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ABSTRACT
We demonstrate the applicability of the Multi-Layer Multi-Configuration Time-Dependent Hartree (ML-MCTDH) method to the problem
of computing ground states of one-dimensional chains of linear rotors with dipolar interactions. Specifically, we successfully obtain energies,
entanglement entropies, and orientational correlations that are in agreement with the DensityMatrix RenormalizationGroup (DMRG), which
has been previously used for this system. We find that the entropies calculated by ML-MCTDH for larger system sizes contain nonmono-
tonicity, as expected in the vicinity of a second-order quantum phase transition between ordered and disordered rotor states. We observe that
this effect remains when all couplings besides nearest-neighbor are omitted from the Hamiltonian, which suggests that it is not sensitive to
the rate of decay of the interactions. In contrast to DMRG, which is tailored to the one-dimensional case, ML-MCTDH (as implemented in
the Heidelberg MCTDH package) requires more computational time and memory, although the requirements are still within reach of com-
modity hardware. The numerical convergence and computational demand of two practical implementations of ML-MCTDH and DMRG are
presented in detail for various combinations of system parameters.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0047090., s

I. INTRODUCTION

With the possibility to control material processes at their
most elementary level, it becomes even more necessary to develop
new algorithms to numerically solve the Schrödinger equation.1 In
the field of molecular quantum dynamics, the Multi-Configuration
Time-Dependent Hartree (MCTDH) approach2–6 has been applied

to many different fields by various groups in the world: het-
erogeneous catalysis, reactive or non-reactive collisions, infrared
(IR) spectroscopy, ultraviolet spectroscopy possibly involving non-
Born–Oppenheimer processes, photochemistry, processes guided by
laser pulses, and optimal control. MCTDH can be understood as a
method that employs fully flexible time-dependent functions that
follow the variational equations derived from the Dirac–Frenkel
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principle.4 The method converges to the exact solution and can
treat more Degrees Of Freedom (DOFs) than the quantum dynam-
ics approaches relying on fixed time-independent functions. For
instance, a standard benchmark case with MCTDH is the compu-
tation of the absorption spectrum of pyrazine taking into account
all 24 DOFs and two excited electronic states.7 Another notewor-
thy application of MCTDH is the computation of the infrared (IR)
absorption spectrum of the Zundel cation,8–10 H5O+

2 , and its iso-
topomeres.11–13 Finally, the MCTDH algorithm has been extended
to solve the time-independent Schrödinger equation to calculate
eigenstates of a system with the so-called “improved relaxation”
method.14,15

More recently, the Multi-Layer (ML) variant of MCTDH16–21

has been developed, which is able to treat quantum mechanically
even higher-dimensional systems with more than 1000 DOFs.22–32
In ML-MCTDH, one makes a selection of layered effective modes
through which MCTDH is applied in a recursive manner: the wave-
function is expressed in terms of time-dependent functions (first
layer) that follow equations derived from the Dirac–Frenkel varia-
tional principle, but instead of expressing these functions in terms
of time-independent basis functions, they are themselves expressed
in terms of lower-dimensional time-dependent functions (second
layer) that also follow equations derived from the variational prin-
ciple. The latter functions can themselves be expressed in terms of
even lower-dimensional time-dependent functions (next layer) or in
terms of time-independent functions when we reach the last layer.
In doing so, a very high flexibility is given to the MCTDH ansatz,
and a very compact form of the wavefunction is obtained.

As it stands, the improved relaxation has already been com-
bined with ML-MCTDH33,34 but has not yet been implemented in
the Heidelberg package, which we use here. However, the ground
state of a Hamiltonian can still be obtained by propagation in imag-
inary time. To that end, we use the Heidelberg MCTDH package,35
which contains an implementation of ML-MCTDH. The recursive
tree structure of the ML-MCTDH ansatz can be viewed as a hierar-
chical Tucker decomposition, a kind of tensor decomposition (see
Ref. 36 and references therein).

Another well-established tensor-based method is the Density
Matrix Renormalization Group (DMRG), which is a numerical vari-
ational technique devised to study the low-energy physics of quan-
tum many-body systems with high accuracy. Introduced by White
in 1992,37 DMRG has been proven to be particularly successful in
condensed matter physics,38,39 quantum chemistry,40–42 and molec-
ular physics.43 DMRG has been successfully applied to systems with
more than one spatial dimension44 and to real-time evolution,45–47
but it is most efficient for computing ground states of long, one-
dimensional systems. Note that the matrix product ansatz used in
the DMRG method can be considered as a special case of the ansatz
used in the ML-MCTDH method.36 Despite the methods’ shared
tensor-based nature, there has been very little overlap between the
communities working onML-MCTDH andDMRG. Amore system-
atic comparison of the two methods is appealing and could lead to
important improvements for the simulations of molecular quantum
systems.36 The aim of this paper is twofold: to compare the viability
of these two methods for the calculation of rotational ground states
and to promote cross-pollination of the theory and implementation
betweenML-MCTDHandDMRG in the context of quantummolec-
ular dynamics. We compare here the relative computational merits

of ML-MCTDH and DMRG using two practical implementations of
the twomethods: we use two different program packages with differ-
ent implementations. However, the comparison has a general scope.
DMRG is an emerging method for quantum molecular dynamics
(in particular, the first application to the chains of rotating dipolar
molecules is very recent48), and the comparison toML-MCTDH val-
idates its relevance since MCTDH can be considered as the current
standard for wavefunction based quantum molecular dynamics of
large systems.49

In Ref. 48, DMRG was used to compute ground states of chains
of rotors describing endofullerene “peapod” nanomolecular assem-
blies (NMAs), carbon nanotubes that contain fullerene cages with
atoms or molecules trapped inside. By treating these nanomolecu-
lar assemblies as rigid 1D chains, it is possible to study the motion
of the molecules enclosed inside. This approach has subsequently
been applied to benchmark the Path Integral Ground State (PIGS)
method for the computation of Rényi entanglement entropies in
rotor chains using the replica trick50 and also to train neural net-
work representations of the many-body states of interacting rotors
using Restricted Boltzmann Machines (RBMs).51

In the following, we calculate three physical properties [energy,
entanglement entropy, and orientational correlation (OC)] for sys-
tems of N = 10, 25, and 50 linear rotors with dipolar interactions
using bothML-MCTDHandDMRG.Moreover, method-dependent
properties (such as memory usage and elapsed time) are compared
between the two methods. The remainder of this paper is organized
as follows: In Sec. II, an overview of the two numerical methods is
given, followed by the form of the Hamiltonian in Sec. III. Section IV
presents the results, and we conclude with a brief summary in
Sec. V.

II. THEORY
We present in this section the essential aspects of the DMRG

and ML-MCTDHmethods used in our comparative study.

A. DMRG
The DMRG approach used in this work is described in detail in

Ref. 48. In our implementation, the many-body wavefunction for a
chain of quantum dipolar rotors has the form of a matrix product
state (MPS) ansatz.38,39 We use the DMRG implementation from
the ITensor package, where the Hamiltonian is treated as a matrix
product operator (MPO).52 In a finite basis, the N-body wavefunc-
tion can be represented as a vector, Cn = ⟨n|ψ⟩, with multi-index
n = (n1, n2, . . ., nN); see Fig. 1(a) for a schematic representation of
a ten-dimensional tensor, corresponding to a wavefunction for ten
rotors. This vector can be written as an exact expansion in terms of
products of matrices as

⟨n∣ψ⟩ = A(1),n1A(2),n2 . . . A(N),nN. (1)

This MPS representation of |ψ⟩ is formed from a set of matrices{A(k),nk}, where the index nk is associated with the physical site k,
while the row and column indices of the matrices are referred to as
bond indices. The so-called “bond dimension” is the common size
between two adjacent matrices A(k),nk and A(k+1),nk+1 . Note that the
first matrix, A(1),n1 , acts as a row vector and the last one, A(N),nN ,
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FIG. 1. Schematic depictions of tensor-based representations of a 10-rotor wave-
function. (a) The full ten-dimensional tensor, Cn, with vertical line segments corre-
sponding to rotors. (b) The matrix product state in Eq. (1), with circles represent-
ing the three-dimensional tensors, A(k). Horizontal line segments imply tensor
contraction along the bond indices (i.e., matrix multiplication). (c) The Schmidt
decomposition in Eq. (2), with the diamond denoting the diagonal matrix of singular
values.

acts as a column vector; the end tensorsA(1) andA(N) may be inter-
preted as either two- or three-dimensional tensors, depending on
the context. An MPS for ten rotors is shown diagrammatically in
Fig. 1(b). The final bond dimensions for the results presented below
are given in the supplementary material.

The result of the matrix product is the scalar ⟨n|ψ⟩, and the
MPS expansion can be exact in principle. However, this is typically
not desired as it leads to the same exponential scaling one gets when
using the full tensor. Instead, an approximation is introduced into
the state by reducing the bond dimension. Although this reduction
decreases the amount of entanglement that the state can contain,
in practice, one finds a balance between the level of approxima-
tion and the computational cost. In particular, certain states, such
as area law states in one spatial dimension,53 have entanglement that
is independent of system size. For these states, the size of the MPS
grows linearly with the number of sites and DMRG is incredibly
efficient.

A key aspect of the DMRG procedure is the Schmidt decompo-
sition associated with a given partitioning of the system into parts A
and B, ∣ψ⟩ =∑

i

√
λi∣ξAi ⟩ ⊗ ∣ξBi ⟩, (2)

where each λi is a non-negative real number and {∣ξAi ⟩} and {∣ξBi ⟩}
are orthonormal bases for A and B. Numerically, these pieces may
be obtained using the singular value decomposition (SVD), in which
case the expansion coefficients are referred to as “singular values.”
An illustration of this decomposition is given in Fig. 1(c), where
A and B are shown to contain three and seven rotors, respectively.
The DMRG procedure iteratively optimizes the MPS using a series
of sweeps across every pair of adjacent sites, for which an effective
Hamiltonian is diagonalized. Crucially, the result of each diagonal-
ization is processed using the SVD by truncating singular values
according to a cutoff criterion, such as

∑
i
λi ≤ ε, (3)

where the sum runs over the truncated values. This truncation is vital
to limiting the growth of the bond dimension. In the same way as
an MPS, an MPO may also be compressed using the SVD although
improved approaches have been devised.54,55

B. ML-MCTDH
The wavepacket propagation calculations reported in this arti-

cle are performed with the Heidelberg MCTDH package.35 The
MCTDH and ML-MCTDH methods are well documented2–5,16–20
and are described here only briefly. Assuming that the system under
consideration has f degrees of freedom with coordinates q1, . . ., qf ,
the ansatz for the MCTDH wavefunction reads as

Ψ(q1, . . . , qf , t) = n1∑
j1=1⋯

nf∑
jf =1

Aj1,...,jf (t) f∏
κ=1 φ

(κ)
jκ (qκ, t). (4)

Here, Aj1,...,jf denotes the MCTDH expansion coefficients and
φ(κ)(qκ, t) are the so-called single-particle functions (SPFs) for the
degree of freedom κ. The SPFs are expressed in primitive basis sets
or Discrete Variable Representation (DVR) grids as

φ(κ)jκ (qκ, t) = Nκ∑
iκ=1 c

(κ)
iκjκ (t)χ(κ)iκ (qκ), (5)

where χ(κ)iκ are orthonormal time-independent primitive basis func-
tions of the κth DOF. In our problem, f = 2N, with N being the
number of rotors (the number used to designate the N-body wave-
function in DMRG), since there are two spherical angles to describe
the rotation of each rotor.

The equations of motion for the A-coefficients and for the SPFs
are derived2–5 from the Dirac–Frenkel variational principle. These
differential equations are non-linear and complicated, but the size of
this set of coupled equations is, in general, much smaller than that of
the set of equations obtained by expressing the wavefunction directly
in a time-independent basis set.

Thus, the MCTDH method propagates a wavepacket on a
small, time-dependent, variationally optimized basis set of single-
particle functions, which, in turn, are defined on time-independent
primitive basis sets with Nκ functions for the κth degree of free-
dom. In the limit nκ → Nκ, MCTDH becomes a numerically exact
method to solve the Schrödinger equation within the primitive basis
set. The SPFs are not restricted to be one-dimensional functions:
they may depend on several coordinates, and in this case, qκ is to
be interpreted as a multi-dimensional variable and f in Eq. (4) is to
be replaced by the number of MCTDH particles, i.e., the number of
combined modes.

The Multi-Layer (ML) variant16–20 of MCTDH provides a very
efficient algorithm capable of treating quantum mechanically even
higher-dimensional systems.22–28 The key idea behind ML-MCTDH
is to give more flexibility to the MCTDH ansatz by making an opti-
mal choice of layered effective modes through which the MCTDH
method is applied in a recursive manner. The ML approach enables
one to represent the wavefunction in a very compact way. The par-
ticular structure of a ML-wavefunction, which has to be defined by
the user, is given by a so-called ML-tree. Through the ML-tree, one
defines whichmodes of one layer are to be combined to build amode
of the layer above (see Fig. 2). Thus, the ML-MCTDH method uses
trees, whereas DMRG conventionally uses an MPS. An MPS can be
viewed as a very special tree, where the only flexibility within an
MPS-tree is the ordering of the DOFs. An ML-tree, on the other
hand, is very flexible,36,56,57 and its topology can be adjusted to the
system. Note, however, that DMRG is not limited to MPSs.36,58–60
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FIG. 2. Tree structure of the ML-MCTDH wavefunction for ten rotors and g = 1.0. As in Fig. 1, we have ten rotors, but the rotation of each one is described by two angles θ
and φ. In DMRG, as shown in Fig. 1(c), the system of rotors is partitioned into two parts A and B and a procedure iteratively variationally optimizes the MPS using a series of
sweeps across every pair of adjacent sites. In ML-MCTDH, the time-dependent SPFs are gathered in a tree: they depend on groups of coordinates that are fixed in the tree
and are optimized variationally during the imaginary propagation.

III. THE HAMILTONIAN
Let us consider a system withN identical rotors, with rotational

constant B and dipole moment μ, whose Hamiltonian reads as

Ĥ = B
h̵2

N∑
i=1 ℓ̂

2
i +

μ2

4πϵ0

N∑
i=2

i−1∑
j=1

V̂ij

r3ij
, (6)

where rij is the distance between rotors i and j, V̂ij is the corre-
sponding dipole–dipole potential operator, and ℓ̂i is the angular
momentum operator of the ith rotor. Our goal is to describe a car-
bon nanotube peapod assembly, which is inherently linear. Thus, we
may place the rotors along one axis, say, the z axis, and express the
potential operator compactly as

V̂(z)ij = x̂ix̂j + ŷiŷj − 2ẑiẑj, (7)

where (xi, yi, zi) denotes a unit vector pointing in the direction of
the ith dipole. Due to the regular structure of a peapod NMA, we
can position the rotors evenly with a lattice spacing, r, and write the
nondimensionalized Hamiltonian as

Ĥ
B
= N∑

i=1
ℓ̂2i
h̵2

+ g
N∑
i=2

i−1∑
j=1

V̂(z)ij(i − j)3 , (8)

where the dimensionless parameter

g = μ2

4πϵ0r3B
(9)

gives the strength of the dipole–dipole interaction.
As explained in Ref. 48 (see Figs. 4 and 5 therein), this sys-

tem appears to undergo a quantum phase transition when varying
the parameter g: two domains appear, corresponding to strongly
and weakly interacting systems. The origin of this second-order
phase transition between disordered and ordered phases has been
suggested to arise from breaking of the rotational symmetry.61

As the above Hamiltonian contains all pairwise interactions, we
refer to its realizations by the label “All.” In addition, we consider the

simplified Hamiltonian

Ĥ
B
= N∑

i=1
ℓ̂2i
h̵2

+ g
N∑
i=2 V̂

(z)
i,i−1, (10)

which retains only the nearest-neighbor couplings; its realizations
are given the label “NN.” Since it contains fewer terms, the NN
Hamiltonian is computationally less taxing than the All Hamilto-
nian but preserves the symmetries of the latter. Hence, we expect to
see evidence of a quantum phase transition for the NN systems as
well.

IV. RESULTS AND DISCUSSION
We compare several quantities for the ground states of the sys-

tems defined by Eqs. (8) and (10), as obtained by ML-MCTDH and
DMRG. In Ref. 48, the dependence of the ground state energy on
the number of rotors, N, obtained with DMRG is given in the form
of chemical potentials; in this paper, we give the absolute energy val-
ues, E, for different choices of N and g. We also compute the von
Neumann entanglement entropy defined as

SvN = −∑
j
λj ln λj, (11)

where λj are the squares of the coefficients of the Schmidt decompo-
sition in Eq. (2). For systems with an even number of rotors (N = 10
and 50), we use a symmetric splitting of the system into A and B; for
N = 25, it is instead partitioned into 13 and 12 rotors.

As in Ref. 48, we have additionally calculated the expectation
value of the “orientational correlation” (OC) operator,

2
N(N − 1)

N∑
i=2

i−1∑
j=1 êi ⋅ êj, (12)

where the unit vector ei = (xi, yi, zi) describes the orientation of the
ith rotor. Both the von Neumann entanglement entropy and ori-
entational correlation measure the correlations that are present in
the system, but the former experiences a divergence with system size
near g = 1.0.

We first present highly converged ground state properties com-
puted using DMRG (with the basis of spherical harmonics limited
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TABLE I. DMRG parameters, results, and corresponding computational effort for systems with nearest-neighbor (NN) interactions. Wall-times are given in hours “h,” minutes
“min,” and seconds “s.” Maximum memory usage and ground state MPS size are reported in MB.

N g ℓmax ε E SvN OC Time Memory Size

10

0.5 5 10–14 −0.378 109 174 4 0.069 105 639 0.005 338 42 12min 30s 54 1
1.0 6 10–14 −1.559 705 410 9 0.245 605 5 0.036 955 76 42min 59s 261 2
1.5 7 10–14 −3.790 994 865 0 0.618 05 0.184 790 2h 41min 25s 1036 4
2.0 8 10–14 −7.383 621 680 0.772 442 9 0.369 532 4h 41min 11s 1500 6

25

0.5 5 10–14 −1.009 392 863 0.069 105 77 0.002 357 2 39min 18s 55 2
1.0 6 10–14 −4.184 455 427 0.246 570 55 0.018 761 3 3h 14min 17s 370 6
1.5 7 10–14 −10.491 188 621 0.786 916 0.246 787 1 22h 18min 29s 2398 25
2.0 8 10–14 −20.775 486 204 0.778 013 16 0.415 430 72 23h 15min 03s 1861 23

50

0.5 5 10–14 −2.061 532 344 0.069 105 77 0.001 212 53 1h 26min 23s 57 3
1.0 6 10–14 −8.559 041 298 0.246 572 59 0.010 022 3 7h 33min 51s 431 14
1.5 7 10–13 −21.733 640 18 0.821 345 5 0.278 875 8 43h 19min 25s 2259 43
2.0 8 10–14 −43.103 080 319 0.778 014 411 0.430 220 817 60h 58min 57s 2059 52

to ℓ ≤ ℓmax and making use of quantum number conservation48)
in order to provide a benchmark for the comparison with ML-
MCTDH. These results, presented in Tables I and II, have the highest
level of convergence achieved in this work and were consequently
quite computationally demanding to obtain. Note that in the case
of only nearest-neighbor couplings, the entanglement entropy still
peaks at g = 1.5 for the two larger system sizes, indicating that this
phenomenon is likely driven by the symmetries of the Hamiltonian
rather than its microscopic details and providing further evidence of
a quantum phase transition.

A. Energies and orientational ordering
The orientation of each rotor can be parameterized by

two spherical coordinates, θi and ϕi, for the ith rotor. For the

ML-MCTDH calculations, we used a two-dimensional extended
Legendre62 Discrete Variable Representation (DVR) for each rotor
(a DVR associated with spherical harmonics, called PLeg). With
ML-MCTDH, several choices of layers are possible. In order to give
the explicit ansatz of the ML-MCTDH wavefunction, we display a
graphical representation usually referred to as a tree. Figure 2 depicts
a ten-rotor chain described by a four-layer wavefunction. Each node
(i.e., a circle) represents a set of vectors of coefficients. A circle stands
for a set of time-dependent expansion coefficients, and a rectangle
stands for a set of time-independent primitive basis functions (or
DVR grids). The number next to each leg is the number of SPFs
used in the calculation with g = 1.0. Depending on the number of
rotors and the value of g, the number of SPFs has been chosen to
try to find a compromise between accuracy and Central Processing
Unit (CPU) time for the calculations. At the top node, we split the

TABLE II. DMRG parameters, results, and corresponding computational effort for systems with all pairwise interactions (All). Wall-times are given in hours “h,” minutes “min,”
and seconds “s.” Maximum memory usage and ground state MPS size are reported in MB.

N g ℓmax ε E SvN OC Time Memory Size

10

0.5 5 10–14 −0.398 960 623 0.079 905 618 0.009 699 51 24min 35s 441 2
1.0 7 10–14 −1.800 214 523 0.396 354 3 0.092 683 85 3h 40min 56s 3 958 9
1.5 8 10–14 −5.065 659 016 0.743 557 76 0.334 380 701 9h 30min 29s 9 930 17
2.0 8 10–14 −9.869 695 663 0.744 232 934 0.447 721 340 9h 28min 06s 8 838 16

25

0.5 6 10–14 −1.071 398 284 0.080 164 62 0.004 763 804 4h 32min 37s 1 613 11
1.0 7 10–14 −5.036 369 456 0.557 879 8 0.110 031 5 58h 48min 22s 13 271 80
1.5 8 10–14 −15.219 922 215 0.748 988 662 0.391 279 03 102h 11min 09s 17 940 93
2.0 8 10–14 −29.046 243 26 0.741 768 134 0.488 266 18 76h 55min 59s 14 742 75

50

0.5 5 10–14 −2.192 131 00 0.080 169 146 0.002 530 7 6h 29min 22s 1 175 23
1.0 7 10–13 −10.485 452 72 0.712 649 0.131 992 5 162h 36min 00s 16 952 167
1.5 7 10–14 −32.221 843 4 0.748 561 70 0.409 262 540 158h 38min 18s 15 255 204
2.0 8 10–13 −61.100 250 5 0.7415 094 4 0.501 843 54 109h 29min 11s 8 055 95
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tree symmetrically into two halves to simplify the evaluation of the
entanglement entropy: the λj in Eq. (11) are given by the natural pop-
ulations4 (i.e., eigenvalues of the reduced density matrix) of the top
node. Then, we mostly perform binary splittings, but in few cases,
a node has three children. We use six grid points for θi and seven
grid points for ϕi (i.e., ℓ ≤ 5 andm ≤ 3). We could have used smaller
grid sizes for the low coupling cases, but in ML-MCTDH, the com-
putational effort depends only weakly on the grid sizes (although
strongly on the numbers of SPFs), and so we decided to use identical
grids throughout. Figures of trees for the 25- and 50-rotor prob-
lems as well as additional details on the ML-MCTDH and DMRG
calculations are provided in the supplementary material.

In general, the dimensionality of the SPFs increases when one
climbs up the tree and one expects that the numbers of SPFs needed
for convergence should increase toward the top, but we see in Fig. 2
that this is not the case here. The reason is that another important
factor is the effective coupling strength. Here, the effective coupling
strength decreases toward the ends of the chain because at the ends,
the rotors are less oriented than in the middle (this is why differ-
ent groups have very different numbers of SPFs: for example, 20 vs
56 for the second layer in Fig. 2). At the top node, we always have
comparatively few SPFs.

In order to have a comparable accuracy between ML-MCTDH
and DMRG and to provide a meaningful comparison of the com-
putational effort, the DMRG results are computed at a lower level
of convergence than in Tables I and II; for example, these DMRG
calculations use ℓmax ≤ 4. The DMRG parameters were chosen to
match the ML-MCTDH energies, and it can be seen in Table III that
they are in close agreement. The difference is due to a small lack of
convergence in ML-MCTDH. Note that ML-MCTDH and DMRG
simulations do not use the same primitive bases. As mentioned ear-
lier, DMRG uses a basis set of spherical harmonics andML-MCTDH
uses a DVR based on spherical harmonics. They are thus different
but very similar. These DMRG calculations required between 9 and
25 primitive functions, making up a smaller local basis than the 42-
point grid used by ML-MCTDH. The slower, but more converged,
benchmarkDMRG calculations shown above included up to 81 basis
functions.

The von Neumann entanglement entropies are given in
Table IV, and the expectation values of the orientational

TABLE III. Comparison of the (dimensionless) energies calculated with (a) ML-
MCTDH and (b) DMRG for the ground state.

NN All

g N = 10 N = 25 N = 50 N = 10 N = 25 N = 50

0.5(a) −0.3781 −1.0093 −2.0611 −0.3989 −1.0713 −2.1912
0.5(b) −0.3781 −1.0093 −2.0614 −0.3989 −1.0713 −2.1919
1.0(a) −1.5597 −4.1836 −8.5573 −1.8002 −5.0351 −10.480
1.0(b) −1.5597 −4.1844 −8.5590 −1.8002 −5.0362 −10.485
1.5(a) −3.7908 −10.490 −21.726 −5.0654 −15.219 −32.218
1.5(b) −3.7910 −10.491 −21.734 −5.0656 −15.220 −32.222
2.0(a) −7.3836 −20.774 −43.095 −9.8696 −29.045 −61.096
2.0(b) −7.3836 −20.775 −43.103 −9.8695 −29.046 −61.099

TABLE IV. Comparison of the von Neumann entanglement entropies calculated with
(a) ML-MCTDH and (b) DMRG for the ground state.

NN All

g N = 10 N = 25 N = 50 N = 10 N = 25 N = 50

0.5(a) 0.0691 0.0691 0.0688 0.0799 0.0800 0.0793
0.5(b) 0.0691 0.0691 0.0691 0.0799 0.0801 0.0801
1.0(a) 0.246 0.245 0.246 0.396 0.542 0.660
1.0(b) 0.246 0.247 0.247 0.396 0.558 0.712
1.5(a) 0.618 0.782 0.818 0.743 0.749 0.748
1.5(b) 0.618 0.787 0.821 0.744 0.749 0.749
2.0(a) 0.772 0.777 0.776 0.744 0.742 0.741
2.0(b) 0.772 0.778 0.778 0.744 0.742 0.742

correlation operator are given in Table V. That these values are
nearly equal implies that both tensor decompositions are capa-
ble of faithfully representing these ground states. Following the
DMRG results, the ML-MCTDH calculations quantitatively repro-
duce the conversion from ordered to disordered states: the von
Neumann entropy and orientational correlation decrease to nearly
zero with decreasing g, although the entropy occasionally does so
nonmonotonically, as expected.

As always, we see that properties (such as von Neumann
entropy and orientational correlation) converge much slower than
eigenenergies. Not surprisingly, themost difficult system for DMRG,
with N = 50, g = 1.0, and all interactions (see Table II), is also
very challenging for ML-MCTDH. Although the DMRG and ML-
MCTDH energies differ by only a small fraction of a percent,
the entanglement entropies and orientational correlations for this
system disagree more strongly, by about 3% and 11%.

B. Computational effort
Tables VI and VII outline the computational demands for the

calculations performed with ML-MCTDH and DMRG. The ML-
MCTDH calculations were done on a personal computer (PC) with
an Intel I5-8500 CPU with four cores with a speedup by about

TABLE V. Comparison of the orientational correlation [see Eq. (12)] calculated with
(a) ML-MCTDH and (b) DMRG for the ground state.

NN All

g N = 10 N = 25 N = 50 N = 10 N = 25 N = 50

0.5(a) 0.005 34 0.002 35 0.001 21 0.009 692 0.004 77 0.002 50
0.5(b) 0.005 33 0.002 35 0.001 21 0.009 689 0.004 76 0.002 53
1.0(a) 0.036 9 0.018 3 0.010 0 0.092 6 0.110 0.118
1.0(b) 0.037 0 0.018 8 0.010 0 0.092 7 0.110 0.132
1.5(a) 0.183 0.244 0.279 0.334 0.391 0.409
1.5(b) 0.185 0.247 0.279 0.334 0.391 0.409
2.0(a) 0.369 0.415 0.430 0.448 0.488 0.502
2.0(b) 0.370 0.415 0.430 0.448 0.488 0.502
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TABLE VI. Comparison of the wall-times (in hours “h,” minutes “min,” and seconds “s”) needed to converge the ground state
with (a) ML-MCTDH and (b) DMRG.

NN All

g N = 10 N = 25 N = 50 N = 10 N = 25 N = 50

0.5(a) 0min 32s 4min 36s 7min 25s 2min 25s 1h 11min 4h 32min
0.5(b) 0min 37s 1min 44s 3min 21s 0min 39s 2min 21s 4min 41s
1.0(a) 2min 06s 9min 22s 1h 09min 11min 34s 5h 00min 69h 38min
1.0(b) 2min 32s 7min 11s 15min 46s 3min 09s 12min 24s 40min 52s
1.5(a) 2min 48s 51min 07s 2h 08min 12min 26s 12h 09min 87h 23min
1.5(b) 7min 11s 25min 22s 1h 02min 9min 27s 30min 52s 1h 07min
2.0(a) 11min 19s 48min 49s 1h 56min 40min 21s 12h 49min 60h 10min
2.0(b) 7min 08s 25min 09s 52min 29s 8min 57s 32min 35s 1h 09min

a factor of 3. The runs used all four cores via shared memory
OpenMP parallelization, and the compiler was GCC 8.3.1 (gfor-
tran). The three largest calculations, i.e., those with N = 50, g ≥ 1.0,
and all pairwise interactions, would take several days on the PC, so
they were run on a workstation. However, for better comparison, the

TABLE VII. Comparison of the maximum amount of memory (in MB) required during
the calculations with (a) ML-MCTDH and (b) DMRG.

NN All

g N = 10 N = 25 N = 50 N = 10 N = 25 N = 50

0.5(a) 29 94 149 30 100 198
0.5(b) 17 17 17 26 30 32
1.0(a) 64 142 448 65 165 555
1.0(b) 28 29 31 73 141 259
1.5(a) 64 275 536 65 281 595
1.5(b) 48 93 118 172 197 224
2.0(a) 145 278 548 147 292 619
2.0(b) 66 78 77 174 194 210

TABLE VIII. Comparison of the size (in MB) of the ground state wavefunction with (a)
ML-MCTDH and (b) DMRG.

NN All

g N = 10 N = 25 N = 50 N = 10 N = 25 N = 50

0.5(a) 1.4 4.3 6.4 1.4 4.3 6.4
0.5(b) 0.03 0.1 0.2 0.07 0.3 0.6
1.0(a) 3.1 6.8 21.4 3.1 7.6 24.3
1.0(b) 0.1 0.4 0.9 0.3 2.1 7.2
1.5(a) 3.1 13.5 25.7 3.1 13.5 25.8
1.5(b) 0.4 1.8 4.9 0.7 3.0 7.0
2.0(a) 7.2 13.6 25.9 7.2 14.1 27.1
2.0(b) 0.4 1.4 3.2 0.7 2.4 5.3

wall-times of these calculations were rescaled to represent the four-
core PC wall-times. The DMRG code was built with the Intel MKL
using GCC 8.3.0. For the ITensor library, we used the default -O2
setting for optimizations. Each calculation was run on a single Intel
Xeon E5-2683 v4 core. For the sake of completeness, we have redone
all the calculations with ML-MCTDH with the Intel Xeon E5-2683
v4 core for N = 10: the ML-MCTDH is roughly twice as slow as the
values reported in Table VI. It shows that the choice of the computer
is of importance in practice, but it does not change the general trends
observed below.

Table VI shows that we need greater wall-times to obtain ML-
MCTDH results, and in fact, much greater wall-times are needed
when all pairwise interactions are included (see the supplemen-
tary material for a brief discussion on this outcome). Note that
no parallelization was used for the DMRG calculations. It appears
that the ITensor implementation of DMRG is highly efficient for
the present problem. Nevertheless, the present results show that
ML-MCTDH can capture the main physics with reasonable wall-
times. In particular, if the primary goal is to study the peak in the
entanglement entropy, one may use the NN Hamiltonian, which
requires wall-times that are more in line with those needed for
DMRG.

The maximal memory usage data are presented in Table VII.
We observe that, with the exception of some small systems, the
memory requirements of DMRG are systematically less than those of
ML-MCTDH. In addition, the sizes of the final eigenstates are out-
lined in Table VIII, and we find that theML-MCTDHwavefunctions
are not as compact as the equivalent MPSs. This is rather surpris-
ing since the trees generally lead to more compact wavefunctions
than MPSs.36,56,57 This probably shows that the one-dimensional
rotor-chain problem fits very well to the DMRG algorithm.

V. SUMMARY AND OUTLOOK
We have performed a systematic comparison between two dif-

ferent numerical methods for calculating the ground states of a linear
rotor model describing a nanomolecular assembly: the Multi-Layer
(ML) variant of MCTDH and DMRG. The numerical performance
and overall quality have been discussed for different values of the
coupling strength and of the number of rotors involved in the chains.
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At present, the ML-MCTDH method is both more memory- and
time-consuming than DMRG, in some cases by more than one order
of magnitude.

There are several factors working against ML-MCTDH for the
dipolar rotor chain system. First, ML-MCTDH is primarily a time-
propagation method. As such, all variables are taken to be complex,
whereas an eigensolver (such as the one used by DMRG) can be
written using real arithmetic. Real arithmetic vs complex arithmetic
inflates the memory demand by a factor of 2 and the computation
time by almost a factor of 4. Second, the relaxation method, i.e.,
propagation in imaginary time, is not a very efficient method to gen-
erate ground states, in particular, when high accuracy is desired.
Third, as it is based on the MPS ansatz, DMRG is most efficient
for computing ground states of one-dimensional systems, as is the
case here (as mentioned in the Introduction, DMRG can also be very
efficient for excited states and time propagation). However, this effi-
ciency may not generalize to higher dimensions. If one considered
a 3D arrangement of rotors with, e.g., five rotors in each direction,
yielding 125 rotors altogether, then it is possible that ML-MCTDH
will perform similarly as here, but DMRG could be more challeng-
ing to converge. As we point out in the supplementary material,
several technical improvements are available, but they are yet to be
implemented in the Heidelberg MCTDH software package, which
was used for the calculations in this work. We hope that this con-
trast between the current capabilities of ML-MCTDH and DMRG
motivates the development of these improvements.

Despite the difficulties faced by ML-MCTDH, it is able to
capture the fundamental physics of the ground states of up to 50
rotors across a broad range of coupling strengths, which is per se
an important result. This includes the entanglement entropy, whose
nonmonotonic behavior even in the NN case suggests the presence
of a second-order quantum phase transition between ordered and
disordered phases.

As explained by Larsson,36 more systematic comparisons
between ML-MCTDH and DMRG are highly desirable. Although
the two methods have their own strengths, they are both based on
tensor decompositions of the wavefunction, and the development
of hybrid methods may be advantageous; for instance, it could be
profitable to use ML-MCTDH for time-dependent simulations of a
DMRG-optimized ground state. In addition, the combination of the
experience of the two communities working on these two methods
and the techniques they have developed to solve the Schrödinger
equation may lead to a more efficient treatment of large quantum
systems. In particular, more flexibility in the choice of the wave-
function representations for both methods could prove to be very
helpful.

SUPPLEMENTARY MATERIAL
The supplementary material provides the ML-trees for N = 25

and 50 as well as some information about the integration scheme
used for ML-MCTDH. It also presents a discussion about the
Hamiltonian formats used for ML-MCTDH and DMRG and their
impact on the efficiency of the two methods and how the form of
the operator could be changed to improve the efficiency of ML-
MCTDH. In addition, it gives some technical information about the
DMRG calculations such as the size of the basis set, the truncation
parameters, and the final MPS bond dimensions.
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