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Abstract 

Spasticity is a symptom that impairs the ability to freely move and control one’s limbs through 

increased tone and involuntary activations in the muscles. It can cause pain and discomfort and 

interfere with daily life and activities such as walking. Spasticity is a result of upper motor neuron 

lesions and is seen commonly in survivors of stroke and brain trauma, and individuals with 

cerebral palsy, multiple sclerosis, and spinal cord injuries. Despite its ubiquity the phenomena is 

not well understood. However, the most referred to definition describes spasticity as “a velocity-

dependent increase in tonic stretch reflexes with exaggerated tendon jerks, resulting from hyper-

excitability of the stretch reflexes.” 

Qualitative, subjective measures are commonly used in the clinical setting to assess spasticity, 

most notably the Modified Ashworth score, which has been shown to have inconsistent reliability, 

relying heavily on the examiner’s experience, and is inaccurate for the lower limbs. Furthermore, 

these subjective scores do not account for the velocity-dependence of spasticity, which is a key 

differentiator against other symptoms such as rigidity. Consequently, there is a need for an 

objective measure of spasticity that can provide a more accurate and reliable alternative or 

supplement to the current clinical practice, in order to improve the evaluation of treatment and 

rehabilitation for spasticity. 

To address this need, a system was developed, validated and applied for modeling the 

spasticity in the lower-limbs of an affected individual. An experimental setup consisted of a 

brace-handle system with integrated force sensors for passive actuation of each leg segment, 

stretching spastic muscles to assess the severity of the condition. The setup included wearable 

sensors sEMG and IMUs – recording muscular activity and limb segment kinematics respectively 

during these motions. From the data, onsets of muscular activity and subsequently the trigger 

points of spastic reflexes were identified, which were mapped onto the calculated joint 

kinematics. Based on threshold-control theory, stretch reflex threshold (SRT) models of spasticity 

were created for each muscle by plotting the joint velocities and positions and using regression 

analysis to create a dynamic threshold in the kinematic space that divided the regimes of spastic 

and non-spastic motion. These muscle-specific models were combined by muscle groups, leading 

to the creation of a novel, data-based measure that characterizes the severity of spasticity of a 

group of muscles. The models and measures were found to agree with the expected changes from 

different conditions of muscle stretch, and different levels of spasticity in the included subjects, 

but required more data for statistical validation. 

The muscle-specific models were then implemented in a spasticity controller developed for 

use in neuromuscular simulations, in addition to further modeling of spastic reflex characteristics. 
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The controller was applied in a scenario simulation of the same passive movement spasticity 

assessments used to collect the original data, which provided additional validation of the 

methodology and results of the modeling. The spasticity controller was also applied in a 

previously developed reinforcement-learning walking agent, to see the effects of spasticity on 

simulated gait. Following modification and training of the new agents, the spatio-temporal 

parameters of gait were analyzed to determine the differences in healthy and spastic gait, which 

agreed with expectations and further validated the spasticity modeling. 

This thesis presents a system to accurately and reliably model spasticity, establishing a novel, 

objective measure to better characterize spasticity, validating it through demonstrations of its use 

that may be extended in future work to accomplish better understanding of spasticity and provide 

invaluable improvements to the lives of affected individuals through practical applications. 
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Chapter 1: 

Introduction 

Upper motor neuron syndrome (UMNS) is a set of symptoms that can follow stroke, brain injury 

or spinal cord injury (SCI), which can result in damage to the descending motor pathways from 

the motor cortex to the spinal cord. UMNS can also be seen in other neurological disorders 

including multiple sclerosis and cerebral palsy. Common symptoms included in UMNS are 

muscle weakness and endurance issues, and hyper- or hypo-tonia (increased or decreased muscle 

tone). An affected individual can suffer from problems with motor control, including worsened 

speed and accuracy of body movement. 

Spasticity is a common symptom of upper motor neuron lesions, which can be described by 

increased muscle tightness and stiffness, and a hyperexcitability of the reflexes that causes 

involuntary contraction of the muscles or jerky movements. Spasticity presents in varying degrees 

of severity, and it can interfere with daily activities, movement or speech of an affected person, 

and can cause discomfort or pain [2]. Approximately 42% of stroke patients develop spasticity 

within six months of the onset of stroke [3], and spasticity affects about 65% of patients with MS 

[4], and about 70% of individuals living with SCI [5]. Spasticity in the long-term can lead to 

secondary complications such as problems with posture or muscle contractures [6], which are 

deformities caused by persistently shortened muscles and tendons. 

A commonly accepted definition of spasticity is lacking in the literature, especially in the 

neurology and biomechanics communities. In a review of 250 studies [7], 35% simply equate 

spasticity with increased muscle tone, and nearly the same number either fail to define it or use 

their own definitions of spasticity. However, over 30% of studies refer to Lance’s [8], [9] 

definition of spasticity, i.e., “a velocity-dependent increase in tonic stretch reflexes with 

exaggerated tendon jerks, resulting from hyper-excitability of the stretch reflexes.” These three 

features are essential for characterizing spasticity, especially because it is also important to 

differentiate spasticity from other symptoms that may seem similar but are fundamentally distinct. 

Rigidity is another common symptom, seen in Parkinson’s disease. It is characterized by 

increased muscle resistance occurring through the range of motion [10] and does not depend on 

the velocity or acceleration of movement [2]. Spasticity must also be distinguished from clinically 

defined flexor synergy as described by Twitchell [11] and Brunnstrom [12]. An example of flexor 

synergy in the clinical sense, which should not be mistaken with synergy in the context of motor 

control, is an abnormal coactivation of shoulder abductor muscles with elbow flexor muscles [13]. 
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Other factors may contribute to increased muscle activity seen in spasticity, such as cutaneous or 

pain-related reflex mechanisms [14].  

There is also a lack of consensus about the mechanisms involved in spasticity [14]. For 

instance, what neurological and physiological factors are involved, and how much do they 

contribute to the condition? It is challenging to answer the above question as the lesions affect 

different pathways in a patient-specific way and the subsequent adaptation in the spinal network 

varies across patients. The contribution of the spinal excitatory and inhibitory mechanisms and 

supraspinal (both inhibitory and excitatory) pathways to spasticity are still not fully understood 

and require further investigation. 

Treatment for spasticity often involves rehabilitation, which is generally aimed at reducing the 

reflex hyperexcitability, normalizing muscle tone and improving motor control [15]. Medication 

can be effective, such as injections of botulinum toxin type A, which inhibits the signals to your 

muscles and therefore the spasticity. However, it must be continuously administered, which can 

become very expensive. Additionally, the peak of effectiveness is followed by a longer period 

where the spasticity symptoms gradually re-emerge, which can lead to adverse effects such as 

frustration, sleep loss and depression [16].  

Assessing spasticity is essential for patient follow up, especially to evaluate the effectiveness 

of treatment by medication or rehabilitation [17], [18], and to improve our understanding of the 

underlying factors of spasticity. Clinicians today use qualitative measures to assess spasticity, 

most notably the Modified Ashworth Scale (MAS), which tends to be very subjective, relies 

heavily on the examiner’s experience, and is inaccurate, especially for the lower limbs [19]. 

Instead, obtaining an objective, quantitative measure of spasticity would be better suited for 

assessment and following up the effects of treatment and rehabilitation. 

1.1 Outline and Objectives 

The main goal of this research was to develop a quantitative model of spasticity that can be 

used to accurately predict spastic behaviour in an individual’s lower limb based on threshold 

control hypothesis [20]. To accomplish this goal, three primary objectives were established: 

1) Develop wearable instrumentation and algorithms that will allow for modeling spasticity 

in a subject, and technically validate them to ensure accurate and reliable modeling. 

2) Develop a protocol for spasticity experiments, consisting of passive movements of the 

joints in an individual’s leg at different poses and speeds, using the instrumented handles 

and recording the required data. 

a) Collect data in collaboration with the Toronto Rehabilitation Institute involving 

individuals with SCI. 
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3) Develop models and extract features that characterizes spasticity, then combine them into 

a quantitative score that will supplement existing clinical measures of spasticity. 

A new objective was also added following changes to the situation (see Section 3.1.4): 

4) Develop a neuromuscular simulation controller of spasticity and apply it to simulations of 

scenarios, including passive spasticity assessments and walking. 

Chapter 2 presents a review of the current state of research and application in assessing 

spasticity. Instead of a systematic review of the overall research, the focus is on identifying 

different approaches for quantitative modeling of spasticity, including the key measures used, 

their strengths and limitations, challenges, and future directions for spasticity research. 

Representative papers were selected based on modeling approaches to demonstrate the differences 

between the methodologies.  

Chapter 3 features the methodology and results of modeling spasticity with wearable sensors. 

The chapter begins with the experimental design and protocol in Section 3.1, and the data 

processing theory and algorithms are described in Section 3.2, including a novel objective 

measure of spasticity. The approaches are validated in Section 3.3, and Section 3.4 describes and 

discusses the results of modeling. 

Chapter 4 describes the functions and algorithms for simulating spasticity, in scenarios of 

passive movement spasticity with a virtual examiner, and a reinforcement learning walking agent. 

Section 4.1 introduces the background and motivation for the chapter, and Sections 4.2 and 4.3 

describe the methodology for the simulations. Section 4.4 presents the results of the simulation 

scenarios, and Section 4.5 offers a brief conclusion on the topic.  

Chapter 5 provides a conclusion to the thesis, revisiting the objectives, results and discussions 

of the previous chapters and directions for future research in this topic. 

 

Figure 1. Overview of the progression of the research through the chapters of the thesis.  
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Chapter 2: 

Literature Review 

2.1 Subjective Clinical Measures 

Qualitative measures are widely used in the clinical setting to assess spasticity, most notably 

the Modified Ashworth Scale (MAS) [21], [22] (see Table 1), which tends to be subjective, relies 

heavily on the examiner’s experience, and is inaccurate, especially for the lower limbs [19]. Even 

for upper limbs, there is inconsistency in the inter-rater and intra-rater reliability. While some 

studies reported good inter- and intra-rater reliability [22], [23], mostly for upper limb muscles, 

others reported poor reliability between raters [24]. Reporting the reliability based on only two 

raters, as has been done in those studies, is questionable. Pandyan et al. [19] in their review 

suggest that both the Ashworth Scale (AS) and MAS are only good as ordinal and nominal level 

measures of resistance to passive movement, respectively, not measures of spasticity itself. 

Such clinical scores are also unable to differentiate the previously discussed overlapping 

symptoms seen in UMNS. The scores are also blind to the factors that cause spasticity, therefore 

they could not contribute to understanding the underlying phenomena. 

Table 1: Modified Ashworth Scale (MAS). 

Grade Description 

0 no increase in muscle tone. 

1 

slight increase in muscle tone, manifested by a catch and release or by 

minimal resistance at the end of the range of motion (ROM) when the 

affected part(s) in moved flexion or extension. 

1+ 
slight increase in muscle tone, manifested by a catch, followed by 

minimal resistance throughout the remainder (less than half) of the ROM. 

2 
more marked increase in muscle tone through most of the ROM, but 

affected part(s) easily moved. 

3 considerable increase in muscle tone, passive movement difficult. 

4 affected part(s) rigid in flexion or extension. 

 

The Tardieu Scale is another clinical measure of muscle spasticity that can better account for 

the velocity-dependent characteristic of spasticity, by assessing the passive muscle response at 

slow and fast speeds. The Tardieu Scale and its modified version have been recently preferred 

over AS and MAS [25], as they better follow Lance’s definition and are more sensitive to the 
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changes in spasticity [26], [27]. However, there is a lack of investigations of the Tardieu Scale 

reliability and quality as a measure of spasticity [28]. 

The lack of consistency and reliability of subjective measures suggest a need for an objective 

measure based on a quantitative approach to accurately estimate spasticity. Such objective 

measures could be better suited for assessment and monitoring the subsequent treatment and 

rehabilitation of the symptom. 

2.2 Objective Approaches in Literature 

To address the shortcomings of existing clinical scores, objective measures of spasticity have 

been investigated in recent decades. In this section, we discuss the objective approaches that have 

been employed to characterize spasticity, where different sensor-based quantitative measurements 

have been used (see Section 2.2.1) along with different modeling techniques (see Section 2.2.2) 

to produce outcome measures that indicate the severity of spasticity. 

2.2.1 Sensors and Measurement 

2.2.1.1 Electromyography 

Electromyography (EMG) measures the electrical current generated in the muscles during 

contraction, and the signal can represent the activity of a given muscle [29]. The EMG signal is 

the product of a complicated process involving the nervous system and physiological properties of 

the muscles. The signal becomes noisy due to traveling through different tissues. Surface EMG 

(sEMG) uses electrodes on the skin to collect these signals, which makes it particularly prone to 

muscle crosstalk. Improper placement of sEMG electrodes can cause significant variations in the 

signal amplitude and spectral characteristics. These variations between recordings could be 

mistakenly attributed to the effects of a treatment or rehabilitation method [30]. Electrodes that 

are not aligned with the muscle fibers can also result in sEMG signals with distorted amplitude or 

frequencies. Staudenmann et al. [31] found that properly aligned bipolar electrodes result in the 

lowest root mean square difference between measured muscle forces and estimate muscle forces 

using the sEMG recordings. Despite the potential complications, the benefit of sEMG is the ease 

of use and reduced discomfort when compared to invasive techniques such as intramuscular EMG 

involving a needle. 

Repeatability of sEMG recordings and analysis is necessary for any objective approach. Steele 

et al. [32] demonstrated the high repeatability of sEMG recordings and analysis of muscle 

synergies between clinical visits up to six weeks apart, suggesting that any change in the results of 

signal analysis reflects a real change in the muscular activity. Accurate detection of the onset of 

muscle activity is important in some approaches to quantitative modeling of spasticity, as 
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described in Section 3.2. This emphasizes the importance of EMG-based event detection 

algorithms. 

Staude and Wolf [33] investigated three representative methods for “event” detection in EMG 

signals: the traditional finite moving average (FMA), two-threshold (TT) criterion, approximated 

generalized likelihood ratio (AGLR), as well as the cumulative sum (CUSUM) type model (with 

known parameters) as a comparative reference for optimal performance. The FMA algorithm uses 

a sliding window technique, comparing the (weighted) mean amplitude of the data to a threshold 

value. The TT algorithm is essentially based on the sum of two subsequent squared observations, 

which must pass two threshold comparisons. The AGLR algorithm gains substantial estimation 

performance with prior knowledge about the dynamic variance profile associated with a muscle 

activation accounted for at the expense of more samples required [33]. The methods were 

compared to a model-based (dynamic process) algorithm for better detection performance relative 

to the traditional methods. They compared the estimated onsets of muscle activity to the true 

onsets; however, their definition of the “true onsets” is unclear. 

2.2.1.2 Kinematics, Force and Torque 

Most investigations that quantitatively assessed spasticity used a mechanized apparatus, e.g., 

[34]–[38], which supports the limb during the experiments. Such an apparatus allows manual or 

motorized movement of the limb while recording kinematic and torque data with the integrated 

sensors. This approach is functional and valid for preliminary research with high reliability, but 

the restrictive nature of such setups would not represent all aspects of real, natural movement in 

daily life. More importantly, the utilized devices are typically bulky, especially if they involve 

robotic components [37]–[39], which is not feasible for widespread application in the clinical 

setting. 

Recent advancements of wearable sensors and technologies allow for ubiquitously accurate 

monitoring of our movement, activities and physical health [40]–[45]. In recent studies of 

spasticity, few have used a portable system in their experiments. Some of the existing portable 

systems utilize a flexible electrogoniometer (based on strain gauge mechanism) [46]–[49], which 

is a simple method for measuring the joint angles. However, the resulting measurements would 

not be robust to the sensor placement; for instance, if the sensor is not perfectly aligned with the 

frame of motion. Electrogoniometer measurements could also result in inaccurate estimation of 

joint angle when the axis of rotation is changing [50], [51]. Additionally, measurement of joint 

angle with electrogoniometers relies on accurately identifying the center of rotation, e.g., of the 

knee joint [52], which changes with motion [53] and would be difficult to manually identify and 

track. 
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Inertial measurement units (IMU) were used in recent studies on spasticity [54]–[56]. IMU 

calibration procedures were developed [56], [57] in order to correct for imperfect placement and 

orientation and to produce signals that accurately represent the real motion of the limbs under 

study. Estimation of joint axis and angle estimation using IMU measurements has been shown to 

be accurate and valid when compared to camera-based motion capture systems [58], [59], or 

compared to magnetic tracking systems [60]. IMU-based measurement of human kinematics has 

also been demonstrated with high repeatability and validity, for instance in gait analysis [61], 

[62], and when fused with other sensors [63], and in 3D joint angle estimation [60]. Even using a 

single IMU has been shown to result in accurate motion analysis in studies evaluating 

rehabilitation exercise performance [64], [65]. As wearable sensors, IMUs are more convenient 

and practical for use in a clinical setting than bulkier or stationary alternatives such as the camera-

based motion capture systems. IMU-based joint kinematics estimation is therefore beneficial for 

spasticity evaluation, due to its ease of use, reliability, and repeatability of the measurements. 

Wireless sEMG and IMU sensors have been combined to assess rehabilitation activities such as 

reaching, flexing movements and other exercises [66], [67], where high intra- and inter-subject 

reliability were demonstrated for the measurements [68]. IMU and sEMG sensors have also been 

used for load estimation in the industrial setting and showed potential in estimation of the 

biomechanical overload risks for manufacturing workers [69]. 

Many of the studies discussed in this review included in their analysis the resistive force (in 

many cases represented with torque) generated by the spastic muscles being investigated. Detailed 

in Section 2.2.2, some studies aimed to model and estimate the reflexive force and the EMG 

activity, as they reflect the magnitude of the spastic response to muscle stretch. The force or 

torque was also related to other outcome measures to characterize spasticity. As mentioned 

previously, the joint torque was often measured by a torque sensor in the experimental apparatus, 

otherwise the reactive force was measured by a multi-degree-of-freedom force sensor, or torque 

estimated by other sensors such as a dynamometer [39] or differential pressure sensor [70]. 

2.2.2 Quantitative Modeling 

This section describes three quantitative modeling approaches of spasticity and different 

examples of each approach. The reviewed studies grouped based on their modeling approaches 

can be found in Appendix A, along with details on used sensors, methods, and computed 

measures. 

2.2.2.1 Mechanical Modeling 

Several studies approached modeling spasticity from a purely mechanical perspective [35], 

[36], [70]–[72]. Chung et al. [35] measured the resistive joint torque and angular position of the 

hemiplegic spastic ankle during passive dorsi- and plantar flexion motion. The slope of the 
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torque-angle curve (see Figure 2) at the dorsiflexion ROM limit represented the quasi-stiffness of 

the ankle joint. Additionally, the area inside the curve across the dorsiflexed ROM represented the 

energy loss during dorsiflexion, which was then normalized by the ROM limit. Higher stiffness 

and energy loss indicate higher resistive forces during the joint motion, suggesting severe 

spasticity. The resistive torque at the nominal limits of plantar flexion and dorsiflexion, as well as 

the ROM, were also considered as outcome measures, where a smaller ROM and higher torque 

would suggest more severe spasticity. The participating stroke subjects showed significantly 

higher resistive torque, stiffness, and energy loss, as well as lower ROM when compared to 

healthy control subjects. These passive biomechanical properties had moderate to low correlation 

with the MAS scores (Kendall τ = 0.294, 0.297, 0.230 for torque, quasi stiffness, and energy loss, 

respectively; p < 0.05) [35], thus could provide informative measures of the spasticity in the 

muscles acting on the ankle joint. 

 

Figure 2. Representative torque-angle curves (hysteresis loops) from the experiments of Chung et 

al. [35]. The limit of dorsiflexion range of motion (ROM) was designated as the point of 10 Nm 

of resistive torque in both stroke and control subjects. The quasi-stiffnesses are the s.stiff and 

c.stiff slope values, respectively, for the stroke and control subjects. 

Spasticity is typically characterized by the velocity-dependent increase in muscle tone, and the 

“catch”—the joint angle where the increased tone suddenly appears during fast passive stretching 

of the muscle [73]. To model this changing of muscle tone, Park et al. [71] divided the stretching 

motion of the elbow into three phases: pre-catch, catch, and post-catch. For the pre-catch phase, 

the passive elbow resistance was modeled as a linear mass-spring-damper system: 

𝜏𝑝𝑟𝑒 = 𝑚𝜃̈ + 𝑏𝜃̇ + 𝑘𝜃 (1) 

where m is the inertial mass of the hand and forearm, and b and k are the damping and 

stiffness, respectively. The catch angle can be represented as: 
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𝜃𝑐𝑎𝑡𝑐ℎ = 𝜃𝑖 +
𝐿

𝜃̇𝑝𝑟𝑒
 (2) 

where L is the catch angle constant, 𝜃𝑖 is the angle at the beginning of the stretching motion, and 

𝜃̇𝑝𝑟𝑒 is the average speed during the pre-catch phase. During the catch phase the elbow resistance 

was modeled as: 

𝜏𝑐𝑎𝑡𝑐ℎ = ℎ𝜃̇𝑐_𝑠𝑡𝑎𝑟𝑡𝛿(𝑡) + 𝜏𝑝𝑟𝑒_𝑒𝑛𝑑       𝛿(𝑡) = {
1                    𝑖𝑓 𝑡 − 𝑡𝑐_𝑠𝑡𝑎𝑟𝑡 < ∆𝑡𝑐
𝑞  (𝑞 < 1)   𝑖𝑓 𝑡 − 𝑡𝑐_𝑠𝑡𝑎𝑟𝑡  ≥  ∆𝑡𝑐

 (3) 

where h is the catch torque constant, 𝜃̇𝑐_𝑠𝑡𝑎𝑟𝑡 is the stretching speed at the beginning of the catch 

phase, 𝜏𝑝𝑟𝑒_𝑒𝑛𝑑 the torque at the end of the pre-catch phase, q the residual torque constant, 

𝑡𝑐_𝑠𝑡𝑎𝑟𝑡 the time when catch begins, and ∆𝑡𝑐 the duration of peak torque. Finally, the elbow 

resistance during the post-catch phase was represented as a position-dependent torque: 

𝜏𝑝𝑜𝑠𝑡 = 𝑘𝑝𝑜𝑠𝑡(𝜃 − 𝜃𝑝𝑜𝑠𝑡_𝑠𝑡𝑎𝑟𝑡) + 𝑚𝜃̈ + 𝑏𝜃̇ (4) 

where 𝑘𝑝𝑜𝑠𝑡 is the stiffness and 𝜃𝑝𝑜𝑠𝑡_𝑠𝑡𝑎𝑟𝑡 is the initial joint angle of the post-catch phase. The 

model was based on analyzing the kinematics and force measurements during passive elbow 

stretching with four cerebral palsy (CP) participants. The MAS scores of the subjects were also 

assessed, and the complete model was used to simulate each subject’s spasticity in a haptic device 

consisting of a robotic arm, motor, and controller. The clinicians then performed the MAS 

assessment on the haptic device, which simulated the other subjects that they had not assessed 

previously, to validate the results of the modeling. 

2.2.2.2 Musculoskeletal and Neural Dynamics Modeling 

Previous reviews on the objective characterization of spasticity showed the importance of 

differentiating the mechanical (musculotendon) and neural components of spasticity, especially 

for monitoring the effects of treatment or rehabilitation [74], [75]. Obtaining those components 

requires the inclusion of both biomechanical and electrophysiological signals in the assessment of 

spasticity. 

To model the neural and physical components of spasticity, several studies have designed 

theoretical controllers that include the musculoskeletal geometry, musculotendon dynamics, 

muscle spindle, motor neuron pool and subsequent muscle activations. The theoretical controllers 

receive the measured kinematics as inputs to estimate the force [76] or torque [39], [77]–[79] 

generated by the muscles (due to reflex) for a given passive movement. The controller parameters 

consist of neural and non-neural parameters (e.g., muscle spindle firing rate, passive 

viscoelasticity, etc.) and are optimized to fit to the measured data. The estimated force or torque is 
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generally represented as a sum of the effects of inertial, gravitational, and active muscle forces 

[77]: 

𝜏𝑇 = 𝜏𝐼 + 𝜏𝐺 + 𝜏𝑀 (5) 

where 𝜏𝑇 is the measured torque, 𝜏𝐼 represents the torque from the moment of inertias, 𝜏𝐺 is the 

torque generated by gravity, and 𝜏𝑀 is the muscle torque consisting of a passive and active 

element, as in the following equation [77]: 

𝜏𝑀 = 𝜏𝑝𝑎𝑠𝑠𝑖𝑣𝑒 + 𝜏𝑎𝑐𝑡𝑖𝑣𝑒 (6) 

The passive torque is characterizable beforehand by a slow, passive movement (e.g., joint 

angle speed of 15 deg/s), which minimizes muscle activation, leaving only the passive parameters 

to be identified by fitting the measured torque-angle curve [77]:  

𝜏𝑝𝑎𝑠𝑠𝑖𝑣𝑒 = 𝑟(𝜃)(𝑘𝐸1𝑒
𝑘𝐸2∆𝐿 + 𝐵𝐿̇ + 𝐹0) (7) 

where 𝑟(𝜃) is the moment arm about the joint, 𝐿 is the muscle length, 𝑘𝐸1 the coefficient of the 

elastic exponential curve, 𝑘𝐸2 the rate of change of the curve slope, 𝐵 the viscosity coefficient, 

and 𝐹0 the elastic curve shape parameter. The active torque generated by the muscle was 

calculated based on the Hill-type muscle model, such as in [77]: 

𝜏𝑎𝑐𝑡𝑖𝑣𝑒 = 𝑟(𝜃) ∙ 𝑎(𝑡)𝑓𝑣(𝐿̇)𝑓𝑙(𝐿) (8) 

where 𝑓𝑣(𝐿̇) the relation between moment and rate of change of muscle length, 𝑓𝑙(𝐿) the relation 

between moment and muscle length, and 𝑎(𝑡) is the muscle activation function, which includes 

the muscle spindle and motor neuron pool models. 

 

Figure 3. Example of system identification algorithm used by Shin et al. [77] for parameters 

characterizing the spastic reflexes, using muscle spindle, motor neuron pool, muscle activation 

dynamics, and musculoskeletal models to estimate the activate muscle torque generated by the 

spastic muscle during reflex. 
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Figure 3 and Figure 4 show examples of a theoretical controller used to indirectly estimate 

active torque generated by spastic reflex, allowing for identification of parameters related to the 

reflex. These models are used to estimate the measured experimental torque at the joint, and the 

optimized biomechanical and neural parameters of the controller are the outputs of this type of 

quantitative modeling which can characterize the level of spasticity. The models are complex and 

while they can be used to simulate spastic behavior, they may be less applicable in clinical 

evaluations. 

 

Figure 4. Another similar model used by Koo and Mak [39] that combines the moment arms of 

all the muscles that affect the joint movement being investigated with their active forces to 

estimate the resulting reflex torque. 

2.2.2.3 Threshold Control Modeling 

Several spasticity models have been developed based on muscle reflex models and the stretch 

reflex threshold (SRT). One hypothesis of how the central nervous system (CNS) controls human 

movement is threshold position control [20], or in a more general form, the Equilibrium Point 

(EP) hypothesis [80]. The EP hypothesis suggests the CNS changes the relationship between 

length and force in muscles to reach a new position and force equilibrium where opposing muscle 

forces are balanced, resulting in movement or a static posture. Specifically, it assumes the CNS 

controls a motor action, whether single-joint or multi-joint, by modulating the thresholds or EPs, 

which results in transitioning between states along a planned trajectory. Spasticity can be defined 

as an involuntary, velocity-dependent increase in tonic stretch reflexes, or reduction in the 

threshold of muscle stretch at which the tonic reflex begins and muscle force increases as a 

function of length. Since spasticity distorts the tonic reflex thresholds, it can adversely affect the 

motion control, which can be described by the EP hypothesis. 
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Levin and Feldman [81] used sEMG recordings to detect the onset of the elbow flexor muscle 

activations as a result of spastic hyperexcitability during passive extension at different speeds. In 

their experiment, a motorized apparatus was used to hold and passively move a participant’s arm, 

while recording the kinematic data. Figure 5 shows an example of a motorized setup and an 

example of a manual setup for investigations of the lower extremities. 

  

(a) (b) 

Figure 5. (a) Example of a motorized setup for stretching the ankle dorsi- and plantar flexors [37] 

and (b) a manual setup for extending the knee joint and stretching the flexor muscles [54]. 

The joint angular velocity and the joint angle at the onset of spasm was used to define the 

dynamic stretch reflex threshold (DSRT). Repeating passive elbow extension multiple times at 

different speeds allowed for data-driven modeling, building a linear regression model on the 

combined data for a given motion and associated muscle(s). The intercept of this linear model 

(Equation (9)) with zero velocity represents the tonic stretch reflex threshold (TSRT) (see Figure 

6). Several other investigations used this fundamental approach to evaluate spasticity [2], [37], 

[46]–[48], [56], [82], [83], based on the following equation [81]:  

𝐷𝑆𝑅𝑇 = 𝑇𝑆𝑅𝑇 − 𝜇 × 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (9) 

where 𝜇 represents the sensitivity of the dynamic stretch reflex threshold to velocity, and a higher 

𝜇 means greater spasm sensitivity to velocity. 

For an individual with spasticity, the TSRT of an affected muscle is shifted within the 

biomechanical range of motion of a joint, even at a relaxed state, preventing movement 

throughout the full range. In contrast, the TSRT for a healthy individual or unaffected muscle 

would lie outside the ROM. This is supported by their dynamic stretch reflexes only appearing at 

higher potential velocities (see Figure 6), in a case such as a knee tendon tap, which evokes a 

similar response to a very high stretch velocity of the quadriceps muscles, in excess of 300 deg/s 

[83], [84]. Therefore, as the quantitative outputs of the model, a lower TSRT value and higher 𝜇 
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value would suggest more severe spasticity for a specific muscle. Combining the models for the 

muscles acting on a particular joint can provide a map of the spastic joint space [56]. 

The mentioned studies, including the purely mechanical approaches and musculoskeletal and 

neural dynamics models, investigated spasticity through passive-movement experiments. 

However, in daily life situations and outside of the lab setting, spasticity could also be triggered 

due to active movement. Thus, it is important to extend the scope of experiments to include active 

movements to characterize and assess spasticity in a more comprehensive capacity. 

  

(a) (b) 

Figure 6. (a) Example of tonic stretch reflex threshold (TSRT) estimation by 20 dynamic stretch 

reflex threshold (DSRT) points found by stretching the elbow flexor muscle biceps brachii at 

different velocities; (b) example of a threshold model for a post-stroke subject versus healthy 

person, where the TSRT lies outside the biomechanical range of the joint [48]. 

According to the threshold control theory, some believe that spasticity can be described as an 

impaired ability to regulate the tonic stretch reflex thresholds, and recent studies have begun to 

investigate this concept. Turpin et al. [84] tested both passive flexion and extension of the elbow 

joint by an experimenter, and with active, volitional elbow motion in identical conditions. Passive 

and active movements were performed with the same range of motion specific to each participant 

at a variety of joint angular velocities. Obtained TSRTs were at greater angular displacements, 

corresponding to more stretched muscles, in the active stretching compared to the passive 

stretching (by 10–40 deg), suggesting an increase in non-spastic ROM. Conversely, the slopes of 

the regressions (parameter µ) were increased by 1.5 to 4.0-fold, showing a higher sensitivity to 

velocity during volitional control. These findings suggest that during volitional motion an affected 

individual could stretch the muscle/extend the joint further than the during passive motion, 

particularly at slower speeds. However, at greater velocities the DSRTs estimated from active and 

passive motions are in a similar range. Figure 7 shows a representative subject from that study. 



  

   

14 

 

In an earlier study on implicit learning and generalization for stretch reflexes in healthy 

subjects, Turpin et al. [85] found the amplitude of the stretch reflex decreases and remains 

attenuated by 5–12 repeated stretches, and does not increase even after 5 min of rest. This 

observation can be explained by the anticipation of the stretching which can result in the pre-

modulation of spatial thresholds that can suppress the muscle resistance to stretch. This pre-tuning 

of stretch reflex is similar to the clasp-knife phenomenon [86] seen in individuals with 

Parkinson’s disease and stroke survivors who have rigid or spastic muscles [87], [88].  

 

Figure 7. A representative subject in [84] where in the active stretching of elbow flexors—biceps 

brachii (BB) and brachioradialis (BR)—the TSRTs were found to occur at greater joint angle or 

higher stretch. In contrast, the sensitivity to velocity was found to be increased in both muscles, 

when compared to passive motion. 

2.3 Discussion 

2.3.1 Comparing the Approaches 

Subjective measures, most commonly the AS and MAS, as well as other clinical scores, are 

currently used to assess spasticity in clinical practice. These scores are easy to obtain and do not 

require any equipment and sensors, unlike the objective approaches. However, the issue remains 

of their questionable reliability, weak correlation with muscle activity measurements of the 

reflexes [83], [89], [90], and inability to reflect the complex mechanisms of the spastic reflexes. 

Despite these shortcomings, subjective measures should not be totally abandoned until a reliable, 

objective measure is found and established, but they need to be supplemented with current 

quantitative approaches. 
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The mechanical modeling approaches represent spasticity at the joint level, usually in joint 

torque-kinematic space, whether by identifying biomechanical properties that differ between a 

healthy individual and an individual with spasticity (e.g., change in joint mechanical impedance) 

or representing the spastic behavior by a simulation model. The outcomes have been shown to 

moderately correlate with clinical scores such as the MAS [35], demonstrating the potential of 

this type of approach, which is also simpler and easier to use in a clinical setting than more 

complex modeling approaches. However, as previously discussed, the assessment of spasticity for 

follow up and treatment is better accomplished by differentiating biomechanical and neural 

components of spasticity, using both mechanical variables and electrophysiological signals [74], 

[75]. 

The resulting biomechanical and neural parameters of the musculoskeletal and neural 

dynamics models allow for characterizing spasticity at the muscle level. The obtained measures 

may allow understanding of some aspects of the neurophysiology of spasticity, and could 

potentially be applied to the development of treatments. For example, Shin et al. [77] arrived at 

optimized parameters μ which represents the muscle spindle firing rate at 50% motor neuron 

recruitment, and σ as the standard deviation of the Gaussian cumulative distribution that 

represents the function of the alpha motor neuron pool. A lower μ means a lower minimum 

spindle firing rate which indicates hyper-reflexia in the muscle [91]. The higher reflexive torque 

(increased muscle tone) found with lower μ and σ values in their experiments shows a possible 

relationship between those parameters and spasticity. Koo and Mak [39] showed similar results by 

looking at μ0, the minimum spindle firing rate for just 0.5% neural excitation, and GL as the 

muscle spindle static gain. These parameters were posited to be more physiologically meaningful 

in relation to spasticity. Using sensitivity analysis, μ0 and GL were determined as the key 

parameters when predicting reflex torque. Koo and Mak suggested that drug or treatment 

development could be focused on effectively regulating those specific parameters. Clinical scores 

have been used besides this modeling approach to assess the subjects’ spasticity [78], and it was 

found that stiffness, viscosity, and reflex torque are positively correlated with AS scores. 

However, the authors did not include neural parameters in their torque estimation model, and 

instead used measured EMG to estimate the neuromuscular activity due to stretch reflex. Recent 

advancements in joint mechanical impedance estimation during active movements [92]–[95] 

would allow further investigations on how spasticity affects the modulation of joint impedance, 

particularly joint stiffness and viscosity, during volitional movement and walking. 

From a research-oriented point of view, this type of investigation can provide meaningful 

details about spasticity. However, they are not likely to be clinically applicable, as also mentioned 

in other reviews of the literature [96], due to the complexity and time required for setup 

preparation and data processing. An easy to use objective assessment method that can still benefit 
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from high level neural and mechanical modeling could provide a more suitable solution for 

spasticity assessment in the clinics. This high-level approach could be based on the threshold 

control-based models [2], [37], [46]–[48], [56], [81]–[84], which explicitly reflect the velocity-

dependence of spasticity. These models have also been shown to be moderately correlated with 

clinical scores, agreeing with the current practice and are generally simpler than the methods that 

use parameter-based estimations of spastic responses. While these models are usually acquired 

with robotic setups which can be complex and not available in every clinic, several studies 

showed the potential of using wearable sensors and inexpensive hand-held instruments to obtain 

such models accurately [54]–[56]. 

Previous studies have found that the spastic reflex is affected by the initial stretch level at the 

beginning of a stretching motion, given the same stretching velocity [34], [97]. Kamper et al. [34] 

found that with longer initial lengths of the elbow flexor muscles, the reflex threshold and 

stiffness were significantly reduced and increased, respectively, indicating a negative relationship 

between the initial muscle length and the spastic reflex. The approaches discussed in Section 

2.2.2 do not account for this observation. Future studies should incorporate varying initial stretch 

positions in addition to varying stretch speeds in their investigations.  

More recent studies have found that the firing of muscle spindles is not necessarily unique in 

relation to muscle length and stretch velocity but may be more directly related to muscle force. 

Blum et al. [98] demonstrated that the instantaneous firing rates (IFRs) of muscle spindle primary 

afferents are significantly better predicted by force-related variables than muscle length-related 

variables, especially at higher stretch velocities. Falisse et al. [99] also found that estimating 

muscle activity (using EMG) during spastic reflexes in passive motion, as well as gait in children 

with CP, was better accomplished using measured force (applied by the examiner in passive 

motion and ground reaction forces in gait) than models that estimated using kinematics variables. 

For instance, the activity of the hamstrings was predicted significantly better in both cases by 

force than velocity or acceleration (R2 = 0.73 ± 0.10, 0.46 ± 0.15 and 0.47 ± 0.15, respectively). 

These results suggest a need for incorporating reflex generated muscle force or torque into the 

modeling of spasticity beyond that of estimating the measured profiles using other variables such 

as joint kinematics. Future investigations should aim to consider the relationship between muscle 

force and the spastic reflex in characterizing and assessing spasticity. 

2.3.2 Effect of Spasticity Modeling on Follow-Ups and Treatment 

As discussed previously, reliable and accurate assessment of spasticity by objective measures 

could lead to better follow-ups and treatment. Previous studies of treatment of spasticity have 

been limited by solely using clinical scores to evaluate the effects of the treatments. Simpson et al. 

[100] used the AS to evaluate the efficacy of botulinum toxin type A (BTX-A)—a common 
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treatment option—on the upper limb spasticity in post-stroke subjects. The experiment was 

randomized, double-blind and placebo-controlled, but the limitations of the AS calls into question 

the results that showed significant reductions in spasticity. In a recent study by Turna et al. [101] 

the effects of different injection techniques of BTX-A were investigated for treating ankle plantar 

flexor spasticity. To compare those techniques the effects of the treatment were evaluated with 

subjective scores including the AS, Brunnstrom stages, and Barthel index score, which again 

limits the reliability of the results. 

Some studies have initially explored the idea of investigating the effects of treatments and 

management of spasticity by objective measures. Chen et al. [70] compared the spasticity in the 

affected biceps-brachii muscle in ten chronic stroke patients, two weeks before and after BTX-A 

injection. Measured by a portable device, the elbow joint kinematics, reactive torque and muscle 

activity were analyzed to estimate the viscosity of the muscle and the DSRTs (as a percentage of 

the stretch cycle). They found a significant decrease in viscosity and a significant increase in 

DSRT after injection. The results indicated a reduction in spasticity, which agreed with their MAS 

assessments performed before and after the treatment. However, Pandyan et al. [21] identified 

reductions in spasticity in the elbow flexors of stroke patients, which were not detected by the 

MAS assessments. These results reinforce the idea that clinical scores offer an insufficient and 

unreliable evaluation of spasticity. A better measure of spasticity can be obtained by employing 

quantitative evaluations that provide objective, accurate measures of spasticity and offer models 

that can predict spastic behavior [70]. Investigations beyond this preliminary research could 

potentially reveal precise relationships between dosage and the effects, allowing for an optimally 

effective plan to be designed for each patient [21], [70].  

Several studies have investigated repetitive transcranial magnetic stimulation (rTMS) and 

functional electrical stimulation (FES) and their effect on spasticity. Several studies found that 

rTMS significantly reduces spasticity in the lower limbs, for instance, in SCI participants with the 

effects lasting up to a week as measured by the MAS [102], and in stroke patients [103] as 

measured by their own clinical scale. Franek et al. [104] found that FES improves spasticity in the 

hip adductors of subjects with SCI for a few days up to a few months, as evaluated by a subjective 

scale (scale of 1–6) and objective measures such as H reflex recruitment curves and the number 

and intensity of contractions, while Alfieri [105] found that not all their participants (varying 

cases with hemiplegia and SCI) benefitted from FES. Powell et al. [106] found that FES improves 

wrist extensors strength and ROM, though not specifically for spasticity as evaluated by AS, and 

it was unclear how long the effects lasted. A review of ten recent studies [107] found that 

spasticity was significantly reduced in quadriplegic and paraplegic patients by treating with FES-

cycling exercise. However, the effects were primarily evaluated by MAS. Overall, there is limited 

evidence of the benefit of FES for spasticity, and in many cases the utilized subjective scores and 
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their lack of reliability (particularly for lower limbs) could have contributed to the mixed results. 

Objective measures of spasticity, such as the DSRT, could better evaluate and potentially prove 

the usefulness of FSE and rTMS for alleviating spasticity in conjunction with other treatments or 

rehabilitation [108]. 

2.4 Conclusions 

Approaches that use purely mechanical modeling can provide some information on the 

biomechanical properties of spastic behavior but lack consideration for the neural factors of 

spasticity and electrophysiological activity. The musculoskeletal and neural dynamics models can 

provide insight into the detailed mechanisms of spasticity, such as the theoretical neural 

parameters involved in the spastic reflex but lack practicality and applicability in the clinical 

environment. The threshold control-based models can provide an easy-to-use objective method of 

assessment, especially with wearable sensors in the clinical setting. However, further 

investigations into the neural mechanisms involved in spasticity may prove beneficial for better 

understanding and assessing spasticity. 

There is a need to develop a system that can provide an objective, accurate and reliable 

assessment of spasticity—especially in the lower limbs—to better evaluate the effects of 

treatment and rehabilitation options. Identifying an accurate and objective spasticity model for 

each patient allows for predicting the kinematic states that provoke spastic behavior. Such a 

model could inform rehabilitation programs and enable adapting the assisted movements provided 

by a physiotherapist or an assistive exoskeleton so that uninterrupted exercises may be achieved. 

Obtaining spasticity-free assisted exercises has the potential to remarkably improve the outcomes 

of physical rehabilitation. 
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Chapter 3: 

Spasticity Modeling with Wearable Sensors 

The first three main objectives of the thesis involve establishing a protocol for experiments to 

assess spasticity, developing wearable instrumentation and algorithm for modeling spasticity from 

subject data from those experiments, technically validating them for accuracy and reliability, 

performing the experiments, and finally extracting features and an objective measure to 

characterize spasticity. In this chapter each of these objectives are addressed and completed to 

produce a quantitative score that may supplement the existing clinical scores of spasticity. 

3.1 In Vivo Study 

3.1.1 Participants 

Subjects are recruited through the Toronto Rehabilitation Institute, at the Lyndhurst Centre 

where the experiments will be carried out. The population will be comprised of individuals with 

lower-limb spasticity as a result of motor-incomplete SCI, who have assessed ASIA Impairment 

Scale (AIS) scores of either D or C. Subjects will additionally be individually screened by a 

physician to verify the subject’s conditions are relevant and meaningful to the study. 

Table 2: American Spinal Cord Injury Association (ASIA) Impairment Scale [109] 

 

  

Grade Type of Injury Description 

A Complete 
no sensory or motor function is preserved in the sacral segments 

S4-S5 

B 
Sensory 

Incomplete 

sensory but not motor function is preserved below the neurological 

level and includes the sacral segments S4-S5, and no motor function 

is preserved more than three levels below the Motor Level on either 

side of the body 

C 
Motor 

Incomplete 

motor function is preserved below the neurological level, and more 

than half of key muscle functions below the neurological level of 

injury have a muscle grade less than 3 (Grades 0-2) 

D 
Motor 

Incomplete 

motor function is preserved below the neurological level, and 

at least half (half or more) of key muscle functions below the NLI 

have a muscle grade ≥ 3 

E Normal 
if sensation and motor function as tested with the ISNCSCI are 

graded as normal in all segments, and the patient had prior deficits 
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3.1.2 Sensors and Equipment 

3.1.2.1 Limb Kinematics Measurement 

Four IMUs (Xsens Awinda) are used to measure the kinematics of the leg segments (foot, 

shank, thigh) as well as the pelvis. The raw signals are passed through proprietary low-pass and 

Kalman filtering to provide accurate and unbiased accelerometer and gyroscope data, sampled at 

100 Hz. Post-processing algorithms have been developed to accurately estimate the joint angles 

and joint angular velocities from these sensor recordings. The detailed locations for placing the 

sensors on each segment are as follows, which are designed to minimize motion artefacts due to 

soft-tissue deformation: 

A. Lateral side of the foot below the heel 

B. flat anterior-medial part of shank 

C. anterior side of the thigh, near knee 

D. lateral side of the pelvis 

Figure 8 illustrates the placement and orientations of the IMU sensors. The X-axis of each 

sensor is oriented along the length of each segment, while the Z-axis points away from the limb. 

 

Figure 8. Placement of Xsens IMU sensors on the segments of the lower limb and hip. 

3.1.2.2 Surface Electromyography Measurement 

Wireless sEMG sensors (Delsys Avanti) are attached to each relevant muscle for the type of 

stretching motion, as described in Table 3. The data is recorded in the Delsys EMGworks 

Acquisition software, sampled at 2000 Hz. The EMG measurements will indicate the point at 

which involuntary contraction of the muscles begins, which will reveal the stretch reflex 

thresholds. The EMG signal itself is also a quantitative measure of muscle activation levels. 
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3.1.2.3 Sensor Synchronization 

A spare EMG sensor which also contains a 3D accelerometer is taped to the IMU on the 

shank; which will be used to synchronize the EMG and kinematics recordings in post-processing 

by comparing the acceleration signals. 

A Delsys trigger box is used to send a TTL square signal to the ADC of each force sensor, at 

the beginning and end of each test recording. Only the relevant data in between the two 

synchronization pulses will be extracted for analysis. 

3.1.2.4 Instrumented Handles and Force Measurement 

Three instrumented handles are designed with which the examiner moves the subject’s foot, 

shank and thigh respectively during the tests. The handles are 3D-printed in high density from 

plastic material which are affixed to flexible metal braces for the shank and thigh, or another 3D-

printed plastic brace for supporting the foot.  

 

Figure 9. Experimental setup for (left to right) thigh, shank and foot. The spherical handle is 

attached to the bottom of the foot brace. 

The interfaces between the handles and the braces are designed to house a 6 Degree-of-

Freedom (DOF) force sensor (Figure 9). The utilized force sensors provide precise 3D force and 

moment measurements at the contact points between the examiner holding the handle and the 

brace which is fixed to the leg segment. Each force sensor is linked by an Analog to Digital 

converter (ADC) to a USB connection for a computer, where the forces are monitored and 

recorded in the OptoForce Data Visualization software. The braces of each handle are designed to 

be secured to the respective leg segment by Velcro straps. Each brace is covered with a layer of 

clinical foam on the side that will be in contact with the participant’s body. 
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3.1.3 Experimental Protocol 

The IMUs are attached to the leg segments of the leg under investigation, which is decided 

based on the higher MAS score (to display a greater degree of spasticity). After treating the skin 

with medical ethanol, the sEMG sensors are placed on the following muscles, based on SENIAM 

recommendations [110] (see Appendix B): 

Table 3. Muscles and Associated Joint Motions [111]–[113]. 

Body 

Segment 
Muscle name Joint Function Uni/Biarticular 

Shank 

Tibialis Anterior (TA) Ankle dorsiflexion Uni-articular 

Extensor Digitorum Longus 

(EDL) 
Ankle dorsiflexion Uni-articular 

Extensor Hallucis Longus (EHL) Ankle dorsiflexion Uni-articular 

Soleus (SO) Ankle plantar flexor Uni-articular 

Gastrocnemius Medialis (GM) 
Ankle plantar flexion, assist knee 

flexion 
Biarticular 

Gastrocnemius Lateralis (GL) 
Ankle plantar flexion, assist knee 

flexion 
Biarticular 

Thigh 

Biceps Femoris (BF) (long head) Knee flexion, assist hip extension Biarticular 

Semitendinosus (SE) Knee flexion, assist hip extension Biarticular 

Rectus Femoris (RF) Knee extension, hip flexion Biarticular 

Vastus Medialis (VM) Knee extension Uni-articular 

Vastus Lateralis (VL) Knee extension Uni-articular 

Sartorius (SA) Hip flexion, assist knee flexion Biarticular 

Hip Gluteus Maximus (GLM) Hip extension Uni-articular 

 

An additional wireless sEMG sensor is attached to the shank IMU sensor (see Figure 8). 

Functional calibration movements for the IMUs to align the sensor frames with the anatomical 

frames of the leg segments (see Section 3.2.2.1) are performed. The participant remains in the 

supine position for all following steps: 

1. The knee and hip are fully extended, with ankle at zero degrees; maintained for 10 

seconds. 

2. The shank is held securely while moving the ankle in strictly plantar/dorsi flexion for 10 

seconds. 

3. The ankle is moved in lateral/medial rotation while the shank is held securely but allowing 

for rotation along the axis of the segment; for 10 seconds. 

4. The thigh is held securely while moving the knee in flexion/extension for 10 seconds. 

5. The hip is moved in flexion/extension for 10 seconds. 

6. The hip is moved in abduction/adduction for 10 seconds. 

7. The subject is assisted to perform sit-up motions for 10 seconds. 
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Maximum Voluntary Contraction (MVC) is measured for each muscle. The participant is 

asked to perform isometric actions as strongly as possible against resistance provided by the 

examiner (while in supine position) for at least 5 seconds. 

 

Figure 10. Experimental protocol for ankle, knee and hip motions 
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Passive flexion and extension movements are applied to each joint at 3 different speeds for 

each direction, and 5 trials are performed for each speed and direction (30 in total). At least 2 

seconds of rest is allowed between each trial, and at least a further 10 seconds of rest between 

each set of 5 trials. Monitoring of the actual applied speed is provided by the software interface of 

the IMUs, to maintain as close to the desired speed as possible. The total set of trials for a given 

joint is repeated for different conditions of the proximal joint (see Figure 10): 

A. Ankle motion – the set of trials is repeated while the thigh and shank are held at (I) 

knee extended (KE) at zero degrees, and (II) knee flexed (KF) at 30 degrees 

B. Knee motion – the set of trials is repeated while the thigh is held so the hip is (I) fully 

extended, (II) flexed at 45 degrees, and (III) flexed at 90 degrees. The ankle is relaxed 

in the neutral zero degrees position throughout. 

C. Hip motion – the shank is held to maintain 90 degrees of knee flexion while the thigh 

is moved to flex/extend the hip. The ankle is also maintained in a relaxed manner. 

After the tests are completed, photos from the top and sides of the leg are taken beside a 

measuring tape for reference, including the relative geometry of the force sensors and the joints. 

3.1.4 Special Note 

Due to the COVID-19 pandemic, the experiments planned for the Spring/Summer of 2020 

were indefinitely delayed. Despite the lifted restrictions in 2021, participants could not be 

recruited. Therefore, previously collected data (see Section 3.4) was used for the processing and 

results in this chapter. 

3.2 Data Processing 

All data was processed using MATLAB versions R2020b and R2021a [114]. 

3.2.1 Electromyography 

3.2.1.1 Signal Filtering 

Each EMG signal was passed through a high-pass filter with a cutoff frequency of 20 Hz, 

which removes motion artifacts [115]. Other types of artifacts such as ECG artifacts were not 

observed in the data and did not require filtering. The high-pass filter also zeroes the mean, 

correcting any baseline shift that can result from common issues such as suboptimal electrode 

placement or non-relaxed muscles at recording start [116]. The filtered signal was then full-wave 

rectified, which is simply taking the absolute value. The baseline correction and full-wave 

rectification are necessary for the next step of obtaining the envelope of the signal. 
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The signal must be low-pass filtered to obtain the signal envelope. A moving average filter 

was applied, which is a simple type of Finite Impulse Response (FIR) filter. Specifically, the root 

mean squared (RMS) was calculated at each instance of the sliding window over the signal. The 

RMS method is preferred for smoothing to produce an envelope as it reflects the mean power of 

the raw signal [117], [118]. Conventionally the sliding window is centered, but a left-anchored 

sliding window was used instead because it better preserved the onsets in EMG activity (see the 

next section), with a window size of 50 ms which is considered effective for reflex studies [116]. 

3.2.1.2 Spastic Reflex Identification 

For modeling the spastic behaviour, the onsets of muscle activity must be determined. For 

each signal, the mean 𝜇𝑏𝑎𝑠𝑒 and standard deviation 𝜎𝑏𝑎𝑠𝑒 of the baseline noise were calculated 

by selecting an of the signal where the muscle should be relaxed with no activity. A two-threshold 

(TT) criterion was applied to determine when the signal rises above the baseline noise, 

representing an onset of activity: 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 = 𝜇𝑏𝑎𝑠𝑒 + 3𝜎𝑏𝑎𝑠𝑒 (10) 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 𝜇𝑏𝑎𝑠𝑒 + 6𝜎𝑏𝑎𝑠𝑒 (11) 

where the signal must first rise above 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1, then remain above 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 by 100 ms 

after to be considered as reliable muscle activity, and not an artifact or anomalous spike. The time 

points when the first threshold is crossed are taken as the onsets of muscle activity. Because of the 

nature of EMG signals, the algorithm may select points that are not onsets, or miss other onset 

points. Therefore, a manual review follows where points are rejected or added, using an additional 

version RMS signal with a wider window of 300 ms which helps by showing the overall shapes of 

the activations (see Figure 11), as well as the corresponding kinematics (see Figure 14) to further 

verify when the reflexes are expected to occur, based on the stretching motions. 
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Figure 11. Example S01 KF GM muscle reflex point selection at first fast stretch motion 

A latency exists between the onsets of muscle activity and when the spastic reflex is triggered. 

This “nervous delay” was treated as a constant, which is sufficient for the scope of this research. 

An average latency of 50 ms [119], [120] was therefore subtracted from each muscle onset to 

determine the “reflex onsets” that are characterized by the EMG signal. 

3.2.2 Inertial Measurement Units 

3.2.2.1 Functional Calibration 

The geometry of human limb does not allow for placement that gives perfect alignment of 

IMUs relative to the true reference frames of motion for a given limb. The sensors are placed on 

the flattest part of the limb (see Section 3.1.2.1) to minimize shaking/noise in the motion data. 

This results in an assumedly constant misalignment from the limb frame, which can be corrected 

by a process that requires performing two functional calibration movements. 

The first calibration motion for a given segment is performed along the flexion-extension (F-

E) axis of the proximal joint, as described in (see Section 3.1.3). Given the data from the IMU’s 

gyroscope, or our vector of observations ω⃑⃑ , we can estimate the primary direction of movement 

by determining the vector along which there is the greatest variance in angular velocity, using 

Principal Component Analysis (PCA). First, we must obtain the covariance matrix of the angular 

velocities: 
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cov(ω⃑⃑ ) = Σ = [

cov(x,x) cov(x,y) cov(x,z)

cov(y,x) cov(y,y) cov(y,z)

cov(z,x) cov(z,y) cov(z,z)
] (12) 

Using Singular Value Decomposition (SVD) (in MATLAB) we can separate the covariance 

matrix into its orthonormal singular vectors and singular values: 

Σ 
SVD
→  USVT (13) 

where the columns of 𝑈 are the left singular vectors, or eigenvectors of Σ, the columns of 𝑉 

are the right eigenvectors, and the diagonal elements of 𝑆 (returned as a vector) are the singular 

values, or the square of the eigenvalues. The greatest singular value in S corresponds to the vector 

in 𝑈 along which the projection of the data yields the greatest variances, 𝑢1. Assuming the 

accuracy and consistency of the calibration movement, this eigenvector can be taken as the 

direction of the performed motion. We can then calculate the axis 𝑎1 and angle of rotation 𝜃 

between 𝑢1 and Z0 (the limb frame F-E axis): 

𝑎1 =
𝑢1 × Z0
‖𝑢1 × Z0‖

= [𝑎𝑥 𝑎𝑦 𝑎𝑧] (14) 

𝜃1 = cos
−1(𝑢1 ∙ Z0) (15) 

If 𝜃1 > 90°, 𝑎1 should be in the opposite direction and 𝜃1 = 180° − 𝜃1. These parameters 

can be used as a rotation matrix to transform the data: 

R1 = [

𝑐𝜃1 + 𝑎𝑥
2(1 − 𝑐𝜃1) 𝑎𝑥𝑎𝑦(1 − 𝑐𝜃1) − 𝑎𝑧𝑠𝜃1 𝑎𝑥𝑎𝑧(1 − 𝑐𝜃1) + 𝑎𝑦𝑠𝜃1

𝑎𝑦𝑎𝑥(1 − 𝑐𝜃1) + 𝑎𝑧𝑠𝜃1 𝑐𝜃1 + 𝑎𝑦
2(1 − 𝑐𝜃1) 𝑎𝑦𝑎𝑧(1 − 𝑐𝜃1) − 𝑎𝑥𝑠𝜃1

𝑎𝑧𝑎𝑥(1 − 𝑐𝜃1) − 𝑎𝑦𝑠𝜃1 𝑎𝑧𝑎𝑦(1 − 𝑐𝜃1) + 𝑎𝑥𝑠𝜃1 𝑐𝜃1 + 𝑎𝑧
2(1 − 𝑐𝜃1)

] (16) 

The remaining two axes of motion must also be corrected to the limb frame. The second 

calibration data is obtained either by an abduction-adduction (A-A) motion, or vertical standstill 

with the theoretical A-A axis pointed along or orthogonal to the direction of gravity, depending on 

which is more convenient/reasonable to perform for the given limb segment (see Section 3.1.3). 

Rotation R1 is initially applied to the second calibration data to correct the F-E axis. If the second 

calibration is by A-A motion, PCA is performed again to determine the direction of motion in the 

data. In the resulting eigenvector 𝑢2, we must first zero the second element, or project it to the 

plane that is normal-defined by the F-E axis: 

𝑢2,𝑝𝑟𝑜𝑗 = [𝑢2𝑥 0 𝑢2𝑧]
𝑇 (17) 

This step is to ensure the second calibrating rotation is purely about the reference axis and 

does not misalign the previously corrected F-E axis. Afterwards, 𝑎2 and 𝜃2 can be found 
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between 𝑢2,𝑝𝑟𝑜𝑗 and the limb axis Z0 in the same manner. Finally, this gives us R2 and 

therefore the total calibrating transformation: 

Rtotal  =  R2R1 (18) 

If the second calibration data is vertical standstill, we can instead obtain the mean direction of 

acceleration in the data (after initially applying the R1 transformation). This gravity vector can 

then be corrected using the same process to true vertical direction to give us R2 and the total 

transformation Rtotal, which is applied to the kinematic data for all trials of a subject. 

3.2.2.2 Kinematics Analysis 

To model the spastic behaviour, the kinematics of each limb segment about a joint, and 

consequently the joint kinematics must be extracted from the IMU accelerometer and gyroscope 

data that are calibrated to the limb reference frames (see previous section). 

The acceleration data is first looked at to find “rest points” where there is nominally zero 

motion. The gravity vector, which is nominally zero along the F-E axis, is used to determine the 

standstill orientation at each of these rest points. Specifically, the orientation is defined as the 

angle 𝜃′ about the F-E axis with respect to the global horizontal: 

𝑋 > 0, 𝑌 > 0   →    𝜃 = tan−1|𝑌 𝑋⁄ |    →    𝜃
′ = −(90° − 𝜃) (19) 

𝑋 > 0, 𝑌 < 0   →    𝜃 = tan−1|𝑋 𝑌⁄ |    →    𝜃
′ = −(180° − 𝜃) (20) 

𝑋 < 0, 𝑌 < 0   →    𝜃 = tan−1|𝑌 𝑋⁄ |    →    𝜃
′ = 90° + 𝜃) (21) 

𝑋 < 0, 𝑌 > 0   →    𝜃 = tan−1|𝑋 𝑌⁄ |    →    𝜃
′ = 𝜃 (22) 

 

Figure 12. Orientation of IMU or limb segment w.r.t the horizontal using the sensor acceleration 

Depending on the joint angle definition, which are derived from the International Society of 

Biomechanics standards [121] (see Figure 13), we can simply compare each of the two relevant 

joint segment’s orientation to obtain the joint angle at each rest point:  
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Figure 13. Joint angle definitions for the lower limb. 

To determine the joint kinematics, the limb segment orientations 𝜃′0 at the first rest point are 

each converted to a rotation matrix about the F-E axis or Z0: 

RZ0 = [
𝑐𝑜𝑠(𝜃′0) −𝑠𝑖𝑛(𝜃′0) 0

𝑠𝑖𝑛(𝜃′0) 𝑐𝑜𝑠(𝜃′0) 0
0 0 1

] (23) 

which can be converted to a quaternion (see Appendix C.1) to represent the initial orientations of 

each limb segment. From this initial quaternion, strapdown integration (SDI) [122] is used to 

update the limb quaternions at each next sample based on the next angular velocity vector. SDI 

requires the assumption that the sampling frequency 𝑓 of angular velocities in the sensor data is 

sufficiently high that the rotation is small from sample to sample, and therefore the angular 

velocity can be treated as constant between two samples. Setting 𝑖 as the current sample number, 

and 𝜔⃑⃑ 𝑖 as the current angular velocity: 

𝜔⃑⃑ 𝑖+1 = 𝑞 𝑖⨂(
𝜔⃑⃑ 𝑖
𝑓
)⨂ 𝑞 𝑖

−1
 (24) 

Φ⃑⃑⃑ 𝑖+1 = [1
𝜔⃑⃑ 𝑖+1
2
] (25) 

𝑞 𝑖+1 = Φ⃑⃑⃑ 𝑖+1⨂ 𝑞 𝑖 (26) 

where 𝑞 𝑖+1 is the next sample quaternion, and ⨂ indicates quaternion multiplication (see 

Appendix C.3). Because we are interested in the purely sagittal movement (about the nominal F-

E axis of the joint), the proximal segment’s F-E axis is taken as the reference to which to correct 

the distal segment’s F-E axis orientation. First, each segment’s quaternion must be converted to a 

rotation matrix (see Appendix C.2): 

𝑞 𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙   →   𝑅𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 = [𝑋𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 𝑌𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 𝑍𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙] (27) 
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𝑞 𝑑𝑖𝑠𝑡𝑎𝑙   →   𝑅𝑑𝑖𝑠𝑡𝑎𝑙 = [𝑋𝑑𝑖𝑠𝑡𝑎𝑙 𝑌𝑑𝑖𝑠𝑡𝑎𝑙 𝑍𝑑𝑖𝑠𝑡𝑎𝑙] (28) 

𝜃𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = cos
−1(𝑍𝑑𝑖𝑠𝑡𝑎𝑙 ∙ 𝑍𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙) (29) 

𝑖𝑓 𝜃𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 > 180°   →    𝜃 = cos
−1(𝑍𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 ∙ 𝑍𝑑𝑖𝑠𝑡𝑎𝑙) (30) 

𝑎 =
𝑍𝑡ℎ𝑖𝑔ℎ × 𝑍𝑑𝑖𝑠𝑡𝑎𝑙

|𝑍𝑡ℎ𝑖𝑔ℎ × 𝑍𝑑𝑖𝑠𝑡𝑎𝑙|
⁄  (31) 

Using the angle and axis of correction we can find the correction matrix 𝑅𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 (see Eq. 

16), to obtain a temporary, sagittal-corrected quaternion of the distal segment. We can then find 

the angle of rotation between the proximal and corrected distal quaternion: 

𝑅𝑑𝑖𝑠𝑡𝑎𝑙,𝑡𝑒𝑚𝑝 = 𝑅𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ∗ 𝑅𝑑𝑖𝑠𝑡𝑎𝑙    →    𝑞𝑑𝑖𝑠𝑡𝑎𝑙,𝑡𝑒𝑚𝑝 (32) 

𝑄12 = 𝑄1
∗⨂𝑄2 = 𝑞 𝑑𝑖𝑠𝑡𝑎𝑙,𝑡𝑒𝑚𝑝

∗ ⨂𝑞 𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑙 (33) 

𝜃𝑗𝑜𝑖𝑛𝑡 = 2 tan
−1
‖[𝑄12𝑏 𝑄12𝑐 𝑄12𝑑]‖

𝑄12𝑎
 (34) 

The resulting joint angle data 𝜃𝑗𝑜𝑖𝑛𝑡(𝑡) must then be corrected for drift that occurs in the 

sensors, which is assumed to be linear, based on the rest point joint angles we calculated 

previously. Starting from the first two, between each pair of rest points 𝑡𝑘 and 𝑡𝑘+1 a simple 

linear function is added to the joint angles to correct both ends to the rest point angles: 

𝜃𝑗𝑜𝑖𝑛𝑡,𝑐𝑜𝑟(𝑡) = 𝜃𝑗𝑜𝑖𝑛𝑡(𝑡) + [
𝜃𝑘+1 − 𝜃𝑘
𝑡𝑘+1 − 𝑡𝑘

𝑡 + 𝜃𝑘 − 𝜃𝑗𝑜𝑖𝑛𝑡(𝑡𝑘)] ;    𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1 (35) 

The resulting 𝜃𝑗𝑜𝑖𝑛𝑡,𝑐𝑜𝑟(𝑡) represents our final, drift-corrected joint positions for the given 

passive motion trial. The corrected joint angle data is then numerically differentiated with the 

time data to determine the joint velocities 𝜃̇𝑗𝑜𝑖𝑛𝑡(𝑡). 

3.2.3 Modeling Muscle Spasticity 

In Chapter 2 we concluded that the threshold control-based models can provide an objective 

method of assessment and have the advantage of featuring the key characteristic of spasticity, 

namely the sensitivity to muscle stretching velocity. Using our subject data, the accurate joint 

kinematics are obtained from the IMUs, and for each muscle, the onsets of spastic reflexes were 

found by identifying onsets of muscle activity (see Section 3.2.1.2) in the corresponding EMG 

signal of the set of stretching motions. The same time points are selected on the kinematic data to 

obtain the joint position and velocity at each triggering point of a spastic reflex (see Figure 14). 

Each point is one of the DSRTs in the reflex threshold model (see Eq. 9) used to represent the 
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muscle’s spasticity, which first requires plotting the DSRTs together for a given muscle in a 

specific condition of stretching motions. 

 
Figure 14. Example S01 KF SO muscle reflex points (red) selected on the RMS-EMG signal, 

then on the joint kinematics 

The sensitivity of spasticity to velocity means that at greater joint velocities or muscle 

stretching velocity the range of motion becomes more limited, past which a spasm is triggered. In 

a plot of velocity versus position, a negative slope is therefore expected of any linear model fit to 

the data. Any trends between points that are vertical (which represents rigidity) or horizontal 

(which represents nothing) violate the definition of spasticity. Therefore, a criteria was established 

to exclude outliers: if any point is separated from the other points that lie on the expected trend, 

by more than 50 deg/s along the same position or angle, it is excluded. 

A robust linear regression is finally used to fit a model to the included data points. The 

function fitlm in MATLAB is utilized, which is set to use a bisquare weight function for the 

robust fitting, reducing the effect of outliers aside from the already excluded points. The x-

intercept of the resulting linear model, or the joint angle at zero velocity is the TSRT, while the 

negative inverse of the slope is the velocity sensitivity or μ of the muscle (see Eq. 9). 

3.2.4 Objective Measure of Spasticity 

For a given condition of the proximal joint, an objective measure of spasticity can be 

constructed by combining the stretch reflex models of a muscle group. The plot of velocity versus 

position represents the kinematic space of a joint. The limits of biomechanical range of motion of 

the joint [123] are set as the x-axis boundaries. For the y-axis, the range of velocity in a typical 

gait are defined as the boundaries. The gait data included in the OpenSim software was taken as a 

representative pattern for the joint velocities.  
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The fitted models for the members of the muscle group are plotted together on the bounded 

kinematic space, on the side of the x-axis that contain the joint velocities where the muscles are 

being stretched (e.g. for ankle plantarflexors, the positive velocity range). For each muscle model, 

the area on the “outside” the fitted line represents the spastic kinematic space of the muscle (see 

Figure 6). Therefore, the area outside all the models of the combined plot represents the spastic 

kinematic space. The ratio of this spastic kinematic area 𝐴𝑠𝑝𝑎𝑠𝑡𝑖𝑐 divided by the total kinematic 

space of the muscle group 𝐴𝑡𝑜𝑡𝑎𝑙 is taken as a simple but objective, joint “Kinematic Spasticity 

Score” (KSS) for that muscle group: 

𝐾𝑆𝑆 =
𝐴𝑠𝑝𝑎𝑠𝑡𝑖𝑐
𝐴𝑡𝑜𝑡𝑎𝑙

 (36) 

As we have taken a typical gait as a determining factor in the measure, it can be augmented by 

taking the distribution of joint velocity in a gait cycle to weight our kinematic spaces. 

 

Figure 15. Ankle gait cycle velocities and distribution for weighting the kinematic space 

The implication of weighting by velocity distribution is that the kinematic space that is most 

crossed during gait should be considered more significant in determining the measure of 

spasticity. However, in reality the worst case is when spasticity is present at zero velocity. To 

account for this, the range in gait velocities where a muscle group is stretched is mirrored about 

zero velocity. The resulting fitted Gaussian distribution has a mean of zero velocity and can be 

used to weight the kinematic space. 

Additionally, one of the real consequences of spasticity is inhibited motion which is caused by 

the involuntary flexing of the triggered muscles. The force a muscle can exert is proportional to 

its biological cross-section [124], therefore the influence of a muscle on the real effects of 

spasticity can also be taken as proportional to the cross-section. The weight is defined for each 
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muscle as the ratio of its cross-sectional area to the total cross-section of the muscle group. 

Finally, each muscle model’s spastic kinematic area is then calculated using the velocity-

distribution weighting, and all the separate spastic areas are combined by each muscle’s weight to 

result in the more biomechanically meaningful, “modified KSS” measure: 

𝑀𝐾𝑆𝑆 =
𝐴𝑉𝑀,𝑠𝑝𝑎𝑠𝑡𝑖𝑐
𝐴𝑉𝑀,𝑡𝑜𝑡𝑎𝑙

 (37) 

where 𝐴𝑉𝑀,𝑠𝑝𝑎𝑠𝑡𝑖𝑐 is the gait velocity and muscle-weighted spastic kinematic area, and 𝐴𝑉𝑀,𝑡𝑜𝑡𝑎𝑙 

is the velocity weighted total kinematic area. 

3.3 Validation of Kinematics 

To validate our sensor integrity, functional calibration and kinematics analysis protocol and 

algorithms, we compared our results to the VICON Motion Capture system. The Xsens Awinda 

IMUs were placed to track the motion of the thigh, shank and foot, and the VICON system was 

setup to capture the motion of the leg at the same time. 

 

Figure 16. Validation setup for Xsens IMUs and algorithms against VICON motion capture 

Both ankle and knee motions were performed during these validation trials. Similar to the 

method for syncing the sEMG and IMU sensors, the two systems were synchronized for post-

processing by a light tap of the foot on the ground at the beginning and end of each trial. These 

taps which can be clearly identified in the data and used to shift the clocks to match, and ensure 

the clocks remain synchronized by the end of the trial and correct them if they are not. 
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Figure 17. Comparison of motion tracking setup and representation in-software 

Figure 17 illustrates how the physical dots on the left correspond to the tracked points in the 

VICON system on the right. In post-processing, the highlighted vectors were used to represent the 

thigh, shank and foot. For determining the knee or ankle joint position, the proximal and distal 

segment vectors were projected to the plane that is perpendicular to the joint F-E axis. The angle 

between them is then simply calculated according to the biological joint definition. 

 

Figure 18. Xsens knee joint angle compared with VICON joint angle 

Because of imperfect placement of the tracking dots for the VICON system (relative to the 

limb segments), a constant shift is expected between the result of calculating kinematics for the 

VICON data and the IMU data. The underlying algorithms for a gyroscope also means an 

additional minor and varying difference is expected during motion, and this effect increases with 

more speed. The compared results from post-processing for Xsens and VICON can be seen in 

Figure 18. In that example, the mean difference between the calculated knee angles is 8.04 deg, 
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with a relatively small standard deviation of 1.45 deg. This difference between the calculated joint 

positions is treated as the expected constant shift, and subsequently subtracted to visualize and 

calculate the variance (see Figure 19). Once corrected, the mean difference and standard 

deviations are 1.13 deg and 0.91 deg respectively. 

More of the variance between Xsens and VICON can be accounted for by the simple physical 

irregularities, where due to the fat and muscles of the leg, the orientation of the dots for VICON 

and the Xsens IMUs do not stay constant relative to each other, where this effect becomes more 

pronounced with faster motion. Overall, the difference between motion tracking and IMU can be 

seen as minimal with expected variance, and the post-processing algorithms for IMU data as 

validated. 

  

Figure 19. VICON trajectory corrected by mean difference with Xsens 

 

3.4 Results 

The data used in this section was previously collected at Imperial College London, as part of 

the project “EU FP7 Symbitron: Symbiotic Man-Machine Interaction in Wearable Exoskeletons 

to Enhance Mobility for Paraplegics” [125]. In the available data, two subjects (S01, S06) were 

found to have clear spastic behaviour in their EMG data and are included in these results. 
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Table 4. Subject information and clinical scores. 

Subject S01 S06 

Etiology Non-traumatic Traumatic 

Lesion Level T10 L1 

AIS Score D C 

MAS 
Left Ankle 2 3 

Right Ankle n/a 3 

 

For these subjects, spastic behaviour was observed for the ankle only, and commonly in the 

left ankle. Additionally, plantarflexion stretches were not performed, therefore only the left 

plantar flexor muscles could be modelled and grouped to create the measures of spasticity. In each 

of data set of stretching trials, a minimum of three different stretching speeds were performed, 

with at least 5 stretches per speed (see Figure 14). 

 

Figure 20. Subject S06 ankle plantarflexor SRT models for knee flexed at 30 degrees 
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Figure 21. Subject S01 ankle plantar flexor SRT models for (A) KF at 30 degrees, (B) KE. 

 

A B 
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Table 5. Subject S01 plantar flexor models 

Proximal 

Joint 
Knee Flexed (30°) Knee Extended (0°) 

Muscle GM GL SO GM GL SO 

TSRT  -7.598 -0.265 -4.230 -13.768 -13.431 -10.132 

μ 0.114 0.211 0.124 0.172 0.182 0.182 

 

Table 6. Subject S06 plantar flexor models 

Proximal 

Joint 
Knee Flexed (30°) 

Muscle GM GL SO 

TSRT -13.097 5.047 -14.598 

μ 0.387 0.453 0.336 

 

The individual muscle SRT models were combined to form the KS measure of the 

plantarflexor muscle group, for each subject and condition:  

  

(a) (b) 

Figure 22. Subject S01 combined SRT models for (a) KF at 30 degrees, (b) KE conditions  
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Figure 23. Subject S06 combined SRT models for knee flexed at 30 degrees 

The KSS measure was further refined into the MKSS score by weighting with gait cycle 

velocities and relative muscle cross-sectional areas: 

 

 

Figure 24. Example S01 knee flexed measures weighted by (a) velocity distribution and (b) 

muscle cross-sections. Bright red represents the maximum weighting. 

  



  

   

40 

 

Table 7. Objective measures of spasticity and MAS Scores. 

Subject S01 S06 

Condition 
Knee Flexed 

(30°) 

Knee Extended 

(0°) 

Knee Flexed 

(30°) 

Knee Extended 

(0°) 

KSS 63.61 74.67 88.02 n/a 

MKSS 45.44 59.15 76.06 n/a 

Ankle MAS 2 3 

 

3.4.1 Statistical Analysis 

For each individual muscle model, a one-way ANOVA was performed to determine the F-

statistic of the coefficient of the independent variable – angular velocity – which is also measures 

the significance of the model itself.  

Table 8 and Table 9 also report two correlation values for the muscle models: coefficient of 

determination R2
 to measure the goodness of fit, as well as Spearman’s rank correlation ρ as a 

non-parametric test because of the limited number of data points available for each model. 

Statistical significance is interpreted at α = 0.05. 

Table 8. Subject S01 plantar flexor model statistics 

Proximal 

Joint 
Knee Flexed (30°) Knee Extended (0°) 

Muscle 

Model 
GM GL SO GM GL SO 

F 17.4** 15.9** 4.93 22.5** 14.1** 25.6 

R2 0.599 0.575 0.33 0.662 0.543 0.925 

𝝆 -0.720* -0.790** -0.433 -0.874** -0.734* -1.00 

* p < 0.05, ** p < 0.01 

Table 9. Subject S06 plantar flexor model statistics 

Proximal 

Joint 
Knee Flexed (30°) 

Muscle 

Model 
GM GL SO 

F 14.5** 1.79 13.8** 

R2 0.369 0.049 0.368 

𝝆 -0.583** -0.415 -0.617** 

* p < 0.05, ** p < 0.01 
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The model was significant for the GM and GL muscles for S01 in both KF and KE conditions, 

and the GM and SO muscles for S06 KF condition. Moderate to high correlations were found for 

all the models except in S06 GL muscle. Spearman’s ρ showed high correlations for all the 

models which were found to be statistically significant except for S01 SO muscle in both 

conditions, and S06 GL muscle. Figure 20 illustrates the spread of data that resulted in the 

unsatisfactory modeling for the GL muscle in subject S06. 

Due to the limited scope of the available data (see Section 3.1.4), only certain inferences and 

predictions can be made from the results for the novel spasticity measures. With a sufficiently 

large population, other statistical analyses could be performed both for validation and relating to 

other aspects of this topic, such as correlating the KSS scores with the MAS or other clinical 

scores used for spasticity. 

3.5 Discussion 

3.5.1 Spasticity Models and Measures 

In both subjects, the TSRT of all muscle models show a negative shift from the knee flexed to 

the knee extended condition. Similarly, the KSS and MKSS measures are also greater in the knee-

extended condition than when the knee is flexed. This trend is expected, as when the knee is 

extended, the biarticular gastrocnemius muscle is more stretched at the same joint positions than 

when the knee is flexed. This would cause a negative shift of the stretch-reflex model or the 

TSRTs as the joint range of motion is reduced. The soleus muscle is not expected to follow this 

trend, but with more data points it would become clearer to observe an effect or not.  

As the KSS and MKSS scores suggest a worse degree of spasticity in S06 than S01, the ankle 

MAS scores also reflect that difference in their spasticity. It suggests a mild to moderate 

correlation may be observed with more data points, providing a degree of validation to our 

spasticity modeling and measure.  

3.5.2 Limitations and Future Research 

A fundamental limitation of the spasticity measures in their current form is the exclusion of the 

antagonist muscles. Because the dorsiflexor muscles in the data were not stretched following the 

same protocol as the plantarflexors, they could not be modelled in the same way. Given a more 

complete set of data, or the experiments detailed in Section 3.1 are completed, the KSS and 

MKSS measure should be modified to include the spastic kinematic space of the dorsiflexors, else 

the measures reported separately for the dorsiflexor group in addition to the plantarflexor scores. 

As mentioned previously, biarticular muscles are constantly stretched to a different level 

depending on the position of the distal and proximal joints. This constant shift of muscle stretch 
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affects the onsets of reflex and the resulting SRT model. Therefore, the methodology should be 

augmented to account for this ‘shifting’ of spasticity. For example, a solution would be to 

generate the SRT models of the GM and GL muscles at a sufficient number of different positions 

of the knee joint, then the relationship between the TSRT and proximal joint position could be 

modeled. The KSS and MKSS measures would also need be modified to account for the position 

of proximal joints for biarticular muscles.  

The data used in this chapter were from subjects with motor-incomplete SCI, who have a 

limited amount of volitional motion in their lower-limbs. However, individuals with other 

conditions such as stroke survivors are also affected by spasticity, while retaining active 

movement in daily life. The tonic reflex thresholds of muscles have been found to be extended to 

a greater range of motion, while the sensitivity to velocities were simultaneously increased in 

active, volitional motion compared to passive versions of the same stretches (see Section 2.2.2.3). 

Therefore, similar to shifting by proximal joint position for biarticular muscles, the transformation 

of SRT models with respect to the kinematics of active motion should be modeled to provide a 

more comprehensive characterization of spasticity. Previous studies have also found that spastic 

reflexes are affected by the initial stretch level of a muscle (see Section 2.3.1). The dynamic 

reflex thresholds were found to be significantly reduced by increasingly stretched muscles before 

stretching motions at the same velocity. Consequently, the modeling of muscle spasticity should 

also incorporate the initial positions of muscle length or joint position to dynamically transform 

the SRT models. 

Additionally, previous studies have found that spastic muscle activity can be better predicted 

by the applied force for actuating passive stretches, than the muscle kinematics (also see Section 

2.3.1). These findings are not unexpected as the stretch reflex is affected by both muscle spindles 

and Golgi tendons which are sensitive to muscle stretch and tension respectively [126]. The 

relationship between spastic reflexes and the triggering muscle forces should also be included in 

the characterization of spasticity. 

3.5.2.1 Clonus 

Clonus is a common pathology that also occurs after spinal cord injury, and in many cases is 

accompanied by spasticity [127]. As a result, spasticity is often confused with clonus as well as 

rigidity in clinical practice, and while the pathophysiology of spasticity and clonus are related, 

they are still separate. Clonus is generally more easily induced in the more distal leg segments, at 

the ankles and feet [128], and presents as oscillations in the joint as a result of involuntary, 

rhythmic contractions of the relevant muscles. However, there are conflicting explanations; while 

some researchers have found that ankle clonus was the result of only gastrocnemius and soleus 

activations [129], others observed simultaneous activity of antagonistic muscles, where the tibialis 
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anterior was activated together with the plantarflexors [130], [131]. The latter agrees with the 

original understanding of the pathophysiology of clonus, and the hypothesis posits that a central 

pattern generator in the spinal cord is at least jointly responsible for clonus behaviour [128]. 

Table 10: SCATS scale for clonic activity 

Score Description 

0 no reaction to dorsiflexion 

1 mild; clonus persists for less than 3 seconds 

2 moderate; clonus persists for 3 to 10 seconds 

3 severe; clonus persists for more than 10 seconds 

 

The Spinal Cord Assessment Tool for Spastic reflexes (SCATS) uses passive, fast dorsiflexion 

motions to assess clonus in the ankle [132], which has been shown to be a reliable tool for clinical 

assessment [133]. Both subjects S01 and S06 in our data were assessed with a SCATS score of 2 

for their left ankles (which were analyzed in this chapter). In our data, though onsets of spastic 

reflex cannot be identified due to the execution of the experiments, the EMG signals of the 

dorsiflexor muscles can be processed to observe their activity during the stretching trials of the 

plantarflexors (see Section 3.2.3). 

 

Figure 25. Example clonic behaviour in RMS-EMG data for S01 KF ankle motion 

Figure 25 shows the unprocessed and RMS-envelope of the EMG signals for the three 

plantarflexor muscles, and the dorsiflexor tibialis anterior, during the spastic reflex of the first fast 

stretching motion (see Figure 11). The approximate simultaneous activations of the plantarflexor 

group are visualized in opposition to the activation of the TA muscle, which appear to follow the 

cyclic, alternating pattern that would produce the joints oscillations that are associated with 

clonus. Such joint oscillations or tremor-like behaviour were indeed observed in the footage that 
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was recorded for these experiments, which is corroborated by joint trajectory seen in Figure 26, 

and the clinical assessment using the SCATS scale. 

 

Figure 26. Clonic joint oscillations following reflex onset in first three fast stretches of S01 KF 

The alternating antagonistic activations agree with the theory of a central pattern generator, 

however more data would be required to reach a conclusion. As the pathophysiology of clonus is 

thought to be separate from spasticity, their relationship and interactions must be better 

understood in order to begin modelling both phenomena in conjunction, which may affect the 

development of the objective measures for either or both symptoms. 
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Chapter 4: 

Neuromuscular Simulation of Spasticity 

4.1 Introduction 

Musculoskeletal models and simulations are used for research in a wide variety of subjects, as 

they allow for non-invasive and inexpensive investigations into the mechanics of the human body 

and can therefore be invaluable for investigations that would otherwise require direct 

experimentation. For example, musculoskeletal modeling and simulation can potentially improve 

the ergonomic design of tools and consumer products [134], or provide analysis to proactively 

preventing occupational injuries and disorders [135]. Loading and strain in the joints and 

ligaments can be analyzed in other scenarios such as athletic activities [136], or in analyzing and 

designing joint and limb prosthetics [137], [138].  

Musculoskeletal and neuromuscular pathologies can also be modeled and simulated to better 

understand them. For example, in anterior cruciate ligament (ACL) deficient knees the risk of 

osteoarthritis is increased by compressive loading in the joint [139]. OpenSim can be used to 

analyze the loads in the tibiofemoral joint in experimental kinematic data from ACL-deficient 

patients [140], [141]. The joint kinematics could then be scaled in velocity and displacement to 

optimize rehabilitation exercises to prevent further damage, minimize pain and discomfort and 

maximize recovery. The most common type of walking impairment after stroke is hemiparetic 

gait [142], which can be modeled and simulated and analyzed by the kinematics and kinetics in 

comparison to normal gait which can be simulated using the same modeling technique [143]. For 

a more neuromuscular example, the pathological gait as a result of multiple sclerosis can be 

modeled, obtaining joint kinematics and torques from simulations for analysis and designing 

exoskeletons to support rehabilitation [144]. 

The objective KSS and MKSS measures present a valuable alternative or supplement to the 

current clinical practices in assessing spasticity. However, the data and modeling used in creating 

that measure can provide further value by enabling simulation of spastic behaviour in a virtual 

environment. Using the same patient data as collected in Chapter 3, we can create models of the 

spastic behaviour (in addition to the SRT model) and integrate them in a spasticity controller. 

Once developed and validated, the spasticity controller can become a building block in 

developing models and simulations of impaired subjects with conditions that exhibit spasticity.  

A basic yet fundamental scenario that can be simulated is a passive-movement spasticity 

assessment that is performed in the clinical setting, generally to rate the patient’s spasticity with 
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subjective scores such as the MAS. In these tests, one joint is manipulated at a time by the 

examiner, such as the knee, to assess the spasticity in the relevant muscles as felt by the examiner, 

ideally moving at different speeds. By comparing the kinematics, activation levels and interaction 

torques in the resulting simulation to the would provide validation of those spasticity models and 

algorithms that produce the behaviour. The spasticity controller can be integrated into a 

simulation that represents more everyday functions, such as walking. By using a reinforcement-

learning walking agent, the simulation can demonstrate the effects of muscle spasticity on an 

otherwise healthy individual’s gait. 

4.2 Musculoskeletal Model and Software 

An OpenSim lower-limb model [145], [146] was used in the simulations. The model features 

18 actuators that represent primary muscles of the lower limbs and uses 2 contact spheres on each 

foot to simulate the ball and heel of the foot in contact with the ground. The spasticity algorithm 

was developed in the MATLAB environment with integrated OpenSim API functions and a 

visualizer for the simulations. 

 

Figure 27. OpenSim model with muscles representing hamstrings (HS), biceps femoris short 

head (BFS), rectus femoris (RF), vastus intermedius (VI), gastrocnemius (G), soleus (S), and 

tibialis anterior (TA); cyan spheres are ground contacts for the balls and heels of the feet.  

4.3 Methodology 

The physiological models that the algorithm is based on are characteristics of a patient’s 

spasticity, such as the sensitivity to velocity, or the range of motion where the tonic reflex 

persists. Similarly, the simulations were developed to represent those characteristics of a patient’s 

spastic behaviour, not to exactly recreate the kinematic trajectories of a particular spasticity 

assessment test or other measurement such as gait.  
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4.3.1 Spasticity Controller 

Spasticity can be triggered in a muscle being stretched if the kinematic variables meet the 

conditions as defined by the SRT models specific to each muscle of an individual. The parameters 

𝑇𝑆𝑅𝑇 and 𝜇 for each muscle model can be tuned by the user depending on their requirements. 

𝐷𝑆𝑅𝑇 = 𝑇𝑆𝑅𝑇 + 𝜇𝜃̇(𝑡) (38) 

In the subject data from Chapter 3, the durations of each overall reflex and the mean activation 

levels as a percentage of MVC were calculated (see Figure 28). The mean activations and 

durations are each plotted against the joint velocity at the onset of those reflexes, with a robust 

linear regression applied to fit the data (see Figure 29). Table 11 shows the strong correlations 

values, as well as high confidence in the positively dependent linear fit for both models. 

 

Figure 28. S01 in the KF condition; (a) filtered EMG signal of the GM muscle, (b) RMS 

envelope of the signal; red lines indicate duration of the reflex and the mean activation as %MVC. 

 

Figure 29. Robust linear regressions of the (a) mean activation as % MVC and (b) duration of 

the reflexes versus the joint velocity at the onset of each reflex. 
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Table 11. S01 reflex activation level and duration correlations and linear models 

Model Muscle R2 F 
Spearman’s 

𝝆 

Reflex Mean 

Activation 

GM 0.477 14.7* 0.753* 

GL 0.298 5.66* 0.615* 

SO 0.595 15.7* 0.655* 

Reflex 

Duration 

GM 0.709 37.6** 0.918** 

GL 0.804 46.0** 0.685* 

SO 0.465 9.68* 0.718* 

* p < 0.05, ** p < 0.001 

 

These findings were consistent for the KE condition of S01 and S06 as well. Therefore, in this 

controller the spasm duration is defined as a simple linear model positively dependent on the joint 

velocity at the trigger point: 

𝑇𝑟𝑒𝑓𝑙𝑒𝑥 = 𝑎|𝜃̇(𝑡)| (39) 

𝜇𝑎𝑐𝑡 = 𝑏|𝜃̇(𝑡)| (40) 

The average muscle activation during a spasm 𝜇𝑎𝑐𝑡 is also defined as linearly increasing with 

the joint velocity at the onset of spasm. Similar to the DSRT parameters, both model constants a 

and b are manually defined by the user to tune the severity of the OpenSim model’s spasticity to 

achieve the desired behaviour. A function is then generated based on the mean activation level, 

where it rises from zero exponentially to a constant level, in a similar manner to how motor units 

are recruited in a muscle, then falls to zero in the mirror form at the end of the spasm. The 

constant value of this function must be equal to the modeled average activation of spasm: 

𝑎(𝑡) = {
𝐶𝑡 − 1 ; 𝐶𝑡 − 1 < 𝜇𝑎𝑐𝑡
𝜇𝑎𝑐𝑡 ; 𝐶𝑡 − 1 ≥ 𝜇𝑎𝑐𝑡

 (41) 

 𝐶 = (𝜇𝑎𝑐𝑡 + 1)
10 (42) 

where the exponential constant 𝐶 is determined using the assumption that the rise time for the 

activation is 100 ms (obtained by trial and error). To better imitate real-life behaviour, a random 

Gaussian noise is then applied to the activation using a MATLAB function, which will result in a 

non-smooth result for the generated reflex activation 𝑎𝑚𝑜𝑑(𝑡). The signal to noise ratio is 

determined by the standard deviation of the muscle activation, which was found in the data to also 

be positively dependent on the onset joint velocity (see Figure 36). 
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Figure 30. Examples of linear models for activation level standard deviation during reflexes 

versus the joint velocities at reflex onset; from S01 KF condition data. 

𝜎𝑎𝑐𝑡 = 𝑐|𝜃̇(𝑡)| (43) 

Therefore, the activation standard deviation is also a user-definable linear model. With the 

noise applied, a simulation can be run using these instantaneous activation levels for each muscle, 

which will produce the spastic behaviour through the model’s muscles. Alternatively, the 

simulation can be carried out at the joint level by further calculating the torque about the joint 

each muscle activation would generate. A Hill-type muscle model is used to estimate the force 

generated in the muscle by the activation: 

𝐹(𝑡) = 𝐹𝑚𝑎𝑥[𝑎(𝑡) ∙ 𝑓𝑣(𝐿̇) ∙ 𝑓𝑙(𝐿) + 𝑓𝑝(𝐿)] (44) 

where 𝑓𝑙(𝐿) is the muscle force-normalized fiber length relationship, 𝑓𝑣(𝐿̇) is the muscle force 

multiplier of normalized fiber velocity, and 𝑓𝑝(𝐿) the passive component of muscle force. The 

active muscle force-length relationship can be extracted from the OpenSim model itself: 

 

Figure 31. Example muscle force-length relationships for (a) RF and (b) TA muscles. 
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Normalizing the fiber force by the peak value allows the data set to be used for each muscle to 

interpolate for the 𝑓𝑙(𝐿) value at any instance. 𝐹𝑚𝑎𝑥 is the maximum isometric force, which can 

be user defined or taken as the same peak value from the OpenSim data. For simulating reflexive 

activity, the passive component of muscle force is assumed to have a negligible effect. Therefore, 

the active force generated in a muscle is: 

𝐹(𝑡) = 𝐹𝑚𝑎𝑥[𝑎(𝑡) ∙ 𝑓𝑣(𝐿̇) ∙ 𝑓𝑙(𝐿)] (45) 

The function for the force multiplier of a muscle in relation to the rate of change of its length is 

generated based on examples from literature: 

𝑓𝑣(𝐿̇) = {
−2 × 10−8𝐿̇3 − 2 × 10−5𝐿̇2 − 0.0058𝐿̇ + 1.0097 ; 𝐿̇ ≤ 0

−2 × 10−8𝐿̇3 + 2 × 10−5𝐿̇2 − 0.0058𝐿̇ + 0.9903 ; 𝐿̇ > 0
 (46) 

 

Figure 32. Example of muscle force multiplier relationship with muscle length velocity [147]. 

The joint torque 𝜏𝑟𝑒𝑓𝑙𝑒𝑥(𝑡) generated by the muscle reflex force can then be calculated as: 

𝜏𝑟𝑒𝑓𝑙𝑒𝑥(𝑡) = 𝑟(𝜃)𝐹𝑝𝑒𝑟𝑝(𝑡) (47) 

𝐹𝑝𝑒𝑟𝑝(𝑡) = sin(𝐿𝑂𝐴)𝐹(𝑡) (48) 

where 𝑟(𝜃) is the moment arm of the muscle acting on the limb segment joint and 𝐹𝑝𝑒𝑟𝑝(𝑡) is 

the component of muscle force perpendicular to the joint, which depends on the Line of Action 

(LOA) angle of the muscle. The moment arm and LOA are derived from data-driven models 

found in the literature for each lower limb joint (see Appendix C.4). Finally, the joint torque can 

be input to a torque actuator about the joint to simulate the torque generated by the activated 

muscle. 
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Figure 33. Block diagram of spasticity function for simulations 

The models of SRT, spasm duration and activation levels can be derived from real subject 

data, or manually tuned to represent a theoretical subject with the desired level of spasticity in 

individual muscles of the knee and ankle joints. The block diagram of dynamic closed-loop 

spasticity can be seen in Figure 33. 

4.3.2 Passive-movement knee spasticity test with a virtual examiner 

Using the spasticity function, the objective of this section is to simulate a spasticity assessment 

that might be carried out by a real examiner on a subject with lower-limb spasticity. By achieving 

a result that reasonably represents such a test, it will provide validation of the spasticity controller. 

Specifically, the resulting kinematics, activation levels, and torques can be compared to the 

experimental data that was used to develop and tune the models in the spasticity controller. The 

algorithm may be adapted for other tests, but for this section the scenario of an examination of 

spasticity of the right knee flexor muscles will be simulated. The model is laid flat on the ground, 

with the left knee fully extended and the right hip held at a sagittal angle of 45 degrees. The thigh 

is locked in this orientation, as the knee is extended by an external actuator acting on the shank in 

simulation of passive knee flexor stretches to test for spasticity. 

The subject’s muscles are assumed to be fully relaxed when not in the spastic reflex state. In 

real individuals with SCI, especially incomplete SCI, the muscles may or may not be completely 

silent. However, this background activity, in addition to the baseline EMG noise, is negligible in 

terms of effect on the movement of the limbs that are being manipulated by an examiner, and as 

previously described the purpose of these algorithms is not to recreate those signals. Therefore, 
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the assumption is sufficient for the scope of this simulation. For simplicity, only the ‘hamstrings’ 

(see Figure 27) were considered to be spastic in this simulation. 

The structure of the algorithm was built in blocks that each govern a fundamental part of the 

simulation. These blocks are either part of how the ‘examiner agent’ or ‘subject model’ behaves, 

and they will be referred to as such in this section. For a general passive-movement spasticity test 

scenario the algorithm flowchart is described in Figure 34, which also applies to the knee. 

 

Figure 34. Passive spasticity test algorithm flowchart 

The block diagram of the knee test scenario with dynamic closed-loop spasticity can be seen in 

Figure 36. The first block, “Rest”, is part of the examiner agent that guides the shank to and 

maintains it in a resting position (user defined knee joint angle). The knee rest position 𝜃𝑟𝑒𝑠𝑡 is 

the input to a PID controller which outputs an external torque to be applied about the model’s 

knee joint. The torque about the knee due to gravity on the shank and foot at the rest position is 

estimated and also applied as the feedforward torque for this PID controller: 

𝜏𝑔𝑟𝑎𝑣 = −𝑔 × [𝑚𝑠ℎ𝑎𝑛𝑘𝐶𝑂𝑀𝑠ℎ𝑎𝑛𝑘

+𝑚𝑓𝑜𝑜𝑡(𝐿𝑠ℎ𝑎𝑛𝑘 + 𝐶𝑂𝑀𝑓𝑜𝑜𝑡)] × cos(|𝜃𝑟𝑒𝑠𝑡 − 𝜃ℎ𝑖𝑝|) 
(49) 
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where 𝑚𝑠ℎ𝑎𝑛𝑘 and 𝑚𝑓𝑜𝑜𝑡 are the mass of the respective leg segments, 𝐶𝑂𝑀𝑠ℎ𝑎𝑛𝑘 and 𝐶𝑂𝑀𝑓𝑜𝑜𝑡 

are the centre of mass of the respectively leg segments, and 𝐿𝑠ℎ𝑎𝑛𝑘 are the length of the 

respective leg segments. Additionally, the PID is modified depending on if the initial direction of 

motion towards the desired rest position is against or with gravity. 

Similar to a real passive-movement spasticity assessment, a protocol including the number of 

stretching motions and their range and average speed must be established and predefined in the 

code before execution. When each planned motion is begun, the algorithm creates a target joint 

trajectory based on the defined conditions to be used by the “Stretch” block. Because the 

examiner agent represents a human, and not a mechanized setup (see Section 2.2.1.2 and 2.2.2.3), 

the trajectory 𝜃𝑠𝑡𝑟𝑒𝑡𝑐ℎ(𝑡) from the initial position to the end of the stretch is defined as a half 

cosine function. The trajectory is then simply numerically differentiated to obtain the velocities 

𝜃̇𝑠𝑡𝑟𝑒𝑡𝑐ℎ(𝑡) of the planned motion:  

𝜃𝑠𝑡𝑟𝑒𝑡𝑐ℎ(𝑡) = 𝜃𝑝𝑒𝑎𝑘 +
𝜃𝑝𝑒𝑎𝑘 − 𝜃𝑟𝑒𝑠𝑡

2
[cos (𝜋

𝜃̇𝑎𝑣𝑔

𝜃𝑝𝑒𝑎𝑘 − 𝜃𝑟𝑒𝑠𝑡
𝑡) + 1] (50) 

𝜃̇𝑠𝑡𝑟𝑒𝑡𝑐ℎ(𝑡) =
𝑑

𝑑𝑡
𝜃𝑠𝑡𝑟𝑒𝑡𝑐ℎ(𝑡) (51) 

where 𝜃̇𝑎𝑣𝑔 is the defined average speed, and 𝜃𝑝𝑒𝑎𝑘 is the peak of stretch. The algorithm then 

utilizes another PID loop that controls for the velocity curve by applying a torque 𝜏𝑠𝑡𝑟𝑒𝑡𝑐ℎ(𝑡) to 

perform the stretching motion. 

During stretching, the spasticity block can be triggered, which will apply a reflexive torque to 

the joint to simulate a spasm. If during a spasm, the reflex torque is large enough to reverse the 

initial stretching motion of the muscle into flexion, the “Reflex Compensation” block is enabled 

in the algorithm (while “Stretch” is disabled). The examiner agent will resist this strong flexion 

torque by applying a greater external torque than initially anticipated. In effect, the algorithm 

switches from controlling for the desired stretching joint velocity to a combination of attempting 

to stay at or above zero velocity (above or positive being in the initial direction of stretch) and at 

or above the joint position at which the spastic reflex started. 

 

Figure 35. Knee passive spasticity assessment simulation 
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Figure 36. Technical block diagram of passive spasticity test algorithm 
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This alternative controller comes into effect only after a short delay from when the over-reflex 

condition is first met to model the neural delay between when an examiner would feel the strong 

reflex and begin to resist it. A constant 200 ms delay is used as the reaction time for the examiner 

agent, which is an approximate mean of reaction time for the muscles of the hand in non-athletic 

individuals [148]. 

If a spasm occurred during a stretching motion, once the spasm abates the examiner does not 

attempt to complete the prescribed motion, and instead returns to the rest position. If no spasm 

occurred, the algorithm will also switch to the “Rest” controller to return to the initial position. 

From there, the simulation can proceed with any more pushing motions as defined by the user. 

4.3.3 Reinforcement Learning Walking Agent with Spasticity 

The objective is to produce a simulation of the gait of an individual affected by lower-limb 

spasticity. A walking agent was developed using reinforcement learning, with an agent-

environment interaction for learning an optimal control policy by maximizing a reward function. 

The original agent was able-bodied and trained to be capable of walking on flat ground [149]. 

Applying the spasticity controller with the outputs of muscle activation levels that override the 

activations produced by the agent’s policy, we can inject spasticity to the model. The controller 

can be tuned with spasticity parameters from a real subject, and the gait kinematics and 

parameters of the simulation results can compared to the real subject’s gait. 

 

Figure 37. Updated version of OpenSim Model with two smaller contact spheres at the balls of 

the feet, and reduced stiffness for all spheres 

The OpenSim model for this task was an updated version from what was used in the previous 

sections, where the contact sphere at the balls of the feet were split into two smaller spheres, and 

all the contact spheres had reduced stiffness values to achieve more realistic interaction with the 

ground during walking (see Figure 37). The spasticity controller was adapted for use in the 
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Python environment where the reinforcement learning is accomplished and was integrated into the 

training model and algorithms (see Statement of Contributions). The parameters of the 

spasticity controller were defined to represent a hemiplegic subject with moderate to severe 

spasticity in the right thigh and shank muscles. The agent must be retrained with these new 

perturbations introduced to its walking, which will produce a new optimal control policy that 

results in modified gait. 

The original reward function used to train the able-bodied model was modified to allow 

successful training, where stability was prioritized more while forward velocity and joint 

velocities were prioritized less when compared to the reward function of the able-bodied agent. 

 

Figure 38. Example muscle group DSRT models for the (a) knee and (b) ankle, overlayed 

against the distribution of their respective joint velocity versus position data in a 20 second 

simulation of the healthy walking agent 

Both extremely exaggerated spasms and spasms that virtually don’t affect the gait would not 

be realistic nor meaningful results. To restrict the simulations to behaviour that can be expected in 

a real subject, the spasticity models were plotted against the distributions of joint velocity versus 

position data from the healthy walking agent (see Figure 38). This allows for optimized tuning of 

the spasticity parameters, while also reducing iterations of modifying the training functions.  

4.4 Results and Discussion 

4.4.1 Passive Assessment Simulation 

The simulation was executed with a variety of input conditions, including the parameters of 

the muscle TSRT models which represent the severity and sensitivity of spasticity, and the 

planned stretching motions to be performed by the examiner agent in terms of speeds and ranges 
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of motion. The subject model is situated as described earlier, where the right leg knee is initially 

flexed with the heel resting on the simulation environment ground. When the simulation begins, 

the shank is raised by the examiner to reach the pre-defined rest position of the knee joint (see 

Figure 35). 

 

Figure 39. First simulation of two hamstring stretches. (a) Examiner agent and reflex torques, (b) 

knee joint position, and the DSRT threshold determined by the current joint velocity; if the joint 

position crosses the DSRT, a spastic reflex is triggered, highlighted in red. 

Figure 39 illustrates a set of one slow and one fast stretch of the hamstrings of the human 

model. The first stretching motion was defined short in range and slow enough so that the joint 

position did not cross the DSRT and no reflex was triggered. In the second stretch, the desired 

velocity was set three times faster than the first and up to a range near full knee extension. The 

resulting spastic reflex was triggered and persisted as defined using the models in Section 4.3.1. 

The examiner agent eventually reacts and holds it at a relatively stable position. 

 

Figure 40. Second simulation with farther range for the slow stretch, and stronger reflexes. 
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Figure 40 shows a second set of stretches, where the range for the slow stretch was extended, 

and the constant for the muscle activation model was increased. The slow stretch triggered a 

relatively minor reflex near the end of the motion, which was short in duration but prevented 

reaching the target range of motion (15 deg). The fast stretch was defined the same as the first set, 

however the modified activation model produces a much stronger reflex torque which also limited 

the effective range of motion. The transient behaviour is also more erratic as the examiner agent 

attempts to prevent it and control the joint, and the opposing torques result in tremor-like motion.  

 

Figure 41. Simulation 3; similar to the first simulation with more severe spasticity parameters. 

 A third simulation is depicted in Figure 41, where the defined stretches and activation model 

are the same as the first simulation, but the SRT model parameters were increased to represent a 

greater severity of spasticity. For both slow and fast stretches, the DSRT threshold is crossed and 

the reflexes are triggered much earlier during the stretches, limiting the effective range of motion. 

Additionally, when compared to the second simulation the slow stretch resulted in a reflex of 

higher duration. In the second simulation, the reflex is triggered only near the peak when the 

examiner agent has already slowed down, but in the third the reflex is triggered in the middle of 

the motion, at peak velocity. The duration of reflexes is dependent on the triggering velocity, and 

results in the difference in reflex behaviour. By this same reason there is virtually no difference in 

reflex duration for the fast stretch for all three simulations.  

The change from the first to second or third simulations can illustrate how the regime of 

kinematics is limited by the spasticity in a muscle, as well as show the further limiting effect of 

stronger spastic reflexes on joint motion. These simulations can also demonstrate the effects of 

differing degrees spasticity severity from subject to subject in terms of the TSRT and sensitivity 

to velocity, and how they affect the possible joint motion as well as spastic reflexes.  
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4.4.2 Walking Agent 

Initially, a simulation of the healthy agent was recorded in order to compare against the results 

of simulating the spastic walking agent. Figure 42 depicts the joint trajectories in a 20 second 

simulation of where the agent successfully walks in a manner resembling natural gait.  

 

Figure 42. Joint trajectories of healthy walking agent 

The spasticity controller was incorporated into the walking agent in the original Python 

environment, and the parameters were tuned to represent severe spasticity in the right leg based 

on the results of modeling in Chapter 3 as well as other examples in literature (see Section 

2.2.2.3). The TSRT and μ of each muscle model was set to cover approximately two-thirds of the 

relevant kinematic space of the healthy agent’s data, which was expected to result in frequent 

triggering of spastic reflexes. The coefficients of the reflex activation and duration models were 

also tuned to result in strong reflexes that will perturb the right leg’s motion to a high degree. 

Figure 43 depicts the joint trajectories of a simulation of this “max” spasticity walking agent. 
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Figure 43. Joint trajectories of walking agent with severe spastic “max” parameters 

  

Figure 44. Example of plantarflexion at end of right leg swing, continued on toes during stance; 

blue indicates inactive muscles, bright red indicates fully activated muscles 

The right ankle remained heavily plantarflexed through most of the gait, between 20 and 40 

degrees of plantarflexion. Figure 45 illustrates an example of this toe-walking for the right leg, 

where the plantarflexors are triggered and activated by onset during the swing phase, leading to a 

toe-strike and continuation of stance in this position. The knee range of motion (approximately 20 

to 65 degrees flexion) is also limited in comparison to healthy gait where the knee is freely 

actuated between 100 degrees flexion and full extension. This is due to the spastic reflexes of both 

knee flexors and extensors that effectively cause a form of stiffness in the joint. The right hip 

trajectory is consequently shifted upwards to more flexion on average, to provide clearance for 
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the right foot during swing, due to the insufficient knee flexion and plantarflexion of the ankle. 

Figure 45 depicts the SRT models used against the resulting kinematic data of this severe 

spasticity walking simulation. 

 

Figure 45. “Max” spasticity parameters against the resulting kinematic data 

For the third type of simulations, the SRT model parameters as well as the activation and 

duration constants were tuned to reduce the severity of spasticity in terms of range of motion, 

sensitivity to velocity, and strength and time of the reflexes. This moderately affected walking 

agent is referred to as “50%” spasticity for the purposes of this chapter. By the resulting joint 

trajectories shown in Figure 46 or the plot of SRT models and kinematic space data (Figure 47), 

it is difficult to determine the difference in gait when compared to the healthy agent. 

The subsequent step is therefore gait analysis, which is necessary to further investigate the 

differences between the three walking agents and their simulations. Basic spatio-temporal 

parameters used in gait analysis are gait speed, step length and step frequency [150] . Other 

commonly used parameters include step duration, stride length and duration. [151]. Using the 

vertical position data of the calcaneus bones of the OpenSim model, we can approximate the heel 

strikes of each foot during the different gait conditions. From there it is straightforward to the 

determine the distance and time between heel strikes of the same foot (strides), and the distance 

and time between consecutive heel strikes of either foot (steps). The gait speed can simply be 

determined by the distance and time between the first and last heel strike of the simulation. 
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Figure 46. Joint trajectories of walking agent with less spastic “50%” parameters 

 

Figure 47. “50%” spasticity parameters against resulting kinematic data 

Table 12. Healthy and spastic walking agent gait speeds 

Walking Agent 

Condition 
Healthy 

“Max” 

Spasticity 

“50%” 

Spasticity 

Gait Speed 

(m/s) 
1.235 0.8722 0.7017 

Gait Distance 

(m) 
23.75 15.92 13.39 
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Figure 48. Stride duration and length parameters for the different walking agents 

  

Figure 49. Step duration and length parameters for the different walking agents 

The gait speed was found to be noticeably reduced in both spastic agents when compared to the 

healthy agent. Figure 48 and Figure 49 show the boxplots of the stride and step durations and 

lengths for both legs, comparing the data for healthy, “max” and “50%” in each parameter. One-

way ANOVA was performed to determine if the means of the three groups for each gait 

parameter are significantly different. Post-hoc analysis was conducted using paired t-tests with a 

Bonferonni adjusted significance level of α = 0.0167. Conventionally, step length and duration are 

single parameters for gait, but due to the right leg being impaired by spasticity and expected to 

behave differently, the left and right step parameters were separated. 
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Table 13. Post-hoc analysis of gait parameters between groups 

Gait Parameter 

ANOVA p-value 

Post-hoc Test 

T-test p-value 

Left Right Left Right 

Stride 

Durations N.S N.S 

Healthy vs Max N.S N.S 

Healthy vs 50% N.S N.S 

Max vs 50% N.S N.S 

Lengths < 0.001 < 0.001 

Healthy vs Max < 0.001 < 0.001 

Healthy vs 50% < 0.001 < 0.001 

Max vs 50% N.S N.S 

Step 

Durations < 0.05 N.S 

Healthy vs Max N.S N.S 

Healthy vs 50% < 0.0167 N.S 

Max vs 50% N.S N.S 

Lengths < 0.001 < 0.001 

Healthy vs Max < 0.0167 < 0.0167 

Healthy vs 50% < 0.001 < 0.001 

Max vs 50% < 0.0167 N.S 

N.S. = Not Significant (p > 0.05 for ANOVAs, p >0.0167 for Post-Hoc) 

 

The statistical analyses show that there are significant differences between the different 

conditions of the walking agents in terms of stride and step lengths, for both left and right legs, 

but not for durations of either parameter. Post-hoc analysis showed significant differences (p < 

0.001) for the stride and step lengths between the healthy agent and either “max” and “50%” 

spastic conditions. Though not indicated by the statistics, the 50% simulation did exhibit more 

consistently short stride or step lengths than the “max” walking agent (see Figure 50), which 

varied between short and ‘normal’ stride or step lengths, evidenced by the larger distributions in 

the boxplots (also see Figure 51). 

 

Figure 50. Example of short steps in “50%” spasticity simulation 
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Figure 51. Step duration and length parameters for the different walking agents 

Figure 49 indicated a possible trend towards shorter right step durations and step lengths 

within walking agents, where the different step lengths is also briefly illustrated by Figure 50. 

However, the only significant differences (p < 0.0167) were found between the left and right step 

durations for the healthy and “50%” agents. 

The simulations of the healthy and impaired walking demonstrated the potential effects of 

spastic reflexes on gait. The consequences include restricted ranges of motion, effective stiffness 

in the affected joints, both which can lead to suboptimal compensations in the unaffected joints, 

i.e. the unaffected hip and left leg. The spatio-temporal parameters of gait can also be affected, 

reducing gait speed, step length and stride length. The short steps, or shuffle gait can be expected 

to be seen in impaired or injured gait, as well as specific conditions such as Parkinsons [152]. In 

real spastic hemiparetic gait, the spasticity causes difficulty in flexing the hip and knee and 

dorsiflexing the ankle [153]. The simulations utilized those same consequences through the 

implementation of the spasticity controller to affect the agent, resulting in reasonably realistic 

impaired gait. Therefore, the simulations of spasticity-affected gait demonstrate the validity and 

potential of the novel spasticity controller, especially as part of a larger, more comprehensive 

controller that encompasses all the neuro- and biomechanical impairments of conditions that 

involve spasticity, such as post-stroke, cerebral palsy or spinal cord injury. 
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4.5 Limitations and Future Research 

To properly validate the spasticity controller, as well as the passive movement assessment 

simulation, instead of tuning the parameters for a hypothetical subject, the parameters of real 

subjects should be applied. The resulting kinematics, activation levels and interaction torques in 

the simulations can then be compared to the actual data from the subjects in terms of the range of 

values, trends and patterns in the signals. Similarly, the walking simulations should be performed 

using real subject parameters, followed by comparing the results to the gait data that is recorded 

in addition to the passive movement experiments to obtain the subjects’ spasticity parameters, in 

terms of the actual kinematic trajectories, as well as the gait parameters. With good agreement 

between the simulations and the real data for a sufficient number of subjects, the spasticity 

controller and simulations would be validated. The degree of validation would be limited for the 

passive movement assessment however, as the spastic subject and examiner interact in the 

simulation and thus cannot be verified separately, only as lump results in comparison to the real 

passive movement examinations. 

The passive movement assessment simulations used various assumptions for the behaviour of 

the examiner agent, based on observations and references from the data used to develop the 

spasticity models and controller. One major assumption was the resistance of the examiner in 

response to reflexes strong enough to overcome the initial stretching directions of the assessment 

scenario. The opposition of the examiner agent and spastic reflex resulted in tremor-like or 

oscillatory behaviour, which was similar to the kinematics observed in the data. However, as 

detailed in Section 3.5.2.1, the joint oscillations are likely due to clonus in the subjects. 

Observations from more data would be required to better understand the behaviour during the 

reflex due to passive motion by comparing of subjects with and without clonus. 

As described previously, spasticity can inhibit the flexion of the hip and knee as well as 

dorsiflexion of the ankle. As a consequence, the stiff leg is characteristically swung medially from 

the body to avoid dragging of the foot, while the upper body leans in the opposite direction for 

balance [153]. The current walking agent and model are restricted to purely sagittal planar 

motion, where the legs can only move in the “X” and “Y” directions. This limitation especially 

affected the “max” condition simulation, which resorted to toe walking of the right foot and 

exaggerated hip flexion to achieve clearance. While toe-walking is seen in cerebral palsy as well 

as autism [154], [155], it is not necessarily associated with spasticity. Future research should 

incorporate motion in the third dimension, to account for the circular swing that is characteristic 

of stiff gait, as well as a musculoskeletal model that includes muscles to cause other motions such 

as inversion and eversion of the joints, which would also have to be included in the spasticity 

controller’s models. 
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Other considerations for these simulations are continuations from the discussion of the 

spasticity modeling. Future research should include modeling of the angular shifting of the SRT 

models biarticular muscles by the proximal joints, transformation of the SRT model by the 

dynamics of volitional motion and muscle activation, as well as the dependence on the initial 

muscle length at the beginning of stretch, and forces imparted on and sensed by the muscles (see 

Section 3.5.2). Dynamically changing the SRT models by these additional relationships of 

spasticity with musculoskeletal and neuromechanical variables would add further depth and 

validity to the spasticity controller and simulations that include it, which could also lead to more 

comprehensive analysis of the results. 

The existence of clonus in a subject is another possible confounding variable for the models 

that were used in building the spasticity controller. Specifically, the modeling of spastic activation 

levels and reflex durations may be affected by the presence of clonus in S01 (see Section 3.5.3). 

Once the interaction and relationship with spasticity is understood and modelled, clonus could be 

integrated into the spasticity controller, with a toggle that can enable or disable clonus behaviour 

depending on the subject or scenario being simulated. 
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Chapter 5: 

Conclusion 

The fundamental purpose of this thesis was the objective modeling of spasticity, to both better 

understand and characterize the symptom and the underlying mechanisms, which would improve 

the evaluation and follow-up for treatments and rehabilitation options. The primary objectives 

established for this purpose were to 1) develop wearable instrumentation and algorithms for 

accurate and reliable data collection and processing, and validate them, 2) develop and perform 

experiments involving passive movement spasticity assessments, and 3) model the resulting data 

and extract measures to characterize spasticity as alternatives to subjective clinical scores.  

Prior to these objectives, a thorough understanding of spasticity and the state of the art for its 

modeling was established through a comprehensive literature review. It was concluded that 

threshold control theory-based models can be used for objective methods of assessing spasticity 

due to their inclusion of the key differentiating characteristic of spasticity from other similar 

symptoms, and advantages of practicality and agreement with current clinical practice. 

An experimental protocol was established, using sEMG sensors, IMUs to collect muscle 

activity and kinematic data respectively, and brace-handle setups with integrated force sensors to 

passively move the subject’s lower limbs while measuring the interaction forces. Algorithms were 

developed for the identification of spastic reflexes in the EMG data, and extraction of joint 

kinematics from the IMU data, validated against a motion capture system. The onsets of spastic 

reflexes were used to determine the kinematic conditions that trigger spasticity, which were then 

used to create muscle specific SRT models of spasticity. The models of a muscle group could then 

be combined into a novel measure or objective score of spasticity to characterize its severity. 

Therefore, the results satisfied the first three objectives of this thesis. Due to the COVID-19 

situation, in-vivo studies were not possible leading to a limited scope of available data for 

spasticity modeling. This restricted the possible validation of the methodology and results. 

However, the neuromuscular simulations in Chapter 4 succeeded in providing an additional 

level of validation for the conclusions of the proceeding chapter. A spasticity controller was 

developed for use in simulations, using the previously developed models with additional 

modeling for generating spastic reflexes. The parameters of these models could be tuned to 

modify the spasticity controller for simulations of subjects with differing levels of spasticity. The 

controller was first used in a simulation of a passive movement assessment like the experiments in 

Chapter 3, demonstrating the validity and effects of the controller by recreating the fundamental 

scenario that the controller is based on. The spasticity controller was secondly integrated into a 
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reinforcement-learning walking agent, to simulate the walking of an individual with hemiplegic 

spasticity by retraining the agent to learn to walk with spasticity. The gait trajectories and 

parameters were compared for the healthy agent against severe and moderately affected versions 

of the spastic walking agent. In the impaired agents, gait speeds were reduced, and step and stride 

lengths were shortened, demonstrating the negative effects of spasticity on walking and providing 

further validation of the spasticity controller and the underlying modeling. 

The methodology and findings in Chapter 3 and Chapter 4 share many of their limitations. 

The spasticity models were developed without the inclusion of antagonistic muscles, which limit 

the findings in the scope of the presented novel measures. Opposing muscles are also likely 

involved in clonus, a commonly related but separate symptom to spasticity which needs to be 

modeled in its interaction with and possible effect on spastic behaviour. Other factors that have 

been found to affect the thresholding-based modeling should be incorporated in future research, 

including volitional muscle activations, initial muscle stretch levels (which are further modified in 

biarticular muscles), and forces on muscles. Additionally, as discussed in Chapter 2 the detailed 

neural and electrophysiological mechanisms should also be modeled for a more complete model 

of spasticity. 

There was a demonstrated need to develop a system to provide accurate and reliable modeling 

of spasticity, and an objective measure to better assess the condition. The thesis provides a 

preliminary step towards that goal by showing results that clearly indicate the presented 

methodology merits further exploration. The presented novel measure of spasticity has the 

advantages of objectivity, reliability and accuracy, which will potentially improve related clinical 

practices such as treatment and rehabilitation. The modeling of spasticity could be applied in 

other ways; for example, the spasticity controller could also be applied in real life scenarios, such 

as an exoskeleton worn by a spastic subject to prevent regimes of motion that trigger their 

spasticity which can be both painful and debilitating to everyday function such as walking, or a 

healthy subject in order to demonstrate the effects of having spasticity. This could be utilized in 

daily life, or the rehabilitation exercises where exoskeletons are more necessary, such as for 

individuals with SCI. In conclusion, the work presented in this thesis holds the potential of further 

the understanding of spasticity, and improving the quality of life of the numerous individuals 

affected by spasticity. 
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Appendices 

Appendix A: Quantitative Spasticity Modeling Literature 

Table A1. Reviewed mechanical approaches to modeling spasticity. 

Authors 
Target 

Population 

Target 

Joints 
Sensors Method Outcome Measures 

Alibiglou et 

al. [36] 
Post-stroke 

Elbow 

and 

ankle 

Non-wearable 6-axis force 

sensor, potentiometer, 

tachometer 

Motor-driven motion; system identification model; 

goodness of fit evaluated by percent variance accounted 

for (%VAF) 

Intrinsic stiffness, reflex stiffness; 

near-zero correlation with MAS 

Chen et al. 

[70] 
Post-stroke Elbow 

Wearable gyroscope, 

differential pressure sensor, 

sEMG sensors 

Manually driven motion; phase-shifted torque-angle 

curve 

Average viscosity (across multiple 

stretching speeds), muscle activity 

onset 

Chung et 

al. [35] 
Post-stroke Ankle 

Non-wearable 6-axis force 

sensor, unspecified 

kinematics sensors 

Motor-driven motion; torque-angle curves 

Resistance torque, quasi-stiffness, 

energy loss and ROM; low to 

moderately correlated with MAS 

Park et al. 

[71] 

CP 

(children) 
Elbow 

Unspecified kinematics and 

force sensors 

Manually driven motion; model of torque during pre-, 

during, and post-catch phases 

Replication of MAS level on 

simulated spastic elbow (haptic 

device); model accuracy evaluated by 

blinded assessors 

Wu et al. 

[72] 
Post-stroke Elbow 

Non-wearable 

potentiometer, torque 

sensor; wearable sEMG 

sensors 

Manually driven motion; torque-angle curve, 4-D 

characterization of catch angle using torque, torque rate of 

change, angle and velocity; model accuracy evaluated by 

mean square error 

ROM, stiffness, energy loss, catch 

angle; high correlations with MAS 
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Table A2. Reviewed musculoskeletal and neural dynamics approaches to modeling spasticity. 

Authors 
Target 

Population 

Target 

Joints 
Sensors Method Outcome Measures 

Koo and 

Mak [39] 
Post-stroke Elbow 

Non-wearable 

dynamometer and needle 

EMG electrode; wearable 

sEMG sensors 

Motor-driven motion; parameter 

identification in torque estimation and 

sensitivity analysis; model goodness of 

fit evaluated by root mean square error 

(RMSE) 

Minimum spindle firing rate for 0.5% neural 

excitation, muscle spindle static gain 

Lindberg 

et al. [76] 
Post-stroke Wrist 

Non-wearable stepper 

motor, unspecified force 

sensor; wearable sEMG 

sensors 

Motor-driven motion (multiple 

speeds); force estimation to separate 

into components; re-test with ischemic 

nerve block 

Neural component (NC) of force – model 

validated by NC reduces with ischemic 

nerve block and velocity dependence of NC; 

moderate correlation between NC and 

MAS, also integrated EMG 

Shin et al. 

[77] 
Post-stroke Ankle 

Non-wearable torque 

sensor, rotary encoder; 

wearable sEMG sensors 

Manually driven motion; parameter 

identification in torque estimation; 

model goodness of fit evaluated by 

%VAF, normalized RSME, and R2 

Muscle spindle firing rate for 50% motor 

neuron recruitment, standard deviation of 

alpha motor neuron pool function 

de Vlugt 

et al. [78] 
Post-stroke Ankle 

Non-wearable 

potentiometer, force 

transducer; wearable 

sEMG sensors 

Motor-driven motion (multiple 

speeds); parameter identification in 

torque estimation; model goodness of 

fit evaluated by %VAF, performance 

by repeatability 

Stiffness and viscosity parameters; stiffness 

moderately correlated with AS at low speed, 

reflex torque moderately correlated with AS 

at fast speeds 

Wang et 

al. [79] 
Post-stroke Wrist 

Non-wearable force 

transducer, high-precision 

stepper motor; wearable 

sEMG sensors  

Motor-driven motion (slow and fast 

speed); parameter identification in 

torque estimation; model goodness of 

fit evaluated by %VAF and R2 

Passive stiffness, muscle spindle firing rate 

for 50% motor neuron recruitment, motor 

neuron pool gain 
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Table A3. Reviewed threshold-control approaches to modeling spasticity. 

Authors 
Target 

Population 

Target 

Joints 
Sensors Method Outcome Measures 

Arami et al. 

[56] 

Incomplete 

SCI 
Ankle 

Wearable IMUs, 6-axis force 

sensors, wireless sEMG 

sensors 

Manually driven motion at different 

knee angles; DSRT model for dorsi- 

and plantar flexor muscles; models 

goodness of fit evaluated by R2  

Model μ and TSRT for each muscle; 

spastic joint space; joint torque 

moderate-high correlation with 

DSRT angle and velocities 

Bar-On et al. 

[54] 
CP (children) 

Knee 

and 

ankle 

Wearable IMUs, 6-axis force 

sensors, wireless sEMG 

sensors 

Manually driven motion; DSRT 

model and torque-angle curve; model 

evaluated by repeatability 

ROM, max velocity, average RMS-

EMG, torque, and work 

Blanchette et 

al. [47] 
Post-stroke Ankle 

Wearable electrogoniometer, 

sEMG sensors 

Manually driven motion; DSRT 

model for plantar flexors 

Model μ and TSRT; interrater 

reliability for TSRTs 

Calota et al. 

[48] 
Post-stroke Elbow 

Wearable electrogoniometer, 

sEMG sensors 

Manually driven motion; DSRT 

model of biceps brachii 

TSRT; moderately good intra- and 

interrater reliability, no correlation 

with MAS 

Germanotta 

et al. [37] 
CP (children) Ankle 

Non-wearable mini-rail linear 

encoders, unspecified torque 

sensor; wearable wireless 

sEMG sensors 

Motor-driven motion; DSRT models 

of dorsi- and plantar flexors; 

goodness of fit evaluated by r 

correlations 

Model μ and TSRT; low to moderate 

correlations with MAS 

He et al. [49] MS Knee Wearable electrogoniometer  

Pendulum test [156]; estimation of 

swing trajectory during pendulum 

test 

DSRT, TSRT and stretch reflex gain 

Jobin and 

Levin [83] 
CP (children) Elbow 

Non-wearable angle and 

velocity transducers; wearable 

sEMG sensors 

Motor-driven motion; DSRT models 

of elbow flexors and extensors 

TSRT; high test-retest reliability by 

ICC, no correlation with CSI2 
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Kim et al. 

[46] 
Post-stroke Elbow 

Wearable twin-axis 

electrogoniometer, sEMG 

sensors  

Manually driven motion; DSRT 

models, K-means clustering of TSRT 

groups 

Significant differences between K-

means groups (3 levels), no 

significant differences between 

groups by MAS; very high 

correlation between K-means groups 

and TSRTs 

Levin and 

Feldman [81] 
Post-stroke Elbow 

Non-wearable precision 

digital resolver; wearable 

sEMG sensors 

Motor-driven motion; DSRT models 

of elbow flexors and extensors 

Model μ and TSRT; moderate 

correlations with MAS 

Mullick et al. 

[2] 

Post-stroke, 

Parkinson’s 
Elbow 

Non-wearable precision axial 

gauge; wearable sEMG 

sensors 

Motor-driven motion 1; DSRT models 

of elbow flexors and extensors; 

goodness of fit evaluated by R2 

Sensitivity of DSRT to velocity – high 

for post-stroke, near-zero for 

parkinsonian; zero correlation 

between μ and TSRT and CSI 2 

Turpin et al. 

[85] 
Post-stroke Elbow 

Non-wearable optical encoder; 

wearable sEMG sensors 

Manually driven (passive) and active 

motion; DSRT models of flexors and 

extensors 

Velocity sensitivity μ and TSRT 

increased in active stretch; change in 

TSRT between passive and active 

was moderate to highly correlated 

with CSI 2 and FMA 3 

Zhang et al. 

[82] 

Post-stroke, 

brain trauma, 

SCI 

Elbow 
Wearable IMUs and sEMG 

sensors 

Manually driven motion; DSRT 

model of flexor muscle, reconstructed 

models of kinematic profiles; 

supervised single/multi-variable 

linear regression and support vector 

regression 

Predicted evaluation scores (MAS) 

using TSRT, biomarkers from 

kinematics models, and combination 

of both; models estimation 

performance evaluated by mean 

square error 
1 Velocity profile was bell-shaped (more natural), other motor-driven apparatus used ramp-shaped motion; 2 Composite Spasticity Index 

[157]; 3 Fugl-Meyer Arm Assessment [158]. 
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Appendix B: EMG Sensor Protocol 

The exact placement of sEMG sensors  follow the recommendations of the SENIAM project 

(Surface ElectroMyoGraphy for the Non-Invasive Assessment of Muscles) [110]: 

Table B1. Sensor Placement of Shank Muscles 

Tibialis Anterior Extensor Digitorum Longus 

  
Extensor Hallucis Longus Soleus 
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Gastrocnemius Medialis Gastronemius Lateralis 

  

Table B2. Sensor Placement of Thigh and Hip Muscles 

Biceps Femoris (long head) Semitendinosus 

  
Rectus Femoris Vastus Medialis 
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Vastus Lateralis Gluteus Maximus 
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Appendix C: Supplementary Methodology 

C.1 Converting Rotation Matrix to Quaternion 

Given the rotation matrix is defined as: 

R = [

𝑅11 𝑅12 𝑅13
𝑅21 𝑅22 𝑅23
𝑅31 𝑅32 𝑅33

] (B1) 

and a quaternion is generally defined as: 

𝑞 = [𝑞𝑤 𝑞𝑥𝐢 𝑞𝑦𝐣 𝑞𝑧𝐤] (B2) 

First, the trace 𝑇𝑅 of the matrix must be obtained: 

𝑇𝑅 = 𝑅11 + 𝑅22 + 𝑅33 (B3) 

If 𝑇𝑅 + 1 > 0, then the quaternion can be found by: 

𝑠 =
1

2√𝑇𝑅
 (B4) 

𝑞 0 = [
1

4𝑠
𝑠(𝑅32 − 𝑅23) 𝑠(𝑅13 − 𝑅31) 𝑠(𝑅21 − 𝑅12)] (B5) 

Otherwise, the calculation depends on largest diagonal element; if 𝑅11 is largest: 

𝑠 = 2√1 + 𝑅11 − 𝑅22 − 𝑅33 (B6) 

𝑞 0 = [
1

𝑠
(𝑅23 − 𝑅32)

1

4
𝑠
1

𝑠
(𝑅12 + 𝑅21)

1

𝑠
(𝑅13 + 𝑅31)] (B7) 

Else if 𝑅22 is largest: 

𝑠 = 2√1 + 𝑅22 − 𝑅11 − 𝑅33 (B8) 

𝑞 0 = [
1

𝑠
(𝑅13 − 𝑅31)

1

𝑠
(𝑅12 + 𝑅21)

1

4
𝑠
1

𝑠
(𝑅23 + 𝑅32)] (B9) 

Finally, if 𝑅33 is largest: 

𝑠 = 2√1 + 𝑅33 − 𝑅11 − 𝑅22 (B10) 

𝑞 0 = [
1

𝑠
(𝑅12 − 𝑅21)

1

𝑠
(𝑅13 + 𝑅31)

1

𝑠
(𝑅23 + 𝑅32)

1

4
𝑠] 

(5211

) 
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C.2 Converting Quaternion to Rotation Matrix 

Given the quaternion is defined as Eq. B1, the corresponding rotation matrix is simply: 

R = [

𝑞𝑤
2 + 𝑞𝑥

2 − 𝑞𝑦
2 − 𝑞𝑧

2 2(𝑞𝑥𝑞𝑦 − 𝑞𝑤𝑞𝑧) 2(𝑞𝑤𝑞𝑦 + 𝑞𝑥𝑞𝑧)

2(𝑞𝑤𝑞𝑧 − 𝑞𝑥𝑞𝑦) 𝑞𝑤
2 − 𝑞𝑥

2 + 𝑞𝑦
2 − 𝑞𝑧

2 2(𝑞𝑦𝑞𝑧 − 𝑞𝑤𝑞𝑥)

2(𝑞𝑥𝑞𝑧 − 𝑞𝑤𝑞𝑦) 2(𝑞𝑤𝑞𝑥 − 𝑞𝑦𝑞𝑧) 𝑞𝑤
2 − 𝑞𝑥

2 − 𝑞𝑦
2 + 𝑞𝑧

2

] (B12) 

C.3 Quaternion Multiplication 

𝑞 𝑛𝑒𝑤 = 𝑞 1⨂𝑞 2 = [𝑞1,𝑤 𝑞1,𝑥𝐢 𝑞1,𝑦𝐣 𝑞1,𝑧𝐤]⨂[𝑞2,𝑤 𝑞2,𝑥𝐢 𝑞2,𝑦𝐣 𝑞2,𝑧𝐤] 

= [

𝑞1,𝑤𝑞2,𝑤 − 𝑞1,𝑥𝑞2,𝑥 − 𝑞1,𝑦𝑞2,𝑦 − 𝑞1,𝑧𝑞2,𝑧
𝑞1,𝑤𝑞2,𝑥 + 𝑞1,𝑥𝑞2,𝑤 + 𝑞1,𝑦𝑞2,𝑧 − 𝑞1,𝑧𝑞2,𝑦
𝑞1,𝑤𝑞2,𝑦 − 𝑞1,𝑥𝑞2,𝑧 + 𝑞1,𝑦𝑞2,𝑤 + 𝑞1,𝑧𝑞2,𝑥
𝑞1,𝑤𝑞2,𝑧 + 𝑞1,𝑥𝑞2,𝑦 − 𝑞1,𝑦𝑞2,𝑥 + 𝑞1,𝑧𝑞2,𝑤

]

𝑇

 

(B13) 

C.4 Moment Arm and Line of Action 

The moment arms and lines of action (LOA) of the knee flexor and extensor muscles are 

derived from in vivo modeling by Herzog and Read [159] using the reference frame origin as the 

knee joint centre:  

𝑟𝑘𝑛𝑒𝑒 𝑒𝑥𝑡𝑒𝑛𝑠𝑜𝑟𝑠 = 5 𝑐𝑚 (B14) 

𝑟𝑘𝑛𝑒𝑒 𝑓𝑙𝑒𝑥𝑜𝑟𝑠 = −1.5 cos (
3

2
𝜃𝑘𝑛𝑒𝑒) + 2.5   𝑐𝑚 (B15) 

𝐿𝑂𝐴𝑘𝑛𝑒𝑒 𝑒𝑥𝑡𝑒𝑛𝑠𝑜𝑟𝑠 =
−25

125
𝜃𝑘𝑛𝑒𝑒 − 75   𝑑𝑒𝑔 (B16) 

𝐿𝑂𝐴𝑘𝑛𝑒𝑒 𝑓𝑙𝑒𝑥𝑜𝑟𝑠 =
−130

140
𝜃𝑘𝑛𝑒𝑒 + 260   𝑑𝑒𝑔 (B17) 
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Figure B1. Moment arm of knee extensors and flexors as a function of knee angle 

 

Figure B2. LOA of the knee extensors and flexors as function of knee angle. 

Moment arms of the ankle plantarflexor and dorsiflexor muscles are derived from in vivo 

modeling by Rugg et al. [160]: 

𝑟𝑝𝑙𝑎𝑛𝑡𝑎𝑟𝑓𝑙𝑒𝑥𝑜𝑟 =
−1.2

50
𝜃𝑎𝑛𝑘𝑙𝑒 + 4.66   𝑐𝑚 (B18) 

𝑟𝑑𝑜𝑟𝑠𝑖𝑓𝑙𝑒𝑥𝑜𝑟(𝜃) =
1.5

50
𝜃𝑎𝑛𝑘𝑙𝑒 + 4.8  𝑐𝑚 (B19) 
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Figure B3. Moment arm of plantarflexors and dorsiflexors as a function of ankle angle 

The LOA of the ankle muscles are derived from modeling by Procter and Paul [161]: 

𝐿𝑂𝐴𝑝𝑙𝑎𝑛𝑡𝑎𝑟𝑓𝑙𝑒𝑥𝑜𝑟 =
−20

45
𝜃𝑎𝑛𝑘𝑙𝑒 + 86.889   𝑑𝑒𝑔 (B20) 

𝐿𝑂𝐴𝑑𝑜𝑟𝑠𝑖𝑓𝑙𝑒𝑥𝑜𝑟 =
4

45
𝜃𝑎𝑛𝑘𝑙𝑒 + 36.222   𝑑𝑒𝑔 (B21) 

 

Figure B4. LOA of plantarflexors and dorsiflexors as a function of ankle angle. 

 

 


