Circuit Complexity of Mixed States
by

Shan-Ming Ruan

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in

Physics

Waterloo, Ontario, Canada, 2021

(© Shan-Ming Ruan 2021



Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Simon Ross
Professor, Durham University

Supervisor(s): Robert Myers
Professor, Perimeter Institute for Theoretical Physics

Internal Member: Robert Mann
Professor, University of Waterloo

Internal-External Member: Eduardo Martin-Martinez
Associate Professor, University of Waterloo

Committee Member: Alex Buchel
Professor, University of Western Ontario

11



Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

111



Statement of Contributions
This thesis is based on the following published articles.

e Chapter 2 is based on:

— M. Guo, J. Hernandez, R. C. Myers and S.-M. Ruan, Circuit Complexity for
Coherent States, JHEP 10 (2018) 011 [1807.07677]

This research was conducted at Perimeter Institute under the supervision of
Prof. Robert Myers. I mainly contributed to part of analytical calculations in
sections 2-5.

— E. Caceres, S. Chapman, J. D. Couch, J. P. Hernandez, R. C. Myers and S.-M.
Ruan, Complezity of Mized States in QFT and Holography, JHEP 03 (2020)
012 [1909. 10557]

This research was conducted at Perimeter Institute under the supervision of
Prof. Robert Myers. I mainly contributed to part of the analytical calculations
and numerical work in sections 2-5.

e Chapters 3 and 4 is based on:

— E. Caceres, S. Chapman, J. D. Couch, J. P. Hernandez, R. C. Myers and S.-M.
Ruan, Complezity of Mized States in QFT and Holography, JHEP 03 (2020)
012 [1909.10557]

e Chapter 5 is based on:

— S.-M. Ruan, Purification Complexity without Purifications, JHEP 01 (2021) 092
[2006.01088]

e Work produced while a Ph.D. student at the University Waterloo but not included
in the thesis:

— A. Bernamonti, F. Galli, J. Hernandez, R. C. Myers, S.-M. Ruan and J. Si-
mon, First Law of Holographic Complexity, Phys. Rev. Lett. 123 (2019) 081601
[1903.04511]

— H. Z. Chen, Z. Fisher, J. Hernandez, R. C. Myers and S.-M. Ruan, Information
Flow in Black Hole Evaporation, JHEP 03 (2020) 152 [1911.03402]

v


https://doi.org/10.1007/JHEP10(2018)011
https://arxiv.org/abs/1807.07677
https://doi.org/10.1007/JHEP03(2020)012
https://doi.org/10.1007/JHEP03(2020)012
https://arxiv.org/abs/1909.10557
https://doi.org/10.1007/JHEP03(2020)012
https://doi.org/10.1007/JHEP03(2020)012
https://arxiv.org/abs/1909.10557
https://doi.org/10.1007/JHEP01(2021)092
https://arxiv.org/abs/2006.01088
https://doi.org/10.1103/PhysRevLett.123.081601
https://arxiv.org/abs/1903.04511
https://doi.org/10.1007/JHEP03(2020)152
https://arxiv.org/abs/1911.03402

— A. Bernamonti, F. Galli, J. Hernandez, R. C. Myers, S.-M. Ruan and J. Simon,
Aspects of the first law of complexity, J. Phys. A: Math. Theor. 53 (2020) 294002
[2002_05779]

— H. Z. Chen, Z. Fisher, J. Hernandez, R. C. Myers and S.-M. Ruan, Evaporating
Black Holes Coupled to a Thermal Bath, JHEP 01 (2021) 065 [2007 . 11658]

— J. Hernandez, R. C. Myers and S.-M. Ruan, Quantum extremal islands made
easy. Part III. Complexity on the brane, JHEP 02 (2021) 173 [2010.16398]


https://doi.org/10.1088/1751-8121/ab8e66
https://arxiv.org/abs/2002.05779
https://doi.org/10.1007/JHEP01(2021)065
https://arxiv.org/abs/2007.11658
https://doi.org/10.1007/JHEP02(2021)173
https://arxiv.org/abs/2010.16398

Abstract

Quantum information has produced fresh insights into foundational questions about the
AdS/CFT correspondence. One fascinating concept, which has captured increasing atten-
tion, is quantum circuit complexity. As a natural generalization for the complexity of pure
states, we investigate the circuit complexity of mixed states in this thesis.

First of all, we explore the so-called purification complexity which is defined as the
lowest value of the circuit complexity, optimized over all possible purifications of a given
mixed state. We focus on studying the complexity of Gaussian mixed states in a free scalar
field theory using the ‘purification complexity’. We argue that the optimal purifications
only contain the essential number of ancillary degrees of freedom necessary in order to
purify the mixed state. We also introduce the concept of ‘mode-by-mode purifications’
where each mode in the mixed state is purified separately and examine the extent to
which such purifications are optimal. In order to compare with the results from using the
various holographic proposals for the complexity of subregions, we explore the purification
complexity for thermal states of a free scalar QFT, and for subregions of the vacuum state
in two dimensions. We find a number of qualitative similarities between the two in terms
of the structure of divergences and the presence of a volume law. We also examine the
‘mutual complexity’ in the various cases studied in this thesis.

In addition, we propose to generalize the Fubini-Study method for pure-state complexity
to generic quantum states including mixed states by taking Bures metric or quantum
Fisher information metric on the space of density matrices as the complexity measure.
Due to Uhlmann’s theorem, we show that the mixed-state complexity exactly equals the
purification complexity measured by the Fubini-Study metric for purified states but without
explicitly applying any purifications. We also find that the purification complexity is non-
increasing under any trace-preserving quantum operations. As an illustration, we study
the mixed Gaussian states as an example to explicitly show our conclusions for purification
complexity.
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Chapter 1

Introduction

General relativity (GR) and quantum mechanics (QM), which were both developed at the
beginning of the 20th century, have since stood as the two pillars of theoretical physics
and they comprise the framework of describing fundamental interactions in nature, i.e.,
strong interaction, weak interaction, electromagnetic interaction, and gravity. By combin-
ing the first three interactions with gauge theories, the Standard model became the most
successful theory in describing the fundamental structure of microscopic matter. It has
been substantially tested and has demonstrated huge success in providing experimental
predictions. On the other hand, general relativity as the geometric theory of gravitation
and spacetime formulates the current understanding of our universe on a large scale. Built
on GR, modern cosmology has developed along tandem tracks of theory and observation,
and also gives detailed predictions that are in excellent agreement with various observations
at remarkable accuracy.

However, the two fundamental theories are mutually incompatible as they stand. Su-
perficially, GR is still a classical theory without including quantum effects such as quantized
gravitons. In QM or quantum field theory (QFT), spacetime serves as background while
it is dynamical in GR. Different from weakly gravitating systems, quantum effects can not
be ignored in strongly gravitating systems such as the vicinity of black holes. In partic-
ular, a quantum theory of gravity is expected to shed new light on many intriguing and
fundamental questions in theoretical physics, such as the black hole information paradox,
singularities of cosmology, and the origin of our universe. It is natural and fascinating to
seek a quantum gravity that can incorporate both the basic principles of general relativity
and quantum theory. Constructing a quantum gravity theory that is expected to provide
a satisfactory description of the microstructure of spacetime at the Planck scale has been
one of the biggest challenges at the heart of modern theoretical physics.



So we have string theory. It offers a basic framework wherein one can find an elegant
unification of gravity with all other fundamental interactions. It was first studied in the
late 1960s in attempts to understand the dynamics of strongly interacting hadrons. Since
1974, when string theorists identified the massless spin-two particle in the string’s spectrum
as the graviton, string theory became the fascinating theory in high-energy physics because
it manifestly obeys the principles of quantum mechanics and also includes gravitational
interactions. In particular, string theory has experienced two major revolutions. During
the first superstring revolution which took place in 1984-85, five distinct and consistent
string theories, namely the type IIA, type IIB, type I superstring theories and SO(32),
Es x Eg heterotic string theories, were discovered. Each of them requires a ten-dimensional
spacetime and A/ = 1 or N' = 2 supersymmetry. Then the second superstring revolution
that happened in the mid-1990s unified these five string theories via nonperturbative T-
duality and S-duality. Most importantly, all of these correspondences implied that there
is a completely unique quantum theory in 11 dimensions, the so-called M-theory. With
developments in subsequent decades, string theory has now become the most promising
candidate for a consistent theory of quantum gravity.

More happily, Maldacena’s exciting discovery of the AdS/CFT correspondence in 1997
[9] opened a new golden door. As the most brilliant discovery after the second superstring
revolution, he conjectured that the type IIB superstring theory in the asymptotically Anti-
de Sitter (AdS) spacetime, more precisely, AdSs x S®, is dual to the N' = 4 supersymmetric
Yang-Mills gauge theory in 341 dimensions, which is a conformal field theory (CFT). The
CFT can be understood as the theory living on the boundary of the AdS bulk spacetime.
As a result, it became the most prominent example of the holographic principle, which
was proposed by 't Hooft and Susskind [10, [1]. With rapid developments building on
Maldacena’s profound discovery, his original conjecture was extended to a more general
conjecture, namely the AdS/CFT correspondence or gauge/gravity duality or holographic
duality. The most intriguing appeal of holographic duality stems from its strong-weak cou-
pling duality, which makes hard calculations in one description easy in the other. Further,
the AdS/CFT correspondence may provide some fresh insights to long-standing questions
in quantum gravity (e.g., the black hole information paradox) because quantum field the-
ories have been well-studied from many perspectives. The AdS/CFT correspondence has
been an active research field in the past twenty years and has developed as a real compu-
tational and powerful framework that can unify the theories of physics, e.g., string theory,
black hole physics, condensed matter physics, and also quantum information. See [12—19]
for more pedagogical and comprehensive introductions to the AdS/CFT correspondence
and its applications.

The main subject explored in this thesis is the circuit complexity of mixed states and the



conjectured holographic proposals for complexity in AdS/CFT. This concept, complexity,
originates from the quantum information/computation field. It was brought to studies
of high energy theory by Susskind’s conjecture on its holographic dual in asymptotically
AdS spacetime. As an introductory chapter for the background relevant to this thesis, we
provide a rudimentary review of the basics of AAS/CFT in section 1.1. Next, we briefly
introduce some basic concepts about quantum information in section 1.2. In particular,
we will focus on entanglement entropy and introduce its holographic description, i.e.,
the Ryu-Takayanagi formula, which initializes the exploration of the connections between
holography and quantum information.

1.1 A Short Introduction of AdS/CFT

1.1.1 The Birth of the AdS/CFT Correspondence

The AdSgy1/CFEFT, correspondence [9] or gauge/gravity duality is the duality between
a particular quantum gravity theory in (d + 1)-dimensional asymptotically Anti-de Sit-
ter (AdS) spacetime and a certain conformal field theory (CFT) living on the boundary
of a d-dimensional spacetime. In particular AdS;, 1, as a maximally symmetric (d + 1)-
dimensional spacetime with constant negative scalar curvature, is the exact vacuum so-
lution of Einstein’s field equation with negative cosmological constant, and CFTy, as a
d-dimensional QFT invariant under conformal transformations,! has no dimensionful pa-
rameters. There have been several canonical examples of holographic duality developed
in the last two decades. In the following, we briefly motivate the AdS/CFT correspon-
dence with Maldacena’s original prominent example, which states that the four-dimensional
N = 4 super Yang-Mills (SYM) theory with gauge group SU(N) is fully equivalent to ten-
dimensional type IIB superstring theory defined on the product spacetime AdSs x S®. The
gravity theory is referred to as ‘AdS’ because the five-dimensional gravitational theory ob-
tained from Kaluza—Klein reduction of type IIB string theory on S° is thus living in AdSs.
Correspondingly, the ‘CFT” side of this correspondence denotes the N' = 4 SYM theory,
which is a non-gravitational quantum field theory and also a four-dimensional conformal
field theory.

The origin of Maldacena’s idea is associated with the non-perturbative higher dimen-
sional objects in superstring theory, which are called Dirichlet branes or D-branes for short.

!Conformal transformations include translations, dilations, special conformal transformations, and
Lorentz transformations and the conformal group, is locally isomorphic to SO(d, 2) in Lorentzian spacetime.



Dp-branes, the D-branes extending in p spatial dimensions, can be considered as a class of
extended objects on which open strings can end with Dirichlet boundary conditions. For
example, a DO brane is a single point, a D1 brane is an extended string, a D2 brane is a
membrane, and so on. By tuning the value of the string coupling constant g, that controls
the interaction strength between open and closed strings, the low energy excitations in
the D-branes system can be viewed from two different perspectives, viz. the open string
perspective and the closed string perspective. Maldacena examined N D3-branes (with
N large and fixed) stacked on top of each other and described the dynamics of the same
system via the low-energy excitations in two limits, which we will proceed to briefly review
in the following. For more details of this derivation, refer to e.g., [9, 14,15, 19].

Open string perspective

Specifically, we start by considering type IIB superstring theory in (9 + 1)-dimensional
spacetime with N coincident D3-branes. In the open string perspective, D3-branes are
considered as the higher dimensional objects on which the open strings begin and end,
and open strings are viewed as low-energy excitations of the 4-dimensional hyperplane. Of
course, the N coincident D3-branes gravitate and there are also closed strings playing the
role of excitations of the (94 1)-dimensional flat spacetime. The gravitational backreaction
is thus determined by the number N of superimposed D3-branes and the dimensionless
string coupling constant g,. First, we begin in the following regime

A=21Ng, < 1, (1.1)

where the dimensionless parameter A is called the 't Hooft coupling. In this limit, the
strength of gravitational effects of these D3-branes is proportional to gs N (see eq. (1.7)), im-
plying that we can effectively consider the D3-branes as objects living in (94 1)-dimensional
Minkowski spacetime. Then, we begin by considering the N D3-branes in flat spacetime
at low energies El; < 1 where Iy = (o/ )1/ . It means that we can ignore all massive
stringy excitations and consider only massless excitations. Because these N D3-branes are
coincident in space, the low-energy degrees of freedom in this set-up, i.e., open strings
connecting pairs of D3-branes, are all massless.

To be precise, we can decompose the complete effective action for all massless string
modes as

S~ Sclosed + Sopen + Sint ) (12)

where Sciosea contains the closed string modes, Sopen contains the open string modes and Sipg
is referred to as the interactions between open and closed string modes. As described before,
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Selosed 18 given by the effective action of (9 + 1)-dimensional supergravity; however, with
El, < 1, these modes are all free fields. In the limit El, — 0, Sj,; is expected to vanish,
indicating that open and closed strings decouple in this limit. All massless excitations
actually propagate on the three spatial dimensions of the D3-branes, which should be
described by a specific (3 4+ 1)-dimensional field theory. It is shown that all excitations
are grouped into a four-dimensional N' = 4 supermultiplet which consists of a gauge field
A, and six real scalar fields ¢, as well as four fermionic fields v as superpartners. More
importantly, it is easy to notice that a single open string can carry two indices running from
1 to N because its endpoints can reside on any one of the N D3-branes. Correspondingly,
all of these fields are represented by N x N matrices and can be described by a U(N)
gauge field theory in the adjoint representation. At the lowest energy scales limit o/ — 0,
Sopen reduces to

open —

o7g / d'wtr (F? + (Vo) + WPy + e, v] - 6, 6°) + O(),  (13)
The complete leading action in Sepen is actually known as N' = 4 super Yang-Mills theory
by identifying its coupling gy, as follows,

2795 = G - (1.4)

Finally, after the low energy limit we consider the limit where the 't Hooft coupling grows
large, i.e., A = 2wg,N > 1. Then one arrives at the A" = 4 super Yang-Mills theory at
strong coupling. As a summary, we can conclude that the open string perspective with the
low-energy limit reduces the effective theory of N D3-branes in type IIB superstring theory
to a free type IIB supergravity in 10-dimensional Minkowski spacetime plus N = 4 super
Yang-Mills theory with gauge group SU(NV) ? in four-dimensional flat spacetime, which we
have taken to strong coupling.

Closed string perspective

In the closed string perspective, we consider the same limits but in the opposite order.
Hence first, we leave the weak coupling regime (1.1) and consider the limit where

A=21Ng, > 1. (1.5)

2Note that the gauge group is SU(N) rather than U(N) since the U(1) degrees of freedom correspond
to singleton fields located at the boundary and cannot propagate into the bulk AdSs.



Here the gravitational effect of N D3-branes can not be neglected. In other words, we
should view D3-branes as massive sources of the gravitational field that curves the (94 1)-
dimensional spacetime. These coincident N branes form a black brane, i.e., a solitonic
solution of the supergravity theory. The supergravity solution of N D3-branes preserving
SO(3,1) x SO(6) isometries of 10-dimensional Minkowski spacetime is written as

S LA
ds* = H(r)"\ygdada® + H(r)?6;da'de? ,  with H(r) =1+ oy (1.6)
where a,b = 0,1,2,3, 7,7 = 4---9 and L denotes the characteristic length scale that is
related to stringy coupling by
L* = 47g,No'* (1.7)

It is obvious that this geometry reduces to a 10-dimensional Minkowski spacetime in the
region r > L. Hence beginning with the limit, we arrive at a theory of closed strings
propagating in this curved spacetime background.

It is noted that the strong 't Hooft limit (1.5) and large N limit make the radius of
curvature much larger than not only the stringy length scale [, but also the Planck length
scale [, viz.

L\* L\*
(l_) =4mrgsN =22 > 1, (Z_) =47N > 1. (1.8)
s p
As a consequence, it guarantees the validity of the supergravity approximation and we can

ignore quantum gravity corrections at order O(l,) as well as highly excited string states at
order O(L,).

Next, we consider the low energy limit where excitations only have energies Fl; < 1.
Thanks to the gravitational redshift, the low-energy excitations only occur in the region
close to the horizon (the throat region), i.e., H(r) = f—f‘g Hence the 10-dimensional
spacetime (1.6) reduces to the near horizon geometry, namely

2 L2 ) )
ds? = %nabdx“dxb + —0ij do’ da’
" (1.9)

LQ
== (Mapda®da® + dz?) + L* dQ2

where the new radial coordinate is defined by z = L?/r. The first part on the second
line above is nothing but the AdS5 geometry in Poincaré coordinates, and the second part

3We note that this near-horizon limit L/r > 1 is also accomplished by carefully implementing the
so-called Maldacena limit, i.e., @' — 0 with Ar/a’ fixed and Ar as the distance between branes [9].



represents a five-dimensional sphere with radius L. This (9 + 1)-dimensional spacetime is
known as AdS; x S°.

In conclusion, the closed string perspective shows that the effective theory in the low-
energy limit of large /V coincident D3-branes is also described by two decoupled theories.
In the asymptotically flat region, the dynamics of the closed strings is controlled by the
free type IIB supergravity in 10-dimensional flat spacetime. The low-energy excitations in
the near horizon region are described by type IIB superstring theory in AdSs x S°.

Now it is time to derive the AdS;/CFT, correspondence. Obviously, the open string
perspective and closed string perspective are equivalent pictures of the same physics. We
produced both of these pictures with the same limits, only applied in the opposite order.
Counting the same type IIB supergravity in 10-dimensional flat spacetime presented in
both perspectives, we are left with two decoupled theories, i.e., N' = 4 SYM theory and
type IIB superstring theory. This is Maldacena’s conjecture, i.e., the first example of the
AdS/CFT correspondence:

N = 4 Super Yang-Mills theory on 4-dimensional flat spacetime

Type IIB supergravity theory in AdSs x S° .

With such a correspondence between the gravity theory and (non-gravitational) quantum
field theory, the coupling parameters on two sides are related by

g2, =2mgs and 2¢2 N =L*/a”. (1.10)

In particular, we stress that the gravity side in the the low-energy limit is a weakly-
coupled classical gravitational theory, while the dual super Yang-Mills theory is strongly
coupled (i.e., g2,,N > 1). It is a crucial and alluring feature that the AdS/CFT correspon-
dence is also a strong/weak coupling duality. Consequently, the AdS/CFT correspondence
has been developed as a computational device because we can map a hard question in
strongly coupled field theories to weakly coupled gravitating systems where the question
is easier to be solved, or vise versa. For example, the applications of the AdS/CFT cor-
respondence to condensed matter theory (CMT), especially strongly coupled systems, are
generally referred to as the AdS/CMT correspondence.

To be more precise, AdS/CFT is still a conjecture without a strict mathematical ‘proof’.
However, there is no doubt that it is true since it has passed an enormous number of strong
tests on various aspects. In particular, there are some non-perturbative quantities whose
answers from both sides have been shown to agree with each other via the calculations in
‘top-down’ constructions. See the nice review paper [20] or recent textbooks [12, 1116, 19]
for more strong evidence and a variety of applications.
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1.1.2 Holographic Dictionary

(d+1)-dim bulk
Gravity

z=0

d-dim boundary
-------------------- QFT

¢
Figure 1.1: The illustration of the AdS,,;/CFT, correspondence or gauge/gravity duality.

The holographic direction is labeled by bulk coordinate z and the asymptotic boundary
on which the dual QFT lives locates at z = 0.

With more curiosity and courage, the AdS/CFT correspondence is also expected to
extend from CFTs to less symmetric QFTs with some or all supersymmetries and/or
the conformal symmetry broken. Correspondingly, the bulk spacetime need not be AdS
but only asymptotically AdS (AAdS). Such generalizations of AdS/CFT sometimes are
specifically referred to as gauge/gravity dualities. See figure 1.1 for a simple illustration.

In the rest of this thesis, we will adopt this strongest conjecture but with using the term
AdS/CFT for all cases.

In particular, we should expect to match the symmetries of the field theory and gravity
theory by virtue of the AdS/CFT correspondence. For example, we consider the previous
duality as an illustration. As a four-dimensional conformal field theory with a vanishing
S function, NV = 4 SYM’s conformal symmetry group is given by SO(4,2). In addition,
N =4 SYM also has a symmetry group SU(4) = SO(6) associated with its R-symmetry.
Correspondingly, it is clear that the geometric symmetry of the superstring theory in
AdS;s x S° is its isometry group SO(4,2) x SO(6), which matches the global symmetries of
N = 4 SYM. Furthermore, after counting the supersymmetry, one can show that all the
symmetries of N =4 SYM form the supergroup PSU(2|2,4), which is also preserved by the
type IIB string theory in AdSs x S°. Consequently, the symmetries from both sides of the
AdS/CFT correspondence coincide as expected. More generally, the AdS/CFT dictionary



states that the gauge symmetries of the bulk gravitational theory are mapped to global
symmetries of the boundary field theory.

As a realization of the holographic principle, the AdS/CFT correspondence obviously
involves theories with different spacetime dimensions, and the CFT can be thought to live
on the boundary of the AdS spacetime. To explicitly illustrate the meaning of the emergent
direction we consider AdS,,; in Poincaré coordinates, namely

L2
ds® = o) (napda®da’ + d2?) | (1.11)

where z denotes the holographic radial direction, L is the AdS curvature scale as before
and asymptotic boundary is located at z = 0. Of course, the AdS,;;; spacetime can be
derived as the vacuum solution of Einstein gravity with the bulk action given by

1 d(d—1)
I = dt1 B S— 1.12
bulk 167G /d ) ’g’ (R + 12 ) ) ( )

which is the Einstein-Hilbert term with a negative cosmological constant A = —d(zd L_Ql). By

virtue of the AdS/CFT dictionary, the field theory metric up to a conformal transforma-
tion is given by the induced metric at asymptotic infinity, which is parametrized by the
d-dimensional coordinates z®. It is noted that the field theory is invariant under scale
transformations % — «ax® that also rescale the energy according to £ — E/a. From
the viewpoint of the bulk spacetime, this transformation is mapped to the diffeomorphism
r* — ax® z — az. In order to understand the emergent direction z emerging in the bulk,
it is attractive to identify the holographic direction with the inverse of the energy scale in
the boundary QFT, i.e., 2 ~ 1/E. As a result, the evolution along the z direction cor-
responds to the renormalization group (RG) flow from UV to IR. Hence the scale/radius
identification gives rise to the UV/IR duality. It means that high energy scale or equiva-
lently short length scale on the QFT side maps to large radius in the bulk (i.e., closer to
the asymptotic boundary), and vice versa.

The AdS/CFT correspondence means that the two sides of the duality should describe
the same physics. In other words, in addition to the symmetries, degrees of freedom
and observables of the two distinct theories should also have a one-to-one correspondence,
i.e., there exists a ‘holographic dictionary’. The first step towards a precise holographic
dictionary between physical properties of the boundary field theory and the dual bulk
gravity theory were made with the Gubser-Klebanov-Polyakov-Witten (GKPW) formula
[21,22], which we will introduce explicitly in what follows.

Focusing on the field theory side, the basic ingredients characterizing the observables in
QFT are the n-point correlation functions of operators O;(x), i.e., (O1(x1) - - On(zy,)). It
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is known that the n-point functions can be derived from the generating functional W [J;(x)]
(in Lorentzian signature) that is defined by

T [{J5(2)}] = Wil < iy [ ddz Ji(z)0; (ar:)>QFT ’ (1.13)

where J;(x) denotes the source coupled to the operator O;. Any connected correlation
function can be computed by varying the generating functional as follows

n

(O1(z1) - - On(xn»QFTaC = (=9)" H

L m In ZQFT [Jz (ZL’)]

(1.14)

J=0

Thus we should expect that the holographic dictionary is a recipe that rewrites the right
hand side of eq. (1.14) in the language of the dual gravity theory in the bulk. However, it is
subtle to characterize all observables in gravitational system because the spacetime itself is
also dynamical. Roughly speaking, we can impose Dirichlet boundary conditions at z = 0
and deﬁne the partition function of the gravity theory as a functional of the boundary
values gb ( ) of all the dynamical fields ¢;(z, z) propagating in the bulk spacetime, viz.

ZGray [(bgo)(x)} = /@ s <H D¢> iSGrav[#i] (1.15)

where Sg,,, [¢i] is the action of gravity and the other bulk fields ¢;. As an essential step
towards the AdS/CFT dictionary, Gubser, Klebanov, Polyakov, and Witten [21,22] found
that there is a one-to-one correspondence between single trace operators O; in the boundary
QFT and bulk dynamical fields ¢;(z, z) by relating the asymptotically AdS boundary value
of the fields with the sources of boundary operators:

Ji(z) +— ¢\ (2), (1.16)

where the asymptotic value ¢§°) (x) can be precisely determined, as we will see in the
example discussed below. With this field/operator map, the GKPW formula identifies the
partition function of a QFT in the presence of sources J; with the partition function of a
bulk gravity theory, namely

Zowe [00 ()] = (I Te w000

which constructs an essential cornerstone of the holographic dictionary.

= Zom |07 )] . (1.17)

QFT
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d-dim Boundary: Field Theory (d+ 1)-dim Bulk: Gravity
Partition function Zgpr Partition Function Zgay
Scalar operator O Scalar field ¢
Energy-momentum 7% Metric tensor g,
Fermionic operator Oy Dirac field ¥
Global current J¢ Maxwell field A,
Conformal dimension of operator Mass of the corresponding field
Spin/charge of the operator Spin/charge of the field
Global symmetries Gauge(local) symmetries
Finite temperature Hawking temperature 7T’
Phase transition Gravitational instability
Renormalization group flow Evolution in the radial AdS direction
Free energy On-shell value of the action
Entanglement entropy Sgg of a subregion A Area of the minimal surface

Table 1.1: The holographic dictionary for the AdS/CFT correspondence

As the simplest example, let us consider the free scalar field propagating in the Poincaré
patch of AdSy,; with action defined by

2
Smatt[@] = —/ dzd%z /=g Gg“"vuw,,(b + m?gﬁQ) ) (1.18)

According to the AdS/CFT correspondence, it is dual to adding some particular scalar
operator O in the dual CFTy living on the asymptotic boundary. In the bulk theory, the
dynamics of the scaler field is given by the massive Klein—Gordon equation VZ¢ = m?2¢.
Since we are interested in the asymptotic boundary conditions, one can solve this equation
in a series expansion as z — 0 and obtain two linearly independent solutions as follows

Oz = 0,2) = ¢O(x)22 + -+ oW ()22 + .-+ (1.19)
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with

2
Ai:gzl:\/dz—ka[P. (1.20)

We call the two independent modes ¢(®, ¢(!) the non-normalizable mode and normalizable
mode, respectively. By virtue of the AdS/CFT dictionary, the non-normalizable mode that
gives rise to the boundary value of bulk scalar field ¢(z,z) is equal to the source of the
dual boundary operator O, i.e.,

J(z) =¢O(z) = il_r)r(l) oz, )22 (1.21)

Noting the non-normalizable mode is rescaled as ¢(® — a~2-¢© under the isometry
{z,2'} = {az,az'}, one can find that its dual operator O must rescale as

O(x) — a ®0(ax), (1.22)

indicating that the scalar operator inserted on the dual field theory has a conformal di-
mension A, . Furthermore, we can find that the AdS/CFT dictionary also explains the
meaning of the normalizable mode ¢! on the dual field theory. Evaluating the expectation
value of the dual operator O by using the GKPW formula, one obtains

(O(x))ger ox ¢ (). (1.23)

In summary, we see that the holographic dictionary identifies the source with the leading
contribution ¢ of the corresponding bulk field and also relates the vacuum expectation
value to the subleading contribution ¢"). We should note that it is also possible to reverse
the relation between ¢, ¢ in the AdS/CFT dictionary if the scalar mass satisfies —% <

m?L? < —%€ 11 and the conformal dimension of the dual operator is given by A_ [21,22].
Although we only consider here the free scalar field for simplicity, one can also perform
a similar analysis for other fields, e.g., spin 2 field, fermionic field, Maxwell field and so on.

To close this short review, we summarize some useful quantities appearing in the AdS/CFT
dictionary in table 1.1.

1.1.3 Geometries and States
Recalling symmetry argument we mentioned before, the conformal symmetry group of

CFTy coincides with the isometry group SO(2,d) of AdSyy; spacetime. By virtue of the
AdS/CFT correspondence, we can imagine that there is a certain ‘holographic* CF T living
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on the boundary of its dual AdS;., spacetime. An interesting question is which CFTs are
holographic. However, it is not clear by now what are either the necessary or the sufficient
conditions on a CF'T for the existence of a semiclassical dual gravitational system. Roughly
speaking, it is believed that a holographic CFT that is dual to Einstein gravity coupled with
matter should have a large number of degrees of freedom (e.g., large N) strong coupling,
a large spectrum gap, and a sparse low energy spectrum [23-25]. We have seen that the
AdS/CFT dictionary as shown in table 1.1 suffices to map the observables in CF T} to those
in AdSz41. On the other hand, it is worth pointing out that the AdS/CFT correspondence,
as a duality between non-gravitational field theory and gravity theory, is about not only
observables but also states. The holographic field theory can be in any of the states in its
Hilbert space and the AdS/CFT correspondence also claims that each such state maps to
an analogous state in the Hilbert space of its dual (quantum) gravity theory. From this
point of view, the AdS/CFT correspondence is thus an isomorphism between the Hilbert
spaces of the boundary field theory and the dual bulk gravity theory. Furthermore, we
are more interested in a limited class of CFT states that can be described geometrically in
terms of smooth bulk spacetimes. This subspace in the full CF'T Hilbert space is referred
to as the code subspace. For later use, we will explicitly discuss various quantum states of
a CF'T and the dual bulk spacetime geometry in this subsection.

First of all, it is easy to notice that the vacuum state of CFTy should correspond to
the vacuum AdS,.; spacetime because the vacuum state of CFTy preserves the SO(2,d)
conformal symmetry. Furthermore, excited states of the field theory are thus dual to
non-trivial asymptotically AdS geometries. With the scalar example discussed in the last
subsection, the excited states obtained by small perturbations of vacuum state with the
scalar operator O can be understood as coherent states and the corresponding asymptoti-
cally AdS spacetimes are derived by solving the Einstein equation with the condensation
of the scalar field ¢ propagating in the bulk spacetime. For high-energy excited states,
the holographic spacetime may have significantly different geometry and even topology. In
particular, we are interested in the thermal state of the CFT that is formally defined by
the density matrix, namely

C*ﬂPICFT G*BQCFT

Tr (e—ﬁHCFT> " Zew(B)

ﬁth - (1.24)

where ﬁcm denotes the CFT Hamiltonian and § = 1/T is the inverse temperature. Its
holographic dual spacetime is nothing but a black hole geometry with the same tempera-
ture!. See the figure 1.2 for a graphical illustration. In the following, we list some widely

4For a thermal state with low temperature, its corresponding geometry may be only thermal AdS rather

13



discussed quantum states in CFT; and the corresponding (asymptotically) AdSy,; geome-
tries in higher dimensions (d > 2).

d-dim boundary
(d+1)-dlim bulk CFT

Gravity /

AdS.

M

Excited
Vacuum AAde+1 State
pure AdS 4|

Thermal
State

Schwarzschild-AdS 4 |

Figure 1.2: The duality between quantum states of boundary field theory and bulk geome-
tries in the AdS4y1/CFTy correspondence.

Vacuum State of CFT,; on R4 1!

The bulk spacetime is the Poincaré patch of AdSyy1 (i.e., eq. (1.11)) with metric

2

L
ds?* = = (—dt* + dxj_, +dz°) , (1.25)

where x4_; indicates the (d—1)-dimensional spatial directions and the asymptotic boundary
is obtained by the limit z — 0.

than a black hole geometry. See the discussion below eq. (1.28).
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Vacuum State of CFT,; on R x ¢!

The bulk spacetime is the global AdS;,; geometry with metric

dr?

ds* = — dt? 2403
S f(?”) + f(T) +r d—1>» (1 26)
r? .
with f(?")zl—l—ﬁ,

where the asymptotic boundary is obtained by the limit » — oo.

Thermal State of CFT,; on R 1!

The bulk spacetime dual to the thermal state (with temperature T") of the CF Ty living on
Minkowski spacetime is given by the planar Schwarzschild-AdS,,; black hole with metric

L? dz?
ds® = = <—f(z)dt2 +dx3 , + i) ;
2% d (1.27)
ith -2 T=

where the planar horizon of the black hole is located at z = zj,.

Thermal State of CFT,; on R x S¢°!

The bulk spacetime dual to the thermal density matrix at high temperature T" of the CF Ty
on on R x S9! is the global Schwarzschild-AdS black hole spacetime

ds® = — f(r)dt* + ar + r2dQ;
firy
) Y r?

1 r?
T = B (d—2
47T7"h( L2+( ))’

where the position of the black hole horizon is r» = r;,. We also note that the global black
hole geometry is the solution only for large black holes with 7, > L or equivalently 7" > %
whereas the dual geometry at low temperature is thermal AdS,,;. The transition between
the two solutions happens at the critical temperature T, = ;lw;ll,’ the so-called Hawking-Page
transition.
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Thermal State of CFT,; on R x H¢!

The dual black hole geometry with a hyperbolic horizon is defined by the metric
2

2 _ 2, 9
ds* = —f(r)dt +f(r)

with f(r):ﬁ—l—i:z (ﬁ— ) ) (1.29)

+ 7% (du® + sinh® w dQj_,) |

where the hyperbolic horizon of the black hole is located at r = ry,.

Finally, let us point out that the black hole geometry associated with the thermal
density matrix p,, denotes the one side of the full black hole spacetime, i.e., the region
observable from one asymptotic boundary. In the next section, we will show that the full

two-sided black hole geometries are dual to particular pure states entangling two copies of
the boundary CFT.

1.2 Holography Meets Quantum Information

After introducing the very basic ideas and concepts of the AdS/CFT correspondence in
the last section, we will move to the interface between quantum information theory and
holography (or quantum gravity). Recent research on this direction, e.g., [26-38] has sug-
gested that quantum information perspectives can produce fascinating new insights into
fundamental questions about the AdS/CFT correspondence, as well as quantum gravity.
Especially, it is found that the entanglement structure of the underlying quantum me-
chanical degrees of freedom plays a crucial role in understanding the emergent spacetime
geometry and its dynamics. See e.g., [17, 18,2939, 40] for recent reviews about various
aspects along this direction.

The connection between quantum information concepts and gravity has appeared in
the early 1970s even before the birth of the AdS/CFT correspondence. Inspired by the
similarities between the second law of thermodynamics and the non-decreasing property
of the horizon area, Bekenstein conjectured that a black hole should have an entropy
proportional to its horizon area. With the celebrated discovery from Hawking that a black
hole also emits thermal radiation, it was confirmed that a black hole has a temperature
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T = 5= determined by its surface gravity x. Furthermore, the precise relation between the
black hole entropy and the area of its horizon, i.e.,

_ Area(horizon)

Sy = et (1.30)

is referred to as the Bekenstein-Hawking formula. It is worthwhile mentioning that this
formula was a key inspiration for the holographic principle. In light of the statistical
mechanics interpretation of entropy, the black hole entropy formula naturally suggests
that a black hole should contain a large number of microstates as the statistical origin of
its large entropy. The first realization of black hole microstate counting was achieved in
string theory by Strominger and Vafa [11]. It is still a tantalizing and profound question
and believed to be an extraordinary window from classical gravitational physics into the
nature of quantum gravity at the Planck scale.

On the other hand, the AdS/CFT correspondence also brought fresh insights into under-
standing black hole entropy. From the geometry and state duality, the Schwarzschild-AdS
black hole (e.g., eq. (1.28)) is dual to the thermal state of a boundary CFT. From the view
of the boundary field theory, the black hole entropy is thus equivalent to the entropy of its
dual thermal state p,,, i.e.,

Sen = Stn(Pen) - (1.31)

Particularly, this formula connects the entropy of the boundary field theory to a geometric
quantity in the bulk spacetime, i.e., the area of the horizon. Inspired by this area law as
well as the AdS/CFT duality, Ryu and Takayanagi in 2006 [26] proposed that the entropy
of a subsystem of the holographic CF'T is geometrically described by the area of a certain
minimal surface in the dual (asymptotically) AdS spacetime. In this section, we will intro-
duce this wonderful discovery, i.e., holographic entanglement entropy, in more detail. As
preparation, we will first introduce some basic concepts about quantum states of subsys-
tems and entanglement measures. An interested reader can refer to standard textbooks,
e.g., [12—11] for more introduction of associated concepts in quantum information science.

1.2.1 Quantum States and Entanglement

First of all, a quantum state of a system in quantum mechanics can be understood as an
operator p acting on its Hilbert space ‘H with the following properties:

pr=p, p>0, Trp=1. (1.32)



To wit, a quantum state p known as the density operator is a non-negative hermitian
operator with unit trace. By choosing some basis, the density operator is parametrized by
a matrix and the components are also called the density matrix. In this thesis, we will not
distinguish these two terminologies. It is convenient to choose a special basis denoted by
a set of normalized vectors {|i;)} and then diagonalize the density matrix as

p= ZPNM (Wil (1.33)

where the eigenvalues {p;} form a probability distribution. The expectation value of any
operator O with respect to the density matrix p is given by a trace, viz.

(O); =Tr(pO) = D _pi (3] O i) (1.34)

In particular, a quantum state is called pure state if and only if it can be written as an
outer product

p =)l (1.35)

Any other states are referred to as mixed states. For a given quantum state or density
operator p, it is not always easy to judge whether it is pure or mixed. A useful measure
for this question is the von Neumann entropy S,y that is defined by

Sux () = ~Tr (p1n ) = (~Inp),. (1.36)

It is obvious that the von Neumann entropy of any pure state is always zero and that of any
mixed state is non-zero. This is why the von Neumann entropy S,y is a useful diagnostic
of the mixedness of a quantum state. In addition, the von Neumann entropy has numerous
remarkable properties. For example, the von Neumann entropy in a finite Hilbert space H

is bounded from above, viz.
Se (p) < Ind, (1.37)

where the number d is the dimension of H and the inequality is saturated if only if p is
maximally mixed (i.e., a state proportional to the identity operator, denoted by [). From
the definition and the simple relation In (U pU T) = Uln(p) UT ®, it also straightforward
to show that the von Neumann entropy is invariant under any unitary transformation:

Sex () = Sux (U pUY) . (1.39)

5This is derived by using the definition of the logarithm of an operator p
5— 1y
logp= S~y L=D" 1.38
oen =Y oyt (139
and also the relation (U pUT)* = U p" UT for any unitary operator U.
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For the purpose of showing the connection to information science, one can rewrite the von
Neumann entropy of the density matrix (1.33) as

Sex (p) = — Zpi Inp;, (1.40)

which is nothing but the Shannon entropy of the distribution {p;}.

Now, we move to the discussion of entanglement between two subsystems. First of all,
let us consider a total system that is partitioned into two subsystems A, B. In terms of
Hilbert space, we define the total Hilbert space of the bipartite system H as the direct
product of two factors,

H=HsiQ@Hp. (1.41)

Focusing on the quantum states associated with one subsystem, say A, we can construct
an operator p4 that only acts on H 4 by taking a partial trace over the subsystem B,

pa=Treg(p) =D W pluf), (1.42)

J

5

with {‘wf )} to be an orthonormal basis for Hp. This is often called a marginal state or
a reduced density matrix. It is noted that the above definition does not depend on the
choice of the basis {|¢jB >} An alternative definition of the reduced density matrix is the
following condition

Tr (ﬁ@) :TI"_A (ﬁAOA) y (143)
which should hold for any operator O of the form O = O4 ® [.

Specifically, it is interesting to start from a pure state p = |¥) (¥| in the total system
AB. We can choose the vector sets {|17*)}, {|¢¥)} to be the orthonormal bases for H 4
and Hp, respectively, and define the bipartite pure state in the form of

|¥) = sz'j [t @ |0F) (1.44)

In this case, the rest of the subsystem B is complementary to the subsystem .4 and thus
is often denoted by A¢ for simplicity. When the coefficient factorizes, i.e., p;; = p;“pf , the
state |¥) is a product state such that

0) = [Va) @ |P5) - (1.45)

This is also called a separable state. This is the case where both reduced density matrices
become pure states,

Pa=Va) (Val s pac = [Pac) (Pl , (1.46)
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which means that the subsystems A and A® are not entangled. If the pure state |¥)
is not separable, it is then called entangled (or inseparable). Roughly speaking, we can
think that the quantum entanglement measures how much a given pure state differs from
a separable state (i.e., eq. (1.45)). Instead, from the perspective of subsystems, one can
claim that the presence of quantum entanglement results in mixed states pu, p4c as the
reduced density matrices of the respective subsystem A, A°. As advertised before, we are
interested in quantifying the amount of quantum entanglement between the subsystems.
It turns out that the simplest entanglement measure is given by the von Neumann entropy
of the reduced density matrix, i.e.,

St (pa) = —Tra (palnpa) = S (Pa) (1.47)

which is specifically referred to as the entanglement entropy ©.

Although we begin with a bipartite system to introduce the entanglement entropy,
there is no reason to stop us considering the entanglement entropy in multipartite systems.
Furthermore, the entanglement entropy obeys some interesting inequalities in bipartite
and multipartite systems. As a summary, we list several useful properties of entanglement
entropy without proof below.

e The entanglement entropy of the subsystem A and its complement A€ in a bipartite
pure state are equivalent:

Sk (Pa) = e (Pac) - (1.48)

e The entanglement entropies satisfy the subadditivity

SEE (ﬁA) + SEE (/38) > SEE (ﬁAB) ) (149>

and also the triangle inequality

‘SEE (ﬁA) - SEE (ﬁB) | < SEE (ﬁAB) ) (1'5())

which is known as the Araki-Lieb inequality [15].

6To be more precise, the entanglement entropy, as a measure of entanglement between subsystems, is
only defined for a reduced density matrix for any of the subsystems while the von Neumann entropy can be
defined for any given density matrix. However, some literature in high energy physics does not distinguish
the entanglement entropy from the von Neumann entropy. There are also many other entanglement
measures, which are different from the von Neumann entropy.
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e The entanglement entropies satisfy the strong subadditivity, namely

SEE (ﬁAB) + SEE (,aBC) 2 SEE (ﬁA) + SEE (ﬁC) 5

N . . R 1.51
Ser (PAB) + Stk (ch) > Sk (pABC) + Skg (pB) ’ ( )

in any tripartite system.

In particular, the subadditivity of entanglement entropy implies that we can define a non-
negative quantity by

I(A 2 B) = Ss (pa) + Sew (08) — See (pas) = 0 (1.52)

which is known as the mutual information. Later in the thesis, we will discuss a similar
quantity defined for complexity.

In addition to the entanglement entropy, another set of measures that can characterize
quantum entanglement is

50 () = T 0 (Tra () = 7= In (&?) , (1.53)

which are known as the Rényi entropies. Although the canonical definition only takes
n € Z, it is useful to generalize the definition by analytically extending the parameter
regime to n € R,. As a consequence, the Rényi entropies reduce to the entanglement
entropy in the limit n — 1. In calculations of entanglement entropy in QFT, this limit will
be very useful in the path integral formalism and often referred to as the replica trick.

To close this subsection, we pay our attention on a particular entangled state that will
be discussed in later of the thesis. By choosing Hgz to be a copy of H_4, the so-called
thermofield double state (TFD state) 7 is constructed by

1 )
ITFD) = 70 D et
=0

Ef) ® |EF) (1.54)

where |E;) denotes the energy eigenstates and the partition function Z(8) = 3, e ¥
normalizes the state. In the literature of high energy physics, this state is also referred to
as the Hartle-Hawking state. The meaning of ‘double’ in TFD state becomes clear after

"This nomenclature, i.e., thermofield double state, is common in the high energy theory literature, but
the same state is often called a squeezed state in quantum information literature, e.g., see [16-18]. For
example, see the two-mode squeezed state defined in eq. (3.18).
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tracing out either the system A or the system B. For example, the reduced density matrix
of the subsystem A is given by

pa(B) = Trp (|TFD) (TFD))
_ L N e pay g
“zm e I

—BHA

(1.55)

where we introduced a Hamiltonian H 4 of the subsystem in the last line such that H A ‘E;“> =
E; }E;“> It is obvious that we can get the same state by tracing out the subsystem .A.
The corresponding reduced density matrix is nothing but the thermal state with Hamilto-
nian H 4 and temperature 7' = 1/f. Furthermore, one can use the definition in (1.47) to
evaluate the entanglement entropy of the thermal state p4

Ser (P4 (B)) = —Tra [ﬁA (—5HA — log Z)} ;
1 (1.56)
= (U~ F) = 5. (54 (8))

where we defined the free energy F' = —T'log Z and the average energy U = (]f[ A) in the
second line. Obviously, the entanglement entropy of the reduced density matrix derived
from TFEFD state also equals the entropy S, (p4) of the thermal state. In the following, we
will show that the TFD state and the entanglement entropy shown in eq. (1.56) both play
notable roles in holography.

1.2.2 Holographic Entanglement Entropy

The key goal of the thesis is to study the connection between quantum information and
the AdS/CFT correspondence. In many interesting cases, the dual of information-theoretic
quantities are given by some geometric quantities in the AdS bulk spacetime. The most
prominent example is the Ryu-Takayanagi formula that associates entanglement entropy in
the boundary theory with the area of a specific surface in the AdS bulk. Before introducing
the explicit example, let us motivate the RT formula by thinking of the Bekenstein-Hawking
entropy again.

Recalling the duality between the Bekenstein-Hawking entropy and the thermal entropy
of the thermal density matrix on boundary CFT, i.e., eq. (1.31), as well as the equivalence
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Horizon

CFT, CFTy

Figure 1.3: Left: The Penrose diagram of the maximally extended AdS-Schwarzschild
black hole. The light grey regions denote the interior regions behind the horizon. And
the spacetime has two asymptotic boundaries where the left CFT and right CFT live,
respectively. Right: The time slice at ¢ = 0. The horizon located at the middle is the
minimal area surface separating the left space and right space.

Sge = Sin for thermal state, we can thus identify the Bekenstein-Hawking entropy with
the entanglement entropy, viz.

Area(horizon)

Skx (pth) = Sth (Pth) = Spu = ITen )

(1.57)
by taking the reduced density matrix as the thermal density matrix py, of the boundary
CFT and the right-hand side is a purely geometric quantity defined in the bulk black
hole spacetime. Before we return to the generalization of the above formula, we should
stress that this result is built on the AdS/CFT correspondence by which we explain the
AdS black hole geometry as the dual of the thermal density matrix pg,. However, this
state/geometry correspondence we argued before does not explain either which part of the
black hole spacetime is dual to boundary thermal CF'T or the meaning of ‘entanglement’.
In the case of the thermal density matrix (a mixed state), we can turn to the purification of
thermal state, i.e., TFD state, for help. Similarly, the gap in terms of the dual spacetime
is bridged by the work of Maldacena in 2001 [19]. He argued that the pure TFD state is
dual to the maximally extended black hole spacetime, e.g., the two-sided (or eternal) AdS-
Schwarzschild black hole as shown in the left plot in figure 1.3. Different from a one-sided
black hole e.g., formed by the collapsed a star, the eternal black hole geometry has two
asymptotic regions that accommodate the left and right CF'T, respectively. Noting that
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the TFD state as a special purification of one thermal density matrix is associated with two
separate copies of the boundary CET (i.e., the left CFT and right CFT in figure 1.3), this
‘double copy’ intuitively coincides with the fact the external black hole spacetime is also
symmetric between two sides. Consequently, the two-sided geometry provides a perfect
framework to understand the entanglement entropy Sgp(pwm) and the black hole entropy,
i.e., the Bekenstein-Hawking entropy is the holographic entanglement entropy between the
left CFT and right CFT, and also the thermal entropy of the thermal density matrix of a
single CFT.

AdS

E4 RTsurface

CFT

AC

Figure 1.4: Ilustration of the RT formula. The time direction has been suppressed. The
red region A denotes the boundary subregion of a Cauchy slice in CFTy. The vertical
direction represents the radial direction in the bulk.

Note that two asymptotic regions on a fixed time slice (e.g., t, = 0 = ty) are connected
by a wormhole, i.e., the Einstein-Rosen bridge, as shown in the right plot in figure 1.3,
and the bifurcate horizon located at the middle is a codimension-2 surface that divides the
bulk spacetime into two regions, one bounded by the subsystem CFTy and the other by
its complement CFT,. One key property of the bifurcate horizon is that it is actually the
minimal-area surface on its spacelike hypersurface.

In 2006, Ryu and Takayanagi generalized the above holographic formula (1.57) to any
subsystems of the holographic CFT. The original RT proposal focuses on the static time-
independent situation and the covariant version that includes arbitrary time dependent
background was later derived by Hubeny, Rangamani, and Takayanagi (HRT) [28]. Their
beautiful proposal for the holographic entanglement entropy, i.e., the (H)RT formula, states
that the entanglement entropy of any subregion A in a holographic CFT is geometrically
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dual to the area of the codimension-2 extremal surface in the bulk spacetime anchored on
0A. To wit,

Area (€
Sk (-A) = min < A) - Area (EA)

: 1.58
BE4=0A 4GN 4GN ( )

where the minimization is performed over all codimention-2 spacelike surfaces €4 that are
homologous to A and anchored on the AdS boundary such that 0£4 = 0.A, and the surface
&4 with the minimal area is referred to as the (H)RT surface (see figure 1.4 for a graphic
illustration of the RT surface.). The first derivation of the RT formula was provided by
Casini, Huerta, and Myers (CHM) [50] by considering the spherically symmetric domains
in the vacuum state of a CFT. Further, the RT formula was proved more generally by
Lewkowycz and Maldacena in 2013 with using the AdS/CFT dictionary, i.e., the GKPW
formula shown in eq. (1.17), as well as the replica trick. Later, the proof of the covariant
HRT proposal was provided by [51].

The celebrated (H)RT formula for holographic entanglement entropy has provided many
new insights on the connection between geometry and entanglement in quantum grav-
ity [52,53]. However, from the quantum information perspective, entanglement entropy is
simply one of a broad array of diagnostics with which to characterize quantum entangle-
ment. On the one hand, it is interesting to explore other information-theoretic concepts
and their geometric duals in the bulk. On the other hand, it is not surprising that the
full understanding of quantum entanglement and spacetime geometry may require drawing
on additional observables. For example, the holographic entanglement entropy does not
capture the spacetime structure behind the horizon [54]. Motivated by the linear growth
of the size of the wormhole, a new concept called ‘complexity’ and its conjectured holo-
graphic dual [55-58] were introduced in the field of high energy theoretical physics in recent
years. In this thesis, we will explore the circuit complexity and the holographic complexity
proposals for mixed states.

1.3 Organization of the Thesis

The rest of this thesis is organized as follows:

We start in chapter 2 by reviewing various proposals for circuit complexity of pure
states, i.e., Nielsen’s geometric approach, Fubini-Study metric approach and also path-
integral complexity. In addition, we also introduce holographic complexity proposals, i.e.,
complexity=volume (CV) conjecture and complexity=action (CA) conjecture.
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Next, we first evaluate the circuit complexity of mixed states by focusing on purification
complexity in chapter 3. In section 3.2, we start by exploring the purification complexity
for mixed states of a single harmonic oscillator, purified by the addition of a single extra
ancillary degree of freedom. Especially, we consider the F} cost function and also stress
the basis dependence by considering both the diagonal basis and the physical basis in
our analysis. We proceed in section 3.3, by exploring the optimal purifications of multi-
mode Gaussian states and further investigate the optimality of essential and mode-by-
mode purifications. In sections 3.4 and 3.5, we examine the purification complexity for
mixed states for two examples in a free scalar field theory: a thermal density matrix and
the reduced density matrix for a subregion of the vacuum. In both cases, we study the
purification complexity in both bases and also examine a quantity denoted as the mutual
complexity.

In chapter 4, we move to holographic complexity and start with reviewing various holo-
graphic proposals for subregion complexity using volume and action. In sections 4.2 and
4.3, we then present the results for the holographic complexity of the thermal state associ-
ated with a single boundary of a two-sided black hole, as well as results for subregions of
the vacuum in various dimensions and for various boundary geometries, which are relevant
for the comparison to our QFT results in the previous chapter. Beyond the comparison of
mixed-state complexity, we also investigate the mutual complexity with these holographic
complexity proposals in detail and explore their additivity properties in various cases.

Next, we propose another definition for mixed-state complexity in chapter 5, which is
motivated by the Fubini-Study metric approach for pure states. In particular, we explicitly
use the quantum information metric as the complexity measure. Interestingly, we show in
section 5.2 that this mixed state complexity is exactly the purification complexity using
Fubini-Study complexity but without explicitly performing any purifications or minimiza-
tion. Furthermore, we apply our proposal and study the complexity of mixed Gaussian
states in section 5.3 to illustrate the conclusions for purification complexity.

Finally, we conclude with a brief review and discussion of our results in chapter 6.
Specially, we discuss some other possible definitions for the complexity of mixed states
in section 6.1. Next, we discuss the results about mutual complexity in detail. Further,
we examine the similarities and differences between purification complexity in QFT and
holographic subregion complexity. Finally, we provide some discussion of possible future
directions.
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Chapter 2

Complexity of Pure States

In this chapter, we review both circuit complexity and holographic complexity proposals
for pure states. Parts of this chapter are based on the contents in published papers [1,2].

2.1 Circuit Complexity Proposals

2.1.1 Nielsen’s Geometric Approach

First of all, we briefly review the salient ideas required to apply Nielsen’s geometric ap-
proach to circuit complexity [59-(1] to evaluate the complexity of a pure state in a quantum
field theory, as developed in [62]. In this setting, complexity is a measure of the difficulty
or cost to prepare the particular target state |i);) starting with a certain simple reference
state |1r). We are using a quantum circuit model where the preparation is accomplished by
applying a series of elementary unitaries, chosen from a particular set of gates {g1, -+, gn}-
That is,*

[Yr) = Urn |¥r) = Gi =+~ Gia Gir [¥w) (2.1)

whose circuit is shown in Figure 2.1. Now in general, we must expect that there are a large
(e.g., infinite) number of circuits or sequences of elementary gates which will accomplish
the above transformation. The complexity of the target state |¢);) is then defined as the

"'When working with discrete gates as discussed here, we will typically only prepare |1)1) within some
tolerance g, e.g., || [r)—Ur |¢r) ||* < e. However, with the continuous construction of unitaries introduced
in eq. (2.2), we are always able to exactly prepare the target states with a finite cost, and so we will not
need to introduce a tolerance.
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minimum number of gates needed to construct a unitary Uy satisfying eq. (2.1). We
stress that this optimal number will depend on the choices for the reference state [i) and
for the gate set {g1, -+, gx}, however, one can still obtain interesting physical insights by
comparing the complexities for families of target states. Nonetheless, given a particular set
of choices, the main challenge is to identify the optimal circuit from amongst the infinite
range of possibilities to prepare a certain target state.

S— &

| WR> gil gi4 ...... gin—l gin | WT>

SZO ;Szl

Figure 2.1: A general quantum circuit where |¢y) is prepared beginning with |¢y) and
applying a sequence of elementary unitaries g;.

To overcome this challenge, Nielsen and collaborators [59-(1] developed a geometric
method. Adapting this approach to evaluate the complexity of QFT states [62], one begins
with a continuum construction of the unitary transformations acting on the states

U(o) = Pexp l—i /0 le?—[(s)}, where H@):EW(S) 0, (2.2)

where s parametrizes the circuit and P indicates right-to-left path ordering. The (path-
dependent) Hamiltonian H(s) is expanded in terms of a basis of Hermitian operators Oy,
which we think of as generators for elementary gates g; ~ exp[—icQ;| (where ¢ would
be an infinitesimal parameter). The control functions Y7(s) then specify which gates
(and how many times they) are applied at a particular point s in the circuit. Note that
eq. (2.2) specifies not only the full transformation Uy in eq. (2.1) but also a trajectory
U (o) through the space of unitaries, or through the space of states with [¢)(0)) = U(0) |1r),
where 0 < ¢ < 1. The circuits of interest are then the trajectories satisfying the boundary
conditions

Uec=0) =1, Ulc=1)=Us, (2.3)

i.e., we start from the identity and end with the desired unitary U,z producing the desired
transformation in eq. (2.1). From this perspective, the Y!(s) can be understood as the
tangent vectors to the trajectories with

Yi(s) O =id,U(s) U™ (), (2.4)
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which will play a important role later.

Then Nielsen’s approach for identifying the optimal circuit is to minimize the cost
defined as ?

D(U(0)) = / ds F (U(s),Y'(s). (2.5)

0

where F' is a local cost function depending on the position U(s) and the tangent vector
Y1(s). This question is then similar to the physical problem of identifying a particle
trajectory by minimizing the action with Lagrangian F(U(s),YZ(s)). While the precise
form of the cost function F' is not fixed, there are a number of desirable features for
reasonable cost functions [61]: 1) Smoothness, 2) Positivity, 3) Triangle inequality and 4)
Positive homogeneity — see also [02]. Some simple examples of cost functions that satisfy
the above constraints are

RUY)=) Y, BRUY)= > (Y1), (2.6)

1

Given the role of the Y/(s) as control functions, the F}; measure comes the closest to the
original concept of counting the number of gates. The F, measure can be recognized as
the proper distance in a Riemannian geometry, and this choice reduces the problem of
identifying the optimal circuit to finding the shortest geodesic connecting the reference
and target states in this geometry.

Another class of cost functions introduced in [62] take the form
F(UY)=> [Y'". (2.7)
I

These k cost functions can be thought of as a generalization of the F; cost function.
The corresponding vacuum complexity compares well with the results from holographic
complexity but these cost functions do not satisfy the ‘homogeneity’ property above, i.e.,
the cost (2.5) is not invariant under reparametrizations of s. We also note that the x = 2
cost function will yield exactly the same extremal trajectories or optimal circuits as the

F; cost function. An interesting suggestion in [65] was to construct a family of new cost
functions using the Schatten norm (e.g., see [11,00,67])
/2\ 11/P
FUY) = VI, = [Te((vVIv)"?) [ (2.8)

2When this functional only depends on Y7 (s) as in eq. (2.6), the cost (and the underlying geometry) is
right invariant, e.g., [63,64].
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where V = Y1(s)Oy is the tangent vector defined as an operator that transforms the states.
These cost functions satisfy all of the desired properties and further are independent of the
particular choice of basis for the O; — an issue for the [} measure and the general x cost
functions (for xk # 2) [62].

Before closing this short review, we must mention the group theoretic structure that
naturally appears in applying this approach to evaluate the complexity of QFT states. For
the problem to be tractable, one only considers a limited basis of operators O; to construct-
ing the unitaries (2.2). A practical restriction is that this basis should then form a closed
algebra, and hence in many examples, the O; provide a representation of a Lie algebra g,
i.e., [O1, 0] = ifr;XOk. For example, in examining the complexity of fermionic Gaussian
states, an O(2N) group structure emerges [65]. In [62], a GL(N,R) algebra appeared in
evaluating the complexity of the ground state of a free scalar field, and the latter was
extended to an Sp(2/V,R) algebra examining the corresponding thermofield double state
in [68] — see also [67]. For excited states, an RY x GL(N,R) algebra plays a central role
in evaluating the complexity of coherent states as shown in [1]. The utility of this group
theoretic perspective is that the physical details of the basis operators Oy can be pushed to
the background. Instead, the generators in eq. (2.2) are simply elements of the Lie algebra
g, and we can choose the most convenient representation for the particular calculations of
interest. In the following, we review some explicit results for circuit complexity of pure
Gaussian states, which are also the necessary background for the studies of purification
complexity of mixed Gaussian states in chapter 3.

2.1.1.1 Complexity of Pure Gaussian States

The first result on the complexity in QFT is developed in [62] by adopting Nielsen’s geo-
metric method to evaluate the complexity of Gaussian states in bosonic field theories. The
idea was to discretize the field theory on a spatial lattice such that one obtains a chain
of coupled harmonic oscillators with position operators z, and momentum operators py
satisfying usual commutation relations [Z,,ps] = i, where a,b = 1,..., N indicate the
positions on the lattice. The wavefunction of a pure Gaussian state with vanishing first
moments (i.e., (Z,) =0 = (p,)) that will serve as our target state takes the following form
in the position-space representation

(o) Vr) = Yr(24) = Nypexp [—% Z Mz, xb] . (2.9)

a,b=1

The normalization constant is given by N, = det (%) For simplicity, we will focus
on cases where the matrix M2 is real (and of course, symmetric). The matrix M2 can
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be diagonalized by an orthogonal transformation in terms of a set of “normal mode”
coordinates 5 and characteristic frequencies w;,?

N
- - 1 -
(Zg|tr) = Yr(Tk) = Nrexp [—5 Zwk xi] . (2.10)
k=1
The latter can be viewed as the Gaussian wavefunction
1L -
Vo (Tg) = Nypexp [—5 Z MM g, xk] with My = OT M, O = diag(wy, -+ ,wn),
kE =1

(2.11)
and where the orthogonal matrix O produces the change of basis x, = 0,*%;, which diag-
onalizes the matrix M;. As an example, one might think of the ground state of a chain of
coupled harmonic oscillators with normal mode frequencies wy, where the mass of the har-
monic oscillators has been set to one. In fact, to be consistent with dimensional analysis,
we have assumed that all the equations above also contain a characteristic mass which we
will set to one from now on.

A natural reference state is the factorized Gaussian state
| N
(2a|tr) = Yr(Ta) = Ny exp [—5 ; u:ci] : (2.12)

where the normalization constant of the reference state is given by N = det (%) = (%)N
It is clear that the degrees of freedom in our reference state |1)y) are completely disentangled
in the position basis. Note that we are choosing the same reference frequency pu for each

x4 so that the degrees of freedom are all on the same footing, i.e.,
My = p diag(1,1,---,1). (2.13)

Hence for the example of a chain of oscillators, the reference state is translation invariant.*
With this simple reference state, the change of basis introduced in eq. (2.11) yields

(Zr|tn) = ¥n(Z1) = Ny exp [—% > /w?ri] . (2.14)

k=1

3In the following, we are taking the normal modes & to be real linear combinations of the position
basis modes x,. Later we will find that for applications in QFT it is easier to consider complex normal
modes zy, (see, e.g., eqs. (3.80)). In this case we should replace & — |zx|? in eq. (2.10).

4Similarly, the ground state of any translation invariant Hamiltonian will be translation invariant. This
would be reflected in the entries of the parameter matrix M2° in eq. (2.9) which will be a function of a — b.
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That is, in the diagonal basis, the reference state remains a factorized Gaussian with
My = M.

Now, the target state (2.10) can be produced by acting with a unitary transformation
on this reference state (2.14), i.e., [r) = Urg |tg) where Uyy is constructed as a string of

fundamental gates,
Gup = €15 @aPrrPria) (2.15)

These gates produce a GL(N, R) group of transformations. In the position-space represen-
tation, the action of these gates (denoted by Q),;) on wavefunctional of states is illustrated
with the following examples:

Qaa V(Ta, ) = 65/2770 (€524, xp) scale z, — €°x,,

, (2.16)
Qap (x4, ) = V(x4 + €24, ) shift z, by exy,.

Those with a # b introduce entanglement between the different oscillators, while with
a = b, the gates scale the coefficients of the corresponding coordinate — see [62] for further
details.

Generally, there will be an infinite number of such “circuits,” i.e., sequences of funda-
mental gates, which will accomplish the desired transformation. The circuit complexity
of pure Gaussian states (2.10) is then defined as the minimum number of gates needed
to construct the desired target state (2.10) from the reference state (2.14). Based on a
continuum representation of the unitary transformations (2.2), the “Hamiltonian” H(s)
can be constructed from the (Hermitian) generators O; of the fundamental gates, i.e.,
Oup = —2(ZaPp+ Do) in eq. (2.15). The coefficients Y (s) are control functions specifying
which gates (and how many times they) are applied at any particular point s in the circuit.
Nielsen’s approach identifies the optimal circuit by minimizing the cost function D (U (o))

defined by eq. (2.5).

With the Fy measure, the cost (2.5) is simply the proper distance in a Riemannian
geometry, and hence identifying the optimal circuit is equivalent to finding the shortest
geodesic connecting the reference and target states in this geometry. Although the Fj
measure and its complexity denoted by Cs look like the most natural choice, it was found
in [62,69] that the Cy complexity does not reproduce the structure of the UV divergences
shown in holographic complexity. However, this problem can be avoided by using the Fj_o
measure whose circuit complexity is always given by Ce—o = (C3)?>. With the F; measure,
the cost essentially counts the number of gates, and so this choice comes closest to the
original concept of complexity. However, in contrast with the F, measure, a disadvantage
of the F) cost function is that it is not “covariant”, i.e., the corresponding complexity
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C, depends on the choice of the basis for the generators O;.° However, the structure of
the UV divergences for the C; complexity was found to be similar to that for holographic

complexity [(62,69]. Further, the basis dependence played an important role in [68], which
studied the complexity of thermofield double (TFD) states for a free scalar. In particular,
the complexity of formation was found to match that for holographic systems [71], i.e.,

ANCformation o S, in the massless limit,® when the gates were chosen to act on the physical
degrees of freedom corresponding to the two separate copies of the field theory, i.e., the
Left-Right basis [68]. In contrast, if the basis of gates were chosen to act on the diagonal
modes (with which the TFD state could be expressed as a simple product state), the C;

complexity produced Avaormation ~ (0 to leading order.

Obviously, the optimal circuit and circuit complexity depends on the choice of the
cost functions. However, a simple result appears for a pure Gaussian state. For a broad
variety of cost functions including those in eq. (2.6), the optimal circuit taking eq. (2.14)
to eq. (2.10) is simply a straight-line path that only applies the scaling gates (2.15) (with
a = b) to each of the corresponding normal modes 7y, [62]. In fact, [62] recasts the discussion
of circuits in terms of a matrix representation. In particular, the trajectory through the
space of states is described by

M(o) =U(o) My U (o), (2.17)

where M and M2 define Gaussian wavefunctions in terms of the normal modes, as in
eq. (2.11). For the case in hand, the optimal trajectory is simply

Ulo) = e, with H = %diag(ln(wl/,u), < In(wn /) - (2.18)

For this linear trajectory, the complexity is given in terms of the elements of H, and in
particular, the circuit complexity associated with various cost functions become

1 & w
diag __ _k'
Ci™ = 5 Z In ik
k=1
T : (2.19)
Wk
CQ = 5 Z (hl —) = CH;ZQ .
k=1 H
SIn [1,70], a basis-independent alternative was proposed using the Schatten norm. For Gaussian states

with vanishing first moments, i.e., (x,) = 0 = (p,), the complexity found using the (p = 1) Schatten cost
function is identical with C;, as shown in eq. (2.19). However, we note that this Schatten complexity does
not yield the desired complexity of formation for the TFD states studied in [68].

6Here, S,, is the thermal entropy of the thermal mixed state living on either side of the TFD, or
equivalently the entanglement entropy between the two copies of the field theory.
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We make repeated use of this result in the following and so the interested reader is invited
to see [62] for a detailed derivation. As we noted above, the C; complexity is sensitive to
the choice of basis for the gates (or generators), and the superscript ‘diag’ above is added
to indicate that the complexity was evaluated using gates acting on the normal-mode
coordinates . As noted in the previous discussion, it is interesting to consider different
choices of basis in certain cases. This is simply done by rotating the generator H to the
relevant basis and summing over (the absolute values of) its elements

N
H=0HO" and C=)> |H". (2.20)

a,b=1

Implicitly, we have assumed here that the straight-line circuit (2.18) remains optimal in the
new basis. However, in general (and for our examples below), it is difficult to prove that
this simple trajectory is still optimal. Nevertheless, evaluating the cost of the trajectory
(2.18) provides a bound on the C; complexity for the new basis.

In addition to the Gaussian states shown in (2.9), we also note that Nielsen’s geometric
approach has been applied to calculate the circuit complexity of various pure states, e.g.,
coherent states in [1,72], TFD states in [08], fermionic Gaussian states in [65]. See e.g.,
[1,0,73=79] for more exploration. The main goal of this thesis is exploring the circuit
complexity of mixed states. As a generalization of Nielsen’s geometric method to mixed
states, a definition of mixed state complexity will be introduced in chapter 3. For explicit
calculations and later comparisons with holographic complexity of subregions, we will focus
on the mixed Gaussian states and F] measure. Besides the diagonal basis, we will
also consider the physical basis that distinguishes between the two classes of oscillators
in purifications of a mixed state, i.e., the original physical oscillators and the auxiliary
degrees of freedom. We will indicate when our calculations refer to this basis by using the
superscript ‘phys’. More details on different interesting bases and the distinction between
them can be found in appendix A.

2.1.2 Fubini-Study Metric Approach

Distinct from Nielsen’s geometric method, an alternative approach to the complexity of
QFT states based on the Fubini-Study metric was developed in [69]. In this subsection, we
turn our attention to a brief review of the Fubini-Study approach. In contrast to Nielsen’s
approach, which defines a geometric measure on the space of unitaries (2.2), this method
makes use of the Fubini-Study metric to define a geometry on the space of states.
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First, to introduce the basic definitions, let us imagine that the space of states of interest
is covered by some convenient set of coordinates A*. In the following, we focus on a family
of pure states [1)(\)) and then we can consider the quantum fidelity as the inner product
between two such states, e.g., [12,30],

FLXN) = [0[RI (2.21)

The quantum information metric then measures the distance between nearby states as

S AN AN + O(dN?) (2.22)

v

1

with
5 = 5 (0u100) + (O10,0)) — (O010) (010,0). (2.23)

The quantum information metric is also known as the fidelity susceptibility since it encodes
the response of the fidelity to small changes in one of the states.” In the present case of
pure states, eq. (2.23) also corresponds to the desired Fubini-Study metric. This metric
may also be evaluated with the following expression

PENN)
gs = — —’V . (2.24)
a ON 0N |y,
Then following [69], we consider curves A\ (o) on the space of states parameterized by
o € [0,1] which take us from the reference state to the desired target state, i.e.,
(o =0)) =), [¢(o=1))=[¢r). (2.25)

We then assign a cost to each of these trajectories as the distance as measured by the
Fubini-Study metric (2.23),

1
Dye — / do \Jgs Ao v | (2.26)
0

where }\“(0') = %ﬁ') specifies the tangent vector to the trajectory. The complexity assigned

to the target state is then the minimal distance according to this measure, i.e.,

1
Crs = Min / ds \/ g5 AN (2.27)
0

"We might add that in the context of the AdS/CFT correspondence, the information metric or fidelity
susceptibility for boundary states deformed by a marginal operator was proposed to be described by the
volume of maximal time slice in AdS spacetime in [31]. Of course, the latter is also the conjectured
dual of complexity according to the CV proposal [56,82]. Different proposals for the holographic dual of
information metric are also discussed in [33-806].
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In a word, the FS complexity Crgs is the length of the geodesic in the state space equipped
with the Fubini-Study metric. Similar to the k = 2 cost function used in the Nielsen’s
geometric method [1,62], we can also use the Fubini-Study metric to define the energy of
the geodesic as the complexity of pure states by

1
o= = / do g3 N = (Coc)? (2.28)
0

in order to match the divergence of holographic complexity for the vacuum state [62,69].
Note the second equality CiT? = (C’FS)2 always holds since we have assumed that the integral
is done with the on-shell solution and then the integrand is a constant with respect to an
affine parameter o along the geodesic. Due to the Riemannian structure, it is easy to find

that the Euler-Lagrangian equation leads to the conclusion that % (gzi AH X’) = 0.

Before proceeding with our calculation of the Fubini-Study complexity for coherent
states, it is interesting to express this approach in a way that is closer to the circuit con-
struction introduced in eq. (2.2). In particular, given a trajectory described by a particular
choice of M (), we may express the corresponding states as

4(0)) = Pexp [—i /Oils ’H(s)} |9g) where H(s) = Z/\“(s) O,(N) (2.29)

where O, (A) is the set of Hermitian operators that generate the evolution of state |()))
in the M direction, 7.e.,

9, [ (V) = 0, (N) (W) - (2.30)

Note that we may think of the operators O,(\) as being linear combinations of the Oy
appearing in eq. (2.2). We show a A dependence to indicate that these linear combinations
vary as we move through the space of states. However, this leaves the definition of the
O,(\) ambiguous since, at any particular point, there will be degenerate operations that
leave the state unchanged, i.e., Og(\) [(A)) = 0. Therefore, in general, one finds that the
space of states has a smaller dimension than the space of unitaries, as will be illustrated
by the example discussed below. Given eq. (2.30), we can also rewrite the Fubini-Study
metric as connected correlation functions of the operators O,,

I A) = 5 (WAHO, O} [ (A)) = (V)] Ou 9 (A)) (b (N[ Oy [(N))

({04 = (Ou)r, 0 = (Ou)a})x-

(2.31)

N~ DN~
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2.1.2.1 FS complexity of two harmonic oscillators

As an detailed illustration, we apply the Fubini-Study approach to examine the complexity
of pure Gaussian states as (2.9). For simplicity, we focus on the two-mode Gaussian state
(e.g., a pair of coupled harmonic oscillators) as

et M) /4
Y(ry,x ) = % exp {—%xa [Mg}“bxb} , (2.32)

where a,b € {+, —}. Choosing the reference state as the factorized Gaussian state (2.12)
(with only two modes), the Gaussian state ¢(x,z_) is fully parametrized by a 2x2 coef-
ficient matrix

My = Uy, My U} where My = pls. (2.33)

and Uj is chosen to be the GL(2, R) matrix. It will be convenient to parametrize a GL(2, R)
matrix with the following polar decomposition

Uy = eV R(—1) S(p) R(2) = " (COM _Sm) (eop e(fp) ( cos 2 sz) (234

sinxz  cosx —sinz cosz

where R denotes a rotation matrix and S is a ‘squeezing’ matrix. Correspondingly, the
explicit form of M, is given by
e?(cosh(2p) + cos(2z) sinh(2p)) e? sin(2x) sinh(2p)
M2 = U 2 o . 2y N . 5 (235)
e*¥ sin(2x) sinh(2p) e*Y(cosh(2p) — cos(2x) sinh(2p))

whose eigenvalues correspond to the characteristic frequencies of the normal modes, i.e.,
wy = pe?@*)  And we note here that M, is independent of z, which is different from
the GL(2,R) matrix Us. Then our family (2.32) of states is described by only three

dimensionless coordinates A* = {y, p, x}, and by construction, the origin of this coordinate
system corresponds to the reference state.

Now by the methods introduced above, we can define the Fubini-Study metric for the
space of states |[1(y, p,x)). The metric can be constructed with eq. (2.23) by evaluating
the integrals

Iy = %/dmrdx_ (E),ﬂ/_} o) + 0,0 (%w) — /dm+dx_ Y Ou1b X /da:+dx_ Vo,  (2.36)

where the wave function ¢(z,,z_;y, p,z) is defined in eq. (2.32). Alternatively, we can
calculate the fidelity (2.21)

F<)‘7 )‘/) = /d.fL'+d£If 1;(117+, T—3Y,; P, iL') be(er? T—; Z/? pl7 [IZ'/> ’ (237)
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and then evaluate the metric with eq. (2.24). Using either method, it is easy to find that
the Fubini-Study metric reduces to

ds?, = dy* + dp* + sinh®(2p) da? . (2.38)

This three-dimensional subspace has the geometry R x H2. As noted above, the reference
state corresponds to the origin, i.e., y = 0 = p (while the angle x is unspecified). Hence
the geodesics are simply lines moving along the R and radially outward in the hyperbolic
space, i.e., y = y1 S, p = p1 s and z = x1; where (y1, p1, x1) is the position specifying the
target state (an arbitrary two-mode Gaussian state). In terms of the frequencies in normal
modes w4, we easily obtain the length of the geodesic, i.e., the FS complexity

Ces = V)2 + (p1)2 2\/‘\/ 1n— hﬁ%) . (2.39)

which is nothing but the circuit complexity Cy in (2.19), except for the overall constant
factor. For comparison, we note that the geometry derived from Nielsen’s geometric ap-
proach with Fy cost function is still different. One can find that F5 cost function specifies
the metric on the space of GL(2, R) transformations as follows

ds® = 6;;Y'Y! = 2dy* 4 2dp? + 2dx? — 4 cosh(2p)dxdz + 2 cosh(4p)dz? . (2.40)

Although we only take a two-mode Gaussian state as an example, it was shown in [(2,

| that the Fubini-Study approach for any N-mode Gaussian state with vanishing first
moments produces precisely the same complexity as that from Nielsen’s geometric method,
taking F» cost function, i.e., eq. (2.19).

Both the Nielsen and the Fubini-Study approaches identify the complexity of a state as
the distance from a simple reference state in some geometry. Nielsen’s method [59-61] is
motivated by the definition of complexity as the number of elementary gates in the optimal
circuit, and so in this case, a metric is defined on the space of quantum circuits or unitary
transformations. Optimizing the trajectory in this space then has a direct interpretation
as minimizing the number gates used in the circuit preparing the desired target state (or at
least, optimizing this number according to some cost function). The Fubini-Study approach
instead accounts for the complexity by keeping track of the changes of the state throughout
the preparation of the target state. As its title indicates, this method makes use of the
Fubini-Study metric (2.23), which defines a geometry directly on the space of states. An
important difference is that the latter geometry assigns a variable cost to specific gates, i.e.,
the cost depends on the details of the state on which they act, whereas the gates are assigned
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fixed costs in the Nielsen approach. Further, at any point in the space of states, there will
be degenerate operations that leave the state unchanged, i.e., |¢)) = Uy|t). Therefore,
in general, one finds that the space of unitaries has a larger dimension than the space of
states, as illustrated by comparing the geometries in egs. (2.38), (2.40).® Hence we see that
the Fubini-Study and Nielsen approaches must define different complexities for the optimal
circuit with the same target and reference state. However, we remind the reader that the
ground state complexities, and in fact the optimal circuits, were found to agree with these
two different approaches [62,09]. In this case, the optimal circuits only involved GL(N, R)
gates and so no additional scale was needed to define the corresponding generators. In fact,
in this case, the Fubini-Study geometry can be embedded in the corresponding Nielsen
geometry. On the contrary, in the case of coherent states, the Nielsen and Fubini-Study
approaches produced different optimal circuits for a fixed pair of reference and target states
and the corresponding complexities are also distinct in general [1].

To close this brief review, we remark that the Fubini-Study metric approach for circuit
complexity only applies to pure states as the Nielsen’s geometric method. As a natural
generalization to mixed states, we propose a new measure for the complexity of mixed
states in chapter 5 and show that it is also understood as the purification complexity
based on Fubini-Study metric.

2.1.3 Path Integral Complexity

In the last two sections, we have reviewed Nielsen’s geometric method and the Fubini-Study
metric approach towards understanding complexity in field theories. It is obvious that
both of them can be considered as geometric approaches that assign a distance measure
or generally a cost function on the space, in which a path corresponds to the quantum
circuit preparing a target state from a given reference state. At first glance, an apparent
advantage in these two approaches is that the meaning of quantum circuit and the notion
of complexity is clear. However, applying these geometric methods to quantum field theory
may require more effort in finding the optimal circuit due to the fact that the dimension of
state space (or alternatively, the space of unitaries) is infinite in this case. The interested
reader is referred to [87-91] for recent progress focusing on defining the circuit complexity
of CFT states. In a parallel vein, there exists an independent approach to complexity in
quantum field theories, which is called path-integral complexity [92,93]. For completeness,

8At a pragmatic level, this proves to be an advantage for the Fubini-Study approach since in many
cases, one will find a single geodesic connecting the reference state and the target state. In contrast, the
Nielsen approach yields a family of geodesics connecting these states and the complexity is determined by
the length of the shortest geodesic in this family.
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we will briefly review this approach in this section by using the vacuum state in a two
dimensional CFT as an example.

2.1.3.1 Path-Integral Optimization

The idea of path-integral complexity originates from tensor networks and is closely related
to the observation by Swingle [30] that MERA (multi-scale entanglement renormalization
ansatz) tensor networks [04, 95] resemble a spatial slice of AdS spacetime. Hence, he
conjectured that such quantum circuits may explain the emergent geometry and further
the mechanism behind the AdS/CFT correspondence. This AdS/MERA correspondence
naturally illustrates the holographic entanglement entropy formula by simply counting the
number of entangling links in the networks. Beyond discretized lattice models, there also
exist some improved constructions of tensor networks like cMERA (continuous MERA) [90]
which may be able to describe the genuine conformal field theories.

In this approach to complexity, one starts from preparing a QFT state |V) with a
Euclidean path integral and considers an optimization procedure for the Euclidean path
integral which produces the desired quantum wave functional. Indeed, an optimization
procedure for tensor networks called tensor network renormalization (TNR), has been
introduced in [94,95]. This optimization procedure contracts tensors and removes unnec-
essary lattice sites. One then find that TNR optimizes the tensor network corresponding to
a lattice version of the Euclidean path-integral computation of a ground state wave func-
tion with the MERA network. Instead, path-integral complexity is based on the so-called
“path-integral optimization” procedure first proposed in [92,93]. Path-integral optimiza-
tion is achieved by minimizing a certain functional Iy, which describes the number of
path-integral operations in the discretized description, i.e., a corresponding tensor net-
work. The minimum of this functional Iy is then interpreted as a candidate for complexity
of a quantum state |¥) in QFTs and named as the “path-integral complexity” C, (V). Re-
markably, it is argued that this functional Iy can be identified as the well-known Liouville
action in two dimensional CFTs.

More precisely, the optimization procedure is carried out as follows. First of all, we
consider a Euclidean path integral representation of the ground state wave functional in a
d—dimensional QFT on R%(z,z) as

Yo [p(x)] =/ (H II DSO(%!L")) e~%art?) s TTda(p(e ) — @(a)) (2.41)

b e<z<oo
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where z denotes the Euclidean time (7 = —z), 2% are the (d— 1) spatial coordinates on R4~
and the UV cut-off is chosen to be e. We can imagine that the Euclidean path-integral
is discretized into a lattice description with € as the lattice spacing. The path-integral
optimization then is taken as the optimization procedure by changing the geometry of
lattice regularization. In order to realize this, the authors in [92,93] proposed introducing
a metric on which the path integration is performed. As a result, the optimization can be
performed by modifying the background metric for the path integrals.

Before the path-integral optimization, the original flat metric on the d-dimensional

space (z,z) is chosen as
d—1
1 i
ds’ = 5 (dz2 + dride ) . (2.42)
i=1

Correspondingly, the general background metric used in the optimization reads
ds® = g..(z,2)d2* + gij(z, 2)da'dx? + 2g.;(z, x)dzdx? (2.43)

with constraints as follows

1 0;i
gzz(z = 6,23') = 6_2’ gl](z = E,.Z') = E_QJa gzz(z = 6,.%') = Oa (244)

which guarantees that the correct wave functional is reproduced at the end of the path
integrals. In this metric formulation, the additional requirement is that the deformed wave
functional in a non-trivial metric is still proportional to the state wave functional Vg [@(x)]
in a trivial metric as (2.42). This means that the optimization with respect to background
metrics for the path integrals is finally realized by minimizing the overall normalization
factor of the wave functional W [p(z)] for the quantum state |¥).” More generally, we
can assume that for each quantum state |¥), there exists a functional Iy [gap(2, )] whose
minimization with respect to the metric g, can implement the optimization procedure.

2.1.3.2 Path-Integral Complexity

In the discretized tensor network description, we can interpret the optimization as minimiz-
ing the number of tensors. Naturally, it is expected that the functional Iy [ga(z, )] that is
minimized in the path-integral optimization can estimate the amount of complexity for the
network corresponding to the path-integral on the space with a specified metric (2, ).

9The normalization factor only depends on the metric gq.s(2,2) and couplings of the theory that we
consider.
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The path-integral complexity defined as the minimal value of the functional Iy [g.s(z, )],
i.€.,

Cy. (V) = min [1y [gup(z, 2)]] , (2.45)

Gab

is then identified as the complexity of the quantum state |¥). For a generic QFT or
holographic field theory, it is not clear how to derive the functional Iy [g.(2, z)] ever in
principle. However, as we reviewed in the following, this functional is shown to be the
Liouville action for two dimensional CFTs.

Due to the simplicity of the two-dimensional geometry, the general background metric
gap 1s is fully characterized by a Weyl scaling function ¢(z,z) and can thus be taken to
have the form

ds® = e** (dz* + dz?) | (2.46)

with boundary condition €??(“®) = 1/¢2. In other words, various metrics are connected to
each other by a Weyl transformation. Interestingly, the local Weyl rescaling also changes
the measure of the path integral in two dimensional CFTs as follows

[D¢lguy=eros,, = A= [Dely,, (2.47)
in which Sy [¢] is derived as the Liouville action (see e.g., [97])
c o0 oo
Sulel = 5 - / dx / dz [(0:0)° + (0.0)% + pue*] . (2.48)

As usual, the constant ¢ appearing in the prefactor in front of Sy [¢] is precisely the cen-
tral charge of the CFT under consideration. Thanks to the universal transformation in
eq. (2.47) for two-dimensional CFTs, we can find that the wave functionals appearing in
the path-integral optimization is given by

Wy, =5, (P()) = A0 w0y 5 (B()). (2.49)
Therefore, the optimization is explicitly performed by minimizing the normalization factor
eStl9l [92,93]. Correspondingly, we can identify the complexity functional for the vacuum

state of a two-dimensional CFT as

Iy [¢(z, 2)] = Silo(z, z)]. (2.50)

At an intuitive level, it is argued in [98] that Liouville action appears to be the desired
measure for complexity from the viewpoint of TNR because the potential term [ e** and
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the kinetic term [(9¢)* measure the number of unitary tensors and isometries in TNR,
respectively.

For the sake of deriving the path-integral complexity C;, (V) defined in eq. (2.45), we
can minimize the Liouville action with respect to the Weyl scaling field ¢(z, ) and obtain

the solution )

2¢ _
==, (2.51)
which leads to the hyperbolic plane metric H?
dz? + da?
ds?* = — (2.52)

as the optimal metric for the Euclidean path integral of the vacuum state in 2D CFT.
We note that this is nothing but a time slice of vacuum AdSg, i.e., the holographic dual
spacetime for the vacuum state in two-dimensional (holographic) CFT. After this mini-
mization, i.e., path-integral optimization, we finally obtain the path-integral complexity

of the vacuum state as l
c

- 127e’

where | = [ dz is the length of the spatial direction. It then coincides with the result for
holographic complexity at the leading order.

Cu (¥o) = min [, [4] (2.53)

In addition to the vacuum states discussed in this section, one can also apply this path-
integral optimization to excited states, finite temperature states [93], perturbed CFTs
[99] and so on. Furthermore, a higher dimensional generalization of the path-integral
complexity in CFTs has also been proposed in [93]. As discussed before, the connection
between path-integral complexity and the standard notion of complexity is less apparent.
Remarkably, the studies in [100] bridge the gap by explicitly recovering the Liouville action
as the circuit complexity measure. It means that the path integral optimization for two-
dimensional CF'T can be also understood as a realization within the standard gate counting
framework. For more recent developments on the path-integral optimization/complexity
refer to e.g., [101-108].

2.2 Holographic Complexity Proposals

Quantum information has produced surprising new insights into foundational questions
about the AdS/CFT correspondence. In last section, we reviewed various methods towards
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defining the complexity of quantum states in QFT. It is believed that the gravitational
observables dual to complexity in the boundary theory can provide more information about
the bulk spacetime than that coming from holographic entanglement entropy [54]. Under
the heading of holographic complexity, a variety of proposals for the bulk description of
the complexity of boundary states have been developed. The most studied of these are
the complexity=volume (CV) [55,56] and the complexity=action (CA) [57,58] conjectures,
which will be briefly reviewed in this section.

2.2.1 Complexity=Volume

A fascinating simple result about the eternal black hole geometry is the (almost) linear
growth of the Einstein-Rosen (ER) bridge (or the size of the wormhole). Classically, the
wormhole can keep increasing forever. However, this very late time dynamics and the bulk
spacetime far behind the event horizon of black holes can not be appropriately probed by
holographic entanglement entropy. Motivated by this fact, Susskind argued that the growth
of the wormhole is an expected property of the complexity of quantum states living on the
boundary. Furthermore, Susskind and Stanford proposed the so-called CV conjecture for
the circuit complexity of quantum states on the holographic boundary theory.

The CV conjecture states that the complexity is dual to the volume of an extremal
codimension-one bulk surface anchored at the time slice ¥ in the asymptotic boundary on
which the state is defined,

Cy(X) = max {m} , (2.54)

s=08 | G'n lpuix

with B corresponding to the bulk hypersurface of interest and Gy denoting Newton’s
constant in the bulk gravitational theory. Further, ¢, is some additional length scale
associated with the bulk geometry, e.g., see discussion in [57,109]. For simplicity, most
studies will set fyx = L, i.e., the curvature radius for the (asymptotic) AdS geometry. The
above conjecture assumes that the quantum state of the boundary theory in question is a
pure state defined on a global time slice, i.e., the time slice 3 spans the entire asymptotic
boundary.

As shown in figure 2.2, we consider eternal AdS black holes in d + 1 dimensions as an
example to discuss CV conjectures in more detail. The two-sided geometry is defined by
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r=0

Figure 2.2: The Penrose diagram for the eternal black hole in asymptotically AdS space-
time. The yellow curves connecting the two boundaries anchored at times ¢;, and ¢ indicate
the spacelike hypersurface with maximal volume.

the metric as follows

2
ds? = —f(r)df? + —— + 1252,
i (255)
with f(T):k+ﬁ_7’CIj’

where k € 0,+£1 indicates the curvature of the (d — 1)-dimensional line element d¥} ,;
and the parameter w is related to the position of the black hole horizon 7},

_ _ I
wd=2 = pd=2 (k: + L-’;) . (2.56)

Correspondingly, the total energy is also determined by the parameter w as

— 1
(d—1)Qq L d2

M =
167TGN ’

(2.57)

in which €, 41 is referred to as the dimensionless volume of the (d —1)-dimensional spatial
geometry.
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The key ingredient in the CV conjecture is the hypersurface with a maximal volume
whose position is determined by the boundary time t,,¢;. By symmetry, it is easy to find
that the maximal volume connecting the left /right boundaries at ¢, = 0 = t is given by
the bulk ¢ = 0 slice. The maximal volume reduces to

Tmax rd*l

V = QQk,d—l — dT, (258)

mo V)

where 7.« indicates the position of the cut-off surface. Choosing a symmetric set-up with
t;, = tg, the volume of a spacelike hypersurface parametrized by t(r) is given by

V(B) =241 /m réty /% — f(t(r)dr, (2.59)

with #/(r) = 0,t(r). Here 7y, denotes the minimum distance that the Einstein-Rosen
bridge can reach inside the future horizon. Finding the extremal-volume surface then is
similar to a classical mechanics problem. It is straightforward to find that the extremal
surface is determined by a conserved quantity E as follows

rd=1 ft! E

—_— or t'(r)=4=+ (2.60)
/% _ ft/2

E =

f /fr2(d—1) + E2 )

From a geometric viewpoint, the extremal-volume condition means that the extrinsic cur-
vature of the hypersurface vanishes, i.e., K = 0. Furthermore, the maximal volume can
be written as

Tmax r?(d—l)

k,d—
Yo VF@)r2@ D + B2
2(d—1)

where the minimal radius is obtain as the solution of E? + f(rym)ro. ~ = 0. We are also
interested in the full time-dependence of CV. Combining eq. (2.59) and eq. (2.61), one
can easily obtain [ 10-112]

max [V (B)] = 29 dr, (2.61)

dcv Qk d—1 Qk d—1 d—1
= — < E = . - Tmin )T i 262
dt G N louik G N louik J (Tin) ( )

which is fully determined by the conserved energy F.

We note that the relations between conserved energy E and boundary times ¢, ,tg is
more complicated. We refer readers to [I 10-112] for more details about the general time
dependence of holographic complexity. In particular, we only highlight a universal property
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that the growth rate approach a constant in the late time limit. For example, the growth
of complexity for planar AdS black hole (k = 0) yields [56, 1 10]

dCy 8T
v - M 2.
dt d—1"" (2.63)

t—o00

which is considered as supporting the complexity=volume conjecture. Other evidence
for CV is given by the switchback effect in shock wave geometries [56, 111, 112]. The
CV conjecture has stimulated a wide variety of recent research efforts investigating the
properties and applications of holographic complexity, see e.g., [0, 109-129].

2.2.2 Complexity=Action

r=0

Figure 2.3: The Penrose diagram for the eternal black hole in asymptotically AdS space-
time. The pink region bounder by four null surfaces is referred to as the Wheeler-DeWitt
patch. The left/right plot corresponds to the WdW patch before/after the critical time .

As introduced in last section, the CV conjecture is motived by the growth of the worm-
hole. However, noticing the dimension of the volume V and Newton constant Gy, it is
obvious that CV conjecture requires an arbitrary length scale £}, in its definition in order
to obtain a dimensionless complexity. Different from the CV conjecture, another holo-
graphic complexity proposal called the complexity=action (CA) conjecture was proposed
in [57,58]. The CA proposal states that the complexity is given by evaluating the grav-
itational action on a region of spacetime, known as the Wheeler-DeWitt (WDW) patch,
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which can be regarded as the causal development of a space-like bulk surface anchored on
the boundary time slice 3. The CA conjecture then suggests

Ca(X) = Lwow (2.64)

™

We note the factor i was fixed for the sake of connecting the time growth of holographic
complexity to a conjecture called Lloyd’s bound, which states that computation rates of
quantum system are bounded by its energy [130] . However, we need to point out that
such a bound is not satisfied in general by any proposals of holographic complexity; see
e.g., [07,58,110,131] for more discussion. At first glance, the advantage of the CA proposal
is that it does not depend on an overall arbitrary dimensionful factor, which differs from
the CV conjecture. However, an arbitrary length scale also appears in the calculations for
the action of a WDW patch as we show in the following.

It is known that evaluating the Einstein-Hilbert action with spacelike/timelike bound-
aries requires the Gibbons-Hawking-York surface term [132, 133] in order to have a well
defined variational principle. As showing in figure 2.3, the WDW patch (after introducing
the cut-off surfaces) contains not only spacelike surfaces but also null surfaces as bound-
aries, calling for an analogous contribution for null boundaries [134, 135]. Furthermore,
there are also some codimension-2 joints where such null boundaries intersect with other
boundary surfaces. Their contributions have been addressed in [136,137] for joints that do
not involve null surfaces, and in [134] for joints that involve at least one null surface. As
a result, the action of the WDW patch in eq. (2.64) needs a careful analysis for various
boundary terms, which must be added to the gravitational action to have a well-posed
variational principle for the whole patch. We refers readers to [1341, 135] for more details
about gravitational action with different boundaries.

As a summary, the action Iypyw including these gravitational boundary terms consists
of

IWDW - Ibulk + ]GHY + Inull + Ict + Ijoints ; (265)
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with

1 d(d—1)
Ly = —— dd+1 R+ ——— Lnatter
bulk 167TGN/ AVAr] ( T ) + Lmatt

1
IGHY = +87TGN /r ddl” ‘h| K7

1
d\dQ 2.66
87 Jowp d—1 ﬁfﬁ, ( )

1
I = d\d), O©log(/40),
Y 8ran /8WDW i-1+/7 ©10g({O)

1
I'oins: 5~ dQg— it -
joint 87TGN/j i—1\Voa

oints

egulator

[null =

The full prescription can be found in [134], or in appendix A of [I14]. As a example for
bulk action, here we only consider the Einstein-Hilbert action with a negative cosmological
constant, and [,.., describing the contributions from matter fields. The remaining terms
are surface terms evaluated on the different pieces of the boundary of the WDW patch:
Iouy is the usual Gibbons-Hawking-York term [132, 133] defined on the AdS boundary
regulator surface, I, and I involve integration over the null boundaries of the WDW
patch, whereas Ijoints is the null joint term evaluated where the null boundaries of the
WDW patch intersect the AdS boundary regulator surface [134]. In the corresponding

surface term for null boundaries, the constant k is defined by the equation
k'Y Ky, = Kk, (2.67)

where k = k,da* is the outward directed null normal. We remark that the constant x mea-
sures the failure of the surface parameter (denoted by A) to be an affine parameter on the
null generators of the null boundary and it can be chosen to be zero by choosing the nor-
malization appropriately. For null boundaries, one must also include the null counterterm
I introduced in [131] to restore reparametrization invariance along the null generators.
For joints terms [joins, © is the expansion scalar of the null generator, i.e., © = dyIn /7,
~ is the induced metric on the null boundary and /. is an arbitrary constant representing
the freedom in the definition of this counterterm. Let us add that the expansion © only
depends on the intrinsic geometry of the null boundaries and so I is not required for a
well-defined variational principle of gravitational action. Correspondingly, the counterterm
I, introduces a new arbitrary length scale ¢ and the choice of this length scale influences
various properties of the complexity. While this extra length scale looks unnatural, it may
be traced back to the ambiguities in the definition of circuit complexity. Furthermore,
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comparing the structure of the UV singularities in holographic and QFT calculations of
complexity leads to the suggestion that the choice of this length scale may be related to the
choice of microscopic scales in defining the reference state and the gates in the complexity
model of the boundary theory (e.g., p in our QFT construction) [62,69,112].

Similar to the time growth of CV, one can also examine the time dependence of CA for
an eternal black hole (2.55) in asymptotically AdS spacetime by using the full action shown
in eq. (2.65). The full analysis is shown in [110]. To summarize, the time dependence of
CA (with ¢, =ty = t/2) is given by

0, 0<t<t,,
c,

dt Qe 41 (d=DrE 2 frm r
L (20 el o) iog (11 (r)]) - 2108 ()| )+ ¢ e
(2.68)

where t. is the critical time when the past light sheets from left and right boundaries
intersect on the singularity at » = 0 and r,, indicates the radius of the intersection (behind
the past horizon) after the critical time as shown in the right plot in figure 2.3. Taking the
late-time limit, it is obvious that r,, — r, and f(r,) — 0. So the growth of holographic
complexity from the CA conjecture approaches a constant and is simply proportional to
the black hole mass, i.e.,

dC, _2M

dt o

t—o00

(2.69)

which is independent of the dimension and also the geometry of the horizon. This simple
result reproduces the expected linear growth of complexity at late times [57,58]. While we
only sketch the basic ingredients in evaluating the action of WdW patch in this section, the
CA conjecture has inspired a lot of studies on various aspects of holographic complexity,

€.g., [ ) ) o 9 o ) ) 3 ) y - ]
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Chapter 3

Circuit Complexity of Mixed States

Our aim in this thesis is to explore the complexity of mixed states. Specially in this chap-
ter, we will examine the so-called “purification complexity” [171], defined as the minimal
complexity of a pure state that purifies our mixed state, see eq. (3.1). Our analysis in this
chapter will focus on Gaussian mixed states and the main content is adapted from sections
3-5 in [2].

3.1 Optimal Purification and Purification Complexity

Quantum information concepts and their embedding in gravitational holography [l72]
have proved very useful for developing our understanding of the bulk-boundary map, e.g.,
see [10,173=175]. One particular notion, which has captured increasing attention, is compu-
tational complexity. The complexity of a quantum state is defined as the minimal number
of simple operations required in order to construct the state starting from a simple un-
entangled product state [170,177]. There exist several proposals for the holographic dual
of computational complexity [51-58, 115], however, at the moment, we can only test them
at a phenomenological level due to the absence of a well-posed definition for the complex-
ity for quantum field theory states. One front, in which progress has been made is that
of Gaussian and nearly Gaussian states, e.g., [02,09, 70, , 179]. Most of those studies,
however, focused on pure states, and very little is known about the complexity of mixed
states. Several proposals were made to define mixed-state complexity in [171] and our goal
here is to examine one of these, the purification complexity, in detail for mixed Gaussian
states. Let us also mention that in holography, several proposals have been made for the
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gravitational dual of the complexity of mixed states associated with reduced density matri-
ces on subregions of the boundary of asymptotically AdS spaces [111,180] and we will also
compare our QFT results with those coming from holography, at least at the qualitative
level.

Circuits with Ancillae and Purification Complexity: Preparing a mixed state
p.4 on some Hilbert space A, starting from a pure reference state, cannot be achieved using
only unitary gates. Instead, we should think of preparing the state using a set of allowed
universal (non-unitary) gates, which consist of completely positive trace-preserving maps
acting on the reference state. However, this approach is equivalent to extending the Hilbert
space to include ancillary degrees of freedom and working with unitary gates acting on
this extended Hilbert space, e.g., see [1706,181,182] and chapter 8 in [12]. One can think
that the set of unitary gates is extended to include ancillary gates, which introduce a new
ancillary degree of freedom (in some simple product state) as needed, and erasure gates,
which erase or trace out a single degree of freedom whenever is convenient. Alternatively,
as illustrated in figure 3.1, we can think that the reference state is an unentangled product
state on all of the needed or available auxiliary degrees of freedom, as well as the physical
degrees of freedom, i.e., the reference state (and all of the intermediate pure states) live on
an extended Hilbert space A ® A°. Then after applying a unitary circuit to this extended
state, the ancillae are all traced out of the final pure state to produce the desired mixed
state on the physical Hilbert space A alone.

Ky { ! I_: ...... I } Wﬂ/‘ 194

1 ;
g1 92 g3 g4 In—1 Gn

Ancillae: ./4(

Figure 3.1: Circuit with the ancillary degrees of freedom. The mixed state p4 that we
want to prepare is obtained at the final step after tracing out the ancillae.

Following this discussion, we can define the complexity of mixed states by considering
the complexity of pure states that purify them. Obviously, the purifications of a given
mixed state are not unique. However, a natural definition of mixed state complexity — the
so-called purification complexity [171] is defined as the minimal pure state complexity
among all possible purifications of our mixed state, i.e., as usual, we are optimizing over
the circuits that take the reference state to a target state |V 44¢), which is a purification
of the desired mixed state p4, but we must also optimize over the possible purifications of
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pas e,

\I].A.AC> <\IJ.AAC

C(ﬁA) EminAcC(]\IJAAc», such that ﬁA:TrAc (31)
Recall that we are applying this analysis to study mixed Gaussian states. A simplifying
assumption in our analysis will be that the purified states are also Gaussian. This allows us
to use the prescription of [62] for evaluating the complexity of the possible purifications,’
and we then minimize over the parameters of the purifications, as in eq. (3.1) above.?

Completing our complexity model requires specifying the cost function.® A variety of
cost-functions have been considered in the literature for the complexity of pure Gaussian
states (e.g., see [1,62,69,70]). As was pointed out in [62,09], the F} cost function (see
eq. (2.6)) seems most closely related to complexity in holography because the structures
of the UV divergences match. Hence we will focus our analysis on this choice in the
following. However, the precise results are also found to depend on the basis chosen for
the fundamental gates. For example, a recent study of the complexity of the thermofield
double (TFD) state [08] has shown the importance of choosing a basis that is not entirely
diagonal when two systems are involved.? Hence, we also explore the possibility of working
in a basis that distinguishes the ancillary degrees of freedom from the physical degrees of
freedom of the original reduced density matrix. We refer to such basis as the physical
basis, as opposed to the diagonal basis that mixes the two sets of degrees of freedom.

At this point, let us add that it is natural to think of the auxiliary degrees of freedom
as a resource in the preparation of the desired mixed states and hence in differentiating
possible purifications, one would assign an additional cost for including more ancillae, i.e.,
we can assign an extra cost for the ancillary and erasure gates commented on above. How-
ever, we will not consider the effect of such an additional cost for the bulk of our analysis,
but we return to this issue briefly in chapter 6.

!The results of [62] used a GL(N,R) subgroup of the group Sp(2N, R) of transformations between the
Gaussian states and our results below are restricted to this case.

2We might mention that this assumption also appeared in a recent discussion [153] of the entanglement
of purification [183-185] for Gaussian states.

3The cost functions assign a cost to different trajectories in the space of unitary transformations between
the different states — see section 2.1.1.1 for further details.

4The TFD state is a purification of the thermal density matrix on a given QFTy (the “Left” copy) in
terms of another identical QFTg (the “Right” copy). When studying the complexity of this state, it is
important to work with a basis which distinguishes the “Left” and “Right” degrees of freedom to reproduce
qualitative features of the holographic complexity of the double-sided AdS black hole.
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3.2 Warm-Up: Purification Complexity of a Single
Harmonic Oscillator

3.2.1 Gaussian Purifications of One-Mode Mixed States

Turning to the purification complexity of mixed states, we begin by considering Gaussian
density matrices for a single oscillator and explore their purifications. Consider a single
harmonic oscillator in a mixed state p, such that

™

—p\ /2 , ,
p(fc,x’)5<w|ﬁ|x’>:(a ) e aletratier) (3.2)

where we will assume that a and b are real. Note that this is compatible with p being a
Hermitian operator, i.e., p' = p or p*(2',2) = p(z,2'). The overall normalization constant
was chosen to ensure Tr[p] = [dxp(z,z) = 1. In order for the Gaussian integral in
this norm to be well defined, we need a > b. Further, in order that the density matrix
be positive semi-definite (i.e., (¢| p|¢b) > 0 for arbitrary wavefunctions ¢ (z)) we should
require that b > 0.°

Next, we consider purifications of the density matrix (3.2) by pure Gaussian states with
two degrees of freedom

Wiy — kz A —l(w1x2+w2y2+2kxy)
wlz(ﬂc,y) = (x,y\w> = 2 e 2 (3.3)

where again we will assume for simplicity that w; » and k are all real. For this wavefunction
to be normalizable, i.e., 1 = [dxdy |¢(z,y)|?, we need wy > 0 and wyws — k* > 0. The
density matrix corresponding to [¢) is simply given by

72\ 1/2
pra(z,y, 2’ y) = <ijr2 : ) ¢ (wiahway+2ka'y’) =5 (wio®tway+2kay) (3.4)

Tracing out the auxiliary oscillator, we find

\/ — k2 _1 k2 ) (20 2 k2
wiwy — k €—§[<w1—m)(1‘ +z’ )—w—2 mc’].
A/ TT W2

5Since probabilities are all either zero or positive, the density matrix is positive semidefinite, e.g., see
section IIT of [186]. We will see below that b > 0 ensures that the purifying wavefunction also has real
parameters.

Pl(x/al’) = /dyl)lz(l'ay,f”y) = (3-5)
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Therefore comparing the above density matrix to eq. (3.2), we find

k? k?
a=w — —, = —.
2&)2 2(4)2

(3.6)

From the second equation, we see that b > 0 ensures a real purification. Note that for
b =0, we simply get
a=w, k=0 (3.7)

and wy is unconstrained. That is, for the density matrix (3.2) of an already pure state
(i.e., p(z, ") = ¢y (x)¥l(2’)), the purification in eq. (3.3) is itself simply the product of
two decoupled wavefunctions (i.e., ¥12(x,y) = 11(x)12(y)). For non-zero b, we may solve
for wy and w, in terms of a, b and k to find

k’2
w=a+b, w2 = o (3.8)
Hence we arrive at the one-parameter family of wavefunctions
a—b) F2\YY il 2ok
wIZ(xay) — (%P) e 2 [( +b)z*+ S5y +2k y] ’ (39)

all of which produce the same density matrix (3.2) upon tracing out the auxiliary position
y. The purification complexity is then found by optimizing the usual pure state complexity
over the free parameter k distinguishing these different purifications.

3.2.2 Alternative Description of the Purifications

Before we evaluate the purification complexity of the density matrix in eq. (3.2), it will be
convenient to introduce a second representation of the Gaussian states in order to simplify
the optimization and to make clear the role of the ancillae for our Gaussian examples.
Hence let us work in terms of the energy eigenstates of a given Hamiltonian

1 1 1
H = 5132 + 50.)2:%2 =w (a*a + 5) , (3.10)

where we have set the mass to one. The annihilation and creation operators are defined

as usual with A A
e=yf2(e+), a2 (e-i2) (311)

6The frequency w of the oscillator is an arbitrary choice here, but of course, the result of our analysis
will only depend on this choice through the parameters of the density matrix (3.2).
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and satisfy the commutation relations [a,a'] = 1. The corresponding energy eigenstates

can be written as
(al)"

Vn!

where |0) is the vacuum state of the Hamiltonian (3.10).

In) = L o) (3.12)

It is well known in the literature of quantum information, e.g., see [16—18], that Gaussian
states can be decomposed in terms of standard operators defined using these creation and
annihilation operators. In particular, the most general real density matrix of a one-mode
Gaussian state can be decomposed according to”

p1 = S1(r) Owm(B,w) Si(r). (3.13)

The operator S, (r) is the one-mode squeezing operator, acting on our oscillator which
we denote by the subscript 1 (in anticipation for introducing a second oscillator for the
purification, which we will denote by a subscript 2), which for real values of r reads®

af?—a}) _ ,if(@1p1+p1d1) (3.14)

This squeezing operator acts on the wavefunction 1(z) = (x]¢) by rescaling the coordinate
x according to (z|S1(r)|w)) = €/24(e"x). The remaining operator Oy (,w) is a thermal
density matrix for the canonical ensemble with temperature 1/4, i.e.,

—Bwata 0
e
3 e P— P —Pwn ) 3.15
O (B, w) = Tr(e—Bwala) (1—e) nEZO e In)(n (3.15)

We can evaluate the position space representation of the density matrix p in eq. (3.13),

i.e., (x|plz’), using Mehler’s formula [187], e.g.,
=" 1 u?(2? + y?) — 2uzy
> gl ) = < e (TR g

n=0

"In this paper, we only consider Gaussian states with (z) = 0 = (p), which implies that the exponent of
the Gaussian wavefunction does not contain a term linear in x. If such terms were present, we would have
to extend eq. (3.13) by conjugating with the displacement operator, e.g., see the discussion of complexity
of coherent states in [1].

8Note that the frequency w from the definition of a, a’ in eq. (3.11) does not appear here. The
infinitesimal version of this squeezing operator is simply the scaling gate (with a = b) in eq. (2.15).
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where H,(z) is referred to as the Hermite polynomials. Of course, this yields a Gaussian
density matrix of the form in eq. (3.2) with the following parameters

e?" w cosh fw e w

S ) - v
“ ’ sinh Sw

a
— = h >1. 1
b B >0, cosh fw > (3.17)

b

Demanding that the temperature and frequency are positive is then equivalent to the
previous restrictions, a > b > 0, discussed around eq. (3.2). We note that while the
parameter w was introduced as a dimensional scale here, our result for the complexity will
only depend on the dimensionless combinations fw and p/w, as well as the (dimensionless)
squeezing parameter r.° However, the parameter w will still play an important role later
on when considering different modes of a free QFT on the lattice in sections 3.4 and 3.5.1°
When the temperature is set to zero, i.e., fw — 00, eq. (3.13) reduces to a pure state.
From eq. (3.17), we see that this corresponds to the limit b/a — 0.

The decomposition (3.13) suggests that in order to purify this mixed state, one must
purify the thermal part Oy, of the density matrix.!! This can be done in terms of the
thermofield double state, e.g., see [08]

ITED),, = Sia(a) [0, [0)y = (1 —e7#)* 3" e384 ) ), (3.18)

n=0

where we have introduced the two-mode squeezing operator which entangles the two degrees
of freedom,

512(0-’) = @ (a{a%—alag) _ 6—ia(§:1ﬁ2+ﬁ1i2) ) (319)
The (real) squeezing parameter « for eq. (3.18) is given by

1 14+e /2

_—Bw/2 — e
tanha =e , a=gh—-—705.

(3.20)

9Below, we will see that the complexity only depends on two parameters, namely Sw and a particular
combination of u/w and r. The latter reduction can be traced back to a symmetry of complexity, i.e.,
the ‘distance’ between the reference state and target state is left unchanged if we rescale p and shift r
simultaneously.

10As we noted above, w does not appear in the squeezing operator and further, w only appears in the
dimensionless combination fw in the thermal density matrix (3.15) (and implicitly in the definition of
|n) in that same equation). However, from eq. (3.17), we see that it sets the scale of the dimensionful
parameters, a and b, in eq. (3.2). Further, it will set the scale of the dimensionful parameters in the
purified state (3.3) — see eq. (3.24) below.

1Tt is noted that the thermal part of eq. (3.13) also determines the (entanglement) entropy of the mixed
Gaussian state.
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The thermal density matrix O, in eq. (3.15) is then produced by tracing out the auxiliary
degree of freedom

Try(|TFD),, (TFD],) = (1 - eiﬂw) Z e In)1(nl; = 0m(B,w). (3.21)

However, we may also act with any unitary operator on the second oscillator in eq. (3.18)
and then this trace would yield an identical thermal density matrix. Hence we can write
the most general two-mode purification of eq. (3.13) as

|1/J>12 = Sl<7“) SQ(S) 812((){) |0>1 |O>2 s (322)

where we have introduced a second one-mode squeezing operator Ss(s) to account for the
freedom noted above in defining the purification of 0y, (8, w). Eq. (3.22) is the most general
two-mode purification using Gaussian states with real parameters. This can be seen by
writing the position-space wavefunction

Yia(z,y) = (v, y |¢>12 =

, 3.23
=Y exp [—g (cosh 20 (2" 2? + *y?) — 2" xysinh 2a)] ) (3:23)
7T

This wavefunction has precisely the same form as given in eq. (3.3), and we identify the
parameters as

w; = we* cosh 2, wy = we* cosh 2a, k= —we ™ sinh2a. (3.24)

Of course, substituting these relations into eq. (3.6) yields the same values for a, b as shown
in eq. (3.17), where we have used the following identities following from eq. (3.20)

1 1
cosh2aa = ———— | sinh200 = ————— | tanh?a = e 7% | 3.25
“ tanh(fw/2) s sinh(fw/2) e (3:25)
In the representation (3.23), the squeezing parameter s encodes the freedom in defining the
purification, which was previously captured by & in eq. (3.9). Hence with this description,
the purification complexity will be found by optimizing the usual pure state complexity
over s.

To close here, we note that the expressions in eqgs. (3.23) and (3.24), as well as through-
out the next section, can easily be written in terms of the parameter Sw, which appears in
the thermal density matrix (3.15) using the relations (3.25). However, we continue to write
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our results in terms of the squeezing parameter « appearing in the purification (3.22). One
reason for this is that it simplifies the expressions for the limits of validity of the different
regimes in our final result for the purification complexity — see eq. (3.36). Further, «
will also be a convenient parameter in our discussion of the purification complexity of a
thermal density matrix (and in comparing it to the complexity of the thermofield double
state [08]) in section 3.4.

3.2.3 Purification Complexity in the Diagonal Basis

According to the definition of purification complexity [171], see also eq. (3.1), we evaluate
the complexity of the mixed state by optimizing the purification to have the minimal circuit
complexity as a pure state. We emphasize that we are simplifying this problem here by
focusing on Gaussian mixed states and constraining ourselves to only considering Gaussian
purifications. As mentioned before, throughout the following, we focus on the complexity
defined with the F} cost function (2.6). Recall that the C; complexity for Gaussian states
was found to replicate the behaviours of holographic complexity most closely [62, 68, 69].
However, as was also mentioned in section 2.1.1, the F} cost function is basis dependent,
and so we must specify that in this subsection, we evaluate the C; complexity in the
diagonal basis. We will explore the results using the physical basis, which does not mix
the original degree of freedom with the ancilla, in the next subsection.

The coefficient matrix M2 in eq. (2.9) for the purifying wavefunction [¢15) in eq. (3.23)
is given by

—e™sinh 2o €2® cosh 2a (3.26)

M — o ( e?" cosh2a  —e" ¥ sinh 2o > .
Again, the free parameter s specifies a family of purifications of the same mixed state p;
in eq. (3.13). The prescription for evaluating the complexity of pure states was briefly
reviewed in section 2.1.1.1, and the C; complexity was given in eq. (2.19). Hence, the

complexity of the Gaussian state (3.22) becomes'?

; 1 w 1 w_
dia, +
Cl & (‘¢>12) = 5 In — + 5 ln7 y (327)
where wy are the eigenvalues of the matrix M2, i.e.,
wy =we't? <Cosh2a cosh(r —s) + \/Cosh2 2ac cosh?(r — s) — 1) . (3.28)

12We note again that the superscript ‘diag’ indicates that we are working with the diagonal basis, i.e.,
with gates acting on the eigenmodes which mix the physical and auxiliary degrees of freedom.
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Now according to the definition of purification complexity (3.1), the complexity of the
corresponding mixed state (3.13) is given by'?

CI8 (p1) = min, G (%) 15) (3.29)

where the dependence on the squeezing parameter s is hidden in the eigenfrequencies w.
in eq. (3.28).

Before proceeding, we must consider that there are three possibilities in eq. (3.27)
depending on the relative magnitudes of the frequencies,

- 1
case 1: Cihagzﬁln =—(r+53), > wy
Wi
- 1
case 2: (8 — 3 In 2+ = cosh™! [ cosh 2 cosh(F — 5)] , wo < pu<wy, (3.30)
w_
- 1 —
case 3: thagzﬁlnw#; =743, < wy.
n

These results have been simplified by the introduction of the shifted squeezing parameters,

1 1
TET+§ln% and szs+§ln%. (3.31)
Now in order to perform the minimization in eq. (3.29), we must identify the different
regimes in eq. (3.30) in terms of the parameters of the purifying wavefunction,

case 1: tanh?a < tanh7 tanhs and 74 35< 0,
case 2: tanh®’a > tanh7 tanh 3, (3.32)
case 3: tanh?a < tanh# tanhs and 7+4+5>0.

We see immediately that for case 1, both 7 and § will be negative, while for case 3, both will
be positive. Let us next identify the value of § that yields a minimal complexity within
each regime. For case 1, the complexity in eq. (3.30) is monotonically decreasing as a
function of 5, and hence the minimal complexity is obtain by the maximal allowed value of
5, which can be found from eq. (3.32). Similarly for case 3, the complexity is monotonically

3Note that we only optimize over the purification of the target state. We assume that the reference
state is fixed as a factorized Gaussian, where both the physical and auxiliary degrees of freedom appear
with the same reference frequency.

14This is done by analyzing the functional dependence of “’7* on cosh(2a) cosh(7 — 5) separately for each
sign of 7 + s.
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increasing with s, and so the minimal complexity is associated with the minimal value of 5
allowed according to the inequalities in eq. (3.32).!° Incidentally, these two critical values
of 5 coincide and are given by'®

(3.33)

tanh? 1. [e¥cosh2a —1
case 1,3: gcrit:tanh_1<an Oz)_ 1<€ cosh 2a )

=—1In —
tanh 7 2 €2 — cosh 2«

Hence the minimal complexity in these two regimes is given by

dia 1 1 — e ?" cosh 2
case 1,3: C;™® = j:§ In oodiza 1 ) (3.34)

For case 2, the minimal complexity is obtained by minimizing the function in eq. (3.30),
which leads to _
case 2: Sy =T — Cflag = 2. (3.35)

Now the final step is to clarify which one of these minimal complexities is the relevant
one for given values of ¥ and a. If ¥ < 0 for instance, both cases 1 and 2 could be in
principle relevant, as long as e* cosh(2a) < 1. However for 0 > 7 > —q, the lowest
complexity is that in case 2 and hence the final answer for the purification complexity is
given by eq. (3.35). A similar argument can be given in the overlapping regime of cases 2
and 3. We finally arrive at the purification complexity (5.78) for the one-mode Gaussian
mixed states (3.13),

/ _
1 €27 cosh 2a—1 =
2 h’l( 1—62’:cosh2a>7 OSO[S_T’
di ~ _
ci (5 = 4 20, o>, (3:36)
1 e?" cosh 2a—1 —
L 2 ln(lfe—%cosh2a> ) OSOJST.

One interesting point about this result is that the complexity of the mixed state p; generally
depends on both the thermal parameter Sw (or alternatively, «), and the shifted squeezing

5Recall that the boundary of the allowed values for 5 in each of these cases are precisely those for which
wy = por w_ = pu for case 1 and 3 respectively. Thus, the optimal purification in case 1 will have w; = p,
and similarly the optimal purification in case 3 will have w_ = pu.

16T et us note that when 7 < 0 and 2" cosh(2a) > 1, 344t is pushed to minus infinity. Therefore case 1
is not valid for any value of 5 and we are left with case 2 only. Similarly, for # > 0 and e~2" cosh(2a) > 1,
Scrit 18 pushed to infinity, case 3 is not valid for any value of 5§ and we are once again left with case 2 only.
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parameter 7 (which has absorbed the ratio p/w), whereas the (entanglement) entropy of
this state only depends on the combination Sw.

At this point, we can also point out the various benefits of the parametrization intro-
duced in subsection 3.2.2. First, o and r are natural dimensionless parameters associated
with the thermal state and its squeezing. The state described by those parameters is always
physical, which means we do not need to impose extra constraints on those parameters.
In particular, the density matrix is automatically positive semi-definitive and Hermitian
for any positive temperature and frequency. For r = 0, the density matrix corresponds to
a thermal state at temperature 1/ for a single harmonic oscillator of frequency w. More
generally, for non-zero r, one can think of it as the thermal density matrix with an inverse
temperature 8’ = e~2"3 for a harmonic oscillator of frequency w’ = e?"w. That is, using
eq. (3.17), one can easily show that

pr = Si(r) o (B,w) S{(r) = du(e™ B, e¥w). (3.37)
In addition, these parameters simplify the analytical analysis of the minimization, and
bring the final result for the complexity and, in particular, the limits of validity of each
regime into a (much more) compact form. Further, the physical meaning of the purification
becomes clear — in order to purify the Gaussian state, we only need to purify its thermal
component, and the extra freedom in the optimization comes from the squeezing operator
Sa(s) on the ancilla. Finally, the parametrization is closely related to the thermofield
double state at temperature 1/ which is defined by r = s = 0; and for r = s # 0, it is the
thermofield double at temperature 1/5" of a harmonic oscillator of frequency w’ (where '
and w’ are the same as defined above).

3.2.4 Purification Complexity in the Physical Basis

Next, we explore the sensitivity of our previous results to the choice of the basis. In
particular, we re-examine the purification complexity of the one-mode mixed Gaussian
state, defined in eq. (3.2) or (3.13), with the F} cost function but using the physical
basis. That is, here the gates implicitly act directly on the original and auxiliary degrees
of freedom, rather than on the linear combinations comprising the eigenmodes of M-
describing the purification. This change of basis is accomplished with the orthogonal
transformation described in eq. (2.20).

To begin, we re-express the wavefunction matrix (3.26) for the purification [¢)2) in
terms of the shifted squeezing parameters in eq. (3.31) as follows
M@ — ( e?"cosh2a  —e™¥sinh 2av )

T .

—e™Fsinh2a €2 cosh 2a (3.38)
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Similarly, the eigenvalues (3.28) become

we=pe (COShZOz cosh(7 — 5) £ \/cosh2 2a cosh?(F — 5) — 1) . (3.39)

Now, in order to evaluate the C}"™* complexity as in eq. (2.20), we need to determine the
orthogonal transformation that brings the matrix (3.38) to its diagonal form, see eq. (2.11).
That is,

~  [w_ 0 AT . [ cosf —sind
MT—( 0 w+)_0 MO with OZ(SinH cos 0 ), (3.40)

where 6 € [0, 7] and

: 1 X
SIHQZ?, Cosezﬁ,
v * (3.41)
_ 2 2~ o1 h(F—5) ) >0
X ahoa (\/cosh 2acosh”(7 — 5) — 1 — cosh 2a sinh(7 3)) >0

The next step is to rotate the generator H in eq. (2.18), i.e.,
- 1 /In= 0
= — I
H = ( 0 e ) , (3.42)

as in eq. (2.20), which defines the circuit generator in the physical basis!”

— 7 T—— 3
H=0HO" = —sinfcosf In == coszﬁln%—i-sinZan%

2 w— .2 w : w
; ( coS QInT + sin 01][17+ —sinfcosf haw—+ ) (3.43)

Again using eq. (2.20), C; for the purified state corresponding to the wavefunction matrix
(3.38) in the physical basis becomes

w_ 12 w_

)

I7As an aside, we note that the circuit generator H is easily expressed in terms of the “relative wave-
function” matrix MTMFQ1 directly in the physical basis as H = %ln (MTMle).

1 _
Cr™([12)) = 1 (2 sin201n F + ‘ln P cos20ln

(3.44)

Wil

+ cos 260 In w+

In e -

+
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It will be convenient to optimize the purification by varying the angle 6 rather than
working with the squeezing parameter s. Hence we use eq. (3.41) to replace

sinh(7 — §) = — tanh 2« cot 26. (3.45)

Note that the sign of sinh(7 — 5) will be positive for # > 7/4 and negative for 0 < 7/4.
Combining this expression with egs. (3.39) and (3.41), we can also express the other factors
in eq. (3.44) in terms of # as follows

1
St = cosh™*(cosh 2a cosh(7 — 5)) = sinh™*(sinh 2« csc 26)
2 w-
1 waw (3.46)
5 In +27 = 7+ 5 = 2F 4 sinh ' (tanh 2 cot 26) .
o

Using these expressions and examining eq. (3.44) according to the different possible signs
in the absolute values, we obtain

inh 2
a) ——: " =-27+sin20 sinh”’ su'q @) — sinh~!(tanh 2a cot 20
1 20
sin
_ . phys __ : N z . 1 sinh 2«
(b) +—: O™ =+/2sin (29 4> sinh ( 020 ) (3.47)
_ . phys __ . z . -1 Slnh 204
() —+: Cy™ = V2 sin <29 + 4) sinh < 090 )
sinh 2«

(d) ++: C™* =2F +5sin20 sinh™! ( ) + sinh ™! (tanh 2a cot 26)

sin 26
where for instance +— indicates that the sign of the expression inside the first absolute
value in eq. (3.44) is positive and the sign of the expression inside the second absolute
value is negative. Finally, the purification complexity in the physical basis for the one-
mode Gaussian mixed state is given by minimizing this expression with respect to the free

parameter 6
€ () = ming €} (

Vhia) - (3.48)

Unfortunately, the exact analytical minimization of eq. (3.48) is not possible since it
would require solving a transcendental equation. Hence, in order to develop some intuition,
let us consider the simple case p = we®, i.e., ¥ = 0 where the purification complexity
reduces to

[ D) o
1 = .
V2 sin (29 + %) sinh ™! (%) S
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That is, C}™* is given be either cases (b) or (c) in eq. (3.47). We are able to rule out cases
(a) and (d) (i.e., ++ and ——) by verifying that the product of the terms in the absolute
values in eq. (3.44) is negative using the identity!®

sinh™! (tanh 2ar| cot 20 | ) — | cos 20| sinh ™" (sinh 2a | csc260|) < 0. (3.50)

To proceed further, let us point out an interesting way to identify which set of signs
of the terms in the absolute values is relevant for the evaluation of complexity. We can
regard the expressions for each of the cases in eq. (3.47) as evaluating the expression in
eq. (3.44), but without the absolute values; rather we are inserting the specified signs in
front of the last two terms. Hence for a given value of 6, we can evaluate all four of these
expressions. However, the correct result will correspond to the largest value because in
this case with the specified signs, both of the second and third terms must be making a
positive contribution to the complexity, as required by the absolute values in eq. (3.44).
Using this reasoning in eq. (3.49) with 7 = 0, we can see that when § < 7/4, case (c) is
the correct choice, while for 6 > 7/4, the relevant case is (b). This fact will also be useful
when performing the numerical analysis of more general cases later on. We may also use
the identity asinh™'(x) > sinh™'(az) for a > 1, z > 0," with a = sin(26) + cos(26) > 1
for 0 < @ < m/4 and 7/4 < § < 7/2 respectively, as well as the monotonicity of sinh™(z),
in order to demonstrate that the minimal value for the complexity is obtained for § =
(which corresponds to § = 7 = 0), see eq. (3.45). This yields the following purificatio
complexity

s
4
n

C7™ (a7 = 0)) = ming 5" ([4),) = 201 (3.51)

We may also point out, that for » = 0, this is simply the TFD purification of a state with
temperature § and frequency w = u. The addition of the squeezing parameter r leads to
the TFD purification of a state with temperature 8’ = e~?"3 and frequency w’ = we?" which
is equal to the reference frequency p, according to the logic described around eq. (3.37).

Next, we return to the general case for which we examine the optimization (3.48)
numerically. Without loss of generality, let us assume that g > we?", or equivalently
7 < 0.2 We will try to use the same logic as above in order to identify the ranges of

8This identity can be verified separately in each region 0 < 6 < 7/4 and 7/4 < 6 < 7/2 by using the
fact that for « = 0 we obtain an equality together with the fact that the derivative of the left hand side
with respect to « has a definite sign in each region, namely, it is negative for 0 < § < 7 /4 and positive for
/4 <6 <72

19This is due to the fact that sinh™!(x) is concave down.

*ONote that the system is symmetric under the exchange ¥ — —7, 0 — % — 6, and (a)«>(d), (b)<>(c). As
a consequence, though the details of the analysis will slightly vary, the value of the complexity obtained
by minimizing (3.44) will only depend on the absolute value of 7.
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in which the different sets of signs in eq. (3.47) are valid. It is useful to start by looking
at a plot of all possible sign combinations given by the four cases (a)-(d), for all values
of 0 < 6 < m/2 — see figure 3.2. As noted before, the relevant sign combination for
the complexity will always be the highest of the four lines, since that possibility takes
into account the correct (positive) signs for all the absolute values. Therefore, we must
minimize the complexity over the uppermost envelope of the plots in figure 3.2. Let us
proceed with this graphical understanding in mind. For a non-zero value of 7 < 0, the
different cases in eq. (3.47) are shifted up (case (a)), down (case (d)) or not modified (cases
(b) and (c)). Using the same inequalities mentioned above, it is straightforward to see that
case (d) becomes irrelevant and is smaller than at least one of the other cases for all values
of 6. Therefore, in each region of 6, we should consider two competing sign combinations:

case (a) or (b) for T <0< 7,

G (l)yo) = (3.52)
case (a) or (¢) for 0 <6<

MIE]

ISR

We have examined these cases numerically, see figure 3.2. The minimal purification
complexity is obtained for a value of @ that either lies at minimal points of the curves (a),
(b) or (c¢) or at the intersections of the curves (a) and (c¢) or of the curves (a) and (b)
depending on the values of 7 and « considered. These values can be identified by solving
transcendental equations. For example, in the regime where « is small or —7 is large,
the minimal complexity is obtained at the point where the curves for cases (a) and (c)
intersect, which corresponds to solving the equation

inh 2
—2F = sinh™*(tanh 2a cot 26,) 4 cos 26, sinh™* SR 29 , (3.53)
sin 26,
and the purification complexity reads
inh 2
Cihcys (p1) = (sin 26, + cos 26,.) sinh™* <SsllIIll 29@) ) (3.54)

When the parameter « is large enough, we can find that the minimal complexity cor-
responds to the minimal point along the curve (c) rather than to the intersection of curves
(c) and (a). This is illustrated in figure 3.3 which plots the difference C{%" — C}™*. The
non-zero values in the middle of this plot mean that the minimization is obtained at the
local minimal point of curve (c) where the complexity is given by

sinh 2« )

Ci™ (p1) = V2sin (29mm n f) sinh—1< (3.55)

4 sin 260,
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Figure 3.2: Possible values for the pure state complexity C}"*(|¢12)) in the physical basis
as a function of 6, for all possible sign combinations according to eq. (3.47) for fixed values
of 7 and . The complexity of the mixed state purified by |¢2) is obtained by minimizing
over the uppermost envelope of each of these plots.

where

7 sinh 2c
a9y ( si (29 —) inh~! —0,  0< 6y <0.. 3.56
° (Sm ) S = Vimin = (3:56)
Although we cannot solve for 6. or 6, analytically, we may evaluate them numerically.

Similar equations can be written for other possible positions of the minimum. Figure 3.4
contains results for CI™* (p;) from numerical minimization with fixed value of 7.

gmin

3.2.4.1 Differences between the two bases

We must stress again that with the physical basis, the gates act directly on the original and
auxiliary degrees of freedom. This contrasts with the diagonal basis where the gates act on
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Figure 3.3: The difference between the complexity obtained for 6. at the intersection of
cases (a) and (c) and the exact purification complexity of one-mode Gaussian states in the
physical basis C72" (p1) — C;™" (p1) as a function of 7 for some fixed values of o We see
that the complexity obtained at the intersection between cases (a) and (c) with C{%2" (p1) in
eq. (3.54) ceases to be optimal for some region of the parameter 7 for large enough values

of a.
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Figure 3.4: Purification complexity of one-mode Gaussian states in the physical basis

C™ (p1) as a function of « for some fixed values of 7. The fact that the curves with

7 = —6 and 7 = —10 coincide after a certain value of a is due to the fact that this
minimization is obtained at the minimum of case (c¢) which is 7 independent.

68



the linear combinations comprising the eigenmodes of M, describing the purification. In
particular, then, one of the diagonal generators is precisely aligned with the generator H of
the optimal circuit in eq. (2.18). As a consequence, one expects that with other choices of
basis, the purification complexity of mixed states (as well as the complexity of pure states)
will not be smaller than in the diagonal basis.

Comparing our results for of the one-mode Gaussian mixed states in the physical basis
(3.44) to those in the diagonal basis (3.30), we can show

W4

+ |{=In —1—00829 In —
2 2 w_

00829 ln———ln

1
Crve = Z 20 ln —
1 5 (sm n + o 5 2

w+w_‘ ‘1 Wiw_

> (sin 26 + | cos 29|) - 111 T > Co*(case 2),

(3.57)
and
1 1 _ 1
Ccy™ = = sin 20 In — + —1 2 — — cos 20— 1nw+ I el e S )
2 w_ L 2 w_ 2 L 2 w_
1 _ .
> sin 20 = ln i 2 > Cy%(case 1,3),
2 2
(3.58)
where we used the inequality |a — ¢| + |¢ — b| > |a — b|. Hence, we conclude
CP™* (lthi2)) = €™ ([¢12)) 4 CY™ (p1) = €™ (p1) (3.59)

as expected. It is also easy to demonstrate that the latter inequality holds in various
examples by numerical minimization.

3.3 Optimal Purification of Mixed Gaussian States

In the previous section, our mixed state (3.2) described a single physical degree of freedom,
and it was purified by introducing a single ancilla. When trying to evaluate the purification
complexity for a mixed state with many modes, one must ask the question of how many
ancillae are needed to produce the minimal complexity. In subsection 3.3.1, we began by
identifying the minimum number of extra degrees of freedom that are needed to purify a
given mixed state. We will refer to such purifications with only the essential number of
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ancillae as essential purifications. Note that as we introduce additional ancillae, the
number of free parameters over which one would optimize increases, and so one might
expect that this will also reduce the corresponding purification complexity. However, we
will argue that this intuition is incorrect for Gaussian mixed states and that the optimal
purification should be an essential purification. Further, in identifying the minimum num-
ber of ancillae, our approach is to construct a ‘diagonal’ basis in which the density matrix
takes a canonical form where each eigenmode is separately either in a mixed or pure state.
Each of the mixed state modes can then be purified by a single ancilla in a purification,
which we refer to as a mode-by-mode purification (see figure 3.5). In the next section
3.4 and 3.5, we consider the purification complexity in some examples of Gaussian mixed
states in quantum field theory. Adopting the conclusion from this section, the purifications
over which we optimize there will be both essential and mode-by-mode purifications 2.

r
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Y01e@V22r QY33 @ oo YNNe

i Vaac
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----------------------------------------------------------------------------

Figure 3.5: Illustration of the different ways to purify a multi-mode Gaussian state ps. We
refer to the purifications of the form ¥i1c@Ware®- - -Q@W yne as mode-by-mode purifications.

2l'Without assuming the mode-by-mode purification, the purification complexity with I, cost function
and the most general Gaussian purification is studied in [188] for 2D free CFTs.
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3.3.1 Purifying General Gaussian States

In this subsection, we study Gaussian purifications of Gaussian density matrices with an
arbitrary number of modes. The discussion will follow closely the one in [183], and as before,
we will focus on density matrices and wavefunctions with real parameters for simplicity.
We start with the wavefunction of a pure Gaussian state

W gae = Naae exp {—%((TA@Ac) ( [gT g ) ( qgjc )} ; (3.60)
where the degrees of freedom were divided into the “inside” region A containing the N4
coordinates ¢4, and the “outside” region A° containing the N 4. coordinates g 4. The wave-
function matrix in eq. (3.60) has to be positive definite in order for the wavefunction to
be normalizable. The square matrices I' and € are real, symmetric and positive definite.??
Further, the rectangular N4 x N4 matrix K is also real®® and N 4e is the normaliza-
tion factor (ensuring that the wavefunction has unit norm). The reduced density matrix
describing the mixed state on the subsystem A is obtained by tracing out the degrees of
freedom in the outside region A°, as follows

pa = Tr e ([Waae) (Paac|) - (3.61)

This amounts to the Gaussian integral

pa(qasqy) = /dQAc U gae(Gas Qae) Ol e (Th Tae)
B L, _, (T—3KQ'K" —1KQ'KT qa
=N exp{?(q““’qf‘)( ARQKT T —LikoikT )\ g1 )|
(3.62)

Following the reverse logic, let us start with a general mixed Gaussian state of N4 modes
with the (real) density matrix

L 1, . A -B qa
pa(da,q4) = Na exp [—i(q/x,q,ﬁt) < B A ) ( 7l )} : (3.63)
where the N4 x N4 matrices A and B are both real and symmetric. Further, we must

require B to be positive semi-definite to ensure that the density matrix is non-negative, and
A— DB to be a strictly positive matrix to ensure that the density matrix can be normalized.?*

22Note that sub-matrices of positive definite matrices are also positive definite. It will also be important
that positive definite matrices are invertible.

23The restriction to real matrices here and above are a choice that we impose to simplify our analysis.
In contrast, the positivity of I' and €2 is required to ensure that the wavefunction is normalizable.

24This also implies that A is a strictly positive matrix, since the sum of two positive definite matrices is
also positive definite.
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In this case, a wavefunction of the form (3.60) will purify p 4 if the two following constraints
are satisfied

1
I'=A+B, 5KQ*KT =B. (3.64)

In this situation, the ¢4 are the physical degrees of freedom while the ¢4 are now auxiliary
degrees of freedom. While I' is completely fixed by the first constraint above, it should be
clear that the second constraint leaves a great deal of freedom in the choice of 2 and K.
Assuming K has a left inverse (and B is invertible),?® we can rewrite the constraints (3.64)
as

1
I'=A+B, Q:§KTB‘1K, (3.65)

where €2 is completely determined by B and K. Hence we can think of the freedom in
choosing the purification as being parameterized by the choice of the N 4N 4 components
of K. Of course, this is the multi-mode generalization of the freedom found in eq. (3.9),
where the single parameter k parameterized the purifications of the density matrix (3.2)
for a single degree of freedom. Hence with many modes (and ancillae), the purification
complexity will be found by optimizing the usual complexity of the purification (3.60) over
the freedom in choosing the matrix K.

However, it is natural to first ask what is the minimum number of ancillae N 4 required
to purify the mixed state p4. In order to count the degrees of freedom needed for the
purification, we start by bringing the matrices A and B in eq. (3.63) to a canonical form
by performing a sequence of coordinate transformations: First, we find an orthogonal
matrix O4 that diagonalizes A, i.e., D4 = O% - A-O4. We then rescale the coordinates ¢4
such that A becomes the unit matrix. Finally, we diagonalize the transformed B matrix
with a second orthogonal transformation Op. The complete coordinate transformation
reads

a=04-D;'"* Op-qa, (3.66)

and of course, the same equation holds for ¢4. In this basis,?® the quadratic form describing

25We stress that these conditions are not achieved for generic purifications. For example, a linear
transformation K : A° — A has a left inverse if and only if it is injective (i.e., one-to-one). This
immediately implies that N4 = dim(A°) < dim(A) = N4. This constraint does not hold in general
since we can introduce as many ancillae as we wish in purifying a given mixed state. However, it does hold
for essential mode-by-mode purifications, which will be the focus of our analysis in the following. Similar
comments apply for the conditions under which B is invertible.

26As an aside, we note that eq. (3.66) is not an orthogonal transformation and as a consequence, the
reference state (2.14), which we are implicitly choosing for the purified AA° system,

S |, In 0 qa
\Ij c) = — c A — 9 .
R (@4, qa) = Ng eXp[ 2(QA7QA )( 0 In, > < ne )] (3.67)

72



the density matrix (3.63) is given in terms of matrices A and B which read

A=ly,, B=0%-D,'* 0% - B-04-D,'?-0p=Dg. (3.69)
In this canonical form, the matrix B has become

b
by

, (3.70)

with np = rank(B) = rank(B) non-zero components. Therefore written in terms of the
transformed coordinates ¢4, the density matrix p4 has been decomposed into ng two-by-
two blocks describing modes in a mixed state, i.e.,

( bl ﬁ ) : (3.71)

and N4 —np two-by-two unit matrices describing modes in a pure state. Now it is possible
to follow the procedure in section 3.2.1 to purify each of the mixed-state modes with a
single ancilla, and finally transform back with eq. (3.66) to obtain a purification of the
density matrix p4 in the original ¢4 basis. As illustrated in figure 3.5, we refer to such
purifications as mode-by-mode purifications.

It is also straightforward to show that we cannot purify p4 with less than np additional
degrees of freedom, namely Ny > np. Towards this goal, we consider the following
theorem regarding the rank of the product of two matrices

rank(M - N) < min(rank(M ), rank(N)). (3.72)
transforms nontrivially. The transformed reference state becomes
5 5 oL -Dy'-0 0 7
Wi (i) = Nadet(Da) exp| = @aia) (20 O ) (B e
2 0 1N 4e qAc

which is no longer an unentangled product state. However, this point is irrelevant for our argument
determining the minimal value of degrees of freedom N 4 required for the purification.
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Hence applying this theorem to the second constraint in eq. (3.64), i.e., %K QO 'KT = B, we
see that if a solution exists then we must have rank(B) < min(rank(Q™!), rank(K)). Next
we observe that since the N x N4 matrix € is invertible, rank(Q7!) = rank(Q) = N 4.
Furthermore, rank(K) < min(N4, N4) < Nge since K is an Ny X Ny matrix. Hence we
arrive at

Nyge > np, (3.73)

where np = rank(B). That is, we will need at least np ancillae in the A° system in
order to purify the mixed Gaussian state p4. However, having explicitly constructed a
purification with N4 = np above, we know that it is possible to saturate this bound and
we may conclude that this is the minimum number of extra degrees of freedom needed for
the purification. We refer to these purifications containing only the essential number of
ancillae as essential purifications.?’

Generally, it is a challenge to determine what is the optimal purification for a general
Gaussian mixed state with a given complexity measure. In [2], we numerically examine
the role of extra ancillae in the purification of a one-mode Gaussian state. Our analysis
yields a clear result that adding extra ancillae will not improve the purification complexity
considering either a diagonal basis or a physical basis. Throughout the following, we are
emboldened to interpret this result as an indication that the optimal purification for a
Gaussian mixed state for many oscillators is an essential purification, i.e., the number
of ancillae saturates eq. (3.73) with Nge = np. On the other hand, we also test the
optimality of the mode-by-mode purification with taking Gaussian mixed states for two
degree of freedom as an explicit example in [2]. Motivated by our numerical results for
two-mode Gaussian states, we arrive at the second conjecture that for the general N 4-mode
Gaussian state p4 whose density matrix elements satisfy

[A,B] =0, (3.74)

the optimal purification will be a mode-by-mode purification (in both diagonal and physical
basis). Further, when [A, B] # 0 but these matrices are still close to commuting, the mode-
by-mode purification will still be a good approximation to the true optimal purification.

3.4 Circuit Complexity of Thermal States

Now we wish to apply the techniques developed in the previous sections in order to evalu-
ate the purification complexity for examples in quantum field theory (QFT). In particular,

2"We chose this name to distinguish this class of purifications from the optimal purifications, which are
defined to be the purifications yielding the minimal complexity.
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we start in this section with a thermal mixed state for a free scalar field theory. As a
simple exercise, we begin by considering the thermal state of a single harmonic oscillator.
One question we ask here is while the thermofield-double (TFD) state for two harmonic
oscillators provides a natural purification of the thermal state, is it ever the optimal pu-
rification for this state? Next, we briefly review the lattice regularization of a free scalar
field theory, which reduces to a family of coupled harmonic oscillators. We then apply our
results for the single oscillator case to examine the purification complexity for a thermal
mixed state in the free scalar QFT, both in the diagonal basis and in the physical basis. In
Chapter 4, we follow up with a comparison of our results here with the analogous results
from holographic complexity.

3.4.1 Exercise: One-mode Thermal States

For simplicity, we start by analyzing the purification complexity of the thermal state for
a single oscillator, i.e., Uy (f,w) in eq. (3.15). For this exercise, we limit ourselves to
considering the diagonal basis. In fact, this is a simple case of the one-mode mixed states
(3.13) studied in section 3.2.3, where we set the squeezing parameter » = 0. Hence the
purification complexity is given by simply substituting » = 0 into eq. (3.36),

( 5 coth(Bw/2)—1 w
Int 4 lip (W) , for coth(22) < 2,
Clae(B,w, 1) = { Incoth (22) for tanh(%) < £ <coth(5),  (3.75)
1 w 1 % coth(Bw/2)—1 B
\ aln;ﬂln(%—mtw)’ for < tanh(G).

Here we have substituted 7 = %ln‘ﬁ from setting r = 0 in eq. (3.31), and we have used the
definition of v given in eq. (3.20). The interplay between the different regimes of eq. (3.75)

is explored in figure 3.6.

Of course, one well-known purification of the thermal state (3.15) is the TFD state,
see eq. (3.21). However, this is not necessarily the optimal purification that leads to a
minimal complexity. Examining eq. (3.75), it turns out that the optimal purification is in
fact the TFD state for the intermediate regime, i.e., tanh(fw/4) < £ < coth(Bw/4). This
can be seen by observing that egs. (3.35) and (3.31) yield s = 0 when r = 0 in this case
and therefore the purification (3.22) reduces to the TFD state in eq. (3.18). For example,
this case will be of relevance when the reference frequency p and the oscillator frequency
w are equal.
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Figure 3.6: Different regimes of eq. (3.75): values of Su above the blue curve, i.e.,
Pw coth(Sw/4), correspond to the first regime in this equation; below the red curve i.e.,
fw tanh(Bw/4), correspond to the third regime; while between the blue and red curves
correspond to the second regime. We observe that when Su > 1, there is a very narrow
range of frequencies Sw between the blue and red lines (since both curves converge towards
pw) for which the intermediate regime applies.

We may also consider two other interesting limits: First, for w coth %‘” < i, the first
line in eq. (3.75) applies and this limit yields

iag 1 ILL 5(,&) . 1 /-L /Bw
Ciit =~ 3 ln<; coth 7) with s~ 3 ln(; tanh7 , (3.76)
see eq. (3.33) and (3.31). Hence the optimal purification is far from being the TFD state,

for which s = 0. Next, in the opposite limit with 4 < w tanh %M, the third case in eq. (3.75)
applies. This limit then yields

1 1
Cflsﬁ ~~ 3 ln(% coth %) with s~ 3 ln(g coth %d) . (3.77)

Hence, the optimal purification is again far from the TFD state.
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While we have limited our attention to the diagonal basis here, the analogous results
for the physical basis can be found by using » = 0 in section 3.2.4.

3.4.2 Discretization of the Free Scalar

In order to apply our results from the last several sections to a QFT, we follow [(62] and
consider a free massive scalar theory with Hamiltonian

1 -
1= [ a7 [w@) + (Fo(@)? + m? ola)] (3.78)
We start by regulating the theory by placing it on a periodic ‘square’ lattice with lattice
spacing 0 and where each side has a linear length L. Therefore the total number of sites
is given by N4 ! = (L/§)*"!. The lattice Hamiltonian is then the Hamiltonian for N¢~1
coupled harmonic oscillators, which can be written as*®

H= Zﬁ: {132(—]@)2+ %M [@2j(ﬁ)2+922(

i

(3.79)

8l
el
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e
| I |
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where in the second line, we have defined z(77) = 6%2¢(i1), p(it) = 69=22x(iA), © = m
and Q =1/0 = M, see, e.g., [02]. Further, periodic boundary conditions are imposed with
z(n + Nz;) = z(n) for any i. Next we rewrite the Hamiltonian in terms of the normal
modes

1 omik -7\ . R
. 2 = 40 3.80
Ty VI gﬁ exp( I )x(n), ws=m"+ % sin” —+, ( )

where k = (k1,-++ ,kq_1) with k; = 1,2,--- N. The Hamiltonian then becomes

1
= mz (|pE|2+M2w%|x,;|2) : (3.81)

k

H

where we have used that x% = x_j. This means that we can think of the system as a system

of N4=! decoupled real harmonic oscillators with frequencies as indicated by eq. (3.80) and
with masses 1/d. Of course, the diagonalization process can also be performed directly for

28The lattice sites are designated with @ = n; 2*, where 4 are unit normals along the spatial axes.
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the continuum Hamiltonian and in the infinite volume limit,?? in which case one obtains

the eigenfrequencies wj = V k2 +m? and the sum over the (dimensionless) k; is replaced
by the (dimensionful) momentum integral Vy_; [ (gjr;%. Here V;_; = L% was introduced

as an IR regulator for the spatial volume of the system.

It is natural to interpret the reference state as the ground state of an ultralocal Hamil-
tonian of the form

H= % / I [r(2) + 12 o)) . (3.82)

That is, we have dropped the usual term with spatial derivatives here and so in the ground
state, the field is not correlated at different spatial points. On the lattice, this Hamiltonian

(3.82) becomes

1
= o7 2 (bl + 272 fagP) (3.:83)

—

k

H

Finally, recall that we have implicitly set the mass parameter M to one in all our
previous expressions, e.g., in egs. (2.10) and (2.14). It is easy to restore the dependence on
the mass by merely multiplying the frequencies by M. This does not influence the various
expressions for the complexity since those were given in terms of ratios of frequencies.

3.4.3 Purification Complexity in the Diagonal Basis

As we noted above, the Hamiltonian (3.81) consists of a sum of decoupled harmonic oscil-
lators. As a consequence, the corresponding thermal density matrix for the QFT factorizes
into a product of thermal density matrices, one for each mode. In other words, one can
find the simple mixed state

ﬁth(ﬁ) = ® ﬁth(ﬁvwl}') ) (3'84>

-

k

29Recall that there are two independent limits here. The continuum limit refers to taking the lattice
spacing § small compared to the other physical parameters in the problem, e.g., dm — 0 and 6/L — 0.
In that case, the sum over lattice points becomes an integral over positions on a square torus, given the
boundary conditions under eq. (3.79). The infinite volume takes the limit L = N§ — oo while holding ¢
fixed. Hence in this limit, L is large compared to the other dimensionful parameters, e.g., mL — oo and
L/§ — oo. Recall that the difference between adjacent values of the dimensionful momenta in eq. (3.80)
is Ak = % = %’T, and hence the momentum sums are replaced with integrals in the infinite volume limit.
The results of this section will all involve both the continuum and infinite volume limits, while those of
section 3.5 are given on the circle (i.e., d = 2) with finite L.
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where Oy, denotes the thermal density matrix of a single oscillator with frequency w; and
inverse temperature /3, as defined in eq. (3.15). In proceeding with our evaluation of the
purification complexity, we will focus here on the diagonal basis and save a discussion of the
physical-basis complexity for section 3.4.4. Given a mixed state with a product structure
as in eq. (3.84), we recall from section 3.3 that we expect the optimal purification will be
both an essential purification and a mode-by-mode purification.?® Hence we expect that
the final result for the purification complexity eq. (3.84) is simply obtained by summing
the complexities for the individual modes,

il (B3, ) ZC;“sﬁ Wi ) (3.85)

where C{'i5 (8, wg, i) is given in eq. (3.75). Alternatively, in the continuum formulation, we

have
diag,tot dd 1k dia,
Cl t}i (ﬁ,ﬂ) = Vi /]Z A (27T)d 1 Cl t}gl(ﬁvwkhu“)v (3-86)
<
where the momentum cutoff A was introduced to regulate the system in the UV.3!

To proceed, we define two critical frequencies with

Wep:  Bp = Pwe, coth (&jf’l) , Wea: B = Pwestanh <5ZC’2> ) (3.87)

These correspond to the frequencies where there is a transition between the three different
regimes in eq. (3.75) — see the blue and red points indicated in figure 3.6. The critical
frequencies are functions of § and i, and of course, they can be converted to a corresponding
momentum with k2, = w2, —m? and k?, = wZ, —m* Now we will evaluate eq. (3.86) for
the three cases distinguished by the relation between the critical frequencies and the cutoff

frequency wy = VA2 +m?2:

1. wa < wei:

Oy sV s /A k42 dk {ln o ln(u coth(fwy/2) — w,;)} (3.89)
0

diag,tot _
Gl (8 1) 2 (27)d-1 wy p — wg coth(fwy/2)
30To connect directly to the discussion in section 3.3, we can write the thermal density matrix in the
form given in eq. (3.63) using the expressions in eq. (3.17) with » = 0. In this form, we would find that A
and B are commuting matrices with A = diag(wy cothfw;) and B = diag(wy; cschfwy).
31This regulator is different than the lattice regularlzatlon introduced above in that the momentum
integration bound is a sphere, while the edge of the momentum integration of the lattice regularization is
a cube given by the edges of the first Brillouin zone. The continuum limit corresponds to A being much
greater than any dimensionful parameter in the problem, e.g., A — co.
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2. wWen < wp < Weat

Qa_aVi /’f k=2 dk m ft coth(Bwy/2) — wi
S R +In
2 o @mrt L wyp p — wy; coth(fuwy/2)

A p.d-2
ka=2dk Bz
+ Qd—2vd—1 /kc,l W In coth (T)

Cran (B, 1)
(3.89)

3. Wea < Wh:

QqoVy_y [Fer k2 dk m pt coth(Bwz/2) — wi
= - |lIn—+1In
2 o (2m)dt [ wyp pt — wy coth(fwi/2)
ke,2 k=2 ]k

(JJ“
+ Qd_gvd_l/k W In coth (%) (390)
c,1

+Qd—2VZl—1 /A k2 dk { YE 1 <WE COth(ﬁ“E/z)_Mﬂ

In -2
2, o [ T\ G = i coth (B 2)

L (8.1

c,2

where Q4 o = 2W%/F(%) is the volume of a unit (d — 2)-sphere.

These results can be simplified in certain limits. In particular, here we will focus on the
case of a massless scalar, i.e., m = 0, in which case, the critical frequencies and momenta
are equal to one another, i.e., k.1 = w1 and k.2 = w.2. We also focus on the case where
the reference frequency is much larger than the temperature, i.e., Su > 1. Working in
this regime, eq. (3.87) can be solved for the critical momenta in a perturbative expansion
yielding

k‘c,lz,u<1—2€_%+>7 kC,QZN(l_FQe_%‘—{_) (391)

Hence we see that only the first case is relevant when 1 = A and that the third case becomes
relevant as well when p < A. Further, since k.o — keq = 4/16’% + ---, we see that the
range of the integration in the second lines of eqgs. (3.89) and (3.90) is extremely small and
the corresponding contributions are exponentially suppressed for Su > 1. Therefore, it is
reasonable to ignore the contribution of these integrals to the complexity in the following.

Let us also comment on the behaviour of the various integrals near their limits of
integration. First, near £k = 0, the integrands have at worst a logarithmic divergence
in d = 2, while this is suppressed by the factor of k%2 in higher dimensions, and so
the integrals converge there. Logarithmic divergences also appear at k.; and k.2, t.e.,
In(k.; — k) and In(k — k.2), and so the integrals are well behaved there. This leaves us
with a UV divergence due to the terms proportional to |In p/wz|. In fact, this contribution
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is identical to that for the vacuum state of the free scalar Hamiltonian (3.78), e.g., see [62],
and hence the UV divergence in the complexity is identical to that in the complexity of
the vacuum state.

We note that the latter result is different from what happens for the TFD state for the
same Hamiltonian (3.78), where the UV divergence is precisely double that of the vacuum,
e.g., see [08]. This doubling is natural if we think of the TFD state as an entangled state
of two copies of the underlying QFT. In this case, the circuit constructing the state is
introducing entanglement at short distance (i.e., UV) scales in both copies of the QFT,
which produces the UV divergences in the complexity. For the thermal mixed state, this
short distance entanglement must be introduced for the physical degrees of freedom, but
there is no need to do the same for the auxiliary degrees of freedom. Hence it is natural
that the UV divergence in the purification complexity of the thermal state matches that
in the complexity of the vacuum state. We return to comment on this point and explicitly
evaluate egs. (3.88)-(3.90) in section 3.4.5.

To close here, we note that the final result for the purification complexity (with m = 0)
can be shown to be proportional to V,;_; 79!, or equivalently to the thermal entropy, where
the proportionality factor is a function of SA and Su. For later convenience, let us quote
the result for the entropy of the thermal state for the massless theory,

S (Pin) }mzo — (;d)jl C(d)df‘(_d;_ 1)

Vg T4 (3.92)

We recall that ref. [68] showed that the complexity of formation for the TFD state is also
proportional to the entropy when m = 0.

3.4.4 Purification Complexity in the Physical Basis

Recall from sections 3.2.3 and 3.2.4 that the complexity typically shows different properties
in the diagonal and physical bases. Hence we investigate the purification complexity for the
thermal mixed state in the physical basis in this section. However, for the free scalar field
theory where the density matrix takes the simple product form shown in eq. (3.84), we still
expect that in the physical basis, the optimal purification will be an essential purification
and also a mode-by-mode purification. So the final result for the purification complexity
is again obtained by summing the complexities for the individual modes, i.e.,

Cphys tot

(8 ZCT“&T W 1) (3.93)
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where thtyh( B, wg, pt) is the purification complexity of the one-mode thermal density matrix,
i.e., of eq. (3.13) with r = 0. Alternatively, in the continuum formulation, we have

hys,tot dd_lk phys
(B = Vier [ < OB, (390

|k|<A
where the momentum cutoff A regulates the UV portion of the integral.

Let us begin by examining C‘fiy}f(ﬁ,w, ), which is simply determined by setting r = 0
or 7 = In(w/p) in the results of section 3.2.4.> As shown in that section, we cannot find
the full analytical results for the purification complexity in the physical basis. However,
we can consider certain limits where the results are simplified. In particular, we now
investigate the limit of small a, which corresponds either to a low-temperature limit or
a high-frequency limit, i.e., fw > 1. In this limit, eq. (3.20) yields o ~ e /2 <« 1.
Further, for small «, the diagonal and physical bases are very close, i.e., the orthogonal
transformation in eq. (3.40) is close to the identity. The latter follows from evaluating
the expressions in eq. (3.41) with @ — 0 and assuming sinh(7 — §) = —sinh s < 0, which
yields??

0 ~ a/sinhs + O(a?). (3.95)
Now since we want to expand our expressions for small «, it is easiest to use s as the
optimization parameter in evaluating the purification complexity, in analogy to eq. (5.78).3

In the physical basis, the single mode purification complexity is given by minimizing
eq. (3.44). Hence we must evaluate the expressions there in terms of s and in a small «
expansion using egs. (3.46) and (3.95) as well as r = 0. We find*

1 _ 1
5hq“’:;’ — %+, §1nZ—f=s+0(a2). (3.96)
Now we see that eq. (3.44) reduces to
2as

Cooe (1)) = 7] + 17+ s| + +0(a?). (3.97)

sinh s

At the leading order in «, this is minimized when the second absolute value vanishes, which
fixes s = —F = $In(p/w) (which implies § = 0). Further, we note that consistency with

32We have dropped the subscript k on the frequency here to reduce the clutter in our formulae for the
time being. Further recall that the result for 7 follows from eq. (3.31).

33That is, we are assuming that the auxiliary squeezing parameter is positive, i.e., s > 0. Later, we see
that this corresponds to p > w. Footnote 36 comments on the regime s < 0, which corresponds to p < w.

34This contrasts with section 3.2.4, where we optimized with respect to @ as in eq. (3.48).

35Note that the first equation is exact because 7 + § = 27 + s with r = 0.
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our assumption that s > 0 requires that we are in the regime p > w.3¢ Hence in the region
Bw > 1, we find that the purification complexity becomes®”

200 1
LTI L} o)

This result is very close to the complexity for the (pure) vacuum state of a single harmonic
oscillator at frequency w, as expected. Now let us turn to the purification complexity of
the mixed thermal state for the free scalar field theory. As noted above, we expect that it
takes the simple form given in eq. (3.93) or (3.94) given the simple product structure of
the thermal state (3.84). At this point, let us recall the definitions of our parameters for
the thermal state

h:
Cf th (Uth

(3.99)

1 7 1 7

a==1In coth% : F=2ln2k, (3.100)
2 4

As the combination Swy grows, the value of a rapidly decreases, e.g., 1 In(coth (1072)) =

2.3, £ In (coth(10%)) ~ 10~%". Now the momentum integral in eq. (3.94) is dominated by

the phase space near the UV cutoff || ~ A and hence with SA < 1, a will be very small
over a majority of this integration. Further, if the reference frequency p is large enough,
e.g., near the cutoff A, we will have —7 very large over the complementary part of the
momentum integral. Hence, we can expect in a physically interesting setting that, over
the entire integral, either « is small or |F| is large, and this is precisely the regime where
the single-mode purification complexity in the physical basis is given by the simplified
expression in eq. (3.54). Hence we can simplify eq. (3.94) to the following

A pd=2 gl sinh 2«
CPhysstot Qg Vi ———— (sin 26, + cos 26,) sinh™* 3.101
Ci th (B, 1) = Qa—2Va /0 (2)-1 ( ¢ c) sin 246.. ( )
36Let us add that if we assume s < 0, we are lead to the following approximation
T Q@
f=— — ° ith
2 sinh|s| +0(?), it
e s, (3.98)
—In 2 =2F +s, ilnI:|s|+O(a2).

The expression for the complexity in eq. (3.97) remains unchanged, and it is again minimized by setting
the second term to zero. Hence, we find s = —7 = 2 In(p/w) as before, but consistency with s < 0 now
requires that we are in the regime u < w. The final expression for the purification complexity (3.99) also
remains unchanged in this regime.

3"Note that the w — g limit of this expression agrees with the complexity of the thermofield double
Cf}t“,’: — 20, as expected from the results of section 3.2: namely, that the optimal purification for states
with w = 1 is the thermofield double.
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where both 6, and « are implicitly functions of k — see egs. (3.53) and (3.100). However,
it is still hard to explicitly do the remaining integral without any further assumptions.
If we assume the small « limit is valid over most of the momentum integral, we can use
eq. (3.99) to simplify the purification complexity to

ln(coth%) lnwi
+ 2 (3.102)

VW — N/ wr/

where we use the notation w;, = vk% + m? and where we have only dropped the higher
order terms in the o expansion. Note that this approximation of the integrand is valid in
the UV portion of the integration. In this case, the first term simply reproduces the vacuum
complexity (i.e., the zero temperature complexity) and hence the purification complexity
has precisely the same UV divergences as the vacuum complexity (for one copy of the
underlying QFT). Of course, this feature is identical to what we found for the diagonal
basis. Further, this approximation is valid more generally in the full range of integration
in the situation where fm > 1. In this case, the second term gives the leading finite

temperature corrections to the vacuum complexity, which are suppressed by factors of
—pm/2
€ .

A pd—2
phys,tot k: dk ]‘ lu“
1,};h (8, 1) =~ Qcl—2vd—1/0 W [5 ’hlw_k

3.4.5 Mutual Complexity of TFD States

In this section, we compare the purification complexity of a thermal mixed state with
the complexity of the corresponding TFD state, using a quantity known as the mutual
complexity. We follow the nomenclature introduced by [189] in considering the holographic
complexity of subregions.

Consider a pure state |W45) on a collection of degrees of freedom comprised of two
subsystems, A and B. There are two mixed states that are naturally constructed here,
namely, the reduced density matrices,

pa="Trs(|Was) (Yasl),  ps=Tra(|Vas) (Yasl)- (3.103)

It is clear that each of the purification complexities for p4 and pg is less than the complexity
of the original pure state. That is, since |V 45) provides one particular purification of p4,
it is unlikely to be the optimal purification and so we have the inequality

C(pa) = min C(|¥.aa:)) < C(|Vup)) (3.104)
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Figure 3.7: Illustration of the optimal purification of two mixed states in two complemen-
tary subsystems A and B of an original pure state |¥) ,... The state in the subsystem
A is purified by a state |¥) ,,. and the one in the subsystem B is purified by |¥)gpg..
Even though the direct product of the purifying systems |¥) , o ® |V) 5. generally has a
larger number of degrees of freedom than the original state |¥) ,,, the mutual complexity
eq. (3.105) can have either sign.

as well as the analogous inequality for pg. Implicitly, we chose the same cost function and
basis to define the circuit complexity of the pure state |¥ 45).%

As illustrated in figure 3.7, it is also obvious that in building the pure state, e.g., |W 44¢),
from the corresponding unentangled reference state, the circuit should only work hard
enough to establish the correlations found in p 4 amongst the physical degrees of freedom.
However, it need not establish an analogous set of correlations (in particular, analogous UV
correlations) amongst the ancillary degrees of freedom. Similarly, the correlations between
A and A€ in | ¥ 4 4¢) need not precisely mirror those between A and B in |V 45). As discussed
in the introduction, the mutual complexity is constructed to quantify the additional
correlations in the original pure state with the following difference of complexities,

AC = C(pa) + C(ps) — C(|Was) - (3.105)

This quantity was introduced in [189], where it was studied for subregions in the context
of holographic complexity. The structure in eq. (3.105) was chosen to parallel that of the
mutual information, which can be defined by a similar difference of entanglement entropies.
However, whereas the mutual information is always positive (or zero), we cannot prove that

38Note the choice of basis is important in establishing the inequality for the F; cost function, which we
are implicitly using here. For example, in eq. (3.104), we are not claiming that C?"* (p4) < C{*8 (| ¥ 4)),
even though C#8 (|¥ 4)) may seem the natural definition for the complexity of the pure state. Of course,

the basis choice does not play a role for covariant cost functions such as F5.
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AC is always positive or negative from the basic definitions of complexity and purification
complexity. Hence the sign of the mutual complexity is nontrivial.

In the present case, the pure state of interest will be a TFD state, i.e., |V 45) = |TFD),
which can be regarded as an entangled state of two copies, i.e., the left and right copies,
of the underlying QFT. The corresponding mixed states will both be the thermal state
(3.84), which is produced by tracing over either the left or right degrees of freedom, i.e.,
pa = ps = pm(B). That is, we will consider

AC =2C(pum(P)) — C(ITFD)) . (3.106)

Again, while the TFD state provides one purification of the thermal mixed state, it will
not generally be the optimal purification.’

Another noteworthy feature of the mutual complexity (3.106) is that we expect it to be
UV finite for the TFD state. This expectation arises from our previous observation that
the UV divergences in the purification complexity of pg,(5) precisely matched those found
in the vacuum state of one copy of the QF T, while the TFD state doubles the prefactors in
those UV divergences. Hence we will see that these divergences cancel in our calculations
below.

We refer to complexity models with the property that the mutual complexity is always
positive as satisfying subadditivity since in these cases the complexity of the combined
state W 45 is less than the sum of the complexities of the two reduced density matrices, p4,
and pp [171] — see also the discussion in [190]. In the same way, we refer to complexity
models as satisfying superadditivity if AC is always negative. Further, in Chapter 4, we
will also see that the mutual complexity plays a role in distinguishing different holographic
conjectures for the complexity of mixed states.

3.4.5.1 Mutual complexity in the diagonal basis

Let us begin with the TFD state entangling two modes. Eq. (3.18) shows that |[TFD),,
is the two-mode squeezed state with » = s = 0, and from eq. (3.30), we can see that its

39Let us point out that by examining figure 3.6, we find that there exist situations for which the TFD
state is the optimal purification, but this requires SA to be an order one number. However, we regard
such a situation where the temperature is of the same order as the UV cutoff as unphysical.
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circuit complexity with the F} cost function in the diagonal basis reads [(8]

. 1 1
i (TFD)y) = 310 +af + [T —al
In £ for coth(%“’) <k,
(3.107)
=4q In COth(%w) for tanh(%w) <E< Coth(%“’),
In % for £ < tanh(22).

Here we have expressed the three parameter regimes in the same way as they appears in
eq. (3.75) for the purification complexity of the thermal mixed state. Obviously, the results
in the intermediate regime are the same in both cases because the optimal purification for
the thermal state in this region coincides with the TFD state, as shown in section 3.4.1.
As noted in eq. (3.106), the two subsystems are described by the same mixed state, i.e.,
P12 = Uy, and hence the mutual complexity of this TFD state in the diagonal basis
becomes

ACI™(|TFD),,) = 2 (1) — Ci**(|TFD),) (3.108)
Combining egs. (3.75) and (3.107), we find
111(%) for wcoth(%w) <u,
AC{**(ITFD) ;) = { In coth(Bw/4) for wtanh(%) < pu < weoth(2),
\ ln(%) for p < wtanh(2?).

(3.109)
It is straightforward to show that this result for AC{™(|TFD),,) is positive and decays
exponentially with increasing frequency (yielding zero in the limit Sw — o). Using the
nomenclature introduced above, we have found that in the diagonal basis, the C; complexity
is subadditive for these thermal states. In order to be able to compare with the equivalent
results in the physical basis which will appear in section 3.4.5.2, we plot AC{™*(|TFD),,)
in figure 3.8.

Now let us evaluate the mutual complexity (3.106) of the TFD state in the free scalar
theory. Because of the product form of the TFD state and the corresponding thermal
density matrices (3.84), the mutual complexity simply requires summing eq. (3.109) over
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Figure 3.8: The integrated mutual complexity in the diagonal basis, i.e., ACii “¢ (|TFD))
defined in eq. (3.111) for a massless field theory in different dimensions.

all of the modes, i.e.,

ia E42dk )
AC{™ (|TFD); 8, i) = Qd2vdl/ AC™ (ITFD),y ; B, wg, 1) - (3.110)

f<a (2m)41

Using our previous results, it is easy to show that there are three possible expressions
depending on the relation between the cutoff frequency wy and the critical frequencies,
We,1 and we o, defined in eq. (3.87). We find

A 7.d—2
i k*“dk -
ACES (ITFDY) (8, 1) = Qu-2Va s / Rk ot (24
0 (27T)d71 2
( QuqaVi 1f0 @niT dk i for wy <wes,
+ { Qa2Vi < e k;r 2T+ fk AT k;; el -72) for wer <wn <wep,
Q V. fclkd2dk[+fczkd2dkj+f dede f <
d-2Vd-1\ Jo (@ma-1 i1 keq (2ma-1 42 ke (2m)a-1 *3 OI We2 = WA -

(3.111)

The first line is a “universal contribution,” which is common to all three cases, and the
expression on the second line is determined by the relationship between the cut-off and the
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critical frequencies, with

B p — wi tanh(Bw;/2) B coth(fw;/4)
h- (o) (o)

B wp — ptanh(Swz/2)
o=l (w’; - ucoth(ﬁw§/2>> | (3112)

First, let us observe that as expected the mutual complexity A% (|TFD)) is finite. In
particular, the terms that could potentially produce UV divergences, i.e., |In £-|, and that
k

would appear in the complexity of the TFD state and the thermal state (as well as the
vacuum state) separately, have been fully canceled in the mutual complexity.

In order to produce explicit results, let us focus on the massless field theory. For
simplicity, we also assume that p > A (as well as uf > 1), which assures us that we
are in the first regime, i.e., wp < we1, in eq. (3.111). Further, this assumption allows us
to use k/u as an expansion parameter in the second integral below. Now the universal
contribution coming from the first line of eq. (3.111) yields*®

ACdiag’(O)(|TFD>)‘ =g 2Va /A M In coth(Bk/2)
1 m=0 o (2m)d!
Qaa .4 d—1
= (it (= DC@N( = 1) VT (3.114)
29 -1 .

= 9d—14 S (pen) ‘mzo )

where the expression for the thermal entropy was given in eq. (3.92). Note that because the
integral is UV finite, we have taken the upper limit of the integration to infinity. Turning

40Certain integrals relevant for the complexity can be evaluated analytically with m =0, e.g.,

/Oo K™ Incoth(Bk/2) dk — - — DT+ 20 +2) >0,
/OO v dk = ("~ D0+ 1)¢(n +1) forn>1 |
o sinhpBk on gn+1 ’ =
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to the second contribution, we find*!

. A pd=2qL — k tanh(pk/2)
A diag,(1) TFD - O, B / 1 H
¢ (1 >)|m:0 d-2Va-1 o (2m)d-1 n w— k coth(pk/2)

M2k [k 2 5 o
~ Qd2Vd1/0 (27‘(’)d_1 |:p S]nhﬁk +O(l€ //JJ ):| (3115)

= AC#O(TFD))| {Q(d —1) % + O(TQ/;P)} .

Hence for the massless theory, the universal contribution (3.114) is proportional to the
thermal entropy, while the second integral modifies this result with a series of corrections
suppressed by powers of T'/u. Note that both eq. (3.114) and the leading correction in
eq. (3.115) are positive, and hence the mutual complexity of the thermofield double state
exhibits subadditivity, for the massless scalar in the diagonal basis. Of course, this had to
be the case since eq. (3.109) is always positive.

For a small mass, we can also evaluate the integrals for the massive theory to find
additional corrections suppressed by powers of m/T. The leading contribution comes from
the universal correction, which can be rewritten as

k2dk . ePer 41
n
(2m)d=1 " efwr — 17

Acfiag,(O)qTFD» _ QdZV;ll/

Qg o a3
= (27TdT2—1 Vd_le_l/ dz z (z* — 8°m?) I coth(z/2) ,

where as usual, w? = k? + m?, and in the second line, we defined = fwy. For d = 3, the
integral yields a relatively simple analytical answer

(3.116)

m

A O(|TFDY)|,_, = ‘/22:2 [ — *m? (% pm + z%)
—fm [Lis (e™™) + Lip (™) + Lis (e™™) — Lis(—e™"")] ]
Vs T2 2
= [7¢(3) + % (2 m(%) - 1) o) (m?’/T?’)} . (3.117)

“IThe term we have neglected in the second line, i.e., (9(/4;2 / ,uQ), is also proportional to e~*# when the
momentum is large with respect to the temperature, which makes it convergent.
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where Li,, denotes the polylogarithm function. For d > 3 (and m/T < 1 again), one finds

i Qao Vg T [ d—3
diag,(0) ~ d—2 Vd-1 -2 22 d—4
AC; (|TFD>)|d ~ (2m)iT /mﬂ dx {x N B m* x } In coth(z/2)
Qo Vg T71
~ (247:1);_1 {(zd —1)¢(d)T(d —1) (3.118)

2

— (21 = 2)¢(d — 2)T(d — 2) % +O(m? /T3)} .
Of course, the leading contribution above (and in eq. (3.117)) matches the universal result
for m = 0 in eq. (3.114). Note that the m?/T? correction to the integrand in eq. (3.118)
vanishes for d = 3. Hence in eq. (3.117), the correction at this order comes entirely from
the modification to the lower limit of the range of integration. In contrast for d > 3, the
change in the lower limit of integration yields a higher order correction of order (Bm)41,
i.e., this contribution is higher order than the (3m)? term retained in eq. (3.118). We also
note that for both d = 3 and d > 3, the leading correction is always negative. However, in
this regime with m/T < 1, the mutual complexity is still dominated by the leading term
(3.114), which is positive. Hence the complexity of the TFD state remains subadditive in
this limit. Of course, this had to be the case given the positivity of eq. (3.109).

3.4.5.2 Mutual complexity in the physical basis

We now turn to evaluating the mutual complexity of the TFD state in the physical basis.
For a single mode, the TFD state (3.18) is obtained from the general purification (3.22) by
setting r = s = 0. Using egs. (3.31) and (3.40), we can demonstrate that this corresponds
to

1 1/ In¢ =2
X_=1, 0= wy = wet?® —lnw—+:2a, H:—( " 3) (3.119)

7
4’ 27 w_ 2\ —2a In m
It is then straightforward to show that the complexity of the TFD state (3.18) is given by

" ln%—i—lncoth(’%‘“), w<u,
ln—‘ +2a = (3.120)
w Bw
K ln;—l—lncoth(T), W > .

el

TFD),,) =

This result is consistent with the complexity derived in [08] using the F; cost function —
see eq. (138) in [08] with C™ = |In A| 4+ 2|a| and note that the physical basis was denoted
as the LR basis there.
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Figure 3.9: The mutual complexity AC;™ (|TFD),,) as defined in eq. (3.121) with fixed
F= %ln% < 0 as a function of a. We find that the quantity AC?™® can be either positive

or negative. The right plot is the region with 7 near the transition point ¥ = —2.177.

As before, the two reduced density matrices are pq 2 = Uy, and we wish to evaluate the
mutual complexity of the TFD state but now in the physical basis:

ACY™ (|TFD)y,) = 2C7" (0w) — €™ (|TFD),) - (3.121)

The purification complexity C}™*(0y,) is defined using eq. (3.48) and C}™* (|TFD),,) is given
in eq. (3.120). This expression is evaluated numerically in figure 3.9, and we note that in the
physical basis, AC}"™* (|TFD),,) does not have a definite sign. That is, eq. (3.121) may be
positive or negative depending on the parameters, which contrasts with the corresponding
expression for the mutual complexity always being positive in the diagonal basis.

One can gain some analytical insight into the above result by focusing on the limit
of small «, i.e., large fw. Combining egs. (3.99) and (3.120), the single-mode mutual
complexity (3.121) becomes

ACT™(ITFD),,) = 2C1" (0m) — 7" (|TFD),,)

~ 2 ( 2In, 1) +O(a?). (3.122)

Vilw —Jwln

Comparing to figure 3.9, we see that this leading expression captures the linear behaviour in
the vicinity of a = 0, and that the sign of the slope determines whether the corresponding
mutual complexity will be negative over some range. Further, eq. (3.122) shows that the
slope is determined by the ratio p/w (or alternatively by 7 = 3 In(w/p)). We also observe
that this slope (i.e., the function multiplying 2«) is invariant under £ — f The transition
between positive and negative values of the slope occurs at

217 = |In 2| ~ 4.35464 - - - . (3.123)

92

— 7 =-216

— T =-=217

— 7=-218

— r=-219

— r=-220



That is, AC;™*(|TFD),,) is entirely positive (for all values of «) in the region 0.01285 <
w/p S 77.84, or alternatively |F| < 2.177, and it has negative contributions (for small
values of «) outside of this range. Of course, these results precisely match those found
numerically, as shown in figure 3.9.

Now because of the factorization of the thermal state in free field theory, the cor-
responding mutual complexity is given by simply summing eq. (3.121) over each of the
modes,

di1k

ACP™ (|TFD)) = Vg / (it 2E (0] = G

TFD),,)] . (3.124)

It is possible to demonstrate that this expression for the mutual complexity in the physical
basis is finite by considering the small « limit in eq. (3.122), which demonstrates that
the mutual complexity is exponentially suppressed for large momentum, hence resulting
in a convergent integral. Although evaluating this expression analytically is a challenge,
it is straightforward to evaluate this mutual complexity numerically. Figure 3.10 shows
the mutual complexity AC}™ (|TFD)) for a massless free scalar in d = 2, as an example.
Varying the reference frequency from IR scales to UV scales, we see that mutual complexity
begins with negative values for Su < 1, then rises to positive values at intermediate scales
with Su ~ 1, and finally becomes negative again for Su > 1. In other words, the mutual
complexity ACY™ (|TFD)) can be negative when the reference frequency is very large
or extremely small. This again stands in contrast with the diagonal basis, where the
corresponding mutual complexity was found to be positive for all values of the reference
frequency.

Using a change of variables k¥ = Sk in the integral in eq. (3.124), it is possible to
extract an overall coefficient proportional to the entropy (3.92) of the massless theory, i.e.,
Vy_ 179! ~ S,,. The remaining integral is a function of the dimensionless parameter 3.
Finiteness of the result in the limit Su > 1 requires that this function will approach a
constant.*? Hence, the resulting mutual complexity is proportional to the entropy in this
limit.

3.5 Circuit Complexity of Vacuum Subregions

In the previous section, we considered the purification complexity for thermal states of
a free scalar QFT. In this section, we proceed with the QFT applications by considering

42Though it is not immediately obvious from the plot in the right panel of figure 3.10, we were able to
confirm that in the limit of large Su, the result approaches a constant.
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Figure 3.10: The integrated mutual complexity in the physical basis ACY™ (JTFD)) in
eq. (3.124) for a massless free scalar field theory in d = 2 as a function of Su. The two
plots show different regimes of the parameter Su. The integrated mutual complexity is
negative when [y is very small or very large.

mixed states on finite subregions of the vacuum state of a free scalar QFT. As in section
3.4.2, we regulate our field theory on a spatial lattice in order to obtain a finite result for
the purification complexity. We evaluate the complexity and the mutual complexity both
in the diagonal basis, and also in the physical basis, and comment on the sign of the mutual
complexity in both cases. Our results are primarily evaluated numerically, and so we limit
ourselves to considering the free scalar in two dimensions on a circular lattice. To illustrate
the different bases relevant to this problem, in appendix A, we study analytically examples
of small lattices with four coupled oscillators and reduced density matrices associated with
subregions consisting of half of the oscillators.

3.5.1 Purification Complexity in the Diagonal Basis

Here we study the diagonal basis complexity and mutual complexity of density matrices
of different subregions of the vacuum state of a discretized free scalar theory in two di-
mensions. We focus on a circular lattice of oscillators. We state the problem in terms
of matrices on this lattice, and then describe the algorithm we used in order to find the
complexity numerically. We then present our results for the complexity and the mutual
complexity. Further, in discussing our results, we focus on the case of a very small mass
in order that the results might mimic those of a holographic CFT.
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3.5.1.1 Set-up

We begin with the lattice of harmonic oscillators (3.79) realizing a regularization of a free
quantum field theory (3.78) on a one-dimensional circle of length L with N oscillators and
lattice spacing § = L/N. The various oscillators are located at sites z, wherea =1,..., N
and we impose periodic boundary conditions Z 1 := Z;. The Hamiltonian in normal mode
coordinates zj defined in eq. (3.80) is given by eq. (3.83) and the complex coordinates are
related according to z; = xn_k.

The ground state wavefunction of this system of harmonic oscillators is straightforward
to find in normal mode basis*3

Uo(xy) = ﬂ (%)1/4 exp (—%wk|mk|2) . (3.125)

This can be explicitly written in the physical basis using the transformation (3.80)

Uo(z,) = (det (%))M exp {—%Mabxaxb] , (3.126)

where N
1 2mik
May = ;wk exp {— 7;\; (a — b)} : (3.127)
Next, we partition the system into two subregions A = {Z, Zo, ---, T;} and B =
{Zj41, -+, Ty} and decompose the matrix M as in eq. (3.60)
I' K
M= ( o ) (3.128)

where I' links the oscillators in the subregion A while €2 links the oscillators in subregion
B. The K matrices link the two subregions and are responsible for the entanglement
between A and B. Tracing out the oscillators in B then gives us a density matrix of the
form (3.62)-(3.63), where the matrices A and B are related to M by (3.64)

1 1
A=T-— §KQ—1KT , B= §KQ‘1KT . (3.129)

43Note that eq. (3.125) differs from (2.10) in that we have the magnitude squared of x, instead of simply
the squared of each &j. This is because while we assumed Z, is real, the transformation (3.80) defining x,
is complex. It is possible to use instead the real Fourier transformations involving trigonometric functions
in which case we would find real normal modes Zj and the ground state would be given by (2.10), but we
opt instead to use the simpler transformation (3.80) at the cost of having complex x.
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If K =0 then B = 0 and we have a pure state. This is to be expected since without
K there is no entanglement between the two regions and both wave-functions are pure:
Ui =V y® Vg

In this section, our goal is to calculate the purification complexity of the density ma-
trix (3.62) obtained by the procedure above. Although the numerical minimization for
purification complexity is always possible in principle, the number of free parameters will
increase rapidly with the size of the subsystem, which means that we will need much more
time in order to perform the numerical minimization for a larger lattice. Instead, we have
claimed in section 3.3 that even for density matrices that are not simple products of sin-
gle modes, mode-by-mode purifications can be used to provide a good approximation of
the optimal purifications. Hence, here we have taken the strategy to focus on mode-by-
mode purifications in the numerical minimization for the complexity of the mixed state in a
given subregion p4. We expect our results presented later will approximate the purification
complexity C{*® for subregions of the vacuum.

In order to find the purification complexity using a mode-by-mode approximation, we
have followed the following algorithm. We begin by computing the parameter matrix M, in
eq. (3.127). Next, given a partition of our system AUB, we compute A and B using (3.129).
We then diagonalize A with an orthogonal transformation O, by Dy = 0O4AO7%, and
proceed to rescale the entries of A by D;l/ ?. 'We then diagonalize the B = Di‘/ e, ABOZ;DX 2
matrix in this new non-orthogonal basis** with an orthogonal transformation Og by Dp =
OB];’OE. The density matrix in the non-orthogonal basis = = OBDX 047 = RT now
takes the following form

A—B 1
oAl ) = |det R [det (T) [Tew [—5@2 @) + b

where the number of non-zero eigenvalues b; indicates the number of ancillary oscillators
which are necessary in order to purify the density matrix. We proceed to purify the mixed
state p4 with a mode-by-mode purification in this non-orthogonal basis, i.e.,

pa=Tracpasc, pasc = |Vaa)(¥Yasl, (3.130)
with 12
1 :

U yae (T, 1) = —— (14 b)3? — y? — kifgys | 131

AA (xzayz) Nl:[exp [ 2( + z)xz 4bzyz 1LY (3 3 )

44The basis is non-orthogonal for non-commuting A and B because of the rescaling by D4 between the
two orthogonal transformations O4 and Op.
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We return to the orthogonal basis 2 = R~'% with

Waue (7, y5) = Nexp [—%(z,y).MA~ ( ;j )] , (3.132)

and find the eigenvalues \; of M 4. Finally, we minimize the complexity Cf g _ % > |ln%|
over the free parameters k;. For some of the subregions considered, this minimization has
to be done over an O(10%) number of parameters. Fortunately, in our problem at hand,
dividing this minimization into a sequence of minimizations over O(1) parameters indeed
reaches the global minima of the function to be optimized.*®

Obviously, we can follow the same process to derive the purification complexity for the
complementary subregion pg. Following the analysis in section 3.4.5, we can define the
mutual complexity for subregions in the diagonal basis as

ACT™® = €™ (pa) + C1(ps) — C*(|Wo)) . (3.133)

3.5.1.2 Numerical results in the diagonal basis

Throughout the following discussion, we have set the mass to mL = 0.01. Again, our aim
is that by setting the mass to such a small value, our QFT results might resemble those
found in holography where the boundary theory is conformal. A comparison of the results
for the free scalar theory and for holography will be considered in Chapter 4.

Dependence on the size of the subregion: First, we find the subregion complexity
as a function of the subregion size for a lattice of 1000 harmonic oscillators for different
values of the reference frequency and plot the results in figure 3.11. For all cases, the
complexity grows linearly with the subregion size up to the expected complexity of the
vacuum. The slope of the plot decreases with increasing reference frequency.

Structure of divergences in purification complexity: For subregions with fixed
size, we plot the cutoff dependence of the purification complexity in figure 3.12. The
large N (or equivalently, the small §) behavior of the subregion complexity with ¢/L =

45Indeed, even taking the minimization over one parameter at a time gives the global minima most of
the time. We found that minimizing over 2 or 3 parameters at a time gave accurate enough results without
requiring too much more computational power.
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Figure 3.11: Purification complexity in the diagonal basis for subregions of the vacuum
as a function of the subregion size. The cutoff was set to N = L/ = 1000 and the mass
to mL = 0.01. The purification complexity for the subregion with ¢ — L agrees with the
complexity of the ground state in diagonal basis.

1/20, 1/10, 9/10 and 19/20 is given by

. (.1 L
C*8(¢/L = 0.05,uL,8/L) ~ —In — + 0.2321n = +0.307 ul +2.08,

26  po
dia, ¢ 1 L
Ci™(¢/L =0.10,uL,0/L) = —1In — + 0.241In — + 0.312 ¢ + 2.11
20 po o
, 14 1 L
Cflag(f/L =0.90,uL,6/L) ~ by In E + (0.542 — 0.304p¢) In 3 + 0.340 u¢ — 0.308,,
: / L
C;hag(g/L =0.95,uL,6/L) ~ ~os In E + (0.383 — 0.147 pf) In 3 + 0.329 pul + 0.688 .
(3.134)
These suggest a divergence structure of the form*°
: 1 L
Cl*8(¢0/L, uL,6/L) ~ — |In E‘ +fipl ¢/L)In < + fo(ul, ¢/L) (3.135)

46Note that the fits in eq. (3.134) were obtained using the data for large values of L/§, i.e., L/§ > 300
in figure 3.12. Furthermore, we kept puL fixed in these fits (and plots). Therefore, the fits correspond to
a region where pd is small. More generally, one could consider reference frequencies of the order of the
cutoff, or even larger. The intuition from the pure state results (see footnote 47) leads to the conclusion
that there should be an absolute value on the logarithmic factor, as we write in eq. (3.135).
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Figure 3.12: Purification complexity in the diagonal basis for subregions of the vacuum
as a function of the lattice cutoff. The mass was set to mL = 0.01. The different plots
correspond to different subregion sizes ¢/L = 0.05, 0.1, 0.9 and 0.95 as indicated and
each plot contains five different reference frequencies of L. = 100, 200, 300, 400 and 500
respectively.

where f; and fy are dimensionless functions, which are independent of the cutoff scale 9.
We note that the leading divergence matches the results found in [62,69] for the full system
with ¢ — L.

In eq. (3.135), we have found the structure of divergences for our system with mL =
0.01, which was chosen to emulate a massless field theory. In the case of a massive theory,
i.e., mL 2 1, we expect that the divergence structure is again as in eq. (3.135), except that
the coefficients f; and fs would now also depend on the additional mass parameter, e.g.,
fi = fi(uL,¢/L,mL) and fo = fo(puL,€/L,mL). On the other hand, we expect that the
UV divergence in the first term is a universal volume term, as in the massless theory. This
contribution represents the cost required to prepare the ground state entanglement at very
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short scales, while the other terms depend on the details of the QFT (e.g., the mass).*”
The structure of UV divergences is similar for holographic complexity, as we examine in
section 4.3.

Mutual complexity in the diagonal basis for subregions: The numerical results
for the mutual complexity (3.133) are shown in figures 3.13 and 3.14. We observe that
the mutual complexity in the diagonal basis is positive for all of the subregion sizes shown
there. However, we do not have an analytic argument that proves that this should be
the case in general. The mutual complexity rises dramatically for small subregion sizes
in figure (3.133), and then it continues to increase as the subregion size grows until the
subregion reaches half of the system. Further, AC is symmetric under ¢ — L — {. It has a
positive logarithmic dependence on the cutoff which comes from the subleading divergence
in the complexities. Looking at eq. (3.134), we observe that while fi(uf) + fi(u(L —£))
becomes negative for large enough reference frequency, this contribution is offset by the
negative coefficient of the logarithmic term in the vacuum complexity (see footnote 47) to
produce an overall positive cutoff dependence in the mutual complexity, as can be seen in
figure 3.14.

3.5.2 Purification Complexity in the Physical Basis

In this subsection, we investigate the behaviour of the physical basis purification complexity
thys for subregions of the vacuum for a two-dimensional free scalar QFT on a circular
lattice. The procedure to do this is very similar to the algorithm introduced in the previous
section. In fact, the only difference comes after finding the purification matrix in the

47In particular, we found that the complexity of the full ground state is, using eqs. (2.19) and (3.80),

ing L 1 1 m2L?
C1%8 (po) = —In (ud) + =In [ — ) — O(m*, m26* 3.136
1) = gt (u8) + gt () = T 4 Ot ), (3.136)
where here we assumed p > ,/(;% + m?2 in order to obtain this simple analytic form. Alternatively, for

1 )_m2L2 ~
mL 8

%1n ( mlL) ~ 2.30, although this zero mode contribution would diverge in the m — 0 limit. For intermediate

values of the reference frequency m < p < 4/ g% + m?, numerical fitting show the same leading divergence
and a subleading logarithmic divergence C{*%(j,) = £|In (u8) | — f(uL)|In(ud)| + finite, with f(uL) ~
4.10 x 10~ 7(uL)*85 > 0. We used the parameters mL = 0.01, uL = 20, 40, 60, 80, 100, 200, 300, 400, 500
for data with L/§ = 1 to 10%, and found fits for the large L/§ behaviour.

1 < m, the same result is obtained up to an overall minus sign. For the values we chose, %ln (
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Figure 3.13: Subregion size dependence of the mutual complexity in the diagonal basis
ACT™ for different reference frequencies pL = 100, 200 and 300. The cutoff was set to
0/L =1/N =1/1000 and the mass to mL = 0.01.
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Figure 3.14: Cutoff dependence of the mutual complexity in the diagonal basis ACS*8 for
different reference frequencies L = 100, 200, 300, 400 and 500. The subregion sizes were
fixed to ¢/L = 0.1 and 0.05 and the mass to mL = 0.01.

position basis in eq. (3.132). From the purification matrix in the position basis

Tpos K pos
) , (3.137)

My = <(KPOS)T Qpos

we rotate the physical modes and the ancilla modes independently to diagonalize ['P*® and
QP according to

s R 0
MA — M_ihy = RthsMARghysa Rphys = < 0”4 RAC> , (3138)
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where Ry € SO(N4, R) and Rge € SO(N e, R) such that TP = R TP RT and QPys =
RAcQP*RY. are diagonal. Finally, the generator matrix HP™* can be found by taking the
matrix logarithm of the parameter matrix in this basis as

1 [ e
HPDYS — 3 ln< A ) : (3.139)

Ju

The physical basis complexity of these purifications is defined by

Na+N ge

C™ (pa) =min Y [HE™|, (3.140)

a,b=1

where we need to minimize the purification complexity over the free parameters k; which
were introduced in eq. (3.131).

3.5.2.1 Numerical results in the physical basis

Again, we set mL = 0.01 throughout the following. By setting the mass to such a small
value, we expect that our QFT results might behave similar to those found for a holographic
CFT.

Dependence on the size of the subregion: We plot the purification complexity
in the physical basis as a function of the subregion size for a lattice of 100 harmonic os-
cillators for different values of the reference frequency in figure 3.15. Unlike the diagonal
basis complexity, we find that for subregions approaching the full system, the physical
basis purification complexity can increase beyond the complexity of the full system before
decreasing rapidly to the full system complexity. At first sight, this might seem contradic-
tory, since the ground state is one of the possible purifications over which the purification
complexity is minimized. However, the complexity of the ground state in the physical basis
partitioned by A and A¢ can be greater than the complexity of the ground state itself. In
fact, the purification complexity in the physical basis should be less than the complexity of
the ground state in that same basis. In the right panel of figure 3.15, we compare the pu-
rification complexity in the physical basis C*™5(p4) to the complexity of the ground state
C{*B(|¥,)) in the basis which does not mix the degrees of freedom in the subsystem A with
the modes in the complementary region B. Indeed, we find that C?™(p4) < CAB(| W)
for all subregions A and the inequality is only saturated when A encompasses the entire
system (i.e., {/L = 1). Note that comparing C "8 (p4) with the complexity of the ground
state C8(|¥y)) in the diagonal basis, we find that the above bound does not hold. In
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Figure 3.15: Left panel: subregion complexity as a function of the subregion size in physical
basis for reference frequencies ul. = 0.1, 1, 10, 100, 1000. Right panel: comparison of
the subregion complexity to the complexity of the ground state in the physical basis for
pL = 100. In both plots, the cutoff was set to to L/§ = N = 100 and the mass to
mL = 0.01.

particular, the figure shows that for large subregions (i.e., /L 2 0.6), the subregion com-
plexity exceeds that of the ground state in diagonal basis (but, of course, they coincide at
(/L =1). There is no contradiction in finding C*™*(p4) > C{*(|¥,)) for some subregions
since the two complexities are evaluated using different gate sets. As noted above, when
the complexities are evaluated using the same basis, the subregion complexity is smaller
than that of the vacuum.

Structure of divergences in purification complexity: For subregions with fixed
size, we plot the cutoff dependence of the purification complexity in figure 3.16. The
large N (or equivalently, the small §) behavior of the subregion complexity with ¢/L =
1/10, 9/10, 1/20 and 19/20 is

.1 L
phys _ ~ 1y — - —
CP™*(¢/L = 0.05,uL,6/L) = 5<In " +3.31In ~ +0.149 u — 6.54,
.1 L
CP*(¢/L =0.10,uL,6/L) ~ — In — 4 3.601n = + 0.253 uf — 5.79 ,
20 b 5
) P . (3.141)
PhYS(p/[ = 0.90, uL,0/L) ~ — In — + 4.741In = + 0.343 pf — 13.1
Cy™(e/ 0.90, uL,d/L) 25n/u5+ 7 n5+03 3l —13.1,
.1 L
CP™(¢/L = 0.95, uL,6/L) ~ 55 w5t 5.041n = +0.333 il — 14.5.

These fits suggest a divergence structure for the subregion complexities in the physical
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basis of the form?*®

0
CP*(uL,5/L) ~ % (3.142)

L

Similarly to the discussion for the diagonal basis, we expect the structure of divergences
in the physical basis to be the same as in eq. (3.142) for more general cases, except that
the coefficients f; and fy; will depend on the other parameters of the system. For example,
for a massive scalar QFT, we expect f; = fi(uL,¢/L,mL).
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Figure 3.16: Subregion complexity in the physical basis as a function of the cutoff N = L/§
for ¢/L = 0.05, 0.1, 0.9 and 0.95. The mass was set to mL = 0.01.

Mutual complexity in physical basis: We plot the mutual complexity in the phys-
ical basis

ACP™® = CP™(pa) + CP™(pg) — CI™(|Wp)) (3.143)

48 As mentioned in footnote 46, our fits were made for small §/L with uL fixed. In general, we expect
the leading term to be the absolute value of the logarithmic term. Our resolution in the physical basis fits
was not high enough to rule out a term of the form fo(uL,¢/L) £ where fo(uL,¢/L) < O(1072).
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in figure 3.17, which we observe to be negative for all of the subregion sizes shown there.
However, some explanation is required here. The mutual complexity (3.143) will be differ-
ent depending on whether the physical basis for the three states considered is fixed to be
one which separates A and/or B from the rest of the degrees of freedom, or if the physical
basis is considered for each state independently. More precisely, the physical basis for p4
(and pg) will be a basis in which the A and A¢ (and the B and B¢, respectively) degrees of
freedom are kept separate. However, for the ground state, there is no natural partition of
the system into A U B independently of the density matrices p4 and pg. Therefore, if the
physical basis in the evaluation of the complexity of the ground state were to be considered
independently of the other two complexities, we would find that the physical basis for the
ground state corresponds to all of the degrees of freedom in the system, and the physical
basis would coincide with the diagonal basis. Therefore, to be more explicit, we define two
mutual complexities in the physical basis

ACE™* = CP (p4) + CP5 (ps) — C15(|W0)),
ACP™ = C{ (p.a) + CF% (ps) — CI™(|W0)) ,

where C48 denotes the physical basis complexity of a state given a partition of the system
into AU B. Tt is natural to expect that ACP™ < ACP"™®, since the difference between
the two definitions in eq. (3.144) is the subtraction of the vacuum complexity in two
different bases. More precisely, the Ci{*8(|W¥,)) evaluates the complexity of the ground state
subject to the additional constraint that the A and B degrees of freedom remain separated.

Being a minimization with additional constraints compared to C8 (W), it follows that
CLB(|Wo)) > C28(|Wy)) from which the above conclusion follows.

(3.144)

Just like the mutual complexity in the diagonal basis, we observe that both of the
mutual complexities in the physical basis increase in magnitude as a function of the sub-
region size, reaching maximum at ¢/L = 1/2, and are symmetric about this point. The
Aéf S shows similar behaviour to the diagonal basis mutual complexity: it is positive and
depends logarithmically on the cutoff. Again, this logarithmic dependence comes from the
subleading logarithmic divergence of the complexities. The subleading divergence in the
subregion complexities in the physical basis are positive, while the subleading divergence of
the complexity of the ground state is negative for all cases studied here (see footnote 47).
On the other hand, the ACY s {5 negative and decreases linearly as a function of the cut-
off. This contrasts with the logarithmic cutoff dependence of the mutual complexity in the
diagonal basis in figure 3.14. The negative linear dependence of AC{’hys on the cutoff is due
to the vacuum complexity in the AB basis having a subleading positive linear divergence,
which is not present for the diagonal basis.
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106



Chapter 4

Holographic Complexity of Mixed
States

In the previous chapter, we investigated the purification complexity for Gaussian mixed
states in free scalar quantum field theory. In particular, we focused on two examples: the
complexity of thermal states and the complexity of subregions in the vacuum state. The
purpose of this chapter is to review and compare some general features of these results to
those obtained using the proposals for holographic complexity.

In holography, there have been two different proposals for the gravitational dual of sub-
region complexity. These proposals are extensions of the complexity=volume (CV) [55,50]
and complexity=action proposals [57,58], and they were motivated by entanglement wedge
reconstruction, i.e., the understanding that the reduced density matrix of a boundary sub-
region encodes the dual entanglement wedge in the bulk [191-193].) We denote the two
proposals as the subregion complexity=volume (subregion-CV) [11,180] and the subregion
complexity=action (subregion-CA) [l 11] conjectures. A third approach for holographic
complexity was also proposed with the complexity = spacetime volume (CV2.0) conjec-
ture [115]. Hence in the following, we also discuss the natural extension of this proposal
for the case of subregions, which we designate the subregion-CV2.0 conjecture. Note that
all three approaches for subregion complexity recover the corresponding original proposal
for the holographic complexity of a pure state in the limit in which the subregion becomes
the whole boundary.

Let us add that subregion complexity in holography has been widely explored. See

IThe latter can be proven with the assumption that the bulk and boundary relative entropies are exactly
equal [194,195].
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e.g., [2, 114, 147,156, 161, 162, 164, 165, 169, 171, 180, 190, 196, 196-204]. These include, to
name only a few, general studies of the structure of divergences [114, 114 180], multiple
subregions [117], subregions whose boundary includes kinks/corners [196, 98], subregions
of systems with defects [162], subregion complexity in eternal black hole backgrounds for
subregions consisting of a single boundary [171], and the opposite limit of small subregions
in eternal black hole geometry [169]. We begin below with a brief review of the different
approaches described above and their main properties. We will then review the results of
evaluating these proposals for two examples, which are relevant for the comparison to the
QFT results in the two previous sections: a subregion consisting of a single boundary of
the TFD state (eternal black hole), where we are evaluating the complexity associated to
the thermal state; and a boundary subregion of the CFT vacuum state (empty AdS).

This chapter is adapted from section 6 in [2].

4.1 Review of the Holographic Proposals

The subregion-CV conjecture [1 14, 180] suggests that the complexity associated with a
boundary subregion A on a given time slice is given by the maximal spatial volume
of a codimension-one surface R 4, bounded by the boundary subregion and its Hubeny-
Rangamani-Takayanagi (HRT) surface £4 [26-28,51]:
V(Ra)
C = — . 4.1
V(A) 87%35}4}6)5,4 {GN ebulk ( )
The appearance of an arbitrary bulk length scale, £}, is a somewhat undesirable feature.
In the following, we assume that ¢, = L, the AdS curvature radius. Note that while a
more sophisticated prescription to define ¢y, for black hole geometries was given in [109],
it still yields g ~ L for the planar AdS black holes that we consider below, i.e., see
eq. (4.8).

A second proposal is the subregion-CA conjecture [114], which suggests that the sub-
region complexity is given by the on-shell gravitational action on a particular bulk region
Wy, which is defined as the intersection of the Wheeler-DeWitt (WDW) patch and the
entanglement wedge of the boundary region A [191-193]:

[grav (WA)

™

Cu(A) = (4.2)

In addition to the codimension-one boundary surfaces, the boundary of W also contains
codimension-two joints at the intersection of the boundary surfaces. Similar to evaluation
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of the gravitational action in the WDW patch shown in (2.65), the gravitational action
Ioav (W4) also contains various boundary terms and joint terms, i.e.,

[grav(WA) = Ibulk + IGHY + Inull + Ict + Ijoints . (43)

We point out again that one must also include the null counterterm I introduced in [134]
to restore reparametrization invariance along the null generators.

The complexity = spacetime volume (CV2.0)? conjecture [115] simplifies the CA con-
jecture by proposing that the complexity can be determined by evaluating the spacetime
volume of the WDW patch. The simplification still displays all of the properties expected
of holographic complexity. Our subregion-CV2.0 conjecture is the natural generalization
of this proposal to boundary subregions. That is, the complexity of a subregion A is given
by the spacetime volume of the region appearing in eq. (4.2), i.e., the intersection of the
WDW patch and the entanglement wedge,?

V(Wa)
Cvzo(-A) - GN 12 . (44)
As a pragmatic point, we note that in our calculations below, the integrand of the bulk
action, i.e., the Einstein-Hilbert term, is simply constant with R — 2A = —i—;l. Hence, the
complexity in eq. (4.4) and the bulk action evaluated for eq. (4.2) are simply related by
8T —~
CVQ.O(A) - _7 [bulk<W.A) . (45)

Additivity properties: The various holographic proposals for subregion complexity
differ in several important respects. Cy is superadditive — see section 2.1 of [I71]. That
is, let ¢ be the Cauchy slice on which a pure state is defined, and divide this surface into
a subregion A and its complement B. Then the corresponding holographic complexities
evaluated satisty,

Cv(A) +Cy(B) < Cy(c = AUB), (4.6)

i.e., the mutual complexity (3.105) is negative. Intuitively, superadditivity in Cy is the
result of dealing with positive definite volumes and the fact that the requirement to pass

2An update to the complexity = spacetime volume conjecture, denoted ‘CA2.0°, was proposed in [126].
However, for Einstein-Hilbert gravity with minimally coupled matter, this approach simply reduces to the
CV2.0 proposal. As such, we will not consider it further here.

3The units are naturally absorbed by the AdS curvature scale in the definition here following [109].
Their approach uses the relation C ~ P Vywpw where P = A~ 1/(GNL?) is the ‘bulk’ pressure [207].

_87TGN
Note that the application of these arguments is not straightforward for solutions with nontrivial scalar

hair [126].
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through the HRT surface adds an additional constraint in maximizing the volume. Let us
add that this inequality is saturated in simple examples where the boundary Cauchy slice
defines a time-reversal symmetric state (for which the HRT surface for A and B lies within
the corresponding extremal bulk surface).

Similarly, the subregion-CV2.0 conjecture yields superadditive results. This follows
because the spacetime volume is always positive and further the intersection of the entan-
glement wedge and the WDW patch is a subregion within the WDW patch of o. Hence
it becomes evident that the mutual complexity (3.105) will always be negative using this
proposal. Let us emphasize that there are no obvious simple examples where the corre-
sponding inequality would be saturated, i.e., we cannot easily achieve ACy,, = 0, unless
one of the subregions vanishes.

On the other hand, recall that the calculation of C, in eq. (4.2) involves the length
scale /. associated with the null boundary counterterm. Different values of this length scale
result in C, being subadditive or superadditive in different situations [171] — see also [190].
However, one should expect that the complexity, and hence the leading divergence, is
positive, which partially fixes this ambiguity and further results in C, being superadditive.

Structure of divergences: All three proposals have a leading UV divergence pro-
portional to the volume of the boundary subregion, i.e., V(A)/6%! but the subleading di-
vergences are quite different. The subregion-CA conjecture yields subleading divergences
with any power of §. In particular, in [111], a class of subleading divergences associ-
ated with the boundary of the subregion were identified for the subregion-CA approach,
e.g., V(0A) /6472, Similarly, subleading divergences with any power of delta appear for
subregion-CV2.0, as is easily inferred from the results of [1 1] and the relation in eq. (4.5).
In contrast, it was shown that the subregion-CV approach yields power-law divergences
involving only odd or even powers of the cutoff § for an even- or odd-dimensional boundary
theory, respectively. Hence the V(9.4)/69 2 term does not appear with the subregion-CV
approach.

Before closing let us add that one could easily modify the three proposals in egs. (4.1),
(4.2) and (4.4) by including additional surface terms on the boundaries associated with the
entanglement wedge. Because these bulk boundaries vanish when the subregion expands to
fill the entire Cauchy slice on the holographic boundary, these surface contributions would
disappear, and one would still recover the original proposal for holographic complexity of
a pure state. For example, in the subregion-CV conjecture, one could add an extra term
proportional to the volume of HRT surface £4 to produce the revised conjecture,

V(Ea)
4Gy

Co(A) =Cu(A) +1 (4.7)
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where Cy(A) is the maximal volume expression in eq. (4.1) and 7 is a (dimensionless)
constant that remains to be determined. Our normalization of the second term makes it
clear that we are simply adding a term proportional to the entanglement entropy of the
subregion A, i.e., C,(A) = Cy(A) + 1 Sgr(A). With this revised proposal, the form of the
UV divergences becomes closer to that found with the subregion-CA and the subregion-
CV2.0 approaches, i.e., new subleading divergences associated with the boundary of A
appear. Further, choosing a negative n will ensure that the inequality in eq. (4.6) is never
saturated with C{,(A). On the other hand, if 7 is chosen to be positive, this revised proposal
(4.7) will typically be superadditive (because the mutual complexity will be dominated by
the subleading divergence associated with the Sgg(A) contribution). See section 6.3 for
more discussion about this proposal.

4.2 Holographic Complexity of Thermal States

Here, we apply these holographic prescriptions to evaluate the complexity of the thermal
state, i.e., where the subregion is taken to be one boundary of an (uncharged) eternal
black hole, and to evaluate the mutual complexity of the corresponding thermofield double
state. This system was already studied in [171] and we review their results here.* The
holographic calculation is performed for a two-sided AdSy,; black hole with the boundary
dimension d > 2 and with metric

L2 2

ds* = = (—f(z) dt* +

dz
f(2)

Note that the boundary and horizon geometries are taken to be flat in this geometry. This
eternal black hole in the bulk is dual to a thermofield double state in the boundary theory
with temperature T" = 4320. As noted above, we choose the subregion to be a constant
time slice on one of the boundaries and so the corresponding reduced state in the boundary
theory is the thermal mixed state with the same temperature. With this choice, the HRT
surface is simply the bifurcation surface on the horizon (which is reached with z — 2z
holding ¢ fixed), and the entanglement wedge is simply the static patch outside of the
horizon, i.e., z > zj.

z

+de> : where f(z)=1- (—)d : (4.8)

20

“Note that our notation, e.g., in eqs. (4.9) and (4.12), is not identical to that in [171], however, our
results are in complete agreement with theirs. The only exception is that we have accounted for a factor
of 4 typo in the second term in eq. (2.17) of [171].
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Subregion-CV: The result for subregion-CV (4.1), obtained in eq. (2.16) of [I71], is

LY L V(A) L
(d— 1)GN gbulk (Sdfl +b(d)

Cv(A) = S, (4.9)

Lok
where £,k is the extra length scale appearing in eq. (4.1), and V' (A) is the spatial volume
of the boundary theory. Further, b(d) is a positive dimension-dependent coefficient given

by

b(d) = 2/7

d—2 (&)
" d (4.10)

NC=

2d

Hence the finite term in eq. (4.9) is positive and proportional to S = B V(B), the

4G N zéiil
black hole entropy. Of course, S can also be interpreted as the entropy of the thermal state

in the boundary theory.

In the simplest situation where ¢, = tg = 0,° the mutual complexity (3.105) vanishes,
i.€.,

ACy = Cy(L) + Cu(R) — Cy(LUR) =0, (4.11)

because of the symmetry of the two-sided geometry. Hence, in this case, the inequality
(4.6) is exactly saturated. More generally, the same result arises if we choose ty, + tg = 0,
which ensures that the full boundary state is still the TFD state without any additional
time evolution. On the other hand, if we allow for some time evolution with ¢, tg > 0,
then Cy (L) and Cy(R) remain invariant while C, (£ U R) increases. Therefore the mu-
tual complexity becomes negative, and the complexity of the time-evolved TFD state is
superadditive.

Subregion-CA: The final result for subregion-CA (4.2) is®

L1 V(A d) +
Cu(A) = ald) {555 55_1) _d 4)7T2 % g (4.12)

where the constants, a(d) and g, are given by

a(d) = 4111[%(61—1)},

g = 2 [@/)0(1) — o (é)} : (4.13)

5Here, t;, and tr denote the times on the left and right boundaries, respectively.
SCompare to eq. (2.14) of [171].
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with 1g(z) = I"(2)/I'(2). Note that go is positive for d > 1 (while, of course, it vanishes
for d = 1). The constant a(d) involves the scale £ appearing in the boundary counterterm
in the gravitational action (4.3) — see also eq. (4.27). Note that we must choose that
Ly > L/(d—1) to ensure that a(d), and hence the complexity C,(B), is positive. Therefore,
the finite contribution in eq. (4.12) is negative and proportional to the entropy of the
thermal state.

Using the subregion-CA approach, the mutual complexity (3.106) for the TFD state
with ¢, = tg = 0 becomes’

ACy = Ca(L) + Co(R) — CA(LUR) = —%s (4.14)

where

d—1
T
Since each of the terms contributing to g4 is itself positive, the mutual complexity is
negative and hence the complexity of the TFD state is superadditive. If we evolve the
system forward in time with ¢, tg > 0, then C,(£) and C,(R) are again invariant while
generally C,(LUR) increases. A detailed analysis [110] shows that the complexity remains
constant up to a critical time, at which point it briefly dips down slightly before beginning
to grow linearly. We show in appendix B that the mutual complexity will remain negative
even in this short time period where C,(£ U R) decreases from its value at ¢ = 0 and
therefore the complexity of the time-evolved TFD state is always superadditive as well.

94 = a(d) + go +4m (4.15)

Subregion-CV2.0: It is easy to extract the results for the subregion-CV2.0 using
eq. (4.5). Some results for the bulk portion of the gravitational action appear in egs. (2.26),
(B.10) and (B.16) of [I71]. After accounting for the relevant proportionality factor, we

obtain V(AL . .
Chao(A) = d(d—1)Gy (5,1_1 o Z(c)ll) ) (4.16)

for the complexity of the thermal state, and

16 1 s 7r
AC\/Q,O = —E (ﬁ + E cot E) S, (417)

for the mutual complexity. This result for the mutual complexity is once again negative for
d > 2, and this means that the complexity of the TFD state according to the subregion-
CV2.0 proposal is again superadditive. We also note that, as with the other proposals, the
mutual complexity is proportional to the entropy.

"Again, we may choose t1, + tg = 0 more generally. This result appears in eqs. (2.7)-(2.8) of [171].
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4.3 Holographic Complexity of Vacuum Subregions

4.3.1 Holographic Complexity in the Poincaré Patch

In this section, we summarize and extend the results in the literature regarding subregion
complexity in holography. We start by summarizing the volume results from [114, 180] for
a ball-shaped subregion in general dimensions. After that, we discuss the subregion-CA
complexity in the Poincaré patch, regulated in such a way that the WDW patch starts at
the cutoff surface z = § in Fefferman-Graham coordinates. This calculation was outlined
in [111]. However, at the time the paper was written it was still not clear if the counterterm
restoring reparametrization invariance is an essential ingredient of the complexity=action
proposal. This later became clear, among other things, due to the fact that the counterterm
is essential for obtaining the expected behavior in the presence of shocks, see [I11,112].
We briefly review the results of [1141] and then extend them to include the counter term.

4.3.1.1 Subregion-CV

Here we summarize the results of [180] (see eq. (5)-(7)) as well as [111] (see eq. (4.9)) for
the subregion complexity using the CV conjecture for a ball shaped region on the boundary
of AdS,4y1 in Poincaré coordinates. The bulk spacetime is described by the metric

2

L
ds* = = [d2 — df* +dp* + pd9 ) (4.18)

For a ball-shaped region on a constant time slice with p < R, the complexity is given by
performing the following integral

L0, [ (R2—22)%
_ )7 4.1
e T 1)

—1

where Q4o = 217 /T (%) is the volume of the S¢~2 sphere and R is the radius of the
ball (or half the size of the interval for a two dimensional boundary). The explicit results
of this integration for d = 2 (AdS;) and d = 3 (AdS,) are presented in the next section in
egs. (4.33) and (4.34).

4.3.1.2 Subregion-CA

The form of the intersection W between the WDW patch (starting at the cutoff surface)
and the entanglement wedge is illustrated in figure 4.1, together with its projection on the
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t = 0 time slice, where we label the various surfaces and joints required for the calculation.
The region W is bounded by four surfaces. S* are the boundaries of the WDW patch and
C* are the boundaries of the entanglement wedge. They are described by the following

constraints
St t=H(z-9), Ct: t=+(R—/p?+22), (4.20)

where R is the radius of the ball shaped subregion for which we evaluate the complexity.
The affinely parameterized normals to the various surfaces are®

dp + =d
SE: ks =a(—dttdz), CF: ksu =8 (—dt ¥ M) . (4.21)

7
d

Figure 4.1: The intersection of the entanglement wedge and the WDW patch defines the
region W that is relevant for the evaluation of C,(B).

The subregion-CA conjecture consists of evaluating the gravitational action of the re-
gion W. When the normals to the null surfaces are affinely parametrized the relevant
contributions are: the bulk contribution Iy, the joints JM, J@®) and (twice) J® (see
figure 4.1), whose contributions we label IV, I® and I® respectively, and finally the
counterterm contribution required to render the result independent of the normalization

8Here we chose the direction such that the normal vectors are future oriented, in order to be consistent
with the conventions of appendix C of [134] which we use throughout the following.
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constants « and . Since the boundary of the entanglement wedge is a killing horizon with
vanishing expansion [34,50] we only have to include the counter term on the boundaries
of the WDW patch S*. Finally the complexity is given by

1
Ca(B) = = (Tpune + IV +1® + 218 21, . (4.22)
T
Most of the contributions above were already evaluated in [134] and we quote the results
here (fixing a few small typos). For the bulk contribution we have
de 2Ld 1 Bt gy (R—1)? - 22)%
Toae = — / dt/ zd+1 71 . (4.23)

For the various joints we have’

[ QL (R -8 (ad
T T ind-DGy et "\L )
L&y [T dz a3 Bz
2 d—2 2 2y 43
I® = — e /6 o R(R =27 I (f) : (4.24)

R+6

L1 Qd,Q 2 dz

73 —

T (R+0) T (R+§—22)"7 In ( apz(R+9) )

2L2(R+6 — 2)

where in I® we have relabeled the integration variable as Z for reasons that will become
clear in a moment. Recall that the boundaries of the WDW patch had vanishing expansion
and so no counterterm was needed in order to cancel the dependence on the normalization
constant 5. To make this observation manifest let us use the following change of variables

z2(R+6) L Rz
R+z "’  R+6-3%

(4.25)

N

which relabels the various points on the joint J®) by the corresponding value of z on the
joint J? along the same light ray originating from the point z = p = 0, t = R. After this
change of variables we are able to combine the contributions of the joints J® and J®)
follows

o L [P odz i3 az(R + §)?
1® 4270 = d 2/ 22y (22T O 4.2
i Gy [y ar B =) o R ) (426)

9We have fixed the following factors: overall factor of R in I®) was missing, upper limit of integration
in I® was changed to £+2.
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where we see explicitly that all the dependence on § canceled out.

Next, we evaluate the contribution of the counterterm. We remind the readers the
definition of the counterterm [134]

_ 1 d—1
Iy = 87TGN/d/\d 270 1In (£e]0)) (4.27)

where the expansion parameter is © = 9, In /7, 7 is the metric on the light surface modulo
light rays and /. is an arbitrary constant representing the freedom in the definition of this
counter term. First, we identify the light-ray parameter A\ = —L?/az, which is consistent
with the normal definition &}’ = da*/d\, see eq. (4.21), along the surface ST, see eq. (4.20).
We then evaluate the expansion

d—1
Finally the counter term contribution reads
QuoLdt (12" dz 4-1 e [(lpa(d—1)z

Once again, it will be useful to use the change of coordinates (4.25), which brings this
contribution to the form

Qq_o L4t [Fdz d—3 d—1 by (d — 1)z(R +6)
[ - - _ D) _ P} 1 . 4.
ct SrC /5 p R(R+2z)2 (R—2) n (R + 2) (4.30)

Combining all the joints and the counter term and using integration by parts together with

d—1
the identity [ ;l—ZRQ(R2 - 22)% = —Zd%l% finally yields
QgL (* R(R?-2%)2
_ 1 2 3y 4o
[s,J,ct:2[Ct+[()+I()‘i‘QI()—W\/(S dz -1 X
(R—2) 1 lep(d —1) R+¢
In{ ——= In(———
X{ P e v T \Sr )]

(4.31)
and we see that all the dependence on « has canceled. The final result for the complexity
is then given by combining eqs. (4.23) and (4.31), i.e.,

1
CA = ; ([bulk + [s,j,ct) . (432)

We evaluated this expression explicitly for the cases of d = 2 and d = 3 and the final
results are given by eqs. (4.35) and (4.38).
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4.3.2 Holographic Complexity of Vacuum Subregions

Below we summarize the results from all three approaches for a subregion of the CFT
vacuum in two dimensions, i.e., an interval in the boundary of AdSs. These are the holo-
graphic results that are most relevant for the comparison with the QFT results in section
3.5. We also consider a disk-shaped subregion in the CFT vacuum in three dimensions,
i.e., on the boundary of AdS,, to gain some intuition about the behaviour with an odd
number of boundary dimensions.

Subregion-CV: With the subregion-CV approach for the case of AdSs3, both in global
coordinates and in the Poincaré patch, we have

2c (¢
AdSy, G/ Cul(A) = 5 (5 - 7r> (4.33)
where ¢ = 3L/(2GYy) is the central charge of the two-dimensional boundary CFT [200], £ is
the size of the interval and 0 is the UV cutoff. For global coordinates in AdSs, this result
comes from [147], and for the Poincaré patch, it was found in [180]. The constant term
(i.e., —m) is a topological term studied in [117].

For a ball-shaped subregion with radius R on the boundary of AdS,,;, the calculation

of Cy is outlined in egs. (5) and (7) of [180] — see also eq. (4.9) of [111] and our eq. (4.19).
For example, for the case of a disk on the boundary of AdS,, one obtains
mier [ R? R 1

where ¢y = 3L%/(n3Gy) is the central charge appearing in the OPE of two stress tensors
in the boundary theory, e.g., see [207].

Subregion-CA: Next, we turn to the subregion-CA results. For the case of a flat
boundary (in the Poincaré patch), the divergence structure of the subregion complexity in
vacuum AdS was studied in [111]. However, these results did not include the boundary
counterterms I, which restore the reparametrization invariance on the null surfaces. We
evaluated the contribution of I in our calculations in the last subsection 4.3.1. We have
also corrected a number of typos in the original calculation of [114], and explicitly demon-
strated the cancellation of the normalization constants of the null normals. Combining
egs. (4.23), (4.31) and (4.32) for the case of AdS; yields

2 2
AdS;,P : Cu(A) = 3—;2 (2%111 <£—Lt) ~In ( it> In (g) + %) , (4.35)
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where £ is again the size of the boundary interval. Further, we note that the UV divergences
were regulated in the above calculation by anchoring the WDW patch at the UV cutoff
surface. Repeating these calculations in global coordinates [162], we find'

AdSy, G ClA) = -5 (% h(%) _m(Qi“) m(%)) L), (4.36)

where C is the circumference of a time slice on the boundary. Here, f(¢/C') is some finite
contribution, whose precise form we did not determine analytically. However, we do know
that in the limit //C — 0, eq. (4.36) should reduce to the previous expression in eq. (4.35)
and hence

é <1: f(t)O)~ 3—;2 <ln(2ijt> ln(%) + %2) +0O)C). (4.37)

For more discussion about this finite part, see the discussion section in [2].

For a disk-shaped region (of radius R) on the boundary of AdSs using Poincaré coor-
dinates, we obtain

2 2
s e = 5 (o (%) - () con T em(f2) ). aas

This calculation can also be seen as the smooth limit of the result obtained in [198] for
subregions with kinks/corners, i.e., compare with eq. (5.8) of [195].

Subregion-CV2.0: Again, it is straightforward to extract the results for the subregion-
CV2.0 proposal using eq. (4.5). We have the results for the bulk portion of the gravitational
action in eq. (4.23) for AdS; in Poincaré coordinates (i.e., d = 2) and so after accounting
for the relevant proportionality factor we obtain

2
AdSs, P Cuao(A) = % (% - 1n§ - %) | (4.39)

10We note that this result can be obtained either by anchoring the WDW patch at the cutoff surface, or
by anchoring it at the boundary of AdSs (as in [162]) but adding the usual counterterms of the kind often
used in holographic renormalization (e.g., see [208]) on the cutoff surface.
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Further the analogous result for AdS; in global coordinates [162],!

Ad83, G : Cvz,o(A) = % (% —1In %) + f(g/C) 5 (441)

where C' is again the circumference of a time slice on the boundary and f(¢/C) is a
finite contribution. We return to examine this contribution in more detail in section 6.3.
However, let us observe here that in the limit //C — 0, eq. (4.41) must reduce to the
previous expression in eq. (4.39) and hence we expect to find

g <1: f()o)~ % (111(%) - %2) +0(/C). (4.42)

We can also use eq. (4.23) to evaluate the complexity for a disk-shaped region on the
boundary of AdS, in Poincaré coordinates,

4 2 2
AdSy, P : Cv2.0(~A) = T (R; - _R —4In E + 1) . (443)

With all three proposals, the leading divergence is proportional to the volume of the
boundary region V (A), i.e., V(A) = { with d = 2 while V(A) = 7 R? with d = 3. However,
the subleading divergences are quite different for subregion-CV compared to subregion-CA
and subregion-CV2.0. With either of the latter two, the subleading contribution is a
negative term proportional to the area of the boundary of A, e.g., V(0A) = 27 R with
d = 3. In contrast, no comparable contribution appears in the subregion-CV results.
Similar boundary contributions with a negative sign were found in [195] for subregion-CA.
Such subleading divergences appear to be a generic feature of both the subregion-CA and
subregion-CV2.0 approaches, and can be understood as a contribution to the complexity
proportional to the entanglement entropy [209] — see also the discussion around eq. (4.7).'2

1This result was obtained by anchoring the WDW patch at the cutoff surface. The result for another
regularization scheme where the WDW patch is anchored at the boundary of AdS3; can be read from
eq. (B.18) of [162]
4 (¢ L )

AdS3,G @ Cyao(A) = 3¢ <6 —1In 5 + ﬁmte> , (4.40)
where we notice that the leading divergence has changed by a factor of 2, however, the universal logarithmic
piece remains unchanged.

12\We should also mention that additional relations between the entanglement entropy and complexity for
AdS;/CFTs using the complexity=volume proposal have been developed in the context of the kinematic
space in [147,197], see, e.g., egs. (46) and (4.6), respectively.
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Mutual Complexity: Now we can use the previous results together with the results
for the complexity of the full boundary time slice to evaluate the mutual complexity. The
first observation is that in our examples here, we are considering the vacuum state and
subregions of the vacuum for the boundary CFT on a constant time slice. Hence for the
CV and subregion-CV proposals, the maximal volume slices also all lie in the constant
time slice in the bulk. Hence the two bulk volumes corresponding to a subregion and its
complement precisely add up to equal the volume for the full vacuum state. That is, we
are in a situation where we saturate the inequality in eq. (4.6) and the mutual complexity
vanishes.!® Of course, if we choose to examine the vacuum state on a more general Cauchy
slice in the boundary, we expect the mutual complexity to be negative, i.e., the complexity
would be superadditive. It would be interesting to understand the precise form of ACy in
these situations.

The results are more interesting for the CA and CV2.0 proposals. Here we will focus
our discussion on the case of a flat boundary, i.e., with Poincaré coordinates in the bulk,
since they are easily generalized to higher dimensions. We illustrate the discussion with
the example of AdS,, where we begin by evaluating the complexity of the full vacuum state
(see the appendix D in [2]), i.e.,

‘ _omer V(E) | 20
AdS,, P Ci(vac) = 2 5 In T
3
AdS4, P : Cvg_()(VaC) = 7T96T V(EQE) , (444)

where V(X) is the spatial volume of the entire time slice in the boundary.!* Next, we gave
the results for a disk-shaped region in egs. (4.38) and (4.43) for the subregion-CA and
subregion-CV2.0, respectively, which we re-express here as

AdSy, P : Ca(A) = Ter (V(A) ln<%0t> _ Vo4 In (MCt) + 27 ln£ —i—ﬁnite) :

12 62 L ) L )
3
AdS4, P Cyuo(A) 7T90T (V((;l) - V(?A) — 4 lng + ﬁnite) : (4.45)

where V(A) = 7R? is the area of the disk and V(9.A) = 27R is the circumference of
the boundary of the disk. This leaves us to evaluate the complexity of the exterior of
the disk, which we denote B. While this calculation may seem more formidable because
B has an infinite extent in this flat boundary geometry, the geometric interpretation of

13 As for the previous discussion of the CV proposal for the TFD state with t; =0 = tp.
1n fact, the time slice is two-dimensional and so V' (X) is an area in this specific example.
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the two leading singularities would be precisely as in eq. (4.45). Further, we would have
V(A)+V(B)=V(X) and V(0A) = V(0B) and hence the mutual complexity becomes

. . ™ Cr 4£Ct V(aA)
AdS P AC = m(L) ARt
3
AdSLP : AC, = —%TCT@ (4.46)

In fact, this result can be extended to any (smooth) bipartition of the two-dimensional time
slice in the boundary theory, and V(0.A4) will denote the length of the boundary between
the subregion A and its complement B. Given the sign of the results above, we see that
the complexity of the vacuum is superadditive for both the subregion-CA and subregion-
CV2.0 approaches. We might also note that the leading singularity in eq. (4.46) has the
same form as that in the entanglement entropy for the same bipartition. Hence, at least
to leading order here, the mutual complexity is again proportional to the entanglement
entropy between the two subregions.

Using the results of appendix 4.3.1 and of [111], these calculations are easily extended
to higher dimensions, where we find for d > 2
Lt 2(d— 1)l \ V(0A)
Ad P : A = ——— 1
Sd+1; Ca 272 (d = 2)Cix Il< 7 ) 5z T
4141 V(0A)

AdSyi1,P i ACusy (4.47)

Cdd—1)(d—2)Gy 6§92
Of course, using our previous results for subregions on the boundary of AdSs, these cal-
culations are easily extended to d = 2. In this case, we find that the mutual complexity
becomes

Ang,P : ACA:_%IH(Z%t) 1n§+’
o (4.48)
AdSs, P - Acvzo:_gchlg—f‘“'.

Hence these general results again show that the mutual complexity is negative and hence
that the complexity of the vacuum state is superadditive. We may also note that to leading
order, the mutual complexity is proportional to the entanglement entropy of the subregions.
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Chapter 5

Purification Complexity without
Purification

In chapter 2, we have reviewed various proposals toward defining the computational com-

plexity of states in quantum field theory, e.g., Nielsen’s geometric approach [59-62] in
section 2.1.1, the Fubini-Study metric approach [09] in section 2.1.2 and path-integral
complexity [92,93] in section 2.1.3. In light of the definitions for the complexity between

two pure states, it is natural to generalize it to the case of mixed states. More explicitly,
we focus on exploring the mixed-state complexity between arbitrary quantum states, viz.

C (6w, pr) 1 O — pr, (5.1)

in this thesis. Different from the complexity of pure states, i.e., C (|®g),|¥)) for which
the unitary operations are sufficient to construct the transformation from a reference state
to a target state, we need to introduce non-unitary operations if the target state is a mixed
state in the Hilbert space H 4, €.g., the quantum states associated with a subregion in QFT.
The non-unitary operations call for the ancillae. In order to respect unitary evolution, we
can consider complexity for purified states with the help of an auxiliary system H 4.. More
generally, we can also start from a purified reference state if it is also not pure. In light
of the non-uniqueness of the purification, a natural definition of mixed-state complexity
between the reference 6 and the target state p is called purification complexity P that is
defined to be !

P (6117,51“) = m(gnrn\gn C (|(I)R> ) |\IJT>) )

(5.2)
with — Tr (|Pg) (Pr|) = 6w, Tr(|We) (Va]) = pr,

ITo avoid confusion in this chapter, we refer to a new notation P as the purification complexity.
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where the minimization is performed over all possible purifications |®g), |¥y) of g, pr,
respectively, and C denotes a specific pure-state complexity we are interested in. Taking
Nielsen’s geometric method, the purification complexity of Gaussian mixed states with Fj
cost functions has been explored in [2] as described in chapter 3.

p | <l//| d)) | Geodesic Complexity for
AA¢ i ————> Fubini-Study metric ——————>  pure states

I je / A

EMax Min Min

Purification
X :
A H H H :
\ : v v H v
F ( D 5) Geodesic
Pa L Bures metric Purification Complexity
(Quantum Fisher information) for mixed states

Figure 5.1: The connections between pure-state complexity from the Fubini-Study metric
and purification complexity derived from the Bures metric (or quantum Fisher information
metric). The Hilbert space consisting of quantum states p4 that we are interested in
is denoted by H 4 and the extended Hilbert space with introducing auxiliary system is
represented by H .4 @ H ge.

However, purification complexity is based on the triple minimizations. First of all,
we need to minimize all paths to find the optimal circuit for a given purified reference
state and target state. Second, we also have to search for the optimal purifications twice
by minimizing the complexity for all free parameters due to the freedom in purification.
With these tips from the purification complexity based on Nielsen’s geometric method, it is
natural to explore a similar purification complexity by taking account of the Fubini-Study
metric as the complexity measure for purified states. As shown in chapter 3, finding the
optimal purification for mixed states in QFT is a challenging task even for Gaussian states
due to the huge number of free parameters in purification. See also [188] for the optimal
purification with respect to F5 cost function.

In view of the difficulties in the minimization for purification complexity, it would be
great to find a better way to deal with the optimization explicitly. On the other hand,
one may also wonder how to generalize the Fubini-Study metric method for pure-state
complexity to arbitrary quantum states py, i.e., defining the geodesic distance in the
space of density matrices equipped with a special metric as the complexity measure for
mixed states. Different from pure states where the Fubini-Study metric serves as one
unique definition [210], there are too many similar definitions of finite distance and also
corresponding local metrics for mixed states [12,210,211]. In this chapter, we propose to
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consider the dubbed Bures metric or quantum Fisher information metric (QFIM)
as the complexity measure for generic quantum states. Thanks to Uhlmann’s fidelity
theorem [12,212], we find that the complexity from the quantum Fisher information metric
can be exactly explained as the purification complexity P with the Fubini-Study metric
acting as the complexity measure of purified states. Consequently, our proposal avoids the
explicit process for purification and also minimization. As an overview, the connections
are summarized in figure 5.1.

This chapter is adapted from [3].

5.1 Uhlmann’s fidelity and Quantum Fisher Informa-
tion Metric

Stating from a family of pure states |¥(\)) with parameters A\*, one can derive the quantum
information metric (fidelity susceptibility) g,., e.g., [12,213] by

1
FOON+d\) =1— 59 AN AN + O(dN?), (5.3)

where F'(\, \') is the quantum fidelity defined as the inner product between two states, i.e.,
FN) = [(E(N)[¥(X))]. Tt is known that Fubini-Study metric g defined in eq. (2.23)
agrees with the quantum information metric for pure states. In the sense of distance, one
can consider g;7 as the infinitesimal version of the finite distance (1 — F'(A,\')) between
arbitrary two pure states |W(\)), |[W(N)). As reviewed in section 2.1.2, the Fubini-Study
metric approach [(9] identifies the complexity of pure states as the length of the geodesic
M (s) connecting a reference state |®y) and a target state |Wy), i.e.,

Crs (|Pr) /da 2975 (A) A\ (5.4)

where the boundary conditions are determined by the reference state and target state,
M (o) = dA (” denotes the tangent vector to the trajectory. It noted that we artificially
add a factor 2 to make this definition consistent with the results from the F5 norm in
Nielson’s geometric method [!] for Gaussian states (see egs. (2.38) and (2.40)).

Equipped with the complexity measure Cpg for pure states, one can also define the
specific purification complexity as

Pres (Ga, pa) = m(gn m\gn Cos (|Paae), |Vane)) , (5.5)
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where |® 4 4¢) , |V 44c) denote the purifications of two density operators 6 4, p4, respectively.
Then we still end up with the same optimization problem. However, we will show in next
section that this purification complexity can be derived without any purifications and
minimization.

Inspired by the connections between quantum fidelity and the circuit complexity pro-
posal with the Fubini-Study metric approach [09], we first extend the Fubini-Study method
to more generic quantum states, but avoiding the challenges in purification complexity due
to the minimization over all purifications. Obviously, the key question is how to define an
analog of the Fubini-Study metric for mixed states. We ask for the help of the quantum
fidelity 2 between two general quantum states. In this paper, we focus on the fidelity of
two quantum states p and ¢ defined by [12] 3

F(p.6) =T (\/ ﬁ&ﬁ) NN (56)

If at least one of the two states is pure, the quantum fidelity F' reduces to the overlap
between two density matrices

F(p,6) =/Tr(po) =/ (@|ple)y,  &=1[v) | . (5.7)

This quantum fidelity F'(p,d) can be naturally interpreted as a generalization of the tran-
sition probability for pure states. For later use, we also list some interesting and nice
properties of the quantum fidelity as follows:

%) 0< F(5,8) < 1;

b) F(p,6) = 1= p=6; F(p,6) =0 p L a;

¢) Symmetric : F(p,6) = F(6,p);

d) Concavity : F (6,Y . pipi) > >, piF (6, p;) for all 0 < p; <1 such that >, p; = 1;

e) Strong Concavity: F (Y. pi0i, > ¢ipi) = Y. /DiGiF (64, p;) for all 0 < p;, ¢; < 1 such
that > . pi=1=>",¢;

f) Mult1phcat1v1ty : F (pAl X [A)Q, 6’1 X (}2) =F (ﬁl) 6'1) F (ﬁg, 6’2) )
g) Unitary invariance : F(p,6) = F(UpUT, UcUT).

2In some literatures, the quantum fidelity may be defined as F(p, 5)%.
3For a positive semi-definite operator, its square root uniquely exits and is also positive semi-definite.
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The proofs for those properties can be found in textbooks on quantum information, e.g.,
[12—11] or original references e.g., [211-216]. There are also some other definitions for
the quantum fidelity or distance between two density matrices. However, we prefer the
definition in (5.6) because there is an important theorem called Uhlmann’s theorem, which
states that

Uhlmann’s theorem. For any possible purification |) and |¢) in system AAS with re-
spect to p and & in system A, respectively *, the quantum fidelity satisfies

F(p,) = Tr( ﬂ&ﬁ) — max (6] > (6 1)) (5.5)

[),]#)

where the maximization is over all purifications of p,d and the last inequality can always
be saturated by some appropriate purifications (called parallel purification).

Uhlmann’s theorem plays an important role in connecting the complexity from quan-
tum Fisher information metric to the purification complexity P. Another crucial property
for the quantum fidelity is associated with the lowest bound of fidelity and its meaning in
distinguishing states. Letting {£,} with ) FE, = [ be an arbitrary generalized measure-
ment, i.e., positive operator-valued measure (POVM), the quantum fidelity between two
density operators satisfies

F(p,6) = mlnz VTr(pE,)\/Tr(6E,) (5.9)

{Ea}

where the minimization is performed with respect to all sets of positive operators {E,}
and we can call the POVM saturating the bound as the optimal POVM. Considering
two distributions P;(a) = Tr(pE,) and Py(a) = Tr(6E,), it is clear that the definition
of quantum fidelity in (5.6) is the analogue of the statistical overlap and is actually the
minimal overlap between these two probability distributions. In view of the importance of
this inequality, let’s sketch the proof to convince the readers who are not familiar with it.
Starting from any POVM and unitary operator U, one can find [215]

S VT GE) VT (6E) =Y \/Tr (U\/EEG\/EUT) \/Tr (x/EE\/E)
> 3 |0 (UVoVENVENG)| = |1 (0v3vE) |

(5.10)

4S0 it means that we have the constrains Tr 4c [¢) (1| = p and Tr e |¢) (¢| = 5.
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where we only need the cyclic property of the trace and the Schwarz inequality (i.e., the
Schatten 2-norm is sub-multiplicative.). In consideration of the fact that the maximization
over all unitary operator U, namely

max Tr (UO)| = Tr (W) : (5.11)

is saturated if and only if UO = e*vO!0, we finally arrive at the conclusion for the
quantum fidelity, i.e., eq. (5.9), by applying that maximization to operator /pv/&. Fur-
thermore, one can also find that the optimal POVM is the special positive semi-definite
operator with spectral decomposition

E=Y"MNE.= Ala)(a] = (6)2\/VapV5 (6) 2 (5.12)

which is nothing but the geometric mean of p and 6~!. Interpreting the quantum fidelity
(5.6) as the minimization of statical overlap, one can prove some other interesting prop-
erties, e.g., the non-broadcasting of non-commuting mixed states [215]. Here we stress its
another application that the quantum fidelity F (4, p) is non-decreasing under any quan-
tum operations. Similar to the purifications of mixed states, we can introduce the bipartite
system H 4 ® Hp and have the corresponding density matrices in the two subsystems such
that

pas € Ha®Hp, Trp(pas) =pa,  Tra(pas) = ps. (5.13)
The minimization in eq. (5.9) implies we have the monotonicity of quantum fidelity °
F (I(A)ABJ&AB) < F(ﬁA,é’A) ) (514)

which means that any partial trace can not reduce Uhlmann’s fidelity and also indicates
that the density operators in a subsystem are less distinguishable than those in a larger
system. More generally, we can also explain this property in the way associated with
quantum operation. As it is known [12], the quantum operation (quantum channel) &
defined by completely positive trace-preserving (CPTP) map can be explained in different
ways (see appendix C.2 for more details). For example, we can realize quantum operations
E (pa) on density operators p4 by the unitary transformations acting on the extended
Hilbert space H 4 ® H4c with some ancillae (or environment), i.e.,

€ (pa) = Trae (Unac (pa @ pac) Ulac ) - (5.15)

5Obviously, this monotonicity is a consequence of Uhlmann’s theorem. Although the optimal purifica-
tion of pap and 645 are also the purification of p4 and 74, respectively, they may not be the optimal
ones with respect to p4 and & 4.
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where the p 4 is the initial state for the ancillae and Tr 4. refers to tracing out the ancilla
part. On the other hand, we can also rewrite the equivalent quantum operations in the
operator sum representation by

E(pa) =Y Mupa}, > MM, =1, (5.16)

where [ denotes the identity matrix. So finally, in the sense of quantum operations, one
can understand the non-decreasing of quantum fidelity as

F(E(pa),E(Ga)) = F(pa® pac,0a®@6ac) = F (pa,04) F (pac,04) (5.17)

where we use the non-decrease of the quantum fidelity under partial trace and its unitary
invariance in the first inequality and its multiplicativity to derive the second equality.
Taking the ancilla part for the two density operators as the same, we can arrive at a
monotonic form

F(E(pa),E(0a) = F(pa,04) > F(pas,048) , (5.18)

indicating the quantum operation can not decrease the fidelity. Physically, the above
inequality also implies that physical process can not increase the distinguishability between
quantum states. The first inequality holds for any trace-preserving quantum operation
(quantum channel) defined by € : p — £ (p) and can be understood as the quantum analog
of the classical information-processing inequality.

After introducing the quantum fidelity between density matrices, we move on to our
new proposal for the circuit complexity between two generic quantum states. Similar to
the pure-state complexity based on the Fubini-Study metric, we can parametrize the space
of quantum states by density operators p (M) with independent parameters A*. Then our
proposal to the complexity from any reference state o (Aj) to any target state pr (A[) is

the following
' L : d\¥
Cim (&R, ﬁT) = / do 292\5 PLDLE A = (U) ’
0 do

1

52 (6 ) = 2 / do g™ 3 3 = (Cu)? |
0

(5.19)

where the integral is taken along the optimal circuit ¢.e., the geodesic 7y, measured by
the fidelity susceptibility g, with reference state and target state as the endpoints. If the
geodesics are not unique, we should choose the one minimizing the distance between the
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reference state and the target state. The quantum fidelity susceptibility g,,, can be derived
from the expansion of Uhlmann’s fidelity between two nearby quantum states, i.e.,

o () dAN'AN" =5 2(1 = F (p(N), p(A + 0X)) =2 1 = F(p, p + 6p)*, (5.20)

where the equality is taken at the second order of A and the quantum fidelity F' for mixed
states is defined to be (5.6). We have used the superscript “IM” for this metric because
it is equal to the quantum Fisher information metric (QFIM). For more explicit forms of
QFIM, see appendix C.3 . Technically, it is also convenient to derive the quantum Fisher
information metric by )
/
g% = — lim 0 F()\,)\),
X=X OAFONY
which has the same spirit as the derivation shown in eq. (2.24) for the Fubini-Study metric.
For mixed states, the quantum Fisher information metric or quantum fidelity susceptibility
is also known as the Bures metric [210,211,214,217,215], ® which is derived from the finite
Bures distance defined by 1 — F' (p, &).

To close this subsection, we stress that the choice p(A\*) is not arbitrary and in principle,
it is determined by the set of gates on the whole system. From the viewpoint of the
quantum circuit with ancillae (e.g., figure 5.2), the whole Hilbert space is defined by
PM) = Trge (W gu¢c) (P auc|) where the pure states are constrained by the set of gates,
i.e., all possible unitary operations Ug4c from |W g4c) = Ugye |Pr). The last thing we want
to point out is the different meanings of ”optimal” states. Uhlmann’s fidelity provides a
criterion for the optimal purification with respect to any two states. However, the circuit
complexity is based on the optimal path in the space of states, i.e., geodesic 7. The
quantum fidelity only quantifies the local measure while the geodesic length indicates a
global optimization for a given reference state and a target state.

(5.21)

5.2 Properties of Purification Complexity

5.2.1 Purification Complexity without Purifications

In the last subsection, we have seen that Uhlmann’s theorem (5.8) naturally relates the
quantum fidelity between two mixed states to the fidelity from their “optimal” purifica-
tions. It may remind you of the idea about purification complexity [2, 161] by introducing

6In the literature in quantum information, quantum Fisher information metric and the Bures metric
are different by a factor 4. Because we need to normalize the metric in order to measure complexity, we
ignore this factor and do not distinguish the two metrics.
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ancillae in the quantum circuit and defining the minimal complexity of optimal purifica-
tions as the complexity for respective mixed states. Here, we will show that the complexity
derived from the quantum Fisher information metric is actually the purification complex-
ity, where the pure-state complexity is measured by the Fubini-Study metric. Generally,
we can take arbitrary mixed states 7.4, p4 in system A as our reference state and target
state, respectively. First of all, let’s think that we have found a specific purification |W 44c)
by introducing an ancillary system A°. Considering the Fubini-Study metric as the com-
plexity measure for pure states, we can search for the optimal purification and define the
corresponding purification complexity as

1
Pres (a4, pa) = ngnm‘gn Crs (|Pasc) , |V auc)) = mqinm\gn / do \/2g55 AN (5.22)
0

where g7 is the Fubini-Study metric defined in (2.23) and the minimization is employed
over all purifications for the target state p4 and reference state 4. We can assume the

optimal purification from this point of view as ‘\TJ A Ac>. Let’s just focus on an arbitrary

infinitesimal step in the optimal quantum circuit, i.e., the geodesic on the space of |W g 4¢).
From the definition of the Fubini-Study metric (2.23), the cost for this step is related to
the quantum fidelity between two extremely nearby pure states, i.e.,

0Crs (1W44:(0))) = /2 (1 = [(Waue (0)[Wanc(o + do))[?),

5Pes (pa(0)) = \/ 2 (1 e (0) [ e (0 + dor)) |2) ,

(5.23)

where the purification complexity Prg from the Fubini-Study metric is associated with the
optimal purification ‘\TJ A Ac>. On the other hand, we can also consider the same infinites-

imal step and define the complexity of mixed states by considering the quantum Fisher
information metric. It is clear that Uhlmann’s theorem ensures the inequality

\/ 295 AN AN = \/2(1 — F (pa, palo + do))), (5.24)

< 0Prs (pal0))

0D (ﬁA(U))

where we obtain the two near mixed states associated with pure states | 4 Ac(o + d0)>
and ’\TJ AU (U)> by tracing out the ancillary system A°. Repeating this projection from
optimal pure states ‘\if A Ac(0)> to the space of mixed states p4(c) in subsystem H 4, we

must be able to find a path in the space of mixed states with its length as the lowest bound
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of the purification complexity Prg for arbitrary states 7.4, p4. Recalling the fact that the
complexity of mixed states from the quantum Fisher information metric is defined as the
minimal geodesic length connecting a reference state and a target state, we finally arrive
at the first conclusion for arbitrary mixed states,

Cim (&A> [3,4) < Dy (ProjeCtion Of'YFs) < Prs (6Aa ﬁA) = m(gn H%I,in Crs (|\IIAAC>) ) (5'25)

which means that the purification complexity Pgg is the upper bound of the complexity Cyy,
derived from the quantum Fisher information metric. The above argument is illustrated
by the projection from Hilbert space H 44c to H 4 in the figure 5.3 . It was stressed before
that the quantum fidelity can always be saturated by choosing specific purifications. Then
you may immediately face a puzzle: why we can find a lower value than the purification
complexity Prg even when we have minimized the complexity from all possible purifications
|W_44c). Another natural question is that, by taking account of the inequality itself, when
can we obtain the exact equality? All of these can be illustrated by stressing the difference
between these two methods, which originates from the way of introducing the ancillae.
The special point for purification complexity is that we only introduce one specific optimal
ancillary system A° at the beginning and keep it in the full circuit. For the circuit with
complexity derived from the quantum Fisher information metric, it is possible that the
quantum circuit may need different auxiliary systems after every step as shown in figure
5.2. From the viewpoint of optimal purification, this is because we have to introduce a
special ancilla for every step to guarantee the fidelity between these purified states satisfying
Uhlmann’s fidelity, i.e., (5.6) which is a maximum for the purified states.

A

OA
N

Ancilla

Pa ‘}\

Pac

Figure 5.2: A lift of evolution p (o) to the extended Hilbert space: A general circuit
connecting purified state g 44 to paac with different ancillae after every step because
we do not count the cost of introducing ancilla and tracing out the auxiliary system.
More importantly, it is based on the fact that any trace-preserving quantum operation is
equivalently described by the unitary evolution with ancilla.

However, Uhlmann’s theorem also claims that the fidelity bound can be always satu-
rated by taking some special purifications. In other words, we can find a continuous lift
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mapping from the geodesic in the space of quantum states p4 to a path in the Hilbert
space H e of purified states |¥ 44c) 7. Due to the same infinitesimal complexity measure,
it is obvious that the image after lift-map has the same distance as Cyy; (p4). It is shown in
the map from the left blue curve to the right blue curve in figure 5.3%. Again, we note that
the purification complexity from the Fubini-Study metric is also defined as the minimal
geodesic length. Comparing the geodesic distance with respect to the Fubini-Study metric
and the distance of the image after the lift-map, we can also obtain another inequality

CIM (6}4’ ﬁA) = DFS (Lift Of'YIM) > PFS (5'.»47 ﬁA) . (5-26)

Combining this new inequality with the first inequality from Uhlmann’s theorem, we finally
conclude that the complexity Cpy (6.4, p04) derived from the quantum Fisher information
metric is exactly the purification complexity measured by the Fubini-Study metric on
purified states ?, i.e.,

Cint (9.4, P4) = Prs (0.4, pa) = minmin Crs ([Pane)  [Wane)) (5.27)

where the target state and reference state are related to purified states in the extended
system Hgae by pa = Trae (Y aue) (Vauc]) and 64 = Trge (|Pasc) (Paac|), respectively.
In the next section, we will take Gaussian mixed states as an explicit example to show that
how the first equality holds after minimization and find the special purifications satisfying
the bound from Uhlmann’s fidelity along the whole geodesic p4(o).

5.2.2 The Non-increase of Purification Complexity

Instead of considering the optimal purified state |¥ 44¢) in the extended Hilbert space,
we can start from generic mixed states pap with Trs (pas) = pa in a bipartite Hilbert
space Hyq ® Hp and assume the complexity from 645 to pap is associated with the
geodesic 7y (pap(0)). In order to show the consequence of partial trace on the complex-
ity Ciy (0.a8, pas), we can similarly trace out the system B along the geodesic 7y (pas(0)),

"Especially, I would like to thank Juan Hernandez for illuminating discussions on that point.

8 As discussed in figure 5.2, there are many ways to introduce the ancillae and simultaneously make
Uhlmann’s fidelity saturated (the lift-map is not injective). However, most of them after the lift-map only
make discontinuous lines in H 4 4c but with the same length.

9This equivalence is based on our definitions that the two complexities are both defined as the geodesic
length on the corresponding state space. It is also possible to define the complexity as the length of a non-
geodesic path by constraining the allowed motions in the space of states, which corresponds to reducing
the set of gates. Then our proof in the main content for the equivalence between Cry and Prg would not
work. I would like to thank Simon Ross for pointing out this.
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|'¥ A ac) 8FS Pa>8M

Min . Ces = Cpy

Figure 5.3: Left side is the Hilbert space H 44 of purified state |W 44¢), which is equipped
with the Fubini-study metric grs as the complexity measure. The black line is referred
to as the geodesic ¢ in this space. The right side represents the Hilbert space H 4 for
density matrices p4 with the quantum Fisher information metric g defined in (5.20) as
the complexity measure. The corresponding geodesic vy, is indicated by the blue line. By
tracing out the ancillary part A¢, we can find the projection-map from ¢ to a path in the
space of p4 which is shown as the black curve. According to Uhlmann’s theorem, we can
also construct a lift-map from H 4 to H 44 with the fidelity bound is always saturating.

mapping the geodesic connecting o 45 and p45 to a special path in H 4. The non-decrease
of fidelity under partial trace (5.18) gives rise to the monotone for circuit complexity by

Cun (6.8, paB) = Dy (Projection of v (pas(0))) = Ci (6., pa) - (5.28)

where Dy, denotes the length measured by the QFIM and we have used the fact that the
projection of geodesic v (p45(0)) may not be a geodesic on the space of p4 to obtain the
second inequality. This non-increasing property of complexity C,,, is obviously in accord
with our intuition because it is reasonable to expect the complexity for reduced states in
a smaller Hilbert space to be smaller. Furthermore, we can also consider the map of the
geodesic 7y (p4(0)) under any arbitrary quantum operation £. From the non-decrease of
quantum fidelity F' (6.4, p4) under £, one can also arrive at the most general non-increasing
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property of purification complexity Cy by

CIM (&Aa ﬁA) > DIM (‘9 (()5«4(0))) > CIM (8 (6A) 7‘9 (:544)) . (529)

As a straightforward application, we can find that a reversible quantum operation does not
change the complexity since

Con (64, p4) = Coa (E(64),E (pa)) = Cong (E710E(64) ,E7 € (pa)) = Cunt (64, pa) -
(5.30)
For example, any unitary operator is a reversible quantum operation and then we naturally
have the unitary invariance of purification complexity

CIM (5-./47 PAA) = CIM (U&AUTv UﬁAUT) ) (531)

which can also be derived from the unitary invariance of the quantum fidelity and the
fact that the geodesic associated with complexity is chosen to be the one minimizing the
distance.

Similar to the non-decreasing property of Uhlmann’s fidelity in (5.18), we summarize
our observation as a universal conclusion that the purification complexity Cpy (6.4, p4) (for
both pure states and mixed states) derived from the quantum Fisher information metric is
non-increasing under any trace-preserving quantum operations (quantum channel) acting
on the reference state and target state simultaneously, i.e.,

CIM (&ABa ﬁAB) Z CIM (&/b ﬁA) = CIM (U&AUTv UﬁAUT) Z CIM (‘9 (a—A) 78 (ﬁA)) . (532)

Naively, a similar conclusion also holds for C572. Analogous to the triangle inequality of
Von Neumann entropy or entanglement entropy

|Six (Pa) = S (P8) | < S (pas) < Sen (pa) + Sox (P5) (5.33)

the monotonicity of the purification complexity simply implies

‘CIM (6,47 /3./4) - CIM (687 ﬁB) ‘ S CIM (&ABa ﬁAB) . (534>

However, the subadditivity for purification complexity does not hold in general and will
be discussed in the next subsection in detail.

Instead of applying quantum operations on both reference states and target states, we
can also discuss the effect of quantum operations only on the target states or the reference
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states. In the space of quantum states in any Hilbert space H 4, there is an extremely
simple state called the mazimally mized state defined by

Na

1 0
o= v el = (5.35)

)

where N4 denotes the dimension of the Hilbert space H 4. It is easy to see the maximally
mixed state has a fully degenerate spectrum ( i.e., Schmidt coefficients take the same value)
and its entropy

Sun (60,4) = Tra (69log 69) = log N4, (5.36)

reaches the maximum entropy in a N 4-dimensional Hilbert space. As a result, this is
a completely random state with zero information. For example, we can approach the
maximally mixed state by taking the inverse temperature of a thermal state 0y, to zero,
1.€.,

Ny

1
. ~ BERT —Bwn _ A
lim (8, w) = lim Z n§0: e %" [n)(n| = 6o.4.- (5.37)

Taking the reference state (or target state) in a system A as the maximally mixed state and
considering the unital quantum channels '°, the monotonicity of purification complexity
reduces to

CIM (60,A> ﬁA) = CIM (60,A> UﬁAUT) > CIM (60,./47 & (ﬁA)) ’ (538)
due to the invariance of maximally mixed states over any unital quantum channels.

From the above discussion, we have shown that the properties of the quantum fidelity
are helpful in deriving related properties for the purification complexity. Instead of using
the non-decrease of fidelity, we can also adopt other properties of fidelity. As a result of
the strong concavity of fidelity

ZpiF (64,pi) < F (Zpﬁi,Zpiﬁi) . owith > pi=1, (5.39)

we can find that the infinitesimal distance measures satisfy

> _pidsiy (pi(0), pi (0 + do)) > ds, (Z pipi (9), > pipi (o + da)) . (5.40)

ONot all quantum operations are unital. A quantum operation is unital if it preserves the identity
operator. In the operator-sum representation, the unital quantum channels satisfy >, MM, Z =1
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Considering a sequence of reference states d; and targets states p; such that
Or = Zpi&n pr = Zpiﬁzw (5.41)

and taking the integral along their respective geodesic ~; which connects ; to p;, we can
easily obtain another non-increasing behavior of the purification complexity

> piCE (61 i) = Ci (6 fr) - (5.42)

i
It means that the complexity C72 is jointly convex in reference states and target states.
Taking the square root of the above inequality, we can find that the purification complexity

C,\ satisfies

Z \/ECIM <&z7 ﬁz) 2 CIM (6—R7 pAT) ) (543)
which is reduced to

> VPiCui (6w, i) > Coa (6w, o), With  po = pifi, (5.44)

after taking o, = o5.

Finally, we would like to remark that these properties of the purification complexity
Civ (0, p) with respective two quantum states are also shared by the quantum relative
entropy S (p||6) = Tr(p (log p — log d)) in spirit. However, different from the complexity,
quantum relative entropy is not symmetric and can not be considered as a distance measure
between two quantum states.

5.2.3 More on Purification Complexity of Mixed States

5.2.3.1 Pure-State limit

First of all, let’s point out the differences between pure-state complexity from the Fubini-
Study metric and that from the quantum Fisher information metric. Applying our previous
conclusion on purification complexity to pure states, we can find

CIM (‘(I)_A> y |\IJA>) = mqinm‘l}n CFS (’(I)AAC> s ’\IIAAC» S CFS (’(I).A> s ’\II_A>) . (545)

The above inequality implies that the pure-state limit of purification complexity may be
different from the pure-state complexity derived from the Fubini-Study metric. You may
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feel surprised that the pure-state limit of purification complexity does not reduce to the
Fubini-Study complexity, in view of the fact that the quantum Fisher information metric for
pure states is exactly equivalent to the Fubini-Study metric. However, it should fulfill the
expectation because the geodesic in a higher dimensional manifold is not smaller than that
on a reduced hypersurface. Furthermore, we can find two (equivalent) physical explanations
for that discrepancy. First, it is due to the fact that the geodesic for Cpg (|P4) , |V .4)) is
constrained on the space with only pure states in H 4. However, with the help of the
ancillae, we are allowed to use all pure states in the extended Hilbert space H 4 ® H 4.
Since any product state |W 4) ® | W 4c) is also a ”purification” of |W 4), the two complexities
for pure states are consistent if and only if the optimal purifications of |®4),|W 4) are
themselves. In other words, this equivalence only appears when the ancillae and entangled
gates between H 4 and H 4 for pure states are useless. Without introducing the auxiliary
system and purifications of pure states, we can focus on the subsystem H 4 and interpret
the smaller complexity from Ciy (|®4),|V4)) as the fact that we are allowed to evolve the
pure reference state to a pure target state by some mixed states. Again, we can find that
the two complexities will be the same if the geodesic only goes along pure states, which
equivalently means that we do not need entangled gates between the physical system and
ancilla system from the view in the extended Hilbert space. In later examples, we will find
that the Gaussian states happen to be that simple case because the circuit complexity of
the factorized reference state and target state is just a direct sum of the complexity from
every single mode as shown in [62].

5.2.3.2 Simplify the minimization

Although the pure-state limit of purification complexity does not always agree with the
Fubini-Study complexity for pure states, we can further use this upper bound to simplify
the process of minimization. Based on the monotonicity of purification complexity with
respect to the partial trace, we can find the increasing sequence

Cini (64, 94) < Ciai (|Pasc) , [Wase)) < Ces (|Pase), |Vaac)) - (5.46)

in discarding of the subsystem A°. Because we have shown that the minimization of
Crs over all purifications exactly agrees with the purification complexity Cpy (G4, 0.4), the
minimum of Cy (|Pa4c) , |V auc)) has to locate at the same value, i.e.,

Cine (0.4, pa) = minmin Crs (|®aue) , [Wane)) = minmin Coy ([Panc) s [Wane)) 5.47)
5.47
=min Coy ([Pase); [Wane)) = min Co ([Pase); [Wanc)) -
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In order to simplify the double minimizations to one as shown in the above inequalities,
we just note that the unitary invariance of purification complexity implies that we can
relate the optimal purified states under the double minimizations to that with only one

(i)AAC> = |(I).AAC>7 one

mqinﬂgn Cim (|CI)AAC> ) |\I/.AAC>) = Cuu (‘(i)A.AC> ) ﬁIAAC>) )

— C (ycI>AAC>,UAAC @AAC>> , (5.48)

= mqin Cont (|Pase) s [Waue))

minimization. Taking the unitary operation Ug4c such that Ugye

can simplify the double minimizations by

which also works for one minimization over all purified target states |V 44¢).

5.2.3.3 Mutual complexity of pyz

Starting from the target state represented by a density operator p 45 in the bipartite phys-
ical systems H 45, we can also define the mixed-state complexity for two reduced density
matrices

pa="Trg(pas) , ps="Tra(pas) , (5.49)

in the subsystems A, B. From the non-increase of purification complexity under the partial
trace in (5.32), it is direct to derive the inequality Ciy (p4) < Ciy (pag) and also

Cov (Ga, pa) + Cui (08, p8) — 2Cii (GaB, pas) <0, (5.50)

where the reference states are given by 45 in the system AB, 64 = Trg (6.45) in a sub-
system A, and 65 = Tr4 (6.45) in a subsystem B, respectively. On the other hand, we are
interested in the non-trivial concept called mutual complexity [2, [61]. As a generalization
of the mutual complexity for pure states |¥ 45), the authors of [2] propose to extend the
mutual complexity to more generic quantum states with bipartition as

ACIM — CIM (6'A, ﬁA) + CIM (&Ba ﬁB) - CIM (&AB7 ﬁAB) 5 (551)

which quantifies the additional correlations between the subsystem A and B. Taking the
complexity of states as that derived from the quantum Fisher information metric makes the
above definition calculable. When AC > 0 complexity is said to be subadditive, otherwise it
is called to be superadditive when AC < 0. As discussed before, we have another definition
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for pure-state complexity based on the Fubini-Study metric. Correspondingly, we can also
define the mutual complexity for pure states |¥ 45) by

ACFS = PFS (5'A7 ﬁA) + PFS (&Aa ﬁB) - CFS (|¢AB> s |\PAB>) )
= CIM ((5'_,4, ﬁA) + CIM (&Aa /38) - CFS (|CI).AB> ) |\IIAB>) ) (552)
< ACy s

where we have used the fact Ciy (6.4, p4) = Prs ((04,p4) for purification complexity of
mixed states and also Cpg (W 45) > Ci (VU 4p) for pure states.

Although we found that the mutual complexity (5.51) is either always superadditive
or always subadditive in general, it is easy to get the subadditive mutual complexity in
many simple cases due to the monotonicity of purification complexity C;,. If a quantum
operation with £ (6.4 ® 65) = d.45,E (pa ® ps) = pas exists, then one can easily confirm

ACny > Ci (64 ® 65, pa @ pB) — Coni (645, pas) > 0, (5.53)

by using the simple fact Cyy (64 ® 05,4 @ pB) < Ci (G4,p4) + Cou (65, p5), and also
applying the non-increase of purification complexity to derive the second inequality. For
example, if the reference state and target state are both factorized (separable states) as
OB =04 R 0B, PpAs = pa @ pp, we have ACy > 0.

It is intriguing to expect that the mutual complexity AC,y (pa5) is always subadditive.
However, we can easily find a counterexample by relating the reference state to the target
state via 045 = pa ® pp. Then it is obvious that

AC (pa ® ps, pas) = C(pa, pa) +C(ps, ps) — C(pa @ ps, pas) = —C (pa @ ps, pas) <0,

(5.54)
because of the non-negativity of complexity. Finally, we should point out that the above
example with AC < 0 exists for any potential definitions of complexity between two density
operators.

5.2.3.4 First Law of complexity for mixed states

Since we also define the complexity of mixed states as the geodesic distance, the idea about
the first law of complexity [1] also directly applies to the mixed states because they can be
both considered as a similar classical mechanics problem. Therefore, perturbing the target
state p4 by a small variation p4 + 0p4 = pa(A + 0A) with a fixed reference state, one can
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easily find that the variation of complexity for mixed states also satisfies the first law of
complexity [, 0]

5CIM - CIM (ﬁA + 5ﬁA) - CIM (ﬁA) )

1 5.55
= (PH(F)\“ + 0P, 0N + - ) , ( )
2 s=1
where the "momentum” P, is defined as
OF  2gm N\
PM = - = s
ONH Fiv (5.56)
2F, . 2F,
0P, = P N ,
ONVONH ONVONH

with respect to the complexity measure (cost function), i.e., the proper distance with the

QFIM, Fiy = /29, M \v. However, except for the similarity in form, we also want to
point out an obvious difference between the first law of complexity for pure states and that
for mixed states. The former only works for the perturbation from unitary transformations.
As described in [4, 6], the variation of complexity is traced back to the change on unitary
operator

|Up) — Wy + W),  with Upg — Ul = Urp + 0U . (5.57)

However, for the first law of complexity for mixed states, we can also interpret the change
on target states as either unitary or non-unitary transformations. In a short sentence, the
general quantum operation triggers a generic small variation of the mixed state by

A — Pa = Pat opa =) MipaM]. (5.58)

7

5.3 Application: Gaussian Mixed States

In the last section, we have shown that the complexity from the quantum Fisher information
metric is the purification complexity in (5.27) and also (5.47) with a simpler minimization.
In this section, we would like to use the Gaussian mixed states as an explicit example to
illustrate that the equivalence holds after the minimization on the Fubini-Study complexity
over all purified states.
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5.3.1 Geodesic and Complexity

As the first application of the complexity Cy, from the quantum Fisher information metric,
we start from the same one-mode Gaussian state as introduced in section 3.2.2, i.e.,

~

pr = S1(r)owm(B,w)Si(r). (5.59)

where the one-mode squeezing operator S (r) with a real parameter 7 is defined in eq. (3.14)
and Uy, defined in eq. (3.15) denotes the thermal state with inverse temperature 5. For
convenience, we have introduced two new parameters in section 3.2, viz.

1. 14 e B2

o M Zepu2 I

o= r=1r—

: (5.60)

N | —
€ lx=

where the p is the characteristic frequency of the reference state |¢g) = |0(p)) which is
chosen to be a Gaussian pure state. First of all, we need the quantum fidelity for squeezed
thermal states [219]

2 sinh ﬂlTw sinh 627“’

F(p(C1, 81), (G2, B2)) = 1 ;

(5.61)

with complex squeezing parameters ¢; = ;€% and

Y :C032(91 ; 92) <COSh2(7a1 _ 7'2) COSh2 (#W) _ Sinh2(7'1 . TQ) COSh2 (wﬁl ;/82)> 4

0, — 0 B
sin’ (= 2 ") (C03h2(7"1 + r3) cosh? (&%&w) — sinh®(ry + ry) cosh® (w—ﬁl 5 B2)> .

(5.62)

Omne can obtain the quantum Fisher information metric (Bures metric) by taking two
nearby states

ds* =y 1 — F(p, p+ dp)°
2

w 1 1
= 4%+ =1+ ——— ) (4dr® + sinh?(2r)db?
16 sinh* 22 P +8< +cosh(ﬁw))( o sinh’ (2r)d67) (5.63)
1 2
=da®+>(1— ——"— ) (4dr® + sinh?(2r)d6>
o +4( 3+cosh(4a))( r* + sinh”(2r)do?) ,
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which reduces to a hyperbolic geometry H? for pure states with 3 = oo. Similar to the
assumption in [2], we can ignore the phase part associated with the angle 6 and focus on
the two dimensional metric

2
ds?, = do? l———— | dr? .64
S = AT < 3+Cosh(4a)> T (564)
whose geodesic equations (o € [0, 1]) read
(o) (cosh(4a(a)) + 1) 47(0)? sinh(4a (o)) ..
= — = 0. 5.65
cosh(4a(o)) + 3 %" (cosh(4a(0)) + 3)2 a(o) (5.65)
4
3
— f(s=1)= 1i0
f; ? s=1)=3
] s =1) =1
— f(s=1)=2
0
0.0 0.5 1.0 15 20

Figure 5.4: Circuit Complexity Cp(p1) from the quantum Fisher information metric
for one-mode Gaussian mixed state p; (r(c = 1), (o = 1)) with different boundary value
(o =1).

Taking the special initial conditions a(0) = 0,7(0) = 0 from our reference state |iy) =
|0(1)), we can find the analytic solutions of geodesic equations

1 \/Clzsech2 (2C10)
alo) = §sech*1 ,
\/ C} — Cf tanh? (2C0) (5.66)
1 tanh (2
7(o) = = [ 2Cyo + tanh™* Co tanh (2C10) )
2 Ch
Imposing the boundary conditions, we can fix the constant Cy, C as
OO tanh (201)

(5.67)

Co = :I:\/C'l2 (coth?(2C7) — esch®(2Ch ) cosh?(2a(1))), Cy = tanh (27(1) — 2Cy)’
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where the sign of the first equation depends on the sign of 7(¢ = 1) and the second
transcendental equation cannot be solved analytically. However, one can still find that the
length of geodesic and complexity from the quantum Fisher information metric satisfy

7(0)?(cosh(4a(o)) +1) .
cosh(4a (o)) + 3 +dlo)

Cuut (1012 / ds \/ 20, AAY = (/202 + 202 (5.69)

which is derived from the semi-analytic geodesic solution (5.66). For later use, the geodesic
solutions in (5.66) can be also rewritten as

G NN = = C2 42, (5.68)

and

1 2
alo) = 5 cosh™ (\/coshQ(QCla) - % smh2(2010)) ;

(5.70)

cosh(2C0) + g—‘lé sinh(2C40)

7(o) = Coo + —1n

4 cosh(2Co) — g—? sinh(2C10)

As a consistency check, we can consider the one-mode Gaussian pure state obtained by
taking the following equivalent limits

B—o0, T—0, a—0. (5.71)
It is easy to find that the geodesic solution (5.66) reduces to C? = C2 and

alo) =0,7(0) =2Cy0 = (0—1)

_ 1 (5.72)

Cune (10(1)) , [11)) = /205 +2CY =11 = 5 = Ces (10(1)) , [¥1))
which is the same as the results shown in [62] and [09]. Furthermore, we have pointed out
an important result from [62] about pure Gaussian states, i.e., the complexity of a pure

Gaussian state factorizes in the normal basis. As a result, we can find that the pure-state
limit of Cyy is equal to the complexity of any N-mode pure Gaussian state |iy) (see e.g.,
(2.9)) with Fubini-Study metric or F» cost function

Crs (|¢N>) =G (W’N» = Ciu (WN» ) (5'73)

which also implies that the ancillae for pure Gaussian state cannot decrease the complexity.
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Except for the pure-state limit, we can also easily obtain the numerical solutions for
(5.67) and the corresponding complexity by given 7 (o0 = 1), (o = 1) for various target
states. The numerical results are shown in the figure 5.4. From the geodesic solution
(5.66), we actually identify the evolution of mixed states in the optimal circuit from |0(1u))
to py as

pi(o) = pr1 (r(0), a(0)) , (5.74)

without explicitly introducing the auxiliary system or performing any minimization process.
In order to support our conclusion about the equivalence between purification complexity
Prs and mixes-state complexity Cp,; from quantum Fisher information metric, we would like
to show that the analytic trajectory for 7(s), a(s) can also be subtracted from the optimal
circuit for purified states, e.g., the two-mode Gaussian pure states whose complexity has
been discussed in [62]. Comparing Cyy in (5.69) with the purification complexity derived
by minimizing the complexity of purified states, we will show that the two results are the
same in the next subsection.

Finally, we also note the mutual complexity of the TFD state is sub-additive, 1i.e.,
ACp > 0 as shown in figure 5.5. From the viewpoint of purification complexity with F
cost function, the same result has been derived at section 7 in [2].

3r \
— Bu

2 Bu =10

~ 1000

B = 1000

Bw

Figure 5.5: Mutual Complexity AC(|TFD12)) = ACrs(|TFD12)) for TEFD state is always
subadditive.
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5.3.2 Optimal Purifications and Purification Complexity

Given the mixed state p4 for subsystem A, we can obtain its purified state |¥) 4 ,. by
introducing ancillae, the auxiliary system A°. The purification complexity of p 4 is defined
as the minimal complexity of purified states, i.e.,

P (pa) = min C (W) 44e) » (5.75)

where the minimization is done over all possible purified states with Trge (|¥) 4 4 (¥] 44c) =
pa. As we discussed around eq. (5.47), this minimization over all purified target states is
enough to get the purification complexity, as we will explicitly show in this section.

Restricted on the Gaussian pure states, we have shown in subsections 3.2.1 and 3.2.2
that there is a one-parameter family of two-mode purified states, i.e.,

(W aae) = 1)1, = S1(r) Sa(s) Sia(a) [0, |0), (5.76)

whose position-space wavefunction is given by eq. (3.9) or eq. (3.23). In our the matrix
representation (3.26), the purified Gaussian state is denoted by

e cosh2a  —e™* sinh 2« e?" cosh2a  —e™¥ sinh 2«
M
= w ) = o - .
T —e™$sinh 2 €?® cosh 2a —e™Fsinh 2 €% cosh 2

(5.77)

Fixing the reference state as the unentangled state |0(u)) ® |0()), the purification com-
plexity of Gaussian mixed state p; is derived as

P (10(1)) , pr) = min € (J0(), 0())  [¥)15) (5.78)

where the complexity of Gaussian pure states depends on the choice of the cost function
and minimization is performed among the free parameter s. For example, the purification
complexity for the one-mode Gaussian mixed states with respect to the Fj-cost function
has been discussed in detail in section 3.2.

In order to compare with the complexity from the quantum Fisher information metric,
it is natural to consider the F,-cost function or Fubini-Study metric. In subsection 2.1.2.1,
we have discussed the pure-state complexity with the Fubini-Study metric approach. In this
section, we take the optimal circuit for pure Gaussian states and apply the minimization to
find the optimal trajectory for mixed states in the subsystem, i.e., the one-mode state p; (o).
From the matrix representation of the elements Us in GL(2,R) group shown in eq. (2.34),
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the purified Gaussian state ¢9(zy,x_) = Ustg(x,,x_) along the circuit (path) in this
matrix representation is given by eq. (2.35), i.e.,

Ma(o) — e*(cosh(2p) + cos(2x) sinh(2p)) e sin(2z) sinh(2p)
29 = H €2V sin(2x) sinh(2p) e2(cosh(2p) — cos(2z) sinh(2p)) )
(5.79)
with boundary conditions fixed by the specific target state. As advertised before, the

optimal circuit is a straight line connecting the reference state and the target state in the
norm basis, 7.€.,

p(o) =pio, z(0) =m0, ylo)=uy0, (5.80)
with . )
Wi Wy
=71 = —log—. 81
n= %;( 2 ) . = qlog— (5.81)

and w4 as the normal frequencies of the two-mode Gaussian state. According to the choice
of cost functions, we can derive the complexity of two-mode Gaussian states as !

Cres (|t12)) = Co (|¢12)) = %\/(ln %) + (ln %) 3 (5.82)
(CFS (|¢12>))2 = Ch=2 (le» :

In addition, from the trajectory of two-mode Gaussian states, we can also explore the
reduced trajectory of mixed Gaussian state pi(o) by tracing out one of the two modes.
In the matrix representation, the purified states [112) for mixed states p; is also given by
M2 as defined in eq. (5.77). Identifying the two matrix representations in eqs. (5.79) and
(5.77), we can find the transformation

i1 | cosh 2p — cos 2z sinh 2p
=+—1In
2 cosh 2p + cos2xsinh2p )

VAl

F+5=2y, T—

(5.83)

2

Recalling the geodesic solution (5.80) for pure Gaussian states, we then derive the trajec-
tory of mixed Gaussian states p; (7, ) as

1
a(o) = = cosh™* (\/coshz(Zpla) — cos? 2z sinh2(2p10)) ,

2

_ 1 cosh(2p10) + cos 2xy sinh(2p;0)
— =

rlo) =yo+ 7 (cosh(Zpla) — cos 2xq sinh(2p;10)

1
o = —cosh™* (\/cosh2 2p — cos? 2x sinh? 2p> .

(5.84)

4

1'We adopt the definition shown in eq. (5.4) in order to exactly identify Crpg (]t12)) and Ca (|th12))

147



which exactly matches the geodesic path (5.70) derived in 2D-manifold with the quan-
tum Fisher information metric! But this is not the final answer for the purification com-
plexity because we still need to find the optimal purification with a given target state
p1(a(oc=1),7(c =1)) and then it will determine the free parameter s (decoded in the
parameter p; via eq. (5.81)) for the optimal purification. Some analytical approximations
have been discussed in [2]. Instead, we can also directly perform the numerical mini-
mization. With all given target states p; (as shown in figure 5.4 '?), we find that the
minimization leads us to the same minimum for complexity as (5.69). As a summary, the
minimization for the purification complexity of the Gaussian mixed state p; simply shows
the equivalence, i.e.,

2 2
P (10(1)) 1) = min Crs (12)) = i g\/ (=) 4 (0=5) = o (00 )

(5.85)
As shown in eqs. (5.70), (5.84), this equivalence also means that the optimal circuit found
from the geodesic associated with the quantum Fisher information metric is the same as
that from the optimal circuit for two-mode pure Gaussian state by tracing out one extra
ancillary mode. This simple example illustrates our main conclusion that the mixed-state
complexity (geodesic distance) associated with the quantum Fisher information metric is
the purification complexity measured by the Fubini-Study metric. More generally, our proof
in (5.27) also indicates the optimal purification for one-mode Gaussian state is actually
the essential purification, i.e., two-mode Gaussian state, confirming the expectation and
assumption in [2].

5.3.3 Purified States with Uhlmann’s fidelity

In the last subsection, we have shown the equivalence between purification complexity Py
and mixed-state complexity C;,, based on the quantum Fisher information metric. In this
subsection, we explicitly construct the optimal purified states and show that they saturate
Uhlmann’s fidelity. Furthermore, we also illustrate the quantum fidelity’s bound, i.e.,
Uhlmann’s theorem for Gaussian state as stated in (5.8) is satisfied by taking the two-
mode pure Gaussian state as purification. Taking two arbitrary mixed Gaussian states

12 We find the difference between that and the results from numerical minimization is at the order
10715 which is just the machine precision. Decreasing machine precision also correspondingly decreases
the difference.
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p1 (r1,0q) and g (re, as), their quantum fidelity is found to be

2 sinh 517‘” sinh 627“’

\/(COShz(ﬁ — 73) cosh? (@w) — sinh?(r; — ry) cosh? (w#)) -1

(5.86)
which should be equivalent to the fidelity between specific purified states according to
Uhlmann’s theorem.

F(ﬁlaﬁll) =

I

First of all, we start from the simplest purification, i.e., the two-mode Gaussian states

(3.22). Noting that we can parametrize the wavefunction of purified Gaussian states as
(3.23)

Pra(x,y) = \/Eez exp [—% (cosh 2a (€*2* 4 €*°y*) — 2€""* sinh 2 xy)} . (5.87)
m

it is easy to find the quantum fidelity between pure Gaussian states ¥12(x, y; r1, $1, 1) and
Vio(@, Y572, 82, 1) as

F(>\17>\2) = |<"¢f |¢/>| :/ / ¢12(3?>yﬂ“l,51,041)?/132(-’13,24;?"2782,042)dﬂ? dy,

2
N \/cosh 2av; cosh (2ap) cosh (11 — ro — 81 + S2) + cosh (11 — ro + 81 — s2) — sinh 2¢y; sinh 2a
(5.88)

by a simple Gaussian integral. The maximal fidelity is decided by the saddle point with
Gle()\l, )\2) =0 and 6’82F()\1, )\2) =0. (589)

However, the above two derivative equations lead us to the same solution

(5.90)

1 (62” + €272 cosh 2a4 cosh 20@)
2

Sy =81+ =1o
2 ! & e2r2 + e2m cosh 2a; cosh 2aes

Generally, the maximum of F'(A1, \y) should be given by critical point with 0y, F'(A1, A2) =0
and 0s, F'(A1, A2) = 0 simultaneously. However, either condition is sufficient because of the
unitary invariance of the fidelity. Plugging the solutions of s; — s, into the fidelity between
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pure states, we obtain the maximum fidelity

max  F'(A1, \2)
[12),|¥]5)

2

Y

\/cosh2 201 cosh? 2as + 2 cosh 2a4 cosh 25 cosh (2r; — 2r9) + 1 — sinh 2« sinh 2a
(5.91)

which is nothing but Uhlmann’s fidelity (5.86) derived from two Gaussian mixed states
p(r1,aq) and p (g, ap). From this viewpoint, we can claim that the purification restricted
on pure Gaussian states is enough to achieve the optimal purification for mixed Gaussian
state py, i.e., satisfying the fidelity bound in Uhlmann’s theorem. That point illustrates
why we can match the complexity and also the evolution of the path for mixed states p; (o)
with those derived from only two-mode Gaussian pure states, which was explicitly shown
in the last subsection.

To close this chapter, we summarize the main conclusions discussed in previous sections.
First of all, we generalized the Fubini-Study method for circuit complexity to generic
quantum states by using the quantum Fisher information metric g, in section 5.1. Due to
the special properties of Uhlmann’s fidelity (see (5.8)), we further find that the complexity
Ciy defined in (5.19) between arbitrary two quantum states exactly equals the purification
complexity measured by the Fubini-Study metric (or QFIM) on the extended Hilbert space
for purified states, i.e., (5.47)

Cunt (0.4, p.4) = 1000 Crs (|Pane)  [Waae)) = min o (1Paae)  [Waae)) - (5.92)

Without explicitly introducing the auxiliary system and purifying the mixed states, our
method avoids the challenging minimization over all purifications. This equivalence is
illustrated by the example from Gaussian mixed states in section 5.3. Interestingly, we also
prove that this purification complexity C,,, is always non-increasing under any quantum
operations such as partial trace in (5.32). From this monotonicity, we also show the mutual
complexity AC;, cannot be either subadditive or superadditive in general.
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Chapter 6

Discussion

In this thesis, we examined the complexity of mixed states. After reviewing both circuit
complexity and holographic complexity for pure states in chapter 2, we began with the
purification complexity using the F) cost function, which was introduced in Nielsen’s ge-
ometric approach to pure-state complexity. Our exploration in chapter 3 focused on the
complexity of Gaussian mixed states in a free scalar field theory. We applied both the phys-
ical basis and the diagonal basis to study the purification complexity of a thermal density
matrix and the reduced density matrix for a subregion of the vacuum. Next, we reviewed
the holographic proposals for subregion complexity in the literature, e.g., subregion-CV,
subregion-CA, and subregion-CV2.0. Correspondingly, we explicitly presented the results
in chapter 4 for the holographic complexity dual to a thermal state as well as subregions
of the vacuum. Furthermore, in chapter 5, we also proposed a different approach to the
circuit complexity of mixed states with the help of the quantum Fisher information met-
ric or Bures metric. As a result of Uhlmann’s theorem, we proved that the mixed-state
complexity derived from QFIM is equivalent to the purification complexity obtained from
Fubini-Study metric approach but without explicitly performing any purifications in our
proposal.

In this final chapter, we would like to discuss some results that connect to the investiga-
tions in previous chapters. To finally close this thesis, we also briefly outline some possible
directions for future studies.
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6.1 Other Proposals for Mixed-State Complexity

Our exploration on the circuit complexity of mixed states in chapter 3 focused on a defi-
nition dubbed the purification complexity in [171]. That is, we considered the minimal
complexity amongst the possible pure states that purify the desired mixed state p4. Let
us point out, however, that our perspective differs slightly from that of the authors of [171]
in that the latter only consider essential purifications. The reason for this restriction was
that they wanted the definition to collapse to the usual pure state complexity definition
when the target state is pure. For the Gaussian mixed states considered in this thesis,
we found that essential purifications are actually optimal and as a consequence this as-
sumption becomes redundant. It would be interesting to explore whether including extra
auxiliary degrees of freedom that appear in a simple tensor product in the final pure state
could actually reduce the complexity of mixed states (or pure states) in more complicated
situations.!

We might add that the purification complexity discussed here and in [171] is closely
aligned with the standard approach developed in quantum information theory, e.g., [170,

]. However, in this setting, the auxiliary degrees of freedom are regarded as another
resource required for the preparation of the desired mixed states, and hence an additional
cost is associated with adding more ancillae. This cost was not considered in our analysis
nor in [171]. This would be another feature that would favor essential purifications as the
optimal purifications. Taking the one-mode Gaussian mixed state p; as an example, we
found the same complexity using either one or two ancillae, implying that the essential
purification with one ancilla would clearly become the optimal one if we added an extra
penalty for each ancilla that is introduced. Still, it would be interesting to investigate
whether this simple result extends to, e.g., the case of interacting quantum field theories.

Before proceeding with a further discussion of our results, we would first like to briefly
review some other proposals for mixed-state complexity and possible connections to our
work:

Spectrum and Basis Complexity: One alternative [171] is to break the problem of
preparing mixed states into two parts — creating the spectrum and creating the basis of
eigenvectors. The spectrum complexity Cg is defined as the minimal purification complexity
of some mixed state pgpec that has the same spectrum as p4, where one also optimizes over
the possible pgpec. Since one possible pgpec With the required spectrum is simply pa, we
conclude that Cg < Cp, where Cp denotes the purification complexity of p. In our analysis,

'We are reminded here of coherent (pure) states [1], where, in simple examples, the reference and target
states had a tensor product structure which was not respected by the intermediate states.
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the spectrum is defined by the eigenvalues of the matrix B in eq. (3.70).

The basis complexity can be defined in different ways: The first suggestion in [171] is
simply the difference Cp — Cgs. The second suggestion is to define Cg as the complexity
(i.e., minimal number of unitary gates) required to go from the optimal pg,e. to our target
state p. The latter preparation can be made with unitary gates because the two mixed
states share the same spectrum. We can easily demonstrate Cp < Cg + Cp since on the
left-hand side, the preparation is constrained to pass through the intermediate state pgpec-

Our construction using the physical basis seems closely related to this approach. To
modify the spectrum, one must use “mixed” entangling gates acting between A and A
and so these would appear in the circuit preparing (the purification of) pspec. The gates
acting only on the A degrees of freedom modify the basis, and the circuit preparing p4
from pgpec is comprised solely of these gates. However, it seems that there is no natural role
for the gates acting only on A°. In this framework then, not using these gates may be the
reason for the difference in the complexities, i.e., Cp < Cg+ Cp. Let us also note that both
the spectrum complexity and the entanglement entropy are both insensitive to the action
of the gates acting only on A or only on A°. Only the AA° entangling gates change these
quantities. For example, considering two mixed states of a single harmonic oscillator with
the same entanglement entropies, this implies that the spectrum complexities must also
be equal. It would be interesting to understand to what extent this property generalizes
to states over many degrees of freedom, e.g., the thermal state of a free scalar, studied in
section 3.4.

Open System Complexity: Open system complexity studies the complexity of cir-
cuits that move through the space of density matrices using general CPTP maps, rather
than only unitary transformations. This requires characterizing these general maps in
terms of elementary operations and then assigning a cost to the latter. Of course, as dis-
cussed in the introduction, the dilation theorems [181] imply that the most general CPTP
maps acting on a system of qubits can be realized as unitary evolution of the system cou-
pled to ancillary qubits [176], which seems to bring this approach back to the framework
used for the purification complexity. However, one potential difference for the open system
complexity is that some of the ancillae may be introduced and traced out, i.e., they are re-
initialized, at every step. This would contrast with having a single reservoir of ancillae on
which we can repeatedly act before tracing them at the very end of the unitary evolution,
as described for the purification complexity.

Ensemble Complexity: The ensemble complexity is defined using a decomposition

153



of the mixed state over an ensemble of pure states as follows

= nin sz (I:)),  where p= ZPMMW : (6.1)
(2

Of course, this notion reduces to the pure state complexity when the state p4 is pure. Even

with a Gaussian mixed state p_4, we would generally have to explore ensembles that are not

constructed solely from Gaussian states. In the case of a thermal state, a decomposition

is available in terms of coherent states and this allows to put a bound on the ensemble

complexity of thermal states — see section 3.5 of [171] for further details.

Alternative Measures of Mixed-State Complexity: In chapter 5, we considered
the quantum Fisher information metric or Bures metric as the measure for mixed-state
complexity Cp,. However, one may also consider alternative measures like choosing var-
ious cost functions in Nielsen’s geometric method. In [3], we also examined some other
distance measures in the space of density matrices, e.g., trace distance, Hilbert-Schmidt
distance. However, all these methods to evaluate the purification complexity or mixed-
state complexity require solving the geodesic problem whose analytical solution may be
absent.

As we shown in section 2.1.1, the circuit complexity of a Gaussian state with Fy cost
function is given by eq. (2.19). The result is also extended to any arbitrary Gaussian state
in [65,08]. Denoting the covariance matrices of reference state and target state as g, 3,
respectively, the circuit complexity of pure Gaussian states is given by a simple formula,
namely

1 2
Cy = Q—ﬁ\/Tr [(log Are)?] (6.2)

with relative covariance matrix defined as Ay = X3 L Tt is natural to expect that such a
simple form can be generalized to any mixed Gaussian state because its covariance matrix
is also well-defined. For unfamiliar readers, we refer them to appendix C for a minimal
introduction to Gaussian states and their covariance matrices. Inspired by this compact
formula (6.2) for pure Gaussian states, the authors in [220,221] suggest the Fisher-Rao
distance between covariance matrices Xz and Y. as the complexity of corresponding
Gaussian states pg, pr, €.,

o () = 5= ﬁr [(log Ax)’] og (322,52 | (69

2\/')

It is obvious that it reduces to the result in eq. (6.2) for pure Gaussian states. More
interestingly, another advantage of this measure is that the unique geodesic between the
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reference state and target state (i.e., optimal circuit) is exactly solved by
en (8) = D2 (2;1/22T2;1/2) V20 0<s<U, (6.4)

which is also known as the s-geometric mean of matrices ¥+, . To close here, we remark
that the Fisher-Rao distance is only well-defined for positive definite matrices like covari-
ance matrices of Gaussian states. It is not clear how to generalize this distance measure
to more general density matrices.

6.2 Mutual Complexity in QFT

In section 3.4.5, we considered beginning with the pure state |V 45), and then constructed
the two reduced density matrices, p4 and pg. Then in eq. (3.105), the mutual complexity
was then defined as the combination [139],

AC = C(pa) +C(ps) — C(|Vas)) , (6.5)

which quantifies the additional correlations between the subsystems A and B.

Our first application of this quantity was to compare the complexity of the TFD state
with the purification complexity of the thermal mixed state produced by tracing out either
the left or the right degrees of freedom, e.g., see eq. (3.106). As a warm-up exercise, we
evaluated the mutual complexity for a two-mode TFD state and as shown in eq. (3.109),
we found AC{™ (|TFD),,) > 0. More generally, we might evaluate the mutual complexity
for general two-mode pure Gaussian states |¥),,. That is, integrating out each of the
degrees of freedom in term yields two distinct mixed states, p; and po, and so one might
compare the purification complexity of these two mixed states with that of the parent pure
state, with the analogous expression to that in eq. (6.5). In fact, using the results for the
purification complexity of one-mode Gaussian states in eq. (3.36), it is straightforward to
show that subadditivity always holds for any two-mode pure Gaussian state, i.e.,

ACH™ ([W),15) = CY™* (1) + C1™ (p2) — C1** (|W) ) > 0. (6.6)

However, this inequality does not extend to the purification complexity calculated in the
physical basis, as in section 3.2.4. It would be interesting to investigate whether the above
inequality can be made more restrictive, e.g., where the mutual complexity is greater than
some finite bound proportional to the entanglement entropy.
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Since in section 3.4, the TFD state has a simple product structure for the free scalar field
theory, the mutual complexity becomes simply a sum over the same quantity evaluated
for each of the individual modes — see eqgs. (3.110) and (3.124). Hence the positivity
appearing in eq. (3.109) for the two-mode TFD states in the diagonal basis extends to the
TFD state of the full scalar QF'T. That is, AC*¢ (|TFD)) > 0 irrespective of the values of
the temperature, reference frequency or the mass of the scalar.

This positivity is not replicated for the mutual complexity when it is evaluated using
the physical basis, as shown in figure 3.10. There we showed that for a massless two-
dimensional scalar, AC*™* (|TFD)) becomes negative when the reference frequency s is
much smaller or much larger than the temperature.

In section 3.4.5 we found that with x> T, the mutual complexity of the TFD state is
proportional to entanglement entropy between the left and right copies of the field theory.
However, in general, there would be an overall proportionality constant that contains
a temperature dependence through the (dimensionless) ratio 7'/u, as well as T'/m for
a massive scalar. This behaviour is easily seen analytically in the diagonal basis using
eqs. (3.114) and (3.115), but similar results also apply in the physical basis, see comments
at the end of section 3.4.5.2. In any event, the appearance of the entanglement entropy in
the regime p > T reinforces the intuition that the mutual complexity in eq. (6.5) quantifies
the correlations between the subsystems to which the pure state is reduced.

Before turning to subregions, let us briefly comment again that AC is UV finite for the
TFD state. For the free scalar, we found that the leading UV divergence in the purification
complexity of the thermal mixed state is the same for either the diagonal or physical basis,
as determined in egs. (3.88)-(3.90) or eq. (3.102), respectively. The precise form of this
leading divergence can be found as

Qa_oVi_ _
Cpun(B)) =~ {2<25—>ffédil> AT I+ g5 A,
th = Qg_oVy_ _ A 2 d—1 1

Q(Qﬁ)dallzdl_l) Ad ! <11’1 m + d—1 (%) - ﬁ) » M S A

Exactly, the same divergences also appear in the complexity of the vacuum state of the

scalar field theory, e.g., see appendix B of [69]. These divergences are also exactly one-

half of those found for the TFD state, and hence the subtraction in eq. (3.106) yields

AC (|TFD)) which is UV finite (in either basis). More precisely, all of the potentially di-

vergent contributions cancel in the integrand of eq. (3.111) for the diagonal basis and of

eq. (3.124) for the physical basis, and so all of the UV divergences cancel in the corre-
sponding mutual complexities.

(6.7)

Of course, this UV finiteness is directly related to the fact that optimal purification
of the thermal state py, () is not the TFD state. Much of the preparation of the TFD
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state involves introducing short-distance correlations in both copies of the field theory.
Even though the optimal purification of py, () involves introducing a number of auxiliary
degrees of freedom that is equivalent to introducing a second copy of the QFT, there is
no need to prepare the purification with UV correlations amongst the ancillae since after
they are integrated out, these will not affect the physical correlations of the thermal mixed
state.? This is why the UV divergences in C(pw(3)) carry exactly a factor of one-half
compared to C (|TFD)).?

In section 3.5, we considered the purification complexity of subregions of the vacuum.
In this case, both the vacuum state and the mixed states produced by reducing to a
subregion can again be written in a product form. However, the basis of states appearing
in these products is not the same, i.e., for the vacuum, we use momentum eigenstates
(which are eigenstates of the Hamiltonian), while for the subregions, we use eigenstates
of the corresponding modular Hamiltonian. Hence we can no longer apply eq. (6.6) to
determine the sign of the mutual complexity of the vacuum divided into two complementary
subregions, A and B. However, we found that AC{® is still positive in the diagonal basis,
as illustrated in figure 3.13. In the physical basis, we gave two definitions of the mutual
complexity in eq. (3.144), which differ by the basis in which the ground state complexity
is evaluated. Our analysis indicates that ACP™® is generally negative, while ACP™® is
positive, as illustrated in figure 3.17. The sign difference between these two definitions is
due to the vacuum complexity being much larger in ACP™® than in AC™®. The cutoff
dependence of ACY s is related to the subleading divergences of the subregion complexities
and the ground state complexity, which are all logarithmic. On the other hand, the cutoff
dependence of ACP™® is dominated by the subleading divergence of C{*8(|W,)), which is
linear in the cutoff. We turn to the comparison of the mutual complexity from our QFT
and our holographic calculations in the next subsection.

Before closing here, let us note that for subregions of the vacuum, it is again the case
that the original state, i.e., the vacuum state, does not provide the optimal purification.
If the vacuum were the optimal purification, then the subregion complexity would simply
match the complexity of the ground state. As a result, the leading divergence of all of
the subregion complexities would be C ~ V(X)/§41 (where V(X) is the volume of the
global time slice) and the corresponding mutual complexity would also exhibit a volume-

2Similar comments appear in [171] using the basis and spectrum language, i.e., preparing the TFD
state requires many gates which adjust the basis of the purifying system but which do not affect the mixed
thermal state of the original system.

3Given the optimal purification of py,(3), it may be interesting to investigate the properties of p4e,
i.e., the mixed state found after tracing out the physical degrees of freedom. For example, one should find
that it is much less entangled at short distances.
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Thermal state Subregions of the vacuum
QFT (diagonal basis) AC >0 AC >0
QFT (physical basis) || AC < 0 for Bu>> 1 or fu < 1 AC <0, AC > 0°
Holography (CV) AC, <09 AC, <08
Holography (CA) AC, <0 AC, < 0F
Holography (CV2.0) ACyye < 0T ACyyo < 0F

Table 6.1: Comparison of the mutual complexity in field theory and in holography for the
various cases studied in this paper. Above, u is the characteristic frequency of the reference
state while g is the inverse temperature.

¢ there are two possible definitions for mutual complexity in the physical basis for subre-
gions of the vacuum, see discussion around eq. (3.144) for more details; ® the inequality is
saturated (i.e., ACy = 0) when evaluated for ¢, = 0 = ¢ for the TFD state and for ¢t =0
for the vacuum state, as was done in the preceding QFT calculations; T in both cases, AC
was proportional to the entropy of the thermal state; * in both cases, the leading contri-
bution to AC had the same form as the leading divergence in the entanglement entropy of
the subregions.

law divergence. Instead as shown in egs. (3.135) and (3.142), the leading divergences
are instead proportional to V(A), the volume of the subregion, and as discussed above,
the mutual complexity is then controlled by the subleading divergences appearing in the
individual complexities. Again, this reflects the fact that in the optimal purification, there
is no need to prepare UV correlations amongst the ancillae. Moreover, we might note that
the ground state would not even be an essential purification (with the minimal number of
ancilla) for subsystems whose size is less than half of that of the full system.

6.3 Holographic Complexity

Much of the motivation of our studies in chapter 4 was to compare the results for the pu-
rification complexity in the free scalar QFT to those for the mixed state complexity found
in holography. Hence we now compare the QFT results of sections 3.4 and 3.5 for the
purification complexity of thermal states and subregions in the vacuum state to the analo-
gous results found with the subregion-CV (4.1), subregion-CA (4.2), and subregion-CV2.0
(4.4) prescriptions found in section 4.1. Recall that motivated by previous comparisons, we
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focused our analysis of the complexity in the QFT on the F} cost function. For example,
the structure of the UV divergences for the C; complexity in QFT was found to be similar
to that for holographic complexity [62,09]. However, the basis dependence of this mea-
sure was found to play an important role in evaluating the complexity of TFD states [63],
and so we also evaluated our QFT complexities in both the diagonal and physical bases
here. One more observation, before turning to the results, is that the authors of [222] have
argued that the relevant gates in holographic complexity should be non-local. Of course,
the original analysis of the QFT complexity [62], which we adapt here in our analysis,
also involves non-local gates. Hence this is a common point for the complexity in both
frameworks.

The leading UV divergence in any of the holographic prescriptions for the complexity of
the reduced state on a subregion has the same volume-law form as found for a pure state.
That is, all three prescriptions yield an expression of the form C ~ ks V (A)/§% 1+ - - where
V(A) is the volume of the boundary subregion A on which the mixed state is defined, and
kg is some constant depending on the dimension, the central charge ¢y and the prescription
chosen. In the vacuum (or any pure state), the leading divergence is precisely the same
except that V(A) is replaced by V(X), the volume of the entire Cauchy surface in the
boundary theory. This volume-law behaviour is the same as found for the free scalar. For
example, the leading divergence in the QFT complexity of the thermal state is shown in
eq. (6.7). As noted there, this divergence is precisely the same as found for the vacuum
state [09]. Similarly, for subregions in the vacuum state we found a leading divergence
proportional to the volume of the subregion, e.g., see egs. (3.135) and (3.142).

When considering subregions of the vacuum, an interesting feature that distinguishes
the subregion-CA and subregion-CV2.0 proposals from the subregion-CV prescription is
that the former two generate subleading divergences that are associated with the geom-
etry of the boundary of the subregion, e.g., as shown in eq. (4.45). In contrast, no such
contributions appear with the subregion-CV proposal, e.g., see eq. (4.34).* Of course, as
discussed in section 4.1, we could modify the subregion-CV prescription by adding a term
proportional to the volume of the HRT surface, as in eq. (4.7). This modified prescrip-
tion would yield boundary contributions similar to those found with the subregion-CA
and subregion-CV2.0 proposals. As this modification of the subregion-CV prescription
highlights, at least to leading order, the boundary contributions are proportional to the
entanglement entropy of the reduced density matrix on the subregion.

We would like to explore further the relation between the subleading divergences in the

4 While this equation does exhibit a subleading logarithmic divergence, there is no ‘area-law’ divergence
proportional to R/4.
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complexity and entanglement entropy by returning to our results of AdSs in section 4.3.
Recall that using global coordinates in the bulk of AdS3 corresponds to the two-dimensional
boundary CFT living on a circle with a finite circumference C'. Further our results for the
subregion complexity for the subregion-CA and subregion-CV2.0 proposals were presented
in eqgs. (4.36) and (4.41) with a finite term, which we could not determine analytically.
However, in the limit of small subregions, i.e., ¢/C < 1, we were able to predict the form
of these finite functions f(¢/C) and f(£/C) in egs. (4.37) and (4.42), by comparing to the
results coming from putting the boundary CF'T on an infinite line. However, if we imagine
that the boundary contributions to the subregion complexity are related to entanglement
entropy, we should recall the formula for the entanglement entropy of an interval in CFT,
C us4

on a finite circle: Sge = £1In (S sin (%)) [223,224]. This formula suggests that f(¢/C)

and f(¢/C) should be given by the following expressions,

f/C) = 3—;2 (‘111(2?) n H sin <%£)] i %2) ’ (6.8)

o=t ot ()] %)

Of course, the expressions above reduce to those in eqgs. (4.37) and (4.42) in the limit
¢/C — 0. However, we note that eq. (6.8) is symmetric about ¢/C = 1/2, and so a similar
logarithmic singularity appears in the limit ¢/C — 1, e.g., f(¢/C) ~ —2£ In[S5*] in this
limit. This expression suggests a deep relation between the two quantities (at least for two-
dimensional CFTs). See [201] for recent exploration on the relations between subregion

complexity and entanglement entropy in AdS; and BTZ black hole.

With the subregion-CA or subregion-CV2.0 proposals, the boundary divergences dis-
cussed above dominate the mutual complexity of the vacuum state, e.g., see eqs. (4.47)
and (4.48). Hence, given a bipartition of the vacuum into subregions A and B, the mutual
complexity is UV divergent with the leading divergence taking the form AC ~ V (9.A) /5972,
where we have implicitly used that 0.4 = 0B. Of course, this divergence has precisely the
same form as the celebrated area-law term [225-227] found in the entanglement entropy
between A and B. This again supports the claim that the mutual complexity characterizes
the correlations between the two subsystems appearing in eq. (6.5). Similar observations
relating the mutual complexity and the entanglement entropy also appear in [195].

With a bipartition of the vacuum state on a fixed time slice, the mutual complexity pre-
cisely vanishes using the subregion-CV prescription. Of course, if we adopted the modified
prescription for Ci{,(A) in eq. (4.7), the resulting mutual complexity would, of course, be
proportional to the entanglement entropy. Further, this construction emphasizes the obser-
vation below eq. (6.16) that it is more appropriate to think of these mutual complexities as
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being proportional to the mutual information between the subregion and its complement.
That is, applying eq. (4.7) to evaluate eq. (6.15) clearly yields AC{, = nI(A,B) where
I(A,B) = Sge(A) + See(B) — See(A U B) is precisely the mutual information of the two
subregions.

The mutual complexity is, of course, an interesting quantity to compare between the
holographic and QFT approaches. Our results for AC are summarized in the table 6.1
for all three holographic prescriptions calculated in chapter 4, as well as those for the free
scalar QFT calculated in chapter 3.

One feature common to holography and QFT complexities is that the UV divergences in
the complexity of the thermal state py,(5) precisely match those found in the complexity of
a single copy of the vacuum, or alternatively, they are precisely one-half of those found for
the TFD state. As a consequence, the mutual complexity of the TFD state is UV finite in
both holography and the free QFT. Further, we demonstrated that the mutual complexity
for the TFD state calculated for the free scalar in the diagonal basis is proportional to the
thermal entropy in (3.114), where we have taken m = 0 and also Su > 1. In the physical
basis, we also expect that with the limit Su > 1 and fm < 1, the mutual complexity will
be proportional to the entropy — see comments at the end of section 3.4.5.2. Again, this
matches the behaviour found in eqs. (4.14) and (4.17) for the subregion-CA and subregion-
CV2.0 approaches.

Unfortunately, the holographic complexity is superadditive, while in the diagonal basis,
the QFT complexity is subadditive, i.e., AC(TFD) < 0 for holography while AC(TFD) > 0
for the free QFT using the diagonal basis. However, the QFT mutual complexity in the
physical basis was observed to be negative when the reference frequency Su was either
very small or very large, see the figure 3.10. Hence in these regimes, the physical basis
results compare well with the holographic results, for the subregion-CA and subregion-
CV2.0 proposals. Of course, for the ¢, = 0 = t; time slice, the mutual complexity to the
TFD state vanishes using the subregion-CV prescription. However, we could also apply
the modified prescription in eq. (4.7), in which case we would find AC,(TFD) =21 S. In
this case, the sign is determined entirely by the sign of the parameter 7, and in particular,
choosing n > 0 would yield a subadditive result as found using the diagonal basis in the
free QFT.

For subregions in the vacuum state of a two-dimensional free scalar field theory, using
numerical fits, we inferred the general divergence structure of the purification complexity
in the diagonal basis in eq. (3.135) and in the physical basis in eq. (3.142). The leading
divergence is a volume term %] In j |, where the coefficient precisely matches that found
in the vacuum. In this respect, the QFT complexities show the same behaviour as found
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with the three holographic subregion complexity proposals, in eq. (4.33) for subregion-CV,
eq. (4.36) for subregion-CA and eq. (4.41) for subregion-CV2.0.> The numerical fits for
the QFT complexities (see egs. (3.135) and (3.142)) did reveal a subleading logarithmic
divergence proportional to In(C/4),% which was found in the holographic results for the
subregion-CA and subregion-CV2.0 approaches (see eqgs. (4.36) and (4.41)). However, our
numerical results were not sensitive enough to resolve the precise form of the subleading
contributions, e.g., to find a form similar to that found for the corresponding holographic
systems in eq. (6.8). It would be interesting to extend our QFT calculations to larger
lattices, but also higher dimensional lattices where the subleading divergences become
stronger.

Here, we might note that as discussed above, the subleading contributions in the sub-
region complexity are expected to dominate the corresponding mutual complexity. In this
regard, the functional dependence of AC on ¢/C' compares well between the QFT and the
holographic results on general grounds. That is, we may compare the free scalar QFT
results in figure 3.13 for the diagonal basis with the form (6.8) for the subleading con-
tributions in the corresponding subregion-CA and subregion-CV2.0 results. The mutual
complexity rises dramatically for small £/C', has a broad maximum at ¢/C' = 1/2 and is
symmetric under {/C — (C'—{)/C. A preliminary examination of the QFT results for the
diagonal basis showed the following gave a good fit to our numerical results’

. 200 C ol
Act®s ~ 77 [ —sin | — 8.33 + 0.0214 uC'| . 6.9
G 500+MC{H(7T58111(C>>+ * a (6.9)

Figure 6.1 compares this function to our numerical results in figure 3.13. It would be inter-
esting to investigate these fits in more detail and in particular, to produce the analogous
fitting function for the physical basis results as well.

Unfortunately, there was not a good match for the sign of these mutual complexities in
comparing the holographic and free QFT results. In particular, for all three holographic
approaches, the vacuum mutual complexity was generally superadditive, i.e., AC < 0.8
In contrast, using the diagonal basis in the free QFT produced a subadditive result for
subregions of the vacuum. In the case of the physical basis, we actually proposed two

5Note that our QFT results of section 3.5 are valid for the circle and so should be compared to the
holographic result in global coordinates, see footnote 29.

SHere we denote the total size of the system as C'(= L in section 3.5) to facilitate the comparison with
the corresponding holographic results.

"Note that L/6 = 1000 for all three curves.

80f course, the modified subregion-CV approach (4.7) could yield either sign for the mutual complexity
depending on the sign of the parameter 7.

162



5.5
5.0 //__\\ 1
3 45 f \ 1 — L =100
T v E:
S .
<1 40t ER nL =200
3.5F ' ul = 300
3.00|
|
2.5 \‘ L L L L L
0.0 0.2 0.4 06 08 1.0

/L

Figure 6.1: Fits (solid curves) and data (points) of the size dependence of the mutual
complexity in the diagonal basis AC{® for different reference frequencies uL = 100, 200
and 300. The cutoff was set to /L = 1/N = 1/1000. The solid lines correspond to the fit
in eq. (6.9).

definitions for the mutual complexity in eq. (3.144). With the first definition, where we
introduce a partition of the vacuum degrees of freedom according to the arbitrary choice
made for the subregions, AC?™* < 0, which agrees with holography. However, the leading
contribution in the QFT result appears to be linear, i.e., proportional to ¢/§, whereas the
leading term in the subregion-CA and subregion-CV2.0 results are proportional to In(¢/J)
(see eq. (4.48)). With the second definition, where we subtract the standard vacuum
complexity, Aéfhys > 0, which disagrees with the holographic results. However, in this
case, the leading contribution in the QFT result appears to be logarithmic as shown in
figure 3.17.

If we compare the leading divergences noted above in the purification complexity and
the holographic complexity from subregion-CA, we are lead to identify”

I In (o), for uo >1,
In{— |~ |ln(u)|= 6.10
n(L> [ (u0) {ln(%), for po < 1. (6.10)

We note that the definition of circuit complexity in the free scalar QFT introduces a new
scale — the reference frequency p, while the CA proposal for holographic complexity depends
on the arbitrary length scale /., which is introduced by the null boundary counterterm
[134]. The comparison of the divergences in these approaches motivates us to relate the

90f course, the same identification comes from comparing leading divergences in the purification com-
plexity of the thermal state, or even the complexity of vacuum state.
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ratio ud in the QFT complexity to £.;/L in the CA proposal with €. /L ~ max(ud, 1/ud)."
A similar identification was pointed out in [62,69] and the discussion section of [112].

We observe that this identification has interesting implications for the subregion-CA
results since the coefficient In(¢. /L) also appears in terms beyond the leading contribution
to the complexity. For example, an extra factor of |In(ud)| would appear in the leading
term in the mutual complexity in eq. (4.47). If p and 0 are independent scales, this
would mean that this leading term no longer matches the area-law divergence appearing
in the entanglement entropy. However, this interpretation can be restored if the reference
frequency scales with the UV cutoff, e.g., ud = e~ so that the logarithmic factor simply
introduces a new numerical factor, i.e., |In(ud)| = |o|.

Let us summarize our comparison of the purification complexity for the free scalar QFT
with the various subregion proposals in holography. Our results do show that various gen-
eral features are common to the two frameworks. However, a detailed comparison does
not lead to any definite conclusions. Based on comparisons of the mutual complexity for
the TFD and vacuum states, it seems that details of the QFT results using the diagonal
basis are quite different from the corresponding holographic results. Recall that previ-
ous calculations of the complexity of formation for the free scalar [68] already indicated
that the diagonal basis did not produce results comparable to holography. The QFT re-
sults using the physical basis can be brought into closer alignment with the holographic
results, at least in certain regimes, e.g., Bu > 1 or fu < 1 is required for the mutual
complexity of the TFD state to be superadditive. These restrictions may be informing
us about the microscopic model underlying holographic complexity. However, we are still
left with apparent discrepancies for the mutual complexity of the vacuum state, as well as
for the purification complexity of the thermal state, which may be warning us that these
comparisons simply have limited applicability.

6.4 Open Questions and Future Directions

In closing here, we would like to discuss some potential new directions or open questions
for future studies.

Path-integral Complexity of Mixed States

10We are implicitly assuming that f./L > 1 in order that the CA complexity is positive.
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X

Figure 6.2: Left panel: the path-integral representation for a reduced density matrix py
in CFTs. Right panel: The manifold after the optimization is given by two patches Y.
whose boundary is X4y U T 4.

Roughly speaking, we consider two types of mixed-state complexity studied in chapters
3 and chapter 5 as the generalizations of Nielsen’s geometric approach and Fubini-Study
metric approach, respectively. In section 2.1.3, we also introduced an alternative method for
evaluating the complexity of states in quantum field theory, i.e., path-integral complexity
introduced in [92,93]. Unlike Nielson’s geometric method or complexity definitions based on
the Fubini-Study metric, path-integral optimization considers the Euclidean path integral
that prepares a given state in a two dimensional CFT and translates the problem of its
optimal preparation to that of minimizing the Liouville action Sy (¢) obtained from Weyl
rescaling the path-integral measure. Explicitly, the minimal Liouville action is identified
as the path-integral complexity of the pure state |U):

C. (¥) = min [S.(¢)] , (6.11)

where the minimization is done among arbitrary functions ¢ that describe the Weyl factor.
The path-integral approach also allows one to handle mixed states as discussed in [93],
where one need only include boundary contributions to the Liouville action. Choosing a
subsystem A in 2D CFT to be an interval —Al < x < Al, its density matrix p4 is defined
from the CFT vacuum by tracing out the complement of A. Then the path-integral
optimization is done by minimizing the Liouville action with boundary contributions, i.e.,

Sy = — ds [Koo + pne?] | (6.12)

E ()0
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where the optimized manifold is given by >, U > _ with boundary 0>L = ¥, U4 and
Ky is the trace of extrinsic curvature of the boundary 0%. Refer to figure 6.2 for the
illustration. It is natural to identify the Liouville action in the reduced subregion as the
subregion complexity:

C. (pa) = min [S,(¢) + Su,, (Ko, 9)] (6.13)

0

where the minimization fixes the background metric via the value ¢ and also the boundary
curve I' 4 to a geodesic. It is interesting to point out that path-integral optimization was
recently used to shed light on entanglement of purification [225].

Alternatively, it is perhaps interesting to explore another definition for complexity of
mixed states based on purification complexity using the path-integral complexity of pure
states Cp, (V). In the same spirit of purification complexity (3.1), we can also define the
path-integral complexity for mixed states as

Pr(pa) = min [Co (Paac)] , (6.14)

where |W_44c) denotes the purified state of our density matrix p4 and the minimization
is performed over all possible purifications. Although, the above definition looks natural
for mixed states, this definition actually requires knowledge about the path-integral op-
timization of all purified states |W 44¢), which is absent by now. For simplicity, it is still
interesting to consider the path-integral complexity of a subregion in the CF'T by assuming
the purified states exist in the same CFT and compare the results from our methods.

Generalizations of Mutual Complexity

Although so far we only considered the mutual complexity defined in eq. (6.5) for a pure
state | U 45), let us note that there is no reason why in calculating the mutual complexity,
that the initial state must be a pure state. That is, a simple generalization of the mutual
complexity (6.5) would be

AC =C(pa) +C(ps) — C(paus) (6.15)

where the combined system begins in a mixed state paup. We still expect that in this
situation the mutual complexity (6.15) quantifies the additional correlations between the
subsystems A and B. Using our results, a simple example would be to consider two
neighbouring (but not overlapping) subregions, A and B, in the vacuum state. These
combine to form the larger subregion AUB (but note that we assume ANB = 0). Building
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on eq. (4.47) in the holographic context, we would find that the leading contribution to
the mutual complexity becomes

AdS4, P 1 AC, =

L 1n<2(d— 1)%) V(©OANDB)

272(d — 2)Gy L §d-2 ’

AL V(AN OB)
Cdd—1)(d-2)Gy 642

AdSui1,P : ACusy (6.16)

In this case, we observe that this leading divergence is comparable to that in the mutual
information between the subregions A and B. Of course, this suggests that in general
one should think of the mutual complexity as being related to mutual information, rather
than the entanglement entropy even when p45 is a pure state. It would be interesting to
investigate this generalization (6.15) further in the case of disjoint (i.e., non-neighbouring)
subregions A and B, where the mutual information is finite, and exhibits an interesting
phase transition for holographic CFTs [229-231]. A similar setup studying purifications of
two complementary subregions appears also in the context of the entanglement of purifi-
cation [183-185,232]. It would be interesting to investigate the relation between these two
notions.

Further, we observe that the mutual complexity (6.15) for mixed states would generally
be nonvanishing (but UV finite) using the subregion-CV approach (4.1), even if the subre-
gions lie in a constant time slice on the boundary. Another interesting issue to investigate
would be if inequalities similar to the Araki-Lieb inequality [15] can be used to bound
the difference in complexity between two complementary subsystems when starting with
a mixed state. Finally, let us comment on the case of partially overlapping subregions.
In this case, one is naturally led to consider the following generalization of the mutual
complexity

AC = C(pa) +C(ps) — C(pauvs) — C(pans) - (6.17)

With this difference of complexities, the leading divergences in the individual complexities
cancel, and the sign of the result is nontrivial. It would be interesting to investigate
the properties of these generalizations further in circuit complexity as well as holographic
complexity.

To close here, we should also stress that the sign of the mutual complexity defined
in eq. (6.15) and its generalization in eq. (6.17) determine the subadditivity and strong
subadditivity of complexity. To compare with entanglement entropy, it is noted that en-
tanglement entropy satisfies the subadditivity

SEE (ﬁA) + SEE (1513) > SEE (Ié.AB) ’ (618>
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and also the strong subadditivity

Ser (ﬁAB) + Sk (ﬁ )

BC
N . 6.19
See (pas) + Sex (P5e) (6.19)

SEE (ﬁA) + SEE (ﬁc) ;
SEE

>
> (pasc) + Sex (PB) -

Taking the monotonicity of purification complexity C;, under the partial trace (noting
the similar monotonicity for von Neumann entropy Sgg (p45) > S (p5) is not true.), it is
straightforward to show the counterpart of the first strong subadditivity for the purification
complexity Cy, is also satisfied for generic density matrices, i.e.,

Cint (GaB, paB) + Cui (Gies pBe) = Cin (Gas pa) + Cou (¢, pc) - (6.20)

However, the subadditivity of complexity (i.e., AC > 0) or its superadditivity (i.e.,
AC < 0) is not proven in general for any mixed-state complexity studied in this thesis. Es-
pecially, if we believe the holographic complexity may require a specific (or a trivial) state
as the universal reference state, it is still interesting to investigate whether ‘holographic
complexity’ is always subadditive or superadditive.

Purification Complexity of Holographic States

As the first application of the mixed-state complexity Cy, we only examined an extremely
simple Gaussian state p; in section 5.3. However, we have made more efforts in chapter 3
on deriving the purification complexity of mixed Gaussian states in free scalar QFT, e.g.,
a thermal state py,(5) defined in (3.84) and the mixed states p4 on finite subregions of the
vacuum state. Considering the purification complexity C; has gotten rid of the challenges
in finding the optimal purification, it is interesting to apply the definition of complexity Cpy
to quantum states in QFT. Although it is not easy to calculate the quantum fidelity (5.6) or
quantum Fisher information metric for arbitrary QFT states due to the appearance of the
square root of the density operators, it is not so hard for a free quantum field theory. With
some effort, the quantum fidelity and Bures metric for arbitrary two Gaussian (bosonic or
fermionic) states have been derived in e.g., [233-236]. With the knowledge of the QFIM for
any Gaussian states, it would be interesting to consider the same Gaussian states pu,(3), pa
in free scalar theory and compare the results with that derived in chapter 3. As a natural
generalization, one may also ask what is the purification complexity in free fermionic field
theory. We note that the latter with the F5 cost function has been explored in [237].

As we discussed before, the results between holographic subregion complexity and pu-
rification complexity from free theory still have distinctions. At present, we do not have
a first principle approach to show whether purification complexity is holographic or not.
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As a first step toward this open question, the results from the purification complexity of
holographic state rather than free theories should shed light on that. For example, one
can consider the thermal density matrix of CF'T, i.e., the density operator p,, defined in
eq. (1.24). The potential holographic duals of its complexity have been discussed in section
4.2. Furthermore, we have learned the holographic density operator for a subregion A is
constrained by the modular Hamiltonian K 4 in the form like [194]

Aext (EA)

—4GN + kbulk + -+ O0(Gy), (6.21)

—logpa=Ka=

vyhere the flext denotes the area operator associated with the extremal surface £4 and
Ky is the bulk modular Hamiltonian of the bulk region enclosed by &£,. It is definitely
interesting to investigate what would be the purification complexity for these holographic
states p4.

Optimal Purification in Holographic Spacetime

In the end, let’s simply assume that the purification complexity is a holographic quantity.
By definition, we can find a optimal purified state for a given holographic state p4. As
shown in chapter 3, we found that TFD state is not the optimal purification of thermal
state py(5) and the vacuum state is neither the optimal state for its subregion p4. For
simplicity, it is interesting to further assume that the optimal purified state is also dual to
a holographic spacetime. And then a natural question is what kind of spacetime is dual to
the optimal purification.

Although the answer should depend on the details of the holographic dual of purification
complexity, we can find that the non-increasing property of purification complexity Cyy, i.e.,
eq. (5.32) would help to impose strong constraints on the optimal purification. Assuming
the target state p4 as a boundary subregion A4 as shown in the figure 6.3, it is obvious that
the full boundary is also a purification of the subregion A. However, this purified state
denoted by |W 44c) generally is not the optimal purification because of the extra degrees
of freedom in its Hilbert space. In order to find other purifications, we can then perform a
unitary transformation and then trace out part of the auxiliary degrees of freedom in the
bulk geometry. As a result of an iterative procedures, it can push the boundary region A°¢
into the bulk spacetime, i.e., cutting part of the portion inside the subregion enclosed by RT
surface, e.g., the white region in figure 6.3. And all these truncated spacetimes are dual to
the purification of p4. The non-increasing property of the purification complexity implies
that this procedure (unitary transformation, tracing out some degrees of freedom) would
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SR T (1P aacd{Panel)

(AB)°

Figure 6.3: The optimal purified state with the smallest complexity corresponds to the
holographic spacetime geometry shown in the shadowed region whose boundary is taken
as the boundary subregion and its RT surface as shown by the red curves. The dashed
black lines represent various cut-off surfaces and correspondingly define different purified
states for a fixed boundary subregion. Left: A generic mixed state p4 corresponding to a
boundary subregion A. Right: A bipartite mixed state pz.

decrease (or least not change) the complexity of the purified state. Finally, we can approach
the optimal purification by pushing the cut-off surface to the RT surface of the boundary
subregion A. As a naive idea, this picture about optimal purification is also consistent with
the CV conjecture and subregion-CV. If we adopt the holographic complexity of a pure
state as the maximum volume, the holographic complexity of the optimal purification (i.e.,
holographic purification complexity) then is given by the maximum volume of subregion
R 4 which is bounded by the boundary subregion A and its HRT surface £4, i.e.,

. e\l __ V(R.A)
Of course, this is nothing but the subregion-CV conjecture defined in eq. (4.1). It would
be interesting to explore this idea in more detail, e.g., considering a black hole geometry.

On the other hand, if we are interested in a bipartite target state p 45 corresponding to
a disjoint subregions AU B on the boundary, the optimal purification in holography is the
same as the one from the viewpoint of entanglement of purification. See the figure 6.3 and
references e.g., [190,238,239] for more illustrations. Besides, the area of the entanglement
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wedge cross-section is proposed to be dual to the reflected entropy of a bipartite state pas
in the reference [210] where the canonical purification plays a crucial role. Similar to the
above argument, the canonical purification also includes too many extra degrees of freedom
and should have a larger complexity than the optimal one. It would also be interesting

and natural to explore what is the role of canonical purification from the viewpoint of
purification complexity.
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Appendix A

Complexity Basis Dependence

In this paper, we refer to two different bases for the definition of the C; complexity: the
diagonal basis and the physical(-ancilla) basis. In addition, for coupled harmonic oscillators
representing a lattice quantum field theory, a natural basis to consider is the original
position basis, where each harmonic oscillator represents a position in the lattice. To help
clarify the difference and relations between these bases, in this appendix we explicitly
construct a example of a discretized free scalar field theory on a lattice and write down the
wavefunction matrix of the ground state in each of these three bases. By looking at the
example of four coupled harmonic oscillators, we explicitly find the parameter matrices in
the three bases. The position basis and the physical basis are different in this case, and we
show that the ground state can be understood as the thermofield double of a two harmonic
oscillator modular Hamiltonian, which we explicitly write. The physical basis modes are
the eigenmodes of the modular Hamiltonians of each subregion.

Before going into the specific example, we explicitly rewrite some of the formulas in
section 3.4 for the one dimensional case to describe the one-dimensional chain of N har-
monic oscillators. We begin with the lattice of harmonic oscillators (3.79) realizing a
regularization of a free quantum field theory (3.78) on a one-dimensional circle of length
L corresponding to the Hamiltonian®

N
_ 1 =2 2-2-2 202(~ _ = )2
H—m;[pa+waa+MQ(xa—.ica+1)], (A1)

where we have defined z,, = 0¢p(n), p, = 7(n), v =mand Q = M = 1/4, see, e.g., [62], and
assumed periodic boundary conditions Ty, := Z;. The lattice spacing ¢ is related to the

!The following are the one dimensional versions of egs. (3.79), (3.80) and (3.81).
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size of the system and the number of harmonic oscillators by 6 = L/N. The Hamiltonian
can be written in terms of normal modes as in eq. (3.80)

1 U 2mik Tk
Th=—= > _exp ( G) Ta, wp =" +4Q"sin’ N (A-2)

where k € 1,...N (see, e.g., section 5.1 of [68]). Using these degrees of freedom, the
Hamiltonian reads (3.81)

1
H=_r 2; (Ipel? + MPw]ael?) | (A.3)

N
k=
where we have used that :z;,TC = xn_k. The ground state wavefunction of this system of har-
monic oscillators is straightforward to find in normal mode basis and is given by eq. (3.125).
This can be explicitly written in the physical basis using the transformation (3.80) and is
given by egs. (3.126)-(3.127).

A.1 Example: Four Coupled Harmonic Oscillators

We restrict to the example of a lattice of four harmonic oscillators with the goal of explicitly
providing an example of the ground state in the normal mode basis, in position basis and
in the physical(-ancilla) basis. We will express these in terms of the parameter matrix M
used throughout the main body of the paper. That is, we use My, to represent the state?

Mbasis 14 1 T
\I[O<xbasis) = | det €xXp _ExbasisMbasisxbasis . (A4)
s

The state we are interested in is the ground state of the free QFT lattice Hamiltonian
consisting of four coupled harmonic oscillators, i.e., the N = 4 case of (A.1). This state
was already written in normal mode basis in eq. (3.125). For a lattice of four harmonic
oscillators, the normal modes x = (21, 22, 73, 74)7 are related to the original physical basis
modes Z, = (T1, T2, T3, T4)" by eq. (A.2), namely

T =1 —1
-1 1 -1
—1 —1
1 1 1

(A.5)

xr = Rx, where R:§

— = = =

2We use the generalization of eq. (2.9) for a complex basis. This will be necessary since the Fourier
transformation in eq. (A.2) yields complex normal modes.
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or, explicitly

x1 = = (iT) — Tg — iT3 + T4) , Ty = = (=T + To — T3 + T4) ,

(A.6)

x3 = = (—iT) — To +1T3 + T4) , Ty==(T1+ To+ T3+ T4) .

N — DN —
| = DN =

Notice that, while the position basis degrees of freedom are real valued, this is not
the case for the normal mode degrees of freedom where, in particular 27 = x3 so that
xfwrmal = (w3, T9, 11, 74).> The parameter matrix in normal mode basis can easily be read

off egs. (3.125) and (A.2)

wi 0 0 0

o @ o o
Mnormal — 0 0 @3 0 3 (A7)

0 0 0 @y

where
O =0 =\ @24+ 2vV202, @, =V@?+4Q2, O =0. (A.8)

The fact that the parameter matrix in normal mode basis is diagonal reflects the fact that
there is no entanglement between normal mode degrees of freedom.*

The physical basis parameter matrix can be found by applying the transformation (A.5)
to the normal mode basis parameter matrix (A.7)

MPOS = RTMnormalR (Ag)

or simply be read off eq. (3.127). Either way, for our four harmonic oscillator example it
takes the form

@ + @o + 2001 0 — o @+ @y — 20y 0 — @
1 0 — @ @ + @o + 2001 0 — @ @ + @y — 200y
Mpos = 4 W+ Wy — 21 W — o W+ wa + 21 W — o (4.10)
W — Wa W+ Wa — 2wy W — Wa W+ Wy + 2001

3Recall that the Fourier transform obeys the identity xL = ZN_k, see comment below eq. (A.3).

4Note that substituting the parameter matrix (A.7) into the bi-linear form in eq. (A.4) yields a wave-
function whose dependence on the z1 and x3 coordinates is of the form Wy o exp [—a(|z1]? + |z3]?)] =
exp [—2axyx3], where oo = %@2 + /202, So although the form seems orthogonal in complex coordinates,
it does not look orthogonal when reexpressing the conjugate coordinates in terms of the original ones.
This is due to the fact that the normal mode basis given by eq. (A.2) is not Hermitian. This awkward
dependence on the product of seemingly different degrees of freedom can be removed by using a real
Fourier transformation involving sin(---) and cos(---) instead of the complex exponentials in eq. (A.2).

An equivalent way of getting rid of this dependence is to make a second transformation @} = 1 (z, + z})

and 23y, = - (v — «}) for those values of k for which z;, are not real.
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The form of the parameter matrix makes evident that the position basis degrees of freedom
are entangled with each other. Furthermore, the entanglement decays for longer distances
since W < @y < Wy implies |w—ws| > |W+we— 2w |. This is to be expected for entanglement
being spread by nearest neighbor interactions coming from the discretized kinetic term (the
last term in (A.1)).

The position and normal mode basis should be familiar to most readers; they are the
lattice equivalents of the position and momentum bases in quantum field theory. The
physical-ancilla basis is less familiar. In [68], it appears under the name left/right basis
since it was used in the context of the TFD state, which is considered a natural purification
of the thermal state where the left/right division corresponds to the physical degrees of
freedom of the thermal system and the ancilla degrees of freedom introduced in order to
purify it.

To define the physical-ancilla basis, we must partition the system into a physical sub-
system and an ancilla subsystem. In other words, we consider the four harmonic oscillator
ground state (A.4) as a purification of a mixed state of a subset of the oscillators. This is
an important property of the physical-ancilla basis: it depends on a specific partition of the
full system. In our example, we will choose to partition the system in two: the z; and Z»
oscillators as one subsystem and the z3 and Z4 oscillators as the other subsystem. Which
subsystem we call physical and which one ancilla depends on which degrees of freedom are
traced out in order to construct the given two-mode mixed state.

With this partition in mind, we can decompose the physical basis parameter ma-
trix (A.10), as in eq. (3.60), into®

r K
where

r:z:i(“’“’?”wl w2 ) ,

(.I)_(.D2 (IJ"‘(DQ"‘Q(Z)l (A 13)
ko l(etm—2m  @-o '
4 0 — Wo 04wy — 20 )
5In section 3.3.1 we introduced the decomposition (3.60)
r K
MpOS = (KT Q) 3 (A.ll)

which has the unfortunate notation €2 for the lower right sub-matrix. In the following, we use instead the
letter ¥ to denote this sub-matrix in order to avoid confusion with the oscillator coupling Q in eq. (A.1).
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The physical-ancilla basis is defined as the basis which diagonalizes the sub-matrices I'
and Y without mixing the two subsystems. More precisely, we look for transformations of
the form

Roys 0
Rphysfanc = ( pOhy Ranc) <A14)

that diagonalize both I" and X. In our example, this transformation is given by

1 1 1 1 /1 1
Rphys = E (_1 1) ) Ranc = E (1 _1> s (A15)

or, explicitly

s L, s L,
l“lfhy = E(xl + 7o), fﬁghy = %(xz — 1),
A.16
phys 1 7 = phys 1 _ _ ( )
B = \/§<JJ3 + 4), R —\/§($3 — T4) .

The physical-ancilla basis parameter matrix can be found by applying the transforma-
tion (A.14) to the position basis parameter matrix (A.10)

W+ W 0 W — Wy 0
1 0 Wy + W1 0 W1 — Wy
Monys =5 | 65—, 0 @+a 0 (A17)
0 @wm—-@ 0 @+

In this basis, there is no entanglement between the modes in each subsystem (mlfhys is

not entangled with 25" and similarly for 25™° and 25™°). However, the entanglement
between the two subregions cannot be removed by transformations of the form (A.14).
Consequently, the modes between regions remain entangled. In our case, the state factorizes
to a product state form where 2P™* is entangled with 25™° and z5™° with z2"°. Bellow
we will also see that the ground state is the TFD for a 2 harmonic oscillator modular

Hamiltonian.

To see this, we compare the physical basis parameter matrix to the thermal parameters

by using egs. (3.26) and (3.25) for each factor of the factorized state (A.17). First, focusing
phys

on the 2°™* and 25™° modes, we see that they are in a TFD state with inverse temperature
B13 and frequency wiz given by
(D + (Dl 2r13 p—
513&)13 = 2arcosh — y Wise = \Vwwy, <A18)

wl—@
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and the 25™° and 8™ modes are in a TFD state with inverse temperature sy and fre-
quency wsyy given by

W) +w
Basway = 2 arcosh (#) . wouel™ = /0] @ . (A.19)
Wy — W1
For these to have the same inverse temperature 3, we must fix®

B 2 W+ wl) B 2 (wl + w2)

2r13 __ 2ro4 __

e = ———arcosh | — — ], e = ————arcosh [ ———— | |, A.20
ﬁox/wwl (wl —Ww BD\/Wl ) Wy — W1 ( )

which leads to the following frequencies of the Rindler modes

2 0+ W 2 o "
Wiz = 6_ arcosh <w +w1) . Woy = 5_ arcosh (M) ' (A.21)

0 0 W

W] — W Wy — Wy

Lastly, we can explicitly write the modular Hamiltonian of the 2™ and z5™* system

from the expression of their frequencies (A.21)

1 hys\2 2 My 9 (W W hys') 2
Hoad :2_% <p11’y> + 7 arcosh (ﬁ) <x§’y>

1 2 2 M, Wy +w 2
phys) 0 h2 1 2 < phys>
+ YA My (p2 + 52 arcos (—@2 — @1) T

6The temperature is a free parameter because the modular Hamiltonian can always be rescaled to
change the value of By. However, the dimensionless products wfy will remain fixed.
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Appendix B

Superadditivity of C4(|TFD)) at
general times

Using the results of [110] we can demonstrate that the mutual complexity of the time
evolved TFD state using the subregion-CA proposal is in general negative. As mentioned
in the main text C,(£) and C,(R) are invariant under time evolution and we therefore have

ACA(1) = Ca(L) + Ca(R) — Ca(LUTR)(t) = ACa(t = 0) — 3Cy | (B.1)

where AC,(t = 0) can be found in eq. (4.14)

25 (la(d—1) .
AC,(t=0) = = In (T) + negative, (B.2)
and we have defined
0Cy =CA(LUR)(t) — CaA(LUTR)(0). (B.3)
The most negative value obtained by 6C, can be bounded using the results of [110] for the

rate of change of the complexity of the TFD state. There the authors found that the rate
of change of the complexity was vanishing for ¢t = t; + tg < t. where t. = 2(r’, — *(0))
is the critical time where the WDW patch leaves the past singularity,! and after this time,
the rate of change became negative for a brief amount of time and later on approached

'For the definition of the critical time we have used the tortoise coordinate r*(r) = [dr/f(r) as well
— 2
as the blackening factor f(r) = 2—22 + k- % and the mass parameter w?—? = TZ_Q <% + k), where

k = 0,+£1 correspond to the various possible horizon geometries.
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a positive constant proportional to the mass of the black hole. The explicit expression is
give in eq. (E.9) of [110] and reads

dCu|  Qpa-1(d—1)f (1) [2006[2 d—2

Tfn (d— 1)l
77 P Te ol e Rl [1”L2|f<rm>|‘21“ L H (B-4)

where 7, is the place where the null boundaries of the WDW patch meet behind the past
horizon and is fixed according to the equation 5 +7*(r,,,) —r*(0) = 0. This rate of change
is negative for times t € (., t.2) corresponding to the region r,,, € (0,7.2). Here, the second
critical time, or the critical radius r. 2, are found by solving the equation d—ggi by 0 and
correspond to the time in which the rate of change in complexity becomes positive and the
complexity starts increasing again. Of course, we have r.o < rj,. In order to check that the
time-evolved TFD state is always superadditive, we need to consider the minimal value of

the complexity for the TFD state which is decided by

. te,2 dC. QO d_1<d — 1)
SCmin — At = )
CA /t dt 87T2GN

[ L e o g) o ()

(B.5)

)
Darris' | ((d— Dl | Qa1(d—1) .
=— 172G In < 7 > + 20y X positive
S (d— 1)l
> ——1
72 ( L ’
where in the first equality we have used the relation dt = —2 f‘f:j;) to change the variable

of integration to 7, and where the last inequality follows from 7., < 7,. The extra
piece in the third line of eq. (B.5) is always positive. This can be demonstrated by using
the explicit form of the blackening factor and the mass parameter as well as the relation
Tm < reo < 1. Combining egs. (B.1), (B.2) and (B.5), we arrive at the conclusion that
the mutual complexity of the time-evolved TFD state is negative as advertised, .e.,

AC,(t) = AC,(t = 0) — 0C, < ACA(t =0) —C™™ < 0. (B.6)
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Appendix C

Background Materials on Quantum
Information

In this appendix, we provide a minimal introduction to some notations and terminologies
in quantum information, which are used in the main content.

C.1 Gaussian State and Covariance Matrix

It is known that the any Gaussian states pg can be equivalently described by its covariance
matrix ¥q. See [10-18] for more details about Gaussian states. Considering any Gaussian
state with NV modes, we can find N pairs of the standard self-adjoint canonical operators
Z;, p; with the canonical commutation relations

T; + 1p;

>

whose vector form is defined to be

A

ST 0 1 S
[R7 RT} =) = Z@Qk, Qk == ( 1 0 ) 5 R = (x17p17x27p27"'xn7pn>-r ) (02)

where € is the symplectic form satisfying Q7Q = —Q? = l,,. The covariance matriz (CM)
Yl of any Gaussian state pg is defines as

(S6),; = Tr (,aG { (f{ - <R>) , (R - <R>)T}> — <f{if{j + f{jf{i> “2R)(R,). (C.3)
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For example, the covariance matrix >; for a single mode reads

(@ —@? {Ep) - o))
Z1‘2(<{az=,za}>—<za><fc> ) — () ) (€4

The physical Gaussian state p; with covariance matrix ¥ should also satisfy the uncer-
tainty principle
Yo +1iQ2 >0, (C.5)

which is invariant under the symplectic transformations. For a single-mode quantum state,
the physical constrains are reduced to

det 21 Z 1, 21 2 0. (C6)

As a consequence of Williamson theorem, the covariance matrix Y of the most general
Gaussian state p; can be decomposed as

ZG([)G):S@(VO’“ Bk)ST’ S eSp2n,R), v >1. (C.7)
k=1

where v are the symplectic eigenvalues of CM. Correspondingly, we can also obtain the
decomposition of generic Gaussian state [16—15]

ﬁG = DTS’T <® Oth(ﬂk,wk)> [)S, (08)
k

where D, S denote the displacement operator and squeezing operator, respectively, and
Uy 18 the thermal density matrix defined in (3.15) with the inverse temperature [pwy
associated with symplectic values of the covariance matrix by v, = coth (ﬂ 3 k) = cosh 2ay.
From the covariance matrix, we can easily distinguish pure Gaussian states and mixed

Gaussian states by considering its determinant, i.e.,

+1, pure, ) 9 ol 1
det (2) = with Tr = —_— = C.9
) {> 1, mixed . (7c) guk AN (C-9)
For later use, one can also find
o 1
Tr (poly) = (C.10)

\/det s (Ze+3L)
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In this paper, we also discuss the partial trace with discarding some modes in the full
system. In the representation of Gaussian states with the vector R and covariance matrix,
it is easy to see the action for tracing out a subsystem. Diving the N-mode system pz
into two parts with a n-mode system A and a m-mode system B, we can decompose the
covariance matrix in the way like

z]nn Enm A Rn
E.AB = ( )y N ) ) RAB = ( R ) ) (Cll)

where the >, denotes a 2n-by-2m matrix. Then the reduced density matrix p4 =
Trg (pap) for the subsystem A is easily obtained by

S4=%m, with Ry=R,. (C.12)

C.2 Quantum Operation (Quantum Channel)

It is obvious that we can use unitary operations to realize the transformations from a pure
state to another one. For a generic quantum state p4 in a principle system A, we need to
introduce a more general transformation beyond unitraies as

Pa=E(pa) (C.13)

where the map & is called a quantum operation. In the literatures of quantum computation,
a quantum operation is also called a quantum channel'. With one more terminology used
in the main content, we only focus on the quantum operation defined as the completely
positive trace-preserving map (CPTP map)

E:pa—>E(pa) (C.14)

with Tr (p4) = Tr (€ (p4)). As it is known, e.g., [12,13], the quantum operation formalism
(C.13) can be represented in different but equivalent ways. For example, we can consider
the quantum operation & (p4) on density operators p4 as the unitary transformation with
ancillae (or environment) in the extended Hilbert space H4 ® H 4¢, i.e.,

E(pa) = Trye (UAAC (PA® pac) U;Ac> , (C.15)

In some literature, the term “quantum operation” specifically denotes completely positive (CP) and
non-trace-increasing maps on the space of density matrices. Instead, the term “quantum channel” refers
to CPTP. In this paper, we only consider CPTP and it is referred to as “quantum operation”.
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where the density operator p4c denotes an initial state for the auxiliary system and Tr 4
traces out the ancilla part. Taking the initial state as any pure state 1) in its orthogonal
basis, it is easy to find that the reduced density operator after tracing out H4e reads

E(pa) = Trac (UAAC (P4 @ [t0) (Yol) UI\AC) = Mypai (C.16)
k

with M, = (Y| Ugae |1ho) defined as the operation elements for this quantum operation
E. This representation (C.16) is known as the operator-sum representation describing the
dynamics of the principal system 4 without having to explicitly consider any properties
of the auxiliary system A¢. More importantly, this special representation benefits us from
avoiding purifying the system .4 and making our interpretation to the purification com-
plexity Cp not require any explicit purifications. Furthermore, we can also consider the
measurements on the principle system by taking the outcome as py with probability p(k)
after measurement. Obviously, the redefinitions

B = MypaM]
k — N N )
Tr (Mkﬁ AM,I)

plk) = T (Mpadt]) (C.17)

relate the quantum operation £ to measurements without reporting outcomes by rewriting
the quantum operation as

E(pa) =Y pk)px. (C.18)

In order to describe the transformation from a physical and normalized state to another
one, the trace-preserving quantum operations are restricted by the normalization condition

> MM =1. (C.19)
k

In the following, we use Gaussian states as an example to illustrate the quantum op-
erations acting on quantum states can be understood as the unitary operations acting
on purified states in the extended Hilbert space. For any N-mode Gaussian state pg,
the CPTP map & (ps) (also called bosonic Gaussian channel) is completely characterized
by two real 2N-by-2N matrices T, N acting on its vector and covariance matrix in the
following way [18]

RG —> T:ﬁ,G7

(C.20)
ZG —> T ZG TT + N 9
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where the real matrices T, N are constrained by the complete positivity condition
N +:Q >iTQTT. (C.21)

As we have shown in (C.16), the action of a CP map on any Gaussian state p4 with n modes
can be obtained by tracing out the ancillae (with m modes) after the unitary operation
on the global system AA° where the evolution in the full system is parametrized by the
2(n 4+ m)-by-2(n + m) symplectic matrix Sy4c acting on the extended covariance matrix,
i€, Saae (X4 R X 4) SLAC. Considering the bipartition of the extended system AA°, we
can divide the full symplectic matrix into four sub-matrices

_ Sa Saue
b (315, o

corresponding to the bipartite covariance matrix shown in (C.11). Applying the symplectic
condition for S 44 on the purified Gaussian states p 44, we can find the following constrains

S QST = ( SAQnSLT—i— SAAchS%AC SAQRSLC{‘ + SAAchS%C ) _ ( Q, 0 ) ‘
S A0Sy + SacQmSyge Sac A0S jeq + SaemS e 0 Q,
(C.23)
From the above equation, it is easy to find that the S4 has to be symplectic if Sy4c = 0.
More generally, after tracing out the auxiliary system A° with m modes, i.e.,

€ (Ba) = Trae <SAAc (X4 ®D4e) SLAC> , (C.24)

we can find that the generic Gaussian CP map (C.20) acting on the reduced density matrix
p. is obtained by
T:SA7 N:SA.ACZACSI(AC‘ (C25)

which illustrates the connections between the quantum operations (Gaussian channels) and
unitary operations with ancillae. Specifically, we can find that the T-part provides the full
information of the operations acting only on the principle system A while the crossing
N-part encodes the information of entangled gates. From the above identifications, it is
also obvious that the unitary operation in the full system A.A° is not unique because the
quantum operations on p 4 are only sensitive to the sub-matrix S, and Sy 4c, reflecting the
freedom in purifications.
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C.3 Bures Metric and Quantum Fisher Information
Metric

In the literatures of quantum information or quantum estimation (e.g., [218, 241]), the
quantum Fisher information metric (QFIM) is defined in various ways and also different
from Bures metric. In this section, we show they are equivalent up to a irrelevant constant
factor and also introduce some equivalent expressions for the QFIM.

C.3.1 Bures Distance and Bures Metric

In the main content, we introduce Bures metric or QFIM by considering Uhlmann’s fidelity
susceptibility. However, it can be also derived from a finite distance between two respective
quantum states, i.e., Bures distance, which is defined by [210,211,217]

= /Tr(p) + Tr(6) — 2F (p,6) = /2 (1 — 7)), (C.26)
where we only consider normalized density matrices with Tr(p) = 1 and the quantum
fidelity F' (p, ) is given by (5.6). As before, it also reduces to the Fubini-Study distance
for two pure states. From another definition of Bures distance [211], i.e.,

D3 (p,6) = min Wy — Ws|[5s = min (Tr (Wy = W)t (W — Wa))) (C.27)

where the minimization is taken over all Hilbert-Schmidt operator with Wf Wi = p, VV2T Wy =
0, it is clear that the Bures distance is the perfect analogue of Fubini-Study distance. Here
we sketch the proof to show the above minimization results in the Uhlmann’s fidelity, which
also illustrates our motivation to choose the Uhlmann’s fidelity. For arbitrary positive den-
sity matrix p, we can define a matrix W such that

WW =p. (C.28)

The matrix W plays the role of the purification of p and can be considered as a vector in
Hilbert-Schmidt space. The freedom in purification is equivalent to the gauge symmetry
p = (UW)(UW) with U € U(n). A natural Euclidean distance between two vectors are
defined by the root of

Wy = Wall2 = Te(p) + Te(@) — (WiWa + Wiy (C.29)
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with I/VlJr W, = ﬁ,WQT Wy = ¢. The minimization for Bures metric between p and & is
reduced to the maximization

1
max (§Tr (WfWg + W1W2T)> = max

Tr (Wlwg)‘ — F(p,5) (C.30)

which will be shown below to be the Uhlmann’s fidelity. Applying the polar decomposition
2 i.e., W; = /p;U;, one can get

Tr <W1W2T> —Tr (\/5\/EU1U§> . (C.31)

Noting the existence of another polar decomposition vé+v/p = \/ V& pVGUys , it is not hard

to find that the special choice U;5U; U; = [ realizes the maximization with
F(p,6) =Tr ( \/5/3\@) , (C.32)

which is nothing but Uhlmann’s fidelity (5.6). We also note the maximization condition
also implies the two purifications are connected by the geometric mean (see [220,221] for
more discussion about its application to the complexity of Gaussian states), i.e.,

VoW, =\[VepVo Uy,
) ) (C.33)
W, = (&2 \/ENE62> We.
where we have assumed the density matrices are positive definite to derive the second line.
Instead of the finite Bures distance between two density matrices, we prefer the geodesic
distances on Riemannian geometry where geodesics can simulate the properties of optimal
circuits. Then we focus on the infinitesimal metric from Bures distance, i.e., Bures metric

5= D2 5.5+ 00) =2 (1= T Vi + 0015 ) (©34)

which can also be explained as the fidelity susceptibility of mixed states. Due to the
appearance of two square roots of positive operators in the definition of quantum fidelity,

2Polar decomposition means that an arbitrary linear operator W can be decomposed into product of
unitary operator U and positive operators such that W = UVWIW = VWWTU
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the Bures metric is not easy to be written as a simple form of dp like Schatten norms. In
order to obtain some explicit forms of Bures metric, we can start from the series expansion

\/\/E(ﬁJréﬁ)\/Ez p+X+Y +0005°%, (C.35)

where we keep the first two orders, i.e., X ~ 6, Y o~ 0pdp. And we note that there
are simple constrains Trdp = 0 = TrX due to the normalization condition Trp = 1 =
Tr (p + dp). Taking the square of the above series expansion, one can simply find

Vodpp=pX +Xp, (©.36)
X2+ )Y +Yp=0.

Choosing the basis of the density matrix p by p = p;[1;) (¢4], we can obtain the basis-
dependent results

VPivDi

(Wil X ) = == (il dp o)
el K1) (30
¥l = — XX 1)
¥ ) =~
which simply result in
Y 1 % (il dp WJ 2
Tty = - il X [aby) (5] X i) = : C.38
> gl Kbl X v = =3 32 RS (©3%)
Correspondingly, the Bures metric defined in (C.34) reads [212]
ds? =2 (1 —Tr(ﬁ+X+Y))
N C.39
— _9TrY = Z | wz’dﬂy% ' ( )
— Di —i—pj

C.3.2 Quantum Fisher Information Metric

Different from the original definition of Bures metric as eq. (C.34), quantum Fisher infor-
mation metric is defined by

1
ds%, = Tr(GpG) = 5T (Gdp) , (C.40)
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where the hermitian operator GG known as symmetric logarithmic derivative is uniquely
determined by the Laypunov equation, namely

dp = Gp+ pG. (C.41)

In our coordinate system with p(A*), the metric components read
1
I = 5Tr(,a (GuG, +G,GL)) ., dp=0,p(N)dN*, G =G d\", (C.42)

which is generally called quantum Fisher information metric (matriz) [241]. If we are
restricted on pure states with p = p?, Trp = Tr (p?) = 1, we can find

dp = pdp+ dpp, | o
Tr (dp) = 0 = Tr (pdp) . |

and obtain the symmetric logarithmic derivative as

G =dp = |dy) (] + [v) {dy] - (C.44)

Correspondingly, the quantum Fisher information metric for pure states is simplified to be

5% = Te(GPC) = Tr (p(dj)?) = 3T (dpdp)
— (Al — (Bl (dl)

which is nothing but the Fubini-Study metric as advertised in the introduction. The
challenge in calculations for quantum fidelity or Bures metric originates from the square
root and also the non-commutation between p and dp. If we focus on the special case where
p, 6p commute, we can derive the explicit form for the QFIM by

ds?, = Tr ((d\/ﬁ)2) - iTr (5"dpdp) | (C.46)

(C.45)

with )
55,71 =0, G =i dp. (C.47)

As expected, the QFIM in the above case actually reduces to the classical Fisher infor-
mation matrix defined by

0?In P(\; x) Oln P(A\;z) 0ln P(\; x)
— . e S — . ) ) 4
G () /dw P(X\x) NN /d:z: P(\x) v T . (C.48)
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for any distribution P(\;z) on the parameter space \.

Following the popular conventions in quantum information or quantum estimation (see
e.g., [218,241]), Bures metric is related to the quantum Fisher information metric (H,,)

in the way of

1
Ju = ZH}U/ . (049)

In the main content, we don’t distinguish the Bures metric and QFIM by simply tak-
ing ds%, = ds% because we need to normalize various metrics before taking them as the
complexity measure in eq. (5.19).

In order to show the equivalence between Bures metric and QFIM in a basis-independent
expression, we can relate the symmetric logarithmic derivative to the first order variation

X by R L
G=p3Xps. (C.50)

Obviously, one can get the following constrain equations
dp=Gp+ pG

o ) . ) C.51
0=p'X2+V 4+ Vjp — —2T1Y = T <ﬁ‘1X2> . (C51)

As a result, we can rewrite the Bures metric derived in eq. (C.39) into the new form
ds = =2 =T (p 3 XX573) = T (p 2 Xppp i X574

1 (C.52)

= Tr(GpG) = §Tr(Gd,5) .

which is nothing but the quantum fisher information defined in eq. (C.40). With the help
of the unique solution of Lyapunov equation, i.e.,

dp = Gp+ pG, G = / (e *dpe"?) dt, (C.53)
0

we can further calculate the Bures metric by the integral

1 [ R R
ds?, = ds? = 5/ Tr (e_ptd,ée_”tdﬁ) dt , (C.54)
0

which is obviously basis-independent.
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Taking the density matrix p into the diagonal basis with p =", px [¢x) (x|, a simple
forms for the quantum Fisher information metric is given by [218,211,212]

no_ }Z% ((W Opup [90) (1] D ww)

(C.55)

gy_
2 Pr+ D

k.l

which has been shown in (C.39). Furthermore, we can also expand the variation dp =
0,p dN in a specific basis. Noting the basis for p(A) = p;(A) [¢i(N)) (¥:(A)] also depend on

the parameters M like the spectrum of p, i.e., p;(A*), one can find
0uPN) =D (0up; [103) (Ol + pj 1) (Uil + pj |3) (Duthi]) - (C.56)
J
Then the Bures metric is rewritten as [218]
IM 8upzaupz (pz - pj)2
G = D ) (Wi0,y) (Ot [) + (Wi 1005) (05 1) 5 (C.57)

; Di iz D + p;

where the first term is the same as the classical Fisher information metric defined in
(C.48) and the second terms count the quantum contributions.
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