spot weld to be 

modeled as a beam element, which then converts to a group of hexagonal elements at the beginning of 

the simulation.  
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3.3.1.3. Material Models 

 

The material models used in the different components within the experiment are listed in Table 13. 

Given the primarily elastic response of the mounting fixtures and sled, the impactor plate and the 

barrier wall are modeled as rigid materials and all of the clamps are modeled as elastic (except for the 

outer clamps at the wall-end).  

 

 Table 13: LS-Dyna material models used in the axial crash model 

 

  Part Material Model 

1 Rail 
PIECEWISE_LINEAR_ 

PLASTICITY 

2 Sled RIGID 

3 Impactor Plate RIGID 

4 Outer Clamps - Wall RIGID 

5 Inner Clamps - Wall ELASTIC 

6 Outer Clamps - Impact ELASTIC 

7 Inner Clamps - Impact ELASTIC 

8 Wall ELASTIC 

9 Spot weld 
SPOTWELD_ 

DAIMLERCHRYSLER 

10 Bolts SPOTWELD 

 

3.3.1.4. Contact Algorithms  

 

All contact algorithms used in the numerical models are penalty function-based and are listed in Table 

14. The *TIED_SHELL_EDGE_TO_SURFACE_OFFSET contact algorithm was used to tie the two 

main interfaces that exist in the rail assembly. The first interface was between the nodes of the spot 

weld beam elements (slave) and the elements of the rail flanges (master), as shown in Figure 88. The 

second interface was between the element edges of the outer clamps—that are adjacent to the barrier 

wall—and the closest solid elements of the barrier wall. To demonstrate this, Figure 89 highlights the 

tied interface in red. Lastly, the *AUTOMATIC_SINGLE_SURFACE contact algorithm deserves 

particular attention because its slave and master are left unassigned. By definition, this algorithm 

checks for and enforces contact between all components within the model, including self-contact of 

the folding crush rail. For all contact definitions, a constant friction coefficient of 0.4 was assigned. 
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Table 14: A list of LS-Dyna contact algorithms used in the dynamic axial crush model. 

 

  Slave Master Contact Type 

1 Spotwelds Rail 
TIED_SHELL_EDGE_TO_ 

SURFACE_OFFSET 

2 
Wall Outer 

Clamps 
Wall 

TIED_SHELL_EDGE_TO_ 

SURFACE_OFFSET 

3 - - AUTOMATIC_SINGLE_SURFACE 

 

 

 

Figure 88: Illustration of the spot weld beam element tied to the quadrilateral elements at the 

rail flanges.  

  

 

Figure 89: Illustration of the tied interface between the element edges of the outer clamps to the 

fixed wall 
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3.3.2. Quasi-static Axial Crush Model 

 

The boundary conditions, mesh configurations, and contact algorithms on the quasi-static models were 

the same as those in dynamic crush models with a few minor differences. Firstly, the length of the rail 

was reduced from 500 mm to 375 mm, as was adopted in the quasi-static experiments to reduce the 

likelihood of buckling. Secondly, a constant velocity was applied at the end of the crush rail instead of 

the impact load. An artificially high velocity of 350 mm/s was adopted, which is 1000 times the loading 

rate in the experiment (0.35 mm/s). The elevated loading rate was applied to reduce the simulation 

time in the dynamic explicit method, which otherwise would be orders of magnitude larger than the 

explicit time step size. This method, however, introduces artificial strain rate effects. To offset these 

effects, the rate dependency of the stress-strain response was adjusted to account for the time scaling 

by a factor of 1000. 
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4.0 Axial Crush Results and Discussion 
 

This chapter presents the results from the axial crush rail experiments and the corresponding numerical 

predictions, broken down into three sections, each dedicated to the results of Parts 1 to 3 of the 

experimental program, as detailed in the test matrix in Table 3 and flowchart illustrating the testing 

program in Figure 36. To provide readers with an understanding of the interrelationship between each 

part of the study, the roadmap of the experimental program is summarized as follows.  

 

Part 1. The crush performance of the baseline specimen is established  

a. Experimentally with the dynamic sled tests; and, 

b. Numerically with the dynamic axial crush model.  

 

Part 2. To improve on the baseline performance, a unique fold initiator pattern—namely pattern 

TF (Top-Flange)—is selected after  

a. Numerically evaluating the crush performance of six different fold initiator patterns, 

and 

b. Experimentally validating two potential candidate patterns. 

 

Part 3. To further optimize the crush stability of the TF pattern, the fold initiator spacing is 

parametrically varied, and the crush results for each spacing are compared to that corresponding to 

analytically predicted folding wavelength using the methodology of Abramowicz and Wierzbicki 

(1989) 

a. Numerically; and, 

b. Experimentally. 

 

. 
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4.1. Part 1: Crush Response of Baseline Specimens 
 

In this section, the crush response of the baseline specimens is presented. Table 15 shows the test 

matrix for the baseline experiments in which BA designates monolithic Ductibor® 1000-AS, while 

BA_TWB refers to the Ductibor® 1000-AS and Usibor® 1500-AS TWB samples. The baseline 

specimens are 500 mm long, while the TWB specimens consist of a 210 mm long Usibor® 1500-AS 

section welded to a 290 mm long Ductibor® 1000-AS section. Note that only 1.2 mm thick specimens 

were considered for these baseline experiments. The results of the TWB specimens are included in this 

section for comparison purposes, although the focus of the thesis is primarily on monolithic Ductibor® 

1000-AS.  

 

Table 15: Test matrix for baseline study (Part 1) 

 

Specimen  

Designation 
Numerical (N) 

Experimental (E) 

Dynamic (D) 

Quasi-Static (Q) 

Thickness 

(mm) 
Fold Initiator Spacing, 2H (mm) 

1.2 1.6 20 25 27.5 30 35 

BA N E D   ✓ 
 - 

BA_TWB N E D   ✓  - 

 

4.1.1. Experimental Results 

 

4.1.1.1. Monolithic Baseline Experiments 

 

Figure 90 shows high-speed video images taken during a dynamic experiment on a monolithic baseline 

specimen, while Figure 91 shows the corresponding crush force vs. crush displacement response. From 

the images, it is apparent that the BA specimen first undergoes progressive folding during the early 

stages of impact. The formation of the first three folds corresponds to the local peaks, (a) - (c) in Figure 

91, in the force vs. displacement (F-D) plot. However, upon the third fold formation, a hinge forms 

near the fixed-end, and global buckling takes over as the major deformation mode. As the buckling 

progresses, the force steadily decreases. Subsequently, the bottom hinge evolves to a fold, and the force 

reaches the next local peak, (d). At this point, the buckling mode switches back to local folding at the 

fixed-end. The last two local peaks, (e) and (f) at 232 mm and 257 mm crush displacement, correspond 

to the subsequent fold formations at the bottom.  
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(a) 51 mm 

(t=0.0817s) 

(b) 88 mm 

(t=0.0860s) 

(c) 117 mm 

(t=0.0900s) 

   

(d) 196 mm 

(t=0.9980s) 

(e) 232 mm 

(t=0.1056s) 

(f) 257 mm 

(t=0.1098s) 

Figure 90: Deformation history of the monolithic Ductibor® 1000-AS baseline specimen (repeat 

#1) under a dynamic sled test. The displacements in (a) to (f) refer to the crush distance, and the 

time is measured relative to the trigger of the data acquisition unit, shown in Figure 63.  

 

 

Figure 91: Force vs. crush displacement (F-D) plot of the monolithic Ductibor® 1000-AS baseline 

specimen (repeat #1).  Labels (a) to (f) are the displacements at which images in Figure 90 are taken. 
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Figure 92a shows the final deformed specimens from the three repeat experiments using the baseline 

pattern. The three specimens show considerable variation due to the variable nature of the global 

buckling mode. For the most part, regions of cracking were mainly observed at the sidewall and the 

inclined radii, as highlighted in Figure 93a. A few spot weld failures were observed at the folding 

region, as also seen in Figure 93a. 

      

  

(a) Monolithic  

(Ductibor® 1000-AS) 

(b) TWB  

(Ductibor® 1000-AS and Usibor® 1500-AS) 

Figure 92: Final deformed specimens: (a) hot-stamped monolithic Ductibor® 1000-AS and (b) 

hot-stamped TWB consisting of Ductibor® 1000-AS and Usibor® 1500-AS 

 

  
(a) Monolithic 

(Ductibor® 1000-AS) 

(b) TWB 

(Ductibor® 1000-AS and Usibor® 1500-AS) 

Figure 93: Close up images of (a) hot-stamped monolithic Ductibor® 1000-AS and (b) hot-

stamped TWB consisting of Ductibor® 1000-AS and Usibor® 1500-AS. The fracture locations 

in (a) are encircled in red. 

 

Figure 94 shows the crush force and absorbed energy experienced by each specimen and their average, 

plotted against the crush displacement. Each follows a close trend up to 75 mm of crush displacement, 

after which the responses diverge. Such divergence is likely a reflection of randomness in the folding 

initiation, which leads to varying crush displacements at which point buckling takes over instead of 
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folding. For the same reason, the peak force shows a 12% variation. Nonetheless, the absorbed energy 

of each repeat shows very little scatter. The measured average (and the sample standard deviation) of 

the peak force and absorbed energy at 165 mm crush distance are 448 (± 37) kN and 14.4 (± 0.2) kJ, 

respectively. 

 

 

Figure 94: Force vs. crush displacement (F-D) and absorbed energy vs. crush displacement (E-

D) for Ductibor® 1000-AS monolithic baseline specimens.  
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4.1.1.2. TWB Experiments 

 

     Figure 95(a)-(f) shows high-speed video images taken during a dynamic experiment on a TWB 

baseline specimen, while Figure 96 shows the corresponding force vs. crush displacement plot. The 

TWB specimen undergoes regular folding up to about 70 mm crush displacement (b). However, 

beyond this displacement, a flange pulls inwards away from the fold region at the crush displacement 

(c), and a hinge forms at the TWB weld-line at crush displacement in (d). The top fold and the bottom 

hinge act like two fixed-ends, causing the sample to fold irregularly. The aftermath reveals a large 

extent of tearing around the surfaces at the folded region, as shown in Figure 93b. The measured 

average of the peak force and absorbed energy at 165 mm crush distance for the TWB specimens are 

450 (±21) kN and 15.0 (±1.0) kJ, respectively, which only differ from those of the monolithic 

specimens by 2 kN and 0.6 kJ. 

 

   

(a) d = 56mm 

(t=0.0741s) 

(b) d = 70mm 

(t=0.0752s) 

(c) d = 100mm 

(t=0.0784s) 

   

(d) d = 142mm 

(t=0.0884s) 

(e) d = 214mm 

(t=0.0917s) 

(f) d = 260mm 

(t=0.1052s) 

Figure 95: Deformation history of a TWB baseline specimen (repeat #1) under a dynamic test. 

The displacement in (a) to (f) refers to the crush distance and the time is measured relative to the 

trigger of the data acquisition unit, shown in Figure 63. 
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(a) TWB repeat #1 (b)  TWB average 

Figure 96: Force vs. crush displacement (F-D) plot of the TWB baseline: (a) specimen repeat #1 

and (b) the average of three repeats. Labels (a) to (f) correspond to the crush displacements at 

which images in Figure 95 are taken. 

 

     Figure 92(b) shows the final deformed configuration of the TWB specimens next to the monolithic 

samples in Figure 92(a). Unlike the monolithic samples, the TWB specimens folded irregularly in the 

later stages of deformation after initially undergoing progressive folding. The lack of global buckling 

in the TWBs likely results from the shortening of the effective crush distance, as discussed by Omer et 

al. (2017b). Given the much higher strength of the Usibor® 1500-AS zone, the operative column 

length would reduce to that of the softer Ductibor® 1000-AS zone. As such, the likelihood of global 

buckling decreases, and folding becomes more prevalent. Another important difference in the TWB 

samples is the visual extent of cracking. In view of the localized fracture on the monolithic specimens, 

the TWBs showed extensive tears all around the faces, as shown in Figure 93b. The greater extent of 

tearing in the TWB specimens may be due to a combined loading of bending and shear during the lobe 

formation (hence, the term “irregular” folding). From the comparison, one could deduce that 

deformation mode affects fracture severity and vice versa. 
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4.1.2. Numerical Results – Baseline Specimens 

 

Figure 97 shows high-speed video images of a baseline specimen and the corresponding numerical 

predictions of deformed shape at five different crush displacements. Good accord is demonstrated 

between the numerical and experimental results in capturing the initial folding, transition to global 

buckling, and final fold formation at the bottom-end (see Figure 97e). The major difference is that the 

experimental specimen reveals three progressive folds before the onset of global buckling, whereas the 

numerical prediction shows only two folds, indicating that the model predicts earlier onset of global 

buckling at around 150 mm crush displacement. Such a difference is likely due to the randomness of 

fold initiation as well as geometric defects in the specimen (e.g. variation in spot weld locations).  

 

     

     

(a) 30mm (b) 100mm (c) 150 mm (d) 200mm (e) 250mm 

Figure 97: Observed and predicted deformation of the monolithic Ductibor® 1000-AS baseline 

pattern (repeat #1) at five different crush displacements from the experiment and the numerical 

model 
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     Figure 98 shows the corresponding crush force vs. crush displacement responses from the 

experiments and numerical predictions for the monolithic baseline pattern. Good correlation is shown 

up to 140 mm crush displacement, at which point the predicted force begins to diverge due to the earlier 

onset of buckling. Nonetheless, the model reasonably predicts the absorbed energy at 165 mm (16.7 

kJ) and 250 mm (23.2 kJ) crush displacement with 16.0 % and 4.0 % error, respectively.  

 

 

 

Figure 98: Comparison of the measured and predicted force and energy absorption vs. crush 

displacement (F-D and E-D) for the monolithic Ductibor® 1000-AS baseline pattern 
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4.2. Part 2: Effect of Fold Initiator Pattern 
 

This section presents the experimental and numerical results from Part 2 of the test matrix, considering 

the effect of the fold initiator pattern on the crush response of the monolithic Ductibor® 1000-AS crush 

rails. Table 16 shows the test matrix for this part of the work, which considers six distinct fold initiator 

patterns, while schematics of the patterns are shown in Figure 40.  

 

Table 16: Test matrix for fold initiator pattern study. Two of the fold initiator patterns, TCS and 

FCS, which are designed to promote the symmetric folding mode (rather than the asymmetric 

folding mode), were assigned a higher fold initiator spacing (35 mm) in comparison to the rest of 

the patterns.  

 

Specimen  

Designation 
Numerical (N) 

Experimental (E) 

Dynamic (D) 

Quasi-Static (Q) 

Thickness 

(mm) 
Fold Initiator Spacing, 2H (mm) 

1.2 1.6 20 25 27.5 30 35 

2. Fold Initiator Pattern Study 

TCS N   D   ✓ 
     

 ✓ 

TCA N E D   ✓ 
   ✓ 

 

 
 

FCS N   D   ✓ 
     

 ✓ 

FCA N   D   ✓ 
   ✓ 

 

  
TF N E D   ✓ 

   ✓ 
 

  
TFO N   D   ✓ 

   ✓ 
 

    

 

4.2.1. Numerical Simulations of the Effect of Fold Initiator Pattern 

 

Figure 99 shows the predicted deformed geometry from the dynamic crush models at 250 mm crush 

displacement. Also shown in the figure are contours of the damage variable (D) to visualize the extent 

of fracture. The damage variable, due to GISSMO (Neukamm et al., 2009), is calculated using 

Equation (19) in terms of the accumulated plastic strain. The elements for which 70% or more 

integration points (including all the through-thickness and in-plane points) reach values of D equal to 

unity (coloured red in Figure 99), are considered to have fractured and are deleted. They are shown in 

the plots in order to visualize the extent of fracture.  
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 (a) Baseline (b) TCS 

   

(c) TCA (f) FCS (g) FCA 

  

 

(e) TF (f) TFO  

Figure 99: Contour plot of damage variable (D) at 250 mm crush distance 
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     The numerical models of the different fold initiator patterns predicted a range of deformation modes, 

as seen in Figure 99. The predicted deformation modes can be categorized into four groups, listed here 

in increasing order of collapse stability, defined as follows: 

 

(i) Global buckling refers to an Euler-type global buckling, in which one or two folds are often 

formed at the impact-end of a specimen before buckling occurs.  

(ii) Mixed buckling and folding is a mixed mode response between folding and buckling. Herein, 

the major distinction from global buckling is defined by the short length of the buckling zone 

relative to the specimen length.  

(iii) Irregular folding is a folding mode in which folds form successively after one another. 

However, the folds lack geometric uniformity or regularity. 

(iv) Progressive folding refers to a folding mode in which uniform folds form successively, one 

after another.  

 

Table 17 shows a summary list of fold initiator patterns, each categorized based on its deformation 

mode. The pictorial illustration of each pattern taken from its y-z plane cross-section (see Table 17d) 

is shown next to its acronym designation. Group (i) consists of the baseline and pattern TCS, which 

buckled in the plane of the flange as well as out of the flange plane. Group (ii) consists of pattern FCA, 

which buckled after making two successive folds. Pattern FCS belong to Group (iii), displaying 

irregular folding with some flange fold initiators remaining untriggered. Lastly, patterns TCA, TFO, 

and TF all showed progressive folding, although the TCA and TFO cases skipped one of the top fold 

initiators, displaying lower folding stability than the TF case.  
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Table 17: Classification of folding patterns into four groups of deformation modes and their 

pictorial illustrations. The solid line represents the top face edge, while the dotted line represents 

the flange edge when viewing at from the side. 

 

(a) Deformation 

Mode 

(b) Pattern 

(Acronym 

designation) 

(c) Pictorial 

 illustration 

(d) The reference view at which the 

illustration was taken 

(i) global 

buckling 

BA 

(Baseline) 

 

  

TCS 

(Top-

Consecutive-

Symmetric) 
 

(ii) mixed 

buckling and 

folding 

FCA 

(Flange-

Consecutive-

Asymmetric) 
 

(iii) irregular 

folding 

FCS 

(Flange-

Consecutive-

Symmetric) 
 

(iv) progressive 

folding 

TCA 

(Top-

Consecutive-

Asymmetric)   

TF 

(Top-Flange) 

 

TFO 

(Top-Flange-

Offset) 
 

  

Figure 100 shows the initial peak force for the numerical models shown in Figure 99. All patterns 

showed decreased peak force relative to the baseline peak force (489 kN), to varying degrees. The peak 

forces of those who only have fold initiators on either the flange or top face were marginally lower by 
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a maximum 9.0% relative to the baseline. The TF and TFO patterns, on the other hand, with initiators 

on the flange and faces, showed a significant decrease in the peak force by 21% and 20% relative to 

the baseline, respectively.  

 

 

Figure 100. Bar chart showing initial peak forces for the numerical models shown in Figure 99 

 

     The predicted absorbed energy for each fold initiator pattern at 165 mm and 250 mm crush distance 

is shown in Figure 101. The theoretical energy obtained using the Superfolding Element Analysis 

(Abramowicz and Wierzbikci, 1989) in Appendix A is also shown for reference. With respect to the 

baseline, a marginal difference (up to 6.7%) in the absorbed energy at 165 mm crush distance is shown 

for all patterns. At 250 mm crush distance, all patterns showed an increase in the absorbed energy 

relative to the baseline pattern, with the TCA pattern showing the largest increase by 2.8 kJ (12%). The 

TF and TFO patterns showed an increase in the absorbed energy at 250 mm crush distance relative to 

the baseline by 2.1 kJ (8.8%) and 2.6 kJ (11%), respectively.  
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(a) 165mm (b) 250mm 

Figure 101: Bar charts showing predicted absorbed energy for all fold initiator patterns at: (a) 

165mm and (b) 250mm crush distance, as well as the energy calculated using the Superfolding 

Element Analysis (see Appendix A for detailed solution) 

 

     To examine the extent of fracture, Figure 102 shows the predicted “eroded internal energy” at crush 

displacements of 165 and 250 mm. The eroded internal energy represents the internal energy associated 

with elements that were deleted upon meeting the GISSMO fracture criterion. Higher values of eroded 

energy indicate a greater extent of element deletion due to fracture; thus, eroded internal energy can 

be used as an indicator to predict the level of fracture in the parent metal. In Figure 102, the TCA 

model shows the lowest eroded energy relative to the baseline model by 0.9 kJ (60%) at 250 mm crush 

distance, which is indicative of a lesser extent of fracture. The TF and TFO patterns showed slightly 

higher eroded energy than the TCA pattern by 0.2 kJ and 0.4 kJ, respectively. 

  

(a) 165mm (b) 250mm 

Figure 102: Bar charts showing the predicted eroded energy of the parent metal for all fold 

initiator patterns at: (a) 165mm and (b) 250mm crush distance 
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     Figure 103 shows a response map in which the predicted eroded energy is plotted against the 

predicted absorbed energy for all fold initiator patterns. There is a clear trend that the patterns that 

folded progressively or irregularly show a significantly lower amount of eroded energy than those who 

showed mixed folding and buckling or primarily global buckling. In reference to the damage contour 

plot in Figure 99, the small amount of eroded energy in the patterns showing stable folding is due to 

the limited extent of damage, primarily within the tight radius zones (e.g. zones corresponding to 

horizontal or inclined bending zones in the SE). Interestingly, all modes show a similar level of 

absorbed energy at 250 mm, which suggests that the final absorbed energy is weakly dependent on the 

fold initiator design, for the loading cases and the material strength considered.  

 

 

Figure 103: A response map showing effect of deformation mode on the predicted eroded energy 

vs. absorbed energy for numerical patterns at 165 mm and 250 mm crush distance. A pictorial 

illustration is shown as an example for each deformation mode, listed.  

 

4.2.1.1. Effect of Fold Initiator Offset (Flange Versus Face Offset) 

 

Figure 104 shows predicted mid-cross-section images of the deformed TF and TFO patterns at 250 

mm crush distance. One major difference in the two cross-sections is that the TFO pattern results in 

less uniform folds than the TF pattern. Close examination of the TFO folds reveals that many of the 

fold initiators are facing upwards, some remaining untriggered. The other major difference is that the 

folds in the TFO pattern skipped the last fold initiator, located at the right bottom (see Figure 104).  
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Cross-section (a) TF (b) TFO 

Figure 104: Mid-cross-section (highlighted blue) images across the top face: (a) TF and (b) TFO 

at 250 mm crush displacement. Skipped fold initiators in the TFO pattern are circled in red. 

 
Figure 105 shows the predicted crush force, absorbed energy, and eroded energy plotted against the 

crush distance for the TF and TFO patterns. In the F-D plot, the TF pattern generally exhibits higher 

peaks and lower valleys than for the TFO case, showing a more distinctive oscillation. The absorbed 

energy shows very little difference between the two, but the TF pattern results in a somewhat lower 

eroded energy than the TFO pattern, with a reduction of 0.2 kJ (17%) at 250 mm crush distance. The 

reduction in predicted eroded energy suggests that the offset could potentially result in more cracking.  

 

  

(a) Force vs. displacement (b) Absrobed energy and eroded energy vs. 

displacement 

Figure 105: Plots of (a) Force vs. crush displacement and (b) absorbed energy and eroded 

energy vs. crush displacement for the TF and TFO patterns 
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4.2.1.2. Folding Stability 

 
A close look at the predicted F-D plot of pattern TF in Figure 106a reveals six force peaks (a) to (f) 

and five valleys (g) to (k) excluding the initial peak and valley, up to honeycomb contact. The crush 

displacement at each peak or valley corresponds to the event at which a local fold completely collapses 

and contacts the previously consolidated fold, as shown in the deformed images in Figure 107. Also 

shown in Figure 106b is the F-D plot of pattern FCS, which folded irregularly. Following the 

nomenclature introduced in the Superfolding Element Analysis (Abramowicz and Wierzbicki, 1989) 

in Appendix A, the distance from one peak to the next corresponds to the folding wavelength (2H).  

 

  

(a) TF (b) FCS 

Figure 106: Predicted force vs. crush displacement (F-D) for the (a) TF pattern and (b) FCS 

pattern. Each encircled peak or valley corresponds to the crush displacement at which a collapse 

of a local fold is completed.  

 

      

(a) 52 mm (b) 72 mm (c) 95 mm (d) 115 mm (e) 138 mm (f) 159 mm 

Figure 107: Side view images of the predicted TF pattern deformation, taken at the crush 

displacements corresponding to each peak of the F-D plot in Figure 106.  
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To investigate the relationship between the degree of the folding regularity and that of the periodicity 

observed in the crush force-displacement (F-D) response, a new metric called the least squares error 

(𝐿2) is formulated as follows 

 

 ( ) ( )
2 2

2 , ,

2

2 2 2 2
n

indent i peak indent i valley

i

L H H H H
=

 = − + −
    (48) 

 

 12 i i iH d d+= −  (49) 

 

where 2𝐻𝑖𝑛𝑑𝑒𝑛𝑡  is the fold initiator spacing, 2𝐻𝑖,𝑝𝑒𝑎𝑘 is the folding wavelength obtained from F-D plot 

by subtracting the crush distance at the 𝑖𝑡ℎ  peak (𝑑𝑖) from the next peak (𝑑𝑖+1), and 𝑛 is the total 

number of folds prior to the honeycomb contact, excluding the first fold that occurs regardless of the 

folding mode (the first fold occurs even in the monolithic baseline specimen that globally-buckled, as 

shown in Figure 97a). 

A low value for 𝐿2 (low error) would mean that the actual folding wavelengths are close to the fold 

initiator spacing and, thus, indicates that all fold initiators were triggered as intended. On the contrary, 

a high 𝐿2 would mean that the actual folding wavelengths vary from the fold initiator spacing, likely 

caused by one or more untriggered initiators. Such phenomena would cause geometric irregularity of 

the folds, which are observed in the irregular folding or mixed folding and buckling. To demonstrate 

this point, Figure 108 shows 𝐿2 errors calculated for three progressively folded patterns, as well as one 

irregular folded pattern using Equations (48) and (49). Remarkably, the 𝐿2  values well reflect the 

folding stability observed in these patterns. For patterns that buckled, the 𝐿2 values were not calculated.  

 

Figure 108: Comparison of 𝑳𝟐 error calculated using for three progressively folded patterns, as 

well as an irregular folded pattern.  
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     A summary of the predicted crush performance for three progressively folded patterns (TCA, TF, 

TFO), along with that of the baseline pattern, is given in Table 18. Also shown in the table are the 𝐿2 

errors calculated for these patterns. The other parameters taken as indicative of the predicted 

performance are the final absorbed energy and eroded internal energy and initial peak force. The 

predicted values that indicate the best performance among the three patterns are highlighted in green. 

It is observed that the TCA pattern scored the best in two performance criteria, with the highest 

absorbed energy and lowest eroded energy at 250 mm crush distance. The TF pattern also scored the 

best in two performance criteria, with the lowest peak force and lowest 𝐿2 error. From the comparison, 

the TCA and TF patterns were selected for experimental validation.  

 

Table 18:  Summary of crush performance for three promising numerical patterns and the 

baseline. The final absorbed and eroded energy of each pattern are taken at 250 mm crush 

distance. 

 

Patterns Baseline TCA TF TFO 

Deformation mode 
global 

buckling 

progressive 

folding 

progressive 

folding 

progressive 

folding 

Absorbed energy (kJ) 23.8 26.6 25.9 26.4 

Eroded energy (kJ) 2 0.6 0.8 1 

Peak force (kN) 489 457 385 393 

L2 error (mm) - 17 15 17 
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4.2.2. Experimental Results – TCA and TF Initiator Patterns 

 

Figure 109 shows the final deformed specimens from the repeat experiments for the TCA (c) and TF 

(d) patterns. Also shown in the figure are the three as-tested baseline repeat specimens (b), as well as 

a double hat channel section prior to testing for each pattern (a). The three specimens for the TCA and 

TF cases show a significant degree of variation. The TCA experiments resulted in one specimen that 

progressively folded and two that globally buckled. The TF specimens all underwent different modes 

of deformation, one progressive folding, one irregularly folding, and one exhibiting mixed folding and 

buckling with a severe number of spot weld failures. As discussed in the following sections, the 

tendency to global buckling in the experiments (that was not seen in the models presented in Section 

4.2.1), can be attributed to the initial geometric distortion caused by the fold initiator indentation 

process (see Figure 54a). Nonetheless, the TF pattern revealed a significant improvement in the folding 

stability since two of the specimens underwent either progressive or irregular folding.  

 

  

(a) prepared specimens prior to axial crush test (b) BA (Baseline) 

 
 

(c) TCA (d) TF 

Figure 109:  Images of (a) the prepared specimens prior to axial crush test and the final deformed 

shapes of three different patterns after the dynamic crush test: (b) BA, (c) TCA, and (d) TF. 

Minimum three repeats were tested for each pattern. 
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The measured crush force and absorbed energy for the three patterns are plotted against the crush 

displacement in Figure 110, with the coloured lines representing each repeat and the black line 

representing the average for each pattern. For both the TCA and TF patterns, the repeat curves follow 

a close trend up to 100 mm crush displacement, at which point they begin to separate as the buckling 

or irregular folding mode overtakes the response. 

 

 

(a) BA 
 

 

 

(b) TCA (c) TF 

Figure 110: Measured responses of force vs. crush displacement (F-D) and energy vs. crush 

displacement (E-D) for three patterns: (a) BA, (b) TCA and (c) TF. The average response of the 

repeats is highlighted black. 

 

     Figure 111 shows a chart of average peak forces for three patterns from the dynamic crush tests. 

The average peak force (and the standard deviation) for the TCA and TF patterns were 454 (±20) kN 

and 380 (±29) kN. The peak force for the TF pattern was considerably lower than the average peak 

force (479 kN) of the baseline pattern.  
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Figure 111: Bar chart showing the average peak force for three fold initiator patterns. The error 

bands represent the scatter in the measured data (i.e. min/max) 

 

     The average absorbed energy for each pattern at 165 mm and 250 mm crush distance is shown in 

Figure 112. The theoretical energy obtained by the Superfolding Element Analysis (Abramowicz and 

Wierzbicki, 1989) in Appendix A is shown as a dotted line. At 165 mm crush distance, the average 

absorbed energy of TCA and TF are 14.4 (±0.4) kJ and 13.1 (±0.6) kJ, which are 0.3 kJ and 1.6 kJ less 

than the baseline. At 250 mm crush distance, the average absorbed energy of TCA and TF are 20.7 

(±0.6) kJ and 20.6 (±0.9) kJ, or 5.5 and 5.9% less than the baseline, respectively. The decrease in the 

absorbed energy in the TCA and TF patterns may be due to the fold initiators, which decrease the 

plastic work required for hinge line formation. In addition to the size or depth of fold initiators, which 

were shown to affect the absorbed energy (Lee et al., 1999), the preceding results show that the total 

number of fold initiators could slightly alter the final absorbed energy in axial crush. In view of the 

Superfolding element theory (Abramowicz and Wierzbicki, 1989), the indented fold initiator imposes 

a curved surface at the horizontal hinge line location, which otherwise would be flat. Such geometric 

change in the SE could be viewed as an increase in the starting crush angle (i.e. 𝛼𝑜 > 0). If one assumes 

that the final angle of the SE remains the same, the range of total crush angle will decrease, resulting 

in the lower crush energy. 
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(a) Absorbed energy at 165 mm (b) Absorbed energy at 250 mm 

Figure 112: Absorbed energy for three fold initiator patterns at (a) 165 mm and (b) 250 mm 

crush distance. The error bands represent the scatter in the measured data. SEA refers to the 

theoretical energy by the SE Analysis (Abramowicz and Wierzbicki, 1989) from Appendix A. 

 

To further understand the unstable buckling onset observed in these specimens, the following sections 

more closely examine the repeat cases of global buckling and mixed folding / buckling in the TCA and 

TF patterns, respectively. 

 

4.2.2.1. Assessment of Unstable Mode in Pattern TCA 

 

    Figure 113 shows high-speed images taken from the dynamic test of a TCA specimen (repeat #2) 

that globally buckled. The force vs. crush displacement curve for this case is shown in Figure 114. At 

7 mm crush distance (a), the crush force reaches its initial peak and an irregular wrinkle appears on the 

left flange and sidewall. The flange wrinkle evolves to a fold at a crush distance of 30 mm (b) and 

causes the flange to draw towards the center. In contrast, the right flange remains relatively undeformed, 

promoting instability which becomes more evident at a crush distance of 63 mm (c). The instability 

leads to “skipping” of the subsequent fold initiators, and the bottom fold initiator is activated instead. 

The bottom fold acts like a pinned-end joint, and global buckling ensues in crush distances (e) and (f).  
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(a) 7 mm (b) 30 mm (c) 63 mm 

  
 

(d) 97 mm (e) 118 m (f) 135mm 

Figure 113: High-speed images of a TCA specimen (repeat #2) from the top view, which globally 

buckled. The crush distances (a) to (g) correspond to the local force peaks labelled in Figure 114. 

 

 

Figure 114: Force vs. crush displacement plot of a TCA specimen (repeat #2), which globally 

buckled.  

 

Note that the absence of flange fold initiators in the TCA pattern likely resulted in the irregular 

wrinkling phenomenon, which highlights the potential stability gain by adding the flange initiators.  
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4.2.2.2. Assessment of Unstable Mode in Pattern TF 

 

Figure 115 shows the high-speed images of a TF specimen (repeat #3) that exhibited mixed folding 

and buckling. Images (a) to (f) correspond to the crush distances at the local force peaks (circled) in 

the F-D plot of Figure 116. In comparison to the previous TCA specimen (repeat #2) that globally 

buckled, the 3rd repeat of TF pattern exhibits a more pronounced concave shape at a crush displacement 

of 60 mm (b). As the next fold forms, the left flange fold initiators are skipped, and irregular folding 

can be seen at a crush displacement of 84 mm (c). The irregular folding is followed by an extensive 

unzipping failure of the spot welds on the left flange at (e).  

 

   

(a) 26 mm (b) 60 mm (c) 84 mm 

   

(d) 104 mm (e) 161 mm (f) 250 mm 

Figure 115: Still images of a TF specimen (repeat #3), which showed mixed folding and 

buckling. The crush distances (a) to (f) corresponds to the local peak forces labelled in Figure 

116. 
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Figure 116: Force vs. crush displacement plot of TF specimen #3, which showed mixed folding 

and buckling.  

 

     To summarize, the observed crush responses of both the TCA and TF patterns showed a wide 

variation in their folding modes. However, despite the buckling tendency in the TF pattern (attributed 

to the distortion resulting from the flange indentation process), its repeat cases showed a progressive 

or irregular folding mode rather than the global buckling mode, that was exhibited by Pattern TCA. 

These experimental results point to the significance of an improved fold initiator pattern in controlling 

the deformation mode in axial crush columns. Furthermore, the improvement in the folding stability 

was shown by adding the flange fold initiators. For this reason, Pattern TF was selected for the 

subsequent study that centers around the effect of fold initiator spacing.  
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4.3. Part 3: Effect of Fold Initiator Spacing 
 

The objective of Part 3 of the experiments is to investigate the effect of fold initiator spacing (2𝐻𝑖𝑛𝑑𝑒𝑛𝑡) 

on crush stability, both in terms of promoting regular, stable folding and avoidance of fracture. This 

study was undertaken in a parametric fashion in which the fold initiator spacing (2𝐻𝑖𝑛𝑑𝑒𝑛𝑡) was varied 

from 20 mm to 35 mm, as shown in Table 19. The specimens all share the TF fold initiator pattern that 

was demonstrated to provide the most stable folding behavior in Part 2. A key focus was to compare 

the folding wavelength (2H) predicted by the Superfolding Analysis due to Abramowicz and 

Wierzbicki (1983) to the most optimal spacing found in the numerical and experimental parametric 

studies. By following the solution procedure in Appendix A, the predicted folding wavelengths for the 

1.2 mm and 1.6 mm thick double hat channels are 27.5 mm and 30 mm, respectively, so the ranges of 

initiator spacing outlined in Table 19 bracket these two values. Note also that the 25 mm spacing for 

the 1.2 mm hat section was already tested in Part 2 of this study.  

  

Table 19:  Test matrix for Part 3. The visual illustrations of specimens listed here are shown in 

Figure 44. Also, all specimens have a length of 375 mm. 

 

Specimen 

Designation 

  

Numerical N) 

Experimental (E) 

  

Dynamic (D) 

Quasi-Static (Q) 

Thickness 

(mm) 

Fold Initiator Spacing, 2H (mm) 

1.2 1.6 20 25 27.5 30 35 

3. Fold Initiator Spacing Study 

SP-D12-200 N E  Q ✓   ✓ 
    

SP-D12-275 N E  Q ✓     
✓ 

  

SP-D12-350 N E   Q ✓           ✓ 

SP-D16-200 N E  Q  
✓ ✓ 

 

   
SP-D16-250 N E  Q  

✓ 
 

✓ 
   

SP-D16-300 N E  Q  
✓ 

 

  ✓ 
 

SP-D16-350 N E   Q   ✓         ✓ 

 

     In view of the tendency towards global buckling observed in Part 2, hat sections with 1.6 mm 

thickness were considered, in addition to the 1.2 mm thickness examined in Part 2. For the same reason, 

the length of the specimens was reduced to 375 mm from 500 mm. This set of experiments was 

performed under quasi-static loading to eliminate dynamic effects (e.g. high-frequency oscillations) in 

the load-displacement measurements and to remove the effect of Al-Si dust ejected from the hot 

stamped specimens, which obscures imaging of the folding behavior. 
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4.3.1. Experimental Results – Effect of Initiator Spacing 

 

4.3.1.1. 1.2mm Specimens 

 

The as-tested shapes of the 1.2 mm thick specimens for three initiator spacings, 20 mm 27.5 mm, and 

35 mm, are shown in Figure 117. All three specimens exhibited global buckling from the very early 

stage of axial crush. Furthermore, all fold initiators remained untriggered, with the exception of the 

first top fold initiator.  

     These results further demonstrate the effect of the flanges distortion, as seen in the dynamic TF 

specimen (repeat #3 in Figure 115). During the quasi-static experiments, the flanges rapidly drew into 

a concave shape promoting buckling (the quasi-static images are omitted here for brevity). 

 

 

(a) 20 mm 

(SP-D12-200) 

(b) 27.5 mm 

(SP-D12-275) 

(c) 35 mm 

(SP-D12-350) 

Figure 117: Final deformed shapes of 1.2mm specimens for the fold initiator spacing study. The 

SP-D12-200 specimen test was stopped at the early testing stage due to excessive out-of-plane 

buckling. 
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4.3.1.2. 1.6mm Specimens 

 

The final deformed shapes of the complete set of crushed 1.6 mm thick specimens are shown in Figure 

118. The corresponding measured force-displacement (F-D), and the energy absorption versus crush 

displacement (E-D) data are shown in Figure 119. The images reveal that the specimens with an 

initiator spacing equal to the SE analytical folding wavelength (30 mm) exhibit the most uniform final 

folding pattern. In the force-displacement curves, the folding uniformity is manifested by repeating 

load oscillation between consistent peaks and valleys. The specimens with 20 mm and 35 mm spacing, 

which differ the most from the Superfolding Element analysis spacing of 30 mm, show irregular folds 

and, in some cases, incipient mixed folding and buckling. The 25 mm spacing specimens show regular 

fold formation, but with inclination of what should ideally be horizontal folds (b), relative to that seen 

for the 30 mm folds (c), for example.   

 

  

(a) 20 mm (SP-D16-200) (b) 25 mm (SP-D16-250) 

 

 

(c) 30 mm (SP-D16-300) (d) 35 mm (SP-D16-350) 

Figure 118: Final deformed images of the 1.6mm thick TF specimens with four different fold 

initiator spacings (𝟐𝑯𝒊𝒏𝒅𝒆𝒏𝒕 ) ranging from (a) 20 mm to (d) 35 mm. The analytical folding 

wavelength (𝟐𝑯) obtained from the SE solution is 30 mm (see Appendix A), which corresponds 

to the most uniform folding in the specimens.  
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(a) 20 mm (b) 25 mm 

 

 

(c) 30 mm (d) 35 mm 

Figure 119: Force and absorbed energy vs. crush displacement for the 1.6mm TF crush 

specimens at four different initiator spacings: (a) 20 mm, (b) 25 mm, (c) 30 mm and (d) 35 mm. 

The force peaks and valleys (symbols) are labelled for one sample for each initiator spacing to 

illustrate the crush displacements used to calculate the L2 error using Equations (48) and (49). 

 

Figure 120 serves to compare the measured (average) absorbed energy vs. crush displacement for each 

fold initiator spacing. The difference in absorbed energy is relatively small (with a maximum of 

difference 7.5 % at 230 mm crush distance), despite the significant differences in folding uniformity. 

The ranking based on the average absorbed energy from the highest to the lowest is as follows: 20 mm, 
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25 mm, 30 mm, and 35 mm. It is interesting that the ranking does not correlate to types of deformation 

modes but rather strictly to the spacing values. One possible explanation is due to the variations in the 

consolidation crush distance, the point at which the crush force substantially increases in the F-D plot, 

although this ranking still holds for crush distances below the point of final consolidation. From Figure 

119, the measured average consolidation distances for the four configurations are 205 mm, 215 mm, 

and 225 mm for the 20 mm, 25 mm and 30 mm spacing specimens, respectively. The specimens with 

35 mm spacing did not reach the full consolidation point over the tested crush distance of 230 mm. A 

specimen with shorter consolidation distance would result in a higher absorbed energy onward from 

that point due to the subsequent increase in crush force.  

The measured average peak forces of the four configurations are 384 (±4.1) kN, 375 (±3.8) kN, 365 

(±1.3) kN, 355 (±2.6) kN for the four initiator spacings, ranging from 20 mm to 35 mm. The ranking 

of the measured peak forces also shows a strong correlation to the spacing. 

 

 

 

Figure 120: The average measured absorbed energy plotted against the crush displacement for 

1.6mm thick TF specimens of four different fold initiator spacings  

 

The visual extent of cracking in the 1.6 mm samples is shown in Figure 121 and Figure 122, which are 

taken from a side view and top view of as-tested specimens for each spacing (20 mm to 35 mm). In the 25 

mm and 30 mm specimens, cracks are only observed on the sidewalls, as highlighted in the figure. In the 

20 mm specimens, the cracks are rather randomly distributed and appear on the sharp radii of the irregular 

folds. Lastly, the 35 mm specimens did not show visible indications of fracture.   
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(a) 20mm 
(SP-D16-200) 

(b) 25mm 
(SP-D16-250) 

(c) 30mm 
(SP-D16-300) 

(d) 35mm 
(SP-D16-350) 

Figure 121: Side view images of final deformed 1.6mm specimens with four different fold initiator 

spacing—(a) 20 mm, (b) 25 mm, (c) 30 mm and (d) 35 mm. Red zones indicate major fracture regions 

 

 
(a) 20mm 

(SP-D16-200) 
(b) 25mm 

(SP-D16-250) 
(c) 30mm 

(SP-D16-300) 
(d) 35mm 

(SP-D16-350) 

Figure 122: Front view images of final deformed 1.6mm specimens with four different fold initiator 

spacing—(a) 20 mm, (b) 25 mm, (c) 30 mm and (d) 35 mm. Red zones indicate regions of fracture. 
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4.3.2. Numerical Results – Simulations of Effect of Initiator Spacing 

 

In this section, the quasi-static axial crush model predictions for the specimens in Part 3 of the 

experimental program are presented. These models consider both the 1.2 mm and 1.6 mm TF pattern 

with a column length of 375 mm. Fold initiator spacings in the range from 20 mm to 35 mm were 

considered (see Figure 44 for visual illustration).  

 

4.3.2.1. Numerical Predictions for 1.2mm Specimens  

 

     Predictions of the folding progression for the 1.2 mm axial crush rails are in Figure 123. These 

images reveal that the 20 mm model irregularly folded while the 27.5 mm and 35 mm models 

progressively folded. Furthermore, the irregular folding mode in the 20 mm model is accompanied by 

the skipping of both top and flange fold initiators. For the 27.5 mm and 35 mm models, all fold 

initiators were triggered, but their folding sequences differ from the experimental responses. 

Specifically, the folding sequence of the 27.5 mm model from the first to last followed the 3rd fold 

initiator, bottom un-indented zone, 2nd and 1st fold initiators, while that of 35 mm model followed the 

2nd, 1st, and 3rd fold initiators. 
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(a)  

2Hindent 

=20 mm 

   

 i. d = 20 mm ii. d = 72mm  iii. d = 127mm 

(b)  

2Hindent 

=27.5 

mm 

   

 i. d = 31mm  ii. d = 70mm iii. d = 138mm 

(c)  

2Hindent 

=35 mm 

   

 i. d = 38mm  ii. d = 84mm iii. d = 163mm 

Figure 123: Still images taken from the quasi-static crush models of 1.2mm thick TF specimens, 

with fold initiator spacing ranging from (a) 20 mm to (c) 35 mm.  
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A comparison of the predicted and observed deformed shapes of the 1.2 mm axial crush rails at 230 

mm crush distance are shown in Figure 124. It is evident from the figure that none of the models were 

able to predict the onset of global buckling that was evident in the experiments. Instead, the model 

predicted either irregularly folding, as with the 20 mm spacing, or progressively folding in the 27.5 

mm and 35 mm spacing cases. Further examination of the causes of this discrepancy is provided in 

Section 4.4. 

 

   

 
(a) 20 mm 

(SP-D12-200) 

(b) 27.5 mm 

(SP-D12-275) 

(c) 35 mm 

(SP-D12-350) 

Figure 124: Predicted and actual deformed images at 230 mm crush displacement for the 1.2 mm 

axial crush specimens in Part 3 for the three different fold initiator spacings. Note that the 

experiment in (a) was interrupted prior to 230 mm crush displacement due to excessive lateral 

displacement. 

 

4.3.2.2. Numerical Predictions for 1.6mm Specimens  

 

     Predictions of the folding progression for the 1.6 mm axial crush rails are in the Figure 125. These 

images reveal that the 20 mm model irregularly folded, while the rest of the models progressively 

folded, as observed in the experiment. Furthermore, the irregular folding mode in the 20 mm model is 

accompanied by the skipping of both top and flange fold initiators. As for the ranking of fold uniformity, 

30 mm model showed the most uniform cases, followed by 25 mm and 35 mm models, as observed in 

the experiments.  
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(a)  

2Hindent=20 mm 

 

    
i. d = 24 mm ii. d = 51 mm iii. d = 83mm iv. d = 115 mm 

(b)  

2Hindent=25 mm 

 

    
i. d = 18 mm ii. d = 54mm iii. d = 90 mm iv. d = 121 mm 

(c)  

2Hindent=30 mm 

    
i. d = 39 mm ii. d = 71 mm iii. d = 105 mm iv. d = 139 mm 

(d)  

2Hindent=35 mm 

    
i. d = 17 mm ii. d = 74 mm iii. d = 125 mm iv. d = 136 mm 

Figure 125: Still images taken from the quasi-static crush models of 1.6mm thick TF specimens, 

with fold initiator spacing ranging from (a) 20 mm to (d) 35 mm. 
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The final deformed images of the 1.6 mm axial crush models and experiments at 230 mm crush distance 

are shown in Figure 126. Overall, the predicted results for initiator spacings show good agreement with 

the crushed test specimens, except for the 20 mm model that shows more uniform folds than the as-

tested specimens. This observation is evidenced by a strong symmetry between the left and right flange 

that is not seen in the as-tested rails.  

 

    

 

(a) 20mm (b) 25mm (c) 30mm (d) 35mm 

Figure 126: Deformed images of the numerical models of 1.6 mm rails at 230 mm crush 

distance—each at different spacing ranging from (a) 20mm to (d) 35mm.  

 

     The predicted crush force and absorbed energy response for each 1.6 mm quasi-static crush model 

with different spacing are plotted against the crush displacement, as shown in Figure 127. For 

comparison, the measured average force and absorbed energy responses of the experimental 

counterparts from are also plotted in the figure. The force peaks and valleys whose corresponding crush 

displacements were selected for calculation of the 𝐿2  error prediction are labeled as triangular or 

circular markers.  
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Overall, the predicted force and energy vs. displacement show good agreement with the measured 

results, except for the 20 mm spacing configuration. This was likely caused by the asymmetry of the 

folds in the 20 mm specimens that the model was not able to predict.  

 

              

 

 

(a) 20mm (b) 25mm 

  

(c) 30mm (d) 35mm 

Figure 127: Force and absorbed energy vs. crush displacement for the 1.6 mm TF crush models 

(red lines) at four different initiator spacings: (a) 20 mm, (b) 25 mm, (c) 30 mm and (d) 35 mm. 

The measured (average) force and absorbed energy responses are overlaid as comparison (black 

lines). The force peaks and valleys (symbols) in the numerical responses are labelled, whose crush 

displacements were used to calculate the L2 error using Equations (48) and(49).  
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     The trends for folding uniformity in the 1.6 mm models and the experiments are examined in terms 

of the 𝐿2 errors, as shown in Figure 128. The general trend in the 𝐿2 error with respect to the fold 

initiator spacing is remarkably reflective of the visual trend in the fold uniformity of the model 

prediction and experimental responses. The uniformity of the folds in both the models and experiments 

can be ranked in order from the most uniform to the last uniform as 30 mm, 25 mm, 35 mm, 20 mm 

which corresponds directly to the ranking of the 𝐿2 error from the lowest to the highest.  

 

 

 

Figure 128: 𝑳𝟐 errors for 1.6 mm rails of Part 3. Both numerical (yellow) and experimental (blue) 

results are shown here. 
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4.4. Investigation of the Unstable 1.2 mm TF Cases  
 

The previous section demonstrated a significant effect of the fold initiator design and the spacing on 

the axial crush performance. In particular, the results from Part 2 suggest that the TF pattern showed 

the most improved folding stability in comparison to the baseline pattern. However, the thinner (1.2 

mm) TF specimens showed one case of mixed folding and buckling in the dynamic sled test (Part 2) 

and consistent cases of global buckling in the quasi-static tests (Part 3). To further examine these 

instabilities, the current section examines the role of the cross-section distortion introduced by the 

flange indentations (Figure 54) on the onset of buckling. Other factors potentially inducing buckling 

would include the slenderness ratio of the double hat specimen; this aspect of folding stability is 

examined in detail in Chapter 5 of this thesis.    

 

4.4.1. Effect of Section Concavity due to Flange Indentation 

 

     To demonstrate the increased likelihood of global buckling due to the section concavity, the 

distorted geometry of the TF specimens was recreated in the numerical model by simulating the 

physical indentation process (as described in Section 3.2.3), after which the distorted column was 

loaded under dynamic crush conditions. To avoid confusion with the previous models, the new model 

that incorporates the indentation effects is referred to as the “indented model.” On the other hand, the 

previous models whose fold initiator patterns were recreated by simply displacing the nodes are 

referred to as the “displaced models.” For the purposes of the current discussion, the dynamic TF 

specimen from Part 2 is revisited here.  

     The final crushed images of the TF specimen (repeat #3) from the indented model and the 

experiment are shown in Figure 129 (front view) and Figure 130 (side view), along with those from 

the displaced model. Remarkably, the final image of the indented model shows a close resemblance to 

the tested specimen in terms of the buckling mode and spot weld unzipping phenomenon, respectively. 

As shown earlier, the displaced model, instead, shows a stable, progressive folding. The stark contrast 

between these two predictions highlights the importance of choice in the modeling approach for 

creating fold initiators in pattern TF.  
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(a) experiment 

(TF repeat #3) 

(b) indented model (c) displaced model 

Figure 129: Final crushed, front view image of the TF rail from (a) the experiment (repeat #3), 

(b) the indented numerical model and (c) the displaced numerical model 

 

   

(a) experiment 

(TF repeat #3) 

(b) indented model (c) displaced model 

Figure 130: Final crushed, side view image of the TF rail from (a) the experiment (repeat #3),  

(b) the indented numerical model and (c) the displaced numerical model.  

 

     The still images of TF rail from the three different sources discussed above (experiment, indented 

model, and displaced model) are shown in Figure 131. Overall, the indented model demonstrates a 

good correlation with the experiment in capturing the initial fold formation at 60 mm crush 

displacement and the transition to buckling at 130 mm crush displacement, as shown in Figure 131.  
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(a) Experiment 

   

(b) Indented model 

   

(c) Displaced model 

   
 i. 60mm ii. 130mm iii. 250mm 

Figure 131: High-speed, front view images of TF rail undergoing a dynamic sled test at three 

different crush displacements: (a) experiment (repeat #3) and its corresponding numerical 

models: (b) indented model and (c) displaced model. 

 

     In summary, the effect of the geometric distortion in the indented model clearly destabilized the 

predicted mechanical response. The initial inwards drawing of the flanges is seen to intensify as the 

first fold forms (Figure 131i), which causes the folding process to skip some of the intermediate fold 

initiators. The last fold initiator activates (see Figure 131ii) and acts as a hinge, allowing a buckling 
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mode to be activated. Lastly, the stress level within the spot welds along one side of the flange results 

in “unzipping” of spot welds and failure of the entire flange, as further seen in Figure 131iii.  

     In general, the ability of the model to predict the buckling response of the 1.2 mm TF crush rails, 

once the section distortion is account for, is encouraging. Moreover, it is expected that incorporation 

of the fold initiator geometry within the hot stamping tool would serve to prevent this distortion which 

should result in improved folding stability. Experimental confirmation of this improvement must await 

future work, however, the finite element models without distortion certainly suggest that this approach 

should work. 
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5.0 Development of Axial Crush Performance Metrics  
 

The previous chapter examined the design of fold initiator patterns to promote progressive folding in 

axial crush structures with a focus on a UHSS hot stamped 1000 MPa steel, Ductibor® 1000-AS. Those 

experiments and models have demonstrated that there exists a complex interaction between material 

strength, fracture resistance, column length, fold initiator pattern and spacing, amongst other factors, 

that determine crush performance. The complex nature of axial crush performance points to the need 

for design guidelines pertaining to material selection for axial crush structures. To this end, this chapter 

examines the development of metrics that can be used to potentially predict crush performance that 

may serve as design tools for fold initiator design and material selection. 

Several metrics are proposed for use in evaluating axial crush performance: (i) Crush Energy 

Efficiency; (ii) Relative Bending Limit; and (iii) Folding Transition Indicator. These metrics are 

addressed individually in the balance of this chapter. Of particular interest is the suitability of the 

developed performance metrics for a wide range of materials; hence, results from a number of axial 

crush experiments available in the literature were considered in addition to the current work on 

Ductibor® 1000-AS. The list of these axial crush results and their corresponding geometric 

configurations are presented in Section 5.1. The balance of this chapter presents the three crush 

performance metrics developed as part of this research and closes with a “performance map” that 

combines the bending and folding performance metrics.  
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5.1. Axial Crush Data Taken from Previous Research 
 

The axial crush results considered for the current study are summarized in Table 20. The range of 

materials includes two other hot stamped grades, namely Ductibor® 500 and Usibor® 1500-AS, whose 

respective tensile strengths are in the range of 500-800 MPa and 800-1700 MPa (Samadian et al., 2020; 

Bardelcik et al., 2012) depending on the die temperature and quench-rate following austenitization. 

Also considered are hot stamped TWBs of these alloys, which comprise a 290 mm long softer region, 

tailor-welded to a 210 mm stronger region, as shown in Figure 37b. The list also includes results for 

three “enhanced DP980” alloys, with tensile strengths in the range of 990-1070 MPa (Zhumagulov et 

al., 2018) and results for a lower strength 270 MPa steel grade due to Ohkubo et al. (1974). The 

corresponding geometric parameters for each specimen, including cross-sectional features and 

specimen length, are listed in Table 21. Finally, it is noted that all of the axial crush samples listed in 

Table 20, except for the top hat samples due to Ohkubo et al. (1974), utilized a fold initiator 

arrangement corresponding to the baseline configuration (BA) described in Chapter 4. The effect of 

more complex initiator patterns is considered in Section 5.5.
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Table 20: List of dynamic axial crush results and test parameters from several previous studies (see citations in table). All specimens 

correspond to the baseline double hat channels (see Figure 38 for cross-section) except for the single top hat studied by Ohkubo et al. 

(1974). The hot-stamped Usibor® 1500-AS (fully-cooled condition), Ductibor® 500-AS and TWBs of these alloys were austenitized 

for minimum of 6 minutes and quenched in a water chilled-die with a temperature of approximately at 15 °C. Mean forces were 

calculated up to the free crush distance. The quasi-static specimens are represented by ‘Q’ in the impact velocity column. 

Crush specimens  
Measured UTS [weaker 

parent metal] (MPa)   

Test configuration Results 

Thickness 

(mm) 

Length [effective 

column length] 

(mm) 

Free crush 

distance 

(mm) 

Impact 

mass 

(kg) 

Impact 

velocity 

(m/s) 

Mean 

force 

(kN) 

Monolithic 

Mild ~270 MPa grade  

(Ohkubo et al., 1974) 

311 

(Noder et al., 2020) 
1.2 300 - - Q 21.6 

Mild ~270 MPa grade  

(Ohkubo et al., 1974) 

311 

(Noder et al., 2020) 
1.6 300 - - Q 37.8 

Ductibor® 500-AS 

(Peister et al., 2019) 
721 

(Samadian et al., 2020b) 
1.2 500 165 855 10.6 71.1 

Ductibor® 500-AS 

(Peister et al., 2019) 
721 

(Samadian et al., 2020b) 
1.6 500 165 855 10.6 126 

DP980 MAT1 

(Butcher et al., 2018) 
1067 

(Zhumagulov et al., 2018) 
1.2 500 115 855 7.1 97.9 

DP980 MAT2 

(Butcher et al., 2018) 
998 

(Zhumagulov et al., 2018) 
1.6 500 115 855 7 158 

DP980 MAT3 

(Butcher et al., 2018) 
1012 

(Zhumagulov et al., 2018) 
1.4 500 115 855 7.1 128 

Ductibor® 1000-AS 

(current study) 

1121 

(Abedini, 2018) 
1.2 500 165 855 10.6 87.7 



147 
 

Table 20: Continued.  

Crush specimens  
Measured UTS [weaker 

parent metal] (MPa)   

Test configuration Results 

Thickness 

(mm) 

Length [effective 

column length] 

(mm) 

Free crush 

distance 

(mm) 

Impact 

mass 

(kg) 

Impact 

velocity 

(m/s) 

Mean 

force 

(kN) 

Ductibor® 1000-AS 

(current study) 

1121  

(Abedini, 2018) 
1.6 375 - - Q 166 

Usibor® 1500-AS 

(Omer et al., 2017b) 

1447 

(Bardelcik et al., 2012) 
1.2 500 165 855 10.6 92.3 

Usibor® 1500-AS 

(Omer et al., 2017b) 

1447 

(Bardelcik et al., 2012) 
1.8 500 165 855 10.6 139 

TWB 

Ductibor® 500 / 

Usibor® 1500-AS 

(Peister, 2019) 

[721] 1.2 500 [290] 165 855 10.6 71.7 

Ductibor® 500 / 

Usibor® 1500-AS 

(Peister, 2019) 

[721] 1.6 500 [290] 165 855 10.6 119 

Ductibor® 1000 / 

Usibor® 1500-AS 
[1121] 1.2 500 [290] 165 855 10.6 90.9 
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Table 21: List of cross-section geometric parameters for crush specimens in Table 20, whose definitions are given in Figure 34. All of 

the results except for the mild steel are from the research work of Waterloo Forming and Crash research group (denoted as 

“University of Waterloo Materials”) and their specimens share the same geometry. Due to the presence of corner radii and obtuse 

draft angle of the double hat geometry, its dimension ‘a’ is approximated.  

Crush specimen Type 

 

Geometry 

b (mm) a (mm) f (mm) Ø (°) R (mm) 

Mild ~270 MPa grade (Ohkubo et al., 1974) Single hat 60 70 18 90 - 

University of Waterloo Crush Rails Double hat 100 ~58 21 95 8 
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5.2. Energy Absorption Performance Metric  
 

Figure 132 shows the measured mean crush force and predicted values using the analytical 

Superfolding Element analysis (using Equations A.17 to A.19 and A.2.1 to A.2.7) developed by 

Wierzbicki and Abramowicz (1983) for the 1.2 mm thick monolithic specimens listed in Table 20. The 

crush forces are plotted as a function of their measured or hardness-equivalent UTS. The detailed 

solution procedure for the SE analysis is found in Appendix A. 

 

 

 

Figure 132: Measured and predicted mean crush force of 1.2 mm monolithic axial crush 

specimens in Table 20 plotted against their reported UTS level by several authors in parentheses. 

The dotted lines represent polynomial lines of best fit. The experimental mean force was 

calculated using the free crush distance. The theoretical mean force was calculated using the SE 

Analysis (Wierzbicki and Abramowicz, 1983) whose solution procedure can be found in 

Appendix A.  

 

Several observations can be made regarding the level of agreement between the theoretical and 

experimental mean force. The lower strength specimens, such as the mild steel (270 MPa) and 

Ductibor® 500-AS (700 MPa) samples, show a very close agreement between the theoretical and 

experimental results with an error of only 7.0 % (2.8 kN) and 6.9 % (4.9 kN), respectively. As the 

strength level increases, however, the magnitude of error increases, rising to 31 % (27.4 kN) for 

Ductibor® 1000-AS and 52 % (47.7 kN) for Usibor® 1500-AS, reflecting a drop in the measured crush 

force relative to the analytical predictions. Clearly, the predicted mean crush force of the Superfolding 

Element exhibits an increasing error for higher strength level alloys. The possible reasons for this trend 

are explored in the following. 
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5.2.1. Crush Energy Efficiency  

 

An alternative normalization method to assess crush performance of different alloys is in term of Crush 

Energy Efficiency (𝜂𝑐𝑟𝑢𝑠ℎ), the ratio of the measured energy absorption (𝐸𝑒𝑥𝑝) to the theoretical energy 

absorption (𝐸𝑆𝐸) using Equations A.17 to A.19 and A.2.1 to A.2.7 (𝐸𝑆𝐸) in the following form: 

 

 
exp exp exp

crush

SE SE SE

E P d P
η

E P d P
= = =  (50) 

 

in which 𝑑  is the crush distance, and 𝑃𝑒𝑥𝑝  and 𝑃𝑆𝐸  are the mean crush force obtained from the 

experiment and the SE analysis, respectively. In essence, Crush Energy Efficiency is taken here as the 

ratio between the measured energy, which reflects the actual deformation mode and extent of fracture, 

for example, and the theoretical potential energy absorption if the deformation mode was progressive 

folding. Thus, a higher value of 𝜂𝑐𝑟𝑢𝑠ℎ  indicates that the specimen is more “efficient” for a given 

material strength. One advantage of using the 𝜂𝑐𝑟𝑢𝑠ℎ  metric is that normalization eliminates the effect 

of thickness on the mean crush force. To demonstrate this point, Figure 133 shows 𝜂𝑐𝑟𝑢𝑠ℎ for all of the 

monolithic specimens in Table 20 (which have a range of thicknesses) plotted against the UTS level 

(as opposed to Figure 132, which only shows 1.2 mm thick specimens). 
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Figure 133: Crush Energy Efficiency (𝜼𝒄𝒓𝒖𝒔𝒉) for all of the steel grades in Table 20 plotted against 

their reported UTS levels by several authors in parentheses.  

 

      Figure 134 shows as-tested samples for the specimens plotted in Figure 133 (note that only one 

thickness configuration is shown for each material). The extent of fracture for each case is classified 

as “no fracture”, “moderate fracture” or “severe fracture” and each image is highlighted as green, 

yellow or red, respectively. Comparison of the extent of fracture and Crush Energy Efficiency (𝜂𝑐𝑟𝑢𝑠ℎ) 

in the figure reveals that 𝜂𝑐𝑟𝑢𝑠ℎ  is reduced drastically as the extent of fracture increases. The lowest 

values of 𝜂𝑐𝑟𝑢𝑠ℎ were exhibited by the Usibor® 1500-AS, which is accompanied by severe fracture. 

The mild 270 MPa grade steel and Ductibor® 500-AS, on the other hand, have a value of 𝜂𝑐𝑟𝑢𝑠ℎ  close 

to unity and show no evidence of fracture. The DP980 series, whose 𝜂𝑐𝑟𝑢𝑠ℎ  values fall in the middle of 

the scale, show a mixed case of irregular folding, buckling and some fracture. The Ductibor® 1000-

AS baseline case from the current study, which is slightly stronger than the DP 980 grades, exhibits a 

similar degree of tearing and global buckling, resulting a slightly lower Crush Energy Efficiency. It 

also can be seen that decreases in 𝜂𝑐𝑟𝑢𝑠ℎ  correspond to a transition in deformation mode from stable 

folding towards buckling.    
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Figure 134: Crush Energy Efficiency (𝜼𝒄𝒓𝒖𝒔𝒉) of the monolithic crush specimens in Table 20 

plotted in terms of increasing UTS (left to right). As-tested images of each crush specimen are 

also shown above the bar chart. For brevity, only one thickness configuration for each steel alloy 

is shown (e.g. Ductibor® 1000-AS 1.2 mm). Note that the DP980 MAT 1 to MAT 3 steels are 

from different suppliers and are treated as different alloys, herein.  
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5.3. Fracture Resistance Metric 
 

In vehicle crash events, the ability of a material to crumple and absorb energy, as in the current axial 

crush experiments, is normally limited by its ability to bend without fracture. Here, fracture is manifest 

by cracks or tears on the top faces or the sidewalls, as shown in Figure 135a. These top faces or 

sidewalls of local folds, when compared to the Superfolding Element, correspond to the horizontal 

bending zone (see Figure 135b) that deforms (bends) under plane strain tension. Thus, the fracture 

resistance in axial crush will be a strong function of the bending performance of a material.  

 

 

(a) fully-cooled Usibor® 1500-AS crushed specimen (Omer et al., 2017b) 

 

  

(b) horizontal bending region in SE (Wierzbicki 

and Abramowicz, 1983) 

(c) v-bend test  

(Roth and Mohr, 2016) 

Figure 135: Illustration of (a) Usibor® 1500-AS crushed specimen, showing fracture along the 

sidewall or topwall, which correspond to the (b) SE horizontal bending region and (c) v-bend 

test. 𝜶𝑺𝑬 is the SE crush angle in unit of radian and 𝜽 is the VDA bend angle (VDA, 2010) in units 

of degrees (°). 
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5.3.1. Relative Bending Limit 

 

     Whether or not fracture will occur depends on (i) the intrinsic bending performance of a material 

(e.g. the limiting bend angle or plastic work at fracture under plane strain bending), as well as (ii) the 

extrinsic applied bending strain (or plastic work) imposed during folding in an axial crush event. 

Fortunately, the material bending limit can be readily evaluated experimentally, using v-bend tests, for 

example, as shown in Figure 135c. These tests impose a bending deformation that is similar in character 

to the horizontal bending in the SE (except for contact pressure on the inside radius by the punch). In 

concert with the material bending limits, the applied bending deformation during axial crush can be 

predicted using the SE analysis based on the final bending angle (crush angle) in the horizontal bending 

zone of the SE. In order to predict likelihood of fracture, a new plastic work-based performance metric, 

termed the Relative Bending Limit, is defined as the ratio of the plastic work to failure in bending to 

the imposed plastic work due to bending during axial crush. 

     Formally, the Relative Bending Limit (𝜒𝑏𝑒𝑛𝑑) is based on a normalization approach and uses the 

following form: 

 

 
,

v bend

bend

SE bend

W
χ

W

−=  (51) 

 

in which 𝑊𝑣−𝑏𝑒𝑛𝑑  is the plastic work at fracture onset during a V-bend test, calculated using the 

methodology developed by Noder et al. (2020). 𝑊𝑆𝐸,𝑏𝑒𝑛𝑑  is the imposed plastic work along the 

horizontal folding line of the SE (Figure 135b) at full consolidation during axial crush. Both plastic 

work values are normalized per unit width along the bending axis, expressed in units of kJ/m, and 

evaluated for the same sheet thickness.  

In essence, a lower value of 𝜒𝑏𝑒𝑛𝑑  means the fracture limit of the material is low relative to the plastic 

work the material will experience during folding and progressive crush. In other words, a low value 

of  𝜒𝑏𝑒𝑛𝑑  is indicative of poor bending performance and severe fracture susceptibility.  

The equation for 𝑊𝑣−𝑏𝑒𝑛𝑑 , the numerator in Equation (51), is given by Noder et al. (2020) in a 

relationship between bending moment (𝑀𝑣−𝑏𝑒𝑛𝑑), the VDA bend angle (𝜃), the fracture bend angle 

(𝜃𝑓) and the width of the specimen (w):   
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0

1 f

v bend v bendW M d
w



− −=   (52) 

 
and the bend angle symbols are defined in Figure 135c. The v-bend fracture angle, which can vary 

significantly depending upon the choice of detection metric, is calculated using a novel approach, 

developed by Noder et al. (2020) and known as the stress metric (Σ), rather than the conventional VDA 

peak load drop method (VDA, 2017). The stress metric is defined as: 

 

 
2

4
v bendM

t w
− =  (53) 

 

in which 𝑡  is the current cross-section thickness, which accounts for thinning using an empirical 

thinning equation, as recommended by Noder et al. (2020). In their work, the stress metric criterion to 

detect fracture onset serves to avoid so-called “false positives” that can occur using the conventional 

VDA load drop method (VDA, 2017)—especially in ductile alloys or thin materials with a low bend 

severity. For the purpose of the current work, a 5% drop in the stress metric criterion was consistently 

used, which corresponded well to the onset of visual cracks as reported by Noder et al. (2020).   

     As part of the current research, the plastic work to bending failure, 𝑊𝑣−𝑏𝑒𝑛𝑑 , was calculated for a 

number of the materials listed in Table 20 using Equations (52)-(53) and the v-bend test results (in 

terms of 𝑀𝑣−𝑏𝑒𝑛𝑑  𝑣𝑠. 𝜃) provided by Noder and Butcher (2020) and Cheong (2019b). Figure 136 shows 

(d) the measured plastic work at fracture, as well as the intermediate calculations, comprising the 

evolution (with respect to bending angle) of (a) bending moment (b) stress metric and (c) plastic work.  
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(a) Bending moment evolution (b) Stress metric evolution 

  

(c) Plastic work evolution (d) V-bend plastic work at fracture  

Figure 136: Measured (a) bending moment evolution from v-bend tests on various materials by 

Noder and Butcher (2020) and Cheong (2019b). The following properties were calculated using 

the methodology developed by Noder et al. (2020): (b) Stress metric evolution (c) Plastic work 

evolution and (d) Plastic work at the onset of fracture, using a 5% drop in the stress metric 

criterion.  

 

Based on examination of Figure 136, higher strength steel grades exhibit earlier fracture onset and 

lower plastic work to fracture. Interestingly, high strength steels like Usibor® 1500-AS and Ductibor® 

1000-AS show a strong linear trend in plastic work evolution with bend angle. The increase in plastic 

work with bend angle becomes increasingly non-linear as the material strength decreases with the 

strongest nonlinearity observed in the 270 MPa mild steel grade. Although the non-linear behaviour in 

the mild steel may be partially attributed to the punch lift-off phenomenon at higher bend angle, its 

strong hardening behaviour is suggested to play a role since the nonlinearity is observed from the start 

of the bending process (bend angles of approximately 30° in Figure 136c). 
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     The second building block of Relative Bending Limit, is the plastic bending work in the SE 

horizontal zone (𝑊𝑆𝐸,𝑏𝑒𝑛𝑑 , the denominator in equation (51)), which can be calculated using the 

relation given by Wierzbicki and Abramowicz (1983): 

 

 , , ,SE bend SE bend SE fW M α=  (54) 

 

 
2

,

,
4

SE bend

SE bend

σ t
M =  (55) 

 

in which 𝛼𝑆𝐸,𝑓  is the SE crush angle (assumed as 𝜋/2), 𝑀𝑆𝐸,𝑏𝑒𝑛𝑑  is the energy equivalent plastic 

bending moment, and 𝜎𝑆𝐸,𝑏𝑒𝑛𝑑  is the energy equivalent flow stress in the SE bending region. 𝜎𝑆𝐸,𝑏𝑒𝑛𝑑  

corresponds to an average flow stress in bending and its expression, given by Wierzbicki and 

Abramowicz (1987), is in terms of the flow stress (𝜎) and the SE bending strain (𝜀𝑆𝐸,𝑏𝑒𝑛𝑑 ): 

 

 
( )

,

2 0
,,

2
   hardening assumption

                             perfectly plastic assumption

SE bendε

p p p

SE bendSE bend

y

σ ε ε dε
εσ

σ




= 




 (56) 

 

 ( ), ln 1 0.926SE bend tH = +  (57) 

 

in which 𝜀𝑝̅ is the equivalent plastic strain, 𝑡 is the sheet thickness, and 𝐻 is the SE half-wavelength of 

the folding cell (see Figure A.1). The energy equivalent stress for each material is calculated in 

Appendix C and shows a considerable difference from the yield strength, pointing to the importance 

of the hardening assumption. More commentary on the energy equivalent flow stress can be found in 

Appendix A.  

By combining Equations (51), (52), (54), (55), and (56), the Relative Bending Limit (𝜒𝑏𝑒𝑛𝑑) can be 

expressed as follows:  
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Note that the hardening models, as well as the calibration constants used to calculate 𝜎 were obtained 

from multiple publications which are listed in Table 22 in Appendix C. The material data was extracted 

for consistent material conditions (e.g. measured Vickers hardness) with respect to the crush test 

specimens. 

     Figure 137 shows the calculated Relative Bending Limit (𝜒𝑏𝑒𝑛𝑑) for a subset of materials using 

Equation (58) with either the hardening or perfectly plastic assumptions. The overall trends for either 

assumption show that 𝜒𝑏𝑒𝑛𝑑  decreases as the material strength increases, with the highest and lowest 

values for  𝜒𝑏𝑒𝑛𝑑  corresponding to the 270 MPa mild steel grade and Usibor® 1500-AS, respectively. 

The calculated values for 𝜒𝑏𝑒𝑛𝑑  using the hardening assumption are all higher than those using the 

perfectly plastic assumption by a range from 21 to 69 %. Interestingly, the difference in 𝜒𝑏𝑒𝑛𝑑  amongst 

the DP 980 series was significant (up to 26%) under the perfectly plastic assumption; however, a 

minimal difference is shown (0.8%) under the hardening assumption. The preceding results point to 

the importance of using the proper hardening assumption in calculating the energy equivalent flow 

stress when comparing the bending performance of materials within similar UTS levels.  

 

  

(a) perfectly plastic (b) energy equivalent flow stress 

Figure 137: Bar chart of 𝝌𝒃𝒆𝒏𝒅 in the descending order, calculated using Equation (58) with two 

different hardening assumptions: (a) perfectly plastic assumption or (b) hardening assumption 

in Equation (56). The calibrated hardening models can be found in Appendix C.  

 

     Interestingly, the Crush Energy Efficiency values for the materials considered here show a strong 

correlation with the calculated values of 𝜒𝑏𝑒𝑛𝑑  (R-squared = 0.91), as shown in Figure 138. Also 

indicated in the figure is the observed extent of fracture from which it can be seen that materials with 

a lower Relative Bending Limit exhibited a higher extent of fracture and a lower Crush Efficiency. For 

example, the crush rails fabricated using die-quenched Usibor® 1500-AS, whose 𝜒𝑏𝑒𝑛𝑑  is 0.76, 
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exhibited a very high fracture susceptibility. The die-quenched Ductibor® 500-AS, whose 𝜒𝑏𝑒𝑛𝑑  is 

2.56, did not exhibit any indication of fracture. The rest of the materials, with 𝜒𝑏𝑒𝑛𝑑  ranging from 1.1 

to 1.3, exhibited a moderate extent of cracking. Thus, the Relative Bending Limit can be used as a 

reasonable predictor of not only fracture resistance but also the Crush Energy Efficiency of a crush 

specimen. 

 

 

Figure 138: Crush Energy Efficiency vs. Relative Bending Limit calculated using Equation (50) 

and (58).  

 

     Calculating the Relative Bending Limit using Equation (58) poses complexity in terms of (i) 

obtaining V-bend plastic work evolution and (ii) solving for SE energy equivalent flow stress. For this 

reason, a simplified approximate solution of the Relative Bending Limit has also been derived and is 

documented in Appendix D. One important aspect which stems from the solution is that the Relative 

Bending Limit is directly related to the ratio of the v-bend fracture angle (𝜃𝑓 ) to the power-law 

hardening coefficient (𝐾).  
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5.4. Folding Stability Metric 
 

5.4.1. Folding Transition Indicator  

 

The previous discussion has centred around the interaction between the material fracture limit and 

imposed bending deformation during axial crush. Another important aspect of stability during axial 

crush is the transition between local folding and global buckling which is expected once the slenderness 

of the axial crush column becomes high. One approach to predict the onset of global buckling is based 

on the expression for the transition between local folding and global buckling due to Abramowicz and 

Jones (1997). Their expression is based on the ratio of two critical stresses: (a) the plastic buckling 

stress of a column, 𝜎𝑐𝑟
𝑐𝑜𝑙, and (b) the mean stress of local folding, 𝜎𝑙𝑜𝑐𝑎𝑙:   

 

 1
col

cr

local

σ

σ
=  (59) 

 

in which 𝜎𝑙𝑜𝑐𝑎𝑙 was taken as the Stowell buckling (folding) stress of a simply supported plate (Iyengar, 

1988).  

 

5.4.1.1. Double Hat Channel 

 

Here, a novel approach is introduced in which 𝜎𝑙𝑜𝑐𝑎𝑙 is taken as the mean crush stress, 𝜎𝑆𝐸, obtained 

by the SE analysis in Appendix A. The basis of this work assumes that the local collapse of the double 

hat column can be modeled as eight SEs, as made by White et al. (1999) shown in Figure 139. 
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(a) Asymmetric collapse of the double hat 

column modeled by 8 SEs 

(b) double hat cross-section with dimensions 

Figure 139: Illustration of (a) asymmetric collapse of double hat column, modeled as 8 joined SE 

by White et al. (1999) and (b) the double hat cross-section with dimensions. The entire perimeter 

Z can be approximated as 𝒁 ≈ 𝟐𝒂 + 𝟐𝒃 + 𝟒𝒇. Note that Z was taken as 400 mm for all double 

hat channels considered in the current thesis. 

 

     The equation for 𝜎𝑐𝑟
𝑐𝑜𝑙 in Equation (59) is described in terms of tangent modulus (𝐸𝑡), area moment 

of inertia (𝐼), cross-sectional area (𝐴) and the specimen length (𝐿): 
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By using a power law hardening approximation, the tangent modulus can be determined using 𝐸𝑡 =

𝑛𝐾𝜀𝑛−1. The cross-sectional area and the minimum moment of inertia (mm4) for a given double hat 

geometry are approximated by the following empirical relations,  
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 A Zt  (62) 

 

Where Z represents the entire perimeter for the double hat cross-section approximated as 2𝑎 + 2𝑏 +

4𝑓 in Figure 139. On the other hand, the mean stress of a double hat channel is readily found using the 

modified form of the SE equation due to White et al. (1999): 

 

 ( ) 5/3 1/313.05 /n

SE SEK t Z A =  (63) 
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Where 𝜀𝑆𝐸  is herein introduced as “energy equivalent strain” and approximated by 0.5[(𝑡/2𝑟)2(𝑡/

2𝑅)]1/3 (see Appendix A). Inserting Equation (60)-(63) into Equation (59), one obtains 
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Furthermore, one can substitute Z with the radius of gyration by 𝑅𝑔 = √𝐼/𝐴 ≈
𝑍

12.45
 in Equation (64)

which gives  
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The subsequent work follows that of Abramowicz and Jones (1997) who isolated a characteristic aspect 

ratio in their equation, defined as a ratio of column length (𝐿) to side length (𝑏) of square cross-section. 

Similarly, a slenderness ratio 𝐿/𝑅𝑔 can be isolated by manipulating Equation (65) 
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below which local folding is predicted to occur, whereas for higher slenderness ratios, global buckling 

is expected. By dividing the right side of Equation (66) by the left side and substituting the actual 

slenderness ratio (𝐿/𝑅𝑔), a dimensionless indicator (𝜂𝑓𝑜𝑙𝑑 ) is derived, for which a value of unity 

corresponds to the transition between local folding versus global buckling: 
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Here, 𝜂𝑓𝑜𝑙𝑑  is denoted the “folding transition indicator” for which higher values indicate an increased 

likelihood of local folding over global buckling. Hence, a high value of 𝜂𝑓𝑜𝑙𝑑  would indicate superior 

collapse stability.  
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5.4.1.2. Single Hat Channel 

 

Similarly, the collapse of top hat channels can be modeled as four SEs and a backing plate (White et 

al., 1999), as shown in Figure 140. 

 

 

 

(a) collapse of the top hat column modeled by 4 

SEs and a backing plate 

(b) top hat cross-section with dimensions 

Figure 140: Illustration of (a) asymmetric collapse of single hat column, modeled as 4 joined SE 

and a backing plate by White et al. (1999) and (b) the single hat cross-section with dimensions 

shown. The entire perimeter Z can be approximated as 𝒁 ≈ 𝟐𝒂 + 𝟐𝒃 + 𝟒𝒇. Images adapted from 

White et al. (1999).  

 
The folding transition indicator for the top hat section can be found using the same approach except 

using the empirical moment of inertia (I) and the mean crush stress of SE (𝜎𝑆𝐸) for the top hat section 

as follows  

 

 31

266
I Z t=  (68) 

 

 ( ) 5/3 1/38.22 /n

SE SEK t Z A =  (69) 

 

Insertion of Equations (60), (68) and (69) into Equation (59) finally gives the expression for the top 

hat section 
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Figure 141 shows calculated values of the Folding Transition Indicator (𝜂𝑓𝑜𝑙𝑑) for each axial crush 

specimen listed in Table 20. Furthermore, each specimen is classified based on its deformation mode 

as “severe fracture”, “global buckling”, “mixed folding and buckling”, “irregular folding” or 

“progressive folding”. Comparison of the deformation mode and 𝜂𝑓𝑜𝑙𝑑  in the figure reveals that the 

specimens with 𝜂𝑓𝑜𝑙𝑑  above unity underwent stable folding modes, while those with 𝜂𝑓𝑜𝑙𝑑  below unity 

exhibited various unstable modes. The lowest values of 𝜂𝑓𝑜𝑙𝑑  corresponded to the 1.2 and 1.6 mm thick 

Usibor® 1500-AS crush rails that exhibited severe fracture. The DP980 MAT 2 crush rails also had 

low values of 𝜂𝑓𝑜𝑙𝑑  and displayed global buckling. Also exhibiting low 𝜂𝑓𝑜𝑙𝑑  values (< 0.5) are the 

1.2 mm Ductibor® 1000-AS baseline case and the 1.6 mm baseline case with reduced effective column 

length, which showed global buckling and mixed folding and buckling, respectively. The mild 270 

MPa grade steels and Ductibor® 500-AS / Usibor® 1500-AS TWBs (1.2 and 1.6 mm) have the highest 

values of 𝜂𝑓𝑜𝑙𝑑  and show progressive folding and irregular folding, respectively. The balance of the 

crush rails in Table 20 include the DP980 MAT1 / MAT3, Ductibor® 1000-AS / Usibor® 1500-AS 

TWB and Ductibor® 500-AS (1.2 and 1.6 mm) with values of 𝜂𝑓𝑜𝑙𝑑  between 0.5 and 1.0. These alloys 

show varying degrees of mixed folding and buckling.  In general, Figure 141 supports the use of the 

folding transition indicator as a metric to apply in design of axial crush columns to promote folding 

over global buckling. It should be noted that wider investigation of a broader range of column geometry, 

beyond the baseline (BA) geometry, is needed prior to general application of this approach. 

 

 

 

Figure 141: Plot of deformation mode vs. Folding Transition Indicator (𝜼𝒇𝒐𝒍𝒅). The legend is 

shown in the table. Note that 𝜼𝒇𝒐𝒍𝒅  for TWB specimens were calculated by assuming the 

specimen length (L) in Equations (67) and (70) to be the same as their reduced effective column 

length.  
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5.5. Performance Map and Benefit of Enhanced Fold Initiator Design 
 

Figure 142 is a plot of the Relative Bending Limit (𝜒𝑏𝑒𝑛𝑑) versus the Folding Transition Indicator 

(𝜂𝑓𝑜𝑙𝑑) for the set of axial crush columns in Table 1 for which V-bend fracture data was available. 

Essentially, this figure can be thought of as “Performance Map” in which the horizontal axis indicates 

the likelihood of folding (as opposed to column buckling), while the vertical axis quantifies the ability 

of the material to bend without fracture during axial crush. Note that the Relative Bending Limit for 

the TWB columns was assumed to be the same that of as their monolithic counterparts whereas the 

length of the softer parent metal section was adopted as their column length. Ideally, a crush column 

design should exhibit good folding stability and sufficient resistance to fracture during folding 

(bending), as captured by this Performance Map. 

In Figure 142, the expected extent of fracture (from Figure 138) is classified by three regions along the 

vertical axis, corresponding to “no fracture”, “moderate fracture” or “severe fracture.” Similarly, three 

regions of expected collapse stability are indicated along the horizontal axis, as “global buckling”, 

“irregular folding” or “progressive folding”. Overall, the various deformation modes / fracture 

severities observed in the crush specimens fall into the corresponding regions within the performance 

map. There was one discrepancy, namely the baseline Ductibor®1000-AS / Usibor® 1500-AS TWB 

column that showed mixed folding and buckling. This column also falls into the moderate fracture 

category whereas it exhibited extensive fracture in the experiments. Interestingly, this discrepancy is 

consistent with the predicted eroded energy vs. absorbed energy map of various fold initiator patterns 

in Figure 103 (Section 4.2), which also showed the highest eroded energy for the mixed folding and 

buckling case. Such behaviour suggests that the complex interaction of multiple deformation modes 

can lead to more extensive fracture and points to the need for further investigation. In addition, future 

work should consider incorporating other advanced materials such as 3rd generation steel alloys which 

are anticipated to shift the relationship between fracture strain and strength.  
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Figure 142: A 2D response map of Relative Bending Limit ( 𝝌𝐛𝐞𝐧𝐝 ) vs. Folding Transition 

Indicator (𝜼𝐟𝐨𝐥𝐝) for the monolithic and TWB crush specimens for which material fracture data 

(v-bend) was available.  

 

Finally, as noted in Section 5.4, the Folding Transition Indicator may be limited to specific column 

geometries beyond the baseline (BA) cases in the current dataset. This aspect is examined in Figure 

143 in which the data in Figure 141 from the previous published studies corresponding to the BA 

initiator pattern (black symbols) is replotted along with the current Ductibor® 1000-AS results 

(Chapter 4) using the BA pattern (solid symbols) and the TF initiator pattern (open symbols). The 

response for the 1.2 mm TF specimens (green symbols) corresponds to the improved initiator spacing 

of 27.5 mm, while the 1.6 mm TF specimens (red symbols) are for a spacing of 30 mm. The results in 

Figure 143 clearly demonstrate the benefit of the improved initiator design (TF pattern) in shifting the 

response from global buckling to irregular or progressive folding for the 1.2 mm thickness and from 

mixed folding and buckling to progressive folding for the 1.6 mm thickness. In essence, the improved 

initiators enable stable collapse such that the material is loaded in such as manner as to reach its full 

bending (folding) potential, reflected in values of Relative Bending Limit of just over unity for the 1.2 

mm Ductibor® 1000-AS material. 
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Figure 143: Modified plot of deformation mode vs. 𝜼𝒇𝒐𝒍𝒅. The black symbols are from Figure 141. 

The red and green symbols represent 1.2 mm and 1.6 mm Ductibor® 1000-AS specimens, 

respectively. The solid and open symbols represent the BA and TF patterns, respectively. 

  

The improved deformation mode in TF patterns can be explained in terms of a reduction in the effective 

column length. To demonstrate this point, Figure 144 shows the side view images taken immediately 

following the sled impact for the 1.2 mm BA specimen (repeat #1) that globally buckled, as well as 

the 1.2 mm TF specimen (repeat #1) that progressively folded. In the TF specimen, the immediate 

formation of multiple folds is exhibited as the stress wave travels and is evidenced by the pronounced 

wavy pattern on its sidewall. Essentially, this multiple lobe formation splits the entire column into 

separate folding zones. It is speculated that this reduces the effective column length from the column 

length 𝐿 (500 mm) to the height of each fold, equal to the fold initiator spacing (2𝐻𝑖𝑛𝑑𝑒𝑛𝑡) (27.5 mm).  

 

  

(a) baseline 

(BA repeat #1) 

(b) TF 

(TF repeat #1) 

Figure 144: Side view images of the baseline and TF specimens from the dynamic experiments, 

at the crush displacement corresponding to initial peak force in F-D graphs. The corresponding 

times for the images taken are 0.078 s and 0.070 s for BA and TF, respectively, which are 

measured relative to the trigger of the data acquisition unit (see Figure 63).  
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6.0 Conclusions and Recommendations 
 

6.1. Conclusions 
 
The research work presented herein aims to promote the progressive folding mode in axial crush 

components comprising hot-stamped UHSS. The experimental tasks have served to validate an 

analysis-driven design method to identify a successful fold initiator pattern, namely Pattern TF. In 

addition, performance metrics have been developed to predict three aspects of axial crush for a 

particular material and axial crush geometry, namely (i) Crush Energy Efficiency, (ii) Relative Bending 

Limit, (iii) Folding Transition Indicator. The conclusions stemming from this research are as follows: 

 

1. The baseline, dynamic axial crush performance of 1.2 mm Ductibor® 1000-AS was 

characterized in terms of deformation mode, initial peak force, energy absorption, and fracture 

extent. All three repeat cases of the baseline specimen exhibited a global buckling mode with 

moderate fracture at the sidewall of the initial fold. The measured peak force was 479 kN, and 

the absorbed energy was 14.7 kJ and 21.9 kJ at 165 mm and 250 mm crush displacement, 

respectively.   

2. The numerical model of the baseline dynamic axial crush rail accurately predicted the observed 

global buckling response with an initial peak force of 492 kN and absorbed energy of 23.2 kJ 

at 250 mm displacement. These predictions were within 2.7 % and 5.9 % of the measured 

values, respectively.  

3. The numerical simulation of the dynamic axial crush response considering six distinct fold 

initiator patterns revealed four different deformation modes, listed here in order of increasing 

collapse stability: (i) global buckling, (ii) mixed folding and buckling, (iii) irregular folding 

and (iv) progressive folding. Of all fold initiator patterns considered, the TCA (Top-

Consecutive-Asymmetric), TF (Top-Flange), and TFO (Top-Flange-Offset) patterns predicted 

the progressive folding mode.  

4. The fold initiator spacing also exerted a significant influence on the predicted folding stability, 

as quantified using the L2 stability analysis. The use of the TF initiator pattern, at a spacing of 

27.5 mm and 30 mm for the 1.2 and 1.6 mm thickness channels, resulted in regular folding and 

reduced the predicted extent of fracture over that seen using the baseline, single fold initiator 
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pattern. These spacings correspond to those identified using the SE analysis due to Wierzbicki 

and Abramowicz (1983).   

5. The validation experiments considering the TF fold initiator pattern correlated well with the 

model predictions for the 1.6 mm thick channels using the simplified “displacement approach” 

to introduce the fold initiators into the model geometry.   

6. The distortion caused by the flange indentation process was shown to have a severe impact in 

promoting buckling instability, particularly for the 1.2 mm TF specimens. Once the fold 

initiator indentation process (and distortion) was introduced into the axial crush models, good 

model-experiment correlation was achieved for the 1.2 mm (and 1.6 mm) TF specimens.  

7. Increased folding stability was achieved at the cost of slightly lower energy absorption. For 

example, the 1.2 mm TF specimens showed a 5.9% reduction in energy absorption compared 

to the baseline. There was also a 21 % reduction in the peak force, which for some applications 

may be viewed as beneficial (e.g. in reduction of impulse to vehicle occupants).  

8. The new performance metrics, namely Relative Bending Limit and Folding Transition 

Indicator, were successfully demonstrated to be predictors of the fracture extent and 

deformation mode for baseline configuration hat section axial crush columns encompassing a 

range of steel grades with UTS values between 270 MPa and 1500 MPa.   



170 
 

6.2. Recommendations 
 

The following recommendations stem from the current research: 

 

1. To reduce the geometric distortion effect, it is strongly recommended to incorporate the fold 

initiators into the hot stamping dies for future experiments concerning repeating fold initiator 

patterns. Furthermore, the TF specimens in Parts 2 and 3 should be retested using such 

improved tooling.  

2. The effect of spot weld strength and spot weld placement on the crush performance requires 

further examination. 

3. In the thesis, fold initiator patterns were placed, beginning at 70 mm away from the impact-

end. Such a design decision was for consistency with previous axial crush studies (Peister, 

2019; Omer et al., 2017b). The effect of the number of initiators and initial offset of the first 

initiator location relative to the impacted end of the column should be evaluated. 

4. To extend the validation of the crush performance metrics developed in Chapter 5, additional 

data is required for a range of slenderness ratios and materials. In particular, new 3rd generation 

steels as well as aluminum alloys should be considered in order to encompass a range of 

strength, fracture resistance and sheet thickness. 

5. As for the double hat section, axial crush components comprising UHSS, it is recommended 

that stable repeating fold initiator patterns be adopted, such as the current TF pattern, to 

promote stable folding and potentially limit onset of fracture.  

6. The effect of cross-section proportions (e.g. flange width and section aspect ratio) on the 

deformation mode and stability requires further investigation.  
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Appendix A. Solution Procedure for Superfolding Element 

Analysis 
  

This section serves as a review of the Superfolding Element Analysis (SEA) developed by Wierzbicki 

and Abramowicz (1983), whose solution procedure solves for the theoretical wavelength (2𝐻), plastic 

work in the horizontal bending zone (𝑊𝑆𝐸,𝑏𝑒𝑛𝑑), and the crush mean force (𝑃𝑚). The novelty of the 

work presented here lies in modifying the fundamental SE model to account for the hardening 

behaviour of a UHSS material, namely, Ductibor® 1000-AS, which is the studied material in the 

experimental program. Additionally, the SE Analysis was extended to account for other alloys such as 

270 MPa mild steel grade, Ductibor® 500-AS, DP 980, and Usibor® 1500-AS. The predicted 

responses (2𝐻, 𝑊𝑆𝐸,𝑏𝑒𝑛𝑑 , and 𝑃𝑚) for all of these alloys are presented at the end of this section.  

     The SEA begins with the work balance between plastic internal (𝐸𝑖𝑛𝑡) and external energy (𝑊𝑒𝑥𝑡) 

in crushing a Superfolding Element as follows: 

 

 intextW E=  (A.1) 

 

The external energy is simply the mean force (𝑃𝑚) multiplied by the effective crush distance (𝛿𝑒).  

 

 ext m eW P δ=  (A.2) 

 

The total plastic internal energy (𝐸𝑖𝑛𝑡) is calculated by summing the internal energy due to quasi-

inextensional deformation (𝐸1 to 𝐸3) and that due to extensional deformation (𝐸4 to 𝐸6). These energy 

values, respectively, are associated with the (1) toroidal surface, (2) horizontal bending surface, (3) 

inclined rolling surface, (4) conical surface, (5) horizontal bending surface, and (6) inclined cylindrical 

surface, as shown in Figure A.1. 
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Figure A.1: Illustration of the Superfolding Element and its constitutive surfaces 1 to 6. The 

surface elements from quasi-inextensional mode (white) and extensional mode (black) are 

coloured separately for distinguishment. 

 

The significant aspect of the analysis lies in finding the internal dissipated plastic energy, which is 

defined as  
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int int int
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Where 𝛼 is the current crush angle, 𝛼̅ is the transition angle at which the mode switches from the quasi-

inextensional mode to the extensional mode and 𝛼𝑓 is the final crush angle. The analysis carried out 

by Abramowicz and Wierzbicki (1989) gives the internal energy associated with each region as 
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(2) Horizontal hinge 2 ,22 SEE M Cα=   (A.5) 
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(5) Horizontal hinge ( )5 ,52 SE fE M C α α= −   (A.8) 
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With geometric constants 𝐼1 to 𝐼6, which appear from rigorous kinematic analysis 
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and SE base length (𝐶), half folding wavelength (𝐻), corner angle (𝜑𝑜) and crush angle (𝛼) are defined 

in Figure A.1. Note that the pseudo-bending moment term, 𝑀𝑆𝐸,1, in Equation (A.4) appears due to a 

re-arrangement of the term  
1

4
𝑡2𝑁𝑆𝐸,1 for convenience in which 𝑁𝑆𝐸,1 is the uniaxial stress. There is 

virtually no bending occurring in the toroidal surface because the larger radius (𝑅) along the meridian 

direction is assumed fixed. Only uniaxial “stretching” occurs along the circumferential direction (along 

𝑟) (Wierzbicki and Abramowicz, 1983). 

     For theoretical prediction of mean crushing force of the double hat channel, the SE analysis can be 

extended to model the double hat cross-section as eight joined SEs as illustrated in Figure A.2. Hence, 

in the analysis of the double hat channel, the right side of Equation (A.1) is multiplied by 8, giving  

 

 int8extW E=  (A.14) 
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Figure A.2: Illustration of double hat cross-section modelled by eight (8) joined Superfolding 

Elements (White et al., 1999). Z refers to the entire mid-shell perimeter of the double hat cross-

section, which is eight times the base length of the SE (𝟖 × 𝑪).  

 

Furthermore, for a SE with 𝜑𝑜 ≤ 𝜋/4 (acute or right angle), the main governing deformation mode is 

known to be quasi-inextensional rather than extensional (Abramowicz, 2003). Hence, 𝛼𝑓 = 𝛼̅ can be 

assumed to be 𝜋/2. With such an assumption, the energy contribution from the extensional modes (𝐸4 

to 𝐸6) vanishes. Subsequent insertion of Equation (A.2) and Equation (A.3)-(A.9) into Equation (A.14) 

yields the following: 
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in which 𝐶 is the entire base length of the SE, and evaluated as one-eighth of Z—the mid-shell cross-

section perimeter of the double hat (defined in Figure A.2). The energy equivalent plastic bending 

moment at the ith region, 𝑀𝑆𝐸,𝑖, and constants— 𝐴1, 𝐴2, 𝐴3— are defined as 

 

 

2

,

,
4

SE i

SE i

σ t
M =  (A.16) 

 

 1 1 2 3 364 ; 16 ; 16fA I A α A I= = =  (A.17) 

 

in which 𝜎𝑆𝐸,𝑖 is the energy equivalent flow stress at the ith region, and 𝐼1 = 0.567, and 𝐼3 = 1.173 are 

obtained by using the initial corner angle of the studied geometry (𝜑𝑜 = 42.5° as shown in Figure 38)  
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in Equation (A.10) and (A.11). Fully expanding the plastic bending moment (𝑀𝑆𝐸,𝑖) in Equation (A.15) 

finally gives the mean crushing force  
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     The collapse mechanism of a SE follows the minimum energy principle; that is to say, the crushing 

process requires the least possible amount of the crush force (Wierzbicki and Abramowicz, 1983). 

Thus, Equation (A.18) can be minimized with respect to half wavelength (𝐻) and toroidal radius (𝑟) 

while treating the flow stresses (𝜎𝑆𝐸,1 to 𝜎𝑆𝐸,3) as some known constants 
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Solving Equation (A.19) gives the closed-form solutions of 𝐻, 𝑟 and 𝑃𝑚: 
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The observation drawn from Equation (A.22) is two-fold. First, the mean force of the Superfolding 

Element depends on its geometric properties (e.g., thickness) as well as material properties (e.g. plastic 

flow stresses). Also, the exponent of 𝑡, 5/3, in Equation (A.22) arises from the fact that two-thirds of 

the internal plastic energy dissipation comes from inextensional mode such as bending (Wierzbicki 

and Abramowicz, 1983)—an important finding that the crush performance correlates with the bending 

performance of a material.  
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A.1. Perfectly Plastic Assumption 

 

If one assumes a rigid, perfectly plastic material behaviour and replaces plastic flow stress terms in 

Equation (A.20) and (A.21) with the yield stress (𝜎𝑦), the flow stress-dependent terms reduce to unity. 

Similarly, the first parenthesis in Equation (A.22) reduces to the first-order yield stress. Further 

manipulation results in the same solution by White et al. (1998): 
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in which 𝑍 is the mid-shell cross-sectional perimeter of the double hat (𝑍 = 8𝐶) illustrated in Figure 

A.2, and 𝐴1 to 𝐴3 can be found using Equation (A.17). 

 

A.2. Hardening Assumption 

 

As Wierzbicki and Schneider (1999) pointed out, one of the major sources of error in the mean force 

prediction from the SE analysis, relative to experimental values, is the calculation of the energy 

equivalent flow stresses. These so-called energy equivalent flow stresses represent the average plastic 

stress in the uniaxial flow or bending and are derived from the isotropic and perfectly plastic material 

assumptions. Their expressions are given by Wierzbicki and Abramowicz (1987) as 
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in which 𝜀𝑝̅ is the current equivalent plastic strain; 𝜀𝑆𝐸,1 to 𝜀𝑆𝐸,3 are the final plastic strains in the outer 

surfaces of toroidal, horizontal bending, and inclined bending zones, respectively; and 𝜎(𝜀𝑝̅, 𝜀̇) is the 

flow stress obtained by a strain rate sensitive hardening model.  

The above integrals will be referred to as “plastic work integrals” for convenience. Note that the 𝜀𝑆𝐸,𝑖
2  

terms in Equation (A.2.2) and (A.2.3) appear due to the change from expressing the flow stress in terms 

of bending moments to expressions in terms of stresses. Lastly, the final plastic strains and the average 

strain rate are expressed (Abramowicz, 1997; Wierzbicki and Abramowicz, 1989) as 
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in which 𝑅 is the larger radius of the toroidal surface defined in Figure A.1, 𝜀𝑎̇𝑣𝑔 is the average strain 

rate in the SE (Abramowicz and Wierzbicki, 1989), and 𝑣𝑖 is the initial impact velocity in the axial 

crush event.  

The expressions for 𝐻, 𝑟, and 𝑃𝑚 can now be solved with the flow stresses obtained from (A.2.1) to 

(A.2.7), but one challenge remains: solving the plastic work integral.  

The solution of the integral can be made tractable if one assumes a power-law type hardening model, 

as done by White et al. (2008), but, for high strength steels, such a model can result in a significant 

error (i.e. 𝑅2) in capturing the stress-strain behaviour. As an alternative, the Modified Hockett-Sherby 

model (Equation (39)), which better describes the hardening response, can be inserted into Equation 

(A.2.1) to (A.2.3). The plastic integral, then, becomes 
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whose closed-form solution does not exist. Hence, utilizing a numerical method such as the trapezoidal 

rule is inevitable to carry out the calculations for energy equivalent flow stresses. 

Once the energy equivalent flow stress at the horizontal bend (surface 2 in Figure A.1) is obtained, its 

theoretical bend work (𝑊𝑆𝐸,𝑏𝑒𝑛𝑑) can be calculated in terms of the plastic bending moment 𝑀𝑆𝐸,𝑏𝑒𝑛𝑑  

 

 , ,SE bend SE bend fW M α=  (A.2.9) 

 

with the fully plastic relation 
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A.3. Numerical Solution Procedure 

 

The numerical analysis used in this section is the Newton-Raphson method, in which the roots of 

residual functions (𝑓𝑖) are iteratively solved using the function derivatives. The solution procedure is 

outlined in the flowchart in Figure A.3. The first step in the method is identifying the system of 

variables, which are the half-wavelength (𝐻) and the toroidal radius (𝑟), in the SE problem. Next, the 

residual functions of the variables can be set from Equations (A.1.1) and (A.1.2): 
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More conveniently, the residual functions and the variables can be expressed in vector forms, and the 

Jacobian matrix (𝑱) is formulated: 
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in which 𝑖 and 𝑗 are indices of the Einstein notation. By combining Equations (A.3.3) to (A.3.5), a 

system of three equations are established and the subsequent estimates of the roots (𝒗𝒊+𝟏) are increased 

by  

 

 
1−=Δv J f  (A.3.6) 

 

using the following relationship 

 

 1i i+ = +v v Δv  (A.3.7) 

 

Once the roots are updated, the solution process repeats until the pre-determined convergence condition 

is met (i.e. |𝒗𝑖+1 − 𝒗𝑖| ≤ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒). The Newton-Raphson algorithm depicted in Figure A.3 is 

solved using MATLAB® custom script in Appendix B, which was developed as the part of the current 

research work.   
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Figure A.3: Flow chart illustration of the Newton-Raphson method used in solving the SE 

analysis. The initial estimate used for 𝑯 and 𝒓 was 100, while the tolerances for both system 

variables were set as 0.01. 

 
The solutions to the toroidal radius (r) and folding wavelength (2H) obtained for hot-stamped 

Ductibor® 1000-AS, as well as five other alloys, are plotted against the sheet thickness range from 1.0 

to 1.8 mm in Figure A.4 and Figure A.5. 



195 
 

  

(a) toroidal radius (r) (b) folding wavelength (2H) 

Figure A.4: Theoretical prediction of SE system variables: (a) toroidal radius (r) and (b) folding 

wavelength (2H) plotted against sheet thickness (t) for die-quenched Ductibor® 1000-AS. The 

predicted toroidal radius are 2.9 mm and 3.54 mm, while the folding wavelengths are 27.6 mm 

and 30.7 mm for 1.15 mm and 1.55 mm thick sheets, respectively. 

 

  

(a) toroidal radius (r) (b) folding wavelength (2H) 

Figure A.5: Theoretical prediction of SE system variables: (a) toroidal radius (r) and (b) folding 

wavelength (2H) plotted against sheet thickness (t) for six different steel alloys. 𝐼1 , 𝐼3  were 

assumed as 0.567 and 1.173 in the solution, given 𝝋𝒐 = 𝟒𝟐. 𝟓° (see Figure A.1)  

 

The general trend in Figure A.5 shows that higher strength alloy possesses a higher predicted folding 

wavelength at a given sheet thickness. However, the maximum difference amongst the alloys is within 

2 mm at a given thickness, indicating that the folding wavelength is weakly dependent on the material 

property. The mean crushing force (𝑃𝑚) for each alloy is plotted against the sheet thickness (𝑡) in Figure 

A.6. Self-evidently, the mean crush force ranking of these alloys follows that of their UTS levels. 
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Figure A.6: Theoretical prediction of mean crushing force (𝑷𝒎) plotted against sheet thickness 

(t) for six different steel alloys, which is obtained from the SE analysis. 
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Appendix B. MATLAB® Source Code for SE Analysis 
 

This section presents the MATLAB® custom source code used to carry out the solution procedure of 

SE analysis in Appendix A. The script consists of three parts—(I) the main program, which executes 

the Newton-Raphson function and updates the solution results into an array, (II) the Newton-Raphson 

function, which uses an iterative approach to find the root of 𝐻 and 𝑟, as illustrated in Figure A.3 and 

(III) a set of other functions, which return SE geometric constants or flow stresses based on different 

hardening models of given materials. The primary tasks within each part are listed below.  

 

I. Main program 

- Call Geometric constant function to obtain SE constants: 𝐴1, 𝐴2, 𝐴3, 𝐶 

- Define dynamic properties: 𝑣𝑖 , 𝑣𝑚 

- Call Newton-Raphson function  

- Update SE solutions (𝑟, 2𝐻, 𝑃𝑚, 𝜀𝑆𝐸,𝑏𝑒𝑛𝑑 , 𝑊𝑆𝐸,𝑏𝑒𝑛𝑑) into a list for each material 

II. Newton-Raphson function  

- Step 0: Declare all system variables (𝐻, 𝑟,) and constants (𝐴1, 𝐴2, 𝐴3, 𝐶) 

- Step 1: Initial guess for 𝐻, 𝑟 

- Step 2: Find new energy equivalent plastic flow stresses (𝜎𝑆𝐸,1, …, 𝜎𝑆𝐸,3) 

- Step 3: Setup residual functions (𝑓1, 𝑓2) and Jacobian matrix (𝐽) 

- Step 4: Calculate ∆𝐻 and ∆𝑟 

- Step 5: Update 𝐻 and 𝑟 

- Step 6: Compute additional solutions (𝑃𝑚 , 𝜀𝑆𝐸,𝑏𝑒𝑛𝑑 , 𝑊𝑆𝐸,𝑏𝑒𝑛𝑑) 

- Step 7: Check convergence criterion for 𝐻 and 𝑟; if not met, return to Step 2. 

III. Other functions 

i. Geometric constant function 

- Return 𝐴1, 𝐴2, 𝐴3, 𝐶 given the final crush angle (𝛼𝑓), geometric integrals (𝐼1, 𝐼3) and 

the mid-shell cross-section perimeter (Z) 

ii. Hardening functions: MHS / VOCE / MGV / POWER 

- Return flow stress (𝜎), given the equivalent plastic strain (𝜀𝑝̅ ), and the average 

strain rate (𝜀𝑎̇𝑣𝑔) 

The following sub-appendices (B.1) to (B.3) serve as documentation for each part of the source code.  
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B.1. Main Program 

 
clc; 
clear all; 

  
%*************************************************************************% 
% 
% AUTHOR: Suh Ho Lee 
% DATE: Jan. 20, 2020 
% PURPOSE: Calculate following properties using the SE Analysis (SEA): 
% 
%    1. Toroidal radius           (r)  
%    2. Folding Wavelength        (2H) 
%    3. Mean crushing force       (Pm) 
%    4. Eq. plastic bend strain   (epsilon_bend) 
%    5. Horizontal bending Energy (Ebend) 
% 
% LIST OF HARDENING MODELS CONSIDERED (characterized by) 
% 
%    1. Mild 270      (Noder et al., 2020) 
%    2. Ductibor 500  (Samadian et al., 2020) 
%    3. Ductibor 1000 (Abedini et al., 2020) 
%    4. Usibor 1500   (Bardelcik et al., 2012) 
%    5. DP980 MAT1    (Noder and Buthcer, 2019) 
%    6. DP980 MAT2    (Zhumagulov et al., 2018) 
%    7. DP980 MAT3    (Zhumagulov et al., 2018) 
% 
%*************************************************************************% 

  
%******************************START OF THE PROGRAM***********************% 

  
% LIST OF CONSIDERED MATERIALS  
    mat = ["270", "D500", "D1000", "U1500", "DP980_MAT1" , "DP980_MAT2",... 
          "DP980_MAT3" ]; 

  
% DEFINE HARDENING RULE FOR EACH MATERIAL 
    hrule = ["MHS", "MHS", "MHS", "VOCE", "MHS", "MGV", "POWER"]; 

     
% DEFINE GEOMETRIC CONSTANTS 
    geom_const = get_geom(mat); % get A1,A2,A3 and C for Eq. A.17 
    t = 1.0;                    % initial sheet thickness 

  
% DEFINE DYNAMIC PROPERTIES 
    vi = repmat(7.6*10^3, 1, 7);  % impact velocity for Waterloo UHHS(mm/s) 
    vi(1) = 4.13 * 10^3; % impact velocity for mild 270(Ohkubo et al.,1974) 
    vm = vi / 2;                  % mean velocity due to Abramowicz (1983) 

     
%% THICKNESS LOOP FROM t = 1mm to 1.85mm 
    i=1; %material index  
    j=1; %thickness loop index 

   
    while t<=1.85 
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        % for each material  
        for i=1:length(mat)  

            
            % conduct SE Analysis 
            [r,H,Pm,epsilon_bend,Ebend] = SEA(t,mat(i),geom_const(i,:),..., 
                                              hrule(i), vm(i));  

             
            % store SEA results into a list 
            if i==1     % for Mild 270 
                Mild270_list(j,:) = {t, r, 2*H, Pm, epsilon_bend, Ebend}; 

  
            elseif i==2 % for Ductibor 500-AS 
                Duct500_list(j,:) = {t, r, 2*H, Pm, epsilon_bend, Ebend}; 

  
            elseif i==3 % for Ductibor 1000-AS 
                Duct1000_list(j,:) = {t, r, 2*H, Pm, epsilon_bend, Ebend}; 

  

            elseif i==4 % for Usibor 1500-AS 
                Usib1500_list(j,:) = {t, r, 2*H, Pm, epsilon_bend, Ebend}; 

  
            elseif i==5 % for DP980 MAT 1 
                DP980_MAT1_list(j,:) = {t, r, 2*H, Pm, epsilon_bend, Ebend}; 

  
            elseif i==6 % for DP980 MAT 2 
                DP980_MAT2_list(j,:) = {t, r, 2*H, Pm, epsilon_bend, Ebend}; 

  
            elseif i==7 % for DP980 MAT 3 
                DP980_MAT3_list(j,:) = {t, r, 2*H, Pm, epsilon_bend, Ebend};          
            end 
        end 

  
        t = t + 0.05; % 0.05 mm thickness increment 
        j = j+1;      % move onto next material in the list  
    end 
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B.2. Newton-Raphson Function 

 
function [r,H,Pm, epsilon_bend, Ebend] = SEA(t, mat, geom_const, hrule, vm)  
%% SOLVE SE Analysis using Newton-Raphson Method  

     
    % STEP 0: Declare variables and constants 
    syms H r                % main variables 
    syms sig1 sig2 sig3     % energy equivalent flow stresses 
    syms int_1 int_2 int_3  % plastic work integrals for zone 1,2,3 

     

    var = [H, r];        % Variable vector for Eq. A.3.4 
    J = sym(zeros(2,2)); % Jacobian matrix for Eq. A.3.5  

     
    A1 = geom_const(1); % Constants in Eq. A.17 
    A2 = geom_const(2); 
    A3 = geom_const(3); 
    C = geom_const(4); 

  
    % symbolic variables for residual functions 
    f1 = H - ( sig2^2 / (sig3*sig1) * A2^2 / (A3*A1) * C^2 * t)^(1/3); 
    f2 = r - (sig3*sig2/sig1^2)^(1/3) * (A3*A2/A1^2)^(1/3) * (C*t^2)^(1/3); 

     
    m = 100;     %num. of iteration pts. 
    tol1 = 0.01; % H convergence tolerance 
    tol2 = 0.01; % r convergence tolerance 

     
    % STEP 1: Initial guess for H, r 
    x(1) = 100; % guess high > 30 
    y(1) = 100; % guess high > 30 

     

    % Start of the newton-raphson loop 
    for i=1:m 

         
        % new H & r 
        H = x(i); 
        r = y(i); 

  

        % STEP 2: Find new SIG1, SIG2, SIG3 

  
        % 2a. calculate final strains in zone 1,2,3 
        eps1_final = log( 1 + t/(2*double(subs(r))) );    % Equation A.2.4 

         
        eps2_final = log( 1 + (0.926*t/double(subs(H))) );% Equation A.2.5 
        eps2_final = 2/3 * sqrt( 3*(eps2_final^2 + eps2_final^2)/2 ); 

         
        eps3_final = log( 1 + t/(2*double(subs(r))) );    % Equation A.2.4 
        eps3_final = 2/3 * sqrt( 3*(eps3_final^2 + eps3_final^2)/2 ); 

         
        % 2b. calculate average strain rate in the SE 
        e_dot = t * vm / double(4*subs(H)*subs(r));       % Equation A.2.7 

  
        % 2c. compute "plastic work integrals" 
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        % initialize the ranges of plastic strain (0,eps_final) 
        st_inc = 0.0005; 
        ep1 = 0.0005:st_inc:eps1_final; 
        ep2 = 0.0005:st_inc:eps2_final; 
        ep3 = 0.0005:st_inc:eps3_final; 

        
        % initialize the ranges of flow stress  
        if hrule == "MHS" 
            flow = MHS(mat, ep1, e_dot); 
            flow2= MHS(mat, ep2, e_dot); 
            flow3= MHS(mat, ep3, e_dot);             
        elseif hrule == "VOCE" 
            flow  = VOCE(ep1, e_dot); 
            flow2 = VOCE(ep2, e_dot); 
            flow3 = VOCE(ep3, e_dot); 
        elseif hrule == "MGV" 
            flow  = MGV(ep1, e_dot); 
            flow2 = MGV(ep2, e_dot); 
            flow3 = MGV(ep3, e_dot); 
        elseif hrule == "POWER" 
            flow  = POWER(ep1, e_dot); 
            flow2 = POWER(ep2, e_dot); 
            flow3 = POWER(ep3, e_dot); 
        end 

        

        % compute kernels inside the "plastic work integral" 
        kernel_1 = flow;         % integral kernel in Eq. A.2.1 
        kernel_2 = flow2 .* ep2; % integral kernel in Eq. A.2.2 
        kernel_3 = flow3 .* ep3; % integral kernel in Eq. A.2.3 

             
        % compute "plastic work integrals" by trapezoidal method 
        int_1 = trapz(ep1,kernel_1); 
        int_2 = trapz(ep2,kernel_2); 
        int_3 = trapz(ep3,kernel_3); 

         
        % 2d. compute energy equivalent flow stresses 
        sig1= 1 / (eps1_final) * int_1;   % per Eq. A.2.1. 
        sig2= 2 / (eps2_final)^2 * int_2; % per Eq. A.2.2. 
        sig3= 2 / (eps3_final)^2 * int_3; % per Eq. A.2.3. 

         
        % STEP 3: Setup Residual functions (f1, f2) and Jacobian Matrix (J)         
        f = [f1, f2]; % residual functions 

         
        for k=1:2 % loop to setup Jacobian matrix  
            for l=1:2 
                J(k,l) = diff ( f(k),var(l) );   
            end 
        end 

  
        % STEP 4: Calculate new H and new r 
        Jnum = double(subs(J)); 
        f = double(subs(f.')); 
        ans = [x(i); y(i)] - inv(Jnum) * f; 

  
        % STEP 5: Update H and r 
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        x(i+1) = ans(1); %new H 
        y(i+1) = ans(2); %new r 

  
        % STEP 6: Compute Pm, epsilon_bend, Ebend 
        % 6a. mean force  
        Pm = t^2/4 * (sig1 * A1 * r/t + sig2 * A2 ... 
             * C / H + sig3 * A3 * H / r); 

  
        % 6b. plastic bend strain               
        epsilon_bend = eps2_final; 

         
        % 6c. theoretical SE bend work 
        Ebend = sig2 * t^2 / 4 * pi/2; 

         
        %error message for non-convergence  
        if m==99 
           frptinf('not converged \n') 
        end         

         
        % STEP 7: Check for convergence criteria for H, r 
        if abs(x(i+1)-x(i)) < tol1 && abs(y(i+1)-y(i)) < tol2  
             % if converged, 
             break; %get out of the loop 
        end 
    end % convergence reached 
end 
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B.3. Other Functions 

B.3.1. Geometric Constant Function 

 
function [geom_const] = get_geom(mat) 
%% Calculate SEA Constants A1, A2, A3, and C  

  
    num_mat = length(mat); 
    geom_const = zeros(num_mat, 4); 

     

    % Define geometric constants  
    alpha_f = pi/2;     % Assume final crush angle as 90 deg 
    I(1) = 0.566538605; % for 95 deg corner angle (see Fig A.1) 
    I(3) = 1.172829246; 

     
    for i=1:num_mat 
        if mat(i) == "270" % single hat specimen (Ohkubo et al., 1974) 
            % constants for single hat  
            A1 = 32*I(1); 
            A2 = 2*alpha_f;  
            A3 = 8*I(3); 
            C = 332; % cross-section perimeter of single hat due to  
                     % Ohkubo et al. (1974) 

             

        else % all other UWaterloo specimens are double hat  
            % constants for double hat  
            A1 = 64*I(1); 
            A2 = 16*alpha_f;  
            A3 = 16*I(3); 
            Z = 402.082; % mid-shell cross section perimeter of double hat 
            C = Z/8;     % SE base length 
        end 

         
        geom_const(i,:) = [A1, A2, A3, C]; %return constants  
    end 
end 
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B.3.2. Hardening Model Function 

 

The materials considered in the SE analysis, in addition to the die-quenched Ductibor® 1000-AS, 

constitute a long list of steel alloys, as shown in Table 22. The hardening models adopted for flow 

stress calculation of these alloys are (i) Modified Hockett-Sherby (Noder and Butcher, 2019), (ii) Voce 

(1948), (iii) Modified Generalized Voce (Zhumagulov, 2017), and (iv) power-law (Hollomon, 1945). 

The complete list of steel alloys, hardening models, as well as corresponding hardening coefficients 

used in the SE analysis is found in Table 22. These hardening models were incorporated in the source 

code as separate functions to calculate the flow stresses at a given plastic strain and documented below.  

 
function [sig] = MHS(mat, ep, e_dot) 
%% Compute flow stress for MHS hardening model 
% Coefficients C1-C6 are defined in Table 22 in Appendix C 

  
% Material indices:  
% 1. Mild 270  
% 2. Ductibor(r) 500-AS  
% 3. Ductibor(r) 1000-AS 
% 4. DP980    

  
    C1 = [621.92, 742.17, 1183.57, 1092.54 ]; 
    C2 = [215.00, 397.63, 731.55, 615.99 ]; 
    C3 = [2.03, 10.00, 29.37, 11.54 ]; 
    C4 = [0.79, 0.57, 0.67, 0.5 ]; 
    C5 = [0, 256.39, 57.84, 333.25 ]; 
    C6 = [0.076, 0.011, 0.011, 0.00558]; 

  
    i=0; %initialize material index 
    %set material index based on material 
    if mat == "270" 
        i = 1;   
    elseif mat == "D500" 
        i = 2; 
        e_dot_ref = 0.01; %reference strain rate 
    elseif mat == "D1000" 
        i = 3; 
        e_dot_ref = 0.01; 
    elseif mat == "DP980_MAT1" 
        i = 4; 
        e_dot_ref = 0.001; 
    end 

  
    % find strain rate sensitivity multiplier 
    if mat == "270" % cowper-symonds 
        rate_multiple = 1 + 0.076*log(e_dot); 
    else % johnson-cook 
        rate_multiple = (1 + C6(i) * log(e_dot/e_dot_ref)); 
    end 

  
    sig = ( C1(i) - (C1(i)-C2(i))*exp(-C3(i)*(ep).^C4(i))+C5(i) ... 
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          *sqrt(ep) ) * rate_multiple  ; 
end 

  
function [sig] = VOCE(ep, e_dot) 
%% Compute flow stress for VOCE hardening model 
% Coefficients C1-C7 are defined in Table 22 in Appendix C 
% for Usibor(r) 1500-AS 

  
    C1 = 1480.5; 
    C2 = 1113.6; 
    C3 = 0.0079; 
    C7 = 0.0180; 

  
    %C1 = 1388.6; 
    %C2 = 1019.7; 
    %C3 = 0.0069; 
    %C7 = 0.0180; 
    sig = ( C1 + (C2-C1)*exp(-ep/C3) ) * (1 + e_dot)^C7 ; 
end 

  
function [sig] = MGV(ep, e_dot) 
%% Compute flow stress for Modified Generalized Voce (MGV) hardening model 
% Coefficients C1-C7 are defined in Table 22 in Appendix C 
% for DP980 MAT 2 

  
    C1 = 887.7; 
    C2 = 113.9; 
    C3 = 282; 
    C4 = 62.57; 
    C6= 0.000732903; 
    C7= 1.871237; 
    e_dot_ref =0.001; 

  
    sig = ( C1+(C2+C3*sqrt(ep)) .* (1-exp(-C4 .* ep)) ) * ...  
          (1 + C6*log(e_dot/e_dot_ref)^C7) ; 
end 

  
function [sig] = POWER(ep, e_dot) 
%% Compute flow stress for Power Law model 
% Coefficients C1-C7 are defined in Table 22 in Appendix C 
% for DP980 MAT 3 

  
    C1 = 1318; 
    C3 = 0.07403; 
    C6 = 0.00052924414; 
    C7 = 2.1791225848; 
    e_dot_ref =0.001; 

  
    sig = ( C1 * ep .^C3 ) * (1 + C6*log(e_dot/e_dot_ref)^C7) ; 
end
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Appendix C. List of Alloys and Hardening Models for SE Analysis  
 

This appendix serves as documentation to list all the materials and their corresponding hardening models considered in the Superfolding 

Element Analysis. A total number of seven different steel alloys were considered. Their names and the hardening models (as well as 

characterized coefficients) are listed in Table 22.  

 

Table 22: Quasi-static hardening models and strain rate sensitivity functions for flow stress calculation of different materials. Note 

that all hot-stamping materials listed here were die-quenched at 13°C after heating in the oven above 930 for 6 minutes, minimum. 

 
Material Quasi-static hardening 

model (QS) 

𝑪𝟏 
(MPa) 

𝑪𝟐 
(MPa) 

𝑪𝟑 𝑪𝟒 𝑪𝟓 
(MPa) 

R-sq Strain rate 

function 

(RATE) 

𝑪𝟔 𝑪𝟕  𝜺̇𝒓𝒆𝒇 

(s-1) 

270 MPa grade 

Mild steel 

MHS 

(Noder et al., 2020) 
622 215 2.03 0.79 0 0.984 

Johnson-Cook 

(Vedantam et 

al., 2005) 

0.076 -  1 

Ductibor® 500-AS 
MHS 

(Samadian et al., 2020) 
742 398 10 0.57 256 0.9997 Johnson-Cook 0.011 - 0.001 

Ductibor® 1000-

AS 

MHS 

(Abedini, 2018) 
1184 732 29.37 0.67 58 0.999 Johnson-Cook 0.011 - 0.01 

Usibor® 1500-AS 
Voce 

(Bardelcik et al., 2012) 
1481 1114 0.0079 - - 0.95 Borvik  - 0.018 1 

DP980 MAT1 

MHS 

(Noder and Butcher, 

2019) 

1093 616 11.54 0.50 333 0.993 
Modified  

Johnson-Cook 
  0.001 

DP980 MAT2 

Power law 

(Zhumagulov et al., 

2018) 

1233 - 0.0533 - - - 
Modified  

Johnson-Cook 
0.00073 1.8712 0.001 

DP980 MAT3 
Power law 

(Zhumagulov et al., 

2018) 

1318 - 0.073 - - - 
Modified  

Johnson-Cook 
0.00053  2.1791  0.001  
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The flow stress was calculated by assuming a multiplicative form of a quasi-static hardening law (𝑄𝑆) and a strain-rate sensitivity function 

(𝑅𝐴𝑇𝐸) as follows  

 

 ( ) ( )  * ,p oσ QS ε RATE ε ε=  (C.1) 

 

in which 𝜀𝑝̅ is equivalent plastic strain, 𝜀̇ is current strain rate, 𝜀𝑜̇ is the reference strain rate, and the quasi-static hardening model (𝑄𝑆) is 

defined in following forms  
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 (C.2) 

 

in which 𝐶1 to 𝐶7 are material constants listed in Table 22. The strain rate sensitivity function, 𝑅𝐴𝑇𝐸, is defined below. 
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Next, Table 23 lists the energy equivalent flow stress used for calculating the theoretical plastic work (𝑊𝑆𝐸,𝑏𝑒𝑛𝑑) by the SE horizontal bending 

region in Chapter 5. The energy equivalent flow stress (𝜎𝑆𝐸,𝑏𝑒𝑛𝑑) was calculated using Equation (A.2.2) for each material. Once 𝜎𝑆𝐸,𝑏𝑒𝑛𝑑  was 

calculated, 𝑊𝑆𝐸,𝑏𝑒𝑛𝑑  was found by Equation (A.2.9) and (A.2.10). For the current analysis, 𝛼𝑓 was assumed as 𝜋/2. 

 

Table 23 List of energy equivalent flow stress in horizontal bending region of the SE (numbered 2 and 5 in Figure A.1), calculated 

using Equation (A.2.2)  for the considered materials.  

 

Material Thickness (mm) Energy Equivalent Flow 

Stress, 𝝈𝑺𝑬,𝒃𝒆𝒏𝒅 (MPa) 

270 MPa grade Mild steel 

(Noder et al., 2020) 
1.6 336 

Ductibor® 500-AS 

(Samadian et al., 2020) 
1.6 830 

Ductibor® 1000-AS 

(Abedini, 2018) 
1.2 1273 

Usibor® 1500-AS 

(Bardelcik et al., 2012 
1.2 1558 

DP980 MAT1 

(Noder and Butcher, 2019) 
1.2 1189 

DP980 MAT2 

(Zhumagulov et al., 2018) 
1.6 1121 

DP980 MAT3 

(Zhumagulov et al., 2018) 
1.4 1156 
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Appendix D. Simplified Approximation of Relative Bending Limit 
 

Appendix D serves to document the derivation procedure for a simplified solution for the Relative 

Bending Limit (𝜒𝑏𝑒𝑛𝑑) introduced in Chapter 5. The current analysis derived here considered a limited 

range of steel alloys. Thus, the application of the derived equations beyond this range of materials 

needs to be validated and remains for future work.  

     For reference, the full solution for 𝜒𝑏𝑒𝑛𝑑  introduced in Chapter 5 is given as follows 
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 (D.1) 

 

Calculating the Relative Bending Limit using Equation (D.1) poses complexity in terms of (i) obtaining 

V-bend plastic work evolution and (ii) solving for SE energy equivalent flow stress. To this end, a need 

arises for simple solution. To approximate a closed-form solution of the Relative Bending Limit, 

approximations for the SE bending plastic work (𝑊𝑆𝐸,𝑏𝑒𝑛𝑑) and v-bend plastic work (𝑊𝑣−𝑏𝑒𝑛𝑑) first 

need to be derived.  

 

D.1. Approximate Solution for WSE 

 

The approximation procedure of 𝑊𝑆𝐸,𝑏𝑒𝑛𝑑  is relatively short and begins with simplifying the energy 

equivalent flow stress 
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in which one could assume its hardening function as a power law, 𝜎 = 𝐾(𝜀𝑝̅)
𝑛
. Rewriting Equation 

(D.2) gives  
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whose closed form solution exists when the hardening exponent (𝑛) is not -2, which would be non-

physical. As such, solving the integral and rearranging the terms in Equation (D.3) yields 
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 (D.4) 

 

Finally, the derivation for 𝑊𝑆𝐸,𝑏𝑒𝑛𝑑  is obtained by the following relations 
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Combining Equations (D.4) and (D.6) with Equation (D.5) gives 

 

 
( )
( )

2

,

, ,
2 2

n

SE bend

SE bend SE f

K ε t
W α

n
=

+
 (D.7) 

 

D.2. Approximate Solution for Wv-bend 

D.2.1. Weak Work Hardening Assumption 

 

As for the closed-form approximation of 𝑊𝑣−𝑏𝑒𝑛𝑑, one could adopt a phenomenological modelling 

approach. For weak work hardening materials (𝑛 ≪ 0.2), the v-bend plastic work evolves linearly with 

𝜃, as shown in Figure 136c. Furthermore, the bending moment of a sheet metal is assumed to be a 

function of 𝑡2 which gives the approximate form of  

 

 2

1
0

fθ

v bend fW Mdθ θ a t− =   (D.8) 

 

in which 𝑎1  is a calibration constant. Figure D.1 shows a plot of 
𝑊𝑣−𝑏𝑒𝑛𝑑

𝑡2
 plotted against 𝜃𝑓  for all 

materials whose hardening exponent is below 0.2. Note that mild 270 MPa grade steel has a hardening 

exponent of 0.271. As a result, it is not considered here but in the subsequent analysis that considers 

strong work hardening assumption.  

The calibration constant, 𝑎1, corresponds to the slope of a linear fit (dashed line in Figure D.1) which 

is 5.56 kJ/(m3·°).  
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Figure D.1: 𝜽𝒇 vs. 𝑾𝒗−𝒃𝒆𝒏𝒅/𝒕𝟐 for all materials whose hardening exponent is below 0.2. Mild 270 

steel grade, whose uniform elongation is 0.271 (Noder et al., 2020), is excluded here. The dashed 

line represents a line of best fit. 

 

Combining Equation (D.8) and Equation (D.7) with Equation (D.1) yields the final closed form of 

the Relative Bending Limit (𝜒𝑏𝑒𝑛𝑑) for materials with weak work-hardening:  
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 (D.9) 

 

in which the first term in parentheses is related to the material properties from the v-bend and tensile 

test, while the second term reflects the final bend angle during the crush of the SE and is largely 

controlled by the geometry of the SE. Since the considered materials exhibit a low work hardening 

exponent (𝑛 ≈ 0 ≪ 0.2), the first term can be further simplified to a dimensionless parameter: 

 

 
1 f

bend

a θ
χ

K
  (D.10) 

 

which is a scaled form of Relative Bending Limit, as shown in Figure D.2. Therefore, if the 

characterized tensile properties (e.g. the power-law strength coefficient, 𝐾) and the v-bend test results 

(e.g. fracture angle, 𝜃𝑓) are known for a given material, it becomes possible to quantify the bending 

performance, gauge the fracture severity in the axial crush, and ultimately predict the Crush Energy 

Efficiency based on the linear correlation shown in Figure 138. 
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Figure D.2: Relative Bending Limit (𝝌𝒃𝒆𝒏𝒅) vs. 𝒂𝟏𝜽𝒇/𝑲 in Equation (D.9). The different levels of 

fracture severity are commented. The dotted line represents the linear line of best fit. 

 

D.2.2. Strong Work Hardening Assumption 

 

As for a closed-form solution of 𝑊𝑣−𝑏𝑒𝑛𝑑  that accounts for strongly work-hardening materials, one can 

adopt an analytical approach in which the plastic bending moment (𝑀𝑝) is given from a mathematical 

plane-strain bending model (Wang et al. 1993) in terms of 
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in which 𝜀𝑚𝑎𝑥  is the maximum outer tensile strain, 𝐹  is an calibration parameter for anisotropic 

material which takes a value of 2/√3 for isotropic material, 𝑅𝑛 is the neutral radius, defined as 𝑅𝑛 =

√𝑅𝑖𝑅𝑜 ≈ √𝑅𝑖(𝑅𝑖 + 𝑡), and 𝜀1 is the tensile strain (major) across the sheet thickness. Note that 𝐾 and 

𝑛 are strength and strain hardening parameters of the power-law consistently used throughout the 

section. By casting a Taylor series expansion, 𝑒𝜀1 = ∑
𝜀1

𝑗

𝑗!

∞
𝑗=0 , the theoretical plastic bending moment at 

the punch tip is obtained as follows (Wang et al., 1993): 
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Furthermore, the plastic bending moment can be roughly estimated by the first two terms of the Taylor 

series and assuming 𝜀𝑚𝑎𝑥 = ln (𝑅𝑜/𝑅𝑛) ≈ 𝑡/2𝑅𝑛, which gives  
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We proceed with the fully plastic bending approximation to formulate the measured v-bend plastic 

work (𝑊𝑣−𝑏𝑒𝑛𝑑) in terms of the plastic moment (𝑀𝑝) obtained from Equation (D.13): 

 

 1
0

fθ

v bend p fW Mdθ AM θ− =   (D.14) 

 

in which 𝐴1  is a calibration parameter, expressed as a ratio between the measured plastic work 

(𝑊𝑣−𝑏𝑒𝑛𝑑 ) to the theoretical plastic work (𝑀𝑝𝜃𝑓 ), as shown in Figure D.3. Interestingly, the new 

proposed model in Equation (D.14) shows a close approximation of the measured v-bend plastic work 

(i.e. 𝑅2 = 0.931), which justifies the fully plastic approximation and the assumed form in Equation 

(D.14).  

 

 

Figure D.3: Response plot of the predicted vs. measured v-bend plastic work, showing a good, 

linear correlation. The predicted v-bend plastic works for all materials are calculated using 

Equation (D.13) and (D.14) . 
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Combining the new proposed expression of v-bend plastic work in Equation (D.14) with that of the SE 

horizontal bend work in Equation (D.7) into Equation (D.1) yields a final closed-form solution of 

Relative Bending Limit for all work hardenable materials: 
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 (D.15) 

 

Unlike the previous solution for weak work-hardening materials, the new solution shows a very strong 

dependence on the hardening exponent (𝑛), as shown in Figure D.4.  

 

 

Figure D.4: Different terms in Equation (D.15) plotted against the hardening exponent (𝒏).  
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Appendix E. High Strain Rate Tensile Test  
 

Appendix E serves as documentation for the measured tensile stress vs. strain responses and strain rates 

from the High Strain Rate Tensile (HISR) tests and the Hopkinson bar test of die-quenched Ductibor® 

1000-As. These tests were conducted by Imbert and Zhumagulov (2019) as part of the broader material 

characterization project. Figure E.1 shows the stress-strain curves obtained from these tests, which 

cover the nominal equivalent strain rate of 1, 10, 100, and 1000 s-1. 

 

  

(a) 1 s-1 (b) 10 s-1 

  

(c) 100 s-1 (d) 1000 s-1 

Figure E.1: Measured tensile stress vs. strain responses at nominal strain rate of (a) 1 s-1 (b) 10 s-

1 (c) 100 s-1 high strain rate tensile tests and (d) Hopkinson bar test with 1000 s-1. Five repeats 

were conducted for each test (Imbert and Zhumagulov, 2019).  

 

In the interest of measuring the actual strain rates during these tests, the strain rates in major strain 

direction (𝜀𝑖̇) were estimated from using the following relation 
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In which 𝜀1,𝑖 is the measured major true strain and 𝑡𝑖 is the time at the 𝑖𝑡ℎ index. By using Equation 

(E.1), strain rate was estimated for each repeat case, and the overall interpolated strain rate was 

obtained by taking the average. Figure E.2 shows the measured strain rate vs. equivalent plastic strain 

responses for each test condition. 

 

  

(a) nominal rate: 1 s-1 (b) nominal rate: 10 s-1 

  

(c) nominal rate: 100 s-1 (d) nominal rate: 1000 s-1 

Figure E.2: Measured strain rates for tensile tests at nominal strain rate of (a) 1 s-1 (b) 10 s-1 (c) 

100 s-1 and (d) Hopkinson bar test with 1000 s-1. Five repeats were conducted for each test.  

 

The average of each interpolated strain rate was taken up to the plastic strain of 0.036 (equivalent to 

0.04 engineering strain, approximately). The measured average strain rates calculated for each test 

conducted at nominal rate of 1, 10, 100, 1000 𝑠−1 were 0.91, 7.01, 53.40, 915.5 𝑠−1.  
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Appendix F. FE Model Description and Results of Nakazima 50 

mm Biaxial Dome Test 
 

Appendix F documents the finite element (FE) model setup of the 50 mm Nakazima dome test. The 

model was developed as part of the FE mesh regularization process in which the so-called 

regularization factor for experimental fracture locus is determined by matching the predicted and 

measured limiting dome height (LDH) responses. A detailed description of the regularization process 

is found in Chapter 3.  

The original numerical model of the dome test was developed by Omer and Rahmaan (2019) and 

modified as part of the thesis work. The significance of the new model is on incorporating the lock 

bead geometry of the forming die and binder, as well as the shims used during the Nakazima dome test 

by Samadian (2018). The punch load vs. dome height responses with and without the lock bead and 

shim are presented at the end of the appendix.  

 

F.1. Boundary Condition 

 

The finite element model setup of the 50 mm Nakazima dome test consists of blank, upper die, lower 

binder, punch and shim, as shown in Figure F.1. Quarter symmetry was imposed about the x-y plane 

and y-z plane. 

 
 

(a) Overall model setup (b) model setup, highlighting shim 
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Figure F.1: Numerical model for the Nakazima 50 mm dome simulations: (a) overall setup and 

(b) setup, highlighting shim. Quarter symmetry were imposed about x-y plane and y-z plane. 

 

The binder load of 175 kN was given in y-direction, while the upper die was fully constrained in all 

degrees of freedom. Upon closure of the die with the blank, the punch was given a constant motion in 

y-direction at 250 mm/s. Note the magnitude of punch speed is 1000 times the scaled value of 0.25 

mm/s, the actual punch speed in the experiment, for time scaling. To account for the increased punch 

speed, strain rates of the hardening curves were also scaled by 1000, accordingly. An additional 

approach in decreasing the solving time was applying selective mass scaling by dt2ms keyword in LS-

Dyna. The keyword was assigned a value of -1.0e-6 s, which artificially increases the density of 

elements whose critical time step is below 1.0e-6 (Livermore Software Technology Corporation).  

 

F.2. Material model and Mesh  

 

The material model used for each part is listed in Table 24.  

 

Table 24 List of LS-Dyna material models used in the Nakazima dome model 

 

  Part Material Model 

1 Blank 
PIECEWISE_LINEAR_ 

PLASTICITY 

2 Binder RIGID 

3 Upper Die RIGID 

4 Punch  RIGID 

5 Shim  ELASTIC 

 

All parts are meshed using type 16, 4 node quadrilateral elements with seven through-thickness 

integration points. The element sizes of binder, upper die, punch, and shim were selected as an order 

of magnitude smaller than the blank. The element thickness for tools was given 1.15 mm, while that 

of the shim was given a thickness of 2.0 mm to represent the total thickness of shims used in the 

Nakazima test (Samadian, 2018). For the blank, four element sizes were considered, which range from 

5.0 mm to 0.6 mm, as shown in Figure F.2. Note that the region between 60 mm and 75 mm radii was 

meshed with smaller element size to ensure the proper contact with the lock bead surface of the forming 

die and binder.  
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(a) 5.0 mm (b) 2.5 mm 

  

(c) 1.2 mm (d) 0.6 mm 

Figure F.2: Four different blank mesh sizes considered in the dome simulations: (a) 5.0 mm, (b) 

2.5 mm, (c) 1.2 mm, and (d) 0.6 mm. The region between 60 mm and 75 mm radii was meshed 

finely. 
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F.3. Contact Algorithm 

 

All contact algorithms used in the numerical model are penalty-based and are listed in Table 25. 

Additionally, the soft=2 option in LS-Dyna was applied to all contact definitions, except between blank 

and punch, to invoke a segment-based penalty formulation. This option provides special treatment for 

cases of edge-to-surface interface or edge-to-edge interface, which otherwise can be un-detected in the 

standard penalty-based (i.e., node-based) contact algorithm, and thus, result in unrealistic penetrations. 

Such treatment was applied to all contact incidents that involve the sharp radius of lock bead profile, 

as illustrated in Figure F.1a. A more detailed explanation of the soft=2 option can be found in the LS-

Dyna manual (Livermore Software Technology Corporation, 2016). Lastly, a friction coefficient (𝜇) 

of 0.25 was assigned to all contact definitions.  

 

Table 25: A list of LS-Dyna contact keywords used for 50 mm Nakazima dome models. The 

Soft=2 algorithm (LSTC, 2016) was assigned to all contact incidents that involve the lock bead 

profile in the forming die and binder.  

 

  Slave Master Contact 

1 Shim Die 
AUTOMATIC_SURFACE_ 

TO_SURFACE 

2 Blank Shim 
AUTOMATIC_SURFACE_ 

TO_SURFACE 

3 Blank Punch 
FORMING_ONE_WAY_SURFACE_ 

TO_SURFACE 

4 Blank Die 
AUTOMATIC_SURFACE_ 

TO_SURFACE 

5 Blank Binder 
FORMING_ONE_WAY_SURFACE_ 

TO_SURFACE 
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F.4. Results 
 

F.4.1. Damage Contour Plot 

 

The predicted damage (D) contour plot for the 50 mm blank is taken at the measured limiting dome 

height (24.0 mm) for each element size and shown in Figure F.3. All numerical models reveal a similar 

trend in that the damage (D) is maximum at the dome apex and decreases moving radially away from 

the apex. The radius of dome apex region at which 𝐷 = 1 also decreases with the blank element size.  

 

   

(a) 5.0 mm (b) 2.5 mm 

  

(c) 1.2 mm (d) 0.6 mm 

Figure F.3: Damage (D) contour plot of the 50 mm blanks, whose element sizes range from (a) 

5.0 mm to (d) 0.6 mm. The images are taken at the measured (average) limiting dome height, 

which is 24.0 mm, approximately, reported by Samadian (2018).  
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F.4.2. Punch Force vs. Punch Height 

 

The predicted punch force vs. punch height responses for simulations of all element sizes are shown in 

Figure F.4, along with the measured response by Samadian (2018). Next to the predicted responses of 

the models with the lock bead geometry and shim are those without the lock bead geometry and shim 

for comparison. As evidenced in the figure, incorporating the lock bead and shim has a significant 

effect on the predicted force trend. The predicted forces at limiting dome height are minimum 128 kN 

and 140 kN in the former and latter numerical models, respectively, giving a difference of 12 kN.  

 

  
(a) Without lockbead and shim (b) With lockbead and shim 

Figure F.4: Predicted punch force vs. punch height responses for Nakazima dome (50 mm) 

models of die-quenched Ductibor® 1000-AS: (a) numerical model without the lockbead and shim 

(b) model with lockbead and shim. The measured test results by Samadian (2018) are overlaid 

for comparison. 

 

 

 

 


