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Abstract

The law of the wall has been a staple in collapsing the mean velocity profiles of seemingly
very different turbulent channel and boundary layer flows into one single, semi-analytical
function. Accordingly, it has equipped engineers and scientists with unique predictive ca-
pabilities over the randomness of turbulence. Its universality and widespread success for
incompressible canonical flows has further encouraged research efforts that seek transfor-
mations that scale any type of flow, whether canonical or not, to match with the law of the
wall. In this work, the problem of scaling non-adiabatic boundary layer flows is tackled in
the high-speed, compressible context.

Starting from a generalization of the two most successful transformations to date, the
Van Driest and Trettel and Larsson, the shortcomings of each transformation are high-
lighted. Following that, and contrary to most classical approaches, an extension is carried
out using the conservation of energy, from which a potential velocity transformation is ob-
tained. In turn, by basing the analysis on energy as opposed to momentum, the resulting
transformation explicitly accounts for the non-adiabatic condition at the wall.

The transformation is assessed by comparison against the law of the wall in the case
of hypersonic, non-adiabatic boundary layer flows. It is found to yield perfect collapse
for weakly-to-moderately cooled walls. After factoring in the higher-order fluctuations in
the turbulence terms, the transformation is also found to produce excellent agreement for
strongly cooled walls.

The findings demonstrate that the physics of non-adiabatic walls cannot be fully cap-
tured by solely relying on the conservation of momentum. In addition, in high-speed flows
with large heat transfer at the wall, the higher-order turbulence terms cannot be neglected.
Ahead of full-scale implementation, the transformation has to be rigorously tested using
broader data sets. This is left for future work.
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Chapter 1

Introduction

Despite its ubiquity, the chaotic behavior of turbulence often forbids a simple mathe-
matical description of its spatiotemporal evolution. Yet, when it comes to wall-bounded
turbulence—channel and boundary layer flows—a remarkable finding is the existence of a
semi-analytical function that collapses the mean velocity profiles in the near-wall region.
The so-called law of the wall was first proposed by Theodore von Kármán in 1930 [5], and
it is a logarithmic equation that is valid in a region stretching between the buffer layer and
the outer layer of a turbulent boundary layer, i.e. in the log layer where y/δ . 0.2:

u+ =
1

κ
ln(y+) + C for 30 < y+ < 150. (1.1)

u+ and y+ are the non-dimensionalized velocity and distance from the wall coordinates,
respectively, κ is von Kármán’s constant, and C is the log law integration constant.

While at first such a result appears to be insignificant, the underlying meaning of Eq.
(1.1) is powerful, for it directly provides an a priori estimate of the velocity profile of a
wall-bounded turbulent fluid in the logarithmic region, irrespective of the flow time history,
Reynolds number, experimental facility, etc. In fact, this predictive feat is shared by only
one other triumph of turbulence theory: Kolmogorov’s 4/5-th law [6], which describes the
energy cascade from large eddies into smaller ones, and it highlights the importance of the
law of the wall. Together with the viscous sublayer relation [7]:

u+ = y+ for y+ < 5, (1.2)

it forms a major building block in fluid mechanics.
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However, it comes with a caveat—the law of the wall is only valid under strict assump-
tions. Those are the absence of pressure gradients, external heat transfer, and compress-
ibility and roughness effects from the flow. Regardless, though, its mere existence and
wide applicability has motivated fluid dynamicists to seek transformations that scale any
wall-bounded turbulent flow, with an arbitrary boundary condition and/or external effect,
to collapse back onto and match the law of the wall. In essence, doing so is driven by the
prospect of restoring universality, albeit a faint glimmer of one, amidst the randomness
and chaos that is turbulence.

For flows with pressure gradients, there exists a family of solutions that properly scale
the velocity profiles at each successive pressure value. These are established in [8, 9] and
remain valid as long as the flow is not separated. In the context of rough walls, where
roughness elements are protrusions commonly employed to reduce drag by acting on the
near-wall turbulence structures, it was found that the additive constant, C, in the law
of the wall can be correlated to the roughness parameters [10, 8, 11, 12, 13]. While not
universal, this approach yields satisfactory collapse over rough surfaces, and it is more or
less the accepted standard.

The equivalent of that in compressible flows, the focus of this report, is the famous Van
Driest transformation [14]:

u+V D =

∫ u+

0

√
ρ̄

ρw
du+. (1.3)

What Van Driest was able to show in Eq. (1.3) is that compressibility effects can be
succinctly taken into account in a wall-bounded turbulent flow using the mean density.
In other words, despite their sheer complexity, compressibility effects can be effectively
masked by mean flow variables—variables not stemming directly from turbulence. For this
reason, the Van Driest transformation has seen much celebrated success [15], and it was
widely considered to be the state-of-the-art in velocity transformations.

This view held up until the 1960s, when high-speed flows, flows well above the speed
of sound M∞ � 1, started to take center stage and be seriously studied [2]. Under those
high-speed conditions, normally experienced in atmospheric entry, viscous heating at the
wall causes a substantial increase in temperature, one that cannot be withstood by common
aerospace materials such as steels and aluminum alloys (Fig. 1.1). As a result, the walls
have to be cooled externally; and it happens to be precisely under those non-adiabatic wall
conditions that the Van Driest transformation fails to collapse the compressible velocity
profiles with the incompressible law of the wall (Fig. 1.2).
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Figure 1.2: Scaled velocity profiles with wall heat transfer from the experimental data of
Danberg [2] at M∞ = 6.7. The law of the wall is plotted with κ = 0.41 and C = 5.2. (· · ·):
viscous sublayer; (− −): log layer.
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The mismatch spurred numerous research efforts. In [2], Danberg attempted to correlate
the shift in the log law intercept with the Mach number and heat transfer at the wall,
similar to how wall roughness was found to alter the additive constant in Eq. (1.1).
However, the results were inconclusive. Several years later, Brun et al. [16] ran LES (large
eddy simulations) of compressible channel flows and applied the transformation of Cope
and Hartree [17], which is based on viscous sublayer arguments, to the resulting velocity
profiles. They noted significant improvement in the collapse in the viscous sublayer, but
the logarithmic region remained unreconciled. Following that, Zhang et al. [18] and Pei et
al. [19] presented new scaling using an extension of Townsend’s structure parameter [20]
and a concept of velocity-vorticity correlation structure, respectively. The transformed
profiles displayed Mach number invariance, yet they were not independent of the wall heat
transfer.

More recently, Trettel [4] conducted an extensive analysis of the failure of the Van
Driest transformation under non-adiabatic wall conditions. He observed both an upwards
shift in the log law y-intercept and a decrease in the slope of the viscous sublayer. The
upwards shift was noticed earlier by Danberg [2] too, but the change in slope in the viscous
sublayer was not; this was because at the time experimental measurements were difficult
to attain very near the wall. And even though the viscous sublayer transformation [21]:

u+V S =

∫ u+

0

µ̄

µw
du+ (1.4)

succeeded in resolving the discrepancy in the viscous sublayer, it did not resolve the loga-
rithmic region. A full resolution was obtained by Trettel [4] and Trettel and Larsson [22],
and also concomitantly by Patel et al [23]. The approach of the latter group was slightly
different, but they nonetheless arrived at the same result:

u+TL =

∫ u+

0

√
ρ̄

ρw

(
1 +

1

2

1

ρ̄

dρ̄

dy
y − 1

µ̄

dµ̄

dy
y

)
du+. (1.5)

Today, Eq. (1.5) is popularly known as the Trettel and Larsson transformation. The
basis of its derivation relies on a stress balance (conservation of x-momentum) applied in
the entirety of the inner layer. It also makes use of Morkovin’s hypothesis [24], which
loosely states that the structure of compressible turbulence is unaffected by the Mach
number, to cancel out the Reynolds stresses in the logarithmic region. The Trettel and
Larsson transformation proved to be robust and accurate when studying non-adiabatic
channel flows [22]. However, when applied to boundary layer flows with external wall heat
transfer, the transformation fails in the log layer, as demonstrated by Fig. 3 of Zhang et
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Figure 1.3: The Trettel and Larsson transformation as applied to the data set of Zhang et
al [3]. The law of the wall is plotted with κ = 0.41 and C = 5.2. Bq is the non-dimensional
heat transfer at the wall.

al. [3] (re-plotted in Fig. 1.3). Arguably, the failure is more pronounced than the Van
Driest transformation (Fig. 2 of the same paper, replicated in Fig. 1.4 below). Therefore,
the problem remained an open one.

Most recently, Wu et al. [25] proposed a new transformation using a modification of
Prandtl’s mixing length [26] and divided the flow into three distinct sub-regions, each with
its own mixing length assumption. In addition, Volpiani et al. [27] built on the work of
Modesti and Pirozzoli [28], who recast all the known transformations into a general set
of mapping functions, to implement a data-driven transformation. But despite that, the
discrepancy in the profiles was still observed (Fig. 4 in [27]). Furthermore, data-driven
approaches frequently need to be tweaked according to the data at hand. Thus, they allow
room for human bias and lack closure when compared to their predecessors. This leaves
the question of collapsing the mean velocity profiles of high-speed turbulent boundary layer
flows with external wall heat transfer unanswered. The thesis attempts to mend this gap—
by presenting a new model applicable to turbulent boundary layers under non-adiabatic
wall conditions.

The remainder of the thesis is structured as follows: Chapter 2 gives a detailed back-
ground on wall scaling and lays the foundation for the mathematical framework, which is
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Figure 1.4: The Van Driest transformation as applied to the data set of Zhang et al [3].
The law of the wall is plotted with κ = 0.41 and C = 5.2. For legend, see Fig. 1.3.

presented in Chapter 3, Chapter 4 assesses the performance of the proposed transformation
and discusses its implications, and, finally, conclusions and recommendations are drawn in
Chapter 5. The outcomes of the thesis are expected to inform future turbulence modeling
techniques and elucidate the failure mechanisms of previous inner layer transformations.

1.1 Objectives of the Thesis

The overarching goal of the present work is to provide a model or transformation that yields
a collapse with the law of the wall in the case of compressible, non-adiabatic turbulent
boundary layer flows. Incompressible, non-adiabatic flows were tackled by [29, 30, 31,
32, 33, 34], mostly within the field of heat transfer and its pertinent applications. The
flows studied in this thesis instead are typically encountered at high-speed flow conditions,
and the discussion is naturally geared towards hypersonic (M∞ > 5) flows. However, the
analysis is made generic enough such that it is applicable in subsonic and supersonic flows
as well. To this end, the detailed objectives are as follows:

1. Provide a generalization of the two most successful transformations to date, the Van
Driest [14] and Trettel and Larsson [22] transformations.
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2. Revise the assumptions employed in the derivation of the aforementioned transfor-
mations.

3. Extend the derivation to include the physics of boundary layer flows with external
wall heat transfer.

4. Assess the newly proposed transformation and lay out the conditions under which it
fails and succeeds.

5. Discuss the implications of the new findings and establish guidelines for future work.
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Chapter 2

Detailed Background

The law of the wall has not come without its fair share of criticism. In particular, the work
of Barenblatt and his coworkers is noteworthy, for they were able to show through a series
of papers [35, 36, 37, 38] that there exists a class of power-law solutions that describe the
velocity profile in the boundary layer. The solutions were, in turn, found to be Reynolds-
number dependent, seemingly in direct opposition to the claim of universality promised by
the law of the wall. What is more, their results were apparently confirmed by experimental
measurements conducted by Cipra [39] in 1996. However, this experimental evidence was
not corroborated by other turbulence experts, as discussed in [40].

At the turn of the 21st century, in 2001, this dilemma was rectified. Oberlack [41]
published a paper showing that both the law of the wall and the power-law solutions can be
derived from the RANS (Reynolds-averaged Navier-Stokes) equations, effectively unifying
both theories using symmetries in Lie groups [42]. Generally speaking, his approach is well
received by the turbulence community [43, 44], and the law of the wall continues to be a
cornerstone in studies of wall-bounded turbulent flows.

Despite that, one cannot say that the criticism has abated. Because even today, the
constants in the law of the wall remain hotly debated. For example, dozens of papers have
been published on the von Kármán constant, which is supposedly universal at κ = 0.41 [45],
and what value it should take. The quoted values in the literature range between κ = 0.37
[46] and κ = 0.45 [47, 48], and it is clear that dissenting views persist. In a recent study,
Bailey et al. [49] examined five experimental data sets using the most advanced instruments
at the Superpipe in Princeton University and established an estimate of κ = 0.40 ± 0.02.
Since this estimate is inline with the bulk of studies, it is what will be used in the upcoming
chapters of the thesis.

8



It is also worth mentioning that over the years various propositions were made to the
law of the wall discussion, to scale additional variables and demonstrate universal collapse
outside the realm of mean velocity profiles. The efforts have garnered mixed success, with
some gaining more attention than others. Temperature scaling, where a law is sought to
collapse the temperature profile near the wall, is one case that has received much attention.
Kader [50] and Bradshaw and Huang [51] have taken up this topic in more detail, and they
have shown by similarity that a temperature law of the wall, T-law, could be derived. But,
they admit that it is not as robust as the velocity law of the wall. The reasons for the
fragility of the T-law are not yet fully understood [51], and subsequent work is left for
another study; for instance, a more up-to-date report is [52]. In the present thesis, the
focus will be on the velocity law of the wall.

In what remains of this chapter, I will illustrate how the law of the wall (Eq. 1.1),
the Van Driest transformation (Eq. 1.3), and the Trettel and Larsson transformation (Eq.
1.5) can be obtained from the conservation equations. In essence, this will be a tangent
extension of Oberlack’s work [41], but nonetheless, it is not intended to be a comprehensive
analysis. The aim is merely to provide context ahead of the derivation carried out in
Chapter 3 and familiarize the reader with some of the terminology.

So, from here on in, compressible variables will be denoted by lower case letters, incom-
pressible variables by upper case ones, compressible properties will be evaluated using the
mean values, and incompressible properties by the values at the wall; non-dimensionalized
scaled variables will be given the plus ()+ notation.

2.1 Conservation of Momentum

The starting point for any velocity transformation is typically the conservation equation
of x-momentum.1 As given on page 64 of Cebeci and Smith [53] and after Favre- and
Reynolds-averaging, it writes for a two-dimensional flow:2

∂(ρ̄ũ)

∂t
+
∂(ρ̄ũũ)

∂x
+
∂(ρ̄ũṽ)

∂y
= −∂p̄

∂x
+
∂(τ̄xx − ρu′′u′′)

∂x
+
∂(τ̄xy − ρu′′v′′)

∂y
, (2.1)

1Since the flow is usually assumed to be one-dimensional and fully developed, the conservation equation
of y-momentum is not needed.

2Note that Cebeci and Smith swap the primes in the Favre and Reynolds fluctuations. Here I follow
the more familiar notation.
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where

τ̄xx = 2µ
∂u

∂x
; τ̄xy = µ

(
∂u

∂y
+
∂v

∂x

)
. (2.2)

Eq. (2.1) can be significantly simplified by applying the standard boundary layer as-
sumptions introduced by Prandtl [26]. These are:

• the flow is steady (∂/∂t→ 0),

• of zero pressure gradient (∂p/∂x→ 0),

• one-dimensional (u� v), and

• fully developed3 (∂/∂x→ 0).

Applying the aforementioned assumptions drops the majority of the terms and leaves
the x-momentum with:

∂(τ̄xy − ρu′′v′′)
∂y

= 0, (2.3)

or, carrying out the integration:

τ̄xy − ρu′′v′′ = D, (2.4)

with D being a constant to be determined from the boundary condition. Eq. (2.4) can
be simplified further, by expanding the terms and neglecting the higher-order fluctuations
(Appendix B.1). This leaves only the leading terms as follows:

µ̄
∂ū

∂y
− ρ̄u′′v′′ = D. (2.5)

Finally, the boundary condition at the wall can be applied to evaluate the constant of
integration:

µ̄
∂ū

∂y

∣∣∣
y=0
− ρ̄u′′v′′

∣∣∣
y=0︸ ︷︷ ︸

0

= µ̄
∂ū

∂y

∣∣∣
w

= τw = D, (2.6)

3For wall-bounded turbulence, this means that the streamwise velocity, ū, does not change with respect
to the streamwise coordinate, x, i.e. ū = ū(y).
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and bringing everything together gives:

µ̄
dū

dy
− ρ̄u′′v′′ = τw. (2.7)

In Eq. (2.7), partial differentials are replaced with ordinary differentials, since the flow
is assumed to be one-dimensional. At this point, it is common to replace the Favre stress
term with its Reynolds-averaged counterpart, i.e. invoke:

u′′v′′ ≈ u′v′. (2.8)

This was done by several researchers, including Trettel [4], Trettel and Larsson [22], and
Van Driest [14], and it is perhaps motivated by the fact that Prandtl’s original work [26]
and von Kármán’s analysis [5] involved the ensemble fluctuations, not the density-weighted
ones. To stay consistent, this procedure will be followed herein. However, note that it will
be shown in §3.2 that doing so may not necessarily be correct, especially under hypersonic
and extreme wall cooling conditions. Applying Eq. (2.8) to Eq. (2.7) now results in:

µ̄
dū

dy
− ρ̄u′v′ = τw, (2.9)

where Eq. (2.9) will be hereafter referred to as the stress balance, the term involving the
viscosity will be called the viscous stress, and the term containing the fluctuations will be
labeled the Reynolds stress.

2.2 Law of the Wall

The stress balance can be conveniently utilized to derive the law of the wall.4 In case of
incompressible flow, the incompressible stress balance is:

µw
dU

dY
− ρwU ′V ′ = τw, (2.10)

where Y and U are the transformed wall-normal and velocity coordinates, respectively,
evaluated at constant properties (also referred to as incompressible variables). In a region
far away from the wall where viscous effects are negligible [55], Eq. (2.10) becomes:

−ρwU ′V ′ = τw. (2.11)

4An alternate derivation using dimensional analysis can also be followed. See Bradshaw [54] for more
details.
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Following Prandtl’s mixing length hypothesis [26], the fluctuations can be related to

the mean velocity gradient: U ′ ∝ L
dU

dY
, V ′ ∝ U ′, and U ′V ′ ≈ |U ′||V ′|. Eq. (2.11) then

simplifies to:

−ρwL2

(
dU

dY

)2

= τw. (2.12)

Replacing τw with ρwu
2
τ and rearranging yields:∣∣∣dU

dY

∣∣∣ =
uτ
κY

, (2.13)

where L = κY is the mixing length theorized by Prandtl to be analogous to the mean-free
path of inter-molecular collisions.5 Integrating and non-dimensionalizing Eq. (2.13), by uτ
for the velocity and the length scale lv = µw/(ρwuτ ) for the wall-normal coordinate, will
give the law of the wall expression presented in Eq. (1.1).

2.3 The Van Driest Transformation

Eq. (2.13) is the incompressible reference. Any velocity transformation will seek to define
it in terms of the chain rule:

dU

dY
=
dU

dū

dy

dY

dū

dy
, (2.14)

where the terms appearing in front of dū/dy constitute a potential transformation. The
Van Driest transformation [14] is no different, and it can be derived in a similar manner.
Using the compressible stress balance (Eq. 2.9) and neglecting the viscous term:

−ρ̄u′v′ = τw. (2.15)

Then, defining the fluctuations using Prandtl’s mixing length hypothesis:6

−ρ̄l2
(
dū

dy

)2

= τw. (2.16)

5The potential origin of Prandtl’s mixing length theory is discussed in Bradshaw [56].
6l = κy in the compressible context, where y is the untransformed compressible wall-normal coordinate.
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Rearranging: ∣∣∣dū
dy

∣∣∣ =

√
ρw
ρ̄

uτ
κy
. (2.17)

Eq. (2.17) is the compressible velocity gradient. When compared to the incompressible
reference, the Van Driest transformation emerges:

dU

dY
=

√
ρ̄

ρw

y

Y

dū

dy
, (2.18)

and by grouping the terms:

dU

dū
=

√
ρ̄

ρw

y

Y

dY

dy
. (2.19)

Van Driest assumed that the wall-normal coordinate remains untransformed, i.e. y = Y
and dY/dy = 1 [14]. This is how he got his transformation (after integrating and non-
dimensionalizing). However, as shown in [4], this assumption need not be enforced, and
the Trettel and Larsson transformation mainly operates by relaxing it.

2.4 The Trettel and Larsson Transformation

The Trettel and Larsson transformation [22] is based on the viscous, as opposed to the
Reynolds, stress.7 The idea behind its derivation is that stress must be conserved in the
boundary layer. In other words, the shear stress produced very near the wall due to the
action of viscosity and the velocity gradient must be counteracted by the Reynolds stress
produced in the logarithmic layer due to the action of turbulence.

Thus, focusing only on the viscous sublayer, they write for the incompressible reference
(Eq. 2.10 without the fluctuating component):

µw
dU

dY
= τw, (2.20)

and for the compressible case:

µ̄
dū

dy
= τw. (2.21)

7Trettel argues in his thesis that the Reynolds stresses cancel in lieu of Morkovin’s hypothesis. Never-
theless, the final result is the same.

13



Combining both equations gives:

dU

dY
=

µ̄

µw

dū

dy
. (2.22)

Then, to conserve stress in the boundary layer, Eq. (2.22) is equated to the result
obtained from just log layer considerations, which is basically the Van Driest transformation
(Eq. 2.18). This yields:

dU

dY
=

µ̄

µw �
�
�dū

dy
=

√
ρ̄

ρw

y

Y �
�
�dū

dy
, (2.23)

and the wall-normal coordinate is now:

Y

y
=

√
ρ̄

ρw

µw
µ̄
. (2.24)

Physically, Eq. (2.24) indicates that the incompressible wall-normal coordinate, Y , is
not equal to the compressible one, y, contrary to what Van Driest had thought. In fact,
the difference between the two is nothing but a product of density and viscosity—both
intrinsic properties. When non-dimensionalized by the length scale, lv, Eq. (2.24) becomes
the semi-local scaling proposed by Huang et al. [57] in 1995; they had introduced it to
scale the Reynolds stresses and Coleman et al. [58] asserted that it only works for those
quantities. In the above derivation, though, Trettel [4] showed that it can be used to scale
the mean velocity as well.

To get the full Trettel and Larsson transformation from the semi-local coordinate,
simply take the derivative of Eq. (2.24) and plug the resulting expression in Eq. (2.19)
[22]. This will give:

dU

dū
=

√
ρ̄

ρw

[
1 +

1

2

1

ρ̄

dρ̄

dy
y − 1

µ̄

dµ̄

dy
y

]
, (2.25)

which when non-dimensionalized and integrated will yield Eq. (1.5).
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Chapter 3

Mathematical Framework

The preceding chapter hints that the Van Driest and the Trettel and Larsson transforma-
tions are generalizable. After all, they are derived from the same equation: the conservation
of x-momentum. So, is it not plausible that both transformations can be obtained using a
single set of parameters? In this chapter, I show that indeed such a task is possible.

But before proceeding, it is worth summing-up the main assumptions employed in both
derivations:

• The Van Driest transformation [14] relies on the fact that the viscous stresses can be
neglected in the entirety of the boundary layer.

• On the other hand, the Trettel and Larsson transformation [22] relies on the fact
that the viscous stresses are dominant in the flow. Thus, the Reynolds stresses are
either negligible or cancel out using Morkovin’s hypothesis.1

3.1 General Analysis

Previously, the transformations were taken at face value, as two separate entities that are
not related. Hence, to start the generalization, let:

dU

dY
= β

dū

dy
, (3.1)

1In its modern form, Morkovin’s hypothesis postulates that the dynamics of zero pressure gradient
turbulent boundary layer flows do not change with compressibility. Hence, transformations exist that map
compressible flows into incompressible equivalents.
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where β is an arbitrary variable that can take on any constant, function, or expression.

Then, substitute Eq. (3.1) in the incompressible stress balance (Eq. 2.10) as follows:

µw
dU

dY
− ρwU ′V ′ = τw, (3.2)

µw
dU

dY
− ρwL2

(
dU

dY

)2

= τw, (3.3)

µwβ
dū

dy
− ρwL2

(
β
dū

dy

)2

= τw. (3.4)

If momentum is conserved, the stress in the incompressible state (Eq. 3.4) must be
equal to that present in the untransformed compressible state (Eq. 2.9):

µwβ
dū

dy
− ρwL2

(
β
dū

dy

)2

= µ̄
dū

dy
− ρ̄u′v′ = τw, (3.5)

µwβ
dū

dy
− ρwL2

(
β
dū

dy

)2

= µ̄
dū

dy
− ρ̄l2

(
dū

dy

)2

= τw. (3.6)

Closely observing Eq. (3.6) actually reveals both transformations, depending on which
coefficients are being matched. To recover the Trettel and Larsson transformation, which
recall is based on the viscous sublayer (Eq. 2.22), one will therefore match the first term
on either side of the equality. This means that:

β =
µ̄

µw
. (3.7)

Similarly, by matching the Reynolds stresses (the second terms in Eq. 3.6), the Van
Driest transformation can be recovered:

β =

√
ρ̄

ρw

y

Y
, (3.8)

where von Kármán’s constant, κ, is taken to be a universal constant that does not change
with compressibility, i.e. κincomp = κcomp.

While this general analysis is insightful, it identifies a key weakness in both transfor-
mations. Namely, neither transformation considers the physics of the boundary layer as a
whole—especially not the buffer layer where both viscous and Reynolds stresses are impor-
tant. The DNS (direct numerical simulations) results of Duan et al. [59, 60, 61] showcase
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how the structure of the boundary layer changes when subject to varying wall temperature,
enthalpy, and Mach number. Notably, when the wall is strongly cooled, the buffer layer
thickens drastically [59]. This not only means that the Van Driest transformation will fail
immediately adjacent to the wall (because the log layer is pushed further up in the bound-
ary layer and there is no account for the changes in the viscous and buffer sublayers), but
also that the range of validity of Trettel’s assumption shrinks.

Moreover, the analysis sheds light on the ingredients of an ideal transformation. In
particular, an ideal velocity transformation derived from conservation of momentum will
be based on the viscous stresses in the near-wall region, transition into an asymptotic
function in the buffer layer, and switch to a transformation based on the Reynolds stresses
in the log layer. Only then will a transformation be obtained that properly accounts for
all three sub-regions of the boundary layer. This hypothesis will be scrutinized further in
the next chapter.

3.2 Conservation of Momentum Revisited

For now, it is worth revisiting some of the assumptions employed in the derivation of the
stress balance, Eq. (2.9). To be more precise, two major assumptions will be investigated:

1. the accuracy of replacing the Favre stress term with its Reynolds-averaged counter-
part (invoking Eq. 2.8), and

2. the accuracy of neglecting the higher-order terms in the x-momentum equation.

3.2.1 Averaging in Turbulence

Replacing the Favre stress term, u′′v′′, with its Reynolds-averaged counterpart, u′v′, is a
step that is routinely applied in the derivation of all velocity transformations. It is often
justified by the findings of Huang et al. [57], who concluded that for subsonic and even
for low-to-moderate supersonic free stream Mach numbers, the differences between the two
quantities are reasonably small. But, how accurate is this general statement?

To find out, expand the Favre fluctuations as follows:

u′′ = u′ − (ũ− ū); (3.9)

v′′ = v′ − (ṽ − v̄). (3.10)
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Then, plug Eqs. (3.9) and (3.10) in the stress term, u′′v′′:

u′′v′′ = (u′ − (ũ− ū))(v′ − (ṽ − v̄)). (3.11)

Following that, compute the inner product and separate the terms to get:

u′′v′′ = u′v′ − u′(ṽ − v̄)︸ ︷︷ ︸
I

− v′(ũ− ū)︸ ︷︷ ︸
II

+(ũ− ū)(ṽ − v̄). (3.12)

From the definition of the averages, terms I and II drop to zero (details in Appendix B.2).
This leaves:

u′′v′′ = u′v′ + (ũ− ū)(ṽ − v̄). (3.13)

Therefore, as long as the product of the difference between the Favre and the Reynolds
velocities is negligible, then Eq. (2.8) can be invoked with confidence.

3.2.2 Higher-Order Terms

Eq. (3.13) segues into the discussion of the higher-order terms nicely. For the purpose
of this section, and motivated by the fact that the Trettel and Larsson transformation
succeeds in collapsing the non-adiabatic boundary layer velocity profiles in the viscous
sublayer [3], the focus will shift to be strictly on the log layer. In the log layer, the stress
balance becomes that of Van Driest, i.e. Eq. (2.15). However, that was derived using
the two assumptions listed above, and Eq. (3.13) already established one deficiency in the
derivation brought about by virtue of averaging.

Another drawback of Van Driest’s stress balance can be exposed by looking at the
full momentum equation. After applying Prandtl’s boundary layer assumptions, carrying
out the integration, and setting the boundary condition at the wall, the conservation of
x-momentum writes:

µ
du

dy
− ρu′′v′′ = τw. (3.14)

Further, by neglecting the viscous sublayer to focus only on the log layer, it gives:

−ρu′′v′′ = τw. (3.15)
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Substituting the definition of the mean flow density (ρ = ρ̄ + ρ′) into Eq. (3.15) and
separating the terms yields:

−ρ̄u′′v′′ − ρ′u′′v′′ = τw. (3.16)

Finally, using Eq. (3.13) to rewrite the Favre stress term results in:

−ρ̄u′v′ = τw + ρ′u′′v′′ + ρ̄(ũ− ū)(ṽ − v̄), (3.17)

where it is now evident that the validity of the stress balance utilized in the Van Driest
transformation is contingent upon the second two terms on the right hand side of Eq.
(3.17) being negligibly small, i.e. ρ′u′′v′′, ρ̄(ũ− ū)(ṽ − v̄) ≈ 0. When does this assumption
breakdown? Two pieces of evidence appear to suggest that the conditions to break it
become prominent at hypersonic flow conditions. These are discussed below.

First, extensive classical studies have argued that the triple correlation term ρ′u′′v′′2

becomes non-negligible at free stream Mach numbers exceeding the hypersonic limit, at
M∞ ≥ 5 [54, 62]. This was attributed to the hypersonic aspect of the flow, as density
fluctuations scale with the square of the Mach number: ρ′/ρ̄ ∼M2u′/ū. Hence, naturally,
there exists a tipping point after which density fluctuations will become significant enough
to amount to a sizable triple correlation. In the past, these arguments have been dismissed
on the experimental grounds of Morkovin [24], who showed that total temperature fluc-
tuations remain small in high-speed boundary layer flows,3 and Owen [65], who observed
ratios ρ′u′v′/ρ̄u′v′ of less than 5% at M∞ = 6. But, both of these observations were at
adiabatic conditions.

Second, and by far the most convincing argument stems from the very recent non-
adiabatic DNS results of Huang et al. [66], who conducted two direct numerical simulations
of a boundary layer flow at strongly cooled and highly hypersonic (M∞ = 11 and 14
respectively) conditions. Huang et al. quantified for the first time the difference between

the Favre-averaged stress term, ũ′′v′′, and its Reynolds-averaged equivalent, u′v′, under the
aforementioned flow conditions. Surprisingly, they found that the difference between the
two averaged quantities exceeds 15% in the inner layer (Fig. 5 in [66]). This finding not
only means that the triple correlation term can no longer be neglected, but it also signifies
that the product of the difference in Favre- and Reynolds-averaging is not zero (proof in
Appendix B.3).

2The triple correlation term is sometimes listed as ρ′u′v′. Since both terms can be related using Eq.
(3.13), I will use them interchangeably without loss of generality.

3This finding was correlated to the density fluctuations by Bradshaw and Ferriss [63], using the exper-
imental measurements of Kistler [64], to arrive at what is known today as Morkovin’s hypothesis.

19



Additionally, it necessitates a reformulation of the stress balance given in Eq. (2.15). In
turn, this can be achieved in many ways, but one can straightforwardly utilize Eq. (3.17)
to write:

−ρ̄u′v′ = ατw, (3.18)

where

α = 1 +
ρ′u′′v′′ + ρ̄(ũ− ū)(ṽ − v̄)

τw
; (3.19)

or from Appendix B.3:

α = 1 +
ρ̄(ũ′′v′′ − u′v′)

τw
. (3.20)

As a result, if the Reynolds stress exceeds the Favre stress, then u′v′ > ũ′′v′′ and α < 1
(this is what Huang et al. [66] found in their paper). And if the difference between the
two is negligible, then α→ 1 and the stress balance reverts to that of Van Driest.

3.3 Conservation of Energy

So far, the narrative and derivation have revolved around the conservation of x-momentum,
or the stress balance. Yet, the main objective of the thesis is to investigate boundary layer
flows with external wall heat transfer. As is evident from the previous sections, though, the
wall heat transfer does not explicitly appear in the momentum equation. Thus, it does not
play a role in the stress balance, at least not directly. This calls into question whether the
stress balance is the appropriate means for studying non-adiabatic boundary layer flows.

To address this potential flaw, in this section, the conservation of energy is investigated
with the goal of revealing the underlying physical mechanism behind non-adiabatic wall
conditions. From Cebeci and Smith [53], the energy equation for a two-dimensional flow
is:4

∂(ρ̄H̃)

∂t
+
∂(ρ̄H̃ũ)

∂x
+
∂(ρ̄H̃ṽ)

∂y
=
∂p̄

∂t
+

∂

∂x

(
−q̄x − ρH ′′u′′ + uτxx + vτyx

)
+ ...

∂

∂y

(
−q̄y − ρH ′′v′′ + uτxy + vτyy

)
,

(3.21)

4Again, Cebeci and Smith swap the primes in the Favre and Reynolds fluctuations, but I follow the
more familiar notation.
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where

τ̄yy = 2µ
∂v

∂y
; q̄x = −k∂T

∂x
; q̄y = −k∂T

∂y
. (3.22)

Similar to §2.1, assuming that the flow is steady leaves Eq. (3.21) with:

∂(ρ̄H̃ũ)

∂x
+
∂(ρ̄H̃ṽ)

∂y
=

∂

∂x

(
−q̄x − ρH ′′u′′ + uτxx + vτyx

)
+ ...

∂

∂y

(
−q̄y − ρH ′′v′′ + uτxy + vτyy

)
.

(3.23)

Performing a scaling analysis on the energy terms yields (Appendix C.1):

∂(ρ̄H̃ũ)

∂x
+
∂(ρ̄H̃ṽ)

∂y
=

∂

∂y

(
−q̄y − ρH ′′v′′ + uτxy

)
, (3.24)

where vτyy → 0 for u � v. If the flow were assumed to be locally similar5 and one-
dimensional,6 inline with previous studies of high-speed flows [67, 68], then the energy
balance results in:

∂

∂y

(
−q̄y − ρH ′′v′′ + uτxy

)
= 0, (3.25)

and carrying out the integration:

k
dT

dy
− ρH ′′v′′ + uτxy = Q, (3.26)

where Q is the constant of integration. Furthermore, the terms in the simplified energy
equation, Eq. (3.26), can be expanded and the higher-order fluctuations neglected to give
(Appendix C.2):7

k̄
dT̄

dy
− cpρ̄T ′v′ + ū

(
µ̄
dū

dy
− ρ̄u′v′

)
︸ ︷︷ ︸

stress balance (Eq. 2.9)

= Q, (3.27)

5Local similarity is often used as an approximation for modeling purposes, as real-world applications
do not have exact solutions; it implies that property changes in the streamwise direction are slow and can
be neglected [67].

6This is consistent with Trettel’s assumption of one-dimensionality [4].
7Favre fluctuations are implicitly replaced with Reynolds fluctuations in this step. Appendix C has

more details.
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where it is clear that the stress balance is embedded within the energy equation. This
means that the heat transfer will influence the stress balance, through the variation of the
thermophysical properties, µ̄ and ρ̄, which are both functions of temperature.

The constant of integration, Q, can be evaluated by applying the boundary condition
at the wall:

k̄
dT̄

dy

∣∣∣
y=0
− cpρ̄ T ′v′

∣∣∣
y=0︸ ︷︷ ︸

0

+ ū
∣∣∣
y=0︸ ︷︷ ︸
0

(
µ̄
dū

dy
− ρ̄u′v′

)∣∣∣
y=0

= k̄
dT̄

dy

∣∣∣
w

= Ew = Q. (3.28)

Therefore, the conservation of energy becomes:

k̄
dT̄

dy
− cpρ̄T ′v′ + ū

(
µ̄
dū

dy
− ρ̄u′v′

)
= Ew. (3.29)

In the log layer, where the failure of the Trettel and Larsson transformation truly is,
the gradient terms drop out:

−cpρ̄T ′v′ − ūρ̄u′v′ = Ew. (3.30)

And to get more insight on the behavior of the Reynolds stresses, Eq. (3.30) can be
rearranged as follows for a non-adiabatic flow:

u′v′
∣∣∣
nad

= −1

ū

(
cpT ′v′

∣∣∣
nad

+
Ew
ρ̄

)
. (3.31)

Conversely, when the flow is adiabatic, Ew = 0, and:

u′v′
∣∣∣
ad

= −1

ū
cpT ′v′

∣∣∣
ad
. (3.32)

Combining Eqs. (3.31) and (3.32) under the assumption that T ′v′|nad ≈ T ′v′|ad now gives
a relationship between the Reynolds stress in a non-adiabatic and an adiabatic flow:

u′v′
∣∣∣
nad

= u′v′
∣∣∣
ad
− Ew
ρ̄ū

. (3.33)

Eq. (3.33) illustrates the action of heat transfer at the wall. Specifically, when the wall
is cooled (qw < 0 or Ew > 0), Eq. (3.33) states that the Reynolds stress produced in the
non-adiabatic flow will be less than that of its adiabatic equivalent (same flow but without
heat transfer), although the difference will diminish as the outer layer is approached, as
ū, ρ̄→ u∞, ρ∞. More importantly, when the wall is adiabatic, Eq. (3.33) dictates that from
an energy perspective, there will be no marked difference in the Reynolds stress character.
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3.3.1 Velocity Transformation Based on Energy

Up to this point, the energy balance has provided some useful information. Yet, it lacks
a formal way of relating back to the velocity profile—a methodology that ties back into a
velocity transformation has plainly not been introduced in the thesis. Knowing that Van
Driest’s transformation holds remarkably well in adiabatic boundary layer flows, this can
be amended.

The hypersonic, adiabatic DNS results of Duan et al. [61] have demonstrated nearly
perfect agreement with the incompressible law of the wall when transformed using the Van
Driest transformation. While not applicable for non-adiabatic flows, this at least means
that Eq. (3.33) could be manipulated using the previously derived modified stress balance,
Eq. (3.18). In other words, it can be said that:8,9

u′v′
∣∣∣
nad

= u′v′
∣∣∣
ad︸ ︷︷ ︸

ατw
ρ̄

−Ew
ρ̄ū

,

u′v′
∣∣∣
nad

=
ατw
ρ̄
− Ew
ρ̄ū

.

(3.34)

Setting Ew = BqρwcpwuτTw, from the definition of Bq, and taking out a common factor
in Eq. (3.34) gives:

u′v′
∣∣∣
nad

=
τw
ρ̄

(
α− BqTwcpw

ūuτ

)
. (3.35)

If one was to further assume that Prandtl’s mixing length holds in the same way as it does
in adiabatic flows, then it is possible to set:

u′v′
∣∣∣
nad

= l2nad

(
dū

dy

)2∣∣∣
nad
, (3.36)

and substituting Eq. (3.36) into Eq. (3.35) and rearranging:(
dū

dy

)∣∣∣
nad

=

√
ρw
ρ̄

uτ
κynad

√
α− BqTwcpw

ūuτ
. (3.37)

8Duan et al. [61] did not account for the higher-order terms in their work. So, α was not present in
their stress balance. For our purposes, this implies that α = 1, and I will include it for completion.

9The negative sign is dropped from u′v′|ad since we are only interested in the magnitude of the stress
term.
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Comparing Eq. (3.37) to the incompressible reference, Eq. (2.13), produces a velocity
transformation that is based on the energy balance:

dU

dY
=

√
ρ̄

ρw

ynad
Y

(
α− BqTwcpw

ūuτ

)− 1
2 dū

dy
, (3.38)

where again it is assumed that von Kármán’s constant is a universal value that cancels out
irrespective of the flow condition (κnad = κad).

Note that in Eq. (3.38) when Bq = 0 (adiabatic flow), the expression converts back
to the Van Driest transformation, Eq. (2.18). Therefore, Van Driest’s transformation can
be thought of as a special case of Eq. (3.38) that is only applicable under adiabatic wall
conditions. Similarly, Eq. (3.38) can be thought of as a generalized velocity transformation
that is prescribed by conservation of energy (which happens to carry over the information
from conservation of momentum).

3.3.2 Wall-Normal Coordinate

Two steps remain in order to complete the transformation:

1. specify the wall-normal coordinate transformation, ynad/Y , and

2. since Eq. (3.38) was derived using only log layer arguments, find a relation for the
viscous sublayer.

Luckily, the latter step is easily resolved by resorting to the conservation of momentum,
for Eq. (2.22) is a physical relation that provides a direct transformation for the velocity
profile in the viscous sublayer.

To resolve the former step, recall that in the past several possibilities were proposed to
define the coordinate transformation. For example, in the original Van Driest transforma-
tion [14], it is implicitly assumed that Y/y = 1 (§2.3). In the viscous sublayer derivation
of Cope and Hartree [17], it took on the form of a laminar coordinate with Y/y = µw/µ̄. A
semi-local scaling, Y/y = (µw/µ̄)

√
ρ̄/ρw, has also been introduced by Huang et al. [57] and

endorsed by Trettel and Larsson [22] (§2.4). Each of these options has its own justification
and physical meaning.

However, Volpiani et al. [27] showed recently that only transformations that satisfy
inner layer similarity succeed in accounting for compressibility effects well until the edge
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of the viscous sublayer. Any other relation will not yield successful collapse in that region
of the boundary layer.10 As a result, this is sought here.

With that said, two distinct methods exist to enforce similarity in the inner layer [27]:

• extending Morkovin’s scaling to encompass the viscous sublayer, or

• assuming universality of the viscous sublayer in all the inner layer sub-regions.

Neither approach is perfect, as Morkovin’s scaling is valid strictly in the log layer [22] and
the viscous sublayer does not stretch into the logarithmic region. Indeed, this is an inherent
limitation that must be dealt with, and in this work, I will follow a similar approach to that
taken when deriving the Trettel and Larsson transformation,11 i.e. extending Morkovin’s
scaling to encompass the viscous sublayer [4, 22].

To this end, the viscous stress of Eq. (2.22) is equated to Eq. (3.38) to obtain:

dU

dY
=

µ̄

µw �
�
�dū

dy
=

√
ρ̄

ρw

ynad
Y

(
α− BqTwcpw

ūuτ

)− 1
2

�
�
�dū

dy
, (3.39)

and the wall-normal coordinate transformation comes out as:

Y

ynad
=
µw
µ̄

√
ρ̄

ρw

(
α− BqTwcpw

ūuτ

)−1/2
. (3.40)

Together with Eq. (3.38), Eq. (3.40) forms a complete mean velocity transformation
for non-adiabatic turbulent boundary layer flows. The extension was facilitated by using
the conservation of energy, and the result in Eq. (3.40) is identical to the semi-local scaling
of Huang et al. [57] with the exception being the term in parentheses. In turn, that is a
contribution ascribed to the wall heat transfer being non-zero.

3.3.3 Remarks on Higher-Order Terms

Before ending this section, a few remarks are due on the higher-order terms that were
neglected in the energy balance, in going from Eq. (3.26) to Eq. (3.27). First, these are
significantly more complex than those present in the momentum equation. The full list is
outlined in Appendix C.3, but the triple correlation terms appearing in the log layer are
listed in Table 3.1, along with how they arise, for convenience.

10Velocity transformations are usually implemented in integral form. Thus, any failure in the viscous
sublayer will cause a mismatch in the whole boundary layer.

11I chose to follow this methodology because Volpiani et al. showed in their paper that out of all the
velocity transformations in the literature, only the Trettel and Larsson meets the inner layer criteria.
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Table 3.1: Summary of the triple correlation terms dropped from the log layer in the energy
equation. Note that it is assumed that cp = cpw = const., otherwise more terms will result.

Term Arises from

cpρ′T ′′v′′ definition of total enthalpy

ũρ′u′′v′′ definition of total enthalpy

ρ̄u′′2v′′ definition of total enthalpy

Second, it is not presently understood how each of those affect the flow. It is well known
that the temperature triple correlation ρ′T ′′v′′,12 for example, can become important if the
turbulent Prandtl number is low, Prt � 1 [57]. But, it is unclear how it compares with
the momentum triple correlation ρ′u′′v′′ in a non-adiabatic hypersonic flow, especially since
Huang et al. [66] found that Prt ≈ 0.9 in their cases.

Third, and to make the derivation as general as possible, a multiplicative factor, σ, can
be introduced in Eqs. (3.38) and (3.40) to account for the missing terms (for an exact
definition of σ, see Appendix C.3); this is the equivalent of α in the modified stress balance
(Eq. 3.18) but for the energy equation. Since σ will appear under the square root, its
influence will nominally be less than α, and a full exploration is left for the upcoming
chapter. For now, it is suffice to say that the proposed transformation becomes (after
applying the chain rule):

dU

dū
=

√
ρ̄

ρw

ynad
Y

(
α− σBqTwcpw

ūuτ

)− 1
2 dY

dy
, (3.41)

with

Y

ynad
=
µw
µ̄

√
ρ̄

ρw

(
α− σBqTwcpw

ūuτ

)−1/2
. (3.42)

12ρ′ and T ′′ are ultimately related by the equation of state.
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Chapter 4

Results

Three scaling ideas will be tested in this chapter, starting with a transformation based
solely on conservation of momentum and ending with a transformation that relies on con-
servation of energy and incorporates the higher-order, fluctuating turbulence terms. The
transformations are presented in order of complexity, from least to most complex, where
complexity is ranked by the number of variables required to fully define the transformation.

The main measure for success will be a comparison against the incompressible law of
the wall, Eq. (1.1).1 The data set used to assess the collapse will be that of Zhang et al. [3],
which is comprised of five DNS cases ran at hypersonic and non-adiabatic wall conditions.2

The relevant flow parameters are given in Table 4.1. For reference, the viscosity is evaluated
using Sutherland’s law in the simulations and the working fluid is assumed to be an ideal
gas with constant specific heat for all the cases. For more details, see [3] and the pertinent
papers for the WENO (weighted essentially non-oscillatory) scheme used to run the simu-
lations [69, 70]. The numerical code has been extensively validated [71, 72, 73, 74], and the
domain and grid resolution are well established [75]. The averaged turbulence statistics
are collected over multiple flow times and are publicly available at: https://turbmodels.
larc.nasa.gov/Other_DNS_Data/supersonic_hypersonic_flatplate.html.

1Unless otherwise stated, the law of the wall will be plotted with κ = 0.41 and C = 5.2 in this chapter.
2Unfortunately, this is the only readily available resource for hypersonic, non-adiabatic DNS of boundary

layer flows.
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Table 4.1: Primary flow parameters for the cases of Zhang et al [3]. The working fluid is
assumed to be an ideal gas with γ = 1.4 for all the cases.

M∞ −Bq Tw/Tr color in figs. cooling load

2.50 0.0 1.0 red none

5.84 0.14 0.25 blue strong

5.86 0.02 0.76 black weak

7.87 0.06 0.48 purple moderate

13.64 0.19 0.18 green strong

4.1 Scaling with Conservation of Momentum

In §3.1, the ingredients of an ideal transformation stemming from conservation of momen-
tum were laid out, based on a general analysis of the Van Driest and Trettel and Larsson
transformations. The hypothesis that an optimal transformation should be based on the
viscous stress in the viscous sublayer, transition into an asymptotic function in the buffer
layer, and switch to rely on the Reynolds stress in the log layer will be tested herein.
The purpose of this exercise is to assess whether or not a transformation obtained from
the stress balance can indeed collapse the velocity profiles of non-adiabatic, hypersonic
boundary layer flows without explicitly accounting for the heat transfer at the wall.

But first, we must ensure that the general analysis of §3.1 is in principle sound. For
this reason, Fig. 4.1 is included to demonstrate the validity of the generalized derivation.
In particular, the top figure shows the results obtained by matching the viscous coefficients
in Eq. (3.6) and setting β = µ̄/µw. These results are compared against the product from
the expected transformation, the Trettel and Larsson (Eq. 1.5). Similarly, the bottom
figure plots the results obtained by matching the turbulence (or Reynolds) coefficients, i.e.
setting β =

√
ρ̄/ρw. Here, the results are compared against the Van Driest transformation,

Eq. (1.3), with y = Y . As can be seen, in both cases excellent agreement is observed. (This
does not mean that the results match the law of the wall, merely that the performance
is as expected when compared to the parent transformations.) This validates the general
analysis and allows us to explore various combinations of β.

The simplest functional form β could take in the buffer layer is a linear profile sand-
wiched between the viscous sublayer and the logarithmic region. Accordingly, one such
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definition could be:

β =



µ̄

µw
for y+ < 5,(√

ρ̄

ρw
− µ̄

µw

)(
y+ − 5

50− 5

)
+

µ̄

µw
for 5 < y+ < 50,√

ρ̄

ρw
for y+ > 50,

where standard bounds are used for interpolation [7], to delineate each sub-region. The
results are plotted in Fig. 4.2, and although there is good agreement in the viscous sublayer,
as can be seen, the results in the log layer are far from satisfactory. In turn, this discrepancy
could boil down to two things: (1) either the buffer layer is fitted incorrectly and a linear
profile is not suitable, or (2) the conservation of momentum on its own cannot collapse the
mean velocity in non-adiabatic turbulent boundary layer flows.

To identify the true cause, in Fig. 4.3, β is fitted with an exponential function to yield
a continuously smooth profile as follows:

β =

(√
ρ̄

ρw
− µ̄

µw

)
(1− φ) +

µ̄

µw
with φ =

1

1 + e3(b−y+)/b
,

where b is an inflection point set arbitrarily to be b = 15. Again, the collapse is not optimal
in the log layer. Other variations of the exponential function were also tried using different
values of b and/or multiplying constants, but the results did not change significantly.

However, since the collapse was slightly better when using a linear fitting function in
the buffer layer, one might argue that refining the bounds of the linear profile could be the
key to a perfect collapse. Fig. 4.4 assesses the validity of this claim, with the bounds of the
buffer layer now refined for each case. In particular, instead of beginning the buffer layer
at y+ = 5 and ending it at y+ = 50 for all the cases as done above, it is now started and
ended at a different y+ for each case, according to the DNS results. The new limits were
found by marking the regions where the viscous stress dips and the Reynolds stress peaks
in the shear stress plot, Fig. D.1. (For example, for the blue and green cases, the buffer
layer starts at y+ = 15 and ends at y+ = 90, inline with the increased thickness observed
by Duan et al [59].) Still, the collapse in Fig. 4.4 is not perfect, leading us to believe that
the fitting function is not the culprit for the failure.
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Figure 4.1: Scaled velocity profiles from the data set of Zhang et al [3]. Top figure shows the
results with β = µ̄/µw along with the Trettel and Larsson (−·) transformed profiles; bottom
figure shows the results with β =

√
ρ̄/ρw along with the Van Driest (· · ·) transformed

profiles.
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Figure 4.2: Scaled velocity profiles using a linear fitting function in the buffer layer for β.
For case legend, see Fig. 4.1 or Table 4.1.
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Figure 4.3: Scaled velocity profiles using an exponential fitting function for β. For case
legend, see Fig. 4.1 or Table 4.1.
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Figure 4.4: Scaled velocity profiles with refined bounds for the linear profile of β in the
buffer layer. The bounds are extrapolated directly from DNS for each case and detailed in
Fig. D.1. For legend, see Fig. 4.1 or Table 4.1.

4.2 Scaling with Conservation of Energy

The imperfect results obtained from relying only on the conservation of momentum are not
surprising, as it was revealed in §3.3 that the stress balance does not explicitly account for
the heat transfer at the wall. With that said, the proposed transformation derived from
conservation of energy promises to resolve just that, since the wall heat transfer appears as
a source term in the energy balance (Eq. 3.29). As such, it is implemented in this section
in integral form to put the idea to the test.

To implement the proposed velocity transformation in integral form, one would take
the derivative of Eq. (3.42) and substitute the resulting expression in Eq. (3.41). After
non-dimensionalizing, the transformation will write in full:

u+ =

∫ u+

0

(
α− σBqTwcp

u∞uτ

)−1/2√
ρ̄

ρw

[
1 +

1

2

1

ρ̄

dρ̄

dy
y − 1

µ̄

dµ̄

dy
y

]
du+,

where ū is replaced with u∞ in the denominator of the first term on the right hand side of
u+; this is done in order to boost the robustness of the model, and it minimally impacts
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the overall results. In addition, the wall-normal coordinate will be:

y+ =

√
τwρ̄

µ̄

(
α− σBqTwcp

u∞uτ

)−1/2
y,

with cp = cpw = Rγ/(γ − 1) is a constant. The remainder of the wall and free stream
variables are fully defined, outlined in Tables 1 and 2 of Zhang et al [3].

Looking at the aforementioned definitions of u+ and y+, we can draw similarity with
the Trettel and Larsson transformation [22]. To be more precise, the proposed velocity and
wall-normal coordinates are similar to those derived by Trettel [4], except for the presence
of an added term (in round brackets) due to energy considerations. Intuitively, this makes
sense, as the derivation exploited additional physics from conservation of energy while
maintaining the same physics from conservation of momentum. As a result, the new trans-
formation can be considered a modified version of the Trettel and Larsson transformation
that directly accounts for the non-adiabatic condition at the wall.

4.2.1 Without the Higher-Order Terms

To start, its performance is evaluated by setting α = 1 and σ = 1. Doing so is equivalent to
neglecting all the higher-order turbulence fluctuations—both in conservation of momentum
and energy. (Recall that α involved the difference in Reynolds and Favre velocities in the
stress balance, whereas σ was introduced to account for the neglected higher-order terms
in the energy equation.) The transformed mean velocity profiles are presented in Fig. 4.5
for the same data set of Zhang et al [3].

While still not perfect, the agreement is significantly improved for the low and moder-
ately cooled cases (black and purple). In fact, the lines collapse almost perfectly on the
adiabatic reference case (red line) for the majority of the boundary layer. This finding
establishes the idea that a transformation originating from an energy balance, as opposed
to a stress balance, is the right means to tackle the problem of non-adiabatic, hypersonic
boundary layer flows.

Despite that, one cannot help but notice the deviation in the results in the strongly
cooled cases (blue and green). By deviation here I mean that the lines are not collapsed
into one single curve. Instead, two subfamilies are observed in Fig. 4.5, seemingly grouped
by their respective cooling load (strong vs. weak). Since the transformation is continuous,
the root cause cannot be due to a mistake in averaging or bound selection. But, it does
require us to revise the assumption that α and σ are unity, or that the higher-order terms
can be neglected.
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Figure 4.5: Scaled velocity profiles using the proposed transformation from conservation
of energy with α = 1 and σ = 1 for all the cases. For legend, see Fig. 4.1 or Table 4.1.
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Figure 4.6: Scaled velocity profiles using the proposed transformation from conservation
of energy with α = 0.85 and σ = 1 for the strongly cooled cases. The rest of the cases are
scaled with α = 1 and σ = 1. For legend, see Fig. 4.1 or Table 4.1.
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Figure 4.7: Scaled velocity profiles using the proposed transformation from conservation
of energy with α = 0.85 and σ = 0.75 for the strongly cooled cases. The rest of the cases
are scaled with α = 1 and σ = 1. For legend, see Fig. 4.1 or Table 4.1.

4.2.2 Accounting for the Higher-Order Terms

In Fig. 4.6, the profiles are plotted with a modified α factor for the strongly cooled
cases, with α = 0.85, while keeping σ as unity. The value of α was motivated by the
recent findings of Huang et al. [66], who noted a minimum difference of 15% between the
Reynolds-averaged stress term and its Favre-averaged equivalent. In other words, Huang et
al. noted that u′v′ exceeds ũ′v′ by at least 15% in the inner layer in their simulations; this is
verified by Fig. 5(d) of their paper. They attributed these differences to density variations
in the dynamics of the large-scale structures. For our purpose though, the underlying
reason is not very important. What matters is that the difference relates directly to α, as
given in Eq. (3.20). (The quoted number in Huang et al. [66] is actually calculated after
non-dimensionalizing the stresses by τw/ρ̄, so it translates to a one-to-one change in α.)

By setting α = 0.85, the strongly cooled transformed mean velocity profiles now display
much better agreement (Fig. 4.6, blue and green lines). The lines hover closely around
the incompressible law of the wall, but nonetheless, they are slightly farther away from the
weakly and moderately cooled cases. Although the performance is drastically enhanced
when compared to the original Trettel and Larsson transformation (top of Fig. 4.1 or Fig.
1.3), it is worth probing the problem further to see if the agreement can be improved.

35



100 101 102 103 104
y+
present

0

5

10

15

20

25

30

35

u
+ pr
es
en

t

Figure 4.8: Scaled velocity profiles using the proposed transformation from conservation of
energy with α = 0.85 and σ = 0.75 for the strongly cooled cases. The rest of the cases are
scaled with α = 1 and σ = 1. The law of the wall is plotted with κ = 0.39 and C = 5.2.
For legend, see Fig. 4.1 or Table 4.1.

The only missing piece yet to be varied in the model is the multiplicative factor that
accounts for the higher-order turbulence terms in the energy equation, σ. From Eq. (3.41),
σ appears as a ratio that modulates energy transfer and momentum, analogous to the
turbulent Prandtl number, Prt. In Fig. 4.7, this is set to be 25% of the overall contribution
(σ = 0.75). Admittedly, the exact number lacks direct physical insight, as the fluctuating
terms in the conservation of energy are more complex and harder to pinpoint than those
in the momentum equation (see Table 3.1 for a few triple correlations). Furthermore,
the problem is compounded by the fact that the averaged quantities from DNS are not
available. However, if we were to assume that they collectively amount to 25% of the overall
energy balance, which is not totally unreasonable since the momentum contribution was
15%, a near perfect collapse will be seen amongst the profiles.

Additionally, as a final check, we can rely on the latest postulate of Spalart and Abe [44]
to test the model; they postulated that κ = 0.39. (Since this value is within the bounds set
forth by Bailey et al. [49], it is an acceptable test measure.) Re-plotting the results in Fig.
4.8 will now yield a single curve that is indistinguishable from the incompressible law of
the wall. In effect, the proposed transformation will succeed in scaling the non-adiabatic,
hypersonic boundary layer profiles in the inner layer region.
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4.3 Discussion

A couple of points are worth discussing. First, the deviation from the law of the wall seen
in Fig. 4.8 after approximately y+present = 250 is immaterial, since the inner layer (and
consequently the validity of the law of the wall) only stretches up until y/δ = 0.2. This
translates to at most y+present ≤ 200 for all the cases.

Second, the value of α was selected based on the DNS results of Huang et al [66]. In
turn, their results were at relatively high Mach numbers, M∞ ≥ 10, and it could be argued
that α = 0.85 is not applicable in the low hypersonic case (M∞ = 5.84; blue line). However,
to counter that argument, one must remember that the Van Driest transformation, which
does not factor in the higher-order turbulence fluctuations, holds in adiabatic boundary
layer flows (regardless of how high the Mach number gets [61]). This means that the
difference in averaging only manifests itself when the Mach number is in the hypersonic
regime and the wall is strongly cooled—both are necessary for it become prominent. This
also means that picking α = 0.85 is justified for the blue case, since the flow is hypersonic
and strongly cooled.

Third, the performance of the model in non-adiabatic channel flows is intentionally
left out. This is due to two reasons: (1) the narrow extent of the wall-normal domain in
channel flows often limits the growth of the boundary layer. Therefore, the outer layer
will not influence the inner layer as strongly and vice versa. In turbulent flows, these
interactions are important and will affect the turbulence statistics [76]; (2) the channel
results of Trettel [4], after plotting the profiles in Fig. D.2, do not possess an inflection
point in the temperature in the inner layer. This is not the case for boundary layers, where
a marked inflection point is observed as a result of wall cooling (Fig. D.3). Bae et al. [77]
hypothesize that the presence of the inflection point is paramount to sustain the non-linear
interactions that ultimately cause the failure of the previously developed transformations.
Thus, the physics of the two types of flows are strikingly different and what works in one
is not necessarily expected to work in the other.

Fourth, the chief advantage of relying on the conservation of energy and extending
Morkovin’s scaling to encompass the viscous sublayer, beyond its range of validity, is that
the resulting transformation is continuous and includes the heat transfer at the wall as a
primary variable. It is certainly possible to generate a model (cf. data-driven) from the
momentum equation that will properly scale the velocity profiles, but the general analysis
presented in §3.1 dictates that the said model will not be continuous. This is a hugely
limiting factor, as it is not realistic for any software implementation to vary the bounds
posterior to each simulation. The results will not be robust or generalizable.
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Figure 4.9: Morkovin’s scaling of the Reynolds stresses vs. the wall-normal coordinate. For
legend, see Fig. 4.1 or Table 4.1.

4.3.1 Scaling the Reynolds Stress

The Reynolds stresses present an interesting dilemma to any mean velocity transformation.
On paper, the scaling should immediately follow from the mean velocity. But in reality,
seldom does a single scaling collapse all the turbulence statistics. Trettel [4] discusses this
issue in more detail in Chapter 1 of his thesis.

Yet, it is intriguing to see how the proposed model performs against Morkovin’s scaling
of the Reynolds stresses. (Morkovin scales the Reynolds stresses, u′v′, by ρ̄/τw [24].) Figs.
4.9, 4.10, and 4.11 draw this comparison using the wall-normal coordinate of Van Driest
[14], the semi-local coordinate of Huang et al. [57] (the same as that of Trettel and Larsson
[22]), and the proposed wall-normal coordinate of this thesis, respectively. As is evident,
the wall-normal coordinate performs poorly. This is expected, as it does not take into
account any mean flow changes (no mean properties appear in y+); and cooling the wall
alters the near-wall density and viscosity. On the other hand, the semi-local and proposed
wall-normal coordinates give intimately related results, with perfect collapse in the viscous
and buffer sublayers. While this does not signify much, it at least shows that we are not
breaking additional paradigms by introducing the newly developed transformation.
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Figure 4.10: Morkovin’s scaling of the Reynolds stresses vs. the semi-local coordinate. For
legend, see Fig. 4.1 or Table 4.1.
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Figure 4.11: Morkovin’s scaling of the Reynolds stresses vs. the proposed wall-normal
coordinate. For legend, see Fig. 4.1 or Table 4.1.
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Figure 4.12: The triple correlation as a function of the wall-normal distance in the inner
layer region. For legend, see Fig. 4.1 or Table 4.1.

4.3.2 Implications on Wall Modeling

Finally, a note is due on wall modeling. When we seek to apply wall models to turbulence,
we frequently want the cheapest model available, even if it is not as accurate as a more
expensive one. This is because accurately modeling turbulence events near the wall is a
computationally formidable task, and any simplifications will go a long way. However,
if the preceding analyses and discussions have shown us anything, it is that one must be
careful when dealing with complex turbulent flows at extreme conditions. In particular, we
need to reliably track the higher-order fluctuations, quantify their influence on the mean
flow, and mark any substantial discrepancies. Only then will we be able to develop a good
understanding of the flow and create a truly universal wall model.

To cement this last statement, Fig. 4.12 shows how the triple correlation behaves in the
data set of Zhang et al [3]. What is puzzling is that in Chapter 3 it was theorized, based
on classical studies, that the density fluctuations increase proportionally as the square
of the Mach number. Hence, we would expect that the curves will scale quadratically.
Nevertheless, the black (M∞ = 5.86) and purple (M∞ = 7.87) cases share the same
peak. The only logical explanation for this is that wall cooling, which differs by threefold
(−Bq = 0.02 vs. 0.06) between the two cases, influences the triple correlation as well. If
true, this would mean that the empirical relation proposed in §3.2 needs to be corrected.
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Chapter 5

Conclusions and Recommendations

Over the years, the problem of wall-bounded turbulence has been tackled using various
approaches. One of the more common ways to tame it is through velocity transformations,
which offer a unique and convenient way to scale mean velocity profiles in the near-wall
region, from different flows, to collapse and fall back into a single equation—von Kármán’s
incompressible law of the wall.

Recently, however, the reliability of these transformations has come into question, par-
ticularly as the flows under study became more complex and faster. In the context of
compressible, high-speed flows, where the free stream velocity often exceeds the speed of
sound, a famous transformation developed in the 1950s by Van Driest [14] has stood the
test of time; it was able to successfully collapse boundary layer and channels flows to match
with the law of the wall, regardless of how fast and compressible the flow got. But, as soon
as the wall was externally cooled, it was found that the Van Driest transformation no
longer worked.

The failure has driven many researchers to take up the problem and offer potential
solutions. Out of the numerous propositions in the literature, the Trettel and Larsson
transformation [22] came the closest to a full resolution. The only caveat with it is that
it only performed well in channel flows. When applied to high-speed turbulent boundary
layer flows with external wall heat transfer, which are by far more relevant in practical
applications, the Trettel and Larsson transformation failed in the logarithmic layer.

In this thesis, a reconciliation for this shortcoming was presented. By exploiting the
conservation of energy instead of relying only on the conservation of momentum, the Tret-
tel and Larsson transformation was extended, and a new transformation that explicitly
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accounts for the external wall heat transfer was developed. The transformation was as-
sessed by using the non-adiabatic, hypersonic DNS data of Zhang et al. [3], conducted at
several cooling loads. The results obtained demonstrate successful collapse in the weakly
cooled and moderately cooled cases. In the strongly cooled cases, the higher-order, fluc-
tuating terms had to be accounted for to yield excellent agreement with the law of the
wall. The findings highlight the fact that basing a transformation on energy considerations
offers a potential solution for the dilemma of scaling non-adiabatic, compressible turbulent
boundary layer flows. They also showcase that the higher-order turbulence terms play an
important role in the flow at high-speed and strong cooling conditions. Thus, they should
not be neglected.

Additionally, as a secondary outcome of the thesis, a general analysis was performed on
the Van Driest and Trettel and Larsson transformations. It was shown through that that
they can both be derived from the conservation of momentum using a single parameter,
depending on which stress coefficients were matched: viscous or Reynolds. Moreover, the
general analysis hinted that any transformation derived from the conservation of momen-
tum, if not data-driven, will not be successful in collapsing the mean velocity profiles in
non-adiabatic wall conditions. If indeed it was found to exist, then the said transforma-
tion will be noncontinuous by definition. In turn, this is the main drawback of relying
on the momentum equation to capture the physics of non-adiabatic boundary layer flows.
The drawback could be overcome by using the energy equation and extending Morkovin’s
scaling to encompass the viscous sublayer; this was done in this work.

For future work, a few recommendations to follow through are listed below.

1. The current DNS database consists of five cases, not necessarily with a single control
parameter. A natural extension therefore is to run more DNS and test the transfor-
mation at higher Mach numbers and other cooling loads.

2. It was hypothesized in the main text that the higher-order turbulence terms are the
real reason why most velocity transformations fail at high speeds and under strong
cooling. Can we somehow quantify those? A rigorous analysis of the differences in
averaging and the discarded triple correlations in the energy equation is needed.

3. In task 2, particular emphasis must be given to relating those changes to the mean
velocity gradient. That way, the multiplicative factors can be dropped and the higher-
order terms brought to the left side of the equation, to be directly embedded in the
newly proposed transformation. This will also leave no room for user bias and/or
variable selection. Simply, everything will be set by the mean flow parameters.
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4. The derivation in Chapter 3 employed a one-dimensional assumption. However,
boundary layer flows are rarely truly one-dimensional. As a result, accounting for
streamwise changes presents a potential pathway to obtaining a more accurate ve-
locity transformation and wall model.

While not critical, the following items are useful.

1. A closer investigation on the differences between channel flows and boundary layer
flows in the context of non-adiabatic wall conditions. Why does the inflection point
in temperature matter? How does it change with cooling? What impact does it have
on the near-wall turbulence structures? Answering those questions will be insightful.

2. Finally, since the temperature profile seems to be critical in these types of flows, can
we get more information on the fragility of the T-law? Perhaps it can also be fixed
with some of the present analysis.
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Turbulence, pp. 367–380, 1962.

[25] B. Wu, W. Bi, F. Hussain, and Z. S. She, “On the invariant mean velocity profile
for compressible turbulent boundary layers,” Journal of Turbulence, vol. 18, no. 2,
pp. 186–202, 2017.

[26] L. Prandtl, “Turbulent Flow,” tech. rep., NACA Technical Memorandum 435, 1926.

[27] P. S. Volpiani, P. S. Iyer, S. Pirozzoli, and J. Larsson, “Data-driven compressibility
transformation for turbulent wall layers,” Physical Review Fluids, vol. 5, p. 052602, 5
2020.

[28] D. Modesti and S. Pirozzoli, “Reynolds and Mach number effects in compressible
turbulent channel flow,” International Journal of Heat and Fluid Flow, vol. 59, pp. 33–
49, 2016.

[29] C. I. H. Nicholl, “Some dynamical effects of heat on a turbulent boundary layer,”
Journal of Fluid Mechanics, vol. 40, 2 1970.

[30] T. T. Ng, Experimental study of a chemically reacting turbulent boundary layer. PhD
thesis, University of California, Berkeley, 1981.

[31] R. K. Cheng and T. T. Ng, “Some aspects of strongly heated turbulent boundary
layer flow,” Physics of Fluids, vol. 25, no. 8, 1982.

[32] I. N. G. Wardana, T. Ueda, and M. Mizomoto, “Structure of turbulent two-
dimensional channel flow with strongly heated wall,” Experiments in Fluids, vol. 13,
5 1992.

[33] I. N. G. Wardana, T. Ueda, and M. Mizomoto, “Effect of strong wall heating on
turbulence statistics of a channel flow,” Experiments in Fluids, vol. 18-18, 12 1994.

[34] R. Meignen and G. Berthoud, “A mixing length model for strongly heated subsonic
turbulent boundary layers,” International Journal of Heat and Mass Transfer, vol. 41,
11 1998.

46



[35] G. I. Barenblatt, “Scaling laws for fully developed turbulent shear flows. Part 1. Basic
hypotheses and analysis,” Journal of Fluid Mechanics, vol. 248, 3 1993.

[36] G. I. Barenblatt and V. M. Prostokishin, “Scaling laws for fully developed turbulent
shear flows. Part 2. Processing of experimental data,” Journal of Fluid Mechanics,
vol. 248, 3 1993.

[37] G. I. Barenblatt and N. Goldenfeld, “Does fully developed turbulence exist? Reynolds
number independence versus asymptotic covariance,” Physics of Fluids, vol. 7, 12 1995.

[38] G. I. Barenblatt and A. J. Chorin, “Scaling laws and vanishing-viscosity limits for wall-
bounded shear flows and for local structure in developed turbulence,” Communications
on Pure and Applied Mathematics, vol. 50, 4 1997.

[39] B. Cipra, “Mathematics: A New Theory of Turbulence Causes a Stir Among Experts,”
Science, vol. 272, 5 1996.

[40] M. V. Zagarola, A. E. Perry, and A. J. Smits, “Log laws or power laws: The scaling
in the overlap region,” Physics of Fluids, vol. 9, 7 1997.

[41] M. Oberlack, “A unified approach for symmetries in plane parallel turbulent shear
flows,” Journal of Fluid Mechanics, vol. 427, 1 2001.

[42] W. Rossmann, An Introduction Through Linear Groups. Oxford University Press,
2001.
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Appendix A

Nomenclature

[Capital letters of variables indicate incompressible parameters ]

Bq = dimensionless wall heat transfer rate, Bq = Ew/(ρwcpwuτTw)

C = log law integration constant

cp = specific heat at constant pressure

cv = specific heat at constant volume

E = heat transfer rate

H = total enthalpy, H = h+ u2/2

h = specific enthalpy, h = cpT

k = thermal conductivity

l = Prandtl’s mixing length, l = κy

lv = length scale, lv = µw/(ρwuτ )

M = Mach number

p = pressure

Pr = Prandtl number, Pr = cpµ/k

Prt = turbulent Prandtl number, Prt = (ρu′v′(dT̄ /dy))/(ρT ′v′(dū/dy))

R = ideal gas constant

T = temperature

t = time

U = transformed streamwise velocity

u = untransformed streamwise velocity
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uτ = friction velocity, uτ =
√
τw/ρw

v = wall-normal velocity

x = streamwise coordinate

Y = transformed wall-normal coordinate

y = untransformed wall-normal coordinate

β = velocity scaling parameter

α = multiplicative factor for the higher-order momentum terms

σ = multiplicative factor for the higher-order energy terms

δ = boundary layer thickness

κ = von Kármán’s constant

γ = ratio of specific heats, γ = cp/cv

µ = viscosity

ρ = density

τ = shear stress

Subscripts

()ad = adiabatic flow condition

()nad = non-adiabatic flow condition

()present = scaled variables with the hitherto presented derivation

()r = recovery condition

()TL = variables transformed with the Trettel and Larsson transformation

()V D = variables transformed with the Van Driest transformation

()V S = variables transformed with the viscous sublayer transformation

()δ = properties evaluated at the edge of the boundary layer

()w = properties evaluated at the wall

()∞ = free stream variables

Superscripts

() = Reynolds-averaged variable, time-weighted

(̃) = Favre-averaged variable, density-weighted (φ̃ = ρφ/ρ̄)

()′ = Reynolds-averaged fluctuation

()′′ = Favre-averaged fluctuation
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()+ = non-dimensional wall units, scaled by lv for distance and uτ for velocity

()∗ = semi-local wall units, non-dimensionalized by l∗ = µ̄/(ρ̄u∗) with u∗ = uτ
√
ρw/ρ̄
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Appendix B

Supplementary Derivations for
Momentum

B.1 Simplifying the Stress Balance

Eq. (2.4) writes:

τ̄xy − ρu′′v′′ = D.

Substituting the definition of τ̄xy and ignoring the v-component of velocity since u � v
gives:

µ
∂u

∂y
− ρu′′v′′ = D.

Reynolds-averaging the variables yields:

(µ̄+ µ′)
∂(ū+ u′)

∂y
− (ρ̄+ ρ′)u′′v′′ = D.

Separating the terms:

µ̄
∂ū

∂y
+ µ′

∂ū

∂y
+ µ̄

∂u′

∂y
+ µ′

∂u′

∂y
− ρ̄u′′v′′ − ρ′u′′v′′ = D.
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From the properties of averaging:

µ̄
∂ū

∂y
+ �
�7

0
µ′

∂ū

∂y
+ µ̄

∂�
�7
0

u′

∂y
+ µ′

∂u′

∂y
− ρ̄u′′v′′ − ρ′u′′v′′ = D.

Neglecting the secondary, higher-order terms in each region then results in:

µ̄
∂ū

∂y
− ρ̄u′′v′′ = D ≡ Eq. (2.5).

B.2 Difference in Averaging

Term I in Eq. (3.12) is:

u′(ṽ − v̄),

which when separated writes:

u′ṽ − u′v̄.

From the definition of the Favre average and by virtue of averaging, this becomes:

u′
ρv

ρ̄
− ��7

0
u′ v̄,

u′
ρv

ρ̄
.

The density term can be written as:(
ρv

ρ

)
= (ρv)

(
1

ρ

)
= ρv

(
1

ρ

)
= ρv

1

ρ̄
.

This means that:

u′
ρv

ρ̄
= u′

(
ρv

ρ

)
= �
�7

0
u′
(
ρv

ρ

)
= 0.

A similar procedure can be followed for term II as well.
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B.3 Proof for Alpha

The Favre-averaged stress term is given by:

ũ′′v′′ =
ρu′′v′′

ρ̄
.

Multiplying by density and Reynolds-averaging yields:

ρ̄ũ′′v′′ = (ρ̄+ ρ′)u′′v′′ = ρ̄u′′v′′ + ρ′u′′v′′.

Grouping the terms gives:

ρ̄(ũ′′v′′ − u′′v′′) = ρ′u′′v′′.

Substituting the Favre fluctuations in the Reynolds-averaged stress term using Eq. (3.13)
will result in:

ρ̄(ũ′′v′′ − u′v′ − (ũ− ū)(ṽ − v̄)) = ρ′u′′v′′,

which when rearranged writes:

ρ̄(ũ′′v′′ − u′v′) = ρ′u′′v′′ + ρ̄(ũ− ū)(ṽ − v̄). QED
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Appendix C

Supplementary Derivations for
Energy

C.1 Scale Analysis on the Energy Equation

Following Cebeci and Smith [53], the terms appearing in the steady energy equation, Eq.
(3.23), can be scaled according to:

ρ = O(1), u = O(1), H = O(1), T = O(1), h = O(1),

∂/∂x = O(1), ∂/∂y = O(δ−1), v = O(δ), µ = O(δ2), k = O(δ2),

ρH ′′ = O(δ), H ′′u′′ = O(δ), H ′′v′′ = O(δ),

where the averages are dropped for simplicity. The terms on the left hand side can then
be written as:

∂(ρ̄H̃ũ)

∂x
= O(1) · O(1) · O(1) · O(1) = O(1);

∂(ρ̄H̃ṽ)

∂y
= O(δ−1) · O(1) · O(1) · O(δ) = O(1).
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Similarly, the right hand side terms pertinent to the streamwise coordinate will be:

−qx = k
dT

dx
= O(δ2) · O(1) · O(1) = O(δ2),

ρH ′′u′′ = O(1) · O(δ) = O(δ),

uτxx = uµ
∂u

∂x
= O(1) · O(δ2) · O(1) · O(1) = O(δ2),

vτxy = vµ

(
∂u

∂y
+
∂v

∂x

)
= O(δ) · O(δ2) ·

(
O(1) · O(δ−1) +O(δ) · O(1)

)
= O(δ2),

and the wall-normal terms are:

−qy = k
dT

dy
= O(δ2) · O(1) · O(δ−1) = O(δ),

ρH ′′v′′ = O(1) · O(δ) = O(δ),

uτxy = uµ

(
∂u

∂y
+
∂v

∂x

)
= O(1) · O(δ2) ·

(
O(1) · O(δ−1) +O(δ) · O(1)

)
= O(δ),

vτyy = vµ
∂v

∂y
= O(δ) · O(δ2) · O(δ) · O(δ−1) = O(δ3).

Finally, combining the terms leads to:

∂

∂x

(
−q̄x − ρH ′′u′′ + uτxx + vτyx

)
= O(1) ·

(
O(δ2) +O(δ) +O(δ2) +O(δ2)

)
= O(δ);

∂

∂y

(
−q̄y − ρH ′′v′′ + uτxy + vτyy

)
= O(δ−1) ·

(
O(δ) +O(δ) +O(δ) +O(δ3)

)
= O(1).

Retaining only the leading order terms gives:

∂(ρ̄H̃ũ)

∂x
+
∂(ρ̄H̃ṽ)

∂y
=

∂

∂y

(
−q̄y − ρH ′′v′′ + uτxy

)
≡ Eq. (3.24).

C.2 Simplifying the Energy Equation

Eq. (3.26) writes:

k
dT

dy
− ρH ′′v′′ + uτxy = Q.
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The first term can be expanded and simplified as follows:

k
dT

dy
= (k̄ + k′)

d(T̄ + T ′)

dy
= k̄

dT̄

dy
+ k̄

dT ′

dy
+ k′

dT̄

dy
+ k′

dT ′

dy
,

k
dT

dy
= k̄

dT̄

dy
+ k̄

d���
0

T ′

dy
+ �
�7

0

k′
dT̄

dy
+ k′

dT ′

dy
,

k
dT

dy
= k̄

dT̄

dy
+ k′

dT ′

dy
.

The definition of the total enthalpy can be used according to:

H = H̃ +H ′′ = h̃+ h′′ +
(ũ+ u′′)2

2
.

Thus:

H ′′ = h′′ + ũu′′ +
u′′2

2
.

Substituting in the second term gives:

ρH ′′v′′ = (ρ̄+ ρ′)(h′′ + ũu′′ +
u′′2

2
)v′′.

Under the constant specific heat assumption, the specific enthalpy is h′′ = cpT
′′. Therefore:

ρH ′′v′′ = ρ̄(cpT ′′ + ũu′′ +
u′′2

2
)v′′ + ρ′(cpT ′′ + ũu′′ +

u′′2

2
)v′′.

Separating the terms:

ρH ′′v′′ = ρ̄

[
cpT ′′v′′ + ũu′′v′′ +

1

2
u′′2v′′

]
+ cpρ′T ′′v′′ + ũρ′u′′v′′ +

1

2
ρ′u′′2v′′ .

The third term can be simplified as done in Appendix B:

uτxy = (ū+ u′)(µ̄+ µ′)
d(ū+ u′)

dy
,

uτxy = (ūµ̄+ ūµ′ + u′µ̄+ u′µ′)
d(ū+ u′)

dy
.

60



Expanding:

uτxy = ūµ̄
dū

dy
+ ūµ′

dū

dy
+ u′µ̄

dū

dy
+ u′µ′

dū

dy
+ ūµ̄

du′

dy
+ ūµ′

du′

dy
+ u′µ̄

du′

dy
+ u′µ′

du′

dy
.

From the properties of averaging:

uτxy = ūµ̄
dū

dy
+ ū�

�7
0

µ′
dū

dy
+ �
�7

0
u′ µ̄

dū

dy
+ u′µ′

dū

dy
+ ūµ̄

d�
�7
0

u′

dy
+ ūµ′

du′

dy
+ µ̄u′

du′

dy
+ u′µ′

du′

dy
,

which results in:

uτxy = ūµ̄
dū

dy
+ u′µ′

dū

dy
+ ūµ′

du′

dy
+ µ̄u′

du′

dy
+ u′µ′

du′

dy
.

Retaining only the leading terms in the boxed equations yields:

k̄
dT̄

dy
− ρ̄(cpT ′′v′′ + ũu′′v′′) + ūµ̄

dū

dy
= Q,

where any third-order or higher correlations were neglected in the second term. Slightly
rearranging:

k̄
dT̄

dy
− cpρ̄T ′′v′′ − ρ̄ũu′′v′′ + ūµ̄

dū

dy
= Q.

The Favre-averaged velocity can be replaced as follows, from B.2:

k̄
dT̄

dy
− cpρ̄T ′′v′′ − ρ̄

(
ρu

ρ

)
u′′v′′ + ūµ̄

dū

dy
= Q,

k̄
dT̄

dy
− cpρ̄T ′′v′′ − ��̄ρ

ρu

��̄ρ
u′′v′′ + ūµ̄

dū

dy
= Q,

k̄
dT̄

dy
− cpρ̄T ′′v′′ − ρuu′′v′′ + ūµ̄

dū

dy
= Q.

ρu can be further Reynolds-averaged and simplified:

ρu = (ρ̄+ ρ′)(ū+ u′) = ρ̄ū+ ρ̄u′ + ρ′ū+ ρ′u′,

ρu = ρ̄ū+ ρ̄�
�7

0
u′ + �

��
0

ρ′ ū+ ρ′u′.
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Substituting the result in the previous equation:

k̄
dT̄

dy
− cpρ̄T ′′v′′ − ρ̄ūu′′v′′ − ρ′u′u′′v′′ + ūµ̄

dū

dy
= Q.

Neglecting the fourth-order term:

k̄
dT̄

dy
− cpρ̄T ′′v′′ + ū

(
µ̄
dū

dy
− ρ̄u′′v′′

)
= Q.

Finally, T ′′v′′ can be written as T ′′v′′ = T ′v′+ (T̃ − T̄ )(ṽ − v̄) in the same way as was done
for u′′v′′ in Eq. (3.13). This gives:

k̄
dT̄

dy
− cpρ̄T ′v′ − cpρ̄(T̃ − T̄ )(ṽ − v̄) + ū

(
µ̄
dū

dy
− ρ̄u′v′ − ρ̄(ũ− ū)(ṽ − v̄)

)
= Q,

and dropping the difference in averaging:

k̄
dT̄

dy
− cpρ̄T ′v′ + ū

(
µ̄
dū

dy
− ρ̄u′v′

)
= Q ≡ Eq. (3.27).

C.3 Higher-Order Terms in Sigma

In the log layer, only the second term from C.2 survives:

−ρH ′′v′′ = −ρ̄
[
cpT ′′v′′ + ũu′′v′′ +

1

2
u′′2v′′

]
− cpρ′T ′′v′′ − ũρ′u′′v′′ −

1

2
ρ′u′′2v′′ = Ew.

Keeping only the second-order fluctuations on the left hand side:

−cpρ̄T ′′v′′ − ρ̄ũu′′v′′ = Ew +
1

2
ρ̄u′′2v′′ + cpρ′T ′′v′′ + ũρ′u′′v′′ +

1

2
ρ′u′′2v′′.

Replacing the Favre-averaged velocity as before:

−cpρ̄T ′′v′′ − ρ̄ūu′′v′′ − ρ′u′u′′v′′ = Ew +
1

2
ρ̄u′′2v′′ + cpρ′T ′′v′′ + ũρ′u′′v′′ +

1

2
ρ′u′′2v′′.

Rearranging:

−cpρ̄T ′′v′′ − ρ̄ūu′′v′′ = Ew +
1

2
ρ̄u′′2v′′ + cpρ′T ′′v′′ + ũρ′u′′v′′︸ ︷︷ ︸

O3

+
1

2
ρ′u′′2v′′ + ρ′u′u′′v′′︸ ︷︷ ︸

O4

.
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Switching between the Favre- and Reynolds-averaged fluctuations:

−cpρ̄T ′v′ − ρ̄ūu′v′ = Ew + cpρ̄(T̃ − T̄ )(ṽ − v̄) + ρ̄ū(ũ− ū)(ṽ − v̄) + h.o.t.

Written in a more compact form, the log layer from energy then becomes:

−cpρ̄T ′v′ − ūρ̄u′v′ = σEw,

with:

σ = 1 +
cpρ̄(T̃ − T̄ )(ṽ − v̄) + ρ̄ū(ũ− ū)(ṽ − v̄) + 1

2
ρ̄u′′2v′′ + cpρ′T ′′v′′ + ũρ′u′′v′′ +O4

Ew
.
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Appendix D

Supplementary Figures

Figure D.1: Non-dimensional shear stress vs y+ for the data set of Zhang et al [3]. The
colour outline is the same as in Table 4.1. The refined start and end bounds, respectively, for
each case are as follows: y+ = [15, 90] for M∞ = 5.84,−Bq = 0.14 and M∞ = 13.64,−Bq =
0.19, y+ = [10, 50] for M∞ = 7.87,−Bq = 0.06, and y+ = [8, 40] for M∞ = 5.86,−Bq = 0.02

and M∞ = 2.5,−Bq = 0. (−): µ̄
dū

dy
/τw; (−·): −ρ̄u′v′/τw.
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Figure D.2: Temperature profile in the channel simulations of Trettel [4], where Mb is the
bulk Mach number of the channel. The profiles are differentiable with no inflection points.
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Figure D.3: Temperature profile in the boundary layer simulations of Zhang et al [3]. The
colour outline is the same as in Table 4.1. A marked inflection point is seen in the near-wall
region for the cooled cases.
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