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Abstract

The focus of this thesis is to take theorems which deal with “integral” objects in graph
theory and consider fractional refinements of them to gain additional structure.

A classic theorem of Hakimi says that for an integer k, a graph has maximum average
degree at most 2k if and only if the graph decomposes into k pseudoforests. To find a
fractional refinement of this theorem, one simply needs to consider the instances where the
maximum average degree is fractional.

We prove that for any positive integers k and d, if G has maximum average degree at
most 2k + 2d

k+d+1
, then G decomposes into k + 1 pseudoforests, where one of pseudoforests

has every connected component containing at most d edges, and further this pseudoforest
is acyclic. The maximum average degree bound is best possible for every choice of k and
d.

Similar to Hakimi’s Theorem, a classical theorem of Nash-Williams says that a graph
has fractional arborcity at most k if and only if G decomposes into k forests. The Nine
Dragon Tree Theorem, proven by Jiang and Yang, provides a fractional refinement of Nash-
Williams Theorem. It says, for any positive integers k and d, if a graph G has fractional
arboricity at most k+ d

k+d+1
, then G decomposes into k+1 forests, where one of the forests

has maximum degree d.

We prove a strengthening of the Nine Dragon Tree Theorem in certain cases. Let k = 1
and d ∈ {3, 4}. Every graph with fractional arboricity at most 1 + d

d+2
decomposes into

two forests T and F where F has maximum degree d, every component of F contains at
most one vertex of degree d, and if d = 4, then every component of F contains at most 8
edges e = xy such that both deg(x) ≥ 3 and deg(y) ≥ 3.

In fact, when k = 1 and d = 3, we prove that every graph with fractional arboricity 1+ 3
5

decomposes into two forests T, F such that F has maximum degree 3, every component of
F has at most one vertex of degree 3, further if a component of F has a vertex of degree
3 then it has at most 14 edges, and otherwise a component of F has at most 13 edges.

Shifting focus to problems which partition the vertex set, circular colouring provides
a way to fractionally refine colouring problems. A classic theorem of Tuza says that ev-
ery graph with no cycles of length 1 mod k is k-colourable. Generalizing this to circular
colouring, we get the following:

Let k and d be relatively prime, with k > 2d, and let s be the element of Zk such that
sd ≡ 1 mod k. Let xy be an edge in a graph G. If G − xy is (k, d)-circular-colorable and
G is not, then xy lies in at least one cycle in G of length congruent to ismod k for some
i in {1, . . . , d}. If this does not occur with i ∈ {1, . . . , d − 1}, then xy lies in at least two
cycles of length 1 mod k and G− xy contains a cycle of length 0 mod k.

This theorem is best possible with regards to the number of congruence classes when
k = 2d+ 1.
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A classic theorem of Grötzsch says that triangle free planar graphs are 3-colourable.
There are many generalizations of this result, however fitting the theme of fractional re-
finements, Jaeger conjectured that every planar graph of girth 4k admits a homomorphism
to C2k+1. While we make no progress on this conjecture directly, one way to approach the
conjecture is to prove critical graphs have large average degree. On this front, we prove:

Every 4-critical graph which does not have a (7, 2)-colouring and is not K4 or W5

satisfies e(G) ≥ 17v(G)
10

, and every triangle free 4-critical graph satisfies e(G) ≥ 5v(G)+2
3

.

In the case of the second theorem, a result of Davies shows there exists infinitely many
triangle free 4-critical graphs satisfying e(G) = 5v(G)+4

3
, and hence the second theorem is

close to being tight. It also generalizes results of Thomas and Walls, and also Thomassen,
that girth 5 graphs embeddable on the torus, projective plane, or Klein bottle are 3-
colourable.

Lastly, a theorem of Cereceda, Johnson, and van den Heuvel, says that given a 2-
connected bipartite planar graph G with no separating four-cycles and a 3-colouring f ,
then one can obtain all 3-colourings from f by changing one vertices’ colour at a time if
and only if G has at most one face of size 6.

We give the natural generalization of this to circular colourings when p
q
< 4.
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Chapter 1

Introduction

In this thesis we are interested in partitioning graphs into elementary pieces. We assume
throughout all graphs are simple and finite. As graphs contain both edges and vertices,
there are two natural ways to partition a graph, one either partitions the edge set or the
vertex set. We will deal with both throughout this thesis. As such we introduce the
following standard definitions which describe partitioning into edges or into vertices.

Definition 1.1. For any graph G, a decomposition of G is a set of edge disjoint subgraphs
of G such that the union of their edge sets is the edge set of the graph.

Definition 1.2. For two graphs G and H, a graph homomorphism from G to H is a map
f : V (G) → V (H) such that for all e = xy ∈ E(G) we have f(x)f(y) ∈ E(H). If G
admits a homomorphism to H, then we say G admits an H-colouring, and we write this
as G→ H. In the particular case where H is the complete graph on k vertices, which we
denote as Kk, we say a Kk-colouring is a k-colouring.

Here we note the name H-colouring is due to the fact that homomorphisms to Kk are
referred to as k-colourings.

In general, it is hard to partition graphs, regardless of whether we are partitioning the
vertices or edges. For partitioning vertices, the celebrated Hell-Nešetřil dichotomy [20] says
that if H is not bipartite, then it is NP-complete to decide if G admits a homomorphism
to H.

For decompositions, Dor and Tarsi showed that it is NP-complete to determine if a
graph G admits a decomposition into copies of a graph H when H is connected and has
at least three edges, and polynomial when H has at most two edges [8].

In the case of graph decompositions, one very natural way to get past the NP-completeness
barrier is to ask if G admits a decomposition H1, . . . , Hk such that all Hi belong to some
special family F , where |F| ≥ 2.
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In the case of homomorphisms, a natural strategy is to restrict the input graphs to
classes of graphs closed under taking subgraphs, and also having few edges, as intuitively
it is easier to have a colouring if there are fewer constraints to satisfy.

Both strategies result in very pretty theorems. We split up the rest of the introduction
depending on whether the primary focus is decomposition theorems relevant to this thesis
or homomorphism results related to this thesis.

Before continuing, we note any undefined graph theory terms can be found in Bondy
and Murty’s graduate graph theory text [1]. We will occasionally direct our graphs, and
we will refer to a directed graph as a digraph. Note as all our graphs are simple, a directed
graph is the same as taking a graph and equipping it with an orientation. As notation,
given a graph G with vertex set V (G) and edge set E(G), we will always use v(G) to
denote |V (G)| and e(G) to denote |E(G)|.

1.1 On the Nine Dragon Tree Theorem

We start this section by highlighting two pretty theorems from the world of graph decom-
positions. We need some standard definitions.

Definition 1.3. The fractional arboricity of a graph G, denoted Γf (G), is

Γf (G) := max
H⊆G,v(H)≥2

e(H)

v(H)− 1
.

Definition 1.4. The maximum average degree of a graph G, denoted mad(G), is

mad(G) := max
H⊆G

2e(H)

v(H)
.

Definition 1.5. A pseudoforest is a graph where each connected component contains at
most one cycle.

With this we can state Nash-Williams’ Theorem and Hakimi’s Theorem, which give
necessary and sufficient conditions for when a graph decomposes into k forests, and k
pseudoforests, respectively.

Theorem 1.6 ([40], Nash-Williams Theorem). A graph G decomposes into k forests if and
only if Γf (G) ≤ k.

Theorem 1.7 ([19] Hakimi’s Theorem). A graph G decomposes into k pseudoforests if
and only if mad(G) ≤ 2k.

These theorems are classical examples of results where obvious necessary conditions
become sufficient. At a glance, it is not clear how to generalize these theorems. One
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approach is to make the easy observation that both the fractional arboricity and maximum
average degree need not be integral. Thus, intuitively, if, say the fractional arboricity of
a graph is k + ε for a small value of ε, one barely needs k + 1 forests, and hence you
might anticipate that G actually decomposes into k+ 1 forests, where one of the forests is
a matching. This intuition is correct, and there is a series of papers which prove results
of this nature. We present (a subset) of them in roughly chronological order. In 2012,
Montassier, Ossona de Mendez, Raspaud, and Zhu opened the area.

Theorem 1.8 ([35]). Every graph with fractional arboricity at most 4
3

decomposes into
a forest and a matching. Additionally, every graph with fractional arboricity at most 3

2

decomposes into a forest and a path.

One year later, Kim, Kostochka, West, Wu and Zhu extended this result to allow forests
of larger degree.

Theorem 1.9 ([26]). Fix positive integers k and d where either d = k + 1 or k = 1 and
d ≤ 6. Every graph with fractional arboricity at most k + d

k+d+1
decomposes into k + 1

forests where one of the forests has maximum degree d.

In 2018, Yang extended Theorem 1.8 in a different way (the date is due to publishing
lag times).

Theorem 1.10 ([50]). Let k be a positive integer. Every graph with fractional arboricity
at most k + 1

k+2
decomposes into k + 1 forests where one of the forests is a matching.

In 2015, Chen, Kim, Kostochka, West and Zhu generalized Theorem 1.9.

Theorem 1.11 ([7]). Let k and d be integers where k ≤ 2, and if k = 2, d 6= 1. Then
every graph with fractional arboricity at most k+ d

k+d+1
decomposes into k+1 forests where

one of the forests has maximum degree d.

At this point you may see a pattern emerging. In 2017, the Nine Dragon Tree Theorem
(conjectured in [35]) was proved by Jiang and Yang which unifies all above results (the
theorem is named after a tree in Taiwan which is far from acyclic):

Theorem 1.12 ([24], Nine Dragon Tree Theorem). Let k and d be positive integers. Every
graph G with fractional arboricity at most k + d

k+d+1
decomposes into k + 1 forests where

one of the forests has maximum degree d.

In [35], it was observed that the fractional arboricity bound in the Nine Dragon Tree
Theorem cannot be strengthened for any choice of k and d. In particular, they showed:

Theorem 1.13 ([35]). For any positive integers k and d, there are arbitrarily large graphs
G and a set of edges S = {e1, . . . , ed} such that Γf (G − S) = k + d

k+d+1
and G does not

decompose into k + 1 forests where one of the forests has maximum degree d.
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Figure 1.1: An example of a graph which does not decompose into a forest and a matching, and
where the deletion of both red edges gives a graph with fractional arboricity 1 + 1

3 .

See Figure 1.1 for one of the graphs [35] constructed for Theorem 1.13 in the k = 1,
d = 1 case.

Despite this, an extremely strong conjecture was proposed in [35], aptly named the
Strong Nine Dragon Tree Conjecture.

Conjecture 1.14 ([35], Strong Nine Dragon Tree Conjecture). Let k and d be positive
integers. Every graph G with fractional arboricity at most k+ d

k+d+1
decomposes into k+ 1

forests where one of the forests has every connected component containing at most d edges.

This conjecture is wide open. It is known to be true when d = 1, as that follows
immediately from the Nine Dragon Tree Theorem. It has also been proved when k = 1
and d = 2 [26]. All other cases are open. Interestingly, in [35], they showed that the Strong
Nine Dragon Tree Conjecture implies (and is in fact equivalent to) the naively stronger
conjecture:

Conjecture 1.15 ([35]). Let k and d be positive integers. For every graph G with fractional
arboricity at most k + d

k+d+1
, and every vertex v ∈ V (G), G decomposes into k + 1 forests

where one of the forests has every connected component containing at most d edges, and v
is an isolated vertex in this forest.

The Strong Nine Dragon Tree Conjecture is open even if you replace d edges with a
constant depending on d and k. It is open even when d ≤ k + 1, which should be a fairly
easy case to handle. As some semblance of progress towards the conjecture, with Evelyne
Smith-Roberge, I proved the following strengthening of the Nine Dragon Tree Theorem in
the k = 1 and d ∈ {3, 4} cases:

Theorem 1.16. Let k = 1, d ∈ {3, 4}, and w = d + 4. Every graph with fractional
arboricity at most k + d

k+d+1
decomposes into two forests T, F such that F has maximum

degree d, every component of F contains at most one vertex of degree d, and further if
d 6= 3, every component of F has at most w edges e = xy such that the degree of both x
and y is at least d− 1.

It seems believable that Theorem 1.16 will generalize to the following using similar
techniques:

4



Conjecture 1.17. Let k and d be integers such that d ≥ 3(k+1)
2

and d ≤ 2(k + 1). Let
w = d + 4. Then every graph with fractional arboricity at most k + d

k+d+1
decomposes

into k + 1 forests T1, . . . , Tk, F such that F has maximum degree d, every component of F
contains at most one vertex of degree d, and further if d 6= 3, every component of F has at
most w edges e = xy such that the degree of both x and y is at least d− 1.

In the particular case when k = 1 and d = 3, we managed to get close to the Strong
Nine Dragon Tree Conjecture:

Theorem 1.18. Every graph with fractional arboricity at most 1 + 3
5

decomposes into two
forests, T, F such that F has maximum degree three, every component of F contains at
most one vertex of degree three, if a component contains a vertex of degree three, then it
has at most 14 edges, and otherwise a component of F has at most 13 edges.

It would be nice to extend this Theorem beyond k = 1 and d = 3, however, this so far
has been elusive.

Theorem 1.16 gives rise to a slightly different question than the Strong Nine Dragon
Tree Conjecture. We attribute this question to Xuding Zhu, who gave a weaker version of
this question at the Watercolor conference in 2019.

Question 1.19 (Xuding Zhu). Let Fd be the set of trees with maximum degree d. What is
the smallest S ⊆ Fd such that every graph with fractional arboricity k + d

k+d+1
decomposes

into k+ 1 forests, where one of the forests has every connected component from S? Can S
be taken to be the stars on at most d edges?

It seems unlikely that S can be taken to just be stars on at most d edges, or that S
can be taken to be the star on d edges and all trees on at most d − 1 edges, however no
example of this is known.

With this, let us turn our attention to pseudoforests and Hakimi’s Theorem. Of course,
one can ask Nine Dragon Tree type questions for pseudoforests. In fact, on the journey to
proving the Nine Dragon Tree Theorem, it turned out to be useful to prove a pseudoforest
analogue for the Nine Dragon Tree Theorem.

Theorem 1.20 ([13]). Let k and d be integers. Every graph with mad(G) ≤ 2k + 2d
k+d+1

decomposes into k+1 pseudoforests, where one of the pseudoforests has maximum degree d.
Further, for every pair k and d, there exists arbitrarily large graphs G containing an edge
e such that mad(G− e) = 2k + 2d

k+d+1
and G does not decompose into k + 1 pseudoforests

where one of the pseudoforests has maximum degree d.

See Figure 1.2 for one of the graphs constructed in [13] as a tightness example.

The ideas in [13] are instrumental to the proof of the Nine Dragon Tree Theorem.
Building on this, Logan Grout and I proved the pseudoforest analogue of the Strong Nine
Dragon Tree Conjecture.
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Figure 1.2: A graph which does not decompose into a pseudoforest and a matching, but the
deletion of the red edge results in a graph with maximum average degree exactly 2 + 2

3 .

Theorem 1.21 ([18]). Let k and d be positive integers. Every graph with mad(G) ≤
2k + 2d

k+d+1
decomposes into k + 1 pseudoforests, where one of the pseudoforests has every

connected component containing at most d edges.

All instances of this theorem were open aside from the d = 1 case (which follows from
the pseudoforest analogue of the Nine Dragon Tree Theorem), and rather remarkably the
k = 1 and d = 2 case, which follows from the proof of the Strong Nine Dragon Tree
Theorem [26] in the k = 1 and d = 2 case.

Later on, it became apparent that the proof of Theorem 1.21 actually proves a slightly
stronger result.

Theorem 1.22. Let k and d be positive integers. Every graph with mad(G) ≤ 2k + 2d
k+d+1

decomposes into k + 1 pseudoforests, where one of the pseudoforests has every connected
component containing at most d edges and is a forest.

It would be particularly pleasing if the following strengthening of Theorem 1.21 was
true.

Conjecture 1.23. Let k and d be positive integers. Every graph with mad(G) ≤ 2k+ 2d
k+d+1

decomposes into k + 1 pseudoforests where one of the pseudoforests is a forest, has every
connected component containing at most d edges, and if a component contains d edges,
then it is isomorphic to a star on d+ 1 vertices.

However a much easier problem is the following:

Conjecture 1.24. Let k and d be integers. Every graph with mad(G) ≤ 2k + 2d
k+d+1

decomposes into k + 1 pseudoforests, where one of the pseudoforests is acyclic, has every
connected component containing at most d edges, and if a component contains d edges,
then it does not have a vertex of degree d− 1.

This conjecture seems to follow from a modification of the proof of Theorem 1.21.

By this point, the reader may have some questions. First, they may wonder why just
pseudoforests and forests. Are there not more general families for which we can ask Nine
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Dragon Tree type questions? For this, an answer is to consider matroids (we refer the
reader to [42] for an introduction to matroids).

Definition 1.25. A matroidM is an ordered pair (E, I) consisting of a finite set E (called
the groundset) and a collection I of subsets of E having the following three properties.

� ∅ ∈ I

� If I ∈ I and I ′ ⊆ I, then I ′ ∈ I

� If I1 and I2 are in I and |I1| < |I2|, then there is an element e of I2 − I1 such that
I1 ∪ e ∈ I.

Definition 1.26. Given a matroidM = (E, I), the rank function of matroid denoted rM,
is defined so that for a subset S ⊆ E, rM(S) is |I|, where I ⊆ S, and I is maximal subject
to I ∈ I.

Jack Edmonds generalized both Hakimi’s and Nash-Williams Theorem to matroids.

Definition 1.27. Let M = (E, I) be a matroid. The covering number of a matroid is

β(M) := max
X⊆E, rM(X)6=0

|X|
rM(X)

.

Theorem 1.28 ([10]). A matroid M = (E, I) has k sets in I whose union is E(M) if
and only if the covering number of M is at most k.

To see the connection, we note the following easy facts:

Observation 1.29 ([42]). Let G be a graph. If I is the set of forests of G, then (E(G), I)
is the graphic matroid of G. If I is the set of pseudoforests of G, then (E(G), I) forms the
bicircular matroid of G.

It now follows that Edmond’s theorem generalizes both Nash-Williams’ and Hakimi’s
Theorem. Despite this, it is not clear how to formulate an appropriate analogue of the
(Strong) Nine Dragon Tree Conjecture for matroids. This is due to a lack of a good notion
of a connected component for matroids or the degree of vertex (since we no longer have
vertices).

However, there is still a (single) result on the general problem.

Theorem 1.30 ([12]). Let M = (E, I) be a matroid. If β(M) = k + ε, where k is a
non-negative integer and 0 ≤ ε < 1, then E can be partitioned into k + 1 sets in I with
one of size at most εrM(E).

7



We note this theorem does not quite capture the strength of the Strong Nine Dragon
Tree Conjecture, or even the Nine Dragon Tree Theorem, but it does show that possi-
bly there is a general theorem lurking which would recover the pseudoforest and forest
theorems.

Aiming slightly below the generality of all matroids, one could aim for an interpolation
between pseudoforests and forests. For this we need the idea of a biased graph.

Definition 1.31. A biased graph is a pair (G, β) where β is a collection of cycles of G
satisfying the theta property, which is if C1, C2 ∈ β and C1 and C2 intersect in a path with
at least one edge, then the unique third cycle is in β.

Let (G, β) be a biased graph. If a cycle C ∈ β, we say C is balanced. From this, we can
define the frame matroid of a biased graph (G, β) as being the matroid M(G, β) which
has ground set E(G), and a subset of edges I ⊆ E(G) is in I if each connected component
of I contains at most one cycle, and if a connected component of I contains a cycle, then
that cycle is unbalanced.

An easy observation (see [42]) is that given a graph G, if we let β be empty, then the
associated frame matroid is the bicircular matroid, and if β is all cycles, then the associated
frame matroid is the graphic matroid. Hence the following conjecture is quite natural.

Conjecture 1.32. Let (G, β) be a biased graph, and letM be the associated frame matroid.
Let k and d be positive integers. Suppose the covering number of M is at most k + d

k+d+1
.

Then G decomposes into k + 1 sets I1, . . . , Ik, F such that each set is independent in the
frame matroid, and further F has maximum degree d.

Of course, one could pose a strong version of this conjecture as well. We mention one
final way of possibly generalizing the Nine Dragon Tree Theorem which was pointed out
to me recently by Ronen Wdowinski. One could ask for a list version of the (Strong) Nine
Dragon Tree Conjecture. We need a couple definitions to state the proposed generalization.
Let G be a graph, let C be a set and L a function which assigns to each edge of G a subset
of C. If for every edge e ∈ E(G), and an integer k, we have |L(e)| ≥ k, then we say L
is a k-list-edge-assignment for G. If there is a function f : E(G) → C such that for all
e ∈ E(G), f(e) ∈ L(e), and further for every c ∈ C, the inverse image of f is a forest, we
say that f is a k-forest-list-colouring. The list version of Nash-Williams Theorem is known
to be true by a short argument of Paul Seymour.

Theorem 1.33 ([44]). Suppose G is a graph that decomposes into k forests. Then for any
k-list-edge-assignment of G, L, there is a k-forest-list-colouring of G.

Ronen Wdowinski and Penny Haxell asked if a list version of the Nine Dragon tree
theorem is true:

8



Conjecture 1.34. Let k and d be positive integers. Let G be a graph with fractional
arboricity at most k+ d

k+d+1
, and L any (k+ 1)-list-edge-assignment of G. Then there is a

(k+ 1)-forest-list-colouring f which partitions E(G) into forests where one of these forests
has maximum degree d.

Of course, one could pose a strong version of the above conjecture and one could pose
similar list versions for pseudoforests and signed graphs, which would also be interesting.

It would also be natural to ask if the Nine Dragon Tree Theorem (and related results)
have any applications, aside from just being nice themselves. It turns out, the Nine Dragon
Tree Theorem was motivated by the game chromatic number, which we define now.

Definition 1.35. Let G be a graph and C a set of colours. Consider the two player game,
where we have players Alice and Bob, Alice starts the game, and they take turns picking
a colour c from C and a vertex v of G and colouring v with c in such a way that no vertex
adjacent to v is coloured c. We say Alice wins the game if all vertices of G end up coloured.
Otherwise, if there are no valid moves but not all vertices are coloured Bob wins. The game
chromatic number of a graph G is the least number of colours needed so that Alice has a
strategy which always wins the game.

A rather remarkable result of Xuding Zhu relates the game chromatic number to forest
decompositions of bounded degree.

Theorem 1.36 ([55]). If G decomposes into two forests T1 and T2, where T2 has maximum
degree d, then the game chromatic number of G is at most d+ 4.

This bound is best possible, and in fact gives best possible bound in planar graphs of
girth at least eight [25]. Here, recall that the girth of a graph is the length of the shortest
cycle in G. Note that it follows from the Nine Dragon Tree Theorem and Euler’s formula
that planar graphs of girth 8 decompose into a forest and a matching, and hence have
game chromatic number at most 5. It would be interesting to see if Theorem 1.36 can be
generalized to a wider class of forest decompositions, or pseudoforest decompositions.

To see additional applications of the Strong Nine Dragon Tree Conjecture, we need
more definitions.

Definition 1.37. Let G be a connected graph. Let 0 < ε < 1 and let T be a spanning
tree of G. We say that T is ε-thin if for every vertex set A ⊆ V (G), if t is the number of
edges with one endpoint in A and the other in G − A which are in T , and t′ the number
of edges with one endpoint in A and the other in G− A, then t

t′
≤ ε.

There is a famous conjecture of Luis Goddyn asserting the existence of thin trees in
highly edge-connected graphs (see [15])

Conjecture 1.38 (Goddyn’s Thin Tree Conjecture). For every ε > 0, there exists a
constant c depending only on ε such that all graphs which are c-edge connected have a
ε-thin tree.
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Despite the conjecture’s fame, there is not much progress towards proving the con-
jecture. This is likely due to the fact that the conjecture, if true, would have strong
implications towards constant-factor approximations of the Asymmetric Travelling Sales-
man problem, as well as the existence of nowhere zero flows (see [15], for a description of
these applications). In the first case, we note very recently a constant-factor approximation
algorithm was given for Asymmetric Travelling Salesman, see [46]. Therefore it is natural
to restrict the graph class to see if some partial progress can be made.

Merker and Postle proved that every planar 6-edge connected graph contains two edge-
disjoint 18

19
-thin trees [33]. The 18

19
bound was later strengthened by Ramin Mousavi to

12
13

[38]. Carsten Thomassen proved that there is no ε such that every planar 4-edge
connected graph contains an ε-thin tree (this is unpublished, see the comments in [33] for
the construction). Merker and Postle made the following natural conjecture:

Conjecture 1.39 ([33]). There exists an ε such that all planar 5-edge connected graphs
have two edge disjoint ε-thin trees.

However even the following weaker statement is open:

Conjecture 1.40. There exists a 0 < ε < 1 such that all planar 5-edge connected graphs
have an ε-thin tree.

From the arguments in [33], it is not hard to see that Conjecture 1.40 could be ob-
tained by showing that every girth 5 planar graph decomposes into a forest and a bounded
diameter forest. Here, a forest has bounded diameter if every connected component of the
forest has bounded diameter.

A straightforward calculation from Euler’s formula says that every planar graph of girth
at least five has fractional arboricity at most 1 + 2

3
. Hence a positive answer to the Strong

Nine Dragon Tree Conjecture in the k = 1 and d = 4 case would give an affirmative answer
to Conjecture 1.40 (since bounded size implies bounded diameter).

An interesting related theorem talks about partitioning the vertex set of a graph into
an independent set and an induced forest.

Theorem 1.41 ([22]). Every planar graph of girth 5 admits a partitioning of its vertex set
into two sets I and T such that I induces an independent set, and T is an induced forest.

Perhaps the following is true:

Question 1.42. Is it true that for every planar graph of girth 5, there exists a decomposi-
tion into two forests F1 and F2, such that every component of F1 is isomorphic to a star,
the centres of the star (making a choice if necessary) induce independent set I, and the
vertices not in I induce a forest?

This would simultaneously imply Conjecture 1.40 and generalize Theorem 1.41 if true.
We note that in [33], the following was conjectured:

10



Conjecture 1.43. Every planar graph of girth 5 decomposes into two forests, such that
both forests have bounded diameter.

This conjecture seems to be difficult if true.

These applications have focused on forests, which to date have had all of the applica-
tions. It would be nice to extend some of the applications to pseudoforests, but at the
moment these are lacking.

A third question would be if on certain graph classes we can do better than the Nine
Dragon Tree Theorem. There are not many results of this nature, and those that are
known are negative. For example, we have:

Theorem 1.44 ([35]). There exist planar graphs of girth at least 7 which do not decompose
into a forest and a matching.

Theorem 1.45 ([35]). There exist planar graphs of girth at least 5 which do not decompose
into a forest and a forest of maximum degree two.

It is possible these theorems can be strengthened to pseudoforests.

Question 1.46. Is it true that every planar graph of girth 7 decomposes into a pseudoforest
and a matching?

Question 1.47. Is it true that every planar graph of girth 5 decomposes into a pseudoforest
and a pseudoforest of maximum degree two?

Another interesting class to consider is graphs with large girth. Perhaps the following
is true:

Conjecture 1.48. Let k, d, g be positive integers. There exists a function f(k, d, g) such
that every graph G with maximum average degree at most 2k+ 2d

d+k+1
+ f(k, d, g) and girth

g decomposes into k+ 1 pseudoforests where one of the pseudoforests has maximum degree
d.

Of course, one can ask a strong version of the above conjecture.

1.2 Colouring sparse graphs

In this section we look at colouring graphs which have bounded maximum average degree.

We start this section off with an amazing theorem of Grötzsch. Recall, a graph is
triangle-free if it contains no subgraph isomorphic to K3.

Theorem 1.49 ([17]). Every triangle-free planar graph is 3-colourable.

11



The original proof of Grötzsch’s theorem is relatively difficult. A particularly nice and
short proof of this theorem was given by Kostochka and Yancey in [27]. Kostochka and
Yancey give an easy reduction to the case where G is planar and has no faces of length 4,
and then prove a stronger theorem about the average degree of vertex and edge minimal
graphs with no 3-colouring. To state the theorem, we first define the notion of a k-critical
graph. A graph G is k-critical if G is k-colourable, G is not (k − 1)-colourable, but all
proper subgraphs are (k − 1)-colourable. The Kostochka-Yancey Theorem states:

Theorem 1.50 ([28]). If G is k-critical, then

e(G) ≥ (k + 1)(k − 2)v(G)− k(k − 3)

2(k − 1)
.

In the particular case of 4-critical graphs, the theorem says that if G is 4-critical, then
e(G) ≥ 5v(G)−2

3
. Using Euler’s formula, it is easy to see that planar graphs with no face of

length at smaller than g have maximum average degree at most 2g
g−2 , and hence if G has no

triangles or faces of length four then G has maximum average degree strictly less than 10
3

,
and using some easy observations about minimal counterexamples to Grötzsch’s Theorem,
we get the result.

One might wonder if other known results about colouring graphs on surfaces can be
refined to a result about maximum average degree in a similar way. While there are many
such results, of particular note for this thesis are two results, one by Carsten Thomassen,
and the other by Robin Thomas and Barrett Walls.

Theorem 1.51 ([48]). Every graph of girth at least five embeddable on the torus or the
projective plane is 3-colourable.

Theorem 1.52 ([47]). Every graph of girth at least five embeddable on the Klein Bottle is
3-colourable.

We recall a well known fact that follows from Euler’s formula for surfaces and the fact
that the Euler characteristic of the Klein Bottle and Torus is 0, and the Euler characteristic
of the projective plane is 1 (see Theorem 10.37 in [1] and the surrounding discussion).

Observation 1.53. If G is a graph embeddable on the Klein Bottle, torus, or projective
plane, and G has girth at least 5, then

2e(G) ≤ 10v(G)

3
.

Note the Kostochka-Yancey bound for 4-critical graphs is just slightly too low to deduce
these results from the above bound. Further, it is not hard to see that the Kostochka-
Yancey bound is best possible, for instance, K4. Hence it might look like a dead end, but
Liu and Postle showed that 4-critical graphs with girth at least 5 have large density.

12



Figure 1.3: A example of Davies of a triangle free 4-critical graph satisfying e(G) = 5v(G)+4
3 .

Theorem 1.54 ([31]). Every 4-critical graph with girth at least 5 has e(G) ≥ 5v(G)+2
3

.

Theorem 1.51 and Theorem 1.52 follow immediately from Theorem 1.54 and Observa-
tion 1.53.

An unpublished result of Postle shows that asymptotically, the average degree of 4-
critical graphs with girth at least 5 is strictly higher than 10

3
, and hence the girth at least

five hypothesis in Theorem 1.54 is not the most natural.

It is natural then to ask if triangle-free 4-critical graphs achieve the same density bound
as in Theorem 1.54. Even stronger than this, Liu and Postle conjectured the following:

Conjecture 1.55 ([31]). Every triangle-free 4-critical graph satisfies e(G) ≥ 5v(G)+5
3

.

Unfortunately, this conjecture is false, and James Davies found an infinite family of
counterexamples (personal communication).

Theorem 1.56 (Davies). There exist infinitely many triangle-free 4-critical graphs satis-

fying e(G) = 5v(G)+4
3

.

Figure 1.3 gives the smallest example he constructed. Nevertheless, we obtained the
following theorem:

Theorem 1.57 ([36]). Every triangle-free 4-critical graph satisfies e(G) ≥ 5v(G)+2
3

.

We in fact proved a stronger theorem mostly for the purposes of induction. We need
some definitions and theorems first to state the theorem.

Definition 1.58. An Ore Composition of two graphs H1 and H2 is the graph H obtained
by deleting an edge xy ∈ E(H1), splitting a vertex z ∈ V (H2) into two vertices z1 and
z2 of positive degree such that N(z) = N(z1) ∪ N(z2) and N(z1) ∩ N(z2) = ∅, and then
identifying x with z1 and y with z2. We say that H1 is the edge side of the composition
and H2 is the split side of the composition, and we denote the graph obtained from H2 by
splitting z as Hz

2 .
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x

y z2

z1

yz2

xz1

Figure 1.4: The Ore Composition operation applied to two K4’s, resulting in the 4-Ore graph
called the Moser Spindle. Here we deleted the edge xy of K4, and split a vertex z into two vertices
z1 and z2.

Definition 1.59. A graph G is k-Ore if it is obtained from some fixed number of copies
of Kk via Ore compositions.

We note in [29] that Ore Compositions are called DGHO-compositions, owing to the
fact that Dirac, Gallai, Hajos and Ore all used a similar construction. However, we will
simply use the term Ore Composition.

For context, it is important to note the rather remarkable result of Kostochka and
Yancey who proved that the instances where equality holds in Theorem 1.50 are precisely
the k-Ore graphs.

Theorem 1.60 ([29]). If G is k-critical, and

e(G) =
(k + 1)(k − 2)v(G)− k(k − 3)

2(k − 1)
,

then G is k-Ore.

Here and throughout, we let Wk denote the wheel on k + 1 spokes, that is, the graph
obtained from a cycle on k vertices by adding a vertex adjacent to all other vertices in the
cycle.

Definition 1.61. Given a graph G, and an integer k, the function T k(G) is the size of the
largest collection of vertex-disjoint Kk-subgraphs in G.

Definition 1.62. Let T8 be the graph with vertex set V (T8) = {u1, u2, u3, u4, u5, u6, u7, u8}
and E(T8) = {u1u2, u1u3, u1u4, u1u5, u2u3, u2u4, u2u5, u3u8, u4u7, u5u6, u6u7, u6u8, u7u8}. Let
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u1 u2
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u6
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u8

Figure 1.5: The graph on the left is T8, and the graph on the right is an example of a graph in
B, which we call T11.

B be defined as follows: the graph T8 is in B, and given a graph G ∈ B and a 4-Ore graph
H, the Ore composition G′ of G and H is in B if T 3(G′) = 2. See Figure 1.5.

Definition 1.63. Let a, b, c and be non-negative integers. The (a, b, c)-potential of a graph
G, denoted pa,b,c(G), is av(G)− be(G)− cT 3(G).

Now we can state the stronger theorem.

Theorem 1.64 ([36]). Let p(G) denote the (5, 3, 1)-potential. Let G be a 4-critical graph.
Then

� p(K4) = 1,

� p(G) = 0 if T 3(G) = 2 and G is 4-Ore,

� p(G) = −1 if G = W5, or G ∈ B, or G is 4-Ore with T 3(G) = 3, and

� p(G) ≤ −2 otherwise.

In the case that G is 4-critical and triangle-free, it follows that p(G) ≤ −2, and thus we
recover Theorem 1.57 from Theorem 1.64. We note that Liu and Postle proved a similar
theorem in [31].

Theorem 1.65 ([31]). Let p′(G) := 5v(G)− 3e(G)− T ′(G), where T ′(G) is the maximum
number of vertex disjoint 4-cycles or triangles. Let G be a 4-critical graph. Then

� p′(K4) = 1

� p′(G) = 0 if G is the Ore-composition of two K4’s

� p′(G) = −1 if G is 4-Ore with T ′(G) = 3, or G = W5, or G = T8, or G = T11, and

� p′(G) ≤ −2 otherwise.
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Here we let T11 be defined as in Figure 1.5. It is easy to see that Theorem 1.64 implies
Theorem 1.65 (and the proof of Theorem 1.64 does not rely on Theorem 1.65).

It is of interest to determine the exact density of triangle free 4-critical graphs. If a
characterization of when equality holds could be found, this would be particularly pleasing.

Question 1.66. What is the best c ∈ {2, 3, 4} such that every triangle free 4-critical graph

satisfies e(G) ≥ 5v(G)+c
3

? Is there a nice characterization of the 4-critical graphs for which
equality holds.

A second obvious question is to extend the result from 4-critical graphs with no K3 to
k-critical graphs with no Kk−1-subgraph. We conjecture a bound:

Conjecture 1.67. Every k-critical graph G with no Kk−1 satisfies

e(G) ≥ (k + 1)(k − 2)v(G) + k(k − 3)

2(k − 1)
.

The conjecture is only known to hold when k = 4. James Davies (personal communi-
cation) found that for k ≥ 5, the conjecture is best possible infinitely often.

This conjecture does not (seemingly) have as nice applications as Theorem 1.64, however
it still seems to be quite interesting.

Returning to Grötzsch’s Theorem, there is a different way to make a fractional refine-
ment of the theorem, and this is the dual form of Jaeger’s modular orientation conjecture.

Conjecture 1.68 ([23]). Every planar graph of girth at least 4k admits a homomorphism
to the odd cycle on 2k + 1 vertices.

This conjecture has attracted a large amount of attention (see [32] for a good survey).
The following is the best progress so far (stated in a weaker form than what was proved):

Theorem 1.69 ([32]). Every planar of girth at least 6k admits a homomorphism to the
odd cycle on 2k + 1 vertices.

Observing that the k = 1 case of Conjecture 1.68 is Grötzsch’s Theorem, one might
think there is a proof of Jaeger’s conjecture similar to the Kostochka-Yancey proof of
Grötzsch’s Theorem. This motivates a more general notion of a critical graph.

Definition 1.70. For a fixed graph H, we say that a graph G is H-critical if G does not
admit a homomorphism to H, but all proper subgraphs of G do.

In [9], Zdeněk Dvořák and Postle investigated C5-critical graphs, and proved:

Theorem 1.71 ([9]). If G is C5-critical and not K3, then

e(G) ≥ 5v(G)− 2

4
.
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Via Euler’s formula this implies:

Corollary 1.72 ([9]). If G is planar and has girth at least 10, then G admits a homomor-
phism to C5.

They conjectured the following bound:

Conjecture 1.73. If G is C5-critical, then

e(G) ≥ 14v(G)− 9

11
.

Further, they observed using a Hell-Nešetřil indicator construction (see [20]) that if this
conjecture were true, it would generalize the k = 6 case of Theorem 1.50. Later, Postle
and Smith-Roberge asked the natural extension of Conjecture 1.73 to arbitrary odd cycles.

Question 1.74 ([43]). Is it true that if G is C2t+1-critical, for t ≥ 2, then

e(G) ≥ t(2t+ 3)v(G)− (t+ 1)(2t− 1)

2t2 + 2t− 1
?

This naively is not strong enough to prove Jaeger’s conjecture. Nevertheless it is still
of interest as it generalizes the odd k cases of Theorem 1.50. Using signed graphs [39]
suggest that Question 1.74 is not true, however no counterexamples have been constructed
yet. The best result towards Question 1.74 is:

Theorem 1.75 ([43]). Let G be a C7-critical graph. If G is not C3 or C5, then

e(G) ≥ 17v(G)− 2

15
.

Homomorphisms to odd cycles is a special instance of a certain circular colouring, which
is a natural refinement of colouring.

Definition 1.76. Let p and q be positive integers such that p
q
≥ 2. We say the (p, q)-

circular-clique, denoted Gp,q, has vertices {0, 1, 2, . . . , p− 1} and an edge ij if q ≤ |i− j| ≤
p − q. We say G admits a (p, q)-circular-colouring if G admits a homomorphism to Gp,q.
As there will be no confusion, we will refer to (p, q)-circular-colourings as (p, q)-colourings.

We refer the reader to [53] for a comprehensive overview of circular colouring.

It is easy to see that Kk is isomorphic to Gk,1, and that the odd cycle on 2k+1 vertices is
isomorphic to G2k+1,k. Thus circular colourings allow for a refinement of regular colouring,
as well as homomorphisms to odd cycles. In particular, a useful and easy fact is that if
p
q
≤ p′

q′
, then Gp,q → Gp′,q′ (see [21]). Combining this with the fact that homomorphisms

compose, we see that circular colouring is a “fractional” refinement of colouring.

If Question 1.74 is true, then it implies a statement about G7,2-critical graphs.
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Observation 1.77. If the t = 3 case of Question 1.74 is true, then every G7,2-critical
graph G satisfies

e(G) ≥ 27v(G)− 20

15
.

There is a special case which I will focus on.

Observation 1.78. Let p and q be integers such that 3 ≤ p
q
< 4. Any 4-critical graph

with no (p, q)-colouring is Gp,q-critical.

Proof. Let G be such a graph. By the assumption G has no (p, q)-colouring. By 4-
criticality, for any edge e ∈ E(G), G − e → K3, and K3 → Gp,q as 3 ≤ p

q
. As homomor-

phisms compose, G− e→ Gp,q, and hence G− e has a (p, q)-circular colouring. Therefore
G is Gp,q-critical.

We note that Observation 1.77 is tight with regards to the choice of (7, 2), as we find
for any integers p and q satisfying 3 ≤ p

q
< 7

2
there exists a 4-critical graph with no

(p, q)-colouring which satisfies

e(G) <
27v(G)− 20

15
.

One can ask if every 4-critical graph with no (7, 2)-colouring satisfies e(G) ≥ 27v(G)−20
15

.
This would be an asymptotic improvement in the Kostochka-Yancey bound, and show that
sparse 4-critical graphs have low circular chromatic number. Here, the circular chromatic
number is

χc(G) := inf{p
q
|G→ Gp,q}.

One can show that the infimum is always attained, and hence can be taken to be a minimum
(see for instance Corollary 6.8 of [21] for a proof.) Most readers will be familiar with
the chromatic number, denoted χ(G), which is the minimum k such that G admits a k-
colouring. We note that χ(G) is the ceiling of χc(G), showing that circular colouring is a
fractional refinement of colouring.

We do not get particularly close to this, but we do manage to show an asymptotic
improvement over the Kostochka-Yancey bound.

Theorem 1.79. Let G be a 4-critical graph that does not have a (7, 2)-colouring. Then
either G = K4, or G = W5, or

e(G) ≥ 17v(G)

10
.

As a cute application, this result does show the complements of sparse 4-critical graphs
contain hamiltonian cycles. Recall a Hamiltonian cycle is a cycle whose vertex set is the
entire graph.

Let Ḡ denote the complement of G, that is the graph with the same vertex set of G,
but if uv ∈ E(G), then uv 6∈ E(Ḡ), and if uv 6∈ E(G), then uv ∈ E(Ḡ).
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Theorem 1.80 ([11]). If a graph G has has circular chromatic number p
q

which is not

integral, then Ḡ contains a hamiltonian cycle.

Corollary 1.81. If G is 4-critical, G is not isomorphic to K4 or W5, and e(G) < 17v(G)
10

,
then Ḡ contains a Hamiltonian cycle.

Aside from Theorem 1.79, we prove some structural results about the types of graphs
which can appear in the subgraph induced by the degree three vertices of a graph G, which
we denote D3(G). Recall that the claw is the unique tree on four vertices containing a
vertex of degree three.

Theorem 1.82. If G is a 4-critical graph that does not have a (7, 2)-colouring, then either
G is isomorphic to an odd wheel, or every component of D3(G) is isomorphic to a path or
a claw. Further, there are 4-critical graphs with no (7, 2)-colouring that have components
of D3(G) isomorphic to either a claw, or arbitrarily long paths.

We can generalize the ideas of part of Theorem 1.82 to k-critical graphs.

Theorem 1.83. If G is a k-critical graph that does not have a (2k − 1, 2)-colouring, then
Dk−1(G) does not contain a clique of size k − 1.

In light of the above, we propose an extremely strong conjecture.

Conjecture 1.84. Let p and q be integers where 3 < p
q
< 4. Let G be a 4-critical graph

with no (p, q)-colouring. There exists positive rational numbers εp,q and cp,q depending on
p and q such that

e(G) ≥ (5 + εp,q)− cp,q
3

.

1.3 Cycles and paths between colourings

The first part of this section is devoted to discussing cycles in graphs with large circular
chromatic number.

The first result we note is one that almost everyone learns in an introductory graph
theory course.

Observation 1.85. A graph G is 2-colourable if and only if G has no cycle of length
1 mod 2.

A natural generalization of this was given by Tuza [49] who proved the following:

Theorem 1.86 ([49]). Every graph with no cycle of length 1 mod k is k-colourable.
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Tuza in fact proved a stronger statement. For context we include Minty’s Theorem
[34].

Theorem 1.87 ([34]). A graph G is k-colourable if and only if it has an orientation in
which no cycle of G has more than k− 1 times as many forward edges as backwards edges.

Tuza showed that you only need to consider cycles of length 1 mod k.

Theorem 1.88 ([49]). A graph G is k-colourable if and only if it has an orientation in
which no cycle of length 1 mod k has more than k − 1 times as many forward edges as
backwards edges.

Focusing back on Tuza’s basic result, there are a few ways we could aim to refine it.
You could ask how many cycles of length 1 mod k can you have before you cannot ensure
that your graph is k-colourable. We manage to answer this and do a bit better. We show:

Theorem 1.89 ([37]). Let e be an edge such that G−e is k-colourable and G is not. Then
for 2 ≤ r ≤ k, e lies in at least

∏r−1
i=1 (k − i) cycles of length congruent to 1 modulo r.

We point out that in a (k + 1)-critical graph, every edge satisfies the condition of
Theorem 1.89. As a special case, this implies that every graph with fewer than (k − 1)!
cycles of length congruent to 1 modulo k is k-colourable, and hence we generalize Tuza’s
result.

We note that the fact that these cycles can be assumed to be going through a particular
edge is important. A referee suggested a probabilistic argument showing that every graph
with fewer than k!/2 cycles of length 1 mod k is k-colourable. Although k!/2 is greater
than (k−1)!, the probabilistic argument does not yield k!/2 such cycles through every edge
in a (k + 1)-critical graph, so it does not imply Theorem 1.89. Nevertheless we sketch the
probabilistic argument here as it is nice.

For the probabilistic argument, randomly order the vertices and orient each edge toward
its later endpoint in the order. Now, bound the probability that some cycle of length
1 mod k (or its reverse) has more than k − 1 times as many forward edges as backwards
edges. If this probability is at most 2/k! and there are fewer than k!/2 such cycles, then
some orientation has no cycle of length 1 mod k with more than k − 1 times as many
forward edges as backward edges. By Tuza’s strengthening of Minty’s Theorem, G is then
k-colourable.

An ordering of a cycle C of length qk+1 is bad if following the vertices along C involves
at most q backward steps and more than (k− 1)q forward steps in the ordering. Since the
vertices outside the cycle are irrelevant, it suffices to show that at most (qk+ 1)!/k! of the
(qk + 1)! orderings of v1, . . . , vqk+1 have at most q instances of vi preceding vi−1.

From one backward step to the next is an increasing run. Hence to form an ordering
with at most q backward steps we assign the vertices to bins 1 through q and place the
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vertices within a bin in increasing order. Such assignments include the orderings where
there are fewer backwards steps. Since we are following a cycle, we can start at any of the
qk+1 vertices in the resulting linear order. The probability is thus bounded by qqk+1/(qk)!.
Multiplying by 2 accounts for following the cycle in the opposite order.

The bound is at most 2/k!, with equality only when q = 1. This yields the additional
observation that if a non-k-colourable graph has only k!/2 cycles of length congruent to 1
modulo k, then those cycles all must have length exactly k + 1. This occurs, for example,
in Kk+1, so the result is sharp.

More in line with the idea of fractionally refining integral theorems, one can ask if there
is an extension of Tuza’s result to circular colouring.

Zhu [54] extended Tuza’s result to circular colouring. Given an orientation of a graph
G, and a cycle C in G viewed in a consistent direction, let C− denote the set of edges in
C that C follows opposite to the orientation of G.

Theorem 1.90 ([54]). If G has an orientation such that |e(C)| /|C−| ≤ k/d for every
cycle C (in each direction) such that d |E(C)| is congruent modulo k to some value in
{1, . . . , 2d− 1}, then G is (k, d)-colourable.

When d and k are relatively prime, let s be the congruence class such that sd ≡ 1 mod k.
It follows from Zhu’s result that if G has no cycle whose length is congruent modulo k to
is for any i with 1 ≤ i ≤ 2d − 1, then G is (k, d)-colourable. That is, (k, d)-colourability
holds when 2d− 1 congruence classes of cycle lengths modulo k are forbidden. We manage
to strengthen this result:

Theorem 1.91 ([37]). Let k and d be relatively prime, and s be the congruence class such
that sd ≡ 1 mod k. If G − e is (k, d)-colourable, and G is not, then e lies in a cycle with
length congruent to is mod k for some i ∈ {1, . . . , d}. Further, if G has no cycle through e
with length ismod k, when i ∈ {1, . . . , d− 1}, then e lies in at least two cycles with length
1 mod k and G− e contains a cycle of length 0 mod k.

The special case of (2d + 1, d)-colouring shows that the result is sharp. Here −2d ≡
1 mod (2d + 1), so s = −2, and we seek a cycle length congruent to −2i for some i ∈
{1, . . . , k}. These lengths are the odd values from 2d − 1 to 1. The graph G2d+1,d is
isomorphic to the odd cycle C2d+1. Thus χc(G) ≤ 2 + 1/d for a C2d+1-colourable graph G.
All shorter odd cycles are critical non-C2d+1-colourable graphs. This means that although
possibly only one cycle length among the listed classes of lengths occurs, we cannot omit
any of those classes from the list.

A different generalization would be to extend our result to either Tuza’s or Zhu’s general
result. We just state the possible generalization of Tuza’s result.

Question 1.92. Is it true that a graph G is k-colourable if it has an orientation where at
most (k − 1)! − 1 cycles of length 1 mod k have more than k − 1 times as many forward
edges as backwards edges?
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If this question is too hard, one can change (k− 1)!− 1 to a smaller value, and it would
still be interesting.

In the remaining part of the section, we discuss finding paths between colourings.

Definition 1.93. Let G be a graph which is H-colourable. Let f, g be two H-colourings of
G. A reconfiguration sequence from f to g is a sequence of H-colourings f = f1, . . . , ft = g
where fi differs from fi+1 on at most one vertex. If for a fixed H-colouring f , and for every
H-colouring g, there is a reconfiguration sequence from f to g, then we say G is H-mixing.
If H = Kk, we say G is k-mixing. If H = Gp,q, we say G is (p, q)-mixing.

We note that if G is not H-colourable, G is not H-mixing.

A very nice result of Cereceda, Johnson, and van den Heuvel gives a structural charac-
terization of 3-mixing in planar graphs, as well as showing all 3-mixing graphs are bipartite
(not necessarily requiring planarity)

Theorem 1.94 ([5]). Every graph which is not bipartite is not 3-mixing.

Recall that given a planar graph G, with a given planar embedding, a cycle C in G
is separating if both the interior and exterior of the cycle contain a vertex. Here we note
that the interior and exterior do not contain the cycle C.

Theorem 1.95 ([5]). Let G be a 2-connected planar bipartite graph with no separating
4-cycle. Otherwise, G is 3-mixing if and only if G has a plane embedding where there is at
most one face of length at most 6.

It may not look like a full characterization, but one can show that there is no loss in
generality by restricting to the 2-connected case and having no separating 4-cycle. Hence
this does give a complete characterization of 3-mixing in planar graphs. Cereceda, Johnson
and van den Heuvel observed that 3-mixing in general is co-NP-complete, so the charac-
terization for planar graphs is surprising [5]. We extend this to the setting of circular
colourings.

Theorem 1.96 ([3]). Fix 2 < p
q
< 4. Let C2k be the minimal non-(p, q)-mixing even

cycle. Let G be a 2-connected bipartite planar graph with no separating C2i-cycles for
i ∈ {2, . . . , k − 1}. The graph G is (p, q)-mixing if and only if for every planar embedding
of G, G has at most one facial cycle with length greater than 2k.

This theorem, as with the 3-mixing result, gives a full characterization of (p, q)-mixing
in planar graphs when 3 ≤ p

q
< 4, which we present when we prove this result. The

restriction to bipartite graphs is justified as a consequence of a result in [4], which implies
the following:

Theorem 1.97 ([4]). Let p and q be positive integers such that p
q
< 4. If G is (p, q)-mixing,

then G is bipartite.
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When p
q
≥ 4, the proof technique completely breaks down. In general, Cereceda,

Johnson and van den Heuvel conjectured that the 4-mixing problem is PSPACE-complete,
and it seems believable that it is PSPACE-complete even when restricted to planar graph
inputs.

There is a wide selection of literature on reconfiguration results, and instead of surveying
them, we refer the reader to the brilliant survey of [41].

1.4 Structure of the Thesis

In Chapter 2 we prove Theorem 1.21. In Chapter 3 we prove Theorem 1.16. In Chapter
4 we prove Theorem 1.64. In Chapter 5 we prove Theorem 1.79. In Chapter 6 we prove
Theorem 1.96. In Chapter 7 we prove Theorem 1.89 and Theorem 1.91.

23



Chapter 2

The Pseudoforest Strong Nine
Dragon Tree Theorem

The work in this chapter is joint work with Logan Grout.

2.1 Introduction

The main result of this chapter is a proof of the pseudoforest analogue of the Strong Nine
Dragon Tree Conjecture (Theorem 1.22)

As a template for how the proof of Theorem 1.22 will proceed, we will give a proof of
the non-trivial direction of Hakimi’s Theorem which acts as a framework. The proof we
give appears in [13].

Before proceeding, we need some definitions. Given a graph G, an orientation of G is
obtained from E(G) by taking each edge xy, and replacing xy with exactly one of the arcs
(x, y) or (y, x). To reverse the direction of an arc (x, y) is to replace (x, y) with the arc
(y, x). For any vertex v, let d(v) denote the degree of v in G, and if G is oriented, we let
d+(v) (d−(v)) denote the outdegree (indegree) of v. A directed path P from u to v is a
path P with endpoints u and v oriented so that v is the only vertex with no outgoing edge.
The next observation is easy and well known.

Observation 2.1. A graph G is a pseudoforest if and only if G admits an orientation
where every vertex has outdegree at most one.

From this observation, we get an important corollary.

Corollary 2.2. A graph admits a decomposition into k pseudoforests if and only if it
admits an orientation such that every vertex has outdegree at most k.
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For a proof of Corollary 2.2 we refer the reader to Corollary 1.2 and Theorem 1.1 of
[13]. Alternatively, here is a short proof due to a referee. Given an orientation where
each vertex has outdegree at most k, colour the arcs (u, v) incident to each vertex u with
distinct colours from 1, . . . , k. This is possible as the orientation has outdegree at most k.
Now each colour class of edges induces a subgraph with maximum outdegree at most one,
hence it is a pseudoforest. For the converse, given k pseudoforests, we orient each vertex
to have maximum outdegree at most 1. The union of these oriented pseudoforests is an
orientation of G with maximum outdegree at most k. We will use Corollary 2.2 repeatedly
and implicitly throughout our proofs. With that, we can give a proof of Hakimi’s Theorem.

Proof of Theorem 1.7. We only prove that a graph with maximum average degree 2k de-
composes into k pseudoforests, as the other direction follows immediately from the fact
that an edge maximal pseudoforest P has e(P ) = v(P ).

Suppose towards a contradiction that G has maximum average degree at most 2k, but
G does not decompose into k pseudoforests. Then G does not admit an orientation such
that each vertex has outdegree at most k.

Consider an orientation ~G of G that minimizes the sum

ρ :=
∑

v∈V (G)

max{0, d+(v)− k}.

If this sum is zero, then we have a desired decomposition, a contradiction. Thus there is
a vertex v ∈ V (G) such that v has outdegree at least k + 1. If there is a directed path P
from v to x such that x has outdegree at most k − 1, then we can reverse the directions
on all of the arcs on P and obtain a decomposition with smaller ρ value, a contradiction.
Consider the subgraph H induced by vertices which are reachable from directed paths of
v. That is, x ∈ V (H) if there is a directed path P which starts at v and ends at x. Then
all vertices in H have outdegree at least k, and v has outdegree at least k + 1. But this
implies that the average degree of H is strictly larger than 2k, a contradiction.

Now we will give a high level overview of how our proof will proceed. We will take
a pseudoforest decomposition C1, . . . , Ct, F where we will try and bound the size of each
connected component in F . In the above proof of Hakimi’s Theorem, the bad situation
was a vertex which had too large outdegree. Now, the bad situation is that there is a
component which is too large. In the proof of Hakimi’s Theorem, we searched for special
paths to augment on from a vertex which had too large outdegree, and in our proof, we
will search for paths to augment on from a component which is too large. In the proof
of Hakimi’s theorem, we identified a situation where we could augment our decomposition
and obtain a better decomposition, namely, directed paths from a vertex with too large
outdegree to a vertex with small outdegree. In our proof, we will identify similar situations,
namely, finding two components which are small enough to augment our decomposition,
or finding a large component which has at least two small components nearby to perform
augmentations. Then we will show that when these configurations are removed, either
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we have a decomposition satisfying Theorem 1.22 or our graph actually had too large
maximum average degree to begin with.

The chapter is structured as follows. In Section 2.2 we describe how we pick our
hypothetical counterexample and prove basic properties said counterexample. In Section
2.3, we describe how we will augment our decomposition in certain situations. In Section
2.4, we show how to use this augmentation strategy to either find an optimal decomposition
or show that our graph has too large maximum average degree.

2.2 Picking the counterexample

In this section we describe how we will pick our counterexample. Fix positive integers k
and d, and suppose that G is a vertex minimal counterexample to Theorem 1.22 for the
values of k and d.

Our first step will be to obtain desirable orientations ofG. In particular, the orientations
we will demand will imply that G decomposes into k pseudoforests each with v(G) edges,
and one left over pseudoforest. For this, we use a lemma proved in [13] (Lemma 2.1).
Technically, we need a stronger lemma, however the same proof as Lemma 2.1 will suffice.
We give a proof for completeness sake only, there is no new idea needed.

Lemma 2.3 ([13]). If G is a vertex minimal counterexample to Theorem 1.22, then there
exists an orientation of G such that for all v ∈ V (G), we have k ≤ d+(v) ≤ k + 1.

Proof. Suppose no such orientation exists. As G has maximum average degree at most
2k + 2, by Hakimi’s Theorem, G admits an orientation so that every vertex has outdegree
at most k + 1. Orient G so that every vertex has outdegree at most k + 1, and that the
sum

ρ :=
∑

v∈V (G)

max{0, k − d+(v)}

is minimized. Observe that if ρ is zero, then we have a desirable orientation.

First we claim there is a vertex v with outdegree k + 1. If not, then all vertices
have outdegree at most k, and by Hakimi’s Theorem G decomposes into k pseudoforests,
contradicting that G is a counterexample to Theorem 1.22.

Now we claim there is no directed path P from a vertex v with outdegree k + 1 to a
vertex u with outdegree at most k − 1. Suppose towards a contradiction that P is such a
path. Then reversing the orientation on all of the arcs in P gives a new orientation, where
v has outdegree k, all internal vertices have the same outdegree, and the outdegree of u
increases by one. But this contradicts that we picked our orientation to minimize ρ.

Let S be the set of vertices in G with outdegree at most k− 1, and let S ′ be the set of
vertices which have a directed path to a vertex in S. Observe that every vertex in S ′ has
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outdegree at most k. Let S̄ ′ = V (G)− S ′. Then every edge with one endpoint lying in S ′

and one endpoint in S̄ ′ is directed from S ′ to S̄ ′. Observe that |S̄ ′| < v(G).

As G is a vertex minimal counterexample we can decompose G[S̄ ′] into k + 1 pseud-
oforests such that one of the pseudoforests has each connected component containing at
most d edges and is acyclic. Additionally, as every vertex in S ′ has outdegree at most k, by
Hakimi’s Theorem we can decompose G[S ′] into k pseudoforests C1, . . . , Ck. Thus we only
need to deal with the edges between S̄ ′ and S ′. Observe that if v has t arcs (v, u1), . . . , (v, ut)
where ui ∈ S̄ ′ for all i ∈ {1, . . . , t}, then v has outdegree at most k − t in G[S ′]. Thus
v has outdegree zero in at least t of the pseudoforests C1, . . . , Ck. Therefore we can add
the arcs (v, u1), . . . , (v, ut) to t of the pseudoforests so that the result is a pseudoforest. As
all arcs between S ′ and S̄ ′ are oriented from S ′ to S̄ ′, we now have a decomposition of G
which satisfies Theorem 1.22. But this contradicts that G is a counterexample to Theorem
1.22.

Let F be the set of orientations of E(G) with k ≤ d+(v) ≤ k + 1 for each vertex
v ∈ V (G). A useful way of keeping track of our pseudoforest decomposition will be to
colour the edges blue and red, where the edges coloured red will induce a pseudoforest.
This will be the pseudoforest where we will want to bound the size of each connected
component.

Definition 2.4. Suppose G is oriented such that k ≤ d+(v) ≤ k + 1 for each vertex
v ∈ V (G). Then a red-blue colouring of G is a (non-proper) colouring of the edges where
for any vertex v ∈ V (G), we colour k outgoing arcs of v blue; if after this there is an
uncoloured outgoing arc, colour this arc red.

Note that given an orientation in F , one can generate many different red-blue colour-
ings. As a graph decomposes into k pseudoforests if and only if it admits an orientation
where each vertex has outdegree at most k, we obtain the following observation.

Observation 2.5. Given a red-blue colouring of G, we can decompose our graph G into
k + 1 pseudoforests such that k of the pseudoforests have all of their edges coloured blue,
and the other pseudoforest has all of its edges coloured red.

Observe that one red-blue colouring can give rise to many different pseudoforest decom-
positions. Given a pseudoforest decomposition obtained from Observation 2.5 we will say
a pseudoforest which has all arcs coloured blue is a blue pseudoforest, and the pseudoforest
with all arcs coloured red is the red pseudoforest.

Definition 2.6. Let f be a red-blue colouring of G, and let C1, . . . , Ck, F be a pseudoforest
decomposition obtained from f by Observation 2.5. Then we say that C1, . . . , Ck, F is a
pseudoforest decomposition generated from f . We will always use the convention that F is
the red pseudoforest, and each Ci is a blue pseudoforest.
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R1

R2

R3 R5

R4

Figure 2.1: In this example we assume k = 1 and d = 1. On the left, the orientation is in F . On
the right we have one possible red-blue colouring generated by this orientation. Here, the entire
graph would be the exploration subgraph, and assuming R1 is the root, (R1, R2, R3, R4, R5) is
the smallest legal order. Lastly, the isolated vertices are the small components (and are in fact
the only possible small components when k = 1 and d = 1)

As G is a counterexample, in every pseudoforest decomposition generated from a red-
blue colouring, there is a component of the red pseudoforest which has more than d edges,
or a component that contains a cycle, or a component with d edges that has a vertex of
degree d−1. We define a residue function which simply measures how close a decomposition
is to satisfying Theorem 1.22.

Definition 2.7. Let f be a red-blue colouring and C1, . . . , Ck, F be a pseudoforest decom-
position generated by f . Let T be the set of components of F . Then the residue function,
denoted ρ, is

ρ(F ) =
∑
K∈T

max{e(K)− d, 0}.

Using a red-blue colouring, and the resulting pseudoforest decomposition, we define an
induced subgraph of G on which we will focus our attention. Intuitively, this subgraph
should be thought of as an “exploration” subgraph similar to how in the proof of Hakimi’s
theorem we “explored” from a vertex which had too large outdegree. Here we will “explore”
from a component which is too large.

Definition 2.8. Suppose that f is a red-blue colouring of G, and suppose D = (C1, . . . , Ck,
F ) is a pseudoforest decomposition generated from f . If it is exists, let R be a component
of F such that e(R) > d. Otherwise, take R to be a component which contains a cycle.
We define the exploration subgraph Hf,D,R in the following manner. Let S ⊆ V (G) where
v ∈ S if and only if there exists a path P = v1, . . . , vm such that vm = v, v1 ∈ V (R),
and either vivi+1 is an arc (vi, vi+1) coloured blue, or vivi+1 is an arbitrarily directed arc
coloured red. Then we let Hf,D,R be the graph induced by S.

Given a particular exploration subgraph Hf,D,R, we say R is the root component. We
say the red components of Hf,D,R are the components of F contained in Hf,D,R.

It might not be clear why we made this particular definition for Hf,D,R, however the
next observation shows that for any exploration subgraph Hf,D,R, the red edge density

28



must be low. Before stating the observation, we fix some notation. Given a subgraph K
of G, we will let Eb(K) and Er(K) denote the sets of edges of K coloured blue and red,
respectively. We let eb(K) = |Eb(K)| and er(K) = |Er(K)|.

Observation 2.9. For any red-blue colouring f , any pseudoforest decomposition D gen-
erated from f , and any choice of root component R, the exploration subgraph Hf,D,R

satisfies
er(Hf,D,R)

v(Hf,D,R)
≤ d

d+ k + 1
.

Proof. Suppose towards a contradiction that

er(Hf,D,R)

v(Hf,D,R)
>

d

d+ k + 1
.

As Hf,D,R is an induced subgraph defined by directed paths, and every vertex v ∈ V (G)
has k outgoing blue arcs, each vertex in Hf,D,R has k outgoing blue arcs. Thus,

eb(Hf,D,R)

v(Hf,D,R)
= k.

Then we have

mad(G)

2
≥ e(Hf,D,R)

v(Hf,D,R)
=
er(Hf,D,R)

v(Hf,D,R)
+
eb(Hf,D,R)

v(Hf,D,R)
> k +

d

d+ k + 1
.

But this contradicts that G has mad(G) ≤ 2k + 2d
d+k+1

.

For the entire proof, we will be attempting to show that we can augment a given
decomposition in such a way that either we obtain a decomposition satisfying Theorem
1.22 or we can find a exploration subgraph Hf,D,R which contradicts Observation 2.9.

As Observation 2.9 allows us to focus only on red edges, it is natural to focus on red
components which have small average degree. With this in mind, we define the notion of
a small red component.

Definition 2.10. Let C1, . . . , Ct, F be a pseudoforest decomposition generated by a red-
blue colouring. Let K be a subgraph of F . Then K is a small red subgraph if

er(K)

v(K)
<

d

d+ k + 1
.

If K is connected, we say K is a small red component.
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In particular, we will be interested in the case when K is connected and a small red
component. When K is connected and small, the red subgraph is actually isomorphic to a
tree, and we can rewrite the density bound in the definition in a more convenient manner.

Observation 2.11. Let K be a connected small red subgraph. Then K is a tree, and
further

er(K) <
d

k + 1
.

Proof. First, suppose that K is not a tree. Then K contains exactly one cycle. As K is
connected, it follows that

er(K)

v(K)
= 1.

But d
k+d+1

< 1 by the assumption, and as d and k are positive integers, it follows that K is
not a small red subgraph. Thus we can assume that K is a tree, and hence e(K) = v(K)−1.
Thus

e(K)

v(K)
=

e(K)

e(K) + 1
<

d

d+ k + 1
.

Therefore
e(K)(d+ k + 1) < d(e(K) + 1).

Simplifying, we see that this is equivalent to

e(K) <
d

k + 1
.

We will want to augment our decomposition, and we will want a measure of progress
that our decomposition is improving. Of course, if we reduce the residue function that
clearly improves the decomposition. However, this might not always be possible, so we
will introduce a notion of a “legal order” of the red components. This order keeps track
of the number of edges in components which are “close” to the root component, with the
idea being that if we can continually perform augmentations to make components “closer”
to the root component have fewer edges without creating any large components, then we
eventually reduce the number of edges in the root component, which improves the residue
function. We formalize this in the following manner.

Definition 2.12. We call an ordering (R1, . . . , Rt) of the red components of Hf,D,R legal if
all red components are in the ordering, R1 is the root component, and for all j ∈ {2, . . . , t}
there exists an integer i with 1 ≤ i < j such that there is a blue arc (u, v) such that
u ∈ V (Ri) and v ∈ V (Rj).
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Let (R1, . . . , Rt) be a legal ordering. We will say that Ri is a possible parent of Rj if
i < j and there is a blue arc (vi, vj) where vi ∈ Ri and vj ∈ Rj. From this definition a
red component may have possible parents. To remedy this, if a red component has many
possible parents, we arbitrarily pick one such red component and designate it as the parent.
If Ri is the parent of Rj, then we say that Rj is a child of Ri. We say a red component
Ri is an ancestor of Rj if we can find a sequence of red components Ri1 , . . . , Rim such that
Ri1 = Ri, Rjm = Rj, and Riq is the parent of Riq+1 for all q ∈ {1, . . . ,m−1}. An important
definition is that of vertices witnessing a legal order.

Definition 2.13. Given a legal order (R1, . . . , Rt), we say a vertex v witnesses the legal
order for Rj if there is a blue arc (u, v) such that u ∈ Ri and v ∈ Rj and i < j.

Observe that there may be many vertices which witness the legal order for a given red
component. More importantly, for every component which is not the root, there exists a
vertex which witnesses the legal order. We also want to compare two different legal orders.

Definition 2.14. Let (R1, . . . , Rt) and (R′1, . . . , R
′
t′) be two legal orders. We will say

(R1, . . . , Rt) is smaller than (R′1, . . . , R
′
t) if the sequence (e(R1), . . . , e(Rt)) is smaller lexi-

cographically than (e(R′1), . . . , e(R
′
t′)).

With Definition 2.14, we will pick our minimal counterexample G in the following
manner. First, v(G) is minimized. After this we pick an orientation in F , a red-blue
colouring f of this orientation, a pseudoforest decompositionD = (C1, . . . , Ck, F ) generated
from f , such that the number of cycles in F is minimized. Subject to this, we minimize
the residue function ρ. Finally, we pick a smallest possible legal order (R1, . . . , Rt).

From here on out, we will assume we are working with a counterexample picked in
the manner described. The point of minimizing the number of cycles in F is slightly
unintuitive compared to minimizing the residue function and minimizing the legal order.
However, we minimize the number of cycles because when we augment we will need to
ensure our decomposition is in fact a pseudoforest decomposition, and our augmentations
will never create more cycles in F . Hence by minimizing the number of cycles in F first,
we can easily take care of the cases where cycles occur, which allows us to focus on the
more important cases where the components are acyclic.

2.3 Augmenting the decomposition

In this section we describe a very simple operation which will mostly be how we augment our
decomposition. Let f be the red-blue colouring of our counterexample, and let C1, . . . , Ck
be the blue pseudoforests, and F the red pseudoforest. Let (R1, . . . , Rt) be the legal
ordering picked for our counterexample. As some notation, given a vertex x ∈ V (Hf,D,R),
we let Rx denote the red component of Hf,D,R containing x.
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Definition 2.15. Let (x, y) be a blue arc. Further suppose that Ry is a tree, and suppose
that e = xv is an arbitrarily oriented red arc incident to x. To exchange e and (x, y) is to
perform the following procedure. First, take the maximal directed red path in Ry starting
at y, say Q = y, v1, . . . , vl where (vi, vi+1) is a red arc for i ∈ {1, . . . , l} and (y, v1) is a red
arc, and reverse the direction of all arcs of Q. Second, change the colour of (x, y) to red
and reorient (x, y) to (y, x). Finally, change the colour of e to blue, and if e is oriented
(v, x), reorient to (x, v).

See Figure 2.2 for an illustration. We note that exchanging on an edge e and (x, y) is
well-defined. This is because Ry is acyclic (and hence a tree), and thus there is a unique
maximal directed path in Ry which starts at y.

Observation 2.16. Suppose we exchange the edge e = xv and (x, y). Then the resulting
orientation is in F , and the resulting colouring is a red-blue colouring of this orientation.

Proof. Let us first check the outdegrees of vertices after the exchange. Let Q = y, v1, . . . , vl
be the maximal directed red path in Ry before exchanging the edges. First suppose that Q
is not just y. Then all of the internal vertices on this path have the same outdegree after
reversing as before. On the other hand, the outdegree of y decreases by 1, and the outdegree
of vl increases by one. As Q is a maximal red path, this implies that the outdegree of vl
before reversing the arcs on Q was k, and hence after reversing the arcs this outdegree is
k + 1. The outdegree of y drops by one after reversing the arcs on Q, but we reverse the
arc (x, y) to (y, x), and hence the outdegree of y remains the same as before.

If Q is just y, then the outdegree of y before exchanging was k, and then as we reorient
(x, y) to (y, x), the outdegree of y is now k + 1.

Focusing on x now, if e is oriented from x to v, then the outdegree of x is initially k+1,
and after the exchange it ends up being k; otherwise, we reorient (v, x) to (x, v) and so
the outdegree of x remains the same as before the exchange. Lastly, the outdegree of v
remains the same if e was oriented (x, v), and otherwise the outdegree of v initially was
k + 1, and after reorienting becomes k. Thus the resulting orientation is in F .

Now we will see that this new colouring is a red-blue colouring of the orientation. Note
after exchanging e and (x, y), y has exactly one outgoing edge coloured red. If x had no
outgoing red edge before, it still has no outgoing red edge, and if it did have an outgoing
red edge, then the outdegree of x dropped by one, and now x has no outgoing red edge.
Finally, if Q was not just y, then vl now has no outgoing red edge. It follows that the
resulting colouring is in fact a red-blue colouring.

To avoid repetitively mentioning it, we will implicitly make use of Observation 2.16.
Now we begin to impose some structure on our decomposition. First we make an observa-
tion which allows us to effectively ignore parent components with cycles (such components
will still exist, but for the purposes of our argument we will not need to worry about them).

32



x

y

e
x

y

e

Figure 2.2: An example of an exchange on an edge e and (x, y)

Observation 2.17. Let (x, y) be a blue arc such that Rx is distinct from Ry and further
Ry is a tree. Then x does not lie in a cycle of F .

Proof. Suppose towards a contradiction that x lies in a cycle of F . Let e be an edge incident
to x which lies in the cycle coloured red. Now exchange (x, y) and e. As (x, y) was an arc
between two distinct red components, and e was in the cycle coloured red, after performing
the exchange, we reduce the number of cycles in F by one. However, this contradicts that
we picked our counterexample to have the fewest number of red cycles.

With this we can show that given two components K and C, where K is the parent of
C, and C is acyclic, that er(K) + er(C) ≥ d.

Lemma 2.18. Let Rx and Ry be red components such that Ry is the child of Rx, Ry does
not contain a cycle, and (x, y) is a blue arc from x to y. Then er(R

x) + er(R
y) ≥ d.

Proof. Suppose towards a contradiction that er(R
x)+er(R

y) < d. Hence er(R
x) < d. Thus

Rx is not the root component. Let w be a vertex which witnesses the legal order for Rx

(w exists as Rx is not the root component). By Observation 2.17 we know that x does not
belong to a cycle of Rx.

Case 1: w 6= x.

Let e be the edge incident to x in Rx such that e lies on the path from x to w in
Rx. Then exchange (x, y) and e. As er(R

x) + er(R
y) < d, all resulting red components

have fewer than d edges, and hence we do not increase the residue function. Furthermore,
we claim we can find a smaller legal order. Let Ri be the component in the legal order
corresponding to Rx. Then consider the new legal order where the components R1, . . . , Ri−1
remain in the same position, we replace Ri with the new red component containing w, and
then complete the order arbitrarily. By how we picked e, e(Rw) is strictly smaller than
e(Ri), and hence we have found a smaller legal order, a contradiction.

Case 2: w = x.

We refer the reader to Figure 2.3 for an illustration. As Rx is not the root component,
let Rx1 be the closest ancestor of Rx such that e(Rx1) ≥ 1 (there is an ancestor with
this property, as the root component has at least one edge). Let Rxn , Rxn−1 , . . . , Rx1 be a
sequence of red components such that for i ∈ {2, . . . , n}, Rxi is the child of Rxi−1 and Rx

is the child of Rxn . Up to relabelling the vertices, there is a path P = x1, . . . , xn, x, y such
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Figure 2.3: An illustration of Case 2 in Lemma 2.18, where k = 1 and d = 1 and x = w. A
vertex in the root component was the ancestor, so in this case we reduce the residue function.

that (xi, xi+1) is an arc coloured blue, and (xn, x) is an arc coloured blue. Let e be a red
edge incident to xn. Now do the following. Colour (x, y) red, and reverse the direction of
all arcs in P . Colour e blue, and orient e away from x1. By the argument in our proof of
Observation 2.16, the resulting orientation is in F and the colouring described is a red-blue
colouring. Furthermore as er(R

x) + er(R
y) < d, all resulting red components have at most

d edges, and hence the residue function did not increase (in the event that Rx1 is the root,
the residue function strictly decreases, so we assume that Rx1 is not the root). Finally, we
can find a smaller legal order in this orientation, as we simply take the same legal order
up to the component containing x1, and then complete the remaining order arbitrarily. As
the component containing x1 has at least one fewer edge now, this order is a smaller legal
order, a contradiction.

We note the following important special case of Lemma 2.18, that small red components
do not have small red children.

Corollary 2.19. If K is a small red component, then K does not have any small red
children.

Proof. Suppose towards a contradiction that K has a small red child C. As K is small, then
er(K) < d

k+1
. Similarly, er(C) < d

k+1
. But then er(K) + er(C) < 2d

k+1
≤ d, contradicting

Lemma 2.18.

Now we will show that every red component has at most k small red children.

Lemma 2.20. If K is a red component, then K has at most k small children.

Proof. Suppose towards a contradiction that K has at least k + 1 distinct small children.
Then by the pigeon-hole principle, there are two distinct small children C1 and C2 such that
there are blue arcs (x, x′), (y, y′) so that x 6= y, x, y ∈ V (K), x′ ∈ V (C1) and y′ ∈ V (C2).
By Observation 2.17 we can assume that neither x nor y lies in a red cycle in K. Consider
a path Px,y in K from x to y in the underlying graph (that is, ignoring the directions of the
arcs). Let ex be the edge incident to x in Px,y and ey be the edge incident to y in Px,y. Let
Kx denote the component of K − ey which contains x, and let Ky denote the component
of K − ex which contains y.
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Claim 2.21. er(Kx) ≤ er(T2) and er(Ky) ≤ er(T1).

Proof. By symmetry, we will only show that er(Kx) ≤ er(T2). So suppose towards a
contradiction that er(Kx) > er(T2). Then exchange on (y, y′) and ey. As er(Kx) > e(T2),
the residue function does not increase. Observe that if K is the root, then the residue
function will decrease, and that will give a contradiction. Thus we may assume that K
is not the root. We claim we can find a smaller legal order. If there is a vertex which
witnesses the legal order for K in Kx, then taking the same legal order up to K and then
replacing K with Kx gives a smaller legal order. Similarly, if there is no vertex which
witnesses the legal order in Kx, then because er(Kx) > er(T2), taking the same legal order
up to K and replacing K with the component containing y of K − ey after the exchange,
and filling in the rest of the order arbitrarily gives a smaller legal order. In both cases, this
is a contradiction.

Note that either er(K) ≤ er(Kx) + er(Ky) or er(K) ≤ er(Kx) + er(Ky) − 1 (the first
case occurs if ey 6= ex, and the second occurs if ey = ex). Since each Ti is a small child,
Claim 2.21 (together with Observation 2.11) implies that

er(Kx) + er(Ky) <
d

k + 1
+

d

k + 1
≤ d.

Hence, er(K) ≤ d. Thus we can assume that K is not the root. Let w be a vertex which
witnesses the legal order. Without loss of generality, we can assume that w ∈ V (Kx). Then
exchange on (y, y′) and ey. We do not increase the residue function as er(Ky) ≤ er(T1) <
d

k+1
. However, we can find a smaller legal order by taking the same legal order up to K,

and replacing K with Kx, and completing this order arbitrarily. But this contradicts our
choice of legal order, a contradiction.

We are now in position to prove the theorem.

2.4 Bounding the maximum average degree

In this section, we give a counting argument to show that our chosen exploration subgraph
has too large average degree. We make the following definition for ease of notation.

Definition 2.22. Let K be a red component, and let K1, . . . , Kq be the small red children
of K. We will let KC denote the subgraph with vertex set V (KC) = V (K)∪V (K1)∪ · · · ∪
V (Kq), that contains all red edges from K,K1, . . . , Kq.

Lemma 2.23. Let K be a red component which is not small. Then KC is not small.
Further, if er(K) > d or K contains a cycle, then

er(KC)

v(KC)
>

d

d+ k + 1
.
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Proof. First, observe that if K has no small children then KC = K and hence is not
small. If er(K) > d, then as K is connected, v(K) ≤ er(K) + 1 and hence er(K)/v(K) ≥
(d + 1)/(d + 2) > d/(d + k + 1). If K contains a cycle, then e(K) = v(K) and we have
1 > d/(d+k+ 1). Thus we can suppose that K has small children K1, . . . , Kq. By Lemma
2.20, q ≤ k. By Lemma 2.18, for every i ∈ {1, . . . , q} the inequality er(K) + er(Ki) ≥ d
holds. As er(Ki) ≥ 0 for all i ∈ {1, . . . , q}, it follows that er(Ki) ≥ max{0, d − e(K)} for
all i ∈ {1, . . . , q}.

Then a quick calculation shows

er(KC)

v(KC)
=
er(K) +

∑q
i=1 er(Ki)

v(K) +
∑q

i=1 v(Ki)

≥ er(K) +
∑q

i=1 max{0, d− er(K)}
er(K) + 1 + q +

∑q
i=1 max{0, d− er(K)}

≥ er(K) +
∑q

i=1 max{0, d− er(K)}
er(K) + 1 + k +

∑q
i=1 max{0, d− er(K)}

.

The first equality is simply applying the definition of KC . The first inequality uses that
er(Ki) ≥ max{0, d− er(K)}, and that as Ki is small, Ki is a tree, so v(Ki) = er(Ki) + 1.
Finally, the second inequality is using that q ≤ k. Note that in this calculation, we also
used that v(K) ≤ e(K) + 1. In the case that K contains a cycle, this inequality is strict,
and hence if K contains a cycle all calculations beyond this point are strict. Now we split
this into two cases based on whether or not max{0, d− er(K)} is 0 or d− er(K).

Case 1: max{0, d− er(K)} = 0.

If max{0, d− er(K)} = 0, then er(K) ≥ d. Thus it follows that,

er(K) +
∑q

i=1 max{0, d− er(K)}
er(K) + 1 + k +

∑q
i=1 max{0, d− er(K)}

=
er(K)

er(K) + k + 1

≥ d

d+ k + 1
.

Further, if er(K) > d, the above inequality is strict.

Case 2: max{0, d − er(K)} = d − er(K). As er(K) ≤ d, we only need to show that
KC is not small. Calculating we obtain,

er(K) +
∑q

i=1 max{0, d− er(K)}
er(K) + 1 + k +

∑q
i=1 max{0, d− er(K)}

=
er(K) + q(d− er(K))

er(K) + q(d− er(K)) + k + 1

≥ d− er(K) + er(K)

er(K) + d− er(K) + k + 1

=
d

d+ k + 1
.
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Now we finish the proof. Let R denote the set of red components of Hf,D,R which are
not small. By Corollary 3.19 it follows that,

V (Hf,D,R) =
⋃
K∈R

V (KC).

This follows since a small component cannot have a small child. Therefore it follows
that:

Er(Hf,D,R) =
⋃
K∈R

E(KC).

Now we bound the maximum average degree of Hf,D,R. By Lemma 3.47, we have

er(Hf,D,R)

v(Hf,D,R)
=

∑
K∈R er(KC)∑
K∈R v(KC)

>
d

d+ k + 1
.

Here, equality holds in the first line because parents are unique. The strict inequality
follows as KC is not small for any K ∈ R by Lemma 3.47, and further the root component
satisfies er(R) > d, or the root component is a cycle,. However, this contradicts Observation
2.9. Theorem 1.22 follows.
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Chapter 3

Strong Dragons are tough to slay

All work in this chapter is joint work with Evelyne Smith-Roberge.

3.1 Introduction

In this Chapter we prove Theorem 1.16 and Theorem 1.18.

The outline of the proof is the same as the pseudoforest Strong Nine Dragon Tree
Theorem (hence to understand this section, it is easier to first understand the proof of the
pseudoforest Strong Nine Dragon Tree Theorem). The only reason we are not able to prove
the Strong Nine Dragon Tree Conjecture in full is due to a lack of control when trying to
reconfigure the decomposition, unlike in pseudoforests. In other words, we cannot find a
reasonable analogue of Lemma 2.20, and so we have to make do with weaker statements.
Due to no suitable structural lemma like Lemma 2.20, we have to dig much deeper into
the counting argument to obtain the result.

We write the proof as if we are proving Conjecture 1.17, and we only specialize to
d ∈ {3, 4} when we do the counting argument. Thus all of the structural reductions in
this section can be used to prove Conjecture 1.17 without any modification. We note even
most of the counting argument holds in general, and only very few spots do not. Despite
this, it is much easier to read if one only considers the k = 1 and d ∈ {3, 4} cases, as alot
of technical details become simpler in these cases.

We overload the terminology from Chapter 2, however the definitions subtly change,
(although they are analogous).

3.2 Picking the minimal counterexample

Suppose Conjecture 1.17 is false. Fix integers k and d such that there exists a counterex-
ample to Conjecture 1.17. Let w be defined as in Conjecture 1.17. Let G be a vertex
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minimal counterexample to Conjecture 1.17.

Let F be the set of decompositions of G of the form (T1, . . . , Tk, F ) such that Ti is a
spanning tree for all i ∈ {1, . . . , k} and F is forest with maximum degree d. Below, we will
show F is non-empty. For convenience, we use (non-proper) edge colourings to keep track
of the forest decomposition. In particular, for any decomposition (T1, . . . , Tk, F ) ∈ F , for
i ∈ {1, . . . , k}, we refer to Ti as a blue forest, and F as the red forest. For i ∈ {1, . . . , k},
we refer to edges of Ti as blue edges and edges of F as red edges. We call such a colouring
a red-blue colouring. As before, we will use Er(G) and Eb(G) to denote the set of red and
blue edges of G, and we use er(G) and eb(G) to denote the number of red and blue edges
respectively of G. Here we note that unlike in the pseudoforest strong nine dragon tree
theorem, the red-blue colouring serves only the purpose of distinguish the red forest. The
next observation is essentially proven in [24]. We provide a proof for completeness.

Observation 3.1. The set F is non-empty.

Proof. Suppose not. By the Nine Dragon Tree Theorem, G has a decomposition into k+ 1
forests where one of the forests has maximum degree d. Let D = (T1, . . . , Tk, F ) be such a
decomposition, where ∆(F ) ≤ d, and D is chosen so that e(F ) is minimum. Let T be an
auxiliary rooted tree whose vertices are subsets of V (G), defined algorithmically as follows.

1. Set uV (G) = V (G) to be the root of T .

2. Let i ∈ {1, 2, . . . , k} be an index such that Ti is disconnected. By assumption, i
exists. Add a vertex uV (C) to V (T ) for each component C of Ti, and add an edge
from uV (G) to uV (C). Associate to uV (G) the index t(uV (G)) = i.

3. While there exists a leaf uX of T and an index j ∈ {1, 2, . . . , k} such that Tj[X]
is disconnected, add a vertex uV (C) to V (T ) for each component C of Tj[X], and
associate to uV (X) the index t(uV (X)) = j.

Claim 3.2. Let X ⊆ V (G) and Y, Z ⊂ X. If uX is a non-leaf in T and uY and uZ are
children of uX , then there does not exist a red edge from X to Y in G.

Proof. Suppose not. Let uX be a non-leaf of T , and let uY and uZ be children of u
with t(uY ) = t(uZ) = i for some i ∈ {1, 2, . . . , k}. Let c be a counter, initially set to
c = dist(uY , uV (G)) (that is, the distance in T between uY and uV (G)). Suppose there is a
red edge e between X and Y in G. If Ti + e is a forest, then the decomposition obtained
from D by replacing Ti with Ti+e and F by F −e contradicts our choice of D. Thus Ti+e
contains a cycle, H. Since Y and Z are the vertex-sets of distinct components of Ti[X],
it follows that H is not contained in Ti[X]. Thus T contains an ancestor uX′ of uX such
that there is an edge e′ of H between two children of uX′ . Now redefine c to be so that
c = dist(uX′ , uV (G)). Note that since uX′ is an ancestor of uX , the value of c has decreased.
Starting from D, we replace F by F − e, replace Ti by Ti + e − e′, and replace Tt(uX′ ) by
Tt(uX′ ) + e′ to obtain a decomposition D′. Note that Tt(uX′ ) + e′ is not a forest, as otherwise
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D′ contradicts our choice of D. Thus Tt(uX′ ) + e′ contains a cycle H ′, which as above
implies that there is an ancestor uX′′ of uX′ such that there is an edge e′′ of H ′ between
two children of uX′′ . Again, redefine c such that c = dist(uX′′ , uV (G)). As before, since uX′′
is an ancestor of uX′ , the value of c has decreased. Again, we remove e′′ from Tt(uX′ )+e′
and add it instead to Tt(uX′′ ), necessarily creating a cycle H ′′. We then find that there is
an ancestor of uX′′ that has two children with an edge of H ′′ between them. The process
does not terminate: otherwise, as the decomposition obtained at the end of the procedure
includes F − e, it contradicts our choice of D. But this is a contradiction, since the value
of the counter c is strictly decreasing throughout the process and c is lower-bounded by
0.

Claim 3.3. Let uX and uY be leaves of T . Then there is no edge e = xy ∈ E(G) such
that x ∈ X and y ∈ Y .

Proof. Suppose not. Let u be the closest common ancestor of uX and uY . Note that by
Claim 3.2, u is not the parent of both uX and uY ; without loss of generality, suppose that
u is not a parent of uX . Let u′X be a child of u that is also an ancestor of x. If u is the
parent of y, set u′Y = y. Otherwise, let u′Y be the child of u that is also an ancestor of uY .
Since xy is an edge, by definition of T there is an edge between the associated components
of u′y and u′x. As u′y and u′x are children of u, this contradicts Claim 3.2.

Let L be the set of leaves of T . By definition of T , L corresponds to a partition of
V (G). Let G′ = ∪v∈LG[v]. Since G is a minimum counterexample to Theorem 1.17 and
G′ is disconnected, it follows that G′ has a decomposition (H1, . . . , Hk, H) such that for
each i = 1, 2, . . . , k, Hi is a forest and H is a forest of maximum degree at most d such
that each component of H has at most one vertex of degree d, at most w edges which are
incident to two vertices of degree at least d− 1.

In each forest Ti with i = 1, 2, . . . , k, we replace E(Ti) ∩E(G′) with E(Hi) to obtain a
new forest T ′i . Similarly, we replace E(F ) ∩ E(G′) with E(H) to obtain a new forest F ′.
Note that by definition the leaves of T are connected subgraphs of Ti for all i ∈ {1, 2, . . . , k}:
this implies that T ′i is indeed a forest for all i ∈ {1, 2, . . . , k}. Since there are no red edges
between leaves of T , it follows that F ′ is a forest maximum degree at most d where each
component of F ′ has at most one vertex of degree d, at most w edges which are incident to
two vertices of degree at least d− 1. This contradicts the fact that G is a counterexample
to Theorem 1.17.

We will need to make a few definitions. It is convenient to identify the components
which cause problems for us.

Definition 3.4. A component C ∈ F is bad if C contains at least two vertices of degree d
or if d ≥ 4, and C contains more than w edges whose endpoints both have degree at least
d− 1.
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We start by noting that bad components have to have a significant number of edges.

Observation 3.5. Every bad component contains at least 2d− 1 edges.

Proof. Let K be a bad component. If K contains more than w edges whose endpoints
both have degree at least d− 1, then K has at least w + 1 vertices of degree d− 1. Thus
e(K) ≥ (w+1)(d−1)

2
by the handshaking lemma. As w = d+ 4, we have

(w + 1)(d− 1)

2
≥ 2d− 1

if and only if d2 ≥ 3, which holds when d ≥ 4. In the other case, K contains two vertices
of degree d, and as K is a simple graph, K contains at least 2d− 1 edges.

In the case when d = 4 and k = 1, we will need a more general statement that applies
to more than just bad components.

Observation 3.6. If Q is a forest, and there are at least 6 edges between vertices of degree
at least 3, then e(Q) ≥ 15.

Proof. Let Q be a vertex minimal counterexample. If a leaf ` of Q is adjacent to a vertex of
degree at most 2, then consider Q− `. By minimality, e(Q− `) ≥ 15, and hence e(Q) ≥ 16
as desired. If Q contains a vertex of degree two, say x then let xy ∈ E(Q), and let Q′ be the
forest obtained by contracting xy. Then by minimality, e(Q′) ≥ 15, and thus e(Q) ≥ 16
as desired. Therefore Q only has vertices of degree at least 3 and degree one. As there are
6 edges between vertices of degree at least 3, it follows that there are at least 7 vertices of
degree three as Q is a forest. Let Q3 be the subtree in Q induced by the vertices of degree
at least 3, and let Q1 be the graph induced by the leaves in Q. Then by the handshaking
lemma, we have

2e(Q) ≥ 3v(Q3) + v(Q1).

As e(Q) = v(Q)− 1 = v(Q3) + v(Q1)− 1 we have

v(Q1) ≥ v(Q3) + 2.

Therefore as v(Q3) ≥ 7 we have at least 9 leaves, and thus e(Q) ≥ 15, as desired.

We define a residue function to measure how close our decomposition is to satisfying
Theorem 1.17.

Definition 3.7. Let (T1, T2, . . . , Tk, F ) be a decomposition of G. Let L be the set of bad
components of F . The residue function ρ is defined as

ρ(F ) =
∑
C∈L

(er(C)− d).
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As in the pseudoforest section, given a red-blue colouring of G and a subgraph K of
G, we let eb(K) denote the number of blue edges in K, and er(K) denote the number of
red edges in K. Additionally, for a vertex v ∈ V (G), we let dr(v) be the red degree of v
(that is, the number of red edges incident to v), and similarly we denote by db(v) the blue
degree of v (the number of blue edges incident to v). We will orient the graph, and in the
oriented graph, the degree refers to the degree in the underlying graph, and similarly the
number of blue (red) edges in the directed graph refers to the number of such edges in the
underlying graph.

Now we define an exploration graph for forest decompositions.

Definition 3.8. Let (T1, . . . , Tk, F ) ∈ F . Let R be a bad component of F . Let s be any
vertex of largest degree in R. For all i ∈ {1, . . . , k} orient Ti such that s is the only vertex
with outdegree zero. We recursively define a set of components Q. Initially Q is {R}.
While there is a component C of F such that there is a blue directed edge (x, y) where x is
in a component in Q and y ∈ V (C), we add C to Q. Once this procedure has terminated,
let HR,F,s be the digraph induced by the components of Q. We call HR,F,s an exploration
subgraph, and R a root component.

The next observation allows us to forget about the blue edges and simply try to give a
bound on the red edges.

Observation 3.9. Given a decomposition (T1, T2, . . . , Tk, F ) ∈ F , a root component R,
and a vertex s ∈ V (R) of largest degree in V (R), the graph HR,F,s satisfies

er(HR,F,s)

v(HR,F,s)− 1
≤ d

d+ k + 1
.

Proof. Suppose not, then

Γf (G) ≥ e(HR,F,s)

v(HR,F,s)− 1

=
eb(HR,F,s)

v(HR,F,s)− 1
+

er(HR,F,s)

v(HR,F,s)− 1

≥ k +
er(HR,F,s)

v(HR,F,s)− 1

> k +
d

d+ k + 1
.

Here
eb(HR,F,s)

v(HR,F,s)− 1
≥ k,

since HR,F,s is an induced subgraph, and by the definition of HR,F,s, every vertex other
than s has an outgoing blue edge for each of the k spanning trees T1, . . . Tk, and s has zero
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outgoing blue edges. The strict inequality follows as we assumed that

er(HR,F,s)

v(HR,F,s)− 1
>

d

d+ k + 1
.

However, by assumption G satisfies

Γf (G) ≤ k +
d

d+ k + 1
,

a contradiction.

In general we will want to modify our decomposition to reduce the residue function.
However, we might not always be able to reduce the residue function immediately. We will
put a natural ordering on the red components of HR,F,s, and will use this ordering to give
a measure of progress towards improving the residue function.

Definition 3.10. Given the graph HR,F,s, an ordering of the red components (R1, . . . , Rt)
is a legal order if all red components in HR,F,s are in the ordering, R1 = R, and for any
component Ri with i > 1, there exists an Rj such that j < i with a directed blue arc (x, y)
such that x ∈ V (Rj) and y ∈ V (Ri).

The next definition is for convenience.

Definition 3.11. Let (R1, . . . , Rt) be a legal order. For a component Ri, a component
Rj is a parent of Ri if j < i and there is a blue directed arc (x, y) where x ∈ V (Rj) and
y ∈ V (Ri). If Rj is a parent of Ri then we say Ri is a child of Rj.

Note that in the above definition, a component may have numerous parents. As with
pseudoforests, we will want to compare two different legal orders, and to do this we will
use a lexicographic ordering.

Definition 3.12. Given two legal orders (R1, . . . , Rt) and (R′1, . . . , R
′
t′), we say (R1, . . . , Rt)

is smaller than (R′1, . . . , R
′
t) if (v(R1), . . . , v(Rt)) is lexicographically smaller than (v(R′1), . . . ,

v(R′t′)).

Overall, our goal is to use Observation 3.9 to derive a contradiction. As such, we
want to bound the number of red edges in exploration graphs. To this end, the following
definition is useful:

Definition 3.13. A subgraph K is small if er(K) < d
k+1

.

As we assumed d ≤ 2(k + 1), we get a simple characterization of small components.

Observation 3.14. If d ≤ 2(k + 1), and K is a small red component, then er(K) ≤ 1.
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Proof. As K is small, we have er(K) < d
k+1

. As d ≤ 2(k + 1), we have er(K) < 2, which
implies er(K) ≤ 1.

We now describe how we pick our counterexample. A counterexample is a tuple
(G,D,HR,F,s, L) where G is a graph with fractional arboricity at most k + d

k+d+1
; D =

(T1, . . . , Tk, F ) is a decomposition of G into k + 1 forests with D ∈ F ; HR,F,s is an ex-
ploration subgraph; and where L is a legal order of the exploration subgraph. A minimal
counterexample is a tuple (G,D,HR,F,s, L), where v(G) is minimized; subject to this,
D = (T1, . . . , Tk, F ) is chosen to minimize the residue function; subject to that, the num-
ber of vertices of degree d in bad components is minimized; subject to that, if d ≥ 4, the
number of vertices of degree d− 1 in bad components is minimized; subject to this a bad
component R of F and a vertex s ∈ V (R) of highest degree in R are chosen such that
there exists a legal order L of HR,F,s which is smaller than all other legal orders possible.

For the rest of the chapter, we will assume we are working with a minimal counterex-
ample as described above.

3.3 Reducible Configurations

In this section we build up series of configurations which do not occur in a minimal coun-
terexample (G,D,HR,F,s, L). Throughout we assume that L = (R1, . . . , Rt).

First we argue that we have at least two components in our legal order.

Observation 3.15. If (G,HR,F,s, D, L) is a minimal counterexample and L = (R1, . . . , Rt),
then t ≥ 2.

Proof. Suppose not. Then by definition of the exploration subgraph HR,F,s, there is no
blue arc (x, y) ∈ E(G) with x ∈ V (R1) and y 6∈ V (R1). Since T1, . . . , Tk are spanning
subgraphs of G, it follows that Ti[R1] is a tree for each i = 1, . . . , k. Thus G[V (R1)]
contains k(v(R1) − 1) blue edges. Since R1 is a connected component of F , it follows
further that e(R1) = k(v(R1)− 1) + (v(R)− 1). Therefore

Γf (G) ≥ e(R1)

v(R1)− 1

= k + 1.

This is a contradiction, since Γf (G) ≤ k + d
d+k+1

by assumption.

We say a blue edge xy is saturated if ρ(F +xy) > ρ(F ) or F +xy has a vertex of degree
d+ 1. Otherwise, we say xy is unsaturated. Our first point of order is to show that if K is
a parent of a component C, then any blue directed edge from K to C is saturated. This
turns out to be rather technical, and we need quite a few definitions.
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Let Ri be a component such that i > 1. For each parent Rj of Ri, let Sij be the set of
vertices x ∈ V (Ri) such that there exists a blue arc (y, x) where y ∈ V (Rj). Let P denote
the set of parent components of Ri. Then we define:

Si =
⋃
Rj∈P

Sij.

For each i ∈ {2, . . . , t}, pick an arbitrary vertex xi ∈ Si. For this choice of vertices,
we will say the auxiliary digraph for L, denoted Aux(L), has vertex set V (HR,F,s) and the
edge set is obtained by including all red edges in HR,F,s, and for each i ∈ {2, . . . , t}, we
include exactly one arc (y, xi) where y lies in a parent component of Ri. Then we direct all
of the edges in Aux(L) towards s. This digraph is only needed as a tiebreaking mechanism
when doing reconfiguration arguments.

Observe that Aux(L) is a tree, and there are many possible trees that could be generated
from a single legal order. For every legal order, we will associate the legal order to some
auxiliary digraph, chosen arbitrarily.

We let the index of a vertex x ∈ V (Ri), denoted ind(x), be i. Let K be a red component
of HR,F,s, and C be a child of K.

A directed walk P = v0, . . . , vt in HR,F,s where all edges in P are blue is special with
respect to L and (x, y) if the last directed edge (vt−1, vt) is (x, y), where (x, y) is unsaturated;
ind(vt) > ind(v0); and all vertices except y appear at most once in P .

Let P = v0, . . . , vt and P ′ = u0, . . . , ut′ be two special walks with respect to L and
(x, y). Note that by definition, v0 6= vt. We say P is smaller than P ′, denoted P < P ′, if
ind(v0) < ind(u0) or ind(v0) = ind(u0) and v0 is an ancestor of u0 in Aux(L). A special
path with respect to L and (x, y) is minimal if there are no smaller special walks with
respect to L and (x, y).

The next lemma is extremely important, and we note that it follows ideas taken from
[24].

Lemma 3.16. Let K be a parent of a component C in HR,F,s, where (x, y) is a blue directed
arc such that x ∈ V (K) and y ∈ V (C). Then (x, y) is saturated.

Proof. Suppose not. Let P = v0, . . . , vt be a minimal special walk with respect to L and
(x, y). Observe that this special walk exists, because the path P ′ = x, y is itself a special
walk with respect to L and (x, y) (note that (x, y) is unsaturated by assumption).

Let v−1 be the ancestor of v0 in Aux(L). Observe that v−1 exists. If not, v0 = s, but P
is a directed blue walk, and s has no outgoing blue edges by construction. Thus v−1 exists.
Now we claim that v−1v0 is a red edge. If not, the path P ′ = v−1, P is a smaller special
walk, a contradiction.

Now write P = P1, . . . , Pm where for i ∈ {1, . . . ,m} we have Pi = vai−1
, . . . , vai−1, vai ;

where all edges of Pi are in some Tbi ; where a0 = 0; and where am = t. We call each Pi a
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segment. We may assume that we picked our minimal special walk such that the number
of segments is minimized.

Let µ(P ) = (a0, . . . , am). Subject to picking a minimal special walk with minimal
number of segments, we may assume that µ(P ) is lexicographically minimal. Note that
this choice of P implies dP (y) ≤ 3.

Claim 3.17. For a segment Pi = vai−1
, . . . , vai−1, vai with ai 6= t, we have that vai−1

is the
first vertex in P that has a directed path in Tbi to vai.

Proof. If not, let vj be a vertex such that j < ai−1 and there is a directed path in Tbi to
vai . Then replace the segment Pi with the path from vj to vai (removing all segments in
between). Then either we reduce the number of segments, or we reduce µ(P ), either way
contradicting our choice of P .

Note that this implies the following.

Observation 3.18. The cycle in Tbi + vai−1−1vai−1
contains the edge vaivai−1.

Otherwise, there is a directed path in Tbi from vai−1−1 to vai , a contradiction.

Now make the edge vam−1vam red, and for all i ∈ {1, . . . , t − 1} add the edge vai−1vai
to the tree Tbi+1

.

Let T ′1, . . . , T
′
k, F

′ be the resulting decomposition. We claim this decomposition is in
F . The only edge that becomes red is xy and since (x, y) is unsaturated by assumption,
it follows that F ′ is a forest with maximum degree d. It follows from Claim 3.17 and
Observation 3.18 that for each i ∈ {1, 2, . . . , k}, T ′i is a tree. Since the total number
of edges in each tree remains is unchanged, we have that each T ′i is spanning. Hence
T ′1, . . . , T

′
k, F ∈ F .

Moreover, since (x, y) is unsaturated by assumption, the residue function of (T ′1, . . . , T
′
k,

F ′) does not increase, as the only new red component is K+C+xy. If the residue function
decreased, then we get a contradiction. Thus we can assume that the red components
created by deleting v−1v0 did not decrease the number of edges in a bad component, or
split a bad component into two bad components. Observe that this implies that v−1 is not
in R. Then in this new decomposition, taking the same root R and vertex s, we create an
exploration subgraph from s. Then there is a legal order L′ where L and L′ are identical for
all components before the ind(v−1) component, and then we can take R′ind(v−1)

to be one of
the two components of Rind(v−1)− v−1v0. This component is of course strictly smaller than
Rind(v−1). (Note if K = Rind(v−1) we can still take the component of K+C−v0v−1+xy that
does not contain any of C, as otherwise there is a smaller special walk, a contradiction.)
Hence there is a decomposition with a smaller legal order, a contradiction.

Corollary 3.19. Let K be a red component and C a child of K. Then er(K) + er(C) ≥ d.
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Proof. By Lemma 3.16, (x, y) is saturated, and so by definition K + C + xy is a bad
component or has a vertex of degree d + 1. If K + C + xy is bad, then by Observation
3.5, er(K + C + xy) > d. Otherwise K + C + xy has a vertex of degree d + 1, and hence
trivially er(K + C + xy) > d. The result follows.

Definition 3.20. Let T ∈ {T1, . . . , Tk}. Let xy ∈ E(T ) and uv ∈ E(F ). To exchange xy
and uv is to construct two new forests T ′ and F ′ such that T ′ = T + uv − xy and F ′ =
T ′+xy−uv. Given an exchange of edges, the resulting decomposition is the decomposition
obtained from (T1, . . . , Tk, F ) by replacing T with T ′ and F with F ′.

Definition 3.21. Let K be a red component, and C a child of K. We will say a directed
arc (x, y) generates C if x ∈ V (K) and y ∈ V (C). We will say that (x, y) generates C by
T if (x, y) is in T .

Note for a particular child C, many arcs may generate C. The next two lemmas are
essential. They allow for the exchange of edges in certain situations.

The following notation will be frequently used. Given two vertices x, y in a red compo-
nent K, let Px,y denote the path from x to y.

Lemma 3.22. Let R be the root component of HR,F,s, and let x ∈ V (R). If (x, x′) generates
a small child C by T , then there exists an edge in Px,s that can be exchanged with xx′.

Proof. Suppose not. Let Px,s = x1x2 . . . xn, where x1 = x and xn = s. If n = 2, then since
all blue trees are oriented towards s, we can exchange xx′ with xs and reduce the residue
function, a contradiction. Thus we assume n ≥ 3. We claim that for all i ∈ {2, . . . , n− 1},
the vertex xi does not lie in the same component of T − x as s. If not, choose the smallest
i for which the statement fails: then xx′ lies in the fundamental cycle of T + xixi−1, from
which is follows that we can exchange xx′ with xi−1xi. Thus it follows that xn−1s lies in
the fundamental cycle of T + xx′ (again this follows as all blue trees are oriented towards
s), and hence we can exchange xn−1s with xx′, a contradiction.

Corollary 3.23. Let R be the root component of HR,F,s, and let x ∈ V (R). Suppose (x, x′)
generates a small child C from tree T . If er(C) = 0, then dr(x) = d.

Proof. Suppose not. By Lemma 3.22, there is an edge e ∈ E(Px,s) that can be exchanged
with (x, x′). Since dr(x) < d, the resulting decomposition is in F . Since er(C) = 0 and
dr(x) ≤ dr(s), all resulting components have fewer edges than the original root component,
and hence the residue function decreases —a contradiction.

In a similar vein, we have the following.

Lemma 3.24. Let K be a component, C1 and C2 be children of K where (x, x′) is a blue
directed arc from K to C1, (y, y′) is a blue directed arc from K to C2, and both arcs are
generated by T ∈ {T1, . . . , Tk}. At least one of the following holds.
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1. There is an edge e ∈ E(Px,y) such that we can exchange xx′ with e.

2. There is an edge e ∈ E(Px,y) such that we can exchange yy′ with e.

Proof. Let Px,y = x1, x2, x3, . . . , xn where x1 = x and xn = y. We may assume that s 6∈
V (Px,y), as otherwise the lemma holds by Lemma 3.22. Suppose towards a contradiction
that neither of the two outcomes occur.

First, we claim that for all i ∈ {2, . . . , n}, that xi does not lie in the same component
of T − x as s. To see this, suppose not: let i ∈ {2, . . . , n} be the smallest i such that xi
and s lie in the same component of T − x. Then as i is picked to be minimal, xx′ lies in
the fundamental cycle of T + xixi−1. But this is a contradiction, as then we can exchange
xx′ with xi−1xi.

Since xn = y, this implies that s and y lie in distinct components of T − x. By
symmetry, s and x lie in distinct components of T − y. However, both of these cannot
happen simultaneously —a contradiction.

Observation 3.25. If C is a small component, then C contains no vertex of degree d− 1.
Further, unless d = 3 and k = 1, C contains no vertex of degree d− 2.

Proof. Observe that d ≥ 3, and er(C) ≤ 1. If d = 3, then as d ≥ 3(k+1)
2

, we have k = 1.
The observation now follows.

Observation 3.26. If K is not a bad component, and (x, y) generates a small child C,
then dr(x) ≥ d− 2.

Proof. Suppose (x, y) generates a small child and d(x) ≤ d − 3. If d = 3, then k = 1 and
we have d(x) = 0, which implies that V (K) = {x}, and K itself is a small child. But then
as C is small, we have er(K) + er(C) ≤ 2, contradicting Corollary 3.19. Therefore we can
assume that d ≥ 4. Now we claim that (x, y) is unsaturated. If (x, y) is saturated, then
K + C + xy is a bad component (as dr(x) ≤ d − 3 and dr(y) ≤ d − 2). As C is small, K
is not a bad component, and x has red degree at most d − 3, we do not create any new
vertices with red degree d − 1 or higher. Thus the only way for K + C + xy to be a bad
component is if K +C + xy has more than w edges between vertices of red degree at least
d − 1. By Observation 3.25, C contains no vertex of red degree d − 2, and hence after
adding the edge xy, has no vertex of red degree larger than d − 1, and thus contributes
no edges whose endpoints both have red degree at least d − 1. As dr(x) ≤ d − 3, adding
xy leaves the red degree of x being at most d − 2, and hence we do not create any new
edges whose endpoints both have red degree at least d − 1. As K is not bad, with the
above discussion we have K + C + xy has at most w edges whose endpoints have degree
at least d − 1, and thus K + C + xy is not a bad component. This implies that (x, y) is
unsaturated, contradicting Lemma 3.16.
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Lemma 3.27. If K is a non-bad red component with two arcs (x, x′) and (y, y′) which
generate small children C1 and C2, respectively, by T , and both x and y have red degree at
least d− 2, then xy 6∈ E(K).

Proof. Suppose not. Thus xy ∈ E(K). By Lemma 3.16, both of (x, x′) and (y, y′) are
saturated. Note in the case where d = 3 and k = 1, this implies that neither x nor y
has degree one, as otherwise as K is not bad, either (x, x′) or (y, y′) is not saturated. By
Lemma 3.24 either we can exchange xx′ with xy or yy′ with xy. Without loss of generality,
suppose we can exchange xx′ with xy. Exchange xx′ with xy, and without loss of generality
let (T1, . . . , T

′
k, F

′) be the resulting decomposition. Note that the red degree of x remains
the same, and the red degree of y decreases. As C1 is small, so long as (d, k) 6= (3, 1),
the red degree of x′ is strictly less than d − 1, and hence we did not increase the residue
function. If we decreased the residue function, we get a contradiction. As dr(y) ≥ d − 2,
and C1 is small, both of the resulting new components in F ′ have strictly fewer edges than
K (unless (d, k) ∈ {(3, 1), (4, 1)}). Then we can find a legal order that is the same up until
the new components, which are strictly smaller, and take the smaller component at this
point, contradicting our choice of legal order.

The argument breaks down when (d, k) ∈ {(3, 1), (4, 1)}. However in this case we can
take the same legal order up until the new component, and then take the component
containing x first, and then the component containing y next in the order, and complete
the rest of the order arbitrarily (if we can take the component containing y first, then we
get a smaller legal order, a contradiction). Let Kx denote the red component containing
x. Note that v(Kx) ≤ v(K), and as we do not get a smaller legal order, v(Kx) = v(K).
In this case, note that (x, y, y′) is a special path. Hence we can apply the argument from
Lemma 3.16, and obtain a smaller legal order, a contradiction.

Lemma 3.28. Let K be a bad component. Let (x, x′) and (y, y′) generate small children
C1 and C2, respectively, by T . Suppose that we can exchange e ∈ E(Px,y) with xx′. Let K ′

be the component of K − e containing y. Then either dr(x) = d or er(K
′) ≤ er(C1).

Proof. Suppose not, so er(K
′) > er(C1) and dr(x) < d. Exchange xx′ with e. Note we do

not create a vertex of degree d+ 1, as dr(x) < d. If er(K
′) > er(C1), then since er(C1) < d,

the resulting decomposition has a lower residue function —a contradiction.

Corollary 3.29. Let K be a bad component and suppose that (d, k) 6= (3, 1). If (x, x′) and
(y, y′) generate small children C1 and C2 by a tree T , then the red degree of at least one of
x or y is not d− 1.

Proof. If so, Lemma 3.24 and Lemma 3.28 give rise to a contradiction as small children
have at most one edge.
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Lemma 3.30. Let K be a bad component with two arcs (x, x′) and (y, y′) which generate
small children C1 and C2 respectively by T . Suppose xy ∈ E(K) and we can exchange xx′

with xy. Let Ky be the component of K − xy containing y. Then er(K
y) ≤ er(C1)− 1.

Proof. Suppose not. Exchange xx′ with xy. If er(K
y) > er(C1), or if Ky is itself a

bad component, we immediately reduce the residue function, a contradiction. Therefore
er(K

y) = er(C1). In this case observe that we do not increase the residue function (but
also do not decrease it). Further observe in this new decomposition, if we can take the
same legal order up until K but then take Ky instead of K, we have a smaller legal order
—a contradiction. Thus we may assume that we can take the same legal order up until
K, but then take the new component containing x, and after that Ky. This legal order
is possibly worse than before. But now note that since er(K

y) + er(C2) < d, it follows
from Observation 3.5 that (y, y′) is unsaturated. Thus x, y, y′ is a special path, and apply
the special path argument from Lemma 3.16 to get a new decomposition with a strictly
smaller legal order than L, a contradiction.

Lemma 3.31. Let K be a bad component. Suppose that v1, . . . , vt are vertices of K such
that for each i ∈ {1, · · · , t}, (vi, v

′
i) generates a small child Ci. Further, suppose that

maxi e(Ci) ≤ j, all vi have red degree at least j + 1 and at most d − 1. Then t ≤ 2.
Moreover, if t = 2, then at least one of v1 and v2 has red degree j + 1.

Proof. We first assume that, without loss of generality, both v1 and v2 have red degree at
least j + 2. Up to relabelling v1 as v2, by Lemma 3.24 there is an edge e ∈ E(Pv1,v2) that
can be exchanged with v1v

′
1. By Lemma 3.28, since dr(v1) < d by assumption it follows

that e(Kv2) ≤ e(C1), where Kv2 is the component of K − e containing v2. But this is a
contradiction, since d(v2) ≥ j + 2 implies that e(Kv2) ≥ j + 1, and e(C1) ≤ j.

Now suppose that t ≥ 3. By Lemma 3.24, we may assume without loss of generality
that we can exchange an edge e1 on Pv1,v2 with the edge v1v

′
1 and we can assume we can

exchange an edge e2 on Pv2,v3 with the edge v2v
′
2 (up to relabelling the vertex names).

Claim 3.32. For both i ∈ {1, 2}, ei is the edge incident to vi+1 in Pvi,vi+1
, and ei is the

only edge in E(Pvi,vi+1
) which can be exchanged with viv

′
i. Moreover, e(Pvi,vi+1

) ≥ 2.

Proof. If we can exchange any edge other than the edge incident to vi+1 in Pvi,vi+1
, then

do so with viv
′
i and the residue function decreases, a contradiction. If e(Pvi,vi+1

) = 1, then
we contradict Lemma 3.30.

Now exchange v1v
′
1 with e1 and then exchange e2 with v2v

′
2. Let D′ be the resulting

decomposition, and let K ′ be the new component containing v1. Note that e(K ′) < e(K).
Moreover, the component of K − e2 containing v3 has at most d − 2 edges, since v3 has
degree at most d− 1. The component of K − e1 + v2v

′
2 containing v2 similarly has at most

d − 1 edges. It follows from Lemma 3.5 that neither of these components are bad: and
since e(K ′) < e(K), it follows further that F ′ = F − e1 − e2 + v1v

′
1 + v2v

′
2 has strictly
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smaller residue function than F . This is a contradiction unless D′ is not a decomposition
where F ′ is a forest of maximum degree d and T ′ = T + e1 + e2− v1v′1− v2v′2 is a spanning
tree. But that F ′ has maximum degree d follows from the fact that dr(v1) ≤ d− 1. Below,
we show that T ′ is a tree, thus completing the proof.

Claim 3.33. T ′ is a tree.

Proof. Since e(T ′) = e(T ) and T is a spanning tree, it suffices to show that T ′ is connected
(since we assume that V (G) = V (T ′)). We begin by showing that there are no isolated
vertices in T ′. Suppose not. Since only v1v

′
1 and v2v

′
2 were the only edges deleted from T

when constructing T ′, we have only to show that there is an edge of T ′ incident to each
vertex in {v1, v2, v′1, v′2}. Note that since T is directed towards s and (v1, v

′
1) and (v2, v

′
2)

are arcs in T , and neither v′1 nor v′2 are s, it follows that T ′ spans both v′1 and v′2. Therefore
to to prove that there are no isolated vertices in T ′, it suffices to show that neither v1 nor
v2 is a leaf of T .

Let Pv1,v2 = x1, . . . , xn, where v1 = x1, v2 = xn, and xn−1xn = e1. Let Pv2,v3 =
y1, . . . , ym, where y1 = v2 and ym = v3. Note that by Claim 3.32, both m and n are at least
three. Moreover, no edge in Pv1,v2 except e1 can be exchanged with (v1, v

′
1). In particular,

x1x2 cannot be exchanged with (v1, v
′
1): that is, (v1, v

′
1) is not in the fundamental cycle

of T + x1x2. It follows that v1 is not a leaf in T . Similarly, v2 is not a leaf in T . Thus
T ′ = T − v1v′1 − v2v′2 + e1 + e2 spans V (G).

To show T ′ is a tree, it remains only to show that T ′ is connected. Suppose not. Since
v(T ) = v(T ′) and e(T ) = e(T ′), it follows that T contains a cycle C. Moreover, since both
T +e1−v1v′1 and T +e2−v2v′2 are trees by definition of exchange, it follows that C contains
both e1 and e2.

Since T+e2−v2v′2 is a tree, T+e1+e2−v2v′2 is connected. As T ′ = T+e2+e1−v2v′2−v1v′1
is disconnected, it follows that T ′ has exactly two components H1, H2, and that v1v

′
1 is the

only edge in T + e1 + e2 − v2v′2 with exactly one endpoint in V (H1) and one endpoint in
V (H2). Thus v1v

′
1 is not contained in a cycle in T +e1+e2−v2v′2. Since v1v

′
1 is contained in

the fundamental cycle C ′ of T + e1, it follows that v2v
′
2 and v1v

′
1 are both contained in the

fundamental cycle of T + e1. But then v2v
′
2 can be exchanged with e1 in T , contradicting

Claim 3.32.

This completes the proof.

Lemma 3.34. Suppose K is a bad component with arcs (x, x′) and (y, y′) that generate
small children C1 and C2 respectively by T . Further suppose that e(Ci) = 0, and both x
and y have degree at most d− 2, then there exists an edge in Px,y which is not incident to
a vertex of degree at least d.
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Proof. Suppose not. Then without loss of generality there is an edge e ∈ E(Px,y) such
that we can exchange xx′ with e by Lemma 3.24. Do so. By assumption, e is incident to
a vertex of degree d, and hence we either we reduce the residue function, or the residue
function stays the same and we reduce the number of degree d vertices in bad components.
In either case, a contradiction occurs.

Definition 3.35. Let K be a bad red component where (x, x′), (y, y′) generate small
children C1 and C2. Let E ⊆ E(Px,y) be the set of edges that can be exchanged either with
xx′ or yy′. For each e ∈ E, let De be the resulting decomposition after exchanging e with
the corresponding edge f ∈ {xx′, yy′}, and Fe = F − e+ f . We say Px,y is an exchangeable
path if for each e ∈ E, we have that De ∈ F and one of the following hold:

� ρ(Fe) < ρ(F ), or

� ρ(Fe) = ρ(F ) and the number of vertices of degree d in Fe is less than that in F , or

� ρ(Fe) = ρ(F ), d ≥ 4, the number of vertices of degree d in Fe is the same as that in
F , and the number of vertices of degree d− 1 in Fe is less than that in F .

Observation 3.36. Let K be a red component where (x, x′), (y, y′) generate small children
and both dr(x) < d and dr(y) < d. Then Px,y is not an exchangeable path.

Proof. If not, Lemma 3.24 ensures that there is an edge e in Px,y that we can exchange
with either (x, x′) or (y, y′). In either case we contradict our choice of decomposition.

We highlight some important cases of Observation 3.36

Definition 3.37. We will say a bad component K is d-fragile if K has at most w edges
between vertices of degree at least d− 1, and exactly two vertices of degree d.

Lemma 3.38. Let K be a bad component which is d-fragile. Let u and v be the two vertices
of degree d, and suppose uv ∈ E(K). Then there does not exist an x, y ∈ V (K) \ {u, v}
such that x and y are neighbours of either u or v the degree of both x and y is at most
d− 2, and (x, x′) and (y, y′) generate small children C1, C2, respectively from a tree T .

Proof. Suppose so. Observe that Px,y is an exchangeable path, contradicting Observation
3.36.

Lemma 3.39. The following cannot occur. Let K be a bad component. Let x, y, z be three
vertices in K such that x, y, z is a path and y has degree d, or d− 1 if d ≥ 4, and x and z
both are leaves of K. Suppose that (x, x′), (y, y′) and (z, z′) generate small children C1, C2,
and C3 from a tree T .
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Proof. Suppose not. Since we cannot reduce the residue function, and by Lemma 3.24,
we have that yy′ can be exchanged with xy and yy′ can be exchanged with yz. Further,
without loss of generality by Lemma 3.24 we can assume that xx′ can be exchanged with yz
(otherwise, we reduce the residue function). Now exchange xx′ with yz, and yy′ with xy.
If we reduce the residue function, then we get a contradiction. Thus the residue function
does not decrease. Note we do not increase the residue function. Further, we do reduce the
number of vertices of degree d (or d− 1 if d ≥ 4) in bad components, a contradiction.

Definition 3.40. A bad component K is w-fragile if K has at most one vertex of degree
d.

Lemma 3.41. Let K be w-fragile. Let u, v be two vertices of degree at least d − 1. Let
u′, v′ be neighbours of u, v respectively such that u′, v′ are leaves of K. Then at least one
of u′ or v′ does not generate a small child from a tree T .

Proof. Suppose not. By Lemma 3.24, there is an edge on Pu′,v′ which is exchangable and
from the assumptions, the path is an exchangable path, a contradiction.

Lemma 3.42. Let K be a bad component. Let u, v be vertices of degree at least three. Let
` be a neighbour of u which is a leaf of K. Let y be a neighbour of v and y′ a neighbour of
y such that the degree of y is two and the y′ is a leaf. Then at least one of y, y′ and ` does
not generate a small child from tree T .

Proof. Suppose not. Let (`, `′), (y, x), (y′, x′) be blue arcs which generate small children.
By Lemma 3.24, there is an edge in Py,` which we can exchange with either (y, x) or (`, `′).
Note if we can exchange (`, `′) with any edge in Py,`, then we reduce either the number of
vertices of degree at least 3, or we reduce the residue function. In either case, we get a
contradiction. Thus we can exchange (y, x) with an edge in Py,`, and there are only two
edges in Py,` which does not reduce the residue function or reduce the number of vertices
of degree three. So either we can exchange (y, x) with u` or the other edge incident to u
in Py,`.

Note by Lemma 3.24, we can exchange (y, x) with (y, y′) (otherwise we can reduce the
residue function, or find a smaller legal order).

Now suppose we can exchange (y′, x′) with an edge in P`,y′ . The only edge we can
exchange (y′, x′) with without improving the decomposition is ul. Then exchange (y′, x′)
with ul, and (y, x) with (y, y′). Then the number of edges in the new component is the
same as originally, however we have reduced the number of vertices of degree at least three,
a contradiction.

Therefore we can exchange (`, `′) with an edge in P`,y′ , which implies that we can
exchange (`, `′) with yy′. Then exchange (`, `′) with yy′ and (y, x) with the edge in Py,`.
Then we either reduce the residue function, or reduce the number of vertices of degree at
least three, a contradiction in either case.
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The following corollary summarizes the main results of this section.

Corollary 3.43. Let K be a red component. Suppose (x, y) generates a small child C by
the tree T . If K is not bad, then dr(x) ≥ d − 2. If x has a neighbour of red degree at
least d− 2, then this neighbour does not generate a small child by the tree T . If x has red
degree d − 2, then either K is a bad component, or K contains at least w − d + 2 edges
whose endpoints have degree at least d− 1. If x has red degree d− 1 then either K is a bad
component, or there is a vertex in K with red degree d.

Proof. Let K, (x, y), and C be as in the statement. If K is not bad, then dr(x) ≥ d− 2. If
x has a neighbour of degree at least d − 2, then by Lemma 3.27 this neighbour does not
generate a small child. If x has red degree d− 2, then since (x, y) is saturated by Lemma
3.16 either K is a bad component or contains at least w − d + 2 edges whose endpoints
have degree at least d− 1. If dr(x) = d− 1 then again since (x, y) is saturated either K is
a bad component or there is a vertex in K with red degree d.

With this, we have all of the structural components we need. We will finish the argu-
ment with a lengthy counting argument to show that given all of the structure we have
derived, the exploration graph has too large density.

3.4 The counting argument for non-bad components

We start with some notation.

Definition 3.44. Let K be a red component, and C1, . . . , Cq be the small children of K.
Then we let KC be the subgraph with V (KC) = V (K) ∪ V (C1) ∪ · · · ∪ V (Cq) and E(KC)
is the set of all red edges on V (KC).

We will first bound the average degree of KC when K is not a bad component. For the
purposes of induction, we make the following definition. In the definition, we use P(X)
to refer to the powerset of X. Note that this definition is simulating the properties of KC

when K is not bad.

Definition 3.45. Let P be a forest with components K,C1, . . . , Ct. Suppose that K
contains at least d

k+1
edges, and that no other component in P contains at least d

k+1
edges.

Let C = {C1, . . . , Ct}. Let A : V (K) → P(C × {1, . . . , k}) be a function satisfying the
following properties.

1. For each component C ′ ∈ C, there exists exactly one vertex v ∈ V (K) such that
there is an i ∈ {1, . . . , k} so that (C ′, i) ∈ A(v).

2. For every vertex v ∈ V (K), |A(v)| ≤ k.
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3. If uv ∈ E(K), then there does not exist an i ∈ {1, . . . , k} and two distinct components
C,C ′ ∈ C such that (C, i) ∈ A(u) and (C ′, i) ∈ A(v).

4. For v ∈ V (K), if d(v) ≤ d− 3, then A(v) = ∅.

5. For v ∈ V (K), if d(v) = d − 2 and A(v) 6= ∅, then d 6= 3 and K contains at least
w − d+ 2 edges where both endpoints have degree at least d− 1.

6. For v ∈ V (K), if d(v) = d − 1, and A(v) 6= ∅, then there exists a vertex in K with
d(v) = d.

7. For every vertex v ∈ V (K), if (C, i) ∈ A(v), then there does not exist a C ′ 6= C such
that (C ′, i) ∈ A(v).

We say such a pair (P,A) is an admissible forest.

As notation, if we have an admissible forest (P,A), we will always let K be the com-
ponent of P with more than one edge.

Observation 3.46. Let K be a red component that is not small and not bad. Let KC have
components K,C1, . . . , Cr and let C = {C1, . . . , Cr}. For each component Ci, pick exactly
one arc (u, v) such that u ∈ V (K) and v ∈ V (Ci). Let A : V (K) → P(C × {1, . . . , k}) be
the function such that (Ci, j) ∈ A(v) for i ∈ {1, . . . , r} and j ∈ {1, . . . , k} if uv ∈ E(Tj).
Then (KC , A) is an admissible forest.

Proof. The conditions follow from Corollary 3.43 and the fact that each vertex has at most
one outgoing arc from each T ∈ {T1, . . . , Tk}.

While Observation 3.46 only applies when K is not bad, if K is bad and (KC , A) is an
admissible forest, then any lemma dealing with (KC , A) applies. We restrict to d ∈ {3, 4}
and k = 1 to finish this section, however we note that the majority of the upcoming lemma
works in general (with more work).

Lemma 3.47. Suppose that d ∈ {3, 4} and k = 1. Then for any admissible forest (P,A),
we have

e(P )

v(P )
≥ d

d+ 2
.

Proof. Suppose not. Let (P,A) be an admissible forest where K is the only component
with at least 2 edges. Of all of the admissible forests that are counterexamples to Lemma
3.47, pick (P,A) such that v(P ) is minimized.

Observe there exists a component of P other than K. If not, then

e(P )

v(P )
≥

d
2

d
2

+ 1
≥ d

d+ 2
,

a contradiction. Now let C = {C1, . . . , Cq} be the set of components of P that are not K.
We make some structural claims.
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Claim 3.48. For all i ∈ {1, . . . , q}, e(Ci) = 0.

Proof. Suppose there is a component Ci such that e(Ci) ≥ 1. Let v be a leaf of Ci. Consider
P − v. Let A′ be the function where A′ agrees with A aside from on x ∈ V (K) where
(Ci, 1) ∈ A(x), and in this case we let A′(x) = A(x)−(Ci, 1)∪(Ci−v, 1). Then (P −v, A′),
is an admissible forest, and hence by minimality we have

e(P )

v(P )
=
e(P − v) + 1

v(P − v) + 1
≥ e(P − v)

v(P − v)
≥ d

d+ 2
.

a contradiction.

We now build towards proving q ≥ 3. Note that q ≥ 1 since there exists a component
of P other than K.

Claim 3.49. We have q ≥ 2.

Proof. Suppose q = 1. Let v ∈ V (K) be the vertex such that A(v) 6= ∅. By Properties (4)
and (5) of admissible forests, there are three possibilities: either d(v) = d, d(v) = d − 1,
or d(v) = d− 2, d = 4, and K contains at least 6 edges whose endpoints both have degree
at least d − 1. If d(v) = d, then trivially e(K) ≥ d. Similarly, if d(v) = d − 1, then by
Property (6) of admissible forests there exists a vertex u of degree d in K and so again
e(K) ≥ d. Recall that by Claim 3.48, e(C1) = 0. Thus since q = 1 by assumption, in
either case we have

e(P )

v(P )
≥ e(K)

e(K) + 2

≥ d

d+ 2

as desired. Therefore we may assume that v has degree d− 2, that d = 4, and that there
are at least 6 edges with both endpoints having degree at least 3. Thus by Observation
3.6 e(K) ≥ 15. Then we have

e(P )

v(P )
≥ 15

17
>

2

3
,

as desired.

Claim 3.50. We have q ≥ 3.

Proof. Suppose not. We may assume that q = 2 by Claim 3.49. Let v1, v2 be the two
vertices in K where A(vi) 6= ∅ for i = 1, 2. We split into cases depending on the degrees
of v1 and v2. Note that by Property (4) of admissible forests, d(vi) ≥ d− 2 for i = 1, 2. If
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both vertices have degree d − 1, then by Property (6) of admissible forests there exists a
vertex in K with degree d. It follows that e(K) ≥ 3d− 4 and we have

e(P )

v(P )
≥ 3d− 4

3d− 1

≥ d

d+ 2
.

Now suppose we have (without loss of generality) d(v1) = d and d(v2) ∈ {d − 1, d}.
Note by Property (3), v1 and v2 are not adjacent. It follows that we have e(K) ≥ 2d − 1
and thus

e(P )

v(P )
≥ 2d− 1

2d+ 2

≥ d

d+ 2
.

Now suppose (without loss of generality) that d(v1) = d − 2. Then by Property (5),
d = 4, and K contains at least 6 edges between vertices of degree at least 3. Hence by
Observation 3.6, e(P ) ≥ 15. We have

e(P )

v(P )
≥ 15

18
>

2

3
.

Now assume that q ≥ 3. Let q′ be the number of vertices v of degree d − 2 such that
A(v) 6= ∅ and let q′′ = q − q′.

Claim 3.51. We have q′ ≥ 1.

Proof. Suppose not. Then there are no vertices v where A(v) 6= ∅ and d(v) = d− 2, so we
have

e(P )

v(P )
≥ e(K) +

∑q
i=1 e(Ci)

e(K) + 1 +
∑q

i=1(e(Ci) + 1)

≥ e(K)

e(K) + 1 + q
by Claim 3.48

≥ (d− 1)q

dq + 1

≥ 3(d− 1)

3d+ 1

≥ d

d+ 2
,

as desired.
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Since q′ ≥ 1, by Property (5) we have that d = 4 and that K has at least 6 edges
where both endpoints have degree at least d − 1. Additionally, K contains at least q′

vertices of degree at least (d − 2) and at least q′′ = q − q′ vertices of degree at least
d − 1, and these q vertices form an independent set by Property (3). Thus e(K) ≥
min{q′(d− 2) + q′′(d− 1), q′(d− 2) + 6}. Moreover, by Claim 3.48 we have that e(Ci) = 0
for each i ∈ {1, . . . , q}.

It follows that

e(P )

v(P )
≥ q′(d− 2) + q′′(d− 1)

q′(d− 2) + q′′(d− 1) + 1 + q

=
q′(d− 2) + q′′(d− 1)

q′(d− 1) + q′′d+ 1

=
2q′ + 3q′′

3q′ + 4q′′ + 1
.

Claim 3.52. We have q′′ ≤ 1.

Proof. Suppose not, so q′′ ≥ 2. We claim that

2q′ + 3q′′

3q′ + 4q′′ + 1
≥ 2q′ + 6

3q′ + 9
.

Note that it suffices to show that
3q′′

4q′′ + 1
≥ 2

3
,

and this holds when q′′ ≥ 2, with strict inequality when q′′ ≥ 3.

By Claim 3.51 we have that 2q′

3q′
= 2

3
, and hence

e(P )

v(P )
≥ 2q′ + 3q′′

3q′ + 4q′′ + 1
≥ 2

3
,

as desired.

Now we finish the proof. By Claim 3.51, we have that q′ ≥ 2. Moreover, by Property (5)
K contains at least 6 edges between vertices of degree at least d− 1. Thus e(K) ≥ 2q′+ 6,
so

e(P )

v(P )
≥ 2q′ + 6

3q′ + 8
>

2

3
,

as desired.
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3.5 The counting argument for bad components

As with the above section, we create a notion of bad admissible forests for the purposes
of induction. Again the definition given is simply designed to simulate the properties of a
bad component. We overload the terminology.

Definition 3.53. Let P be a forest with components K,C1, . . . , Ct. Suppose that K is
a bad component, and that no other component in P contains at least d

k+1
edges. Let

C = {C1, . . . , Ct}. Let A : V (K)→ P(C×{1, . . . , k}) be a function satisfying the following
properties.

1. For each component C ∈ C, there exists a vertex v ∈ V (K) such that there is an
i ∈ {1, . . . , k} so that (C, i) ∈ A(v).

2. For every vertex v ∈ V (K), |A(v)| ≤ k.

3. Suppose uv ∈ E(K), and there exists an i ∈ {1, . . . , k} with two distinct components
C,C ′ ∈ C such that (C, i) ∈ A(u) and (C ′, i) ∈ A(v). Let Ku denote the component
of K − uv containing u, and let Kv be defined analogously. Then at least one of the
following holds: e(Ku) ≤ e(C ′)− 1, or e(Kv) ≤ e(C)− 1.

4. There are at most two distinct vertices u, v ∈ V (K) such that (C, i) ∈ A(u) and
(C ′, i) ∈ A(v), d(u) ≤ d− 1, d(v) ≤ d− 1, and e(C) = e(C ′) = 0.

5. There are at most two distinct vertices u, v ∈ V (K) such that (C, i) ∈ A(u) and
(C ′, i) ∈ A(v), d(u) ≤ d− 1, d(v) ≤ d− 1, d(u) ≥ 2, and d(v) ≥ 2.

6. If u, v ∈ V (K), (C, i) ∈ A(u), (C ′, i) ∈ A(v), where both d(u) ≤ d−2 and d(v) ≤ d−2
and e(C) = 0, e(C ′) = 0, then either K has at least w−d+2 edges incident to vertices
of degree at least d− 1 and at least one of u or v has degree d− 2, or there is an edge
in Pu,v that is not incident to a vertex of degree d (or d− 1 if d = 4).

7. For every vertex v ∈ V (K), if (C, i) ∈ A(v), then there does not exist a C ′ 6= C such
that (C ′, i) ∈ A(v).

8. If K is d-fragile, and u, v are the two vertices of degree d, and uv ∈ E(K), then there
does not exist two neighbours of u, v which are not u or v, say x, y, where d(x) ≤ d−2
and d(y) ≤ d− 2 such that (C, i) ∈ A(x) and (C ′, i) ∈ A(y) for some C,C ′ ∈ C.

9. There do not exist three vertices x, y, z such that x, y, z is a path in K, y has degree
d (or d− 1 if d ≥ 4), both x and z are leaves in K and (C, i) ∈ A(x), (C ′, i) ∈ A(y),
and (C ′′, i) ∈ A(z).

10. Let K be w-fragile. Let u, v be two vertices of degree at least d − 1. Let u′, v′ be
neighbours of u, v respectively such that u′, v′ are leaves of K. Then if (C, i) ∈ A(u′),
there is no component (C ′, i) ∈ A(v′).
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11. Let u, v be two vertices of degree at least three. Let x be a neighbour of either u or
v, y a neighbour of v distinct from x, and ` a neighbour of y where ` is a leaf of K.
Suppose that y has degree two. Then either A(x) = ∅, A(y) = ∅ or A(`) = ∅.

12. Let K be d-fragile. Let u, v be two vertices of degree at least three in K. Suppose
u′, v′ are leaves adjacent to u and v respectively. Then either A(u′) = ∅ or A(v′) = ∅.

We say such a pair (P,A) is an bad admissible forest. If additionally (P,A) satisfies
the property that for any leaf ` of K, if (C, i) ∈ A(`), then e(C) = 1, we say K is a root
component.

The following observation is immediate.

Observation 3.54. Let K be a bad component. Let KC have components K,C1, . . . , Cr,
and let C = {C1, . . . , Cr}. For each component Ci, pick exactly one blue arc (ui, vi) such
that ui ∈ V (K) and vi ∈ V (Ci). Let A : V (K) → P(C × {1, . . . , k}) be the function such
that (Ci, j) ∈ A(v) for i ∈ {1, . . . , r} and j ∈ {1, . . . , k} if (ui, vi) ∈ E(Tj). Then (KC , A)
is a bad admissible forest.

We restrict to k = 1 and d ∈ {3, 4} to finish the counting argument. Here we note that
it is not obvious how to extend the next lemma to larger values of k and d.

Lemma 3.55. Let (P,A) be a bad admissible forest, where k = 1, and d ∈ {3, 4}. Then

e(P )

v(P )
≥ d

d+ 2
.

Strict inequality holds if the bad component of P is a root component.

Proof. Suppose not. Let (P,A) be a bad admissible forest where K is the bad component.
Of all of the bad admissible forests that are counterexamples to Lemma 3.55, pick (P,A)
such that the number of vertices in P is minimized. Subject to this, minimize the number
of vertices v where A(v) 6= ∅. Let q be the number of vertices in K such that A(v) 6= ∅.
Note that q ≥ 1. We begin with some structural claims.

Claim 3.56. There is no leaf ` of K, such that (C, i) ∈ A(`), e(C) = 1, and (P −
`, A|V (K−`)) is a bad admissible forest.

Proof. Suppose so. Then (P − `, A|V (K−`)) is a bad admissible forest and by our choice we
have

e(P − `)
v(P − `)

≥ d

d+ 2
.

Hence,
e(P )

v(P )
=
e(P − `) + 2

v(P − `) + 3
≥ d

d+ 2
.
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To see the last inequality, it suffices to note that 2
3
≥ d

d+2
when d ∈ {3, 4}. Note we

need strict inequality if K was a root component. In this case, observe that there is no
leaf ` of K such that (C, 1) ∈ A(`) and e(C) = 0. Hence by Property (3), it follows that
if u is a neighbour of ` in K and A(u) = {(C, 1)} for some C ∈ C, then e(C) = 1. Thus
K − ` is a root component and by minimality, we now have

e(P − `) + 2

v(P − `) + 3
>

d

d+ 2
,

as desired.

Corollary 3.57. Every leaf ` of K such that (C, 1) ∈ A(`) and e(C) = 1 has a neighbour
of degree at least 3. Further, if d = 4 and k = 1, and ` has a neighbour of degree three,
then K is w-fragile.

Proof. Suppose not. We claim we can apply Claim 3.56. Let `′ be the neighbour of `,
and suppose that the degree of `′ is 2 (note that the degree of `′ is not 1, as otherwise
K is isomorphic to K2.) Observe that if (C ′, 1) ∈ A(`′), then e(C ′) = 1 as otherwise as
otherwise Property (3) is violated. Observe in K − `, `′ is a leaf. Thus K − ` either still
contains at least two vertices of degree d, or more than w edges between vertices of degree
d− 1. Thus K − ` is a bad component. Therefore we simply have to check that all of the
properties still hold for a bad admissible forest. Observe that if any of the properties were
violated, then (P,A) also violated one of the properties (not necessarily the same one),
and hence we get a contradiction.

So now suppose d = 4 and k = 1, and `′ has degree three. We want to show that K is
w-fragile. If not, then K − ` is still a bad component, and the same arguments as above
imply we have a bad admissible forest, a contradiction.

Claim 3.58. If v ∈ V (K) has degree d, and uv ∈ E(K) such that d(u) = 1, and A(u) =
{(C ′, 1)} where e(C ′) = 1. Then A(v) = ∅.

Proof. Suppose not. By Property (3), we have that (C ′′, 1) ∈ A(v) and e(C ′′) = 1. Now
define A′ where A′ = A on all vertices K − u− v, and A′(v) = (C ′′′, 1) where C ′′ is a new
component with e(C ′′′) = 0, and A′(u) = ∅. Let (P ′, A′) denote this new pair. If (P ′, A′)
is a bad admissible forest, then by our choice we have

e(P )

v(P )
=
e(P ′) + 2

v(P ′) + 3
≥ d

d+ 2

as desired (observe that strict inequality holds if K is a root component, since K remains
a root component after the modification).

Hence (P ′, A′) is not a bad admissible forest. If this happens, then there is a neighbour
x 6= u such that A(x) 6= ∅. By Property (3), x is a leaf. But then we violate Property (9),
a contradiction.
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Corollary 3.59. When d = 3 and k = 1, and q ≥ 7, then K contains at most four distinct
vertices vi such that d(vi) 6= 3 and A(vi) 6= ∅.

Proof. Suppose not. By Property (4) and (5) there are at most four vertices v1, . . . , vt
such that d(vi) = 2 and A(vi) 6= ∅ or d(vi) = 1 A(vi) 6= ∅ and (C ′, 1) ∈ A(vi) where
e(C ′) = 0. As we assumed that the claim does not hold, then there exists a vertex v such
that d(v) = 1, and (C ′, 1) ∈ A(v), where e(C ′) = 1. By Corollary 3.57, we have that the
existence of such a v implies that v has a neighbour u of degree 3. If we cannot simply
apply Claim 3.56, then K has exactly two vertices of degree d, and hence K is d-fragile.
Now without loss of generality we may suppose that v = v5. Then by the same analysis,
either v6 and v7 are adjacent to vertices of degree d, or have degree d themselves. If both
of these vertices have degree d, then there are three vertices of degree d, by Claim 3.58, a
contradiction. Therefore say v6 has degree one and (C ′′, 1) ∈ A(v6) with e(C ′′) = 1. Then
v6 is adjacent to a vertex of degree d say v′6. We claim that v′6 6= u. If v′6 = u, then as K
is d-fragile, we contradict Property (8). By applying the same argument to v7 we see that
K has three vertices of degree d, a contradiction.

Claim 3.60. If K is w-fragile, then q ≤ 6.

Proof. Suppose not. Let v1, . . . , v7 be vertices such that A(vi) 6= ∅. Then by Properties (4)
and (5) there are two vertices say v1 and v2 such that d(v1) = d(v2) = 1 and (Ci, 1) ∈ A(vi)
where e(Ci) = 1. By Corollary 3.57 both v1 and v2 are adjacent to vertices of at least
degree three. But this contradicts Property (10).

Claim 3.61. When d = 4 and k = 1, and q ≥ 7, then K contains at most four vertices vi
such that d(vi) 6= 4 and A(vi) 6= ∅.

Proof. Suppose not. Let v1, . . . , vt be vertices such that A(vi) 6= ∅ and d(vi) ≤ d − 1. By
Property (4) and (5) at most two of these vertices do not have degree one, and at most
two of these vertices have degree one and have a component (C ′, 1) such that e(C ′) = 0.
Thus as K is not w-fragile (as q ≥ 7), it follows that K contains at least three vertices
of degree d by Corollary 3.57. But then as t ≥ 5, there exists a leaf which satisfies Claim
3.56, a contradiction.

Now we build towards showing that we can assume q ≥ 7.

Claim 3.62. q ≥ 3.

Proof. Suppose not. Then q ≤ 2, and we have e(K) ≥ 2d− 1. Then

e(P )

v(P )
≥ 2d− 1

2d+ 2
>

d

d+ 2

as desired.
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Claim 3.63. q ≥ 4.

Proof. Suppose not. Then we can assume that q = 3. We claim that e(P ) ≥ 2d, and
e(P ) ≥ 2d+ 1 unless K is a root component. If e(P ) ≥ 2d+ 1, then we have

e(P )

v(P )
≥ 2d+ 1

2d+ 5
>

d

d+ 2
,

as desired. If e(P ) ≥ 2d, and K is not a root component, we have

e(P )

v(P )
≥ 2d

2d+ 4
=

d

d+ 2
,

as desired.

If K has more than 6 edges between endpoints of degree at least 3, then e(K) ≥ 15 >
2d + 1, as desired. Hence K contains two vertices of degree d and is d-fragile. Thus
e(K) ≥ 2d − 1. First suppose that e(K) = 2d − 1. This implies that the two vertices of
degree d are adjacent, say u, v. Then by Property (3), without loss of generality we may
assume that A(u) = ∅. Then as q = 3, there are two leaves `1 and `2 such that A(`i) 6= ∅
for i ∈ {1, 2}. Then either e(P ) ≥ 2d + 1, in which case we are done, or K is not a root
component, and we have e(P ) ≥ 2d, or we violate Property (8).

Therefore we may assume that e(K) = 2d. Thus we are done unless K is a root
component. This implies that for any leaf ` of K, where (C, 1) ∈ A(`), we have e(C) = 1.
Additionally, if e(P ) = 2d, this implies that for any vertex x ∈ V (K), if (C ′, 1) ∈ A(x),
then e(C ′) = 0. Then it follows that by Property (3), no two adjacent vertices x, y have
A(x) 6= ∅ and A(y) 6= ∅. As there are at most 3 vertices of degree at least 2 in K, and
these vertices induce a path, this implies there is a leaf ` such that A(`) 6= ∅, which implies
either K is not a root component, or e(P ) ≥ 2d+ 1, and so we are done.

Claim 3.64. q ≥ 5

Proof. Suppose not. Then we can assume that q = 4. We claim that e(P ) ≥ 2d + 2, if K
is not a root component, and otherwise we have e(P ) ≥ 2d+ 3. Note that 15 > 2d+ 3, so
K has less than 6 edges between vertices of degree three, and hence we can assume that
K has two vertices, say u, v, of degree d. We split into cases depending on if uv ∈ E(K).
Case 1: uv ∈ E(K)
Then e(K) ≥ 2d−1. Note as q = 4, we cannot have e(K) = 2d−1 as otherwise we violate
Property (8). Suppose e(K) = 2d. Note that K is d-fragile. As q = 4, two neighbours of
u and v , say x, y have A(x) 6= ∅ and A(y) 6= ∅. But this violates Property (8).

Thus e(K) ≥ 2d+1. Suppose e(K) = 2d+1. There are four possibilities. First suppose
that u is adjacent to a vertex u′ with degree two, and similarly v is adjacent to a vertex
v′ with degree two. Note by Property (8), at most one vertex x adjacent to u or v has
A(x) 6= ∅. Further, without loss of generality we can assume that A(u) = ∅ by Property (3).

63



Then at least two leaves `1 and `2 have A(`i) 6= ∅. If (Ci, 1) ∈ A(`), and e(Ci) = 0, then
K is not a root component. If neither `i have e(Ci) = 0, then e(P ) ≥ 2d + 3 as desired.
Otherwise, if exactly one `i has e(Ci) = 0, then, e(P ) ≥ 2d + 2, and K is not a root
component, as desired. Therefore, we can assume that both `i have e(Ci) = 0. Further,
for every vertex x with (C, 1) ∈ A(x), we have e(C) = 0 as otherwise e(P ) ≥ 2d + 2. By
Property (3), this implies if xy ∈ E(K), either A(x) = ∅ or A(y) = ∅. By Property (5),
there are at most two leaves x, y such that (C, 1) ∈ A(x) and e(C) = 0, and (C ′, 1) ∈ A(y)
where e(C ′) = 0. As q = 4, and e(K) = 2d + 1, it is not possible to satisfy all these
constraints.

The same argument applies if v (or u) is adjacent to two vertices of degree two.

Now suppose that v is adjacent to a vertex v′ of degree two, v′ is adjacent to a vertex
v′′ of degree two. Let v′′′ be the leaf adjacent to v′′. Then at most one neighbour of u or v,
say x has A(x) 6= ∅. Then either we can apply the previous argument, or A(v′′′) 6= ∅, and
A(v′′) 6= ∅. In this case, note that if (C, 1) ∈ A(v′′), we have e(C) = 1 by Property (3).
Then e(P ) ≥ 2d+ 2, and either K is not a root component, or e(P ) ≥ 2d+ 3, as desired.

Now for the last case, which is that without loss of generality, u is adjacent to a vertex
u′ with degree three and d = 4. Let u′′ and u′′′ be the two leaves adjacent to u′. First
suppose A(u′′) = ∅. Then there are two neighbours of u and v, say x, y where A(x) 6= ∅ and
A(y) 6= ∅ which contradicts Property (8) unless x = u′. If we do not contradict Property
(8) in some manner, then A(u′′′) 6= ∅, and in this case, the path from u′′′ to y contradicts
Property (6), or we have e(P ) ≥ 2d+ 3, or e(P ) ≥ 2d+ 2 and K is not a root component.

Thus A(u′′) 6= ∅ and by symmetry A(u′′′) 6= ∅. Still if a neighbour of u or v which is
not u′, say x has A(x) 6= ∅, then the path from Pu′′,x contradicts Property (6), or we have
e(P ) ≥ 2d+ 3, or e(P ) ≥ 2d+ 2 and K is not a root component. But then A(u′) 6= ∅, and
that contradicts Property (8).

Therefore e(K) = 2d + 2. In this case, if x, y have A(x) 6= ∅ and A(y) 6= ∅, then
xy 6∈ E(K) as otherwise e(P ) ≥ 2d + 3 by Property (3). Further if e(P ) = 2d + 2, this
means for all (C ′, 1) ∈ A(x), e(C ′) = 0. By Property (4), this implies that both A(u) 6= ∅
and A(v) 6= ∅. But this contradicts Property (3). Thus e(P ) ≥ 2d+ 3, as desired.

Case 2: uv 6∈ E(K)
In this case e(K) ≥ 2d. First assume e(K) = 2d. Let u′ be the vertex such that u, u′, v is a
path in K. Suppose that A(u′) 6= ∅. Then by Property (3), both A(u) = ∅ and A(v) = ∅.
But then two leaf neighbours of u and v, say x, y have A(x) 6= ∅ and A(y) 6= ∅, and we
contradict Property (12). Thus A(u′) = ∅. However in this case again two leaves that are
neighbours of u and v, say x, y have A(x) 6= ∅ and A(y) 6= ∅, and again we contradict
Property (12).

Therefore e(K) ≥ 2d+ 1. We consider cases depending on how many vertices there are
on the path from u to v.

If there are four internal vertices on the path Pu,v then e(K) ≥ 2d + 3, as desired.
Suppose u, u′, u′′, u′′′, v is the path from u to v in K. Then e(K) ≥ 2d + 2. If equality
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holds, then Property (4) implies that e(P ) ≥ 2d+ 3, as desired.

Suppose u, u′, u′′, v is the path from u to v in K. Then e(K) ≥ 2d+1. If e(K) = 2d+1,
then two leaves adjacent to u or v, say x, y have A(x) 6= ∅ or A(y) 6= ∅. Then we contradict
Property (12). Therefore e(K) ≥ 2d + 2 in this case, and Property (4) and Property (5)
imply that e(P ) ≥ 2d+ 3.

Now suppose u, u′, v is the path from u to v in K. If u′ has degree four (implying d = 4),
then e(K) ≥ 2d + 2 and if equality holds, then Property (4) ensures that e(P ) ≥ 2d + 3.
So suppose that u′ has degree three. If e(K) = 2d + 1, then in this case, two leaves x, y
have A(x) 6= ∅ and A(y) 6= ∅, and thus we contradict Property (12). Then e(K) = 2d+ 2.
We are done if K is not a root component. So K is a root component, and thus for any
leaf `, either A(`) = ∅ or (C, 1) ∈ A(`) and e(C) = 1. So suppose e(P ) = 2d+ 2 and K is
a root component. Then all vertices x ∈ V (K) such that (C, 1) ∈ A(x) satisfies e(C) = 0.
Then if xy ∈ E(K), either A(x) 6= ∅ or A(y) 6= ∅. As e(K) = 2d+ 2, this implies that both
A(u) 6= ∅ and A(v) 6= ∅. As e(K) = 2d + 2, there is a leaf ` such that A(`) 6= ∅, but then
either K is not a root component, or e(P ) ≥ 2d+ 3, as desired.

Thus u′ has degree two. First suppose that e(K) = 2d+ 1. Suppose that u is adjacent
to a vertex u′′ 6= u′ where u′′ has degree two. Note there is at most one pair x, y such that
xy ∈ E(K) and A(x) 6= ∅ and A(y) 6= ∅, as otherwise e(P ) ≥ 2d + 3. Let us consider the
case where A(u′′) 6= ∅. Let (C, 1) ∈ A(u′′). If e(C) = 0, then the leaf, adjacent to u′′, say
u′′′ has A(u′′′) = ∅ by Property (3), and as q = 4, this implies we have two leaves ` and `′

where both A(`) and A(`′) are not empty, and this contradicts Property (12). Now suppose
that e(C) = 1. Then if K is not a root component then we are done as e(P ) ≥ 2d + 2.
If the argument from the above case does not apply, then A(u′′′) 6= ∅, and if K is not a
root component then (Cu′′′ , 1) ∈ A(u′′′) and e(Cu′′′) = 1. But then we contradict Corollary
3.57.

Thus we can assume that A(u′′) = ∅. Therefore the case which has not been covered
is if A(v) 6= ∅, A(u) 6= ∅, a leaf of v, say v′ has A(v′) 6= ∅, and the leaf neighbour of u′′,
say u′′′ has A(u′′′) 6= ∅. Note then that (C ′, 1) ∈ A(v) has e(C ′) = 1, and thus we have
e(P ) ≥ 2d + 2, and if equality holds, we have a leaf say u′′′ where (C ′′, 1) ∈ A(u′′′) and
e(C ′′) = 0, hence K cannot be a root component.

Thus e(K) = 2d + 2, and either there is a leaf ` with (C, 1) ∈ A(`) and e(C) = 0, and
hence K is a not a root component, or e(P ) ≥ 2d+ 3, as desired.

Finally observe that if e(P ) ≥ 2d+ 2 we have

e(P )

v(P )
≥ 2d+ 2

2d+ 7
≥ d

d+ 2
.

Note strict inequality holds if e(P ) ≥ 2d+ 3.

Claim 3.65. q ≥ 6
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Proof. Suppose not. We may assume that q = 5 in this case. Let v1, . . . , v5 be the five
vertices such that A(vi) = {(Ci, 1)}. We claim that e(P ) ≥ 3d, and that strict inequality
holds if K is a root component. Note if K has more than 6 edges between vertices of degree
three, then by Observation 3.6, e(P ) ≥ 15 > 3d. Hence K contains at least two vertices of
degree d, say u, v.
Case 1: K contains 3 vertices of degree d
Let z be the other vertex of degree three. Note as we have three vertices of degree d, there
is no leaf ` ∈ {v1, . . . , v5} such that (C, 1) ∈ A(`) and e(C) = 1, as otherwise we can apply
Claim 3.56.
Subcase 1: u, v, z is a path in K
Then e(K) ≥ 3d − 2. First suppose that equality holds. Then K is the graph with just
u, v, z and leaves. Then by Property (3), there are three leaves `1, `2, `3 ∈ {v1, . . . , v5}. Let
(Ci, 1) ∈ A(`i) for i ∈ {1, 2, 3}. By Property (6), at least two of e(Ci) = 1, and hence we
obtain our desired bound.

So e(K) ≥ 3d− 1. If equality holds, then one of u, v, z is adjacent to a vertex of degree
two. First suppose that A(v) 6= ∅. Then A(u) = A(z) = ∅, by Property (3). Then by
Property (4) and Property (5), there are two vertices in {v1, . . . , v5}−v such that e(Ci) = 1.
Then e(P ) ≥ 3d + 1, as desired. Therefore we can suppose that A(v) = ∅. Note if either
A(u) = ∅ or A(z) = ∅, the same argument as above gives the desired bound. Thus we
assume that u, z ∈ {v1, . . . , v5}. By the pigeon hole principle, Property (3), Property (9),
and as q = 5, we can assume that v1v2 ∈ E(K) and v3v4 ∈ E(K). Then there are two
i ∈ {1, . . . , 5} such that e(Ci) = 1, and hence e(P ) ≥ 3d+ 1, as desired.

Therefore e(K) ≥ 3d. Suppose equality holds. Then K has at most four vertices of
degree d. If K has four vertices of degree d, then these vertices induce a path, and by
Property (3), this implies that three of the vertices in {v1, . . . , v5} have degree less than d,
and Property (4) and Property (5) now imply that e(P ) ≥ 3d+ 1. Similarly, if K has only
three vertices of degree d, then Property (4) and Property (5) imply that e(P ) ≥ 3d + 1,
as desired.
Subcase 2: uv ∈ E(K) and z is not adjacent to either u or v, or none of u, v, z
are adjacent
Then we have e(K) ≥ 3d−1. Suppose equality holds. Then without loss of generality there
is a vertex v′ of degree two such that v, v′, z is a path in K. If e(P ) ≤ 3d, at most one vi has
e(Ci) = 1. Further, we can assume there are exactly three vertices of degree d, as otherwise
e(P ) ≥ 3d + 1. By Property (3), at most two of u, v, v′, z are in {v1, . . . , v5}. It follows
then by Property (4), there exists an i ∈ {1, . . . , 5} such that e(Ci) = 1. Thus e(P ) ≥ 3d.
Further, as v′ is the only vertex of degree two, it follows that either e(P ) ≥ 3d+1, or there
is a leaf ` of K in {v1, . . . , v5} such that e(Ci) = 0, and hence K is not a root component.

Therefore e(K) ≥ 3d. But now, if equality holds by Property (3), Property (4), and
Property (5), at least one of the the e(Ci) = 1, and we have e(P ) ≥ 3d+ 1, as desired.

Case 2: K contains at most 2 vertices of degree d

In this case K is d-fragile. First suppose that uv ∈ E(K). Then by Property (8), at
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most one neighbour of u or v is in v1, . . . , v5. Further without loss of generality A(u) = ∅
by Property (3). It follows that e(K) ≥ 2d+ 2, since otherwise by Property (3), Property
(8) and Property (9) we have that q ≤ 4. Suppose equality holds. Then by Property
(3), Property (4), it follows that at least two i ∈ {1, 2, 3, 4, 5} we have e(Ci) = 1. Then
e(P ) ≥ 2d+ 4 ≥ 3d. Further if equality holds, then there is a vertex vi with d(vi) = 1 and
e(Ci) = 0, hence K is not a root component.

Now suppose that e(K) ≥ 2d + 3. Again at least two i ∈ {1, 2, 3, 4, 5} have e(Ci) = 1,
and e(P ) ≥ 2d+ 5 ≥ 3d+ 1, as desired.

Therefore we can assume that uv 6∈ E(K). We split into cases depending on how many
vertices Pu,v has. First suppose that Pu,v has at most one internal vertex, say v′. By
Property (3), at most two of u, v′, v are in {v1, . . . , v5} and at most one neighbour of both
u and v is in {v1, . . . , v5}. Then by Property (4) and Property (5), it follows that at least
two i ∈ {1, 2, 3, 4, 5} have e(Ci) = 1. Now we claim that e(K) ≥ 2d+ 2. First observe that
if e(K) = 2d, then as q = 5, we contradict Property (12). Thus e(K) = 2d+1, and then by
Property (3) and Property (11), we have three i ∈ {1, 2, 3, 4, 5} with e(Ci) = 1, and thus
e(P ) ≥ 2d+4 ≥ 3d. If equality holds, observe that there is a leaf ` in {v1, . . . , v5} such that
e(C) = 0, and hence K is not a root component as desired. Therefore e(K) ≥ 2d + 2. In
this case, observe that there are at least two i ∈ {1, 2, 3, 4, 5} such that e(Ci) = 1, and thus
e(P ) ≥ 2d+ 4, and if equality holds there is a leaf ` ∈ {v1, . . . , v5} which has (C, 1) ∈ A(`)
and e(C) = 0, implying K is not a root component. Thus e(P ) ≥ 3d with strict inequality
when K is root component.

Therefore Pu,v contains at least two internal vertices. Suppose there are exactly two
internal vertices. Let u′ and u′′ be the two internal vertices of Pu,v. Then e(K) ≥ 2d + 1.
Note if equality holds, then u′ and u′′ both have degree two, and by Property (3), it
follows that (without loss of generality) u is adjacent to two leaves, and both leaves are in
v1, . . . , v5. But this contradicts Property (12).

Thus e(K) ≥ 2d + 2. Now suppose e(K) = 2d + 2. If (without loss of generality) u
is adjacent to a vertex u1 not in V (Pu,v), with degree two then as q = 5, Property (9),
Property (12) and Property (3) force that there are at least two i ∈ {1, 2, 3, 4, 5} such that
e(Ci) = 1, and thus e(P ) ≥ 2d+ 4 ≥ 3d. In the case equality holds, there is a vi such that
d(vi) = 1 and e(Ci) = 0, so K cannot be a root component. Thus we can assume that u′

has degree three. However now if e(K) = 2d+ 2, as q = 5, two leaf neighbours of u and v
are in v1, . . . , v5, and thus we violate Property (12).

Therefore e(K) ≥ 2d+3. Property (4) implies that e(P ) ≥ 2d+4, and if equality holds
we have a leaf vi such that e(Ci) = 0, implying that K cannot be a root component.

Therefore we can assume that Pu,v has three internal vertices. Thus e(K) ≥ 2d + 2.
If equality holds then two leaves adjacent to u or v are in v1, . . . , v5, which implies we
violate Property (11). Thus e(K) ≥ 2d + 3. Suppose equality holds. Then by Property
(4) and Property (5), we have e(P ) ≥ 2d + 4. Further if equality holds, we have a leaf
` ∈ {v1, . . . , v5} where e(Ci) = 0, and thus K is not a root component. Thus e(P ) ≥ 2d+4,
and Property (4) and Property (5) imply that e(P ) ≥ 2d+ 5.
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Assume Pu,v has four internal vertices. Then e(K) ≥ 2d+ 3. If equality holds, we have
two leaves adjacent to u and v in v1, . . . , v5, and hence we have an exchangeable path.
Thus e(P ) ≥ 2d+ 4, and Property (4) implies that e(P ) ≥ 2d+ 5 as desired.

In the last case, Pu,v has more than five internal vertices, and thus e(K) ≥ 2d+4. Then
Property (4) implies e(P ) ≥ 2d+ 5 as desired.

To finish, simply observe that

e(P )

v(P )
≥ 3d

3d+ 1 + 5
≥ d

d+ 2
,

and strict inequality holds if e(P ) ≥ 3d+ 1.

Claim 3.66. q ≥ 7

Proof. Suppose not. Then we may assume that q = 6. We claim that e(P ) ≥ 3d + 2 and
that strict inequality holds when d = 4 and K is not a root component. If K has more
than 6 edges between vertices of degree at least three, then by Observation 3.6, we have
e(K) ≥ 15 > 3d+ 2. So K has at least two vertices of degree d say u, v. Let v1, . . . , v6 be
the six vertices such that A(vi) 6= ∅. We split into cases depending on how many vertices
in v1, . . . , v6 have degree d.
Case 1: At least three vertices in v1, . . . , v6 have degree d
In this case, as K is connected, and by Property (3), we have e(K) ≥ 3d+ 3 as desired.
Case 2: Exactly two vertices in v1, . . . , v6 have degree d
Without loss of generality, let these vertices be v1 and v2. Then v1v2 6∈ E(K) by Property
(3). If for every i, j we have vivj 6∈ E(K), then

∑6
i=3 d(vi) ≥ 4, and if equality holds by

Property (4) there are two i ∈ {3, 4, 5, 6} such that e(Ci) = 1. But then we have a leaf `
with e(Ci) = 1 and we can apply Claim 3.56. Therefore we can assume that

∑6
i=3 d(vi) ≥ 5.

By the same argument as above, there are two i ∈ {1, . . . , 6} such that e(Ci) = 1. Thus
we have e(P ) ≥ 2d+ 7 ≥ 3d+ 3 as desired.

Now assume that v1v3 ∈ E(K) and no other pairs vi,vj are adjacent. Then e(C1) = 1.
Then

∑6
i=4 d(vi) ≥ 3, and if equality holds, at least two i ∈ {3, 4, 5, 6} have e(Ci) =

1. Then again there is a leaf where Claim 3.56 applies. Therefore we can assume that∑6
i=4 d(vi) ≥ 4, and there are two i ∈ {3, 4, 5, 6} such that e(Ci) = 1. Thus e(P ) ≥ 3d+ 3

in this case.

Now suppose that v3v4 ∈ E(K). Then without loss of generality, d(v3) = 1. By Claim
3.56, this implies that d(v4) = d, as K is not w-fragile, a contradiction as d(v4) < d. A
similar argument works for all pairs in {v3, v4, v5, v6}.

Now for the last case, assume without loss of generality that that v1v3 ∈ E(K) and
v2v4 ∈ E(K). Then e(C1) = 1 and e(C2) = 1. Then d(v5) + d(v6) ≥ 2. Note that by
Property (4) and Property (5) we have at least two i ∈ {3, 4, 5, 6} such that e(Ci) = 1.
Then e(P ) ≥ 2d + 6 = 3d + 2, and if equality holds there is a leaf ` in {v1, . . . , v6} such
that e(Ci) = 0, as desired.
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Case 3: v1 is the only vertex in v1, . . . , v6 with degree d
Then without loss of generality we have d(v2) = 1 and e(C2) = 1. If v2 is not adjacent to
a vertex of degree d, then by Claim 3.56, we get a contradiction. Thus v2 is adjacent to a
vertex of degree d that is not v1, say v′2 and K is d-fragile. By the same analysis as above,
we have that

∑6
i=3 d(vi) ≥ 4. Further, there are at least two i ∈ {3, 4, 5, 6} with e(Ci) = 1.

Then e(P ) ≥ 3d+ 3 as desired.
Case 4: No vertex in v1, . . . , v6 has degree d
Then up to relabelling we have for i ∈ {1, 2}, d(vi) = 1 and e(Ci) = 1. Then K is d-fragile,
and both v1 and v2 are adjacent to (distinct) vertices of degree d, say v′1 and v′2. Further
these two vertices are not adjacent as otherwise we have an exchangeable path. Further
no other neighbour of v′1 and v′2 is in v3, v4, v5, v6. Hence since

∑6
i=3 d(vi) ≥ 4 and we have

two i ∈ {3, 4, 5, 6} where e(Ci) = 1. It follows that e(P ) ≥ 3d+ 3.

Finally, observe that if e(P ) ≥ 3d+ 2, we have

e(P )

v(P )
≥ 3d+ 2

3d+ 9
≥ d

d+ 2

and strict inequality holds if e(P ) ≥ 3d+ 3.

Therefore we have q ≥ 7. Then there are at most four vertices v1, v2, v3, v4 such that
A(vi) 6= ∅ and d(vi) < d. We claim that e(P ) ≥ (q− 4)d+ 6. By Property (3), the vertices
v of degree d with A(v) 6= ∅ form an independent set, and are not adjacent to any of
v1, . . . , v4 by Claim 3.58. Then at least two of v1, . . . , v4 have e(Ci) = 1 by Properties (4)
and (5), and thus it follows that e(P ) ≥ (q − 4)d+ 6. Thus we have

e(P )

v(P )
≥ (q − 4)d+ 6

(q − 4)d+ 7 + (q − 4)

≥ d

d+ 2
.

Here the second inequality holds when q ≥ 7.

Restrict to the case where k = 1 and d ∈ {3, 4}. LetR denote the set of red components
of HR,F,s which are not small. By Corollary 3.19 it follows that,

V (HR,F,s) =
⋃
K∈R

V (KC).

Therefore it follows that:

Er(HR,F,s) =
⋃
K∈R

Er(KC).
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Now we bound the fractional arboricity of HR,F,s. By Lemma 3.47 and Lemma 3.55 it
follows that have

er(HR,F,s)

v(HR,F,s)
≥
∑

K∈R er(KC)∑
K∈R v(KC)

>
d

d+ 2
.

The strict inequality follows as R contains the root component. However, this contra-
dicts Observation 3.9. Now Theorem 1.16 follows.

3.6 Strengthening the d = 3, k = 1 case

In this section, we prove Theorem 1.18. We overload the terminology from before to prove
Theorem 1.18.

Let G be a vertex minimum counterexample to Theorem 1.18. Note G is connected as
otherwise we apply minimality to each connected component and obtain a desired decom-
position. Let F be the set of decompositions (T, F ) of G satisfying Theorem 1.16 when
k = 1 and d = 3, where T is a spanning tree. Observe that F is not empty, since given
any decomposition (T ′, F ′) satisfying Theorem 1.16, if T ′ is not a spanning tree, we can
simply add edges from F ′ to T ′ until we obtain a spanning tree.

As before we define a notion of a bad component.

Definition 3.67. Given a decomposition (T, F ) ∈ F , a component C of F is bad if either
C contains a vertex of degree three and has more than 14 edges, or C has no vertex of
degree three and more than 13 edges.

We define a residue function to describe how close a decomposition in F is to satisfying
Theorem 1.18.

Definition 3.68. Let (T, F ) ∈ F . Let L be the set of bad components of F . The residue
function, denoted ρ(F ), is defined as

ρ(F ) =
∑
K∈L

(er(K)− 3).

In the same manner as before, we define the notion of an exploration subgraph.

Definition 3.69. Let (T, F ) ∈ F . Let R be a bad component. Let s be any vertex
of maximum degree in R. Orient T such that s is the only vertex with outdegree zero.
We recursively define a set of components Q of F . Initially Q is {R}. While there is a
component C of F such that there is a blue directed edge (x, y) where x is in a component
in Q and y ∈ V (C), we add C to Q. Once this procedure has terminated, let HR,F,s be
the digraph induced by the components of Q. We will call HR,F,s an exploration subgraph,
and R a root component.
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Observation 3.70. Given a decomposition (T, F ) ∈ F , a root component R and a vertex
s ∈ V (R), the graph HR,F,s satisfies:

er(HR,F,s)

v(HR,F,s)− 1
≤ 3

5
.

Proof. The argument is identical to that of Observation 3.9.

A counterexample is a tuple (G,D,HR,F,s, L) where G is a graph with fractional ar-
boricity at most 1 + 3

5
, where D = (T, F ) is a decomposition in F , where HR,F,s is an

exploration subgraph, and where L is a legal order of HR,F,s. A minimum counterexample
is one where v(G) is minimized, subject to that D is taken to minimize the residue function,
subject to that our choice of D minimizes the number of bad components in F with no
vertex of degree three, and finally subject to all of this, HR,F,s and L are taken such that
L is smaller than all other possible legal orders. From here on out, assume we are working
with a minimum counterexample.

As before, a small component is a red component with at most one edge. A blue edge
(x, y) is saturated if ρ(F + xy) > ρ(F ), or F + xy either has maximum degree four, or has
a component containing two vertices of degree three. Otherwise (x, y) is unsaturated.

Lemma 3.71. If K is a red component and C is a child of K, and (x, y) is a blue arc
where x ∈ V (K) and y ∈ V (C), then (x, y) is saturated.

Proof. The argument is identical to that of Lemma 3.16, with the one exception that we
note that when we delete a red edge e from a component K, if K is not a bad component,
then K − e cannot be bad.

Corollary 3.72. If K is a component, and C is a child of K, then er(K) + er(C) ≥ 3.

Proof. Suppose not. Then er(K) + er(C) ≤ 2, and this implies any blue directed arc from
K to C is unsaturated, a contradiction.

Lemma 3.73. Let K be a red component with no vertex of degree three. If er(K) ≤ 11,
then there does not exist an arc (x, y) with x ∈ V (K) that generates a small child. If
er(K) = 12 and there exists an arc (x, y) with x ∈ V (K) that generates a small child C,
then dr(x) = 1 and er(C) = 1.

Proof. Otherwise, since er(C) ≤ 1 it follows that (x, y) is unsaturated, contradicting
Lemma 3.71.

Lemma 3.74. Let K be a red component with two arcs (x, x′) and (y, y′) which generate
small children C1 and C2, respectively. Then one of the following situations occurs:

� xy 6∈ E(K)
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� Up to relabelling x as y (and C1 with C2), xy can only be exchanged with (x, x′),
er(C1) = 1, K contains a vertex of degree three, er(K) ≥ 14, and d(y) = 1

� Up to relabelling x as y (and C1 with C2), xy can only be exchanged with (x, x′),
er(C1) = 1, K is isomorphic to a path, er(K) ≥ 13, and dr(y) = 1.

Proof. Suppose not. Then without loss of generality we may assume that xy ∈ E(K). By
Lemma 3.24, either we can exchange (x, x′) with xy or (y, y′) with xy. If we can exchange
both, then let Kx be the component of K − xy containing x, and Ky be the component
containing y. If both er(K

y) ≤ 1 and er(K
x) ≤ 1, K is a path of length two and so

(x, x′) is unsaturated, contradicting Lemma 3.71. Otherwise we may assume without loss
of generality that er(K

y) ≥ 2, and we apply the argument from Lemma 3.27, to (x, x′) and
xy to get a contradiction. Therefore without loss of generality, we may assume that xy can
only be exchanged with (x, x′). Then if the argument from Lemma 3.27 does not improve
the legal order or reduce the residue function, er(K

x +xx′) > er(K) and Kx +xx′ is a bad
component. As er(C1) ≤ 1, this implies that d(y) = 1, and as Kx + xx′ is bad, er(K) ≥ 14
if K has a vertex of degree three. If K does not have a vertex of degree three, then the
same argument gives er(K) ≥ 13.

Lemma 3.75. Let K be a red component containing a vertex of degree three, where (x, x′)
generates a small child C, and dr(x) = 1. Then er(K) ≥ 13, and if er(K) = 13, then
er(C) = 1.

Proof. Note that if er(K) ≤ 12, (x, x′) is unsaturated —a contradiction. Finally, if er(K) =
12 and er(C) = 0, then (x, x′) is unsaturated, a contradiction.

Corollary 3.76. Let K be a red component. Suppose (x, y) generates a small child C.
Then at most two neighbours of x generate a small child, and such neighbours are leaves
in K. Further (x, y) is a saturated edge, which implies that er(K) + er(C) ≥ 3.

Proof. By Lemma 3.74 and Corollary 3.72 the only part of this corollary that does not
immediately follow is that x has at most two neighbours that generate a small child.
However, if three neighbours of x generate small children, then x has degree three, and all
neighbours of x are leaves. But then K is isomorphic to the star on 3 edges, and so (x, y)
is unsaturated, contradicting Lemma 3.71.

We require one final lemma before we finish with a counting argument.

Lemma 3.77. Let R be the root component of an exploration subgraph HR,F,s, and suppose
s has degree three. There does not exist an arc (x, x′) that generates a small child such that
x ∈ V (R).
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Proof. Suppose not. Note that since T is oriented so that s has outdegree zero, it follows
that x 6= s. By Lemma 3.22, there exists an edge e on Pxs that can be exchanged with
(x, x′), resulting in the decomposition (T ′, F ′). Let Kx and Ks be the components of F ′

containing x and s, respectively. Since dr(s) = 3, we have that er(K
s) ≥ 3. Since s 6= x,

the exchange of e and (x, x′) does not create a vertex of degree at least four. Since each
component in F has at most one vertex of degree three, we have in fact that (T ′, F ′) ∈ F .
However, since er(K

s) ≥ 3, it follows that ρ(F ′) < ρ(F ). This contradicts our choice of
minimum counterexample.

Now we finish with a counting argument.

Lemma 3.78. For any component K that is not small, we have

er(KC)

v(KC)
≥ 3

5
,

and the inequality is strict if K is the root component of an exploration subgraph.

Proof. Let q be the number of small children of K. We consider cases.
Case 1: q = 0.
In this case er(K) ≥ 2 as K is not small, and then we have 2

3
≥ 3

5
as desired.

Case 2: q = 1.
Let (x, x′) generate a small child C1. Then (x, x′) is saturated by Lemma 3.71, and so
either K contains a vertex of degree three or it does not and K+C1 +xx′ is bad. In either
case, er(K) ≥ 3, and so we have er(KC)

v(KC)
≥ 3

5
as desired. Note if K is a root component,

then er(K) ≥ 4, and so we have strict inequality.
Case 3: q = 2.
When q = 2, we have a few possibilities. In all cases, we aim to show er(KC) ≥ 5. Let
(v1, v

′
1) and (v2, v

′
2) generate small children. If v1v2 ∈ E(K), then er(K) ≥ 12 by Lemma

3.74 and the result follows. Otherwise, v1 and v2 are not adjacent. If K does not contain
a vertex of degree three, then by Lemma 3.73, er(KC) ≥ 12, and again the result follows.
Thus we may assume that K contains a vertex of degree three, and that v1 and v2 are
not adjacent. If either of v1 or v2 has degree one, then by Lemma 3.75 we have that
er(KC) ≥ 13, and so er(KC)

v(KC)
> 3

5
, as desired. Thus we may assume neither v1 nor v2 has

degree one, and so since v1 and v2 are not adjacent, er(K) ≥ 4. Since moreover K contains

a vertex of degree three, again we have that er(K) ≥ 5. Hence er(KC)
v(KC)

≥ 5
8
> 3

5
, as desired.

Case 4: q ≥ 3.
We split into subcases. First suppose that K has no vertex of degree three. Thus K is
isomorphic to a path, and since q 6= 0, by Lemma 3.73 we have that er(K) ≥ 12.

Let b be the number of edges where both endpoints generate a small child, and let c be
the number of leaves that generate a small child whose neighbours in K do not generate a
small child. Let ` = b + c. By Lemma 3.74, for any edge whose endpoints both produce
small children, one of the endpoints is a leaf of K. Hence ` ≤ 2. Further, if xy ∈ Er(K)
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is an edge where (x, x′) and (y, y′) generate small children C1 and C2 respectively, where
dr(x) ≥ 2, then again by Lemma 3.74, we have er(C1) = 1. Note that since er(K) ≥ 12, no
vertex in K is adjacent to both leaves. Additionally, by Lemma 3.73 and since q ≥ 3, we
have er(K) ≥ 12 and er(KC) ≥ 13. Thus it follows that er(KC) ≥ max{13, 2(q − `) + `},
and v(KC) ≤ er(KC) + 1 + q. Therefore, if q ≥ 8 we have:

er(KC)

v(KC)
≥ er(Kc)

er(KC) + 1 + q
≥ 2(q − `) + `

2(q − `) + `+ 1 + q
=

2q − `
3q − `+ 1

>
3

5
,

where the last line holds because q ≥ 8 and ` ≤ 2. So we may assume instead q ≤ 7. Then
since er(KC) ≥ 13, we have: we have

er(KC)

v(KC)
≥ 13

21
>

3

5
.

Thus we can assume K has a vertex of degree three, and by our choice of decomposition,
K has exactly one vertex of degree three. Note that by Lemma 3.77, since q ≥ 3 it follows
that K is not a root component. Let b be the number of edges where both endpoints
generate a small child, and let c be the number of leaves that generate a small child whose
neighbours in K do not generate a small child. Let ` = b + c. As K has at most one
vertex of degree three, it follows that K has at most 3 leaves, and hence by Lemma 3.74, it
follows that ` ≤ 3. Further by Lemma 3.74, if xy ∈ Er(K), dr(x) ≥ 2 and there exist arcs
(x, x′), (y, y′) that generate small children C1 and C2, then er(C1) = 1, and dr(y) = 1. If
the vertex of degree three does not generate a small child, we have er(KC) ≥ 2(q − `) + `
and v(KC) ≤ er(KC)+1+q. Similarly, if the vertex of degree three generates a child, then
this vertex is adjacent to at most two leaves which generate small children. Thus, we get
er(KC) ≥ 2(q − `− 1) + 3 + `− 1 = 2(q − `) + `, and v(KC) ≤ er(KC) + 1 + q. Therefore
if q ≥ 9 and no vertex of degree three generates a small child, we have:

er(KC)

v(KC)
≥ 2(q − `) + `

2(q − `) + `+ 1 + q
=

2q − `
3q − `+ 1

≥ 3

5
.

Again, this last inequality holds because ` ≤ 3 and we assumed q ≥ 9. Note this inclusive
inequality is sufficient, since K is not a root component by assumption. Now suppose
q ≤ 8.

If no leaves generate small children, then ` = 0, er(KC) ≥ 2q, and thus

er(KC)

v(KC)
≥ 2q

3q + 1
≥ 3

5
.

Therefore we can assume that a leaf generates a small child. In this case, by Lemma
3.75, we have that er(K) ≥ 13 and er(KC) ≥ 14. Since q ≤ 8, we have

er(KC)

v(KC)
≥ 14

14 + 1 + 8
>

3

5
.
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Now we finish the proof. Let R denote the set of red components of HR,F,s which are
not small. By Corollary 3.72 it follows that,

V (HR,F,s) =
⋃
K∈R

V (KC).

Therefore it follows that:

Er(HR,F,s) =
⋃
K∈R

Er(KC).

Now we bound the fractional arboricity of HR,F,s. By Lemma 3.78, it follows that have

er(HR,F,s)

v(HR,F,s)
≥
∑

K∈R er(KC)∑
K∈R v(KC)

>
3

5
.

The strict inequality follows as R contains the root component. However, this contra-
dicts Observation 3.70. Now the main theorem follows.
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Chapter 4

A density bound for 4-critical
triangle free graphs

This chapter is joint work with Evelyne Smith-Roberge.

4.1 Introduction

In this chapter we prove Theorem 1.64. We start with a brief outline of the proof of
Theorem 1.64.

Our main tool is the potential method. This is a counting argument combined with a
quotient argument. This argument shows that all subgraphs with fewer vertices are sparse.
From this, we can show that a vertex minimal counterexample to Theorem 1.64 does not
contain a K4−e subgraph, or any cycle of degree three vertices. We will eventually be able
to show that subgraph induced by the vertices of degree three has no component with more
than six vertices. Further, if the components have more than two vertices, then the local
structure around the components is heavily constrained (there must be a subgraph “close”
that contains an M -gadget, which we define later). Once enough structure is established,
a discharging argument rules out the existence of a minimum counterexample, thereby
completing the proof.

The chapter is organized as follows. In Section 4.2, we present structural lemmas
regarding (k − 1)-cliques in k-Ore graphs, focusing on the case where k = 4. In Section
4.3, we present results regarding the triangles of graphs in B. In Section 4.4, we give a
brief overview of the potential method and results specific to its use towards Theorem 1.64.
Section 4.5 contains the critical arguments which impose structure on a vertex minimal
counterexample. Finally, the discharging portion of the proof is found in Section 4.6.
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4.2 (k − 1)-cliques in k-Ore graphs

In this section we prove many structural results about (k− 1)-cliques in k-Ore graphs. An
important graph is the unique 4-Ore graph on seven vertices, called the Moser spindle.
We denote the Moser spindle as M . The first two observations are easy and follow from
effectively the same proofs as similar statements about 4-Ore graphs in [31].

Observation 4.1. Let G be k-Ore and v be a vertex in V (G). Then G − v contains a
Kk−1 subgraph.

Proof. We proceed by induction on v(G). If G = Kk, then this is immediate. Otherwise,
G is the Ore composition of two graphs H1 and H2 where H1 is the edge side obtained by
deleting edge e = xy and H2 is the split side obtained by splitting a vertex z into vertices
z1 and z2. By induction both H1 − e and H2 − z contain a Kk−1 subgraph.

Now let v ∈ V (G). If v ∈ V (H1 \{x, y}), then G−v contains a Kk−1 subgraph as there
is a Kk−1 subgraph in H2 − z. A similar argument applies if v ∈ V (H2 − z). Therefore
v ∈ {z1, z2}. Since H2− z contains a Kk−1 subgraph, it then follows that G− v contains a
Kk−1-subgraph.

Observation 4.2. If G is k-Ore and not isomorphic to Kk, then for any subgraph K in
G isomorphic to Kk−1, G−K contains a Kk−1 subgraph.

Proof. We proceed by induction on v(G). As G is not isomorphic to Kk, G is the Ore
composition of two graphs H1 and H2. Let H1 be the edge side of G where we delete the
edge xy, and let H2 be the split side where we split the vertex z into two vertices z1 and
z2. Let K be any Kk−1 subgraph in G.
Case 1: H1 = Kk.
First suppose that H2 is also isomorphic to Kk. Then each of H2− z and H1−xy contains
a Kk−1 subgraph. Note that either x 6∈ V (K) or y 6∈ V (K) since xy 6∈ E(G). Additionally,
either V (K) ⊆ V (H1 − xy) or V (K) ⊆ V (Hz

2 ). If V (K) ⊆ V (H1 − xy), then in G −K,
there is a Kk−1 subgraph in H2 − z. Therefore we may assume that V (K) ⊆ V (Hz

2 ), and
without loss of generality that x 6∈ V (K). But then H1− y contains a Kk−1 subgraph that
is contained in G−K, as desired.

Hence we can assume that H2 6= Kk. By induction, deleting any Kk−1 subgraph in H2

leaves a Kk−1 subgraph in H2. Let K be any Kk−1 subgraph in G. If V (K) ⊆ V (H1−xy),
then G−K contains a Kk−1 subgraph in H2− z by Observation 4.1. If K lies in Hz

2 , then
there is a Kk−1 subgraph in at least one of H1 − x or H1 − y, depending on if x ∈ V (K)
or y ∈ V (K) or neither is.
Case 2: H2 = Kk.
From the previous case we may assume that H1 6= Kk. Hence by induction, deleting any
Kk−1 subgraph in H1 leaves a Kk−1 subgraph in H1. If V (K) ⊆ V (H1 − xy), then G−K
has a Kk−1 subgraph in Hz

2 − {z1, z2}. Therefore K ⊆ V (Hz
2 ). But since xy 6∈ E(G), K
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uses at most one of z1 and z2. Thus by Observation 4.1 there is a Kk−1 subgraph in G−K
that lies in H1 − xy.
Case 3: Neither H1 nor H2 is Kk.
In this case, since the induction hypothesis holds for both H1 and H2 and any Kk−1
subgraph uses at most one of x or y, it is easy to see the same arguments as above give
the result.

The following definition is helpful to avoid repetition.

Definition 4.3. Let G be a graph. A (k− 1)-clique packing of G is a maximum collection
of vertex-disjoint Kk−1 subgraphs in G.

Thus T k−1(G) is the size of a (k − 1)-clique packing of a graph G. It will be useful to
bound the size of a (k − 1)-clique packing of an Ore composition, which we do now.

Proposition 4.4. If G is an Ore composition of H1 and H2 where H1 is the edge side and
uses edge xy and H2 is the split side using vertex z, then

T k−1(G) ≥ T k−1(H1) + T k−1(H2)− f(H1, H2),

where f(H1, H2) is defined as follows.

� If every (k − 1)-clique packing of H1 contains a clique using the edge xy, and every
(k−1)-clique packing of H2 contains a clique using the vertex z, then f(H1, H2) = −2.

� If there exists a (k−1)-clique packing of H1 where no clique uses the edge xy, but every
(k−1)-clique packing of H2 contains a clique using the vertex z, then f(H1, H2) = −1.

� If every (k−1)-clique packing of H1 contains a clique using the edge xy but there exists
a (k−1)-clique packing of H2 where no clique uses the vertex z, then f(H1, H2) = −1.

� If none of these occur, then f(H1, H2) = 0.

Proof. Let H1 be the edge side of the composition with edge xy and H2 the split side,where
we split z into vertices z1 and z2.

For i ∈ {1, 2}, let Ti be a (k − 1)-clique packing of Hi, and let T ′i be the (k − 1)-clique
packing obtained from Ti by removing a clique if it uses either z or the edge xy. Note that
|T ′i | ≥ |Ti| − 1, and equality holds if and only if Ti contains a clique using either the edge
xy or z.

Now T ′1 ∪ T ′2 is a collection of vertex-disjoint (k− 1)-cliques by construction. It follows
that

T k−1(G) ≥ T k−1(H1) + T k−1(H2)− f(H1, H2).
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Corollary 4.5. If G is the Ore composition of a graph H and Kk, then T k−1(G) ≥
T k−1(H).

Proof. Note that T k−1(Kk) = 1, and that for any vertex v ∈ V (Kk), there is a (k−1)-clique
in Kk−v. Hence regardless of whether Kk is the split side or edge side of the composition,
by Proposition 4.4

T k−1(G) ≥ T k−1(H) + T k−1(Kk)− 1 = T k−1(H),

as desired.

Corollary 4.6. The only k-Ore graph G with T k−1(G) = 1 is Kk.

Proof. Let G be a vertex-minimum counterexample. Since G 6= Kk, G is the Ore composi-
tion of two graphs H1 and H2. If neither H1 nor H2 are Kk, then by induction T k−1(Hi) ≥ 2
for i ∈ {1, 2} and hence by Proposition 4.4 we have T k−1(G)≥ T k−1(H1)+T

k−1(H2)−2 ≥ 2.

Now consider the case where H1 = Kk but H2 6= Kk. Then T k−1(G) ≥ T k−1(H2) ≥ 2
by Corollary 4.5. Therefore both H1 and H2 are isomorphic Kk.

In this case, without loss of generality we may assume H2 is the split side where we split
vertex z. Observe that H2− z contains a Kk−1 subgraph, and there is a Kk−1 subgraph in
H1 after deleting an edge. Hence every (k − 1)-clique packing of G has size at least least
two, a contradiction.

For the rest of this section we restrict our attention to 4-Ore graphs, since there is no
straightforward generalization of our lemmas to k-Ore graphs for k > 4.

Definition 4.7. A kite in G is a K4− e subgraph K such that the vertices of degree three
in K have degree three in G. The spar of a kite K is the unique edge in E(K) contained
in both triangles of K.

The following two lemmas partially describe the structure of 4-Ore graphs with 3-clique
packings of size two.

Lemma 4.8. If G is a 4-Ore graph with T 3(G) = 2, then G contains two edge-disjoint kites
that share at most one vertex. Furthermore, if G 6= M , then G contains two vertex-disjoint
kites.

Proof. We proceed by induction on v(G). As T 3(G) = 2, by Corollary 4.6 we have that
G 6= K4. Hence G is the Ore composition of two graphs H1 and H2. Up to relabelling, we
may assume that H1 is the edge side of the composition where we delete the edge xy, that
H2 is the split side where the vertex z is split into two vertices z1 and z2, and that x is
identified with z1 and y with z2 in G. We break into cases depending on which (if any) of
H1 and H2 is isomorphic to K4.
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Case 1: H1 = H2 = K4.
In this case, G is isomorphic to the Moser spindle, which contains two edge-disjoint kites
that share exactly one vertex.

Case 2: H1 = K4, and H2 6= K4.
First suppose that H2 6= M . Then by the induction hypothesis, H2 contains two vertex-
disjoint kites. Note that z belongs to at most one of these kites, and hence Hz

2 contains
a kite not containing z1 or z2. Observe that H1 − xy is a kite, and thus in this case G
contains two vertex-disjoint kites. Therefore we may assume that H2 = M . If z is the
unique vertex of degree four in M , then T 3(G) = 3, a contradiction. But if z is not the
unique vertex of degree four, then there is a kite in M z not containing z1 or z2, and thus
this kite and H1 − xy give two vertex-disjoint kites.

Case 3: H1 6= K4, and H2 = K4.
First suppose that H1 6= M . Then by the induction hypothesis there are two vertex-disjoint
kites in H1, say D1 and D2. Thus either there is a kite in H1 − xy that does not contain
x or y, or up to relabelling x ∈ V (D1) and y ∈ V (D2). In either case, since Hz

2 contains a
kite that contains at most one of z1 and z2, it follows that G contains two vertex-disjoint
kites.

Therefore H1 = M . If T 3(H1−xy) = 2, then T 3(G) = 3, a contradiction. Hence in H1,
both x and y have degree three. Further, x and y are not the two vertices that have degree
three and are not incident to a spar of a kite. Thus it follows that there is a kite in H1−xy
that does not contain x or y. Since there is a kite in Hz

2 , there are two vertex-disjoint kites
in G.
Case 4: H1 6= K4, and H2 6= K4.
First suppose H2 6= M . Then by induction, H2 contains two vertex-disjoint kites, and hence
Hz

2 contains a kite that does not contain z1 or z2. Similarly, H1 contains two edge-disjoint
kites by induction. Thus H1 − xy contains a kite, and so G contains two vertex-disjoint
kites.

Therefore H2 = M . If z is the unique vertex of degree four in M , then T 3(Hz
2−z1−z2) =

2, and it follows that T 3(G) ≥ 3, a contradiction. Thus z is not the degree four vertex in
M , and thus there is a kite in Hz

2 that does not contain z1 or z2. By induction, there are
two edge-disjoint kites in H1, and hence there is a kite in H1 − xy. Thus it follows that
there are two vertex-disjoint kites in G, as desired.

Lemma 4.9. Let G be 4-Ore with T 3(G) = 2. Let v ∈ V (G) and let Gv be the graph
obtained by splitting v into two vertices of positive degree v1 and v2, with N(v1)∪N(v2) =
N(v) and N(v1) ∩N(v2) = ∅. Then either

(i) T 3(Gv) ≥ 2, or

(ii) d(v) = 3, there is an i ∈ {1, 2} such that d(vi) = 1, and the edge e incident to vi is
the spar of a kite in G.
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Proof. We proceed by induction on the number of vertices. First suppose that G = M .
If v is the unique vertex of degree four, then it is easy to verify that any split leaves two
vertex-disjoint triangles, and hence T 3(Gv) ≥ 2. Now suppose that v is incident to one of
the two spars of kites. Again, it is easy to check that if the vertex of degree one is incident
to the spar of the kite, then T 3(Gv) = 1, and otherwise T 3(Gv) ≥ 2. Lastly, if v is either
of the other two vertices in M , then one simply checks that T 3(Gv) ≥ 2 for any split.

Therefore we can assume that G 6= M . Let G be the Ore composition of H1 and H2

where H1 is the edge side, we delete the edge xy, and H2 is the split side where we split
the vertex z into two vertices z1 and z2.
Case 1: H1 = K4.
We can assume that H2 6= K4, as otherwise G = M . This implies that T 3(H2) = 2: if
T 3(H2) ≥ 3, then Proposition 4.4 implies that T 3(G) ≥ 3, a contradiction. First suppose
that v ∈ {x, y}. Without loss of generality, let v = x. By Observation 4.1 there is a
triangle in H2 − z. Since there is also a triangle in H1 − x, we have that T 3(Gv) ≥ 2 as
desired.

Now suppose that v ∈ V (H1) \ {x, y}. Note H1 − xy is a kite. Assume d(v1) = 1. If
v1 is not incident to the spar of a kite, then there is a triangle on v2, x, y. By Observation
4.1 there is also a triangle in H2 − z. This implies that T 3(Gv) ≥ 2, as desired.

Thus we can assume that v ∈ V (H2 − z). We apply induction to H2. If T 3(Hv
2 ) ≥ 2,

this implies T 3(Hv
2 − z) ≥ 1, and hence T 3(Gv) ≥ 2. Otherwise we split v in such a way

that in Hv
2 , d(v1) = 1 and v1 is incident to a spar of a kite in H2. Let K be this kite.

Note if z 6∈ V (K) then the same split occurs in Gv and (ii) occurs. Hence z ∈ V (K). If
T 3(H2−z) ≥ 2, then T 3(Hv

2 −z) ≥ 1, and it follows that T 3(Gv) ≥ 2. Hence every 3-clique
packing of H2 uses the vertex z. If vz is the spar in K, then without loss of generality we
may assume z1v ∈ E(G) and z2 is incident to the other two vertices of K (we may make
this assumption as otherwise T 3(G) ≥ 3). But then since d(v) = 3 in both H2 and in G,
v is not in any triangle in G. Thus T 3(Gv) = T 3(G) = 2, as desired. Therefore z is not
incident to the spar of K. Since every 3-clique packing of G contains a triangle using z
and z is not incident to the spar of K, we have that H2 6= M . To see this, note that if
H2 = M , then H2 − z contains two vertex disjoint triangles and then T 3(G) = 3. Thus
by Lemma 4.8, since H2 6= M it follows that H2 contains two vertex-disjoint kites, D1 and
D2. If neither D1 nor D2 is K, then T 3(H2) ≥ 3, as there is a set of three vertex-disjoint
triangles in D1 ∪D2 ∪K, a contradiction. Thus without loss of generality we may assume
D1 = K. But again, H2 − z contains two vertex-disjoint triangles, namely the triangle in
K − z, and one triangle in D2. Hence T 3(G) ≥ 3, a contradiction.
Case 2: H2 = K4.
In this case, T 3(H1) = 2 and every 3-clique packing of H1 uses the edge xy since otherwise
G = M or T 3(G) ≥ 3 by Proposition 4.4.

First suppose that v ∈ {z1, z2}. Without loss of generality, let v = z1. Then since
T 3(H1− z1) ≥ 1 by Observation 4.1 and T 3(Hz

2 −{z1, z2}) = 1, it follows that T 3(Gv) ≥ 2,
as desired.

81



Now suppose that v ∈ V (H1) \ {x, y}. Consider Hv
1 , where we perform the same split

as in Gv. First suppose that T 3(Hv
1 ) ≥ 2. Hence Hv

1 − xy has at least one triangle. Since
there is a triangle in Hz

2 − {z1, z2}, it follows that T 3(Gv) ≥ 2 as desired. Therefore we
may assume that T 3(Hv

1 ) < 2, and so by induction v is incident to the spar in a kite K in
H1, and that after splitting v1 has degree one and is incident to the spar of the kite. If K
is in G, then we are done. Therefore we may assume that xy ∈ E(K), and so that {x, y, v}
induces a triangle in G. Since H1 6= K4 by assumption, by Observation 4.2 we have that
H1−{x, y, v} contains a triangle. As there is also a triangle in H2− z by Observation 4.1,
it follows that T 3(Gv) ≥ 2, as desired.

The final case to consider is if v ∈ V (H2)− {z1, z2}. If v is not incident to the spar of
the kite in Hz

2 , then any split of v leaves a triangle in (Hz
2 )v, and since there is a triangle

in H1−{x, y}, we get that T 3(Gv) ≥ 2 as desired. A similar argument works for the other
splits, unless we split v in such a way that v1 has degree one and is incident to a spar of a
kite in G.
Case 3: Neither H1 nor H2 is K4.
First suppose that v ∈ {x, y} and without loss of generality, that v = x. Note that since
T 3(H1) ≥ 2 and T 3(H2) ≥ 2, it follows that T 3(H1 − x) ≥ 1 and T 3(Hz

2 − {z1, z2}) ≥ 1.
Hence in this case, after splitting v we have that T 3(Gv) ≥ 2.

Now suppose that v ∈ V (H1)\{x, y}. If T 3(Hv
1 ) ≥ 2, then it follows that T 3(Hv

1−xy) ≥
1. Since T 3(Hz

2 − {z1, z2}) = 1, we have that T 3(Gv) ≥ 2, a contradiction. Thus by
induction we can assume that d(v) = 3, and v1 has degree one and is incident to the spar
of a kite in H1. Let K be this kite. If K does not contain x and y then (ii) holds in Gv, a
contradiction. Otherwise x, y, v induce a triangle, and by Observation 4.2, H1 − {x, y, v}
contains a triangle, and Hz

2 − {z1, z2} contains a triangle by Observation 4.1. Hence
T 3(Gv) ≥ 2 as desired.

Finally suppose that v ∈ V (H2) \ {z1, z2}. If T 3(Hz
2 ) ≥ 2, then T 3((Hz

2 )v) ≥ 1, and
since T 3(H1−xy) ≥ 1, it follows that T 3(Gv) ≥ 2 as desired. Therefore v has degree three,
lies in a kite K in H2, d(v1) = 1 and is incident to the spar of the kite in K. If z 6∈ V (K),
then (ii) occurs in Gv. So z ∈ V (K). Let T be a triangle in K which contains z and v.
Then by Observation 4.2, H2 − T contains a triangle, and as deleting any vertex in H1

leaves a triangle, it follows that T 3(Gv) ≥ 2.

We now describe the structure of the 4-Ore graphs with 3-clique packings of size three.

Lemma 4.10. Let G be a 4-Ore graph with T 3(G) = 3, and let T be a triangle in G.
Either T 3(G− T ) ≥ 2, or there exists a kite in G− T .

Proof. Let G be a vertex-minimum counterexample. Since G 6= K4, G is the Ore composi-
tion of two 4-Ore graphs H1 and H2. Up to relabelling, we may assume that H1 is the edge
side of the composition where we delete the edge xy, and that H2 is the split side where
we split the vertex z into two vertices z1 and z2. Let T be a triangle of G. Observe that
at most one of z1 and z2 is in V (T ). Additionally, notice if T 3(Hi) ≥ 3 for all i ∈ {1, 2},
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then by Proposition 4.4 we have that T 3(G) ≥ T 3(H1) + T 3(H2)− 2 ≥ 4, a contradiction.
We break into cases depending on which (if any) of H1 or H2 is isomorphic to K4.
Case 1: H1 = K4.
Note that H2 6= K4 as otherwise T 3(G) = 2.
Subcase 1: T 3(H2) = 3.
We may assume that T 3(Hz

2 − z1 − z2) ≤ 2 since otherwise T 3(G) ≥ 4, a contradiction.
Note this implies that T 3(Hz

2 − z1 − z2) = 2, since T 3(H2 − z) ≥ T 3(H2) − 1 ≥ 2. Hence
every 3-clique packing of H2 has a triangle which contains the vertex z. If V (T ) ⊆ V (H1),
then as T 3(Hz

2 − z1 − z2) = 2, we have T 3(G − T ) ≥ 2 as desired. Thus we may assume
V (T ) ⊆ V (Hz

2 ). Note that T contains one of z1 and z2, since otherwise H1 − xy is a
kite in G − T , a contradiction. Without loss of generality, let z1 ∈ V (T ). Let T ′ be the
triangle in H2 whose vertex set is V (T ) \ {z1}∪ {z}. Consider H2−T ′. By minimality, we
have two possibilities: either T 3(H2 − T ′) ≥ 2, or H2 − T ′ contains a kite. First suppose
T 3(H2 − T ′) ≥ 2. Then since z ∈ V (T ′), it follows that there are two vertex-disjoint
triangles in Hz

2 − T , as desired. Therefore H2 − T ′ contains a kite, D; but then D exists
in G− T , a contradiction.
Subcase 2 : T 3(H2) = 2.
Again up to relabelling z1 with z2, we may assume z1 ∈ V (T ), as otherwise the G − T
contains the kite H1−e. By Lemma 4.8, either H2 = M , or H2 contains two vertex-disjoint
kites. First consider the case where V (T ) ⊆ V (H1). If there is a kite in Hz

2 , then G − T
contains a kite and we are done. Thus we may assume that Hz

2 does not contain a kite,
and so that H2 = M and z is the unique vertex of degree four in H2. But in this case there
are two vertex-disjoint triangles in H2 − z, which implies that T 3(G− T ) ≥ 2, as desired.

Thus for the remainder of the analysis, we assume that V (T ) ⊆ V (Hz
2 ), and z1 ∈ V (T ).

Let us deal with the case where H2 = M first. Suppose that z is the unique vertex of
degree four in M . Since z1 ∈ V (T ), we have that Hz

2 − T contains a triangle not using z2.
Since H1 − z1 also contains a triangle it follows that T 3(G − T ) ≥ 2, as desired. Thus z
is not the unique vertex of degree four in M . If z is any of the vertices in M incident to
a spar of a kite, then either T 3(G) = 2, a contradiction, or for any triangle intersecting z1
in Hz

2 , there is a triangle in Hz
2 − T − z2. Thus it follows that T 3(G − T ) ≥ 2 by using

the triangle in H1 − xy which contains z2. If z is either of the other two vertices of degree
three, we have a kite in Hz

2 − T , and hence there is a kite in G− T .

Therefore H2 6= M , and so by Lemma 4.8 we have that H2 contains two vertex-disjoint
kites D1 and D2. Without loss of generality, we may assume V (D1) ⊆ V (H2−z). We claim
that no vertex in D1 incident with the spar is contained in T . To see this, suppose not, and
let v be a vertex incident with the spar of D1. If v is in T , then since all neighbours of v
are in D1 and z is in T , it follows that v is adjacent to z. But then z is in D1, contradicting
the definition of D1. Moreover, we claim at most one vertex of D1 is contained in T . If the
two vertices in D1 which are not incident to the spar of D1 are in T , then G contains a K4

subgraph, which implies G = K4, a contradiction. It follows that we have T 3(H2−T ) ≥ 1.
Hence using one of the triangles in H1 − xy, we see that T 3(G− T ) ≥ 2, as desired.

Case 2: H2 = K4.
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Note in this case H1 6= K4 as otherwise T 3(G) = 2.
Subcase 1: T 3(H1) = 3.
In this case, T 3(H1−xy) = 2 since otherwise Proposition 4.4 implies T 3(G) = 4. It follows
that every 3-clique packing of H1 contains a triangle using the edge xy, and thus there are
two vertex-disjoint triangles in H1−x−y. If V (T ) ⊆ V (Hz

2 ), then since T 3(H1−x−y) = 2,
it follows that T 3(G − T ) ≥ 2 as desired. Thus V (T ) ⊆ V (H1). Now consider H1 − T .
By minimality, we have two possibilites: either T 3(H1 − T ) ≥ 2, or H1 − T contains
a kite. If H1 − T contains two vertex-disjoint triangles, then H1 − T − xy contains at
least one triangle. Since H2 − {z1, z2} contains a triangle, we see that T 3(G − T ) ≥ 2
as desired. Otherwise, H1 − T contains a kite D. Thus either xy is the spar of D, or
T 3(H1−T −xy) ≥ 1. If T 3(H1−T −xy) ≥ 1, then again using the triangle in H2−{z1, z2}
we see that T 3(G− T ) ≥ 2. Thus xy is the spar of D. In this case, V (T ) ⊆ V (H1− x− y)
as x and y both do not lie in a triangle. But then G− T contains the kite in Hz

2 .
Subcase 2: T 3(H1) = 2.
Suppose first that H1 = M . If xy is not incident to the unique vertex of degree four, then
either there is a kite in H1 − xy that does not contain x or y, or H1 − xy contains two
edge-disjoint kites. First suppose there is a kite in H1 − xy that does not contain x or
y. Observe there is a kite in Hz

2 . Since either V (T ) ⊆ V (H1) or V (T ) ⊆ V (Hz
2 ), by the

structure of the Moser spindle it follows that G−T contains a kite for any T . Now consider
the case where H1 − xy contains two edge-disjoint kites. Since T does not contain both x
and y, T contains the unique vertex of degree four in M . Otherwise, H1−xy−T contains
a kite. But then H1 − xy − T contains a triangle using (say) z1 = x. As Hz

2 − z1 contains
a triangle, we have that T 3(G− T ) ≥ 2, as desired.

So we may assume that xy is incident to the unique vertex of degree four in H1 = M .
Note that in this case, either up to relabeling d(z1) = 5 and d(z2) = 3, or d(z1) = d(z2) = 4.
If d(z1) = 5, then T contains z1: otherwise, G−T contains a kite. If T ⊆ H1−xy, then since
H1 − xy contains a triangle disjoint from T and H2 − z contains a triangle, it follows that
T 3(G−T ) = 2, as desired. If on the other hand T ⊆ Hz

2 , then since T 3(H1−xy− z1) ≥ 2,
again it follows that T 3(G− T ) ≥ 2. Thus we may assume d(z1) = d(z2) = 4. But then G
contains two vertex-disjoint kites K1 and K2, and no triangle in G intersects both K1 and
K2. Thus G− T contains a kite, as desired.

Therefore by Lemma 4.8 we may assume that H1 6= M , and so that H1 contains two
vertex-disjoint kites D1 and D2. Up to relabelling, let z1 be in the kite in Hz

2 . First suppose
V (T ) ⊆ V (Hz

2 ). Note there is kite in H1 − xy not using z1. Since z1z2 6∈ E(G), we have
that z2 6∈ V (T ). Thus H1−xy−T = H1−xy−z1, and so G−T contains at least one of the
kites D1 and D2. Therefore we may assume that H1 6= M . Up to relabeling, let z1 be in the
kite in Hz

2 . First suppose T ⊆ H1 − xy. Note then that z1 ∈ V (T ), since otherwise G− T
contains the kite in H2

z . Thus H1− xy− T = H1− T , since xy is incident with a vertex in
T . By Observation 4.2, H1 − T contains a triangle. Since H2 − z also contains a triangle,
it follows that T 3(G− T ) ≥ 2, as desired. Thus we may assume T ⊆ Hz

2 . By Lemma 4.8,
since H1 6= M , H1 contains two vertex-disjoint kites. But then H1− z1 ⊆ H1− T contains
a kite, as desired.
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Case 3: Neither H1 nor H2 is K4.
Subcase 1: T 3(H1) = 2 and T 3(H2) = 2.
Note that by Lemma 4.8, H1 and H2 contains two edge-disjoint kites. If T ⊆ Hz

2 − z1− z2,
then H1−xy (and therefore G−T ) contains a kite, as desired. Moreover, if T ⊆ H1−z1−z2,
then either Hz

2 (and therefore G−T ) contains a kite, or H2 = M and z is the unique vertex
of degree four in M , in which case T 3(G−T ) ≥ T 3(H2−z) ≥ 2. Thus we may assume that
T contains one of z1 and z2: up to relabeling, suppose T contains z1. If T ⊆ H1−xy, then
H1− xy− T = H − T . By Observation 4.2, H1− xy− T (and therefore G− T ) contains a
triangle. Since T 3(H2) = 2, there is a triangle in H2− z, and so T 3(G− T ) ≥ 2 as desired.
If, on the other hand, T ⊆ Hz

2 , then since T 3(H1) = 2, again we have T 3(H1 − z1) ≥ 1.
Since z1 ∈ T , it follows that H2−T ⊆ Hz

2 − z1− z2. By Observation 4.2, H1−T (and thus
Hz

2 − z1 − z2) also contains a triangle. Thus T 3(G− T ) ≥ 2, as desired.
Subcase 2: T 3(H1) = 3.
Note T 3(H2) = 2, sinceH2 6= K4 by assumption and as noted prior to Case 1, if T 3(H1) ≥ 3,
then T 3(H2) < 3. Suppose first that every 3-clique packing of H1 uses the edge xy. Then
H1−x−y has a 3-clique packing of size two, and so T ⊆ H1−xy as otherwise T 3(G−T ) ≥ 2
and we are done. Similarly, if there is a 3-clique packing of H1 that does not use the edge
xy, then T 3(H1 − xy) = 3, and so again T ⊆ H1 − xy, as otherwise T 3(G − T ) ≥ 2 and
we are done (since T contains at most one of x and y). Since T 3(H2) = 2, it follows from
Lemma 4.8 that H2 contains two edge-disjoint kites D1 and D2. Thus either Hz

2 contains
a kite that does not contain z1 or z2 (and so G− T contains this kite), or z ∈ D1 ∩D2. In
this case, H2 = M , and z is the unique vertex of degree four in M . But then Hz

2 − z1 − z2
contains a 3-clique packing of size two, and since T ⊆ H1−xy, it follows that T 3(G−T ) ≥ 2
as desired.
Subcase 3: T 3(H2) = 3.
Then T 3(H2

z − {z1, z2}) ≥ 2. It follows that V (T ) ⊆ V (Hz
2 ), as otherwise T 3(G− T ) ≥ 2.

Note that since H1 6= K4 by assumption, T 3(H1) 6= 1. Furthermore, as noted prior to Case
1, T 3(H1) < 3. Thus T 3(H1) = 2. By Lemma 4.8, it follows that either H1 = M , or that
H1 contains two vertex-disjoint kites. Suppose first H1 = M . Then either H1 − xy − T
contains a kite, or T 3(H1 − xy − T ) = 2, since T ⊂ Hz

2 . (To see this, note that since
T ⊆ Hz

2 and T contains at most one of x and y, removing the edge xy and T from H1

amounts to deleting one edge and at most one of its incident vertices.) Thus we may
assume H1 6= M , and so that H1 contains two vertex-disjoint kites D1 and D2. But then
H1 − xy− T contains a kite (since removing xy and T from H1 again amounts to deleting
an edge and at most one of its incident vertices, and D1 and D2 are vertex-disjoint).

Definition 4.11. Let G be a 4-Ore graph with T 3(G) = 3. An edge f is foundational if
both T 3(G− f) = 2 and there is no kite in G− f .

Lemma 4.12. Let G be a 4-Ore graph with T 3(G) = 3. Then there is at most one
foundational edge in G. Moreover, if f is a foundational edge, then f is the spar of a kite.

Proof. Suppose not and let G be a vertex-minimum counterexample. As G 6= K4, G is the
Ore composition of two 4-Ore graphs H1 and H2. Up to relabelling, let H1 be the edge side

85



of the composition where we delete the edge xy and H2 the split side of the composition
where we split z into two vertices z1 and z2, and identify z1 with x and z2 with y. Let f
be an edge in G.
Case 1: H1 = K4.
Suppose f is foundational. Observe that if f 6∈ E(H1), then f is not foundational since
there is a kite left over after deleting f . If T 3(Hz

2 ) = 3, then since f ∈ E(H1) we have
that T 3(G − f) = 3, a contradiction. Thus, T 3(Hz

2 ) = 2, and so T 3(H2) ≤ 3. Further,
T 3(H2) ≥ 2, since if H2 = K4, then G = M and T 3(M) = 2.

If T 3(H2) = 3, then there are two vertex-disjoint triangles in H2 − z, say T1 and T2. If
f is not the spar of the kite H1 − xy, then H1 − xy − f contains a triangle, so it follows
that T 3(G− f) ≥ 3. Therefore in this case there is at most one foundational edge, and if
there is a foundational edge, it is the spar of a kite.

Thus we may assume T 3(H2) = 2. By Lemma 4.8, we have that H2 contains two edge-
disjoint kites that share at most one vertex. If Hz

2 contains a kite, then G − f contains
a kite, and so f is not foundational. Thus by Lemma 4.8, the two copies are not vertex-
disjoint, and so H2 = M , and further z is the vertex of degree four in M . But for any split
of z into z1 and z2, we get that T 3(Hz

2 − z1− z2) = 2. Thus if f is not the spar in H1−xy,
G− f has a 3-clique packing of size three, a contradiction.
Case 2: H2 = K4.
By possibly relabelling, let z1 be the vertex of degree two in Hz

2 resulting from the split of
z. Notice that splitting K4 leaves a kite subgraph, and hence as f is foundational, f is in
E(H2). Furthermore, f is not incident with z1 or z2, as otherwise T 3(G− f) = T 3(G) = 3.

Note that T 3(H1) = 3, since if T 3(H1) = 2 then by Lemma 4.8 H1 contains two edge-
disjoint copies of kites, and thus H1 − xy contains at least one kite, contradicting that f
is foundational. Hence T 3(H1) = 3. Observe that T 3(H1 − xy) = 2 and there exists a
3-clique packing of H1 − xy which does not use x or y. To see this: if T 3(H1 − xy) = 3,
then consider any 3-clique packing of H1 − xy. This clique packing combined with the
triangle in H2 − z gives four vertex-disjoint triangles, contradicting that T 3(G) = 3. Thus
every 3-clique packing of H1 uses xy, and hence there exists a 3-clique packing of H1 − xy
which does not use x or y. Therefore if f is not the spar in the kite contained in H2

z , G−f
contains three vertex-disjoint triangles.
Case 3: Neither H1 nor H2 is K4.
Note that either T 3(H1) = 2 or T 3(H2) = 2, as otherwise T 3(G) ≥ 4 by Proposition 4.4.

First suppose both T 3(H1) = 2 and T 3(H2) = 2. Then by Lemma 4.8, in both H1

and H2 there are two edge-disjoint kites which share at most one vertex. Hence there is
a kite in H1 − xy. If f ∈ E(H2), then G− f thus contains a kite, contradicting that f is
foundational. Therefore f ∈ E(H1). If Hz

2 contains a kite, then G− f contains a kite, and
thus in this case G contains no foundational edge. It follows that the kites in H2 were not
vertex-disjoint, and hence that H2 = M , and z is the unique vertex of degree four in M .
Thus T 3(Hz

2 − {z1, z2}) = 2. Moreover, since H1 − xy contains a kite, if f is not the spar
of the kite in H1 − xy then T 3(G− f) = 3, contradicting that f is foundational.
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Now suppose that T 3(H1) = 3. Since T 3(G) = 3, this implies that T 3(H2) = 2. Then
by Lemma 4.8, there are two edge-disjoint kites in H2 which share at most one vertex. If
there is no kite in Hz

2 , then H2 = M and z is the unique vertex of degree four in M . But
then T 3(Hz

2 − z1 − z2) = 2, which implies that T 3(G) ≥ 4, a contradiction. Thus there is
a kite in Hz

2 . If both of the edge-disjoint kites in H2 are in Hz
2 , then G− f contains a kite

for all edges f , and hence G has no foundational edge. Therefore Hz
2 contains exactly one

kite, and this kite does not contain either z1 nor z2. If f does not lie in this kite, then G−f
contains a kite. If f is not the spar, then T 3(Hz

2 − f − z1 − z2) ≥ 1 and so T 3(G− f) ≥ 3,
contradicting that f is foundational. Thus there is at most one foundational edge, and it
is the spar of a kite.

Now suppose that T 3(H2) = 3. Thus T 3(Hz
2 − z1 − z2) ≥ 2. Since T 3(G) = 3, this

implies that T 3(H1) = 2. Thus H1 contains two edge-disjoint kites which share at most
one vertex. Thus H1 − xy contains a kite. If f does not lie in this kite, then f is thus not
foundational. Moreover, if f is not the spar of this kite, then T 3(G− f) ≥ 3 by using two
triangles in H2−z and a triangle from H1−xy−f . Hence there is at most one foundational
edge, and it is the spar in a kite.

Lemma 4.13. Let G be 4-Ore with T 3(G) = 3. Let v ∈ V (G), and let Gv be obtained from
G by splitting v into two vertices of positive degree v1 and v2 with N(v1) ∪N(v2) = N(v)
and N(v1) ∩N(v2) = ∅. Then one of the following occurs:

(i) T 3(Gv) ≥ 3,

(ii) Gv contains a kite,

(iii) there is an i ∈ {1, 2} such that d(vi) = 1, and the edge incident to vi is foundational
in G.

Proof. Suppose not. Let v ∈ V (G), and suppose that G is a vertex-minimum counterex-
ample. As G 6= K4, G is the Ore composition of two 4-Ore graphs H1 and H2. Up to
relabelling, let H1 be the edge side of the composition where we delete the edge xy and H2

the split side of the composition where we split z into two vertices z1 and z2, and identify
z1 with x and z2 with y. Note that at least one of H1 or H2 is not K4, as otherwise G = M
and T 3(M) = 2.
Case 1: H1 = K4.
Observe that H1 − xy is a kite, so if v 6∈ V (H1), then Gv contains a kite and so (ii) holds.
Hence we assume that v ∈ V (H1).

Suppose T 3(H2) = 3. Observe that there are two vertex-disjoint triangles in H2− z. If
the split of H1 − xy contains a triangle, then T 3(Gv) ≥ 3 and (ii) holds. Notice if we split
either x or y, then H1− xy contains a triangle, so we can assume that v ∈ V (H1)−{x, y}.
Let w and v be the two vertices in V (H1) − {x, y}. Observe there is exactly one way to
split v into v1 and v2 so that there is no triangle left over in Hv

1 − xy. That is, up to
relabelling v1 to v2, to have v1 adjacent to w, and v2 adjacent to x and y. To finish, notice
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that the number of vertex-disjoint triangles in Gv after performing such a split is the same
as the number of vertex-disjoint triangles in G − vw. Hence if T 3(G − vw) ≥ 3, we have
T 3(Gv) = 3 and thus (i) holds. So T 3(G− vw) = 2, and further Gv has no kite subgraph,
which implies that G − vw does not contain a kite. Thus vw is foundational, and so (iii)
holds.

Therefore we can assume that T 3(H2) = 2. If there is a kite in Hz
2 − z1 − z2, then G

contains two vertex-disjoint kites, and thus there is a kite in Gv. Thus by Lemma 4.8, we
have that G = M and z is the unique vertex of degree four in M . Then T 3(Hz

2−z1−z2) = 2.
Therefore we can assume that v 6∈ {x, y} as otherwise T 3(Gv) ≥ 3 and (i) holds. Let w, v
be the two vertices in H1− x− y. By the same argument as in the T 3(H2) = 3 case, there
is exactly one split so that T 3(Gv) ≤ 2, and in this case, we split v into two vertices v1, v2
where without loss of generality, d(v1) = 1, and v1 is incident to a foundational edge in G.
In this case, (iii) holds.
Case 2: H2 = K4.
Throughout this case, without loss of generality let z1 have degree two in Hz

2 and z2 have
degree one in Hz

2 . Observe that Hz
2 − z2 contains a kite, so if v 6∈ V (Hz

2 ) − z2, then
Gv contains a kite and (ii) holds. If T 3(H1) = 3, then T 3(H1 − x) ≥ 2, and it follows
that if v = z1, then T 3(Gv) = 3 and (i) holds, as desired. Therefore we can assume that
v ∈ V (H2) − {z1, z2}. If v is incident to z2, then there is a triangle in Hz

2 after splitting
v. Since T 3(H1 − x) ≥ 2, we get T 3(Gv) ≥ 3 and (i) holds. If v is either of the other
two possible vertices, the only split which does not leave a triangle is one where up to
relabelling v1 has degree one, and is incident to the spar of the kite in Hz

2 . Let f be this
edge. Then if T 3(G− f) ≥ 3, we have T 3(Gv) ≥ 3, so T 3(G− f) = 2, and G− f does not
contain a kite as otherwise Gv contains a kite (satisfying (ii)), Hence f is foundational in
G, and thus v1 is incident to the foundational edge in G. Thus (iii) holds, as desired.

Therefore we can assume that T 3(H1) = 2. Then by Lemma 4.8, either H1 = M or
G contains two vertex-disjoint kites. If H1 − x − y contains a kite, then there are two
vertex-disjoint kites in G, and hence Gv contains a kite, satisfying (ii). Thus H1 = M , and
T 3(H1 − xy) = 2. Then if we split z1, observe we have T 3(Gv) ≥ 3 (thus (i) holds), and
if we split z2, we have a kite in Gv (and so (ii) holds). If v is incident to z2 in Hz

2 , then
observe that any split of v results in a triangle, and hence T 3(Gv) ≥ 3 and (i) holds. Thus
v is a vertex in Hz

2 incident to a spar of the kite. By the same arguments as the case when
T 3(H1) = 3, the only split of such a vertex that does not leave a triangle results in, up to
relabelling, v1 having degree one and being incident to a foundational edge in G. But then
(iii) holds, as desired.
Case 3: T 3(H1) = 2.
By the previous cases, we may assume that H2 6= K4. Thus T 3(H2) ≥ 2. By Lemma
4.8, either H1 = M or H1 contains two vertex-disjoint kites. In either case, there is a kite
subgraph in H1−xy. Let L be such a subgraph. Then v ∈ V (L), as otherwise Gv contains
a kite subgraph, satisfying (ii).

First suppose that T 3(H2) = 3. If we split v and there is still a triangle left in Hv
1 −xy,

then as T 3(H2−z) ≥ 2, we have T 3(Gv) ≥ 3. Hence (i) holds. Therefore if we split v, there
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is no triangle left in Hv
1 −xy, and by the same arguments as in previous cases, this implies

that v is incident to the spar of L, and we split v in such a way that up to relabelling
v1 is incident to the spar of the kite and has degree one in Gv. Further, the spar of L is
foundational, satisfying (iii); otherwise, such a split satisfies at least one of (i) and (ii).

Thus we may assume that T 3(H2) = 2. First suppose that T 3(H2 − z) = 2. Then if
we split v in L and are left with a triangle, T 3(Gv) ≥ 3 and (i) holds. Thus by the same
arguments as in previous cases, v is incident to the spar of L, and we split v in such a
way that up to relabelling v1 is incident to the spar of the kite and has degree one in Gv.
Further, the spar of L is foundational, satisfying (iii); otherwise, such a split satisfies at
least one of (i) and (ii). Thus T 3(H2 − z) = 1. By Lemma 4.8, since T 3(H2) = 2 either
H2 = M or H2 has two vertex-disjoint kites. As T 3(H2 − z) = 1, this implies that z
is incident to a spar of a kite. But then regardless of whether H2 = M or H2 has two
vertex-disjoint kites, we have that there is a kite in Hz

2 that does not contain either of z1
or z2. But then Gv contains a kite, satisfying (ii).
Case 4: T 3(H2) = 2.
From the previous cases, we may assume that T 3(H1) = 3. Then T 3(H1 − xy) ≥ 2, and it
equals two only if every 3-clique packing contains a triangle which uses the edge xy. Note
by Proposition 4.4, if T 3(H1 − xy) ≥ 3, then T 3(G) ≥ 4, a contradiction. Hence there
are two disjoint triangles in H1 − xy which do not use x or y. Therefore T 3(Hz

2 ) = 1, as
otherwise by Proposition 4.4, T 3(G) = 4. By appealing to Lemma 4.8, this implies that
there is a kite L in Hz

2 that does not contain z1 or z2. If v 6∈ V (L), then Gv contains a kite,
satisfying (ii). If splitting v leaves a triangle, then T 3(Gv) ≥ 3 and so (i) holds. Let w, v
be the two vertices of degree three in L. It follows that up to relabelling, after splitting we
have v1w ∈ E(Gv) and v2 is incident to the other two edges of v. Thus d(v1) = 1. Note
that if vw is not foundational, then this split satisfies one of (i) and (ii) and we are done.
Hence vw is foundational, and thus (iii) holds.
Case 5: Both T 3(H1) = 3 and T 3(H2) = 3.
Then by Proposition 4.4, T 3(G) ≥ 3 + 3− 2 = 4, a contradiction.

4.3 Properties of graphs in B

In this section we prove similar lemmas as in Section 4.2 except now we focus on graphs
in B. We recall the definition of B. The graph T8 is in B, and given a graph G ∈ B and a
4-Ore graph H, the Ore composition G′ of G and H is in B if T 3(G′) = 2. We start off by
proving that the potential of graphs in B is in fact −1.

Let the Kostochka-Yancey potential of a graph G be KY(G) = 5v(G) − 3e(G). The
following observation is immediate from the definition of Ore composition.

Observation 4.14. Let G be the Ore composition of two graphs H1 and H2. Then
v(G) = v(H1)+v(H2)−1, e(G) = e(H1)+e(H2)−1, and KY(G) = KY(H1)+KY(H2)−2.

Corollary 4.15. Let G ∈ B. Then KY(G) = 1, and p(G) = −1.
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Proof. Let H be a vertex-minimum counterexample. If H = T8, then v(T8) = 8 and
e(T8) = 13, and thus 5 · 8 − 13 · 3 = 1. Now suppose H is the Ore composition of two
graphs H1 and H2. Without loss of generality, H1 ∈ B, and H2 is 4-Ore. By minimality, it
follows that KY(H1) = 1. Note that by Theorem 1.50, KY(H2) = 2. Then by Observation
4.14, it follows that KY(H) = 1 + 2− 2 = 1, as desired.

Since KY(G) = 1 and T 3(G) = 2, it follows that p(G) = −1, as desired.

We overload the terminology.

Definition 4.16. Given a graph G ∈ B, an edge e ∈ E(G) is foundational if T 3(G−e) = 1
and there is no K4 − e subgraph in G− e.

Note in this definition we enforce that G − e contains no K4 − e subgraph. Such a
subgraph may not be a kite.

Lemma 4.17. If G is a graph in B, then G contains at most one foundational edge.
Further, if G is not T8 and G contains a foundational edge, then this edge is the spar of a
kite.

Proof. Suppose not. First suppose that G = T8. Observe that the edge u1u2 is the only
foundational edge in G. Hence we may assume that G is the Ore composition of a 4-Ore
graph H1 and a graph H2 in B. Let f be an edge in G. Note that T 3(H1) ≤ 2, as otherwise
T 3(G) ≥ 3 by Proposition 4.4.
Case 1: H1 = K4.
Suppose that H1 is the edge side where we delete the edge xy, and we split a vertex z in
H2 into two vertices z1 and z2. Note that if f is not in H1 − xy, then G − f contains a
kite. Hence f lies in E(H1−xy). As H1−xy is a kite, if we delete any edge that is not the
spar of this kite, we have T 3(H1 − xy − f) ≥ 1. Further, there is at least one triangle in
H2 which does not use z, and hence T 3(G − f) ≥ 2. Thus the only possible foundational
edge is the spar of a kite, as desired.

Now suppose that H1 is the split side where we split z into z1 and z2. Then Hz
1 contains

a kite. If f does not lie in this kite, G− f contains a kite as desired. If f is not the spar
of the kite, then T 3(Hz

1 − f) ≥ 1, and since there is a triangle in H2 − xy, we see that
T 3(G− f) ≥ 2, as desired. Hence there is at most one foundational edge, and if there is a
foundational edge it is the spar of a kite.
Case 2: T 3(H1) = 2.
By Lemma 4.8, either H1 = M or H1 contains two vertex-disjoint kites. First suppose
that H1 is the edge side of the composition, where we delete the edge xy. By Proposition
4.4 and the fact that T 2(G) = 2, every 3-clique packing of H1 contains a triangle using
the edge xy. Thus regardless of whether H1 = M or not, there is a kite L in H1 − xy.
Then f is in L, otherwise G− f contains a kite. If f is not the spar of the kite in L, then
T 3(H1 − f − xy) ≥ 1, and since T 3(H2 − z) ≥ 1, we have that T 3(G− f) ≥ 2. Therefore
in this case a foundational edge is the spar of a kite.
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Therefore we may assume that H1 is the split side of the composition where we split a
vertex z into two vertices z1 and z2. Again by Proposition 4.4 and the fact that T 2(G) = 2,
every 3-clique packing of H1 uses z. Thus regardless of whether H1 = M or not, z is
incident to the spar of a kite in H1, and so there is a kite L in Hz

1 that does not contain
either of z1 or z2. Then f is in L otherwise G − f contains a kite. If f is not the spar of
the kite in L, then T 3(H1 − f − z) ≥ 1, and thus T 3(G− f) ≥ 2. Otherwise f is the spar
of a kite, and is foundational (otherwise at least one of the other conditions holds).

Lemma 4.18. Let G ∈ B, and let Gv be obtained from G by splitting a vertex v into two
vertices v1 and v2. Then at least one of the following occurs:

(i) T 3(Gv) ≥ 2,

(ii) Gv contains a K4 − e subgraph,

(iii) there is an i ∈ {1, 2} such that d(vi) = 1 and the edge incident to vi is foundational
in G.

Proof. Let G be a vertex-minimum counterexample. First consider the case where G = T8.
If we do not split one of u1 or u2 we have a K4 − e subgraph remaining. If we split either
u1 or u2 such that (iii) does not hold, then it is easy to see T 3(Gv) = 2 and so (i) holds.

Therefore we can assume that G is the Ore composition of a graph H1 ∈ B and a 4-Ore
graph H2. If T 3(H2) ≥ 3, then by Proposition 4.4 we have that T 3(G) ≥ 3 + 2 − 2 ≥ 3
contradicting that T 3(G) = 2. Hence T 3(H2) ≤ 2.
Case 1: H2 = K4.
Suppose first that H2 is the split side where we split a vertex z into two vertices z1 and
z2. Then Hz

2 contains a kite, say L, so if v 6∈ V (L), then Gv contains a kite and (ii) holds.
If v is not incident to a spar of the kite, then any split of v results in a triangle, and thus
T 3(Gv) ≥ 2 and so (i) holds. Therefore v is incident to the spar of the kite, and further
the split of v must leave up to relabelling v1 with degree one and incident to the spar of
the kite. This edge is foundational, otherwise (i) or (ii) occurs. Thus (iii) holds.

Now suppose that H2 is the edge side of the composition where we delete the edge xy.
Then H2 − xy is a kite. If v 6∈ V (H2 − xy), then Gv contains a kite, as desired. If v is not
incident to a spar of a kite, then any split leaves a triangle in Hv

2−xy, and thus T 3(Gv) ≥ 2
and (i) holds. To see this, note that since T 3(H1) = 2, it follows that T 3(H1 − z) ≥ 1.
Thus v must be incident to the spar of H2 − xy, and if T 3(Gv) = 1, then we must have
split v in such a way that up to relabelling, d(v1) = 1 and is incident to the spar of the
kite. Thus (iii) holds.
Case 2: H2 6= K4.
Then T 3(H2) = 2 by Proposition 4.4. First suppose H2 is the edge side of the composition
where we delete the edge xy. Then T 3(H2−xy) = 1 as otherwise T 3(G) ≥ 3 by Proposition
4.4. By Lemma 4.8 either H2 = M or there are two vertex-disjoint kites in H2. This implies
that there is a kite in H2 − xy. Let L be this kite. If v 6∈ V (L), then Gv contains a kite,
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and so (ii) holds. If v is not incident to a spar of a kite, then any split leaves a triangle
in Hv

2 − xy, and thus T 3(Gv) ≥ 2 and (i) holds. As in the previous case, this follows from
the fact that T 3(H1 − z) ≥ 1. Thus v must be incident to the spar of H2 − xy, and if
T 3(Gv) = 1, then we must have split v in such a way that up to relabelling, d(v1) = 1 and
is incident to the spar of the kite. But then (iii) holds.

Therefore we can suppose that H2 is the split side of the composition, where we split
the vertex z into two vertices z1 and z2. By Proposition 4.4, every 3-clique packing of H2

uses the vertex z. Thus regardless of whether H2 = M or not, z is incident to a spar of
a kite in H2. Thus there is a kite in Hz

2 that does not contain either of z1 or z2. Let L
be this kite. If v 6∈ V (L), then Gv contains a kite, as desired. If v is not incident to the
spar of L, then any split leaves a triangle in (Hz

2 − z1 − z2)v, and thus T 3(Gv) ≥ 2, and
(ii) holds. Thus v is incident to the spar of L, and if T 3(Gv) = 1, then v was split in such
a way that up to relabelling, d(v1) = 1 and v1 is incident to the spar of the kite. But then
(iii) holds, as desired.

4.4 Potential Method

In this section we review the potential method which will be the critical tool for the rest
of the chapter.

Let H and G be graphs such that G does not admit a homomorphism to H. Let F be
an induced subgraph of G such that F has a homomorphism to H. Let f : V (F )→ V (H)
be a homomorphism. Let C1, . . . , Ct be the non-empty colour classes of f (where a colour
class is understood here to be a set of vertices in G which are mapped to the same vertex
in H under f).

The quotient of G by f denotedGf [F ], is a graph with vertex set (V (G)\V (F ))∪{ci | 1 ≤
i ≤ t} and edge set E1 ∪ E2 ∪ E3, where:

� E1 = {uv |uv ∈ E(G[V (G) \ V (F )])};

� E2 is the set of edges of the form cicj where there is a u ∈ Ci and a v ∈ Cj such that
uv ∈ E(G);

� E3 is the set of edges of the form uci such that there is a v ∈ Ci where uv ∈ E(G).

We record some easy observations which have been made before (see for example [43, 28,
29]).

Observation 4.19. Let G be a graph with no homomorphism to a graph H, let F be
a strict induced subgraph of G, and let f : V (F ) → V (H) be a homomorphism. Then
G→ Gf [F ].
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Proof. For all v ∈ V (G) \ V (F ), let φ(v) = v. For all v ∈ V (F ), let Ci be the colour class
that v is in with respect to f , and define φ(v) = ci. We claim that φ is a homomorphism.
Consider any edge uv ∈ E(Gf [F ]). If both of u and v are in V (G)\V (F ), then φ(u)φ(v) =
uv ∈ E(Gf [F ]). If u ∈ V (F ) and v ∈ V (G) \ V (F ) then φ(u)φ(v) = civ where f(u) = i.
Then by definition civ ∈ E(Gf [F ]). Finally, if both u and v are in V (F ), then φ(u)φ(v) =
cicj where f(u) = i and f(v) = j. Then as f is a homomorphism, ij ∈ E(H), and hence
cicj ∈ E(Gf [F ]). Hence G→ Gf [F ].

Corollary 4.20. Let G be a graph with no homomorphism to H, F a strict induced sub-
graph of G, and f a homomorphism from F → H. Then Gf [F ] does not admit a homo-
morphism to H. In particular, if G is k-critical, then Gf [F ] contains a k-critical subgraph
W , where at least one vertex of W is in V (G) \ V (F ).

Proof. If Gf [F ] → H then as G → Gf [F ], then composing homomorphisms implies that
G → H, a contradiction. If G is k-critical, G 6→ Kk−1, and hence Gf [F ] 6→ Kk−1.
Thus Gf [F ] contains a k-critical subgraph W , and further at least one vertex of W is
in V (G) \ V (F ), as otherwise G contains a k-critical subgraph as a strict subgraph, a
contradiction.

This motivates the following definitions.

Definition 4.21. Let G be a k-critical graph. Let F be a strict induced subgraph of G.
Let f be a k-colouring of F . Let W be a k-critical subgraph of Gf [F ]. Let X be the graph
induced in W by the vertices which are not vertices of G. We will call X the source. Let F ′

be the subgraph of G obtained by taking the induced subgraph in G, of vertices x, where
x ∈ f−1(y) for some y ∈ W ∩X, and any vertex z ∈ W \X and including all vertices of
F . We say F ′ is the extension of W and W is the extender of F .

The following lemma has effectively been proven before (see [31]).

Lemma 4.22. Let F be a strict induced subgraph of G and f a (k−1)-colouring of F . Let
W be a k-critical graph of Gf [F ], and let F ′ be the extension of W . Let X be the source
of f . Then the following hold

� v(F ′) = v(F ) + v(W )− v(X),

� e(F ′) ≥ e(F ) + e(W )− e(X), and

� T k−1(F ′) ≥ T k−1(F ) + T k−1(W \X).

Proof. Observe that V (F ′) = V (F ) ∪ (V (F ′) \ V (F )). Additionally, V (W ) = (V (F ′) \
V (F ))∪X. Thus V (F ′) = (V (F )∪V (W ))\X. Thus v(F ′) = v(F )+v(W )−v(X). From the
above identity and the fact that the subgraphs are induced that e(F ′) ≥ e(F )+e(W )−e(X).
Finally, consider a maximal set of k − 1-cliques both F and W \X, say T1 and T2. Then
T1∪T2 is a set of disjoint (k−1)-cliques in F ′, and has size T k−1(F ) +T k−1(W \X), which
gives the result.
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We will refer to the next lemma as the potential-extension lemma and will use it
frequently.

Lemma 4.23 (Potential-Extension Lemma). Let F be a strict induced subgraph of G and
fix a k-colouring φ of F . With respect to φ, let F ′,W and X be an extension, extender and
source of F . Then for any positive numbers a, b and c we have

p(F ′) ≤ p(F ) + p(W )− av(X) + be(X) + cT k−1(W )− cT k−1(W \X)

and
p(F ′) ≤ p(F ) + p(W )− av(X) + be(X) + cv(X).

Proof. Observe that T k−1(W ) ≤ T k−1(W \X)+v(X) since every vertex-disjoint k−1-clique
either lies in W −X or uses a vertex from X. Thus we have

p(F ′) = av(F ′)− be(F ′)− cT k−1(F ′)
≤ a(v(F ) + v(W )− v(X))− b(e(F ) + e(W )− e(X))− cT k−1(F )− cT k−1(W \X)

= p(F ) + p(W )− av(X) + be(X) + cT k−1(W )− cT k−1(W \X)

≤ p(F ) + p(W )− av(X) + be(X) + cv(X).

4.5 Properties of a minimum counterexample

In this section we prove lemmas regarding the structure of a vertex-minimum counterex-
ample. For this entire section, let G be a vertex-minimum counterexample to Theorem
1.64. Then p(G) ≥ −1.

Observation 4.24. G is not 4-Ore.

Proof. Observe that if G is 4-Ore, then by Theorem 1.60, p(G) = 2−T 3(G). If T 3(G) ≥ 4,
then p(G) ≤ −2. All other cases are covered as special cases of Theorem 1.64.

We note the well-known folklore result (See Fact 12 in [29]).

Theorem 4.25. If G is k-critical and has a two-vertex cut {x, y}, then G is the Ore
composition of two graphs H1 and H2.

Observation 4.26. G is not the Ore composition of two graphs H1 and H2. In other
words, G is 3-connected.
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Proof. Suppose not: that is, suppose G is the Ore composition of H1 and H2 with H1∩H2 =
{x, y}. From Observation 4.14, we have

p(G) = KY(H1) + KY(H2)− 2− T 3(G).

Note that if both H1 and H2 are 4-Ore, then G is 4-Ore and the claim follows from
Observation 4.24.
Case 1: H1 = K4.
First suppose that H2 = W5. Then T 3(G) ≥ 2 as every split of W5 contains at least one
triangle that does not contain at least one of x or y, and deleting any edge of W5 also
leaves at least one triangle that does not contain at least one of x or y. Therefore we have
p(G) ≤ 2 + 0− 2− 2 = −2 as desired. Thus H2 6= W5. Now suppose H2 ∈ B. Then either
G is in B, in which case T 3(G) = 2 and p(G) = 2+1−2−2 = −1 as desired, or T 3(G) ≥ 3,
in which case p(G) ≤ −2 as desired. Finally we have the case where p(H2) ≤ −2. Here it
follows that p(G) ≤ p(H2) ≤ −2 as desired.
Case 2: H1 is 4-Ore with T 3(G) = 2.
Then KY (H1) = 2. First suppose that H2 = W5. Then as above we have T 3(G) ≥ 2, and
hence p(G) ≤ −2 as desired. Now suppose H2 ∈ B. If G is in B, we have T 3(G) = 2, and
p(G) = −1 as desired. Therefore G is not in B and thus T 3(G) ≥ 3, but then p(G) ≤ −2
as desired. The last case is when p(H2) ≤ −2. In this case, by Proposition 4.4 we have
T 3(G) ≥ T 3(H2) + T 3(H1)− 2 ≥ T 3(H2), and so p(G) ≤ p(H2) ≤ −2 as desired.
Case 3: H1 is W5.
Suppose first H2 = W5. Immediately it follows that p(G) ≤ −4 as desired. Now suppose
that H2 ∈ B, then T 3(G) ≥ T 3(H2) + T 3(W5)− 1 ≥ T 3(H2) = 2 so p(G) ≤ −3 as desired.
Otherwise p(H2) ≤ −2 and p(G) ≤ p(H2) ≤ −2 as desired.
Case 4: H1 is in B.
If H2 ∈ B, we have p(G) ≤ −2 as desired. If p(H2) ≤ −2 then p(G) ≤ p(H2) ≤ −2 as
desired.
Case 5: p(H1) ≤ −2.
Note that the previous cases cover all outcomes except when p(H2) ≤ −2. In this case, it
follows that p(G) ≤ −2 as desired.

Lemma 4.27. If F is a subgraph of G with v(F ) < v(G), then p(F ) ≥ 3. Further,
p(F ) ≥ 4 unless one of the following occurs: G \F is a triangle of degree three vertices, or
G \ F is a vertex of degree three, or G contains a kite.

Proof. Suppose not. Let F be a counterexample that is maximal with respect to v(F ) and,
subject to that, with p(F ) minimized. We may assume that F is an induced subgraph,
as adding edges reduces the potential. Observing that p(K1) = 5, p(K2) = 7, p(P2) = 9
(where P2 is the path of length two), and p(K3) = 5, we may assume that v(F ) ≥ 4. Let
φ be a 3-colouring of F , and let F ′,W,X be an extension, extender, and source of Gφ[F ]
respectively. If F ′ 6= G, then by the potential-extension lemma (Lemma 4.23) we have
p(F ′) ≤ p(F ), which implies that F ′ is a larger counterexample. Therefore F ′ = G. We
split into cases.
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Throughout let f be a function that takes as input the number of vertices of X, and
returns 5 if v(X) = 1, 7 if v(X) = 2, and 6 if v(X) = 3.
Case 1: W = K4.
First suppose that v(X) = 1. Then by the potential-extension lemma, −1 ≤ p(F ) + 1− 5
which implies that p(F ) ≥ 3. If further, p(F ) ≥ 4, then we are done, so we can assume that
p(F ) = 3. Observe that G \ F contains three vertices, and they must induce a triangle as
W−X is a triangle. Let T be the triangle in G\F . Then −1 ≤ p(G) ≤ p(F )+5−3e(T, F ),
where e(T, F ) is the number of edges with one endpoint in T and one endpoint in F . If
e(T, F ) ≥ 4, then we have −1 ≤ p(F ) − 7 so p(F ) ≥ 6. Hence e(T, F ) ≤ 3. But as G is
4-critical, the minimum degree is three, hence e(T, F ) ≥ 3 and T is a triangle of degree
three vertices.

If v(X) = 2, then −1 ≤ p(F ) + 1− 7 + 1 which implies that p(F ) ≥ 4.

If v(X) = 3, then −1 ≤ p(F )+1−6+1 which gives p(F ) ≥ 3. If further p(F ) ≥ 4, then
we are done. So we can assume that p(F ) = 3. Note that G \ F is a single vertex v. We
want to argue that this vertex has degree three. Note that −1 ≤ p(G) ≤ p(F )+5−3d(v) =
8− 3d(v). As G is 4-critical, d(v) ≥ 3, and by the inequality, d(v) ≤ 3, hence d(v) = 3.
Case 2: W is 4-Ore with T 3(W ) = 2.
If v(X) = 1, then −1 ≤ p(F ) + 0 − 5 + 1 so p(F ) ≥ 3. As W is 4-Ore with T 3(G) = 2,
by Lemma 4.8 either W contains two vertex-disjoint kites, or W = M . If W 6= M , then
G contains a kite. If W = M , and the vertex in X is not the unique degree four vertex in
the Moser spindle, then G contains a kite.

Otherwise X contains only the unique vertex of degree four in the Moser spindle, and in
this case T 3(W −X) = 2, so from the potential-extension lemma we get −1 ≤ p(F )+0−5
which implies that p(F ) ≥ 4. Thus it follows that either G contains a kite or p(F ) ≥ 4.

If v(X) ∈ {2, 3}, then −1 ≤ p(F ) − f(X) + 1. To see this, note that by Lemma 4.8,
W contains two edge-disjoint kites that share at most one vertex. It follows from this that
T 3(W \X) ∈ {1, 2}. Since f(X) ≥ 6, it follows that p(F ) ≥ 4.
Case 3: W = W5.
Observe that deleting any of a vertex, K2 or triangle in W5 may result in having no triangles
left over. Hence, for any v(X) ∈ {1, 2, 3}, we have −1 ≤ p(F ) − 1 − f(X) + 1. Thus as
f(X) ≥ 5, p(F ) ≥ 4 as desired.
Case 4: W ∈ B.
Note that in this case T 3(W ) = 2. If v(X) = 1, then T 3(W \ X) ≥ 1, and so −1 ≤
p(F )− 1− 5 + 1 which gives p(F ) ≥ 4. If v(X) ∈ {2, 3}, then −1 ≤ p(F )− 1− f(X) + 2,
which gives p(F ) ≥ 4.
Case 5: W is 4-Ore with T 3(W ) = 3.
If v(X) = 1, then T 3(W \X) ≥ 2. Thus −1 ≤ p(F )− 1− 5 + 1 which gives p(F ) ≥ 4. If
v(X) ∈ {2, 3}, then −1 ≤ p(F ) − 1 − f(X) + 2, which gives p(F ) ≥ 4. (Note that in the
v(X) = 3 case, we are using the fact that T 3(W \X) ≥ 1 (see Observation 4.2)).
Case 6: All other cases.
If v(X) = 1, then −1 ≤ p(F ) − 2 − 5 + 1 which gives p(F ) ≥ 4. If v(X) = 2, then
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−1 ≤ p(F ) − 2 − 7 + 2 which gives p(F ) ≥ 6. If v(X) = 3, then −1 ≤ p(F ) − 2 − 6 + 3
which gives p(F ) ≥ 4. This is all possible cases, so the result follows.

We will attempt to strengthen this bound now.

Lemma 4.28. G does not contain K4 − e as a subgraph.

Proof. Suppose not. Let F be a K4 − e subgraph in G where e = xy and w, z are the two
other vertices in F , where we pick F so that the number of degree three vertices in F which
are degree three in G is maximized. Note that as G 6= K4, F is an induced subgraph. We
claim that x and y have no common neighbours aside from w and z. Suppose not, and
let u be a common neighbour of x and y with u 6∈ {w, z}. By 4-criticality, G − ux has
a 3-colouring, say f . Then f(u) = f(x) as otherwise G has a 3-colouring. Notice in any
3-colouring of F , f(x) = f(y). But then uy ∈ E(G) and f(u) = f(y), a contradiction.
Hence x and y have no common neighbours outside {w, z}.

Fix any 3-colouring of F , and let F ′,W and X be an extension, extender, and source
of F . By the potential-extension lemma, we have

p(F ′) ≤ p(F ) + p(W )− 5v(X) + 3e(X) + T 3(W )− T 3(W \X).

Observe that p(F ) = 4. Throughout the proof of this lemma, we let d be the vertex
obtained by identifying x and y. Note that since W 6⊆ G, it follows that d ∈ X.

We now split into cases depending on what graph W is.
Case 1: W = K4.
First suppose v(X) = 3. In this case, w, z, and one of y and x share a common neighbour,
and so G contains a K4. This is a contradiction, as K4 is 4-critical and G 6= K4.

Now suppose v(X) = 2. Then without loss of generality let X = {z, d}. Then there is
a subgraph H of G where V (H) = V (F )∪ {u, u′} and there are edges u′z, u′u, u′x, uy, uz
and E(F ). But this subgraph is W5, so G = W5, a contradiction.

Finally suppose that v(X) = 1. Then similarly to the above argument, G is isomorphic
to the Moser spindle, and we are done.
Case 2: W is 4-Ore with T 3(W ) = 2.
First suppose that v(X) = 1. Then it follows that G contains a subgraph H that is the
Ore composition of W and K4. Since H is 4-critical, G = H. This implies that G is 4-Ore,
contradicting Observation 4.24.

Now suppose that v(X) = 2. By Lemma 4.8, W contains two edge-disjoint kites that
share at most a vertex. Thus T 3(W \X) ≥ 1. By the potential-extension lemma, we have
p(F ′) ≤ 4 + 0 − 7 + 1 which gives p(F ′) ≤ −2. If F ′ ⊂ G, this contradicts Lemma 4.27.
If F ′ = G, this contradicts the assumption that since G is a counterexample to Theorem
1.64, p(G) ≥ −1.

Now suppose v(X) = 3. Note that by Lemma 4.8, W contains two edge-disjoint kites
that share at most one vertex. Thus T 3(W \X) ≥ 1. By the potential-extension lemma, we
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have p(F ′) ≤ 4+0−6+1 which implies that p(F ′) ≤ −1. By Lemma 4.27, since F ′ ⊆ G, it
follows that F ′ = G. Thus G is obtained from W by unidentifying d into x and y. Note as
x and y have no common neighbours aside from w and z, and every vertex in G has degree
at least three, d has degree at least four in W . First consider the case where W = M .
Then d is the unique vertex of degree four in M . As G is obtained by unidentifying d to
x and y, it follows that either G is 3-regular, in which case as G 6= K4, G is 3-colourable
by Brook’s Theorem, or G has a vertex of degree two, contradicting 4-criticality. Hence
W 6= M . Therefore by Lemma 4.8, W contains two vertex-disjoint kites. As G is obtained
by unidentifying d, this implies that G contains a kite. But note that both w and z have
degree at least three in W , as W is 4-critical, and thus in G after unidentifying, have degree
at least four. But this contradicts our choice of F , as we picked F to contain the largest
number of vertices which are degree three in the K4 − e and in G.
Case 3: W = W5.
If v(X) = 1, then G is an Ore composition of K4 and W5, a contradiction to Observation
4.26. If v(X) ∈ {2, 3}, then by the potential-extension lemma we have p(F ′) ≤ 4−1−6+1
which gives p(F ′) ≤ −2. If F ′ ⊂ G, this contradicts Lemma 4.27. If F ′ = G, this
contradicts the assumption that p(G) ≥ −1.
Case 4: W ∈ B.
If v(X) = 1, then G is the Ore composition of W and K4, contradicting Observation 4.26.
If v(X) ∈ {2, 3}, then by the potential-extension lemma we have p(F ′) ≤ 4 − 1 − 6 + 1
which gives p(F ′) ≤ −2. As in Case 3, this leads to a contradiction.
Case 5: W is 4-Ore with T 3(G) = 3.
If v(X) = 1, then G is 4-Ore, contradicting Observation 4.24. If v(X) = 2, then p(F ′) ≤
4− 1− 7 + 2 and p(F ′) ≤ −2. As in Cases 3 and 4, this leads to a contradiction.

So v(X) = 3. In this case we claim F ′ is all of G. If not, take any 3-colouring ψ of
F ′ (which exists by 4-criticality). As x and y get the same colour in this 3-colouring, this
implies when we identify x and y, we get a 3-colouring of W , contradicting that W is
4-critical. Hence F ′ = G.

If T 3(W \X) ≥ 2, then by the potential-extension lemma we have p(F ′) ≤ 4−1−6+1,
which gives p(F ′) ≤ −2, a contradiction.

Therefore by Lemma 4.10 it follows that W −X contains a kite.

Let K be the kite in W −X, with spar st. We claim there is at most one edge from F
to K: otherwise, p(G[V (F )∪V (K)]) ≤ 5(8)−3(10+2)−2 = 2, contradicting Lemma 4.27.
(Note trivially G[V (F ) ∪ V (K)] 6= G, since T 3(W ) = 3 but T 3(G[V (F ) ∪ V (K)]) = 2.)
Thus at least one of s and t has degree three in G. It now suffices to argue that w and z
do not have degree three in G, thus contradiction our choice of F .

To see this, note that since W is 4-critical, both w and z have degree at least three in
W . But G is obtained from W by unidentifying d into the vertices x and y. As x and y
share w and z as neighbours, w and z have degree at least four in G. But this contradicts
that we picked F such that the number of degree three vertices in the K4 − e subgraph
which have degree three in G is maximized, a contradiction.
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Case 6: All other cases.
In this case, p(W ) ≤ −2. If v(X) = 1, then p(F ′) ≤ 4− 2− 5 + 1 ≤ −2, a contradiction.
If v(X) = 2, then p(F ′) ≤ 4− 2− 7 + 2 ≤ −3, a contradiction.

Lastly, assume that v(X) = 3. In this case, by a similar argument as in Case 5,
F ′ = G, and thus G is obtained from W by splitting d. Then T 3(G) ≥ T 3(W ) − 1, and
thus p(G) = p(W ) + 5− 6 + 1 ≤ −2, a contradiction.

Let D3(G) be the subgraph of G induced by the vertices of degree three. Now we will
build towards showing that D3(G) is acyclic, and further if a vertex of degree three is in a
triangle, then it is the only vertex of degree three in this triangle.

Definition 4.29. For an induced subgraph R of G, where R 6= G, we say u, v ∈ V (R) are
an identifiable pair if R + uv is not 3-colourable.

Lemma 4.30. If R is an induced subgraph of G with R 6= G, v(R) ≤ v(G)− 3, and such
that G \R is not a triangle of degree three vertices, then R has no identifiable pair.

Proof. Suppose not. Let x and y be an identifiable pair in R, and consider R + xy. As
R + xy is not 3-colourable by definition, there exists a 4-critical subgraph W of R + xy.
Moreover, since T 3(W − xy) ≥ T 3(W ) − 1, we have that p(W − xy) ≤ p(W ) + 4 (note
that xy ∈ E(W ), as otherwise G contains a 4-critical subgraph, a contradiction). By the
assumptions, Lemma 4.27 implies that p(W − xy) ≥ 4. If p(W ) ≤ −1, then we obtain a
contradiction. If W = K4, then G has a K4 − e subgraph, contradicting Lemma 4.28. If
W is 4-Ore with T 3(G) = 2, then by Lemma 4.8, G contains a K4 − e subgraph, again
contradicting Lemma 4.28. For all other W , we have p(W ) ≤ −1, and thus we get a
contradiction.

For a subgraph H, let the neighbourhood of H, denoted N(H) be the set of vertices not
in H which have a neighbour in H. We will need the following well-known consequence of
the Gallai-Tree Theorem [14].

Theorem 4.31. Let C be a cycle of degree three vertices in a 4-critical graph. Then v(C)
is odd, N(C) induces an independent set, and in any 3-colouring of G− C, all vertices in
N(C) receive the same colour.

Corollary 4.32. All cycles in D3(G) are triangles.

Proof. Let C be a cycle in D3(G) where v(C) ≥ 5. If |N(C)| = 1, then since G has
minimum degree three, it follows that G is isomorphic to an odd wheel. If G = W5, then
G is not a counterexample to Theorem 1.64. So we may assume that v(C) ≥ 7. Note that
v(G) = v(C)+1, and e(G) = 2v(C). So p(G) = 5(v(C)+1)−6v(C)−1 = −v(C)+4 ≤ −3
since v(C) ≥ 7. Thus |N(C)| ≥ 2. Then by Theorem 4.31, any pair of vertices in N(C)
are an identifiable pair in G. This contradicts Lemma 4.30 as v(G− C) < v(G)− 3.
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x y z

x′ x′′

Figure 4.1: An example of the M -gadget outcome in Lemma 4.34

Corollary 4.33. If T is a triangle in G, then V (T ) does not contain exactly two vertices
of degree three.

Proof. Suppose not. Let x, y and z induce a triangle where x and y are vertices of degree
three and z has degree at least four. Let x′ and y′ be the unique other neighbours of x
and y respectively. Note x′ 6= y′ as otherwise G contains a subgraph isomorphic to K4− e,
contradicting Lemma 4.28.

If x′y′ ∈ E(G), then any 3-colouring of G − {x, y} extends to a 3-colouring of G, a
contradiction. In particular, every 3-colouring of G−{x, y} gives x′ and y′ the same colour
and hence G− {x, y} contains an identifiable pair.

So consider G−{x, y}+ {x′y′}. Then there is a 4-critical subgraph W containing x′y′,
and p(W − x′y′) ≤ p(W ) + 4. By the same argument as in Lemma 4.30, it suffices to show
H := G \ (W − x′y′) is not a triangle of degree three vertices, or a single vertex of degree
three. Notice that H is not a vertex of degree three, as both x and y are in V (H). We
claim H is not a triangle of degree three vertices. If so, then z 6∈ V (H), as d(z) ≥ 4, but
then as x, y ∈ V (H), x and y lie in a triangle of degree three vertices. But then as x, y, z
induce a triangle, G contains a K4 − e subgraph, again contradicting Lemma 4.28.

An M-gadget is a graph obtained from M by first splitting the vertex v of degree
four into two vertices v1 and v2 such that there is no K4 − e in the resulting graph,
N(v1)∩N(v2) = ∅, and N(v) = N(v1)∪N(v2), and after this, adding a vertex v′ adjacent
to only v1 and v2. We call v′ the end of the M gadget.

Lemma 4.34. Let C be a component of D3(G) with v(C) ≥ 3. Let x, y, z ∈ V (C) such
that such that xy, yz ∈ E(G), and y, z do not lie in a triangle of degree three vertices. Let
x′, x′′ be two neighbours of x which are not y. Then either x′x′′ ∈ E(G), or x, x′, x′′ lie in
an M-gadget with end x, and this M-gadget does not contain y or z.

Proof. Suppose not. Then x′x′′ 6∈ E(G), so identify x′ and x′′ into a new vertex x′′′, and let
G′ be the resulting graph. Note neither x′ nor x′′ is z, as otherwise x, y, z lie in a triangle
of degree three vertices. Moreover, if there exists a 3-colouring of G′, then this 3-colouring
readily extends to G. Hence G′ is not 3-colourable. Let W ′ be a 4-critical subgraph of G′.
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Note that y and z are not in W ′, since after identifying x′ and x′′, x has degree two, which
implies that x 6∈ V (W ′), and in G′ − x, y has degree two hence y 6∈ V (W ′), and similarly
this implies that z 6∈ V (W ′).

Let W = W ′\{x′′′}∪{x, x′, x′′}. If T 3(W ) = T 3(W ′)−1, we have p(W ) ≤ p(W ′)+10−
6+1 = p(W ′)+5, and otherwise p(W ) ≤ p(W ′)+4. Note that G\W is not a single vertex
of degree three as both y and z are in G\W , and G\W is not a cycle of degree three vertices
as y and z do not lie in a cycle of degree three vertices by assumption. Thus by Lemma
4.27, we have that p(W ) ≥ 4. Hence if p(W ′) ≤ −2 we get a contradiction. Observe that
W ′ 6= K4, as W is obtained from W ′ by splitting x′′′ into two vertices, and that would
imply that G contains a K4 − e subgraph, contradicting Lemma 4.28. If T 3(W ′) = 2 and
W ′ is 4-Ore, then if W ′ is not M , G contains a K4 − e subgraph. Again, this contradicts
Lemma 4.28. Further, if W ′ = M , and the split is not on the unique vertex of degree four
in such a way that does not leave a K4− e, then G contains a K4− e subgraph. Therefore,
x is the end of an M -gadget.

Now consider the case where T 3(W ′) = 3 and is 4-Ore, or W ′ ∈ B. By Lemma 4.13 and
Lemma 4.18 then either splitting x′′′ does not reduce the number of triangles, or G contains
a K4−e, or in W \x either x′ or x′′ has degree one and is incident to a foundational edge in
G. The first case gives a contradiction as then p(W ) ≤ p(W ′) + 4, and p(W ′) ≤ −1, which
contradicts that p(W ) ≥ 4. The second case contradicts that G has no K4 − e subgraph.
Therefore without loss of generality suppose that x′ has degree one in W ′ after splitting
x′′′ back into x′ and x′′ and that the edge incident to x′ is foundational in W ′. Let the
other endpoint of this foundational edge be y′. Now we claim that in any 3-colouring of
W ′′ := W ′ − x′′′ ∪ {x′′}, x′′ and y′ get the same colour. If not, then we have a 3-colouring
of W ′, which contradicts that W ′ is 4-critical. Hence W ′′ contains an identifiable pair.
Further, y, z, x, x′ 6∈ V (W ′′). Thus we contradict by Lemma 4.30.

See Figure 4.1 for an illustration of the M -gadget outcome.

Corollary 4.35. D3(G) does not contain an induced path of length four.

Proof. Suppose not, and let v1, v2, v3, v4, v5 be such a path. Let x3 be the vertex not v2
and v4 which is incident to v3. By Lemma 4.33, x3v2 6∈ E(G) and x3v4 6∈ E(G). Further as
the path is induced, v2, v3, v4 does not induce a triangle. Additionally, v4 and v5 are not in
a triangle of degree three vertices as the path is induced. Hence by Lemma 4.34, applied
to v3, v4, v5 with v3 playing the role of x, v3 is the end of a M -gadget containing v2 and x3
but not v4 or v5. This implies that v1 is in a triangle, say v1, u1, u2 and by Lemma 4.33
both u1 and u2 have degree at least four. Now we apply Lemma 4.34 to v2 v3, v4 with v2
playing the role of x. By similar reasoning as above, v2 is not in a triangle and v3 and v4
do not lie in a triangle of degree three vertices, and thus v2 lies in an M -gadget say M ′.
We claim the subgraph M ′ is not induced. First observe that v1 ∈ V (M ′), since v2 has
degree three. Then it follows that u1, u2 ∈ V (M ′), as v1 ∈ V (M ′) and v1 has degree three.
Further, as v2 is the degree two vertex in the M -gadget, the edge u1u2 does not lie in M ′.
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Let H ′ = M ′ ∪ {u1u2}. Then v(H ′) = 9 and e(H ′) ≥ 14 so p(H ′) ≤ 45− 42− 2 = 1. This
contradicts Lemma 4.27.

Corollary 4.36. If C is an acyclic component of D3(G), then v(C) ≤ 6.

Proof. Let P be a longest path in a component C. First suppose that P is a path of length
3, say v1, v2, v3, v4. Then v2 and v3 are adjacent to at most one vertex not in the path,
say v′2 and v′3 respectively. Suppose v′2 has degree three. Then v′2 is not adjacent to a
vertex u ∈ D3(G)\{v2}. If not, the path u, v′2, v2, v3, v4 is an induced path on five vertices,
contradicting Corollary 4.35. Applying a similar argument to v′3 we see that v(C) ≤ 6 in
this case. Now suppose that P is a path of length 2, say v1, v2, v3. If v2 is adjacent to a
vertex of degree three, say v′2, then v′2 is not adjacent to another vertex of degree three, as
otherwise we have a path of length 3, contradicting our choice of P . Hence in this case,
v(C) ≤ 4. Lastly, if the longest path has length at most one, then v(C) ≤ 2 as desired.

Now we build towards proving every component of D3(G) is acyclic.

Lemma 4.37. Let {x, y, z} ⊆ V (G) induce a triangle C of degree three vertices. Then at
most one vertex in N(C) has degree three.

Proof. First observe that |N(C)| = 3. If not, either G = K4, or G is not 2-connected,
which in either case gives a contradiction. Let x′, y′, z′ be the vertices in N(C), where x′

is adjacent to x, y′ is adjacent to y, and z′ is adjacent to z. Without loss of generality,
suppose that x′ and y′ both have degree three. Note that yy′ is not in a triangle of degree
three vertices as otherwise G contains a K4 − e, contradicting Lemma 4.28. Thus Lemma
4.34 applies to x, y, y′. Since x′z 6∈ E(G), x is the end of an M -gadget not containing y or
y′. But now it follows that there are two vertex-disjoint triangles in G−x−y−z, and hence
T 3(G) ≥ 3. As G is not 4-Ore, KY(G) ≤ 1, and thus p(G) ≤ −2, a contradiction.

Lemma 4.38. D3(G) is acyclic.

Proof. Suppose not. Let T be a triangle in D3. As G is 3-connected and G 6= K4, it follows
that |N(T )| = 3. By Theorem 4.31 all vertices of N(T ) receive the same colour in any
three colouring. Hence every pair of vertices in N(T ) are an identifiable pair in G−T . Let
R := G− T . Let x, y be two vertices in N(T ), such that y is adjacent to a vertex z in T .
Observe that in R+xy, we have a 4-critical graph W , and since T 3(W −xy) ≥ T 3(W )−1,
we have that

p(W − xy) ≤ p(W ) + 4. (4.39)

If W = K4, then G has a K4− e subgraph, contradicting Lemma 4.28. If W is 4-Ore with
T 3(G) = 2, then by Lemma 4.8, again G contains a K4−e subgraph, contradicting Lemma
4.28. If p(W ) ≤ −2, then we obtain a contradiction to Lemma 4.27. Further, we can
assume that W 6= W5 since otherwise p(W −xy) = 5(6)−3(9)−1 = 2, again contradicting
Lemma 4.27. Additionally, if W − xy 6= R, then we obtain a contradiction to Lemma 4.27
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when p(W ) ≤ −1. Thus we can assume that W = R+xy and that either W is 4-Ore with
T 3(W ) = 3, or W ∈ B.

First assume that W is 4-Ore with T 3(W ) = 3. Now consider splitting x into two
vertices x1 and x2 such that d(x1) = 1 and x1 is only adjacent to y. Let W x denote this
graph. Note that W x ⊂ G with x2 playing the role of x and x1 playing the role of z. By
Lemma 4.13 either W x has T 3(W x) ≥ T 3(W ), W x contains a K4−e, or xy is a foundational
edge. If W x has T 3(W x) ≥ T 3(W ), then since T 3(W x) = T 3(W x − x1y) = T 3(W − xy) it
follows that Equation 4.39 can be strengthened to p(W−xy) ≤ p(W )+3. Since p(W ) = −1
and W − xy ⊂ G, this contradicts Lemma 4.27. If W x contains a K4 − e, then G contains
a K4 − e, contradicting Lemma 4.28. Therefore we can assume that xy is a foundational
edge, and by Lemma 4.12 such an edge is the spar of a kite. Thus in W − xy, both x
and y have degree two, which implies that in G, both x and y have degree three. But this
contradicts Lemma 4.37.

Therefore we can assume that W is in B. Then xy is a foundational edge, as otherwise
by Lemma 4.13 either G− xy contains a K4 − e subgraph, contradicting Lemma 4.28, or
as above we can strengthen Equation 4.39 and obtain a contradiction. If W 6= T8, then by
Lemma 4.17 we have that xy is the spar of a kite. Then in W − xy, both x and y have
degree two, which implies that in G, both x and y have degree three, contradicting Lemma
4.37. Therefore W = T8. As W = R+xy = G−T +xy, our entire graph is T8−u1u2 +T .
In this case, we label the vertices of T by setting T = v1v2v3v1. We may assume without
loss of generality, v1 is adjacent to u1, and v2 is adjacent to u2. Moreover, by Theorem
4.31, the neighbour of v3 outside of {v1, v2} forms an independent set with {u1, u2}. It
follows that the third edge incident with v3 is incident with a vertex in {u6, u7, u8}. It is
easy to verify that the resulting graph is 3-colourable. As these are all the cases, it follows
that D3(G) is acyclic.

From the above sequence of lemmas, we obtain the following corollary.

Corollary 4.40. Every component in D3(G) has at most six vertices.

4.6 Discharging

In this section we provide the discharging argument which shows a vertex-minimum coun-
terexample does not exist. We start off by showing that there exists a component of D3(G)
with at least three vertices.

Lemma 4.41. There exists a component of D3(G) with at least three vertices.

Proof. Suppose not. Let F be the subgraph of G with V (F ) = V (G) and E(F ) = {xy ∈
E(G) | d(x) ≥ 4 and d(y) ≥ 4}.

Claim 4.42. F is not bipartite.
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Proof. Suppose not. Let (A,B) be a bipartition of F . By the assumption, every component
of D3(G) contains at most two vertices, and by Corollary 4.33, each triangle contains at
most one vertex of degree three. It follows that D3(G) ∪ {A} is bipartite. Now colour
D3(G) ∪ {A} with colours 1 and 2, and colour B = G−D3(G)−A with colour 3. This is
a proper 3-colouring of G, contradicting that G is 4-critical.

Set chi(v) = d(v) for each vertex v ∈ V (G), and have every vertex of degree at least
four send 1

6
charge to each neighbour of degree three. For each v ∈ V (G), let chf (v) denote

the final charge of v. Note that all degree three vertices end up with 10
3

final charge, and
if v has degree at least four, then chf (v) = 10

3
if and only if d(v) = 4 and v is adjacent

to exactly four vertices of degree three. Further, if either of those conditions do not hold,
the final charge of v is at least 10

3
+ 1

6
. Therefore for every edge e = xy ∈ E(F ), we have

chf (x) ≥ 10
3

+ 1
6

and chf (y) ≥ 10
3

+ 1
6
. Thus it follows that

∑
v∈v(G)

chf (v) ≥ 10v(G)

3
+
e(F )

3
.

Since F is not bipartite, e(F ) ≥ 3. Then we have

2e(G) ≤ 10v(G) + 3

3
.

Thus it follows that

p(G) ≤ KY(G) ≤ −3

2
.

Since potential is integral, we get that p(G) ≤ −2, contradicting that G is a counterexam-
ple.

Now we proceed with the main discharging argument. We assign to each vertex v ∈
V (G) an initial charge chi(v) = d(v). We discharge in three steps: in each step, the
discharging occurs instantaneously throughout the graph. The final charge will be denoted
by chf . For v ∈ V (G), let i3(v) denote the number of neighbours of v that are isolated
vertices in D3(G).

Discharging Steps

1. If u is a vertex of degree at least four, uv is an edge, and v is a vertex of degree three,
then u sends 3chi(u)−10

3d3(u)
charge to v.

2. If u is an isolated vertex in D3(G), u sends 1
18

charge to each adjacent vertex in G.

3. Let u be a vertex of degree at least four, and let f(u) be the total charge received by

u in Step 2. The vertex u sends f(u)
d3(u)−i3(u) charge to each adjacent vertex of degree

three that is not isolated in D3(G).
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We will show that after discharging, the sum of the charges is at least v(G)
(
10
3

)
. Note

that by the discharging rules, we have immediately that every vertex of degree at least
four has final charge at least 10

3
. In light of this, we will focus our attention on vertices of

degree three: let C be a component in D3(G), and let chf (C) =
∑

v∈V (C) chf (v).

We note the following.

Observation 4.43. If u sends charge to v in Step 1, then u sends v at least 1
6

charge.

Claim 4.44. If C is an isolated vertex, then chf (C) ≥ 10
3

.

Proof. Let v ∈ V (C). Note that chi(v) = d(v) = 3. Since v is isolated in D3(G), every
neighbour of v has degree at least four. Thus by Observation 4.43, v receives at least 1

6
from

each of its neighbours in Step 1. Moreover, v returns at most 1
18

to each of its neighbours
in Step 2. It follows that:

chf (v) ≥ 3 + 3

(
1

6

)
− 3

(
1

18

)
=

10

3

as desired.

Claim 4.45. If C is a path of length one, then chf (C) ≥ v(C)
(
10
3

)
.

Proof. Let v1v2 ∈ V (C). Note that chi(v1) = chi(v2) = 3, and that by Observation 4.43,
each of v1 and v2 receive at least 1

6
from each of their neighbours of degree at least four.

It follows that:

chf (C) ≥ chi(v1) + 2

(
1

6

)
+ chi(v2) + 2

(
1

6

)
= 2

(
10

3

)
,

as desired.

For the remaining cases, we will make use of the following.

Claim 4.46. If v is a leaf in a tree C ⊆ D3(G) with v(C) ≥ 3, then v receives at least 4
9

charge from its neighbourhood during Step 1.

Proof. As v is a leaf in a tree with at least three vertices, there exists a path vuw in C. Let
x and y be two neighbours of v which are not u. By Lemma 4.34, either xy ∈ E(G), or x,
v, and y lie in an M -gadget with end v that does not contain u or w. If xy ∈ E(G), then
note that d3(x) ≤ d(x)− 1, and likewise d3(y) ≤ d(y)− 1. In this case, each of z ∈ {x, y}
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sends at least d(z)
d(z)−1 −

10
3(d(z)−1) to x. Since d(z) ≥ 4, it follows that v receives at least 2

9

from each of x and y, and so at least 4
9

in total.

If xy 6∈ E(G), then v, x, and y lie in an M -gadget with end v. Thus there exist two
triangles T and T ′ such that x is adjacent to a vertex a ∈ V (T ) and a′ ∈ T ′, and y is
adjacent to a vertex b 6= a in V (T ) and b′ 6= a′ in V (T ′). Note by Corollary 4.33, each of
T and T ′ contain at most one vertex of degree three. Thus at least two of {a, a′, b, b′} have
degree at least four. Without loss of generality, we may assume that either a and a′ have
degree at least four, or that a and b′ have degree at least four. In the first case, x sends at
least 1

3
to v, and y sends at least 1

6
to v. Thus v receives at least 1

2
from x and y. In the

second case, each of x and y sends at least 2
9

to v, and so v receives at least 4
9
.

Thus v receives at least 4
9

charge from its neighbourhood.

Claim 4.47. If C = v1v2v3 is a path of length 2, then chf (C) ≥ v(C)
(
10
3

)
.

Proof. By Claim 4.46, each of v1 and v3 receives at least 4
9

units of charge from its neigh-
bourhood during Step 1. Moreover, by Observation 4.43, v2 receives at least 1

6
units of

charge during Step 1. Thus

chf (C) ≥ chi(v1) +
4

9
+ chi(v2) +

1

6
+ chi(v3) +

4

9

=
181

18

> 3

(
10

3

)
,

as desired.

Claim 4.48. If C is a star with four vertices, then chf (C) ≥ 4
(
10
3

)
.

Proof. By Claim 4.46, each leaf in C receives at least 4
9

from its neighbourhood during
Step 1 of the discharging process. Moreover, each u ∈ V (C) has chi(u) = 3. Thus

chf (C) ≥
(

4

9
+ 3

)
+

(
4

9
+ 3

)
+

(
4

9
+ 3

)
+ 3

= 12 +
4

3

= 4

(
10

3

)
,

as desired.

For the remaining cases, we will need the following lemma.
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Lemma 4.49. Let v be a leaf in a tree C ⊆ D3(G) with v(C) ≥ 3, and let u,w be the
neighbours of v that are not contained in C. Suppose u,w are contained in an M-gadget
with end v. At the end of the discharging process, v will have received at least 1

2
charge

from its neighbours.

Proof. By the structure of M -gadgets, there exist two distinct triangles T and T ′ such that
u is adjacent to vertex a in T and a′ in T ′, w is adjacent to b 6= a in T and b′ 6= a′ in
T ′. First, we note that if either d(u) ≥ 5 or d(w) ≥ 5, we are done. To see this, suppose
without loss of generality that d(u) ≥ 5. Note that by Lemma 4.33, at most one vertex
in T and at most one vertex in T ′ has degree three. If both b and b′ have degree at least
four, then in Step 1 u sends v at least 1

3
and w sends v at least 1

3
. If a and a′ have degree

at least four, then in Step 1 u sends v at least 5
9
. Finally, if a and b′ have degree at least

four, then in Step 1 u sends v at least 5
12

, and w sends v at least 2
9
. In all cases, v receives

at least 1
2
.

Thus we may assume that d(u) = d(w) = 4. We now break into cases depending on
the degrees of a, b, a′, and b′.

Case 1. Precisely one of a, b, a′, and b′ has degree three.
Suppose d(a) = 3. Then w is adjacent to at least two vertices of degree not equal to three,
and so w sends at least 1

3
to v in Step 1. Moreover, u is adjacent to a′ with d(a′) 6= 3, and

so u sends v at least 2
9

in Step 1. By Lemma 4.33, since a is contained in a triangle, it
follows that a is isolated in D3(G). Thus a sends 1

18
to u in Step 2. Since a is isolated and

d(a′) 6= 3, we have that u sends at least 1
18(d(u)−2) to v in Step 3. As our choice for a was

arbitrary but d(u) = d(w) = 4, it follows that v receives at least

1

3
+

2

9
+

1

18(4)− 36
=

7

12

during discharging.

Case 2. Either d(a) = d(a′) = 3, or d(b) = d(b′) = 3.
Suppose d(a) = d(a′) = 3. Then u sends v at least 1

6
in Step 1. By Lemma 4.33, neither

b nor b′ has degree three, and so w sends v at least 1
3

in Step 1. By Lemma 4.33, since a
and a′ are each contained in a triangle, it follows that both a and a′ are isolated in D3(G).
Thus each of a and a′ sends 1

18
to u in Step 2, and so u sends at least 1

9(d(u)−2) to v in Step
3.

As our choice of premise was arbitrary and d(u) = d(w) = 4 by assumption, it follows
that v receives at least

1

6
+

1

3
+

1

9(4− 2)
=

5

9

during discharging.

Case 3. d(c) = d(d′) = 3 for c ∈ {a, b} and d ∈ {a, b} \ {c}.
Suppose d(a) = d(b′) = 3. By Lemma 4.33, each of a and b′ are isolated in D3(G), and so
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each of u and w sends v at least 2
9

in Step 1. Moreover, a sends u 1
18

charge in Step 2;
similarly, b′ sends w 1

18
charge in Step 2. Thus v receives at least 1

18(d(u)−2) from u in Step

3, and at least 1
18(d(w)−2) from w in Step 3. It follows that v receives at least

2

9
+

2

9
+

2

18(4− 2)
=

1

2

during discharging.

The result follows.

Claim 4.50. If V (C) = {v1, v2, v3, v4, v5} and E(C) = {v1v2, v1v3, v1v4, v4v5}, then ch2(C) ≥
v(C)

(
10
3

)
.

Proof. Let u1, u2 be the neighbours of v2 that are not in C. Let w1, w2 be the neighbours
of v3 not in C. Note by Lemma 4.34 applied to the path v4v1v2, either u1u2 ∈ E(G) or
u1, u2, and v2 are in an M -gadget with end v2. By symmetry, either w1w2 ∈ E(G) or
w1, w2, and v3 are in an M -gadget with end v3. We will aim to show u1u2 6∈ E(G) (and
by a symmetrical argument, w1w2 6∈ E(G)) as otherwise we are done. To see this, suppose
not. To see this, suppose not. Then u1u2 ∈ E(G). By Lemma 4.34 applied to the path
v5v4v1, since v2v3 6∈ E(C) it follows that v1, v2, and v3 are in an M -gadget with end v1.
Thus since d(v2) = d(v3) = 3, up to relabelling of w1, w2 there exist triangles T1 and T2
with u1w1 ∈ T1 and u2w2 in T2. Note that each of u1, u2, w1, and w2 has degree at least
four as they are not contained in C. Since u1u2 ∈ E(G) by assumption, each of u1 and u2
sends at least 1

3
to v2 in Step 1. By Lemma 4.46, each of v3 and v5 receives at least 4

9
in

Step 1. Finally, v4 receives at least 1
6

by Observation 4.43. Thus

chf (C) ≥ 5(3) + 2

(
1

3

)
+ 2

(
4

9

)
+

1

6

> 5

(
10

3

)
as desired. So we may assume u1u2 6∈ E(G), and by symmetry w1w2 6∈ E(G). By Lemma
4.34, it follows that each of v2 and v3 is the end of an M -gadget with its neighbours outside
C. By Lemma 4.49, v2 and v3 each receives at least 1

2
during discharging. As above, v5

receives at least 4
9

in Step 1, and v4 receives at least 1
6

by Observation 4.43. It follows that

chf (C) ≥ 5(3) + 2

(
1

2

)
+

4

9
+

1

6

> 5

(
10

3

)
as desired.

Claim 4.51. If V (C) = {v1, v2, v3, v4, v5, v6} and E(C) = {v1v2, v1v3, v1v4, v2v5, v2v6}, then
chf (C) ≥ v(C)

(
10
3

)
.
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Proof. Let u1, u2 be the neighbours of v3 that are not in C. Let w1, w2 be the neighbours
of v4 not in C. Note by Lemma 4.34 applied to the path v2v1v3, either u1u2 ∈ E(G) or
u1, u2, and v3 are in an M -gadget with end v3. By symmetry, either w1w2 ∈ E(G) or
w1, w2, and v4 are in an M -gadget with end v4. We will aim to show u1u2 6∈ E(G) (and
by a symmetrical argument, w1w2 6∈ E(G)) as otherwise we are done. To see this, suppose
not. Then u1u2 ∈ E(G). By Lemma 4.34 applied to the path v5v2v1, since v3v4 6∈ E(C) it
follows that v1, v3, and v4 are in an M -gadget with end v1. Thus since d(v3) = d(v4) = 3,
up to relabelling of w1, w2 there exist triangles T1 and T2 with u1w1 ∈ T1 and u2w2 in T2.
Note that each of u1, u2, w1, and w2 has degree at least four as they are not contained in
C. Since u1u2 ∈ E(G) by assumption, each of u1 and u2 sends at least 1

3
to v2 in Step 1.

By Lemma 4.46, each of v4, v5, and v6 receives at least 4
9

in Step 1. Thus

chf (C) ≥ 6(3) + 2

(
1

3

)
+ 3

(
4

9

)
+

= 6

(
10

3

)
,

as desired. So we may assume u1u2 6∈ E(G), and by symmetry w1w2 6∈ E(G). By symmetry,
v5 is not contained in a triangle with its neighbours outside C, and nor is v6. By Lemma
4.34, it follows that each of v3, v4, v5, and v6 is the end of an M -gadget with its neighbours
outside C. By Lemma 4.49, v3, v4, v5, and v6 each receive at least 1

2
during discharging.

It follows that

chf (C) ≥ 6(3) + 4

(
1

2

)
= 6

(
10

3

)
,

as desired.

Finally, we show the following.

Claim 4.52. If C is a path of length three, then chf (C) ≥ v(C)
(
10
3

)
.

Proof. Let C be the path v1v2v3v4. Let u be the neighbour of v2 not contained in C. By
Lemma 4.34 applied to the path v4v3v2, either uv1 ∈ E(G), or v1, v2, and u are contained in
an M -gadget with end v2. By Lemma 4.33, uv1 is not an edge in E(G), as otherwise uv1v2
is a triangle containing two vertices of degree three. Thus by the structure of M -gadgets,
there exist two disjoint triangles T = abca and T ′ = a′b′c′a′ such that, up to relabelling, u
is adjacent to a in T and a′ in T ′, and v1 is adjacent to b in T and b′ in T ′.

Next, note that by Lemma 4.34 applied to the path v3v2v1, either bb′ ∈ E(G), or v1 is
the end of an M -gadget with b and b′. First suppose bb′ ∈ E(G). In this case, note that
by Lemma 4.33, at most one of a and c has degree three. Thus b does not send charge
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to at least two of its neighbours in Step 1. Symmetrically, at most one of a′ and c′ has
degree three, and so b′ does not send charge to at least two of its neighbours in Step 1.
Thus v1 receives at least 1

3
from each of b and b′ in Step 1. By Claim 4.46, v4 receives at

least 4
9

charge in Step 1. Finally, each of v2 and v3 receive at least 1
6

by Observation 4.43.
It follows that

chf (C) ≥ 4(3) + 2

(
1

3

)
+

4

9
+ 2

(
1

6

)
> 4

(
10

3

)
,

as desired. Thus we may assume that bb′ is not an edge in G. But then by Lemma 4.34
applied to the path v3v2v1, we have that v1, b, and b′ are contained in an M -gadget with
end v1. By Claim 4.49, v1 thus receives at least 1

2
charge during discharging. By a perfectly

symmetrical argument, v4 receives at least 1
2

charge during discharging. As above, each of
v2 and v3 receive at least 1

6
by Observation 4.43. It follows that:

chf (C) ≥ 4(3) + 2

(
1

2

)
+ 2

(
1

6

)
= 4

(
10

3

)
as desired.

We are now equipped to prove Theorem 1.64.

Proof of Theorem 1.64. Suppose not. Let G be a vertex-minimum counterexample. It fol-
lows from Claims 4.44 through 4.52 that KY (G) ≤ 0. Moreover, by Lemma 4.41, D3(G)
contains a component with at least three vertices. We break into cases depending on the
structure of the components in D3(G).

Case 1: D3(G) contains a component C with v(C) ≥ 3 such that C is any of the
graphs described in Claims 4.50 through 4.52.
In this case, C contains a path P of length two ending with a non-leaf vertex, v. Thus, by
applying Lemma 4.34 to P with v playing the role of x, we get that either x is contained
in a triangle with its neighbours not on P , or that x is the end of an M -gadget, H. By
Lemma 4.33, x is not contained in a triangle with another vertex in C, and so it follows
that x is the end of an M gadget, H. But T 3(H) = 2, and so T 3(G) ≥ 2. It follows that
p(G) ≤ KY (G)− 2 ≤ −2, and so G is not a counterexample.
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Case 2: D3(G) contains no components described in Case 1, but contains a star
H with four vertices.
Let V (H) = {v1, v2, v3, v4} and E(H) = {v4v1, v4v2, v4v3}. By applying Lemma 4.34 to
each of the paths v1v4v3, v1v4v2, and v2v4v3, we see that v1, v2, and v3 are each the ends of
M -gadgets, or that they are contained in triangles with their neighbours outside H. As in
the above case, if G contains an M -gadget, then p(G) ≤ −2, so G is not a counterexample.
Thus we may assume neither v1, v2 nor v3 is the end of an M -gadget. Let T1, T2, and T3
be the triangles containing v1, v2 and v3, respectively. By Lemma 4.33, these triangles are
distinct. If T 3(T1 + T2 + T3) ≥ 2, then p(G) ≤ −2 and G is not a counterexample. Thus
we may assume the triangles share some vertices. There are two cases to consider: either
there exists a vertex contained in all three triangles, or this does not happen and instead
every pair of triangles shares a vertex. If every pair of triangles shares a vertex, then since
H+T1+T2+T3 is 4-critical, G = H+T1+T2+T3. But then p(G) = 5(7)−3(12)−1 = −2,
and so G is not a counterexample. Thus we may assume that V (T1)∩V (T2)∩V (T3) = {u},
for some vertex u ∈ G. In this case, note that d(u) ≥ 6. Moreover, u is adjacent to at least
three vertices that are adjacent to H but not in H; thus u neighbours at least three vertices
of degree greater than three. It follows that u sends at least 8

9
charge to each of v1, v2, and

v3 in Step 1 of the discharging process. Thus chf (H) ≥ 3
(
8
9

)
+ 4(3) = 44

3
= 4

(
10
3

)
+ 4

3
.

Note that every other component C in D3(G) has final charge at least v(C)
(
10
3

)
and every

vertex of degree at least four has final charge at least 10
3

. Thus the sum of the charges
is at least v(G)

(
10
3

)
+ 4

3
. Moreover since potential is integral, it follows that the sum of

the charges it at least v(G)
(
10
3

)
+ 2. Thus KY (G) ≤ −3. Moreover, as G contains a tri-

angle, T 3(G) ≥ 1. Thus p(G) ≤ −4, which contradicts the fact that G is a counterexample.

Case 3: D3(G) contains no components described in Cases 1 or 2, but contains
a path H of length 2.
Let H = v1v2v3. Note that by Claim 4.47, the final charge of H is strictly greater than
v(H)

(
10
3

)
. Moreover, every other component C of D3(G) has final charge at least v(C)

(
10
3

)
and every vertex of degree at least four has final charge at least 10

3
. Since potential is

integral, it follows that the sum of the charges is at least v(G)
(
10
3

)
+1, and so KY (G) ≤ −3

2
.

But since KY (G) is also integral, KY (G) ≤ −2. Thus p(G) ≤ −2, and so G is not a
counterexample.
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Chapter 5

Sparse 4-critical graphs have low
circular chromatic number

In this chapter we will prove Theorem 1.79, Theorem 1.82 and Theorem 1.83, as well as
Observation 1.77 and Observation 5.1 We also show:

Observation 5.1. For any positive integers p, q satisfying 3 ≤ p
q
< 7

2
, there exists a

4-critical graph with no (p, q)-colouring which satisfies

e(G) <
27v(G)− 20

15
.

We give a brief overview of the proof of Theorem 1.79 and Theorem 1.82. Let G be a
vertex minimal counterexample to Theorem 1.79 or Theorem 1.82. From a fundamental
result of Gallai, we know that the subgraph D3(G) has every block isomorphic to either an
odd cycle or a clique. It is easy to see that the cliques in D3(G) have size at most three, or
G is isomorphic to K4. The first part of the proof is to show that if any block of D3(G) is
isomorphic to an odd cycle, then G is isomorphic to an odd wheel. This is done by taking
an odd cycle C, deleting it, and characterizing when 3-colouring of G − C extends to a
(7, 2)-colouring. In the cases where we cannot extend, the neighbours of C will form an
independent set, and if G is not a wheel, we will be able to reconfigure the colouring so
that it will be able to extend to a (7, 2)-colouring.

The next part of the proof is to show that assuming we have no odd cycle blocks or K4

blocks, that every component of D3(G) is isomorphic to a path or has at most 4 vertices.
This proof follows the same themes as the odd cycle reduction. We delete vertices from
D3(G) and ask when we can extend a 3-colouring to a (7, 2)-colouring, and show that
unless each component is isomorphic to a path or a claw, we can always extend.

The remaining arguments are to show that a vertex minimal counterexample to The-
orem 1.79 cannot contain a claw component. Then we use reconfiguration arguments to
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show that vertices close to path components in D3(G) have reasonably large degree, and
finish the proof via discharging.

The chapter is structured as follows. In Section 5.1 we introduce the basics of circular
colouring that will be needed for the paper. We also prove Observation 5.1 and give the
examples of 4-critical graphs with no (7, 2)-colouring whose components of the Gallai Tree
are isomorphic to claws and arbitrarily long paths, proving part of Theorem 1.82. In
Section 5.2 we review the Hell-Nešetřil indicator construction and prove Observation 1.77.
In Section 5.3, we prove that for a 4-critical graph G with no (7, 2)-colouring, if D3(G)
contains an odd cycle, then G is isomorphic to an odd wheel. In Section 5.4 we prove
that for given a k-critical graph G, k ≥ 4, if Dk−1(G) contains a clique of size k − 1, then
either G is isomorphic to Kk, or admits a (2k − 1, 2)-colouring. In Section 5.5, we prove
that the Gallai Tree of 4-critical graphs with no (7, 2)-colouring can only have components
isomorphic to claws, paths, or G is isomorphic to an odd wheel. In Section 5.6 we prove
that path components are close to vertices of large degree. In Section 5.7 we provide the
discharging argument to finish the proof.

5.1 Preliminaries, Sharpness and Examples

In this section we collect the basic results from colouring that we will make use of through-
out the chapter. We also prove Observation 5.1. We also give some examples of 4-critical
graphs with no (7, 2)-colouring.

5.1.1 A sparse 4-critical graph with a (7, 2)-colouring

We will need to know what happens when we have a circular colouring that does not use
all of the colours. For this we need the notion of lower parents.

Definition 5.2. Let p and q be positive integers where p
q
≥ 2, and gcd(p, q) = 1. The

unique positive integers p′ and q′ where p′ < p that satisfy the equation

pq′ − qp′ = 1

are called the lower parents of p and q.

We will say that two graphs G and H are homomorphically equivalent if G → H and
H → G.

Lemma 5.3 ([21] Lemma 6.6). Let p and q be positive integers that are relatively prime,
and satisfy p

q
≥ 2. Let p′ and q′ be the lower parents of p and q. Then for any vertex

x ∈ V (Gp,q), the graph Gp,q − x is homomorphically equivalent to Gp′,q′.
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Observe that the lower parents of 7 and 2 are 3 and 1. Hence we have the following
corollary:

Corollary 5.4. Let p and q be relatively prime. If a graph G admits a (p, q)-colouring
that does not use all p colours, then G admits a (p′, q′)-colouring where p′, q′ are the lower
parents of p and q. In particular, if G admits a (7, 2)-colouring that does not use all 7
colours, then G admits a 3-colouring.

With this we will prove that there is a graph on seven vertices that has eleven edges
and circular chromatic number 7

2
.

Recall that the Moser Spindle, denoted M , is the unique 4-Ore graph on 7 vertices. For
clarity, we have V (M) = {a, b, c, d, e, f, g}, and E(M) = {ab, ac, af, ag, bc, bd, cd, de, ef, eg,
fg}.

Observation 5.5. The Moser Spindle has seven vertices, eleven edges, and circular chro-
matic number 7

2
.

Proof. As the Moser Spindle is 4-Ore, it is 4-critical, and hence does not have a 3-colouring.
The map where we colour a with 0, f with 2, g with 4, e with 6, d with 1, b with 5, c with
3 is a (7, 2)-colouring. Finally it is easy to check that for every p ∈ {4, 5, 6} there is no
integral q where gcd(p, q) = 1 such that 3 ≤ p

q
< 7

2
. Therefore χc(M) = 7

2
.

An astute reader may realize that the Moser Spindle is not isomorphic to G7,2, and
this implies that there are strict subgraphs of G7,2 with circular chromatic number 7

2
. This

turns out to be the case for any tuples (p, q) unless p = 2k+ 1 and q = k, or q = 1. Rather
surprisingly, you can find a subgraph with roughly O(

√
e(Gp,q)) edges on p vertices with

circular chromatic number p
q

[52]. By appealing to the Kostochka-Yancey Theorem, the
Moser Spindle has the fewest edges for a graph on 7 vertices that is also 4-critical and has
circular chromatic number 7

2
. Now the sharpness claim follows immediately.

Corollary 5.6. For integers p and q, satisfying 2 ≤ p
q
< 7

2
, there exists a graph that is

4-critical with no (p, q)-colouring that has

e(G) <
27v(G)− 20

15
.

Proof. The Moser Spindle has circular chromatic number 7
2
, seven vertices and eleven edges.

Observe that 11 < 169
15

.

Of course, this is not the most satisfying sharpness example. It would be much more
interesting if an infinite family were found. Nevertheless, it does show that the bound in
Observation 1.77 is sharp with respect to the values of p and q.
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5.1.2 Useful Background Lemmas

We will need one more idea from circular colouring. It is convenient to be able to talk
about intervals of colours. If we have p colours, and integers i, j ∈ {0, 1, . . . , p − 1} we
denote [i, j] as the set of colours {i, i + 1, . . . , j} where the values are reduced modulo p.
When p is fixed, we will assume intervals are taken modulo p.

Given a graph G and a vertex v, let NG(v) denote the neighbourhood of v in G. If there
is no possibility of confusion we will just use N(v). Observe that in any (p, q)-colouring f ,
for any vertex v we have

f(v) ∈
⋂

u∈NG(v)

NGp,q(f(u))

Given a graph G, and an induced subgraph F of G equipped with a (p, q)-colouring f
of F , we say that the set of available colours for v in G is [0, p− 1] if v has no neighbours
in F , and ⋂

u∈NF (v)

NGp,q(f(u))

otherwise.

A very useful fact is that when 2 < p
q
< 4, the set of available colours is always an

interval.

Lemma 5.7 ([4]). If p
q
< 4, then for any graph G, any (p, q)-colouring of G, and any

vertex v ∈ V (G), the set of available colours of v is an interval.

We will use this fact without reference. We also record some facts about k-critical
graphs which we use without reference. We start off with a well known observation.

Observation 5.8. A k-critical graph is (k−1)-edge-connected. In particular, the minimum
degree of a k-critical graph is at least k − 1.

Recall that a block of a graph is a maximal 2-connected subgraph. The Gallai-Tree
Theorem gives structure to subgraph induced by the vertices of degree k − 1.

Theorem 5.9 ([14], Gallai-Tree Theorem). Let G be a k-critical graph, and B be the set
of vertices of G with degree k − 1. Then every block of G[B] is a clique or an odd cycle.

We will call the graph G[B] the Gallai Tree of G. We will use Theorem 5.9 without
reference. For 4-critical graphs, this implies the following.

Corollary 5.10. In a 4-critical graph that is not K4, every block of the Gallai Tree is
either isomorphic to K1, isomorphic to K2, or an odd cycle.

Proof. Clearly K4 is 4-critical, and hence the largest clique a 4-critical graph can have is
K4. The rest follows immediately from the Gallai-Tree Theorem.
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As some notation for this chapter, we use dt(v) to denote the number of vertices in
the neighbourhood of v with degree t. If G is equipped with a k-colouring, we let Nt(X)
denote the set of neighbours of X coloured t. For ease throughout the chapter, when given
a 3-colouring, we will always assume the colours used are from the set {0, 2, 4}. This is so
we can extend to a (7, 2)-colouring without any cumbersome change in values.

5.1.3 Examples of 4-critical graphs with no (7, 2)-colourings

In this section we collect the known examples from the literature of 4-critical graphs with
no (7, 2)-colouring, and provide an operation which preserves the property of being 4-
critical and having no (7, 2)-colouring. This operation produces to the best of the authors
knowledge a new infinite family of 4-critical graphs with no (7, 2)-colouring (the family
is almost assuredly not new, the main point is to show they have no (7, 2)-colouring). In
particular this family demonstrates that there are 4-critical graphs with no (7, 2)-colourings
with claw components or arbitrarily long paths in their Gallai Tree.

Before we describe the operation, we collect some examples from the literature. As
a corollary of a theorem in [45], if the complement of a graph G is disconnected, then
χc(G) = χ(G). As the complement of an odd wheel is disconnected, we obtain our first
example.

Observation 5.11. The odd wheel Wn has χc(Wn) = 4.

Our next example uses a well known construction. Given a graphG, we letM(G) denote
the Mycielskian of G, where V (M(G)) = V (G) ∪ V ′(G) ∪ {u}, V ′(G) = {x′|x ∈ V (G)},
and E(M(G)) = E(G) ∪ {xy′ |xy ∈ E(G)} ∪ {y′u | y′ ∈ V ′(G)}.

Theorem 5.12 ([6]). χc(M(C2k+1)) = 4, and M(C2k+1) is 4-critical.

Observe that the Gallai Tree of the Mycielskian of an odd cycle is a collection of isolated
vertices.

We do not define the family here as they do not contain vertices of degree 3, but we
note that in [51], an infinite family of 4-regular 4-critical graphs with χc(G) = χ(G) was
found.

Now we describe an operation which preserves 4-criticality and not having a (7, 2)-
colouring. The operation given here generalizes the operation called the “iterated Myciel-
skian” in [30] when restricted to 4-critical graphs.

Definition 5.13. Let G be a 4-critical graph with no (7, 2)-colouring. Let v ∈ V (G) such
that N(v) = {x, y, z}. The C6-expansion of G with respect to v is the graph G′ obtained by
deleting v from G, and adding four new vertices x′, y′, z′, w with edges x′y, x′z, x′w, y′x, y′z,
y′w, z′x, z′y and z′w.

116



Lemma 5.14. Let G be the C6-expansion of a graph H at a vertex v. Then G is 4-critical
and has no (7, 2)-colouring.

Proof. Let the neighbours of v in H be x, y, z, with the new vertices in G being x′, y′, z′, w
with adjacencies as in Definition 5.13. First we observe that χ(G) ≤ 4. Let f be a 4-
colouring of H. Let f ′ be a colouring of G where for all t ∈ V (G) \ {x′, y′, z′, w} let
f ′(t) = f(t), f ′(x′) = f ′(y′) = f ′(z′) = f(v) and give w any colour that is not f(v). This
is a 4-colouring of G, and hence χ(G) ≤ 4.

Now we prove that χc(G) > 7
2
. Suppose not and let f be a (7, 2)-colouring of G.

Observe that if f(x′) = f(y′) = f(z′), then by identifying x′, y′ and z′ into one vertex and
deleting w we obtain a (7, 2)-colouring of H, a contradiction.

Suppose that f(x′) = 0. Further suppose that f(y′) = 0. Then the image of the
neighbourhood of z′ is contained in the neighbourhood of 0 in G7,2, and so we can recolour
z′ to 0. But then there exists a (7, 2)-colouring of G where x′, y′ and z′ receive the same
colour, a contradiction. Thus we can assume that f(y′) 6= 0, and by symmetry f(z′) 6= 0.
If f(y′) = 1 and f(z′) = 6, then again the image of the neighbourhood of both y′ and z′

is contained in the neighbourhood of 0 in G7,2, and so we can recolour y′ and z′ to 0, and
obtain a (7, 2)-colouring of H, a contradiction. A similar argument works if f(y′) = 2 and
f(z′) = 6. Now assume that f(y′) = 2. Then f(z′) ∈ {0, 1, 2, 3} or else there is no available
colour for w. By the previous cases, it follows that f(z′) = 3. But this implies that we
can recolour z′ and x′ to 2, and again contradict that H has no (7, 2)-colouring. All other
cases follow similarly, and thus G has no (7, 2)-colouring. Observe this also implies that
χ(G) ≥ 4, and hence χ(G) = 4.

Therefore to finish the proof, we just need to show that for every edge e ∈ E(G), G− e
is 3-colourable. First let e be incident to w. Let f be a 3-colouring of H − v. We extend
f to a 3-colouring of G − e in the following manner: as x′ has only two neighbours in
{x, y, z}, there exists a colour c which is adjacent to both f(y) and f(z) in G7,2. In a
similar manner, we can pick colours for y′ and z′. Then w sees at most two colours, and
so there is a colour available for w, and we obtain a (7, 2)-colouring of G.

Now suppose that e is incident to x′ but not w. Without loss of generality, let e = zx′.
Then take a 3-colouring f of H − v, and extend f by first picking a colour c1 and c2 for y′

and z′ respectively, and then as x′ is only adjacent to w and z, we can pick c1 for x as well,
and then there exists a colour for w. By symmetry we can assume that e is not incident
to any of x′, y′, z′.

Now let f be a 3-colouring of H − e. Then extend f to a 3-colouring of G − e by
colouring x′, y′, z′ the same colour as v, and then giving w any colour left over. Thus it
follows that G − e has a 3-colouring for every edge e, and thus G is 4-critical with no
(7, 2)-colouring.

Corollary 5.15. There is a 4-critical graph with no (7, 2)-colouring whose Gallai Tree is
a claw.
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Proof. Let H = K4, and G a C6-expansion of any vertex in H. Then by Lemma 5.14, G
is 4-critical, has no (7, 2)-colouring, and it is easily seen that the Gallai Tree of G is just
the claw.

Corollary 5.16. For any odd positive integer t, there is a 4-critical graph with no (7, 2)-
colouring whose Gallai Tree contains a component isomorphic to a path of length t.

Proof. Fix an odd positive integer t. Let G be a C6-expansion of any of the degree 3
vertices in Wt+4. Then the Gallai Tree of G contains a component isomorphic to the claw,
and a path of length t.

5.2 Hell-Nešetřil indicator constructions

In this section we prove that the t = 3 case of Question 1.74 implies that 4-critical graphs
with no (7, 2)-colouring satisfy e(G) ≥ 27v(G)−20

15
.

We first review the basics of the indicator construction. Let I be a graph with distin-
guished vertices x and y, and suppose that there is an automorphism (an automorphism is
an from I → I) which maps x to y. Let G be a graph. We will say that G ∗ I is the graph
obtained by taking every edge uv ∈ E(G), deleting the edge, and adding the graph I to G
where we identify u with x and v with y. Observe this is well defined because there is an
automorphism of I which maps x to y (it could have been defined without this condition,
but for all purposes we will have this property).

Definition 5.17. Let G, H, and I be graphs, where V (H) = V (G), and x and y are
distinguished vertices of I, where there is an automorphism of I which sends x to y.
Suppose that for any edge uv ∈ E(G), there exists a homomorphism f : I → H such that
f(x) = u and f(y) = v. Further, suppose for every homomorphism f : I → H, we have
f(x)f(y) ∈ E(G). Then we say that (I, x, y) is an indicator for G and H.

The following is easily verified from the definition.

Lemma 5.18 ([21], Lemma 5.5). Suppose (I, x, y) is an indicator for G and H. Then for
any graph K, K → G if and only if K ∗ I → H.

We can use Lemma 5.18 to deduce the non-existence of homomorphisms in some in-
stances.

Corollary 5.19. Suppose that (I, x, y) is an indicator for G and H. If K is G-critical,
then K ∗ I 6→ H.

Proof. K is G-critical, so K 6→ G. By Lemma 5.18, this implies that K ∗ I 6→ H.
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This is of course not useful unless there exist indicator constructions. Here is a partic-
ularly useful class of indicators.

Corollary 5.20 ([21], proof of Corollary 5.6). Let I be the path of length k − 2 with
endpoints x, y. Then (I, x, y) is an indicator for Kk and Ck.

This so far is not useful for critical graphs. However, one can observe that path indi-
cators with the endpoints as the distinguished vertices preserve criticality.

Proposition 5.21. Let (I, x, y) be an indicator for connected graphs G and H which
contain at least one edge, where I is a path with at least one edge and x and y are the two
endpoints for the path. Let K be a G-critical graph. Then K ∗ I is H-critical.

Proof. From Corollary 5.19, we have that K ∗ I 6→ H. Now consider any edge e ∈ K ∗ I.
Then e is contained in a copy of I, where this copy of I replaced an edge e′ in K. By
G-criticality, K − e′ → G. Hence (K − e′) ∗ I → H by Lemma 5.18. K ∗ I − e may have
uncoloured vertices, and since I is a path, at least one of these vertices has degree one.
Now we can map K ∗ I − e→ (K − e′) ∗ I by repeatedly mapping the degree one vertices
in the copy of I containing e onto some vertex adjacent to their neighbour. But then as
homomorphisms compose, K ∗ I − e→ H, and hence K ∗ I is H-critical.

As notation throughout this chapter let Pn denote the path on n vertices. Now to finish
the intended goal of the section, we prove that P4 with the endpoints as distinguished
vertices is an indicator for G7,2 and C7.

Observation 5.22. Let P4 be a path with endpoints x and y. Then (P4, x, y) is an
indicator for G7,2 and C7.

Proof. We just need to check the possible homomorphisms of P4. Suppose V (P4) =
{x, x1, x2, y}, with edges xx1, x1x2, x2y. As G7,2 is vertex transitive, it suffices to con-
sider the case when we colour x with 0. The following are C7-colourings of P4 which give
the necessary adjacencies. The C7-colouring of P4 where we colour x with 0, x1 with 3, x2
with 6 and y with 2. The C7-colouring of P4 where we colour x with 0, x1 with 3, x2 with
0 and y with 3. The C7-colouring of P4 where we colour x with 0, x1 with 4, x2 with 0,
and y with 4. The C7-colouring of P4 where we colour x with 0, x1 with 4, x2 with 1 and
y with 5.

Now we just need to show the non-adjacencies. Suppose that both x and y are coloured
0. Then both of x1 and x2 would need to get a colour from {3, 4}, but that is impossible.

Suppose that y is coloured 1, then x1 must be coloured 4, as if it is coloured 3 we cannot
colour x2 in a way that will be compatible with y being coloured 1. But if x1 is coloured
4, none of the neighbours of 4 in C7 are adjacent to 1, and y cannot be coloured 1. The
analysis is the same if y is coloured 6.
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Therefore we have the following corollary

Corollary 5.23. For any G7,2-critical graph G, the graph G ∗ P4 is C7-critical.

Now we can prove the observation.

Observation 5.24. If the t = 3 case is true in Question 1.74, then for every G7,2-critical
graph G,

e(G) ≥ 27v(G)− 20

15

Proof. Let G be a G7,2-critical graph. By Corollary 5.23, the graph G ∗ P4 is C7-critical.
Observe that e(G ∗ P4) = 3e(G) and v(G ∗ P4) = 2e(G) + v(G). Appealing the t = 3 case
of Question 1.74, we have

e(G ∗ P4) ≥
27v(G ∗ P4)− 20

23
.

Thus

3e(G) ≥ 27(2e(G) + v(G))− 20

23
.

Rearranging we have
69e(G) ≥ 54e(G) + 27v(G)− 20.

Now simplifying we have

e(G) ≥ 27v(G)− 20

15

as desired.

If we apply the same analysis using the bound on the density of C7-critical graphs in
Theorem 1.75, we get a bound on G7,2-critical graphs which to the best of my knowledge
is the best known (however, this bound does not even beat the Kostochka-Yancey bound
for 4-critical graphs - which suggests many improvements should be possible).

Corollary 5.25 ([43]). If G is a G7,2-critical graph, then

e(G) ≥ 17v(G)− 2

11
.

5.3 Odd cycles in the Gallai-Tree

The point of this section is to prove that the class of 4-critical graphs with no (7, 2)-
colouring and whose Gallai Tree contains an odd cycle is exactly the class of odd wheels.

The set up is to first prove a series of list colouring claims, which will allow us to
assert that the neighbours of an odd cycle in the Gallai Tree form an independent set. If
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the independent set has size one, then the graph is an odd wheel, and otherwise using a
reconfiguration argument we will be able to find a (7, 2)-colouring.

We start off with some definitions. A k-list-assignment L is a function which assigns
a set of at least k colours to each vertex (however, without loss of generality we will
always assume that each list is size exactly k). For a vertex v, we will denote L(v) as
the list of v. A 4-interval-list assignment L is a 4-list-assignment where for all v ∈ V (G),
L(v) ⊆ {0, 1, 2, 3, 4, 5, 6}, and each list has size at least four, and contains an interval of size
at least 4. A list assignment is uniform if all vertices receive the same list. An L-colouring
is a proper colouring where each vertex v gets a colour from L(v). An L-(7, 2)-colouring
is an L-colouring which is also a (7, 2)-colouring. Given a graph G equipped with a list
assignment L, and a subgraph H of G, the list assignment induced by H is simply the list
assignment L on the vertices of H. A vertex is precoloured if |L(v)| = 1.

5.3.1 4-interval-list-colouring paths

The main point of this subsection is to characterize when we can list colour paths under the
assumption that the endpoints have constrained lists. In particular we will characterize
when we can colour Pn when both of the endpoints have a list of size 2 that forms an
interval, and the internal vertices have lists of size 4 that form intervals.

We start with an easy observation.

Proposition 5.26. Let Pn be a path with endpoints x and y (possibly not distinct if n = 1).
Let L be a list assignment where x is precoloured from {0, . . . , 6}, and the list assignment
induced on Pn − x is a 4-interval list assignment. Then Pn is L-(7, 2)-colourable.

Proof. We proceed by induction on n. If n = 1, then the precolouring is an L-(7, 2)-
colouring. So n ≥ 2. Let x′ be the neighbour of x. By the pigeon hole principle, |L(x′) ∩
NG7,2(L(x))| ≥ 1. Now colour x′ with some colour from L(x′) ∩NG7,2(L(x)) and delete x.
If n = 2 then we are done, and otherwise the result follows by induction.

We note that the above Proposition actually works even when the lists do not form
intervals, as long as they are from the set {0, . . . , 6}.

Note that it is possible to satisfy the hypothesis of the above claim and have exactly
one L-(7, 2)-colouring. Now instead of precolouring one end of the path, we will restrict
both endpoints of the path but not as severely.

Lemma 5.27. Let Pn be a path with endpoints x and y. Suppose L is a list assignment
such that Pn − x − y induces a 4-interval-list assignment, L(x) and L(y) both forming
intervals modulo 7, |L(x)| ≥ 2 and |L(y)| ≥ 3. Then there exists an L-(7, 2)-colouring.

Proof. We proceed by induction on n. If n = 1, the claim is trivial. If n = 2, then let
c ∈ L(x). Unless L(y) = {c − 1, c, c + 1}, then we can colour x with c and extend the
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colouring. If L(y) = {c − 1, c, c + 1}, colour x with a colour in L(x) − c, and extend the
colouring in any fashion. Now we can assume that n ≥ 3. Let u be the neighbour of x.
Observe that if there is a c ∈ L(x) such that not all of {c−1, c, c+1} are contained in L(u),
we can colour x with c, delete x and apply induction. Without loss of generality suppose
that L(x) = {0, 1}. Then by the above observation, unless L(u) = {6, 0, 1, 2}, we can
colour x with either 0 or 1 and apply induction. Thus we may assume L(u) = {6, 0, 1, 2}.
Now let v be the neighbour of u which is not x. If L(v) does not contain all of {1, 2, 3},
then we can colour x with 0, u with 2, and the set of available colours for v has size at
least 2, so we can apply induction (or simply colour v and finish the colouring if n = 3).
Thus L(v) contains all of {1, 2, 3}. Therefore L(v) is one of three possible lists, {0, 1, 2, 3},
{1, 2, 3, 4}, or {1, 2, 3}. Regardless of which list L(v) is, colour x with 1 and u with 6. In
all cases, either we can finish the colouring of the path, or the set of available colours for
v is at least 2, and we can apply induction.

The above lemma is best possible in the sense that we cannot make both endpoints have
list size 2, even if they form an interval. To see this, consider the following assignment
of P3 with vertices x, y, z where we have edges xy and yz. Let L(x) = {0, 1}, L(y) =
{5, 6, 0, 1}, L(z) = {5, 6}. It is easy to see there is no L-(7, 2)-colouring.

5.3.2 4-interval list colouring cycles

Now we will turn our focus onto proving list colouring claims of odd cycles (or in some cases
cycles). We now give a definition which is cooked up just to be able to apply Proposition
5.26.

Definition 5.28. A 4-interval-list-assignment L of Cn is safe if for some edge uv ∈ E(Cn),
there is a colour c ∈ L(u) such that none of {c− 1, c, c+ 1} reduced modulo 7 are in L(v).

Observation 5.29. Every safe 4-interval-list-assignment of Cn admits an L-(7, 2)-colouring.

Proof. Pick an edge uv ∈ E(Cn) such that there is a colour c ∈ L(u) where none of
{c − 1, c, c + 1} reduced modulo 7 are in L(v). Now consider Cn − uv. Colour u with
c. Then we satisfy the conditions of Proposition 5.26, so consider any L-(7, 2)-colouring
ensured by the claim. By design, u gets colour c, and v gets some colour that is not c−1, c
or c+ 1, and hence we have a L-(7, 2)-colouring of Cn.

There is a harder case we can deal with.

Definition 5.30. A 4-interval-list-assignment L of Cn is nearly safe if there exists a vertex
v with neighbours v1, v2 where L(v1) = L(v2) and L(v) shares at most three colours with
L(v1).

Proposition 5.31. Let L be a 4-interval-list-assignment of Cn which is nearly safe. Then
there exists a L-(7, 2)-colouring of Cn.
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Proof. Let v be a vertex with neighbours v1 and v2 where L(v1) = L(v2) and L(v) shares
at most 3 colours with L(v1). Without loss of generality suppose that L(v) = {0, 1, 2, 3}.
We consider cases.

If L(v) shares exactly 1 colour with L(v1), then either L(v1) = {3, 4, 5, 6}, or L(v1) =
{0, 6, 5, 4}, which implies that L is a safe list-assignment. This case follows from Observa-
tion 5.29.

If L(v) shares exactly 2-colours with L(v1), then L(v1) = {2, 3, 4, 5} or L(v1) =
{1, 0, 6, 5}. Again, either of these lists imply that L is safe, and thus the result follows
from Observation 5.29.

Therefore we can assume that L(v1) = {1, 2, 3, 4} or L(v1) = {6, 0, 1, 2}. Without
loss of generality assume that L(v1) = {1, 2, 3, 4}. Now colour v with 0, and remove 1
from the lists of v1 and v2, and delete v. The remaining path satisfies the conditions of
Proposition 5.27. Therefore we can find a L-(7, 2)-colouring of the path which extends to
an L-(7, 2)-colouring of the entire graph, as desired.

Finally we can cover the remaining non-uniform cases.

Proposition 5.32. Let L be a 4-interval-list-assignment of C2k+1 which is not uniform,
not safe and not nearly safe. Then there is an L-(7, 2)-colouring of C2k+1.

Proof. As L is not uniform, let vv1 ∈ E(C2k+1) such that L(v) 6= L(v1). As L is not
safe, L(v) and L(v1) share three colours. Without loss of generality, assume that L(v) =
{0, 1, 2, 3}. Let v2 be the other neighbour of v that is not v1. As L is not nearly-safe,
we can assume without loss of generality that L(v1) = {6, 0, 1, 2} and L(v2) = {1, 2, 3, 4}.
First suppose that v, v1, v2 form a triangle. Then colour v with 0, v1 with 2 and v2 with 4.

So we can assume we have at least five vertices. Let v1,1 be the neighbour of v1 that
is not v. Initially suppose that L(v1,1) 6= {1, 2, 3, 4} or {0, 1, 2, 3}. Then colour v with 0
and v1 with 2. Then the set of available colours at v2 has size 3, and the set of available
colours at v1,1 is at least two. Therefore by Proposition 5.27 there is an L-(7, 2)-colouring.

So we can assume that L(v1,1) = {1, 2, 3, 4} or {0, 1, 2, 3}. Regardless of these two lists,
colour v with 1 and colour v1 with 6. Then the set of available colours for v1,1 is at least
3, and the set of available colours for v2 is exactly 2. Thus by Proposition 5.27 we have a
L-(7, 2)-colouring.

Now we observe that uniform lists do not admit an L-(7, 2)-colouring of C2k+1.

Observation 5.33. Any uniform 4-interval-list assignment L of C2k+1 does not admit a
L-(7, 2)-list colouring.

Proof. Without loss of generality we can assume that L assigns the colours 0, 1, 2, and 3 to
each vertex. Suppose f is an L-(7, 2)-colouring of C2k+1. Then the image of f is a subgraph
of the graph in G7,2 induced on the vertices 0, 1, 2 and 3. However, this is bipartite, which
by composing homomorphisms, would imply that C2k+1 is bipartite, a contradiction.
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Putting it all together, we have

Lemma 5.34. A 4-interval-list-assignment L of C2k+1 admits an L-(7, 2)-colouring if and
only if L is not uniform.

Now we can prove the main result of this section.

Theorem 5.35. Let G be a 4-critical graph with no (7, 2)-colouring, and whose Gallai Tree
contains an odd cycle. Then G is isomorphic to an odd wheel.

Proof. Suppose we have an odd cycle C in the Gallai Tree. By 4-criticality, G − C has a
3-colouring, say f . As each vertex in C has degree three in G, each vertex in C has exactly
one neighbour not in C. For every vertex v ∈ V (C), let v′ be the neighbour of v not in C.
Assign to v the list NG7,2(f(v′)).

This list assignment is 4-interval, and hence by Theorem 5.34, we may assume this
list assignment is uniform. Then for all v ∈ V (C), we may assume that f(v′) = 0. If
for every u, v ∈ V (C), we have u′ = v′, then G is isomorphic to an odd wheel. Thus for
some u, v ∈ V (C), we have u′ 6= v′. Change the colour of u′ to 6. Observe that this is
still a (7, 2)-colouring. But now if we update the lists on C, we do not have a uniform
list, and hence we can apply Theorem 5.34 to extend the (7, 2)-colouring of G − C to a
(7, 2)-colouring of G, a contradiction.

We finish this section by observing that odd wheels are not counterexamples to Theorem
1.79.

Observation 5.36. When k ≥ 3, the graph W2k+1 has

e(W2k+1) ≥
17v(W2k+1)

10
.

Proof. Observe that W2k+1 has e(W2k+1) = 4k + 2, and v(W2k+1) = 2k + 2. Then

4k + 2 ≥ 17(2k + 2)

10

which is equivalent to
40k + 20 ≥ 34k + 34,

which simplifies to
6k ≥ 14

which is true if k ≥ 3.
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5.4 A detour to k-critical graphs

In this section we observe that we can extend the ideas of the previous section to prove
that every k-critical graph with no (2k − 1, 2)-colouring has no block in the Gallai Tree
isomorphic to a Kk−1.

Lemma 5.37. Let k ≥ 2. Let L be a k-list-assignment of Kk+1. Then Kk+1 is L-colourable
unless L is uniform.

Proof. We proceed by induction on k. The result is immediate when k = 2, so assume
that k ≥ 3. Now suppose L is not uniform. Let uv ∈ E(Kk+1) such that L(u) 6= L(v). Let
c ∈ L(u)\L(v). Now colour u with c and remove c from the lists of the remaining vertices.
As c 6∈ L(v), we apply induction, so there is an L-colouring of Kk+1 − u, and hence an
L-colouring of Kk+1.

We will say a list assignment L is (2k − 1, 2)-near-uniform if all vertices receive one of
two possible lists, and these lists correspond to the neighbourhoods of two non-adjacent
vertices in G2k−1,2. Further we will assume a near-uniform list assignment is not uniform.

Lemma 5.38. Let k ≥ 4. Let L be a (2k − 1, 2)-near-uniform list assignment of Kk−1.
Then there is an L-(2k − 1, 2)-colouring of Kk−1.

Proof. If k = 4 this follows from Lemma 5.34. Therefore we proceed by induction and
assume that k ≥ 5. Without loss of generality, we may assume that the lists are the
intervals [2, 2k − 3] and [3, 2k − 2]. Colour some vertex with 2. Then the new lists are
[4, 2k−3], and [4, 2k−2]. Viewing this new list assignment as a near uniform (2(k−1)−1, 2)-
list assignment of Kk−2, we see that they correspond to the neighbourhoods of the vertices
2 and 3, and hence by induction there is an L-(2k − 1, 2)-colouring of Kk−1.

Corollary 5.39. Suppose G is a k-critical graph which contains a Kk−1 where for every
v ∈ V (Kk−1), d(v) = k − 2. Then either G is isomorphic to Kk, or G has a (2k − 1, 2)-
colouring.

Proof. Suppose that G contains a Kk−1 where every vertex in the Kk−1 has degree k − 1.
Let f be a k−1 colouring of G−Kk−1, where we may assume that the k−1 colouring uses
the colours {0, 2, 4, . . . , 2(k − 2)}. By Lemma 5.37, we can extend f to a k − 1-colouring
of G unless all vertices adjacent to the Kk−1 receive the same colour, which without loss of
generality we may assume to be 0. If there is only one such vertex, then G is isomorphic
to Kk. Thus there is at least two vertices. Change the colour of one of these vertices from
0 to 2k − 2. This remains a (2k − 1, 2)-colouring, and now we can apply Lemma 5.38 to
extend the colouring, completing the claim.
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5.5 Acyclic Gallai Trees- A reduction to paths

In this section we prove that if the Gallai Tree of a 4-critical graph G is acyclic, then every
component of the Gallai Tree is isomorphic to a path or a claw. We also show that a vertex
minimal counterexample to Theorem 1.79 has no claw component.

Lemma 5.40. Let G be a 4-critical graph with no (7, 2)-colouring. If the Gallai Tree of G
is acyclic, then every component is either isomorphic to a path, or contains at most four
vertices.

Proof. Let T be the Gallai Tree for G. If T has no vertex of degree three, then every
component of T is a path and we are done. Consider a component of T which contains a
vertex of degree three in T . Let x be such a vertex, and let y and z be two neighbours of
x with degree three in G. Let x′,y′, y′′, z′, z′′ be the neighbours (possibly not distinct) of
x, y, z respectively that are not x, y, z.

By 4-criticality, we have a 3-colouring f of G − {x, y, z}, and we cannot extend this
3-colouring to a (7, 2)-colouring of G. Without loss of generality we may assume that
f(x′) = 0. Let L be the list assignment corresponding to the set of available colours of
x, y, z (with respect to a (7, 2)-colouring). Observe that |L(x)| = 4, and is an interval.
If either |L(y)| = 4 or |L(z)| = 4, then Proposition 5.26 applies and we have a (7, 2)-
colouring of G. Thus f(y′) 6= f(y′′) and f(z′) 6= f(z′′). If {f(y′), f(y′′)} = {f(z′), f(z′′)},
then colour y and z the same colour from an available colour. Then the neighbourhood
of x contains at most two distinct colours, and therefore there is an available colour for
x, giving a (7, 2)-colouring of G, a contradiction. So {f(y′), f(y′′)} 6= {f(z′), f(z′′)}. By
possibly exchanging colours and relabelling, we may assume that f(y′) = 0 and f(y′′) = 2.
If {f(z′), f(z′′)} = {2, 4}, then colour y with 4, x with 2, and z with 0. Therefore we can
assume that f(z′) = 4 and f(z′′) = 0.

First suppose that y′ 6= x′ and y′ 6= z′′. Then we can recolour both x′ and z′′ to 6. Then
colour y with 5, x with 3, and z with 1 to obtain a (7, 2)-colouring of G. Hence either
y′ = x′ or y′ = z′′. We consider cases.

Case 1: y′ = x′

In this case, x′ has degree three, and is adjacent to both x and y. Therefore we have a
triangle of degree three vertices, contradicting the fact that the Gallai Tree is acyclic.

Case 2: y′ = z′′

By Case 1, we may assume that x′ 6= y′. First we claim that x′y′′ ∈ E(G). Suppose
not. Then recolour all vertices in N4(N2(x

′)) to 5, recolour all vertices in N2(x
′) to 3, and

then recolour x′ to 1. This does not change the colour of y′′ because y′′x′ 6∈ E(G). Then
colour y with 4, x with 6, and z with 2, which is a proper (7, 2)-colouring, a contradiction.

Now we claim that x′z′ ∈ E(G). Suppose not. Then recolour z′ to 5 and x′ to 6. This
is still a proper (7, 2)-colouring as x′z′ 6∈ E(G). But now we can colour y with 5, x with 1,
and z with 3 - a contradiction.
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Now observe that if any of y′, z′ or y′′ have degree three, we would have an odd cycle in
the Gallai Tree, contradictory to our assumption. Thus the entire component is x, y, z, x′

which completes the claim.

We claim that in a vertex minimal counterexample, the Gallai Tree contains no claw.

Lemma 5.41. Let G be a 4-critical graph with no (7, 2)-colouring. Let C be a claw compo-
nent of the Gallai Tree, where V (C) = {x, y, z, x′}, where x is adjacent to all of y, z, and
x′. Let G′ be the graph obtained by identifying all of the vertices of C into a single vertex
and removing multiple edges and loops. Then G′ is 4-critical and has no (7, 2)-colouring.
Further, e(G′) = e(G)− 6, and v(G′) = v(G)− 3.

Proof. We follow the proof of Lemma 5.40. Let V (C) = x, y, z, x′, where xy, xz, xx′ ∈
E(G). Let y′, y′′ be the neighbours of y not in C, and z′, z′′ be the neighbours of z not
in C. Let f be a 3-colouring of G − {x, y, z}. Without loss of generality, we can assume
that f(x′) = 0, and as we cannot extend this colouring to a (7, 2)-colouring of G, up to
relabelling we can assume that f(y′) = 0, f(y′′) = 2, f(z′) = 4 and f(z′′) = 0. By the same
analysis as in Lemma 5.40, we can assume that y′ = z′′, and that both x′z′, x′y′′ ∈ E(G).

In the graph G′, let w denote the vertex obtained after identifying x, y, z, x′.

Claim 5.42. The graph G′ has a 4-colouring.

Proof. Take any 3-colouring f of G−{x, y, z, x′}. Then we can extend f to a 4-colouring of
G′ by giving w any available colour (there is an available colour as w has degree three).

Claim 5.43. The graph G′ has no (7, 2)-colouring.

Proof. Suppose not, and let f be a (7, 2)-colouring of G′. Then consider the map f ′ where
for all vertices v ∈ V (G) − {x, y, z, x′}, f ′(v) = f(v), for all t ∈ {x′, y, z}, f ′(t) = f(w),
and let f(x) be any colour in the set NG7,2(f(w)). This is a (7, 2)-colouring of G, a
contradiction.

Claim 5.44. The graph G′ is 4-critical.

Proof. By Claim 5.43, G′ does not have a 3-colouring (as every 3-colouring can be turned
into a (7, 2)-colouring), and by Claim 5.42, G′ is 4-colourable, so χ(G′) = 4. Therefore it
suffices to show that G′ − e is 3-colourable for all edges e.

First consider deleting an edge incident to w say e. To see that G′−e has a 3-colouring,
simply take any 3-colouring of G− {x, y, z, x′}, and there will be a colour left over for w,
so we can extend the colouring (as w has degree three).

Now consider an edge e ∈ E(G′) not incident to w. Then G− e is 3-colourable as G is
4-critical. Let f be any 3-colouring of G− e. If f(x′) = f(y) = f(z), then the colouring f ′

where f ′(w) = f(x′) and for all v ∈ V (G′) − w, f ′(v) = f(v) is a 3-colouring of G′. Thus
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at least two colours appear on x′, y, z. Note that at most 2 colours appear on x′, y, z as
if all three colours appeared, then x would not have a colour. Without loss of generality,
suppose that f(x′) = f(y) = 0, and f(z) = 2. Then f(x) = 4. Additionally f(z′) = 4, and
f(y′) = 4. But then z is not adjacent to a vertex coloured 0, and so we can change the
colour of z to 0, and apply the case where f(x′) = f(y) = f(z). Hence G′ is 4-critical.

Finally, one simply observes that e(G′) = e(G)− 6 and v(G′) = v(G)− 3.

Corollary 5.45. In a vertex minimal counterexample to Theorem 1.79, all components of
the Gallai Tree are paths.

Proof. Let G be a vertex minimal counterexample to Theorem 1.79. Then G is not iso-
morphic to an odd wheel. Thus the Gallai Tree of G contains no odd cycles. If the Gallai
Tree of G contains a cycle, then there is a component isomorphic to a K4, and hence G
is isomorphic to K4, a contradiction. so all components of the Gallai Tree of G are either
paths or claws. Suppose G contains a claw component. By Lemma 5.41, there exists a
graph G′ which is 4-critical and has no (7, 2)-colouring such that e(G′) = e(G) − 6, and
v(G′) = v(G) − 3. First suppose that G′ is not K4 or W5. Then by minimality, we have
that

e(G′) ≥ 17v(G)

10
.

Thus

e(G)− 6 ≥ 17(v(G)− 3)

10
.

Rearranging we have

e(G) ≥ 17v(G) + 9

10

contradicting that G is a counterexample.

Now assume that G′ is isomorphic to K4. Then v(G) = 7 and e(G) = 12, and clearly
12 ≥ 119

10
. Now assume that G′ is isomorphic to W5. Then v(G) = 9 and e(G) = 16.

Clearly 16 ≥ 153
10

. As these are all possibilities, the claim holds.

5.6 Structure around path components

The purpose of this section is to argue that the vertices near path components must have
large degree.

For any vertex v, let N [v] denote the closed neighbourhood of v, that is the set of vertices
N(v) ∪ {v}.

Proposition 5.46. Let G be a 4-critical graph with no (7, 2)-colouring. Then there does
not exist two vertices u and v where d(v) = d(u) = 3, and N [v] = N [u].
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Proof. Suppose not. Let x and y be the two neighbours of u and v which are not u or
v. Note xy 6∈ E(G), as otherwise G contains a K4, and hence is isomorphic to K4. By
4-criticality, G− u− v has a 3-colouring, say f . We consider cases.

If f(x) = f(y), then we can extend not only to a (7, 2)-colouring, but a 3-colouring,
a contradiction. So we may assume that f(x) 6= f(y). Without loss of generality, let
f(x) = 0. Suppose f(y) = 2. Now consider N0(y). We change the colour of every vertex in
N0(y) to 6, and then change the colour of y to 1. Let f ′ be the resulting (7, 2)-colouring.
Now we can extend f ′ to a (7, 2)-colouring of G by letting f ′(u) = 3 and f ′(v) = 5. The
rest of the cases follow by exchanging colours and applying one of the above arguments if
necessary.

Now we prove the most important lemma in the section, which despite being very
simple, enforces a large amount of local structure around path components.

Lemma 5.47. Let G be a 4-critical graph with no (7, 2)-colouring. Let v be a vertex
where N(v) = {x, y, z}. For any pair w, t ∈ {x, y, z}, either wt ∈ E(G), or there is a
vertex xw,t 6= v where wxw,t ∈ E(G) and xw,tt ∈ E(G). If wt 6∈ E(G), then for any
w′, t′ ∈ {x, y, z}, xw,t = xw′,t′ if and only if {w, t} = {w′, t′}.

Proof. Suppose without loss of generality that xy 6∈ E(G), and xy does not lie in a 4-cycle
with v. Then by permuting colours if necessary, there is a 3-colouring of G− v such that
f(x) = 0, f(y) = 4, and f(z) = 2. Now we look at N2(x), and N4(N2(x)). Change all
vertices colours in N4(N2(x)) to 5, change all vertices colours in N2(x) to 3 and change
the colour of x to 1. Observe that the colour of y did not change. Then colour v with 6
to obtain a (7, 2)-colouring of G, a contradiction. Hence either xy ∈ E(G), or there is a
vertex in N2(x) which is adjacent to y, as desired. Uniqueness comes from the fact that
we can assume the vertex in a 4-cycle with v, x, y is coloured 2, and for any pair that we
apply this argument to, we get a distinct colour, and hence the vertices are distinct.

We observe that if xw,t exists, it may in fact be one of {x, y, z}. However if say xx,z = y,
then xy ∈ E(G) and yz ∈ E(G).

Observation 5.48. Let G be a 4-critical graph with no (7, 2)-colouring. Let v be a
vertex with N(v) = {x, y, z}. Suppose that G[{x, y, z}] contains at least two edges, with
t ∈ {x, y, z} having degree two in G[{x, y, z}]. Then G[{x, y, z}] contains exactly two edges,
and for w, r ∈ {x, y, z} − {t}, N(w) ∩N(r) = {v, t}.

Proof. Suppose not. Observe that x, y and z cannot induce a triangle as then we have
a clique cutset in a 4-critical graph. Thus without loss of generality, let xy, yz ∈ E(G).
Suppose there is a vertex xx,z 6∈ {v, y} such that xxx,z ∈ E(G) and zxx,z ∈ E(G).

Now let f be a 3-colouring of G−{xxx,z}. Then f(x) = f(xx,z) otherwise we have a 3-
colouring of G. Without loss of generality we may assume that f(x) = 0. Then f(v) 6= 0,
so without loss of generality f(v) = 2. But then f(y) = f(z) = 4, a contradiction as
yz ∈ E(G).
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5.6.1 The case where x, y, z induces one edge

For the subsection, we have a 4-critical graph G with no (7, 2)-colouring, a vertex v where
N(v) = {x, y, z} and we will assume that xy ∈ E(G), yz, xz 6∈ E(G). Thus by Lemma
5.47 there are distinct vertices xy,z and xx,z where xy,z is adjacent to both y and z, and
xx,z is adjacent to both x and z. Further xy,z and xx,z are not in {x, y, z}. We will assume
additionally that the Gallai Tree of G has no cycles, and hence G is not K4 or an odd
wheel.

The goal of the subsection is to show that the neighbours of v have large degree. We
will prove stronger claims than what is necessary to deduce Theorem 1.79, but we believe
the additional claims would be useful if trying to improve the bound on Theorem 1.79. We
start by proving d(x) ≥ 4 and d(y) ≥ 4. The following observation is well known.

Observation 5.49. Let H be an arbitrary graph with vertices w, t ∈ V (H) which both
have degree three. Suppose that w and t have a common neighbour a. Suppose that the
other neighbour of w is b, and the other neighbour of t is c. If there is a 3-colouring f of
H−w− t such that f(b) 6= f(c), then G has a 3-colouring. Additionally, if H is any graph
which is not 3-colourable, then bc 6∈ E(H).

Proof. Let f be a 3-colouring of H −w− t so that f(b) 6= f(c). Without loss of generality,
suppose that f(b) = 0 and f(c) = 2. If f(a) = 2, then colour w with 4 and t with 0. If
f(a) = 0, colour w with 2 and t with 4. If f(a) = 4, then colour w with 2 and t with 0. In
all cases, we get a 3-colouring of H.

Now suppose H is not 3-colourable. If bc ∈ E(H), then every 3-colouring of H −w− t
has f(b) 6= f(c), and extends to a 3-colouring of H, contradicting 4-criticality.

Lemma 5.50. Let w, t be two vertices in G both having degree three. Suppose that w and
t share a common neighbour a. Suppose that b is the other neighbour of w, and c is the
other neighbour of t. Then ab ∈ E(G), and ac ∈ E(G).

Proof. Suppose not. Without loss of generality, we can assume that ab 6∈ E(G). Let f be
a 3-colouring of G−w− t. Without loss of generality, we can assume that f(b) = 0, which
by Observation 5.49, implies that f(c) = 0. If f(a) = 0, then colouring w with 2 and t
with 4 is a 3-colouring of G.

So without loss of generality assume that f(a) = 2. Now consider N2(b), and N4(N2(b)).
Change the colour of all vertices in N4(N2(b)) to 5, and change the colour of all the vertices
in N2(b) to 3, and finally change the colour of b to 1. Now as ab 6∈ E(G), we can now colour
w with 6 and t with 4, contradicting that G has no (7, 2)-colouring. Thus ab ∈ E(G), and
by the same argument, we have that ac ∈ E(G).

Corollary 5.51. Both d(x) ≥ 4 and d(y) ≥ 4.
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Proof. Suppose towards a contradiction that y has degree three. Then by Lemma 5.50,
xz ∈ E(G). But we assumed at the start of the section, that the vertices x, y, z induce
exactly one edge, and we now have edges xy and xz, a contradiction.

Now we make a straightforward observation.

Observation 5.52. Both yxx,z 6∈ E(G), and xxy,z 6∈ E(G).

Proof. Suppose that yxx,z ∈ E(G). Then N(v) ⊆ N(xx,z), which does not occur in a
4-critical graph, a contradiction. An analogous argument works for xxy,z.

Observation 5.53. If the Gallai Tree of G has no claw component, then one of z, xx,z or
xy,z has degree at least 4.

Proof. If not, then v, z, xx,z and xy,z form a claw in the Gallai Tree.

Now we want to understand what happens when x and y share a neighbour that is not
v.

Lemma 5.54. Suppose x and y have a common neighbour w that is not v. Then at least
one of the following occurs:

� There is at least one t ∈ {x, y} such that d(t) ≥ 5.

� There is at least one t ∈ {w, z} such that d(t) ≥ 4.

Proof. Suppose none of the above conditions occur. This implies that d(x) = 4 and
d(y) = 4. Let f be a 3-colouring of G− {v, x, y}. Without loss of generality suppose that
f(w) = 0.

Case 1: Either f(xx,z) = 0 or f(xy,z) = 0

Without loss of generality suppose that f(xx,z) = 0. Then f(z) 6= 0. Colour v with 0.
There exists at least one available colour for y, so colour y with this colour, and then the
neighbourhood of x sees at most two colours, and so there is a colour available for x, thus
we get a 3-colouring of G. A similar argument works when f(xy,z) = 0.

Case 2: f(xx,z) = 2 and f(xy,z) = 4

Observe in this case that f(z) = 0. We claim that either wxx,z ∈ E(G), or there is
a vertex xw,xy,z coloured 2 adjacent to both w and xy,z. If not, change the colour of all
vertices in N4(N2(w)) to 5, change the colour of all vertices in N2(w) to 3, and change the
colour of w to 1. Then colour x with 4, y with 6, and v with 2.

Now we claim that w is adjacent to a vertex coloured 4. If not, change the colour of
w to 4. Then colour x with 0, y with 2, and v with 4. From this, we deduce that w is
adjacent to a vertex coloured 4 and a vertex coloured 2, and hence d(w) ≥ 4.
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Case 3: f(xx,z) = 2 and f(xy,z) = 2

Suppose f(z) = 4. In this case we claim that both wxx,z ∈ E(G) and wxy,z ∈ E(G).
Suppose without loss of generality that wxx,z 6∈ E(G). Then change the colour of all
vertices in N4(N2(w)) to 5, change the colour of all vertices in N2(w) to 3, and change the
colour of w to 1. Then colour x with 4, y with 6 and v with 2. Thus in this case d(w) ≥ 4
(in fact, if this case occurs then the graph is isomorphic to a C6-expansion of K4)

Now suppose that f(z) = 0. If d(z) = 3, then z is not adjacent to a vertex coloured 4.
Hence we can change the colour of z to 4, and apply the above argument. Thus d(z) ≥ 4.

Now we will want to understand what happens when x and y do not share a neighbour
and have small degree.

Lemma 5.55. Suppose x and y do not share a common neighbour other than v. Let x′

and y′ be the neighbours of x and y that are not xx,z and xy,z. Then at least one of the
following occurs.

� There exists a t ∈ {x, y, z} such that d(t) ≥ 5.

� The edge x′y′ ∈ E(G), at most one of x′ or y′ has degree three, and either d(z) ≥ 4,
or both xx,z and xy,z have degree at least four.

� The edge x′y′ 6∈ E(G), there exists a t ∈ {xx,z, y′} such that d(t) ≥ 4 and a w ∈
{xy,z, x′} such that d(w) ≥ 4.

� The edge x′y′ 6∈ E(G), d(z) ≥ 4, and at least one of xy,z or xx,z have degree at least
four.

Proof. Suppose none of the conditions hold. In particular this implies that d(x) = d(y) = 4,
and d(z) ≤ 4.

Consider a 3-colouring of G−{v, x, y}. Without loss of generality we may assume that
f(x′) = 0. We consider cases.

Case 1: f(y′) = 0

Observe that if this occurs, then x′y′ 6∈ E(G), as f(x′) = f(y′).

Subcase 1: f(xx,z) = f(xy,z)

If f(xx,z) = 0, then as zxx,z ∈ E(G), f(z) 6= f(xx,z). Thus colour x and y with 2 and
4, and colour v with 0. Therefore f(xx,z) 6= 0.

Now suppose that f(xx,z) = 2. We claim that x′ and y′ are adjacent to a vertex coloured
4. Suppose not and without loss of generality suppose that x′ has no neighbours coloured
4. Change the colour of x′ to 4. Then colour x with 0, y with 4, and since f(z) 6= 2, there
is an available colour for v, a contradiction.
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Subsubcase 1: f(z) = 4

We claim that x′xy,z ∈ E(G). If not, change the colour of all vertices in N4(N2(x
′)) to

5, change the colour of all vertices in N2(x
′) to 3, and the colour of x′ to 1. Then colour x

with 6, y with 4, and v with 2. By an analogous argument, y′xx,z ∈ E(G).

Now we claim that either xx,z is adjacent to a vertex coloured 0 that is not y′, or y′ is
adjacent to a vertex coloured 2 that is not xx,z. If not, exchange the colours of xx,z and y′.
Then colour y with 4, x with 2, and v with 0. Thus either d(xx,z) ≥ 4, or d(y′) ≥ 4. By
an analogous argument, either d(xy,z) ≥ 4 or d(x′) ≥ 4, a contradiction.

Subsubcase 2: f(z) = 0

Observe that if z is not adjacent to a vertex coloured 4, then we can simply change the
colour of z to 4 and apply the above case analysis to conclude there is a t ∈ {xx,z, y′} such
that d(t) ≥ 4, and a w ∈ {xy,z, x′} where d(w) ≥ 4. So we can assume that z is adjacent
to a vertex coloured four, and hence d(z) ≥ 4.

We claim that both xx,z and xy,z are adjacent to some vertex coloured 4 (possibly not
the same vertex). Suppose xx,z is not adjacent to a vertex coloured 4. Then change the
colour of xx,z to 4 and the colour of x′ to 6. Then colour x with 1, y with 5 and v with 3.
Hence both xx,z and xy,z are adjacent to a vertex coloured 4.

Now consider the graph induced by the colour classes 0 and 2. Let C be the component
of this graph containing z. If this component is only z, xx,z and xy,z, then colour xx,z and
xy,z with 0 and z with 2. Then by a previous case, we obtain a 3-colouring. Thus either
z is adjacent to a vertex coloured 2 that is not xx,z and xy,z, or one of xx,z and xy,z is
adjacent to a vertex coloured 0 that is not z. In the case z is adjacent to a vertex coloured
0 that is not z, then d(z) ≥ 5. Otherwise, at least one of xy,z or xx,z has degree at least
four.

We do not consider the case where f(xx,z) = 4 as it follows a similar analysis as above.

Subcase 2: f(xx,z) 6= f(xy,z)

First suppose that f(xx,z) = 0. If f(xy,z) = 2, then f(z) = 4, and we can extend to
a 3-colouring by colouring x with 2, y with 4, and v with 0. A similar argument works if
f(xy,z) = 4. Additionally, similar arguments work if f(xy,z) = 0.

Thus without loss of generality f(xx,z) = 2 and f(xy,z) = 4. Thus f(z) = 0. In this
case, change the colour of N4(N2(x

′)) to 5, N2(x
′) to 3, and x′ to 1. Then colour y with 2,

x with 6, and v with 4.

Case 2: f(y′) = 2

Subcase 1: f(xx,z) = f(xy,z)

Suppose that f(xx,z) = 0. Then f(z) ∈ {2, 4}. Colour y with 4 and x with 2, and
colour v any available colour. A similar argument shows that if f(xx,y) = 2, we can always
extend to a 3-colouring. Therefore we can assume that f(xx,z) = 4. Observe that f(z) 6= 4,
and hence colour v with 4, x with 2 and y with 0, a contradiction.
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Subcase 2: f(xx,z) 6= f(xy,z)

First suppose f(xx,z) = 0. If f(xy,z) = 2, then f(z) = 4, and colour y with 4, x with 2,
and v with 0. A similar colouring works when f(xy,z) = 4. Thus f(xx,z) 6= 0, and similarly
we can assume that f(xy,z) 6= 2.

Now suppose f(xx,z) = 2. If f(xy,z) = 4, then colour x with 4, y with 0 and v with
2. Hence, f(xy,z) = 0 and thus f(z) = 4. Now suppose that x′y′ 6∈ E(G). In this case,
change the colour of all vertices in N4(N2(x

′)) to 5, change the colour of all vertices in
N2(x

′) to 3 and x′ to 1. Then colour x with 6, y with 4, and v with 2, a contradiction.
Thus x′y′ ∈ E(G).

Similarly, if xx,zxy,z 6∈ E(G), then we change the colour of all vertices in N4(N2(xy,z))
to 5, the colour of all vertices in N2(xy,z) to 3, and the colour of xy,z to 1. Then colour x
with 4, y with 6 and v with 0.

Now we claim that both x′ and y′ are adjacent to a vertex coloured 4. If either x′ or
y′ is not adjacent to a vertex of degree four, simply change one of the vertices to colour 4,
and then extend to a 3-colouring by colouring x with 0, y with 4 and v with 2.

Now we claim that either x′ is adjacent to a vertex coloured 2 which is not y′, or y′ is
adjacent to a vertex coloured 0 which is not x′. If not, then simply exchange the colours
on x and y. But now we can extend to a 3-colouring, a contradiction.

Thus it follows that at least one of x′ or y′ has degree at least four, and x′y′ ∈ E(G).

Observe that xx,z, xy,z and z induce a triangle. If d(z) = 3, then note thatG[{z, xx,z, xy,z, v}]
induces exactly one edge, and then d(xx,z) ≥ 4 and d(xy,z) ≥ 4 by Observation 5.51. Oth-
erwise d(z) ≥ 4.

Lastly assume f(xx,z) = 4. Then f(xy,z) = 0 otherwise we use a previous case. Thus
f(z) = 2. Then we can extend to a 3-colouring with x coloured 2, y coloured 4, and v
coloured 0.

5.6.2 Long paths in the Gallai Tree

In this subsection we are going to analyze what happens around long paths in the Gallai
Tree. We start off by analyzing what happens if we delete a path of three degree three
vertices. As before, we assume G is a 4-critical graph with no (7, 2)-colouring, and further
we assume that the Gallai Tree of G is acyclic.

Lemma 5.56. Let x, y, z ∈ V (G) such that x, y and z have degree three, and xy, yz ∈
E(G). Let x′, x′′, y′, z′, z′′ be the other neighbours of x, y, z respectively. Then up to rela-
belling the vertex labels, x′ = z′, y′x′′ ∈ E(G), and y′z′′ ∈ E(G). Additionally, x′′ 6= z′′.

Further, if x′ 6= y′, there are two distinct vertices xx′,x′′, xx′,z′′ not in {x, y, z} where
xx′,x′′ is adjacent to x′ and x′′, and xx′,z′′ is adjacent to x′ and z′′.
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Proof. Let f be a 3-colouring of G− {x, y, z}. Without loss of generality we may assume
that f(y′) = 0. If f(x′) = f(x′′), then simply give z a colour from its available colours,
then give y an available colour, and finally as f(x′) = f(x′′), x has an available colour
and we can extend the colouring. Hence f(x′) 6= f(x′′), and similarly f(z′) 6= f(z′′). If
{f(x′), f(x′′)} = {f(z′), f(z′′)}, then give x and z the same colour, and we can extend this
colouring to y. Finally, if {f(x′), f(x′′)} = {2, 4}, then colour x with 0, colour z with any
available colour, and we can extend the colouring to y. A similar argument works when
{f(z′), f(z′′)} = {2, 4}.

Thus without loss of generality we can assume that f(x′) = 0, f(x′′) = 2, f(z′) = 0
and f(z′′) = 4. Observe this implies that x′′ 6= z′′ as they have different colours.

Claim 5.57. z′ = x′.

Proof. If not, change the colour of z′ to 6 and extend the colouring by colouring x with 5,
y with 3, and z with 1.

Claim 5.58. y′x′′ ∈ E(G).

Proof. Suppose not. Then change the colour of all vertices in N4(N2(y
′)) to 5, change the

colour of all vertices in N2(y
′) to 3 and change the colour of y′ to 1. If z′′ ∈ N4(N2(y

′)),
then colour z with 3, y with 6 and x with 4. Therefore z′′ 6∈ N4(N2(y

′)). If x′ 6= y′ colour
z with 2, y with 6 and x with 4. If x′ = y′, colour z with 6, y with 3 and x with 6.

Claim 5.59. y′z′′ ∈ E(G).

Proof. Suppose not. Then change the colour of z′′ to 5 and the colour of y′ to 6. Then
colour x with 4, y with 1, and z with 3.

To finish the proof, suppose that x′ 6= y′. If z′′ 6∈ N4(N2(x
′)), then simply change the

colour of all vertices in N4(N2(x
′)) to 5, change the colour of all vertices in N2(x

′) to 3,
and change the colour of x′ to 1. Then colour z with 6, y with 2, and x with 5. Thus there
is a vertex xx′,z′′ which is adjacent to both x′ and z′′. To see there is also a vertex xx′,x′′
which is adjacent to x′ and x′′, simply exchange the colours 2 and 4 on all vertices, and
then repeat the above argument. Distinctness follows from the fact that their colours are
different.

Observe that xx′,x′′ can simply be z′ if x′z′′ is an edge, and xx′,z′′ there is an edge x′x′′,
and similarly, xx′,z′′ may just be z′′ if x′′z′′.

Corollary 5.60. Let P be a path with at least three vertices where all vertices in P have
degree three. Let V (P ) = {v0, . . . , vn} and E(P ) = {vivi+1 | i ∈ {1, . . . , n− 1}}. Let v′0, v

′′
0 ,

v′n, v
′′
n be the neighbours of v0 and vn which are not in P , and let v′1 be the neighbour of v1

not in P . Then there is a w ∈ {v′0, v′′0} and a t ∈ {v′n, v′′n} such that t 6= w, and given a
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bipartition (A,B) of P ∪ {w, t} where v0 ∈ A and v1 ∈ B, all vertices in B are adjacent to
v′1, and all vertices in A are adjacent to the vertex w′ in {v′0, v′′0} − w.

Further, for any q ∈ {w′, v′1} and any p ∈ {w, t}, either pq ∈ E(G), or there is a vertex
xp,q such that xp,q is adjacent to both p and q, and does not lie on P .

Proof. We proceed by induction on n. If n = 2, the result follows from Lemma 5.56. Now
assume n ≥ 3. Consider the path v1, . . . , vn. Let v0, v

′′
1 be the vertices adjacent to v1, not

in v1, . . . , vn, and v′n, v
′′
n be the vertices adjacent to vn not in P . Let v′2 be the vertex not

in P adjacent to v2. Apply the induction hypothesis to v1, . . . , vn.

Observe that v0 has degree three, so v0 is not adjacent to any vertex of degree three
in P aside from v1, as then we would have a cycle of degree three vertices. Thus when
applying the induction hypothesis, we can conclude that v0 = w (where w is defined as in
the statement). Let (A,B) be a bipartition of P ∪ {v0, v′n} (up to relabelling v′n with v′′n if
necessary), such that v0 ∈ A. Then by induction, v′′1 is adjacent to all vertices in B, and
v′2 is adjacent to all vertices in A.

Now let v′0, v
′
2 be the vertices adjacent to v0 which are not v1. Now apply Lemma 5.56

to v0, v1, v2, where in the context of that lemma statement, v0 = x, v1 = y and v2 = z.
Then y′ = v′1. As v′2 is adjacent to both v2 and v0, v

′
2 = x′ in the lemma statement, and

hence v′0 = x′′ and so v′1v
′
0 ∈ E(G). Therefore, for the claim, v′0 = w and v′n = t. We now

claim that v′0 6= v′n. Suppose not. Consider G−{v0, . . . , vn}, and let f be a three colouring
of this graph. If f(v′n) = f(v′2) = f(v′1), then we extend the colouring to v0, . . . , vn by using
the other two colours in any fashion. If f(v′n) = 0 and f(v′2) = f(v′1) 6= 0, then the greedy
algorithm starting at v0 and increasing sequentially gives a 3-colouring of G. The same
strategy applies if f(v′n) = f(v′i) for i ∈ {1, 2} and f(v′j) 6= f(v′n) for j 6= i. The last case
to consider is if the colours of v′n, v

′
2 and v′1 are all distinct. In this case again the greedy

algorithm starting at v0 and increasing sequentially through the path gives a 3-colouring
of G, a contradiction.

Finally, observe that if v′2v
′
0 6∈ E(G), then Lemma 5.56 ensures that there is a vertex

xv′2v′0 not in v0, v1, v2 which is adjacent to both v′2, v
′
0. Observe that xv′2,v′0 is not in P ,

as all vertices in P have degree three. Similarly, if v′1v
′
n 6∈ E(G), then by induction we

have a vertex xv′1,v′n adjacent to vertices v′1, v
′
n and does not belong to the path v1, . . . , vn,

and xv′1,v′n is not v0, as v0 has degree three (v0 would be adjacent to v′1, v1, v
′
2, v
′
n, and as

v′1v
′
n 6∈ E(G), v′1 6= v′2).

This completes the claim.

We can strengthen Lemma 5.56 when the path of length three is a component of the
Gallai Tree and a specific outcome occurs.

Lemma 5.61. Suppose the following graph H is an induced subgraph of G. Let V (H) =
{x, y, z, x′, x′′, y′, z′′, xx′,x′′ , xx′,z′′}. Let E(H) = {xy, xx′, xx′′, yz, yy′, zx′, zz′′, x′′xx′,x′′ , x′′y′,
xx′,x′′x

′, x′xx′,z′′ , xx′,z′′z
′′, y′z′′}. See Figure 5.1
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x′′ x

y

z z′′

y′

x′

xx′,x′′ xx′,z′′

Figure 5.1: Graph from Lemma 5.61

Further suppose that all of x, y and z have degree three in G. Then at least one of the
following occurs:

� d(y′) ≥ 5

� d(x′) ≥ 5

� d(xx′,x′′) ≥ 4

� d(xx′,z′′) ≥ 4

� d(x′′) ≥ 5

� d(z′′) ≥ 5.

Proof. Suppose none of the conditions hold.

Let f be a 3-colouring ofG−{x, y, z}. Without loss of generality suppose that f(x′) = 0.
First suppose that one of f(x′′) = 0. Then colour z with any available colour, y with any
available colour, and since f(x′) = 0 and f(x′′) = 0, there is an available colour for x, a
contradiction. A similar argument holds for f(z′′).

If f(x′′) = f(z′′), then colour x and z the same colour, and there is an available colour
for y. Thus we can assume without loss of generality that f(x′′) = 2 and f(z′′) = 4. Then
f(y′) = 0, f(xx′,x′′) = 2 and f(xx′,z′′) = 4.

Observe that x′, xx′,z′′ , z
′′, z′, x′′, xx′,x′′ are a six cycle where for any three consecutive

vertices, all three colour appear. Let a, b ∈ {x′, xx′,z′′ , z′′, z′, x′′, xx′,x′′} such that ab is an
edge. We claim that either a is adjacent to a vertex not b with the same colour as b, or b
is adjacent to a vertex not a with the same colour as a. To see this, if not simply exchange
the colours of a and b, and by the previous case analysis (swapping colours if necessary),
we can extend the colouring.

137



x′1 x1

x2

x3 x4 x′4

v

u
xx′1,u

xv,x′4

Figure 5.2: Graph from Lemma 5.62

If this observation implies that x′ is adjacent to a vertex coloured 2 or 4 that is not
xx′,z′′ or xx′,x′′ , then d(x′) ≥ 5 and we are done. But then this implies that xx′,z′′ is adjacent
to a vertex coloured 0 that is not x′, and thus either d(x′, z′′) ≥ 4, or z′′ is adjacent to
a vertex coloured 2 that is not xx′,z′′ . Similarly, this implies that either d(z′′) ≥ 5, or z′

is adjacent to a vertex coloured 4 which is not z′′. Continuing, this implies that either
d(z′) ≥ 5 or x′′ is adjacent to a vertex coloured 0 that is not z′. Finally, this implies that
either d(x′′) ≥ 5, or d(xx′,x′′) ≥ 4, a contradiction in either case, and so we conclude the
claim.

Lemma 5.62. Suppose the following graph H is an induced subgraph of G. Let V (H) =
{x1, x2, x3, x4, x′1, x′4, u, v, xx′1,u, xv,x′4}, and E(H) = {x1x′1, x1u, x1x2, x2x3, x2v, x3u, x3x4, x4x′4,
x4v, x

′
4u, x

′
4xx′4,v, x

′
1v, x

′
1xx′1,u, vxx′4,v, xx′1,uu}. See Figure 5.2.

Further suppose that x1, x2, x3, x4 all have degree three in G. Then at least one of the
following occurs:

� d(v) ≥ 5

� d(u) ≥ 5

� There is a t ∈ {x′1, x′4} such that d(t) ≥ 5 and there is a w ∈ {xx′1,u, xx′4,v} such that
d(w) ≥ 4

� Both d(x′1) ≥ 5 and d(x′4) ≥ 5

� Both d(xx′1,u) ≥ 4 and d(xx′4,v) ≥ 4.

Proof. We may assume none of the conditions holds. Let f be a 3-colouring of G −
{x1, x2, x3, x4}. Without loss of generality we may assume that f(v) = 0. We claim
that f(u) = 0. Suppose not, and without loss of generality suppose that f(u) = 2. If
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x′1 x1 x2

x3

x4 x5 x′5

u

v

xv,x′1 xv,x′5

Figure 5.3: Graph from Lemma 5.63

f(x′1) = f(x′4), then f(x′1) = 4, and colour x1 and x3 with 0, and x2 and x4 with 2. If
f(x′1) = 2 and f(x′4) = 0, then again colour x1 and x3 zero, and x2 and x4 two. If f(x′1) = 4,
then colour x1 and x3 zero, x2 with 2, and x4 with any available colour. All other cases
follow similarly.

Hence we can assume that f(u) = 0. Now we claim that f(x′1) = f(x′4) ∈ {2, 4}.
Suppose f(x′1) 6= f(x′4). Then without loss of generality f(x′1) = 2 and f(x′4) = 4. Then
colour x1 and x3 with 4, and x2 and x4 with 2. If f(x′1) = f(x′4) = 0, then colour x1 and
x3 with 2 and x2 and x4 with 4. Thus it follows that f(x′1) = f(x′4) ∈ {2, 4}. Without
loss of generality we will assume that f(x′1) = 4. Hence f(xx′1,u) = f(xv,x′4) = 2. Now
the proof is analogous to Lemma 5.61. We observe that for any adjacent pair of vertices
w, t ∈ {x′1, x′4, v, u, xx′1,u, xv,x′4}, either w is adjacent to a vertex coloured f(t) that is not t,
or t is adjacent to a vertex coloured f(w) which is not w. If not, we simply exchange the
colours of w and t, and remain a 3-colouring, and extend this colouring to a colouring of
x1, x2, x3, x4 (here this extension is possible by the same case analysis done above). But
now following the same argument as Lemma 5.61 we see that one of the desired outcomes
must hold.

Lemma 5.63. Suppose that G contains the following graph H as an induced subgraph. Let
V (H) = {x1, x2, x3, x4, x5, x′1, x′5, u, v, xx′1,v, xv,x′5} and E(H) = {x1x2, x1x′1, x1v, x2u, x2x3,
x3v, x3x4, x4u, x4x5, x5x

′
5, x5v, x

′
5u, x

′
5xv,xx′5

, vxx′5,v, vxx′1,v, x
′
1xx′1,v, x

′
1u}. See Figure 5.63. Then

at least one of the following occurs:

� d(u) ≥ 5

� d(v) ≥ 6

� d(xx′1,v) ≥ 4

� d(xv,x′5) ≥ 4
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� d(x′1) ≥ 4

� d(x′5) ≥ 4.

Proof. Let f be a 3-colouring of G − {x1, x2, x3, x4, x5}. Without loss of generality we
assume that f(u) = 0. We claim that f(v) = 0. Suppose without loss of generality
f(v) = 2. Then colour x1, x3 and x5 zero, and x2 and x4 two. Hence f(v) = 0. Now
we claim that f(x′1) 6= f(x′4). Suppose f(x′1) = f(x′2). Then without loss of generality
f(x′1) = 2. Then colour x1, x3, x5 with 4, and x2 and x4 with 2. Thus without loss
of generality we can assume that f(x′1) = 4 and f(x′4) = 2. Hence f(xx′1,v) = 2 and
f(xv,x′5) = 4.

Then observe that for any pair of adjacent vertices w, t ∈ {u, x′5, xv,x′5 , v, xx′1,v, x
′
1}, either

w is adjacent to a vertex coloured f(t) that is not t, or t is adjacent to a vertex coloured
f(w) that is not w. If not, we exchange the two colours and extend the colouring using
the same ideas as in the above case analysis. Following a similar argument as in Lemma
5.61, we now see that at least one of the desired outcomes must follow.

5.7 A basic counting argument to finish

In this section we prove Theorem 1.79. We assume that all components of the Gallai Tree
are isomorphic to paths. Let P be a path component in the Gallai Tree. Let d3(v) denote
the number of neighbours of v which have degree three. Assign to each vertex v a charge of
d(v). Consider the discharging rule where each vertex v with d(v) ≥ 4 sends d(v)−3.4

d3(v)
charge

to each of it’s neighbours of degree three. Let ch(v) denote the charge of each vertex after
performing the discharging rule.

Observation 5.64. If d(v) ≥ 4, then ch(v) ≥ 3.4.

Proof. We have that ch(v) ≥ d(v)− d3(v)(d(v)−3.4
d3(v)

) = 3.4.

Given a component P of the Gallai Tree, we let ch(P ) =
∑

v∈V (P ) ch(v). Observe that

if for every component of the Gallai Tree P , we have ch(P ) ≥ 3.4v(P ), then Theorem 1.79
follows. To see this we have 2e(G) =

∑
v∈V (G) d(v) =

∑
v∈V (G) ch(v) ≥ 3.4v(G), and hence

e(G) ≥ 17v(G)
10

. We will say a component P of the Gallai Tree is safe if ch(P ) ≥ 3.4v(P ).
Thus we devote the rest of the section to showing that all components of the Gallai Tree
are safe.

Proposition 5.65. Let P be an isolated vertex in the Gallai Tree. Then P is safe.

Proof. Let v be the isolated vertex in P . Then all neighbours of v have degree at least 4.
Hence ch(v) ≥ 3 + 3(4−3.4

4
) ≥ 3.45, and thus v is safe.
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Proposition 5.66. Let P be isomorphic to an edge in the Gallai Tree. Then P is safe.

Proof. Let v be a vertex in V (P ). Let x, y, z be the neighbours of v, and without loss
of generality let z be the neighbour of v with degree three. First suppose that x, y, z are
an independent set. Then by Lemma 5.47 there are distinct vertices which are not in
{x, y, z, v}, xy,z, xx,z, xx,y which are adjacent to y and z, x and z and x and y respectively.
Then as P is isomorphic to an edge, d(xx,z) ≥ 4 and d(xx,y) ≥ 4. Hence for all t ∈
{x, y, xx,z, xy,z}, d3(t) ≤ d(t)−1. Therefore ch(v) ≥ 3+2(.2) = 3.4 and ch(z) ≥ 3+2(.2) =
3.4. Therefore it follows in this case that P is safe. Observe that if x, y, z is not an
independent set but only xy ∈ E(G), then the above argument still shows that P is safe,
as we never considered xx,y (in fact, the edge xy improves the situation).

Therefore we can assume that z is adjacent to at least one of x or y. Note that z cannot
be adjacent to both x and y, as otherwise we contradict Proposition 5.46.

So without loss of generality suppose that yz ∈ E(G). Then z and v share a common
neighbour, y, and thus by Lemma 5.50 yx ∈ E(G). Additionally, the neighbour of z which
is not y or v, say z′ is also adjacent to y. Further d(z′) ≥ 4. Therefore for all t ∈ {x, y, z′},
we have d3(t) ≤ d(t) − 1, and d3(y) ≤ d(y) − 2. Hence ch(v) ≥ 3 + .3 + .2 = 3.5 and
ch(z) ≥ 3 + .3 + .2 = 3.5. Therefore in this case P is safe and thus the proposition
follows.

Proposition 5.67. Let P be isomorphic to a path of length 2 in the Gallai Tree. Then P
is safe.

Proof. Let P = x, y, z be the path of length 2 in the Gallai Tree. Let x′, x′′, y′, z′, z′′ be the
vertices adjacent to x, y, z respectively not on P . Then by Lemma 5.56 up to relabelling
the vertices, we have that y′ is adjacent to x′′ and z′′, and x′ = z′. If x′ = y′, then d(y′) ≥ 5,

and d3(y
′) ≤ d(y′)− 2, and hence d(y′)−3.4

d3(y′)
≥ 8

15
. Thus ch(P ) ≥ 9 + 3( 8

15
) + .4 = 11 ≥ 10.2,

and hence P is safe in this case.

Therefore x′ 6= y′. If x′ is adjacent to both x′′ and z′′, then for any t ∈ {x′, x′′, y′, z′′},
we have d(t) ≥ 4 and d3(t) ≤ d(t)− 2. Therefore ch(P ) ≥ 9 + 5(.3) = 10.5 ≥ 10.2, and P
is safe in this case.

Therefore x′ is adjacent to at most one of x′′ or z′′. Suppose x′ is not adjacent to z′′

but is adjacent to x′′. Then there is a vertex not in P , xx′,z′′ which is adjacent to both x′

and z′′. Then for t ∈ {y, x′′}, we have d(t) ≥ 4 and d3(t) ≤ d(t)− 2. For w ∈ {x′, z′′}, we
have d(w) ≥ 4 and d3(t) ≤ d(t) − 1. Hence we have ch(P ) ≥ 9 + 1.2 = 10.2 and hence P
is safe.

Thus by symmetry we may assume that x′ is not adjacent to either x′′ or z′′. Then
there are distinct vertices not in P , say xx′,x′′ and xx′,z′′ , which are adjacent to x′ and x′′,
and x′ and z′′ respectively (and further xx′,x′′ , xx′,z′′ 6∈ {x′′, y′, z′′, x′}).

If d(x′) ≥ 5, then observe that ch(P ) ≥ 9 + .64 + .4 + .3 = 10.34 > 10.2 and hence P is
safe.
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If one of x′′ or z′′ has degree five, then we have that ch(P ) ≥ 9+.4+.3+2(.15)+.2 = 10.2,
and hence P is safe.

If d(y) ≥ 5, then ch(P ) ≥ 9 + .2 + .3 + .2 + 8
15
≥ 10.23 > 10.2.

If either of d(xx′,z′′) ≥ 4 or d(xx′,x′′) ≥ 4, then again ch(P ) ≥ 9 + 2(.3) + 3(.2) = 10.2,
and hence P is safe.

By Lemma 5.61, at least one of the above cases occurs, and hence P is safe.

Proposition 5.68. Let P be isomorphic to a path of length 3 in the Gallai Tree. Then P
is safe.

Proof. Let P = x1, x2, x3, x4. By Corollary 5.60, up to relabelling the vertices, there are
vertices x′1, x

′
4 adjacent to x1 and x4 respectively, vertices u and v (distinct from x′1 and

x′4)), such that u is adjacent to x′4, x3, x1, and v is adjacent to x′1, x2 and x4. If u = v,
then d(u) ≥ 6, and in this case it follows that ch(P ) ≥ 14.6 > 13.6 and hence P is safe.
Therefore we can assume that u 6= v.

If ux′1 ∈ E(G), then as d3(u) ≤ d(u) − 2, and d3(x
′
1) ≤ d(x′1) − 2, it follows that

ch(P ) ≥ 13.6 and hence P is safe. An analagous argument holds if vx′4 ∈ E(G).

Hence we can assume that ux′1 6∈ E(G) and vx′4 6∈ E(G). Then there are distinct
vertices xu,x′1 and xv,x′4 not in P that are adjacent to u and x′1 and v and x′4 respectively.
If u is adjacent to one of x2 or x4, then it follows that ch(P ) ≥ 14 > 13.6 and hence P is
safe. Similarly, if v is adjacent to either x1 or x3 we get that P is safe.

Therefore, we have a induced subgraph isomorphic to the graph in Lemma 5.62. If
either d(v) ≥ 5 or d(u) ≥ 5, then ch(P ) ≥ 14 > 13.6 and hence P is safe.

Proposition 5.69. Let P be isomorphic to a path of length 4 in the Gallai Tree. Then P
is safe.

Proof. Let P = x1, x2, x3, x4, x5. We apply Corollary 5.60 to P . Then from Corollary 5.60
there are vertices x′1 and x′5 not in P where x′1 is adjacent to x1 and x′5 is adjacent to x5 and
given a bipartition (A,B) of P ∪ {x′1, x′5}, there are vertices u and v so that u is adjacent
to all vertices in A and v is adjacent to all vertices in B. If u = v, then d(u) ≥ 7, and
hence ch(P ) ≥ 15 + 5(.72) + 2(.2) = 19 > 17.

Therefore u 6= v. Without loss of generality we can assume that x′1 ∈ A, and hence
x′5 ∈ A. First suppose that x′1 is adjacent to v. Then either d(v) ≥ 5, or x′1x

′
5 ∈ E(G). If

x′1x
′
5 ∈ E(G), then ch(P ) ≥ 15 + 3(.2) + .6 + 2(.3) + .3 = 17.1 > 17 and hence P is safe in

this case. If d(v) ≥ 5, then ch(P ) ≥ 15 + 3(.4) + .3 + .2 + 2(.3) = 17.3 > 17 and hence P
is safe in this case.

Therefore we can assume that v is not adjacent to x′1, and by symmetry we can assume
that v is not adjacent to x′5. Therefore there are vertices xx′1,v and xx′5,v not on P which
are adjacent to x′1 and v, and x′5 and v respectively.
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If d(v) ≥ 6, then ch(P ) ≥ 15 + 4(13
30

) + .4 + .6 ≥ 17 + 11
15

, and hence P is safe in this
case.

If d(u) ≥ 5, then ch(P ) ≥ 15 + 2(.53) + 3(.32) + .4 = 17.42 > 17. Thus P is safe in this
case.

Therefore we have an induced subgraph as in Lemma 5.63. If d(xx′1,v) ≥ 4 then ch(P ) ≥
15+3(.32)+ .9+ .2 = 17.06 > 17, and hence P is safe in this case. Similarly if d(xx′5,v) ≥ 5,
then P is safe. If d(x′1) ≥ 5, then ch(P ) ≥ 3(.32) + .4 + .6 + .2 = 17.16 > 17, and hence P
is safe in this case. Similarly, if d(x′5) ≥ 5 then P is safe.

Proposition 5.70. All path components in the Gallai Tree of length at least 5 are safe.

Proof. Let P be a path of length at least 5 in the Gallai Tree, with endpoints u and v. We
apply Corollary 5.60. Then there are vertices u′ and v′ adjacent to u and v respectively
such that for a bipartition (A,B) of P ∪ {u′, v′}, there are vertices x and y such that x
is adjacent to all vertices in A and y is adjacent to all vertices in B. Further, for any
w ∈ {u′, v′} and t ∈ {x, y}, if wt 6∈ E(G), then there is a vertex xw,t which is not in P ,
and adjacent to both w and t. As P has length at least five, the degree of x and y is at
least five.

Observe as the length of the path is at least five, this implies that the degree of x and y
is at least five. If x = y, then d(x) ≥ 8, d(x)−3.4

d3(x)
≥ 23

30
, and hence ch(P ) ≥ 3v(P )+ 23

30
v(P ) >

3.4v(P ). It follows that P is safe.

Thus x 6= y. If x and y have degree at least six, then for t ∈ {x, y}, we have d(t)−3.4
d3(t)

≥ 13
30

.

Thus ch(P ) ≥ 3v(P ) + 13
30
v(P ) > 3.4v(P ) and it follows that P is safe.

Thus at least one of x or y has degree five. Thus the length of P is at most six. If
the length of P is exactly 6, then the vertex of degree five is adjacent to both u′ and
v′, and thus is adjacent to at most 3 vertices of degree three. In this case we have that
ch(P ) ≥ 3v(P ) + 3( 8

15
) + 4(13

30
) > 3.4v(P ).

Thus the last case to consider is when the length of P is exactly 5. Observe that either
the degree of x and y is greater than 6, or it is 5 and the number of neighbours of degree
three is at most 4 (since x is adjacent to at least one of u′ and v′, and y is adjacent to at
least one of u′ and v′). As 5−3.4

4
≥ .4, it again follows that P is safe.

Thus every component of the Gallai Tree is safe, and Theorem 1.79 follows.
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Chapter 6

Circular clique mixing in planar
graphs

This chapter is joint work with Richard Brewster.

6.1 Introduction

The goal of this chapter is to prove Theorem 1.96. In fact, we show this characterizes (p, q)-
mixing in planar graphs when 2 < p

q
< 4. We need a litany of theorems and definitions

before getting into the proof, which we provide now.

Let G be a graph and let f be a (p, q)-colouring of G. Given an edge uv of G, define
the weight of uv under f as W (uv, f) = (f(v)− f(u)) (mod p). Note there is an implied
direction to uv here. Given a set of edges from G, S ⊆ E(G), we naturally extend the
concept of weight by

W (S, f) =
∑
uv∈S

W (uv, f).

Given a walk X = x0, x1, x2, . . . , xl in G, as a slight abuse of notation we write

W (X, f) =
l∑

i=1

((f(xi)− f(xi−1)) mod p).

In particular for a cycle of length l, C = c0, c1, . . . , cl−1, c0,

W (C, f) =
l∑

i=1

((f(ci)− f(ci−1)) mod p),

where index arithmetic is modulo l. For a cycle C, the sum telescopes and hence

W (C, f) = p · wf (C) for some integer wf (C).
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We call wf (C) the wind of C under f .

In [3], a characterization of the (p, q)-mixing problem was given.

Theorem 6.1 ([3]). Fix 2 < p
q
< 4 and let G be a graph. Then G is not (p, q)-mixing if and

only if there exists a (p, q)-colouring f of G and a cycle C in G where W (C, f) 6= e(C)
2
p.

Motivated by this theorem, for any cycle C of G, if W (C, f) 6= e(C)
2
p, then we say that

C is wrapped with respect to f . An additional useful idea is that of folding.

For vertices x and y, let d(x, y) denote the distance from x to y. Given a graph G, and
two vertices x and y such that d(x, y) = 2, let Gxy be the graph obtained by identifying
x and y and calling the new vertex vxy. The homomorphism f : G → Gxy defined by
f(x) = f(y) = vxy and f(u) = u for u 6∈ {x, y} is an elementary fold. We say a graph
G folds to a graph H if there is a homomorphism f : G → H where f is a composition
of elementary folds and f(G) is isomorphic to H. We call such a mapping a folding. For
brevity, we may refer to an elementary fold as just a fold. A useful fact is that mixing is
closed under folding.

Theorem 6.2 ([3]). Let p and q be integers where 2 < p
q
< 4. If G folds to H, and H is

not (p, q)-mixing then G is not (p, q)-mixing.

We also will need a special type of fold (in connected graphs) called a retract.

Definition 6.3. Let G be a graph and H an induced subgraph of G. A retraction of G to
H is a homomorphism r : G→ H such that r(h) = h for every vertex h ∈ V (H). If there
exists a retraction of G to H, we say G retracts to H.

The next observation is well known (see [16]).

Observation 6.4. If G is a connected graph, and r : G → H is a retraction, then r is a
folding from G to H.

Proof. If r is the identity then trivially r is a folding. Otherwise, r maps a vertex u distance
two away from a vertex v ∈ V (H), to a vertex in v. Identify u and v, and now repeat this
process.

Finally, we need a lemma which shows that wrapped cycles behave nicely across theta
subgraphs.

Lemma 6.5 ([3]). Let G be a graph and f a (p, q)-colouring of G. Let C = c0, c1, . . . , cl, c0
be a cycle which is wrapped under f . Let P = p0, p1, . . . , pk be a path whose endpoints
lie on C, i.e. p0 = cs and pk = ct, and whose internal vertices do not lie on C. Then
either C ′ = cs, cs+1, . . . , ct−1, ct, pk−1, . . . , p1, cs or C ′′ = cs, p1, . . . , pk−1, ct, ct+1, . . . , cs−1, cs
is wrapped with respect to f .
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These are all the structural lemmas we need. As an overview of the proof: we first
show that a graph G is (p, q)-mixing when 2 < p

q
< 4 if and only if each block of G is

(p, q)-mixing. We then argue that if a graph has a planar embedding with at most one
face of length at least 2k, where C2k is the minimal even cycle which is not (p, q)-mixing,
then G is (p, q)-mixing. Then we show that if G has a planar embedding with at least two
≥ 2k faces and no small separating cycle, then G is not (p, q)-mixing. When p

q
≥ 3, we

can additionally assume our graph has no separating four cycles, and thus we get a full
characterization in this case.

6.2 The proof

First we note that there is an even cycle which is not (p, q)-mixing.

Observation 6.6. Fix integers p and q such that 2 < p
q
< 4. If p is even, then for all even

integers j ≥ p, Cj is not (p, q)-mixing. If p is odd, then for all even j ≥ 2p, C2p is not
(p, q)-mixing.

Proof. First assume that p is even. Let Cp = c0, . . . , cp−1, c0 and consider the (p, q)-
colouring f(ci) = iq mod p, i = 0, 1, . . . , p− 1. Then W (C, f) = qp < p

2
p as p

q
> 2. Hence

Cp is not (p, q)-mixing. It follows by Theorem 6.2 that when p is even, for all even j ≥ p,
C2j is not (p, q)-mixing.

Now assume that p is odd. Let C2p = c0, . . . , c2p−1, c0. For i = 0, 1, . . . , p − 1, colour
ci and ci+p with iq mod p. Again, W (C, f) = 2qp < p2, and thus C2p is not (p, q)-mixing.
Hence, for all even j ≥ 2p, Cj is not (p, q)-mixing.

When 3 ≤ p
q
< 4, we can strengthen this to saying that C6 is not (p, q)-mixing.

Observation 6.7. Let p, q be positive integers where 3 ≤ p
q
< 4. Then C6 is not (p, q)-

mixing.

Proof. Let v1, v2, v3, v4, v5, v6 be the vertices of C6, where vivi+1 ∈ E(C6) for i ∈ {1, . . . , 6}.
Let f be the (p, q)-colouring where f(v0) = f(v4) = 0, f(v1) = f(v5) = q, f(v3) = f(v6) =

2q. This is a proper (p, q)-colouring as p
q
≥ 3. Observe that e(C)

2
p = 3p. Orienting C

from vi to vi+1 for i ∈ {1, 2, 3, 4, 5, 6}, we have W (C, f) = 2p < 3p, and hence C6 is not
(p, q)-mixing.

Now we show we can assume graphs are to 2-connected graphs. Recall that a block of
a graph is a maximal 2-connected component.

Observation 6.8. Fix integers p and q such that 2 < p
q
< 4. A graph G with a (p, q)-

colouring is (p, q)-mixing if and only if every block of G is (p, q)-mixing.
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Proof. Suppose that a block B of G is not (p, q)-mixing. By Theorem 6.1, it follows that
there is a (p, q)-colouring f of B such that there is a cycle C which is wrapped with respect
to f . Observe that we can extend f to a (p, q)-colouring of G by taking (p, q)-colourings
of each block (which exist as G has a (p, q)-colouring), and permuting colours if necessary.

Conversely, suppose that G is not (p, q)-mixing. It follows that by Theorem 6.1 there
is a (p, q)-colouring f such that there is a cycle C which is wrapped with respect to f . As
a cycle is 2-connected, C lies in some block B. Then f restricted to B is a (p, q)-colouring
which has a wrapped cycle, and hence B is not (p, q)-mixing.

Therefore, we will always assume all graphs are 2-connected. Recall that if a planar
graph is 2-connected, then every face is bounded by a cycle. An important fact is that for
(p, q)-mixing when 2 < p

q
< 4, we may assume that there is no pair of vertices u and v

such that uv ∈ E(G) and G− u− v disconnects G.

Observation 6.9. Fix integers p and q such that 2 < p
q
< 4. Let G be a graph, and

suppose there are vertices u, v where uv ∈ E(G) and G − u − v is disconnected. Let
G1 and G2 be graphs such that V (G1) ∩ V (G2) = {u, v}, V (G1) ∪ V (G2) = V (G), and
E(G1) ∪ E(G2) = E(G). If G1 and G2 are (p, q)-mixing, then G is (p, q)-mixing.

Proof. Suppose G is not (p, q)-mixing. By Theorem 6.1 it follows there is a (p, q)-colouring
f of G and a cycle C such that C is wrapped with respect to G. As G1 and G2 are (p, q)-
mixing, this implies that V (C) 6⊆ V (G1) and V (C) 6⊆ V (G2). In particular, u, v ∈ V (C)
and uv 6∈ E(C). Let P1 be path of C contained in G1, and P2 be the path of C contained
in G2. Then P1 + xy and P2 + xy are cycles, and by Lemma 6.5 one of them is wrapped
with respect to f . But this contradicts that G1 and G2 are (p, q)-mixing.

We record an obvious fact which simply says that certain elementary folds preserve
planarity.

Observation 6.10. If G is a planar graph where x, y, z are consecutive vertices on a face,
where the distance from x to z is 2, then the graph obtained by folding x and z is planar.

One can see this by simply adding the edge xz inside the face and then contracting the
edge and noting that planarity is closed under contraction. The next lemma is well known.
A proof can be found in [5] (they claim a weaker statement, but examining the proof gives
this lemma).

Lemma 6.11. Let G be a connected bipartite graph, and let P be a shortest path from x
to y in G. Then G retracts to P .

Much stronger statements are known than Lemma 6.11 but for our purposes we only
need Lemma 6.11.
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Let G be a connected graph and C be a cycle in G. Given a plane embedding of a
graph G, and a cycle C, we let the interior of C, denoted Gint, be the graph induced by
the vertices on the interior of C with the inclusion of the cycle C. Analogously define the
exterior of C, denoted Gext. We say C is separating if both the interior and exterior of C
contain a vertex not in C. For ease, we will say a ≥ k-face is a face whose boundary has
at least k edges. For the rest of the chapter, for every planar graph G we will associate
to it a plane embedding (arbitrarily) (up to the choice of outerface). If we modify our
graph and obtain a new graph via some operations, the new graph will always be planar,
and the embedding of the new graph is assumed to be obtained from the embedding of G.
Therefore the upcoming lemmas work for any embedding of G.

Lemma 6.12. Fix 2 < p
q
< 4. Let C2k be the minimal even cycle which is not (p, q)-mixing.

Let G be a 2-connected planar bipartite graph. If G has at most one ≥ 2k-face, then G is
(p, q)-mixing.

Proof. Let G be an edge-minimal counterexample to the claim. If G is isomorphic to a
cycle, then the claim holds as the cycle has length strictly less than 2k (if the cycle had
length 2k or more, both the unique interior face and outerface have the length of the cycle,
and hence we have two ≥ 2k-faces). Thus we assume that G is not isomorphic to a cycle.

If one exists, let f be the ≥ 2k face, otherwise let f be an arbitrary face, and let
C = v0, . . . , vt−1, v0 be the facial cycle of f . Without loss of generality, we may suppose
that f is the outerface. We claim all facial cycles are chordless. Suppose a facial cycle
C has a chord uv. Then G − u − v is disconnected. Let G1, G2 be two graphs such that
V (G1) ∩ V (G2) = {u, v}, and V (G1) ∪ V (G2) = V (G). Then both of G1 and G2 have at
most one ≥ 2k face, and hence are both (p, q)-mixing by minimality. But then Observation
6.9 implies that G is (p, q)-mixing, a contradiction.

Claim 6.13. There exists a face f ′, where f ′ has a facial cycle C ′ such that V (C)∩V (C ′)
induces a path P of length at least one.

Proof. Pick an arbitrary edge e = vjvj+1 ∈ E(C). Let f ′ and f be the two distinct
faces whose boundaries contain e. Let C ′ be the facial cycle of f ′. We may assume that
V (C ′)∩ V (C) does not induce a path. Note V (C ′) 6⊆ V (C), as otherwise this implies that
V (C) has a chord. Let P be the component of G[V (C ′) ∩ V (C)] containing vj. Observe
that P is a path, and let v be an endpoint of P . Let Q be the path in C ′ starting at v and
ending at a vertex u ∈ V (C) such that V (Q) ∩ V (P ) = {v}, and all internal vertices of
Q are not in V (C). Let P ′ be the path from v to u in C such that V (P ′) ∩ V (P ) = {v}.
Then P ′+Q is a cycle, say C ′′. If C ′′ is a facial cycle, then this is our desired path and we
are done. Otherwise, C ′′ is a separating cycle. Without loss of generality, we can assume
that the interior of C ′′ does not contain all of P , and repeat the above argument on the
interior of C ′′, starting with some edge on C in the interior of C ′′. As the graph is finite,
we find a face f ′ whose intersection with f is exactly a path of length at least one.
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Now, up to relabelling let e = v1v2 be on the boundary of a face f ′, with facial cycle C ′

such that the intersection of V (C ′) and V (C) is a path. Let P be this path, let S = V (P ),
let v′ and v′′ be the endpoints of P , and let S ′ be the set of internal vertices. Consider
G′ := G− S ′ − {e}. (The deletion of e is only required when S ′ = ∅.) Notice as all of the
vertices of S are on the boundary of f , we do not create two ≥ 2k faces. We have two
cases to consider.

First suppose G′ is 2-connected. Then since G is an edge-minimal counterexample, G′ is
(p, q)-mixing. Now consider any (p, q)-colouring φ of G. Observe that φ restricts to a (p, q)-

colouring of G′. As G′ is (p, q)-mixing, for all cycles D in G′, we have W (D,φ) = e(D)
2
p.

Thus by Lemma 6.5, it suffices to show that the winds of C ′ and C are e(C′)
2

and e(C)
2

respectively. As e(C ′) < 2k, we have W (C ′, φ) = e(C′)
2
p. So it suffices to show that

W (C, φ) = e(C)
2
p. To see this, consider the cycle C ′′ obtained by taking the symmetric

difference of C and C ′. Since W (C ′′, φ) = e(C′′)
2
p and W (C ′, φ) = e(C′)

2
p, by Lemma 6.5 it

follows that W (C, φ) = e(C)
2
p.

Otherwise, G′ has a cut vertex v. We are going to argue that this cannot occur. Let
T1, T2, . . . , Tt be the components of G′ − v. We claim that t = 2. As v is a cut vertex, by
definition t ≥ 2. Observe by planarity, all vertices in S ′ have degree two in G. Adding the
path S to G′ joins at most two of the components in G′− v. Therefore if t ≥ 3, G contains
a cut vertex, a contradiction.

Thus we can decompose G′ into two graphs G1 and G2, such that V (G1)∩V (G2) = {v},
bothG1 andG2 contain at least two vertices, and up to relabelling, v′ ∈ V (G1), v

′′ ∈ V (G2).

First suppose that v = v′. Then as G′ is simply G with S ′ and e deleted, there is a
vertex x ∈ V (G1) \ {v′} such that every path from x to v′′ contains v′. But this implies
that G is not 2-connected, a contradiction. By a similar argument, we can assume that
v 6= v′′.

Now we can conclude that all paths from v′ to v′′ in G′ must have v as an internal vertex.
In particular, the path from v′′ to v′ in C −S ′−{e} must contain v. Thus v ∈ V (C). The
boundary of f ′ contains a path from v′ to v′′ that does not use S ′ ∪ {e}. In particular,
this path must contain v. Therefore v ∈ V (C) ∩ V (C ′). But now this contradicts that
V (C) ∩ V (C ′) induces a path, a contradiction.

Now we prove a partial converse, under the assumption that we have no small sepa-
rating cycles. We will need the following definition. Given a graph G with a fixed planar
embedding, we call a cycle C in G f -separating if the face f lies in the interior C and
either C is a separating cycle or C is the boundary cycle for the outerface of G.

Lemma 6.14. Fix 2 < p
q
< 4. Let C2k be the smallest even cycle which is not (p, q)-

mixing. Let G be a 2-connected planar bipartite graph with no separating C2i-cycle for all
i ∈ {2, . . . , k − 1}. If G has at least two ≥ 2k-faces, then G is not (p, q)-mixing.
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Lemma 6.15. Fix 2 < p
q
< 4. Let C2k be the smallest even cycle which is not (p, q)-

mixing. Let G be a 2-connected bipartite graph with a planar embedding containing no
separating C2i-cycle for all i ∈ {2, . . . , k − 1}. If G has at least two ≥ 2k-faces, then G is
not (p, q)-mixing.

Proof. Let f, fo be two ≥ 2k-faces, and suppose that the boundaries of f , and fo, are C,
and Co, respectively. Without loss of generality, we may suppose that fo is the outer face.
A cycle D is f -separating if f lies in Gint(D) and either D is a separating cycle or D = Co,
the boundary of the outer face. In particular, Co is f -separating despite the fact that Co
is not separating. As e(Co) ≥ 2k and G has no separating cycles of length less than 2k, G
has no f -separating cycles of length less than 2k.

If G is a cycle, then G folds to C2k and G is not (p, q)-mixing by Lemma 6.2. Otherwise,
we show that G folds to a bipartite graph G′ on fewer vertices, such that G′ contains a block
with two ≥ 2k-faces, the face f (from G) and f ′o (the outerface of B′), and no f ′-separating
cycle of length 2i, i ∈ {2, . . . , k − 1}. The result follows by induction.

Therefore assume G is not a cycle and let y ∈ V (C) such that d(y) ≥ 3.

Let z be a neighbour of y on C, and a be a neighbour of y not in C, such that all of
a, y, and z lie on a face (such a choice of z and a exists). Fold a and z and let G′ be the
resulting graph. As a, y and z lie on a face of G, the graph G′ is planar. Moreover, f is still
a face of G′ as a 6∈ V (C). (We may think equivalently of G′ as being formed by deleting
a and joining z to all the neighbours of a. As a ∈ Ext(C) this process leaves the face f
unchanged.) Let B′ be the block of G′ containing f . Now we consider two cases.

Case 1: B′ has no f-separating C2i-cycle for i ∈ {2, . . . , k − 1}.

The outerface of B′ is an f -separating cycle. Thus it has length at least 2k. The
outerface together with f are two ≥ 2k-faces of B′. By induction, B′ is not (p, q)-mixing
from which we conclude G′ is not (p, q)-mixing by Observation 6.8, and by Lemma 6.2, G
is not (p, q)-mixing.

Case 2: B′ has an f-separating cycle D′ of length less than 2k.

Let vaz be the new vertex obtained from folding a and z. As G has no f -separating
cycle of length less than 2k, we have vaz ∈ V (D′). Let v′az and v′′az be the two neighbours
of vaz in D′. Observe that without loss of generality, a is adjacent to v′az and not to v′′az in
G and z is adjacent to v′′az but not to v′az in G, as otherwise, G has an f -separating cycle
of length less that 2k. Let D be the cycle (in G) that gave rise to D′ in B′, i.e. D is the
cycle obtained by replacing the path v′az, vaz, v

′′
az in D′ with the path v′az, a, y, z, v

′′
az”. Since

C is in Gint(D) and Co is in Gext(D), if e(D) < 2k, then G contains an f -separating cycle
of length less than 2k, a contradiction. Since D′ has length less than 2k, it follows that
e(D) = 2k and e(D′) = 2k − 2.

We claim D is an f -separating cycle. As e(C) ≥ 2k, e(D) = 2k, and a ∈ V (D)\V (C),
there is a vertex of C in Int(D). Thus, D is f -separating if there is a vertex in Ext(D)
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or D = Co the boundary of the outerface. Suppose neither holds. Since e(Co) ≥ 2k and
e(D) = 2k, it must be the case that V (Co) = V (D). Hence D must have a chord not
belonging to Co as D 6= Co. However, this chord must be in the interior of D (as Co
bounds the outerface) which implies D is the sum of two shorter cycles one of which is
f -separating, a contradiction.

Let P be the path of length 2k − 1 from y to z in D − zy. We now claim that in
Gint(D) − zy, the path P is a shortest (y, z)-path. Suppose there is a shorter path P ′.
Using the fact that D bounds the outerface of Gint(D) and zy is an edge of D, the cycle
P ′ + zy is f -separating in G and of length less than 2k, a contradiction. Therefore, by
Lemma 6.11, Gint(D)− zy retracts to P which implies Gint(D) folds to D. (The vertices y
and z are fixed under the retraction.) Let G′′ be the resulting graph from G after folding
Gint(D) to D. In G′′, D is the boundary of a ≥ 2k-face and the outerface is a ≥ 2k-face.
(This includes the possibility that G′′ = D is simply a cycle.) Now by induction the result
follows.

Therefore we have the following theorem:

Theorem 6.16. Fix 2 < p
q
< 4. Let C2k be the minimal non-(p, q)-mixing cycle. Let G be

a 2-connected bipartite planar graph with no separating C2i-cycles for i ∈ {2, . . . , k − 1}.
The graph G is (p, q)-mixing if and only if there is at most one ≥ 2k-face.

Now we show we can perform reductions to remove small separating cycles.

Lemma 6.17. Fix 2 < p
q
< 4. Let C2k be the smallest even cycle which is not (p, q)-mixing.

Let G be a planar bipartite graph where C is a separating C2i-cycle, for some i < k. Let G1

denote the interior of C, and G2 denote the exterior. If both G1 and G2 are (p, q)-mixing,
then G is (p, q)-mixing.

Proof. Suppose that G is not (p, q)-mixing. Let f be a Gp,q-colouring where there is
a wrapped cycle D. If D contains vertices from both G1 and G2, then D crosses the
separating cycle C (note, D 6= C since C is (p, q)-mixing). Then we can (repeatedly, if
required) apply Lemma 6.5 to obtain a wrapped cycle which lies completely in G1 or G2,
and thus either G1 or G2 is not (p, q)-mixing.

Now we build towards proving the converse.

Lemma 6.18. Let G be a connected bipartite planar graph and C be a facial cycle of G.
There exists a bipartite planar graph H such that V (C) = V (H), C is a facial cycle in H,
and a folding f : G→ H such that for all v ∈ V (C), f(v) = v.

Proof. Let G be a vertex minimal counterexample to the lemma. Observe that the state-
ment holds if V (G) = V (C), as the identity map suffices. So we may assume there is a
vertex in V (G)\V (C). Let C = v0, . . . , v2k−1, v0. Observe that as G is bipartite, every face
has size at least four, and hence for all vertices u there exists a vertex v with d(u, v) = 2,
such that folding u and v preserves planarity.
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Claim 6.19. For all vertices u, v ∈ V (G) \ V (C), if d(u, v) = 2, then folding u and v does
not preserve planarity.

Proof. Suppose not and let Guv be the graph obtained by folding u and v. Then we do
not add new chords to C, as both u and v are not in C. Thus by minimality there is a
planar graph H with facial cycle C, and a homomorphism f : Guv → H such that f is the
identity on C. Composing homomorphisms gives a contradiction.

Claim 6.20. All vertices in G are adjacent to a vertex in C.

Proof. Suppose towards a contradiction that there is a vertex v ∈ V (G) which is not
adjacent to any vertex in C. Then there exists a vertex u ∈ V (G) (necessarily on C),
such that d(v, u) = 2 and that folding u and v preserves planarity. Let Guv be the graph
obtained by folding u and v. As v is not adjacent to a vertex in C, no new chords are added
to C. As v(Guv) < v(G), by minimality, there exists a folding f : Guv → H such that H
is planar, C is a facial cycle of H, V (H) = V (C), and f is the identity on C. Composing
homomorphisms now gives a contradiction.

Claim 6.21. There are no separating cycles C ′ where C ′ 6= C.

Proof. Suppose not and let C ′ be a separating cycle distinct from C. Let G′ be subgraph
of G consisting of a component of G− C ′ together with C ′. Since C ′ is separating we can
choose G′ to be disjoint from C aside from possibly C sharing some vertices of C ′. By
minimality, there exists a homomorphism f from G′ to a planar graph H ′ so that H ′ has
facial cycle C ′, V (H ′) = V (C ′), and f is the identity on C ′. But now the resulting graph
is smaller than G, and we can apply minimality again to find our desired homomorphism
for C.

Claim 6.22. There does not exist a set of three vertices x, y, z ∈ V (G) \ V (C) such that
G[{x, y, z}] induces a path of length 2.

Proof. Suppose so. Without loss of generality let xy, yz ∈ E(G), but xz 6∈ E(G). Now
by Claim 6.19 we can assume that folding x and z does not preserve planarity. Then it
follows that there is a separating cycle C ′ which separates x from z. But this contradicts
Claim 6.21.

Claim 6.23. There do not exist two adjacent vertices in V (G) \ V (C).

Proof. Suppose not and let u and v be adjacent vertices in V (G) \ V (C). Let u′ and v′ be
vertices in V (C) such that uu′ ∈ E(G) and vv′ ∈ E(G). Note u′ 6= v′ as G is bipartite. Let
P be a path from u′ to v′ in C, and consider the cycle C ′ formed by P , u and v. We claim
we can find a cycle C ′′ where V (C ′′) ⊆ V (C ′) such that C ′′ is a facial cycle. If u′v′ ∈ E(G),
then C ′′ is the cycle u, v, v′, u′′. Otherwise, without loss of generality we assume that C
lies in the exterior of C ′. Thus if there is a vertex not in C ′ in the interior of C ′, then
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C ′ separates that vertex from vertices in V (C) \ V (C ′). This contradicts Claim 6.21. If
C ′ contains a chord xy, where x, y ∈ V (P ), then the path P ′ from x to y which is not
contained in P with the chord xy is a separating cycle, contradicting Claim 6.21. If C ′

contains a chord ux, then let P ′′ be the path from x to v′ on P , and consider the cycle C ′′

consisting of P ′′, u and v (repeating this argument, we may assume C ′ has no chord ux,
and by symmetry no chord vx). Therefore, it follows that we can find the desired cycle
C ′′. Now fold v to a vertex distance two away on C ′′. Then C is still a facial cycle, and
we obtain our desired homomorphism by minimality and composing homomorphisms.

Claim 6.24. There is at most one vertex in V (G) \ V (C).

Proof. Suppose not, and let x and z be a vertices in V (G) \ V (C). We can assume that
x has degree at least 2, otherwise we fold arbitrarily. Let y1 and y2 be two vertices in C
adjacent to x. By a similar argument as in Claim 6.23, without loss of generality we may
assume that x plus one of the paths from y1 to y2 form a facial cycle.

As G is bipartite, y1y2 6∈ E(G), and hence C − {y1, y2} has two components say C1

and C2. Each component Ci with y1, x, y2 forms a cycle. Now without loss of generality
C1 + {y1, x, y2} separates z from C2 contrary to Claim 6.21.

To finish the proof of Lemma 6.18, observe our graph is C + x for some vertex x. We
fold x with any vertex distance 2 from x. This preserves planarity and after folding C
remains a facial cycle. The result follows by minimality.

Corollary 6.25. Let G be a 2-connected planar bipartite graph. Let C be a separating
4-cycle. For any p, q such that 2 < p

q
< 4, we have that G is (p, q)-mixing if and only if

the interior and exterior of G is (p, q)-mixing.

Proof. By Lemma 6.17 we may assume without loss of generality that the interior of G
is not (p, q)-mixing. Then by Lemma 6.18 we can fold the exterior of G onto C in a way
which the folding is a retract on C, and such that we possibly create chords. However, as
C is a 4-cycle, we create no chords (as otherwise we would end up with a non-bipartite
graph). Therefore G folds to a non-(p, q)-mixing graph, and hence is not (p, q)-mixing.

It follows now that we have a simple characterization for (p, q)-mixing in planar graphs
when 3 ≤ p

q
< 4.
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Chapter 7

Cycles in Colour Critical Graphs

The work in this chapter is joint with Douglas B. West.

7.1 Extending Tuza for k-colourings

In this section we prove the following theorem.

Theorem 7.1. Let xy be an edge in a graph G. If G − xy is k-colourable and G is not,
then xy belongs to at least

∏r−1
i=1 (k − i) cycles in G having lengths congruent to 1 modulo

r, for 2 ≤ r ≤ k.

Proof. Let [k] denote {1, . . . , k}. Fix a proper k-colouring φ of G−xy, using colour set [k].
We obtain one cycle through xy for each cyclic permutation of a subset of [k] containing
φ(x).

Given such a permutation σ, define the σ-subdigraph Dσ of G generated by φ to be the
directed graph with vertex set V (G) such that uv is an edge in Dσ if and only if uv ∈ E(G)
and σ(φ(u)) = φ(v). Let H be the subdigraph of Dσ induced by all vertices reachable from
x by paths in Dσ.

Consider the recolouring φ′ ofG defined by φ′(u) = σ(φ(u)) for u ∈ V (H), and otherwise
φ′(u) = φ(u). An edge can become improperly coloured only if the colour of one endpoint
is changed into the colour of the other, but then the oriented version of the edge lies in H
and both endpoints change colour.

If y /∈ V (H), then φ′(x) 6= φ′(y), and φ′ is a proper colouring of G, which by hypothesis
does not exist. Hence y ∈ V (H), meaning that y is reachable from x via a path in H.

Since paths in H follow colours according to σ, and φ(y) = φ(x), the length of any
x, y-path in H is a multiple of r, and the cycle in G completed by adding the edge yx has
length congruent to 1 modulo r. Furthermore, since the colouring φ is fixed, the resulting
x, y-paths in G are distinct for distinct choices of σ.
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This result was motivated by a similar argument due to Brewster, McGuinness, Moore,
and Noel [2], which we sketch in our language to generalize the quantitative result. For
k > 2, they showed that if G is not k-colourable but G− xy is k-colourable, then G− xy
contains at least (k − 1)!/2 cycles whose lengths are multiples of k. The early paper of
Tuza [49] notes that Toft and Tuza had observed that every graph that is not k-colourable
contains a cycle whose length is divisible by k, for k > 2.

We extend the result of [2] as follows. Again fix a proper k-colouring φ of G−xy and a
cyclic permutation σ of a set of colours containing φ(x). Define the digraph Dσ as above.
Note again that φ(x) = φ(y). If Dσ is acyclic, then we recolour G by again changing the
colour on v from φ(v) to σ(φ(v)), but now one vertex at a time, always changing the colour
at a sink of the unchanged subgraph. At each step we have a proper k-colouring of G−xy.
We do this until the colour on x or y changes, at which point we have a proper k-colouring
of G. Since that does not exist, Dσ contains a cycle. The length of a cycle in Dσ must be
a multiple of k. However, a cyclic permutation and its reverse will select the same cycle in
G, because the corresponding digraphs are obtained from each other by reversing all the
edges.

Hence we are in fact guaranteed (r − 1)!/2 cycles whose length are multiples of r, for
all r with 3 ≤ r ≤ k, and none of these cycles contain e.

7.2 Extending Zhu for circular colouring

In this section we consider the analogous problem for (k, d)-colouring. We will only use
cycles of the form (0, d, 2d, . . . ,−d) and their reverse, so we get existence results rather
than quantitative results. Nevertheless, the result is still sharp.

Note the proof may require many steps of recolouring to find a desired cycle. This is
inherently necessary, because a C2d+1-colouring of C2d−1− xy may alternate 0 and d along
the path.

Theorem 7.2. Let k and d be relatively prime, with k > 2d, and let s be the element of
Zk such that sd ≡ 1 mod k. Let xy be an edge in a graph G. If G − xy is Kk,d-colorable
and G is not, then xy lies in at least one cycle in G of length congruent to ismod k for
some i in {1, . . . , d}. If this does not occur with i ∈ {1, . . . , d− 1}, then xy lies in at least
two cycles of length 1 mod k and G− xy contains a cycle of length 0 mod k.

Proof. Fix a Gk,d-colouring φ of G − xy. By symmetry, we may assume φ(y) = 0. Since
G is not Gk,d-colorable, φ(x) ∈ {0,±1, . . . ,±(d − 1)}. Let σ be the cyclic permutation
(0, d, 2d, . . . ,−d) of colors. Define the digraph Dσ as in Theorem 7.1, and let H be the
subdigraph of Dσ induced by all vertices reachable from x in Dσ.

Given a colouring φ of G− xy, define φ′ by letting φ′(v) = φ(v) + 1 for v ∈ V (H) and
φ′(v) = φ(v) for v /∈ V (H). We claim that φ′ is a Gk,d-colouring of G − xy. First, edges
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within H or in G − V (H) remain properly coloured. When v ∈ V (H), the exploration of
Dσ extends along the edge vw if φ(w)−φ(v) = d. Since φ(w)−φ(v) ∈ {d, d+ 1, . . . , k−d}
for vw ∈ E(G), having v ∈ V (H) and w 6∈ V (H) requires φ(w)−φ(v) ∈ {d+ 1, . . . , k−d}.
Now φ′(w)− φ′(v) ∈ {d, . . . , k − d− 1}, so such edges are also properly coloured in φ′.

We will consider cases where φ(x) = j, for 0 ≤ j ≤ d− 1. For the case φ(x) = −j with
1 ≤ j ≤ d − 1, add j to the colour at each vertex to obtain φ(x) = 0 and φ(y) = j, and
then interchange the roles of x and y and apply the argument below.

When φ(x) = j and φ(y) = 0, we claim that G has a cycle through xy with length
congruent to is modulo k for some i in {1, . . . , d− j}. We use induction on d− j.

First consider j = d− 1. If y 6∈ V (H), then φ′ is a Kk:d-colouring of G, since φ′(x) = d
and φ′(y) = 0. Hence y ∈ V (H) when j = d− 1. To reach value 0 from d− 1 along a path
specified by steps of d requires r steps, where rd ≡ k − (d − 1). Multiplying both sides
by s yields r ≡ s − 1. Adding the edge xy thus completes a cycle of length congruent to
smod k, with its x, y-path stepping by +d in colours under φ.

Now suppose j < d− 1. If y ∈ V (H), then an x, y-path in H has length congruent to
(d− j)s− 1 modulo k, since s (modulo k) steps of +d will increase the starting value by 1.
Adding yx then completes a cycle of length congruent to (d− j)smod k through xy in G.

Hence we may assume y /∈ V (H). Now φ′ is a Gk,d-colouring of G−xy with φ′(x) = j+1
and φ′(y) = 0. The previous argument, for φ′ with φ′(x) = j + 1, now implies that G has
a cycle through xy with length congruent to ismod k for some i in {1, . . . , d − j − 1}.
Including d− j in the set thus covers all cases to complete the induction step.

Finally, suppose that G has no cycle through xy with length congruent to ismod k for
1 ≤ i ≤ d − 1. This case requires j = 0, and the argument above yields a cycle of length
1 mod k (since ds ≡ 1 mod k), with colours along its x, y-path stepping by +d under the
original colouring φ. Under σ−1, using the same (k, d)-colouring φ of G− xy and starting
again from x yields a second cycle of length 1 mod k through xy.

Furthermore, if G − e has no cycle of length 0 mod k, then Dσ is acyclic. Working
backward from sinks, we can add 1 to the colour of each reached vertex, one vertex at a
time, always maintaining a (k, d)-colouring of G − xy, until x or y changes colour. This
reduces the problem to the case j > 0. Since in this case G has no cycle of length is
with i ∈ {1, . . . , d − 1, the previous arguments produce a (k, d)-colouring of G, which
by hypothesis does not exist. Therefore, in fact G − xy also contains a cycle of length
0 mod k.

In this proof, we have not made use of cycles in Gk,d other than that generated by d or
−d. When k > 2d + 1 there may be other sets of forced cycle lengths. When k = 2d + 1,
these two are the only permutations yielding cycles in the host graph, and that is why our
sharpness examples in the introduction are for C2d+1-colouring. In that case s = −2. The
set of cycle lengths that cannot be avoided are the congruence classes −2imod (2d+ 1) for
1 ≤ i ≤ d, and if there are no cycles through e in the classes with 1 ≤ i ≤ d− 1, then we
obtain two cycles with lengths 1 mod (2d+ 1).
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[9] Zdeněk Dvořák and Luke Postle. Density of 5
2
-critical graphs. Combinatorica, 37:863–

886, 2017.

[10] Jack Edmonds. Minimum partition of a matroid into independent subsets. Journal
of Research of the National Bureau of Standards Section B Mathematics and Mathe-
matical Physics, page 67, 1965.

[11] Genghua Fan. Circular chromatic number and Mycielski graphs. Combinatorica,
24:127–135, 2004.

157



[12] Genghua Fan, Hongbi Jiang, Ping Li, Douglas B. West, Daqing Yang, and Xuding
Zhu. Extensions of matroid covering and packing. European Journal of Combinatorics,
76:117–122, 2019.

[13] Genghua Fan, Yan Li, Ning Song, and Daqing Yang. Decomposing a graph into
pseudoforests with one having bounded degree. Journal of Combinatorial Theory,
Series B, 115:72 – 95, 2015.

[14] Tibor Gallai. Kritische graphen II. Math. Inst. Hungar. Acad. Sci., 8:373–395, 1963.

[15] Shayan Oveis Gharan and Amin Saberi. The asymmetric traveling salesman problem
on graphs with bounded genus. In Proceedings of the Twenty-Second Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’11, page 967–975, USA, 2011. So-
ciety for Industrial and Applied Mathematics.

[16] Chris Godsil and Gordon Royle. Algebraic Graph Theory. Springer, 2001.
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