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Abstract 

 The ability to integrate multiple pieces of information and use it to guide decision-

making is an essential part of everyday reasoning. While it may not seem like it, the information 

in our environments is often numerical in nature. From simple decisions like which cashier line 

to stand in at the grocery store, to more consequential judgments like evaluating the chances of 

getting accepted into a competitive graduate program, numbers and proportions are everywhere. 

And while combining numerical information to make judgments and decisions sounds 

challenging, even young children have some of the requisite abilities to do so. In this 

dissertation, I describe and discuss a series of experiments that examine the developmental 

trajectories of integrating numerical and proportional information to make probability 

judgements and arrive at favourable outcomes in game-like scenarios. Chapter 2 examines 

whether 5- and 6-year-old children (N=160) and adults (N=68) can integrate two types of 

numerical information to make decisions in a probability game involving single- and multi-draw 

samples from different distributions. I presented children with a computer game in which they 

must maximize the number of green objects obtained. In order to do so successfully they were 

required to integrate the absolute number of draws with the proportion of targets to non-targets 

from which those draws are made. Across five studies, I established that 5- and 6-year-olds and 

adults can – under certain conditions –integrate two sources of numerical information to make 

decisions that maximize the odds of a favourable outcome. Chapter 3 examines the 

developmental origins of these integrative abilities by adapting the paradigm used in Chapter 2 to 

test infants (n=46). I presented them with two trial types: one where the correct response was to 

choose the lower draw number from the distribution with a higher proportion of target objects, 

and another where the correct response was to choose the higher draw number from the 
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distribution with a lower proportion of target objects. Results from 10-12-month-olds revealed 

that infants were not able to combine the numerical and proportional information to make 

probability judgments and performed at chance levels with no effects of age or trial type. These 

results suggested that the ability to integrate both numerical and proportional information to 

make probability judgments is not yet a consistent hallmark of probabilistic reasoning within the 

age range we tested. Chapter 4 examines whether or not toddlers (n=40) would be successful on 

the same trial types used with infants. Results from 18-30-month-olds show that toddlers were 

able to correctly choose the larger draw number from the distribution with the lower proportion 

of target objects, but responded at rates no different than chance on the trial where the correct 

response was to choose the smaller draw number from the distribution with the larger proportion 

of target objects. Taken together, the results from these three sets of experiments suggest that 

adults and school-aged children are capable of integrating probability and number in a game-like 

probability task, and that these abilities may begin in toddlerhood. It appears that beginning in 

the second year of life, but likely not before then, human learners can consider both the 

distributions and the number of draws when reasoning about sampling and probability.  
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Chapter One: General Introduction 

	 After a long day at work, you get into your car and assess your options. It is just before 

rush hour, so you consider taking the short, but typically more-congested, route home as opposed 

to the longer, but usually much less-busy, option. Time is ticking and traffic is (likely) building, 

and you have to make this decision under uncertainty, knowing that it could cost you precious 

minutes (if not hours) that can be better spent relaxing at home. Individuals frequently engage in 

this kind of decision making in everyday life and in contexts where they might hardly notice that 

the available information requires a complex decision based on their intuitions about quantities. 

In this dissertation, I discuss and investigate a particular numerical challenge that has not been 

explored before, at least in early childhood: the ability to combine two sources of numerical 

information in probabilistic decision making, and how this ability develops and changes across 

the lifespan. In particular, I am interested in how information about small numbers can be 

combined with estimates of ratios of large numbers to compute and compare probabilities of 

different outcomes.  

While this appears challenging, we know that humans have expectations about numbers 

from birth, and that they have some of the pre-requisite abilities that may provide the foundation 

to solve these kinds of problems by approximately 6 months. In this chapter, I will review some 

of the literature on infant, child, and adult numerical cognition, paying special attention to small 

number and large number representations, as well as review the relevant work on proportional 

and probabilistic reasoning. I will then outline the (relatively sparse) literature on children’s 

abilities to combine multiple sources of information and discuss the objectives and methods of 

the research I conducted for this dissertation.  
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The Development of Numerical Reasoning Abilities 

Reasoning about small numbers  

How do infants, children, and adults keep track of small numbers of items or objects? 

Many agree that tracking small numbers of individual items (typically four or fewer) and holding 

representations of their features in memory requires the use of a system often referred to as 

parallel individuation (Choo & Franconeri, 2014; Feigenson & Carey, 2003, 2005; Feigenson et 

al., 2002; Feigenson et al., 2004; Lipton & Spelke, 2004; Revkin et al., 2008; Simon, 1997; Uller 

et al.,1999; Xu, 2003). The consensus is that this system represents individual objects, capturing 

numerical information indirectly via those representations, and that the limit on its capacity 

comes from the number of objects it can represent in parallel (Kahneman et al., 1992; Pylyshyn, 

1989, 1994). There is a large body of work showing that parallel individuation is available quite 

early in infancy (e.g., Feigenson et al., 2002; Hyde & Spelke, 2011). In a now classic task 

examining this ability, infants were presented with choices between the number of crackers 

placed in opaque buckets. When presented with small collections of crackers, 10-12-month-olds 

chose the bucket with the larger number of crackers when there were no more than three in each 

bucket (Feigenson et al., 2002; vanMarle, 2013). They also succeeded at choosing the larger of 

two quantities when comparing only numbers that are larger (e.g. 4 vs. 8); but interestingly, 

performed at chance when one of the buckets in the comparison contained more than three and 

the other contained three or fewer (e.g., 1 vs. 4, 2 vs. 4, 3 vs. 6, 2 vs. 8), despite including 

controls to rule out alternative explanations such as presentation length and attentiveness 

(Feigenson et al., 2002; vanMarle, 2013). This failure to make these latter comparisons, coupled 

with success at making comparisons with three or fewer crackers is taken as evidence that 
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numerosities of 3 and under are reasoned about using a different mechanism than that which is 

used for numerosities of 4 or larger in infancy. 

In addition to representing small numbers of objects and allowing a comparison of 

quantities held in memory, parallel individuation appears to support other numerical reasoning in 

infancy (Carey, 2009; Feigenson & Carey, 2003, 2005; Le Corre & Carey, 2007, 2008). For 

example, Feigenson and Carey (2003) showed that infants likely represent hidden objects with a 

unique symbol that is held in working memory, subsequently allowing them to search for and 

retrieve hidden objects. When they retrieve the number of objects for which they have a running 

tally, infants stop searching. It also appears that infants can use parallel individuation to represent 

more than one collection at a time, employing chunking to group together up to two or three 

chunks of up to three objects, which would allow for a reorganized representation of these 

individual items into a larger set (Moher et al., 2012; Zosh et al., 2011). This allows them to keep 

track of, and subsequently be able to compare, two separate collections with a maximum 

capacity of two objects in one collection and three in the other (Feigenson, et al., 2002; 

Feigenson & Halberda, 2008; Rosenberg & Feigenson, 2013). They can then proceed to compare 

these sets to determine equivalence, or lack thereof. By the preschool years, children are adept at 

comparing sets of small numbers, with very good accuracy (Cheung & LeCorre, 2018; Margolis, 

2020)  

Further, infants can discriminate between numbers in the small number range even when 

continuous variables such as surface area are controlled, which suggests that detecting change in 

set numbers relies on number as opposed to other low-level perceptual features that may be 

correlated with number (Feigenson, 2005; Feigenson & Carey, 2003). To test whether infants 

actually track numerosity or whether they make judgements based on continuous characteristics 
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such as area, Cordes and Brannon (2009a) habituated 7-month-olds to two or three same-size 

squares and then showed half of the infants the old number with a new contour and the other half 

the old contour with the new number at test. Results showed that infants responded to both 

numerical changes as well as contour changes. How infants compared the mental models for the 

test trial stimuli with those of the habituation stimuli can explain these results. In the new 

contour/old number condition, they compared the sum of the continuous properties that were 

bound to the visual stimuli, causing them to notice the change in contour length. In the old 

contour/new number condition, they compared the models for one-to-one correspondence, 

allowing them to notice that they no longer match in numerosity (Cordes & Brannon, 2009a; 

Margolis, 2020). 

The parallel individuation system allows for numerical representations and comparisons, 

but it also allows for somewhat complex computations and operations. One would never expect 

that infants under one year of age can engage in arithmetic, but astonishingly there is evidence 

that very young infants have the ability to track objects and form accurate expectations about the 

outcomes of making changes to small numbers of objects. When 5-month-olds are tested in a 

violation of expectation looking-time paradigm by being shown a character that joins another 

character behind a screen on stage, infants look significantly longer when the screen is removed 

to reveal only one character as opposed to two (Wynn, 1992). The same pattern of results is 

found with subtraction; when infants are shown two characters on stage prior to a screen 

occluding their view, and observe one of those characters walking off-screen, they appear to be 

surprised when the screen is removed to reveal two characters as opposed to one. This updating 

of objects and set numerosity was interpreted as indicating that infants can form expectations 

about transformations to small number sets. To rule out other low-level expectations such as 
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physical location expectations (i.e. the infants could have simply memorized where on stage 

various characters should be, and when this is violated it could have led to the same pattern of 

results) this result was replicated in a rotating location condition (Koechlin, et al., 1997). Even 

when controlling for potentially confounding location-based expectations by making the 

positions of the objects unpredictable, 5-month-olds still looked longer at arithmetically 

impossible events than possible ones. One additional piece of evidence for infants having a 

rudimentary ability to compute small number arithmetic come from audio-visual studies that 

show that when 5-month-olds hear a particular number of sounds associated with falling objects, 

and a screen is removed to reveal fewer visual objects than the sounds indicated, they looked 

significantly longer (Kobayshi et al., 2004; 2005). Taken together, these findings indicate that 

even young infants can track objects and have some expectations about the outcomes of these 

simple changes involving small numbers (e.g. 1+1; 1+1+1; 2-1).  

However, there appears to be a discontinuity between small numbers (up to a limit of 

four) and large numbers in the spontaneous processing of numerosities, in particular in the infant 

stage. Some experiments show that infants can discriminate all numerosities in the range of one 

to four, but fail to discriminate pairs that include a numerosity outside that range (e.g., 3 & 6), 

even when, as in the example, their ratio is greater than the ratio between discriminable pairs of 

four or less (Feigenson, et al., 2002; vanMarle, 2013). How can we reconcile these latter findings 

with the finding that infants do discriminate 1:2 ratios with pairs such as 8 & 16 (Lipton & 

Spelke, 2003; Xu & Spelke, 2000)? One account that explains the underlying mechanisms that 

would lead to these seemingly discrepant findings is that representations involving large numbers 

utilize a different system altogether: the approximate number system (ANS). Evidence for the 

existence of a separate system comes not only from the different discrimination abilities 
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mentioned previously, but also from physiological markers. For example, event-related 

potentials (ERPs) display neural signatures that are unique to either the small or the large number 

systems (Hyde & Spelke, 2011). I now turn to the evidence for the system that allows for 

representing and reasoning about numbers that lie outside of the small number range: the 

approximate number system. 

Reasoning about large numbers  

A large body of literature makes a compelling case for a system of numerical 

representation that nonhuman animals, human infants, children and adults all share for 

representing approximate numerosities (Dehaene, 1997/2011, Feigenson et al., 2004; Gallistel & 

Gelman, 2000; 2005; Mix et al., 2002). This approximate number system (ANS) allows for a 

quick estimate of a large number of objects, regardless of modality, when they are presented too 

briefly for counting and when other variables such as area, perimeter, density, and so forth are 

controlled for (Barth et al., 2003; Lipton & Spelke, 2003, 2004; Xu & Spelke, 2000; Dehaene, 

2009). These numerical representations are approximate, and they obey Weber’s Law such that 

the ability to discriminate two numerosities is dictated by the ratio of the two quantities, not the 

absolute numerical difference, and this becomes more precise with age (Halberda & Feigenson, 

2008; Lipton & Spelke, 2003; 2004; Odic et al., 2013; Whalen et al., 1999; Xu & Spelke, 2000). 

There are also physiological markers of this ratio-dependent number discrimination in infancy, 

as findings show that EEG-measured activity differs as a function of the ratio between a 

habituated and novel numerosity in 7-month-old infants (Libertus & Brannon, 2009).  

This ability to discriminate large numbers extends to comparing two sets or arrays of 

objects, and the acuity with which these judgements are carried out does not depend on the total 

number of objects in the array, but rather on the ratio between the objects presented (Lipton & 
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Spelke, 2004; Xu, 2003). Whereas adults discriminate numerosities at about a 1.15 ratio (Van 

Oeffelen & Vos, 1982), 6-month-old infants discriminate numerosities that differ by a factor of 

2.0 (4 vs. 8 and 8. vs. 16 elements, but not 4 vs. 6 or 8 vs. 12), and 9-month-old infants 

discriminate numerosities that differ by a factor of 1.5 (4 vs. 6 and 8. vs. 12, but not 4 vs. 5 or 8 

vs. 10) (Cordes & Brannon, 2008; Lipton & Spelke, 2003, 2004; Wood & Spelke, 2005; Xu, 

2003; Xu & Spelke, 2000). Even newborn infants are able to discriminate between dot arrays 

that differ by a ratio of 1:3 (e.g. 6 vs. 18), and cross-modal studies have shown that they are 

capable of matching numerical quantities across sets even when they were presented with a 

number of items auditorily and tested with visual numerosity (Izard et al., 2009). In this study, 

newborns looked longer at visual displays that contained the same number of elements as the 

number of tones they were familiarized with, suggesting that infants possess a capacity to 

abstract numerosity from birth.  

Another important finding that lends support to the notion that infants do indeed track 

approximate numerosities is that infants as young as 6 months of age can discriminate 

numerosities of that differ by a 2:1 ratio in visual displays, even when carefully controlling for 

potential confounds such as area covered by the stimuli, stimuli size, and density of stimuli (Xu 

& Spelke, 2000). After habituating to a visual array of dots in a particular numerosity in the large 

number range (for example 16 dots), infants looked significantly longer at subsequent test trials 

where they were presented with a visual array of a numerosity that differed by a 2:1 ratio (8 dots 

or 32 dots). Strikingly, this effect was found in spite of controlling for potentially confounding 

variables such as dot brightness, density, and size, indicating that the discrimination is indeed 

occurring on the basis of number. This ratio-dependence also extends beyond discrimination to 

comparisons of “more” and “less”. When 10- to 12-month-olds are prompted to choose between 
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two sets of hidden food items, they succeeded at choosing the larger number only when the sets 

differed by a ratio of 2:3 (e.g. 6v9) but not when the sets differed by a ratio of 3:4 (6v8) or 7:8 

(7v8) (vanMarle et al., 2016). This converging evidence suggests that the ANS not only supports 

large number representations and discrimination, but also ordinal relations in infancy. 

Taking this a step further, there is also some evidence that infants as young as 11 months 

understand the ordinal relations between numbers, and are not simply sensitive to differences 

between numerosities in the large number range. When infants were habituated to a series of 

ascending or descending sequences of three numerical displays (e.g. 4-8-16 or 16-8-4), 11-

month-olds (but not 9-month-olds) dishabituated when they were shown numerical displays in 

the opposite direction, even when different sets of numbers where displayed in the two directions 

(Brannon, 2002). Understanding ordinal relations has also been widely studied beyond infancy. 

Preschoolers are able to tell which of two visual displays has “more” objects, and are just as 

accurate at these judgements cross-modally (i.e. auditory to visual stimuli; Barth et al., 2005). 

This suggests that these ordinal judgements are not based on lower-level modality-specific 

factors. Accuracy on these tasks also adhered to a ratio-dependent sensitivity threshold that 

implicates the ANS. Finally, the ANS operates throughout the lifespan and is still present in 

adulthood. Although the precision of the system changes over time, the signature properties of 

the system remain intact throughout development: The system continues to operate abstractly, 

transcending modalities, with numbers represented approximately and imprecisely (Barth et al., 

2003). 

In addition to supporting ordinal relations, the ANS also supports more complex 

computations, such as addition, subtraction, multiplication, and division, starting in the infant 

months. Infants can perform approximate, non-symbolic arithmetic and have correct expectations 
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about the outcomes of these computations. When 9-month-olds are shown the addition of an 

array of 5 objects to another array of 5 objects, they look longer at the unexpected outcome of 5 

than the expected outcome of 10, indicating that they already have expectations about the 

approximate results of these calculations (McCrink & Wynn, 2004). The same pattern of results 

was found in conditions that involved subtraction. Notably, these effects are found despite 

researchers controlling for other variables such as total area covered by the objects and contour 

length, suggesting that the infants’ judgements and expectations are rooted in discrete 

numerosities. Similar success was found in children as young as 5 years of age engaging in non-

symbolic multiplication and division computations, and having correct (though of course, 

approximate) expectations about the products and quotients of these computations despite having 

no formal education in these areas (McCrink & Spelke, 2010; 2016). Once again, accuracy on 

these problems increased as a function of the ratio between numerosities, a hallmark of the ANS. 

Adults also show similar patterns of performance on tasks that required the addition, 

subtraction, multiplication, and division of nonverbally estimated numerosities, where formal 

arithmetic operations are not used. Subjects were shown two numerosities such that they were 

displayed too briefly for them to be counted. Then, they were shown a third numerosity, and they 

indicated by pressing one of two buttons whether the sum, or difference, or product, or quotient 

of the first two numerosities was greater or less than the third. The numerosities were presented 

either as dot arrays (controlling for dot density and overall area covered) or as tone sequences. In 

some conditions, presentation modalities were mixed, so for example, subjects compared the 

sum of a tone sequence and a dot array to either another tone sequence or another dot array. 

Results showed that there was no effect of the magnitude of the numerosities on accuracy or 

reaction time, but there was, an effect found for the ratios between numerosities (Barth et al., 
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2006). Adults’ performance on these tasks involving non-symbolic approximate computations 

also display the signature ratio-sensitivity associated with the ANS.  

Reasoning about proportions  

In addition to being able to represent sets of items (both small and large) infants, 

children, and adults also have a basic ability to reason about ratios and proportions. From a 

relatively young age, children show an ability to discriminate and match based on 

proportionality, as opposed to absolute quantity or size. For example, understanding that a 

container with 30 green lollipops and 30 black lollipops is proportionally-equivalent to a 

container with 10 green lollipops and 10 black ones, despite the overall number of green 

lollipops being different, involves an understanding of the relationship of 30 to 30, and 10 to 10, 

and subsequently being able to compare these two relations to determine equality (or lack 

thereof). Children starting at the age of 3 can indicate with of two shapes has a proportionally 

larger target area and match figures that have the same ratio of discrete coloured areas (Boyer & 

Levine, 2015; Boyer et al., 2008; Hurst & Cordes, 2018). Additionally, toddlers as young as 2 

years of age can match the size of a target wooden peg when it is presented inside of a container 

by using the proportional information of peg length to container height, whereas they had greater 

difficulty in matching the size of the pegs alone in the absence of the container as a referent 

(Hutternlocher et al., 2002).  

Some studies that investigate children’s proportional reasoning use a map-reading task. 

For example, when 3- and 4-year-olds are given a map with a rectangle on it that represents a 

sandbox and a dot marking where in the sandbox a toy was buried, most children were able to 

carry out the proportional translation of map to actual sandbox and find the missing toy 

(Huttenlocher et al., 1999). This paradigm is perhaps less relevant in the context of this 
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dissertation, but it demonstrates that children as young as 3 can engage in proportional reasoning 

along at least one dimension (in the case of the sandbox map, length). Another paradigm that is 

frequently used in studies that investigate proportional reasoning is a proportional matching task. 

In these tasks, children are given a picture of a shape that is composed of different-coloured 

segments and asked to match it to another shape that is scaled up or down, or even displayed in a 

different orientation. Preschoolers can match shapes that share proportional information on the 

basis of height-width ratios (of rectangles, in this case) as well as different coloured segments 

despite transformations of size and orientation (Sophian, 2000). Similarly, when shown a pizza-

shaped figure that is split up into eighths and removing a particular number of “slices,” children 

are able to remove the same proportion of a different pizza that is segmented into quarters 

(Singer-Freeman & Goswami, 2001).   

Research on proportional reasoning in children has highlighted some of its most 

important elements. First, many of the failures reported in studies of proportional reasoning in 

slightly older children (usually children 6 years and older) can be attributed to tracking exact 

quantities of target objects as opposed to representing the relation of target objects to non-target 

objects, or target objects to overall number of objects. There is a thorough discussion of how this 

impacts performance on proportional reasoning tasks that present continuous variables as 

opposed to discrete ones, but this lies outside of the scope of this dissertation (Boyer et al., 2008; 

Boyer & Levine, 2015; Mix et al., 2002). Another interesting feature of proportional reasoning 

using large quantities of objects and/or uncountable features that would likely require the use of 

the ANS is that the inherent imprecision involved in this kind of reasoning leads to a reliance on 

intuitive, as opposed to quantitative, judgements. These intuitions are the result of an informal 

reasoning system that does not require or invoke effortful calculation (Kahneman & Tversky, 
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1982; Tversky & Kahneman, 1974). In the absence of exact numerical information, individuals 

have no other option but to rely on less precise intuitions to approximate proportions. In a 

temperature mixing task, 10-12-year-olds and 14-15-year-olds were given information about two 

liquids of different temperatures and asked what the resulting temperature would be of a new 

mixture combining them. The information that was provided was either intuitive or quantitative 

in nature. The intuitive condition involved showing participants pictures and descriptions of the 

quantities and the temperatures of the two original liquids. In the quantitative condition the exact 

numerical values of the amounts and temperatures of the original liquids was provided, and 

participants were instructed to “use math.” Results showed that the order of the tasks had a 

significant influence on accuracy in the numerical tasks, such that getting the intuitive 

information first improved performance on the numerical tasks. The same effect was not found 

for performance on the intuitive tasks (Ahl et al., 1992). 

Work with adults has also suggested that the ANS is involved in representing proportions 

among whole numbers. When college students were asked to choose the larger fraction when 

symbolic arrays were pitted against discrete non-symbolic arrays (visually displayed as dot 

arrays for the numerator and the denominator), and again when these discrete non-symbolic 

arrays were pitted against continuous non-symbolic arrays in which the numerator and 

denominator were each replaced by a circle of variable area, they succeeded in these 

comparisons even though they answered too quickly to have explicitly counted the dots in the 

discrete non-symbolic arrays (Matthews and Chesney, 2015). Additionally, their reaction times 

and errors displayed the ratio-dependent signature of the ANS. 

Work directly investigating proportional reasoning or ratio-based reasoning in infancy is 

very sparse. The only relevant work on representing ratios and proportions in infancy 
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investigates young infants’ ability to discriminate between ratios using the ANS. This work 

suggests that infants as young as 6 months of age are capable of comparing different proportions, 

with a sensitivity threshold similar to that of discrimination of large numerosities. In the only 

published study to my knowledge investigating this ability, McCrink and Wynn (2007) 

habituated 6-month-olds to a particular ratio (for example, 1:4) of blue circles to yellow pacman 

shapes by showing them multiple examples of that ratio (independent of the individual number 

of elements on each habituation trial). At test, they were presented with alternating trials, both 

differing in the absolute numbers of items seen on the habituation trials but one displaying 

another instance of the original 1:4 ratio and the other displaying a different, 1:2 ratio. Six-

month-olds dishabituated to the different ratio, indicating that they were able to discriminate 

between ratios that differed by a factor of 2 (though they did not dishabituate in another 

condition when the ratios differed by a factor of 1.5). Interestingly, this dishabituation occurred 

despite careful control of continuous variables of the stimuli, such as area, density, and total 

overall number. This mirrors the discrimination threshold that Xu and Spelke (2000) found 

where 6-month-olds could reliably discriminate absolute numerical values that differed by a 2:1 

ratio but not a 3:2 ratio, which points to the involvement of the ANS in computing the 

proportions between large numerosities as well as the proportions between proportions. 

The Development of Probabilistic Decision Making  

Just as numerosity is inherent in many human experiences from birth, statistics and 

probability are also present. Infants appear to track transitional probabilities among syllables as a 

potential mechanism for early language learning (Aslin et al., 1998; Saffran et al., 1996) and they 

also have basic intuitions about probability that allow them to make large generalizations from 

small amounts of data (see Bryant & Nunes, 2012; Denison & Xu, 2019 for a review). For the 
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purpose of this dissertation, I will only review the sampling literature. Infants are sensitive to this 

information as early as their first year of life (e.g., Denison et al., 2013; Téglás et al., 2007; 

Wellman et al., 2016; Xu & Denison, 2009; Xu & Garcia, 2008). Infants as young as 6 months of 

age (though not 4 months) reliably look longer at outcomes that violate their expectation (as 

shown by studies using the violation-of-expectation looking time paradigm) when viewing 

sampling events. If a container has mostly pink balls and a few yellow balls, and an experimenter 

randomly samples 4 yellow balls and 1 pink ball, infants look longer at that outcome, indicating 

that it is unexpected or surprising, as compared to a random sample of 4 pink balls and 1 yellow 

ball, indicating lack of surprise at that outcome (Denison et al., 2013). This suggests that infants 

have a basic understanding that the sampled objects should match the proportional characteristics 

of the population from which the objects were sampled. The opposite is also true; they expect a 

population to be proportionally-congruent to sampled objects that come from that population (Xu 

& Garcia, 2008).  

Ten- to 12-month-old infants also demonstrate that probabilistic reasoning abilities can 

guide their choices and actions. In a two-alternative forced choice paradigm, infants were shown 

two transparent containers that have target and non-target lollipop-type items (coloured objects 

attached to sticks) in different ratios, and the experimenter sampled from these containers by 

placing a lollipop from each jar in an opaque cup without allowing the infant to see its identity. 

The infants reliably walked or crawled towards the sample that had come from the jar with the 

higher ratio of their preferred lollipop. Crucially, this persisted even when the jar with the higher 

ratio of target-to-non-target lollipops contained fewer preferred lollipops in absolute number 

(Denison & Xu, 2014). In fact, even non-human animals like great apes and capuchins display a 

rudimentary understanding of statistics and probabilities based on proportional information. 
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They are able to choose a sample taken from a population with a higher probability of yielding a 

preferred item (Drucker et al., 2016; Eckert et al., 2017; 2018; Rakoczy et al., 2014; Tecwyn et 

al., 2017).  

The work on probabilistic competence between infancy and the age of five suggests that 

3- and 4-year-olds sometimes struggle with problems that require the use of posterior evidence, 

proportions or combinatorial procedures (e.g., Girotto & Gonzalez, 2008; Gonzalez & Girotto, 

2011; Piaget & Inhelder, 1975; Siegler, 1981), as well as seemingly simple tasks in which they 

only have to consider prior information in order to predict an uncertain event. For example, 

given a bag containing 3 yellow chips and 1 blue chip, 4-year-olds answer at chance level, if they 

have to predict whether a randomly drawn chip will be yellow or blue (Girotto & Gonzalez, 

2008). Likewise, 3-year-olds perform at chance level if they have to predict whether a ball, 

bouncing inside a rectangular box with one hole on one side and three holes on the opposite side, 

will exit from the one-hole side or from the three-hole one (Teglas et al., 2007 – Experiment 3). 

Children in this age range succeed under deterministic conditions, but fail when having to deal 

with proportional information that requires evaluating competing probabilities (Girotto et al., 

2016). As an example of this, researchers presented children (aged 3-5 years) with a set of target 

tokens and a set of non-target ones, and randomly sampled one object from each set. They then 

asked children to choose which sample they want to get the target token. Children understood the 

task, as evidenced by their success on the deterministic trials, where one set contained only 

attractive tokens and the other one contained only unattractive tokens. However, on the trials that 

required forming probabilistic expectations, 4- and 5-year-olds made optimal choices. Only the 

youngest children performed randomly and/or were guided by superficial heuristics, like 

preferring the set containing a larger number of attractive tokens rather than the set containing a 
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greater proportion of attractive tokens (Girotto et al., 2016). Examining the gap wherein 3-year-

olds appear to be unable to engage in some (even very simple) explicit probability-based tasks 

while infants and non-human animals have succeeded is outside the scope of the present 

dissertation. In the experiments presented here, I will test 5- to 6-year-old children in an explicit 

verbal task, and children under 3 years in a non-verbal action task.    

Probabilistic reasoning in older children using games of chance sheds light on their 

understanding of proportions and sampling, and how these in turn influence the odds of 

particular outcomes. For example, when 6- to 10-year-olds were presented with pairs of spinners 

that were divided into different coloured sections and told that if a spinner landed on one colours 

they would win stickers, children were able to correctly choose which spinner had a better 

chance of winning based on the proportions of coloured segments (Jeong et al., 2007). These 

probabilistic judgements that rely on proportional information also appear to be affected by the 

ratio of proportions, such that a judgement involving two competing distributions that are further 

apart is easier than one where the competing distributions are closer together. In other words, 

accuracy correlates with the ratio of proportions. As an example, 6- and 7-year-old children were 

presented with a game where they had to choose which of two of marble collections to sample in 

order to get a marble of a target colour. Each marble collection contained two different colours 

of marbles, varying both in overall number as well as ratio of target to non-target colours. Of 

particular interest, the pairs of competing marble collections were carefully designed such that 

children saw a wide range of ratios between each of the proportions, starting with the easiest 

comparison of 70% vs. 5% all the way to the most challenging comparison of 55% vs. 50%. As 

the ratio of proportions between the competing marble collections became larger, accuracy 

increased (O’Grady & Xu, 2020). The same kind of ratio-dependent performance on 
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probabilistic judgments involving proportional information is found in studies with adults 

(O’Grady et al., 2016).    

Combining Multiple Sources of Information in Decision Making 

Going back to the example of choosing which route to take on your commute home, it is 

perhaps now clear to see how integrating multiple pieces of numerical information involved in 

this scenario is an integral part of making optimal decisions. In the comparative literature, there 

is extensive work establishing nonhuman animals’ ability to combine various sources of 

quantitative information, such as number of rewards and time, to make decisions about different 

rates of return (Balci et al., 2009; Gallistel & Gibbon, 2000). I will review the literature on 

children’s abilities to combine multiple sources of information in more detail in Chapter 2, as 

most of this work examines these abilities in school-aged children, which is the age range of 

interest in that chapter. This literature sheds some light on children’s numerical integration in 

probabilistic decision making. One particularly relevant line of work focuses on investigating or 

children’s ability to make expected value judgments based on integrating the probability and 

value of a winning outcome, as well as making estimates of task difficulty in game-like settings 

(Bayless & Schlottmann, 2010; Schlottmann, 2001; Schlottmann & Anderson, 1994; 

Schlottmann & Tring, 2005). This work reveals that even children as young as 4 years of age are 

able to integrate multiple factors when making these sophisticated judgements. In a similar vein, 

5-year-old children can use numerical information to update an already formed probability 

judgment when given an additional piece of information that alters the sampling space (Girotto 

& Gonzalez, 2008). And finally, children as young as 4 years can evaluate and choose between 

two sources of numerical information in a judgment task when the two pieces of information cue 

opposite inferences (Gualtieri et al., 2020).  
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Overview of Dissertation  

This dissertation sheds light on whether or not we can combine reasoning about small and 

large numbers in a way that allows us to effectively judge probabilities of different outcomes. In 

Chapters 2-4 of this dissertation, I describe and discuss a series of experiments that aim to shed 

light on the ability of infants, toddlers, school-aged children, and adults to integrate number and 

proportion in probabilistic decision making. To do so, I adapted the lollipop task (Denison & Xu, 

2014) to introduce both numerical and proportional information in a game-like manner that then 

allows participants to make judgements based on odds. The task itself consists of a game during 

which the goal is to maximize chances of getting target objects. The set-up always consists of 

two large containers of target and non-target lollipops. These containers are displayed to 

participants such that they can obtain an estimate of the ratio of items in the containers, and so 

that they cannot count up the exact number of objects. The experimenter then draws a number of 

objects from the container, seemingly randomly, and places them in separate cups adjacent to the 

large containers. The exact number of lollipops taken from each container is displayed to the 

participants for the duration of the task, represented by the lollipop sticks emerging from the 

cups (with the identity – target or non-target – not visible to participants). The goal of this task is 

to use the information gathered from the proportions in the containers, as well as the number of 

objects in the sample (each signifying a potential opportunity to get a target-coloured object), to 

choose the sample cup that would maximize their chances of getting target objects.  

These probabilities can be construed of (and thus calculated) in a number of ways. The 

question of exactly how participants in chapters 2 – 4 estimate and compare these probabilities 

will be left open. Below I will outline two ways that these odds could be calculated.  
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Figure 1 provides a visual depiction of all types of trials included in the dissertation. 

Throughout the dissertation, the trial type will be written with the shorthand seen here, where the 

proportion of target items in each container is written first and the respective number of draws 

second. As an example, in the 100:0 1v3 trial, this corresponds to the percent of green (targets) in 

container 1 (100%) and the percent of green in container 2 (0%) with a single item drawn from 

the 100% container and three items drawn from the 0% container. The choice that would result 

in better odds of getting targets is always coloured in red font in the trial type shorthand. Note 

that in Figure 1, targets are depicted as green lollipops and non-targets as black, as was the case 

in the Chapter 2 stimuli. In Chapters 3 and 4, the targets were pink (non-targets were still black).  
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Figure 1. Summary of all trials included in this dissertation and corresponding experiments in 
which each one appears. 
 

 

The top row contains entirely straightforward cases, where the best choice is absolutely 

clear: always choose the sample that was drawn from the all-green container, no matter how 

many items are drawn from either container. These types of trials can establish whether a 

participant of a particular age can make the correct choice based entirely on the contents of the 

containers, without being incorrectly swayed by the number of draws (three is more than one, but 
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this does not matter when the one will certainly be green and the three will certainly all be 

black). 

Row 2 depicts a second set of straightforward cases where the proportions are equal (50% 

green) in each container, but the number of draws differ. In these cases, participants should base 

their choices on the number of draws, always choosing the higher draw to increase the number of 

green lollipops they might get.  

Row 3 depicts a set of more challenging problems, some of which require integration of 

the proportions with the number of draws to arrive at the correct choice, or the choice that 

maximizes the chances of getting targets. In the first two trials in this row, the container with 

88% green is so advantageous on the ratio dimension, that a larger number of draws does not tip 

the scale far enough to make the larger number of draws from the 12% green container the better 

choice. That is, the participant has better odds of ending up with some amount of green going 

with the smaller number of draws from the 88% container. The first trial in this row compares 

single draws from each container, which is a more straightforward trial that examines whether 

participants choose the correct container based only on the proportions. 

Row 4 also depicts some of the more challenging (mathematically, the most challenging) 

trials. In the second two trials in this row, while the 60% green container is more advantageous 

than the 40% green container, this is a small difference. Thus, the larger number of draws from 

the less advantageous containers does tip the scale just far enough to make those the better 

choice. These trials were the most difficult to design. I was aiming to create a complementary set 

of trials to those in row 3. In those trials, the participants must choose the smaller number of 

draws and the better ratio to arrive at the best choice. In the trials in row 4, I was aiming to create 

cases where the participants must choose the worse ratio with the better number of draws. These 
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are difficult to create though, because the ratios must be distinct enough such that the difference 

is detectable (if they are any closer to 50:50, it would be questionable as to whether the 

participants detect the difference between the ratios). Thus, it is simply difficult to pull these 

trials very far apart mathematically without risking making the ratios indistinguishable or having 

to make a problematic number of draws from the 40% container (i.e., increasing the number of 

draws too much makes this work impossible to conduct with infants due to the small number 

comparison limits). The first trial in this row compares single draws from each container. This 

type of trial is informative because it examines whether participants detect the difference in 

ratios between the two containers (participants should choose the 60% container on a 1 versus 1 

draw).  

Computing objectively correct choices for the trials 

One possible computation that a participant could engage in when doing these tasks is to 

determine the odds of getting “at least one” target item in each of the sample containers and 

comparing those odds. I consider this a potential strategy for children, because it is hard to know 

exactly how the older children (Chapter 2) interpret the instructions and how the infants and 

toddlers (Chapters 3 and 4) might conceive of the task, given that they receive no explicit 

instructions. A second possibility, which I see as a very likely potential strategy, due to the 

instruction to “get as many green ones [targets] as you can” to older children and adults, is to 

choose the sample cup that is likely to have the highest number of greens. While both 

computations favour the same choice for all trials, they are mathematically different. I present 

these probabilities in the Appendix.  

Row 1 is straightforward (the 100% container always gives a 100% chance at green and 

the largest number of green no matter how the participant conceives of the goal). 
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Row 2: For the 50:50 1v3 trial, the odds of obtaining at least 1 target is 50% versus 89%, 

respectively. In the 50:50 2v5 trial, the odds of obtaining at least 1 target is 76% versus 98%, 

respectively. For computations that maximize the number of greens obtained, participants could 

consider how likely different draws are from each of the distributions and the likelihood of them 

occurring together. Then one can consider the odds of “winning” (getting more green ones) by 

choosing one cup over the other. For example, in 50:50 1v3 there are two possible outcomes for 

the single draw and four possible outcomes for the three-item draw (see Table 1 for the 

probabilities). Based on this, a person is 11 times more likely to win by choosing the three-item 

sample: there is one scenario in which a person wins with the single draw, which has a 6.25% 

chance of occurring and five scenarios in which they win by choosing the three-item draw, which 

have a combined 69% chance of occurring (there are two ties, which we ignore). In 50:50 2v5, 

one is 12.3 times more likely to win by choosing the 3-item draw (Table 2). 

Row 3: For 88:12 1v3, the odds of obtaining at least 1 target is 88% versus 34% and for 

88:12 2v5, the odds of obtaining at least 1 target is 99% versus 51%. For 88:12 1v3, one is 8.2 

times more likely to obtain more greens when they choose the single-item draw (Table 3) and for 

88:12 2v5, one is 19 times more likely to obtain more greens when choosing the two-item draw 

(Table 4). For 88:12 1v1, it is simply 88% versus 12%.  

Row 4: For 60:40 1v3, the odds of obtaining at least 1 target is 60% versus 81% and for 

60:40 2v5, the odds of obtaining at least 1 target is 85% versus 95%. For 60:40 1v3, one is 4 

times more likely to obtain more greens when choosing the three-item sample (Table 5) and for 

60:40 2v5, one is 3 times more likely to obtain more greens when choosing the five-item sample 

(Table 6). As can be seen from these calculations, the 60:40 trials (with either the 1v3 or the 2v5 
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draws) are quite close together mathematically, which does make them particularly challenging. 

For 60:40 1v1, they simply compare 60% and 40%. 
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Chapter Two: Integration of Number and Proportion in Children and Adults  

The ability to integrate multiple pieces of information and use it to guide decision making 

is an essential part of everyday reasoning. While it may not seem like it, the information in our 

environments is often numerical in nature. From simple decisions like which cashier line to stand 

in at the grocery store, to more consequential judgments like evaluating the chances of getting 

accepted into a competitive graduate program, numbers and proportions are everywhere. And 

while using numerical information, particularly proportional information, to make judgments and 

decisions sounds challenging, even young children have some of the requisite abilities to do so. 

In the current experiments I investigate the use of numerical and proportional information in a 

single probabilistic reasoning task in school-aged children and adults.  

Though the literature on children’s numerical integration in probabilistic decision making 

is sparse, there are at least two relevant lines of research that include children in the age range of 

interest (5-6 years). The first of these examines whether or not children, like adults, are able to 

make expected value judgments based on integrating both the probability and value of a winning 

outcome in a game (e.g., Schlottmann, 2001; Schlottmann & Anderson, 1994; Schlottmann & 

Tring, 2005). Expected value is defined as the product of the probability of a particular outcome 

and the value of that outcome, or EV = P x V. For example, in a game of chance where you had a 

50% probability of winning, and the value of the prize was quantified as 10 tokens, the expected 

value of playing this game would be 5. Alternatively, if a similar game also presented players 

with a 50% chance of winning but the prize was only worth 5 tokens, the expected value of this 

game would be 2.5. When presented with a roulette game, 5- to 10–year-olds were asked to 

judge how happy a puppet would be to play a game in which the probability of winning the game 

and the value of the prize varied on each trial. They found that even the youngest children were 
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able to integrate both factors when making these third-person judgements, but the oldest children 

used more mature integrative strategies than the youngest children. That is, only the older 

children relied on a multiplicative strategy that is more robust and provides the highest expected 

value in challenging cases (Schlottmann & Anderson, 1994).   

Further, children as young as 5 years of age are able to use normative multiplicative 

reasoning when evaluating probability in a more intuitive context (Bayless & Schlottmann, 

2010). In a marble rolling game, in which the objective was to roll a marble into a target goal, 

two difficulty dimensions were manipulated: size of the target and distance between the target 

and the rolling position. This created a probability judgement that relies on estimates of skill and 

objective task difficulty – represented as continuous dimensions, which, under some 

circumstances, are easier for children to reason about (e.g., Boyer et al., 2008). Five- and seven-

year-olds were asked to make difficulty judgments for a variety of trials that differed in these 

dimensions prior to actually playing the game themselves. They were also asked to rate how 

happy they would be to play the game when the difficulty and the value of a prize were varied 

across games. Both age groups responded normatively in a multiplicative fashion (Bayless & 

Schlottmann, 2010). They accurately integrated information on both the size of the target and its 

distance when making difficulty judgements. They also integrated information on the difficulty 

of the game and the value of the prize when determining how happy they would be to play the 

game, realizing that a game where the distance of the marble to the target was shortest, the size 

of the target was largest, and the value of the prize was highest, was most desirable.  

In addition to being able to effectively combine multiple pieces of quantitative 

information to judge task difficulty and desirability of a particular outcome, children as young as 

5 years of age are also able to update estimates of posterior probabilities based on new 
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information that changes the sampling space (Girotto & Gonzalez, 2008). When presented with 4 

circle chips (all black) and 4 square chips (1 black and 3 white), and asked to make a prediction 

about the colour of a chip drawn at random, children predominantly responded correctly by 

saying ‘black.’ However, when the researcher sampled a chip, kept it hidden in their hand and 

said that it felt like a square, most children then correctly responded by saying they thought it 

would be white. This implies that not only are children capable of using information from 

different sources effectively to make decisions about events, they can also use new information 

as it arises in order update posterior probabilities. Taken together, these findings lend support to 

the idea that young children are able to integrate multiple pieces of information to make 

judgments about probabilistic tasks. 

This past research has looked at young children’s abilities to integrate probability and 

other numerical information, or two sources of information where only one is numerical in 

nature. In the present experiments, I examine whether 5- to 6-year-old children can integrate two 

sources of numerical information to make decisions about the probability of an unknown 

outcome. Specifically we present children with a game in which they must maximize the number 

of green objects obtained. In order to do so successfully they will be required to integrate the 

absolute number of blind draws with the proportion of targets to non-targets, from which those 

draws are made. Five- and 6-year-old children (N=160) were presented with two containers of 

green and black lollipops, with the goal of getting as many green lollipops as possible, in a series 

of game-like trials. We manipulated the proportions of coloured lollipops in the containers, as 

well as the number of items drawn from each container across various trials. For example, in one 

type of trial, a single (unknown) lollipop was drawn from a very high proportion of green:black 
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lollipops and three (unknown) lollipops were drawn from a very low proportion of green:black 

lollipops.  

When children are asked to choose which of two samples would yield a more favourable 

outcome (i.e. give them a better chance of getting green lollipops) we expected that they might 

employ one of three strategies: First, they might focus exclusively on the dimension of absolute 

number, using only the information from the number of sampled items. In this case, they would 

always opt for the sample with the higher number of lollipops, disregarding the proportion of 

objects from which those samples were drawn. Children this age are capable of discriminating 

between the numbers of draws in our experiments (i.e., 1 vs 3 in Experiments 1 and 4; and 2 

versus 5 in Experiments 2 and 3; Cheung & LeCorre, 2018), thus children should be capable of 

evaluating choices on the basis of this dimension. 

Second, they might favour the proportional information and always choose the draw from 

the container with the largest proportion of desired objects, regardless of the absolute number of 

draws sampled from it. We know that children this age should be capable of this because 4- and 

5-year-old children do this readily in two-alternative forced-choice tasks (Denison et al., 2006; 

Girotto et al., 2016; Yost et al., 1962), and even young infants (Denison & Xu, 2010, 2014) as 

well as non-human animals (Rakoczy et al., 2014; Tecwyn et al., 2017) are capable of this.  

The third potential strategy would be an integrative one where children should adapt their 

strategy based on both numerical information (absolute number of draws) as well as proportional 

information (ratio of desirable to undesirable objects). It is currently unknown as to whether 

children are able to combine information in this way to maximize outcomes. In the following 

experiments, I explore these open questions in an attempt to better understand these potentially 
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competing strategies and their behavioural manifestations in school-aged children as well as 

adults.  

Experiment 1 

Methods 

Participants 

Data from 40 5- and 6-year-old children were included in the final analyses (Mean age: 

6;1, range: 5;0 – 6;11, females: 19). Sample sizes were decided in advance, based on a lab 

stopping rule, but no formal power analyses were conducted. The choice of 40 participants was 

based on previous work (e.g., Gualtieri et al., 2020). An additional 3 children were tested and 

their data were excluded for failure to complete the experiment (n=1); and an inability to indicate 

a clear choice for just one cup (n=2). Children were tested individually in schools and museums 

in the Waterloo Region and a museum in the Greater Toronto Area.  

Procedure 

All stimuli were displayed on a laptop using PowerPoint slides. Children were shown a 

green lollipop and a black lollipop on one slide. They were told they would play a game in which 

the goal was to get as many green lollipops as possible. They were then asked a comprehension 

question to make sure that they understood the goal of the game (e.g. “how do you win the 

game?”). We had a planned inclusion criterion that children were required to answer this 

question correctly, but no children answered this incorrectly.  

Following this, there were four trials. The general procedure of each trial was as follows 

(see Figure 2.1 for a schematic): A slide presented two large transparent containers holding 

different distributions of green (target) and black (non-target) lollipops. Then two opaque but 

empty cups appeared in front of the containers. The containers were covered by opaque grey 
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boxes such that the distributions of lollipops were no longer visible. The experimenter told the 

participant that someone will pick some lollipops without looking at the colours inside the 

containers. An animated hand then reached into each of the containers (one at a time) and drew 1 

lollipop from one container and 3 lollipops from the other (drawing the sample of three, one at a 

time). The hand picked up each lollipop in a way such that only the stick was visible, not the 

colour of the lollipop; this was also true of the way the lollipops were placed in the cups, only the 

sticks were visible. When both containers had been sampled, the grey covers disappeared to 

remind participants of the containers’ contents. The experimenter then asked the participant 

“which cup would you pick to get green?” and asked them to point towards the cup of their 

choice. This question was intended to be ambiguous grammatically, using “green” as a mass 

noun, to avoid signalling to the child whether they should choose the cup with multiple lollipops 

or a single lollipop. However, this may have been interpreted to mean “green” in the singular 

sense, but I return to this in the discussion section. 

Design 

Each child saw four trial types, in counterbalanced order, that varied the distribution of 

lollipops in the containers and the number of draws taken from each container (see Figure 2.2).  

In the 100:0 1v3 trial, there was one container with 30 green lollipops and no black 

lollipops, and another with 30 blacks and no greens. The hand drew 3 lollipops from the all-black 

container and 1 from the all-green container. In this case, children should choose the 1-item 

sample. 

In the 50:50 1v3 trial, there were identical distributions in the two containers (12 green 

and 12 black) and the hand drew 3 lollipops from one container and 1 from the other. In this 

case, children should choose the 3-item sample.  
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These first two trial types are included to ensure that children will make correct choices 

on the basis of the individual dimensions and to ensure that they follow the game instructions. 

Thus, in the 100:0 1v3 trial, the number of draws is varied and the simplest possible proportions 

(0 vs. 100%) are used to ensure children can use the proportion dimension, without errantly 

focusing on the number of draws. In the 50:50 1v3 trial, the proportions are held constant and the 

number of draws is manipulated, using a comparison that we know children this age should be 

sensitive to (Cheung & LeCorre, 2018) to ensure children can use number of items in the sample 

when the proportions are equated. 

The 88:12 1v3 and the 60:40 1v3 trials test children’s integration of these two 

dimensions. In the 88:12 1v3 trial, there was one container with 28 green and 4 black lollipops 

and another with the opposite distribution (4 green and 28 black lollipops). The hand sampled 1 

lollipop from the green-majority container (high proportion of target objects, low draw number) 

and 3 lollipops from the black-majority container (low proportion of target objects, high draw 

number). In this case, children should choose the 1-item sample taken from the high proportion 

container. 

In the 60:40 1v3 trial there was one container with 8 green and 12 black lollipops and 

another with 12 green and 8 black lollipops. The hand sampled 1 lollipop from the green-

majority container (high proportion of target objects, low draw number) and 3 lollipops from the 

black-majority container (low proportion of target objects, high draw number). In this case, 

children should choose the 3-item sample picked from the lower proportion container. 

 

 

 



32 
 

 

              …   

Figure 2. Schematic of the general procedure of each test trial 

 

 

Figure 3 Depiction of the four trials in Experiment 1. Correct choices based on the computations 
in Chapter 1 are indicated by the asterisks. 
 

Results 

In all four experiments, all children chose the green lollipop following the comprehension 

check at the beginning of the experiment. We coded the data such that the draw that had a greater 

probability of yielding green was coded as “correct.” This meant that a correct response on any 

given trial was coded as a 1 and an incorrect response was coded as a 0.  



33 
 

A Generalized Estimating Equations (GEE) binary logistic regression with trial as a 

between-subject factor and age (in months) centred around the mean as a covariate revealed a 

significant main effect of trial on accuracy, Wald X2(df = 3, N = 40) = 119.77, p < .0001. Figure 

4 shows the proportion of children producing correct responses on each trial. No effect of age, 

nor interaction of trial by age, was found. Figure 2.3 shows children’s average correct responses 

on each trial. Bonferroni-corrected pairwise comparisons revealed that performance on the 60:40 

1v3 trial was significantly poorer than the other three trials (p < .0001). Average accuracy on the 

50:50 1v3 trial was also lower than both the 100:0 1v3 trial (p < .0001) as well as the 88:12 1v3 

trial (p = .002).  

To take a closer look at performance on each trial, I conducted binomial tests against 

chance for each trial after coding for accuracy. On the 100:0 1v3 trial, where the outcome was 

guaranteed, all children selected the 1-lollipop draw. On the 50:50 1v3 trial, 62.5% of children 

answered correctly, choosing the 3-lollipop draw. A binomial test indicated that this was not 

significantly different from chance (p=.154). On the 88:12 1v3 trial, children succeeded at 

choosing the draw that has a higher probability of yielding a green lollipop (M=92.5%, SD=.267, 

p<.0001) where choosing the 1-lollipop draw from the container with a higher proportion of 

green lollipops is correct. However, on the 60:40 1v3 trial, they showed a preference for the 1-

lollipop draw from the container with a larger proportion of green lollipops, even though it yields 

a lower probability of getting a green lollipop than the 3-lollipop draw from the container with a 

smaller proportion of green lollipops. They performed significantly lower than chance on this 

last trial type (M=30%, SD=.464,  p=.016).  
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Figure 4. Mean correct responses on each trial indicated by dot (Experiment 1). Error bars 
indicate ± 1 standard error of the mean and individual data points are jittered for visibility. The 
dashed line represents chance (50%) performance. 
 
Discussion 

These results suggest that children are able to correctly choose which cup gives them a 

greater chance of obtaining green lollipops when the proportion of green lollipops in the target 

container was greater, regardless of draw number. On the 100:0 1v3 and the 88:12 1v3 trials, 

children correctly chose the 1-lolipop draw from the container with all or mostly green lollipops. 

However, on the 50:50 1v3 trial, children chose each sample at rates no different from chance, 

suggesting an inability to use the absolute number comparison even in this relatively easy type of 

trial. Finally, on the 60:40 1v3 trial where the 3-lollipop draw from the container with mostly 

black lollipops gives children a greater chance of getting green than the 1-lollipop draw from the 

container with mostly green lollipops, children chose the latter at greater than chance levels.  
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Overall, children’s performance is mostly consistent with two potential interpretations: 

one is that they quite closely tracked the proportion of items in the containers, showing little 

sensitivity to number of draws. On each trial, children made selections as a group that favoured 

the proportions (even in the case of the 50:50 proportion, responses were statistically not 

different from chance, which would be predicted by a proportion-based strategy). An alternative 

interpretation though, is that children favoured the single lollipop draw. This is mostly consistent 

with their behaviour, with the exception of the 50:50 proportion, in which children chose the 3-

item draw 63% of the time, not different from chance but leaning toward the multi-item draw, 

rather than the 1-item draw. Despite being intentionally vague in the wording of the task 

instructions to avoid implying that children should choose the sample container with multiple 

objects or one object (I instructed children to “get green”), it is still possible that my instructions 

inadvertently biased participants to choose the 1-lollipop draw on all trials. Specifically, it is 

possible that instructing them to pick the cup that would optimize their chances of “getting 

green” may have led children to interpret that as being “green” in the singular sense rather than 

our intended ambiguous meaning. In order to tease these two possibilities apart, in the next 

experiment I changed the stimuli to only include multiple draw numbers, removing the 

ambiguity surrounding the wording. 

Experiment 2 

Methods 

Participants 

Data from 40 5- and 6-year-olds were included in the final analyses for this experiment (Mean 

age: 6;1, range: 5;0 – 6;9, females: 14). Children were recruited from and individually tested in 

local schools and museums in the Waterloo Region and the Greater Toronto Area. 
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Procedure 

The procedure was identical to Experiment 1 except for one change in the design. Instead of a 1-

lollipop versus a 3-lollipop draw during each trial, this experiment presented a 2-lollipop versus 

a 5-lollipop draw. Proportions of target to non-target objects in the containers were identical to 

Experiment 1.  

Design 

The design was identical to Experiment 1. For example, in the trial type with uniform 

distributions of 30 green or 30 black in each container, the hand drew 5 lollipops from the black 

container and 2 from the green container. See Figure 5 for a schematic and the correct choices. 

 

Figure 5. Depiction of the four trials in Experiments 2 & 3. Correct choices based on the 
computations in Chapter 1 are indicated by the asterisks. 
 
Results 

A GEE binary logistic regression with trial as a between-subject factor and age centred 

around the mean as a covariate revealed a significant main effect of trial on accuracy, Wald X2(df 

= 3, N = 40) = 50.716, p < .0001. No effect of age, nor interaction of trial by age, was found. 
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Figure 2.5 shows the proportion of children producing correct responses on each trial. 

Bonferroni-corrected pairwise comparisons revealed that performance on the 60:40 2v5 trial was 

significantly poorer than the other three trials (p < .0001), and performance on the 100:0 2v5 trial 

was significantly better than performance on both the 50:50 2v5 and the 88:12 2v5 trials (p = 

.038). 

I then conducted binomial tests against chance for each trial to follow up on these results. 

On the 100:0 2v5, where the outcome was guaranteed, all children selected the 2-lollipop draw. 

On the 50:50 2v5 trial, children responded correctly by choosing the 5-lollipop draw at a rate 

significantly greater than chance levels (M=90%, SD=.304, p<.0001). On the 88:12 2v5, children 

succeeded at choosing the 2-lollipop draw that has a higher probability of yielding a green 

lollipop (M=90%, p<.0001). Finally, on the 60:40 2v5, children’s responses were not different 

from chance, as 48% of participants correctly chose the 5-lollipop draw (SD= .504, p=.636).  
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Figure 6. Mean correct responses on each trial indicated by dot (Experiment2). Error bars 
indicate ± 1 standard error of the mean and individual data points are jittered for visibility. The 
dashed line represents chance (50%) performance. 
 

Discussion 

Children’s performance on the 100:0 2v5 and the 88:12 2v5 trials, where choosing the 

small draw number from the container with a higher proportion of green lollipops was more 

likely to yield green, is almost identical to Experiment 1. Performance on the 50:50 2v5 trial 

drastically improved in this experiment. Children correctly chose the 5-draw lollipop at greater 

than chance levels. This suggests that children struggled with the 1 versus 3 comparison, either 

because they were unable to make that judgment correctly based on comparing those numbers or 

because the experimental set-up somehow biased them in favour of choosing single-number 

draws. I lean toward the latter interpretation, given that previous literature suggests that children 

this age are aware that 3 is greater than 1 (Cheung & LeCorre, 2018). Although, notably, it 

0.0

0.5

1.0

100:0 2v5 50:50 2v5 60:40 2v5 88:12 2v5
Trial

Pr
op

or
tio

n 
C

or
re

ct



39 
 

cannot be assumed that just because children recognize that one set contains more items than 

another set, that they also recognize that having more draws in a lottery results in higher odds of 

winning. Therefore, this experiment is the first to my knowledge showing that children this age 

appreciate that increasing the number of draws increases the odds of winning in a random game. 

Finally, while performance on the 60:40 2v5 trial was not different than chance, children 

exhibited a reduction in the bias to choose the draw from the container with the smaller number 

of draws and the larger proportion of green to black lollipops compared to the same trial type in 

Experiment 1. These results suggest that rather than a seamless integration of both numerical and 

proportional information, the latter may exert a stronger influence on children’s judgements. In 

order to investigate this possibility, I introduced a subtle change to the procedure of the next 

experiment: the containers remained covered until children made their choices. By doing this, I 

aimed to control for the potential over-salience of the large jars and their proportional 

information as opposed to the smaller, less-salient lollipop sticks in the cups. 

Experiment 3 

Methods 

Participants 

Data from 40 5- and 6-year-olds were included in the final analyses for this experiment 

(Mean age: 6;0, range: 5;0 – 6;9, females: 18). Children were recruited from and individually 

tested in local schools and museums in the Waterloo Region and the Greater Toronto Area. 

Procedure and Design 

The procedure was identical to Experiment 2 except for one change in the design. After 

the sampling process unfolds, instead of removing the grey boxes to reveal the distributions one 

final time as children made their choice between the 2-lollipop and the 5-lollipop draws, the 
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containers remained covered until the end of each trial. The design was identical to Experiment 2 

(see Figure 5).  

Results 

A GEE binary logistic regression with trial as a between-subject factor and age centred 

around the mean as a covariate revealed a significant main effect of trial on accuracy, Wald X2(df 

= 3, N = 40) = 15.593, p = .001. No effect of age, nor interaction of trial by age, was found. 

Bonferroni-corrected pairwise comparisons revealed that performance on the 100:0 2v5 and the 

88:12 2v5 trials were significantly different, p = .002. Figure 2.6 shows the proportion of correct 

responses on each trial. 

On the 100:0 2v5 trial, where the outcome was guaranteed, all children selected the 2-

lollipop draw. On the 50:50 2v5 trial, children responded correctly by choosing the 5-lollipop 

draw at a rate significantly greater than chance levels (M=92.5%, SD=.267, p<.0001). We also 

replicated the finding of the 88:12 2v5 trial in Experiment 2: children succeeded at choosing the 

2-lollipop draw that has a higher probability of yielding a green lollipop in the (M=80%, 

SD=.405, p=.0002). Finally, on the 60:40 2v5 trial, children succeeded at choosing the 5-lollipop 

draw from the container with a lower proportion of green lollipops (M=85%, SD=.362, p<.0001), 

showing a significant improvement from performance on the same trial type in Experiments 1 

(12/40 correct compared to 34/40 in Experiment 3, p<.001, Fisher’s Exact test) and 2 (18/40 

correct compared to 34/40 in Experiment 3, p<.001, Fisher’s Exact test). While I should not 

make strong conclusions from these comparisons across experiments, this further supports the 

idea that keeping the containers visible as children made their choice may have made the 

proportional information overly salient and influenced their ability to integrate information on 

this trial type in Experiments 1 and 2.  
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Figure 7. Mean correct responses on each trial indicated by dot (Experiment 3). Error bars 
indicate ± 1 standard error of the mean and individual data points are jittered for visibility. The 
dashed line represents chance (50%) performance. 
 

Discussion 

In this experiment, children’s accuracy as a group was above chance on all trials. Of 

particular interest is the drastic improvement in performance on the computationally challenging 

60:40 2v5 trial. In the previous experiment, children appeared to be choosing at random on that 

trial, whereas in this experiment, hiding the proportional information at the time of making a 

judgement seems to allow children to more effectively consider the numerical information in 

their decision. While this is speculative, it seems that there was some merit to the hypothesis that 

the over-salience of the distributions may affect the different weight assigned to proportional 

information in contrast with the numerical information.  
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In the final experiment with children, we will examine one more remaining open question 

in this line of work. Based on Experiments 1 – 3, it is now difficult to ascertain why children 

failed to correctly reason about the 60:40 1v3 trial in Experiment 1. They might have failed the 

trial because of a difficulty with the 1 vs 3 comparison, due to either task demands or a true 

inability to integrate the proportions and numbers. Alternatively, they might have failed the trial 

because the containers were visible and perhaps overwhelmed children’s reasoning, biasing them 

too heavily towards the proportional information. These experiments are also missing a direct 

investigation of children’s ability to make decisions based only on the proportional comparisons 

for the distributions in the 60:40 and 88:12 trials. In order to draw direct comparisons between 

children’s choices when the proportions are held constant and the numbers of draws are 

manipulated, it is helpful to include trials in which the hand sampled 1 lollipop from each of the 

containers with the distributions from the 60:40 and 88:12 trials. Therefore, in Experiment 4 I 

will examine children’s performance on the 88:12 1v3 and the 60:40 1v3 trials (as in Experiment 

1) but with the proportions hidden (as in Experiment 3), and replace the 100:0 and 50:50 trials 

with an 88:12 1v1 trial and a 60:40 1v1 one.  

Experiment 4 

Methods 

Participants 

Data from 40 5- and 6-year-old children were included in the final analyses for this 

experiment (Mean age: 5;11, range: 5;0 – 6;11, females: 15). Children were tested in schools in 

the Waterloo Region.  
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Design and Procedure 

The procedure was identical to Experiment 1 except for two changes in the design. First, 

just as in Experiment 3, the grey boxes that covered the proportions as the sample was drawn 

remained in place while participants made their choices, keeping the proportions covered until 

the end of each trial. Second, the 100:0 and 50:50 trials were replaced with trials in which single-

items were drawn from the 60:40 and 88:12 proportions.  

 

Figure 8. Depiction of the four trials in Experiment 4. Correct choices based on the 
computations in Chapter 1 are indicated by the asterisks. 
 
Results 

A GEE binary logistic regression with trial as a between-subject factor and age centred 

around the mean as a covariate revealed a significant main effect of trial on accuracy, Wald X2(df 

= 3, N = 40) = 14.842, p = .002. Figure 2.8 shows the proportion of correct responses on each 

trial. No effect of age, nor interaction of trial by age, was found. Bonferroni-corrected pairwise 

comparisons indicated that the children performed better on the 60:40 1v1 than the 60:40 1v3 
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trial (p = .049). Also, performance on the 88:12 1v1 trial was significantly better than the 60:40 

1v3 trial (p = .001). 

A main interest is whether children performed above chance on each trial type. On the 

88:12 1v1 trial, 92.5% of children selected the 1-lollipop draw from the majority green container 

(Wald X2(df = 1, N = 40) = 17.515, p<.0001). On the 88:12 3v1 trial, 77.5% of children chose the 

1-lollipop draw from the green majority container, which is correct in this case. (Wald X2(df = 1, 

N = 40) = 10.669, p<.0001). On the 60:40 1v1, 82.5% of children chose the 1-lollipop draw from 

the green majority container, which is correct in this case (Wald X2(df = 1, N = 40) = 13.885, 

p=.001). Finally, on the 60:40 1v3, 65% of children selected the 3-lollipop draw from the black 

majority container, which is correct in this case (Wald X2(df = 1, N = 40) = 3.487, p=.062), not 

statistically different from chance.  

 

Figure 9. Mean correct responses on each trial indicated by dot (Experiment 4). Error bars 
indicate ± 1 standard error of the mean and individual data points are jittered for visibility. The 
dashed line represents chance (50%) performance. 
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Discussion 

I conducted Experiment 4 in order to better understand the pattern of results found in 

Experiment 1. In particular, I wanted to ascertain whether children performed poorly on the 

60:40 1v3 trial because of a difficulty with the 1 vs 3 comparison, due to either task demands or 

a true inability to integrate the draws and proportions for this trial type, or because the containers 

were visible and perhaps overwhelmed children’s reasoning, biasing them too heavily towards 

the proportional information. Though this is speculative, and even though performance on this 

trial is still no different than chance, children showed an improvement on this trial in this 

experiment than the same trial in Experiment 1 where the proportions were visible at the time 

children made a selection (Experiment 1: 12/40 children chose correctly versus Experiment 4: 

26/40; p=.003, Fisher’s Exact test). Again, while I cannot make strong claims based on this 

cross-experimental comparison, it does appear that covering the distributions improves 

children’s performance, despite their struggle with this trial in general. 

Of interest is the difference in performance on the 60:40 trials, as well. Children’s 

accuracy was significantly higher than chance on the 60:40 1v1 trial, when the samples were 

equal, but their responses did not differ from chance on the 60:40 1v3 trial. The difference in 

performance on these two trials was statistically significant, p = .049. By including the 1v1 

comparison, it is easier to rule out the possibility that they could not tell the difference between 

the two distributions. This difference in performance is likely due to a failure of integration 

which intuitively makes sense as the extra piece of numerical comparison adds another layer of 

complexity in the decision-making process.  
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Experiment 5 

Some of the trials we presented children in the previous experiments were quite 

challenging in terms of the computations involved and the relative probabilities that they have to 

consider. Would adults also be able to make some of the hardest comparisons? In this 

experiment, I tested whether adult participants will succeed at the tasks that I presented to 

children in the previous 4 experiments, in order to determine whether or not adults are capable of 

integrating information on the proportion of items and the number of draws in two competing 

location choices to make decisions that maximize their chances of getting targets. I also 

examined whether they do this at higher than chance (50%) levels on each individual type of trial 

and whether this varies across trial types that are objectively easier or harder to respond to.  

Methods 

Participants 

Sixty-eight adults successfully completed this experiment (M age: 37 years; females: 22) on 

Amazon Mechanical Turk. Participants received $1USD for completing the experimental task, 

which took on average less than 5 minutes. An additional 12 participants were tested and their 

data was excluded due to failing the comprehension check (n=4); and failing at least one of the 

two predetermined exclusion trials (n=8). After piloting the experiment with 20 adults and 

having approximately 30% exclusion due to failing the comprehension check and/or exclusion 

trials, I set a target of recruiting 80 participants in order to end up with at least 50 participants. 

Design and Procedure 

Link to the task: https://uwaterloo.ca1.qualtrics.com/jfe/form/SV_7anZLiWjtkg5KSy.  

Participants first read the instructions, which explained that they would play a series of guessing 

games and their goal was to get as many green lollipops as possible. Next they completed the 
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comprehension question used in Experiments 1-4, to ensure they understood that the goal. Any 

participants who responded to the comprehension question with anything other than “green” 

were excluded (n = 4). This was followed with a demonstration trial to allow them to practice 

making a selection (responses to this were not analyzed). They then saw 12 test trials in random 

order. On each trial, participants saw an image for 5 seconds with the two containers for that trial 

displayed. Then the containers were covered with grey squares and the items were sampled into 

the cups. Unlike in the experiments with children, any multi-item draws were done 

simultaneously, rather than one-at-a-time, to guard against boredom and disengagement. Adults 

made their selection by clicking on a cup. Adults saw every trial type presented to children in the 

previous four experiments, plus two pre-determined exclusion trials: 100:0 3v1 and 100:0 5v2. 

Both trials presented a larger number of items sampled from a container with all targets, and a 

smaller number of items sampled from a container with no target items. Participants who 

responded incorrectly to either one of them were excluded from final data analyses, as this 

indicated misunderstanding or ignoring the instructions, or random guessing. The experimental 

procedures and exclusion criteria were pre-registered here: 

https://aspredicted.org/blind.php?x=ta9jk4  

Results 

A GEE binary logistic regression with trial as a between-subject factor revealed a 

significant main effect of trial on accuracy, Wald X2(df = 10, N = 68) = 107.365, p < .0001. To 

follow up, I ran binomial tests against chance on every trial to determine whether participants 

performed significantly above 50% on each trial. These tests revealed that adults performed 

significantly above chance on all the trials except for the 60:40 2v5 trial, where only 36 of the 68 

participants responded correctly (M=53%, SD=.503, p=.716).  
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Figure 10. Mean correct responses on each trial indicated by dot (Experiment 5). Error bars 
indicate ± 1 standard error of the mean and individual data points are jittered for visibility. The 
dashed line represents chance (50%) performance.  
 

Discussion 

These results show that adults succeeded at all problem types involving integrating 

numerical and proportional information to maximize the probability of obtaining target objects, 

except for the 60:40 2v5 trial, where they responded no differently than chance.  

Interestingly, data collected in the pilot, with an identical procedure (N=20) was 

promising in terms of performance on the 60:40 2v5 trial, with performance at 66%. One 

potential explanation for adults in the main experiment performing no differently than chance on 

this trial may be that the online testing using Amazon Mechanical Turk in this experiment 

introduced an additional source of noise to the data. This noise, when coupled with the difficulty 
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of the 60:40 2v5 trial (computationally speaking), may have contributed to reduced accuracy on 

this trial in particular. Also in support of this interpretation is that adults responded correctly on 

the 100:0 1v3 and 100:0 2v5 trials only 90% of the time, whereas children never responded 

incorrectly to these trials, suggesting there is noise in the adult data. Another possibility is that 

the 60:40 2v5 trial is simply too difficult. Although it then becomes hard to know why children 

performed above chance on it in Experiment 3. This adult experiment did provide some clarity 

on the second-most challenging trial, 60:40 1v3. Even adults tested online responded at above 

chance-levels as a group, albeit this ability was not particularly strong, suggesting that while this 

trial is difficult, people can determine the better choice. It also raises a question regarding 

statistical power in my child experiments; namely, the 66% of adults responded correctly to this 

trial (statistically different from chance with 68 participants), whereas 65% of children 

responded correctly on this trial (not statistically different from chance with 40 children). This 

highlights the possibility that had more children been tested, their performance may have 

differed from chance. 

A number of follow-ups to this adult experiment can be conducted in order to better 

understand these findings and their implications. Firstly, it is likely that the online setting of this 

experiment created a significantly different testing experience to the in-person alternative, which 

was designed and had ethics clearance and then was discontinued when the COVID shutdown 

occurred (3 participants had been tested). Secondly, the decrement in performance on the 60:40 

2v5 trial in this experiment, a trial that children succeeded on in Experiment 3, could be due to 

the benefit of sequential (“experienced”) sampling as opposed to simultaneous (“summary”) 

sampling, in probability experiments. This could be due to a phenomenon known as the 
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“description-experience” gap, which has been demonstrated in adults a number of times, and can 

be further investigated in future work (for a review see Schulze & Hertwig, 2021).  

General Discussion 

Across five experiments, I established that 5- and 6-year-old children and adults can – 

under certain conditions – integrate two sources of numerical information to make probabilistic 

decisions. Across all the experiments, performance on trials where the proportion of target to 

non-target objects is deterministic (100:0), performance is close to, or at, ceiling levels. 

Performance on the 88:12 trials, where choosing the smaller number of draws from the container 

with mostly target objects would maximize their chances of getting green, was also significantly 

better than chance levels across all the experiments. When presented with equal proportions of 

black to green lollipops, children appeared to be implementing a proportions-focused strategy 

when proportions were visible during choice in the 1v3 comparison (Experiment 1) but appeared 

to correctly choose the larger number of draws when proportions were hidden in all subsequent 

experiments, suggesting that hiding proportions during choice improved performance. The 60:40 

1v3 trial appeared to be the most challenging, both for children and adults. Most children chose 

the 1-lollipop draw from the green-majority container on this trial in Experiment 1 and were no 

different than chance on the same trial in Experiment 4. Choosing the 3-lollipop draw from the 

black-majority container was also challenging for adults, though they did so at above chance 

levels. However, choosing the 5-lollipop draw, as compared to 2 proved especially difficult for 

adults, as this trial was the only trial where adults’ accuracy was no different from chance. 

Curiously, children succeeded in choosing the 5-lollipop draw at above chance levels on this trial 

type when the proportions were hidden at test. 
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This set of experiments highlights children’s sensitivity to perceptual salience as 

evidenced by performance on Experiment 3 compared to Experiment 2. While this is largely 

speculative, it appears performance on the 60:40 1v3 trial, which is very mathematically 

challenging, improves from Experiment 1 to Experiment 4, as well. This may be because in 

Experiment 1, where the distributions were visible, children found it difficult to ignore the 

greater proportion of target objects and opt instead for the larger sample from the distribution 

with a lower proportion of target objects. Interestingly, when comparing across experiments, 

children’s accuracy on that trial went from 30% on Experiment 1 to 65% on Experiment 4 when 

I simply hid the proportions by covering them with an opaque box at the time where we 

prompted children to make a decision. Their choices seemed to be sensitive to this minor change 

in design. I would not make strong claims from comparing across experiments, but a suitable 

follow-up to this speculation would be to manipulate whether the proportions are visible (or 

hidden) at the time of making a choice in a within-subjects design. This would reveal whether or 

not performance on the same trial type would be significantly different with proportions being 

visible, or hidden.  

Another natural follow-up to this work would be to manipulate proportions and 

distributions more systematically. The trials always involved one of four distributions: 100:0, 

88:12, 60:40, and 50:50. Adding more layers to this would be helpful in better understanding the 

extent of children’s (and adults’) sensitivity to these differences. Closely related to that, the 

computed probabilities (taking into account both proportional information as well as sample 

number) can also be systematically manipulated such that there is a larger distribution of 

competing probabilities. These possibilities will be discussed in further detail in Chapter 5. 
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Some trials are simply more (or less) challenging based on the probabilities and this 

should also be investigated further. For instance, one particularly important feature of the 

characteristic of the different trials is whether the computed probabilities of getting the target 

object between the competing samples lie on the same or opposite sides of 50%. When a 

comparison lies on the same side of 50%, this is notoriously difficult for children to deal with 

(Falk et al., 2012). In the 88:12 1v3 trial, the competing probabilities of getting at least one green 

lollipop are 88% versus 34%. On the other hand, the 60:40 1v3 trial involves the comparison 

between 60% and 81%. For starters, the quantitative difference between these competing 

probabilities (i.e., the relative likelihood or “ratio of ratios”) contributes to the difference in 

difficulty of these two trials (i.e., 88% and 34% are further apart than 60% and 81%). But also, 

when both probabilities lie on the same side of 50%, one cannot adopt a very useful heuristic to 

make a choice, which is to determine whether an individual sample container is “good” or “bad” 

and choose based on this. When comparing 60% and 81% both of these are good, or winners, 

because they are both more likely than not to produce targets. In contrast, when one sample 

container is a clear “loser” because it is most likely to not contain targets, it is easy to avoid this 

sample and choose the winner. I will return to this point in particular to discuss in more depth in 

Chapter 5, as this is relevant to all chapters of the dissertation.  

 Research on children’s abilities to integrate multiple pieces of information in decision 

making extends to non-numerical domains as well (Bridgers et al., 2016; Gualtieri et al., 2020; 

Sobel et al., 2004). When presented with two sources of information, where one is numerical in 

nature and the other is social (e.g. testimony), children show evidence of considering both 

sources of information when making judgements: Children as young as 4 can integrate observed 

causal frequency information with an informant’s competing testimony, by weighing the strength 
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of each piece of information (Bridgers et al., 2016). That is, if a child must decide which of two 

objects is a blicket (an item that activates a detector), they integrate a person’s testimony with 

their own observations of the causal efficacy, relying more on a confident person than a non-

confident person when that person’s testimony contradicts the data they have observed. There is 

also evidence that starting at the age of 4, children use prior knowledge to inform the hypothesis 

space when making similar inferences under uncertainty (Sobel et al., 2004). In particular, 

children take into consideration the base-rate proportions of target options in their judgement of 

whether or not an object is a blicket). When an object displayed unambiguous causal function, all 

children judged it to be a blicket, regardless of whether they were told that blickets were rare or 

common. However, when another object was ambiguous in whether or not it was causally 

functional (i.e., the activation could have been caused by that object, but another object was also 

present that could have caused the activation), 4-year-olds were more likely to determine that 

they were blickets if blickets were common than if they were rare. Thus, the experiments in this 

chapter add to evidence of integration that fits with a broader line of research suggesting that 

young children can integrate multiple sources of numerical information when making inferences 

under uncertainty. 

In sum, the results from chapter 2 reveal that children and adults can engage in some 

integrative reasoning that allows for the consideration of numerical and proportional information 

when making probabilistic decisions. This makes sense considering that young children, as well 

as adults, use complex statistical information to understand their environments and navigate the 

world around them (Aslin et al., 1998; Saffran et al., 1996). Even infants have shown a 

sensitivity to proportional and numeric information (Denison et al., 2014; Feigenson et al., 2004; 

Kayhan et al., 2017; Odic, 2017; Teglas et al., 2007; 2011; vanMarle & Wynn, 2011; Xu & 
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Garcia, 2008). This, in addition to the success of children in Experiments 1-4, was the primary 

motivation for taking a leap backwards in development and investigating these abilities in infants 

in the next chapter. 
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Chapter Three: Integration of Number and Proportion in Infants 

Beginning in infancy and developing throughout childhood, children have remarkable 

abilities to reason about numbers and proportions (e.g., Feigenson et al., 2004; Gallistel & 

Gelman, 2005; Gelman & Gallistel, 1978; Dehaene, 1997, 2009; Piaget, 1965; Xu, 2003). 

Children, like adults, are capable of estimating large numerosities (e.g., Izard et al., 2009; Lipton 

& Spelke, 2003; Xu, 2003; Xu & Spelke, 2000; Xu et al., 2005), as well as keep track of and 

compare smaller collections of individual items (e.g., Feigenson et al., 2002; Starkey & Cooper, 

1980). In addition to being able to represent small and large numbers, infants’ numerical 

representation systems even allow them to engage in seemingly complex numerical comparisons 

and computations (Kobayashi et al., 2004; 2005; Koechlin et al., 1997; McCrink & Wynn, 2004, 

2000). In this chapter, I examine whether infants can combine numerical information (in the 

small number range) and proportional information together in a probabilistic decision-making 

task.  

In terms of small numbers, even infants as young as 10 months can precisely represent, 

track, and explicitly choose between sets containing three or fewer items (Antell & Keating, 

1983; Feigenson et al., 2002; Starkey & Cooper, 1980; Starkey et al., 1990). In looking time 

studies, when infants were habituated to one set size (e.g., 2) and then shown a novel set size 

(e.g., 3), they looked longer at the novel set size, suggesting that they could discriminate between 

small numbers of objects (Starkey et al., 1990). Additionally, a series of now classic experiments 

examined whether or not infants can track and then correctly choose the larger of two quantities 

of hidden objects. Infants were shown two quantities of crackers that were individually placed in 

separate opaque containers, and reliably crawled to the container with the larger number of 

crackers when the number of crackers being compared was 3 or fewer (Feigenson et al., 2002; 
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vanMarle, 2013). We also know infants are able to create working memory models of at least 

two sets of 3 or fewer items, and can compare these models on the basis of one-to-one 

correspondence to determine numerical equality or ordinal relations (Le Corre & Carey, 2007; 

Feigenson & Carey, 2003; Feigenson & Carey, 2005; Feigenson & Halberda, 2004).  

Infants are capable of discriminating between sets on the basis of number as well as other 

non-numeric properties of the stimuli. For example, infants as young as 7-months-old respond to 

changes in various quantitative dimensions in visual displays, such as contour length (i.e. the 

sum of the perimeters of the individual objects in the set; Clearfield & Mix, 1999), with items up 

to a limit of 3. That is, after habituating to either 2 or 3 squares of the same size, infants were 

then shown both the same number with a new contour and the same contour with the old number. 

By comparing the sum of the continuous properties that were bound to the visual stimuli, they 

were able to detect the change in contour length even when number was held constant. Similarly, 

by comparing the models for one-to-one correspondence, infants can also detect that two sets no 

longer match in numerosity and dishabituate to the test trial that differ on the basis of number 

when contour length is matched (Cordes & Brannon, 2009a; Margolis, 2020). This shows that 

they demonstrate this ability on the basis of number as well as other continuous variables.  

Infants, children and adults also have a basic ability to represent large numerosities: the 

approximate number system (ANS). This system produces rapid and inexact representations of 

numerosities that are too large to count (and in the case of infants and non-human animals, in the 

absence of the ability to count). These representations adhere to Weber’s Law, such that the 

ability to discriminate between two large sets of objects (based on number) depends on the ratio 

of their magnitudes (Halberda & Feigenson, 2008; Lipton & Spelke, 2003; 2004; Whalen et al., 

1999; Xu & Spelke, 2000). This ability to discriminate large numbers is generally tested by 
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comparing two sets or arrays of objects, and the acuity with which these judgements are carried 

out does not depend on the total number of objects in the array, but rather on the ratio between 

the objects presented (i.e. the closer together the two numbers are, the more difficult it is to 

discriminate them from one another). This acuity steadily becomes more fine-tuned throughout 

childhood and across development (Odic et al., 2013). While adults discriminate numerosities at 

about a 1.15 ratio (Van Oeffelen & Vos, 1982), 6-month-old infants discriminate numerosities 

that differ by a factor of 2.0 (e.g. 4 vs. 8, but not 4 vs. 6), and 9-month-old infants discriminate 

numerosities that differ by a factor of 1.5 (e.g. 8. vs. 12, but not 8 vs. 10) (Lipton & Spelke, 

2003, 2004; Xu, 2003; Xu & Spelke, 2000).  

There is a surprisingly small amount of work looking at ratio representation and 

discrimination, or proportional reasoning with large numbers of items, in infants and young 

children. From the little work that does address this question, it appears that this idea of 

discrimination acuity that gradually improves over development extends to reasoning about the 

ratio of ratios, as well. McCrink and Wynn (2007) found that 6-month-olds were able to 

discriminate between ratios that differed by a factor of 2 but not 1.5. This suggests that infants 

are capable of ratio abstraction, whereby they can be habituated to a particular ratio by viewing 

displays that differ in overall numbers of objects but have constant ratios and they will 

dishabituate to ratios that are sufficiently different (by at least 2 times). It also appears that 

infants may be capable of using that representation of the ratio of a distribution when 

determining the match between a population and sample. One of the only studies that has 

examined whether there is development in infants’ relative likelihood estimation abilities comes 

from a probability study with 6- to 18-month-old infants where multiple pairs of samples were 

drawn from a distribution such that the magnitude of difference in likelihoods between each pair 
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of samples varied. Kayhan et al. (2018) investigated whether infants are sensitive to the 

difference between likelihoods of multiple outcomes by trying to determine if infants would 

distinguish between a pair of outcomes that differed only slightly in probability of occurring 

(statistically-speaking) and another pair of outcomes where the difference in relative 

probabilities was much larger. Results showed that as infants aged, their ability to make 

probability judgments across different relative likelihoods became more fine-grained, though the 

results from this study were not entirely straightforward. (Kayhan et al., 2018). 

Despite the lack of research specifically examining ratio abstraction in infancy, there is a 

line of research that suggests infants (and non-human animals) can use ratio information to make 

probabilistic inferences. When 8-month-olds are presented with a container of mostly red balls 

and a few white balls (70 red:5 white, for example), they looked longer when a small sample 

drawn randomly from the box did not match this distribution (i.e. contained more white balls 

than red balls) than when the sample matched the distribution (i.e. contained more red balls than 

white ones; Xu & Garcia, 2008). This suggests that they inferred the probability of the sample 

given the population and when this sample did not reflect what they observed in the population, 

this violated their expectations. Similarly, when 12-month-olds saw three yellow objects and one 

blue object randomly shuffled inside a container before one of them exited, they looked longer 

when they observed an unlikely event (i.e., a blue object leaving the container) than when they 

observed a likely event (i.e., a yellow ball exiting the container; Teglas et al., 2007). Converging 

evidence from various labs suggests that infants have expectations about both these multi-item 

sampling events and single sampling events, at least as measured by looking-time tasks (Denison 

et al., 2013; Kayhan et al., 2018; Lawson & Rakison, 2013; Teglas et al., 2007, 2011; Xu & 

Denison, 2009; Xu & Garcia, 2008).  
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These looking-based experiments established that infants can observe a population and 

then reason about whether a sample was probable or improbable. A similar line of research 

examines whether infants and non-human animals can make predictions about sampling events 

based on the distribution of items in a population, and when they must decide which of two 

competing populations is most likely to yield a reward. For example, they are able to predict 

which of two random draws would be more likely to yield a particular object based on the 

proportion of objects in the populations from which they were drawn (Denison & Xu, 2010, 

2014). This work demonstrated that infants are not only able to make predictions based on 

proportional information, but are also able to use these predictions to guide their actions.  

In single-draw probabilistic reasoning tasks, infants and apes appear to have sophisticated 

abilities to make accurate inferences. When infants were shown two transparent containers that 

have target and non-target objects in different ratios, and the experimenter sampled from these 

containers by placing a lollipop from each jar in an opaque cup without allowing the infant to see 

its color, infants reliably walked or crawled towards the sample that had come from the jar with 

the higher ratio of their preferred lollipop (Denison & Xu, 2014; see Rakoczy et al., 2014 for 

very similar evidence from non-human primates). This persisted even when the jar with the 

higher ratio of target to non-target lollipops contained a smaller absolute number of target 

lollipops. In addition, infants have also shown that they can integrate a number of different 

factors, quantitative and otherwise, when determining the relationship between a sample and a 

population. For example, 11-month-olds are capable of weighing an experimenter’s preference 

for a particular type of object with the proportion of that object to other ones to infer the outcome 

of a draw (Xu & Denison, 2009). If the experimenter establishes a preference for red balls, for 

example, and draws mostly red balls from a distribution with few red balls and mostly white 
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balls, infants are not as surprised by this as they are when the same sample is drawn by a 

blindfolded experimenter. However, there is no research on infants’ ability to integrate two 

numerical dimensions, such as numbers and proportions, to make probabilistic decisions.  

Given that infants appear to be able to reason about both numbers and proportions 

independently of one another, I aimed to examine if they can integrate this information. While 

this is a challenging task, the results obtained from school-aged children and adults in Chapter 2 

showed some promise with regard to performance on tasks that require this kind of flexibility in 

using both numerical as well as proportional information to arrive at a favourable outcome. In 

order to examine these integrative abilities further and, in particular, investigate their 

developmental origins, I used a similar paradigm to the one used in Chapter 1, modified for use 

with 10-12-month-old infants. There were two important considerations in designing a physical 

version of the lollipop game to use with infants. First, I kept distributions hidden when asking 

infants to choose between samples.  This design seemed to work better with older children and 

most infant and ape paradigms in the probability literature use this approach (e.g., Denison & 

Xu, 2014; Rakoczy et al., 2014). Second, we only presented infants with the trials where the 

number of lollipops sampled were either 1 or 3. The reason for doing this was two-fold: first, 

because this was a non-verbal paradigm, the possibility of the instructions biasing or confusing 

the participants in some way was eliminated, so there is no concern that infants might think the 

experimenter is suggesting they choose the single or multi-item container based on her 

instructions. Second, this avoids crossing the boundary between small and large numbers 

established in previous research with infants this age in terms of the comparison between the 

number of draws in the sample (2 versus 5 would cross this boundary, whereas 1 versus 3 does 
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not; Feigenson & Carey, 2005; Feigenson et al., 2002). In the following experiments, I sought to 

assess the probabilistic decision making using numerical and proportional information is infants.   

Methods 

Participants 

Data from 46 10-12-month-old infants were included in the final analyses for this 

experiment (Mean age: 11;15 [months; days], range: 10;9 – 12;29, females: 25). An additional 

22 infants were tested and their data were excluded for failure to select the pink lollipop during 

both preference checks (n=15); inability to crawl to one of the cups on one or more trials (n=5); 

and experimenter error (n=2). Children were tested in the Developmental Learning Lab at the 

University of Waterloo.  

Procedure 

An experimenter first established that there is a favourable target object (in this case, a 

pink, sparkly, light-up lollipop) and an unfavourable one (a black lollipop). This was done using 

verbal cues such as “I like this one,” referring to the pink lollipop, and non-verbal cues, such as 

smiling when presenting the pink lollipop to the infant. In contrast, the experimenter frowned 

and said “I don’t like this one” when referring to the black lollipop. In previous work, infants 

have generally preferred the pink lollipop at baseline, with no cues from the experimenter. In this 

experiment, I wanted to be as certain as possible that infants had a goal for the pink target, so I 

added these cues and only included infants who clearly preferred pink. Following this, there was 

an initial preference check where the experimenter placed both lollipops on the floor to ensure 

that all infants crawled towards the favourable object (the pink lollipop, in this case). Infants’ 

choice was recorded based on which lollipop they crawled to.  



62 
 

Following this, infants were presented with two trials in counterbalanced order: 88:12 

1v3 and 60:40 1v3. Each trial started with the two containers covered. The experimenter then 

placed two empty cups in front of the containers. The covers were removed and the containers 

were then displayed one at a time to the participant so that they could see the distributions. The 

containers were then covered and the experimenter drew either 1 or 3 lollipops from each 

container and placed them in the cups, such that the participant was only able to view the sticks 

in the cups, not the colours of the lollipops. In the case of the 3-lollipop sample, the experimenter 

sequentially sampled one lollipop at a time. The experimenter then prompted the infant to crawl 

towards the cup of the lollipops. Afterwards, infants were presented with a second preference 

trial in which the experimenter again presented both the black and pink lollipops, placed them on 

the floor, and prompted the infant to crawl to one of them.  

Design 

 Each infant was presented with a preference trial, followed by two test trials presented in 

counterbalanced order, then a final preference trial at the end. If an infant crawled to the black 

lollipop on the first preference trial, it was repeated 2 more times (for a maximum of 3 initial 

preference trials). Any infants who failed to crawl to the pink lollipop at least once on the initial 

preference check trials or on the final preference check were excluded from the final sample. 

While we could have implemented a more stringent inclusion criterion, we did this primarily to 

ensure that we did not have to exclude a large number of infants, who are typically difficult to 

find and recruit.  Please see Figure 11 for a schematic of the experimental design, and Figure 12 

for the test trial types included.  
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Figure 11. Schematic of the experimental design  

 

 

 
 

 

Figure 12. Trials presented to infant participants (order of presentation was counterbalanced 
across participants). Proportion of target to non-target objects is indicated below each 
container. Correct choices based on the computations in Chapter 1 are indicated by the 
asterisks. 

 

Results 

A GEE binary logistic regression with trial as a between-subject factor and age centred 
around the mean as a covariate revealed no significant main effect of trial on accuracy, Wald 
X2(df = 1, N = 46) = 1.37, p = .242. There was no effect of age or an age by trial type interaction. 
This suggests that infants did not reliably use either or both cues to make selections, as their 
responses were very close to chance-based selection.  

 

* * 
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Figure 13. Mean correct responses on each trial indicated by dot. Error bars indicate ± 1 
standard error of the mean and individual data points are jittered for visibility. The dashed line 
represents chance (50%) performance. 

Discussion 

Results showed that infants were not able to use the numerical and proportional 

information to make probability judgments. This pattern of results could be caused by a number 

of factors. First, it is possible that there is development in these abilities across the age group, 

which the experiment did not have the power to detect and reveal. A second possibility is that 

these infants (or at least, a subset of them) had a different goal in mind than the one we intended. 

Finally, it is possible that the task is simply too difficult for the age group included in this 

experiment (10- to 12-month-olds). 

To address the first possibility, it may be the case that the number of infants tested was 

simply too small to reveal any age effects. We tested 46 infants with roughly equal numbers of 

10-, 11-, and 12-month-olds (approximately 15 each). If there are indeed age effects in this 
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range, it is possible that we did not detect them because of the small number of infants tested. 

Previous work has shown that there is development during this age in the probability paradigm 

used by Denison & Xu (2014). In that paper, only the oldest half of infants (those over 11 

months) were able to succeed at the most challenging case in the final experiment, where infants 

had to make probability comparisons on the same side of 50% (see the General Discussion of 

Chapter 2 for why this poses a particular challenge). If infants are still developing their 

probabilistic reasoning abilities during this age range, it is not surprising that they may struggle 

to integrate proportions with number draws at this stage.  

Another important issue to raise is that while I was careful to not require that infants 

compare individual draw numbers that crossed the small-large boundary, this task may require 

them to integrate a (perhaps ANS-based) large number ratio representation with a small number 

(the draws) to make the individual computations for each container and its respective sample. 

This is the first investigation, to my knowledge, of such a skill. Given that infants have difficulty 

comparing sets of items that cross between the small and large number ranges (<3 compared to 

>3; Feigenson et al., 2002; vanMarle, 2013), it is possible that the system representing the ratios 

(perhaps the ANS) and the system representing the number of draws (parallel individuation) 

cannot be combined in such a way. Therefore, perhaps we should not have even expected infants 

to be able to integrate an abstracted ratio with a small number. I will return to this point more 

fully in Chapter 5. 
Based on past research of numerical reasoning and probabilistic inferences in infancy, we 

recruited participants in what may have been the earliest possible age to observe these abilities, 

admittedly however, this was probably ambitious. Additionally, it is also not outside the realm of 

possibility that, had we also tested more infants across the entire age range, I could have found 
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some kind of age effect, either a main effect of age or an interaction between age and trial type. 

As mentioned earlier, there appears to be development between 10-12 months based on previous 

work (Denison & Xu, 2014). It is possible that infants at different ages could be employing 

different strategies or that individual infants might be using different strategies that in turn wash 

each other out. For example, some individual infants might focus on proportions, while others 

may rely more on number. We do know that infants are able to perform complex computations 

with both small and large numrosities, though. They can, for example, engage in non-symbolic 

approximate addition and subtraction on large-number arrays (McCrink & Wynn, 2004). 

However, it is possible (if not likely) that the ability to readily integrate multiple different and 

complex pieces of numerical information to make judgements about relative probabilities 

develops later.  

Finally, a number of methodological concerns need to be addressed. While we were able 

to verbally instruct the school-aged children to try and maximize their chances of getting green, 

and framing it such that the game-like scenario provided sufficient motivation to do just that, the 

same could (for obvious reasons) not be done with the infants in this experiment. We hoped that 

the verbal and non-verbal cues that the experimenter provided the infants were sufficient to bias 

them to prefer the pink lollipop and recognize that obtaining it was the goal, however this may 

not have been the case. If this is true, performance may then not be entirely reflective of infants’ 

integrative abilities (or lack thereof), but it could rather be a reflection of different infants being 

motivated to seek out a goal other than maximizing the chances of getting pink lollipops (e.g., 

for some infants, just getting more lollipops of any colour might have been very rewarding).  

The results observed in this chapter indicate that more groundwork needs to be done in 

the study of integrating information on small numbers and proportions in making probabilistic 
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inferences. There are a number of potential follow-ups that can help in better understanding the 

mechanisms at work in tasks like this one. One possibility would be to systematically test 

different proportions and draw numbers, as suggested in chapter 2. Another interesting follow-up 

that would be informative with this age group especially would be to employ an eye-tracking 

methodology. This would be an interesting avenue to explore, in particular because it would be 

informative in understanding infants’ allocation of attention in this task. Would they look first at 

the proportions of the distributions to abstract the ratio information, then at the sampled objects 

before making a choice? Or would there be a pattern of back-and-forth oscillation between 

fixating on the proportional information and the sample numbers? Do they consider each sample-

proportion pair individually and compare them to one another, or do they compare proportions 

first before moving on to compare sample numbers? And finally, would infants make accurate 

anticipatory looks when predicting where an agent might go to collect target items? Like other 

tasks, it is possible that infants would show competence earlier in a looking-based experiment 

than in one that requires they plan and execute a motor act.  

This experiment highlighted a missing step between the relatively robust findings of early 

school-aged children’s ability to integrate numerical and proportional information in 

probabilistic decision making and the inability to demonstrate this ability in infancy. This big 

leap backwards from school-age children to infants was prompted by the success of older 

children on these tasks and the literature suggesting that infants may have the abilities to do each 

aspect separately (the number comparison of the draws and the proportion comparison in the 

containers). In the next chapter I turn to an intermediate age to determine if the abilities shown 

by 5- and 6-year-old children (and adults) in Chapter 2 extend to a younger age group of 18-30-

month-olds.  
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Chapter Four: Integration of Number and Proportion in Toddlers 

The results from the infant experiment revealed that while infants may have the requisite 

abilities to use both numerical and proportional information to make decisions, integrating 

number and proportion in probabilistic decision making appears to be beyond their capabilities. 

On the other hand, the data from school-aged children suggests that 5- and 6-year-olds are able 

to engage in this kind of flexible data integration in order to make decisions and maximize their 

chances of arriving at a favourable outcome, at least under some conditions. One possibility is 

that these abilities emerge right around the age of our youngest participants in the experiments 

with school-age children (around the age of 5), however, it would be interesting to explore 

another possibility, which is whether these abilities emerge sometime between the infant and 

school-aged years. Much like with infants, there is no literature examining this integration in the 

toddler years. 

In fact, the literature on the development of numerical and proportional reasoning in 

toddlerhood is quite sparse. Generally speaking, toddlerhood (from roughly 18 -30 months) is 

relatively understudied compared to the earlier infancy period (0-18 months) and preschool ages 

(3-6 years) in much cognitive development literature. In terms of probability, specifically, a 

review of the literature suggests that there are almost no studies in this age group. One exception 

is work by Waismeyer et al. (2015) examining causality with 2-year-olds by presenting them 

with a probabilistic causal system. This is quite different from the sampling studies that are most 

relevant to this dissertation; however, it does provide evidence that 2-year-olds can consider two 

likelihoods simultaneously to make an inference about which of two items is more likely to 

activate a machine. There are a number of potential reasons for this gap in the literature. One 

major reason is that it is difficult to design experiments suitable for this age range. While older 
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children may easily understand and respond well to explicit instructions in a game-like context, 

for example, this may not be true for toddlers who are less skilled in their language 

comprehension and who may have less experience with structured, instructions-based activities. 

On the other hand, using nonverbal experimental designs commonly-used in infant paradigms 

may not be engaging enough to elicit participant responsiveness and attentiveness in toddlers, at 

least in the context of studying numerical processing.  

In terms of the numerical reasoning literature, there is some work suggesting that children 

starting at 24 months of age have mastered representations of small numbers and can represent 

ordinal relations between them (up to a limit of 5), even when controlling for continuous 

variables such as surface area (Brannon & Van de Walle, 2001; Huntley-Fenner & Cannon, 

2000; Sophian & Adams, 1987; Strauss & Curtis, 1984). In other words, toddlers understand that 

a set of 5 objects is different and greater than a set of 2 objects, for example. This sheds some 

light on toddlers’ ability to make numerical comparisons, in particular ordinal judgements, 

before mastering the verbal counting system that some believe may mediate these judgements in 

older children (Brannon, 2002). Even younger toddlers, 14-16-month-olds, appear to engage in 

reasoning about ordinal relationships between numerical values in implicit, looking-based tasks. 

After habituating to pairs of stimuli that differ in absolute numerosities but had the same constant 

ordinal relationship, (e.g. 1 & 2, 3 & 4), toddlers dishabituated when they were shown test trials 

with a reversed ordinal relationship, or no ordinal relationship (i.e. equal numerosities), but not if 

they were shown test trials with different numerosities while keeping the ordinal relationship 

consistent (Cooper, 1984). Although this is a related, not identical concept, this work suggests 

that children in this age range have a solid ability to compare what is “larger” and “smaller” and 

the relations between sets of numbers, at least up to a limit of 5 objects. In terms of large number 
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comparisons, children as young as 2.5 years of age are able to discriminate between large 

numbers that differ by ratios between 2:3 and 1:2 (Halberda & Feigenson, 2008; Rousselle & 

Noël, 2008). Children at this age perform more poorly on comparisons of 15 vs 18, for example, 

than on comparisons of 6 vs. 9, suggesting that their accuracy on these comparisons was 

controlled by the ratio of the numerosities and not by the absolute difference between them 

(Cheung & LeCorre, 2018).  

In sum, little work has so far examined probabilistic reasoning in the toddler years, while 

there is slightly more work on basic numerical abilities. This, as well as the success of school-

aged children and failure of infants in my tasks, prompted my decision to move on to testing 

toddlers in this chapter using a very similar paradigm to the one used with infants, continuing the 

work that was started with the school-aged children’s studies. If there is development in the 

months immediately following the 12-month mark in the domains of numerical comparisons and 

ordinal knowledge, or even in simple probabilistic reasoning as suggested by the age effects 

found by Denison & Xu (2014) then there may be reason to believe that testing toddlers may 

help bridge that gap between the numerical/proportional integration observed in older children 

and adults, and the lack thereof in infants under 12 months. 
Methods 

Participants 

 Data from 40 toddlers (mean age = 20;30 [months; days], range=18;6-27;4, females: 19). 

An additional 17 toddlers were tested and their data were excluded for fussiness and failure to 

complete the experiment (n=8); failure to select the pink lollipop during both preference checks 

(n=6); experimenter error (n=2); and parent interference (n=1). Children were tested in the 

Developmental Learning Lab at the University of Waterloo. 
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Procedure 

I used the same physical game task used with the infants in the previous chapter with the 

slight modification of asking participants to point to their choice rather than crawl to it, which 

seemed like a more appropriate set-up for this age group. Participants were tested in a choice 

paradigm in which they sat across a table from an experimenter with their parent.  

I presented the toddlers with the same trials that were used with the infants in the 

previous chapter, using the same experimental stimuli and script. I first established that the pink, 

sparkly lollipop is the favourable object by using verbal cues such as “I like this one,” and non-

verbal cues, such as smiling when presenting the pink lollipop to the toddler. I also established 

that the black lollipop is unfavourable by frowning and saying “I don’t like this one” when 

referring to it. Following this, there was an initial preference check where the experimenter 

placed both lollipops on the table within reach of the toddler and asked “which lollipop do you 

want?” Toddlers’ choice was recorded based on which lollipop they touched or pointed to first. 

Following this, toddlers were presented with two trial types in counterbalanced order. These 

trials were identical to the ones used in the infant experiment. Each trial started with the two 

containers covered on the table. I placed two empty cups in front of the containers. I removed the 

covers and the containers were then displayed one at a time to the participant so that they can see 

the distributions. I then covered the containers and drew either 1 or 3 lollipops from each 

container and placed them in the cups, such that the participant was only able to view the sticks 

in the cups, not the colours of the lollipops. I then prompted the toddler to choose one of the cups 

by moving them both within reach of the toddler and asking them which cup they wanted. After 

both test trials, I presented toddlers with a second preference trial during which I presented both 
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the black and pink lollipops, placed them on the table within reach of the toddler, and prompted 

the child to choose one of them. 

Design 

The design was identical to the experimental design used in the infant experiment. 

Participants were presented with a preference trial where the experimenter used the same verbal 

and nonverbal cues previously used with the infants to bias the child to choosing the pink 

lollipop. We then presented them with the two test trials in counterbalanced order, followed by a 

final preference check.  

Results 

A GEE binary logistic regression with trial as a between-subject factor and age in months 

centred around the mean as a covariate revealed no main effect of trial on accuracy, Wald X2(df = 

1, N = 40) = 3.487, p = .062. No effect of age was found, nor was there a trial by age interaction.  

Binomial tests for each trial type showed that toddlers succeeded at choosing the draw 

that yields a higher probability of obtaining the pink lollipop in the 60:40 1v3 trial, (M=82.5%, 

SD=.385, p < .0001). They did not, however, choose the draw that yields a higher probability of 

obtaining the pink lollipop in the 88:12 1v3 trial, at above chance levels (M=62.5%, SD=.490, 

p=.154).  
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Figure 14. Mean correct responses on each trial indicated by dot. Error bars indicate ± 1 
standard error of the mean and individual data points are jittered for visibility. The dashed line 
represents chance (50%) performance. 

 

Discussion 

 This experiment demonstrates perhaps the first evidence of toddlers integrating 

probability and number. It appears that beginning in the second year of life, but likely not before 

then, children can consider both the distributions and the number of draws when reasoning about 

sampling and probability.  

While the results were not significantly above chance on both types of trials, unlike 

infants, toddlers showed flexibility in choosing the cup with more draws more often when it was 

more advantageous (the 60:40 1v3 trial) than when it was less advantageous (the 88:12 1v3 

trial). To look at this in another way, I coded the responses for choice whereby picking the 1-

lollipop draw was coded as a 0 and picking the 3-lollipop draw was coded as a 1. The tendency 
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to choose the three-item draw more often on the 60:40 1v3 trial than the 88:12 1v3 trial was 

statistically significant (Wald X2(df = 1, N = 40) = 27.39, p < .001). This main effect found for 

choosing the larger draw across trials indicated that they integrated numerical and proportional 

information such that one choice is preferred in each trial type. In other words, there appears to 

be some sensitivity to the shifting value of choosing each cup based on the strength of the 

numerical and proportional information provided.  

Interestingly, toddlers performed better on the more challenging trial, statistically 

speaking. This is a puzzling finding, but there are two potential reasons for this. I speculate that 

perhaps not having immediate access to the proportional information at the time of making a 

choice may have led some of the toddlers to be drawn to the larger number of lollipops in the 

sample. It is possible that in the 60:40 1v3 trial, where the proportions appear close to 50:50, 

toddlers’ did not detect the difference between the ratios and reasoned that, all else equal, more 

draws is better. However, in the 88:12 1v3 trial, they start out with clearly skewed distributions 

where they may initially be drawn to the container with a greater proportion of target objects but 

then seeing the additional draws from the distribution with the lower proportion of target objects 

introduces uncertainty and they cannot quite compute how or whether this should change their 

decision. Additionally, it may be the case that while having visible distributions with older 

children in Chapter 2 (Experiment 1 & 2) caused an over-weighting of proportional information 

due to its salience, hiding the proportional information may have been detrimental for toddlers. 

The working memory capacities and limitations for proportional information specifically is not 

known for this age range, and therefore it may be the case that the distributions should have 

remained visible in this experiment. An interesting and necessary follow up for this work would 

be to examine working memory demands for the ratio information in this age range specifically. 
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This would involve a closer investigation of whether or not toddlers detect the difference in these 

proportions and if they remember the proportions well enough to integrate them with additional 

information. 

As mentioned in the introduction to this chapter, there is little research investigating the 

cognitive development of probabilistic decision making based on numerical information in the 

age range between infancy and preschool years. In this chapter I examined these abilities and 

found that under some condition, toddlers may be capable of combining information about the 

proportion of a distribution and the number of sampled objects to make probabilistic decisions. 

This may resemble the beginnings of developing some sensitivity to the value placed on different 

kinds of numerical information. Next, I move on to a broader discussion of the findings across 

my entire dissertation, the limitations, future directions and broad implications of this work in 

Chapter 5. 
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Chapter Five: General Discussion 

Summary of Findings 

This dissertation outlined my investigation of the use of numbers and proportions in 

probabilistic decision-making across different stages of development. Chapter 2 examined these 

abilities in school-aged children (5- and 6-year-olds) across four experiments, and a fifth 

experiment extended this investigation to adults. The findings from the first experiment revealed 

that children are able to track probabilities fairly well when making judgements about sampled 

objects from larger distributions. Of particular interest was the children’s chance performance 

when there were identical distributions containing an equal number of target to non-target 

objects. This first experiment also brought our attention to the fact that task demands and the 

idiosyncrasies of the instructions used may potentially play a role in children’s performance by 

altering their understanding of the goal of the task, and subsequently impacting the strategy they 

use to respond to each trial. In Experiment 2, which featured multi-object samples and identical 

proportional properties of the distributions to Experiment 1, children showed improved 

performance, but were still struggling with the most challenging trial, 60:40 2v5. In Experiment 

3, I examined the possibility that the proportional information of the distributions was more 

salient than the numerical information of the samples, and modified the design slightly to 

occlude the distributions at choice. Results showed that accuracy was significantly higher than 

chance for all four trial types, suggesting that there was some merit to the salience of the 

distributions idea. Experiment 4 was both a partial replication of the 88:12 1v3 and 60:40 1v3 

trials in Experiment 1, except with occluded distributions at choice, as well as an investigation of 

baseline proportional discrimination abilities by adding an 88:12 1v1 and a 60:40 1v1 trial. 

Children succeeded on the 88:12 1v3 trial and still struggled with the 60:40 1v3 trial, but they 
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succeeded on both trial types when samples were equal, choosing the single draw that came from 

the distribution with a higher proportion of target objects, indicating that they were able to 

accurately reason about the proportional information presented to them. Finally, in Experiment 5, 

adults were tested on all trial types presented to children in Experiments 1-4 and succeeded on all 

of them with the exception of the 60:40 2v5 trial where their accuracy was no different from 

chance.  

Chapters 3 and 4 extended this work to infants and toddler, respectively using a physical 

version of the task. I found that infants were, as a group, responding at chance levels for both 

trial types used. Toddlers showed flexibility in choosing the cup with more draws more often 

when it was advantageous (the 60:40 1v3 trial) than when it was less advantageous (the 88:12 

1v3 trial). While the results were not significantly above chance on both types of trials, unlike 

with infants, a main effect found for choosing the larger draw across trials indicated that there is 

some sensitivity to the shifting strength of the numerical and proportional information provided. 

This provided promising evidence with regard to performance on tasks that require the 

integration of numerical and proportional information, but also leads to many open questions 

regarding the mechanisms that may be responsible for these patterns of results. 

Conceptual Implications 

Cross talk between large and small number systems?  

The tasks used in Chapters 2-4 of this dissertation require that participants combine 

proportional information about the distributions, likely represented by the ANS, and small 

numbers of the sampled objects. This raises the question of whether or not success in this task 

requires some form of cross-talk between these two distinct systems. There are three theoretical 

perspectives on whether or not there is cross-talk between the large and small number systems. 
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The first of these perspectives is that the two systems are independent of one another and that 

there is no cross-talk between them (Feigenson et al., 2002; vanMarle, 2013). The second is that 

the ANS might be used for both small numbers as well as large numbers, thus requiring no cross-

talk among systems (Cordes et al., 2001; Starr et al., 2013). And finally, the two systems may be 

independent of one another, but cross-talk between the two may be possible under certain 

circumstances that would allow for reasoning about both small and large numbers 

simultaneously. 

There are some open questions about why infants failed on this task, but also about how 

toddlers might have succeeded. One possibility for this pattern of results is a development of the 

capacity to combine information from both sources. While there may be evidence that adults can 

use the ANS to represent both small and large numbers (Cordes et al., 2001), the work by 

Feigenson and colleagues suggests that this is not necessarily the case for infants. If infant 

reasoning about small numerosities employed the ANS then one would expect to see the same 

ratio-dependent discrimination despite the actual values compared. This, however, is not the 

case, as they perform at chance when presented with a 1 vs. 4 comparison, or a 2 vs. 4 

comparison (Feigenson, & Carey, 2003, 2005). This lends support to the notion that infants use 

two different systems to represent these numbers and reason about them, one that has an upper 

limit used for small numerosities under 4, and another that is used for approximating large 

numerositites in a ratio-dependent fashion. This upper limit on infants’ ability to track small 

numbers of objects lends support to the notion that parallel individuation is recruited and that it is 

distinct from the system responsible for representing large numbers (e.g. Feigenson et al., 2002). 

Preschoolers between the ages of two-and-a-half and four-and-a-half are also reliably more 

accurate in comparing sets of small numerosities (2 vs. 3) than pairs of numerosities larger than 5 
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with the same ratio, even when controlling for continuous variables such as surface area and total 

perimeter and presented too briefly for counting (Cheung & LeCorre, 2018). While this 

difference in performance can be interpreted to indicate that preschool-aged children use distinct 

systems to compare small and large numerosities, this remains an open question because it is 

unknown if the ANS can be used for both (perhaps with reduced acuity) at this age.  

Other studies, however, have suggested that in some contexts, infants may be able to use 

the ANS to represent small numerosities in addition to large ones (Cordes & Brannon, 2009b; 

Starr et al., 2013). In a numerical change detection paradigm that does not involve habituation or 

familiarization to a single numerical value but instead requires infants to detect numerical change 

in one visual stream, 6-month-old infants were tested with different combinations of small 

number sets (e.g. 1v2, 1v3, 2v3) to determine whether the same ratio-dependent discrimination 

signature that is a hallmark of the ANS and discriminating between large numerosities exists for 

small ones. Infants successfully discriminated 1 versus 3 and 1 versus 2, but failed with the 2 

versus 3 comparison (Starr et al., 2013). If the small number system was being used, infants 

should have succeeded at discriminating 2 versus 3 objects. Following this up with a test of 

comparing numbers that cross the small to large divide, infants succeeded in discriminating 

between 2 and 4 objects, suggesting that it is likely one system that is at play, and one with a 

ratio dependence that is very similar to that of the ANS. The same ratio discrimination signature 

was found for small number sets as well as large number sets that both differed by the same 

ratio, mirroring results found for infants discriminating between large numerosities that differ by 

a ratio of 1:2 but not 2:3 (Xu & Spelke, 2000). This suggests that the ANS can be recruited to 

detect numerical change despite absolute numerical values. These results can be interpreted as 

evidence in support of the notion that the ANS can be recruited to represent numerosities 
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regardless of set size, at least using the numerical change detection paradigm and some auditory 

habituation studies, and that factors such as whether participants have access to their full 

attentional resources, and whether the spacing between individual objects is within the spatial 

resolution of attention may affect whether the ANS or parallel individuation is employed (Starr 

et al., 2013; vanMarle & Wynn, 2009).  

Proponents of the view that there is no cross-talk between the system for representing 

small numbers and the system for representing large numbers are supported by the findings that 

infants fail to discriminate sets of small numbers from sets of large numbers (Feigenson et al., 

2002; vanMarle, 2013). Other studies have shown that this can be done under some 

circumstances, but it requires a higher ratio between the numbers being compared to do so 

effectively. When comparing small number sets to other small number sets, infants can 

discriminate between two numbers that differ by a ratio of 1:2, whereas if the two sets being 

compared contain one large number (>3) and one small one (<4), this sensitivity threshold is 

increased to 1:4 (Cordes & Brannon, 2009b). This is interpreted by some to indicate that one 

system is responsible for this comparison that crosses the small-large number boundary, but 

another plausible hypothesis is that the two systems can in fact be integrated to simultaneously 

represent small and large numbers and be able to compare them, but that this is a difficult 

strategy that results in markedly reduced accuracy. This reduced accuracy that is the result of the 

noisy cross-talk between the two systems may even become a little more refined across 

development.  

The findings in this dissertation offer insights into the mechanisms used for integrating 

two sources of numerical information. However, there still remains much to uncover with respect 

to the strategies that would allow for success on this task. If true integration of proportional 
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information and sample size occurs in order to reliably select the option that would yield the 

higher probability of getting target objects, one of two potential mechanisms must be employed. 

The first would be that information about the sample size is processed separately from 

information about the population distributions. The proportion of target to non-target objects is 

then computed for that distribution, then the information from these two representational systems 

are somehow assimilated, and finally, the two computed probabilities of each population-sample 

set are compared. This complex process implies that there is some level of cross-talk between the 

two systems for representing small and large numbers. The alternative account would be that one 

universal system is capable of supporting these representations and computations – the ANS. 

Because the ANS is involved in representing different quantities across modalities in a 

commensurate manner, it may facilitate the integration of these different sources of numerical 

information. It is important to consider that there may be changes occurring in use of these 

systems with age, which may also lend support to the notion that the ANS is involved in these 

integrative processes, but become more adept at doing so later in toddlerhood.  

Issue of Continuous Variables 

One other key issue that warrants discussion is how to tell if participants are reasoning 

about discrete number rather than any other feature of the visual stimuli we present them. For 

instance, confounding volume or overall area with numerosity introduces unanswered questions 

regarding the mechanism of representing these objects and engaging in comparative reasoning 

about them. While there is evidence that infants may actually be tracking multiple different 

features of a set, including numerosity as well as other continuous variables like contour or 

overall area (Cordes & Brannon, 2009a), many studies of small number reasoning and 

discrimination confound numerosity with other continuous variables (e.g., Clearfield & Mix, 
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2001; Feigenson et al., 2002). When infants are habituated to either 1 or 2 objects (Feigenson et 

al., 2002) or 2 or 3 objects (Clearfield & Mix, 2001) of a constant size and then tested with either 

the familiar number of objects with a novel size or a novel number of objects with the familiar 

size they dishabituate only to changes in object size and not to changes in object number. Even 

more interesting is that in some studies, when continuous variables such as surface area are 

controlled, infants no longer show discrimination of novel numerosities (Feigenson et al., 2002). 

Similarly, when continuous extent is varied in a habituation paradigm, 6-month-olds fail to 

discriminate 1 versus 2 and 2 versus 4 dots (Xu, 2003; Xu et al., 2005). This is in direct contrast 

with evidence found in other work that suggests that perhaps the ANS is involved in small 

number comparisons as well (Starr et al., 2013). One potential explanation, however, is that 

different paradigms and testing conditions have different working memory demands that impact 

performance. It may not be the case that infants’ can no longer represent 4 items and compare 

them to another set using their small number system, but rather that this reaches the threshold of 

working memory for them and they can no longer track that many individual objects. Loading 

the infants’ memory may prevent them from tracking objects using their small number system, 

bypassing the upper limit effect. It is an open question as to whether participants could have been 

using features that correlate with number rather than numbers per se in this dissertation, but 

future work could try to tease this apart by manipulating things like item size in the displays, for 

example.  

The experiments in this dissertation were not designed with careful controls of variables 

that are correlated with both the samples and the proportions. This leaves open the question of 

whether participants of any age abstracted the ratios based on number and represented the 

sampled items based on number, and not other, correlated variables. When two displays are 
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presented in a comparative judgment task, they involve not only numerosity but also other visual 

properties: average diameter, total surface (the sum of the surface area of all the dots in each 

array), convex hull (the smallest contour that includes all of the dots), density (area extended 

divided by total surface), and total circumference (the sum of the circumferences of all the dots 

in an array). Thus, many have argued that when asking participants to judge which of two arrays 

has more objects (e.g. dots), it is possible that they rely on, or are to a certain extent affected by, 

the continuous non-numerical properties in the display. Attempting to control for these 

continuous variables that may confound investigations of number reasoning alone is important, 

but has also proven nearly impossible (for a review, see Henik et al., 2017). It is difficult to 

control for continuous properties that confound numerosity because the various visual properties 

correlate imperfectly. For example, when one changes the convex hull, one changes the density 

of the dots, but the change in density cannot be determined perfectly by the change in the convex 

hull. This is true for the contingencies among all visual properties, and thus it is very 

complicated (if not impossible) to control all properties at once (Gevers et al., 2016; Leibovich et 

al., 2017; Mix et al., 2002; Núñez, 2017).  

Information Integration 

There are a number of broad questions that remain open for discussion and require further 

consideration and future exploration. Firstly, the nature of the tasks I used do not allow a 

complete and in-depth understanding of the specific strategy-use that is at play in contexts where 

individuals need to consider both proportional and sample numbers to make a decision under 

uncertainty. It is unclear if the predominant strategy that is used is one where one piece of 

information is evaluated, for example, then the other piece of information is used to update that 

judgement, either confirming or changing the initial conclusion. And if so, do individuals tend to 
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process proportional information of the distributions first, then assess the sample number, or 

could they use the proportional information to update their decision based on number? More 

crucially, how do these processes differ when the two pieces of information are conflicting, or 

point in opposite directions, versus when they both point to the same outcome. For example, one 

can imagine that it can be challenging in cases where the proportional information initially 

makes one option appear favorable, only to have to update this evaluation when the sample size 

information alters this favorability, which is the case for all of the test trials used in this 

dissertation. Another potential mechanism for decision-making under these circumstances is a 

combinatorial one. This account would involve a combining of each set of proportion/sample-

size pairs separately first before comparing them to one another.  

While this sounds very complex and challenging, we know from other work on 

information integration (reviewed in Chapter 2) that children from a relatively young age are 

capable of engaging in this kind of information combining in decision-making. In addition to the 

work reviewed in Chapter 2 on the integration of numerical information, research on children’s 

abilities to integrate multiple pieces of information in decision-making extends to the social 

domain as well (Bridgers et al., 2016). In a blicket machine task where children were told that 

some shapes are blickets that activate a machine, 4-year-olds were provided with both testimony 

information as well as causal frequency information. This involved being presented with 

testimony from either a confident informant or an uncertain one, and then being presented with a 

sequence of events where a shape activates the blicket machine either deterministically (100% of 

the time) or probabilistically (e.g. 66% of the time). When the testimony information conflicts 

with the sequence of events, children show evidence of considering both sources of information 

when making judgements about which shape is the blicket. This therefore supports the notion 
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that children as young as 4 are able to integrate observed causal frequency information with 

testimony information. Similarly, children as young as 4 years of age show sensitivity to both 

witness testimony as well as proportional information when presented with both sources of 

information, whereby they rely more on proportional information when the witness is unreliable, 

but disregard proportional information if the conflicting testimony comes from a reliable witness 

(Gualtieri et al., 2020).  

There is also evidence that starting at the age of 4, children use prior knowledge to 

inform and limit the hypothesis space surrounding inferences made under uncertainty. In 

particular, children take into consideration the base-rate proportions of target options in their 

judgement of whether or not they require more information to make a decision. Three- and 4-

year-olds were tested in a blicket-machine paradigm and were first given a training phase in 

which the frequency of blickets was varied such that blickets were either rare or common (Sobel 

et al., 2004). They were then tested on whether or not they used this information to guide their 

inferences about uncertain information. When an object displayed unambiguous causal function, 

all children judged it to be a blicket, regardless of whether blickets were rare or common. 

However, when another object was ambiguous in whether or not it was causally functional, 4-

year-olds were more likely to determine that they were blickets if blickets were common than if 

they were rare. 3-year-olds on the other hand did not show sensitivity to this manipulation of 

prior probabilities. 

Limitations 

 This dissertation has a number of limitations. First, in continuation of the discussion on 

the importance of controlling for non-numerical variables in all work that aims to investigate 

numerical reasoning in any capacity, I acknowledge the lack of careful controls of continuous 
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variables in these studies. these experiments are a first step to see if kids can do a very difficult 

integration task when all cues (numerical and correlated non-numerical cues) point in the same 

direction. Future work can examine whether these findings would hold up with more careful 

controls. In order to do this, I conflated total visible surface area with number when I presented 

the population distributions of lollipops. Also, regarding lack of perfectly controlled stimuli, 

because I used physical lollipops that could move around in Chapters 3 and 4, each individual 

participants’ view of the distribution might have been slightly different depending on what was 

visible after shaking the containers around 

 Other limitations of these experiment include things that can and should be done 

differently in future work in order to provide a more rigorous study of numerical integration in 

probabilistic decision-making. The first would be that none of the experiments in this dissertation 

have manipulated the visibility of proportions within-subjects. I started off with Experiments 1 

and 2 in Chapter 2 that presented participants with visible proportions throughout the course of 

the task, including the time at which participants made their choices. The rest of the experiments 

that follow have an occlude that hides the proportions at the time of sampling from the 

distributions and when the participant is choosing one of the two outcomes. I made speculations 

with regard to the effect of this change in the design, but would allow for a better analysis of the 

effect of this manipulation and an ability to draw actual conclusions about its effect had this been 

manipulated in a within-subjects design.  

 All of the experiments in this dissertation also failed to reveal any age effects or age by 

trial interactions. While it may very well be the case that no development occurs in these abilities 

at these various developmental stages, it could also be the case that my selected age ranges were 

too narrow to detect age effects or too few participants were tested, especially in the infant and 
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toddler experiments. This limitation of not testing a broader age range and larger number of 

participants may have masked age differences indicative of developmental changes.  

 Additionally, the dichotomous variable used that only assesses correct and incorrect 

responses by analyzing group means is a relatively coarse approach, and it in some ways limits 

the information gained from each participant (as opposed to other dependent variables that might 

produce more fine-grained data). A group mean that is no different than chance levels could 

indicate that children as a group were guessing, but it could instead point to different children 

employing different strategies, which was impossible to detect in my experiments. One way to 

address this in future work would be that, given that we have this programmed in Qualtrics for 

adults, this can also be a good candidate for online studies with children where we might be able 

to present a larger number of trials. We can test them with a much larger battery of problems 

where proportions and draw numbers are manipulated systematically. This would allow a more 

in-depth analysis of individual response patterns, and can help us answer the question of whether 

some children rely more on number, while others may rely more on proportions, and what kinds 

of probabilities and numbers tip the scale for these children individually. It might also allow us 

to ask children for scaled responses or confidence judgements when deciding between the two 

sample containers. 

Future directions 

There are a number of directions that future work can explore in this field and in the area 

of integrating multiple sources of numerical information in the context of probabilistic decision-

making. We need to address the question of why children succeeded on the challenging 60:40 

2v5 trial in Experiment 3, while adults failed on this same trial type in Experiment 5. A simple 

explanation would be that children simply forgot about the proportional information, or thought 
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it was close enough to 50:50, and were influenced by the many draws in the 5-item sample taken 

from the distribution with the slightly lower proportion of target objects. This explanation is not 

straightforward, however, in light of their poor performance on the 60:40 2v5 trial in 

Experiments 1, 2, and 4. Another potential reason could be that there is a decrement caused by 

the summary sampling that the adults experienced, as opposed to the sequential, experienced 

sampling that the children observed. Work investigating these two types of sampling in the 

context of probabilistic decision making has coined the term “description-experience gap” to 

describe the discrepancies between decisions based on observed statistical information as 

opposed to summary descriptions of this information (Hertwig et al., 2004; Hau et al., 2010). 

This is should be further examined in future work by investigating the effect on performance of 

different kinds of sampling methods.  

 A necessary follow-up to the infant work in Chapter 3 that is particularly intriguing 

would be to employ eye-tracking technology to design a looking-time version of this kind of 

paradigm. Besides the obvious justification that this would help us overcome additional demands 

added on by the explicit choice paradigm, it would also allow for the presentation of many more 

trials which can produce continuous data instead of just two trials with a right/wrong response. It 

would allow for a better understanding of infants’ allocation of attention in this task. Using eye-

tracking, we would be able to have a quantitative measure of looking time and fixation on 

different areas of interest, as well as the duration of fixation for each of those. This would be 

informative in the amount of time spent on each of the different sources of information provided. 

Fixation sequences and data on the temporal order of those fixations will also shed light on what 

infants look at first, and what order they consider all the data in. Would they look first at the 

proportions of the distributions to abstract the ratio information, then at the sampled objects 
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before making a choice? Or would there be a pattern of back-and-forth oscillation between 

fixating on the proportional information and the sample numbers? Do they consider each sample-

proportion pair individually and compare them to one another, or do they compare proportions 

first before moving on to compare sample numbers? Anticipatory looking may also be used here. 

This would be especially helpful in assessing infants’ initial expectations about which sample an 

agent should choose in a third person version of this task, without having to actually crawl to the 

cup. There may be a discrepancy between implicit measures and the explicit behaviour of 

crawling or even pointing to one of two choices. It may be the case that some infants and/or 

toddlers wish to further explore the sampled objects themselves, and that their action to move 

towards a particular cup does not accurately map on to their understanding that this would be the 

cup with more target objects.   

Conclusions 

Much is yet unknown about the development of numerical integration in probabilistic 

contexts. Using multiple sources of information effectively under conditions of uncertainty to 

maximize favorable outcomes is a complex and intricate process, and yet we do it almost every 

day, in many different aspects of our decision-making existence. This dissertation is an attempt 

at uncovering some of the patterns in these kinds of decisions and how these patterns may shift 

throughout development. Results show promise with regard to how well adults and school-aged 

children can perform on these sometimes mathematically challenging problems, indicating that 

there may be an intuitive nature to this kind of reasoning. Results obtained from infants highlight 

the need for more work to be done in this field, and with this particular age group, to better 

document these abilities and their strategy use. Finally, findings obtained from toddlers indicate 
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encouraging evidence that points to the earliest age at which a sensitivity to different sources of 

numerical information affecting decision-making may emerge.  
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Appendix 

Table 1. Computations for obtaining more targets on all possible comparisons for the 50:50 1v3 
trial. Draw probabilities computed with replacement. G = Green (i.e., target); B= Black 

50:50 1 
draw 

50:50 3 draws Probability of combination 

G (.5) 3 G (.125) .0625 
G (.5) 2 G ,1 B (.375) .1875 
G (.5) 1 G, 2 B (.375) .1875 
G (.5) 3 B (.125) .0625 
B (.5) 3 G (.125) .0625 
B (.5) 2 G ,1 B (.375) .1875 
B (.5) 1 G, 2 B (.375) .1875 
B (.5) 3 B (.125) .0625 
Ignoring ties, one is 11 times more likely to win choosing the 3 
draws 

 

Table 2. Computations for obtaining more targets on all possible comparisons for the 50:50 2v5 
trial. Draw probabilities computed with replacement. G = Green (i.e., target); B= Black 

50:50 2 draw 50:50 5 draws Probability of combination 
2 B (.25) 5 G (.0312) .00781 
2 B (.25) 4 G, 1 B (.1563) .0391 
2 B (.25) 3 G, 2 B (.3125) .0781 
2 B (.25) 2 G, 3 B (.3125) .0781 
2 B (.25) 4 B, 1 G (.1563) .0391 
2 B (.25) 5 B (.0312) .00781 
2 G (.25) 5 G (.0312) .00781 
2 G (.25) 4 G, 1 B (.1563) .0391 
2 G (.25) 3 G, 2 B (.3125) .0781 
2 G (.25) 2 G, 3 B (.3125) .0781 
2 G (.25) 4 B, 1 G (.1563) .0391 
2 G (.25) 5 B (.0312) .00781 
1 G, 1 B (.5) 5 G (.0312) .0158 
1 G, 1 B (.5) 4 G, 1 B (.1563) .0782 
1 G, 1 B (.5) 3 G, 2 B (.3125) .156 
1 G, 1 B (.5) 2 G, 3 B (.3125) .156 
1 G, 1 B (.5) 4 B, 1 G (.1563) .0782 
1 G, 1 B (.5) 5 B (.0312) .0158 
Ignoring ties, one is 12.3 times more likely to win choosing the 3 draws 
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Table 3. Computations for obtaining more targets on all possible comparisons for the 88:12 1v3 
trial. Draw probabilities computed with replacement. G = Green (i.e., target); B= Black 

88:12 1 
draw 

12:88 3 draws Probability of combination 

G (.88) 3 G (.00179) .00158 
G (.88) 2 G ,1 B 

(.0381) 
.0335 

G (.88) 1 G, 2 B (.279) .246 
G (.88) 3 B (.681) .599 
B (.12) 3 G (.00179) .000215 
B (.12) 2 G ,1 B 

(.0381) 
.00457 

B (.12) 1 G, 2 B (.279) .0335 
B (.12) 3 B (.681) .082 
Ignoring ties, one is 8.2 times more likely to win choosing the 1 
draw 

 

Table 4. Computations for obtaining more targets on all possible comparisons for the 88:12 2v5 
trial. Draw probabilities computed with replacement. G = Green (i.e., target); B= Black 

88:12 2 draw 12:88 5 draws Probability of combination 
2 B (.0144) 5 G (.0000249)  3.586E-07 
2 B (.0144) 4 G, 1 B (.000912)  1.313E-05 
2 B (.0144) 3 G, 2 B (.0134)  0.000193 
2 B (.0144) 2 G, 3 B (.0981)  0.00141 
2 B (.0144) 4 B, 1 G (.360)  0.00518 
2 B (.0144) 5 B (.528)  0.00760 
2 G (.774) 5 G (.0000249)  1.927E-05 
2 G (.774) 4 G, 1 B (.000912)  0.000706 
2 G (.774) 3 G, 2 B (.0134)  0.0104 
2 G (.774) 2 G, 3 B (.0981)  0.0759 
2 G (.774) 4 B, 1 G (.360)  0.279 
2 G (.774) 5 B (.528)  0.409 
1 G, 1 B (.212) 5 G (.0000249)  5.279E-06 
1 G, 1 B (.212) 4 G, 1 B (.000912)  0.000193 
1 G, 1 B (.212) 3 G, 2 B (.0134)  0.00284 
1 G, 1 B (.212) 2 G, 3 B (.0981)  0.0208 
1 G, 1 B (.212) 4 B, 1 G (.360)  0.0763 
1 G, 1 B (.212) 5 B (.528)  0.112 
Ignoring ties, one is 19 times more likely to win choosing 1 draw 
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Table 5. Computations for obtaining more targets on all possible comparisons for the 60:40 1v3 
trial. Draw probabilities computed with replacement. G = Green (i.e., target); B= Black 

60:40 1 
draw 

40:60 3 draws Probability of combination 

G (.6) 3 G (.064)  0.0384 
G (.6) 2 G ,1 B (.288) 0.1728 
G (.6) 1 G, 2 B (.434)  0.2604 
G (.6) 3 B (.216)  0.1296 
B (.4) 3 G (.064)  0.0256 
B (.4) 2 G ,1 B (.288) 0.1152 
B (.4) 1 G, 2 B (.434)  0.1736 
B (.4) 3 B (.216)  0.0864 
Ignoring ties, one is 4 times more likely to win choosing 3 draws 

 

Table 6. Computations for obtaining more targets on all possible comparisons for the 60:40 2v5 
trial. Draw probabilities computed with replacement. G = Green (i.e., target); B= Black 

60:40 2 draw 40:60 5 draws Probability of combination 
2 B (.16) 5 G (.0102)  0.00163 
2 B (.16) 4 G, 1 B (.0768)  0.0123 
2 B (.16) 3 G, 2 B (.230)  0.0368 
2 B (.16) 2 G, 3 B (.346)  0.0554 
2 B (.16) 4 B, 1 G (.259)  0.0414 
2 B (.16) 5 B (.0778)  0.0124 
2 G (.36) 5 G (.0102)  0.00367 
2 G (.36) 4 G, 1 B (.0768)  0.0276 
2 G (.36) 3 G, 2 B (.230)  0.0828 
2 G (.36) 2 G, 3 B (.346)  0.125 
2 G (.36) 4 B, 1 G (.259)  0.0932 
2 G (.36) 5 B (.0778)  0.0280 
1 G, 1 B (.48) 5 G (.0102)  0.00490 
1 G, 1 B (.48) 4 G, 1 B (.0768)  0.0369 
1 G, 1 B (.48) 3 G, 2 B (.230)  0.110 
1 G, 1 B (.48) 2 G, 3 B (.346)  0.166 
1 G, 1 B (.48) 4 B, 1 G (.259)  0.124 
1 G, 1 B (.48) 5 B (.0778)  0.0373 
Ignoring ties, one is 3 times more likely to win choosing 5 draws 

 

 


