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Abstract

The notion of induced subgraphs is extensively studied in graph theory. An example
is the famous Gyárfás-Sumner conjecture, which asserts that given a tree T and a clique
K, there exists a constant c such that the graphs that omit both T and K as induced
subgraphs have chromatic number at most c. This thesis aims to prove natural matroidal
analogues of such graph-theoretic problems.
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Chapter 1

Introduction

1.1 Results

This thesis deals with the theory of induced submatroids in the context of simple binary
matroids. Given two matroids M and N , we say that M contains an induced N-restriction
if there exists a flat F of M for which the restriction of M to F is isomorphic to N .

Restrictions and induced restrictions are analogous to subgraphs and induced subgraphs
respectively in graph theory. Graph theorists have studied subgraphs as well as induced
subgraphs extensively. The notion of restrictions has been studied in matroid theory as
well, but that of induced restrictions for matroids did not enjoy the same level of interest.
The goal of this thesis is to consider and prove natural matroidal analogues of graph-
theoretic problems involving induced subgraphs in the binary setting.

The first major result in this thesis, Theorem 3.1.1, is a full structure theorem for simple
binary matroids with no three-element independent flat or, equivalently, no induced U3,3-
restriction. This theorem is a matroidal analogue of the structure theorem for claw-free
graphs by Chudnovsky and Seymour [13]. The full statement is too technical to state here,
but as one of its corollaries we obtain a description of such matroids in terms of their
critical numbers.

Given a simple rank-r binary matroid M , viewed as a restriction of G ∼= PG(r − 1, 2),
the critical number χ(M) is the smallest integer c such that there exists a rank-(r− c) flat
F of G for which F ∩ E(M) = ∅, and ω(M) is the rank of a largest flat of G contained
in E(M). The parameters χ and ω are analogous to the chromatic number and clique
number for graphs.
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Theorem 1.1.1. There exists a function f such that if M is a simple binary matroid with
no induced U3,3-restriction or induced M(K5)-restriction, then χ(M) ≤ f(ω(M)).

Borrowing from graph theory terminology, this shows that the class of matroids with
no induced U3,3-restriction or induced M(K5)-restriction is ‘χ-bounded’. We will later
show that one can replace M(K5) with any ‘even-plane matroid’, and the theorem will
continue to hold. The class of even-plane matroids, which we will define later, is relatively
rich; in particular, it contains matroids of arbitrarily large χ. However, it is not possible
to eliminate even-plane matroids from this theorem altogether. Bonamy, Kardoš, Kelly,
Nelson and Postle [46] showed that for any given number c ≥ 0, there exists a simple
binary matroid with no induced U3,3-restriction for which ω(M) ≤ 2 and χ(M) > c.

Another result is concerned with a Gyárfás-Sumner-type problem. For any positive
integer t, Bonamy, Kardoš, Kelly, Nelson and Postle [46] asked whether there exists a
constant ct such that every simple binary matroid M with no induced Ut,t-restriction or
triangle satisfies χ(M) ≤ ct. Excluding induced Ut,t-restrictions is analogous to excluding
trees in the setting of graphs.

Conjecture 1.1.2 ([46]). For all t ≥ 1, there exists a constant ct > 0 such that if a simple
binary matroid M has no induced Ut,t-restriction or triangle, then χ(M) ≤ ct.

The conjecture is straightforward when t = 1, 2, 3. In this thesis, we settle the conjecture
for the case t = 4. We can in fact obtain a full structure theorem for simple binary matroids
with no induced U4,4-restriction or triangle. As a corollary, we obtain the following.

Theorem 1.1.3. If M is a simple binary matroid with no induced U4,4-restriction or
triangle, then χ(M) ≤ 2.

The conjecture of Bonamy, Kardoš, Kelly, Nelson and Postle remains open when t ≥ 5.
In this thesis, we prove a weakening of this conjecture. A simple binary matroid M ,
viewed as a restriction of a binary projective geometry G ∼= PG(n − 1, 2), is I1,t-free if
|F ∩ E(M)| 6= 1 for every rank-t flat of G. In particular, simple I1,t-free binary matroids
contain no induced Ut+1,t+1-restriction.

Theorem 1.1.4. For any t ≥ 1, there exists a constant ct such that if M is a simple
I1,t-free binary matroid with no triangle, then χ(M) ≤ ct.

The final topic is an extremal problem for simple binary matroids. Nelson and Norin
[45] determined the smallest simple matroids with no (t+ 1)-element independent flat. For
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integers r ≥ 1 and t ≥ 1, the matroid Nr,t denotes the direct sum of t, possibly empty,
binary projective geometries whose ranks sum to r and pairwise differ by at most 1. Their
theorem is valid for all simple matroids, not just simple binary matroids.

Theorem 1.1.5 ([45]). Let r, t ≥ 1 be integers. If M is a simple rank-r matroid with
no induced Ut+1,t+1-restriction, then |E(M)| ≥ |Nr,t|. If equality holds and r ≥ 2t, then
M ∼= Nr,t.

In this thesis, we prove the following. For integers r ≥ 1 and t ≥ 1, the matroid Ar,t
denotes the direct sum of t, possibly empty, binary affine geometries whose ranks sum to
r and pairwise differ by at most 1.

Theorem 1.1.6. Let r ≥ 1 be an integer. If M is a simple rank-r binary matroid with no
induced U5,5-restriction or triangle, then |E(M)| ≥ |Ar,2|.

This is a special case of a conjecture by Nelson and Norin [45], which states that
if M is a simple rank-r matroid with no induced U2t+1,2t+1-restriction or triangle, then
|E(M)| ≥ |Ar,t|. Note that the above theorem is for simple binary matroids, whereas
Nelson and Norin’s conjecture is for all simple matroids.

Although our problems are inspired by graph-theoretic problems, they do not imply
much about graphs. Sometimes matroidal theorems generalise theorems in graph theory,
but that is not generally the case with our problems in the ‘binary restriction’ setting.
Furthermore, while the graph-theoretic flavours will remain in the theorem statements
themselves, the proof ideas typically differ greatly, too. The goal of this thesis is not to
generalise results in graph theory to those involving matroids, but is to develop a theory
for induced submatroids, after using graph theory to motivate natural problems in our
setting.

1.2 Matroids

Our formalism of matroids will somewhat deviate from standard matroid theory. In this
section, we first give a limited introduction to standard matroid theory terminology, and
then explain its connection with our adjusted formalism of matroids called embedded ma-
troids.
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1.2.1 Standard Definitions

In 1935, Whitney and Nakasawa independently introduced matroids [41, 62] as a way
to provide a formal treatment of independence seen in linear algebra and graph theory.
There are various equivalent ways to define matroids. Here, we define matroids using rank
functions. A matroid M is a pair (E, r) where E is a finite ground set and r : 2E 7→ Z is
a rank function that satisfies the following three axioms.

(R1) 0 ≤ r(X) ≤ |X| for all X ⊆ E,

(R2) r(X) ≤ r(Y ) for all X ⊆ Y ⊆ E, and

(R3) r(X) + r(Y ) ≥ r(X ∪ Y ) + r(X ∩ Y ) for all X ⊆ Y ⊆ E.

We write E(M) for the ground set of M . The rank of M is r(E). A set X ⊆ E is
independent if r(X) = |X|; otherwise it is dependent. A circuit is a minimal dependent
subset of E. We say that an element of E is a loop if it forms a single-element circuit of
M . If a two-element set {f, g} is a circuit of M , then f and g are a parallel pair. If a
matroid has no loop or parallel pair, then it is simple.

The closure of X ⊆ E is the set {e ∈ E : r(X ∪ {e}) = r(X)} and is denoted cl(X). A
set F ⊆ E is a flat of M if F = cl(F ). For a set Y ⊆ E, the restriction of M to Y is the
matroid with ground set Y and rank function r′ : Y 7→ Z defined by r′(X) = r(X) where
X ⊆ Y . If Y is a flat, then this matroid is called the induced restriction of M to Y .

Two matroids (E1, r1) and (E2, r2) are isomorphic if there exists a bijection ψ : E1 7→ E2

such that r1(X) = r2(ψ(X)) for all X ⊆ E1.

Representable Matroids

Let F be a field and let A be a matrix with entries in F, where the columns are indexed
by a set E. For each subset X ⊆ E, let A[X] be the submatrix of A which consists of all
columns of A that are indexed by X. Define a function r : E 7→ Z by r(X) = rank(A[X])
for all X ⊆ E. Then (E, r) is the matroid represented by A, and is denoted by M [A].
A matroid M is F-representable if M = M [A] for some matrix A over F, and A is a
representation of M . Hence, a simple F-representable matroid has a representation over F
with no zero column and no pair of parallel columns. Matroids that are F2-representable
are called binary.
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If A is a representation of a matroid, one can perform elementary row operations and
column scalings and delete zero rows to obtain another matrix A′. Since rank(A[X]) =
rank(A′[X]) for any X ⊆ E, it follows that M [A] ∼= M [A′]. In particular, this means that
if M is a simple rank-n F-representable matroid, then it has various representations with
varying numbers of rows (with at least n rows). Embedded matroids will deviate from
standard matroid theory here; for us, matrices with different numbers of rows will give
nonisomorphic matroids.

For each integer n > 0 and prime power q, the maximum number of nonzero, pair-
wise nonparallel columns of a matrix with n rows with entries in Fq is qn−1

q−1 . Hence, any

simple rank-n Fq-representable matroid has at most qn−1
q−1 elements. A simple rank-n Fq-

representable matroid with precisely qn−1
q−1 elements is called a projective geometry over Fq,

and if q = 2 then it is called a binary projective geometry.

Graphic Matroids

Let G = (V,E) be a finite graph. For any subset X ⊆ E, let c(X) denote the number
of connected components of the graph (V,X). Then the graphic matroid of G is the
matroid with ground set E whose rank function is r(X) = |V | − c(X) and is denoted
M(G). A matroid that is isomorphic to M(G) for some graph G is called graphic. By
considering the signed incidence matrix of a graph, one can show that every graphic matroid
is representable over all fields. A graphic matroid M(G) is simple if and only if G has no
loops and parallel edges in the graph-theoretic sense.

1.3 Embedded Matroids

In this thesis, we view a simple binary matroid as embedded in an explicit ambient geom-
etry. This allows us to define induced substructures more naturally, in the same way an
induced subgraph is defined by specifying a subset of the underlying vertex set of a graph.
While a matroid is not typically equipped with an ambient set, this is not an entirely new
concept either, as it is implicit in some matroidal concepts. An example is the definition
of the critical number given earlier, in which we view a simple rank-r binary matroid as a
restriction of a rank-r binary projective geometry. Having an ambient set will also allow
us to take the complement of a matroid in the same way we may take the complement of
a graph, which is an important operation in the theory of induced subgraphs.
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Throughout this thesis, if V is an n-dimensional vector space over F2, we say that the set
G = V \{0} is an n-dimensional (binary) projective geometry and write G ∼= PG(n− 1, 2).
We write [G] for the vector space V = G ∪ {0}. An embedded matroid M is a pair (E,G)
where G is an n-dimensional projective geometry, and E is a subset of G. The set E is the
ground set of M . The dimension of M is the dimension n of the vector space [G] and is
denoted dim(M). We say that two embedded matroids M1 = (E1, G1) and M2 = (E2, G2)
are isomorphic if there exists a linear bijection ψ : [G1] → [G2] for which ψ(E1) = E2;
we call such a map ψ a matroid isomorphism from M1 to M2. Note that any given n-
dimensional embedded matroid (E,G) is isomorphic to another embedded matroid of the
form (ψ(E),Fn2\{0}) by picking a linear bijection ψ : [G] 7→ Fn2 .

This definition deviates from standard terminology as it involves the notion of an ex-
plicit ambient set G. Embedded matroids distinguish simple binary matroids by respecting
the numbers of rows in representations. LetM be the set of matrices with entries from F2

with distinct non-zero columns, and letM′ be the set of isomorphism classes of embedded
matroids. Define a map φ : M 7→ M′ where for each matrix A ∈ M, φ(A) equals the
isomorphism class containing the embedded matroid (E,G) where G = Fn2\{0}, while n
is the number of rows of A, and E equals the set of columns of A. This map is well-
defined, non-injective and surjective. If A1, A2 ∈ M have different numbers of rows, then
φ(A1) 6= φ(A2), as the dimensions of their corresponding embedded matroids differ. If the
numbers of rows agree, and n is the number of rows in A1 (and A2), then from linear algebra
it follows that M [A1] ∼= M [A2] if and only if there exists an invertible matrix P for which
A1 = PA2. The existence of the matrix P is equivalent to having a map IP : Fn2 7→ Fn2
for which IP (E1) = E2 where Ei is the set of column vectors of Ai for i = 1, 2. Therefore,
φ(A1) = φ(A2) if and only if the numbers of rows of A1 and A2 agree and M [A1] ∼= M [A2].

The incorporation of an ambient set in the definition of embedded matroids allows us to
consider matroidal problems in a slightly different sense. In particular, this definition leads
to matroids M = (E,G) that are rank-deficient, which means the span of E in the vector
space [G] does not equal [G]; otherwise the matroid is full-rank. We therefore distinguish
the notion of the dimension of an embedded matroid M , which refers to the dimension of
the vector space [G], and that of the rank of M , which equals the dimension of the span
of E in the vector space [G]. The dimension is denoted dim(M) and the rank is denoted
r(M). We make use of the additive notation and, given two elements x, y ∈ [G], write x+y
for the element corresponding to the vector sum of x and y in the vector space [G]. Some
of the results in this thesis will have much more natural statements in the context of our
notion of embedded matroids, while those that are described only by full-rank matroids
can just as easily be reformulated in standard terminology.

For the rest of this thesis, embedded matroids will be referred to as matroids, unless
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otherwise stated. We now define some important concepts related to embedded matroids;
many of them correspond naturally to the definitions for standard matroids with minor
adjustments. Given an n-dimensional matroid M = (E,G), the size of M is |E|, which
we also denote by |M |. If |E| = 0, then M is empty or an empty matroid. If E = G,
then we abuse notation by writing M ∼= PG(n− 1, 2) and say that M is an n-dimensional
projective geometry. The complement of matroid M = (E,G) is the matroid (G\E,G) and
is denoted M c. These notions have natural analogues in graph theory. The dimension n
corresponds to the number of vertices and the size |E| corresponds to the number of edges.
Complements of matroids are analogous to complements of graphs. Projective geometries
are analogous to complete graphs; projective geometries of dimension n are the densest
matroids of dimension n, in the same way the complete graph on n vertices is the densest
graph on n vertices.

Certain matroids will play a key role in our binary setting. We will be especially
interested in the matroids of the form (B,G), where G ∼= PG(n− 1, 2) and B is a basis of
[G]. These matroids will play the role that trees do in graph theory. They are tree-like in
the sense that they are maximally acyclic, meaning that the addition of any other element
into the ground set will introduce a dependency. Note that, for any fixed integer n, any
two n-dimensional matroids (B1, G1) and (B2, G2) where Bi is a basis of [Gi] for i = 1, 2
are isomorphic. Hence, we write In to denote these matroids. We call I3 a claw.

A circuit of length n is a full-rank (n−1)-dimensional matroid whose ground set consists
of n elements that add to zero. If n is odd, it is called an odd circuit. A circuit of length n
is a full-rank (n− 1)-dimensional matroid (E,G) with the property that E is a dependent
set in [G] but E\{e} is an independent set for any e ∈ E. For fixed n ≥ 1, all circuits of
length n are isomorphic, and we write Cn to denote these matroids.

1.3.1 Flats

Given G ∼= PG(n − 1, 2), a flat is a subspace of [G] with the zero vector removed. From
here after in our formalism, the term ‘flat’ is always used in reference to some projective
geometry G; we do not refer to a ‘flat’ of a matroid M itself unless we state otherwise
explicitly. The dimension of a flat F is the dimension of [F ] as a vector space and is
denoted dim(F ), and its codimension is dim(G)− dim(F ). We call flats of dimension 2, 3
and dim(G) − 1 triangles, planes and hyperplanes respectively. The closure or span of a
given set X ⊆ E is the minimal flat F that contains X and is denoted cl(X). The rank of
X is the dimension of this F and is denoted r(X). The rank r(M) of M is r(E).

Given G ∼= PG(n − 1, 2), a basis of G is a subset of G which is a basis of the vector
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space [G]. Given a subset E ⊆ G, a basis of E is a subset of E that is a basis of cl(E).
Given a matroid M = (E,G), a basis of M is a basis of E ⊆ G.

1.3.2 Restrictions

Given a matroid M = (E,G), if F is a flat of G, then a matroid of the form (E ′, F ),
where E ′ ⊆ E ∩ F is a restriction of M . If, moreover, E ′ = E ∩ F , then it is called the
induced restriction of M to F and is denoted M |F . Given another matroid N , we say that
M contains an N-restriction if there exists a restriction of M that is isomorphic to N .
We say that M contains an induced N-restriction if there exists a flat F of G for which
M |F ∼= N . If M contains no induced N -restriction, then M is N-free or M omits N . If
N is a set of matroids and M is N -free for all N ∈ N , then M is N -free. A matroid M is
triangle-free if M contains no induced PG(1, 2)-restriction. We also use the term induced
submatroid in place of induced restriction.

The notion of induced restrictions and their containment can also be defined using
linear injections. Given two matroids M = (E,G) and N = (E ′, G′), it can be shown
that M contains an N -restriction if there exists a linear injection ψ : [G′]→ [G] for which
ψ(E ′) ⊆ E. If, additionally, ψ(E ′) = E∩ψ(G′), then M contains an induced N -restriction.

Note that we only say that M is N -free (or N -free) when M omits N as an induced
restriction, as opposed to as just a restriction. We opt for this terminology as much of our
thesis will be devoted to excluding matroids as induced restrictions. The same convention
will be taken with graphs. Note that if M has no N -restriction, then M has no induced
N -restriction, but the converse is not necessarily true. One example in which the converse
holds is whenN ∼= PG(n−1, 2). IfM = (E,G) contains no induced PG(n−1, 2)-restriction,
then M |F 6∼= PG(n− 1, 2) for every n-dimensional flat F . This means E ∩F 6= F for every
n-dimensional flat F of G, which means that M contains no PG(n− 1, 2)-restriction. This
is analogous to the statement that a graph that contains no clique as an induced subgraph
contains no clique as a subgraph.

1.3.3 Critical Number

Given a matroid M = (E,G), the parameter ω(M) is the dimension of a largest projective
geometry contained in E. It is analogous to the clique number for graphs. The critical
number of M is the minimum nonnegative integer c for which G has a (dim(M) − c)-
dimensional flat disjoint from E. The critical number is denoted by χ(M). Note that the
critical number of (E,G) equals the critical number of (E, cl(E)).
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In the introduction, given a simple rank-r binary matroid M , viewed as a restriction of
G ∼= PG(r − 1, 2), we defined the critical number χ(M) to be the smallest integer c such
that there exists a rank-(r − c) flat F of G for which F ∩ E(M) = ∅. This definition is
independent of the embedding of M in G (in fact, there is only one unique embedding up
to isomorphism in the binary case). Therefore the two notions of critical number agree.

The critical number was originally defined by Crapo and Rota [36] under the name
critical exponent. From the above definition, it is not too hard to see that the critical
number of M = (E,G) also equals n − ω(M c). The critical number of an n-dimensional
matroid is always between 0 and n. In fact, χ(M) = 0 if and only if ω(M c) = n, meaning
M is an empty matroid. Also, χ(M) = n if and only if ω(M c) = 0, meaning that M is
an n-dimensional projective geometry. Any matroid that is neither empty nor a projective
geometry will give a critical number that is strictly greater than 0 and smaller than n.
Lemma 2.2.1 will prove that the parameter χ does not increase under restrictions.

This notion of χ may appear to be unmotivated at first, but it can be seen as a matroidal
analogue of the chromatic number for graphs. For example, if χ(G) is the chromatic
number of a graph G, and M = M(G) is the graphic matroid arising from G, then it
can be shown [37] that χ(M) = dlog2(χ(G))e. The critical number may also be defined
using the characteristic polynomial, which is a natural matroidal analogue of the chromatic
polynomial for graphs ([36, 60]). We will later give the matroidal analogue of the Erdős–
Stone Theorem, which also reveals a striking similarity between the graphic and matroidal
notions of χ. Note that if the chromatic number of the graph G is 2, then the graphic
matroid arising from G has critical number 1. Perhaps not surprisingly, the matroids for
which χ = 1 will sometimes behave very similarly to the graphs with chromatic number 2.

1.4 Excluding Restrictions

Many graph-theoretic problems involving subgraphs have been translated into matroidal
problems. In this thesis, we mention two such examples. They are, respectively, matroidal
analogues of Turán’s Theorem and the Erdős–Stone Theorem. We note that these problems
have been rephrased for embedded matroids; they are typically stated differently in the
literature. We assume that all matroids are full-rank in this section.
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1.4.1 The Bose–Burton Theorem

The Bose–Burton Theorem is a matroidal analogue of the classical theorem of Turán [57] in
graph theory. The Turán graph T (n, t) is the complete (t− 1)-partite graph on n vertices
whose parts are as equally-sized as possible. It is clear that T (n, t) is Kt-free. Turán’s
Theorem, stated below, characterises the largest graph that is Kt-free.

Theorem 1.4.1 ([57]). For all integers n ≥ t ≥ 1, if G is a simple Kt-free graph on n
vertices, then |E(G)| ≤ |E(T (n, t))|. Equality holds if and only if G ∼= T (n, t).

For any r ≥ t ≥ 0, a Bose–Burton geometry of order t is a matroid (E,G) where
G ∼= PG(r − 1, 2) and E is obtained by removing a flat of dimension r − t from G. Note
that such matroids are determined up to isomorphism by r and t and we write BB(r−1, t)
to denote these matroids. When t = 0, then E = ∅, and when t = r, then E = G.
Equivalently, Bose–Burton geometries are matroids (E,G) for which G\E forms a flat. An
n-dimensional Bose–Burton geometry of order 1 is an n-dimensional affine geometry and
is denoted AG(n− 1, 2).

Note that BB(r−1, t) is PG(t, 2)-free. If an order-t Bose–Burton geometry M = (E,G)
contained a PG(t, 2)-restriction, then there is a (t + 1)-dimensional flat F ⊆ G for which
F ⊆ E. By the definition of Bose–Burton geometries, there is an (r − t)-dimensional
flat F ′ ⊆ G for which F ′ ⊆ G\E. Hence F ∩ F ′ = ∅. But note that F ∩ F ′ 6= ∅, as
dim(F ) + dim(F ′) > r. This is a contradiction.

The following theorem of Bose and Burton [5] characterises the densest PG(t, 2)-free
matroids. While we will not provide proofs for the other theorems in this section, we
provide the proof for the Bose–Burton Theorem because of its importance to this thesis.

Theorem 1.4.2 ([5]). For all integers r − 1 ≥ t ≥ 0, if M = (E,G) is a PG(t, 2)-
free matroid of dimension r, then |E| ≤ |BB(r − 1, t)|. Equality holds if and only if
M ∼= BB(r − 1, t).

Proof. The result is immediate when t = 0. Let t be the smallest positive integer for which
the claim fails, and let M = (E,G) be a counterexample. Let r = dim(M).

We may assume that there exists a triangle T ⊆ G for which |T ∩ E| = 1. If not, then
G\E forms a flat of G, and hence M is a Bose–Burton geometry of order at most t; it
follows that |E| ≤ |BB(r− 1, t)| with equality if and only if M is a Bose–Burton geometry
of order precisely t. Fix some triangle T such that |T ∩ E| = 1, and let a ∈ T ∩ E.

Now pick a hyperplane H ⊆ G for which a /∈ H. For each i = 0, 1, 2, let Fi be the set of
elements x ∈ H for which | cl({x, a+x})∩E| = i. Note that the Fi partition H. Then the
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matroid (F2, H) is PG(t−1, 2)-free; if F ′ ⊆ F2 is a flat of dimension t, then cl(F ′∪{a}) ⊆ E
is a flat of dimension t+1, a contradiction. By minimality, |F2| ≤ |BB(r−2, t−1)|. Recall
that a ∈ T and |(T\{a}) ∩ E| = 0, so F0 6= ∅. Hence

|E| = 1 + |F1|+ 2|F2| = 1 + |F2|+ |H| − |F0| ≤ |F2|+ |H| ≤ |BB(r − 2, t− 1)|+ |H|.

But |BB(r − 2, t− 1)| = 2r−1 − 2r−t and |H| = 2r−1 − 1. Hence

|BB(r − 2, r − 1)|+ |H| = 2r − 2r−t − 1 < |BB(r − 1, t)|

providing the required bound.

The Bose–Burton Theorem is important to this thesis in many ways. From a practical
point of view, we use it numerous times in later chapters as a proof ingredient. Also, the
proof of the Bose–Burton Theorem is one example of a larger phenomenon that we tend to
see repeatedly in the theory of excluded restrictions for matroids. That is, if the matroidal
analogue of a graph-theoretic theorem holds (which, unfortunately, is not always true),
the proof is often more straightforward than the graph-theoretic counterpart. While it is
difficult to quantify the difficulty of a proof, this proof of the Bose–Burton Theorem seems
conceptually simpler than any known proof of Turán’s Theorem.

1.4.2 The Matroidal Erdős–Stone Theorem

Turán’s Theorem characterises the densest Kt-free graphs on n vertices. The Erdős–Stone
Theorem [22] considers an analogous question, but for general graphs other than Kt. Given
a graph H, let ex(H,n) be the maximum number of edges in a graph on n vertices that
contains no H as a subgraph. Turán’s Theorem implies that ex(Kt, n) = |E(T (n, t))|. The
Erdős–Stone Theorem [22] states the following.

Theorem 1.4.3 ([22]). Let H be a graph with chromatic number χ ≥ 2. Then

lim
n→∞

ex(H,n)

|E(Kn)| =
χ− 2

χ− 1
. (1.1)

This is a remarkable theorem, as the quantity ex(H,n) seemingly has little to do with
the chromatic number. The Erdős–Stone Theorem shows that ex(H,n) = χ−2

χ−1

(
n
2

)
+ o(n2),

which determines the asymptotic behaviour of ex(H,n) unless χ = 2. When χ = 2, then
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determining the asymptotic behaviour of the Turán numbers is a difficult problem and is
one of the major open problems in extremal graph theory.

Now, let ex(N, r) be the maximum number of elements in a matroid of dimension r
that contains no N -restriction. The following theorem by Geelen and Nelson [25] relates
the quantity ex(N, r) with the critical number.

Theorem 1.4.4 ([25]). Let N be a matroid with critical number χ ≥ 1. Then

lim
r→∞

ex(N, r)

|PG(r − 1, 2)| = 1− 21−χ. (1.2)

Theorem 1.4.4 is striking in its similarity to Theorem 1.4.3, and provides further evi-
dence that the matroidal parameter χ is an appropriate analogue of the chromatic number
for graphs. Theorem 1.4.4 shows that ex(N, r) = 2r − 2r−χ+1 + o(2r), which determines
the asymptotic behaviour of the quantity ex(N, r) when χ > 1. When χ = 1, it is again
an open problem.

We will not give the proof of Theorem 1.4.4. However, as the authors of [25] themselves
note [24], the proof of Theorem 1.4.4 is more straightforward than that of Theorem 1.4.3.
It is another example in which a matroidal analogue goes more smoothly than its graph-
theoretic counterpart.

The critical exponent extends in its similarity to the chromatic number far beyond the
context of Theorem 1.4.4. As an example, we mention the well-studied notion of chromatic
threshold in graph theory. The chromatic threshold of a graph H, defined in [39], is the
infimum of all α > 0 for which there exists a constant c such that graphs G with minimum
degree at least α|V (G)| that contain no H as a subgraph have chromatic number at most
c. Culminating in [1], the chromatic threshold has been determined for all graphs H (for
results and related history about this problem, see [1, 6, 21, 29, 39, 55]).

Geelen and Nelson [26] define an analogous notion for matroids. Given a matroid N , the
critical threshold of N is the infimum of all α > 0 for which there exists a constant c such
that matroids with |M | > α2dim(M) that contain no N -restriction have critical number at
most c. There exist classes of matroids for which the critical threshold has been determined
(see [10, 26, 27, 56]), but unlike the graph counterpart, the problem of determining the
critical threshold remains open in general.

Problems with other flavours, such as counting problems, have been translated into
our matroidal setting as well. For example, Erdős made a conjecture about the maximum
number of 5-cycles in triangle-free graphs, which was later settled in [33, 35]. There exists
a matroidal analogue of this problem, which was partially settled in [7] recently.
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1.5 Excluding Induced Restrictions

The theory of induced subgraphs is an active area of research with many known theorems
and conjectures. One example, and one for which we will give a matroidal analogue, is
the structure theorem of claw-free graphs by Chudnovsky and Seymour [13]; a claw is the
bipartite graph K1,3. Their theorem is too technical to state, but as a structure theorem
it states that there are some well-understood basic classes of claw-free graphs and some
operations that construct all claw-free graphs from the basic classes.

There are also known theorems when F consists of cycles. A famous example is the
family of Berge graphs. Berge graphs are graphs with no induced subgraph isomorphic
to a cycle of odd length at least five or its complement. In fact, a general decomposition
theorem describing Berge graphs is the main ingredient in the proof of the Strong Perfect
Graph Theorem by Chudnovsky, Robertson, Seymour and Thomas [11]. A graph is perfect
if, for every induced subgraph, the size of the maximum clique equals its chromatic number.
A hole is an induced cycle of odd length at least five, and an antihole is the complement
of an odd hole.

Theorem 1.5.1 (The Strong Perfect Graph Theorem, [11]). A graph is perfect if and only
if it has no odd holes or odd antiholes.

The forward direction of this theorem is immediate, since odd holes and odd antiholes
are not perfect. Chudnovsky, Robertson, Seymour and Thomas [11] obtain a decomposition
theorem for all Berge graphs, in which all Berge graphs either belong to one of five well-
understood classes or admitted certain special decompositions, which allows them to verify
that all Berge graphs are perfect.

There also exist such structural theorems when F is the set of even-length cycles (a
theorem by Conforti, Cornuéjols, Kapoor and Vušković [15]), and when F is the set of
odd-length cycles of length at least five (a theorem by Conforti, Cornuéjols, and Vušković
[16]).

There exists an abundance of open problems regarding induced subgraphs. Many of
these problems are widely regarded as some of the most important problems in graph
theory. One that is particularly relevant to our study is the Gyárfás-Sumner Conjecture
[34, 53].

Conjecture 1.5.2 (Gyárfás-Sumner, [34, 53]). For every tree T and complete graph K,
there is an integer c such that if G is a graph containing neither T nor K as an induced
subgraph, then χ(G) ≤ c.
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The Gyárfás-Sumner Conjecture is known to be true for certain trees. Amongst the
simplest such examples are stars and paths [34]. For other known cases, [51] is a recent
survey containing detailed information about this subject. The conjecture remains open
in general. We will discuss the Gyárfás-Sumner Conjecture as it relates to matroids later
in this chapter.

As we remarked before, many problems in graph theory have led to natural problems
in matroid theory. It may therefore come as a surprise that, given the level of interest
that graph theorists have in the theory of excluded induced subgraphs, there was little
interest in an analogous notion in matroid theory. One of the few exceptions is the work of
Mills in 1999 [40], who considered the notion of perfect matroids in the context of simple
binary matroids. Another exception is the recent work by Bonamy, Kardoš, Kelly, Nelson
and Postle [46], who considered a Gyárfás-Sumner-type problem for matroids. This thesis
builds on their work.

For matroids N = (E ′, G′) with dim(G′) very small, the class of N -free matroids is easy

to describe in many cases. By appropriately taking complements, suppose that |E ′| > |G′|
2

.
If G′ is 1-dimensional, then |E ′| = 1, so the only N -free graphs are empty. If G′ is 2-
dimensional, i.e., |G′| = 3, then |E ′| ∈ {2, 3}. If |E ′| = 2, then the N -free matroids are
complements of Bose-Burton geometries, since E ′ forms a flat of G′. If |E ′| = 3, we are
considering triangle-free matroids. Triangle-free matroids do not seem to enjoy a pleas-
ant structural description. Examples of triangle-free matroids are the graphic matroids of
triangle-free graphs, but triangle-free graphs are already a wild class of graphs to describe.
As such, we will later treat the class of triangle-free matroids (in fact the class of comple-
ments of triangle-free matroids) as a ‘basic’ class of matroids. When G′ is 3-dimensional,
the problem of describing N -free matroids becomes difficult.

1.5.1 Perfect Matroids

Let us now discuss prior work in the theory of induced submatroids.

Given a matroid M = (E,G), recall that ω(M) and χ(M) are matroidal analogues of
the clique number and chromatic number for graphs, respectively.

Mills [40] defines a notion for perfect matroids. Rephrased in our language, a matroid
M is perfect if and only if χ(N) = ω(N) for every induced restriction N of M . The
following is true.

Theorem 1.5.3 ([40]). A matroid M is perfect if and only if M c is perfect.
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This theorem is a matroidal analogue of the Weak Perfect Graph Theorem of Lovász
[38], which states that a graph is perfect if and only if its complement graph is perfect.
While the proof of the Weak Perfect Graph Theorem is non-trivial, the proof of Theorem
1.5.3 is a direct manipulation of the definition of perfect matroids.

Mills also proves that the matroids M for which χ(M) = 1 are perfect. This follows
from the definition of the critical number. More generally, Mills proves that if χ(M) ≤ 2,
then M is perfect if and only if M has no induced odd circuit of length five or more.

Theorem 1.5.4 ([40]). Let M be a matroid.

• If χ(M) = 1, then M is perfect.

• If χ(M) ≤ 2, then M is perfect if and only if M contains no induced odd circuit of
length five or more.

Theorem 1.5.1 characterises perfect graphs by the exclusion of holes and antiholes.
Note that when χ(M) ≤ 2, the matroid M automatically omits the complements of odd
circuits of length five or more and Theorem 1.5.4 might suggest that a similar statement
to Theorem 1.5.1 might hold for matroids, too. But this is not true when χ(M) > 2.
Let H be the complement of the 9-cycle and let M = M(H) (the graphic matroid of H).
Then ω(M) = 2, as H contains a triangle. On the other hand, χ(M) = dlog2(χ(H))e = 3
since χ(H) = 5. But one can check that M omits odd circuits of length 5 or more and
complements of odd circuits of length 5 or more. Hence, Theorem 1.5.1 would not hold for
matroids.

1.5.2 Gyárfás-Sumner Conjecture

We now discuss a matroidal analogue of the Gyárfás-Sumner Conjecture (Conjecture 1.5.2)
considered in [46].

Recall that, given G ∼= PG(n− 1, 2), if B is a basis of [G], we write In for the matroid
(B,G); the matroids In will play the role of trees in our setting. As an analogue for cliques,
we consider projective geometries, as they are the densest objects of any given dimension.
Bonamy, Kardoš, Kelly, Nelson and Postle [46] asked the following question.

Question 1.5.5 ([46]). For which s, t ≥ 1 does there exist a constant k = k(s, t) such
that every M = (E,G) with no induced Is-restriction or PG(t − 1, 2)-restriction satisfies
χ(M) ≤ k?
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The answer to the above question is trivially affirmative when s = 1, 2 or t = 1. When
s = 1 or t = 1, the only matroids permitted are empty. When s = 2, the set E forms a flat,
so M is the complement of a Bose-Burton geometry. It is easy to check that Bose-Burton
geometries satisfy χ(M) = ω(M).

The case where s = 3 and t = 2 is less obvious, but one can in fact show that (E, cl(E))
is an affine geometry, which implies that Question 1.5.5 is true in this case as well.

Lemma 1.5.6 ([46]). If M = (E,G) is I3-free and triangle-free, then (E, cl(E)) is an
affine geometry.

Proof. We may assume that M is full-rank. The condition is equivalent to saying that for
any distinct u, v, w ∈ E, the vector u + v + w ∈ E. Fix u0 ∈ E, and consider the set
W = E + u0 = {z + u0 | z ∈ E}. Then 0 ∈ W , and for any two distinct x, y ∈ W , we
have x + y = ((x − u0) + (y − u0) + u0) + u0 ∈ W , so we see that W is a subspace. It
then follows that (E,G) is either a projective geometry, or affine geometry. Because of
triangle-freeness, (E,G) is an affine geometry.

However, the following theorem [46] shows that Conjecture 1.5.5 fails when s = 3 and
t = 3. The authors found a family of (I3, F7)-free matroids, called the even-plane matroids,
whose members have arbitrarily large critical number. The matroid F7 is the Fano matroid
which is simply PG(2, 2). We say that a matroid M is even-plane if all of its 3-dimensional
induced restrictions have even-sized ground sets, and write E3 to denote the set of all
even-plane matroids.

Theorem 1.5.7 ([46]). For every integer k, there is a matroid M ∈ E3 containing no
induced I3-restriction or F7-restriction such that χ(M) ≥ k.

Theorem 1.5.7 implies that the only cases for which Conjecture 1.5.5 remains open are
when t = 2, meaning that M is triangle-free. In light of this discussion, the authors of [46]
make the following refined conjecture.

Conjecture 1.5.8 ([46]). For all s ≥ 1, there exists k such that if M = (E,G) has no
induced Is-restriction or triangle, then χ(M) ≤ k.

1.5.3 I3-free and Fano-free Matroids

Bonamy, Kardoš, Kelly, Nelson and Postle [46] gave a full structure theorem for all I3-free
and F7-free matroids.
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To state their theorem, we need to define one operation. We give a short definition
here and Chapter 2 will explain this operation more carefully. For now, if M = (E,G) is
an n-dimensional matroid, then D(M) is the (n + 1)-dimensional matroid (E ′, G′) where
G′ = ({0, 1} × [G])\{0} and E ′ = {0, 1} ×E. This operation ‘doubles’ M . One important
feature of this operation is that it does not increase the value of χ.

Let AG◦(t−1, 2) denote the unique (up to isomorphism) t-dimensional matroid obtained
by adding a single element to the affine geometry AG(t − 1, 2). The theorem states that
all I3-free, F7-free matroids are either even-plane, or isomorphic to Dk(AG◦(t − 1, 2)) for
some t and k. Hence, it is precisely the family of even-plane matroids that prevents one
from bounding χ.

Theorem 1.5.9 ([46]). If M is a full-rank matroid, then M does not contain an induced
I3-restriction or F7-restriction if and only if

• M is an even-plane matroid, or

• there exist some t ≥ 3 and k ≥ 1 such that M ∼= Dk(AG◦(t− 1, 2)).

In Chapter 3, we drop the F7-free condition, and give a structure theorem of I3-free
matroids.

1.5.4 Extensions

While Question 1.5.5 has a negative answer in general for t ≥ 3, it is possible to reconsider
this problem with a different notion of χ. Although we will not discuss this notion or the
following conjecture in the rest of this thesis, we mention them as a possible direction of
future research.

We first mention the following characterisation of χ in terms of linear polynomials in
[36] which will be useful for this discussion.

Lemma 1.5.10 ([36]). For a matroid M = (E,G) where G is identified with Fn2\{0},
χ(M) is the smallest integer k such that there exist k linear polynomials p1, . . . , pk ∈
F2[x1, · · · , xn], with pi(0) = 0 for all i, such that if x ∈ E there exists some j for which
pj(x) = 1.

Let M = (E,G) be an n-dimensional matroid. Associate G with the vectors in Fn2\{0}.
Then Nelson and Norin define χ∗(M) to be the minimum integer k for which there exists
a degree-k polynomial p ∈ F2[x1, · · · , xn] with p(0) = 1 such that p(x) = 0 for all x ∈ E.
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First, we claim that χ∗(M) ≤ χ(M) for any matroid M = (E,G). Let k = χ(M). By
Lemma 1.5.10 there exist k linear polynomials p1, . . . , pk ∈ F2[x1, · · · , xn], with pi(0) = 0
for all i, such that if x ∈ E, then there exists some j for which pj(x) = 1. Therefore, the

degree-k polynomial p =
∏k

i=1(pi + 1) certifies that χ∗(M) ≤ k = χ(M). In light of this
relationship, Nelson and Norin conjecture the following.

Conjecture 1.5.11 (Nelson, Norin). For any s, t ≥ 1, there exists a constant c such that
if M is an It-free matroid with ω(M) < s, then χ∗(M) ≤ c.

For (I3, F7)-free matroids, by Theorem 1.5.9, the only obstruction to bounding χ is
the even-plane matroids. But, as a consequence of a structural description of even-plane
matroids given in [46], it can then be shown that all even-plane matroids have χ∗ at most
2. In fact, due to Nelson (via personal communication), more can be said. It can be shown
that the even-plane matroids are precisely the solutions to the equations p(x) = 0 where
p ∈ F2[x1, · · · , xn] is quadratic with p(0) = 1.

Theorem 1.5.12 (Nelson). Let M = (E,G) be an n-dimensional matroid. Then M ∈ E3
if and only if E = {x ∈ G | p(x) = 0} for some quadratic polynomial p ∈ F2[x1, · · · , xn]
for which p(0) = 1.

1.5.5 Thesis Structure

This thesis contains four main contributions to the theory of induced submatroids.

The first result is a full structure theorem for claw-free matroids. This result is analo-
gous to the structure theorem for claw-free graphs by Chudnovsky and Seymour [13]. We
will mention some corollaries as a consequence of this structure theorem, which provide
interesting conjectures for future study as well.

The second result is a full structure theorem for I4-free, triangle-free matroids. As a
corollary, we prove Conjecture 1.5.8 when s = 4, which is the first interesting case of this
conjecture.

Our third result deals with a certain weakening of Conjecture 1.5.8. The proof will rely
on results from additive combinatorics. Part of the motivation for studying such a weak-
ening is to explore the use of additive combinatorics in the theory of induced submatroids.

While Conjecture 1.5.8 remains out of reach when s > 4, we can also consider a related
extremal question. Our final result is an extremal result for I5-free triangle-free matroids,
in which we determine the smallest matroids that are I5-free and triangle-free.
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Chapter 2

Preliminaries

In this chapter, we collect some facts that will be used repeatedly in this thesis. In what
follows, given a vector space V , we extend the sum operation +: V 2 → V to sets, writing
X + Y for {x+ y : x ∈ X, y ∈ Y } and x+ Y for {x}+ Y . Also recall that, given a flat F
of a projective geometry G ∼= PG(n− 1, 2), [F ] is the set F ∪ {0}.

2.1 Cosets

Given a projective geometry G, a coset of a flat F ⊆ G is any proper translate of the
subspace [F ] of [G], i.e. a set of the form x + [F ] for some x ∈ G\F . The set G\F has a
partition into cosets of F . We do not consider the set F itself a coset, which is nonstandard
in group theory. We will often use the term translate when we wish to include F itself in
the definition.

Cosets are useful to us because we will encounter many scenarios in which we understand
only a small part of a given matroid M = (E,G), say on a flat F , and wish to explore the
how the rest of the matroid is influenced by the existence of such an induced restriction
M |F . In fact, many of our proofs come down to picking the right restriction M |F so that
the structure of M on the cosets of F , as well as the interactions between the cosets, are
highly restricted.

Now, we state and prove a lemma that gives a global structure in a matroid for which
certain types of triangles are forbidden. This is a particularly important result in the proof
of the structure theorem for claw-free matroids.
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Lemma 2.1.1 (Coset Lemma). Let (P,Q,R) be a partition of a projective geometry G for
which no triangle T of G satisfies |T ∩ P | ≥ 1 and |T ∩R| = 1. Then

• cl(P ) ⊆ P ∪Q, and

• All cosets of cl(P ) in G are contained in Q or R.

Furthermore, if (R1, R2) is a partition of R and G has no triangle that intersects P , R1

and R2, then all cosets of cl(P ) in G are contained in Q, R1 or R2.

Proof. For all X ⊆ [G] and k ≥ 0, let kX = {x1 + · · · + xk | x1, . . . , xk ∈ X}. Note
that [cl(X)] = ∪k≥1(kX). Let P ′ = P ∪ {0}. The triangle condition given implies that
P ′+ (P ′∪Q) ⊆ P ′∪Q. An easy inductive argument gives that kP ′ ⊆ P ′∪Q for all k ≥ 1;
thus [cl(P )] = ∪k≥1(kP ′) ⊆ P ′ ∪Q and so cl(P ) ⊆ P ∪Q as required.

Let A be a coset of cl(P ); note that A ⊆ G\ cl(P ) ⊆ Q ∪ R. If A contains a vector
w ∈ Q, then a similar inductive argument gives that w + kP ′ ⊆ P ′ ∪ Q for all k ≥ 0 and
so A = [cl(P )] + w = ∪k≥0(w + kP ′) ⊆ Q. Otherwise A ⊆ R, as required.

Finally, if (R1, R2) is a partition of R as in the hypothesis, then for each coset A ⊆ R
of cl(P ), we have (A∩R1) + P ′ ⊆ A∩ (G\R2) = A∩R1. If A contains some u ∈ R1, then
induction gives u + kP ′ ⊆ R1 for all k ≥ 0; it follows that A = ∪k≥0(u + kP ′) ⊆ R1. So
each coset of cl(P ) that is contained in R is contained in either R1 or R2, as required.

2.1.1 Mixed Sets

A set Y ⊆ G is mixed with respect to a matroid M = (E,G) if Y intersects both E
and G\E. Otherwise it is unmixed. If Y intersects E in at least one element, then it is
intersecting. While these notions are defined for general sets Y , Y will typically be a coset
of a flat in this thesis.

2.2 Critical Number and Circuits

Recall that given a matroid M = (E,G), ω(M) is the dimension of a largest projective
geometry contained in M . The critical number of M is the minimum nonnegative integer
c for which G has a (dim(M)− c)-dimensional flat disjoint from E and is denoted χ(M).
By using the notion of matroid complements, we see that χ(M) = dim(M)− ω(M c). It is
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also possible to show that the critical number equals the least number of affine geometries
that are required to cover E.

We note that the critical number does not increase under taking restrictions.

Lemma 2.2.1. If M1 = (E1, G1) and M2 = (E2, G2) are matroids where G2 ⊆ G1 and
E2 ⊆ G2 ∩ E1, then χ(M2) ≤ χ(M1).

Proof. Let U ⊆ G1 be a flat for which U ∩E1 = ∅ and χ(M1) = dim(G1)− dim(U). Note
that dim(U ∩G2) ≥ dim(U) + dim(G2)−dim(G1). Note that (G2∩U)∩E2 ⊆ U ∩E1 = ∅.
Therefore, χ(M2) ≤ dim(G2)− dim(G2 ∩ U) ≤ dim(G1)− dim(U) = χ(M1).

Given a matroid M = (E,G), let F be a flat for which F ∩ E = ∅ and χ(M) =
dim(G) − dim(F ), and let F ′ be a flat for which F ′ ⊆ E and dim(F ′) = ω(M). Since
F ∩F ′ = ∅, it follows that dim(F )+dim(F ′) ≤ dim(G), which implies that ω(M) ≤ χ(M).
The other direction is not necessarily true. As with graphs, a class M of matroids is χ-
bounded by a function f if χ(M) ≤ f(ω(M)) for all M ∈ M, or simply χ-bounded if such
an f exists.

Any matroid M = (E,G) for which χ(M) = 1 is called affine. These are the non-
empty matroids for which we can find a hyperplane H for which E ∩ H = ∅. There is
a classical characterisation of affine matroids that is analogous to the characterisation of
bipartite graphs in terms of odd cycles. For k ≥ 3, recall that Ck is the full-rank, (k − 1)-
dimensional matroid with k elements that add to zero. When k is odd, Ck is an odd circuit.
Note that odd circuits have critical number exactly 2.

Theorem 2.2.2 (Folklore). A non-empty matroid M = (E,G) is affine if and only if it
has no induced odd circuits.

Proof. We may assume that M is full-rank. The forward direction follows by the observa-
tion that the critical number does not increase under taking induced restrictions by Lemma
2.2.1 and odd circuits have critical number 2.

Conversely, note that if M contains no odd circuit (as a restriction), then M is affine;
we may pick a basis B of E, then if we let H be the set of elements of G that are expressed
as the sum of an even number of elements of B, then H is a hyperplane and H ∩ E = ∅,
certifying that M is affine. Hence it suffices to show that M has no odd circuit restriction.
For a contradiction, suppose not, and let X = {x1, . . . , xk} be a shortest odd circuit
contained in M . Since M has no induced odd circuit restriction, and by the minimality
of k, it follows that there exist l elements, l odd and 3 ≤ l < k, y1, . . . , yl ∈ {x1, . . . , xk}
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for which y1 + · · · + yl ∈ E; otherwise M | cl(X) is an induced odd circuit. But then
(X\{y1, . . . , yl}) ∪ {y1 + · · · + yl} is a shorter odd circuit restriction contained in M ,
contradicting the minimality of k.

Lastly, we make the following easy observation.

Lemma 2.2.3. Given t, k ≥ 1, It is an induced restriction of Ck if and only if k ≥ t+ 2.

In later chapters, we will consider triangle-free matroids that are either I4-free or I5-
free. Combined with Lemma 2.2.2, Lemma 2.2.3 implies that, for t = 4, 5, It-free, triangle-
free matroids are affine if and only if they contain no induced C5-restriction. Because
of this reason, the matroid C5 will play an important role in this thesis. Note that, if
M = (E,G) ∼= C5, then any element x ∈ G\E can be written as x = y + z for unique
y, z ∈ E. This in particular implies that C5 is a maximally triangle-free 4-dimensional
matroid.

2.3 Direct Sums

2.3.1 Direct Sums of Projective Geometries

For disjoint projective geometries G1 and G2, we write G1⊕G2 for the projective geometry
([G1] ⊕ [G2])\{0} where the ‘⊕’ in the second expression denotes the vector space direct
sum. For disjoint projective geometries G1, G2, and G3, because G1 ⊕ (G2 ⊕ G3) and
(G1 ⊕ G2) ⊕ G3 correspond in a natural way, we omit the brackets and informally write
G1 ⊕G2 ⊕G3 to refer to these projective geometries. We use additive notation to denote
the elements of G1 ⊕G2; every element in G1 ⊕G2 is uniquely expressed as x1 + x2 where
xi ∈ [Gi] for i = 1, 2. W can also think of G1 and G2 as flats of G1⊕G2. The ⊕ operation
forms the basis of the operations that appear in this thesis; we will often form a new
matroid from two existing matroids M1 = (E1, G1) and M2 = (E2, G2) and the ambient
set of the resulting matroid will be G1 ⊕G2.

Note that if G1 and G2 are disjoint flats of a projective geometry G whose union spans
G, then there is a unique linear bijection ψ from [G1 ⊕G2] to [G] that fixes G1 and G2

point-wise; we call this the canonical isomorphism from [G1 ⊕G2] to [G]. We state this
fact as a lemma for future reference.

Lemma 2.3.1. If G1 and G2 are disjoint flats of a projective geometry G for which cl(G1∪
G2) = G, then there exists a unique linear bijection ψ : [G1 ⊕G2] 7→ [G] that fixes G1 and
G2 point-wise.
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The canonical isomorphism ψ : [G1 ⊕G2] 7→ [G] is more or less the identity map
because of the additive notation we use to denote the elements in both of the projective
geometries G1 ⊕ G2 and G. More specifically, we have that ψ(x1 + x2) = x1 + x2 for any
element x1 + x2 ∈ G1 ⊕ G2, although the element x1 + x2 on the right hand side of the
previous equation belongs to a different projective geometry, which is G.

Often, we wish to describe the structure of a given matroid M in terms of various
operations. We wish to say that a given matroid M is ‘constructed’ using some operation
from submatroids, say M |G1 and M |G2, where G1 and G2 are disjoint flats of G whose
union spans G. However, the operation, with input M |G1 and M |G2, will produce a
matroid with ambient set G1 ⊕G2, which does not formally equal G. Hence, the resulting
matroid can only be isomorphic to the target matroid M . If they are isomorphic, then we
want such a matroid isomorphism to be captured in a canonical fashion, meaning that the
flats G1 and G2 in the ambient set G1 ⊕G2 should map naturally to G1 and G2 in G.

Below we describe direct sums of matroids as a trivial example to illustrate this notion
of construction; other less trivial operations in this thesis will follow a similar template in
how they are used to describe the structure of a given matroid.

2.3.2 Direct Sums of Matroids

Given two matroids M1 = (E1, G1) and M2 = (E2, G2), we define M1 ⊕ M2 to be the
matroid (E1 ∪ E2, G1 ⊕ G2). Now, given a matroid M = (E,G) and two disjoint flats
G1 and G2 for which cl(G1 ∪ G2) = G, we say that M is the direct sum of M |G1 and
M |G2 if the canonical isomorphism ψ from [G1 ⊕G2] to [G] is a matroid isomorphism
from M |G1 ⊕M |G2 to M . Note that if M is the direct sum of M |G1 and M |G2, then in
particular M ∼= (M |G1)⊕ (M |G2).

Note that our abuse of notation regarding projective geometries, in which we refer to
matroids of the form (G,G), whereG is a projective geometry, also as projective geometries,
is slightly inconvenient; given a projective geometry Gi, and the matroid Mi = (Gi, Gi)
for i = 1, 2, the matroid M1 ⊕M2 is different from the matroid we obtain by treating the
projective geometry G1 ⊕ G2 as a matroid. In such cases, we will explicitly state which
matroid we are referring to.

Given these definitions, we have the following; it allows us to recognise when a matroid
M is the direct sum of M |G1 and M |G2.

Lemma 2.3.2. Let M = (E,G) be a matroid, and let G1, G2 ⊆ G be disjoint flats for
which cl(G1 ∪G2) = G. Then the following are equivalent.

23



M1

M2 M1 ⊗M2

Figure 2.1: The matroid M1 ⊗M2. Solid dots denote matroid elements and empty dots
denote nonelements.

1. M is the direct sum of M |G1 and M |G2.

2. E ⊆ G1 ∪G2.

Proof. Let ψ be the canonical isomorphism from [G1 ⊕G2] to [G]. It follows that ψ((E ∩
G1)∪ (E∩G2)) = (E∩G1)∪ (E∩G2) = E∩ (G1∪G2). Hence ψ((E∩G1)∪ (E∩G2)) = E
if and only if E ⊆ G1 ∪G2.

2.4 Lift-joins

Given two matroids M1 = (E1, G1) and M2 = (E2, G2), we define the matroid M1⊗M2 as

M1 ⊗M2 = (E1 ∪ (E2 + [G1]), G1 ⊕G2),

where we see G1 and G2 as subsets of G1⊕G2. See Figure 2.1. Note thatMi
∼= (M1⊗M2)|Gi

for each i ∈ {1, 2}. The ⊗ operation is easily seen to be noncommutative, but as we will
see later, it is associative. The ⊗ operation is, in some sense, analogous to the substitution
operation in graph theory.

The ⊗ operation plays a crucial role in the next chapter, which is devoted to the
structure of claw-free matroids. Moreover, certain special cases of this operation, most
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notably when M1 is a 1-dimensional empty matroid, will appear frequently in this thesis.
We will return to this case later.

Given disjoint flats F, J ⊆ G for which cl(F ∪ J) = G, we say that M = (E,G) is the
lift-join of M |F and M |J if the canonical isomorphism ψ from [F ⊕ J ] to [G] is a matroid
isomorphism from M |F ⊗M |J to M . Note that if M is the lift-join of M |F and M |J ,
then in particular M ∼= (M |F )⊗ (M |J).

The following lemma provides a way to recognise when a matroid is the lift-join of its
submatroids in terms of the cosets of a proper flat. Recall that a set Y ⊆ G is mixed with
respect to a matroid M = (E,G) if Y intersects both E and G\E.

Lemma 2.4.1. Let M = (E,G) be a matroid and F be a flat of G. The following are
equivalent.

1. F has no mixed cosets with respect to M .

2. E = (E ∩F )∪ ((E ∩ J) + [F ]) for every maximal flat J of G that is disjoint from F .

3. M is the lift-join of M |F and M |J for some maximal flat J of G that is disjoint
from F .

4. M is the lift-join of M |F and M |J for every maximal flat J of G that is disjoint
from F .

Proof. Suppose that (1) holds. Let J be a maximal flat of G that is disjoint from F ; note
that each coset of F intersects J in exactly one element. For each x ∈ J , the fact that the
coset [F ]+x is unmixed implies that ([F ]+x) ⊆ E if and only if x ∈ E, and ([F ]+x)∩E = ∅
if and only if x /∈ E. Therefore E = (E∩F )∪⋃x∈E∩J([F ]+x) = (E∩F )∪ ((E∩J)+ [F ]).
So (2) holds.

Let ψ be the canonical isomorphism from [F ⊕ J ] to [G]. Then ψ(E(M |F ⊗M |J)) =
ψ((E ∩ F ) ∪ ((E ∩ J) + [F ])) = (E ∩ F ) ∪ ((E ∩ J) + [F ]). Therefore ψ is a matroid
isomorphism if and only if E = (E ∩ F ) ∪ ((E ∩ J) + [F ]) (in the projective geometry G).
So M is the lift-join of M |F and M |J if and only if E = (E ∩ F ) ∪ ((E ∩ J) + [F ]). Thus
(2) and (4) are equivalent.

Clearly (4) implies (3); Suppose that (3) holds, so M is the lift-join of M |F and M |J
for some flat J of G that is disjoint from F . Thus from the same argument from the above
it follows that E = (E ∩ F ) ∪ ((E ∩ J) + [F ]). Let x, y ∈ G\F , distinct, belong to the
same coset of F in G, so x+ y ∈ F (note that [F ] is not considered a coset). If x ∈ E then
x ∈ (E ∩ J) + [F ] and so y ∈ (E ∩ J) + [F ] ⊆ E. Therefore x ∈ E implies that y ∈ E; it
follows that F has no mixed cosets. So (3) implies (1).
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This lemma motivates a definition. If M = (E,G) is a matroid and F is a nonempty
proper flat of G that has no mixed cosets with respect to M , then we call F a decomposer
of M , and say that F decomposes M . The above lemma shows that M is the lift-join of
two submatroids if and only if M has a decomposer. Note that if F decomposes M and F ′

decomposes M |F , then F ′ also decomposes M , since each coset of F partitions into cosets
of F ′.

Given a matroid M = (E,G), the existence of a decomposer F ⊆ G implies the
following about the induced restrictions of the form M |K where K ∩ F = ∅.

Lemma 2.4.2. If F is a decomposer of a matroid M = (E,G), and K,K ′ are flats of G
disjoint from F for which cl(F ∪K) = cl(F ∪K ′), then there is an isomorphism ψ from
M |K to M |K ′ for which each x ∈ K satisfies x+ ψ(x) ∈ [F ].

Proof. Since K and K ′ are each disjoint from F while cl(F ∪ K) = cl(F ∪ K ′), we have
dim(K) = dim(K ′), and each coset of F in cl(F ∪K) meets K and K ′ in a single element
each. For each x ∈ K, let ψ(x) be the unique element of ([F ] + x) ∩ K ′. Since F is
a decomposer we have ψ(x) ∈ E if and only if x ∈ E. For each x′ ∈ K ′ the coset
[F ] + x′ intersects K in some element x for which x′ = ψ(x), so ψ is surjective and thus
bijective. Finally, for distinct x, y ∈ K the elements ψ(x) + ψ(y) and ψ(x+ y) are both in
([F ] + (x+ y)) ∩K ′, so are equal. Thus ψ is an isomorphism.

We now prove basic properties of the ⊗ operation.

Lemma 2.4.3. If M = M1 ⊗M2, where Mi = (Ei, Gi) then

• M c = M c
1 ⊗M c

2 ,

• M | cl(F1 ∪ F2) = (M1|F1)⊗ (M2|F2) for all flats F1, F2 of G1, G2,

• ω(M) = ω(M1) + ω(M2), and

• χ(M) = χ(M1) + χ(M2).

Proof. Let M = (E,G), where G = G1 ⊕ G2 and E = E1 ∪ ([G1] + E2). To see the first
part, note that

G\E = G\(E1 ∪ ([G1] + E2))

= (G1\E1) ∪ ([G1] +G2)\([G1] + E2)

= (G1\E1) ∪ ([G1] + (G2\E2)),
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where we use the fact that every z ∈ [G1]+G2 is uniquely expressible in the form z = x+y
for x ∈ [G1] and y ∈ G2. This gives M c = M c

1 ⊗M c
2 .

For the second part, let F = cl (F1 ∪ F2). We have

E ∩ F = ((E1 ∪ E2) ∩ F ) ∪ ((F1 + (E2 ∩ F2)) ∩ F )

= (E1 ∩ F1) ∪ (E2 ∩ F2) ∪ (F1 + (E2 ∩ F2))

= (E1 ∩ F1) ∪ ([F1] + (E2 ∩ F2)),

from which it follows that M |F = (M1|F1)⊗ (M2|F2).

For each i ∈ {1, 2} let ωi = ω(Mi) and let Ki ⊆ Ei be a flat of dimension ωi. Then
K1 ∪ ([K1] +K2) = cl(K1 ∪K2) is a flat of G contained in E by the previous part, giving
ω(M) ≥ ω1 + ω2.

Now let F be a flat of G for which F ⊆ E. Let K be a maximal flat of F that is disjoint
from G1; note that dim(F ) = dim(K) + dim(F ∩G1) ≤ dim(K) +ω1. Since G = G1⊕G2,
the flat cl(G1 ∪ K) intersects G2 in a flat K ′ for which cl(G1 ∪ K) = cl(G1 ∪ K ′). By
Lemma 2.4.2 we have M |K ∼= M |K ′ = M2|K ′, and since K ⊆ E this implies that K ′ ⊆ E2

and so dim(K ′) ≤ ω2. Thus dim(F ) ≤ ω1 + ω2, and the third part follows.

Finally, let n = dim(G) and ni = dim(Gi) for each i. We have

χ(M) = n− ω(M c) = (n1 + n2)− ω(M c
1)− ω(M c

2) = χ(M1) + χ(M2)

giving the last part.

As previously remarked, the projective geometries (G1⊕G2)⊕G3 and G1⊕ (G2⊕G3)
correspond in a natural way, and therefore we remove the parentheses and informally
think of them as being the same. The following lemma shows that we may take the same
convention with the ⊗ operation.

Lemma 2.4.4. ⊗ is associative.

Proof. Let Mi = (Ei, Gi) for i ∈ {1, 2, 3} with the Gi disjoint. Both the matroids (M1 ⊗
M2) ⊗M3 and M1 ⊗ (M2 ⊗M3) have ambient space G = G1 ⊕ G2 ⊕ G3. The first has
ground set

(E1 ∪ (E2 + [G1])) ∪ (E3 + [G1 ⊕G2]) = E1 ∪ (E2 + [G1]) ∪ (E3 + [G1] + [G2]).

The second has ground set

E1 ∪ ((E2 ∪ (E3 + [G2])) + [G1]) = E1 ∪ (E2 + [G1]) ∪ (E3 + [G1] + [G2]),

giving the lemma.
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Lemma 2.4.5. Let N be a full-rank matroid of dimension at least 3, containing no four
distinct elements that sum to zero. If M1 and M2 are N-free matroids, then so is M1⊗M2.

Proof. Let Mi = (Ei, Gi) for i ∈ {1, 2} and let M = M1 ⊗M2 = (E,G). By definition, no
coset of G1 is mixed with respect to M . Let F be a flat of G for which M |F ∼= N . Since
M1 is N -free, we have F 6⊆ G1; since cl(E ∩ F ) has dimension dim(F ) > dim(F ∩G1), we
have (E ∩ F )\G1 6= ∅; let x ∈ (E ∩ F )\G1.

If dim(F ∩G1) ≥ 2 then let v, w ∈ F ∩G1 be distinct. Since [G1] + x is unmixed and
intersects E, we have

E ⊇ [G1] + x ⊇ {x, x+ w, x+ v, x+ v + w}.

These four distinct elements all belong to E ∩F ; this is a contradiction, since they sum to
zero. Thus dim(F ∩G1) ≤ 1.

If |F ∩ G1| = 1 then let w be its element; since dim(E ∩ F ) ≥ 3 there is some y ∈
(F ∩ E)\ cl({x,w}). Now y ∈ E\G1 and so [G1] + y ⊆ E; it follows that {x, x + w} ⊆ E
and {y, y + w} ⊆ E. But x, x+ w, y, y + w are distinct elements of F ∩ E with sum zero,
again a contradiction.

If F ∩G1 = ∅ then, for each element z of F , the coset [G1] + z intersects G2 in exactly
one element z′ and moreover, the map ψ : z 7→ z′ is a linear injection from F to G2. Since
G1 has no mixed cosets, we have ψ(z) ∈ E if and only if z ∈ E, and so M |F and M |ψ(F )
are isomorphic. The latter is an induced restriction of the N -free matroid M |G2, giving a
contradiction to M |F ∼= N .

For t ≥ 3, the matroid It satisfies the hypotheses of the above lemma. This gives the
following.

Corollary 2.4.6. If t ≥ 3 is an integer then the class of It-free matroids is closed under
the ⊗ operation.

2.5 Doublings

The matroids of the form O1 ⊗M where O1 is an 1-dimensional empty matroid play a
special role in this thesis. Given a matroid M , we write D(M) for the matroid O1 ⊗M
where O1 is some fixed 1-dimensional empty matroid.
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We think of the D notation as an operation acting on the matroid M . This operation
is, in some sense, analogous to cloning a vertex in a graph, as it extends the matroid by
creating a copy of itself; it can also be seen as a special case of the ⊗ operation in the same
way that vertex cloning can be seen as a special case of substitution for graphs. For k ≥ 0,
let Dk(M) denote the matroid obtained from M by applying the operation D k times;
note that if M1

∼= M2, then Dk(M1) ∼= Dk(M2) for every k ≥ 0. Equivalently, Dk(M) is
the matroid Ok ⊗M where Ok is some fixed k-dimensional empty matroid.

The operation D satisfies various nice properties, as discussed in [46].

Lemma 2.5.1 ([46]). Let M be a matroid. Then the following hold.

• χ(M) = χ(D(M)), and

• if N is a matroid such that N ∼= D(N ′) for no matroid N ′, and M contains no
induced N-restriction, then neither does D(M).

The first statement also follows from Lemma 2.4.3 by setting M1 to be the 1-dimensional
empty matroid O1. Also, note that if a matroid N satisfies N ∼= D(N ′) for some matroid
N ′, then |N | is even. Hence, the above lemma always applies when N has an odd-sized
ground set.

The next lemma allows us to recognise when a matroid M is isomorphic to Dk(M ′) for
some matroid M ′.

Lemma 2.5.2. Let M = (E,G) and M ′ = (E ′, G′) be matroids. Let n be the dimension
of M . For all k ≥ 0, the following are equivalent.

1. M ∼= Dk(M ′).

2. G has a k-dimensional flat F ⊆ G\E and an (n − k)-dimensional flat F ′ ⊆ (G\F )
such that M |F ′ ∼= M ′ and E = [F ] + (E ∩ F ′).

Proof. For the forward direction, write Ok = (∅, Gk) where Gk is a k-dimensional projec-
tive geometry. Let φ : [G] 7→ [Gk ⊕G′] be a linear bijection for which φ(E) = E ′ + [Gk].
Let F = φ−1(Gk) and F ′ = φ−1(G′). Then F ∩ E = ∅ and F ∩ F ′ = ∅ in the pro-
jective geometry G. Since (Ok ⊗ M ′)|G′ ∼= M ′, it follows that M |F ′ ∼= M ′. Finally,
E = φ−1(E ′ + [Gk]) = E ∩ φ−1(G′) + [F ] = E ∩ F ′ + [F ].

Conversely, let φ : [F ′] 7→ [G′] be a linear bijection for which φ(E∩F ′) = E ′. We extend
the map by defining φ : [F ] 7→ [Gk] to be any linear bijection, and extending φ linearly.
Then φ(E) = φ([F ] + (E ∩ F ′)) = φ([F ]) + φ(E ∩ F ′) = [Gk] + E ′ = E(Dk(M ′)).
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Given a matroid M = (E,G) and disjoint flats F, J ⊆ G for which cl(F ∪ J) = G, we
say that M is the doubling of M |J by F if E∩F = ∅ and the canonical isomorphism from
[F ⊕ J ] to [G] is a matroid isomorphism from M |F ⊗M |J to G. Equivalently, M is the
doubling of M |J by F if and only if it is the lift-join of M |F and M |J and E ∩ F = ∅.

If M is the doubling of M |J by F for some flats F, J , then we sometimes omit the flat
F and say that M is the doubling of M |J or omit J and say that M is the doubling by F .
We also say that M is a doubling if such F and J exist.

Since doublings are a special case of lift-joins, we can recognise a doubling by checking
whether the cosets of a proper flat F are mixed or not. In the case of doublings, since there
is an extra requirement that F ∩ E = ∅, there are also other equivalent formulations.

Lemma 2.5.3. Let M = (E,G) be a matroid and let F ⊆ G be a flat. Then the following
are equivalent.

1. F has no mixed cosets with respect to M and E ∩ F = ∅.

2. F + E = E.

3. E = [F ] + (E ∩ J) for every maximal flat J disjoint from F .

4. M is the doubling of M |J by F for every maximal flat J that is disjoint from F .

Proof. Note that (1) (3) and (4) are equivalent by definition and Lemma 2.4.1.

If (2) holds, then E∩F = ∅. Moreover, if x ∈ E, then by assumption x+F ⊆ F +E =
E, so every coset of F is unmixed with respect to M . So (1) holds.

Suppose that (1) holds. If x ∈ E, then since E ∩ F = ∅, x /∈ F . This means that
x + F ⊆ E since no coset of F is mixed with respect to M , so x ⊆ F + E and therefore
E ⊆ F + E. But F + E = ∪x∈E(x+ F ) ⊆ E. So F + E = E so (2) follows.

When we apply the above lemma in this thesis, the flat F will typically be a 1-
dimensional flat {w}; in this case, we simply write w in place of {w}. By the above
lemma, M is a doubling if and only if there exists an element w ∈ G for which w+E = E.

30



2.6 Shorthand for Induced Restrictions

In many of our proofs, we will often obtain a contradiction by finding certain induced
restrictions, such as claws and triangles. Given matroids M = (E,G) and N , it is some-
times cumbersome to specify the correct flat F on which M |F ∼= N . Instead, for the
sake of brevity, when N is full-rank, we say that a set Z ⊆ E is an induced N-restriction
if M | cl(Z) is an induced N -restriction. This shorthand will not be used when N is not
full-rank; in such a case, we will fully specify the flat F on which M |F ∼= N .

Furthermore, we will also often simply assert that such a set Z is an induced N -
restriction without performing all necessary checks explicitly. For example, when N = In,
then in order to check that Z = {z1, z2, . . . , zn} ⊆ E is an induced In-restriction, one needs
to check that

∑
i∈I zi /∈ E ∪ {0} for all I ⊆ {1, 2, . . . , n} and |I| > 1. Writing down these

checks explicitly is often cumbersome. Instead, we will provide enough information prior
to such a claim so that these checks can be performed easily.
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Chapter 3

Claw-free Matroids

This chapter is based on joint work with Peter Nelson [48].

3.1 Introduction

A seminal result in the theory of excluded subgraphs is Chudnovsky and Seymour’s classi-
fication of claw-free graphs [13]. Their classification of claw-free graphs is highly complex,
as it requires a series of papers with technically defined basic classes and sporadic examples
of claw-free graphs. Due to its complexity, we will not state their theorem in this thesis.

In this chapter, we consider and prove a classification of I3-free matroids. Recall that
the matroids It, being maximally acyclic, play the role of trees in our study of induced
restrictions. Our theorem can also be seen as a natural extension of Theorem 1.5.9, in
which we drop the F7-freeness condition. What we obtain is a structure theorem which
shows that claw-free matroids can all be constructed from matroids in one of three ‘basic
classes’ of claw-free matroids via a single ‘join’ operation that preserves the property of
being claw-free. The join operation is the ⊗ operation defined in the preceding chapter.
We now define these basic classes.

We say a matroid M = (E,G) is a PG-sum if E is the disjoint union of two (possibly
empty) flats of G. Recall from the previous chapter that we call a matroid M even-plane
if all of its 3-dimensional induced restrictions have even-sized ground sets. It is easy to see
that PG-sums and even-plane matroids are claw-free, and, since the complement of a claw
contains a triangle, that the complements of triangle-free matroids are claw-free. Recall
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from the previous chapter that given two matroids M1 = (E1, G1) and M2 = (E2, G2),
M1 ⊗M2 is the matroid (E,G), where G = G1 ⊕G2 and E = E1 ∪ (E2 + [G1]).

We showed in Lemma 2.4.4 that the ⊗ operation is associative and in Corollary 2.4.6
that it preserves the property of being claw-free. The main result of this chapter, stated
up to isomorphism, is the following.

Theorem 3.1.1. A matroid M is claw-free if and only if M can be obtained via the ⊗
operation from matroids that are either PG-sums, even-plane matroids, or the complements
of triangle-free matroids.

Notice that two of our basic classes are similar to natural classes of claw-free graphs;
PG-sums are analogous to the graphs G having a vertex v adjacent to every other vertex,
for which G− v is the union of two cliques, and the complements of triangle-free matroids
generalise the complements of triangle-free graphs, which are clearly claw-free. On the
other hand, the class of even-plane matroids does not enjoy such a direct graph-theoretic
analogue; this class becomes much more natural if one takes a more algebraic view and
considers them as the solutions of some quadratic equations, as in Theorem 1.5.12. This
algebraic perspective is not needed in the proof.

In the introduction, we discussed some matroidal analogues of graph-theoretic theorems
which, in many cases, had shorter proofs that their graph-theoretic counterparts. Our
structure theorem for claw-free matroids falls in this category. As we shall see, the proof
is by no means straightforward, yet when compared with Chudnovsky and Seymour’s
classification of claw-free graphs, Theorem 3.1.1 is much easier to state, and the proof is
certainly much shorter.

The proof of Theorem 3.1.1 will require some preliminaries before we can give the actual
proof. We begin by studying each component of Theorem 3.1.1 in detail.

3.2 Preliminaries

Lift-joins

Recall that, given two matroids M1 = (E1, G1) and M2 = (E2, G2), we define the matroid
M1 ⊗M2 as

M1 ⊗M2 = (E1 ∪ (E2 + [G1]), G1 ⊕G2).
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G
H

G
H

Figure 3.1: H is a hyperplane of G. In the first figure, E ⊆ H. In the second figure,
G\H ⊆ E. In both cases, H decomposes M = (E,G).

Theorem 3.1.1 claims that a matroid M is a claw-free matroid if and only if M ∼=
M1 ⊗ · · · ⊗Mk, where each Mi belongs to one of the basic classes of claw-free matroids.
The backward direction is easy; it amounts to checking that the matroids in the basis classes
are claw-free, and Corollary 2.4.6 implies the result. To prove the forward direction, we
will show that any given claw-free matroid M = (E,G) is either a PG-sum, an even-
plane matroid, the complement of a triangle-free matroid, or has a decomposer; if it has
a decomposer, then from Lemma 2.4.1, it will follow that M is the lift-join of M |F and
M |J . This means that if ψ is the canonical isomorphism from [F ⊕ J ] to [G], then ψ
is a matroid isomorphism from (M |F ) ⊗ (M |J) to M . This in particular implies that
M ∼= (M |F )⊗ (M |J), and Theorem 3.1.1 will follow by induction.

As an aside, note that, in concluding that M ∼= (M |F )⊗(M |J), we did not use the fact
that ψ is a canonical isomorphism; it is in fact possible to retain this information, and write
down a statement more precise than Theorem 3.1.1. We say that a matroid M = (E,G) is
the lift-join of M |F1, . . . ,M |Fk where F1, . . . , Fk are disjoint flats for which

∑k
i=1 dim(Fi) =

dim(G) and cl(∪ki=1Fi) = G if the canonical isomorphism from [F1 ⊕ · · · ⊕ Fk] to [G] is a
matroid isomorphism from (M |F1) ⊗ . . . ⊗ (M |Fk) to M . Then, our proof of Theorem
3.1.1 can easily be adjusted appropriately to show that a given matroid M = (E,G) is
claw-free if and only if there exist disjoint flats F1, . . . , Fk ⊆ G whose union spans G and∑k

i=1 dim(Fi) = dim(G) for which the canonical isomorphism from [F1 ⊕ · · · ⊕ Fk] to [G] is
a matroid isomorphism from (M |F1)⊗ · · · ⊗ (M |Fk) to M where each M |Fi is a PG-sum,
an even-plane matroid or the complement of a triangle-free matroid.

The bulk of our proof will be devoted to considering special decomposers. Since they are
important in our proof, it is worthwhile to spend some time understanding them explicitly.
Let M = (E,G). The first type of decomposer we will be particularly interested in is a
hyperplane decomposer. If H is a hyperplane of G, it is easy to see that H decomposes M
if and only if G\H (the only coset of H) is either contained in E or disjoint from E. In
the latter case we have cl(E) ⊆ H, so M is not full-rank; conversely, if M is not full-rank,
then any hyperplane containing cl(E) is a decomposer. See Figure 3.1.

Another type of decomposer we will be interested in is a one-element decomposer. Note
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a a

Figure 3.2: a is an element of G. In the first figure, a+ (E ∪{0}) = E ∪{0}. In the second
figure, a+ E = E. In both cases, {a} composes M = (E,G).

that if an element a of G satisfies a+ E = E, then a /∈ E and {a} is a decomposer of M .
If a satisfies a + (E ∪ {0}) = E ∪ {0}, then a ∈ E and {a} is a decomposer of M . It is
easy to see that {a} is a decomposer of M if and only if one of these two statements holds.
Note that if a+E = E, then we are simply saying that M is a doubling, so every matroid
that is a doubling has a decomposer. See Figure 3.2.

Three-dimensional matroids

In this chapter, we will often consider three-dimensional matroids. There are 10 three-
dimensional matroids, up to isomorphism, 6 of which are full-rank. Define M5,3 and M6,3

to be the unique three-dimensional matroids on 5 and 6 elements respectively. Then I3,
C4, I

c
3, M5,3, M6,3 and F7 provide a complete list of full-rank three-dimensional matroids.

The 4 rank-deficient three-dimensional matroids are F c
7 ,M

c
6,3,M

c
5,3 and Cc

4.

PG-sums

A matroid M = (E,G) is a PG-sum if E is the disjoint union of at most two flats of G.
We say that M is a strict PG-sum if M is full-rank and its ground set is the union of
exactly two disjoint nonempty flats F1, F2. If this is the case, then G\E = F1 +F2, and in
fact |F1 + F2| = |F1||F2|; i.e. every x ∈ G\E is uniquely expressible as x = x1 + x2 where
x1 ∈ F1 and x2 ∈ F2.

The next lemma, along with the easy observation that PG-sums are closed under taking
induced restrictions, shows that PG-sums are perfect.

Lemma 3.2.1. If M is a PG-sum then χ(M) = ω(M).

Proof. It suffices to consider the case where M = (E,G) is a strict PG-sum, since otherwise
either M is not full-rank and we can pass to the restriction (E, cl(E)), or E = G and
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the conclusion is obvious. Let F1, F2 be disjoint flats of G whose union is E, and let
ni = dim(Fi) and n = dim(M), so n = n1 + n2. Assume that n1 ≤ n2, so ω(M) = n2.

Let F ′1 ⊆ F2 be an n1-dimensional flat and let ψ be an isomorphism from M |F1 to
M |F ′1. Let K = {x+ ψ(x) : x ∈ F1}. Note that K ⊆ F1 + F2 = G\E. Since F1 and F ′1 are
flats, for distinct x, y ∈ K we have x+ y ∈ K. Finally, since |F1||F2| = |F1 + F2|, we have
|K| = |F1| so dim(K) = n1 = n − n2. It follows that χ(M) ≤ n2 = ω(M), and the result
follows.

It is easy to see that the PG-sums are claw-free. Given a PG-sum M = (E,G) where
E = F1∪F2 and F1 and F2 are flats of G for which F1∩F2 = ∅, if we take any three-element
subset I ⊆ E for which dim(cl(I)) = 3, there exists i ∈ {1, 2} for which |I ∩ Fi| ≥ 2. If
we let x, y ∈ I ∩ Fi, then x + y ∈ Fi ⊆ E as Fi is a flat. Hence M | cl(I) has at least
4 elements, so M is claw-free. We can in fact characterize this class by forbidding four
particular three-dimensional induced restrictions.

Lemma 3.2.2. M is a PG-sum if and only if it is (I3, C4,M5,3,M6,3)-free.

Proof. The forwards direction follows from the fact that the class of PG-sums is closed
under taking induced restrictions, and that the matroids I3, C4, M5,3 or M6,3 are not
PG-sums.

Conversely, suppose that M = (E,G) is (I3, C4,M5,3,M6,3)-free. Let F be a largest
flat of G that is contained in E. We may assume that 3 ≤ |E| < |G| and that F 6= E, as
otherwise M is a PG-sum.

Suppose first that |F | = 1. Let v1 ∈ F and v2, v3 ∈ E\F . By maximality, E contains
none of the elements v1 + v2, v1 + v3, v2 + v3. But then M | cl({v1, v2, v3}) is isomorphic to
either I3 or C4, a contradiction. So |F | ≥ 3. Let v1 ∈ E\F . Then for any v2 ∈ F , we must
have v1 + v2 /∈ E; otherwise, by maximality there exists v3 ∈ F such that v1 + v3 /∈ E,
but then M | cl({v1, v2, v3}) has either 5 or 6 elements, so is either an induced M5,3 or
M6,3-restriction. Now, let v1, v2 ∈ E\F be distinct. We claim that v1 + v2 ∈ E\F , which
will imply that E\F is a flat of G and hence that M is a PG-sum. Suppose not, and let
v3 ∈ F . Then M | cl({v1, v2, v3}) is isomorphic to either I3 or C4, a contradiction.

Even-plane matroids

In addition to the discussion on even-plane matroids in the previous chapter, we now give
extra properties of even-plane matroids that will be required for the proof of the structure
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theorem and related corollaries. The class of even-plane matroids was introduced in [46]
in which the authors studied the class of I3-free, F7-free matroids. For further discussions
about the even-plane matroids, see [46].

Recall that a matroid M = (E,G) is even-plane if |E ∩ P | is even for every plane P of
G, and we write E3 for the class of even-plane matroids. We saw before that the even-plane
matroids have arbitrarily large χ. The next result shows that the even-plane matroids are
just one even-plane matroid away from bounding χ for any even-plane matroid we choose
to exclude.

Theorem 3.2.3 ([46], Theorem 1.2). If M,N ∈ E3 and M has no induced N-restriction,
then χ(M) ≤ dim(N) + 4.

There is a way to describe even-plane matroids through doublings and what we refer to
as semidoublings. The treatment of semidoublings in this thesis is minimal; for a thorough
treatment, see [46].

Let M = (E,G) be a matroid, and let H ′ ⊆ H ⊆ G be nested hyperplanes and
a ∈ G\H. Then we say that M is the semidoubling of M |H by a with respect to H ′

if a ∈ G\E and E = (E ∩ H) ∪ (a + ((H\E)∆H ′)). This condition says that for each
x ∈ H, we have a + x ∈ E if and only if either x ∈ H ′ ∩ E or x ∈ (H\H ′)\E. Note that
M | cl(H ′ ∪ {a}) is simply the doubling of M |H ′.

The significance of semidoublings is that they preserve the property of being even-plane.

Theorem 3.2.4 ([46], Corollary 3.4). Let M = (E,G) be a matroid such that M |H ∈ E3
where H is a hyperplane of G. Then the following hold.

• If M is the doubling of M |H, then M ∈ E3
• If M is the semidoubling of M |H (with respect to some hyperplane H ′ ⊆ H and
a ∈ G\H), then M ∈ E3.

In fact, a lot more can be said. It is shown in [46] that all even-plane matroids arise via
a sequence of doublings and semidoublings of 2-dimensional matroids. This fact provides a
decomposition theorem that further justifies treating E3 as a basic class; however, we will
not need this fact in our proof. Finally, the following lemma is immediate.

Lemma 3.2.5. If M = (E,G) ∈ E3 and H is a hyperplane of G, then (E∆(G\H), G) ∈ E3.

Proof. Let P be a plane of G. Note that |P ∩ (G\H)| is either 0 or 4, and that |E ∩ P | is
even. Working modulo 2, we have |(E∆(G\H))∩P | ≡ |E∩ (P ∩H)|+ |(P ∩ (G\H))\E| ≡
|E ∩ (P ∩H)|+ |P ∩ (G\H) ∩ E| ≡ |E ∩ P | ≡ 0, as required.
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Complements of triangle-free matroids

A matroid M = (E,G) is the complement of a triangle-free matroid if M c is triangle-
free. Equivalently, M = (E,G) is the complement of a triangle-free matroid if, for any
two distinct elements x, y ∈ G\E, x + y ∈ E. It is easy to see that the complements of
triangle-free matroids are claw-free, since the matroid Ic3 contains a triangle.

The class of triangle-free matroids includes the graphic matroids of triangle-free graphs.
It is known from [61] that as long as two graphs are nonisomorphic and 3-connected, we
obtain nonisomorphic graphic matroids arising from these graphs.

Theorem 3.2.6 ([61]). If G1 and G2 are 3-connected graphs, then M(G1) ∼= M(G2) if and
only if G1

∼= G2.

This means that the class of triangle-free matroids is at least as complicated as the
class of 3-connected triangle-free graphs. As triangle-free graphs themselves are known to
be a difficult class to describe, we treat the class of triangle-free matroids (or, in our case,
the class of the complements of triangle-free matroids) as a basic class.

3.3 Large Decomposers

We have the necessary preliminaries to now prove Theorem 3.1.1. Before proceeding,
however, we restate Theorem 3.1.1 in terms that will be more convenient. The equivalence
follows from Corollary 2.4.6 and Lemma 2.4.1, as well as the obvious fact that the three
basic classes are claw-free.

Theorem 3.3.1. If M = (E,G) is a claw-free matroid, then either

• M is even-plane,

• M c is triangle-free,

• M is a strict PG-sum, or

• M has a decomposer.

We will prove Theorem 3.3.1 by induction on the dimension of M , and we are thus
interested in when a decomposer F of some induced restriction M |H of M extends to a
decomposer of M = (E,G) itself. This section and the next address a few special cases
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of this that turn out to be all we need: namely, where H is a hyperplane of G, and the
decomposer F is minimal and has dimension either 1 or dim(H)− 1.

In many lemmas to come, we will consider a partition (X0, X1) of a hyperplane H
defined by X1 = (a + E) ∩H and X0 = H\X1 for some element a of G\H. Hence, if we
pick x ∈ H, then x ∈ X1 if and only if x+ a ∈ E.

We will first consider the case in which some hyperplane H has a minimal decomposer
F which is itself a hyperplane of H. This implies that the coset H\F is either contained
in E or disjoint from E; the next two lemmas deal with these subcases.

Lemma 3.3.2. Let M = (E,G) be a claw-free matroid, let H be a hyperplane of G and
let F be a hyperplane of H. If H\F ⊆ E and M |F has no decomposer, then either

• M c is triangle-free, or

• M has a decomposer F ′ containing F .

Proof. Let A = H\F . Suppose for a contradiction that M c has a triangle, and that no flat
F ′ containing F is a decomposer of M . Thus F does not decompose M , so F has a mixed
coset B. Fix an element a ∈ B\E, and let X1 = (a+ E) ∩H and X0 = H\X1. Note that
X1 ∩ F 6= ∅ since B is mixed. Note that F has three cosets, namely B, A and A+ a

We may assume that A∩X0 6= ∅, as otherwise A+a ⊆ E, which implies that the coset
G\(F ∪ B) = A ∪ (A + a) of F ∪ B is contained in E, and so F ∪ B decomposes M . Let
v ∈ A ∩X0, so a+ v /∈ E.

3.3.2.1. Let T ⊆ H be a triangle. Then

• if T ⊆ F and |T ∩X0| = 2 then T ⊆ E, and

• T does not intersect all three of X0\E,X1\E and X1 ∩ E.

Subproof: For the first part, let T = {v1, v2, v3} with T ∩X0 = {v1, v2}. Note that {v} ∪
(T + v) ⊆ A ⊆ E. We now perform a case analysis.

Suppose first that v1 /∈ E. If v + v1 ∈ X1, then {v + v1, a + v + v1, v} is a claw, and
if v + v1 ∈ X0, then {v + v2, v + v3, a + v3} is a claw; either case gives a contradiction, so
v1 ∈ E. Symmetrically we must also have v2 ∈ E.

Suppose now that v3 /∈ E. If v + v3 ∈ X0 then {v, v + v3, a + v3} is a claw, and if
v+ v3 ∈ X1 {v+ v1, v+ v2, a+ v+ v3} is a claw. Thus v3 ∈ E. So T ⊆ E which proves the
first part.
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For the second part, let T = {v1, v2, v3} ⊆ H be a triangle for which v1 ∈ X0\E,
v2 ∈ X1\E and v3 ∈ X1 ∩ E. Then {a + v2, a + v3, v3} is claw; thus, there are no such
triangles. �

We may now apply Lemma 2.1.1 to conclude the following. The proof is simply stating
a suitable partition of the flat F , and checking that the conditions for Lemma 2.1.1 are
met.

3.3.2.2. F ∩X0 ⊆ E.

Subproof: Suppose not, so that (F\E)∩X0 6= ∅. Let (P,Q,R) = ((F\E)∩X0, (F ∩E)∩
X0, F ∩X1). The choice of a implies that R 6= ∅. This is a partition of F , and by the first
part of the previous claim, no triangle T of F satisfies |T ∩ P | ≥ 1 and |T ∩ R| = 1, as
such a triangle contains exactly two elements of X0 but is not contained in E. Moreover,
if (R1, R2) = ((F\E) ∩ X1, (F ∩ E) ∩ X1), then no triangle of F intersects P,R1 and R2

by the second part of the claim.

Thus, we can apply Lemma 2.1.1 to the flat F with the given partition, so the flat
F ′ = cl(P ) satisfies F ′ ⊆ P ∪ Q ⊆ X0, and every coset of F ′ in F is contained in either
Q,R1 or R2; none of these sets is mixed with respect to M , so it follows that either F ′ = ∅,
F ′ = F , or F ′ is a decomposer of M |F . The last case contradicts the hypotheses (recall
that we are assuming that M |F has no decomposer). The fact that R is nonempty and
F ′ ⊆ P ∪ Q = F\R implies that F ′ 6= F , and so F ′ = ∅. This yields P = ∅, giving the
claim. �

This claim, together with the fact that H\F ⊆ E, implies that each triangle of G
containing a must intersect E (note that triangles containing a must intersect A or F ).
Recall that by assumption, M c has a triangle T0. As just observed, we have a /∈ T0. For
each x ∈ T0 we therefore have x + a ∈ E, as otherwise {a, x + a, x} does not intersect E.
It follows that T0 + a ⊆ E, so E ∩ cl(T0 ∪ {a}) = T0 + a and T0 + a is thus a claw, giving
a contradiction.

Next, we consider the case in which the coset of H\F is disjoint from E. Although the
statement is not self-complementary, the first part of its proof is similar to the proof of the
previous case.

Lemma 3.3.3. Let M = (E,G) be a claw-free matroid, let H be a hyperplane of G and
let F be a hyperplane of H with |F | > 1. If (H\F )∩E = ∅ and M |F has no decomposer,
then either
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• M and M |F are both strict PG-sums, or

• M has a decomposer F ′ containing F .

Proof. Let A = H\F , so A ∩ E is empty. Suppose that neither outcome holds. Thus,
F is not a decomposer, so has a mixed coset B. Fix an element a ∈ B ∩ E, and let
X1 = (a+ E) ∩H and X0 = H\X1. Note that the cosets of F are A, B and A+ a. That
B is mixed implies that X0 ∩ F 6= ∅. If A ⊆ X0, then the set A∪ (A+ {a}) = G\(F ∪B)
is disjoint from E and so F ∪B is a decomposer of M ; thus A∩X1 6= ∅. Let v ∈ A∩X1,
so a+ v ∈ E. We claim the following.

3.3.3.1. Let T ⊆ H be a triangle. Then

(i) if T ⊆ F and |T ∩X1| = 2, then T ⊆ E, and

(ii) T does not intersect all three of X1\E,X0\E and X0 ∩ E.

Subproof: For (i), suppose that T ⊆ F and |T ∩ X1| = 2; let {v1, v2} = T ∩ X1 and
{v3} = T ∩X0. Note that v + [T ] is disjoint from E as v + [T ] ⊆ A. Now

cl({a, v, v3}) ∩ E = {a, a+ v} ∪ (E ∩ {v3, a+ v + v3}),

and

cl({v3, a+ v, a+ v1}) ∩ E = {a+ v1, a+ v2, a+ v} ∪ (E ∩ {v3, a+ v + v3}),

which implies that {v3, a + v + v3} ⊆ E, as otherwise one of these planes gives a claw in
M . We have

cl({a+ v, v1, a+ v2}) ∩ E = {a+ v, a+ v2} ∪ ({v1, a+ v + v1} ∩ E)

and
cl({a, v, v1}) ∩ E = {a, a+ v1, a+ v} ∪ ({v1, a+ v + v1} ∩ E),

so, similarly, {v1, a + v + v1} ⊆ E. Thus v1 ∈ E and, symmetrically, v2 ∈ E; therefore
T ⊆ E.

For the second part, note that if T = {v1, v2, v3} is a triangle with v1 ∈ X1\E, v2 ∈
X0\E and v3 ∈ X0 ∩E, then cl(T ∪ {a})∩E = {a, a+ v1, v3} and so M has a claw. Thus,
there are no such triangles. �

We may now apply Lemma 2.1.1 to conclude the following.
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3.3.3.2. F ∩X1 ⊆ E.

Subproof: Suppose not, so that (F\E) ∩X1 6= ∅. Define a partition of F by (P,Q,R) =
((F\E) ∩X1, F ∩ E ∩X1, F ∩X0) and let (R1, R2) = ((F\E) ∩X0, F ∩ E ∩X0). Recall
that R 6= ∅ by the choice of a.

The previous claim gives that no triangle T of F satisfies |T ∩R| = 1 and |T ∩ P | ≥ 1,
and that no triangle of F intersects all three of P,R1, R2; thus, Lemma 2.1.1 implies that
the flat F ′ = cl(P ) satisfies F ′ ⊆ P ∪ Q, while each coset of F is contained in Q,R1 or
R2. As before, this implies that F ′ has no mixed cosets in F , so either F ′ = ∅, F ′ = F , or
F ′ is a decomposer of M |F ; the last case contradicts the hypothesis, and we have F ′ 6= F
because R 6= ∅; it follows that F ′ = ∅ and so P = ∅, which gives the claim. �

We now diverge from the techniques in Lemma 3.3.2. The previous claim gives that the
sets X0 ∩ E,X0\E and X1 ∩ E induce a partition of F . We now show that this partition
naturally gives rise to a partition of A = v + [F ].

3.3.3.3. For all u ∈ F ,

• If u ∈ X0 ∩ E, then v + u ∈ X1.

• If u ∈ X0\E, then v + u ∈ X0.

• If u ∈ X1 ∩ E, then v + u ∈ X0.

Subproof: The first two are immediate; if u ∈ X0 ∩E and v + u ∈ X0, then {a, u, a+ v} is
a claw. Moreover, if u ∈ X0\E and v + u ∈ X1, then {a, a+ u+ v, a+ v} is a claw.

Finally, suppose for a contradiction that u ∈ X1 ∩ E but v + u ∈ X1. Then we claim
that {u} is a decomposer of M |F ; since {u} 6= F and all cosets of {u} are pairs of the form
{w,w + u}, it suffices to show that there does not exist w ∈ F\{u} for which w /∈ E and
u + w ∈ E. Consider such a w. By 3.3.3.2, we have w ∈ X0. If u + w ∈ X1, then this is
a contradiction to 3.3.3.1(i), so u+w ∈ X0. The first two statements of the current claim
imply that v + u + w ∈ X1, and v + w ∈ X0, but then {a, a + v + u + w, a + v + u} is a
claw. Thus, {u} is a decomposer of M |F , contradicting the hypothesis. �

3.3.3.4. F ∩X1 and (F ∩ E) ∩X0 are flats.

Subproof: Suppose that there is a triangle T of F such that |T ∩X1| = 2. Let {v1, v2} =
T ∩X1 and {v3} = T ∩X0. Then 3.3.3.1 gives T ⊆ E, and 3.3.3.3 gives {v+v1, v+v2} ⊆ X0
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and v + v3 ∈ X1. But this implies that {a + v, a + v1, v2} is a claw. So there are no such
triangles. This implies that F ∩X1 is a flat in F .

Now, suppose that F has a triangle T for which |T ∩ (E ∩ X0)| = 2. Let {v1, v2} =
T ∩E∩X0 and {v3} = T\{v1, v2}. If v3 ∈ X0\E, then {a, v1, v2} is a claw. If v3 ∈ X1, then
v3 ∈ E, and 3.3.3.3 gives {v + v1, v + v2} ⊆ X1 and v + v3 ∈ X0. Now {a, v1, a+ v + v2} is
a claw. It follows that there are no such triangles, so F ∩ E ∩X0 is a flat. �

Let F1 = F ∩X1 and F2 = F ∩E∩X2; we know from the above and 3.3.3.2 that F1, F2

are flats with F1 ⊆ E. Since E ∩ A = ∅, we have E ∩H = E ∩ F = F1 ∪ F2. Moreover,

E\H = {a} ∪ (a+X1)

= {a} ∪ (a+ (X1 ∩ F )) ∪ (a+ ({v} ∪ (v +X0 ∩ F ∩ E)))

= (a+ [F1]) ∪ ((a+ v) + [F2]),

where the second line uses 3.3.3.3. It follows that

E = (E ∩H) ∪ (E\H) = F1 ∪ F2 ∪ (a+ [F1]) ∪ ((a+ v) + [F2]),

which is the union of the disjoint flats cl(F1 ∪ {a}) and cl(F2 ∪ {a+ v}), neither of which
is contained in F . It follows that M and M |F are PG-sums.

It remains to check that bothM andM |F are strict PG-sums. By hypothesis, dim(F ) >
1. If M |F is not a strict PG-sum then by definition of strict PG-sums, either F ⊆ E, or
E ∩ F is contained in a hyperplane of F . In either case, some hyperplane decomposes
M |F , a contradiction (in the latter case, the hyperplane described decomposes M |F ). So
M |F is a strict PG-sum. From this, it also follows that cl(E∩F ) = F . We now check that
M is also a strict PG-sum. Notice that the flat {a, v, a + v} is disjoint from F , so cl(E)
contains cl(F ∪ {a, a+ v}) = G, and thus cl(E) = G. Since F 6⊆ E we have E 6= G and so
M is therefore also a strict PG-sum.

3.4 Small Decomposers

We now handle the cases where M has a hyperplane H for which M |H has a one-element
decomposer. These turn out to be harder. We first consider the case where this decomposer
is contained in E.

Lemma 3.4.1. Let M = (E,G) be a claw-free matroid. If H is a hyperplane of G, and
{b} ⊆ E is a decomposer of M |H, then either
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• M c is triangle-free, or

• M has a decomposer containing b.

Proof. Let Ec = G\E. Suppose that M has no decomposer; thus, {b} has a mixed coset
(which, in this case, forms a triangle with b) B in M ; let a ∈ B ∩ Ec. Note that a /∈ H
since B 6⊆ H; let X1 = (a + E) ∩ H and X0 = H\X1. By construction we have b ∈ X1.
Fix a hyperplane F of H for which b /∈ F . Let Fj = {v ∈ F : |{a + v, a + b + v} ∩ E| ≡ j
(mod 2)} for each j ∈ {0, 1}.

We may assume that F1 ⊆ E; indeed, if there exists v ∈ F1 ∩Ec, then {b, a+ b, a+ v}
gives a claw provided v ∈ X1, and {b, a + b, a + b + v} gives a claw if v ∈ X0 (note
that b + v /∈ E since {b} is a decomposer for M |F ). We now argue that we can apply
Lemma 2.1.1 to a certain partition of F ; the proof is highly routine involving numerous
cases.

3.4.1.1. The sets Q = X1 ∩ F0 ∩ E, R = X0 ∩ F0 ∩ Ec and P = F\(Q ∪ R) satisfy the
hypotheses of Lemma 2.1.1 in the flat F .

Subproof: Since F1 ⊆ E, the four sets

(P1, P2, P3, P4) = (X0 ∩ F1 ∩ E,X0 ∩ F0 ∩ E,X1 ∩ F1 ∩ E,X1 ∩ F0 ∩ Ec)

form a partition of P . Suppose that the claim fails; then F has a triangle {v1, v2, v3} for
which v1 ∈ P , v2 ∈ P ∪ Q and v3 ∈ R. The fact that v3 ∈ R implies that v3, v3 + a, v3 +
b, v3 + a+ b /∈ E.

Suppose first that v2 ∈ Q, which gives v2, b+v2, a+v2, a+ b+v2 ∈ E. If v1 ∈ P1∪P2 =
X0∩E, then {v1, v2, a+v2} is a claw and if v1 ∈ X1∩F1∩E, then {b+v1, b+v2, a+b+v2}
is a claw. If v1 ∈ X1 ∩ F0 ∩ Ec, then {a+ b+ v1, v2, a+ v2} is a claw. Thus v2 ∈ P .

If v1, v2 ∈ P then there exist i, j so that v1 ∈ Pi and v2 ∈ Pj; we may assume by
symmetry that i ≤ j. A careful check shows that

• {b, a+ b+ v1, a+ b+ v2} is a claw if (i, j) = (1, 1),

• {v2, b+ v1, a+ b} is a claw if i ∈ {1, 2} and j = 2,

• {v1, v2, a+ v2} is a claw if i ∈ {1, 2} and j = 3,

• {b, a+ v1, a+ v2} is a claw if (i, j) = (3, 3),
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• {a+ b, a+ v2, b+ v1} is a claw if (i, j) = (1, 4),

• {a+ b, v1, a+ v2} is a claw if j = 4 and i ∈ {2, 3},

• {a+ b, a+ b+ v1, a+ b+ v2} is a claw if (i, j) = (4, 4),

giving a contradiction in all cases. �

It follows from Lemma 2.1.1 that every coset of cl(P ) is contained in Q or in R, and
that cl(P ) ⊆ P ∪Q.

Suppose that R 6= ∅, so cl(P ) 6= F . We argue that the flat D = cl({a, b} ∪ P ) is
a decomposer in M ; let A be a coset of D in G. Note that A has to have the form
A0+{0, a, b, a+b} for some coset A0 of cl(P ) in F . Also, we either have A0 ⊆ Q or A0 ⊆ R.
If A0 ⊆ Q then A = A0 +{0, a, b, a+ b} ⊆ Q+{0, a, b, a+ b} ⊆ E by definition of Q (recall
Q = X1∩F0∩E). If A0 ⊆ R then A = A0+{0, a, b, a+b} ⊆ R+{0, a, b, a+b} ⊆ Ec by the
definition of R (recall R = X0∩F0∩Ec). In either case, A is not mixed in M . Furthermore,
since cl(P ) 6= F we have dim(cl(P )) < dim(G) − 2 and so dim(D) ≤ dim(cl(P )) + 2 <
dim(G). Thus D is a decomposer of G containing b, giving a contradiction.

So R = ∅; we now argue that M c is triangle-free. Indeed, the fact that F = P ∪ Q
implies that for each v ∈ F , each triangle in the plane cl({v, a, b}) contains an element of
E (to see this, note that it is enough to find a triangle in the plane that is contained in E;
hence, if v ∈ E, then the triangle {v, b + v, b} ⊆ E certifies this statement, and if v /∈ E,
then v ∈ F0 and since R = ∅, we have v ∈ X1, so the triangle {b, a + v, a + b + v} ⊆ E
certifies this statement). Every triangle of G containing a is contained in such a plane, so
each triangle of G containing a contains an element of E. Thus if T ⊆ Ec is a triangle,
then a /∈ T , and for each x ∈ T we must have x + a ∈ E. This implies that T + {a} is a
claw in M . So M c is triangle-free.

We now handle the complementary case where M |H has a one-element decomposer that
is not contained in E. This case turns out to be extremely intricate, and very different
from the previous case, even though the matroids involved ostensibly only differ in a single
element. We first need a lemma that recognises even-plane matroids.

Lemma 3.4.2. Let M = (E,G) be a claw-free matroid, let H be a hyperplane of G, and
let b ∈ H\E be such that, for all u ∈ G\{b}, we have |E ∩ {u, u + b}| = 1 if and only if
u /∈ H. Then, for every hyperplane F of H not containing b, either

• M |F is even-plane, or

45



• M |F is a Bose-Burton geometry.

Proof. Let F be a hyperplane of H not containing b, and suppose that M |F is not even-
plane. Let a ∈ G\H; we have |E ∩ {a, a + b}| = 1 by hypothesis; we may assume that
a ∈ E and a+ b /∈ E.

Let X1 = (a+E)∩H and X0 = H\X1. The hypotheses imply that if v ∈ H\{b}, then
{v, b + v} ∩ E has even size, and {v, b + v} ∩X0 has odd size. The next claim essentially
states that given a flat K of H, there is another flat K ′ where M |K = M |K ′, and the
elements of K ′ have some desired intersection with X0 and X1.

3.4.2.1. If K is a flat of H with b /∈ K, and I0, I1 are disjoint subsets of K for which I0∪I1
is linearly independent, then there is a flat K ′ of H, not containing b, and an isomorphism
ψ from M |K to M |K ′ for which ψ(I0) ⊆ X0 and ψ(I1) ⊆ X1.

Subproof: By replacing I0, I1 with supersets if necessary, we may assume that I0 ∪ I1 is a
basis for K. For each i ∈ {0, 1} and x ∈ Ii, let ψ(x) be the unique element of {x, x+b}∩Xi,
and extend ψ linearly to all x ∈ K. Let K ′ = ψ(K). The linear independence of I0∪I1∪{b}
implies that ψ is injective. Moreover, it is clear that ψ(v) ∈ {v, v + b} for all v ∈ K and
so, since |E ∩ {v, v + b}| is even, ψ is an isomorphism from M |K to M |K ′ that has the
required property by construction. �

3.4.2.2. If P is a plane of H not containing b, then either P ⊆ E, or |P ∩ E| is even.

Subproof: Let P be a counterexample. Suppose first that |P ∩ E| = 5, so P ∩ E =
{v1, v2, v3, v1 +v2, v1 +v3} for some linearly independent v1, v2, v3; by 3.4.2.1 with (I0, I1) =
({v1, v2, v3},∅), we may assume that v1, v2, v3 ⊆ X0. Now

E ∩ cl({a, v2, v3}) = {a, v2, v3} ∪ (E ∩ {a+ v2 + v3}),

which implies that a+ v2 + v3 ∈ E, and

E ∩ cl({a, v1, a+ v2 + v3}) = {a, v1, a+ v2 + v3} ∪ (E ∩ {a+ v1 + v2 + v3}),

which gives a+ v1 + v2 + v3 ∈ E. But now v1 + v2, v1 + v3, and a+ v1 + v2 + v3 give a claw
in M .

Suppose now that |P ∩ E| = 3. Since M |P is not a claw, we must have E ∩ P =
{v1, v2, v1 + v2} for some v1, v2; let v3 ∈ P\E. By 3.4.2.1 we may assume that v1, v3 ∈ X0

and v2 ∈ X1. This implies that b+ v2 ∈ X0 and b+ v1, b+ v3 ∈ X1. Now

E ∩ cl({a, v1, v3}) = {a, v1} ∪ (E ∩ {a+ v1 + v3}),

46



which implies that a+ v1 + v3 /∈ E, and

E ∩ cl({a, b+ v2, v3}) = {a, b+ v2} ∩ (E ∩ {a+ b+ v2 + v3})

giving a+ b+ v2 + v3 /∈ E; thus a+ v2 + v3 ∈ E. Now the set {v1 + v2, a+ v2, a+ v2 + v3}
is a claw.

Finally, suppose that |P ∩ E| = 1; by 3.4.2.1 we may assume that P = cl({v1, v2, v3})
where {v1} = P ∩ E and v1 ∈ X0 while v2, v3 ∈ X1. Then {v1 + v2, v1 + v3, v2 + v3} ⊆
X1, as otherwise one of {a, v1, a + v2}, {a, v1, a + v3} or {a, a + v2, a + v3} is a claw.
Hence v1 + v2 + v3 ∈ X1, as otherwise {a, v1, a + v2 + v3} is a claw. But now the triple
{a+ v1 + v2, a+ v1 + v3, a+ v1 + v2 + v3} is a claw, completing the contradiction. �

By the above claim and the assumption that M |F is not even-plane, we can conclude
that E contains a plane of F . Let K be a largest flat of F for which K ⊆ E; by the above,
dim(K) ≥ 3. If K = F then M |F is a Bose-Burton geometry, as required. Otherwise, let
v ∈ F\E. Let K1 = {(v + E) ∩K} and K0 = K\K1. If some triangle T of K has even
intersection with K1, then the plane cl(T ∪ {v}) contains an odd number of elements of E
and contains the nonelement v of E, contradicting 3.4.2.2. Thus, every triangle of K has
odd intersection with K1; it follows that either K1 is a hyperplane of K, or K1 = K.

If K1 is a hyperplane of K, then since dim(K) ≥ 3, there is some triangle T ⊆ K1 and
some w ∈ K0. Now T+w ⊆ K0 and so E∩cl(T ∪{v+w}) = T , so |E∩cl(T ∪{v+w})| = 3,
contradicting 3.4.2.2. So K1 = K, and thus K + v ⊆ E. This argument applies for every
v ∈ F\E, and by the maximality of K, every coset of K contains such a v. Therefore every
coset A of K satisfies |A∩E| = |A|−1 = |K|. It follows that |E∩F | = 2dim(F )(1−2− dim(K)).
Since E ∩F contains no flat of dimension larger than dim(K), Theorem 1.4.2 implies that
M |F is a Bose-Burton geometry, as required.

We now deal with the case where M |H has a one-element decomposer disjoint from M .

Lemma 3.4.3. Let M = (E,G) be a claw-free matroid and let H be a hyperplane of G. If
{b} ⊆ H\E is a decomposer of M |H, then either

• M c is triangle-free,

• M is even-plane, or

• M has a decomposer.
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Proof. Suppose that M c has a triangle and M has no decomposer, so {b} has a coset
{a, a+ b} in M where {a, a+ b}∩E = {a}. We argue through a series of claims that M is
even-plane. Since {b} is a decomposer of H, we have a /∈ H; as usual, let X1 = (a+H)∩E
and X0 = H\X1. Note that b ∈ X0. Let Ec = G\E and define a partition (H0, H1) of
H\{b} by

Hi = {v ∈ H\{b} : |{a+ v, a+ b+ v} ∩ E| ≡ i (mod 2)}.

If H\{b} ⊆ E then recall that Ec contains a triangle T of G. This T intersects H as H
is a hyperplane, and so b ∈ T , which implies that a /∈ T , giving cl(T∪{a})∩E = {a+b}+T ,
which yields a claw in M . This is a contradiction, so {b} has a coset contained in H that
is disjoint from E.

If v ∈ H0∩X0∩E then {a, v, b+v} is a claw. If v ∈ H0∩X1∩Ec then {a, a+b+v, a+v}
is a claw; it follows that H0 ⊆ E∆X0, and so for every v ∈ H0 the set v+ {0, a, b, a+ b} is
unmixed in M .

3.4.3.1. H1 6⊆ E.

Subproof: Suppose that H1 ⊆ E. Then the sets

(P,Q,R) = (H1 ∩ E,H0 ∩X1 ∩ E,H0 ∩X0 ∩ Ec)

partition H by the observation just made. Let F be a hyperplane of H not containing b,
and let (P ′, Q′, R′) = (P ∩ F,Q ∩ F,R ∩ F ); we just saw that H\E contains a coset of
{b} which implies that R contains such a coset, so R′ 6= ∅. We show that the partition
(P ′, Q′, R′) of F satisfies the hypotheses of Lemma 2.1.1. If it does not, then F has a
triangle {v1, v2, v3} with v1 ∈ P, v2 ∈ P ∪ Q and v3 ∈ R. If v2 ∈ Q and v1 ∈ X0, then
{a+v2, a+b+v2, a+b+v1} is a claw. If v2 ∈ Q and v1 ∈ X1, then {a+v2, a+b+v2, a+v1}
is a claw. If v2 ∈ P then {a, i1b + v1, i2b + v2} is a claw, where i1 and i2 are the binary
scalars for which v1 ∈ Xi1 and v2 ∈ Xi2 . So Lemma 2.1.1 applies to (P ′, Q′, R′) in F , giving
cl(P ′) ⊆ P ′ ∪Q′, while every coset of cl(P ′) in F is contained in either Q′ or R′.

We now argue that D = cl({a, b}∪P ′) is a decomposer of M . Clearly D 6= ∅, and since
cl(P ′) ⊆ (P ′∪Q′) andR′ 6= ∅, we have cl(P ′) 6= F which implies that dim(cl(P ′)) < dim(F )
and dim(D) < dim(M). Consider a coset A of D; now A = A0 + {0, a, b, a + b} for some
coset A0 of cl(P ′) in F . If A0 ⊆ Q′ then A = A0 + {0, a, b, a+ b} ⊆ Q+ {0, a, b, a+ b} ⊆ E
by the definition of Q, and if A0 ⊆ R′ we have A ⊆ Ec by the definition of R. Therefore
D has no mixed cosets in G, and is thus a decomposer of M ; this is a contradiction. �

3.4.3.2. For each flat K of H with K ⊆ H1, either M |K ∈ E3 or M |K is a Bose-Burton
geometry.
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Subproof: Let G′ = cl(K∪{a, b}) and H ′ = G′∩H. Let M ′ = M |G′; we apply Lemma 3.4.2
to b and H ′ in G′. Let v ∈ G′\{b}. If v ∈ H ′ then |{v, b+ v}∩E| ∈ {0, 2} since no coset of
{b} in H is mixed. If v ∈ {a, a+ b} then |{v, b+v}∩E| = 1 and, if v ∈ (G′\H ′)\{a, a+ b},
then the plane cl({a, b, v}) intersects K in an element w for which v ∈ {w + a, w + a+ b};
since w ∈ H1 this implies that |{v, b + v} ∩ E| = 1. Thus, for all v ∈ G′\{b}, we have
|{v, b+ v} ∩ E| = 1 if and only if v /∈ H, and the claim follows from Lemma 3.4.2. �

Define a partition (P,Q,R1, R2) of H\{b} by

(P,Q,R1, R2) = (H1 ∩ Ec, H1 ∩ E,H0 ∩X0 ∩ Ec, H0 ∩X1 ∩ E).

Note that we have argued H1 6⊆ E above. So in particular we have P 6= ∅.

3.4.3.3. G has no triangle T with |T ∩ P | ≥ 1 and |T ∩ (R1 ∪ R2)| = 1, and there is no
triangle of G that intersects P,R1 and R2.

Subproof: Let R = R1∪R2. The definition of the Hi and the fact that {b} is a decomposer
imply that each set W ∈ {P,Q,R1, R2, R1∪R2} satisfies W = {b}+W (from the definition
of Hi, for an element v ∈ H\{b}, v ∈ Hi if and only if v + b ∈ Hi, and we have observed
before that H0 ⊆ E∆X0).

To see the first part, let {v1, v2, v3} be a triangle of G with v1 ∈ P , v2 ∈ P ∪ Q and
v3 ∈ R. For each i ∈ {1, 2}, the set {vi, vi + b} intersects X0 in exactly one element wi,
and we have w1 + w2 ∈ {v1 + v2, v1 + v2 + b} ⊆ R, so {w1, w2, w3 = w1 + w2} is a triangle
with w1 ∈ P ∩X0, w2 ∈ (P ∪Q) ∩X0 and w3 ∈ R.

Suppose that w2 ∈ Q. If w3 ∈ R1 then {a, a + b + w1, w2} is a claw. If w3 ∈ R2 then
{a + w3, a + b + w3, a + b + w2} is a claw. Suppose now that w2 ∈ P . If w3 ∈ R1 then
{a, a+ b+ w1, a+ b+ w2} is a claw. If w3 ∈ R2 then {a+ w3, a+ b+ w3, a+ b+ w2} is a
claw, completing the contradiction.

For the second part, consider a triangle {v1, v2, v3} of G where v1 ∈ P , v2 ∈ R1 and
v3 ∈ R2. Let {w1} = {v1, v1 + b}∩X0; let w2 = v2 and w3 = w1 +v2; since wi ∈ {vi, vi+ b},
the set {w1, w2, w3} is a triangle with w1 ∈ P ∩ X0 while w2 ∈ R1 and w3 ∈ R2. Now
{a+ b+ w1, a+ w3, b+ w3} is a claw. �

Since P 6= ∅, let w ∈ P and let z be the element of {w, b + w} ∩ X1, noting that
it is also the case that z ∈ P . Let F be a hyperplane of H containing z but not b. Let
(P ′, Q′, R′1, R

′
2) be the partition of F induced by (P,Q,R1, R2). Let Fi = Hi∩F for i = 0, 1.

By Lemma 2.1.1 and 3.4.3.3, we have cl(P ′) ⊆ P ′ ∪ Q′ = F1, and every coset of cl(P ′) in
F is contained in Q′, R′1 or R′2. Let F ′ = cl(P ′).

49



3.4.3.4. M |F ′ is not a Bose-Burton geometry.

Subproof: Suppose that M |F ′ is a Bose-Burton geometry. Let F ′′ = P ′ ∩X1. This set is
nonempty because z ∈ F ′′. We will show that F ′′ is a decomposer of M ; we first argue
that it is a flat. Indeed, if x, y ∈ F ′′ are distinct then, since x, y ∈ Ec, the fact that M |F ′
is a Bose-Burton geometry gives x + y ∈ Ec, and since F ′ is a flat we have x + y ∈ F ′,
so x + y ∈ F ′ ∩ Ec, but this gives x + y ∈ X1, as otherwise {a, a + x, a + y} is a claw.
Therefore x+ y ∈ F ′ ∩ Ec ∩X1 = F ′′, and thus F ′′ is a nonempty flat.

Let A be a coset of F ′′ in F ; we now show that A is contained in E or Ec, is contained
in Xi for some i, and is contained in Fj for some j. To see this, we consider two cases:

• If A 6⊆ F ′ then A is contained in some coset of F ′ in F and is thus contained in
R1, R2 or Q; in the first two cases the conclusion is clear, in the last case we have
A ⊆ E and A ⊆ F1, and if x0 ∈ X0∩A and x1 ∈ X1∩A then x0 +x1 ∈ F ′′ ⊆ X1∩Ec

and it follows that {a, x0, b+ x1} is a claw; thus A ⊆ X0 or A ⊆ X1.

• If A ⊆ F ′ then A ⊆ F1 (since F ′ = cl(P ′) ⊆ F1), and since M |F ′ is a Bose-Burton
geometry while F ′′ ⊆ Ec ∩ F ′, we clearly have A ⊆ E or A ⊆ Ec. If A ⊆ Ec then
A ⊆ P ′; since A is disjoint from F ′′ = P ′ ∩ X1 we have A ⊆ X0. If A ⊆ E and
A intersects X0 in x0 and X1 in x1, then {a, x0, b + x1} is a claw; thus A ⊆ X0 or
A ⊆ X1.

Finally, we show that F ′′ is a decomposer in M . For this, we need to show that every coset
of F ′′ in M is contained in E or in Ec; let B = [F ′′] + u be such a coset, where u ∈ G\F ′′.
Since cl(F ∪ {a, b}) = G we have u = v + h for some v ∈ F and h ∈ {0, a, b, a + b}.
Therefore B = ([F ′′] + v) + h.

If v /∈ F ′′ then [F ′′] + v is a coset A of F ′′ in F , so A is contained in either E or Ec, is
contained in Xi for some i ∈ {0, 1}, and is contained in Fi for some i ∈ {0, 1}. The fact
that H ∩E = (H ∩E) + b, together with the definition of the Xi and Fi, thus implies that
each of the sets A,A + a,A + b, A + (a + b) is contained in either E or Ec. But B is one
of these sets, so B ⊆ E or B ⊆ Ec.

If v ∈ F ′′ then B = [F ′′]+h for some h ∈ {a, b, a+b}. Recall that F ′′ ⊆ F1∩X1∩Ec. If
h = a then the fact that F ′′ ⊆ X1 and a ∈ E gives B ⊆ E. If h = b then the fact that {b}
is a decomposer of M |H and b /∈ H gives B ⊆ Ec. If h = a + b then, since F ′′ ⊆ F1 ∩X1

and a + b /∈ E, we have B ⊆ Ec. Therefore F ′′ is a decomposer of M , giving the needed
contradiction. �
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Let A be a coset of cl(P ′) in F , so A is contained in Q,R1 or R2. We now claim that
A is contained in R1 or R2. If, for a contradiction, A ⊆ Q, then A ⊆ F1 ∩ E and so the
flat cl(P ′) ∪ A is contained in F1. By 3.4.3.2 it follows that M |(cl(P ′) ∪ A) is either a
Bose-Burton geometry or is in E3. In the first case, M | cl(P ′) is a Bose-Burton geometry,
contradicting 3.4.3.4. In the second case, 3.4.3.4 gives that there is a triangle T ⊆ cl(P ′)
for which |T ∩ E| = 1 (if no such triangle exists, then it would imply that M | cl(P ′) is a
Bose-Burton geometry, again contradicting 3.4.3.4), but then the fact that A ⊆ E yields
| cl(T ∪ {u})∩E| = 5 for every u ∈ A, contradicting M |(cl(P ′)∪A) ∈ E3. Therefore every
coset of cl(P ′) in F is contained in R1 or R2.

3.4.3.5. F ′ = F = F1.

Subproof: Since F ′ ⊆ F1 ⊆ F , it suffices to show that F ′ = F ; suppose not, so dim(F ′) ≤
dim(G)−3, and therefore cl(F ′∪{a, b}) 6= G. We show that cl(F ′∪{a, b}) is a decomposer
of M . Let C be a coset of cl(F ′ ∪ {a, b}), so C has the form C = [F ′] + {0, a, b, a+ b}+ u
for some u /∈ cl(F ′∪{a, b}); by replacing u by u+a, u+ b or u+a+ b if necessary, we may
assume that u ∈ F , so C = ([F ′] +u) +{0, a, b, a+ b}. The coset [F ′] +u of F ′ is contained
in R1 or in R2 by the above observations, so [F ′] +u is contained in E or Ec, and it follows
from that fact that {b} is a decomposer and the definition of the Xi and Fi that for all
x ∈ [F ′] + u, we have x + {0, a, b, a + b} ⊆ E for all x ∈ E, and x + {0, a, b, a + b} ⊆ Ec

for all x ∈ Ec. Therefore the coset C is contained in either E or Ec. Since F ′ is a proper
nonempty flat of G, cl(F ′ ∪ {a, b}) is thus a decomposer of M , giving a contradiction. �

By 3.4.3.2 and 3.4.3.4, we have M |F = M |F ′ ∈ E3. Since M |H is the doubling of
M |F , it follows that M |H ∈ E3 also (recall that doublings preserve the property of being
even-plane by Theorem 3.2.4). The fact that F = F1 implies that H\{b} = H1 and so
X0 + b = X1. Let Ji = (H\{b}) ∩ (E∆Xi) for each i ∈ {0, 1}, so (J0, J1) is a partition of
H\{b} for which J0 + b = J1.

3.4.3.6. If T is a triangle of H with b /∈ T , then |T ∩ J0| is even.

Subproof: Let T = {v1, v2, v3} be a triangle of H with b /∈ T for which T ∩ J0 is odd and
as large as possible. If v2, v3 /∈ J0 then {v1, v2 + b, v3 + b} is a triangle contained in J0,
contradicting maximality. Thus T ⊆ J0.

If v1 ∈ X0\E then {a, b + v2 + (1 − i2)a, b + v3 + (1 − i3)a} is a claw, where i2, i3 are
the binary scalars for which v2 ∈ Xi2 and v3 ∈ Xi3 . Therefore T ⊆ X1 ∩ E.

Since M |H ∈ E3, it contains no F7-restriction, and since by 3.4.3.4 it is not a Bose-
Burton geometry, Theorem 1.4.2 gives that |E∩H| < 3

4
·2dim(H). The triangle T is contained
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in exactly 2dim(H)−2 − 1 planes of H; since 3 + 3(2dim(H)−2 − 1) > |E ∩ H|, a majority
argument gives that there is a plane W of H containing T for which |(W\T ) ∩ E| < 3;
thus |W ∩ E| = |T | + |(W\T ) ∩ E| < 6; since M |H ∈ E3 this gives |W ∩ E| ≤ 4, and so
W ∩E contains exactly one element w outside T , and W = cl(T ∪{w}). Every element of
W ∩ Ec lies in a triangle of W containing exactly one element of E, so b /∈ W (since {b}
is a decomposer for M |H). The three-element set T +w intersects either X0 or X1 in two
elements; say they are v1+w and v2+w. If v1+w, v2+w ∈ X0 then {a, a+b+v2+w, b+v3}
is a claw. If v1 + w, v2 + w ∈ X1 then {a, a+ w + v1, b+ v3} is a claw. �

The above claim implies that each triangle of F has even intersection with J0, so F ∩J1
is either equal to F , or is a hyperplane of F . The definitions of J0 and J1 imply that if
v ∈ F , then {v, v+a}∩E has even size if and only if v ∈ F ∩J0. Let M ′ = (E ′, cl(F ∪{a}))
be the doubling of M |F by a if F ∩ J1 = F , or the semidoubling of M |F by a with respect
to the hyperplane F ∩ J1 if F ∩ J1 is a hyperplane of F ; since M |F ∈ E3, the matroid
M ′ is even-plane by Theorem 3.2.4. Since E ∩ cl(F ∪ {a}) = E ′∆(cl(F ∪ {a})\F ), by
Lemma 3.2.5 it follows that M | cl(F ∪ {a}) ∈ E3.

Moreover, if x ∈ F then {x, b+x}∩E has even size, and if x ∈ [F ]+a then {x, b+x}∩E =
{(x + a) + a, (x + a) + a + b} ∩ E, which has odd size because x + a ∈ F = F1. Since
b /∈ cl(F ∪{a}) and F is a hyperplane of cl(F ∪{a}), it follows that M is the semidoubling
of M | cl(F ∪ {a}) by b with respect to the hyperplane F . Thus M ∈ E3, as required.

3.5 General Decomposers

We now combine the results in the previous two sections to completely describe the claw-
free matroids having a hyperplane that admits a decomposer.

Theorem 3.5.1. Let M = (E,G) be a claw-free matroid and let H be a hyperplane of G
for which M |H has a decomposer. Then either

• M is even-plane,

• M is a PG-sum,

• M c is triangle-free, or

• M has a decomposer.
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Proof. Suppose that none of the outcomes hold. Let F ⊆ H be a minimal decomposer of
M |H. The minimality of F implies

3.5.1.1. M |F has no decomposer.

If F is a hyperplane of H or |F | = 1, then one of Lemmas 3.3.2, 3.3.3, 3.4.1 or 3.4.3
yields a contradiction. Therefore dim(F ) ≥ 2, and F has more than one coset in H. Since
F does not decompose M , it has a mixed coset B in G.

We say that a set A ⊆ G is vacant if A ∩ E = ∅, and full if A ⊆ E. The fact that F
decomposes M |H implies that every coset of F in H is either vacant or full. Note that if
A and A′ are distinct cosets of F in some flat F+ containing F , then A+A′ is also a coset
of F in F+.

Call a coset A of F in M |H good if the cosets A and A + B are either both vacant or
both full, and say A is bad otherwise.

3.5.1.2. F has a bad coset in H.

Subproof: Suppose not; we argue that the flat F ∪B decomposes M . Indeed, if A is a coset
of F ∪B then A = A′ ∪ (A′+B) for some coset A′ of F in H; since A′ is good this implies
that A is vacant or full. Thus F ∪B decomposes M , a contradiction. �

3.5.1.3. Let A be a bad coset of F in H and let FA = F ∪ A ∪B ∪ (A+B).

• If A is vacant, then M |FA and M |F are strict PG-sums, and

• if A is full, then (M |FA)c is triangle-free.

Subproof: Note that FA is a flat of G such that F ∪ A is a hyperplane of FA, and F is
a hyperplane of F ∪ A. Let F+ be any proper flat of FA that contains F ; we will now
try to show that F+ is not a decomposer of M |FA. It is easy to see that F+ has a coset
containing B or A ∪ (B + A). But B is mixed, and the fact that A is bad implies that
A ∪ (B + A) is mixed. So F+ is not a decomposer of M |FA, and thus no decomposer of
M |FA contains F . By 3.5.1.1, we can apply Lemma 3.3.2 (if A is full) or Lemma 3.3.3 (if
A is vacant) to obtain the desired conclusion. �

3.5.1.4. If A1, A2 are distinct full cosets of F in H and A1 + A2 is vacant, then A1 and
A2 are good.
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Subproof: Suppose otherwise; we may assume that A1 is bad, so there exists u1 ∈ (A1 +
B)\E. Let A3 = A1 + A2 and Fi = F ∪ Ai ∪ B ∪ (Ai + B) for each i ∈ {1, 2, 3}. By
3.5.1.3, the matroid (M |F1)

c is triangle-free. Let a ∈ B\E and let v1 = a + u1 ∈ A1.
Since dim(F ) > 1 and M |F has no decomposer, there exists x ∈ F\E. Since (M |F1)

c is
triangle-free we have x+ a ∈ E and x+ a+ v1 ∈ E (to see this, observe that x /∈ E, a /∈ E
and a+ v1 = u1 /∈ E, and apply the triangle-freeness of (M |F1)

c to obtain this statement).

Let v3 ∈ A3. If both a + v3 and a + x + v3 are nonelements of E, then {v1 + v3, x +
v1 + v3, a+ x+ v1} is a claw, and if both are elements of E, then {a+ v3, a+ x+ v3, a+ x}
is a claw (to check that this is a claw, recall that A3 = A1 + A2 is vacant by assumption,
so v3, x + v3 /∈ E). Thus exactly one is an element of E; by possibly replacing v3 by
v3 + x, we may assume that a + v3 ∈ E and a + x + v3 /∈ E. If a + x + v1 + v3 ∈ E, then
{v1, x+ v1 + v3, a+ x+ v1 + v3} is a claw, so a+ x+ v1 + v3 /∈ E (again, to check that this
is a claw, observe that A3 is vacant so that v3, x+ v3 /∈ E).

Since A3 is vacant and a + v3 ∈ E, the set A3 is bad. By 3.5.1.3 the matroid M |F3 is
a PG-sum. Thus E ∩ F3 is the disjoint union of two flats K1, K2. Note that the elements
a + x, a + v3 ∈ F3 belong to E, yet their sum, (a + x) + (a + v3) = x + v3 ∈ A3, is a
nonelement of E (recall A3 is vacant). Hence, one of these two flats (say K1) contains
a + x, and the other (say K2) contains a + v3. Since K1, K2 are disjoint flats with union
E ∩ F3, we have (K1 +K2) ∩ E = ∅.

If K1 ∩ F = ∅, then F ∩ E = F ∩ K2 which is a flat of F . But since dim(F ) ≥ 2,
it follows that either F ∩ E = ∅, in which case every 1-dimensional flat of F decomposes
M |F , or F∩E is a nonempty flat of F , in which case every singleton in this flat decomposes
F . Either case contradicts the hypothesis, so it follows that K1 ∩ F 6= ∅. Hence we may
pick an element w ∈ K1 ∩ F .

So w ∈ E and, since K1 is a flat, we have w + a + x ∈ E. Moreover, we have
a + w + v3 = w + (a + v3) ∈ K1 + K2, so a + w + v3 /∈ E. Now using the fact that
a + x + v1 + v3 /∈ E as observed earlier, the set {a + x + w, x + w + v1, w + v1 + v3} is a
claw. �

3.5.1.5. Let A1, A2 be distinct vacant cosets of F in H. Then A1 or A2 is good. Moreover,
if A1 + A2 is full, then A1 and A2 are both good.

Subproof: Let a ∈ B ∩ E. Let I be the set of i ∈ {1, 2} for which Ai is bad. It suffices to
show that if |I| ≥ 1, then |I| = 1 and A1 + A2 is vacant; let A3 = A1 + A2, and suppose
that |I| ≥ 1; we may assume that 1 ∈ I. For each i ∈ I, let Fi = F ∪ B ∪ Ai ∪ (Ai + B).
By 3.5.1.3 the matroids M |Fi and M |F are strict PG-sums. Let Ki, Li be the summands
of M |Fi, where a ∈ Ki; since M |F is strict, the sets Ki ∩ F and Li ∩ F are nonempty.
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Specialising to i = 1, let x ∈ (K1 + L1) ∩ F ; thus, x /∈ E, and, since x + a ∈ K1 + L1,
we have x+ a /∈ E.

Again, consider a general i ∈ I. Since Ai is bad, the set Ai +B = Ai + {a} contains an
element vi + a of E, where vi ∈ Ai ⊆ G\E. Since a ∈ Ki and vi /∈ Ki, we have vi + a /∈ Ki,
so vi + a ∈ Li. The element u = a + vi + x satisfies u + a /∈ E and u + vi + a /∈ E, so
u /∈ Ki ∪ Li, giving a+ vi + x /∈ E.

Assume that A3 is full, and let v3 ∈ A3. If a + v3 and a + v3 + x are both not in E,
then {v3, v3 + x, a} is a claw; by possibly replacing v3 with v3 + x we may assume that
v3 + a ∈ E. Note that v1 + v3 and x+ v1 + v3 are in the vacant set A2; if a+ v1 + v3 ∈ E
then {x+ v3, a+ v3, a+ v1 + v3} is a claw, so a+ v1 + v3 /∈ E.

Let w ∈ F ∩ L1; we have a + w ∈ K1 + L1 so a + w /∈ E. Since a + v1 ∈ L1 we also
have a+w+ v1 ∈ E. Now w+ v3 ∈ A3 ⊆ E while w+ v1 + v3 ∈ A2 ⊆ G\E; it follows that
{w + v3, a+ v3, a+ w + v1} is a claw. This contradiction shows that A3 is vacant.

Now assume that |I| = 2. Recall that w ∈ F ∩L1 and a+w /∈ E; it follows that w ∈ L2

also, as w ∈ L2 ∪K2, and w ∈ K2 would imply that w + a ∈ K2 ⊆ E. For each i ∈ {1, 2}
we have shown that a+ vi ∈ Li, so a+ w + vi ∈ Li, giving a+ w + vi ∈ E.

We have a + w + v1 + v2 ∈ E, as otherwise {a, a + v1, a + w + v2} is a claw. But now
{a+w + v1, a+w + v2, a+w + v1 + v2} is a claw, giving a contradiction. Thus |I| = 1 as
required. �

3.5.1.6. F has no bad vacant coset in H.

Subproof: Let A be such a coset. We first argue that A is the only bad coset; indeed, if A′

is another bad coset then (A,A′) contradicts 3.5.1.5 if A′ is vacant, the pair (A′, A + A′)
contradicts 3.5.1.4 if A′ and A + A′ are both full, and the pair (A,A + A′) contradicts
3.5.1.5 if A′ is full and A+ A′ is vacant. Thus A is the only bad coset.

We now argue that the flat F ′ = cl(F ∪ A ∪ B) = F ∪ A ∪ B ∪ (A + B) decomposes
M . Since F ′ 6= ∅ while dim(F ′) = dim(F ) + 2 < dim(G), it suffices to show that F ′ has
no mixed cosets in G. Let C be a coset of F ′; we have

C = C0 ∪ (A+ C0) ∪ (B + C0) ∪ (A+B + C0)

for some coset C0 of F in H. If exactly one of C0 and A+C0 is full, then either (A,C0) or
(A,A + C0) contradicts 3.5.1.5. Thus C0 and A + C0 are either both empty or both full.
Since they are both good, this implies that C is either empty or full. So F ′ is a decomposer
of M , contrary to assumption. �
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Thus, all bad cosets are full.

3.5.1.7. F has a vacant coset in H.

Subproof: Suppose not; we show that M c is triangle-free. Let T be a triangle in M c.
Since T ∩ H is nonempty while H\F ⊆ E, we have T ∩ F 6= ∅. If T ⊆ F ∪ B, let
F ′ = F ∪ B ∪ A ∪ (A + B) for some bad coset A. Otherwise, let F ′ = cl(F ∪ B ∪ T ). In
either case, we have T ⊆ F ′, and F ′ = F ∪B ∪ A ∪ (A+B) for some coset A.

If A is good, then by construction we have T 6⊆ F ∪ B, so T intersects A ∪ (A + B).
But A is a full good coset, so A ∪ (A + B) ⊆ E, contradicting the fact that T ⊆ G\E. If
A is bad, then 3.5.1.3 implies that (M |F ′)c is triangle-free. This contradicts T ⊆ F ′. �

Let K be a maximal flat of H that is disjoint from F , so each coset A of F in H
intersects K in a unique element vA, with vA ∈ E if and only if A is full, while A = F +vA.
Let P ⊆ K be the set of all vA for which A is bad, let Q be the set of all vA for which A
is good and full, and R be the set of all vA for which A is good and vacant. Now 3.5.1.4
implies that there is no triangle T of K with |T ∩R| = 1 and |T ∩P | ≥ 1; by Lemma 2.1.1,
each coset of cl(P ) in K is contained in Q or R. We have R 6= ∅ by 3.5.1.7, so cl(P ) 6= K.

We now argue that the flat F ′ = cl(F ∪ {a} ∪ P ) decomposes M . Clearly F ′ 6= ∅,
and the fact that cl(P ) 6= K implies that F ′ 6= G. Consider a coset C of F ′. We have
C = [F ′] + u = [(F ∪ (F +B))] + [cl(P )] + u for some u ∈ G\F ′; since K contains a flat
that is maximally disjoint from F ′, we can take u ∈ K\ cl(P ).

The set C0 = [cl(P )] + u is a coset of cl(P ) in K, so is contained in either Q or R.
Therefore C ⊆ [F ∪ (F +B)] + Z for some Z ∈ {Q,R}. Now

[F ∪ (F +B)] + Z =
⋃
z∈Z

(([F ] + z) ∪ ((F +B) + z)) .

If Z = Q then each coset [F ] + z and (F + B) + z is full by definition of Q, so C is full.
Similarly, if Z = R then [F ] + z and (F +B) + z are empty for all z, so C is empty. Thus
F ′ is a decomposer of M , yielding a final contradiction.

At this point, we can easily reduce Theorem 3.3.1 to a finite computation, showing
that it suffices to verify the result in dimension at most 8. Although actually performing
this check computationally would likely be impossible, we include the argument here for
interest.
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Theorem 3.5.2. If Theorem 3.3.1 holds for all matroids of dimension at most 8, then it
holds in general.

Proof. Let M = (E,G) be a minimal counterexample to Theorem 3.5.2. Note that
dim(M) ≥ 9. Since M c is not triangle-free, there is a triangle T ⊆ G\E. Since M is
not a PG-sum, there is a plane P for G for which M |P is not a PG-sum by Lemma 3.2.2.
Since M /∈ E3, there is a plane Q of G for which |E ∩Q| is odd.

Note that T ∪ P ∪Q is contained in a flat F of dimension at most 2 + 3 + 3 = 8. Let
H be a hyperplane of G containing F . The existence of T, P and Q certifies that (M |H)c

is not triangle-free, and that M |H is not even-plane or a PG-sum; since M |H is not a
counterexample, it follows that M |H has a decomposer F . Theorem 3.5.1 thus implies
that M has a decomposer, contrary to assumption.

3.6 The Main Theorem

In this section, we finally prove Theorem 3.3.1 in its full generality. The strategy is an
adaptation of the proof of Theorem 3.5.2, where we reduce the size of the base case from
8 to something more manageable. The 8 appears in the argument above because, naively,
if a matroid is not in one of our three basic classes, then it contains a certificate of this
fact in dimension at most 8. Our argument below is essentially reducing the size of such a
certificate in the important cases.

Recall that M5,3 is the three-dimensional matroid with five elements. This matroid is
of particular interest at this point because it is neither even-plane nor a PG-sum, so any
matroid having an induced M5,3-restriction belongs to neither of these two basic classes.

Lemma 3.6.1. Let M = (E,G) be a claw-free matroid and let H be a hyperplane of G
for which M |H is a strict PG-sum such that M |H /∈ E3 and (M |H)c is not triangle-free.
Then either

• M has an induced M5,3-restriction,

• M is a strict PG-sum, or

• M has a decomposer.

Proof. Suppose that none of the conclusions hold. Let K0, K1 be the disjoint nonempty
flats of H whose disjoint union is E∩H. If one of the Ki has dimension 1, then since M |H
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is strict, the other is a hyperplane of H, which meets every triangle of H; this contradicts
the hypothesis that H\E contains a triangle. Therefore each Ki has dimension at least 2.
If they both have dimension 2 then M |H ∈ E3; thus K0 or K1 has dimension at least 3,
and therefore dim(H) ≥ 5 and dim(G) ≥ 6.

Since M has no decomposer, there exists a ∈ E\H. Let X1 = (a + E) ∩ H and
X0 = H\X1. Think of the indices of X0 and X1 as belonging to Z2.

Since M has no induced M5,3-restriction, no plane P of G contains precisely five ele-
ments of E. For every triangle T of H, the plane cl(T ∪{a}) contains exactly 1 + |T ∩E|+
|T ∩X1| elements of E, so we have

3.6.1.1. |T ∩ E|+ |T ∩X1| 6= 4 for every triangle T of H.

For any triangle T of Ki, it follows that |T ∩X1| 6= 1; therefore

3.6.1.2. For each i ∈ {0, 1} the set X0 ∩Ki is a flat of Ki.

This also imposes structure on the elements of K0 +K1.

3.6.1.3. For each i, j ∈ Z2 we have (Xi ∩K0) + (Xj ∩K1) ⊆ X1+i+j.

Subproof: Let x ∈ K0∩Xi and y ∈ K1∩Xj and x+y ∈ X`, where ` ∈ Z2. If i = j = 0 then,
since {a, x, y} is not a claw, we have a + x + y ∈ E and so ` = 1. Otherwise the triangle
T = {x, y, x+ y} satisfies |T ∩E| = 2 and 1 ≤ |T ∩X1| ≤ 3, so since |T ∩E|+ |T ∩X1| 6= 4
we have |T ∩X1| odd. It follows that i + j + ` = 1 in Z2 and so ` = 1 + i + j, giving the
claim. �

3.6.1.4. For each i ∈ {0, 1}, either Ki ⊆ X0 or |Ki ∩X0| = 1.

Subproof: Suppose first that Ki ⊆ X1. If K1−i ⊆ X0 then by 3.6.1.3 we have K0+K1 ⊆ X0,
and it follows that E is the union of the disjoint flats cl(Ki∪{a}) and K1−i, so is a PG-sum,
contrary to assumption. If there is some v ∈ K1−i ∩ X1, then let T = {u1, u2, u3} be a
triangle of Ki. We have T +v ⊆ X1 by 3.6.1.3, so now the triangle T ′ = {u2, u1 +v, u3 +v}
satisfies |T ′ ∩ E| = 1 and T ′ ⊆ X1, contradicting 3.6.1.1. Therefore X0 ∩Ki is nonempty
for both i.

If the conclusion fails, then there exist z1, z2 ∈ Ki ∩ X0 and v ∈ Ki ∩ X1; since
Ki−1 6⊆ X1 there also exists y ∈ K1−i ∩X0. Since X0 ∩Ki is a flat we have z1 + z2 ∈ X0

and v + z1 + z2 ∈ X1. By 3.6.1.3 we have y + z2 ∈ X1 and y + v + z1 + z2 ∈ X0. Now
{z1 + v, a+ y + z2, a+ v} is a claw, a contradiction. �
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3.6.1.5. |Ki ∩X0| = 1 for both i.

Subproof: If not, then there is some i ∈ {0, 1} for which Ki ⊆ X0 by 3.6.1.4.

If K1−i ⊆ X0, then 3.6.1.3 implies that K0 +K1 ⊆ X1. Since the dimensions of K0 and
K1 are at least 2 and sum to at least 5, we may assume by symmetry that dim(K1) ≥ 3.
Let {x1, x2} ⊆ K0 and {y1, y2, y3} ⊆ K1 be linearly independent sets. Using K0 +K1 ⊆ X1

together with K0 +K1 ⊆ G\E, the set

{a+ x1 + y1 + y3, a+ x2 + y2 + y3, a+ x1 + x2 + y1 + y2 + y3}

is a claw, giving a contradiction.

Otherwise, the set K1−i ∩ X0 has size 1 by 3.6.1.4; let w be its element. Now 3.6.1.3
gives X1 = (K1−i − {w}) ∪ (Ki + w) and so

E = Ki ∪ (Ki + a+ w) ∪K1−i ∪ (K1−i + a+ w)

which implies that E + a+ w = E, and so {a+ w} decomposes M , a contradiction. �

Assume now by symmetry that dim(K1) ≥ 3; thus K1 ∩ X1 contains a triangle T =
{x, y, x+y}. Let u ∈ K0∩X1; now u+T ⊆ X1 by 3.6.1.3. Therefore the plane cl({a, x, y+
u}) contains exactly five elements of E, giving a contradiction.

We now restate and prove Theorem 3.3.1.

Theorem 3.6.2. If M is a claw-free matroid, then either

• M is even-plane,

• M c is triangle-free,

• M is a strict PG-sum, or

• M has a decomposer.

Proof. Let M = (E,G) be a counterexample of smallest possible dimension. Clearly
dim(M) ≥ 3, since otherwise M ∈ E3. It is easy to check the following:

3.6.2.1. Every 3-dimensional, odd-sized claw-free matroid has a one-element decomposer.
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This gives dim(M) ≥ 4. Also observe that for every hyperplane H of G, the matroid
M |H has no decomposer, as otherwise we obtain a contradiction from Theorem 3.5.1.

Since M /∈ E3, there is a plane P of G for which |P ∩ E| is odd, and since M c is not
triangle-free, there is a triangle T ⊆ G\E. Choose P and T so that their intersection is as
large as possible.

3.6.2.2. dim(M) = 5.

Subproof: Suppose not, so either dim(M) = 4 or dim(M) ≥ 6. If dim(M) = 4, then P is a
hyperplane of G, and 3.6.2.1 implies that M |P has a decomposer, giving a contradiction.

Therefore dim(M) ≥ 6. Let H be a hyperplane of G containing P ∪T . By construction
the matroid M |H is not even-plane, while (M |H)c contains a triangle; since M |H has no
decomposer but is not a counterexample, it is a strict PG-sum. Since M is not a strict
PG-sum and has no decomposer, Lemma 3.6.1 implies that M has a M5,3-restriction M |P ′.
Let H ′ be a hyperplane of G containing T and P ′. Now the existence of P ′ certifies that
M |H ′ /∈ E3 and M |H ′ is not a PG-sum, and T certifies that (M |H ′)c is not triangle-free.
Since M |H ′ has no decomposer, this contradicts the minimality in the choice of M . �

3.6.2.3. P ⊆ E.

Subproof: We first argue that P ∩ T is empty. If P ∩ T 6= ∅ then dim(cl(P ∪ T )) ≤ 4; let
H be a hyperplane containing P ∪ T . Since M |H is not a counterexample, but M |H /∈ E3
while T ⊆ H\E and M |H has no decomposer, we conclude that M |H is a strict PG-sum.

However, for each 4-dimensional strict PG-sum, the ground set is either the disjoint
union of an element and a hyperplane, or of two triangles. If M |H has the former structure
then every triangle of H intersects the hyperplane, contradicting the existence of T . If M |H
has the latter structure, then every plane of H has odd intersection with each of the two
triangles so has even intersection with E; this contradicts the existence of P .

Therefore P ∩T is empty. We now argue that P ⊆ E. If not, let v ∈ P\E. If u+v /∈ E
for some u ∈ T , then T ′ = {u, v, u + v} is a triangle contained in G\E that intersects P
in more elements than T does; this contradicts the choice of T and P . Thus v + T ⊆ E.
But this implies that cl(T ∪ {v})∩E = v+ T and so M has a claw, a contradiction. Thus
P ⊆ E. �

Since T ⊆ G\E and P ⊆ E, we have T ∩ P = ∅ and so the fact that dim(G) = 5
implies that G = cl(P ∪T ). Let T = {u1, u2, u3} and for each u ∈ T , let Au = P ∩ (u+E).
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3.6.2.4. Au1∆Au2∆Au3 = P , and each of Au1 , Au2 , Au3 is either a triangle of P or equal
to P .

Subproof: If the first conclusion fails, then there is some v ∈ P for which |{u ∈ T : v ∈ Au}|
is even. Then the plane Q = cl({v} ∪ T ) has odd intersection with E and intersects T ,
contradicting the choice of P and T .

To see the second conclusion, it suffices to show that each triangle T ′ of P has odd
intersection with Au; indeed, if |T ′ ∩Au| is even, then the plane P ′ = cl(T ′ ∪ {u}) has odd
intersection with E and also intersects T ; this contradicts the choice of P and T . �

If at least two of the sets Au are equal to P (say the first two), then Au3 = P∆P∆P = P
and so E = G\T which implies that T decomposes M , a contradiction.

If exactly one of the Au (say Au1) is equal to P , then Au2 and Au3 are triangles with
symmetric difference P∆P = ∅, so Au2 = Au3 = T ′ for some triangle T ′ of P . It follows
that

E = ([u1] + P ) ∪ ({u2}+ T ′) ∪ ({u3}+ T ′) = ([u1] + P ) ∪ ({u2, u3}+ T ′).

Since u1 + [u1] = [u1] and u1 + {u2, u3} = {u2, u3}, this implies that u1 + E = E, and
therefore {u1} decomposes M , a contradiction.

Finally, if all three Au are triangles, then since they have symmetric difference P , it
is easy to see that they are exactly the three triangles T1, T2, T3 through some element
z of P . Let {y1, y2, y3} be a triangle of P not containing z for which yi ∈ Aui for each
i ∈ {1, 2, 3}, so by construction, if x ∈ P and i ∈ {1, 2, 3}, then ui + x ∈ E if and only if
x ∈ {z, yi, z + yi}. Using this, we see that {z + y2, u1 + z + y1, u3 + z} is a claw.

As discussed earlier, the above theorem, together with an inductive argument, implies
Theorem 3.1.1.

3.7 Corollaries

In the rest of this chapter, we prove some corollaries of Theorem 3.1.1 regarding claw-free
matroids.
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χ-boundedness

A class of graphs or matroids is χ-bounded if χ is bounded above by a function of ω. The
class of claw-free graphs is known to be χ-bounded, as shown in [53]. However, the same
cannot be said of claw-free matroids. Theorem 1.5.7 shows that the even-plane matroids
have arbitrarily large χ, and as even-plane matroids are claw-free while having ω < 3, this
implies that the claw-free matroids are not χ-bounded. However, as a consequence of our
structure theorem for claw-free matroids, we can prove that even-plane matroids present
the only obstruction to χ-boundedness; it turns out that the classes of PG-sums and the
matroids whose complements are triangle-free are in fact χ-bounded, and the ⊗ operation
behaves nicely. In fact, as soon as we exclude just one even-plane matroid, we obtain
χ-boundedness.

Theorem 3.7.1. If N is an even-plane matroid, then the class of N-free, claw-free ma-
troids is χ-bounded.

We will in fact show that for every N ∈ E3, the class of claw-free, N -free matroids
is χ-bounded by some function f that grows exponentially. A function f : Z≥0 → Z≥0 is
superadditive if f(x+ y) ≥ f(x) + f(y) for all x, y > 0.

Lemma 3.7.2. Let M be a class of matroids and let M′ be its closure under ⊗. If M
is χ-bounded, then so is M′. Moreover, if M is χ-bounded by a superadditive function f ,
then M′ is χ-bounded by f .

Proof. Let g be a function for which χ(M) ≤ g(ω(M)) for all M ∈ M. Define g′ by
g′(k) = g(k) for k ≤ 1, and g′(k) = max(g(k),max1≤i<k(g

′(i) + g′(k − i))) for all k > 1.
By construction we have g′(k) ≥ g(k) for all k ≥ 1, and g′ is superadditive. Since g ≤ g′,
the class M is χ-bounded by g′. Note also that if g is superadditive, then by induction it
follows that g = g′.

It now suffices to argue that M′ is χ-bounded by g′. Suppose not, and let M ∈ M′

have minimal dimension for which χ(M) > g′(ω(M)). If M ∈M we have a contradiction.
Otherwise, M = M1⊗M2 where M1,M2 ∈M′ of smaller dimension, and now Lemma 2.4.3
gives

χ(M) = χ(M1) + χ(M2)

≤ g′(ω(M1)) + g′(ω(M2))

≤ g′(ω(M1) + ω(M2)) = g′(ω(M)),

a contradiction.
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The above theorem allows us to reduce the problem to checking χ-boundedness within
each of the three basic classes of claw-free matroids. Let us argue that the class of com-
plements of triangle-free matroids is χ-bounded. We can do this in two ways. The second
method is more ideal as it gives a better bound. First, observe that if M c is triangle-free
then χ(M) is equal to dim(M) or dim(M)− 1. Hence, what we are trying to show is that
dim(M) is bounded by a function of ω(M). This is in fact a special case of a Ramsey
theorem for projective geometries; the following is a consequence of Corollary 2 of [31],
rephrased in our language.

Theorem 3.7.3 ([31]). For all s, t ≥ 0 there is an integer n = n(s, t) such that every
n-dimensional matroid M satisfies ω(M) ≥ s or ω(M c) ≥ t.

This theorem would suffice for the purpose of showing that the complements of triangle-
free matroids are χ-bounded. The methods used in [31], however, give an extremely large
value for n, even when t = 2. In order to obtain a more reasonable χ-bounding function,
we turn to a theorem of Sanders [50].

Theorem 3.7.4 ([50], Theorem 4.1). Let G ∼= PG(n − 1, 2), let X ⊆ [G], and let α =
|X|/2n. If α ≤ 1

2
, then X+X contains a subspace of [G] of dimension n−

⌈
n/log2

(
2−2α
1−2α

)⌉
.

Corollary 3.7.5. Let s ≥ 2 be an integer. If M = (E,G) is a matroid for which M c is
triangle-free and dim(M) ≥ 2s(s+ 1), then ω(M) ≥ s.

Proof. Let dim(M) = n. Suppose for a contradiction that ω(M) < s; Theorem 1.4.2
implies that |E| ≤ 2n−2n−s. If equality holds then M is an order-s Bose-Burton geometry
so G\E is a flat of dimension n−s ≥ 2 and thus contains a triangle, contrary to hypothesis.
Therefore |E| ≤ 2n − 2n−s − 1.

Let Ec = G\E. We have |Ec| = 2n − 1− |E| ≥ 2n−s. Let X be a 2n−s-element subset
of Ec; we have α = |X|/2n = 2−s ≤ 1

2
. Now

log2

(
2−2α
1−2α

)
= 1 + 1

ln(2)
ln(1 + 1

1/α−2) = 1 + 1
ln(2)

ln(1 + 1
2s−2)

Using ln(1 + x) ≥ x − 1
2
x2 and the fact that 1

2s−2 − 1
2(2s−2)2 ≥ 2−s for s ≥ 2, this gives

log2

(
2−2α
1−2α

)
≥ 1 + 1

ln(2)
2−s. By Theorem 3.7.4, the set X + X thus contains a subspace F

of dimension n− dn/(1 + 1
2s ln 2

)e. Using dxe ≤ x+ 1 we get

dim(F ) ≥ n− dn/(1 + 1
2s ln 2

)e ≥ n
2s ln 2+1

− 1 ≥ n
2s
− 1 ≥ s,

where we use 2s ln 2 + 1 ≤ 2s. But now F ⊆ Ec +Ec, so since Ec contains no triangle, we
have F ⊆ E. This contradicts the fact that ω(M) < s.
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In the language of Theorem 3.7.3, this result states that n(s, 2) ≤ (s + 1)2s. Let us
now complete the proof of Theorem 3.7.1. We restate it here with an explicit function f ,
which grows exponentially.

Theorem 3.7.6. Let N ∈ E3. The class of N-free, claw-free matroids is χ-bounded by the
function f(k) = (k + 2)2k+1 + k(dim(N) + 4).

Proof. Let M1 denote the class of N -free matroids in E3, let M2 denote the class of
matroids whose complement is triangle-free, and letM3 denote the class of PG-sums. Let
M′ =M1 ∪M2 ∪M3. By Theorem 3.1.1, every claw-free matroid M is obtained via the
⊗ operation from ‘basic’ matroids inM1,M2 orM3, and since all the basic matroids are
induced restrictions of M , if M is N -free, then so are all the basic matroids. Thus M lies
in the closure under ⊗ of M′.

The function h(k) = (k + 2)2k+1 is superadditive since

(x+ y + 2)2x+y+1 ≥ (x+ y + 4)2x+y ≥ (x+ 2)2x+1 + (y + 2)2y+1

for all x, y ≥ 1. Therefore f is superadditive as it is the sum of two superadditive functions.
By Lemma 3.7.2 it is thus enough to show thatM′ is χ-bounded by f . Indeed, if M ∈M1

then χ(M) ≤ dim(N) + 4 ≤ f(ω(M)) by Theorem 3.2.3. If M ∈ M2 with ω(M) = s,
then χ(M) ≤ dim(M) < 2s+1(s + 2) ≤ f(s) by Corollary 3.7.5. Finally, if M ∈ M3 then
χ(M) = ω(M) ≤ f(ω(M)) by Lemma 3.2.1; the theorem follows.

We can now characterise exactly which down-closed classes of claw-free matroids are
χ-bounded.

Corollary 3.7.7. If M is a class of claw-free matroids that is closed under taking induced
restrictions, then M is χ-bounded if and only if E3 6⊆ M.

Proof. If E3 ⊆M, then Theorem 1.5.7 implies thatM is not χ-bounded. Otherwise, there
is some N ∈ E3 with N /∈ M, so all matroids in M are N -free. Theorem 3.7.6 now gives
the result.

In order to extend the χ-boundedness result to It-free matroids for higher values of
t > 3, it will be necessary to consider generalisations of E3. In [46], Et is defined to be the
class of matroids whose t-dimensional restrictions have even-sized ground sets. A natural
starting point is to consider whether one can obtain a theorem similar to Theorem 3.2.3
for the class Et, t ≥ 4.
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Rough structure

Theorem 3.7.1 gives a description of claw-free matroids with bounded ω subject to the
exclusion of some even-plane matroid N ∈ E3. We can in fact more generally describe
claw-free matroids with bounded ω as in the following theorem (which does not assume
the exclusion of any even-plane matroid). Combined with Theorem 3.2.3, it implies The-
orem 3.7.1.

Theorem 3.7.8. For all s ≥ 1 there exists k ≥ 2 so that, if M is a claw-free matroid and
ω(M) ≤ s, then M ∼= M1⊗ · · ·⊗M2s+1, each of Mi either is even-plane, or has dimension
at most k.

Observe that the matroids described in the conclusion of the theorem must have
bounded ω as well. By Lemma 2.4.3, we have that ω(M1 ⊗M2) = ω(M1) + ω(M2) for all
matroids M1,M2. Since even-plane matroids have ω ≤ 2 while ω(N) ≤ dim(N) for each N ,
the matroids in the conclusion of the theorem above satisfy ω(M) ≤ (2s + 1)k. Hence we
can understand Theorem 3.7.8 to be a qualitative structure theorem for claw-free matroids
with bounded ω.

Proof. Let k = k(s) = 2s+1(s + 2) for each s. Recall that Lemma 2.4.4 shows that ⊗ is
associative. By Theorem 3.1.1, there is some t for which there are matroids M1, . . . ,Mt

with M ∼= ⊗ti=1Mi, for which each Mi is either an even-plane matroid, the complement
of a triangle-free matroid, or a strict PG-sum. By including dimension-zero matroids, we
may assume that t ≥ 2s+ 1; choose t so that if t > 2s+ 1, then t is as small as possible.

Each Mi that is not even-plane is either a strict PG-sum, or the complement of a
triangle-free matroid. It is clear that a strict PG-sum with ω ≤ s has dimension at most 2s.
If M c

i is triangle-free and ω(Mi) ≤ s, then by Corollary 3.7.5 we have dim(Mi) < 2s+1(s+2);
in either case, dim(Mi) ≤ k.

It remains to argue that t = 2s+ 1; suppose not. Using ω(N ⊗N ′) = ω(N) +ω(N ′), it
is routine to show by induction that ω(M) ≥ c, where c is the number of Mi that have a
nonempty ground set. Since ω(M) ≤ s, this implies that c ≤ s < 1

2
(t− 1). Therefore there

are two consecutive matroids Mi,Mi+1 that are both empty. But if this is the case, then
one could replace Mi,Mi+1 with the empty (and thus even-plane) matroid Mi ⊗Mi+1 in
the sequence to shorten its length, contradicting the minimality of t.

We also give an alternative version of the statement in Theorem 3.7.8.
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Theorem 3.7.9. For all s ≥ 1 there exists k ≥ 2 such that, for every claw-free matroid
M = (E,G) with ω(M) ≤ s, there is a flat F of G whose codimension is at most k, such
that M |F ∼= M1 ⊗ · · · ⊗M2s+1, where each of Mi is an even-plane matroid.

Observe that ω(M) ≤ ω(M |F ) + k for every codimension-k flat, so the outcome of this
theorem still certifies bounded ω as in Theorem 3.7.8.

Proof. Let s ≥ 1. Let k′ be the constant depending on s given by the previous theorem,
and let k = (2s + 1)k′. By the previous theorem we have M ∼= ⊗2s+1

i=1 Mi where each
Mi = (Ei, Gi) either has dimension at most k′ or is even-plane. For each 1 ≤ i ≤ 2s + 1,
let Fi = Gi if Mi is even-plane, and let Fi = ∅ otherwise. Let F = cl(∪iFi). By the second
part of Lemma 2.4.3 the matroid M |F ∼= M1|F1 ⊗ · · · ⊗M2s+1|F2s+1 where each Mi|Fi is
even-plane, and since dim(F ) =

∑2s+1
i=1 dim(Fi) ≥

∑2s+1
i=1 (dim(Gi)− k′) ≥ dim(M)− k, the

result follows.

Excluding anticlaws

As a final application of our structure theorem for claw-free matroids, we will give a
structure theorem for excluding claws as well as anticlaws. An anticlaw is simply the
complement of a claw. We say that a matroid M = (E,G) is a target if there are distinct
flats F0 ⊂ . . . ⊂ Fk of G for which E is the union of Fi+1\Fi over all even i < k. Note that
F0 is allowed to be empty.

Theorem 3.7.10. A matroid M is claw-free and anticlaw-free if and only if M is a target.

Let us first show that targets are closed under some basic properties.

Lemma 3.7.11. The class of targets is closed under taking induced restrictions, comple-
mentations, and the ⊗ operation.

Proof. We first observe that if F0 ⊆ . . . ⊆ Fk are flats of G, not necessarily distinct, for
which E is the union of Fi+1\Fi over all even i < k, then (E,G) is a target. This holds
because, given such a sequence, we can remove consecutive pairs of equal flats to obtain
such a sequence where the flats are distinct, certifying that M = (E,G) is a target. Thus
we can allow the Fi in the definition of target to be equal. It follows from this fact that
targets are closed under taking induced restrictions and under complementation (consider
the sequence (∅, F0, . . . , Fk, G) if k is odd and (∅, F0, . . . , Fk−1, G) if k is even).
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Finally, suppose that M1 = (E1, G1) and M2 = (E2, G2) are targets; let F0 ⊆ . . . ⊆ Fs
be flats of G1 and K0 ⊆ . . . ⊆ Kt be flats of G2 certifying this. By possibly deleting the
last element of the first sequence, we may assume that s is odd. Let K ′i = G1 ⊕ Ki for
each i ∈ {1, . . . , t}, so G1 ⊆ K ′0 and K ′0, . . . , K

′
t is a nested sequence of flats of G1 ⊕G2. If

M = (E,G1 ⊕G2) = M1 ⊗M2, then

E = E1 ∪ ([G1] + E2)

= ∪i(Fi+1\Fi) ∪ ([G1] + (∪j(Kj+1\Kj)))

= ∪i(Fi+1\Fi) ∪
(
∪j(K ′j+1\K ′j)

)
,

where the unions are taken over all even i and j with i < s and j < t. Now, since s is odd
while Fs ⊆ G1 ⊆ K ′1, the sequence (F0, F1, . . . , Fs, K

′
0, . . . , K

′
t) certifies that M is a target,

as required.

We can now prove Theorem 3.7.10.

Proof. It is easy to see that a claw is not a target. By Lemma 3.7.11, targets are closed
under complementation and induced restrictions; it follows that targets are claw-free and
anticlaw-free. It remains to show that claw-free, anticlaw-free matroids are targets; suppose
otherwise and let M = (E,G) be a counterexample of smallest possible dimension.

By minimality, M is full-rank, and since M is claw-free and anticlaw-free, both E and
G\E contain triangles, as otherwise we can apply Lemma 1.5.6 to M or M c to conclude that
M is a target, giving a contradiction. By Theorem 3.3.1 and the fact that G\E contains a
triangle, M is either even-plane, a strict PG-sum, or obtained from two matroids of smaller
dimension using the ⊗ operation. Let T be a triangle contained in E.

Suppose first that M is even-plane. Let P be the collection of planes of G containing
T . For each P ∈ P , we have |E ∩ P | ∈ {4, 6}, and since E ∩ P contains a triangle but
M |P is not an anticlaw, we have |E ∩ P | = 6 and |E ∩ (P\T )| = 3. Therefore

|E| = |T |+
∑
P∈P

|E ∩ (P\T )| = 3(1 + |P|) = 3 · 2dim(M)−2.

But E contains no plane of G, so Theorem 1.4.2 implies that M is a Bose-Burton geometry
of order 2 and is thus a target, giving a contradiction.

Suppose that M is a strict PG-sum, so E is the disjoint union of two nonempty flats F1

and F2. One of these flats, say F1, must contain T , but then M | cl(T ∪ {v}) is a anticlaw
for each v ∈ F2, a contradiction.
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Finally, suppose that M ∼= M1 ⊗M2 for matroids M1,M2 of smaller dimension than
M . By minimality, both M1 and M2 are targets; by Lemma 3.7.11, it follows that M is a
target, giving a contradiction.

68



Chapter 4

I4-free and Triangle-free Matroids

This chapter is based on joint work with Peter Nelson [44].

4.1 Introduction

We now return to Conjecture 1.5.8, restated below.

Conjecture 4.1.1 ([46]). For all s ≥ 1, there exists k such that if M = (E,G) has no
induced Is-restriction or triangle, then χ(M) ≤ k.

The cases s ≤ 3 are straightforward. Our main result in this chapter is a full structure
theorem for I4-free, triangle-free matroids. As a corollary of our exact structure theorem,
it will follow that I4-free, triangle-free matroids have χ at most 2, answering Conjecture
1.5.8 in the case s = 4.

We need a few definitions to state our result. Given a matroid M = (E,G) and a
hyperplane H, we say that M is the 0-expansion of M |H if E ⊆ H; this in particular
implies that M is rank-deficient. We say that M is the 1-expansion of M |H if there exists
x ∈ G\H and a hyperplane H0 ⊆ H for which E∩H ⊆ H\H0 and E = (E∩H)∪(x+[H0]).
In the definition of 1-expansions, it is required M |H have critical number at most 1; we
will later verify that this means that M has critical number 1.

We write AG7(n− 1, 2) for the (n + 1)-dimensional matroid M = (E,G) with nested
hyperplanes H0 ⊆ G0 ⊆ G and x ∈ G\G0, y ∈ G0\H0 such that E = (G0\H0)4{x, y, x +
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y}. We note that AG7(n− 1, 2) is simply the series extension of AG(n− 1, 2) in standard
matroid terminology.

Our main result of this chapter is as follows.

Theorem 4.1.2. A full-rank matroid M = (E,G) is I4-free and triangle-free if and only
if either

• there exist nested flats H0 ⊆ · · · ⊆ Hl with Hl = G and dim(H0) = 1 so that M |Hi

is either the 0-expansion or 1-expansion of M |Hi−1 for i = 1, . . . , l, or

• M ∼= Dk(AG7(n− 1, 2)) for some n ≥ 3 and k ≥ 0.

The first outcome in Theorem 4.1.2 results in a class of matroids with critical number
≤ 1, whereas the last outcome consists of matroids with critical number 2. It is also worth
noting that the last outcome is a rather restrictive class of matroids; up to isomorphism,
the number of r-dimensional matroids in the latter case is r − 3 for any given dimension
r ≥ 4. We remark that Theorem 4.1.2 can also be phrased as a constructive theorem
using appropriately defined operations that correspond to the notions of 0-expansions and
1-expansions.

The proof of Theorem 4.1.2 falls in two parts, based on the existence of a C5-restriction.
By Lemma 2.2.3, an I4-free, triangle-free matroid M is affine if and only if it does not con-
tain a C5-restriction. As we will see, having a C5-restriction greatly restricts the structure
of I4-free, triangle-free matroids.

The case when M is affine is more difficult. In fact, we will first consider the class of
AI4-free matroids; we say that a matroid M = (E,G) is AI4-free if for any four elements
x1, x2, x3, x4 ∈ E for which rank(x1, x2, x3, x4) = 4, there exists some i ∈ {1, 2, 3, 4} such
that

∑
j 6=i xj ∈ E. It turns out that if M = (E,G) is AI4-free, then we can always find a

special hyperplane H of G such that either E or G\E is contained in either H or G\H.
Once we understand this feature of AI4-free matroids, it will be straightforward to derive
the outcome corresponding to the affine matroids in Theorem 4.1.2.

One may hope for a similar result for I5-free, triangle-free matroids, yet it seems much
more difficult. It is still the case that the only obstruction to an I5-free, triangle-free
matroid being affine is the existence of a C5-restriction. In a later chapter, we will consider
an extremal problem for I5-free, triangle-free matroids, in which we will uncover some
potentially useful information about the structure of I5-free, triangle-free matroids with a
C5-restriction.
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H

H0

w

Figure 4.1: In this figure, M = (E,G) is the 1-expansion of M |H for hyperplane H ⊆ G.
This means that there exists a hyperplane H0 of H and w ∈ G\H for which E∩H ⊆ H\H0

and E = (E ∩H) ∪ (w + [H0]).

In order to prove Conjecture 1.5.8, it is likely that we will need a different approach. In
a later chapter, we prove a weakening of Conjecture 1.5.8 using an additive combinatorial
method which, we hope, will shed light on the types of techniques required for proving
Conjecture 1.5.8.

4.2 Preliminaries

Expansions

Recall that, given a matroid M = (E,G) and a hyperplane H, M is the 0-expansion of
M |H if E ⊆ H. The following is immediate.

Lemma 4.2.1. If M = (E,G) is the 0-expansion of M |H for some hyperplane H ⊆ G,
then the following hold.

• If M |H is It-free for t ≥ 1, then M is It-free, and

• χ(M) = χ(M |H).

Recall that M = (E,G) is the 1-expansion of M |H if there exists w ∈ G\H and a
hyperplane H0 ⊆ H for which E ∩H ⊆ H\H0 and E = (E ∩H) ∪ (w + [H0]). See Figure
4.1.
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Lemma 4.2.2. If M = (E,G) is the 1-expansion of M |H for some hyperplane H ⊆ G,
then the following hold.

• If M |H is It-free for t ≥ 4, then M is It-free, and

• χ(M) = 1.

Proof. By definition there exists w ∈ G\H and a hyperplane H0 ⊆ H for which E ∩H ⊆
H\H0 and E = (E ∩H) ∪ (w + [H0]).

Suppose for a contradiction that M |H is It-free but M is not, so that there exists
F = {v1, · · · , vt} ⊆ E for which M | cl(F ) ∼= It. Note that for any distinct three elements
x, y, z ∈ (w+[H0]), we have that x+y+z ∈ (w+[H0]) ⊆ E, so |(w+[H0])∩F | ≤ 2. Hence
|H ∩ F | ≥ 2. Let x, y ∈ H ∩ F . Also, note that we may pick some z ∈ (w + [H0]) ∩ F ;
otherwise cl(F ) ⊆ H but M | cl(F ) ∼= It, contrary to M |H being It-free. But then x+y+z ∈
w + [H0] ⊆ E, a contradiction.

Note that |M | > 0, so χ(M) > 0. On the other hand, pick any x ∈ H\H0 and let
H ′ = cl(H0 ∪ {w + x}). Then H ′ ∩ E = ∅ and H ′ is a hyperplane. So χ(M) = 1.

Series Extension of Affine Geometries

Let n ≥ 3. Then recall that AG7(n − 1, 2) is the (n + 1)-dimensional matroid M =
(E,G) with nested hyperplanes H0 ⊆ G0 ⊆ G and x ∈ G\G0, y ∈ G0\H0 for which

E = (G0\H0)4{x, y, x + y}. Note that when n = 3, then AG7(n − 1, 2) is simply the
matroid C5.

In standard matroid terminology, {x, x+y} is in fact a series pair, meaning that neither
x nor x+ y is a coloop and any basis of E must include either x or x+ y, and the matroid

AG7(n− 1, 2) is a series extension of AG(n− 1, 2), meaning when we contract either the
element x or x+ y, the resulting matroid is in fact AG(n− 1, 2). In the special case n = 3,
i.e., when the matroid is C5, then any two elements in E form a series pair. However, when
n ≥ 4, then {x, x+ y} is the unique series pair.

Note that AG7(n − 1, 2) always contains an induced C5-restriction. It is routine to

check that AG7(n − 1, 2) is It-free for any t ≥ 4, triangle-free, and has critical number
exactly 2.

Lemma 4.2.3. Let M = AG7(n− 1, 2) where n ≥ 3. The following holds.
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• M is It-free for t ≥ 4,

• M is triangle-free and

• M has critical number 2.

Proof. Write M = (E,G) with nested hyperplanes H0 ⊆ G0 ⊆ G and x ∈ G\G0, y ∈
G0\H0 for which E = (G0\H0)4{x, y, x + y}. Note that, given three distinct elements
t1, t2, t3 ∈ G0\H0, t1 + t2 + t3 ∈ G0\H0.

To show that M is It-free for every t ≥ 4, for a contradiction let F ⊆ G be a t-
dimensional flat such that M |F ∼= It. If x, x + y ∈ F ∩ E, then we may take any two
t1, t2 ∈ G0 ∩ E ∩ F so that x + (x + y) + t1 + t2 = y + t1 + t2 ∈ E, a contradiction. If
only one of x ∈ F ∩ E or x + y ∈ F ∩ E holds, then without loss of generality suppose
that x ∈ F ∩ E, and pick any three t1, t2, t3 ∈ G0 ∩ E ∩ F ; if t1 + t2 + t3 ∈ E, then it is a
contradiction, and if t1 + t2 + t3 /∈ E, then t1 + t2 + t3 = y, and hence x+ t1 + t2 + t3 = x+y,
contradicting the linear independence of E ∩ F . If x, x + y /∈ E ∩ F , then pick any two
t1, t2 ∈ G0∩E∩F ; we may then pick t3 ∈ (G0∩E∩F )\{t1 + t2 +y} so that t1 + t2 + t3 6= y
and hence t1 + t2 + t3 ∈ E, again a contradiction. Thus we obtain contradictions in all
cases and we conclude that M is It-free for every t ≥ 4.

Let T be a two-dimensional flat of G so that |T ∩ E| = 3. If T ⊆ G0, then since H0

is a hyperplane of G0, T ∩ H0 6= ∅; since H0 ∩ E = ∅, |T ∩ E| < 3, a contradiction. So
T 6⊆ G0, so that |T\G0| = 2. Since E\G0 = {x, x + y}, it follows that x, x + y ∈ T ; but
then y /∈ E, so |T ∩ E| < 3, again a contradiction. So M is triangle-free.

Finally, note that M contains an induced C5-restriction (take {x, x+y, t1, t2, y+t1+t2}
for any two distinct t1, t2 ∈ G0 ∩ E), so that χ(M) > 1. On the other hand, H0 has
dimension dim(M)− 2 and H0 ∩ E = ∅, so χ(M) ≤ 2. Hence χ(M) = 2.

AI4-freeness

Given a matroidM = (E,G), recall thatM isAI4-free if for any four elements x1, x2, x3, x4 ∈
E for which rank(x1, x2, x3, x4) = 4, there exists some i ∈ {1, 2, 3, 4} such that

∑
j 6=i xj ∈ E.

We consider the class of AI4-free matroids as a way to understand the affine I4-free
matroids. If we already know that a matroid M is affine, then the only information about
I4-freeness that is useful is how the sums of three elements in E behave, since the sums of
even numbers of elements in E are guaranteed to be nonelements of E by the affineness.
Namely, if M is affine, then M is I4-free if and only if it is AI4-free.

It is useful to note that AI4-freeness is preserved under complementation.
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Lemma 4.2.4. A matroid M = (E,G) is AI4-free if and only if M c is AI4-free.

Proof. Due to symmetry, it suffices to prove the backward direction. We prove its contra-
positive. Suppose that M is not AI4-free, so that there exists B = {x1, x2, x3, x4} ⊆ E,
which is independent and such that

∑
j 6=i xj /∈ E for all 1 ≤ i ≤ 4. Then consider the

independent set B′ = {w1, w2, w3, w4} of G\E where wi =
∑

j 6=i xj. Then
∑

j 6=iwj ∈ E for
1 ≤ i ≤ 4. Hence M c is not AI4-free.

We will also need the following easy lemma.

Lemma 4.2.5. If a matroid M = (E,G) is AI4-free and triangle-free, then M is affine.

Proof. As M is AI4-free, it contains no induced odd circuit of length 5 or more. Addition-
ally M is triangle-free by assumption. Therefore M contains no induced odd circuit and
is affine by Theorem 2.2.2.

Checking I4-freeness

In this chapter, we will often claim that a given set I = {x1, x2, x3, x4} ⊆ E is an induced
I4-restriction for a matroid M = (E,G). As most of the matroids we study in this chapter
are triangle-free, this amounts to checking that I is an independent set in [G] and that the
sums of three and four elements of I are nonelements of E. The following is immediate.

Lemma 4.2.6. If M = (E,G) is triangle-free and x1, x2, x3, x4 ∈ E with (
∑4

i=1 xi +
{x1, x2, x3, x4, 0}) ∩ (E ∪ {0}) = ∅, then M | cl(x1, x2, x3, x4) ∼= I4.

While we will not quote this lemma explicitly, it will be implicit when we assert that a
given set I = {x1, x2, x3, x4} is an induced I4-restriction.

4.3 The Non-affine Case

In this section, we will consider the non-affine I4-free, triangle-free matroids. The goal will
be to prove the following. For the purpose of showing that there exists a constant c such
that the I4-free, triangle-free matroids have χ at most c, this is in fact the only theorem
we need.
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Theorem 4.3.1. If M = (E,G) is an I4-free, triangle-free matroid, then either M is

affine, or (E, cl(E)) ∼= Dk(AG7(n− 1, 2)) for some n ≥ 3 and k ≥ 0.

The proof is by induction on dim(M). We will first prove the following lemma, which
describes the case when we can find a hyperplane H such that M |H contains an induced
D(C5)-restriction. This condition turns out to be very strong, as it implies that the matroid
M is a doubling.

Lemma 4.3.2. Let M = (E,G) be an I4-free, triangle-free matroid with a flat F for which
M |F ∼= C5. Let w ∈ G\(F ∪ E). If M | cl(F ∪ {w}) is the doubling of M |F by w, then M
is the doubling by w.

Proof. If dim(M) = 5, then the result follows trivially, so suppose that dim(M) > 5.

Suppose for a contradiction that M is not the doubling by w. This implies that there
exists z ∈ E\ cl(F ∪ {w}) such that w + z /∈ E. We will now show that the 6-dimensional
matroid M | cl(F ∪ {w, z}) contains an induced I4-restriction.

4.3.2.1. Let {x1, x2, x3} be any three distinct elements of F ∩E. Then x1+x2+x3+z /∈ E.

Subproof: Suppose not, so that x1 + x2 + x3 + z ∈ E; then {x1 + x2 + x3 + z, w + x1, w +
x2, w + x3} is an induced I4-restriction. �

We now fix a linearly independent set {x1, x2, x3, x4} of F∩E. Let x5 = x1+x2+x3+x4,
so that F ∩ E = {x1, x2, x3, x4, x5}. We may apply the above claim with {x1, x2, x3},
{x1, x4, x5}, {x2, x4, x5} and {x3, x4, x5} to obtain that x1 + x2 + x3 + z, x2 + x3 + z, x1 +
x3 + z, x1 + x2 + z /∈ E. Since x1 + x2 + x3 /∈ E, this implies that {x1, x2, x3, z} is an
induced I4-restriction, a contradiction. This completes the proof.

The next lemma describes the situation in which there is a hyperplane H of G such

that M |H is AG7(n− 1, 2). This case turns out to be harder and requires a detailed case
analysis.

Lemma 4.3.3. Let M = (E,G) be an n-dimensional, I4-free, triangle-free matroid, n ≥ 5.

If G has a hyperplane H so that M |H ∼= AG7(n− 3, 2), then either

• E ⊆ H,

• M is the doubling of M |H, or

75



• M ∼= AG7(n− 2, 2).

Proof. Since M |H ∼= AG7(n− 3, 2), there exist a hyperplane F of H, a hyperplane F ′ of
F , and elements W = {w0, w1} ⊆ (H ∪ E)\F so that M |H = (W ∪ (y + F ′), H) where
w0 + w1 = y. We consider the following cases.

Case 1: There exists z ∈ E\H for which y + z ∈ E.

We will make a series of straightforward observations to help understand the structure
of M .

4.3.3.1. (z + F ) ∩ E = {y + z}

Subproof: If x ∈ F\(F ′ ∪ {y}), then clearly x+ z /∈ E as {x, z, x+ z} would be a triangle.
If there exists x ∈ F ′ such that x+ z ∈ E, then {y + z, x+ z, x+ y} is a triangle. �

4.3.3.2. For any triangle T = {x0, x1, x0 + x1} ⊆ F ′ and w ∈ W , |(z + w + {x0 + y, x1 +
y, x0 + x1}) ∩ E| > 0.

Subproof: If not, then {w, z, x0 + y, x1 + y} is an induced I4-restriction. �

4.3.3.3. For any distinct x, x′ ∈ F ′, |{x+ z + w0, x
′ + z + w1} ∩ E| < 2.

Subproof: If not, then {x+ z + w0, x
′ + z + w1, x+ x′ + y} is a triangle. �

When dim(F ′) > 2 we obtain the following observation.

4.3.3.4. Provided that dim(F ′) > 2, if there exists w ∈ W for which x0 + w + z ∈ E for
some x0 ∈ F ′, then F ′ + w + z ⊆ E.

Subproof: Let x ∈ F ′\{x0}. Since dim(F ′) > 2, we may select x1, x2 ∈ F ′ such that
x0 /∈ cl({x1, x2}) and x = x0 + x1 + x2. Then the set {z, x0 + w + z, x1 + y, x2 + y} is an
induced I4-restriction if x+ w + z /∈ E. Therefore F ′ + w + z ⊆ E. �

At this point, it is helpful to consider the cases when dim(F ′) > 2 and dim(F ′) = 2
separately.

Case 1.1: dim(F ′) > 2.

We claim that M is the doubling of M |H. By 4.3.3.2, there exists x ∈ F ′ and w ∈ W for
which x+z+w ∈ E, and by 4.3.3.4, w+z+F ′ ⊆ E. By 4.3.3.3, (F ′+(y+w)+z)∩E = ∅.

76



Hence, along with 4.3.3.1, we have that E\H = {z, y + z} ∪ (w + z + F ′). Recall that
E ∩H = {w,w + y} ∪ (y + F ′). Therefore we have

E = (E ∩H) ∪ (E\H)

= {w,w + y} ∪ (y + F ′) ∪ {z, y + z} ∪ (w + z + F ′)

= [y + w + z] + ({w,w + y} ∪ (y + F ′)) = [y + w + z] + (E ∩H).

Since y + w + z /∈ E, we conclude that M is the doubling of M |H.

Case 1.2: dim(F ′) = 2.

By 4.3.3.2, there exists x ∈ F ′ such that x + z + w ∈ E for some w ∈ W . Write
F ′ = cl(x, x′) for x′ ∈ F ′. Note that x + z + w ∈ E implies by 4.3.3.3 that (z + y + w +
(F ′\{x})) ∩ E = ∅.

If x + z + y + w ∈ E, then 4.3.3.3 gives that (z + w + (F ′\{x})) ∩ E = ∅. Hence
E\H = {z} ∪ (z + {y, x+ w, x+ y + w}). Therefore

E = (E ∩H) ∪ (E\H)

= {w, y + w} ∪ (y + {x, x′, x+ x′}) ∪ {z} ∪ (z + {y, x+ w, x+ y + w})
= {y + x′, y + x+ x′} ∪ (x+ cl(y, w + z, x+ z)).

Since F ′′ = cl(y, w+ z, x+ z) satisfies F ′′ ∩E = ∅, it follows that M ∼= AG7(n− 2, 2)

We may therefore assume that x + z + y + w /∈ E. But then repeated application of
4.3.3.3 implies that x + w + F ′ ⊆ E. The analysis is then identical to Case 1.1. This
concludes Case 1.

Case 2: There exist no z ∈ G\H for which {z, y + z} ⊆ E.

Suppose that one of the conclusions, E ⊆ H, does not hold. We may select z ∈ E\H.

Again, we collect a series of straightforward facts to help understand the structure of
M .

4.3.3.5. For any triangle T ⊆ F ′, (T + z) ∩ E 6= ∅.

Subproof: If not, then (y + T ) ∪ {z} is an induced I4-restriction. �

4.3.3.6. For any x ∈ F ′, x+ z /∈ E if and only if (x+ z+W )∩E 6= ∅. Moreover, in this
case we have |(x+ z +W ) ∩ E| = 1.
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Subproof: To show the forward statement, if (x+ z +W )∩E = ∅, {x+ y, w0, w1, z} is an
induced I4-restriction.

For the reverse direction, note that if x+ z ∈ E, then {x+ z, x+w+ z, w} would be a
triangle for some w ∈ W .

Finally, since there exists no t ∈ G\H for which {t, y+ t} ⊆ E, it follows that (x+ z+
W ) ∩ E 6= ∅ if and only if |(x+ z +W ) ∩ E| = 1. �

4.3.3.7. For any distinct x, x′ ∈ F ′, |{x+ w0 + z, x′ + w1 + z} ∩ E| < 2.

Subproof: If not, then {x+ w0 + z, x′ + w1 + z, x+ x′ + y} is a triangle. �

Let us write X0 = {x ∈ F ′ | x + w0 + z ∈ E}, X1 = {x ∈ F ′ | x + w1 + z ∈ E} and
X2 = {x ∈ F ′ | x + z ∈ E}. By 4.3.3.5, X2 6= ∅, and 4.3.3.6 implies that (X0, X1, X2)
partitions F ′. Moreover, by 4.3.3.7, if |Xi| > 0 for some i ∈ {0, 1}, then |X1−i| = 0.
Moreover, when we restrict to a triangle, we have the following.

4.3.3.8. If T ⊆ F ′ is a triangle, then

1. |T ∩X2| = 3, or

2. |T ∩X2| = 1 and |T ∩Xi| = 2 for some i ∈ {0, 1}.

Subproof: By 4.3.3.5, |T ∩X2| > 0. Let x ∈ T ∩X2. By 4.3.3.6, (x+ z +W ) ∩ E = ∅.

Suppose that (1) does not hold, so that there exists x′ ∈ T such that x′ + z /∈ E. By
4.3.3.6, we know that there exists exactly one w ∈ W for which x′ + z + w ∈ E.

If x+ x′+ z ∈ E holds, then by 4.3.3.6, (x+ x′+ z+W )∩E = ∅. But then, it follows
that {x+y, x′+y, x+x′+y, x′+w+ z} is an induced I4-restriction. Hence x+x′+ z /∈ E.

By 4.3.3.6 and 4.3.3.7, it follows that x+ x′ + z + w ∈ E and x+ x′ + z + y + w /∈ E,
which is (2). �

The above claim will be enough to settle the case where dim(F ′) = 2. To handle the
case dim(F ′) > 2, the following observation will be useful.

4.3.3.9. For either i ∈ {0, 1}, there exist no 3-dimensional flat F0 ⊆ F ′ and a triangle
T ⊆ F0 for which T ⊆ X2 and F0\T ⊆ Xi.
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Subproof: Assume for a contradiction that such a triangle T = cl(x1, x2) and a flat F0 =
cl(x0, x1, x2) exist, x0 /∈ T . But then {x0 + y, x1 + y, z, x0 + x2 + wi + z} is an induced
I4-restriction. �

Case 2.1: dim(F ′) = 2.

We will apply 4.3.3.8 to give a case analysis depending on the value of |F ′ ∩X2|.
If |F ′ ∩X2| = 3, then we have that

E = W ∪ (y + cl(F ′ ∪ {y + z})),

so that M ∼= AG7(n− 2, 2).

If |F ′ ∩X2| = 1 and |F ′ ∩Xi| = 2 for i ∈ {0, 1}, let x′ ∈ F ′\{x}, and F ′′ = cl({x, x′ +
wi, y + wi + z}). We then have

E = {wi, x+ y} ∪ ((x+ y + wi) + F ′′),

where F ′′ ∩ E = ∅. Hence M ∼= AG7(n− 2, 2).

Case 2.2: dim(F ′) > 2.

We claim that F ′ ⊆ X2.

We know from 4.3.3.8 that X2 6= ∅. Fix v ∈ X2.

Suppose towards a contradiction that there exists v′ ∈ F ′\X2, so that v′ ∈ Xi for some
i ∈ {0, 1}

By 4.3.3.8 it follows that v + v′ ∈ Xi. Since dim(F ′) > 2, there exists v′′ /∈ cl({v, v′}).
If v′′ ∈ Xi, then 4.3.3.8 applied to triangles implies that v+ v′+ v′′ ∈ X2, v

′+ v′′ ∈ X2 and
v+ v′′ ∈ Xi, but this contradicts 4.3.3.9. Similarly, if v′′ ∈ X2, then applying 4.3.3.8 again
implies that v + v′ + v′′ ∈ Xi, v

′ + v′′ ∈ Xi, and v + v′′ ∈ X2. But then this contradicts
4.3.3.9. This shows that F ′ ⊆ X2.

Since F ′ ⊆ X2, we have E\H = (z + [F ′]), so that

E = (E ∩H) ∪ (E\H)

= W ∪ (y + F ′) ∪ (z + [F ′])

= W ∪ (y + F ′′),

where F ′′ = cl({y + z} ∪ F ′) and F ′′ ∩ E = ∅. Therefore M ∼= AG7(n− 2, 2).
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We can now prove the main theorem of this section, restated below.

Theorem 4.3.4. If M = (E,G) is an I4-free, triangle-free matroid, then either M is

affine, or (E, cl(E)) ∼= Dk(AG7(n− 1, 2)) for some n ≥ 3 and k ≥ 0.

Proof. We proceed by induction on dim(M). The cases where dim(M) = 1, 2, 3 are routine
to check, so we may assume that dim(M) ≥ 4. We may assume without loss of generality
that M is full-rank.

Suppose that M is not affine, so that it contains an induced C5-restriction. If dim(M) =

4, then M ∼= C5 = AG7(2, 2), so suppose that dim(M) > 4. By extending a basis of this
C5-restriction, we can select a hyperplane H of G such that M |H contains a C5-restriction,

andM |H is full-rank. By the inductive hypothesis, we have thatM |H ∼= Dk(AG7(n−1, 2))
for some n ≥ 3 and k ≥ 0.

If k ≥ 1, then M |H contains an induced D(C5)-restriction. By Lemma 4.3.2, we have
that M is the doubling, say by w, of M |H ′ for some hyperplane H ′. Note that M |H ′
is not affine; otherwise M is affine by Lemma 2.5.1. Hence we may apply the inductive
hypothesis to M |H ′ to obtain the required result in this case.

If k = 0 then Lemma 4.3.3 gives the required result.

As an immediate corollary, this shows that the I4-free, triangle-free matroids have
critical number at most 2.

Corollary 4.3.5. If M is I4-free and triangle-free, then χ(M) ≤ 2.

Proof. By Theorem 4.3.1, it follows that χ(M) = 1, or (E, cl(E)) ∼= Dk(AG7(n − 1, 2))

where n ≥ 3 and k ≥ 0. Note that AG7(n − 1, 2) has critical number 2 for n ≥ 3. Since
the D operation preserves critical number, it follows in the latter case that χ(M) = 2.

4.4 AI4-freeness

In order to understand the structure of I4-free, triangle-free matroids with critical number
exactly 1, it is helpful to consider the notion of AI4-freeness and our goal of this section is
to prove the following.

Lemma 4.4.1. If M = (E,G) is AI4-free, then there exists a hyperplane H of G such that
either E or G\E is contained in either H or G\H; that is, either
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• E ⊆ H (i.e., M is rank-deficient),

• G− E ⊆ H (i.e., M c is rank-deficient),

• E ∩H = ∅, or

• H ⊆ E.

We first state an important lemma used repeatedly in this section. We remind the
reader that for a given flat U , U itself is not considered a ‘coset’ of U , whereas it is
considered a ‘translate’ of itself.

Lemma 4.4.2. For every matroid M = (E,G), there is a flat U of G for which U c = E+Ec

and E is a union of translates of U . Moreover, if |E| ≥ 2 then U ⊆ E + E, and if
|E| ≤ |G| − 2 then U ⊆ Ec + Ec.

Proof. For each set A ⊆ [G], let SA = {s ∈ [G] : s + A = A}; this is a subspace of [G], so
has cardinality a power of 2, and since A is a disjoint union of translates of SA the ratio
|A|/|SA| is an integer. Thus, if |A| is odd, the subspace SA is trivial.

Since |G| is odd, by switching to Ec if necessary, we may assume that |E| is even; thus
|Ec| is odd, so SEc is trivial. We show that the flat U = SE\{0} (i.e., U is the stabiliser of
E) satisfies the lemma.

First, let e+f ∈ E+Ec, where e ∈ E and f ∈ Ec. If e+f ∈ [U ], then f = (e+f)+e ∈
(e+ f) + E = E, a contradiction. Therefore E + Ec ⊆ G\[U ] = U c.

Now, let a ∈ U c. If a ∈ E, then since SEc is trivial, we have a + Ec 6= Ec, so there is
some f ∈ Ec such that a + f ∈ G\Ec; since a 6= f we have a + f 6= 0 and so a + f ∈ E.
Therefore a ∈ E + f ⊆ E + Ec. If a ∈ Ec, then since a /∈ U , we have a + E 6= E and
so there is some e′ ∈ E for which a + e′ /∈ E, Since a 6= e′ we have a + e′ 6= 0 and so
a+ e′ ∈ Ec; this gives a ∈ E + Ec.

The last two arguments give U c = E+Ec as required. Since U = SE\{0}, E is a union
of some cosets of U . By switching back to E if necessary (if we replaced E by Ec), we
conclude that E is a union of some translates of U .

If |E| ≥ 2, then either there exists a coset A of U contained in E, in which case
U ⊆ A + A ⊆ E + E, and if no coset of U is contained in E, then U = E, in which case
U ⊆ U + U ⊆ E + E as U has dimension at least 2. Similarly, if |E| ≤ |G| − 2 then
U ⊆ Ec + Ec.
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We also use the following easy-to-verify lemma.

Lemma 4.4.3. Let U1, U2, U3 be flats of a projective geometry G such that for any distinct
i, j, k ∈ {1, 2, 3}, Ui ⊆ Uj ∪ Uk. Then there exist two distinct i, j ∈ {1, 2, 3} for which
Ui = Uj, and Uk ⊆ Ui where k ∈ {1, 2, 3}\{i, j}.

Proof. Without loss of generality, suppose that |U1| ≤ |U2| ≤ |U3|. Note that it suffices to
show that U2 = U3, as it would imply U1 ⊆ U2 ∪ U3 = U2.

We first argue that |U2| = |U3|. Write |U3| = 2m − 1 for some m ≥ 1. If |U2| < |U3|,
then since U3 ⊆ U1 ∪ U2, we have 2m − 1 = |U3| ≤ |U1| + |U2| ≤ 2(2m−1 − 1) = 2m − 2, a
contradiction. Hence |U2| = |U3|. If U2 6= U3, then there exist x ∈ U2\U3 and y ∈ U3\U2.
Because U2 ⊆ U1 ∪ U3, x ∈ U1, and similarly y ∈ U1. This implies x + y ∈ U1 ⊆ U2 ∪ U3.
Without loss of generality, suppose that x + y ∈ U2. But then y = (x + y) + x ∈ U2, a
contradiction.

The proof of Lemma 4.4.1 will follow from the following lemmas.

Lemma 4.4.4. Let M = (E,G) be an AI4-free matroid of dimension at least 5, and H
be a hyperplane of G such that |E\H| ≤ 1. Then G has a hyperplane H ′ such that either
E ⊆ H ′, E ∩H ′ = ∅, or H ′ ⊆ E.

Proof. We may assume that M is full-rank and that |E\H| = 1, as otherwise the result
is trivial. Let {v} = E\H. Note that M |H must be full-rank, as otherwise, r(E) ≤
r(E ∩H) + 1 ≤ dim(G)− 1, so M is not full-rank. Also, observe that we have

∑
x∈J x ∈ E

for each three-element linearly independent subset J of E ∩ H, since otherwise J ∪ {v}
would violate AI4-freeness. In particular, the matroid M |H is I3-free.

Hence, if M |H is triangle-free, it follows from Lemma 1.5.6 that M |H is an affine
geometry, so that E ∩H = H\K where K is a hyperplane of H. Then for any x ∈ H\K,
we have that E ∩ H ′ = ∅ where H ′ = cl(K ∪ {v + x}) is a hyperplane of G, giving us
the required result. Therefore, we may assume that M |H contains a triangle. For any
triangle T ⊆ E ∩ H and any x ∈ (E ∩ H)\T it follows from the above observation that
T +{x} ⊆ E, as each element of T +{x} is the sum of three linearly independent elements
of E ∩ H. Now, we claim that H ⊆ E. If not, then pick a largest flat F of H for which
F ⊆ E; since M |H contains a triangle, dim(F ) ≥ 2. We may also pick x ∈ (H ∩ E)\F
since M |H is full-rank. Since every element y ∈ F is contained in a triangle T ⊆ F , it
follows that y + x ∈ T + x ⊆ E. Hence cl(F ∪ {x}) ⊆ E ∩H, contradicting maximality of
F . Hence it follows that H ⊆ E.
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Lemma 4.4.5. Let M = (E,G) be an AI4-free matroid of dimension at least 5, let H be a
hyperplane of G, and let F be a hyperplane of H such that E ∩H ⊆ F . Then there exists
a hyperplane H ′ of G such that either E or G\E is contained in either H ′ or G\H ′.

Proof. Suppose that no such H ′ exists. In particular, M is full-rank (since otherwise
any hyperplane H ′ containing cl(E) satisfies E ⊂ H ′), and |E ∩ F | ≥ 1 (since otherwise
E ⊆ G\H). We will first prove the lemma in the case where |E ∩ F | > 1.

Let A0 = H\F , and let A1, A2 denote the two remaining cosets of F in G. By assump-
tion, we have A0 ∩ E = ∅.

Case 1: |E ∩ F | > 1

4.4.5.1. Let v1 ∈ E ∩A1 and v2 ∈ E ∩A2. If u, u′ are distinct elements of F with u′ ∈ E,
then |{u+ v1, u+ v2, u+ u′} ∩ E| 6= 1.

Subproof: Note that E∩ (F +v1 +v2) = E∩A0 = ∅. If u+u′ ∈ E while u+v1, u+v2 /∈ E,
then {v1, v2, u′, u + u′} would violate AI4-freeness. If u + vi ∈ E for some i ∈ {1, 2} while
u+ u′, u+ v3−i /∈ E, then {u′, v1, v2, vi + u} would violate AI4-freeness. �

We may assume that |A1 ∩ E| > 1; if not, we can take a hyperplane H ′ = cl(F ∪ A2),
so that |E\H ′| ≤ 1, and Lemma 4.4.4 gives a contradiction. Similarly, we may assume
|A2 ∩ E| > 1. If Ai ∩ E 6= Ai, select vi ∈ Ai\E, and otherwise, choose vi ∈ Ai ∩ E = Ai,
for i = 1, 2. Note that at most one of v1 ∈ E and v2 ∈ E holds; otherwise, A1, A2 ⊆ E, so
that choosing H ′ = F ∪ A0 gives G\E ⊆ H ′.

Let Xi = (vi + (Ai ∩ E))\{0} for i = 1, 2. Note that Xi ⊆ F and |Xi| > 1 for each
i = 1, 2 by our choice of vi. Write X0 = F ∩ E. Note that |X0| > 1.

Now, 4.4.5.1 implies

(X0 +X0) ∩ (X1 +Xc
1) ∩ (X2 +Xc

2) = ∅
(X0 +Xc

0) ∩ (X1 +X1) ∩ (X2 +Xc
2) = ∅

(X0 +Xc
0) ∩ (X1 +Xc

1) ∩ (X2 +X2) = ∅

We may now apply Lemma 4.4.2 (with F being the ambient space), to obtain flats Ui for
which Xi + Xc

i = U c
i , and Xi is a union of translates of Ui for each i = 0, 1, 2 provided Ui

is not empty. Moreover, since |Xi| > 1, we have Ui ⊆ Xi +Xi for i = 0, 1, 2.

Hence, for any distinct i, j, k ∈ {1, 2, 3}, we have

(Xi +Xi) ⊆ Uj ∪ Uk.
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Recall that Ui ⊆ Xi + Xi for i = 0, 1, 2. Therefore, for any distinct i, j, k ∈ {1, 2, 3} we
obtain

Ui ⊆ Uj ∪ Uk.
Note that each of U1, U2, U3 is a flat. By Lemma 4.4.3, this implies that at least two of
U0, U1, U2 are identical and the third is contained in the other two. Let us write Ui ⊆ Uj =
Uk for some i, j, k ∈ {0, 1, 2}. Let U = Uj = Uk.

Since U ⊆ Xj + Xj and Xj + Xj ⊆ Ui ∪ U = U , it follows that U = Xj + Xj, and
similarly U = Xk + Xk. We also have Xi + Xi ⊆ U . In particular, since |Xj| > 1, U is
non-empty. Since U = Xj + Xj and Xj is a union of translates of U , it follows that Xj,
and similarly Xk, equal a translate of U in F . In a similar vein, since Xi +Xi ⊆ U , Xi is
contained in a translate of U in F . To summarise, we have the following.

4.4.5.2. There exists a non-empty flat U ⊆ F and j, k ∈ {0, 1, 2}, j 6= k, such that

• Xj and Xk equal a translate of U .

• Xi is contained in a translate of U .

where i ∈ {0, 1, 2}\{j, k}.

We say that a set X is full if it equals a translate of U . Hence, at least two of X0, X1, X2

are full.

We now consider two cases depending on whether v1 ∈ E and v2 ∈ E (recall that at
most one of the two can hold at the same time). In the case v1 ∈ E or v2 ∈ E, we may
assume, by symmetry, that v2 ∈ E and v1 /∈ E.

Case 1.1: v1, v2 /∈ E
4.4.5.3. At most two of X0, X1, X2 are contained in U . Moreover, if precisely two of
X0, X1, X2 are contained in U , then X0 ⊆ U .

Subproof: Suppose first for a contradiction that Xi ⊆ U for each i = 0, 1, 2. If X1, X2 are
both full, then since |X0| > 1, we may select two elements y1, y2 ∈ X0, then {y1, y2, v1 +
y1 + y2, v2 + y1 + y2} would violate AI4-freeness. If X1 is not full, then we may select
x1 ∈ X1 ⊆ U , and y1 ∈ U\X1, so that {x1, y1, x1 + v1, x1 + y1 + v2} would violate AI4-
freeness. Similarly, if X2 is not full, a symmetrical argument shows that it would violate
AI4-freeness, giving a contradiction.

Suppose next that precisely two of X0, X1, X2 are contained in U . For a contradiction,
suppose that X0 is not contained in U , so that X1, X2 ⊆ U , and X0 is contained in a coset
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of U . If X1, X2 are full, then select two elements y1, y2 ∈ X0, then {y1, y2, v1 + y1 + y2, v2 +
y1 + y2} would violate AI4-freeness. If X1 is not full, then select x1 ∈ X1, y1 ∈ U\X1

and z1 ∈ X0. Then {x1 + v1, x1 + y1 + v2, z1, x1 + y1 + z1} would violate AI4-freeness. By
symmetry, the case where X2 is not full follows, giving a contradiction in all cases. �

We are now ready to complete the analysis of Case 1.1. In each of the possible outcomes
resulting from 4.4.5.3, we will show that we can select a hyperplane H ′ of G that satisfies
the theorem or find an induced I4-restriction, giving a contradiction.

Suppose first that none of X0, X1, X2 is contained in U . Let Xi ⊆ Bi where Bi is a
coset of U for i = 0, 1, 2. If B0 = B1 = B2, then we may assume that there is no other coset
of U , as otherwise M is rank-deficient. But then, we may select H ′ = cl(U ∪ {v1, v2}), and
we have E ⊆ G\H ′. Therefore we may assume that B0, B1, B2 are not identical, so we
may assume without loss of generality that B0 6= B1. But then B1 ∩ cl(E) = ∅ (to see
this, note that a general element z of cl(E) has the form v1 + v2 + x0 + x1 + x2 + y where
x0 ∈ B0 ∪{0}, x1 ∈ B1 ∪{v1}, x2 ∈ B2 ∪{v2}, y ∈ U ∪{0}, and hence z /∈ B1 as otherwise
it would force x1 = v1, x2 = v2, giving z ∈ U ∪B0). Therefore M is rank-deficient.

Suppose next that precisely one of X0, X1, X2 is contained in U . First, suppose that
X0 ⊆ U . Then, it follows in a similar way that B1 ∩ cl(E) = ∅. Therefore, M is rank-
deficient. Hence we may assume without loss of generality that X1 ⊆ U , and X0 ⊆ B0 and
X2 ⊆ B2 for (possibly identical) cosets B0, B2 of U . Note that we may assume that the
only cosets are B0, B2, B0 + B2, as otherwise M is rank-deficient. Select x ∈ B0, and let
H ′ = cl(U ∪ (B0 +B2) ∪ {v1 + x, v2}). Then we have that E ⊆ G\H ′.

Finally, we consider the case where precisely two of X0, X1, X2 are contained in U .
Suppose without loss of generality that X0, X1 ⊆ U and X2 ⊆ B2 where B2 is a coset of
U . But then it follows that B2 ∩ cl(E) = ∅. So M is rank-deficient.

Case 1.2: v1 /∈ E, v2 ∈ E.

The fact that v2 ∈ E means that A2 ⊆ E by our choice of v2. Hence X2 = F , and
therefore U2 = F . Hence, either U0 = F or U1 = F . If U0 = F , then choosing the
hyperplane H ′ = cl(F ∪ A2), we have that G\E ⊆ G\H ′. Hence we may assume that
U1 = F . We may also assume that F ∩ E 6= E, as otherwise H ′ = cl(F ∪ A2) satisfies
G\E ⊆ G\H ′ again. Let w1 ∈ F\E, w2 ∈ F ∩E. Then {v1 +w1 +w2, w2, v2, v2 +w1 +w2}
would violate AI4-freeness.

Case 2: |E ∩ F | = 1

Choose F ′′ to be a hyperplane of F such that F ′′ ∩ E = ∅. Let F ′ = cl(F ′′ ∪ {z}) for
any z ∈ A0 so that that F ′ ∩E = ∅, and consider the three cosets of F ′ in G, denoted A′0,
A′1, A

′
2 where we take A′0 so that |A′0 ∩ E| = 1. Let v ∈ A′0 ∩ E.
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If |A′1 ∩ E| > 1 and M |(A′1 ∪ F ′) is not full-rank, then we may select a hyperplane H ′

of F ′ ∪ A′1 such that E ∩ (F ′ ∪ A′1) ⊆ H ′, and |E ∩H ′| > 1. Case 1 then applies, and the
same holds with A′2. So we may assume without loss of generality that |A′i ∩ E| = 1 or
M |(A′i ∪ F ′) is full-rank for each i = 1, 2.

If |A′i ∩ E| = 1 for i = 1, 2, then because dim(M) ≥ 5, M is rank-deficient, so we
may assume without loss of generality that M |(A′1 ∪ F ′) is full-rank. Given three linearly
independent vectors v1, v2, v3 ∈ A′1 ∩ E, we must have that v1 + v2 + v3 ∈ E, as otherwise
{v, v1, v2, v3} would violate AI4-freeness. Therefore, A′1 ⊆ E, and let H ′ = A′1 ∪ F ′. It is
then easy to check that the conditions are met to apply Case 1 with the matroid M c and
the hyperplane H ′ to give the required result.

We can now prove Lemma 4.4.1.

Proof of Lemma 4.4.1. Let M = (E,G) be a counterexample of smallest dimension. If
dim(M) = 1, 2, 3, then we obtain a contradiction from a routine check, hence we may
assume dim(M) ≥ 4.

4.4.5.4. dim(M) 6= 4.

Proof. This is a tedious check. If dim(M) = 4, then replacing M with M c if necessary, we
may assume that |E| ≤ 7. We may also assume that M is full-rank. Note that M needs
to contain a C4-restriction, on a hyperplane H, since M is AI4-free.

Suppose first that it is an induced C4-restriction. Then M |H ∼= C4 and write E ∩H =
{v1, v2, v3, v1 + v2 + v3}. Let v4 ∈ E\H. Then there exists v ∈ E ∩H such that v+ v4 ∈ E,
as otherwise M c| cl({v1 + v2, v1 + v3, v1 + v2 + v3 + v4}) is an F7-restriction. Without
loss of generality, suppose that v1 + v4 ∈ E. Now, we must have that v2 + v3 + v4 ∈ E
or v1 + v2 + v3 + v4 ∈ E, as otherwise, {v2, v3, v4, v1 + v4} would violate AI4-freeness.
If v2 + v3 + v4 ∈ E, then {v1, v2, v1 + v4, v2 + v3 + v4} would violate AI4-freeness. If
v1 + v2 + v3 + v4 ∈ E, then {v1, v2, v4, v1 + v2 + v3 + v4} would violate AI4-freeness.

Hence we may assume that it has no induced C4-restriction. Suppose that |H ∩E| = 6.
Recall that M is full-rank and |E| ≤ 7. We may take v4 ∈ E\H, and v1, v2, v3 ∈ E ∩H for
which v1+v2+v3 /∈ E, and {v1, v2, v3, v4} would violate AI4-freeness. Hence we may assume
|E∩H| = 5. Let E∩H = {v1, v2, v3, v1+v2, v1+v2+v3}, and pick v4 ∈ E\H. By symmetry
and the fact that |E| ≤ 7, we may assume that v1 + v4 /∈ E. We may also assume that
v2+v3+v4 /∈ E; otherwise E\H = {v4, v2+v3+v4} and so {v1, v1+v2, v3, v4} would violate
AI4-freeness. Now it follows that v1 + v2 + v3 + v4 ∈ E, as otherwise {v2, v3, v1 + v2, v4}
would violate AI4-freeness. But then {v1, v2, v4, v1 +v2 +v3 +v4} violates AI4-freeness.
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Hence we have that dim(M) ≥ 5. Let k = dim(M). By minimality, for every hyperplane
H of G, H contains a hyperplane that satisfies one of the four outcomes. If, for any
hyperplane H of G, the conditions of Lemma 4.4.5 are satisfied, then Lemma 4.4.5 provides
a contradiction. Hence, we may assume that, for every hyperplane H of G, either M |H or
M c|H contains a PG(k − 3, 2)-restriction.

Moreover, since dim(M) = k ≥ 5, if M contains a PG(k − 3, 2)-restriction, then M c

cannot contain a PG(k− 3, 2)-restriction, as otherwise we would have dim(M) ≥ 2(k− 2),
which implies k ≤ 4. By switching to M c if necessary, we may therefore suppose that M c

contains a PG(k − 3, 2)-restriction in every hyperplane. Now, observe that M is triangle-
free, since otherwise any restriction to a hyperplane containing such a triangle cannot
contain a PG(k − 3, 2)-restriction in M c. Therefore, M is both AI4-free and triangle-free,
so by Lemma 4.2.5, it follows that M is affine.

4.5 The Main Theorem

We are now ready to prove the main structure theorem for I4-free, triangle-free matroids,
restated below.

Theorem 4.5.1. For a full-rank matroid M = (E,G), M is I4-free and triangle-free if
and only if

• there exist nested flats H0 ⊆ · · · ⊆ Hl with Hl = G and dim(H0) = 1 so that M |Hi

is either the 0-expansion or 1-expansion of M |Hi−1 for i = 1, . . . , l, or

• M ∼= Dk(AG7(n− 1, 2)), for some n ≥ 3 and k ≥ 0.

Proof. The backward direction follows from Lemmas 4.2.3, 4.2.2 and 4.2.1.

We now prove the forward direction. By Theorem 4.3.1, M ∼= Dk(AG7(n − 1, 2)) for
some n ≥ 3 and k ≥ 0, or M is affine. If the former case holds then we are done, so we may
suppose that M is affine, so that there exists a hyperplane H of G for which E ⊆ G\H.

If M is the empty matroid, then the result is trivially true, so suppose that E 6= ∅.
Pick z ∈ E, and consider the matroid M0 = (F,H) where F = {v | v + z ∈ E}. Since M
is I4-free, it follows that M0 is I3-free. Moreover, since M is affine, it follows that M0 is
AI4-free.
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Let H ′ be the hyperplane of H from the conclusion of Lemma 4.4.1. We will now
go through each conclusion of Lemma 4.4.1 to see that in each of the cases, we obtain a
0-expansion or a 1-expansion, proving the result.

Case 1: F ⊆ H ′.

In this case, let H ′′ = cl(H ′ ∪ {z}), so that H ′′ is a hyperplane of G. Then M |H ′′ is an
affine matroid with H ′ satisfying E ∩H ′′ ⊆ H ′′\H ′. Then

E = {z} ∪ (z + F )

⊆ {z} ∪ (z +H ′)

⊆ H ′′.

Therefore, M is the 0-expansion of the affine matroid M |H ′′.
Case 2: H\F ⊆ H ′.

Let H ′′ = cl(H ′ ∪ {z}) as before. Let w ∈ H\H ′. Then

E = {z} ∪ (z + F )

= {z} ∪ (z + F ∩H ′) ∪ (z + (F\H ′))
= {z} ∪ (z + F ∩H ′) ∪ (z + (H\H ′))
= (E ∩H ′′) ∪ {z + w} ∪ (z + w +H ′)

Therefore, M is the 1-expansion of the affine matroid M |H ′′.
Case 3: F ∩H ′ = ∅.

Note that if M0 is rank-deficient, then we are in Case 1, so assume that M0 is full-rank.
Observe that M0 is I3-free and triangle-free (since it is affine). Therefore, Lemma 1.5.6
implies that M0 is a full-rank affine geometry. We are in Case 2.

Case 4: H ′ ⊆ F .

Let w ∈ F\H ′ (if no such w exists, then M0 is rank-deficient and we are in Case 1),
and let H ′′ = cl(H ′ ∪ {z + w}).

Then M |H ′′ is an affine matroid with H ′ as its hyperplane such that H ′′∩E ⊆ H ′′\H ′.
Then

E = {z} ∪ (z + F )

= {z} ∪ (z + F ∩H ′) ∪ (z + (F\H ′))
= {z} ∪ {z +H ′} ∪ (E ∩H ′′)
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Therefore, M is the 1-expansion of the affine matroid M |H ′′.
Thus M is either the 0-expansion or 1-expansion of another affine matroid of smaller

dimension. The result now follows by induction on dim(M).

89



Chapter 5

I1,t-free and Triangle-free Matroids

This chapter is based on joint work with Peter Nelson [42].

5.1 Introduction

So far, we have primarily focused on obtaining a complete structure theorem for various
families of matroids. But in order to prove Conjecture 1.5.8 (the matroidal version of
Gyárfás-Sumner), or other problems with similar flavours, it may be difficult to prove a
full structure theorem and then deduce properties such as χ-boundedness as a corollary.
For the case t = 5, some preliminary calculations that we have performed indicate that
the general structure of I5-free and triangle-free matroids is rather complex, and hard to
describe. Nor would we expect it to be simple; for all but very small graphs H, determining
the structure of H-free graphs is very difficult.

What one wishes to obtain is a set of tools that can be employed to answer questions of
this nature. In this chapter, we present a result that is a significant weakening of Conjecture
1.5.8, but its proof circumvents the need to obtain a full structural theorem.

To state our result, let us first consider the following more general problem. For 1 ≤
s ≤ t, Is,t is the t-dimensional matroid (E,G) for which (E, cl(E)) ∼= Is.

Conjecture 5.1.1. For any 1 ≤ s ≤ t, there exists a constant cs,t > 0 such that if M is
an Is,t-free, triangle-free matroid, then χ(M) ≤ cs,t.
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It is immediate that Conjecture 1.5.8 is a special case of Conjecture 5.1.1, by setting
s = t. But these two conjectures are in fact equivalent; for any given s, t, 1 ≤ s ≤ t, there
exists a sufficiently large s′ such that if M is an Is,t-free matroid, then M is Is′-free.

Our main result in this chapter is a proof of Conjecture 5.1.1 for the case s = 1, making
partial progress towards Conjecture 1.5.8.

Theorem 5.1.2. For any t ≥ 1, there exists a constant ct > 0 such that if M is an I1,t-free,
triangle-free matroid, then χ(M) ≤ ct.

The main ingredient in the proof is a consequence of Green’s regularity lemma for
abelian groups [32], and will be explained in detail in a later section. We will also use a
few standard results from matroid theory, such as Ramsey’s Theorem for matroids.

5.2 Preliminaries

In this section, we state the results we need for our main theorem. The main ingredient is
the following key lemma, which is an application of Green’s regularity lemma for abelian
groups [32]. We will derive this key lemma in the next section. The codimension of a
subspace U in a vector space V is dim(V )− dim(U). An affine subspace of a vector space
V is a set of the form a + U where U is a subspace and a /∈ U , and its codimension is
dim(V )− dim(U).

Lemma 5.2.1. For every 0 < α ≤ 1, there exists an integer l ≥ 0 such that for every
X ⊆ Fn2 with |X| ≥ α2n, X +X +X contains an affine subspace of codimension l.

We will use the following matroidal analogue of Ramsey’s Theorem for graphs. It is in
fact the multicolour version of Theorem 3.7.3, which follows immediately from Theorem
3.7.3 itself.

Theorem 5.2.2 ([31]). For any c ≥ 1, r1, r2, · · · rc ≥ 1, there exists an integer N =
GR(r1, · · · , rc) such that for all n ≥ N , if the elements of G ∼= PG(n − 1, 2) are coloured
with c different colours, there exists a flat Gi

∼= PG(ri − 1, 2) of G that is monochromatic
in colour i for some 1 ≤ i ≤ c.

In our application, the ri’s will always be the same. We therefore write GR(c, r) for
the Ramsey number by only specifying the number of colours c and the dimension r of a
monochromatic projective geometry we expect to find. The constant GR(c, r) guaranteed
is very large, however, leading to a large bound on ct in Theorem 5.1.2.
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5.3 Regularity

In this section, we will derive our key lemma from Green’s regularity lemma for abelian
groups [32].

Let V = Fn2 and X ⊆ V . We say that X is ε-uniform if for each hyperplane W of V

||W ∩X| − |X −W || ≤ ε|V |.
Note that a hyperplane W slices the space V into two equally-sized sets; hence being ε-
uniform means that the elements of X are distributed about equally across these two sets
no matter how one slices V .

Let H be a subspace of V and v ∈ V . As before, we call the sets of the form H + v =
{x + v | x ∈ H} the translates (note that H is considered a translate of H itself). We
say that H is ε-regular with respect to V and X if for all but an ε-fraction of translates
H ′ = H + v of H, the set (H ′ ∩ X) + v is ε-uniform. Note that the set (H ′ ∩ X) + v is
a subset of H; we are projecting the elements of (H ′ ∩ X) back onto the subspace H by
adding v to each point. Regularity measures how evenly the elements of X are distributed
across the different translates of H in V .

The following lemma by Green ensures that there is an ε-regular subspace of bounded
codimension for any given ε. The lemma holds in a more general context but we state the
version of his theorem for V = Fn2 , which is all we need for our main theorem. We note
that in this lemma, l is guaranteed to be at most T (ε−3), where T (α) is an exponential
tower of 2’s of height dαe; this also contributes to a large bound on ct in Theorem 5.1.2.

Lemma 5.3.1 ([32]). For every 0 < ε < 1
2
, there exists l ∈ N such that for every X ⊆ V ,

there is a subspace H ⊆ V of codimension at most l that is ε-regular with respect to X and
V .

We also need the following counting lemma for ε-uniform sets from [32, 54]. We simply
state a special version that is adequate for our main theorem.

Lemma 5.3.2 ([32, 54]). Let X ⊆ V with |X| = α|V |. If 0 < ε < 1
2

and X is ε-uniform,
then for any u ∈ V ,

|{(x1, x2, x3) ∈ X3 | x1 + x2 + x3 = u}| ≥ (α3 − ε)|V |2.

Note that the quantity α322n is the number of solutions to x1 + x2 + x3 = u one
would expect to find if the set X was constructed randomly by choosing elements of V
independently at random with probability α.

We can now prove our key lemma, restated below.
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Lemma 5.3.3. For every 0 < α ≤ 1, there exists an integer l ≥ 0 such that for every
X ⊆ Fn2 with |X| ≥ α2n, X +X +X contains an affine subspace of codimension l.

Proof. Apply Lemma 5.3.1 with ε = α3

9
to obtain an integer l′, so that we obtain a subspace

H of codimension k ≤ l′ that is ε-regular with respect to X and V .

There are exactly 2k translates of H. Pick A ⊆ V so that H + a, a ∈ A are the distinct
translates of H. Let

Asparse = {a ∈ A : |X ∩ (H + a)| < α

2
|H|}

Abad = {a ∈ A : (X ∩ (H + a))− a is not ε-uniform}

Since H is ε-regular with respect to X and V , it follows that |Abad| ≤ ε2k. Note

α2k|H| = α2n ≤ |X| =
∑
a∈A

|X ∩ (H + a)|

≤ α

2
|H||Asparse|+ |H|(|A| − |Asparse|).

Therefore, it follows that α2k ≤ α
2
|Asparse|+ 2k − |Asparse|. Hence, |Asparse| ≤ 2k 1−α

1−α
2

=

2k(1− α
2−α). Therefore

|A| − |Asparse| ≥
α

2
2k > ε2k.

So there exists some a0 ∈ A\(Asparse ∪Abad), which means that |X ∩ (H + a0)| ≥ α
2
|H|

and (X ∩ (H + a0))− a0 is ε-uniform.

Let u ∈ H + a0. We argue that u ∈ X + X + X. We apply Lemma 5.3.2 with H as
the vector space. Then the number of solutions to the equation x1 + x2 + x3 = u+ a0 with
x1, x2, x3 ∈ (X ∩ (H + a0))− a0 is at least( |(X ∩ (H + a0))− a0|

|H|

)3

|H|2 − ε|H|2

≥
(α

2

)3
|H|2 − ε|H|2 ≥

(
α3

8
− α3

9

)
|H|2 > 0.

So there exists x1, x2, x3 ∈ (X∩(H+a0))−a0 such that x1+x2+x3 = u+a0. Therefore,
(x1+a0)+(x2+a0)+(x3+a0) = u, as required. If a0 ∈ H, X+X+X contains a subspace,
otherwise X + X + X contains an affine subspace, of codimension l′. In both cases, we
conclude that X+X+X contains an affine subspace of codimension at least l = l′+1.
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5.4 Tripods

We define a class of matroids called tripods (not to be confused with tripods in graph
theory). Let T0, the 0-th order tripod, be the 1-dimensional matroid with a one-element
ground set. The tripods are constructed as follows. The k-th order tripod Tk = (Ek, Gk),
k ≥ 1, is the matroid with a codimension-3 flat H of Gk and x, y, z /∈ H where cl(H ∪
{x, y, z}) = Gk so that Ek = ({x, y, z, 0}+(H ∩Ek))∪{x+y+z} and (Ek∩H,H) ∼= Tk−1.

The properties of the tripods we will need are as follows. For t ≥ 4, we write C5,t for
the t-dimensional matroid (E,G) such that (E, cl(E)) ∼= C5. Note that C5,4

∼= C5.

Lemma 5.4.1. Let Tk = (Ek, Gk) be the k-th order tripod. Then the following hold.

• Tk = (Ek, Gk) has dimension 3k + 1,

• For k ≥ 1, there is a flat Fk of dimension 2k + 2 for which Tk|Fk ∼= C5,2k+2 and
Fk ⊆ Ek ∪ (Ek + Ek).

Proof. It follows straight from the definition that Tk has dimension 3k + 1.

Note that when k = 1, then T1 ∼= C5, so all the statements are true for k = 1 as well.
From here, we work by induction on k. Take Tk = (Ek, Gk) where k ≥ 2 and assume that
the statements are true for smaller values of k.

By definition, we can write Ek = ({x, y, z, 0} + H ∩ Ek) ∪ {x + y + z} where H is a
codimension-3 flat and x, y, z /∈ H such that (Ek∩H,H) ∼= Tk−1 and cl(H∪{x, y, z}) = Gk.
By induction, we can find a flat Fk−1 ⊆ H of dimension 2k for which Tk|Fk−1 ∼= C5,2k and
Fk−1 ⊆ (Ek ∩H) ∪ ((Ek ∩H) + (Ek ∩H)). We claim that Fk = cl(Fk−1 ∪ {x + y, x + z})
suffices.

Note that Tk|Fk ∼= C5,2k+2 is immediate; Tk|Fk−1 ∼= C5,2k and Ek ∩ (Fk\Fk−1) = ∅.
It remains to show that Fk ⊆ Ek ∪ (Ek + Ek). Let v ∈ Fk\Ek. We now perform a case
analysis.

If v ∈ Fk−1, then v ∈ (Ek ∩ H) + (Ek ∩ H) by induction, so v ∈ Ek + Ek so suppose
not. If v ∈ x+ y, x+ z, y + z, then by symmetry we may assume v = x+ y. Then we may
pick any element t ∈ Ek ∩ H, and v = (x + t) + (y + t) ∈ Ek + Ek. The only elements
that remain to be checked are of the form v + w where v ∈ {x + y, x + z, y + z} and
w ∈ Fk−1. By symmetry we may assume that v = x + y. If w /∈ Fk−1 ∩ Ek, then by
induction, it follows that there exist two elements a, b ∈ H ∩Ek for which w = a+ b. But
then v + w = (a + x) + (b + y) ∈ Ek + Ek. Hence, we may assume that w ∈ Fk−1 ∩ Ek.
But then v + w = (x+ y + z) + (z + w) ∈ Ek + Ek. This finishes the proof.
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5.5 The Main Theorem

We are now ready to prove our main theorem.

Theorem 5.5.1. For any t ≥ 1, there exists a constant ct > 0 such that if M is an I1,t-free,
triangle-free matroid, then χ(M) ≤ ct.

Proof. The result is trivial when t = 1, so suppose that t ≥ 2. We will work by induction
on t. Suppose that the I1,t−1-free, triangle-free matroids have critical number at most ct−1.

Let M = (E,G) be an I1,t-free, triangle-free matroid. We may assume that E 6= ∅, as
otherwise χ(M) = 0. Hence M contains a T0-restriction. Let k ≥ 0 be the largest integer
for which M contains a Tk-restriction (not necessarily induced); let G1 be a (3k + 1)-
dimensional flat for which M |G1 contains a Tk-restriction. We claim that k < t

2
.

For a contradiction, suppose not. In particular, k ≥ 1. Let Fk ⊆ G1 be the (2k + 2)-
dimensional flat obtained from Lemma 5.4.1, so that M |Fk contains a C5,2k+2-restriction.
Let E ′ ⊆ E ∩ Fk be the set of five elements corresponding to the ground set of this
C5,2k+2-restriction, so that (E ′, Fk) ∼= C5,2k+2. We now claim M |Fk ∼= C5,2k+2. To show
this, it suffices to check that (Fk\E ′) ∩ E = ∅. If we take v ∈ Fk\E ′, then there exists
v1, v2 ∈ E ∩ G1 by Lemma 5.4.1 such that v = v1 + v2, but since M is triangle-free, this
implies that v /∈ E. Hence (Fk\E ′) ∩ E = ∅ and we conclude that M |Fk ∼= C5,2k+2. But
note that C5,2k+2 contains an induced I1,2k+1-restriction. But we assumed t ≤ 2k, so this
contradicts I1,t-freeness.

Now, fix a flat G2 such that G1 ∩ G2 = ∅ and cl(G1 ∪ G2) = G. For each v ∈ G2, we
assign a colour S where S = v+ ((v+ [G1])∩E). Note that S ⊆ G1 ∪ {0}. Hence we have
at most c = 2|G1|+1 = 223k+1

colours.

We now define a new matroid N = (X,G2), where X consists of elements of G2 for
which their colour S satisfies G1 ∩ E ⊆ S and 0 /∈ S. We first claim that N is dense.

5.5.1.1. |X| ≥ 2dim(N)−GR(c,t).

Subproof: If G2\X contains a GR(c, t)-dimensional flat, then by Theorem 5.2.2, we have
a monochromatic t-dimensional flat F ′contained in G2\X, in colour S. If 0 ∈ S, then
F ′ ⊆ E, which contradicts triangle-freeness since t ≥ 2. So 0 /∈ S, meaning F ′ ∩ E = ∅.
But there also exists v ∈ G1∩E for which (F ′+v)∩E = ∅. This means that M | cl({v}∪F ′)
is an induced I1,t-restriction, a contradiction.

Now, we apply Theorem 1.4.2 to conclude that |G2\X| ≤ 2dim(N)(1 − 2−GR(c,t)+1).
Hence, |X| ≥ 2dim(N)2−GR(c,t) �
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We make one further observation which follows immediately from the definition of
tripods.

5.5.1.2. (X +X +X) ∩ E = ∅.

Subproof: For a contradiction, suppose that there exist v1, v2, v3 ∈ X for which v1 + v2 +
v3 ∈ E. Note that the vi are distinct; if two of them are identical, say v1 = v2, then
v1 + v2 + v3 = v3 ∈ E, contradicting the fact that v3 ∈ X. Also, the vi are independent;
otherwise v1 + v2 + v3 = 0 ∈ E, a contradiction.

But then since M |G1 contains a Tk-restriction, M |({v1, v2, v3} ∪ G1) contains a Tk+1-
restriction, contradicting the maximality of k. �

Let l ≥ 0 be the integer obtained from applying Lemma 5.3.3 with α = 2−GR(c,t). So
X+X+X contains an AG(dim(N)− l, 2)-restriction. We can find a flat F ′ of codimension
l−1 inN , and a hyperplane F ′′ of F ′ for which F ′\F ′′ ⊆ X+X+X. In particular, by 5.5.1.2,
(F ′\F ′′)∩E = ∅. Hence M |F ′′ is I1,t−1-free (and triangle-free). Since F ′′ has codimension
at most l + (3k + 1) in M , we conclude by induction that χ(M) ≤ ct−1 + 3k + l + 1. Note
that k and l are both functions of t. This completes the proof by induction on t.
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Chapter 6

I5-free and Triangle-free Matroids

This chapter is based on joint work with Peter Nelson [43].

6.1 Introduction

In this chapter, we consider an extremal problem concerning the class of I5-free, triangle-
free matroids.

We first recall the problem of determining the smallest simple matroids with no large
independent flat, mentioned in the introduction. This problem was first considered by
Nelson and Norin [45] for general simple matroids; we return to standard matroid termi-
nology for this discussion. For integers r ≥ 1 and t ≥ 1, Nr,t denotes the direct sum of t,
possibly empty, binary projective geometries whose ranks sum to r and pairwise differ by
at most 1 (note that Nelson and Norin used Mr,t instead of Nr,t to denote these matroids,
but to avoid confusion with the M5,3 and M6,3 matroids defined in an earlier chapter, we us
Nr,t instead). Nelson and Norin determine the smallest simple matroids with no t-element
independent flat.

Theorem 6.1.1 ([45]). Let r, t ≥ 1 be integers. If M is a simple rank-r matroid with no
(t + 1)-element independent flat, then |E(M)| ≥ |Nr,t|. If equality holds and r ≥ 2t, then
M ∼= Nr,t.

The tight examples Nr,t are binary and, being a direct sum of binary projective geome-
tries, contain many triangles. In the same paper [45], Nelson and Norin made the following
natural conjecture, in which it is required that the matroids have no three-element circuit.
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Conjecture 6.1.2 ([45], Conjecture 1.3). Let t, r be integers with t ≥ 1 and t|r. If M is
a simple rank-r matroid with no (2t+ 1)-element independent flat or three-element circuit,
then |M | ≥ t2r/t−1.

The bound in the above conjecture is based on their prediction that the tight examples
are direct sums of t binary affine geometries.

Our main result in this chapter is the case t = 2 in the context of embedded matroids;
note that we now return to the adjusted formalism for embedded matroids.

Theorem 6.1.3. Let M = (E,G) be a full-rank, I5-free, and triangle-free matroid of
dimension r. Then |E| ≥ 2br/2c−1 + 2dr/2e−1. When r ≥ 6, equality holds if and only if
M ∼= M1 ⊕M2, where M1 and M2 are affine geometries of dimensions br/2c and dr/2e
respectively

The proof largely falls into two parts. Note that the tight examples are affine. The first
step is to show that the tight examples must be affine by showing that they cannot contain
a C5-restriction. In the second part, we consider the class of I5-free and affine matroids
to determine the tight examples. The main idea of our proof will be to reduce a problem
involving I5-free and triangle-free matroids to one that involves I3-free matroids.

6.2 Preliminaries

In the proof of Theorem 6.1.3, it will be necessary to perform contraction. Contraction is
a standard operation in matroid theory; here we give a corresponding notion for embedded
matroids.

Contraction

Suppose that we are given an n-dimensional matroid M = (E,G) and a k-dimensional flat
F of G. Let F1 be an (n − k)-dimensional flat of G for which F ∩ F1 = ∅. Then the
matroid (E1, F1) where E1 = F1 ∩ (E + [F ]) is called the contraction of M by F onto F1.

Note that if F2 is another (n − k)-dimensional flat of G for which F ∩ F2 = ∅, then
the contraction of M by F onto F2, denoted by (E2, F2) where E2 = F2 ∩ (E + [F ]), is
isomorphic to (E1, F1). To see this, let U = F1 ∩ F2. Note that U is a flat of both F1 and
F2. Let x1 ∈ F1\U , and let x2 be the unique element in F2 ∩ (x1 + [F ]). Define a map
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ψ : [F1] 7→ [F2] by setting ψ(x) = x for x ∈ U , ψ(x1) = x2 and extending ψ linearly. It
is then easy to check that ψ is a linear bijection with the property that ψ(E1) = E2. We
therefore omit the flat F1 and write M/F to refer to any such matroid, and call it the
contraction of M by F .

We can view the contraction at the coset level as well. Recall that a coset of F is
called intersecting with respect to M = (E,G) if F contains at least one element of E.
Note that the elements of the ground set of the matroid M/F correspond precisely to the
cosets A of F for which A ∩ E 6= ∅. Hence the number of elements of M/F equals the
number of intersecting cosets of F with respect to M . We will often refer to the elements
of the ambient set of M/F by identifying them with the cosets of F . To give an example
in how this equivalence is used, note that, given a matroid M = (E,G) and a flat F ⊆ G,
M/F has an induced I3-restriction if and only if there exist distinct intersecting cosets
A1, A2, A3 of F with respect to M for which A1 +A2 6= A3 and A1 +A2, A1 +A3, A2 +A3

and A1 + A2 + A3 all have no intersection with E.

6.2.1 Checking I5-freeness

In this chapter, we will often assert that a given five-element set I ⊆ E in a matroid
M = (E,G) is an induced I5-restriction. In many cases, the matroid M will be assumed to
be triangle-free, which reduces the number of necessary checks as we only need to verify that
I is an independent set in [G], and that

∑
x∈J x /∈ E for all J ⊆ I for which |J | ∈ {3, 4, 5}.

If, additionally, M is also C5-free, then we only need to check these conditions for J ⊆ I
for which |J | ∈ {3, 5}. As before, we will not write down these checks explicitly.

In some cases, some elements of I belong to the cosets of a given flat F in a special
way which makes it easier to verify that I is an induced I5-restriction. For example, given
a triangle-free matroid M = (E,G) and a flat F ⊆ G, suppose that there are cosets
A1, A2, A3 of F for which A1 +A2 6= A3, (Ai +Aj)∩E = ∅ for every pair of i, j ∈ {1, 2, 3}
where i 6= j, and (A1 +A2 +A3)∩E = ∅; this is indeed the setting of our first lemma (see
Lemma 6.3.1). Suppose further that |I∩Ai| = 1 for each i = 1, 2, 3, and let ai ∈ I∩Ai and
{x, y} = (I ∪ F )\{a1, a2, a3}. Then in order to verify that I is an induced I5-restriction,
we only need to verify that ai + x+ y /∈ E for every i = 1, 2, 3.

6.2.2 It-free Matroids

Here, we give the proof for Theorem 6.1.1 by Nelson and Norin, adjusted for embedded
matroids. The tight examples are harder to determine, so we will not discuss them.
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Theorem 6.2.1 ([45]). For any t ≥ 1, if M is an r-dimensional, full-rank, It+1-free
matroid of dimension r, then |M | ≥ |Nr,t|.

Proof. We work by induction on t, and then on r. The case t = 1 is immediate, and note
that the case r = 1 is immediate for any t ≥ 1. Let M be a full-rank, It+1-free matroid of
dimension r. Then we may assume that there exists an induced It-restriction, as otherwise
the inductive hypothesis applies. Let F be a flat for which M |F ∼= It. Then M/F is It+1-
free. By induction on r, we have that |M/F | ≥ |Nr−t,t|. But note that each intersecting
coset A of F contains at least two elements of E; otherwise, M |(A ∪ F ) is an induced
It+1-restriction. Therefore, |M | ≥ 2 · |M/F | + t ≥ 2|Nr−t,t| + t = |Nr,t|. The last equality
follows from the fact that Nr,t is the direct sum of t projective geometries (individually
viewed as matroids) whose ranks are as equal as possible and add to r; from this it is easy
to deduce that 2|Nr−t,t|+ t = |Nr,t|.

This proof is difficult to extend to our case since M/F will not, in general, be triangle-
free when M is also triangle-free. This makes it difficult to perform induction as in the
proof of Theorem 6.2.1. The main idea in our proof will be to take advantage of triangle-
freeness early on to deduce, in some instances, that the contraction by an appropriate
choice of flat F is I3-free, instead of I5-free.

6.3 C5-restriction

In this section, our goal is to show that the smallest I5-free and triangle-free matroids are
affine when r ≥ 6. The strategy is to start with a C5-restriction and show that matroids
containing a C5-restriction are too large. Note that I5-free matroids are automatically
Ck-free for odd k ≥ 7 by Lemma 2.2.3.

The argument hinges on the following observation, which will allow us to reduce our
problem to one involving I3-free matroids, which we understand well. We note that this
lemma could be useful for solving Conjecture 1.5.8 in the case s = 5.

Lemma 6.3.1. Let M = (E,G) be a full-rank, I5-free and triangle-free matroid. Let F be
a flat of G so that M |F ∼= C5. Then M/F is I3-free.

Proof. Suppose for a contradiction that M/F contains an induced I3-restriction. This
means there exist three intersecting cosets A1, A2, A3 of F with respect to M for which
(Ai+Aj)∩E = ∅ for every pair of i, j ∈ {1, 2, 3} where i 6= j, and (A1+A2+A3)∩E = ∅.
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Fix ak ∈ Ak ∩E. Denote the five elements of E(M |F ) by {x1, x2, x3, x4, x5}, and consider
the complete graph H on 5 vertices with vertex set V = {v1, v2, v3, v4, v5}. For k = 1, 2, 3,
let Sk ⊆ E(H) be such that the edge vivj ∈ Sk if and only if ak + xi + xj ∈ E (note that
E(H) denotes the edge set of the graph H).

We now make the following sequence of observations.

6.3.1.1. Every edge of H belongs to Sk for some k ∈ {1, 2, 3}.

Subproof: If there exists an edge e = vivj that belongs to no Sk for k ∈ {1, 2, 3}, then
{a1, a2, a3, xi, xj} is an induced I5-restriction, a contradiction (as remarked in Subsection
6.2.1, to check that this is indeed an induced I5-restriction, we only need to verify that
ak + xi + yj /∈ E for k = 1, 2, 3). �

6.3.1.2. For every k ∈ {1, 2, 3}, Sk contains no two-edge matching of H.

Subproof: Suppose otherwise, so that Sk for some k ∈ {1, 2, 3} contains a two-edge match-
ing. Without loss of generality, suppose that v1v2, v3v4 ∈ Sk. Then {ak +x1 +x2, ak +x3 +
x4, x5} is a triangle, a contradiction. �

6.3.1.3. For every k ∈ {1, 2, 3}, Sk contains no triangle of H.

Subproof: Suppose for a contradiction that, say, S3 contains a triangle of H. Denote this
triangle T = {v3v4, v4v5, v3v5}. Note that every edge in E(H)\T is in a two-edge matching
with an edge in T . Hence by 6.3.1.1 and 6.3.1.2, we have E(H)\T ⊆ S1 ∪ S2.

Let H ′ = H − T − {v1v2} (H ′ is the graph H with the edges in T ∪ {v1v2} removed).
Then H ′ ∼= K2,3. Since E(H ′) ⊆ S1 ∪ S2 and neither S1 nor S2 contains a two-edge
matching, we must have {S1∩E(H ′), S2∩E(H ′)} = {{v1v3, v1v4, v1v5}, {v2v3, v2v4, v2v5}}.
Without loss of generality, suppose that Sk ∩ E(H ′) = {vkv3, vkv4, vkv5} for k = 1, 2.

Now, either v1v2 ∈ S1 or v1v2 ∈ S2. Hence, {x1, x3, x1 + x2 + a1, a2, a3} or {x2, x3, x1 +
x2+a2, a1, a3} is an induced I5-restriction (to quickly check that they would give an induced
I5-restriction, see Subsection 6.2.1). �

Now we can finish the proof. By 6.3.1.2, we have that, for each k ∈ {1, 2, 3}, Sk is
either a triangle or a star in H. By 6.3.1.3, we have that each Sk is a star. Let ck be the
centre of the star corresponding to Sk. Since |V \{c1, c2, c3}| ≥ 2, pick two distinct vertices
vi, vj ∈ V \{c1, c2, c3}. But then the edge vivj does not belong to Sk for any k ∈ {1, 2, 3},
contradicting 6.3.1.1.
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We will make one more observation about the cosets of F .

Lemma 6.3.2. Let M = (E,G) be a full-rank, I5-free and triangle-free matroid. Let
A,B,C be three cosets of flat F where M |F ∼= C5 for which |A ∩ E| = 1 and B + C = A,
|B ∩ E| ≤ |C ∩ E| and |C ∩ E| 6= 0. If |B ∩ E| ≤ 2, then |C ∩ E| ≥ 3.

Proof. Suppose for a contradiction that |B ∩ E| ≤ 2 but |C ∩ E| ≤ 2.

We first consider the case |B ∩ E| = 0. Fix a1 ∈ A ∩ E and c1 ∈ C ∩ E. Then
|C ∩ E| = 2; otherwise {a1, c1, x1, x2, x3} for any three elements x1, x2, x3 ∈ E ∩ F gives
an induced I5-restriction. Let c2 ∈ C ∩ E, c2 6= c1. Since M is triangle-free, we have that
c1+c2 ∈ F\E. Because M |F ∼= C5, c1+c2 = x1+x2 for some two x1, x2 ∈ E∩F . Pick any
other two elements x3, x4 ∈ E ∩ F . Then {a1, c1, x1, x3, x4} is an induced I5-restriction, a
contradiction.

Hence we may assume that |B ∩ E| > 0. Now fix b1 ∈ B ∩ E and c1 ∈ C ∩ E. Denote
the five elements of E(M |F ) by {x1, x2, x3, x4, x5}, and consider the complete graph H
on five vertices with vertex set V = {v1, v2, v3, v4, v5}. Let SA ⊆ E(H) ∪ V (H) consist of
vertices vi for which b1 + c1 + xi ∈ E and edges vivj for which b1 + c1 + xi + xj ∈ E. Let
SB ⊆ E(H) consist of the edges vivj for which b1 +xi+xj ∈ E, and let SC ⊆ E(H) consist
of the edges vivj for which c1 + xi + xj ∈ E. We now make a sequence of claims.

6.3.2.1. |SA| = 1, |SB| ≤ 1 and |SC | ≤ 1.

Subproof: Since 0 < |B ∩ E|, |C ∩ E| ≤ 2, we have that |SB|, |SC | ≤ 1. By assumption,
|E ∩ A| = 1 so that |SA| = 1. �

6.3.2.2. If an edge e ∈ E(H) satisfies e ∈ SB ∪ SC, then e /∈ SA.

Subproof: Suppose not, so that some edge e = vivj satisfies e ∈ SA and e ∈ SB ∪ SC . If
e ∈ SB, then {b1 + c1 + xi + xj, b1 + xi + xj, c1} is a triangle, a contradiction. The case
e ∈ SC is symmetrical. �

6.3.2.3. If four distinct vertices {vi, vj, vk, vl} of H satisfy vivj ∈ SB and vkvl ∈ SC, then
vt /∈ SA where vt ∈ V \{vi, vj, vl, vk}.

Subproof: If not, then {b1 + c1 + xt, b1 + xi + xj, c1 + xk + xl} is a triangle. �

6.3.2.4. There are no distinct vertices vi, vj, vl such that

• {vi, vj, vl} ∩ SA = ∅ and
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• {vivj, vivl, vjvl, vkvp} ∩ (SA ∪ SB ∪ SC) = ∅,

where {vk, vp} = V \{vi, vj, vl}.

Subproof: Suppose for a contradiction that such vertices exist. Then {b1, c1, xi, xj, xl} is
an induced I5-restriction. �

6.3.2.5. There is no triangle H where each of the three edges of T belongs to a distinct Sk,
k ∈ {A,B,C}.

Subproof: Suppose not, so that, without loss of generality, v1v2 ∈ SA, v2v3 ∈ SB, and
v1v3 ∈ SC . Then {b1 + c1 + x1 + x2, b1 + x2 + x3, c1 + x1 + x3} is a triangle. �

It is now possible to perform a case analysis to show that there is no valid assignment
of the vertices and edges of the complete graph H to SA, SB, SC under these constraints.
Recall that, since SA is a one-element set, SA either consists of one vertex or one edge.

Case 1: SA consists of one edge.

Consider the graph H ′ on the vertex set V with edge set SA∪SB ∪SC . By 6.3.2.1, this
graph has at most 3 edges. Note that a graph on 5 vertices with at most 3 edges either
contains a triangle, or Kc

2,3 in its complement. If H ′ contains a triangle, then by 6.3.2.1
again, each edge of this triangle belongs to a distinct Sk, k ∈ {A,B,C}, contradicting
6.3.2.5. If H ′ contains Kc

2,3 in its complement, then this contradicts 6.3.2.4.

Case 2: SA consists of one vertex.

Consider the graph H ′ on the vertex set V with edge set SB ∪ SC . Observe that a
graph on 5 vertices with a fixed vertex v and at most 2 edges either contains two vertex-
disjoint edges that do not intersect v, or the disjoint union of an edge that contains v
and a triangle in its complement. Let v be the unique vertex contained in SA. Then
this observation implies that H ′ contains two vertex-disjoint edges that do not intersect v,
contradicting 6.3.2.3, or the disjoint union of an edge that contains v and a triangle in its
complement, contradicting 6.3.2.5.

Combining Lemma 6.3.1, Lemma 6.3.2 and Theorem 6.1.1 yields the following result,
which shows that the smallest I5-free, triangle-free matroids are affine.

Lemma 6.3.3. Let M = (E,G) be an r-dimensional, full-rank, I5-free and triangle-free
matroid with a C5-restriction on a flat F , so that M |F ∼= C5. Then, |E| ≥ 2br/2c−1 +
2dr/2e−1. Moreover, when r ≥ 6, this is a strict inequality.
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Proof. By Lemma 6.3.1, M/F is I3-free. It is also full-rank; otherwise, M is rank-deficient.
By Theorem 6.1.1, this means |M/F | ≥ 2br−4/2c + 2dr−4/2e− 2. We may assume that there
exists some intersecting coset of F with respect to M that contains exactly 1 element;
otherwise,

|E| ≥ |M |F |+ 2|M/F | = 5 + 2(2br−4/2c + 2dr−4/2e − 2)

= 1 + 2br/2c−1 + 2dr/2e−1

> 2br/2c−1 + 2dr/2e−1.

which already satisfies the lemma.

Let A be a coset of F for which |A ∩ E| = 1. Let C be the set of cosets of F . We will
partition the intersecting cosets of F as follows by T1 and T0.

T1 = {B | B 6= A, |B ∩ E| > 0, |(A+B) ∩ E| > 0}

T0 = {B | B 6= A, |B ∩ E| > 0, |(A+B) ∩ E| = 0}.
Note that a coset B belongs to T1 if and only if A+B belongs to T1. In particular, |T1| is
even, and we have that

∑
B∈T1 |B ∩ E| =

∑
B∈T1 |(A+B) ∩ E|.

By Lemma 6.3.2 , we have that if B ∈ T1, then |B ∩E|+ |(A+B)∩E| ≥ 4. Therefore

∑
B∈T1

|B ∩ E| = 1

2

∑
B∈T1

(|B ∩ E|+ |(A+B) ∩ E|) ≥ 2|T1|.

By Lemma 6.3.2 again, for every B ∈ T0, we have that |B ∩ E| ≥ 3. Hence, we have

∑
B∈T0

|B ∩ E| ≥ 3|T0|.

Therefore we have
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|E| = |M |F |+
∑
B∈C

|B ∩ E|

= |M |F |+ |A ∩ E|+
∑
B∈T1

|B ∩ E|+
∑
B∈T0

|B ∩ E|

≥ 5 + 1 + 2|T1|+ 3|T0|
≥ 6 + 2(|T1|+ |T0|)
= 6 + 2(|M/F | − 1)

≥ 6 + 2(2b(r−4)/2c + 2d(r−4)/2e − 3)

= 2br/2c−1 + 2dr/2e−1,

This proves the bound. Moreover, note that equality can only be achieved when T0=0
and |M/F | = 2b(r−4)/2c + 2d(r−4)/2e − 2, which implies |T1| = 2b(r−4)/2c + 2d(r−4)/2e − 3. But
note that T1 is always even by definition, which is a contradiction, unless r = 5. This
completes the proof.

6.4 Largest Affine Geometries

In the previous section, we showed that the smallest matroids with no I5-restriction or
triangle must be affine when r ≥ 6 by showing that they cannot contain a C5-restriction
(which is the only obstruction to such matroids being affine). The goal of this section is
to study the matroids that are I5-free, triangle-free and C5-free.

We divide this section into three subsections. Given an I5-free, triangle-free and C5-free
matroid M = (E,G), suppose that M |F is a largest affine geometry contained in M . We
show that M/F is close to being I3-free in some sense. In the second subsection, we show
that M/F is always 2T -free (2T is the four-dimensional matroid consisting of two disjoint
triangles). In the third subsection, we determine the smallest I3-free and 2T -free matroids.
Combining these pieces in the next section will yield our result.

6.4.1 I3-freeness and Kites

In this subsection, we will use the following simple lemma.
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Figure 6.1: Kite

Lemma 6.4.1. If G is a projective geometry of dimension at least 2, and W1,W2,W3 are
proper flats of G for which W1 ∪W2 ∪W3 = G, then

• Wi is a hyperplane of G for each i = 1, 2, 3, and

• W1 ∩W2 ∩W3 is a flat of G of codimension 2.

Doubled Kites

The kite is the 6-dimensional matroid (E,G) with basis B = {x1, x2, x3, x4, x5, x6} of [G]
such that E = B∪{x1 +x2 +x3, x2 +x3 +x4, x1 +x3 +x5, x1 +x2 +x6} and is denoted MK .
Note that |MK | = 10. See Figure 6.1. The kite can also be obtained from the matroid
F7 by picking a triangle and series-extending each element of the triangle. Note that the
matroid Dk(MK) has dimension (k+6). A matroid that is isomorphic to Dk(MK) for some
k ≥ 0 is called a doubled kite.

We remark that the matroid MK contains an induced D(I3)-restriction and an induced
C6-restriction; this fact will become important later. More specifically, in the above repre-
sentation, MK | cl(x4, x1, x2, x2 + x3) ∼= D(I3), and MK | cl(x4, x5, x6, x1 + x2 + x6, x1 + x3 +
x5) ∼= C6.

Suppose that M is an I5-free, triangle-free and C5-free matroid, and that M |F is a
largest affine geometry restriction contained in M . We show below that if M/F fails to be
I3-free, then M contains an induced doubled kite.
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Lemma 6.4.2. Let M |F be an affine geometry restriction contained in an I5-free, triangle-
free and C5-free matroid M of dimension at least 3. Let A1, A2, A3 be three intersecting
cosets of F with respect to M for which A1 +A2 6= A3 and A1 +A2, A1 +A3, A2 +A3 and
A1 + A2 + A3 all have no intersection with E. Then either

• M | cl(F ∪ Ai) is an affine geometry for some i ∈ {1, 2, 3}, or

• M | cl(F ∪ A1 ∪ A2 ∪ A3) ∼= Ddim(F )−3(MK).

Furthermore, if the second outcome holds, then there exists a flat W ⊆ F such that for
any transversal (a1, a2, a3) of (E ∩A1, E ∩A2, E ∩A3), there exist distinct hyperplanes W1,
W2, W3 of W for which

• E ∩ cl(F ∪ A1 ∪ A2 ∪ A3) = (F\W ) ∪⋃3
i=1(ai + [Wi]), and

• W1 ∩W2 ∩W3 is a codimension-2 flat of W .

Proof. Let W be the hyperplane of F for which E ∩W = ∅. Suppose that M | cl(F ∪ Ai)
is not an affine geometry for any i = 1, 2, 3. For each i, let Stab(Ai ∩ E) = {w ∈ W |w +
Ai ∩ E = Ai ∩ E}. Note that Stab(Ai ∩ E) is a flat of W .

6.4.2.1. W =
3⋃
i=1

Stab(Ai ∩ E).

Subproof: Let w ∈ W . If w /∈ ∪3i=1 Stab(Ai∩E), then there exists ai ∈ Ai∩E for i = 1, 2, 3
for which w + ai /∈ Ai ∩ E. Pick any z ∈ E ∩ F . Then {z, z + w, a1, a2, a3} is an induced
I5-restriction (by the remark made in Subsection 6.2.1, checking that this is an induced
I5-restriction amounts to having ai + z + (z + w) = ai + w /∈ E for i = 1, 2, 3). �

6.4.2.2. For i = 1, 2, 3, Stab(Ai∩E) is a hyperplane of W . Moreover, the three hyperplanes
intersect at a codimension-2 flat of W .

Subproof: By Lemma 6.4.1 and 6.4.2.1, it suffices to show that Wi = Stab(Ai ∩ E) is a
proper flat of W for each i = 1, 2, 3. But since M | cl(F ∪Ai) is not an affine geometry for
any i = 1, 2, 3, it follows that Wi is a proper flat of W . �

Let Wi = Stab(Ai ∩E). Now we claim that M | cl(F ∪A1 ∪A2 ∪A3) is a doubled kite.
Let W ′ = W1 ∩W2 ∩W3. By the above, W ′ has dimension dim(W ) − 2. Pick a triangle
T = {t1, t2, t3} ⊆ W\W ′ where ti ∈ Wi, and fix ai ∈ Ai ∩ E for i = 1, 2, 3, and x ∈ F\W .

Write F ′ = cl(T ∪ {a1, a2, a3, x}). Then E ∩ F ′ = (x+ [T ]) ∪⋃3
i=1{ai, ai + ti}.
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6.4.2.3. M |F ′ ∼= MK.

Subproof: Write B = (x+ T ) ∪ {a1, a2, a3} ⊆ E. From the definition of kites, it is easy to
check that M |F ′ ∼= MK . �

6.4.2.4. M | cl(F ∪ A1 ∪ A2 ∪ A3) is a doubled kite.

Subproof: We use Lemma 2.5.2. Note that W ′ ∩ F ′ = ∅, and cl(F ′ ∪W ′) = cl(F ∪ A1 ∪
A2 ∪ A3). Note that ([W ′] + ti) ∪W ′ = Wi for every i = 1, 2, 3.

[W ′] + (E ∩ F ′) =
3⋃
i=1

([W ′] + ai) ∪
3⋃
i=1

([W ′] + ti + ai) ∪
3⋃
i=1

([W ′] + x+ ti) ∪ ([W ′] + x)

=
3⋃
i=1

([Wi] + ai) ∪
3⋃
i=1

(Wi\W ′ + x) ∪ ([W ′] + x)

=
3⋃
i=1

([Wi] + ai) ∪ ([W ] + x)

=
3⋃
i=1

([Wi] + ai) ∪ (F\W )

= E ∩ cl(F ∪ A1 ∪ A2 ∪ A3).

�

If the second statement in the theorem statement holds, then E∩cl(F ∪A1∪A2∪A3) =
(F\W ) ∪⋃3

i=1(ai + [Wi]) follows from the above calculation.

In the proof of the main theorem, given a matroid M = (E,G) and a flat F for which
M |F is a largest affine geometry restriction contained in M , we will consider the matroid
M/F . The case where M/F is I3-free is pleasant, as we understand I3-free matroids well.
In the case M/F leads to a doubled kite, then we can use the existence of a doubled kite
to conclude that M contains too many elements. First, we make the following observation;
it follows from the fact that the matroid MK contains an induced D(I3)-restriction and an
induced C6-restriction.

Lemma 6.4.3. The matroid Dk(MK) contains an induced Dk+1(I3)-restriction and an
induced Dk(C6)-restriction.
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We first focus on the role of the Dk+1(I3)-restriction contained in the matroid Dk(MK).

Lemma 6.4.4. For an I5-free, C5-free and triangle-free matroid M = (E,G), suppose that
k + 3 is the dimension of a maximum affine geometry restriction contained in M , where
k ≥ 0. If F ′ is a flat for which M |F ′ ∼= Dk+1(I3), then M/F ′ is claw-free.

Proof. By Lemma 2.5.2, there exist disjoint flats D and F of F ′ where D is (k + 1)-
dimensional, F ′ = cl(D ∪ F ), M |F ∼= I3 and E ∩ cl(D ∪ F ) = [D] + (E ∩ F ) (so that
M |F ′ ∼= Dk+1(I3)). Write F ∩ E = {x1, x2, x3}.

Suppose for a contradiction that M/F ′ contains a claw, corresponding to three inter-
secting cosets A1, A2, A3 of F ′ with respect to E for which A1 + A2 6= A3, and A1 + A2,
A1 +A3, A2 +A3, A1 +A2 +A3 have no intersection with E. Pick an element yi ∈ E ∩Ai
for i = 1, 2, 3. For i = 1, 2, 3, let Ui = {v ∈ F ′\E | yi + v ∈ E} = (yi + E) ∩ F ′.
6.4.4.1. Ui ∩ (x1 + x2 + x3 + [D]) = ∅, for i = 1, 2, 3.

Subproof: If there exists v ∈ Ui∩ (x1 +x2 +x3 + [D]), then {yi, v+ yi, x1, x2, v+x1 +x2} is
a C5-restriction (to check this, because of triangle-freeness, it suffices to note that the five
elements sum to zero). �

6.4.4.2. x1 + x2 + [D] ⊆ ⋂3
i=1 Ui

Subproof: Note that cl(D∪{x1, x2}) is a largest affine geometry restriction of M since it has
dimension k+3. Hence by applying Lemma 6.4.2 to the cosets A′i = cl(D∪{x1, x2, yi}) ⊆ Ai
for i = 1, 2, 3, the matroid M | cl(D∪{x1, x2, y1, y2, y3}) is a doubled kite. Hence, by the last
statement of Lemma 6.4.2, for every element v ∈ x1 +x2 + [D], either there exists a unique
l ∈ {1, 2, 3} for which v ∈ Ul, or v ∈ Ui for every i = 1, 2, 3. If, for some v ∈ x1 + x2 + [D],
there exists a unique l ∈ {1, 2, 3} for which v ∈ Ul, then {y1, y2, y3, v+ yl, x3} is an induced
I5-restriction, a contradiction. Hence, x1 + x2 + [D] ⊆ ⋂3

1 Ui. �

This is enough to derive a contradiction. Note again, by Lemma 6.4.2 and the fact that
cl(D∪{x1, x2}) is a largest affine geometry restriction ofM , thatM | cl(D∪{x1, x2, y1, y2, y3})
is a doubled kite, and by the last statement of Lemma 6.4.2, this implies that J =
cl(D ∪ {x1, x2}) ∩ U1 ∩ U2 ∩ U3 is a flat of codimension 2 of cl(D ∪ {x1 + x2}). Since
dim(cl(D ∪ {x1 + x2})) = dim(D) + 1 = k + 2, this means that dim(J) = dim(cl(D ∪
{x1 + x2}))− 2 = k. In particular, this implies that |J | = 2k − 1. But by 6.4.4.2, we have
that x1 + x2 + [D] ⊆ J . But |(x1 + x2 + [D])| = 2k+1, which implies 2k+1 ≤ 2k − 1, a
contradiction.
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The next goal is to estimate the number of elements in a matroid that contains an
induced Dk(C6)-restriction. To do so, we estimate their sizes at the coset level. For each
k ≥ 0, let dk be the smallest positive integer such that there exists a I5-free, triangle-free
and C5-free matroid M = (E,G) and a hyperplane H ⊆ G with M |H ∼= Dk(C6) and
|E\H| = dk. We will provide a lower bound on dk in two steps. In the first step we will
show that d0 ≥ 4.

Lemma 6.4.5. d0 ≥ 4.

Proof. Let M = (E,G) be a 6-dimensional matroid with a hyperplane H ⊆ G for which
M |H ∼= C6. Suppose that |E\H| > 0. Our aim is to show that |E\H| ≥ 4. Fix v ∈ E\H.
We note that |E\H| ≥ 2; otherwise {v, v1, v2, v3, v4} is an induced I5-restriction for any
four elements vi ∈ E ∩ H, i = 1, 2, 3, 4. Because of C5-freeness, v + v1 + v2 + v3 /∈ E for
any three distinct v1, v2, v3 ∈ E ∩H. Hence we have some element v′ ∈ E\H of the form
v′ = v + v1 + v2 for some two v1, v2 ∈ E ∩H.

Now, consider the flat F = cl(v1, v3, v4, v5) for any three v3, v4, v5 ∈ E ∩H other than
v2. Now note that M | cl(F ∪ {v}) is an induced I5-restriction unless |E ∩ (v + F )| 6= 0,
and similarly M | cl(F ∪ {v′}) is an induced I5-restriction unless |E ∩ (v′ + F )| 6= 0. But
(v + F ′) ∩ (v′ + F ) = ∅. Hence |E\H| ≥ 4.

Lemma 6.4.6. dk ≥ 3 · 2k + 1 for k ≥ 0.

This will follow directly from the following lemma by setting P to be the family of
matroids that are I5-free, C5-free and triangle-free, and N = C6. A class of matroids P is
called hereditary if it is closed under taking induced restrictions.

Lemma 6.4.7. Let P be a hereditary class of matroids, and let N ∈ P. Suppose that for
every M = (E,G) ∈ P having a hyperplane H with M |H ∼= N and |E\H| > 0, we have
|E\H| > t.

Then, if M = (E,G) ∈ P and there exists a hyperplane H for which M |H ∼= Dk(N)
and |E\H| > 0, then |E\H| > t · 2k.

Proof. Suppose that M = (E,G) ∈ P and there is a hyperplane H ⊆ G for which M |H ∼=
Dk(N). Using Lemma 2.5.2, let H ′ be a flat of H such that M |H ′ ∼= N , and let D be a
k-dimensional flat for which dim(D) + dim(H ′) = dim(H) and [D] + (E ∩ H ′) = H ∩ E.
Let F be the set of dim(N)-dimensional flats F of H such that F ∩ D = ∅ (and hence
M |F ∼= N by Lemmas 2.4.2 and 2.5.3).
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Fix v ∈ E\H. Let S = {(F, e) | F ∈ F , e ∈ (F +v)∩E}. By assumption, we know that
|S| ≥ t|F|. Observe that given an element y ∈ H\D, the number of dim(N)-dimensional
flats F ∈ F that contain y is |F|/2k. This can be seen as follows. Let X be the number of
elements of F that contains a given element y ∈ H\D (note that this does not depend on
the choice of y by symmetry). Then counting pairs of an element F of F and an element
y ∈ F in two different ways, we obtain that (2k+dim(N) − 2k)X = |F|(2dim(N) − 1), giving
us X = |F|/2k.

Therefore, we have the following.

|S| =
∑

e∈((H\D)+v)∩E

|{F ∈ F | e ∈ F + v}|

=
∑

e∈((H\D)+v)∩E

|{F ∈ F | e+ v ∈ F}|

=
∑

e∈((H\D)+v)∩E

|F|/2k.

Hence it follows that |((H\D)+v)∩E|·|F|/2k ≥ t·|F|. Therefore, |(H+v)∩E| ≥ t·2k.
Adding the fixed element v, we obtain that |E\H| > t · 2k.

We now combine Lemmas 6.4.4 and 6.4.6

Lemma 6.4.8. Let M = (E,G) be a full-rank, r-dimensional, I5-free, C5-free and triangle-
free matroid. Let k+3 be the dimension of a maximum affine geometry restriction contained
in M where k ≥ 0, and suppose that M contains an induced Dk(MK)-restriction. Then
|E| > 2br/2c−1 + 2dr/2e−1.

Proof. Let F be a flat for which M |F ∼= Dk(MK); note that the matroid Dk(MK) contains
an induced Dk+1(I3)-restriction. Let M ′ = (E ′, F ′) be the contraction of M by F . By
Lemma 6.4.4, M ′ is I3-free. Also, M ′ is full-rank, as otherwise M is rank-deficient. By
Theorem 6.1.1, |E ′| ≥ 2b(r−k−6)/2c + 2d(r−k−6)/2e − 2.

Note that M |F contains an induced Dk(C6)-restriction. By Lemma 6.4.6, the cosets
of F corresponding to the elements of E ′ contain at least 3 · 2k + 1 elements of E. Note
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3 · 2k + 1 ≥ 4 · (3/2)k for k ≥ 0. Hence

|E| ≥ |E ∩ F |+ |E ′| · 4 · (3/2)k

≥ 10 · 2k + (2b(r−k−6)/2c + 2d(r−k−6)/2e − 2) · 4 · (3/2)k

= 10 · 2k − 8 · (3/2)k +
1

2
· (3/2)k · (2b(r−k)/2c + 2d(r−k)/2e).

When k = 0, then substituting this into the above implies that |E| > 2br/2c−1 + 2dr/2e−1.
When k ≥ 1, we can check that

(3/2)k · (2b(r−k)/2c + 2d(r−k)/2e) ≥ (3/2)k · 2 · 2(r−k)/2

≥ 3√
(2)
· 2r/2

≥ 2br/2c + 2dr/2e.

Hence |E| > 2br/2c−1 + 2dr/2e−1 when k ≥ 1 as well.

6.4.2 2T -freeness

Given an I5-free, triangle-free and C5-free matroid M = (E,G), with M |F being a maxi-
mum affine geometry restriction contained in M , we will now further restrict the number
of elements that are allowed on M/F by finding another excluded induced restriction. The
matroid 2T is the 4-dimensional matroid whose ground set consists of two disjoint triangles.
We now show that M/F is 2T -free.

We now state and prove the main lemma of this subsection. Note that we start with
a maximal affine geometry restriction M |F , not a maximum affine geometry restriction,
in the following lemma, meaning that there is no x ∈ G\F for which M | cl(F ∪ {x}) is an
affine geometry restriction.

Lemma 6.4.9. Let M |F be a maximal affine geometry restriction of an I5-free, triangle-
free and C5-free matroid, where dim(F ) ≥ 3. Then M/F is 2T -free, or M contains an
affine geometry restriction of dimension dim(F ) + 1.

Proof. Let W be the hyperplane of F for which W ∩ E = ∅.
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Suppose for a contradiction that M/F contains an induced 2T -restriction. Therefore,
there exist 6 distinct intersecting cosets of F with respect to M , A1, A2, A3, B1, B2, B3,
such that A1 + A2 = A3, B1 +B2 = B3, and (Ai +Bj) ∩ E = ∅ for every i, j ∈ {1, 2, 3}.

We now make the following sequence of claims to uncover the structure of M .

6.4.9.1. For any two distinct i, j ∈ {1, 2, 3}, if ai ∈ Ai ∩ E and aj ∈ Aj ∩ E, then
(ai + aj + [W ]) ∩ E = ∅.

Subproof: Since M is triangle-free, ai +aj /∈ E. If there exists ak ∈ (ai +aj +W )∩E, then
{ai, aj, ak, z, ai + aj + ak + z} is a C5-restriction for any z ∈ F ∩ E, a contradiction. �

6.4.9.2. There exists y ∈ F ∩E such that for any {i, j, k} = {1, 2, 3}, Ai∩E+Aj∩E+y ⊆
Ak ∩ E.

Subproof: Pick b1 ∈ B1∩E and b2 ∈ B2∩E. As M is triangle-free, b1+b2 /∈ B3∩E. Due to
maximality, we may pick y ∈ F∩E such that b1+b2+y /∈ E; if not, then M | cl(F∪{b1+b2})
is a strictly larger affine geometry restriction containing M |F .

Let ai ∈ Ai ∩E and aj ∈ Aj ∩E. Then y+ ai + aj ∈ Ak ∩E; otherwise {y, ai, aj, b1, b2}
is an induced I5-restriction. �

6.4.9.3. For distinct i, j ∈ {1, 2, 3}, |(Ai ∩ E) + (Aj ∩ E)| = |Ai ∩ E|.

Subproof: Let k ∈ {1, 2, 3}\{i, j}. By 6.4.9.2, we have that |Ai ∩ E + Aj ∩ E| ≤ |Ak ∩ E|.
Also, |Ak∩E| ≤ |Ak∩E+Aj∩E|. By applying 6.4.9.2 again, we have that |Ak∩E+Aj∩E| ≤
|Ai ∩ E|. Hence |Ai ∩ E + Aj ∩ E| ≤ |Ai ∩ E|. The claim follows. �

Note that 6.4.9.3 implies in particular that |A1 ∩ E| = |A2 ∩ E| = |A3 ∩ E|.
Let Stab(A ∩ E) = {w ∈ [W ] |w + A ∩ E = A ∩ E}. Stab(A ∩ E) is a subspace. Note

that trivially |A ∩ E| ≥ | Stab(A ∩ E)| when |A ∩ E| > 0. We now claim the following.

6.4.9.4.

• For i = 1, 2, 3, |Ai ∩ E| = | Stab(Ai ∩ E)|,

• Stab(A1 ∩ E) = Stab(A2 ∩ E) = Stab(A3 ∩ E).
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Subproof: Fix i ∈ {1, 2, 3}, and take some other j 6= i, j ∈ {1, 2, 3}. By 6.4.9.3, |Ai ∩ E +
Aj ∩ E| = |Ai ∩ E|. Let a ∈ Aj ∩ E. Then

|Ai ∩ E| = |Ai ∩ E + Aj ∩ E| ≥ |Ai ∩ E + a| = |Ai ∩ E|.

This implies that Ai ∩ E + Aj ∩ E = Ai ∩ E + a. Hence Aj ∩ E ⊆ Stab(Ai ∩ E) + a.
Therefore

| Stab(Ai ∩ E)| ≥ |Aj ∩ E| = |Ai ∩ E| ≥ | Stab(Ai ∩ E)|.

Hence, it follows that |Ai∩E| = | Stab(Ai∩E)|. Moreover, Aj ∩E = Stab(Ai∩E) +a.
Taking the stabiliser on both sides, it follows that Stab(Ai ∩ E) = Stab(Aj ∩ E). �

6.4.9.4 implies that the three stabilisers coincide on a subspace, and that for each
i = 1, 2, 3, Ai ∩ E is a coset of that flat.

Now, we may run the same argument, with the role of the A cosets swapped with that
of the B cosets. This gives the following.

6.4.9.5.

• Stab(A1 ∩ E) = Stab(A2 ∩ E) = Stab(A3 ∩ E).

• Stab(B1 ∩ E) = Stab(B2 ∩ E) = Stab(B3 ∩ E).

• For any X ∈ {A1, A2, A3, B1, B2, B3}, |X ∩ E| = | Stab(X ∩ E)|.

Let FA be the flat of W for which FA = Stab(A1 ∩ E)\{0}, and FB another flat of W
for which FB = Stab(B1 ∩ E)\{0}.

Fix any two elements a1 ∈ A1 ∩ E and a2 ∈ A2 ∩ E, and similarly b1 ∈ B1 ∩ E and
b2 ∈ B2 ∩ E. Then by 6.4.9.1 and 6.4.9.5, we see that E ∩ Ai = [FA] + ai for i = 1, 2, and
E ∩A3 equals the set a1 + a2 +A′3 where A′3 = [FA] + yA for some yA ∈ F ∩ E. Similarly,
E ∩Bi = [FB] + bi for i = 1, 2, and E ∩B3 equals the set b1 + b2 +B′3 where B′3 = [FB] +yB
for some yB ∈ F ∩ E.

6.4.9.6. A′3 ∪B′3 = F ∩ E.

Subproof: Suppose not. Pick z ∈ (F ∩ E)\(A′3 ∪ B′3). Then {a1, a2, b1, b2, z} is an induced
I5-restriction, a contradiction. �
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6.4.9.7. FA and FB are hyperplanes of W .

Subproof: First note that FA, FB 6= W ; otherwise M | cl(F ∪ A1) or M | cl(F ∪ B1) is a
strictly larger affine geometry restriction containing M |F .

Now, suppose for a contradiction that at least one of FA or FB, say FA without loss
of generality, has codimension at least 2. But then |(F ∩ E)\(A′3 ∪ B′3)| ≥ 2dim(F )−1 −
2dim(FA) − 2dim(FB) ≥ 2dim(F )−1 − 2dim(F )−3 − 2dim(F )−2 = 2dim(F )−3 > 0. This contradicts
6.4.9.6. Therefore both FA and FB are hyperplanes of W . �

By 6.4.9.7, FA is a hyperplane. Note that E∩cl(FA∪{yA, a1, a2}) = [FA]+{yA, a1, a2, yA+
a1 + a2}. Hence cl(FA ∪ {yA, a1, a2})\E = cl(FA ∪ {yA + a1, yA + a2}), which is a flat of
dimension dim(FA) + 2 = dim(W ) + 1. Therefore it follows that M | cl(FA ∪{yA, a1, a2}) is
an affine geometry restriction of dimension dim(F ) + 1.

6.4.3 I3-freeness and 2T -freeness

In this subsection, we determine the smallest I3-free, 2T -free matroids. The proof uses
Lemma 2.1.1.

We remark that it is possible to use the structural theorem for claw-free matroids to
give an alternative proof; we opt for a more direct approach involving less machinery. We
write PGS(t1, t2) for the (t1 + t2)-dimensional matroid whose ground set consists of two
disjoint flats of dimensions t1 and t2.

Lemma 6.4.10. Let M = (E,G) be an r-dimensional, full-rank matroid that is I3-free
and 2T -free. Then |E| ≥ 2r−1. Moreover, equality holds if and only if M ∼= AG(r − 1, 2)
or M ∼= Dk(PGS(1, t)) for some t ≤ r and k ≥ 0

Proof. The result is trivially true when r = 1. Let M be a minimum counterexample, on
dim(M).

We first claim that for every proper flat F ⊆ G, there exists a mixed coset A of F with
respect to M , meaning 0 < |A ∩ E| < |A|. If not, then every coset A of F with respect to
M is unmixed. Note first that M/F is full-rank; otherwise M is rank-deficient. Moreover,
since F has no mixed cosets with respect to M , for any flat F̄ ⊆ G for which F ∩ F̄ = ∅, it
follows that M/F ∼= M |F̄ . Since M |F̄ is an induced restriction of M , M/F ∼= M |F̄ is I3-
free and 2T -free. Since dim(M/F ) < dim(M), it follows that |M/F | ≥ 2r−dim(F )−1. Each
intersecting coset of F with respect to M contains 2dim(F ) elements of E, so we have that
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|E| ≥ |E ∩F |+ 2r−dim(F )−1 ·2dim(F ) ≥ 2r−1. Moreover, |E| = 2r−1 if and only if |F ∩E| = 0
and the bound is attained for M/F . Hence, it follows that M ∼= Ddim(F )(M/F ), and that
M/F is either an affine geometry or M/F ∼= Dk(PGS(1, t)) for some k. Hence M is an
affine geometry, or M ∼= Ddim(F )+k(PGS(1, t)), which contradicts minimality. Hence we
may assume that, for every proper flat F ⊆ G, there exists some mixed coset of F with
respect to M . We will now argue that M ∼= PGS(1, r− 1), which will give a contradiction.

6.4.10.1. There exists a hyperplane H of G for which M |H is rank-deficient.

Subproof: Suppose not, so that M |H is full-rank for every hyperplane H. By minimality,
|E∩H| ≥ 2r−2. Let H be the set of hyperplanes of G. Note that any given element in G is
contained in precisely

(
r−1
r−2

)
2

hyperplanes of G. By a standard double counting argument,

we have the following. Note that the quantity
(
p
q

)
2

is a Gaussian binomial coefficient and

equals (1−2p)(1−2p−1)···(1−2p−q+1)
(1−2)(1−22)···(1−2q) .

|E| = 1(
r−1
r−2

)
2

∑
H∈H

|E ∩H| ≥
(
r
r−1

)
2(

r−1
r−2

)
2

· 2r−2

> 2 · 2r−2
= 2r−1

This contradicts the minimality of M . �

Let H be a hyperplane of G for which M |H is rank-deficient. Let F be a hyperplane
of H such that E ∩ H ⊆ F . Let A1 and A2 be the remaining two cosets of F . We may
assume that Ai ∩ E 6= ∅ for i = 1, 2; otherwise M is rank-deficient.

6.4.10.2. If v ∈ ((Ai ∩ E) + (Ai ∩ E))\E for any i ∈ {1, 2}, then v + w ∈ E for all
w ∈ (E ∩ A1) ∪ (E ∩ A2).

Subproof: Observe that if v ∈ ((Ai ∩ E) + (Ai ∩ E))\E, then for any b ∈ E ∩ A3−i,
v + b ∈ E; write v = a1 + a2 where a1, a2 ∈ Ai ∩ E, then otherwise {a1, a2, b} is a claw.
Furthermore, since |E∩A3−i| > 0, there exists some b ∈ E∩A3−i, and by this observation,
v + b ∈ E ∩A3−i, so v ∈ ((A3−i ∩E) + (A3−i ∩E))\E. Applying the same observation, we
conclude that if v ∈ ((Ai ∩ E) + (Ai ∩ E))\E for some i ∈ {1, 2}, then in fact v + w ∈ E
for all w ∈ (E ∩ A1) ∪ (E ∩ A2). �

6.4.10.3. ((A1 ∩ E) + (A1 ∩ E))\E = ((A2 ∩ E) + (A2 ∩ E))\E.
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Subproof: Let v ∈ ((Ai ∩ E) + (Ai ∩ E))\E. Since |E ∩ A3−i| > 0, take b ∈ E ∩ A3−i. By
6.4.10.2, v + b ∈ E ∩ A3−i. �

6.4.10.4. ((A1 ∩ E) + (A1 ∩ E)) ⊆ E.

Subproof: Let P = ((A1 ∩ E) + (A1 ∩ E))\E, Q = F ∩ E, R = F\(P ∪ Q). We check
that there are no triangles T in F for which |T ∩ P | ≥ 1 and |T ∩ R| = 1. Suppose for a
contradiction that such a triangle T = {v, w, v+w} exists, with v ∈ P and w ∈ R. Fix an
element a1 ∈ E ∩ A1. Since v ∈ P it follows from 6.4.10.2 that v + a1 ∈ E. Then, since
w ∈ R, a1+w /∈ E and a1+v+w /∈ E. Now, if v+w ∈ E, then {a1, a1+v, v+w} is a claw,
a contradiction, so v+w /∈ E. If v+w ∈ P , then 6.4.10.2 would imply that a1 +v+w ∈ E,
a contradiction. So v + w ∈ R. By Lemma 2.1.1, it follows that cl(P ) ⊆ P ∪ Q, and the
cosets of cl(P ) in F are contained in Q or R. We now claim that the flat F ′ = cl(P ) has
no mixed cosets.

First, take a coset B of F ′ in F . Then either B ⊆ Q, in which case B ⊆ E, and if
B ⊆ R, then B ∩ E = ∅. It remains to show that the cosets of the form a + [F ′] where
a ∈ A1 ∪ A2 are not mixed. Take a ∈ E ∩ Ai for some i ∈ {1, 2} and we show that
a+ [F ′] ⊆ E. Let b ∈ E ∩ A3−i.

Let 1P = P , and let kP = P + (k− 1)P for k ≥ 2. Then cl(P ) = ∪k≥1(kP ). We prove
by induction that for any k ≥ 1, any v ∈ kP satisfies a+ v, b+ v ∈ E. The base case k = 1
follows from 6.4.10.2. Now suppose that the statement is true for (k− 1)P . Let v ∈ kP so
that there exists w ∈ P such that w + v ∈ (k − 1)P . Note that v + w + a, v + w + b ∈ E
by induction. Now we may apply 6.4.10.2 to conclude that w + (v + w + a) = v + a and
w + (v + w + b) = v + b belong to E. By induction, a+ [F ′] ⊆ E, and there are no mixed
cosets of F ′ in G.

By the remark from the beginning of the proof, every proper flat has to have at least
one mixed coset of itself with respect to M , so this means that F ′ = cl(P ) is empty. Hence
((Ai ∩ E) + (Ai ∩ E)) ⊆ E for i = 1, 2. �

6.4.10.5. F ⊆ E.

Subproof: We will first show that cl(F ∩E) ⊆ E. Take v, w ∈ F ∩E, and fix ai ∈ E ∩Ai,
i = 1, 2. We claim that v+w ∈ E. So suppose not. By 6.4.10.4, ai+v+w /∈ E for i = 1, 2.
Note that for each i = 1, 2, precisely one of ai + v ∈ E and ai + w ∈ E must hold; if none
holds, then {ai, v, w} is a claw, and if both hold, then the triangle {ai + v, ai + w, v + w}
violates 6.4.10.4. Assume without loss of generality that a1+v ∈ E (and a1+w /∈ E). Now,
if a2+w ∈ E (and hence a2+v /∈ E), then M | cl({a1, v, a2, w}) is an induced 2T -restriction.
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Hence a2 + v ∈ E and a2 + w /∈ E. But then {a1, a2, w} is a claw, a contradiction. So
v + w ∈ E. We therefore conclude that cl(F ∩ E) ⊆ E.

It remains to show that cl(F ∩ E) = F . If cl(F ∩ E) is a proper subset of F , then by
picking ai ∈ E∩Ai for i = 1, 2 and observing 6.4.10.4, we see that E ⊆ cl((F∩E)∪{a1, a2}),
and so M is rank-deficient, a contradiction. Therefore cl(F∩E) = F and hence F ⊆ E. �

Finally, we uniquely determine the matroid M . We claim that M ∼= PGS(1, r − 1).
We fix ai ∈ Ai ∩ E, i = 1, 2. Take v ∈ F . Then |E ∩ {v + a1, v + a2}| ≥ 1; otherwise
{v, a1, a2} is a claw. Hence |E| ≥ 2 + 2|F | = 2r−1. If |E| > 2r−1, then M satisfies the
theorem, so we must have that |E| = 2r−1. This equality occurs only if for every v ∈ F ,
|E ∩ {v + a1, v + a2}| = 1. Under this assumption that each v ∈ F satisfies precisely one
of v+ a1 ∈ E or v+ a2 ∈ E, we now show that there exists i ∈ {1, 2} such that v+ ai ∈ E
for all v ∈ F . Suppose not, so there exist v, w ∈ F for which v + a1, w + a2 ∈ E. Without
loss of generality, suppose that v + w + a1 ∈ E. But then {a2, v, v + w + a1} is a claw, a
contradiction.

This implies that E = cl(F ∪ {ai}) ∪ {a3−i}, so M ∼= PGS(1, r − 1).

6.5 The Main Theorem

We can now combine the results in the prior sections to give our main result, restated
below.

Theorem 6.5.1. Let M = (E,G) be an r-dimensional, full-rank, I5-free, and triangle-free
matroid. Then |E| ≥ 2br/2c−1 + 2dr/2e−1. Moreover, when r ≥ 6, equality holds if and only
if M ∼= M1 ⊕M2 where M1 and M2 are affine geometries of dimension br/2c and dr/2e
respectively.

We remark that the condition r ≥ 6 in the above theorem is necessary. For example,
the matroid C6 is I5-free and triangle-free with 6 elements, but it is not isomorphic to
AG(1, 2)⊕ AG(2, 2).

Proof. By Lemma 6.3.3, if M contained a C5-restriction, then the bound holds, and when
r ≥ 6, no such matroids attain the bound. Hence we may assume that M is C5-free, hence
affine.

Suppose first that M is C4-free. We first claim that M can have dimension at most
5. For a contradiction, take an independent set of six elements xi ∈ E, i = 1, . . . , 6.
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By triangle-freeness, C4-freeness and C5-freeness, it follows that
∑

i∈I xi /∈ E for any
I ⊆ {1, 2, 3, 4, 5, 6} for which |I| = 2, 3, 4, and therefore, because of I5-freeness,

∑
i∈I xi ∈ E

for all |I| = 5. But then {x1 +x2 +x3 +x4 +x5, x2 +x3 +x4 +x5 +x6, x1, x6} is an induced
C4-restriction, a contradiction (note that x1 + x2 + x3 + x4 + x5 + x6 /∈ E because of
triangle-freeness). It is then easy to check that the only possible full-rank matroids that
are also C4-free are I1, I2, I3, I4 and C6, all of which satisfy the theorem.

Suppose that M |F is a maximum affine geometry restriction; note that dim(F ) ≥ 3
since M has an induced C4-restriction. Let M ′ = (E ′, F ′) denote M/F . Note that M ′ is
full-rank. By Lemma 6.4.2 and maximality, either M ′ is I3-free, or M contains an induced
Dk(MK)-restriction for some k ≥ 0 (so that the dimension of F is k+ 3). Then by Lemma
6.4.8, |E| does not attain the bound. Hence we may assume that M ′ is I3-free. By Lemma
6.4.9 and maximality, M ′ is 2T -free. By Lemma 6.4.10, it follows that |E ′| ≥ 2r−dim(F )−1.
If we let C be the set of cosets of F , then

|E| = |E ∩ F |+
∑
A∈C

|E ∩ A|

≥ |E ∩ F |+ |E ′|
≥ 2dim(F )−1 + 2r−dim(F )−1

≥ 2br/2c−1 + 2dr/2e−1

This proves the bound. We now determine the extremal examples. First, note that
if M = (E,G) ∼= M1 ⊕M2 where M1 and M2 are affine geometries of dimension br/2c
and dr/2e respectively, then M is both I5-free and triangle-free. The matroid M is I5-free
because if we take a five-element subset I ⊆ E(M1 ⊕M2), then there exist three elements
x, y, z ∈ I that belong to E(Mi) for some i ∈ {1, 2}. Since both M1 and M2 are affine
geometries, this implies that x+ y + z ∈ E(Mi) ⊆ E(M1 ⊕M2). Hence M | cl(I) 6∼= I5.

In order for equality to hold, dim(F ) = br/2c or dim(F ) = dr/2e, each intersecting
coset of F contains precisely one element of E, and |E ′| = 2r−dim(F )−1. Moreover, by
Lemma 6.4.10, M ′ ∼= AG(r − dim(F )− 1, 2) or M ′ ∼= Dk(PGS(1, t)) for some t and k.

Case 1: M ′ ∼= Dk(PGS(1, t)) for some t, k ≥ 0.

Note that if t = 0, 1, then D(PGS(1, t)) is an affine geometry, which will be handled
in Case 2, so suppose that t > 1. In particular, this means that M ′ contains an induced
PGS(1, 2)-restriction, corresponding to four intersecting cosets A1, A2, A3 and A4 of F
with respect to M for which A1 + A2 = A4, and (A3 +B) ∩ E = ∅ for B ∈ {A1, A2, A4}.

Fix the (unique) elements xi ∈ Ai ∩ E for i = 1, 2, 3. Since M is triangle-free and
C5-free, it follows that the (unique) element x4 ∈ A4 ∩ E satisfies x4 = x1 + x2 + y for
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some y ∈ F ∩E (if y ∈ F\E, then {x1, x2, x1 + x2 + y, z, y + z} is a C5-restriction for any
choice of z ∈ F ∩ E). Pick z1, z2 ∈ (F ∩ E)\{y}. Then {x1, x2, x3, z1, z2} is an induced
I5-restriction, a contradiction. So Case 1 does not arise.

Case 2: M ′ ∼= AG(r − dim(F )− 1, 2).

We may pick cosets of F , A1, . . . , Al where l = r−dim(F ), that correspond to a basis of
E ′. From each of these cosets, take its (unique) element xi ∈ E∩Ai. Let F ′ = cl(x1, . . . , xl);
note that dim(cl(x1, . . . , xl)) = l.

We claim that M |F ′ ∼= AG(r − dim(F ) − 1, 2). First note that M |F ′ is triangle-free
since M ′ is triangle-free. Now suppose for a contradiction that there exist y1, y2, y3 ∈ F ′∩E
such that y1 + y2 + y3 /∈ E. Since dim(F ) > 2, we may pick two elements z1, z2 ∈ E ∩F for
which y1 + y2 + y3 + z1 + z2 /∈ E; note that y1 + y2 + y3 + zi /∈ E for i = 1, 2, as otherwise
{y1, y2, y3, zi, y1 + y2 + y3 + zi} is an induced C5-restriction. But then {y1, y2, y3, z1, z2} is
an induced I5-restriction, a contradiction. So M |F ′ is I3-free. By Lemma 1.5.6, it follows
that M |F ′ ∼= AG(r − dim(F )− 1, 2).

Combining these conditions, we obtain that |E| = 2br/2c−1 + 2dr/2e−1 if and only if
M ∼= M1 ⊕ M2 where M1 and M2 are affine geometries of dimension br/2c and dr/2e
respectively.
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