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Abstract

Incomplete data is a common occurrence in statistics with various types and mecha-

nisms such that each can have a significant effect on statistical analysis and inference. This

thesis tackles several statistical issues in study design and analysis involving incomplete

data.

The first half of the thesis deals with the case of incomplete observations of the re-

sponses. In medical studies, events of interest are most likely to be under intermittent

observation schemes, for example, detected via periodic clinical examinations. As a re-

sult, the event of interest is only known to happen within an interval, and the resulting

interval-censored data hinders the application of numerous analysis tools. Although it

is possible to presume the event time to happen at the endpoint or the midpoint of the

interval, such ad hoc imputations are known to lead to invalid inferences. In Chapter 2,

we propose appropriate imputations via censoring unbiased transformations and pseudo-

observations of such incomplete responses to facilitate a straightforward use of prevalent

machine learning algorithms. The former technique helps preserve the conditional mean

structure with the presence of censoring, and the latter originates from the biased-corrected

jackknife estimates. For a continuous response, both proposed imputations lead to regres-

sion trees models with the same expected L2 loss as those fitted from complete observations.

Therefore, prediction and variable selection naturally follow. Unlike most survival trees

in literature, our proposed models do not rely on the widely made proportional hazard

assumption. Furthermore, such models reduce to ordinary regression trees without the

presence of censoring. Survivor function estimates of interval-censored data are required

to employ the imputations; various semiparametric and nonparametric approaches are

considered and compared. In particular, we scrutinize the case of current status data in a

separate section.

The second half of the thesis addresses incomplete covariate data missing by design.

Controlled by the investigators, the missingness is attributed to the budgetary constraints

when measuring an “expensive exposure variable” in real-life scenarios. We focus on the

well-known two-phase studies which exploit the response and inexpensive auxiliary infor-

mation of the population to select a phase II sub-sample for the collection of the expensive
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covariate. In Chapter 3, we look into an adaptive two-phase design that avoids the need

for external pilot data. Dividing the phase II sub-sampling into multiple interim stages,

we employ conventional sampling to select a fraction of the individuals of the phase II

sub-sample to provide the information required for constructing an optimal sub-sample

from those remaining to achieve maximum statistical efficiency subject to sampling con-

straints. Such adaptive two-phase designs naturally extend to multiple stages in phase

II and are applicable when a surrogate of the exposure variable is available. Efficiency

and robustness issues are investigated under various frameworks of analysis. As expected,

the maximum likelihood approach that models the nuisance distribution tends to be more

efficient, whereas inverse probability weighted estimating equations that avoid this tend to

be more robust to the misspecification of the nuisance covariates models. The conditional

maximum likelihood approach, to our delight, is well-balanced between the two. More-

over, the eagerness to gain efficiency while maintaining a certain level of robustness further

drives us to explore semiparametric methods in all the analyses and designs.

Chapter 4 onward pays attention to more complicated settings in which covariates are

missing in a sequence of two-phase studies with multiple responses and sampling constraints

conducted on a common platform. For a given two-phase study, we expect to exploit not

only information of the responses and auxiliary covariates at hand but also those passed on

from earlier studies. We consider joint response models and perform secondary analyses of a

new response using previously studied exposure variables. Moreover, the exposure variables

acquired from earlier studies serve as pilot data to help construct an optimal selection

model in an upcoming two-phase study. As we assess the balance between efficiency and

robustness of the analysis methods, the potential misspecification of the joint response

model warrants our attention. Finally, we note that the work can be extended to deal with

two-phase response-dependent sampling with longitudinal data in Chapter 5.
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Chapter 1

Introduction

This thesis reports on the development and investigation of innovative statistical method-

ologies for dealing with incomplete data. There are two distinct themes to this research.

The first is directed at the development of regression tree algorithms for interval-censored

responses. The second is concerned with the development of two-phase designs for biomarker

studies. Two projects within this second theme include approximate optimal design us-

ing adaptive sampling schemes and secondary analysis and sequential design of two-phase

studies based on a common platform study. Sections 1.1 and 1.2 give brief reviews of the

backgrounds of the themes. More detailed reviews can be found in relevant chapters.

1.1 Regression Trees for Interval-Censored Responses

Survival analysis is a branch of statistics involving methods for analyzing data where

the response is the occurrence time of an event of interest, often referred to as a failure

time. When the precise failure time is only known to lie in an interval, the resulting data

are called interval-censored failure time data; See Sun (2006) for a thorough account of

this field. Interval-censored data arise in many settings. For example, in a clinical trial,

patients may visit the hospital periodically and the event of interest may occur between

two consecutive visits. One interest is to develop predictive models based on a training
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data set involving interval-censored data, which can be used to predict failure times and

the failure status of individuals at a particular time horizon. A challenge is that the failure

time in the test data set may also be subject to the interval censoring, and so the failure

status may be unknown at the specified time horizon.

The predictive models we adapt to the interval censoring regime is the CART algo-

rithm, one of the earliest and most popular methods for statistical learning that have seen

considerable application in the past several decades (Loh, 2014). Splitting in a way that

gives the greatest reduction in the sum of the within-node variances, the algorithm pro-

poses a method of selecting an appropriate size of the tree. The graphical representation

of the trees offers simple interpretation and is well-suited to the detection of effect modifi-

cation typically addressed by incorporating interaction terms in regression models. Recent

developments in CART include the extensions to handle a greater range of responses and

methods for employing a more a variety of loss functions; see Loh (2014). For continuous

responses, the CART algorithm returns regression trees which offer a convenient framework

for the development of prediction algorithms wherein target values are calculated by the

values in the terminal nodes of the regression trees. This appealing feature leads to scientific

advances in many fields. For example, Henrichon and Fu (1969) refined the tree algorithm

for application to problems in pattern recognition, while Meisel and Michalopoulos (1973)

investigated the problem of space partitioning and piecewise constant approximations. The

CART algorithm can be implemented by the R package rpart (Therneau and Atkinson,

2019).

While responses are interval-censored and therefore prohibit a straightforward applica-

tion of the CART algorithm, the first theme of the thesis considers the censoring unbiased

transformations and pseudo-observations to propose appropriate imputations of the re-

sponses. Under certain conditions, the CART algorithm following the imputations has a

loss function equivalent to an unbiased estimator of the risk function when the data is

complete. Such imputations, therefore, can be adapted to the regression trees instantly to

handle interval-censored responses.
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1.2 Optimal Two-Phase Designs

Two-phase designs can be traced back to the 1930s when Neyman (1938) tried to exploit

the inexpensive auxiliary information from a population to estimate certain characteristics

of interest. As the name suggests, two-phase designs naturally involve two stages. The

first stage, denoted as phase I, collects the response and the auxiliary information for all

individuals in the population at a low cost. The second phase, denoted as phase II, then

selects a sub-sample to measure the characteristic of interest. It is expected that two-phase

designs will be more efficient than simple random sub-sampling by exploiting the phase I

data, especially when there is a strong association between the characteristic of interest

and the auxiliary information. Introduced in the context of case-control studies by White

(1982), two-phase designs have been widely used in epidemiological studies to control costs

while providing efficient sampling strategies. The phase I sample is typically divided into

strata according to the response and the inexpensive auxiliary information, followed by

determining the sampling probabilities from each stratum in phase II for the measurement

of some expensive information that we would not be able to afford to measure for the whole

phase I sample. See Breslow and Cain (1988) and Scott and Wild (1991) for early work on

fitting logistics regression models with two-phase data. Various analysis frameworks with

different assumptions have been developed in the regime of two-phase designs including, but

not limited to, maximum likelihood (Lawless et al., 1999; Breslow and Chatterjee, 1999),

conditional maximum likelihood (Scott and Wild, 2011), mean score equations (Reilly and

Pepe, 1995), inverse probability weighted estimating equations (Robins et al., 1994), and

augmented inverse probability weighted estimating equations (Robins et al., 1994).

As far as a design is concerned, the higher the efficiency of the estimator of the param-

eter of interest, the better. However, the optimal design which yields maximum efficiency

among those possible with the same expected phase II sub-sample size requires some a pri-

ori knowledge of the population model, including the parameters of interest. As a result,

external pilot data that can be expensive or difficult to obtain is often required. This draw-

back was addressed by McIssac and Cook (2015) who advocated having multiple stages in

phase II to avoid an external pilot study. Each stage uses information collected from the

previous one and helps select the sampling strategy for the next. In practice, an adaptive
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two-phase design can be implemented by dividing phase II into phase IIA and phase IIB.

The former employs convenient sampling schemes to construct a phase IIA sub-sample for

parameter estimation, and the latter uses the information obtained from phase IIA to con-

struct an approximately optimal phase IIB sub-sample from the individuals who remain

eligible. Both the sampling schemes employed in phase IIA and the ratio of the phase IIA

sub-sample size to the phase IIB sub-sample size have been shown to affect the efficiencies

of the adaptive two-phase designs.

The second theme of the thesis concentrates on the optimality of two-phase designs. Our

work includes a thorough investigation of the properties of adaptive two-phase designs and

scrutinizes their efficiency gains over non-adaptive ones under various analysis frameworks.

In addition to the comprehensive exploration, the work extends beyond ordinary two-phase

studies and considers the optimality of sequential two-phase designs involving multiple

responses. Adopting joint response models, information of earlier two-phase studies helps

achieve maximum statistical efficiency subject to budgetary constraints in the upcoming

ones. The phase II sub-sample of the earlier study facilitates shaping the subsequent

optimal design in the spirit of a phase IIA sub-sample in an adaptive two-phase design.

Should there be no budget for an upcoming study, the joint response model enables us to

utilize the exposure variables at hand to perform secondary analyses for a new response of

interest.

1.3 Motivating Studies of Psoriatic Arthritis

Psoriatic arthritis (PsA) is a chronic, inflammatory joint disease associated with psoriasis, a

long-lasting, noncontagious autoimmune disease characterized by raised areas of abnormal

skin. While it can severely impact the quality of life, the disease progression of PsA is

complex and heterogeneous. It is, therefore, desirable to identify patients at high risk of

disease progression for early medical interventions. To obtain a better understanding of

the illness, the Centre for Prognosis Studies in Rheumatic Disease at the Toronto Western

Hospital launched in 1976 maintains a registry of patients with PsA, called the University of

Toronto Psoriatic Arthritis Cohort (UTPAC), to study the disease progression (Chandran
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et al., 2010b). The registry has been the largest cohort of patients with PsA in the world.

The projects of the thesis are inspired by various problems of the PsA research program,

for which we give brief reviews as follows. More details in the application of the prediction

models and two-phase designs to data from the UTPAC can be found in relevant chapters.

1.3.1 Prediction of Axial Disease

Chapter 2 of the thesis is motivated by the goal to predict axial disease, a chronic, inflam-

matory and degenerative condition of the axial skeleton (spine) that has a serious impact

on functional ability and mobility among PsA patients. We consider a data set of a subset

of the full registry of UTPAC comprised of 1022 patients undergoing biannual radiographic

assessments. As a result, the failure times of the axial disease are interval-censored if the

axial disease is found to present at one of the assessments. The data reflects the heterogene-

ity of timings of the assessments since the exact assessment times fluctuate across patients.

Besides, some patients are found to miss some of the assessments. See Figure 1.1 for an

illustration of the periodic assessments and the detection of axial disease. The data is

heavily right-censored because about 62% of the patients did not develop the axial disease

during the scheduled radiographic assessments. Information of their Human Leukocyte

Antigen (HLA) biomarkers is available from a baseline biospecimen. Chapter 2 focuses

on building regression tree models to identify HLA biomarkers useful for the prediction

of axial disease within ten years of recruitment to the UTPAC. Previous research found

the HLA biomarker B27 significant to the development of the axial disease (Chandran

et al., 2010b) and hence, serves as a reference for the evaluation of the performance of our

proposed tree models.

1.3.2 An HLA Biomarker of Damage Progression

Chapter 3 is inspired by a separate study that looks into biomarkers associated with the

development of bone damage over a short time horizon. As there is an increased interest

in the design and analysis of biomarker studies related to PsA, patients in the registry
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Figure 1.1: An illustration of periodic radiographic assessments (empty circle) for axial

disease detection (solid circle) in ten years since recruitment.

have their blood samples drawn and stored in a bio-bank for examinations two years later

to see if they have rapid disease progression. The interest lies in investigating the asso-

ciation between the biomarker matrix metalloproteinase 3 (MMP-3) and the progression

of joint damage. It is cost-prohibitive to assay the blood samples for all patients in the

registry. Still, levels of a traditional marker of inflammation, the erythrocyte sedimen-

tation rate (ESR), are recorded at clinical visits (Gladman and Chandran, 2011) for all

patients at a low cost. Chapter 3 focuses on developing adaptive two-phase designs to

exploit the information from the ESR levels and hence best select a sub-sample of patients

for measurements of MMP-3 from the cohort. See Figure 1.2 for an illustration of the

problem.

We consider a data set of a subset of the full registry of UTPAC comprised of 251

patients with MMP-3 measurements available at a baseline assessment. While the MMP-3

sample date is chosen as the baseline assessment date, the number of the damaged joints is

defined as the number obtained from the medical assessment closest to the MMP-3 sample

date. The disease progression status is determined by the increment of the number of

damaged joints within two years. The data is used as pilot data to help inform parameter

configurations for a focused simulation study to evaluate the performance of adaptive two-

phase designs in the setting of the PsA study.

6



Figure 1.2: An illustration of the information of disease progression status, biomarker, and

auxiliary covariate in two years of follow-up.

1.3.3 Secondary Use of HLA Biomarker Data

Chapter 4 addresses the need of the researchers to use a previously studied biomarker to

enhance a subsequent two-phase study with a new response. We consider a data set of a

subset of the full registry of UTPAC comprised of 706 patients. Other than the auxiliary

information, some patients have their biospecimens assayed to inspect the relationship

between an HLA biomarker and the progression of clinical joint damage. It is favourable

to utilize these available biomarkers to analyze new responses, such as the development of

active joints (swollen joints or joints losing range of motion with pain or tenderness) to save

costs and preserve biospecimens. Chapter 4 develops methods for secondary analyses of the

progression of active joints without additional assays in the context of two-phase studies.

Moreover, we propose sequential two-phase designs to exploit information passed from the

clinical joint damage study to inform the optimal sampling strategy of the upcoming active

joints study subject to new budgetary constraints. A valid aggregation of the biomarkers

measured from the two sequential studies is appealing as a larger combined phase II sub-

sample leads to more efficiency. See Figure 1.3 for an illustration of two such sequential

two-phase studies (Study 1 and Study 2) conducted on the same platform.

1.4 Outline of Thesis

The remainder of the thesis is organized as follows.
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Figure 1.3: An illustration of the information of two sequential two-phase studies (Study

1 and Study 2) with the same biomarker and different responses.

Chapter 2 discusses building regression trees for interval-censored responses by care-

fully constructing appropriate observed data loss functions. We illustrate the equivalence

between such observed data loss functions and imputed loss functions based on censoring

unbiased transformations and pseudo-observations. The proposed regression trees are ad-

vantageous in predicting failure times and failure status in test data sets and are good at

recovering underlying tree structures. Survival trees for current status data, a special case

of interval-censored data, are available, too. An application is given to a study involving

PsA patients where the aim is to determine the influential predictors and predict the status

of the axial disease at a specific time in future.

Chapter 3 focuses on the efficiency and robustness of adaptive two-phase designs. We

investigate different methods of analysis in the framework of adaptive two-phase designs

and present sampling strategies that are both asymptotically efficient and robust to model

misspecification. Semiparametric analysis frameworks are found to play a role in the design

stage to enhance the robustness without suffering obvious efficiency loss when the exposure

variable is continuous. The designs can be adapted to the surrogate value problem. An

application is given to a study involving PsA patients where the aim is to determine how
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to best select individuals for the expensive measurements of the genetic markers associated

with the development of the disease.

Chapter 4 turns focus to large cohort studies supporting a series of biomarker studies

addressing distinct but sometimes related scientific questions. We extend the perspective

of secondary analysis in case-control studies to deal with a sequence of two-phase designs.

Leveraging the available exposure data acquired from earlier studies, we examine the re-

lationship between a previously studied biomarker and a new response. We also consider

the design of two-phase studies that exploit the information available from previous two-

phase studies conducted on the same platform. Using joint response models, we consider

and compare likelihood methods with inverse probability weighted estimating equations

in efficiency and robustness. An application is given to a study involving PsA patients

where the aim is to make secondary use of previously assayed biospecimens to study the

progression of related diseases.

Finally, Chapter 5 reviews the contributions of the thesis and outlines future research

topics, including a layout of two-phase designs with longitudinal responses.
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Chapter 2

Regression Trees for

Interval-Censored Responses Based

on Censoring Unbiased

Transformations and

Pseudo-Observations

2.1 Introduction

Regression trees have been used extensively for prediction problems involving failure time

data where new splitting criteria and evaluation metrics have been required to deal with

right-censored observations. Gordon and Olshen (1985) first attempted to obtain Kaplan-

Meier estimates (Kaplan and Meier, 1958) to the data in the nodes and use the distance

measures between the within-node fitted curves as the splitting criterion. Davis and An-

derson (1989) considered exponential log-likelihood as the loss function and proposed an

“exponential tree” to analyze the covariates effects for right-censored data. The “expo-

nential tree” quantifies the prediction error via the true and estimated hazard functions.
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Adopting most aspects of the CART algorithm, LeBlanc and Crowley (1992) developed a

method to obtain the estimates of the relative risks for right-censored survival data. This

generalization of the proportional hazard regression to relative risk functions is done by

fitting a proportional hazard model in the nodes and maximizing the reduction in one-step

deviance during the splitting. LeBlanc and Crowley (1993) proposed the idea of using

the dissimilarity in the survival distributions of patients as the splitting criterion which

is measured by the log-rank test. Molinaro et al. (2004) proposed a method to handle

right censoring by replacing the complete data loss function with an unbiased observed

data loss function and used inverse probabilities of censoring weights when constructing

the regression trees.

In many settings interest lies in an event that is not directly observable but can be

detected to have occurred upon careful clinical examination or through the use of laboratory

tests or imaging. Examples include the development of asymptomatic vertebral fractures

in patients with osteoporosis (Cano et al., 2016), the development of new lesions in skin

cancer studies (Abu-Libdeh et al., 1990), and the development of skeletal metastases in

breast cancer (Hortobagyi et al., 1996). When event times of interest are under intermittent

observation schemes, methods for handling interval-censored failure time data are required.

Should there be only a single assessment time, it is favourable to develop statistical methods

specifically for current status data. Sun (2006) gave a thorough account of this field,

describing methods for parametric analyses and various types of semiparametric analyses.

Frameworks for predictive modelling are not as well-developed for interval-censored data

as they are for right-censored data. Yin and Anderson (2002) proposed a regression tree

algorithm based on log-likelihood for interval-censored data when assuming that the failure

time follows an exponential distribution, which extends the “exponential tree” proposed

by Davis and Anderson (1989) for right-censored data. In Yin and Anderson (2002), the

authors further proposed a nonparametric tree for interval-censored data, a regression tree

algorithm based on the nonparametric maximum likelihood estimator (NPMLE) in which

probabilities that an event occurs in the innermost intervals (Yu et al., 2000) are estimated

using the self-consistent algorithm (Turnbull, 1976). Yin and Anderson (2002) commented

that the nonparametric tree performs reasonably well regardless of the true underlying fail-

ure time distribution, especially when the sample size is large and the dropout rate is low.
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However, the exponential tree does not perform well when there is an appreciable trend in

the hazard. Fu and Simonoff (2017) proposed another nonparametric tree algorithm under

the framework of the conditional inference tree (Hothorn et al., 2006), which addressed

the problem of variable selection bias by separating the selection of the splitting variables

and the splitting points into two steps. The algorithm is based on the log-rank score for

interval-censored data with the survivor functions estimated by Turnbull’s self-consistent

algorithm. Empirically, the conditional inference tree method of Fu and Simonoff (2017)

showed better predictive performance for interval-censored data compared to alternative

ad hoc approaches such as imputing the event times using the left endpoint, mid-point,

or right endpoint of the censoring interval. Wu and Cook (2020) discussed and evaluated

methods for fitting and assessing the predictive accuracy of models when training and val-

idation data feature interval-censored failure times. As for current status data, there is no

predictive model approach developed specifically for this type of interval-censored data to

our knowledge.

In this chapter, we propose algorithms for developing regression trees for interval-

censored failure times by constructing observed data loss functions which are consistent

estimators of a complete data risk function. We demonstrate that regression trees built

using the L2 observed-data loss functions are equivalent to the ones obtained by applying

the complete data regression trees to the imputed failure times. We discuss strategies to

construct observed data loss functions and target quantities for prediction including a fail-

ure time and whether a subject has experienced failure by a particular time. The proposed

methods are evaluated empirically and compared to the oracle tree built using uncen-

sored failure times, methods based on ad hoc imputation approaches, and the conditional

inference tree approach proposed by Fu and Simonoff (2017).

2.1.1 A Review of the Classification and Regression Trees Algo-

rithm

Before we start, we give a brief review of the Classification and Regression Trees (CART)

algorithm (Breiman et al., 1984). A decision tree is a hierarchically organized structure

of nodes and branches. Figure 2.1 provides an illustrative example of a Classification and
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Regression Tree. As a basic unit of a tree structure, a node contains a subset of the data

used to construct the learning algorithm. The root node (node 1) is the node on the top of

the tree, formed by the entire data set. The two branches underneath node 1 indicate the

split of node 1 and the splitting leads to two children nodes (nodes 2 and 3). The parent

of a node is its immediate predecessor node and the children of a node are its immediate

successors. The nodes which do not have children are the terminal nodes of the tree (nodes

3, 4 and 5). The terminal nodes form a partition of the data set.

Figure 2.1: An illustration of a classification and regression tree.

Let (Z,X ′)′ denote a data vector, where Z represents a scalar-valued response with

support on a subset of the real line R, and X ∈ X ⊂ Rp represents a p-dimensional vector

of covariates. Let D = {Zi, Xi : i = 1, . . . , n} be the data set containing n independent and

identically distributed (i.i.d.) copies of the data. Define a prediction rule as Ψ(X) : X → R,

a real-valued function. If the prediction function Ψ(X) takes a piece-wise constant form,

the prediction rule can be written as

Ψ(X) =
K∑
k=1

βkI(X ∈ Xk), (2.1)

for any X ∈ X , where {X1, . . . ,Xk} is a finite partition of the covariates space X , i.e.,

Xk ∩ Xj = φ for k 6= j, k, j = 1, . . . , K, and ∪Kk=1Xk = X ; βk is the predicted value if X

falls into the kth partition Xk, for k = 1, . . . , K. The algorithm aims to train a prediction

function Ψ(X).
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To quantify the quality of the prediction rule, a loss function L(Z,Ψ(X)) is defined

as a nonnegative measure of the distance between the response Z and its prediction

Ψ(X). The risk is defined as the expected loss, i.e., the expectation of the loss func-

tion R(Ψ) = E[L(Z,Ψ(X))]. The optimal prediction function is the one which minimizes

the risk. A common choice of the loss function is the squared error loss (or L2 loss) function

L2(Z,Ψ(X)) = (Z − Ψ(X))2. When an L2 loss function is used, the optimal prediction

function is the conditional mean Ψ0(X) = E(Z|X) obtained by minimizing the L2 risk

R(Ψ) = E[L2(Z,Ψ(X))]. The average loss of a subset A of the data set F (A ∈ F) is

defined as

L(A,Ψ) =
1∑n

i=1 I((Zi, X ′i)
′ ∈ A)

n∑
i=1

I((Zi, X
′
i)
′ ∈ A)L(Zi,Ψ(Xi)).

The CART algorithm, like many other machine learning algorithms, is designed to search

for an optimal prediction rule.

A CART algorithm proceeds by growing a large tree, applying a cost-complexity prun-

ing, and using a cross-validation procedure to select the “optimal”-sized tree. The detailed

procedure is summarized as follows. First, the algorithm builds a large tree by iterative bi-

nary splitting. The algorithm starts with the root node. To find the best split at a current

node, we identify all possible binary splits and choose the combination of a splitting co-

variate and a splitting point such that there will be the greatest reduction in the total loss

of the current node (i.e., the sum of the loss of all children of the current node). Then the

algorithm splits the current node into two children nodes on the selected splitting covari-

ate at the selected splitting point. Iterating this procedure, a tree structure is formed by

iteratively splitting nodes to maximize the decrease in the total loss until pre-determined

stopping criteria are met. The stopping criteria are usually based on constraints on the

structure of the tree. The depth of a tree is defined as the maximal levels of nodes from

the root node to a terminal node. The minsplit is defined as the minimum number of

observations that must exist in a node for a split to be attempted. The minibucket is

defined as the minimum number of observations in any terminal node. Once the stopping

criteria are met, the algorithm stops splitting further and returns a large tree, denoted by

Φmax. Popular stopping criteria set a maximum tree at a depth of 30, minsplit of 20 and

minibucket of 7 (the default setting for rpart package in R).
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The second step involves pruning the tree by the introduction of a cost-complexity

penalty function. For a data set of n independent individuals, i = 1, . . . , n, the cost-

complexity function is defined as

Kα(Φ) =
n∑
i=1

L(Zi,ΨΦ(Xi)) + α|Φ|,

where Φ represents the tree structure, ΨΦ is the predictor obtained from tree Φ, α is a non-

negative real tuning parameter penalizing the cost via the size of the tree, and |Φ| is the

number of the terminal nodes in the tree. For each α, the idea is to find the subtree Φmax,

which minimizes the cost-complexity function. Although α runs through a continuum of

values, there are at most a finite number of sub-trees of Φmax. To see this, note that if

Φ(α) denotes the subtree that minimizes Kα for a given α, then it keeps minimizing Kα as

α increases until a jump point α′ is reached, where a new subtree Φ(α′) becomes the tree

with minimal Kα until the next jump point α′′, and so on. In other words, starting with

α1 = 0 and Φ(α1), the smallest sub-tree of Φmax that minimizes K0, we can find a decreasing

sequence of sub-trees Φ(αk) for k ≥ 1, which correspond to an increasing sequence of αk

such that Φ(αk) is the smallest sub-tree minimizing the cost-complexity function Kα for

αk ≤ α < αk+1. The obtained sequence of sub-trees, denoted by Φ(α1), . . . ,Φ(αL), are

the candidates for the “optimal” tree, where L is the number of sub-trees of Φmax in the

sequence.

The CART algorithm uses cross-validation to choose the “optimal” tree. In a V -fold

cross-validation, the data are randomly split into V mutually exclusive folds with as near

as possible equal size; common choices of V are 5 or 10, corresponding to 5-fold and 10-

fold cross-validation. We repeat the tree growing and pruning procedure using the data

excluding fold v, v = 1, . . . , V . Thereby, for each v = 1, . . . , V , a decreasing sequence of

sub-trees Φ
(αl)
v , for l = 1, . . . , L, is obtained. Let Si,v indicate whether subject i belongs to

fold v. We then define the cross-validated estimator of risk as

RCV (αl) =
1

n

V∑
v=1

n∑
i=1

I(Si,v = 1)L(Zi,Ψ
(αl)
v (Xi)),

where Ψ
(αl)
v (X) is the prediction function from tree Φ

(αl)
v . For each l = 1, . . . , L, calculate

RCV (αl) and let lmax denote the value of l which minimizes RCV (αl). The “optimal”
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tree is Φ(αlmax ), the sub-tree of the maximum tree Φmax obtained from the tree growing

procedure. The prediction rule obtained by the CART algorithm is the piecewise function

in (2.1) according to the partition formed by the terminal nodes of the “optimal” tree

Φ(αlmax ).

2.1.2 A Review of the Conditional Inference Trees

Here follows a brief review of the conditional inference tree framework (Fu and Simonoff,

2017; Hothorn et al., 2006) as it will be the main competitor of our proposed regression

trees in the simulation studies. The framework focuses on the conditional distribution of

the response given the covariates in the context of tree-structured recursive partitioning.

Different from the CART algorithm, the conditional inference trees first determine the

splitting variables and then decide the specific splitting points.

Given a learning sample Ln = {Zi, Xi1, . . . , Xip : i = 1, . . . , n}, the recursive partition-

ing is formulated with the help of integer-valued case weights ν = (ν1, . . . , νn)′. Each node

of a conditional inference tree can be represented by the case weights which are non-zero

if and only if the corresponding data item belongs to the node. Hothorn et al. (2006)

assumed the weights to be either zero or one for convenience. For each node identified by

the case weights, the splitting decision is made by information of the response Z covered by

the covariates X. This is achieved by considering the partial hypothesis on the conditional

distribution

Hj
0 : P (Z|Xj) = P (Z), j = 1, . . . , p

followed by the global independence null hypothesis

H0 =

p⋂
j=1

Hj
0 .

If H0 cannot be rejected at a prespecified level (0.05 by default), the recursion stops.

Otherwise, the splitting variable is determined by the association between Z and each

covariate Xj tested in the partial hypothesis Hj
0 , j = 1, . . . , p with linear statistics of the

form

Tj(Ln, ν) = vec

[
n∑
i=1

νigj(Xij)h(Zi)
′

]
,
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where gj is a nonrandom transformation of covariate Xj, h is the influence function of the

response, and the resulting matrix is combined to a column vector by the vec operation.

See Hothorn et al. (2006) for more details in choices of g and h under various circum-

stances. Finally, the linear statistics is standardized using the conditional distribution and

covariance under H0 computed in Strasser and Weber (1999). Under the null hypothesis,

asymptotic normality follows. The covariate associated with the smallest p-value when

compared to the corresponding normal quantiles is chosen as the splitting variable.

For a given splitting variable, the splitting point can be established by any splitting

criteria, including those for the CART algorithm reviewed in Section 2.1.1. In Hothorn

et al. (2006), the goodness of a split is assessed by the two-sample statistic induced by the

linear statistic

TAj (Ln, ν) = vec

[
n∑
i=1

νiI(Xij ∈ Aj)h(Zi)
′

]
,

whereAj is a subset of the sample space Xj, and the best split is the one that maximizes the

resulting standardized test statistic. The conditional inference tree is formed by repeating

steps in choosing splitting variables and splitting points until the global independence null

hypothesis cannot be rejected. The separation of choosing splitting variables and splitting

points avoid a systematic tendency towards the covariates with many possible splits.

The remainder of the chapter is organized as follows. In Section 2.2, we develop a

strategy for the construction of observed data loss functions with censored responses, fol-

lowed by implementing the CART algorithm based on these functions. In Section 2.3, we

assess the performance of our methods empirically by how well they recover the correct

tree structure and based on predictive performance. We also compare the proposed meth-

ods with methods based on ad hoc imputation strategies and the conditional inference

tree approach of Fu and Simonoff (2017). In Section 2.4 we report on an analysis aiming

to identify biomarkers associated with the onset of axial disease in patients with psori-

atic arthritis; we also predict axial involvement ten years from the baseline assessment.

In Section 2.5, we adapt our strategies to develop survival trees for current status data.

Concluding remarks and topics of future research are given in Section 2.6.
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2.2 CART for Interval-Censored Failure Time Data

Here we provide a general framework for handling censored data which facilitates a general-

ization of the CART algorithm to accommodate interval-censored responses. We introduce

two strategies to construct observed data loss functions and use them to replace the com-

plete data loss function for uncensored data.

2.2.1 Notation and Preliminaries

Figure 2.2: An illustration of interval-censored failure time data.

From here till the end of the chapter, let T ∈ R+ denote the failure time of interest and

S(t|x) = P (T > t|X = x) denote the conditional survivor function of T given covariates

X = x. Furthermore, let Z = h(T ), a transformation of the failure time, where h(·) is

a known monotone increasing function. Examples of h(·) include the identity function or

h(u) = I(T > u), an indicator of whether T is greater than some time point u of interest.

Interval censoring is a form of coarsening wherein the failure time T is only known to lie

in an interval. Type R interval censoring arises if R assessment times u1 < u2 < · · · < uR <

∞ are available beyond u0 = 0, along with functions ∆r = I(ur−1 < T ≤ ur) indicating

whether the failure time T lies in the rth finite interval (ur−1, ur], r = 1, . . . , R; we let

∆R+1 = 1−∆1 − · · · −∆R = I(T > uR). The observed data of type R interval censoring

are thus O = (u1, u2, . . . , uR,∆1,∆2, . . . ,∆R). When R = 1, there is only one inspection

time U > 0 and the special case of interval censoring gives rise to current status data; we

consider such data in Section 2.5. We further assume that conditional on the covariates

that are being controlled for, the failure times are mutually independent of the assessment

process as in Cook and Lawless (2019); when the u1, . . . , uR are fixed and prescheduled this
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is of course the case. With a sample of data on n independent processes we label individuals

with the subscript i and denote the observed data as O = {Oi, Xi : i = 1, . . . , n}, which

contains information on realizations of the n i.i.d. joint processes.

2.2.2 Construction of the Observed Data Loss Functions

Recall that Ψ(X) : X → R denotes the prediction rule. The loss function one would

use with complete data D = {Zi, Xi : i = 1, . . . , n} is L(D,Ψ) = 1
n

∑n
i=1 L(Zi,Ψ(Xi))

and R(Ψ) = E[L(Z,Ψ(X))] is the complete data risk. Our goal is to build regression

trees based on interval-censored data, in which case the Zi’s are not observable and the

complete data loss function L(D,Ψ) cannot be calculated. To address this we define a class

of observed data loss functions L(O,Ψ) to be used in place of L(D,Ψ) in the tree growing,

pruning and cross-validation steps in CART algorithm. We choose such functions so that

the observed data loss function is an unbiased or consistent estimator of the complete data

risk R(Ψ).

We next propose two strategies of constructing observed data loss functions, including

censoring unbiased transformations and methods based on pseudo-observations.

Observed Data Loss via Censoring Unbiased Transformations

Review of CUT and Extensions to Accommodate Interval Censoring

Censoring unbiased transformations (CUT) have been utilized to deal with right-censored

data; see Fan and Gijbels (1996) and Rubin and van der Laan (2007). The Buckley-James

transformation is an example of a CUT that was proposed to facilitate linear regression

for right-censored data (Buckley and James, 1979). More recently, Steingrimsson et al.

(2019) consider the constructions of observed data loss functions using CUTs for building

regression trees with right-censored data. Here we generalize the definition of CUT to

accommodate interval-censored data. Let Y be a scalar function of the complete data

(Z,X ′)′ and Y ∗ be a scalar function of the observed data (O,X ′)′. We define Y ∗ as a

CUT for Y if

E[Y ∗(O,X)|X = x] = E[Y (Z,X)|X = x]
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for every x ∈ X .

General Construction of the Observed Data Loss via CUT

By setting Y (Z,X) = L(Z,Ψ(X)), Y ∗(O,X) is a CUT of L(Z,Ψ(X)). For a sample of n

independent individuals the observed data loss function L(O,Ψ) is constructed using the

empirical average of the Y ∗(O,X) terms as

LCUT (O,Ψ) =
1

n

n∑
i=1

Y ∗(Oi, Xi) . (2.2)

The constructed observed data loss function (2.2) is thus an unbiased estimator for the

complete data risk R(Ψ) = E[L(Z,Ψ(X))].

Constructing the L2 Observed Data Loss via CUT

When building a CART with complete data, the default complete data loss for a continuous

response is the L2 loss and a piecewise constant prediction rule Ψ(X) =
∑K

k=1 βkI(X ∈ Xk)
is adopted, where {X1, . . . ,Xk} is a finite partition of the covariate space X and βk is the

predicted value if X falls into the kth partition Xk, for k = 1, . . . , K. When the complete

data loss takes the form

L2(Z,Ψ(X)) =
K∑
k=1

I(X ∈ Xk)(Z2 − 2Zβk + β2
k) , (2.3)

the observed data loss function is built using the empirical average of its corresponding

CUTs given by

L2,CUT (O,Ψ) =
1

n

n∑
i=1

K∑
k=1

I(Xi ∈ Xk)
[
Y ∗

2 (Oi, Xi)− 2Y ∗
1 (Oi, Xi)βk + β2

k

]
, (2.4)

where Y ∗
1 (O,X) and Y ∗

2 (O,X) are the CUTs for Z and Z2, respectively. The expression

in (2.4) clearly has the same conditional expectation as the L2 complete data loss (2.3)

given covariates X, so (2.4) is an unbiased estimator of the complete data risk R(Ψ) =

E[L2(Z,Ψ(X))].
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Censoring Unbiased Transformations (CUTs) for Zj

The challenge reduces to finding a suitable function Y ∗
j (O,X), the CUT for Zj, j = 1, 2.

Since

E(Zj|X) =
R+1∑
r=1

E(Zj|∆r = 1, X)P (∆r = 1|X),

the CUT of Zj can be constructed as

Y ∗
j (O,X) =

R+1∑
r=1

∆rE(Zj|∆r = 1, X), (2.5)

where Z = h(T ) and

E(Zj|∆r = 1, X) =
1

S(ur|X)− S(ur−1|X)

∫ ur

ur−1

h(t)jdS(t|X),

for r = 1, . . . , R + 1. In this case Y ∗
j (O,X) has the same conditional expectation as Zj

given covariates X (i.e., it is a CUT of Zj). When interest lies in the failure time itself

(i.e., Z = T ),

E(Zj|∆r = 1, X) =
ujrS(ur|X)− ujr−1S(ur−1|X)−

∫ ur
ur−1

S(t|X)jtj−1dt

S(ur|X)− S(ur−1|X)
, (2.6)

while when interest lies in the failure status at a fixed time u (i.e., Z = I(T > u)),

E(Zj|∆r = 1, X) =
1

S(ur|X)− S(ur−1|X)
{I(u ≤ ur−1)[S(ur|X)− S(ur−1|X)]

+ I(ur−1 < u ≤ ur)[S(ur|X)− S(u|X)]} (2.7)

= I(u ≤ ur−1) + I(ur−1 < u ≤ ur)
S(ur|X)− S(u|X)

S(ur|X)− S(ur−1|X)
.

The conditional survivor function of T given covariates X can be estimated semiparamet-

rically under a Cox proportional hazard model or nonparametrically using the conditional

inference trees proposed Fu and Simonoff (2017). In addition, we hereby point out the

possibility of using the marginal survivor function of T directly to construct a counterpart

of the CUT. Turnbull (1976) helps with the estimation; see 2.2.3 for details.
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Building the Observed Data Loss via Pseudo-Observations

Review of the Pseudo-Observation Approach

The jackknife pseudo-observation (PO) approach for incomplete data was introduced and

originally used in standard regression settings (Quenouille, 1949; Tukey, 1958), but has

been greatly promoted for applications to survival analysis in recent years; see Ander-

sen and Perme (2010) for a recent review. Andersen et al. (2003) applied the pseudo-

observation approach for inferences based on multi-state models; Andersen et al. (2004)

used the pseudo-observations in a regression of restricted mean survival time with right-

censored data; and Han et al. (2014) used the pseudo-observations to a semiparametric

regression for interval-censored responses.

Suppose θ̂ is an estimator of a parameter of interest θ based on an i.i.d. sample of

Z1, . . . , Zn, and θ̂(−i) is a leave-one-out estimator of θ based on Z1, . . . , Zi−1, Zi+1, . . . , Zn.

The ith pseudo-observation is constructed as

θ̂i = nθ̂ − (n− 1)θ̂(−i), (2.8)

for i = 1, . . . , n. If θ̂ and θ̂(−i) are unbiased estimators of θ, the expectation of θ̂i is equal

to θ and thus the empirical average of POs also gives an unbiased estimator of θ.

Constructing the Observed Data Loss via Pseudo-Observations (POs)

We aim to construct an observed data loss function which is unbiased for the full data risk

R(Ψ). Thus, we set the quantity of interest θ = R(Ψ). Suppose that θ̂ is an estimator of

θ using the observed interval-censored data O and θ̂(−i) is the corresponding leave-one-out

estimator using O(−i) = {Oj, Xj : j = 1, . . . , i − 1, i + 1, . . . , n}. The POs are obtained

using (2.8), and they are used to further construct the observed data loss function

LPO(O,Ψ) =
1

n

n∑
i=1

θ̂i.

Constructing the L2 Observed Data Loss via Pseudo-Observations
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The special case when the L2 loss and piecewise constant prediction rules are adopted

warrants special consideration. The observed data loss function built using the empirical

average of the POs is

L2,PO(O,Ψ) =
1

n

n∑
i=1

K∑
k=1

I(Xi ∈ Xk)
(
θ̂2i − 2θ̂1iβk + β2

k

)
, (2.9)

where θ̂2i and θ̂1i are the POs for Z2
i and Zi in the complete data loss (2.3). If θ̂j is

an estimator of E(Zj) and θ̂
(−i)
j be the corresponding leave-one-out estimator, then θ̂ji =

nθ̂j − (n− 1)θ̂
(−i)
j is the ith PO for E(Zj), j = 1, 2.

The Pseudo-Observations for E(Zj)

Since Z = h(T ), we estimate E(Zj) = −
∫∞

0
h(t)jdS(t) by replacing S(t) with an estimate

so that the POs for E(Zj) can be written as

θ̂ji = −n
∫ ∞

0

h(t)jdŜ(t) + (n− 1)

∫ ∞
0

h(t)jdŜ(−i)(t) ,

where Ŝ(·) is an estimator of the survivor function S(·), and Ŝ(−i)(·) is the corresponding

leave-one-out estimator excluding data from individual i.

When interest lies in the failure time,

θ̂1i = n

∫ ∞
0

Ŝ(t)dt− (n− 1)

∫ ∞
0

Ŝ(−i)(t)dt, (2.10)

θ̂2i = 2

[
n

∫ ∞
0

tŜ(t)dt− (n− 1)

∫ ∞
0

tŜ(−i)(t)dt

]
,

whereas when interest lies in the failure status at a fixed time u we have

θ̂ji = nŜ(u)− (n− 1)Ŝ(−i)(u), (2.11)

for j = 1, 2. The Turnbull algorithm (Turnbull, 1976) can be used to obtain a nonparamet-

ric estimator of the marginal survivor function when the failure times are subject to interval

censoring. We defer the discussion on nonparametric maximum likelihood estimation for

interval-censored data to the end of this section.
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Response Imputation

Review of Response Imputation

The idea of response imputation was introduced in Steingrimsson et al. (2019) to facilitate

a straightforward use of the observed data loss function for the CART algorithm when

data are right-censored. Theorem 4.1 in Steingrimsson et al. (2019) implied that one can

implement the L2 observed data loss functions by applying the L2 complete data CART

algorithm with some imputed data set Z = {Ẑ(Oi, Xi), Xi : i = 1, . . . , n}.

Note that using the complete data CART algorithm following imputation is equivalent

to using the imputed loss function. To see this, the imputed loss function is

L2,I(Z,Ψ) =
1

n

n∑
i=1

K∑
k=1

I(Xi ∈ Xk)
[
Ẑ(Oi, Xi)

2 − 2Ẑ(Oi, Xi)βk + β2
k

]
, (2.12)

where Ẑ(Oi, Xi) is the imputed response for the ith subject in the data set. Theorem 4.1

in Steingrimsson et al. (2019) showed that the CART algorithm makes decisions in the tree

growing, pruning and cross-validation steps, which do not depend on the term Ẑ(Oi, Xi)
2.

Response Imputation for Interval-censored Data

We extend the idea of response imputation for interval-censored data. We can make

the imputed loss function (2.12) equivalent to the L2 CUT loss function (2.4) by let-

ting Ẑ(Oi, Xi) = Y ∗
1 (Oi, Xi); or implementing the L2 PO loss function (2.9) by letting

Ẑ(Oi, Xi) = θ̂1i. The imputed values using CUT or POs are used as complete data in

building CART and they lead to the same CART model as we implement CART algo-

rithm with L2 CUT or PO observed loss functions, respectively.

Remarks

At this point, we would like to comment that our methods are not limited to semipara-

metric forms in the sense that they do not depend on the widely used proportional hazard
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assumptions. Furthermore, our methods serve as a natural extension of the regression tree

to the interval censoring regime as the constructed loss functions reduce to the complete

loss when there is no censoring.

2.2.3 Nonparametric Maximum Likelihood Estimation for Interval-

Censored Data

Before moving on to the empirical studies, we give a brief review of the nonparametric

maximum likelihood estimator (NPMLE) for interval-censored data. The NPMLE of a

survivor function for right-censored data is given by the well-known Kaplan-Meier estimator

(Kaplan and Meier, 1958). However, the NPMLE of a survivor function for interval-

censored data does not have a closed-form in general and can only be determined using

iterative algorithms.

Turnbull (1976) proposed a self-consistent algorithm which finds the limit of iterates

obtained from the self-consistent equation (Efron, 1967). For interval-censored data where

the failure time of subject i is Ti but we only observe an interval (Li,Ri], let t1, . . . , tm

denote the unique ordered elements of {Li,Ri : i = 1, . . . , n}. For convenience we let t0 = 0

and tm+1 =∞ if necessary. We further define p(tj) = P (tj−1 < T ≤ tj) = S(tj−1)− S(tj)

and αij = I(tj ∈ (Li,Ri]) for i = 1, . . . , n and j = 1, . . . ,m. It can be shown that the

likelihood function only depends on S(t) through values of S(tj), j = 1, . . . ,m. As a result,

we are essentially maximizing the likelihood function over all discrete distributions that

are constant between the increasing sequence of tj, j = 1, . . . ,m. Turnbull (1976) further

showed that the NPMLE of the distribution function increases in only a finite number of

disjoint intervals, which are called the innermost intervals (Yu et al., 2000). The innermost

intervals are defined as the set of disjoint intervals whose left points are in Li, i = 1, . . . , n

and right points are in Ri, i = 1, . . . , n, and which contain no other members of Li or Ri

except the endpoints. The self-consistent algorithm is summarized as follows.

Initializing p̂ = (p̂(t1), . . . , p̂(tm+1)) =
(

1
m+1

, . . . , 1
m+1

)
, we update the estimate at iter-

ation r as

p̂(tj)
r =

1

n

n∑
i=1

p̂(tj)
r−1αij∑m

k=1 p̂(tk)
r−1αik

,
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for j = 1, . . . ,m. Repeating the process till convergence gives the self-consistent estimate

of p = (p(t1), . . . , p(tm+1)) as the solution to the self-consistent equations. Note that

Turnbull’s self-consistent MLE is not uniquely defined in the innermost intervals. We only

know the amount of weight on the intervals but not the way the weight varies within the

intervals. The algorithm can be viewed as an application of the EM algorithm using the

Lagrange multiplier criterion from graph theory. Alternative algorithms for determining

NPMLE include the ICM algorithm (Jongbloed, 1998) and the EM-ICM algorithm (Wellner

and Zhan, 1997). See Section 3.4 of Sun (2006) for more details.

The NPMLE for current status data is different; see Section 2.5.1 for a brief review.

2.3 Simulation Studies

In this section, we empirically evaluate our proposed methods via simulation and compare

them to ad hoc imputation and the conditional inference tree approach of Fu and Simonoff

(2017). In Section 2.3.1, we describe the setting of the simulation study. In Section 2.3.2,

we consider regression trees built on imputations of the failure times T and report their

predictive performance and ability to recover the true data structure. In Section 2.3.3,

we focus on regression trees built on the imputations of the failure status I(T > u) at a

landmark time and evaluate their predictive performance.

2.3.1 Simulation Set-up

We considered a sample size n = 200 with 500 replications. We generate (W1,W2,W3,W4,W5)

from a multivariate normal distribution with zero mean and covariance matrix Σ of the

form

Σ1 = I5×5, or Σ2 =


1 0.9 0.92 0.93 0.94

0.9 1 0.9 0.92 0.93

0.92 0.9 1 0.9 0.92

0.93 0.92 0.9 1 0.9

0.94 0.93 0.92 0.9 1

 ,
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which represent independent covariates and a highly correlated “autoregressive” depen-

dence structure for the covariates, respectively. Based on these variables, we consider five

covariates generated as follows:

1. X1 = I(W1 < 0) (binary);

2. X2 = I(W2 < Q0.25)+2I(Q0.25 ≤ W2 < Q0.5)+3I(Q0.5 ≤ W2 < Q0.75)+4I(Q0.75 ≤ W2),

where Qα is the α quantile of a standard normal distribution (ordinal);

3. X3 = I(W3 < Q0.25) + 2I(Q0.25 ≤ W3 < Q0.75) + 3I(Q0.75 ≤ W3) (nominal);

4. X4 = eW4 (continuous);

5. X5 = W5 (continuous).

We suppose that the data structure has a tree form with three terminal nodes and the

failure time at each terminal node follows a Weibull distribution. Thus, we assume:

Node 1: T ∼ Weibull(κ1, λ1) if X2 ≤ 2;

Node 2: T ∼ Weibull(κ2, λ2) if X2 > 2 and X4 > c;

Node 3: T ∼ Weibull(κ3, λ3) if X2 > 2 and X4 ≤ c.

See Appendix 2A at the end of the chapter for additional failure time distributions and data

structures. We let c = 1 if covariates are generated independently (Σ = Σ1) and c = e0.611

if covariates are highly correlated (Σ = Σ2) to guarantee the proportion of subjects falling

into three terminal nodes to be 50%, 25%, and 25%, respectively.

Several constraints are imposed to determine the shape and scale parameters of the

Weibull distributions including (i) the median of the marginal distribution of T is 5; (ii)

the 0.9 quantile of the distribution of T at the second terminal node is 10; (iii) κ1 = κ2

and κ3 = 3; (iv) the means of the three terminal nodes are set to be µ, Aµ and Bµ,

respectively, where A and B control the strength of the signal of the data. Table 2.1

provides a summary of node means according to choices of A and B. Four pairs of (A,B)
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are selected to represent set-ups with different strength of the data signal. In the first

set-up, all three node means are well-separated; in the second set-up, the first and second

node means are close but the third node is far apart; in the third set-up, the second and

third nodes are closer but the first node is far apart; in the fourth set-up, we consider a

case in which the data signal is extremely weak so that all three node means are close.

Table 2.1: The choices of A and B and node means in four signal settings. Shape and scale

parameters (κ, λ) of the Weibull distributions are displayed in the brackets following the

node means.

Signal Settings A B Mean of Node 1 Mean of Node 2 Mean of Node 3

1 2 4 3.58 (3.63, 3.97) 7.16 (3.63, 7.95) 14.32 (3, 16.04)

2 1.2 2.4 4.22 (1.43, 4.64) 5.06 (1.43, 5.57) 10.13 (3, 11.33)

3 2 2.5 3.78 (4.45, 4.15) 7.56 (4.45, 8.29) 9.45 (3, 10.58)

4 1.1 1.21 4.93 (1.67, 5.52) 5.42 (1.67, 6.07) 5.97 (3, 6.68)

We next generate the assessment times and allow subjects to have different numbers

and timings of the assessments. For subject i, we generate qi ∼ U(0.75, 0.99) and set

the duration of follow-up τi as the 100qith percentile of the marginal distribution of T .

The number of assessments for subject i is then generated as Ri ∼ Poi(Giρτi), where Gi ∼
Γ(10, 10) and ρ was determined by setting the expected number of assessments E(Ri) = 10.

The assessment times of subject i are then generated as Ri uniform random variables uir ∼
U(0, τi), where r = 1, . . . , Ri. We then let uRi+1 =∞ and ∆ir =

∑Ri+1
r=1 I(Ti ∈ (uir−1, uir])

and (Li,Ri] = (uir−1, uir], for i = 1, . . . , n. This set-up addresses the heterogeneity of

timings of the assessments across subjects.

2.3.2 Prediction of Failure Times

We propose regression trees for interval-censored failure time data based on the L2 observed

data loss functions using CUT in (2.4) and PO in (2.9). When predicting for failure

times, the L2 CUT observed data loss function can be implemented with L2 complete
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data regression trees based on CUT imputation and the imputed response is Ẑ(Oi, Xi) =

Y ∗
1 (Oi, Xi) in (2.5) with conditional mean (2.6); the L2 PO observed data loss function

can be implemented with PO imputation and the imputed response Ẑ(Oi, Xi) = θ̂1i given

in (2.10).

We aim to compare the performance of our proposed regression tree based on response

imputation for predicting failure times with the following benchmark methods:

1. (Oracle) the regression trees built on the uncensored failure times Ti;

2. (M) imputation using (Li + Ri)/2, the midpoint of the interval (Li,Ri];

3. (R) imputation using Ri, the right endpoint of the interval (Li,Ri];

4. (CIT) conditional inference tree for interval-censored data proposed by Fu and Si-

monoff (2017). The influence function required to determine the splitting variable is

chosen as the log-rank score (Pan, 1998)

Ŝ(Li) log Ŝ(Li)− Ŝ(Ri) log Ŝ(Ri)

Ŝ(Li)− Ŝ(Ri)
,

where Ŝ is the NPMLE of the survivor function constructed by the Turnbull’s algo-

rithm.

For response imputation, oracle tree, midpoint and right endpoint imputation, the

regression trees are built using the rpart function from the R package rpart with the

argument method = "anova".

Estimation of the Survivor Function

The form of the CUT imputation Ẑ(Oi, Xi) = Y ∗
1 (Oi, Xi) involves unknown conditional

survivor function S(·|X), which is estimated semiparametrically under a Cox proportional

hazard model (CUTCox) or nonparametrically using the conditional inference trees pro-

posed by Fu and Simonoff (2017) (CUTCon). The Cox model and conditional inference
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tree are built upon the interval-censored data using the functions ic.sp and ICtree from

the R packages icenReg and LTRCtrees, respectively. We also conduct CUT imputation

using the marginal survivor function S(·) directly, which is estimated using the Turn-

bull’s estimator (Turnbull, 1976) and realized using the icfit function from the R package

interval. Linear interpolation is used to smooth the Turnbull’s estimator of the marginal

survivor function of T (Turnbull, 1976). In the case that the estimated survivor function

does not decrease to zero, we fit a parametric tail implemented using the survreg function

in the R package survival based on a hazard with a Weibull form.

Imputation based on the pseudo-observation (PO) Ẑ(Oi, Xi) = θ̂1i also utilizes the

linearly smoothed Turnbull estimator with a parametric tail to estimate the marginal

survivor function of T .

Evaluation Metrics for Prediction and Structure Recovery

Various evaluation metrics are considered to assess the performance of the methods through

the test data set. The main attention is directed at prediction accuracy and the ability to

recover the true tree structure.

The prediction error (PE) reflects the prediction accuracy and is defined as

PE =
1

ntest

ntest∑
i=1

(µi − T̂i)2 ,

where µi is the conditional expectation of Ti given Xi falling into a terminal node based

on the true tree structure (i.e., λ1Γ(1 + 1
κ
), λ2Γ(1 + 1

κ
), λ3Γ(1 + 1

3
) in the three terminal

nodes of the true tree, respectively) and T̂i denotes the predicted failure time of subject i

calculated based on the fitted tree.

The evaluation metrics for recover the true tree structure include:

Model Size: The average size of the fitted model (i.e., the number of terminal nodes of the

fitted tree). In our setting, the closer this is to 3 the better the algorithm performs.

Number of Predictors (# Predictors): This is the average number of predictors (i.e., the
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mean number of unique covariates the tree splits on). In our setting, the closer to 2, the

better the performance.

Percent Correct (% Correct): This reflects the ability of the tree to split on the correct

covariates, regardless of the splitting points and the order of splits. This is reported as the

percentage of simulated samples for which the method split on both X2 and X4, so the

higher the percentage, the better the performance.

Percent Without Noise (% w/o Noise): The ability to avoid noise variables. This is reported

as the percentage of simulated samples for which the method did not inappropriately split

on X1, X3, and X5, so higher percentages correspond to better performance.

Results for Prediction Performance and Structure Recovery

Figure 2.3 shows the boxplots of PEs obtained under four signal settings as listed in

Table 2.1 if the covariates are generated independently, or they are highly correlated. We

compare our proposed CART algorithms based on PO, CUT, CUTCon and CUTCox with the

benchmark approaches listed above. Figure 2.3 contains eight subfigures. The subfigures

in four rows correspond to the results from four signal settings from top to bottom; those in

the left column correspond to the set-up with independent covariates, and those in the right

column correspond to the scenario with the highly correlated covariates. In each subfigure,

the order of the boxplots follows the oracle tree (Oracle), CART with imputed responses

using PO, CUT, CUTCon, CUTCox, conditional inference trees for interval-censored data

(CIT) proposed by Fu and Simonoff (2017) and midpoint imputation (M). The results of

the right endpoint imputation (R) are not shown as they have dramatically larger PEs as

expected. As shown in Figure 2.3, our proposed CART algorithms perform consistently

better than the conditional inference tree approach, especially when the covariates were

highly correlated. In general, the CUT imputation methods provide closer performance to

that of the oracle tree than the PO imputation. It is worth mentioning that when covariates

are highly correlated, the CUT method based on the conditional inference tree estimation

of the conditional survivor function Ŝ(·|X) perform worse than the ones based on the

Turnbull’s and the Cox model estimations. This is because the conditional inference tree
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approach does a poor job in prediction, and therefore provides an inaccurate estimation

of the conditional survivor function. The CUT imputations based on estimations of the

marginal survivor function using Turnbull’s estimators and those of conditional survivor

function using the Cox model are comparable under all scenarios. Mid-point imputation

performs well across all settings, and our CUT imputations based on Turnbull’s estimators

and Cox model perform comparably or better than midpoint imputation. Finally, all

methods behave comparably when the data signal is weaker in Settings 3 and 4. In such

cases, the means of the terminal nodes are closer and therefore all the methods tend to

fail to split and estimate the overall mean instead, which leads to low prediction errors.

Moreover, note that when the data signal is weaker in Settings 3 and 4, the PEs are

counter-intuitively smaller than those in settings 1 and 2, where the true node means are

larger. Overall, we conclude that our methods are advantageous when making predictions

of the interval-censored failure times compared to the conditional inference trees approach

proposed by Fu and Simonoff (2017).

The performance of structure recovery is presented in Table 2.2 in terms of four evalu-

ation metrics: Model Size, # Predictors, % Correct and % w/o Noise. As shown in Table

2.2, all methods perform reasonably well in Settings 1 when the three node means are far

apart, which is the easiest setting for the methods to fully detect the true tree structure. In

Setting 2, the first two terminal nodes have close mean values but they are under different

primary splits. Therefore, most methods do a decent job of recovering true tree structure

except that the conditional inference tree approach tends to miss some influential predic-

tors and is only able to catch the correct covariates 64.2% of times when the covariates

are independent and 19.8% of simulation trials when the covariates are highly correlated.

When the second and third node means are close, the performance of all methods deterio-

rates as in Setting 3. When all the node means are close in Setting 4, none of the methods

can effectively tell the nodes apart and tend to work with the entire training set. Across

different methods, our CART algorithms based on various imputation responses perform

better than the conditional inference tree approach in the sense that they fit closer to

the size of the true tree, tend to pick up both influential predictors, have a larger chance

to catch the correct covariate and avoid the noise covariates, and this advantage is more

obvious when the covariates are highly correlated. In fact, our methods are comparable to
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Figure 2.3: Prediction errors for predicting failure times under for four signal settings

with independent and highly correlated covariates comparing proposed CART algorithms

(PO, CUT, CUTCon, CUTCox) for interval-censored failure time data and the benchmarks

(Oracle, CIT, M).
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the oracle tree except in the third setting.

Table 2.2: Structure recovery measures for four set-ups of strength of signals with indepen-

dent and highly correlated covariates comparing proposed CART algorithms (PO, CUT,

CUTCon, CUTCox) for interval-censored failure time data and the benchmarks (Oracle,

CIT, M, R).

Independent Covariates Highly Correlated Covariates

Oracle PO CUT CUTcon CUTcox CIT M R Oracle PO CUT CUTcon CUTcox CIT M R

Setting 1

Model Size 3.294 3.374 3.268 3.370 3.468 3.038 3.248 3.262 3.376 3.456 3.288 3.662 3.414 3.598 3.374 3.350

# Predictors 2.136 2.162 2.122 2.156 2.166 1.992 2.110 2.106 2.164 2.158 2.096 2.296 2.148 2.478 2.116 2.116

% Correct 88.0 87.4 91.2 87.6 86.6 84.2 91.4 91.2 85.8 85.6 90.8 70.8 85.6 22.8 89.4 90.0

% w/o Noise 88.0 87.4 91.2 87.6 87.4 92.6 91.4 91.2 87.2 85.6 90.8 71.0 86.4 23.8 89.4 90.0

Setting 2

Model Size 3.302 3.296 3.314 3.280 3.320 2.838 3.226 3.236 3.374 3.324 3.290 3.450 3.310 3.222 3.234 3.240

# Predictors 2.130 2.108 2.128 2.112 2.134 1.808 2.100 2.094 2.132 2.108 2.116 2.190 2.124 2.144 2.096 2.092

% Correct 89.0 88.8 90.6 90.0 89.2 64.2 91.8 90.0 87.6 85.4 88.2 80.8 88.2 19.8 90.0 87.0

% w/o Noise 89.2 89.6 90.6 90.0 89.2 91.0 92.0 90.8 87.8 86.6 88.6 81.4 88.4 26.0 90.4 88.0

Setting 3

Model Size 3.012 2.576 2.522 2.528 2.608 2.242 2.545 2.547 2.964 2.564 2.518 2.746 2.516 2.452 2.538 2.540

# Predictors 1.772 1.446 1.388 1.436 1.436 1.226 1.411 1.414 1.728 1.430 1.388 1.534 1.348 1.410 1.388 1.384

% Correct 45.4 25.0 20.6 23.6 19.2 13.2 20.8 18.0 38.8 21.8 18.2 16.4 13.8 8.2 16.4 17.0

% w/o Noise 86.4 90.6 91.6 89.8 89.2 93.2 91.0 89.6 80.0 86.8 86.6 75.2 86.4 71.8 85.4 86.4

Setting 4

Model Size 1.550 1.502 1.642 1.606 1.670 1.192 1.558 1.592 1.478 1.516 1.488 1.676 1.794 1.210 1.476 1.550

# Predictors 0.434 0.396 0.514 0.498 0.514 0.192 0.452 0.452 0.370 0.412 0.398 0.526 0.652 0.212 0.390 0.434

% Correct 2.0 2.2 2.6 3.0 2.2 0.2 2.8 2.6 1.4 2.4 2.0 2.6 4.0 0.0 3.0 2.8

% w/o Noise 87.6 89.0 87.0 88.4 88.6 97.6 90.4 87.8 86.2 84.4 86.6 81.6 78.2 90.0 86.8 84.0
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2.3.3 Prediction of Failure Status

In this subsection, we aim to compare the performance of our proposed regression trees

based on response imputation for predicting failure status at a specific time point u (i.e.,

I(T > u)) with the following benchmark methods:

1. (Oracle) the regression trees built on the failure status I(Ti > u);

2. (M) imputation using I((Li + Ri)/2 > u);

3. (R) imputation using I(Ri > u);

4. (CIT) conditional inference tree for interval-censored data proposed by Fu and Si-

monoff (2017).

CUT imputed response is Ẑ(Oi, Xi) = Y ∗
1 (Oi, Xi) in (2.5) with conditional mean (2.7) and

the PO imputed response is Ẑ(Oi, Xi) = θ̂1i given in (2.11). Time point u is chosen as the

0.25, 0.50 and 0.75 quantiles of the marginal distribution of T .

Evaluation Metrics for Prediction Performance

Prediction errors (PEsurvivor) are computed to measure difference between the true and

estimated survival probabilities at time point u, defined by

PEsurvivor =
1

ntest

ntest∑
i=1

[pi(u)− p̂i(u)]2 ,

where

pi(u) =
K∑
k=1

I(Xi ∈ Xk)P (Ti > u|Xi ∈ Xk),

p̂i(u) =
K∗∑
k=1

I(Xi ∈ X ∗k )

∑n
j=1 I(Xj ∈ X ∗k )I(T̂j > u)∑n

`=1 I(X` ∈ X ∗k )
,

T̂j represent the imputed value of the j subject, j = 1, . . . , n, {X1, . . . ,XK} is the true

partition of the covariate space according to the true tree structure, {X ∗1 , . . . ,X ∗K∗} is a
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partition of the covariate space following the fitted tree, and K∗ is the number of terminal

nodes in the fitted tree.

Results for Prediction Performance

The boxplots of prediction errors for predicting failure status at the 0.25, 0.50, and 0.75

quantiles of the marginal distribution of the failure time are shown in Figures 2.4, 2.5, and

2.6, respectively. In each figure, the subfigures and boxplots are organized in the same way

as those in Figure 2.3. As shown in Figures 2.4, 2.5, and 2.6, the conditional inference

tree approach is relatively not stable across assessment times and signal settings. For in-

stance, in Figure 2.6, the conditional inference tree approach leads to significantly larger

prediction errors than our methods for Settings 1 and 2 with highly correlated covariates.

Our proposed imputation methods are either comparable or better than the conditional

inference tree approach in most settings, although the conditional inference tree performs

the best in Setting 2 in Figure 2.4 by around 0.005 in terms of the median. While the re-

gression trees are fitted based on the true failure status or the corresponding imputations,

the conditional inference trees are fitted with the left and right endpoints of the censoring

intervals. The fact that the conditional inference trees take in data of different nature

may explain their counter-intuitive superior performance (even to the oracle method) in

such a setting. Among our proposed imputation methods, the CUT imputations are either

comparable or better than the PO imputation. Overall, CUT imputation based on the

Turnbull’s estimation of the marginal survivor function Ŝ and the Cox model of the con-

ditional survivor function Ŝ(t|X) are consistently superior in predicting the failure status

across assessment times and simulation set-ups.

2.4 Analysis of Data from a Study of Axial Disease

In this section, we apply our methods to analyse data from a study aiming to identify

genetic markers associated with the development of axial disease and predict the status of

axial disease in patients with psoriatic arthritis.
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Figure 2.4: Prediction errors for predicting failure status at 0.25 quantile of the marginal

distribution of the failure time for four signal settings with independent and highly corre-

lated covariates comparing proposed CART algorithms (PO, CUT, CUTCon, CUTCox) for

interval-censored failure time data and the benchmarks (Oracle, CIT, M).

In Setting 2, CIT outperforms the oracle method, which may be explained by the different nature of input data.
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Figure 2.5: Prediction errors for predicting failure status at 0.50 quantile of the marginal

distribution of the failure time for four signal settings with independent and highly corre-

lated covariates comparing proposed CART algorithms (PO, CUT, CUTCon, CUTCox) for

interval-censored failure time data and the benchmarks (Oracle, CIT, M).
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Figure 2.6: Prediction errors for predicting failure status at 0.75 quantile of the marginal

distribution of the failure time under four signal settings with independent and highly

correlated covariates comparing proposed CART algorithms (PO, CUT, CUTCon, CUTCox)

for interval-censored failure time data and the benchmarks (Oracle, CIT, M).
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2.4.1 Data Description

The University of Toronto Psoriatic Arthritis Registry maintains a large cohort of patients

with psoriatic arthritis, an autoimmune disease that features joint inflammation and dam-

age along with skin involvement (Gladman and Chandran, 2011). A subset of the full

registry comprised of 1022 patients includes data on Human Leukocyte Antigen (HLA)

markers. A particular concern in these patients is the development of spinal involvement,

referred to as axial disease, which has a serious impact on functional ability and mobility.

The presence of axial disease is recorded if both the left and the right sacroiliac (SI) joints

score at least grade 2 damage on the New York criteria or one of the SI joints has at least

grade 3 damage (Bennett and Burch, 1967). Data on HLA biomarkers are available; we

code these as 1 representing the biomarker to be present and 0 representing the absence

of the biomarker. In addition, we have the following explanatory variables:

age.ps : Age at diagnosis of psoriasis (years);

age.psa: Age at diagnosis of psoriatic arthritis (years);

sex.female: Sex of the patient, with 1 for female and 0 for male;

fmhx.ps : Family history of psoriasis with 1 for yes and 0 for no;

fmhx.psa: Family history of psoriatic arthritis with 1 for yes and 0 for no.

The data set further contains the following data related to the interval-censored time

to axial involvement.

Axial.Ltime: The age of a patient at his or her last radiographic assessment, which shows

that the disease has not developed;

Axial.Rtime: The age of a patient at his or her first radiographic assessment which shows

that the disease has already developed;

Axial.status : An indicator on whether the subject is right-censored (disease has not devel-

oped at the last assessment).

The failure time of interest is the number of years a patient takes to develop the axial

disease after the diagnosis of psoriatic arthritis. Therefore, the left and right endpoints of

the censoring interval of our interest are Axial.Ltime - age.psa and Axial.Rtime - age.psa,

respectively. Approximately 62% of the patients were not observed to develop the axial

disease, so they had right-censored responses.
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2.4.2 Identification of Potential Influential Predictors

We aim to identify potential influential predictors for the development of axial disease in

this subsection. According to Chandran et al. (2010b), the HLA biomarker B27 affects

the development of the axial disease. All explanatory covariates and biomarkers described

in the preceding subsection are put into the learning algorithms and we are interested in

whether the algorithms are able to successfully identify B27 as an influential predictor.

Trees for predicting failure times are built using the CART algorithm based on PO

imputation (PO), CUT imputation (CUT), midpoint imputation (M), and the conditional

inference tree (CIT) approach by Fu and Simonoff (2017). The PO and CUT imputed

values are computed based on Turnbull’s estimates of the marginal survivor function. Using

ten-fold cross-validation, it is observed that the CARTs are sensitive to how the data set

is partitioned into cross-validation sets and return different sizes of the optimal subtrees.

Therefore, we repeat the cross-validation steps for all the CART algorithms by creating 200

different partitions of the cross-validation sets, going through the cross-validation procedure

200 times and recording the size of the optimal subtree each time. The final tree is selected

as one with the most frequent size of the selected subtrees in the 200 repetitions.

We summarize the results in Figure 2.7, which provides the fitted tree structures, fitted

survival curves in the terminal nodes of the fitted trees, and the barplots showing the

frequency of the size of the selected optimal subtrees across 200 cross-validations of PO,

CUT, and M trees. The final trees built using CUT, M, and CIT (not shown) are the

same with the first split on sex.female and the second split on the biomarker B27 in the

male subgroup, but the final tree built using PO has only one split on age.psa. The

fitted survival curves at the terminal nodes of fitted trees are quite separated, suggesting

all the learning algorithms do a decent job of stratifying the patients into distinct risk

groups. The barplot of the PO method contains eight bars and the frequencies 2 and

6 are competitive, however, the barplot of CUT contains five bars and the frequency 2

is dominating, suggesting that the CARTs based on PO imputation are more sensitive to

different partitions of the data set than those based on CUT imputation. Overall speaking,

the CARTs based on CUT is able to identify influential predictor for failure time of interest

as well as CIT and midpoint imputation. The CARTs based on PO is less stable and fails
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to identify the influential predictor.

Trees for predicting failure status in years 5, 10 and 15 are built using PO and CUT

methods. As shown in Figure 2.8, both PO and CUT trees at five years split on B27 first

and then sex.female in the B27 present subgroup; PO and CUT trees at ten years and

CUT tree at fifteen years split on sex.female first and then B27 in the male subgroup,

which also agrees with the PO, M, and CIT trees when predicting for failure time; PO at

fifteen years further splits on age.psa in the B27 non-present subgroup, which leads to two

terminal nodes with close predicted values and seems unnecessary. All models identify B27

as well as sex.female as influential predictors.

Overall, the primary significant predictors are sex.female and the biomarker B27. It

takes longer for the female patients to develop the axial disease since the diagnosis of

psoriatic arthritis than the male patients. In addition, it takes shorter for patients with

biomarkers B27 present to develop the axial disease since the diagnosis of psoriatic arthritis.

2.4.3 Predicting Failure Status

In this section, we evaluate the predictive accuracy for the failure status of the axial disease

after ten years of psoriatic arthritis.

The data set is divided into a training data set and a test data set (70% and 30%,

respectively, according to the 70/30 rule) such that they have approximately the same

proportion of right-censored patients. Fitting the tree algorithms on the training data

set, we compared the prediction performance of PO and CUT to M and CIT evaluated

using the test data set. While the responses in the test data set are still interval-censored, a

patient is sure to be axial disease-free 10 years later from the diagnosis of psoriatic arthritis

if the left endpoint of the censoring interval is greater than 10 and is axial disease-present

if the right endpoint of the censoring interval is smaller than 10. If an interval from the

test data set contains 10, the patient is at risk and the probability of being disease-free

P (T > 10|L < T ≤ R) is estimated using the Turnbull’s estimated survival curve obtained

from the test data set.

Here we calculate the prediction error by averaging the difference between the disease
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Figure 2.7: The fitted tree structures, fitted survival curves in the terminal nodes of the

fitted trees, and the barplots showing the frequency of the size of selected optimal subtrees

across 200 cross-validations of PO, CUT and M trees.
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Figure 2.8: Fitted trees from disease status after 5, 10, and 15 years of diagnosis of psoriatic

arthritis using PO and CUT methods.

status predicted by the tree algorithms and the disease status obtained from the test data

set,

PE =
1

ntest

ntest∑
i=1

{
∆i(Zi − Ẑi)2 + (1−∆i)E[(Zi − Ẑi)2|Li < Ti ≤ Ri, Xi]

}
where Zi = I(Ti > 10), Ẑi is the predicted disease status of patient i after ten years of

psoriatic arthritis obtained by rounding the predicted probability from the tree models to

zero or one, ∆i = I(Li > 10) + I(Ri ≤ 10) indicates if the disease status of patient i after

ten years of psoriatic arthritis is observed in the test data set. The prediction errors of PO,

CUT, M and CIT are 0.352, 0.324, 0.324, 0.341, respectively. The results are consistent

with our impression in simulation studies that CUT and M are the most advantageous in

terms of prediction accuracy compared to PO and CIT approaches.

2.5 Survival Trees for Current Status Data

Here we adapt the strategies discussed in Section 2.2 to provide a general framework for

implementing the CART algorithm to build survival trees while accommodating a current

status observation scheme of the response time of interest. As a special type of interval-

44



censored data, current status data give rises to non-trivial extensions of the ideas in Section

2.2.

2.5.1 Current Status Data

Figure 2.9: An illustration of current status data.

Current status data, also known as type I interval-censored data, arise if there is a

single random examination time U (U > 0), and it is only known whether or not the

event time T exceeds U ; we let ∆ = I(T ≤ U), so the observed data for a particular

individual is O = (U,∆). Recall that conditional on the covariates that are controlled for

in the analysis, the event time is assumed to be independent of the examination time as

in Cook and Lawless (2019). With a sample of observations on n independent processes,

we denote the complete data as D = {Zi, Xi : i = 1, ..., n} and the observed data as

O = {Oi, Xi : i = 1, . . . , n}. Unlike general type R interval censoring, the NPMLE of

the survivor function of current status data has a closed form, which we briefly review as

follows.

Let U(j), j = 1, . . . ,m denote the unique ordered elements of {0, U1, . . . , Un}, let nj =∑n
i=1 I(Ui = U(j)) denote the number of individuals who are assessed at U(j), and let

rj =
∑n

i=1 ∆iI(Ui = U(j)) denote the number of individuals assessed and found to have

failed at the examination U(j), j = 1, . . . ,m. The likelihood function

L(S(·)) =
n∏
i=1

S(Ui)
1−∆i [1− S(Ui)]

∆i

can be written as
m∏
j=1

S(U(j))
nj−rj [1− S(U(j))]

rj =
m∏
j=1

F (U(j))
rj [1− F (U(j))]

nj−rj
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where F (t) = 1 − S(t). Therefore, the likelihood function only depends on the survivor

function at the inspection times. With the constraint of F (U(1)) ≤ . . . ≤ F (U(m)), the op-

timization problem is equivalent to an isotonic regression (Robertson et al., 1988) problem

involving data {r1/n1, . . . , rm/nm} with weights {n1, . . . , nm}. According to the maximum-

minimum formula for isotonic regression, the NPMLE is

F̂ (U(j)) = max
v1≤j

min
v2≥j

∑v2
l=v1

rl∑v2
l=v1

nl
.

So the NPMLE of the survivor function S(t) = P (T ≥ t) has a closed form Ŝ(t) = 1− F̂ (t)

for current status data. In practice, Ŝ(t) can be computed empirically via the pooled

adjacent violators algorithm (PAVA) for isotonic regression (Barlow et al., 1972).

2.5.2 The Observed Data Loss Functions Based on Censoring

Unbiased Transformations and Pseudo-Observations

We focus on the case in which the interest lies in the failure time itself (i.e., Z = T ). The

complete data loss function is L(D,Ψ) = 1
n

∑n
i=1 L(Ti,Ψ(Xi)) and R(Ψ) = E[L(T,Ψ(X))]

is the complete data risk. As shown in Section 2.2.2, we construct observed data loss

functions which are unbiased or consistent for the complete data risk based on CUTs and

POs. Following the construction of the L2 observed data loss via CUT, we need to find a

suitable function Y ∗
j (O,X) in (2.4) that are the CUT for T j, j = 1, 2. Since

E(T j|X) =
1∑
δ=0

E(T j|∆ = δ,X)P (∆ = δ|X),

the CUT of T j can be constructed as

Y ∗
j (O,X) =

1∑
δ=0

I(∆ = δ)E(T j|∆ = δ,X), (2.13)

where,

E(T j|∆ = 1, X) = −
∫ U

0
tjdS(t|X)

1− S(U |X)
,
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and

E(T j|∆ = 0, X) = −
∫∞
U
tjdS(t|X)

S(U |X)
. (2.14)

Thus, Y ∗
j (O,X) is a CUT of T j since it has the same conditional expectation as T j given

covariates X.

Similarly, following the construction of the L2 observed data loss via PO, if θ̂j in

equation (2.9) is an estimator of E(T j) and θ̂
(−i)
j is the corresponding leave-one-out es-

timator, then θ̂ji = nθ̂j − (n − 1)θ̂
(−i)
j is the ith PO for E(T j), j = 1, 2. We estimate

E(T j) = −
∫∞

0
tjdS(t) by replacing S(t) with an estimate so that the POs for E(T j) can

be written as

θ̂ji = −n
∫ ∞

0

tjdŜ(t) + (n− 1)

∫ ∞
0

tjdŜ(−i)(t) , (2.15)

where Ŝ(·) is NPMLE of the survivor function S(·) and Ŝ(−i)(·) is the corresponding leave-

one-out estimator excluding data of individual i.

With the same argument as in Section 2.2.2, we adapt the idea of response imputation

to current status data. With Z = T , we can make the imputed loss function (2.12)

equivalent to the L2 CUT loss function (2.4) by letting T̂ (Oi, Xi) = Y ∗
1 (Oi, Xi) given in

(2.13) or to the L2 PO loss function (2.9) by letting T̂ (Oi, Xi) = θ̂1i given in (2.15). The

imputed values using CUTs or POs are used as complete data in building CART, and they

lead to the same CART model as we implement the CART algorithm with L2 CUT or PO

observed loss functions, respectively.

2.5.3 Simulation Studies

We now assess the performance of our methods empirically by how well they recover the

correct tree structure and predict failure times. Our proposed methods are compared via

simulations to the oracle tree built using uncensored event times, methods based on ad hoc

approaches, and the conditional inference tree approach of Fu and Simonoff (2017), which

was originally designed for interval-censored data.
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Data Generation

We considered a sample size n = 500 with 500 replications. The covariates and the data

structure of a tree form follow from Section 2.3.1, with the means of the three terminal

nodes set to be 5µ, 4µ and 2µ, respectively. The node means are found as 7.48, 5.99, and

2.97, respectively.

We next generate the examination times. We let τ denote a maximum time of interest

beyond which no assessments will be scheduled, and τ is set as the 95th quantile of the

marginal distribution of T . We further let U∗ ∼ Γ(α, β) with Gamma cumulative distri-

bution function G. The examination time is set as U = min(U∗, τ). We let ρ = P (T < U)

represent the proportion of individuals who fail at their examinations in the population.

By adjusting the rate and scale parameters of the Gamma distribution the variability of

the examination times vary. For a specified proportion of individuals who fail at their

examinations in the population, we have

ρ = P (T < U, T < τ, U∗ < τ) + P (T < U, T < τ, U∗ > τ)

=

∫ τ

0

P (T ≤ u|U = u)dG(u;α, β) + P (T < τ)(1−G(τ)).

Hence, this set-up not only addresses the heterogeneity of timings of the examination times

across subjects but also allows us to investigate the effect of informative assessments and

the variability of the inspection times on performance by choosing different values of ρ

and Var(U∗), respectively. For each specified ρ and Var(U∗), we can solve for α and β

accordingly, followed by generating the assessments from the gamma distribution with an

upper limit τ . Table 2.3 provides a summary of parameter configuration across various

choices of ρ and Var(U∗).

Methods for Event Time Prediction

We propose regression trees for current status data based on the L2 observed data loss func-

tions using CUT in (2.4) and PO in (2.9). When predicting for event times, the L2 CUT

observed data loss function can be implemented with L2 complete data regression trees

based on CUT imputation, and the imputed response is T̂ (Oi, Xi) = Y ∗
1 (Oi, Xi) in (2.13)

48



Table 2.3: Parameter configuration for the distribution of the examination times.

Var(U∗) ρ α β P (U∗ > τ) Var(U∗) ρ α β P (U∗ > τ)

1 0.30 11.98 3.46 2.33× 10−9 4 0.30 3.16 0.89 1.13× 10−3

0.50 26.08 5.11 1.07× 10−8 0.50 7.13 1.34 2.20× 10−3

0.70 55.31 7.44 3.60× 10−6 0.70 14.64 1.91 1.26× 10−2

with conditional mean (2.14); the L2 PO observed data loss function can be implemented

with PO imputation, and the imputed response is T̂ (Oi, Xi) = θ̂1i given in (2.15). Imputa-

tion based on the pseudo-observation (PO) T̂ (Oi, Xi) = θ̂1i utilizes the linearly smoothed

nonparametric estimator of the marginal survivor function of T obtained from the PAVA

via the gpava function in the R package isotone. The unknown conditional survivor func-

tion S(·|X) involved in the CUT imputation is estimated semiparametrically under a Cox

proportional hazard model (CUTCox) or nonparametrically using the conditional inference

trees (CUTCon) as in Section 2.3.2. The Cox model and conditional inference tree are

implemented by expressing the current status data in the form of interval-censored data

and using the functions ic.sp and ICtree from the R packages icenReg and LTRCtrees,

respectively, since they are originally developed for interval-censored data. When using

the package LTRCtrees, we can either use the conditional survivor function estimates ob-

tained from the package LTRCtrees (CUTCon) or directly estimate the conditional survivor

functions by using the PAVA in each terminal node of the fitted conditional inference tree

(CUTConP ).

We compare the performance of our proposed regression trees based on response impu-

tation for predicting event times with the following benchmark methods listed in Section

2.3.2:

1. Oracle trees (O).

2. Right imputation (R): When T ≤ U , the imputed value takes U . If T > U , the

imputed value is chosen as the time point at which the marginal survivor function

estimate decreases to zero; in case it does not decrease to zero, it is chosen as the
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time point at which the marginal survivor function estimate reduces to the minimal

value.

3. Midpoint imputation (M): When T ≤ U , the imputed value takes U/2. When T > U ,

the imputed value takes the average of U and the right-imputed value;

4. Conditional inference trees (CIT).

Prediction and Structure Recovery

We adopt the evaluation metrics for prediction and structure recovery in Section 2.3.2.

Figures 2.10 and 2.11 summarize the performance of the proposed CART algorithm based

on PO, CUTCox, CUTConP , and CUTCon compared to the benchmark approaches listed

above. The variability of inspection times is larger in Figure 2.10 (Var(U∗) = 4) and smaller

in Figure 2.11 (Var(U∗) = 1). Within each figure, the set-ups with independent covariates

are presented in the left column and the set-ups with highly correlated covariates are

presented in the right column. The proportion of individuals who fail at their examination

times are 30%, 50%, and 70% down the columns. Our proposed regression trees based

on CUTConP had the best performance across the set-ups. The regression trees based on

CUTCox, CUTCon and PO also outperformed the conditional inference trees in most set-

ups. All the methods perform worse than the oracle tree in predicting event times to a

reasonable extent considering how much less information the current status data contains

than the complete data. Furthermore, most tree algorithms deteriorate when the covariates

are highly correlated and ρ is smaller. When the inspection times are less informative, the

conditional inference trees are less stable and may produce extremely large PEs if some

terminal nodes are full of right-censored individuals as shown in the first row of Figure

2.11. The regression trees based on midpoint imputation have small PEs as illustrated in

Figure 2.10. However, they lead to considerable larger PEs than the other methods when

assessments are less informative (ρ = 0.3 and 0.5) and in the meanwhile, inspection times

are less variant (Var(U∗) = 1) in Figure 2.11. Finally, the PEs based on right imputation

are not shown in Figures 2.10 and 2.11 as the PEs are too large to fit in the figures of the

current scale.
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Figure 2.10: Prediction errors for predicting event times comparing proposed survival tree

algorithms (PO, CUTCox, CUTCon, CUTConP ) for current status data and the benchmarks

(O, CIT, M); Var(U∗) = 4.
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Figure 2.11: Prediction errors for predicting event times comparing proposed survival tree

algorithms (PO, CUTCox, CUTCon, CUTConP ) for current status data and the benchmarks

(O, CIT, M); Var(U∗) = 1.
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Table 2.4 summarizes the structure recovery performance of the proposed survival tree

models and the benchmarks. The top half of the table contains results of the set-ups

having assessments with higher variability (Var(U∗) = 4), and the bottom half displays

results of the set-ups having assessments with lower variability (Var(U∗) = 1). The left

half of the table shows the set-ups with independent covariates, and the right half shows

those with highly correlated covariates. The proportion of individuals found to fail at the

examination times are 30%, 50%, and 70% down the columns. The survival trees based on

PO recover the underlying tree structure well, and their results are comparable to those

of the oracle trees in most set-ups, which is valuable as the current status data contains

much less information than the complete data. When the covariates are independent, the

conditional inference trees perform well. However, the conditional inference trees frequently

fail to recover the underlying tree structure when the covariates are highly correlated

as they tend to pick up some noise variables and build larger trees than the true tree

structure. The survival trees based on CUTConP and CUTCon perform comparably well

to or slightly worse than the oracle trees when covariates are independent. Nevertheless,

their performance deteriorates in the set-ups with highly correlated covariates as their

conditional survivor functions are estimated by the conditional inference trees and hence,

undermined by the compromised performance. It is noteworthy that the survival trees

based on CUTConP and CUTCon still perform consistently better than the conditional

inference trees. The regression trees based on CUTCox do not recover the underlying

tree structure as well as other survival trees, and they suffer from higher computational

costs. Finally, both midpoint imputation and right imputation recover the underlying tree

structure very well across all set-ups.

2.6 Discussion

In this chapter, we propose strategies to construct observed data loss functions for the

interval-censored failure times to use in place of complete data loss in the CART algo-

rithm and implement them using the imputation techniques. We build L2 complete data

regression trees based on imputed responses using CUT and PO, which enable us to re-

veal influential covariates and effectively predict the failure times and the failure status. As
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Table 2.4: Structure recovery measures comparing proposed survival trees algorithms (PO,

CUTCox, CUTCon, CUTConP ) for current status data and the benchmarks (O, CIT, M, R)

under various settings.

Independent Covariates Highly Correlated Covariates

O PO CUTcox CUTconP CUTcon CIT M R O PO CUTcox CUTconP CUTcon CIT M R

Var(U∗) = 4 and ρ = 0.3

Model Size 3.11 3.12 6.02 3.23 3.18 2.90 3.13 3.15 3.09 3.17 6.43 3.82 3.64 3.46 3.11 3.13

# Predictors 2.05 2.03 2.56 2.08 2.05 1.85 2.05 2.03 2.03 2.05 2.85 2.46 2.35 2.35 2.03 2.03

% Correct 95.6 91.0 59.4 83.2 85.0 67.0 93.4 88.6 97.0 89.4 41.0 29.8 35.4 17.8 92.8 88.4

% w/o Noise 95.6 94.2 60.0 87.6 89.8 89.8 94.4 92.6 97.0 91.0 41.2 30.8 37.2 20.4 94.2 91.8

Var(U∗) = 4 and ρ = 0.5

Model Size 3.11 3.09 3.85 3.25 3.23 3.08 3.10 3.11 3.09 3.06 4.11 3.63 3.55 3.95 3.15 3.14

# Predictors 2.05 2.04 2.23 2.13 2.11 2.02 2.03 2.05 2.03 2.02 2.37 2.34 2.32 2.80 2.06 2.06

% Correct 95.6 95.6 81.4 88.2 89.8 82.8 96.8 95.6 97.0 97.4 70.2 65.2 67.4 15.8 94.6 93.4

% w/o Noise 95.6 96.0 81.6 88.6 90.2 90.4 96.8 95.6 97.0 97.6 70.4 65.2 67.4 16.4 94.6 93.4

Var(U∗) = 4 and ρ = 0.7

Model Size 3.11 3.12 3.41 3.19 3.20 2.91 3.14 3.10 3.09 3.15 3.53 3.78 3.71 3.73 3.09 3.10

# Predictors 2.05 2.02 2.12 2.07 2.08 1.84 2.06 2.03 2.03 2.01 2.20 2.43 2.38 2.59 2.03 2.01

% Correct 95.6 90.2 80.2 86.8 86.8 69.2 94.4 92.8 97.0 86.0 75.6 41.8 48.8 19.0 94.0 90.2

% w/o Noise 95.6 94.4 85.8 90.4 89.4 92.0 94.6 95.0 97.0 92.6 78.0 43.4 49.8 21.6 95.4 93.8

Var(U∗) = 1 and ρ = 0.3

Model Size 3.11 3.07 4.24 3.24 3.32 3.03 3.15 3.18 3.09 3.07 4.51 3.89 3.96 3.75 3.12 3.19

# Predictors 2.05 2.01 2.26 2.11 2.03 1.98 2.06 2.07 2.03 2.02 2.48 2.52 2.42 2.61 2.05 2.07

% Correct 95.6 92.8 80.8 88.8 86.4 78.2 94.4 92.4 97.0 93.4 63.6 43.2 39.4 15.2 95.2 92.0

% w/o Noise 95.6 96.2 80.8 89.4 92.2 89.8 94.6 93.0 97.0 95.2 63.6 43.4 44.6 16.2 95.2 92.0

Var(U∗) = 1 and ρ = 0.5

Model Size 3.11 3.07 3.39 3.20 3.22 3.12 3.11 3.10 3.09 3.12 3.51 3.73 3.80 4.12 3.14 3.13

# Predictors 2.05 2.02 2.11 2.08 2.06 2.06 2.05 2.03 2.03 2.04 2.19 2.45 2.39 2.91 2.05 2.05

% Correct 95.6 96.8 91.0 92.6 91.2 88.4 95.8 97.0 97.0 95.0 83.2 58.4 59.2 14.2 94.6 94.8

% w/o Noise 95.6 97.2 91.0 92.6 93.2 91.4 95.8 97.0 97.0 95.4 83.2 58.4 61.5 14.4 94.6 94.8

Var(U∗) = 1 and ρ = 0.7

Model Size 3.11 3.00 3.33 3.20 3.31 2.97 3.10 3.11 3.09 3.01 3.25 3.68 3.64 3.71 3.18 3.11

# Predictors 2.05 1.89 2.10 2.05 2.09 1.89 2.04 2.02 2.03 1.85 2.09 2.40 2.34 2.57 2.05 2.01

% Correct 95.6 73.0 82.8 85.8 85.6 71.2 91.8 88.6 97.0 69.4 84.4 44.0 53.2 21.0 92.0 87.0

% w/o Noise 95.6 92.4 87.4 90.4 89.0 90.8 94.0 93.6 97.0 91.6 86.8 47.2 54.8 22.6 93.4 93.0
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shown in the simulation studies and data analysis, our methods can predict more accurately

than the conditional inference tree approach across settings of distinct strength of the data

signals, especially when the covariates are highly correlated. The survival tree methods for

interval-censored data designed by Yin and Anderson (2002) involved an exponential tree

model which made strong parametric assumptions on the failure time distributions and

a non-parametric model which heavily relied on large sample size and low dropout rate.

Without any report on the prediction performance, approaches in Yin and Anderson (2002)

were not included in our simulations for comparison. Our results advocate the CUT impu-

tation based on the marginal survivor function estimated from Turnbull’s algorithm and

the conditional survivor function estimated from the Cox model to fit regression trees on

interval-censored failure time data, since they are less computationally intensive compared

to the PO method and more accurate than the conditional inference tree approach in both

predicting failure times and failure status. In Appendix 2A, we report further simulation

studies aiming to assess the performance of the methods in settings with various failure

time distributions and underlying structures. Assuming another three types of distribu-

tions for the failure times under the terminal nodes gives similar results to those obtained

in Section 2.3. However, additional investigations show that when the underlying structure

does not have a tree form, the CUT imputation based on the marginal survivor function

estimated from Turnbull’s algorithm becomes unstable in prediction. We also find that in

such settings, the conditional inference tree is less affected by the dependence structure of

the covariates, while the performance of the regression trees based on traditional imputa-

tions deteriorates. Overall, we recommend the CUT imputation based on the conditional

survivor function estimated from the Cox model for its best performance throughout the

settings.

Additionally, we adopt the proposed strategies to construct survival trees when the

available data arise from an independent current status observation scheme. Able to reveal

influential covariates and make predictions, our methods can predict the event times more

accurately than the conditional inference tree approach across a variety of assessment

time models in terms of variance of the assessment times, the proportion of right-censored

individuals, and dependence structures among the covariates in simulation studies. Our

methods are shown to perform particularly well in recovering the underlying tree structures.
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When aiming to fit regression trees based on current status data, we recommend the use of

the PO imputation approach and the CUT imputation based on the conditional survivor

function estimated using the pooled adjacent violators algorithm for each of the terminal

nodes of the conditional inference trees.

This work is based on the assumption that the assessments are independent of the

failure times given the covariates, but given the covariates are selected in a data-driven

way, this is essentially equivalent to a completely independent inspection time. If there

is concern about covariate dependent inspection time model, one can consider the use of

inverse density-weighted loss functions to ensure consistent estimation of the complete data

loss function (Zhu et al., 2017).

It is well-known that ensemble methods have advantages over single prediction models

in terms of stability. With this in mind, Yao et al. (2019) extended the work from Fu and

Simonoff (2017) to explore the use of ensemble methods based on the conditional inference

survival forest. In ongoing work, we are adapting these regression tree algorithms for both

interval-censored data and current status data to accommodate ensemble methods such as

random forests. See Section 5.2.1 for a brief plan. Another potential research area is to

investigate additional means of estimating the marginal or conditional survivor functions,

for example, using the nonparametric Bayesian accelerated failure times approach. Finally,

we note that the equivalence between the constructed observed data loss and the imputed

loss only holds under the L2 loss function in the CART algorithm - an extension of these

methods to deal with different loss functions is an important area of future research, too.
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Chapter 3

Adaptive Two-Phase Designs: Some

Results on Robustness and Efficiency

3.1 Introduction

Large cohort studies often involve the creation of biobanks in which serum or tissue samples

are collected from individuals upon recruitment and stored. After obtaining follow-up data

on individuals in the cohort, scientific questions often arise about the association between

a biomarker and a particular response. Two-phase studies aim to use follow-up data

and inexpensive baseline covariate data to develop sampling strategies for the creation of

a sub-sample of individuals with complete data on the biomarker. The goal of such a

design is typically to obtain a more efficient estimator for the parameter of interest while

meeting budgetary constraints which preclude evaluation of the biomarker in all individuals

(Breslow and Cain, 1988; Breslow and Chatterjee, 1999; Lawless et al., 1999). One such

study in rheumatology involves a registry of patients with psoriatic arthritis (PsA) at the

University of Toronto PsA clinic (Gladman and Chandran, 2011). Investigators aim to

study the association between the bio-marker matrix metalloproteinase 3 (MMP-3) and

progression in joint damage. Blood and urine samples for those patients are stored in a

bio-bank, so it is possible to assay the bio-specimens for some, but not all, individuals

(Chandran et al., 2010a). A traditional marker of inflammatory disease, the erythrocyte
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sedimentation rate (ESR), is relatively inexpensive and available for the whole cohort; we

aim to exploit the auxiliary data to help select the phase II sub-sample for measurements

of MMP-3.

The followup response and the inexpensive baseline data from the full cohort form the

phase I sample, while the phase II sub-sample is comprised of individuals chosen from the

phase I sample to have their biospecimens assayed. This phase II sub-sampling is typically

carried out following stratification of the phase I sample. Traditional methods of phase II

sub-sampling include simple random sampling, proportional sampling in which individuals

are sampled proportionally to the stratum sizes, and balanced sampling in which equal

numbers of individuals are chosen from each stratum. Lawless et al. (1999) and Breslow

and Chatterjee (1999) described methods of estimation and inference based on the observed

data likelihood which requires modelling the distribution of the biomarker. In contrast, the

mean score estimating functions developed by Reilly and Pepe (1995) relax the need for

these distributional assumptions at a cost of some efficiency. Inverse probability weighted

estimating equations (Robins and Rotnitzky, 1995; Tsiatis, 2006) offer another approach

in which contributions are made to the primary estimating function from individuals with

known biomarker data, with a selection model used to address the fact that this is a

biased sub-sample. In order to exploit the efficiency advantages of likelihood inference and

relax the need to specify nuisance models, Chatterjee et al. (2003) proposed an innovative

semiparametric maximum likelihood approach in which the distributions for the biomarker

are estimated nonparametrically for different classes of individuals. More recently, Scott

and Wild (2011) built upon Lawless et al. (1999) and proposed use of conditional likelihood

while examining its relationship with several semiparametric efficient methods.

McIssac and Cook (2015) proposed an adaptive two-phase design that divides the phase

II sub-sampling into phase IIA and IIB stages; the process naturally extends to multiple

stages of phase II sub-sampling. The adaptive approximately optimal design exploits one

of the established sampling schemes to select individuals into the phase IIA sub-sample and

this data are used to obtain preliminary parameter estimates with which the asymptotically

optimal sampling scheme can be obtained for the phase IIB sub-sampling. McIssac and

Cook (2015) consider use of inverse probability weighted estimating functions and focused

on minimizing the variance of the estimator from the phase IIB sub-sample; the impact of
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the phase IIA selection model does not arise in their framework. In more recent work, Chen

and Lumley (2020) consider multiwave response-dependent sampling to optimize design-

based estimators with informative priors specified in order to minimize over-sampling of

uninformative strata at any stage.

We extend the work of McIssac and Cook (2015) in several directions. We first redefine

the optimal phase IIB selection criteria by considering the asymptotic distribution of the

estimator of interest which is obtained upon completion of phase II sub-sampling; the

precision of this estimator is influenced by the design used in the phase IIA pilot stage and

so optimal phase IIB selection models may differ according to the sub-sampling scheme

used in phase IIA. Second, while McIssac and Cook (2015) focused on estimating functions,

we consider adaptive two-phase designs for maximum likelihood (Breslow and Chatterjee,

1999; Lawless et al., 1999), semiparametric maximum likelihood (Chatterjee et al., 2003),

and conditional likelihood (Scott and Wild, 2011) estimation; the latter two are particularly

appealing when the expensive covariate is continuous. Third, we extend the investigation

to consider the case in which a surrogate of the biomarker of interest is available in the

phase I sample. Fourth, we carry out a detailed empirical investigation regarding the

efficiency and robustness of estimators under different strategies to design and approaches

to analyse.

The remainder of the chapter is structured as follows. We introduce our methods and

outline the procedure of an adaptive two-phase response-dependent sampling design for

both discrete and continuous covariates in Section 3.2. In Section 3.3, we investigate the

finite sample performance of estimators from the different designs in a variety of settings

with a focus on efficiency and robustness. We also report on a study framed within a

research project aiming to assess the relationship between an expensive biomarker MMP-3

and the development of new joint damage in psoriatic arthritis. In Section 3.4, we report

on further investigations in the framework of the surrogate value problem. Section 3.5

concludes with some general remarks.
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3.2 Adaptive Two-Phase Designs

3.2.1 Notation

Let Y denote the response, X1 an expensive exposure variable of interest, X2 a vector

of discrete auxiliary covariates, and let X = (X1, X
′
2)′. We consider a response model

f(Y |X; β) indexed by a vector of parameters β. The interest lies in estimation and in-

ference regarding a particular component of β which, in what follows, we take to be the

component β1, corresponding to the coefficient of X1 in a regression model. We let G(X; γ)

be the joint distribution of the covariate vector indexed by γ, where g1(X1|X2; γ1) denotes

the conditional probability density (mass) function of X1 given X2 when X1 is continu-

ous (discrete), and X2 has the probability mass function g2(X2; γ2); we let γ = (γ′1, γ
′
2)′.

Overall, the joint model of the response and covariates is

f(Y,X;ϑ) = f(Y |X; β)g1(X1|X2; γ1)g2(X2; γ2), (3.1)

where ϑ = (β′, γ′)′; we also let ϑ1 = (β′, γ′1)′. In some settings, X2 may be a surrogate for

X1 in which case Y⊥X2|X1; we consider this problem in Section 3.4.

In two-phase designs, individuals in a phase I sample of size n provide information on

their response and inexpensive auxiliary covariates and we denote this data by {Yi, Xi2 :

i = 1, . . . , n}. A sub-sample of M individuals is then selected and the expensive covariate

X1 is measured in these individuals. The sub-sampling of individuals into the phase II

sub-sample is governed by the selection model with sampling probabilities πi(Yi, Xi2;ψ)

indexed by the parameter ψ, i = 1, . . . , n, In this framework, the covariate X1 is therefore

missing at random (MAR) in the phase I sample (Little and Rubin, 2002).

In the regime of an adaptive two-phase design, we let A, πA, MA, and ψA denote the

phase IIA selection indicator, selection probability, sub-sample size, and the parameter

of the selection model, respectively. We adopt the letters B, C, and so on, to denote

the corresponding features in the subsequent stages of the phase II process, conditioning

on individuals not having been selected in previous stages; see Appendix 3A for details.

Finally, we assume that ψ and ϑ are functionally independent.
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3.2.2 Overview of Adaptive Two-Phase Designs and Stratifica-

tion

For a given approach to analysis, the optimal selection model governs a phase II sub-

sampling scheme which yields an estimator of β1 with the minimum asymptotic variance

among those possible with the same expected phase II sub-sample size. Such designs,

however, require knowledge of unknown parameters. The adaptive two-phase approach

involves a conventional sampling scheme for a fraction of the individuals to be selected in

phase II to form a phase IIA sub-sample; this can be used to obtain a preliminary estimate

of ϑ with which to approximate the optimal phase IIB selection model.

Let MA (MA < M) denote the size of the phase IIA sub-sample chosen based on i)

simple random sampling, ii) proportional sampling, or iii) balanced sampling schemes of

which the latter two depend on the stratification. We let C(Yi, Xi2) record the stratum

for individual i, where C(·) is a coarse mapping of (Yi, X
′
i2) to strata labeled as 1, . . . , S,

i = 1, . . . , n. The mapping C(·) determines the nature of the stratification of the phase

I sample and hence how conventional proportional or balanced (Breslow and Cain, 1988)

phase II sub-sampling schemes might be employed. We let Vis = I(C(Yi, Xi2) = s) for

s = 1, . . . , S and Vi = (Vi1, . . . , ViS)′ denote an S × 1 vector identifying the stratum to

which individual i belongs and define a stratum-dependent selection model so that Xi1 is

MAR (Little and Rubin, 2002). Let πiA = P (Ai = 1|Vi;ψA). Note that each of strategies

i), ii) and iii) lead to a particular choice of πiA and hence ψA. Specifically, strategies i)

and ii) induce identical πiA for all individuals in phase I sample, except that ii) ensures

to select the same proportion of individuals from each stratum. Strategy iii), on the

other hand, induces different πiA across strata such that an equal number of individuals

are selected from each stratum, i.e., inversely proportional to the stratum sizes. The

preliminary parameter estimates obtained based on the phase IIA sample are denoted by

ϑ̃.

Following phase IIA sub-sampling, a total ofNB = n−MA individuals remain eligible for

phase IIB sub-sampling. Subject to budgetary constraints, we aim to select MB individuals

according to a phase IIB sampling scheme to minimize the variability of the estimator for

the parameter of interest from the whole phase II sub-sample and to approximate the
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optimal selection model with πiB = P (Bi = 1|Vi, Ai = 0;ψB) while satisfying the sampling

constraints. The approximately optimal ψB is defined as the one that minimizes

asvar[
√
n(β̂1 − β1); ϑ̃, ψ] + λ

[
E(B|A = 0; ϑ̃, ψ)− E(MB)

E(NB)

]
, (3.2)

where ψ = (ψ′A, ψ
′
B)′, λ denotes the Lagrange multiplier, and the phase IIA parameter

estimates ϑ̃ are substituted into the expressions. The objective function and the constraint

are functions of ψB, which here is a one-to-one function of πB. See Figure 3.1 for an illus-

tration of locating the minimal asymptotic variance of estimator of parameter of interest

at the optimal ψB.

Figure 3.1: Surface (left) and contour (right) of asymptotic variance of the estimator of

parameter of interest generated as a function of ψB. Minimal asymptotic variance locates

at the optimal ψB.

3.2.3 Design and Analysis of Adaptive Two-Phase Studies

We next consider different frameworks for analysis along with the corresponding approaches

to conduct adaptive two-phase designs. Note that when X1 is continuous, strategies that

avoid the need to model the nuisance distribution g1(X1|X2; γ1) are particularly desirable.
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Maximum Likelihood

Following the construction of a phase IIA sub-sample, the preliminary parameter estimates

are obtained. If ψ and ϑ are functionally independent, we can restrict attention to the

observed data likelihood

L(ϑ) =
n∏
i=1

[f(Yi|Xi; β)g1(Xi1|Xi2; γ1)g2(Xi2; γ2)]Ai

[∫
f(Yi|x1, Xi2; β)g1(x1|Xi2; γ1)g2(Xi2; γ2)dx1

]1−Ai

,

and hence, the log-likelihood l(ϑ) =
∑n

i=1 li(ϑ) where

li(ϑ) = Ai[log f(Yi|Xi; β) + log g1(Xi1|Xi2; γ1)]

+ (1− Ai)
[
log

∫
f(Yi|x1, Xi2; β)g1(x1|Xi2; γ1)dx1

]
+ log g2(Xi2; γ2).

The phase IIA estimate ϑ̃ is obtained by solving

∂l(ϑ)

∂ϑ
=

n∑
i=1

∂li(ϑ)

∂ϑ
=

(
∂li(ϑ)

∂β′
,
∂li(ϑ)

∂γ′1
,
∂li(ϑ)

∂γ′2

)′
= 0,

where
∂li(ϑ)

∂β
= AiSi1(Yi|Xi; β) + (1− Ai)EXi1|Yi,Xi2

[Si1(Yi|Xi; β);ϑ1],

∂li(ϑ)

∂γ1

= AiSi2(Xi1|Xi2; γ1) + (1− Ai)EXi1|Yi,Xi2
[Si2(Xi1|Xi2; γ1);ϑ1],

and ∂li(ϑ)/∂γ2 = Si3(Xi2; γ2), respectively, where Si1(Yi|Xi; β) = ∂ log f(Yi|Xi; β)/∂β,

Si2(Xi1|Xi2; γ1) = ∂ log g1(Xi1|Xi2; γ1)/∂γ1, and Si3(Xi2; γ2) = ∂ log g2(Xi2; γ2)/∂γ2. Note

that the maximum likelihood approach requires modelling both the response f(Y |X; β)

and the nuisance distribution g1(X1|X2; γ1) (Lawless et al., 1999); when X1 is discrete the

expectations above involve summation instead of integration. Note that the estimate of

γ2 is not needed for estimation of ϑ1, but it has a role in approximating the asymptotic

variance in the optimal design so we include it here.

We now consider the analysis at the conclusion of the adaptive two-phase sampling

procedure where B = 1 indicates an individual, unselected in phase IIA, is selected in
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phase IIB. Upon selecting MB individuals from the NB = n − MA eligible individuals

following phase IIA, we have a phase IIB sub-sample. The score vector for ϑ1 becomes

SB(Y,X1|X2;ϑ1) =
n∑
i=1

SiB(Yi, Xi1|Xi2;ϑ1) =
n∑
i=1

(S ′i1B(ϑ1), S ′i2B(ϑ1))′,

where

Si1B(ϑ1) = RiSi1(Yi|Xi; β) + (1−Ri)EXi1|Yi,Xi2
[Si1(Yi|Xi; β);ϑ1]

Si2B(ϑ1) = RiSi2(Xi1|Xi2; γ1) + (1−Ri)EXi1|Yi,Xi2
[Si2(Xi1|Xi2; γ1);ϑ1] , (3.3)

where Ri = Ai + (1− Ai)Bi, indicating that individual i is selected in either phase IIA or

phase IIB, i = 1, . . . , n. Under regularity conditions, the final estimate of ϑ at the end of the

study, denoted by ϑ̂, obtained as the solution to the score equation SB(Y,X1|X2;ϑ1) = 0,

is asymptotically normal with

√
n(ϑ̂1 − ϑ1)

D−→ N(0, E[SiB(Yi, Xi1|Xi2;ϑ1)S ′iB(Yi, Xi1|Xi2;ϑ1)]−1), as n→∞, (3.4)

where the asymptotic covariance matrix E[SiB(Yi, Xi1|Xi2;ϑ1)S ′iB(Yi, Xi1|Xi2;ϑ1)] involves

expectations with respect to A, B, Y , X1, and X2. The joint expectations can be calculated

as

EX2{EX1|X2{EY |X1,X2{EA,B|Y,X1,X2 [SiB(Yi, Xi1|Xi2;ϑ1)S ′iB(Yi, Xi1|Xi2;ϑ1)]}}} ,

in which the expectation of X1 given X2 can be carried out by numerical integration when

X1 is continuous. The optimal ψ̂B is the one that minimizes (3.2). After phase II selection is

complete, analyses involve the score equation SB(Y,X1|X2;ϑ1) = 0 for parameter estimates

of interest. For inferential purposes, the expectations in the asymptotic covariance are

replaced by empirical averages.

Inverse Probability Weighted Estimating Equations

Phase IIA parameter estimates can also be obtained by solving the inverse probability

weighted estimating equations (IPWEE)

n∑
i=1

Ui1A(Yi|Xi; β, ψA) =
n∑
i=1

Ai
πiA

D′i1Σ−1
i1 (Yi − µi) = 0
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with µi = E(Yi|Xi; β), Di1 = ∂µi/∂β, and Σi1 = var(Yi|Xi; β). As the nuisance distribution

g1(X1|X2; γ1) is not modelled here, the nuisance parameter γ1 is separately estimated as

γ̃1, the solution to the weighted score equations

n∑
i=1

Ai
πiA
Si2(Xi1|Xi2; γ1) = 0 ;

γ̃2 solves
∑n

i=1 Si3(Xi2; γ2) = 0. After selection of the phase IIB sub-sample, we consider

the IPWEE which marginalizes over the selection process

n∑
i=1

Ui1B(Yi|Xi; β, ψ
∗) =

n∑
i=1

Ri

π∗i
D′i1Σ−1

i1 (Yi − µi) = 0 , (3.5)

together with score equation for the selection model parameters

n∑
i=1

Ui2B(Ai, Bi;ψ
∗) =

n∑
i=1

∂π∗i
∂ψ∗

1

π∗i (1− π∗i )
(Ri − π∗i ) = 0 , (3.6)

where we recall Ri = Ai + (1−Ai)Bi, and π∗i = πiA + (1− πiA)πiB is indexed by ψ∗. Thus,

Ui1B(Yi|Xi; β, ψ
∗) and Ui2B(Ai, Bi;ψ

∗) are functions of both ψA and ψB but with inputs ψA

determined by the conventional design adopted for phase IIA. Under regularity conditions,

the solution to (3.5) satisfies

√
n(β̂ − β)

D−→ N(0,Γ−1
B (IB −HBΩBH

′
B)(Γ−1

B )′), as n→∞, (3.7)

where ΓB = E [−∂Ui1B(Yi|Xi; β, ψ
∗)/∂β], IB = E [Ui1B(Yi|Xi; β, ψ

∗)U ′i1B(Yi|Xi; β, ψ
∗)],

HB = E[−∂Ui1B(Yi|Xi; β, ψ
∗)/∂ψ∗] and ΩB = E [Ui2B(Ai, Bi;ψ

∗)U ′i2B(Ai, Bi;ψ
∗)], (Robins

et al., 1995). The approximately optimal ψB then minimizes (3.2) as well.

The analysis after phase II involves solving the IPWEE (3.5) for parameter estimates

without distinguishing ψA from ψB, but estimate the overall selection model π∗ from the

entire phase II sub-sample instead. Robins et al. (1994) and Lawless et al. (1999) explain

this seemingly paradoxical gain in efficiency from estimating the selection probabilities.

The approach is in the spirit of McIssac and Cook (2015) who optimized the phase IIB

selection model to minimize the variance of the IPW estimators based on the phase IIB

sub-sample alone. In contrast, we consider the optimal phase IIB selection model in terms
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of the overall estimator based on individuals who may have been chosen in phase IIA or

IIB - thus we consider the potential effect of the sampling scheme in phase IIA. In McIssac

and Cook (2015), the corresponding IPWEEs for the response and selection models in the

design stage are

n∑
i=1

Ui1B(Yi|Xi; β, ψ) =
n∑
i=1

(1− Ai)Bi

(1− πiA)πiB
D′i1Σ−1

i1 (Yi − µi) = 0,

and
n∑
i=1

Ui2B(Ai, Bi;ψ) =
n∑
i=1

1− Ai
1− πiA

∂πiB
∂ψ

1

πiB(1− πiB)
(Bi − πiB) = 0 ,

respectively.

Conditional Likelihood

Scott and Wild (2011) advocated use of conditional likelihood in two-phase designs as

they do not require modelling the nuisance distribution g1(x1|X2; γ1). The conditional

probability has the form

f(Y |X,A = 1; β, ψA) =
πA(Y,X2;ψA)f(Y |X; β)∑
y πA(y,X2;ψA)f(y|X; β)

,

and the score equations

n∑
i=1

SciA(Yi|Xi; β, ψA) =
n∑
i=1

Ai
∂

∂β
log f(Yi|Xi, Ai = 1; β, ψA) = 0 ,

yield the phase IIA estimate β̃.

To construct the optimal phase IIB sub-sample in this framework, we consider the score

equation from both phase IIA and IIB sub-samples,

n∑
i=1

SciB(Yi|Xi; β, ψ) =
n∑
i=1

Ri
∂

∂β
log f(Y |X,Ri = 1; β, ψ) = 0 , (3.8)

where

f(Y |X,R = 1; β, ψ) =
[πA(Y,X2;ψA) + (1− πA(Y,X2;ψA))πB(Y,X2;ψB)]f(Y |X; β)∑
y[πA(y,X2;ψA) + (1− πA(y,X2;ψA))πB(y,X2;ψB)]f(y|X; β)

.
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The optimal ψB is the one that minimizes

E[SciB(Yi|Xi; β, ψ)Sc
′

iB(Yi|Xi; β, ψ); ϑ̃, ψ]−1
β1,β1

+ λ

[
E(B|A = 0; ϑ̃, ψ)− E(MB)

E(NB)

]
. (3.9)

Note that although the score contribution is only a function of β and ψ, the joint expecta-

tions with respect to A, B, Y , X1, and X2 requires the nuisance distribution g1(x1|X2; γ1).

Finally, with both phase IIA and IIB sub-samples, analysis and inference after phase II

are based on the score equation (3.8), with empirical averages employed whenever needed.

3.2.4 Robusteness and the Semiparametric Pseudo-Score

Chatterjee et al. (2003) proposed use of a semiparametric pseudo-score estimating function

which exploits Bayes’ rule to obtain a smoother and consistent nonparametric estimate of

the nuisance distribution g1(X1|X2; γ1) to improve the efficiency. As this approach does

not require modelling the nuisance distribution g1(X1|X2; γ1), robustness is achieved when

X1 is continuous.

Using Bayes’ rule, for individuals selected in phase IIA, we have

g1(x1|X2; γ1) =
dP (X1 ≤ x1|X2, A = 1)P (A = 1|X2)

P (A = 1|X1 = x1, X2)
. (3.10)

Note that P (X1 ≤ x1|X2, A = 1) can be replaced by an empirical estimate

Ĝ1(x1|x2, A = 1) =

∑n
i=1 I(Xi1 ≤ x1, Xi2 = x2, Ai = 1)∑n

i=1 I(Xi2 = x2, Ai = 1)
,

and the denominator of (3.10) is straightforward when Y is discrete, given by

P (A = 1|X1 = x1, X2; β, ψA) =
∑
y

πA(y,X2;ψA)f(y|X1 = x1, X2; β) .

Let g̃1A(X1|X2; β, ψA) denote the resultant estimate of the nuisance distribution g1(X1|X2; γ1).
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We can then write the score contribution in phase IIA as a function of β and ψA,

SpA(Y |X; β, ψA) =
n∑
i=1

Ai
∂

∂β
log f(Yi|Xi; β)g1(Xi1|Xi2; γ1)

+ (1− Ai)
∂

∂β
log

∫
f(Yi|x1, Xi2; β)g1(x1|Xi2; γ1)dx1

=
n∑
i=1

AiSi1(Yi|Xi; β)

+ (1− Ai)
∫
Si1(Yi|x1, Xi2; β)f(Yi|x1, Xi2; β)g̃1A(x1|Xi2; β, ψA)dx1∫

f(Yi|x1, Xi2; β)g̃1A(x1|Xi2; β, ψA)dx1

=
n∑
i=1

AiSi1(Yi|Xi1, Xi2; β)

+ (1− Ai)
∫
Si1(Yi|x1, Xi2; β)h(Yi, x1, Xi2; β, ψA)dP (Xi1 ≤ x1|Xi2, Ai = 1)∫

h(Yi, x1, Xi2; β, ψA)dP (Xi1 ≤ x1|Xi2, Ai = 1)
,

where

h(Y,X; β, ψA) =
f(Y |X; β)

P (A = 1|X; β, ψA)
,

and P (X1 ≤ x1|X2, A = 1) is estimated empirically by Ĝ(x1|X2, A = 1). Solving the score

equations SpA(Y |X; β, ψA) = 0 gives the phase IIA estimates. Considering the phase IIA

and phase IIB sub-samples, we write the nuisance distribution g1(x1|X2; γ1) as

g1(x1|X2; γ1) =
dP (X1 ≤ x1|X2, R = 1)P (R = 1|X2)

P (R = 1|X1 = x1, X2)
, (3.11)

where P (X1 ≤ x1|X2, R = 1) is estimated empirically as

Ĝ1(x1|x2, R = 1) =

∑n
i=1 I(Xi1 ≤ x1, Xi2 = x2, Ri = 1)∑n

i=1 I(Xi2 = x2, Ri = 1)
, (3.12)

and the denominator as∑
y

[πA(y,X2;ψA) + (1− πA(y,X2;ψA))πB(y,X2;ψB)]f(y|X1 = x1, X2; β) .
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The score contribution is then a function of β and ψ∗

SpB(Y |X; β, ψ∗) =
n∑
i=1

SpiB(Yi|Xi; β, ψ
∗) (3.13)

=
n∑
i=1

Ri
∂

∂β
log f(Yi|Xi1, Xi2; β)g1(Xi1|Xi2; γ1)

+ (1−Ri)
∂

∂β
log

∫
f(Yi|x1, Xi2; β)g1(x1|Xi2; γ1)dx1

=
n∑
i=1

RiSi1(Yi|Xi; β)

+ (1−Ri)

∫
Si1(Yi|x1, Xi2; β)f(Yi|x1, Xi2; β)g̃1B(x1|Xi2; β, ψ∗)dx1∫

f(Yi|x1, Xi2; β)g̃1B(x1|Xi2; β, ψ∗)dx1

=
n∑
i=1

RiSi1(Yi|Xi; β) + (1−Ri)∫
Si1(Yi|x1, Xi2; β)h(Yi, x1, Xi2; β, ψ∗)dP (Xi1 ≤ x1|Xi2, Ri = 1)∫

h(Yi, x1, Xi2; β, ψ∗)dP (Xi1 ≤ x1|Xi2, Ri = 1)
,

with

h(Y,X; β, ψ∗) =
f(Y |X; β)

P (R = 1|X; β, ψ∗)
.

Under regularity conditions (Chatterjee et al., 2003), the solution to the score equation

SpB(Y |X; β, ψ∗) = 0 asymptotically follows

√
n(β̂ − β)

D−→ N(0, (J + C)−1(J + Σ)(J ′ + C ′)−1), as n→∞, (3.14)

where

J = − ∂

∂β
E[SpiB(Yi|Xi; β, ψ

∗)] = E[SpiB(Yi|Xi; β, ψ
∗)Sp

′

iB(Yi|Xi; β, ψ
∗)]

is the expected Fisher information matrix for the true likelihood,

C = E

{
(1− π∗)cov

[
S1(Y |X; β),

∂

∂β
log q(X; β, ψ∗)|Y,X2

]}
with the conditional selection probability q(X; β, ψ∗) = P (R = 1|X; β, ψ∗), and

Σ = var[a1(R,X)] + C + C ′ −ΨJ −1
ψ Ψ′
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with

a1(R,X) = RE

{
1− π∗

q(X; β, ψ∗)
{S1(Y |X; β)− E[S1(Y |X; β)|Y,X2]}|X

}
,

which adjusts the nonparametric estimate of P (X1 ≤ x1|X2, R = 1) and is non-zero only

for the selected individuals,

Jψ = E

[(
∂π∗

∂ψ∗

)2
1

π∗(1− π∗)

]
,

and

Ψ = −E
{

(1− π∗)cov

[
S1(Y |X; β),

∂

∂ψ∗
log q(X; β, ψ∗)|Y,X2

]}
.

The term ΨJ −1
ψ Ψ′ adjusts for the estimation of π∗.

With the phase IIA estimates (β̃′, γ̃′2)′, we aim to minimize (3.2) for a particular entry

of the asymptotic covariance matrix in (3.14); each term in (3.14) involves an expectation

E(Z) and variance E(ZZ ′) − E(Z)E(Z)′ with respect to A, B, Y , X1, and X2 where Z

represents an arbitrary vector-valued function of these random variables. Computation of

the joint expectations requires numerical integration, but one can discretize X1 in the phase

IIA sample by computing empirical quantiles, binning the values and assigning the mean

value to observations within bins. The continuous distribution g1(x1|x2; γ1) then reduces

to a discrete distribution ĝ1(x1|x2) with a finite number of points of support, enabling

approximation of (3.10) by using the means at these points. Alternatively, g̃1A(x1|x2; β, ψA)

can be estimated from the phase IIA sub-sample by collapsing to a piecewise constant

function ĝ1(x1|x2) with a finite number of levels. Either choice of ĝ can be used to speed

up optimization in (3.2). The analysis and inference after phase II follow from solving

SpB(Y |X; β, ψ∗) = 0 for the estimates of the parameter of interest.

Note that the semiparametric pseudo-score approach can be adapted to both the IP-

WEE and conditional likelihood approaches. Although these approaches do not involve

g1(x1|X2; γ1) in their analysis, the semiparametric estimate helps in the design stage. Using

the discretized version of the semiparametric estimator g̃1A(X1|X2; β, ψA), γ̃1 is no longer

needed in (3.2) and (3.9). Analysis and inference after phase II remain unchanged.
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3.3 Empirical Studies

3.3.1 Design of Simulation Studies

The finite sample performance of estimators from the designs is investigated and compared

in a variety of settings to demonstrate the efficiency and robustness. We consider a simu-

lation study on nsim = 1000 generated phase I samples of size n = 5000. Such a phase I

sample size represents scenarios of modern large cohort studies involving thousands of indi-

viduals from which a validation sub-sample may be chosen. For each individual, we consider

a Bernoulli response Y whose response model is indexed by parameter β = (β0, β1, β2)′,

E(Y |X1, X2; β) = µ = expit(β0 + β1X1 + β2X2), (3.15)

where expit(u) = eu/(1 + eu), and the parameter of interest is β1. The Bernoulli auxiliary

covariate X2 satisfies

E(X2; γ2) = expit(γ2). (3.16)

When X1 is Bernoulli, we set

E(X1|X2; γ1) = expit(γ10 + γ11X2) ; (3.17)

when X1 is continuous, we suppose

X1 = γ10 + γ11X2 + ε , (3.18)

where ε ∼ N(0, γ2
12). The parameter values are specified such that the marginal expecta-

tions of the response and covariates are all 0.20. When X1 is binary, parameters are set to

(β0, β1, β2, γ10, γ11, γ2) = (−1.707, 0.916, 0.405,−1.753, 1.386,−1.386), and we consider the

phase II sub-sample of expected size E(M) = 500 or E(M) = 2000 chosen via Bernoulli

sampling. When X1 is continuous, the parameter values are (β0, β1, β2, γ10, γ11, γ12, γ2) =

(−2.121, 0.916, 0.405, 0, 1,
√

2,−1.386), and we consider the phase II sub-sample of expected

size E(M) = 500 or E(M) = 1000 chosen via Bernoulli sampling. The binary response

Y and auxiliary covariate X2 lead to four strata based on the phase I sample, and the

selection probabilities for phase IIA and IIB can be expressed as

logitπA(Y,X2;ψA) = ψA0 + ψA1Y + ψA2X2 + ψA3Y X2,
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and

logitπB(Y,X2;ψB) = ψB0 + ψB1Y + ψB2X2 + ψB3Y X2,

indexed by ψA = (ψA0, ψA1, ψA2, ψA3)′ and ψB = (ψB0, ψB1, ψB2, ψB3)′, respectively. In

each set-up, the phase IIA sub-sample of expected size E(MA) employs simple random

sampling (SRS) or balanced sampling (BS) for parameter estimation. The optimal phase

IIB sub-sample has expected size E(MB) = E(M)−E(MA), and its construction involves

optimizing ψB. The optimization is done by using the R function nlminb. Derivatives

required in (3.2) are computed using the function fdHess in R package nmle. Combining

phase IIA and phase IIB sub-samples should give an consistent estimate of the parameter

of interest β̂1. We assess robustness of inferences when X1 is continuous by generating

ε in (3.18) as ε ∼ t(4) while retaining the mean and variance of X1|X2 as before. Here

while the error term arises from a t-distribution, the design and analysis are based on the

assumption that X1|X2 follows a normal distribution.

3.3.2 Empirical Findings from Simulation Studies

Empirical Findings from Simulation Studies with Binary X1

When X1 is binary, we compare the efficiencies of adaptive two-phase designs based on the

maximum likelihood, IPWEE, and conditional likelihood. For each design, SRS or BS is

employed in phase IIA with E(MA) = 0.25E(M) or E(MA) = 0.5E(M). Our suggestion is

to find the optimal phase IIB selection model taking into account both the phase IIA and

phase IIB selection processes, but we also compare this approach to designs that involve

finding the phase IIB selection model to minimize the variance of the phase IIB estimator;

within the IPWEE framework, this is the method proposed in McIssac and Cook (2015).

Such design based on the maximum likelihood and conditional likelihood approaches have

the scores in the form of (3.3) and (3.8), respectively, but with A + (1− A)B replaced as

(1− A)B.

The average standard errors (ASE) match the empirical standard errors (ESE) for the

adaptive two-phase designs conducted within all frameworks of analysis and the empirical

coverage probabilities (ECP) are compatible with the nominal 95% levels; see Table 3.1.
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The advantages of adaptive two-phase designs over the non-adaptive standard SRS or BS

designs are substantial when the phase II sub-sample size is small compared to the phase I

sample size. This is not surprising as standard non-adaptive designs are not able to exploit

the population well enough when the phase II sub-sample size is small. The likelihood

approaches are comparable in terms of efficiency in all set-ups, and they are more efficient

than the IPWEE approach. The implementation of the conditional likelihood is easier

and in general leads to faster results due to the simplicity of the asymptotic covariance

matrix. Within the framework of an IPWEE analysis, more efficient estimates are obtained

if the phase IIB selection model is chosen based on the entire phase II sub-sample (see the

“Full” columns) compared to the phase IIB estimator alone, with this gain increasing as

the size of the phase IIA sub-sample increases. Smaller differences in efficiency are seen in

likelihood analyses but despite this, the selection probabilities are quite different between

the current approach and the approach of McIssac and Cook (2015); the optimal phase IIB

selection probabilities π̂B of the four strata, (Y,X2) = {(0, 0), (1, 0), (0, 1), (1, 1)}, averaged

over nsim = 1000 simulated datasets, are given in Table 3.2.

We define the asymptotic relative efficiency (ARE) of the adaptive two-phase designs

under different phase IIA designs as

ARE =
asvar[

√
n(β̂1 − β1);ϑ, ψA,MA]

asvar[
√
n(β̂1 − β1);ϑ, ψ,M ]

,

where the denominator represents a non-adaptive phase II design. Figure 3.2 plots the

asymptotic standard error of β̂1 from the adaptive two-phase designs for likelihood and

IPWEE analyses when simple random sampling (red) or balanced sampling (blue) are

employed in phase IIA. Non-adaptive phase II SRS and BS designs are displayed as the

upper bounds. The lower bound refers to the asymptotically-optimal phase II design which

requires the true, but in practice, unknown parameters. As the size of the phase IIA sub-

sample increases, the adaptive designs eventually approach the corresponding non-adaptive

phase II designs. While true parameters were used to generate the curves, the ESEs from

simulations with E(MA) = 0.1E(M) and E(MA) = 0.75E(M) agree with the plots. Still,

we comment on the trade-off between the potential efficiency gain from a large phase IIB

sub-sample and the loss in the precision of parameter estimates from a small phase IIA

sub-sample. The best choice of MA depends on the phase I sample size, phase II sub-sample
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size, and the unknown parameters. Our simulation studies suggest exploiting a large phase

IIB sub-sample yet avoid setting MA too small to provide reasonable preliminary parameter

estimates.
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Figure 3.2: Plots of asymptotic standard error of β̂1 from likelihood (left) and IPWEE

(right) adaptive two-phase designs. Red and blue curves indicate that SRS and BS are

employed in phase IIA, respectively. The horizontal lines represent the asymptotic standard

errors from the standard non-adaptive and asymptotically-optimal phase II designs. Phase

I sample size n = 5000. Phase II sub-sample size E(M) = 500 in the first row and

E(M) = 2000 in the second row. Parameter of interest β1 = 0.916.
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Table 3.1: Average standard errors (ASE), empirical standard errors (ESE), and percent em-

pirical coverage probabilities (ECP%) of estimators from maximum likelihood (ML), conditional

likelihood (CML), and IPWEE (IPW) adaptive two-phase designs with SRS or BS employed in

a phase IIA sub-sample of size 0.25E(M) or 0.50E(M). Non-adaptive SRS and BS designs are

included as the “100% IIA” columns. Phase I sample size n = 5000, phase II sub-sample size

E(M) = 500 (top half) or E(M) = 2000 (bottom half), and nsim = 1000. Parameter of interest

β1 = 0.916.

Proposed Adaptive Designs

100% IIA 50% IIA 25% IIA

Analysis IIA Opt1 ASE ESE ECP% ASE ESE ECP% ASE ESE ECP%

E(M) = 500

ML SRS 0.264 0.261 95.5 0.212 0.211 94.8 0.198 0.202 94.1

BS 0.208 0.204 95.7 0.196 0.194 96.3 0.191 0.192 95.4

CML SRS 0.264 0.261 95.5 0.212 0.213 95.1 0.198 0.202 94.4

BS 0.208 0.204 95.7 0.196 0.194 96.4 0.191 0.192 95.0

IPW SRS MC 0.264 0.261 95.5 0.231 0.239 93.6 0.226 0.229 95.9

Full 0.224 0.229 94.2 0.223 0.229 94.6

BS MC 0.245 0.245 94.7 0.228 0.225 95.7 0.225 0.229 94.5

Full 0.223 0.223 94.4 0.223 0.226 94.7

E(M) = 2000

ML SRS 0.130 0.129 94.5 0.108 0.108 95.0 0.108 0.108 94.7

BS 0.108 0.106 95.3 0.108 0.108 94.6 0.108 0.107 94.5

CML SRS 0.130 0.129 94.5 0.108 0.108 95.3 0.108 0.108 94.5

BS 0.108 0.106 95.3 0.108 0.108 94.8 0.108 0.106 95.0

IPW SRS MC 0.130 0.129 94.3 0.115 0.117 95.4 0.111 0.116 94.2

Full 0.110 0.111 94.9 0.110 0.114 94.4

BS MC 0.117 0.114 96.2 0.112 0.111 95.6 0.111 0.113 94.8

Full 0.110 0.110 95.0 0.111 0.114 94.7

1 MC refers to approximation to phase IIB selection model based on phase IIB estimators only

as in McIssac and Cook (2015). Full refers to that based on both phase IIA and IIB estimators.
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Table 3.2: Optimal phase IIB selection probabilities for maximum likelihood (ML), conditional

likelihood (CML), and IPWEE (IPW) estimators under adaptive two-phase designs with SRS

or BS employed in a phase IIA sub-sample of size 0.25E(M) or 0.50E(M). The “Full” columns

refer to the designs optimizing the phase IIB sub-sample based on both phase IIA and IIB,

while the “MC” columns refer to those based on phase IIB only. The expected strata sizes of

(Y,X2) = {(0, 0), (1, 0), (0, 1), (1, 1)} are 3293, 708, 707, and 292, respectively. Phase I sample

size n = 5000, phase II sub-sample size E(M) = 500 (top half) or E(M) = 2000 (bottom

half), and nsim = 1000. Parameter of interest β1 = 0.916.

(Y,X2) Sampling Probability by Optimization Methods

Phase IIA MC Full

% Sampling∗ Analysis (0,0) (1,0) (0,1) (1,1) (0,0) (1,0) (0,1) (1,1)

E(M) = 500

25 SRS ML 0.001 0.001 0.275 0.651 0.001 0.001 0.268 0.666

CML 0.001 0.001 0.271 0.659 0.001 0.001 0.264 0.676

IPW 0.005 0.155 0.070 0.208 0.041 0.184 0.062 0.259

25 BS ML 0.001 0.001 0.280 0.711 0.001 0.001 0.279 0.712

CML 0.001 0.001 0.278 0.710 0.001 0.001 0.278 0.711

IPW 0.050 0.161 0.069 0.214 0.055 0.175 0.051 0.163

50 SRS ML 0.001 0.001 0.190 0.441 0.001 0.001 0.174 0.478

CML 0.001 0.001 0.190 0.443 0.001 0.001 0.174 0.482

IPW 0.034 0.109 0.046 0.142 0.190 0.162 0.029 0.225

50 BS ML 0.001 0.001 0.194 0.543 0.001 0.001 0.197 0.535

CML 0.001 0.001 0.194 0.543 0.001 0.001 0.196 0.536

IPW 0.032 0.113 0.051 0.169 0.045 0.141 0.009 0.029

E(M) = 2000

25 SRS ML 0.141 0.551 0.751 0.958 0.118 0.732 0.668 0.976

CML 0.140 0.552 0.753 0.958 0.117 0.734 0.669 0.977

IPW 0.204 0.725 0.331 0.837 0.166 0.885 0.335 0.937

25 BS ML 0.182 0.833 0.478 0.954 0.174 0.712 0.639 0.954

CML 0.180 0.834 0.477 0.954 0.173 0.713 0.640 0.955

IPW 0.196 0.847 0.385 0.952 0.204 0.935 0.247 0.949

50 SRS ML 0.069 0.276 0.778 0.948 0.010 0.680 0.625 0.997

CML 0.069 0.276 0.779 0.948 0.010 0.682 0.625 0.997

IPW 0.160 0.515 0.241 0.640 0.062 0.831 0.247 0.961

50 BS ML 0.160 0.893 0.141 0.877 0.141 0.613 0.548 0.921

CML 0.160 0.893 0.141 0.878 0.140 0.614 0.548 0.922

IPW 0.134 0.848 0.349 0.952 0.189 0.797 0.074 0.576

∗ Percentage of the phase II sub-sample chosen from and the sampling scheme employed in

phase IIA.
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Empirical Findings from Simulation Studies with Continuous X1

As expected, the results thus far have shown that likelihood approaches are more efficient

than the methods based on IPWEE. This efficiency gain comes from modelling the nuisance

covariate distribution g1(X1|X2; γ1) which is at risk of misspecification. To investigate the

impact of misspecification we consider next the case where ε in (3.18) follows a t-distribution

with degree of freedom 4 but normality is assumed in both the analysis and the design.

We consider the phase II sub-sample size of expected size E(M) = 500 or E(M) = 1000,

with the phase IIA sub-sample of expected size E(MA) = 0.25E(M). Tables 3.3 and 3.4

show the results from adaptive two-phase designs based on the maximum likelihood, the

semiparametric pseudo-score method, the conditional likelihood, the conditional likelihood

with the discretized semiparametric estimation applied in the design stage, IPWEE, and

IPWEE with the discretized semiparametric estimation applied in the design stage; cases

with SRS or BS employed in phase IIA are considered. The former table displays results

of the setting with expected phase II sub-sample size E(M) = 500, and the latter table

displays those of the setting with E(M) = 1000. While all designs are more efficient than

the case of binary X1, the standard balanced design has a close performance to the adaptive

two-phase designs in the likelihood analysis frameworks. When the nuisance distribution is

misspecified, the maximum likelihood approach yields biased estimators and poor coverage

probabilities. This is not surprising since the maximum likelihood framework is susceptible

to model misspecification, although modelling the nuisance covariates distributions can

improve efficiency with likelihood analyses. The semiparametric pseudo-score approach, on

the other hand, gives some improvements in terms of robustness, though the performance

is unstable, particularly when the phase II sub-sample size is small. As the conditional

likelihood and IPWEE approaches do not require the nuisance distribution g1(X1|X2; γ1)

in analysis, they are robust compared to the maximum likelihood. Despite this, adapting

the semiparametric approach in the design drastically speeds up the computation and is

beneficial when g1(X1|X2; γ1) is misspecified.
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Table 3.3: Empirical biases (EBias), average standard errors (ASE), empirical standard errors

(ESE), and percent empirical coverage probabilities (ECP%) of maximum likelihood (ML), condi-

tional likelihood (CML), IPWEE (IPW), and semiparametric pseudo score (Semi-ML) estimators

following adaptive two-phase designs with SRS or BS employed in a phase IIA sub-sample of

size 0.25E(M). Semiparametric conditional likelihood (Semi-CML) and semiparametric IPWEE

(Semi-IPW) refer to combining the pseudo score estimation in the design stage with the analysis

frameworks. Non-adaptive SRS and BS designs are included as the bottom “100%” rows. Phase

I sample size n = 5000, phase II sub-sample size E(M) = 500, and nsim = 1000. Parameter of

interest β1 = 0.916.

Model For X1|X2

Phase IIA Normal Student (d.f. 4)

% Sampling∗ Analysis EBias ASE ESE ECP% EBias ASE ESE ECP%

25 SRS ML 0.007 0.091 0.095 94.2 -0.218 0.091 0.084 32.2

Semi-ML 0.002 0.074 0.100 84.1 0.002 0.079 0.104 85.9

CML 0.008 0.095 0.097 94.5 0.021 0.106 0.102 96.3

Semi-CML 0.009 0.095 0.097 94.7 0.019 0.104 0.100 96.5

IPW 0.008 0.100 0.102 93.6 0.019 0.110 0.107 96.1

Semi-IPW 0.008 0.098 0.100 93.3 0.019 0.108 0.107 94.6

25 BS ML 0.006 0.091 0.093 95.0 -0.206 0.092 0.088 38.6

Semi-ML 0.002 0.077 0.099 87.1 0.001 0.082 0.111 83.1

CML 0.006 0.095 0.097 94.8 0.011 0.107 0.107 95.0

Semi-CML 0.005 0.096 0.098 95.1 0.012 0.105 0.107 94.5

IPW 0.006 0.099 0.099 95.6 0.013 0.109 0.108 94.6

Semi-IPW 0.006 0.099 0.100 95.2 0.013 0.108 0.108 94.2

100 SRS ML 0.014 0.116 0.120 95.4 0.005 0.125 0.123 94.7

CML 0.017 0.116 0.120 95.3 0.012 0.126 0.124 95.2

IPW 0.014 0.115 0.114 94.8 0.012 0.124 0.124 95.1

100 BS ML 0.009 0.094 0.095 94.7 -0.128 0.098 0.097 72.5

CML 0.009 0.096 0.097 94.4 0.010 0.106 0.108 93.8

IPW 0.011 0.109 0.111 94.1 0.015 0.120 0.123 93.1

∗ Percentage of the phase II sub-sample chosen from and the sampling scheme employed in

phase IIA.
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Table 3.4: Empirical biases (EBias), average standard errors (ASE), empirical standard errors

(ESE), and percent empirical coverage probabilities (ECP%) for maximum likelihood (ML),

conditional likelihood (CML), IPWEE (IPW), and semiparametric pseudo score (Semi-ML) es-

timators under adaptive two-phase designs with SRS or BS employed in a phase IIA sub-sample

of size 0.25E(M). Semiparametric conditional likelihood (Semi-CML) and semiparametric IP-

WEE (Semi-IPW) refer to combining the pseudo score estimation in the design stage with the

analysis frameworks. Non-adaptive SRS and BS designs are included as the bottom “100%”

rows. Phase I sample size n = 5000, phase II sub-sample size E(M) = 1000, and nsim = 1000.

Parameter of interest β1 = 0.916.

Model For X1|X2

Phase IIA Normal Student (d.f. 4)

% Sampling∗ Analysis EBias ASE ESE ECP% EBias ASE ESE ECP%

25 SRS ML 0.005 0.064 0.064 95.1 -0.225 0.064 0.062 7.10

Semi-ML 0.001 0.070 0.070 94.5 -0.007 0.083 0.079 95.5

CML 0.005 0.067 0.067 94.0 0.008 0.074 0.076 94.6

Semi-CML 0.005 0.067 0.067 94.9 0.008 0.073 0.073 95.1

IPW 0.008 0.070 0.070 94.8 0.009 0.078 0.079 94.8

Semi-IPW 0.008 0.070 0.070 95.1 0.009 0.076 0.078 94.5

25 BS ML 0.005 0.064 0.064 95.1 -0.212 0.065 0.068 11.6

Semi-ML −0.001 0.063 0.069 92.5 -0.006 0.074 0.079 93.4

CML 0.006 0.067 0.068 94.2 0.011 0.076 0.077 94.9

Semi-CML 0.006 0.068 0.069 93.7 0.009 0.073 0.075 95.2

IPW 0.004 0.070 0.070 95.1 0.010 0.077 0.079 93.6

Semi-IPW 0.004 0.070 0.071 95.0 0.010 0.076 0.078 93.8

100 SRS ML 0.008 0.081 0.083 94.1 0.003 0.087 0.086 95.9

CML 0.008 0.081 0.083 94.1 0.009 0.088 0.086 95.8

IPW 0.008 0.080 0.083 94.2 0.008 0.087 0.086 94.9

100 BS ML 0.002 0.066 0.064 95.7 -0.130 0.069 0.066 50.5

CML 0.003 0.067 0.066 95.7 0.006 0.074 0.073 95.5

IPW 0.004 0.078 0.077 95.0 0.008 0.087 0.091 93.3

∗ Percentage of the phase II sub-sample chosen from and the sampling scheme employed in

phase IIA.
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3.3.3 The Two-Phase Biomarker Study in Psoriatic Arthritis

Here we consider a motivating two-phase biomarker study in patients with psoriatic arthri-

tis (PsA) where the goal is to most efficiently select individuals for the measurement of

the biomarker matrix metalloproteinase 3 (MMP-3) in the University of Toronto Psoriatic

Arthritis Clinic (UTPAC) to understand the association between MMP-3 levels and the

disease progression while meeting budgetary constraints. A sample of 251 patients with

MMP-3 measurements at a baseline assessment is available. Other relevant information

from the data includes gender, erythrocyte sedimentation rate (ESR) at baseline, and clin-

ical assessment results showing the number of clinical damaged joint counts at baseline and

two years later. The severity of the clinical damaged joints is classified using the damage

score which represents normal as grade 0, deformity as grade 1, ankylosis as grade 2, flail

joint as grade 3, and surgery as grade 4.

We design a focused simulation study to investigate the performance of adaptive two-

phase designs in the setting of the PsA program where we use pilot data help inform

the parameter settings. We let X1 denote the natural logarithm of the baseline MMP-3,

and X2 the dichotomized auxiliary covariate indicating whether there is an abnormal ESR

measurement at the baseline assessment. The baseline ESR level is set to be 1 if it is

greater than 20 for females or greater than 13 for males, and 0 otherwise according to the

medical cut points. We let Y denote the binary response indicating whether the disease

has progressed over two years of follow-up which is set to be 1 if there is an increase in the

number of grade 1 or higher clinical damaged joints from the baseline assessment.

The response model and the auxiliary covariate model for X2 have the form of (3.15)

and (3.16), respectively. The conditional distribution g1(X1|X2; γ1) satisfies

X1 = I(X2 = 0)γ10 + I(X2 = 1)γ11 + ε,

where

ε ∼ N(0, I(X2 = 0)γ2
12 + I(X2 = 1)γ2

13),

as the pilot data suggests that the log-normal distribution better characterizes the variation

in MMP-3 levels. See Figure 3.3 for an illustration of the log-normality of the MMP-3 levels.
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The configuration of the parameters β and γ2 is obtained from fitting logistic regression

models to the pilot data. The configuration of the parameter γ1 is chosen to reflect the

empirical distribution of the MMP-3 given the ESR levels in the pilot data. Specifically,

(β0, β1, β2) = (−4.000, 0.320,−0.130), (γ10, γ11, γ12, γ13) = (9.689, 10.084, 0.846, 1.151), and

γ2 = −0.269. We perform a simulation study with nsim = 1000, phase I sample size

n = 5000, phase II sub-sample of expected size E(M) = 500, and phase IIA sub-sample of

expected size E(MA) = 0.25E(M).
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Figure 3.3: The first row displays normal QQ plots of MMP-3 levels (left) and their natural

logarithms (right) from the pilot data. The second row displays QQ plots for the logged

MMP-3 levels from the pilot data with normal (left) and elevated (right) ESR levels.
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Table 3.5 shows the results of adaptive two-phase designs conducted via the conditional

likelihood and IPWEE approaches with discretized semiparametric estimation of the nui-

sance distribution in the design stage. Traditional SRS or BS is employed in phase IIA.

The proposed adaptive two-phase designs avoid the need to model the nuisance distribution

g1(X1|X2; γ1) and are more efficient than standard SRS or BS designs; this is particularly

true when analyses are planned based on conditional likelihood. Hence, the proposed de-

signs are well adapted to the PsA setting to inspect the relationship between the disease

progression and biomarkers of interest with budget limitations.

Table 3.5: Empirical biases (EBias), average standard errors (ASE), empirical standard errors

(ESE), and percent empirical coverage probabilities (ECP%) of conditional likelihood (Semi-

CML) and IPWEE (Semi-IPW) estimators from adaptive two-phase designs of the PsA study

setting with SRS or BS employed in a phase IIA sub-sample of size 0.25E(M). The analysis

frameworks are combined with the semiparametric estimation of the nuisance distribution in the

design. Non-adaptive SRS and BS designs are included as the “100% IIA” columns. Phase I

sample size n = 5000, phase II sub-sample size E(M) = 500, and nsim = 1000. The response is

whether there is an increase in the number of grade 1 or higher damaged joints in two years of

follow-up and the parameter of interest β1 = 0.320.

Proposed Adaptive Designs

100% IIA 25% IIA

Analysis IIA Sampling EBias ASE ESE ECP% EBias ASE ESE ECP%

Semi-CML SRS 0.009 0.104 0.103 95.4 0.005 0.086 0.083 96.2

BS 0.008 0.093 0.095 94.8 0.004 0.085 0.084 95.0

Semi-IPW SRS 0.009 0.104 0.103 95.6 0.008 0.094 0.093 95.6

BS 0.008 0.094 0.096 94.4 0.004 0.094 0.093 95.3
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3.4 The Surrogate Value Problem

Here we consider the use of an adaptive two-phase design to address the surrogate variable

problem in which Y ⊥ X2|X1. While we only adjust for the exposure variable X1, the

auxiliary covariate X2 still helps determine the weights and sampling probabilities. Such

designs can arise in cases where X1 is a definitive test result and X2 is an inexpensive

inaccurate result which we only use to sample. In other words, the response model reduces

to

E(Y |X1; β) = µ = expit(β0 + β1X1),

with the nuisance distributions g1(X1|X2; γ1), g2(X2; γ2), and selection models π(Y,X2;ψ)

unchanged. Hence, the approaches presented in Section 3.2 have the same form except that

we remove parameter β2 completely from the response model µ - we neither estimate β2

from the phase IIA sub-sample, nor include β2 in the objective function of the optimization.

It is not surprising that the adaptive two-phase designs of a surrogate value problem have

different efficiencies and optimal phase IIB selection probabilities π̂B from those adjusting

both X1 and X2. Table 3.6 reports the results of the adaptive two-phase designs of a

surrogate value problem based on the maximum likelihood, conditional likelihood, and

IPWEE approaches from simulation studies with the same set-up as in Section 3.3.2 for

binary X1. Adaptive two-phase designs improve efficiency of estimation over standard non-

adaptive designs, and the efficiency gain is more appreciable when the phase II sub-sample

size is small. When X1 is binary, designs based on maximum likelihood are the most

efficient. Moreover, it is also more efficient to optimize the phase IIB sub-sample based

on both phase IIA and phase IIB individuals (the “Full” columns) in the IPWEE analysis

framework. Table 3.7 displays results from simulation studies with the same set-up as in

Section 3.3.2 for continuous X1. When X1 is continuous, the adaptive two-phase designs

of a surrogate value problem based on the conditional likelihood and IPWEE analysis

frameworks combining the semiparametric estimation in the design are both efficient and

robust to the misspecification of the nuisance distribution, though the improvement from a

standard non-adaptive BS is not evident in the conditional likelihood analysis framework.
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Table 3.6: Average standard errors (ASE), empirical standard errors (ESE), and percent em-

pirical coverage probabilities (ECP%) of estimators from maximum likelihood (ML), conditional

likelihood (CML), and IPWEE (IPW) adaptive two-phase designs of a surrogate value problem

with SRS or BS employed in a phase IIA sub-sample of size 0.25E(M) or 0.5E(M). Non-adaptive

SRS and BS designs are included as the “100% IIA” columns. Phase I sample size n = 5000, phase

II sub-sample size E(M) = 500 (top half) or E(M) = 2000 (bottom half), and nsim = 1000.

Parameter of interest β1 = 0.916.

Proposed Adaptive Designs

100% IIA 50% IIA 25% IIA

Analysis IIA Opt1 ASE ESE ECP% ASE ESE ECP% ASE ESE ECP%

E(M) = 500

ML SRS 0.204 0.205 95.8 0.181 0.182 95.5 0.171 0.175 94.8

BS 0.173 0.167 95.5 0.163 0.162 95.5 0.162 0.156 96.4

CML SRS 0.254 0.255 95.1 0.204 0.209 94.4 0.192 0.200 93.4

BS 0.197 0.192 95.0 0.190 0.188 95.7 0.187 0.181 96.7

IPW SRS MC 0.254 0.255 95.1 0.222 0.225 94.2 0.217 0.215 95.9

Full 0.215 0.213 95.5 0.214 0.212 95.3

BS MC 0.236 0.232 95.5 0.219 0.215 95.0 0.216 0.216 96.1

Full 0.214 0.210 95.6 0.214 0.212 95.9

E(M) = 2000

ML SRS 0.119 0.118 95.0 0.102 0.103 95.6 0.102 0.102 95.0

BS 0.102 0.102 94.7 0.102 0.102 95.6 0.102 0.100 94.7

CML SRS 0.126 0.125 95.5 0.104 0.104 95.4 0.104 0.104 95.3

BS 0.104 0.104 95.0 0.104 0.104 96.1 0.104 0.103 95.4

IPW SRS MC 0.126 0.122 96.0 0.110 0.113 95.4 0.107 0.110 94.4

Full 0.106 0.107 95.7 0.106 0.109 94.4

BS MC 0.112 0.114 94.4 0.110 0.110 95.0 0.107 0.106 95.1

Full 0.107 0.107 94.8 0.106 0.104 95.2

1 MC refers to approximation to phase IIB selection model based on phase IIB estimators only

as in McIssac and Cook (2015). Full refers to that based on both phase IIA and IIB estimators.
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Table 3.7: Empirical biases (EBias), average standard errors (ASE), empirical standard errors

(ESE), and percent empirical coverage probabilities (ECP%) for maximum likelihood (ML),

conditional likelihood (CML), and IPWEE (IPW) estimators under adaptive two-phase designs

of a surrogate value problem with SRS or BS employed in a phase IIA sub-sample of size

0.25E(M). The analysis frameworks are combined with the semiparametric estimation of the

nuisance distribution in the design. Non-adaptive SRS and BS designs are included as the

bottom “100%” rows. Phase I sample size n = 5000, phase II sub-sample size E(M) = 500 (top

half) or E(M) = 1000 (bottom half), and nsim = 1000. Parameter of interest β1 = 0.916.

Model For X1|X2

Phase IIA Normal Student (d.f. 4)

% Sampling∗ Analysis EBias ASE ESE ECP% EBias ASE ESE ECP%

E(M) = 500

25 SRS Semi-CML 0.006 0.092 0.097 93.5 0.020 0.100 0.101 94.6

Semi-IPW 0.008 0.094 0.098 93.9 0.017 0.102 0.099 94.5

25 BS Semi-CML 0.006 0.091 0.088 96.1 0.013 0.098 0.095 96.2

Semi-IPW 0.007 0.095 0.093 96.5 0.015 0.102 0.102 95.4

100 SRS CML 0.017 0.111 0.115 94.9 0.012 0.119 0.120 94.5

IPW 0.017 0.110 0.112 94.8 0.010 0.118 0.117 95.1

100 BS CML 0.003 0.089 0.088 95.6 0.012 0.097 0.093 95.8

IPW 0.007 0.102 0.100 95.7 0.019 0.111 0.108 95.4

E(M) = 1000

25 SRS Semi-CML 0.004 0.061 0.061 94.4 0.007 0.065 0.065 94.6

Semi-IPW 0.006 0.066 0.066 94.5 0.007 0.071 0.073 94.5

25 BS Semi-CML 0.003 0.064 0.065 94.5 0.007 0.068 0.067 95.3

Semi-IPW 0.005 0.067 0.068 95.2 0.009 0.072 0.073 95.2

100 SRS CML 0.007 0.078 0.080 93.9 0.008 0.083 0.082 95.1

IPW 0.007 0.077 0.078 94.0 0.007 0.083 0.081 95.9

100 BS CML 0.002 0.063 0.061 95.9 0.007 0.068 0.066 95.6

IPW 0.004 0.073 0.070 96.5 0.011 0.079 0.080 95.6

∗ Percentage of the phase II sub-sample chosen from and the sampling scheme employed in

phase IIA.
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3.5 Discussion

In this chapter, we have investigated the performance of adaptive response-dependent two-

phase sampling schemes for discrete or continuous expensive exposure variables. With the

phase II sub-sample size fixed by budgetary constraints, we recommend the most efficient

adaptive two-phase designs based on maximum likelihood - concerns regarding misspecifi-

cation of the nuisance covariate distribution are less serious when the expensive exposure

variable is discrete but the models warrant checking. When the exposure is continuous,

conditional likelihood analysis incorporating semiparametric estimation of the nuisance

distribution at the design stage is recommended to enhance efficiency while maintaining

robustness. The designs can be adapted to a surrogate value problem in which we only

adjust the expensive exposure variable in the response model. The investigations in Ap-

pendix 3A do not suggest that partitioning the phase II selection procedure into multiple

(> 2) stages leads to meaningful improvements in performance so we do not advocate it

for the kinds of settings we considered.

The adaptive approach to the selection of the phase II sample holds promise for more

complex settings where information may be lacking about key parameters, and where

standard phase II selection models may be unappealing due to this complexity. Future

work would include designing adaptive two-phase sampling schemes involving longitudinal

responses which may require knowledge of the dependence structure of the response. If

exposure variables are time-varying, then the most appropriate approach to stratification

is unclear, however, for optimal phase II sampling a model would be required to describe

the joint evolution of the covariate of interest and the response. An interim phase II sam-

ple could be very valuable in such a case. Alternative approaches for two-phase sampling

warranting development include calibration (Rivera-Rodriguez et al., 2019) and adopting

informative priors of the parameters before phase IIA sampling (Chen and Lumley, 2020).

The proposed adaptive designs approximate the optimal model-based design to approach

the maximaly efficient estimators. Further development of design-based approaches con-

sidered by Chen and Lumley (2020) is an important area of future research.

86



Chapter 4

Secondary Analysis and Sequential

Design of Two-Phase Studies

4.1 Introduction

4.1.1 Background and Literature Review

Biomarker studies involving two-phase response-dependent sampling have great appeal

when large cohort studies entail the collection and storage of biospecimens and interest lies

in assessing the role of a biomarker in disease onset or progression. Sampling strategies are

developed to select biospecimens, which will be assayed to observe the biomarker of interest

and obtain an efficient estimate of its effect while respecting budgetary constraints. Given

that modern consortiums of cohort studies create platforms for the conduct of multiple

biomarker studies, it is often favourable to perform analyses leveraging the exposure vari-

ables collected from earlier studies to address new but possibly related scientific questions.

The idea of reusing collected exposure data involves using it for the secondary purpose of an

upcoming study. So far, most of the work on secondary use of available data, referred to as

secondary analysis in literature, concentrates on case-control studies. Lin and Zeng (2009)

developed likelihood methods to analyse secondary phenotype data in case-control studies,
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which extended to a retrospective likelihood framework in Ghosh et al. (2013). Tchet-

gen (2014) examined the re-parameterization of the conditional model for the secondary

response given the case-control status and regression covariates. Assuming linear models

for the secondary response, Pan et al. (2018a) proposed an estimated likelihood approach

for secondary analysis based on time-to-event data in case-cohort studies via joint mod-

elling. See Schifano (2019) for a comprehensive review on this topic. As for cohort studies,

Saarela et al. (2012) discussed a conditional likelihood approach for secondary analysis

with a time-to-event response of interest. Pan et al. (2018b) used estimating equations to

perform secondary analysis in response-dependent sampling designs.

We consider sequential two-phase designs conducted on the same platform. We develop

a response-dependent two-phase design that examines the association between a previously

studied biomarker and a new response. Such designs can address scenarios in which the

interest is to study the role of certain biomarkers in the progression of one disease, with

some of the serum samples in the registry assayed from earlier studies that investigated

the effect of the biomarkers on the progression of other diseases. When researchers run

out of budget in an upcoming study, no additional serum samples will be assayed after

the earlier studies, and the problem reduces to a secondary analysis in the context of two-

phase designs. Otherwise, we expect the responses and auxiliary covariates of the previous

studies to provide extensive information to maximize statistical efficiency in the upcoming

study subject to a new set of budgetary constraints. The exposure variables measured

from earlier studies help approximate the optimal sampling scheme in the upcoming study

in the spirit of an adaptive two-phase design (McIssac and Cook, 2015). In either case,

we adopt joint response models and perform analysis via maximum likelihood, conditional

likelihood, and inverse probability-weighted estimating equations. In Section 4.1.2, we give

an overview of the framework for sequential two-phase designs of our interest.

4.1.2 Notation and Framework for Sequential Two-Phase De-

signs

In this section, we introduce necessary notation and establish a framework of sequential

two-phase studies. We consider two sequential two-phase studies without loss of generality.
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Our objective is to study the effect of a reused exposure from one study on the response of

interest in the second study. Consider a two-phase study, which we refer to as Study 1 from

now on, that is planned to model µ1(X,Z) = E(Y1|X,Z), where Y1 denotes a response, X

the expensive exposure variable of interest, and Z the vector of discrete auxiliary covariates.

Suppose the response and auxiliary data are available from a cohort study or registry

comprised of n independent individuals, which form the phase I sample of Study 1, denoted

by D11 = {Yi1, Zi : i ∈ R}, where R = {1, . . . , n}. We note that the methods we discuss

can be readily adapted to deal with the surrogate variable problem in which interest lies

in modelling E(Y1|X). Budgetary constraints, and the need to preserve biospecimens,

preclude the measurement of X on all individuals, and we suppose only some fraction of

individuals in the phase I sample can have their biospecimens assayed in Study 1.

Much of the work on phase II sub-sampling of two-phase designs involves stratification

based on the phase I sample and the use of stratum-specific selection probabilities. Let

C1(Y1, Z) be a coarse mapping from (Y1, Z
′) ontoK1 strata, labeled as {s1j : j = 1, . . . , K1},

so that C1(Yi1, Zi) records the stratum to which individual i belongs in Study 1. The

mapping C1(·) determines the nature of the stratification. We let Ri1 = 1 if individual

i is selected in phase II of Study 1 so that Xi is observed, where Ri1 is realized based

on selection model πi1 = π1(Yi1, Zi) = P (Ri1 = 1|Yi1, Zi;ψ1). The selection model may

correspond to simple random sampling, proportional, balanced (Breslow and Cain, 1988)

or some other specified sampling schemes. In this framework, the covariate X is therefore

missing at random (MAR) (Little and Rubin, 2002). Let R1 = {i ∈ R : Ri1 = 1} indicate

the set of individuals chosen for the phase II sub-sample of Study 1 with M1 = |R1| the

size of the phase II sub-sample, and let Rc
1 = {i ∈ R : Ri1 = 0} consist of those individuals

who are not selected. The data upon completion of phase II is therefore D12 = {Yi1, Xi, Zi :

i ∈ R1} ∪ {Yi1, Zi : i ∈ Rc
1}.

Following the conduct of Study 1, we consider a subsequent two-phase study, referred

to as Study 2, which is planned to model µ2(X,Z) = E(Y2|X,Z), where Y2 is a new

response and it is completely observed in R. The phase I data of Study 2 is D21 =

{Yi1, Yi2, Xi, Zi : i ∈ R1} ∪ {Yi1, Yi2, Zi : i ∈ Rc
1}, and we suppose that the selection model

π1 used for Study 1 is known at the planning stage of Study 2. Suppose that the new

budget allows for the selection of some fraction of individuals in Rc
1 to create the Study 2
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phase II sub-sample. Note that following Study 1, only n−M1 individuals remain eligible,

as the M1 individuals already have their expensive covariates collected. With a coarse

mapping C2(Y1, Y2, Z) from (Y1, Y2, Z
′) onto K2 strata {s2j : j = 1, . . . , K2}, we let Ri2 = 1

if individual i is selected in phase II of Study 2. The selection indicator Ri2 is realized

based on selection model πi2 = π2(Yi1, Yi2, Zi) = P (Ri2 = 1|Yi1, Yi2, Zi, Ri1 = 0;ψ2). Let

R2 = {i ∈ R : Ri1 = 0, Ri2 = 1} and M2 = |R2|. The data acquisition steps for a sequence

of two-phase studies then follow, of which an illustration is given in Figure 4.1. We here

focus on the second study in such a sequence. Upon completion of Study 2, individuals in

R1 ∪ R2 have X available with M1 of them chosen by π1 and M2 of them chosen by π2.

For maximum statistical efficiency, an optimal Study 2 aims to select individuals from Rc
1

to minimize the variability of the estimator of the parameter of interest from the combined

data D22 = {Yi1, Yi2, Xi, Zi : i ∈ R1 ∪ R2} ∪ {Yi1, Yi2, Zi : i ∈ R \ (R1 ∪ R2)} subject to

budgetary constraints. The mapping C2(·) defining the stratification in Study 2 facilitates

the formation of a class of selection models within which such optimal designs will be

considered. This framework can be easily generalized to settings involving more than two

studies by treating previous studies combined as Study 1 and a new study as Study 2.

Figure 4.1: A schematic representing a series of two-phase studies based on a common

platform cohort study; following completion of Study 2 individuals inR1∪R2 have available

data with M1 chosen by selection model π1(Y1, Z) and M2 chosen by π2(Y1, Y2, Z).
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The remainder of the chapter is structured as follows. In Section 4.2, coping with an

exhausted budget, we introduce a joint response model followed by outlining the secondary

analysis in the context of two-phase designs. In Section 4.3, subject to new budgetary

constraints, we propose the most efficient sequential two-phase designs and investigate the

finite sample performance of estimators from the designs in various settings. In Section

4.4, we look into robustness issues and the performances of the methods when the joint

response model is misspecified. In Section 4.5, we apply our methods to a real-life dataset

aiming to investigate the association between a Human Leukocyte Antigen biomarker and

the development of joint damage in a psoriatic arthritis research program. Section 4.6

concludes with some general remarks.

4.2 A Framework for Secondary Analysis of Two-Phase

Studies

In this section, we delineate the idea of reusing the exposure variables measured in Study 1

to analyse the new response of interest Y2. This may be of interest when there is no budget

available for the collection of additional data on X. The joint response model, introduced

in Section 4.2.1, is adopted in the frameworks of analysis described in Section 4.2.2.

4.2.1 A Joint Response Model

Upon completion of Study 1, there are M1 individuals whose exposure variables are avail-

able for secondary analyses of Y2. However, since the selection model π1 for Study 1 is

based on C1(Y1, Z), for standard analysis of the model for Y2|X,Z the exposure X may be

missing not at random (MNAR). Appropriate secondary analyses strategies require char-

acterization of the relationship between Y1 and Y2 so a joint model for Y |X,Z is of interest,

Y = (Y1, Y2)′. For illustration, we consider here the case where Y1 and Y2 are binary with

µ1(X,Z) = E(Y1|X,Z) = expit(α0 + α1X + α′2Z), (4.1)
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and

µ2(X,Z) = E(Y2|X,Z) = expit(β0 + β1X + β′2Z), (4.2)

respectively, where α = (α0, α1, α
′
2)′, β = (β0, β1, β

′
2)′, β1 is the parameter of primary

interest, and expit(u) = exp(u)/(1 + exp(u)). The conditional dependence between Y1 and

Y2 can be characterized by the odds ratio

φ(X,Z) =
P (Y = (1, 1)′|X,Z)/P (Y = (0, 1)′|X,Z)

P (Y = (1, 0)′|X,Z)/P (Y = (0, 0)′|X,Z)
, (4.3)

and modeled via

log φ(X,Z) = γ0 + γ1X + γ′2Z + γ′3XZ, (4.4)

a generalization to the bivariate logistic model in Palmgren (1989). We further let γ =

(γ0, γ1, γ
′
2, γ
′
3)′ and θ = (α′, β′, γ′)′. The joint model for the responses and covariates is

P (Y,X,Z;ϑ) = P (Y |X,Z; θ)f(X|Z; ξ)f(Z; ζ), (4.5)

where ϑ = (θ′, ξ′, ζ ′)′, and ξ and ζ are key parameters for shaping the design of the phase

II sub-sampling scheme.

4.2.2 Secondary Analysis of Data from an Earlier Two-Phase

Study

In this section, we discuss strategies to conduct secondary analysis of exposure data mea-

sured in Study 1 for the new response of interest including inverse probability-weighted

estimating equations (IPWEE), maximum likelihood, and conditional maximum likelihood.

Inverse Probability Weighted Estimating Equations

Here we consider second-order inverse probability weighted (IPW2) estimating equations

(Prentice, 1988; Zhao and Prentice, 1990) modelling both the mean and dependence pa-

rameters. This approach does not exploit information from the unselected individuals but
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weights estimating equations based on the selection model used in Study 1. The estimating

functions are therefore of the form

ŪJ
1 (θ, ψ1) =

n∑
i=1

ŪJ
i1(θ, ψ1) =

n∑
i=1

Ri1

πi1(Yi1, Zi;ψ1)
UJ
i1(θ) , (4.6)

where UJ
i1(θ) = DiΣ

−1
i Bi,

Di =


∂µi1
∂α

0 ∂ηi
∂α

0 ∂µi2
∂β

∂ηi
∂β

0 0 ∂ηi
∂γ

 , Σi =

(
cov(Yi1, Yi2|Xi, Zi)

−1 0

0 var−1(Yi1Yi2|Xi, Zi)

)
,

(4.7)

and Bi = (Yi1 − µi1, Yi2 − µi2, Yi1Yi2 − ηi)′ with

η(X,Z) = E(Y1Y2|X,Z)

=
a(X,Z)− {a(X,Z)2 − 4φ(X,Z)[φ(X,Z)− 1]µ1(X,Z)µ2(X,Z)}0.5

2[φ(X,Z)− 1]
,

in which

a(X,Z) = 1− [1− φ(X,Z)][µ1(X,Z) + µ2(X,Z)],

µi1 = µ1(Xi, Zi), µi2 = µ2(Xi, Zi), and ηi = η(Xi, Zi). We adopt a block diagonal working

covariance matrix to avoid modeling higher-order dependence parameters and note that

var(Y1Y2|X,Z) = η(X,Z) − η(X,Z)2 since the responses are binary. While the selection

model is known at this point, efficiency gains are realized if the selection model is fitted

by solving

UR
1 (ψ1) =

n∑
i=1

∂πi1
∂ψ1

1

πi1(1− πi1)
(Ri1 − πi1) = 0

and using the estimated weights in (4.6); see remarks in Section 4.3.1. If we set ∂ηi/∂α =

∂ηi/∂β = 0 in (4.7), no information about the marginal parameters is obtained from

the estimating functions regarding dependence parameters which reduce the IPW2 to the

weighted first-order estimating equations (IPW) and in turn strengthen the robustness of

inference regarding β to misspecification of the dependence structure; see Section 4.4 for

details. The IPWEEs are expected to be robust but inefficient compared to the following

likelihood methods.
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Maximum Likelihood

Since the selection process is non-informative (i.e., ϑ and ψ1 are functionally independent),

the observed data likelihood

LJ1 (ϑ) =
n∏
i=1

[P (Yi|Xi, Zi; θ)f(Xi|Zi; ξ)f(Zi; ζ)]Ri1P (Yi, Zi;ϑ)1−Ri1 , (4.8)

can be used for inference. The log-likelihood is

lJ1 (ϑ) =
n∑
i=1

Ri1[logP (Yi|Xi, Zi; θ) + log f(Xi|Zi; ξ)]

+ (1−Ri1) logP (Yi|Zi;ϑ) + log f(Zi; ζ).

The maximum likelihood (ML) estimate is obtained by solving the score equations

n∑
i=1

SJi1θ(ϑ1)

SJi1ξ(ϑ1)

SJi1ζ(ζ)

 = 0,

with

SJi1θ(ϑ1) = Ri1Siθ(Yi|Xi, Zi) + (1−Ri1)E [Siθ(Yi|Xi, Zi)|Yi, Zi] ;

SJi1ξ(ϑ1) = Ri1Siξ(Xi|Zi) + (1−Ri1)E [Siξ(Xi|Zi)|Yi, Zi] ;

SJi1ζ(ζ) = ∂ log f(Zi)/∂ζ,

where we let ϑ1 = (θ′, ξ′)′, and Siθ(Yi|Xi, Zi) = ∂ logP (Yi|Xi, Zi)/∂θ and Siξ(Xi|Zi) =

∂ log f(Xi|Zi)/∂ξ are the complete data score functions. Note that the full likelihood

depends on both the response model and the nuisance covariate models. Lawless et al.

(1999) pointed out that modelling the covariate distributions can improve efficiency with

likelihood analyses, but this framework is susceptible to model misspecification.
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Conditional Maximum Likelihood

Under conditional maximum likelihood (CML) we restrict attention to the phase II sub-

sample of Study 1, R1, and solve the score equation

SCJ1θ (θ, ψ1) =
n∑
i=1

Ri1
∂ logP (Yi|Xi, Zi, Ri1 = 1)

∂θ
= 0, (4.9)

where

P (Yi|Xi, Zi, Ri1 = 1) =
P (Ri1 = 1|Yi, Xi, Zi)P (Yi|Xi, Zi)

P (Ri1 = 1|Xi, Zi)

=
π1(Yi1, Zi)P (Yi|Xi, Zi)∑
y1
π1(y1, Zi)P (y1|Xi, Zi)

.

Scott and Wild (2011) recommended this approach for its simplicity and the fact that it

does not require estimation of nuisance parameters indexing covariate distributions. The

avoidance of modelling the covariate distributions in the analysis brings some robustness,

and conditioning on the minimal sufficient statistic for nuisance parameters renders little

efficiency loss for parameters indexing the response models.

4.2.3 Empirical Studies of Approaches to Analysis of Secondary

Responses

We now assess the performance of the proposed secondary analyses via simulation studies.

The responses and covariates are taken to be scalar binary random variables. The covariates

satisfy

E(Z) = expit(ζ) and E(X|Z) = expit(ξ0 + ξ1Z). (4.10)

The responses are modelled marginally as in (4.1) and (4.2) together with the associ-

ation addressed as in (4.3). We specify ξ1 = log 4 to reflect a strong association be-

tween the exposure of interest and the auxiliary variable Z, α1 = β1 = log 2.5 to re-

flect strong effects of the exposure on the responses, and α2 = β2 = log 1.5 to re-

flect modest effects of the auxiliary covariate on the responses. By further specifying
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(ζ, ξ0, α0, β0) = (−1.386,−1.753,−1.707,−1.707), we ensure that the marginal probabili-

ties of both the covariates and responses are 0.2. Finally, regarding the dependence model

we set γ1 = γ2 = γ3 = 1 in (4.4), and the marginal odds ratio of the full cohort,

E[φ(X,Z)] =
∑
x,z

E(φ(x, z)|X = x, Z = z)P (X = x, Z = z),

to be 2 or 4, reflecting moderate and strong associations between responses and leading

to γ0 = −0.395 and γ0 = 0.298, respectively. The size of the phase I sample of Study 1 is

taken as n = 5000, and the phase II sub-sample of expected size E(M1) = 250 is chosen

via Bernoulli sampling. For each parameter setting, nsim = 1000 simulations are carried

out. For illustration, we assume that Study 1 employs balanced sampling (BS) such that

an equal number of individuals are chosen from each of four strata defined by (Y1, Z). This

can be expressed through a selection model of the form

logitπ1(Y1, Z;ψ1) = ψ10 + ψ11Y1 + ψ12Z + ψ13Y1Z

with ψ1 = (ψ10, ψ11, ψ12, ψ13)′ chosen accordingly.

The analysis methods described in Section 4.2.2 are based on joint response models,

but marginal models may also be fitted. For the inverse weighting method in Section 4.2.2,

we therefore also consider

UM
1 (β, ψ1) =

n∑
i=1

Ri1

πi1(Yi1, Zi;ψ1)

∂µi2
∂β

var(Yi2|Xi, Zi)
−1(Yi2 − µi2) = 0, (4.11)

which involves use of weights from Study 1 applied to a score function for Y2|X,Z marginally;

as this is the correct weight function, the resulting estimator is expected to have small em-

pirical bias and valid inference following use of a robust standard error. The likelihood

simplifies to

LM1 (β, ξ, ζ) =
n∏
i=1

[P (Yi2|Xi, Zi; β)f(Xi|Zi; ξ)f(Zi; ζ)]Ri1P (Yi2, Zi; β, ξ, ζ)1−Ri1 ;

but we note that here the exposure data are MNAR so inconsistent estimates are expected.

The simulation results reported in Table 4.1 are given separately for the joint and

marginal analysis frameworks. “Joint” and “Marginal” stand for adopting the joint re-

sponse model and the marginal model in analysis, respectively. The average standard
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errors (ASE) are computed via established asymptotic theory for the corresponding anal-

ysis frameworks; see Section 4.3.1 for details. As expected the marginal analysis yields

estimators with negligible finite sample biases for IPW but significant biases for ML. The

empirical biases are small for all estimators resulting from joint analyses as these are valid

approaches. Among these, ML yields the most efficient estimator, followed by CML and

then the IPWEEs. The joint analyses based on IPW and IPW2 are slightly more efficient

than the corresponding marginal method. Finally, we observe smaller empirical biases

and standard errors when there is a strong association between Y1 and Y2; see results of

E[φ(X,Z)] = 4 compared to those of E[φ(X,Z)] = 2. As the association between the re-

sponse used for sampling (Y1) and the response of interest (Y2) gets stronger, the secondary

analysis gets closer to an ordinary analysis in a standard two-phase study.

4.3 Efficient Sequential Two-Phase Designs

In this section, we consider the scenario in which the available data are to be used to help

shape the design of a new study. We propose how to maximize statistical efficiency while

meeting budgetary constraints in a second two-phase study given the exposure variables

collected from an earlier study conducted on the same platform.

4.3.1 Design and Analysis of a Sequence of Two-Phase Studies

We aim to construct and evaluate selection models for individuals not selected for the

phase II sub-sample of Study 1 (i.e., those in the set Rc
1). An optimal selection model is

expected to select individuals to maximize statistical efficiency within the corresponding

analysis framework. For a given approach to analysis, the optimal selection model governs

the phase II sub-sampling scheme of Study 2 that yields an estimator of β1 with the

minimum asymptotic variance among sub-samples with the same expected size. Such

designs, however, require knowledge of unknown parameters ϑ indexing the joint model

(4.5) for the responses and covariates. The data from Study 1 may be viewed as pilot data

yielding preliminary estimate denoted as ϑ̃ based on the approaches described in Section
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Table 4.1: Empirical biases (EBias), average standard errors (ASE), empirical standard

errors (ESE), and empirical coverage probabilities (ECP) of the parameter estimates of

interest from the IPW and IPW2 (Section 4.2.2), ML (Section 4.2.2), and CML (Section

4.2.2) secondary analyses following a two-phase study based on Y1 (Study 1) employing

balanced sampling with n = 5000 and E(M1) = 250.

Response Model E[φ(X,Z)] Analysis EBias ASE ESE ECP(%)

Joint 2 IPW 0.021 0.434 0.448 92.9

IPW2 0.023 0.432 0.443 92.6

ML 0.021 0.337 0.344 94.2

CML 0.029 0.356 0.353 96.2

4 IPW 0.008 0.423 0.436 93.2

IPW2 0.004 0.427 0.428 92.8

ML 0.008 0.329 0.340 93.2

CML 0.013 0.347 0.349 94.3

Marginal 2 IPW 0.028 0.442 0.461 93.0

ML 0.386 0.317 0.318 76.4

4 IPW 0.013 0.428 0.454 92.5

ML 0.357 0.309 0.320 79.1

4.2. This estimate can help approximate the optimal phase II selection model for Study 2

with an approximately optimal π2 = P (R2 = 1|Y, Z,R1 = 0;ψ2) defined as the one that

minimizes

asvar[
√
n(β̂1 − β1); ϑ̃, ψ1, ψ2] + λ

[
E(R2|R1 = 0; ϑ̃, ψ1, ψ2)− E(M2)

n− E(M1)

]
, (4.12)

where λ denotes the Lagrange multiplier, ψ1 known from Study 1, and the parameter

estimates ϑ̃ are substituted into the expressions. The objective function and the constraint

are functions of ψ2.

We next outline the procedure of how the optimal selection model of Study 2 can be

conducted in different frameworks of analysis.

98



Inverse Probability Weighted Estimating Equations

Upon the completion of Study 2, the two subsequent phase II sub-samples will be combined

as D22 for analysis. The IPW2 can be written as

ŪJ
2 (θ, ψ̄2) =

n∑
i=1

ŪJ
i2(θ, ψ̄2) =

n∑
i=1

R̄i2

π̄i2
UJ
i2(θ) = 0, (4.13)

where UJ
i2(θ) = DiΣ

−1
i Bi with Di, Σi, and Bi defined in Section 4.2.2. Here R̄i2 = Ri1 +

(1 − Ri1)Ri2 and π̄i2 = πi1 + (1 − πi1)πi2 is indexed by ψ̄2. Since π1 is known in advance,

we treat ψ1 as fixed. Therefore, ψ̄2 as a function of both ψ1 and ψ2 is determined by ψ2.

The estimating equation for the net selection model is

UR
2 (ψ̄2) =

n∑
i=1

UR
i2(ψ̄2) =

n∑
i=1

∂π̄i2
∂ψ̄2

1

π̄i2(1− π̄i2)
(R̄i2 − π̄i2) = 0. (4.14)

Under regularity conditions,

√
n(θ̂ − θ) D−→ N(0,Γ−1(I −HΩH ′)(Γ−1)′),

as n → ∞, where matrices Γ = E[−∂ŪJ
i2(θ, ψ̄2)/∂θ′], I = E{ŪJ

i2(θ, ψ̄2)[ŪJ
i2(θ, ψ̄2)]′},

Ω = E{UR
i2(ψ̄2)[UR

i2(ψ̄2)]′}, and H = E[−∂ŪJ
i2(θ, ψ̄2)/∂ψ̄′2]. The approximately optimal

ψ̄2 is the approximately optimal ψ2 that minimizes (4.12). The joint expectation with

respect to Y , X, Z, R1, and R2 can be evaluated as EX,Z{EY |X,Z [ER1,R2|Y,X,Z(·)]}. With

a preliminary estimate θ̃ obtained from (4.6), the nuisance parameters ξ and ζ are still

required in the design though they are not involved in the analysis. Their preliminary

estimates can be obtained separately, with ξ̃ by weighted logistic regression and ζ̃ by score

equations Si1ζ(ζ) = ∂ logP (Zi)/∂ζ. Note that the reduction in the asymptotic variance by

term HΩH ′ represents the efficiency gain from estimating the known ψ̄2 upon the comple-

tion of Study 2. Such a seemingly paradoxical efficiency gain from estimating the known

selection probabilities was denoted as “estimation better than the known” and explained

in previous research (Lawless et al., 1999; Robins and Rotnitzky, 1995). Moreover, the

corresponding IPW follows immediately by setting ∂ηi/∂α = ∂ηi/∂β = 0 in Di, with the

hope to enhance robustness. The net selection model (4.14) remains unchanged, and the

resulting asymptotic covariance matrix of estimators of θ still has the sandwich form.
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Maximum Likelihood

Upon the completion of Study 2, the score equations become

SJ2 (ϑ1) =
n∑
i=1

SJi2(ϑ1) =
n∑
i=1

(
SJi2θ(ϑ1)

SJi2ξ(ϑ1)

)
= 0, (4.15)

where

SJi2θ(ϑ1) = R̄i2Siθ(Yi|Xi, Zi) + (1− R̄i2)E[Siθ(Yi|Xi, Zi)|Yi, Zi],

and

SJi2ξ(ϑ1) = R̄i2Siξ(Xi|Zi) + (1− R̄i2)E[Siξ(Xi|Zi)|Yi, Zi].

Under regularity conditions, standard asymptotic theory gives

√
n(ϑ̂1 − ϑ1)

D−→ N(0, E{SJi2(ϑ1)[SJi2(ϑ1)]′}−1),

as n→∞. Calculation of the asymptotic variance requires knowledge of the joint model of

the response and covariates (4.5) and parameters ϑ indexing the model. We obtain prelim-

inary parameter estimates ϑ̃ from likelihood (4.8) using the exposure variables measured

in Study 1. With ψ1 known from Study 1, the optimal ψ2 is the one that minimizes (4.12).

Conditional Maximum Likelihood

Upon the completion of Study 2, the score equations become

SCJ2 (θ, ψ) =
n∑
i=1

R̄i2
∂ logP (Yi|Xi, Zi, R̄i2 = 1)

∂θ
= 0, (4.16)

where

P (Yi|Xi, Zi, R̄i2 = 1) =
P (R̄i2 = 1|Yi, Zi, Xi)P (Yi|Xi, Zi)

P (R̄i2 = 1|Xi, Zi)

=
[π1(Yi1, Zi) + π2(Yi, Zi)(1− π1(Yi1, Zi))]P (Yi|Xi, Zi)∑

y1,y2
[π1(y1, Zi) + π2(y1, y2, Zi)(1− π1(y1, Zi))]P (y1, y2|Xi, Zi)

.

Under regularity conditions, standard asymptotic theory holds and the optimal design

refers to the ψ2 that minimizes (4.12). The asymptotic covariance matrix is different from
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that of the ML approach because of the distinct score equations. Similarly, preliminary

parameter estimates θ̃ can be obtained from (4.9), and ξ̃ and ζ̃ are obtained from logistic

regression and score equations, respectively.

4.3.2 Empirical Studies of Sequential Two-Phase Designs

The finite sample performance of the design is investigated in a variety of settings and

compared to alternative routinely adopted approaches to demonstrate the efficiency gains

via empirical studies of sizes nsim = 1000, n = 5000, and E(M1) = E(M2) = 250.

Bernoulli sampling is used. We adopt the parameter configuration in Section 4.2.3. While

we assume that Study 1 employs BS based on 4 strata defined by Y1 and Z, our proposed

sequential design with optimal efficiency for Study 2 is conducted based on 8 strata defined

by Y1, Y2, and Z with selection model

logitπ2(Y, Z;ψ2) = ψ20 + ψ21Y1 + ψ22Y2 + ψ23Z

+ ψ24Y1Z + ψ25Y2Z + ψ26Y1Y2 + ψ27Y1Y2Z, (4.17)

and is compared to the following designs.

A. Independent Design for Study 2. Here we consider the case where there is no com-

munication regarding information of X acquired in Study 1, and hence, this information

is not utilized in Study 2. We assume, however, that the biospecimen samples have been

preserved and so individual samples chosen in Study 2 can be assayed. Thus, we select M2

individuals using BS based on 4 strata defined by Y2 and Z. This is for sure inefficient as

it completely fails to utilize any information from Study 1. A standard two-phase design

analysis involving P (Y2|X,Z) is performed via ML, CML, and IPW. For IPW, one could

consider

UM
2 (β, ψ2) =

n∑
i=1

Ri2

πi2(0, Yi2, Zi)

∂µi2
∂β

var(Yi2|Xi, Zi)
−1(Yi2 − µi2) = 0. (4.18)

As for the likelihood analyses, we have

LM2 (β, ξ, ζ) =
n∏
i=1

[P (Yi2|Xi, Zi; β)f(Xi|Zi; ξ)f(Zi; ζ)]Ri2P (Yi2, Zi; β, ξ, ζ)1−Ri2 (4.19)
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for ML, and

SCM2 (θ, ψ2) =
n∑
i=1

Ri2
∂ logP (Yi2|Xi, Zi, Ri2 = 1)

∂θ
= 0 (4.20)

for CML. Note that R2 and π2 arise from standard BS in such designs.

B. Naive Marginal Analysis in Study 2. Although the exposure variables measured from

Study 1 are included for analysis, Study 2 simply performs BS to select M2 individuals from

the n−M1 individuals in Rc
1 based on 4 strata defined by Y2 and Z. Indeed, the combined

phase II sub-sample has a larger size of M1 +M2, and Study 2 avoids repetitive selections.

However, such designs ignore the correlation between the responses and perform the same

analyses as in design A involving the marginal model P (Y2|X,Z). The IPW and likelihood

analyses follow from (4.18) to (4.20), where R2 and π2 are replaced by R̄2 = R1+(1−R1)R2

and π̄2 = π1 + (1 − π1)π2, respectively, while here π1 and π2 arise from BS employed in

Study 1 and Study 2, respectively.

C. Study 2 Design Based on Joint Response Model. While including the exposure variables

measured from Study 1 for analysis, Study 2 adopts the joint response model and performs

BS to select M2 individuals from Rc
1 based on 8 strata defined by Y1, Y2 and Z. Such

selection and the joint analysis involving P (Y |X,Z) allow for a valid aggregation of the

M1 +M2 exposure variables from two sequential studies. See (4.13), (4.15), and (4.16) for

the conduct of such designs in IPW and IPW2, ML, and CML, respectively. Nevertheless,

the estimates may not be the most efficient ones as the selection model in (4.17) still arises

from standard BS.

D. Approximate Optimal Designs. The proposed selection model in (4.17) whose ψ2 op-

timizes (4.12) defines our optimal design which we label as D1. Another optimal design

selects M1 + M2 individuals for Study 2 from R to achieve maximum efficiency when in-

vestigating P (Y2|X,Z). The IPW and likelihood analyses follow from (4.18) to (4.20), but

with ψ2 minimizing

asvar[
√
n(β̂1 − β1);ϑ, ψ2] + λ

[
E(R2;ϑ, ψ2)− E(M1) + E(M2)

n

]
. (4.21)

This design, labelled as D2, is ideal but unrealistic because we assume that we know the

information of unknown parameters of the population ϑ.
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Table 4.2 display the results of designs A - D conducted via likelihood and inverse

weighting methods. Designs A are inefficient as expected since they have smaller phase II

sub-sample sizes. Still, they are more efficient than the results of the secondary analyses

in Table 4.1, since the individuals are selected based on Y2 and Z after all. Designs B

that fail to incorporate information on Y1 in design and analyses lead to biased estimates.

Designs C, adopting the joint response model, give unbiased, though not necessarily very

efficient, estimates. Our proposed optimal designs D1 are valid and more efficient. The

empirical biases (EBias) are small for designs C and D1 conducted via all frameworks of

analysis. The average standard errors (ASE) match the empirical standard errors (ESE),

and the empirical coverage probabilities (ECP) are compatible with the nominal 95% levels.

Moreover, our proposed optimal designs D1 are found to be close in terms of efficiency to

the infeasible designs D2. For an illustration across the phase II sub-sample sizes of the

sequential studies, Figure 4.2 plots the asymptotic standard error of β̂1 of our proposed

optimal designs D1 against the proportion of the individuals in the combined phase II sub-

sample that are selected from Study 1, i.e., E(M1)/E(M1 +M2). True parameters are used

to calculate the asymptotic standard errors when generating the plots. As E(M1)/E(M1 +

M2) increases, the efficiency of our proposed designs D1 approaches to that of employing

BS in Study 1 to select M1 + M2 individuals. On the other hand, as the proportion

decreases, the efficiency attains that of the unrealistic designs D2 which optimally select

M1 +M2 individuals in Study 2.

Table 4.3 summarizes the sampling probabilities of the 8 strata defined by Y and Z,

referred to as

(Y1, Y2, Z) = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 0), (1, 1, 1)},

of designs D1 and D2 displayed in Table 4.2. As designs D2 focus on Y2 to optimally

select M1 +M2 individuals in Study 2, they consider 4 strata of (Y2, Z) and the sampling

probabilities of strata (1, Y2, Z) are equal to those of strata (0, Y2, Z). Our proposed designs

D1, on the other hand, involve BS with fixed π1(Y1, Z;ψ1) in Study 1 and an optimal

π2(Y, Z;ψ2) in Study 2. Sampling probabilities π1, π2, and π̄2 are displayed in the “Study

1”, “Study 2”, and “Net Study 2” rows, respectively. For likelihood approaches, designs

D2 have extreme sampling probabilities. While it is not surprising for the “Net Study 2”
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rows to differ from the D2 rows, our proposed designs D1 make efforts to save the mess

created by the BS scheme. For example, the optimal designs D1 avoid selecting additional

individuals from strata (0, 0, 0), (1, 0, 0), (0, 1, 0), and (1, 1, 0) in Study 2, given that designs

D2 select very few individuals from those strata. As for the IPW approach, the sampling

probabilities of designs D2 are not that extreme. The “Net Study 2” rows display results

that roughly match the D2 rows.

In terms of the analyses, ML is the most efficient as it models the distributions of the

exposure variables. However, we found that CML is computationally much faster due to

its simpler score equations and is almost as efficient as ML. The IPW and IPW2 methods

are not as efficient as the likelihood approaches. IPW2 does not show clear improvements

from IPW. Nonetheless, such improvements are found to be substantial in a set-up where

the responses have an exchangeable dependence structure. See Table 4A1 in Appendix

4A for the simulation results of such a setting in which we specify φ(X,Z) = 2 and

φ(X,Z) = 4 for a moderate and a strong association between the responses, respectively.

The theoretical asymptotic standard error plots and the sampling probabilities of strata

(Y, Z) of the designs are also available in Appendix 4A as Figure 4A1 and Table 4A2,

respectively, where similar results are found.
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Table 4.2: Empirical biases (EBias), average standard errors (ASE), empirical standard errors (ESE),

and empirical coverage probabilities (ECP) of the estimator of parameter of interest from the combined

phase II data using likelihood and inverse weighting methods. A-D refer to designs with different use of

Study 1 data described in Section 4.3.2. For designs A-D1, E(M1) = E(M2) = 0.05n. For designs D2,

E(M2) = 0.1n. “BS” and “opt” stand for balanced sampling and optimal sampling, respectively. Moderate

and strong associations between the responses are reflected by marginal odds ratios 2 and 4, respectively.

nsim = 1000, n = 5000, and β1 = 0.916.

Stratification Results

Design Study 1 Study 2 Response Model Analysis EBias ASE ESE ECP(%)

E[φ(X,Z)] = 2

A - BS (Y2, Z) Marginal IPW 0.030 0.350 0.352 95.6

ML 0.011 0.298 0.290 95.6

CML 0.011 0.298 0.290 95.5

B BS (Y1, Z) BS (Y2, Z) Marginal IPW 0.046 0.241 0.245 95.1

ML 0.078 0.207 0.207 93.4

CML 0.078 0.207 0.207 93.4

C BS (Y1, Z) BS (Y, Z) Joint IPW -0.001 0.275 0.280 94.4

IPW2 0.001 0.274 0.279 94.4

ML -0.001 0.219 0.226 94.4

CML 0.002 0.225 0.233 93.8

D1 BS (Y1, Z) opt (Y, Z) Joint IPW 0.011 0.228 0.218 96.2

IPW2 0.011 0.228 0.218 96.2

ML 0.005 0.204 0.212 93.8

CML 0.009 0.210 0.216 94.4

D2 - opt (Y2, Z) Marginal IPW - 0.221 - -

ML - 0.184 - -

CML - 0.184 - -

E[φ(X,Z)] = 4

A - BS (Y2, Z) Marginal IPW 0.037 0.351 0.364 94.2

ML 0.023 0.299 0.307 94.5

CML 0.023 0.298 0.307 94.5

B BS (Y1, Z) BS (Y2, Z) Marginal IPW 0.073 0.241 0.241 93.9

ML 0.092 0.207 0.205 93.4

CML 0.092 0.207 0.205 93.3

C BS (Y1, Z) BS (Y, Z) Joint IPW 0.002 0.270 0.273 94.6

IPW2 -0.002 0.268 0.275 94.4

ML 0.001 0.218 0.221 94.2

CML 0.001 0.223 0.227 94.0

D1 BS (Y1, Z) opt (Y, Z) Joint IPW 0.007 0.228 0.219 96.0

IPW2 0.001 0.229 0.225 95.5

ML 0.001 0.202 0.212 93.2

CML 0.003 0.208 0.215 94.3

D2 - opt (Y2, Z) Marginal IPW - 0.221 - -

ML - 0.184 - -

CML - 0.184 - -
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Figure 4.2: Plots of asymptotic standard error of β̂1 of designs D1 as the proportion

of the individuals in the combined phase II sub-sample that are selected from Study 1,

E(M1)/E(M1 +M2), increases. The two rows display graphs of the set-ups with marginal

odds ratio (OR) 2 and 4, respectively. Columns from left to right display graphs of frame-

works of analysis IPW, ML, and CML, respectively. Lower bounds represent the ideal

designs D2 which select an optimal sub-sample of M1 + M2 individuals in Study 2. Up-

per bounds represent using BS to select M1 + M2 individuals in Study 1. nsim = 1000,

n = 5000, E(M1 +M2) = 500.
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Table 4.3: Sampling probabilities of 8 strata defined by (Y1, Y2, Z) of our proposed optimal

designs D1 and the ideal optimal designs D2. The Study 1, Study 2, and Net Study

2 rows refer to π1, π2, and π̄2 of the proposed designs D1, respectively. Moderate and

strong associations between the responses are reflected by marginal odds ratios 2 and 4,

respectively. nsim = 1000, n = 5000, and β1 = 0.916.

Analysis Designs (0,0,0) (1,0,0) (0,1,0) (0,0,1) (1,0,1) (0,1,1) (1,1,0) (1,1,1)

E[φ(X,Z)] = 2

Expected Strata Size 2719 574 574 577 131 131 134 161

Selection Probabilities

IPW D2 0.063 0.063 0.206 0.092 0.092 0.281 0.206 0.281

D1 Study 1 0.019 0.088 0.019 0.088 0.214 0.088 0.088 0.214

D1 Study 2 0.033 0.032 0.170 0.016 0.016 0.089 0.167 0.086

D1 Net Study 2 0.051 0.118 0.186 0.103 0.226 0.169 0.240 0.282

ML D2 0.001 0.001 0.001 0.361 0.361 0.836 0.001 0.836

D1 Study 1 0.019 0.088 0.019 0.088 0.214 0.088 0.088 0.214

D1 Study 2 0.001 0.001 0.001 0.199 0.347 0.347 0.001 0.538

D1 Net Study 2 0.019 0.088 0.019 0.270 0.487 0.405 0.088 0.637

CML D2 0.001 0.001 0.001 0.361 0.361 0.836 0.001 0.836

D1 Study 1 0.019 0.088 0.019 0.088 0.214 0.088 0.088 0.214

D1 Study 2 0.001 0.001 0.001 0.187 0.355 0.354 0.001 0.574

D1 Net Study 2 0.019 0.088 0.019 0.259 0.493 0.411 0.088 0.665

E[φ(X,Z)] = 4

Expected Strata Size 2777 515 515 601 107 107 193 185

Selection Probabilities

IPW D2 0.063 0.063 0.206 0.092 0.092 0.281 0.206 0.281

D1 Study 1 0.019 0.088 0.019 0.088 0.214 0.088 0.088 0.214

D1 Study 2 0.034 0.034 0.163 0.017 0.017 0.087 0.160 0.085

D1 Net Study 2 0.053 0.119 0.179 0.104 0.227 0.168 0.234 0.281

ML D2 0.001 0.001 0.001 0.361 0.361 0.836 0.001 0.836

D1 Study 1 0.019 0.088 0.019 0.088 0.214 0.088 0.088 0.214

D1 Study 2 0.001 0.001 0.001 0.198 0.347 0.347 0.001 0.538

D1 Net Study 2 0.019 0.088 0.019 0.269 0.487 0.404 0.088 0.637

CML D2 0.001 0.001 0.001 0.361 0.361 0.836 0.001 0.836

D1 Study 1 0.019 0.088 0.019 0.088 0.214 0.088 0.088 0.214

D1 Study 2 0.001 0.001 0.001 0.187 0.354 0.353 0.001 0.572

D1 Net Study 2 0.019 0.088 0.019 0.259 0.492 0.410 0.088 0.664
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4.4 Robustness and Model Misspecification

The results so far have shown that adopting a joint response model helps incorporate the

information of the sequential two-phase studies rigorously. The advantage comes from

specifying the association between the responses, which can be at risk of misspecification.

We next investigate the robustness issues of the methods.

4.4.1 Robustness Issues of Secondary Analysis in Two-Phase De-

signs

Here we investigate the sensitivity and robustness of secondary analyses of two-phase stud-

ies to misspecification of the joint response model. Under the simulation and parameter

configuration of Section 4.2.3, we now consider the case where the interaction terms of the

log odds ratio model are omitted. So with the full model having a dependence structure

specified in (4.4) we consdier secondary analyses based on the dependence model

log φ(X,Z) = γ0 + γ1X + γ′2Z . (4.22)

A more serious form of misspecification arises from assuming an exchangeable odds ratio

wherein φ(X,Z) is taken to be a scalar, i.e.,

log φ(X,Z) = γ0.

The simulation results are summarized in Table 4.4.

Recall that we use “Joint” and “Marginal” to denote adopting the joint response model

P (Y |X,Z) and the marginal model P (Y2|X,Z) in the secondary analyses, respectively.

The labels “Interaction” and “Exchangeable” refer to types of misspecification of the joint

response model by omitting the interaction term and assuming an exchangeable dependence

structure, respectively. Since the marginal analysis conducted in IPW does not model

the association parameters at all, it is not affected by any type of misspecification. As

for the joint analysis, the methods are not affected much if only the interaction term is

ignored. This is not surprising as omitting an interaction term in our set-up is equivalent
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to estimating γ3 = 1 as zero. While we expect the problem to be more serious as γ3

deviates further away from zero, it is not likely for such coefficients of the interaction term

to be arbitrarily large in real-life scenarios. Serious misspecification from assuming an

exchangeable dependence structure will affect all inferences based on a joint model, among

which IPW2 has relatively lower Ebias and better ECP than CML and ML. Note that

although the standard errors increase with misspecification, the joint secondary analysis

conducted via IPW is still comparable with the corresponding marginal analysis; see the

“Joint Exchangeable IPW” rows versus the “Marginal Exchangeable IPW” rows in Table

4.4 for a comparison.

4.4.2 Robustness Issues of Sequential Two-Phase Designs

Next, we investigate the performances of the proposed sequential two-phase designs when

the joint response model is misspecified either by omitting an interaction term in the full

model of log φ(X,Z) as in (4.22) or assuming an exchangeable dependence structure, in

both analysis and the design. The simulation results are summarized in Table 4.5. Similar

to Section 4.4.1, omitting an interaction term alone does not affect the performances of

designs C or D1 much. Other than some slight elevation in the standard errors, the

EBias and ECP do not deteriorate much. Hence, it does not preclude the modelling of

the association parameters for efficiency while maintaining some level of robustness in such

cases, especially when the interaction in the dependence structure is not too strong. On

the other hand, the designs give biased results when assuming an exchangeable dependence

structure in analysis and design unless they are conducted via IPW. However, we note that

we can always fit a full dependence structure when the responses are binary. Finally, we

note that our proposed designs D1 have lower standard error estimates than the designs

C regardless of types of misspecification.
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Table 4.4: Empirical biases (EBias), average standard errors (ASE), empirical standard

errors (ESE), and empirical coverage probabilities (ECP) of the parameter estimates of

interest from the IPW and IPW2 (Section 4.2.2), ML (Section 4.2.2), and CML (Section

4.2.2) secondary analyses following a two-phase study based on Y1 (Study 1) employing

balanced sampling with n = 5000 and E(M1) = 250. “Interaction” and “Exchangeable”

under the “Misspecification” column stand for misspecifying the dependence structure

by omitting an interaction term and assuming an exchangeable dependence structure,

respectively.

Response Model E[φ(X,Z)] Misspecification Analysis EBias ASE ESE ECP(%)

Joint 2 Interaction IPW 0.030 0.443 0.460 92.7

IPW2 0.039 0.473 0.457 93.2

ML 0.007 0.341 0.348 94.4

CML 0.008 0.354 0.359 95.9

Exchangeable IPW 0.027 0.442 0.461 93.2

IPW2 0.164 0.395 0.406 93.6

ML 0.565 0.315 0.373 57.6

CML 0.371 0.328 0.318 79.9

4 Interaction IPW 0.018 0.433 0.442 93.3

IPW2 0.023 0.477 0.441 92.8

ML -0.004 0.333 0.344 93.7

CML -0.003 0.346 0.357 94.4

Exchangeable IPW 0.013 0.428 0.453 92.7

IPW2 0.159 0.378 0.390 93.0

ML 0.554 0.308 0.411 57.7

CML 0.345 0.318 0.321 81.3

Marginal 2 Interaction IPW 0.028 0.442 0.461 93.0

ML 0.386 0.317 0.318 76.4

Exchangeable IPW 0.028 0.442 0.461 93.0

ML 0.386 0.317 0.318 76.4

4 Interaction IPW 0.013 0.428 0.454 92.5

ML 0.357 0.309 0.320 79.1

Exchangeable IPW 0.013 0.428 0.454 92.5

ML 0.357 0.309 0.320 79.1
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Table 4.5: Empirical biases (EBias), average standard errors (ASE), empirical standard errors (ESE), and

empirical coverage probabilities (ECP) of the estimator of parameter of interest from the combined phase

II data using likelihood and inverse weighting methods. “BS” and “opt” stand for balanced sampling and

optimal sampling, respectively. “Interaction” and “Exchangeable” under the “Misspecification” column

stand for misspecifying the dependence structure by omitting an interaction term and assuming an ex-

changeable dependence structure, respectively. nsim = 1000, n = 5000, E(M1) = E(M2) = 0.05n, and

β1 = 0.916.

Stratification Results

Design Study 1 Study 2 Misspecification Analysis EBias ASE ESE ECP(%)

E[φ(X,Z)] = 2

C BS (Y1, Z) BS (Y, Z) Interaction IPW 0.004 0.291 0.281 94.4

IPW2 0.014 0.271 0.277 94.2

ML -0.046 0.218 0.224 94.1

CML -0.044 0.223 0.230 94.0

Exchangeable IPW 0.001 0.275 0.280 93.7

IPW2 0.132 0.244 0.246 92.7

ML 0.358 0.202 0.233 57.0

CML 0.305 0.208 0.219 67.8

D1 BS (Y1, Z) opt (Y, Z) Interaction IPW 0.014 0.234 0.218 96.2

IPW2 0.022 0.226 0.216 96.2

ML -0.017 0.203 0.215 92.9

CML -0.011 0.210 0.219 94.5

Exchangeable IPW 0.011 0.227 0.219 96.2

IPW2 0.138 0.215 0.205 92.4

ML 0.426 0.199 0.232 46.2

CML 0.450 0.207 0.219 43.4

E[φ(X,Z)] = 4

C BS (Y1, Z) BS (Y, Z) Interaction IPW 0.007 0.271 0.274 94.7

IPW2 0.014 0.264 0.269 94.3

ML -0.043 0.217 0.217 94.7

CML -0.042 0.222 0.223 94.1

Exchangeable IPW 0.003 0.270 0.273 94.5

IPW2 0.142 0.238 0.239 92.7

ML 0.331 0.203 0.240 62.4

CML 0.274 0.208 0.221 74.5

D1 BS (Y1, Z) opt (Y, Z) Interaction IPW 0.011 0.228 0.219 95.8

IPW2 0.017 0.225 0.218 96.3

ML -0.025 0.201 0.213 92.9

CML -0.017 0.207 0.219 93.8

Exchangeable IPW 0.007 0.227 0.219 96.6

IPW2 0.146 0.213 0.206 90.0

ML 0.248 0.202 0.219 75.6

CML 0.304 0.204 0.219 67.3
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4.5 University of Toronto Psoriatic Arthritis Cohort

For an illustration of our proposed methods, we consider a data set of a subset of the full

registry of the University of Toronto Psoriatic Arthritis Cohort (UTPAC) comprised of 706

patients. Upon recruitment to the registry patients are under a detailed clinical examina-

tion and provide serum samples for storage in a biobank. Following recruitment, patients

undergo annually scheduled clinical examinations to record the extent of joint damage.

One particular interest lies in modelling the relation between the Human Leukocyte Anti-

gen (HLA) biomarker HLA-B27 and progression of joint damage. We note that due to

budgetary constraints and the desire to preserve the biospecimens for future use, it is not

feasible to assay all stored sera. Auxiliary data on gender and the baseline erythrocyte

sedimentation rate (ESR) levels, a traditional inflammatory marker, are available for the

entire cohort.

We use this registry to represent a sequence of two-phase studies where the response

of Study 1 is defined by the increase in the number of clinically damaged joints over two

years. Each of 64 joints is examined at clinical visits and graded for the severity of damage

with normal joints graded as 0, deformed joints receiving grade 1, joints featuring ankylosis

as grade 2, flailing joints graded 3, and joints receiving surgery graded as 4. We let Y1 = 1

if a patient develops two or more clinically damaged joints of grade 1 or higher in two years

from a baseline assessment, and Y1 = 0 otherwise. The binary exposure variable X = 1

if the HLA biomarker B27 is present in the biospecimen, and X = 0 otherwise. For an

auxiliary covariate, we define Z = 1 if the individual’s baseline ESR is greater than 20 for

females and greater than 13 for males (elevated ESR), and Z = 0 otherwise. We suppose

that in Study 1, the goal was to investigate the impact of the HLA biomarker B27 on

the progression of clinical joint damage, and that based on this study a sub-sample of 100

patients had their biospecimens assayed to investigate Y1|X,Z. For Study 1, the selection

model π1(Y1, Z) was defined based on BS involving 4 strata defined by (Y1, Z).

We suppose interest now lies in studying the relationship between the HLA biomarker

B27 and an increase in the number of active joints (swollen joints or joints losing range

of motion with pain or tenderness) in this registry. We let Y2 = 1 if a patient develops

two or more active joints in two years from the baseline with Y2 = 0 otherwise. We first
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perform secondary analyses to fit Y2|X,Z using Y and Z of the entire dataset, as well

as X of the 100 patients in the phase II sub-sample of Study 1. Point estimates and

standard error estimates of the parameter of interest β1 are displayed in the top half of

Table 4.6. Assuming an exchangeable odds ratio for the responses leads to distinct point

estimates between the likelihood and estimating functions approaches. This suggests that

we may have misspecified the joint response model. Closer point estimates are obtained

when fitting a full model (4.4) to specify the dependence structure of the responses. See

the rows under “Secondary analyses - full dependence” in Table 4.6 for details.

We next consider the case in which our resources permit the assay of 100 biospecimens

so that the HLA biomarker B27 can be determined for more individuals in Study 2. For

this aim, Study 1 contributes pilot data to help construct an optimal phase II sub-sample.

See the bottom half of Table 4.6 for the results of our proposed optimal design D1 applied to

the PsA study. Assuming an exchangeable odds ratio, estimates based on inverse weighting

are more conservative, giving odds ratios of 1.528 (95% CI: 0.626, 3.738) and 1.364 (95%

CI: 0.568, 3.278) for IPW and IPW2, respectively, while ML and CML estimators are 2.136

(95% CI: 0.958, 4.762) and 1.667 (95% CI: 0.678, 4.099), respectively. The IPW relies on

the selection model alone while the likelihood and IPW2 estimators rely on the joint model;

misspecification of the joint model may explain the difference. Fitting a full dependence

structure (4.4) gives point estimates that are all generally close, with odds ratios 1.505

(95% CI: 0.669, 3.389) for IPW and IPW2, and 1.589 (95% CI: 0.723, 3.494) and 1.644

(95% CI: 0.715, 3.781) for ML and CML, respectively - the weighted estimators are more

robust as the odds ratios are closer than those following the likelihood approaches across

various dependence structures. See Figure 4.3 comparing the proportions of individuals

selected from the 8 strata defined by (Y1, Y2, Z) in Study 2 following the likelihood and

inverse weighting methods.

Another round of focused simulation studies framed within the PsA research project

is available in Appendix 4B. Secondary use of the biomarker matrix metalloproteinase 3

(MMP-3) is considered to facilitate analyses and sequential two-phase designs to investigate

the progression of swollen joints of the patients.
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Table 4.6: Point estimates (β̂1) and standard error estimates (SE(β̂1)) of the parameter

of interest following the secondary analyses (top half) and the combined phase II data

of the sequential two-phase designs (bottom half) using likelihood and inverse weighting

methods in the PsA study. For secondary analyses E(M1) = 100, and for sequential

two-phase studies E(M1) = E(M2) = 100. “BS” and “opt” stand for balanced sampling

and optimal sampling, respectively.

Stratification Results

Response Model/Design Study 1 Study 2 Analysis β̂1 SE(β̂1)

Secondary analyses - exchangeable dependence

Joint BS (Y1, Z) IPW 0.375 0.843

IPW2 0.495 0.783

ML 0.604 0.759

CML 0.614 0.770

Marginal BS (Y1, Z) IPW 0.372 0.843

Secondary analyses - full dependence

Joint BS (Y1, Z) IPW 0.369 0.801

IPW2 0.321 0.850

ML 0.454 0.809

CML 0.480 0.806

Marginal BS (Y1, Z) IPW 0.372 0.843

Sequential two-phase studies - exchangeable dependence

D1 BS (Y1, Z) opt (Y, Z) IPW 0.424 0.455

IPW2 0.311 0.447

ML 0.759 0.409

CML 0.511 0.459

Sequential two-phase studies - full dependence

D1 BS (Y1, Z) opt (Y, Z) IPW 0.409 0.414

IPW2 0.409 0.414

ML 0.463 0.402

CML 0.497 0.425
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Figure 4.3: Pie charts showing the proportion of individuals selected from 8 strata defined

by (Y1, Y2, Z) in Study 2 following the optimal designs conducted via likelihood (ML and

CML) and inverse weighting (IPW and IPW2) methods. A full model is fitted to specify

the dependence of the responses.

4.6 Discussion

We describe and contrast different approaches for the conduct of a secondary analysis

of data from two-phase designs. We also consider the design of subsequent two-phase

studies when they are based on a common platform. The use of joint response models can

enhance the efficiency of estimators based on second-order estimating equations, likelihood

and conditional likelihood. Moreover, the estimating functions approach obtains valid

estimates under misspecified dependence structures. With the phase II sub-sample size

fixed by budgetary constraints, we recommend adopting joint models of the responses with
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a full dependence structure and conducting the optimal two-phase designs D1. By doing

so, we can exploit more efficiencies from the likelihood approaches. In particular, the

conditional likelihood approach is promising when extending to the settings of continuous

exposure variables since it does not model the distribution of the exposures. Should we run

out of budget for an upcoming two-phase study, the joint response model further allows us

to perform secondary analysis as a last resort.

We present this work in the context of correlated binary responses, but the framework

can be adapted to settings where the responses are free to be binary, categorical, continuous,

or semicontinuous; with continuous responses, strata may still be defined through the

coarsening function by discretization. When secondary responses may be right-censored or

interval-censored weighted methods may be more appealing but joint modelling remains

a viable approach. Pan et al. (2018b) outlined a secondary analysis of such responses

based on IPWEEs in response-dependent sampling designs. Optimal selection models via

likelihood approaches are not immediate without making parametric assumptions about

the responses. The methods we develop can be extended to deal with the design and

analysis of sequential two-phase studies in which the auxiliary covariate is a surrogate of

the exposure variables which is appropriate when X is a definitive test result, and Z is an

inexpensive, and less accurate test; here Y ⊥ Z|X.

While we consider a common set of auxiliary covariates for the sequence of studies,

methods can be generalized to accommodate distinct auxiliary covariates, denoted by Z1

and Z2 for Study 1 and 2, respectively. Considering Z = (Z ′1, Z
′
2)′ in the joint response

model, we can constrain some of the elements of the coefficients in front of Z, i.e., α2 and

β2, to be 0.

The framework we consider can be naturally extended to deal with an ongoing sequence

of several two-phase studies. As shown in Figure 4.1, for a hypothetical Study 3 interested

in E(Y3|X,Z; ρ) following Study 2, one could perform secondary analyses based on R1∪R2

using the joint response model P (Y |X,Z) where Y = (Y1, Y2, Y3)′. If the aim is to best

select M3 individuals from R\ (R1∪R2) where M3 reflects its budgetary constraints, then

for a given approach to analysis, individuals in R1∪R2 serve as pilot data of size M1 +M2

for preliminary parameter estimates. We approximate the optimal phase II selection model

of Study 3 with π3 = P (R3 = 1|Y, Z,R1 = R2 = 0;ψ3) and the approximately optimal ψ3
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is the one that minimizes

asvar[
√
n(ρ̂1−ρ1); ϑ̃, ψ1, ψ2, ψ3]+λ

[
E(R3|R1 = R2 = 0; ϑ̃, ψ1, ψ2, ψ3)− E(M3)

n− E(M1 +M2)

]
,

with ϑ augmented to include parameters introduced in Study 3, and ψ1 and ψ2 known from

Study 1 and Study 2, respectively. If there is concern about specifying the joint response

model as the number of studies increases, one could consider modelling the association

using conditional pairwise odds ratios to avoid higher-order moments of the responses.

Alternatively, one could employ composite likelihood.
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Chapter 5

Conclusion and Future Work

The thesis develops methods for the design and analysis of studies involving incomplete

data. The key contributions of the earlier chapters are summarized in Section 5.1 and

ongoing research topics are considered in Section 5.2. Section 5.3 concludes the thesis by

giving a brief outlook of response-dependent sampling with longitudinal data, an important

and promising research direction for future research.

5.1 Contributions from Chapters 2 to 4

In Chapter 2, we propose a general framework for implementing the well-known CART

algorithm to build survival trees for interval-censored data. We also adapt the framework

and evaluate performance for developing survival trees for current status data. Inspired by

the imputation technique in Steingrimsson et al. (2019), the framework not only provides

a straightforward use of existing software but also avoids relying on common assumptions.

We find in simulation studies that our proposed algorithms can make better predictions and

better recover the underlying tree structures than ad hoc approaches and some alternatives

available in the literature. Our proposed method is applied to a medical study of the

incidence of axial disease among patients with psoriatic arthritis.

In Chapter 3, we refine the framework of optimal design for two-phase studies proposed
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by McIssac and Cook (2015) by considering the estimator following both phase IIA and

IIB sub-samples. We extend the work of McIssac and Cook (2015) on inverse probability

weighting to examine adaptive two-phase designs conducted via maximum likelihood and

conditional likelihood methods; the efficiencies and robustness of the various approaches are

then considered. The surrogate value problem is also considered. Such adaptive two-phase

designs are well-suited and applied to two-phase biomarker studies in psoriatic arthritis.

In Chapter 4, we focus on large modern cohort studies with biobanks that support

biomarker studies. We consider specifically the conduct of a sequence of two-phase studies.

We adapt the idea of secondary analysis to the context of two-phase studies and propose the

optimal sequential two-phase designs based on information passed on from earlier studies.

We propose a joint response model to rigorously incorporate information of the response

in a previous study to enhance the efficiency of an upcoming design. Such sequential

two-phase studies address the need to use the previously studied biomarkers on a new

response while meeting budgetary constraints. The proposed methods are conducted via

likelihood approaches and inverse probability weighted estimating equations, followed by

an investigation of efficiency and robustness.

We here comment that the theme in Chapter 2 differs from that in Chapters 3 and 4,

as they address different motivating concerns involving incomplete data. While missing

responses arise from periodic assessments in medical studies, missing covariates by design

are mainly attributed to budgetary constraints in observational studies. Despite this, there

are potential methodological connections between the themes as we approach complicated

problems, such as two-phase studies with interval-censored responses. Indeed, one could

stratify the phase I sample based on the assessments or the interval length in such two-

phase studies. Still, the imputation techniques discussed in Chapter 2 may help bridge the

gap between interval censoring and the optimal designs proposed in Chapters 3 and 4. For

example, in the context of an adaptive two-phase design, the phase IIA sub-sample may

help construct estimators of the conditional survivor function for response imputations.

Stratification and the formation of a class of selection models naturally follow, within

which the optimal phase IIB sub-sampling scheme of our interest can be considered.
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5.2 Future Research

5.2.1 Ensemble Prediction Methods for Interval-Censored Data

There has been much interest in the development of ensemble prediction methods in the

past few decades. Such methods select a collection (ensemble) of prediction models and

combine their predictions to improve predictive performance. The prediction is usually

based on the majority vote from all the predictions of the individual predictors in the

ensemble. Bootstrap Aggregation, often known as bagging (Breiman, 1996), fits multiple

CART trees on bootstrapped samples which are obtained by sampling with replacement

multiple times from the training data sets. It then averages all the unpruned CART

trees fitted on the bootstrap samples. Using bootstrap to assess the variance of the esti-

mators, bagging achieves variance reduction at the expense of tiny increases in bias and

hence, becomes particularly useful for estimators with high variances. Another ensemble

method is random forests (Breiman, 2001), which further weakens the dependence among

the single prediction models in the ensemble in the sense that they do not necessarily con-

sider the same set of splitting variables. Unlike bagging, random forests conduct searches

only over a random subset of the variables at each splitting point. As one of the top-

performing prediction methods, random forests can currently be implemented in the R

package randomForest.

Recent developments of ensemble prediction methods have been able to accommodate

censored responses. Ishwaran et al. (2008) developed the random survival forest for right-

censored data using the log-rank test statistics as the splitting criterion. The method

was refined by Zhu and Kosorok (2012) as the recursively imputed survival trees. Recent

work on the ensemble prediction methods for interval-censored responses includes Cho

et al. (2019) which proposed an iterative tree-based ensemble method. The nonparametric

regression estimator is obtained by iteratively updating the estimates of the survivor func-

tions, and can be viewed as a self-consistent estimator with convergence monitored using

out-of-bag samples. The work is implemented via the R package icrf. Another advance is

in Yao et al. (2019), who extended the work of Fu and Simonoff (2017) to explore the use

of ensemble methods based on the conditional inference survival forest.
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It is of natural interest to develop the ensemble prediction methods corresponding to

our proposed regression trees based on censoring unbiased transformations and pseudo-

observations in Chapter 2. The ensemble predictor for interval-censored responses may

differ from that for current status data, as the NPMLE of the survivor function has a closed-

form expression only for current status data. We expect that such ensemble learners would

improve the prediction accuracy of the performance compared to the single tree prediction

models.

5.2.2 Current Status Composite Likelihood

We here propose a current status composite likelihood as an alternative to build survival

trees for interval-censored data. Suppose that there is a type K interval censoring obser-

vation process, and the visit process is completely independent of the failure times. Let

ui0, . . . , uiRi
denote the assessments for individual i = 1, . . . , n. Let Yi(·) denote the binary

response of the observations so that Yi(uij) = 1 if individual i is observed to have failed

at assessment uij, j = 1, . . . , Ri, and Yi(uij) = 0 otherwise. Adopting the likelihood for

current status data, we have

L =
n∏
i=1

Ri∏
j=0

Si(uij|Xi)
1−Yi(uij)[1− Si(uij|Xi)]

Yi(uij),

where S denotes the conditional survivor function, and X the covariates that are assumed

to be not time-dependent. Such likelihood employs the idea of pseudo individuals in

the sense that the status at visit j = 1, . . . , Ri can be considered as contributions from

distinct individuals. As a result, Ri pseudo individuals arise, and a composite likelihood

in which information is repeatedly used follows. As the survivor function for current

status data is easier to estimate, the resulting composite likelihood may lead to faster

implementation compared to the ordinary likelihood for interval-censored data. While the

prediction performance of such models warrants checking, it is of our interest to inspect

the loss of efficiency of such composite likelihood compared to maximum likelihood. The

problem is more complicated if there is a need to model the visit process; Jiang and Cook

(2020) used such composite likelihood in the context of clustered multistate processes under

intermittent observation with aggregation.
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5.2.3 Two-Phase Designs via Calibration

Recent work on two-phase designs includes the calibrated inverse probability weighted

(IPW) estimator that enhances statistical efficiency (Rivera-Rodriguez et al., 2019). Adopt-

ing the IPW framework of analysis, the aim is to use calibration as a means to improve the

efficiency of the estimator. This is achieved by finding the so-called “calibrated weights”,

w̃, that minimizes certain distances to the original weights w used in the inverse weighting

analysis subject to the calibration constraints. Rivera-Rodriguez et al. (2019) suggested

the distance function as the χ2 distance, d(w̃, w) = (w̃ − w)2 /2w, or the deviance distance,

d(w̃, w) = w̃ log (w̃/w)− w̃+w. As for the calibration constraints, Rivera-Rodriguez et al.

(2019) suggested the influence functions of the mean model, which are the columns of the

matrix

XIF = −U(β)E

[
∂

∂β
U(β)

]−1

,

where U(β) is the estimating equations to solve for the parameter of interest β. The more

efficient calibrated IPW estimator is obtained by replacing w with w̃ in the analysis. The

procedure makes use of information available in phase I that is not involved in the design

and hence, enhances statistical efficiencies of the two-phase designs. In survey sampling,

such calibration helps exploit the auxiliary information to improve the Horvitz-Thompson

estimator (Lumley et al., 2011; Deville and Sardnal, 1992). Chen and Lumley (2020)

used the term “generalized ranking” to describe the more efficient class of design-based

estimators. As a result, one of the extensions of our work on two-phase designs is to

compare the calibrated IPW estimator to those following from maximum likelihood and

conditional maximum likelihood approaches. The potential link between the model-based

estimation methods discussed in Chapter 3 and the design-based estimation methods in

Chen and Lumley (2020) warrant attention.

5.2.4 Two-Phase Designs in Longitudinal Settings

Modern epidemiological cohort studies involve the longitudinal collection of responses from

individuals over time. The Canadian Longitudinal Study of Aging, for example, is a na-

tional research initiative in which approximately 30,000 recruited individuals will be fol-
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lowed for up to 21 years to record data on health outcomes (Raina et al., 2009). Serum

samples are obtained upon recruitment, and detailed clinical examinations are scheduled

to take place every three years. Many health research projects based on this unique infras-

tructure aim to investigate the association between biomarkers measurable in the stored

serum samples and longitudinal responses, but measurement of biomarkers for all partic-

ipants is cost-prohibitive. The need to preserve biospecimens and control costs has nat-

urally led to the development of response-dependent two-phase sampling designs. Much

of this work on two-phase designs has been directed at cross-sectional or retrospective

data. McIssac and Cook (2013) investigated two-phase sampling designs in the context of

studies with repeated measurements and a progressive process. Recent work in the area

includes likelihood-based analysis for fitting generalized linear mixed models to longitu-

dinal data from response-related sampling designs (Neuhaus et al., 2014). Conditioning

on the sampling protocol and summary statistics of the longitudinal responses, Neuhaus

et al. (2014) modified the standard conditional likelihood approach to incorporate random

intercept models with a canonical link. Alternative approaches include two-phase strat-

ified sampling designs in which distinct strata are created from subject-specific response

summaries (Schildcrout et al., 2013, 2018), or by low-dimensional numerical summaries of

longitudinal responses and confounders (Schildcrout et al., 2019), both followed by identi-

fying a highly informative sub-cohort. Such sampling designs appear to be highly efficient

relative to random sampling. Haneuse and Rivera (2018) discussed a general approach to

analyze cluster-correlated case-control data based on inverse probability weighted estimat-

ing equations (IPWEE). Amorim (2019) further investigated semiparametric estimators

for secondary analyses with correlated responses and proposed an estimated conditional

maximum likelihood method.

Two-phase designs with longitudinal data represent an exciting research area with nu-

merous areas worthy of development. In the retrospective setting in which individuals are

selected for biomarker measurements upon the completion of the followup, budgetary con-

straints limit the number of biospecimens that can be assayed. If the biomarker of interest

is not time-dependent, then adaptive two-phase designs in the spirit of Chapter 3 will

be applicable to maximize statistical efficiency. Tao et al. (2021) also proposed two-wave

two-phase response-dependent sampling designs addressing this topic. Adapting the ascer-

123



tainment corrected maximum likelihood approach (Schildcrout and Heagerty, 2011), Tao

et al. (2021) estimated the conditional distribution of the unobserved exposure variables

followed by applying a multiple imputation procedure (Rubin, 1987) for analysis. The

optimal design was achieved via a thorough search in the design space. In Section 5.3.1,

we layout two-phase designs with retrospective longitudinal data based on IPWEEs.

The problem becomes more complicated with time-dependent biomarkers since it may

be desirable to sample an individual at more than one time point. For longitudinal binary

response data, Schildcrout and Heagerty (2008) and Schildcrout et al. (2018) recommended

the phase II sub-sampling to exclusively select individuals who experience the event at some

but not all time points. We provide a brief sketch of the two-phase designs involving a

joint model of the selection indicators at the end of Section 5.3.1.

If sub-sampling is to be carried out in a serial prospective fashion, individuals could be

selected for biomarker measurements at time point k based on the responses and auxiliary

covariates up to time point k, as well as the observed biomarkers measured up to time

point k − 1. The work on sequential two-phase designs in Chapter 4 builds a foundation

for such longitudinal studies with a time-fixed exposure and serial budgetary constraints.

As discussed in Section 4.6, it is natural to extend Study 1 and Study 2 to additional

sequential two-phase studies, each targeting those who remain eligible after the earlier

studies. Upon completion of the entire followup, all phase II sub-samples will be combined

for analysis. If the biomarker of interest is not time-dependent, then no individuals shall

be assessed more than once throughout the longitudinal study. Therefore, the assessments

can be regarded as a sequence of two-phase studies conducted on the same platform, where

the longitudinal responses can be treated as the sequential responses discussed in Chapter

4. Moreover, the sampling constraints in Chapter 4 reflect the budgetary limitations of the

repeated examinations, and the selected models of the sequential two-phase studies can be

adapted to the prospective longitudinal setting. While we anticipate analyses to be more

challenging as the number of studies increases, the parameter of interest is usually identical

in a longitudinal setting. As for time-varying exposures in serial prospective studies, we

need to address not only the serial budgetary constraints but also the correlation among

the selection indicators. See Section 5.3.2 for a brief layout of such two-phase designs.
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5.3 Two-Phase Studies with Longitudinal Data

5.3.1 Retrospective Two-Phase Sampling with Longitudinal Data

Here we propose an adaptive two-phase design with retrospective longitudinal data in

which subjects are selected for biomarker measurements such that the resultant estimators

have maximum efficiency subject to budgetary constraints. The optimal design addresses

the serial dependence of the longitudinal responses over time.

We consider a study involving a sample of n independent individuals assessed at each

of K time points where Yik is the response at assessment k for individual i, k = 1, . . . , K.

The complete response vector is Yi = (Yi1, . . . , YiK)′, i = 1, . . . , n. Let Xi1 denote an

incompletely observed covariate reflecting a biomarker of interest, Xi2 = (Xi21, . . . , Xi2p)
′ a

p×1 auxiliary covariate vector which is always observed, and Xi = (Xi1, X
′
i2)′, i = 1, . . . , n.

Assuming binary responses and time-fixed binary covariates, suppose interest lies in the

marginal mean µik = E(Yik|Xi) such that

logitµik = β0 + β1Xi1 + β′2Xi2, (5.1)

where β1 is the parameter of primary interest characterizing the association between the

expensive biomarker and the response given the auxiliary covariates, and E(Yi|Xi) is the

K×1 vector µi = (µi1, . . . , µiK)′. The vector β = (β0, β1, β
′
2)′ has dimension (1+1+p)×1.

The conditional association of the binary responses over assessments is characterized by

pairwise log odds ratios

αijk = log OR(Yij, Yik|Xi) = log
P (Yij = 1, Yik = 1|Xi)/P (Yij = 0, Yik = 1|Xi)

P (Yij = 1, Yik = 0|Xi)/P (Yij = 0, Yik = 0|Xi)
, (5.2)

for j < k, j, k = 1, . . . , K. Under an exchangeable dependence structure, α = αijk is a

scalar, but more generally we consider α as a vector of length L = K(K − 1)/2. We then

let θ = (α′, β′)′ of dimension L + 1 + 1 + p denote the parameters of the response model.

We also let g(Xi; γ) = g1(Xi1|Xi2; γ1)g2(Xi2; γ2), ϑ1 = (θ′, γ′1)′, and ϑ = (θ′, γ′)′.

The phase I sample is comprised of n individuals giving data {Yi, Xi2 : i = 1, . . . , n}
with Xi1 unknown. A phase II sub-sample of M < n biospecimens is chosen and assayed
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with Xi1 recorded for the selected individuals. In an ordinary two-phase design, a selection

indicator Ri = 1 if individual i is selected for the phase II sub-sample and Ri = 0 otherwise.

See Table 5.1 for an illustration of such data comprised of n individuals. Adopting notation

in Chapter 3, we consider an adaptive two-phase design in which the phase II sub-sample

is comprised of a phase IIA sub-sample selected with a convenient sampling strategy for

a preliminary estimate of ϑ and a phase IIB sub-sample constructed to maximize the

precision of estimator of β1 from the entire phase II sub-sample. Recall that we let A

denote the selection indicator of phase IIA which is realized based on selection model

πA(ψA). Likewise, we let B denote the selection indicator of phase IIB which is realized

based on selection model πB(ψB). While phase IIA selects MA out of n individuals, phase

IIB selects MB out of n−MA individuals that remain eligible.

Table 5.1: An illustration of two-phase data of n individuals.

Response Y1 Y2 .. Yi .. Yn

Biomarkers X11 ? .. ? .. Xn1

Auxiliary Covariates X12 X22 .. Xi2 .. Xn2

Selection Indicators R1 = 1 R2 = 0 .. Ri = 0 .. Rn = 1

Analysis Methods and Associated Design

Such adaptive two-phase designs can be based on second-order IPWEEs that give a marginal

formulation of covariate effects modelling both the mean and the association parameters

(Zhao and Prentice, 1990). Following (5.2), the odds ratio can be expressed as

OR(Yij, Yik|Xi) = exp(αijk) =
ηijk(1− µij − µik + ηijk)

(µij − ηijk)(µik − ηijk)
,

where ηijk = E(YijYik|Xi), j < k, j, k = 1, . . . , K. Here ηijk is a function of means µij,

µik, and the pairwise log odds ratio αijk using the quadratic formula. Moreover, the

K×K covariance matrix Cov(Yi|Xi) with kth diagonal element Var(Yik|Xi) = µik(1−µik)
for k = 1, . . . , K and (j, k) off-diagonal element Cov(Yij, Yik|Xi) = ηijk − µijµik for j <

k, j, k = 1, . . . , K is indexed by θ.
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Inverse Probability Weighted Estimating Equations

Let Wi = (Wi1, . . . ,WiL)′ = (Yi1Yi2, Yi1Yi3, . . . , Yi(K−1)YiK)′ denote the pairwise products

that can be formed among the longitudinal responses. In particular, for individual i,

Wijk = YijYik for j < k, j, k = 1, . . . , K. Let Zi1 = (Y ′i ,W
′
i )
′ denote the (K + L) × 1

augmented response vector with E(Zi1|Xi) = ξi1. The phase IIA parameter estimates can

be obtained by solving the second-order IPWEE

n∑
i=1

Ui1A(Yi|Xi; θ, ψA) =
n∑
i=1

D′i1Σ−1
i1

Ai
πiA

(Zi1 − ξi1) = 0, (5.3)

where Di1 = ∂ξi1/∂θ is a (K + L) × (L + 1 + 1 + p) matrix and Σi1 = Cov(Zi1|Xi) is

a (K + L) × (K + L) working matrix (Robins et al., 1995; Prentice and Zhao, 1991).

While the top left K×K sub-matrix of Σi1 has been fully specified with diagonal elements

µik(1−µik) and off-diagonal elements ηijk−µijµik for j < k, j, k = 1, . . . , K, the remaining

elements involve third and fourth moments of the longitudinal responses. We adopt the

block diagonal working matrix which specifies the bottom right L × L sub-matrix to be

diagonal with elements

Var(Wijk|Xi) = E(Y 2
ijY

2
ik|Xi)− E(YijYik|Xi)

2 = ηijk − η2
ijk

for j < k, j, k = 1, . . . , K and zero otherwise to avoid computing higher-order moments of

Yi. The nuisance parameter γ is separately estimated as in Section 3.2. Upon completion

of the phase IIB sub-sampling, the IPWEEs that marginalize over the selection process are

n∑
i=1

Ui1B(Yi|Xi; θ, ψ̄
∗) =

n∑
i=1

R̄∗i
π̄∗i
D′i1Σ−1

i1 (Zi1 − ξi1) = 0 (5.4)

and
n∑
i=1

Ui2B(Ai, Bi; ψ̄
∗) =

n∑
i=1

∂π̄∗i
∂ψ̄∗

1

π̄∗i (1− π̄∗i )
(R̄∗i − π̄∗i ) = 0, (5.5)

where R̄∗i = Ai + (1−Ai)Bi and π̄∗i = πiA + (1− πiA)πiB indexed by ψ̄∗. Under regularity

conditions, the resulting estimator θ̂ satisfies

√
n(θ̂ − θ) D−→ N(0,Γ−1

B (IB −HBΩBH
′
B)(Γ−1

B )′), as n→∞, (5.6)
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where ΓB = E[−∂Ui1B(Yi|Xi; θ, ψ̄
∗)/∂θ], IB = E[Ui1B(Yi|Xi; θ, ψ̄

∗)U ′i1B(Yi|Xi; θ, ψ̄
∗)], ΩB =

E[Ui2B(Ai, Bi; ψ̄
∗)U ′i2B(Ai, Bi; ψ̄

∗)], and HB = E[−∂Ui1B(Yi|Xi; θ, ψ̄
∗)/∂ψ̄∗] (Robins et al.,

1995). Note that the asymptotic covariance matrix in (5.6) has size (L+ 1 + 1 + p)× (L+

1 + 1 + p). Focusing on the (β1, β1) component, the approximately optimal ψB is the one

that minimizes the Lagrangian (3.2).

Likelihood and Conditional Likelihood

Alternatively, such adaptive two-phase designs with longitudinal responses can be con-

ducted via likelihood analyses. With longitudinal data and the desire for robust inference,

this is perhaps less appealing than the settings of Chapters 3 and 4 but we consider it here

for completeness. If ϑ and ψ are functionally independent, then the partial likelihood

L(ϑ) ∝
n∏
i=1

[P (Yi|Xi)g1(Xi1|Xi2)]Ai

[∫
P (Yi|x1, Xi2)g1(x1|Xi2)dx1

]1−Ai

g2(Xi2),

helps obtain the phase IIA parameter estimates. Similarly, considering the entire phase II

sub-sample, the score equation for estimating ϑ1 is

SB(Y,X1|X2;ϑ1) =
n∑
i=1

SiB(Yi, Xi1|Xi2;ϑ1) =
n∑
i=1

(
Si1B(ϑ1)

Si2B(ϑ1)

)
= 0

of the form (3.3). Under regularity conditions, asymptotic normality follows, and the

optimal ψB is the one that minimizes (3.2).

The score equation of the conditional likelihood approach similarly follows from (3.8),

while the optimal ψB minimizes (3.9). The only caveat is that we have suppressed the

time index in the score equations. Contrary to a standard adaptive two-phase design

presented in Chapter 3, the response model for longitudinal responses is P (Yi|Xi) =

P (Yi1, . . . , YiK |Xi; θ) for i = 1, . . . , n. For computational purposes, we can adopt rea-

sonable assumptions for simplification, for example, assuming Markov property so that

Yk ⊥ Yj|Yk−1 for j < k − 1, k = 1, . . . , K. We also point out the possibility of using

composite likelihood, especially when K is large. In such cases, the asymptotic covariance

matrix has the sandwich form.
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Empirical Studies

Here follows a preliminary round of simulations of adaptive two-phase designs with ret-

rospective longitudinal data and time-fixed covariates. We consider a longitudinal study

with three time points K = 3, sample size n = 5000, phase II sub-sample of expected

size E(M) = 1500 chosen via Bernoulli sampling, and nsim = 1000. We assumed

that the longitudinal responses, biomarkers, auxiliary covariates, and the selection in-

dicators are scalar binaries, i.e., p = 1. For each individual, the longitudinal responses

were assumed to have an exchangeable dependence structure, i.e., a scalar pairwise odds

ratio. The binary covariates satisfied (3.16) and (3.17). The parameter configuration

(β0, β1, β2, α, γ2, γ10, γ11) = (−1.71, log 2.5, log 1.5, log 2,−1.39,−1.75, log 4) ensures that

the marginal probabilities of both the responses and covariates are 0.2, while a strong

association presents among the responses, biomarker, and the auxiliary covariate. The

selection model in phase IIA and phase IIB are characterized as

logitπA(Y,X2;ψA) = ψA0 + ψA1I(Y. > 0) + ψA2X2 + ψA3I(Y. > 0)X2;

logitπB(Y,X2;ψB) = ψB0 + ψB1I(Y. > 0) + ψB2X2 + ψB3I(Y. > 0)X2,

indexed by ψA = (ψA0, ψA1, ψA2, ψA3)′ and ψB = (ψB0, ψB1, ψB2, ψB3)′, respectively. In

other words, the phase I sample is divided into four strata according to the binaries I(Y. >

0) and X2, where Y. =
∑3

i=1 Yi.

The longitudinal responses were generated from the conditional linear family (Qaqish,

2003), which is defined as a sub-family of the multivariate binary distributions with a

given mean and covariance. For i = 2, . . . , n, Qaqish (2003) showed that the conditional

distribution of the correlated responses satisfy

E(Yi|Y1, . . . , Yi−1) = µi +
i−1∑
j=1

∑
a∈Aij

Kij(a)

j∏
t=1

(Yat − µat),

where Aij is the set of integer j vectors {a : 1 ≤ a1 < . . . < aj ≤ i − 1}, and Kij is a

column vector of length i−1 chooses j. The conditional linear family is obtained by setting

Kij = 0 for i = 2, . . . , n and j = 2, . . . , i− 1. In particular, when the responses have equal
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means and an exchangeable correlation, explicit formula for the conditional expectation is

available. In our set-up, conditioning on X,

E(Yi|Y1, . . . , Yi−1, Xi) =
(1− ρ)µi + ρ

∑i−1
j=1 Yj

1 + ρ(i− 2)

for i = 2, 3, where ρ refers to the correlation of the responses (Preisser et al., 2002). Alter-

natives of generating correlated binary random variables include the multivariate probit

method (Emrich and Piedmonte, 1991). See Preisser and Qaqish (2014) for a detailed

review and comparison between the methods.

To demonstrate the efficiency gains, the adaptive two-phase designs were compared

to the standard non-adaptive designs. As shown in Table 5.2, the adaptive two-phase

designs based on the IPWEE framework of analysis for longitudinal responses are more

efficient than the standard SRS and BS designs. The average standard errors (ASE) match

the empirical standard errors (ESE), and the empirical coverage probabilities (ECP) are

compatible with the nominal 95% levels for all phase IIA sub-sample sizes.

Table 5.2: Average standard errors (ASE), empirical standard errors (ESE), and percent em-

pirical coverage probabilities (ECP%) of estimators from second-order IPWEE (IPW) adaptive

two-phase designs with SRS or BS employed in a phase IIA sub-sample of size 0.2E(M) or

0.50E(M). Non-adaptive SRS and BS designs are included as the “100% IIA” columns. Phase

I sample size n = 5000, phase II sub-sample size E(M) = 0.3n, and nsim = 1000. Parameter of

interest β1 = 0.916.

Proposed Adaptive Designs

100% IIA 50% IIA 20% IIA

Analysis IIA ASE ESE ECP% ASE ESE ECP% ASE ESE ECP%

IPW SRS 0.107 0.106 95.0 0.098 0.099 95.6 0.098 0.094 95.0

BS 0.109 0.109 94.9 0.099 0.096 94.6 0.098 0.098 94.5
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Extensions to Accomodate Time-Varying Exposures

Should we have a time-dependent biomarker, let Xi1k denote the expensive biomarker at

assessment k. In such cases, we assume that the marginal mean µik = E(Yik|Xi1k, Xi2) and

the pairwise log odds ratio αijk = log OR(Yij, Yik|Xi1j, Xi1k, Xi2) still has the form of (5.1)

and (5.2), respectively, except with the time-dependent covariates updated accordingly. As

a result, the availablity of the biomarker for individual i will be indicated by a K×1 vector,

Ri = (Ri1, . . . , RiK)′. Let the marginal selection model be πik = P (Rik = 1|Yi, Xi2;ψk).

The longitudinal association of the selection indicators can be characterized by pairwise

log odds ratios

ωijk = log
P (Rij = 1, Rik = 1|Yi, Xi2)/P (Rij = 0, Rik = 1|Yi, Xi2)

P (Rij = 1, Rik = 0|Yi, Xi2)/P (Rij = 0, Rik = 0|Yi, Xi2)
, (5.7)

where ω is a vector of length L. Let

Qi = (Qi1, . . . , QiL)′ = (Ri1Ri2, . . . , Ri(K−1)RiK)′

denote the pairwise products formed among the selection indicators with

ζijk = E(RijRik|Yi, Xi2) = P (Rij = Rik = 1|Yi, Xi2),

and Zi2 = (R′i, Q
′
i)
′ the augmented selection vector with E(Zi2|Yi, Xi2) = ξi2 indexed by

both ω and ψ = (ψ′1, . . . , ψ
′
K)′. The second-order IPWEE for the responses, therefore,

involves a weighting matrix instead of a single weight. Specifically, one could consider

n∑
i=1

Ui1(Yi|Xi; θ, ψ, ω) =
n∑
i=1

∆iD
′
i1Σ−1

i1 (Zi1 − ξi1) = 0, (5.8)

where

∆i =

diag
(

Rik

πik(Yi,Xi2)

)
0

0 diag
(

RijRik

ζijk(Yi,Xi2)

)
,

 (5.9)

j < k, j, k = 1, . . . , K, is a block diagonal matrix with blocks of size K ×K and L × L.

As for the selection model, one could consider

n∑
i=1

Ui2(Ri;ψ, ω) =
n∑
i=1

D′i2Σ−1
i2 (Zi2 − ξi2) = 0, (5.10)
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where Di2 = ∂ξi2/∂(ψ′, ω′) and Σi2 = Cov(Zi2|Yi, Xi2) is a block diagonal working matrix.

Such IPWEEs allow us to perform analyses of an adaptive two-phase design; assigning the

vector of selection indicators Ri as Ai and R̄∗i = Ai + (1 − Ai)Bi, respectively, followed

by updating the corresponding selection models π and ζ in (5.8) and (5.10) will do. The

approximately optimal phase IIB sub-sampling follows from minimizing the asymptotic

variance of the estimator of β1 obtained by the IPWEEs subject to budgetary constraints.

Assumptions on the sampling scheme can simplify the analysis presented above. For

example, if we decide to either fully observe the covariates of individual i or not to observe

Xi1 at any point, then the components of Ri are identical. Another possible simplification

comes from independent selections of assessments for individuals (i.e., we could set ζijk =

πijπik). Both assumptions greatly simplify the weighting matrix ∆ and the covariance

matrix Σ2. However, the IPWEEs (5.8) and (5.10) address the general situation where the

selections of individuals are allowed to correlate across assessments.

Multi-Dimensional Biomarkers of Interest

Finally, we comment on the possibility and associated challenges of dealing with a multi-

dimensional biomarker of interest, i.e., Xi1 = (Xi11, . . . , Xi1q)
′, i = 1, . . . , n. For individuals

selected in the phase II sub-sampling, their biospecimens are assayed, and the full vector

of Xi1 is recorded. If the biomarker of interest is time-dependent, then Xi1k is a q ×
1 vector at assessment k = 1, . . . , K. We expect the analyses and design to be more

challenging when the biomarker of interest is multi-dimensional (q > 1) compared to our

discussion above (q = 1) for the following reasons. The biomarker distribution involves

the specification of a multivariate model that is harder to estimate and work with when

q is large. As a result, having multi-dimensional biomarkers of interest affects both the

maximum likelihood analysis and the designs for all approaches since they all require

modelling X1|X2. Furthermore, the objective function in Lagragian (3.2) becomes unclear

when β1 is a vector. One could consider minimizing the trace of the (β1, β1) submatrix of

the asymptotic covariance matrix.
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5.3.2 Prospective Longitudinal Two-Phase Sampling

Time-Fixed Exposures

Another longer-term scientific research topic is two-phase studies with serial prospective

longitudinal data subject to multiple constraints over time. Given that the covariates are

time-fixed, such prospective studies with K assessments can be considered as K sequential

two-phase studies in the context of Chapter 4 with identical parameter of interest. Adopt-

ing notation in Section 5.3.1, we use logistic models and conditional pairwise odds ratios

to characterize the joint response model of the longitudinal responses Y = (Y1, . . . , YK)′.

For convenience, we clarify the following notation for the rest of the section. We let a cap-

ital letter by itself denotes a vector quantity throughout K assessments, and a subscript

k denotes the quantity at assessment k, k = 1, . . . , K. We use an additional macron to

denote the history of the quantity up to assessment k. For example, R = (R1, . . . , RK)′

where Rk is the selection indicator at assessment k, 1, . . . , K. The history of the selection

indicator up to assessment k is then R̄k = (R1, . . . , Rk)
′. Moreover, we use a superscript

star to denote a combination of the history of the quantity up to assessment k whenever

required. For example, R̄∗2 = R1 + (1 − R1)R2 denotes the selection indicator of the net

selection model up to the second assessment. Suppose that at assessment k, we can afford

to select mk individuals from those who remain eligible after the earlier k− 1 assessments.

The second-order IPWEE for the responses upon the completion of assessment k is

U1k(Ȳk|X; θ̄k, ψ̄
∗
k) =

n∑
i=1

R̄∗ik
π̄∗ik

D̄′i1kΣ̄
−1
i1k(Z̄i1k − ξ̄i1k) = 0, (5.11)

where

Z̄i1k = (Yi1, . . . , Yik, Yi1Yi2, . . . , Yi(k−1)Yik)
′

with ξ̄i1k = E(Z̄i1k|Xi), D̄i1k = ∂ξ̄i1k/∂θ̄k with θ̄k incorporating the marginal and associa-

tion parameters β and ᾱk induced by the longitudinal responses Ȳk, Σ̄i1k = Cov(Z̄i1k|Xi)

is a working covariance matrix,

R̄∗ik = Ri1 + (1−Ri1)Ri2 + . . .+ (1−Ri1)(1−Ri2) . . . (1−Ri(k−1))Rik,

and

π̄∗ik = πi1 + (1− πi1)πi2 + . . .+ (1− πi1)(1− πi2) . . . (1− πi(k−1))πik
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is indexed by ψ̄∗k which is determined by ψk given ψ̄k−1. The estimating equation for the

net selection model upon completion of the kth assessment is

U2k(R̄k; ψ̄
∗
k) =

n∑
i=1

∂π̄∗ik
∂ψ̄∗k

1

π̄∗ik(1− π̄∗ik)
(R̄∗ik − π̄∗ik) = 0. (5.12)

IPWEEs (5.11) and (5.12) allows for a prospective iteration as follows. Starting from

k = 1, estimating equation U11(Y1|X; θ1, ψ1) with a conventional sampling scheme em-

ployed in the first assessment gives the preliminary parameter estimates. At assessment k,

k = 2, . . . , K, estimating equation U1(k−1)(Ȳk−1|X; θ̄k−1, ψ̄
∗
k−1) updates the parameter esti-

mates. The approximately optimal design for assessment k is then expected to minimize the

asymptotic variance of estimator of β1 derived from estimating equations U1k(Ȳk|X; θ̄k, ψ̄
∗
k)

and U2k(R̄k; ψ̄
∗
k) subject to the corresponding budgetary constraints. In other words, the

optimal ψk is the one that minimizes the Lagrangian

asvar[
√
n(β̂1 − β1); ϑ̄k, ψ̄k] + λ

[
E(Rk|R̄k−1 = 0; ϑ̄k, ψ̄k)−

E(Mk)

E(Nk)

]
, (5.13)

where Nk = n−M1 − . . .−Mk−1.

Time-Varying Exposures

If the exposure variable is time-dependent, then we can modify the response model as we

did at the end of Section 5.3.1. Here we could consider the selection model

πik = P (Rik = 1|R̄i(k−1), Ȳik, Xi2, X̄
◦
i1(k−1))

for assessment k = 1, . . . , K, where X◦i1j = Xi1j if Rij = 1 and carries no information

otherwise, j = 1, . . . , k − 1. In other words, the marginal selection model at assessment

k utilizes all the information up to assessment k − 1, together with the response and

auxiliary covariates at assessment k. Similarly, we could consider the pairwise log odds

ratio to characterize the correlated selection indicators. The IPWEEs (5.8) and (5.10)

can be adapted in a prospective way. Upon completion of the kth assessment, one could

consider

U1k(Ȳk|X̄k; θ̄k, ψ̄k, ω̄k) =
n∑
i=1

∆̄ikD̄
′
i1kΣ̄

−1
i1k(Z̄i1k − ξ̄i1k) = 0 (5.14)
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with a weighting matrix

∆̄ik =

diag

(
Rik

πik(Ȳik,Xi2,X̄◦i1(k−1)
)

)
0

0 diag

(
RijRik

ζijk(Ȳij ,Ȳik,Xi2,X̄◦i1(j−1)
,X̄◦

i1(k−1)
)

)
 .

Note that such a weighting matrix carries no information of selection beyond the kth as-

sessment. In other words, it only involves the selection indicators R̄k together with the

corresponding marginal and association parameters of the selection models up to assess-

ment k, ψ̄k and ω̄k. Furthermore, for the net selection model up to the kth assessment,

one could consider

U2k(R̄k; ψ̄k, ω̄k) =
n∑
i=1

D̄′i2kΣ̄
−1
i2k(Z̄i2k − ξ̄i2k) = 0, (5.15)

where

Z̄i2k = (Ri1, . . . , Rik, Ri1Ri2, . . . , Ri(k−1)Rik)
′

with ξ̄i2k = E(Z̄i2k|Ȳik, Xi2), D̄i2k = ∂ξ̄i2k/∂(ψ̄′k, ω̄
′
k), and Σ̄i2k = Cov(Z̄i2k|Ȳik, Xi2) is a

working covariance matrix. The IPWEEs (5.14) and (5.15) allow for a similar prospective

iteration as in the case of time-fixed exposures. As we move forward, each assessment of the

longitudinal study involves an update of the preliminary parameter estimates followed by

an approximately optimal sub-sampling scheme. Note that the Lagrangian for optimization

now becomes

asvar[
√
n(β̂1 − β1); ϑ̄k, ψ̄k, ω̄k] + λ

[
E(Rk|R̄k−1 = 0; ϑ̄k, ψ̄k, ω̄k)−

E(Mk)

E(Nk)

]
.
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APPENDICES

Appendix 2A: Additional Simulation Results for Chap-

ter 2

Here present additional simulation results for an expansion of the simulation studies in

Section 2.3. Various failure time distributions and additional underlying structures are

considered to provide a fuller picture of the performance of our proposed methods.

We first adopt the covariates X1, . . . , X5, the independent and highly correlated “au-

toregressive” dependence structures, and the data structure of the tree form with three

terminal nodes in Section 2.3.1. Recall that the proportion of subjects falling into three

terminal nodes are ensured to be 50%, 25%, and 25%, respectively. We also used the

censoring mechanism discussed in Section 2.3.1 that addresses the heterogeneity of tim-

ings of assessments across subjects. Duration of follow-up, number of assessments, and

assessment times are allowed to vary across individuals. Contrary to the settings shown

in Table 2.1, we now consider failure times under the terminal nodes that follow Weibull

distributions with decreasing hazards, log-normal distributions, and distributions with a

bathtub-shaped hazard; see Table 2A1 for a summary. The parameter configuration of the

Weibull and log-normal distributions come from the simulation studies reported in Fu and

Simonoff (2017). The two-parameter distribution with a bathtub-shaped hazard function

is proposed by Chen (2000), where the cumulative distribution function is

F (t) = 1− exp{λ[1− exp(tβ)]},
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and the hazard function

h(t) = λβtβ−1 exp(tβ)

has a bathtub shape when β < 1. Such distributions with a bathtub-shaped hazard are

commonly used in reliability analysis. See Hjorth (1980) and Gaver and Acar (1979) for

alternative parametric models with bathtub-shaped hazards. We consider a sample size

n = 200 with 500 replications. The aim is to compare the performance in predicting failure

times, recovering the underlying structure, and predicting the failure status of our proposed

regression trees based on CUT and PO imputations with those of the oracle regression

tree, the regression trees following from midpoint and right endpoint imputations, and the

conditional inference tree.

Table 2A1: Failure time distributions under the terminal nodes. The brackets display the

parameters of the distributions.

Failure time distributions Node 1 Node 2 Node 3

Weibull (κ, λ) (0.9, 1) (0.9, 3) (0.9, 7)

Log-normal (µ, σ) (0.5, 0.5) (1.3, 0.3) (2, 0.3)

Bathtub (β, λ) (0.8, 2) (0.8, 0.5) (0.5, 0.1)

The performances in predicting failure times and failure status at 0.25, 0.50, and 0.75

quantiles of the marginal distribution of the failure times T are shown in Figures 2A1,

2A2, and 2A3. Following the order of the figures, the failure times follow Weibull dis-

tributions with a decreasing hazard, log-normal distributions, and distributions with a

bathtub-shaped hazard. Within each figure, two columns from left to right represent set-

tings with independent and highly correlated covariates, respectively. Four rows from top

to bottom display results of predicting failure times and failure status at the three quan-

tiles, respectively. The evaluation metrics are the prediction errors, PE (Section 2.3.2) for

failure times and PEsurvivor (Section 2.3.3) for failure status at a fixed time horizon. In

each subfigure, the order of the boxplots follows from Section 2.3, and the results of the

right endpoint imputation are not shown because of the dramatically large PEs. Our pro-

posed CUT and PO imputations are comparable to the oracle trees when predicting failure
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times in all three settings. The midpoint imputation also predicts failure times comparably

well to the oracle trees. The conditional inference trees give large prediction errors. As

for failure status, all methods are comparable other than the traditional imputations when

the failure times follow Weibull distributions with decreasing hazards or distributions with

bathtub-shaped hazards. The conditional inference trees have the lowest prediction error

in the third row of Figure 2A2 when the covariates are independent and in the third row of

Figure 2A3. However, as shown in the last row of both Figure 2A2 and Figure 2A3, they

produce large prediction errors at the 0.75 quantile.

We display the performance in structure recovery in Table 2A2. The evaluation metrics

are “model size”, “ number of predictors”, “percent correct”, and “percent without noise”

as explained in Section 2.3.2. The setting in which failure times follow Weibull distribu-

tions with decreasing hazards lead to worse performance than the other two settings in

general. Our proposed regression trees recover the underlying structure and avoid picking

up noise variables comparably well to the oracle trees in all three settings. The tradi-

tional imputations perform comparably well to the oracle trees throughout the settings,

too. The conditional inference trees recover the true structure less frequently, except in

the log-normal setting with independent covariates.

Next, we expand the true relationship between the failure times and covariates beyond

a tree structure to see how well the nonparametric nature of the tree adapts to simpler

and more complex structures. Given the multivariate normals (W1, . . . ,W5) generated as

in Section 2.3.1, we consider failure times that follow Weibull distributions whose shape

parameters are fixed, and scale parameters are functions of covariates X1 = I(W1 < 0) and

X4 = e−|W4|. Covariates X2, X3, and X5 specified in Section 2.3.1 are still involved in the

training and test datasets as noise variables. Specifically, we let

• θ1 = −X1 −X4;

• θ2 = − cos[(X1 +X4)π]−
√
X1 +X4,

and for θ ∈ {θ1, θ2}, we consider failure times that follow

• Weibull distribution with an increasing hazard, Wei(2, 10eθ);
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Figure 2A1: Prediction errors for predicting failure times and failure status with indepen-

dent and highly correlated covariates comparing proposed CART algorithms (PO, CUT,

CUTCon, CUTCox) for interval-censored failure time data and the benchmarks (Ora, CIT,

M). The Weibull failure times under the terminal nodes have decreasing hazards.
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Figure 2A2: Prediction errors for predicting failure times and failure status with indepen-

dent and highly correlated covariates comparing proposed CART algorithms (PO, CUT,

CUTCon, CUTCox) for interval-censored failure time data and the benchmarks (Ora, CIT,

M). The failure times under the terminal nodes follow log-normal distributions.
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Figure 2A3: Prediction errors for predicting failure times and failure status with indepen-

dent and highly correlated covariates comparing proposed CART algorithms (PO, CUT,

CUTCon, CUTCox) for interval-censored failure time data and the benchmarks (Ora, CIT,

M). The failure times under the terminal nodes have bathtub-shaped hazards.
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Table 2A2: Structure recovery measures with independent and highly correlated covariates

comparing proposed CART algorithms (PO, CUT, CUTCon, CUTCox) for interval-censored

failure time data and the benchmarks (Oracle, CIT, M, R). Failure time distributions

under the terminal nodes follow Weibull distribution with decreasing hazards or log-normal

distributions or distributions with bathtub-shaped hazards.

Independent Covariates Highly Correlated Covariates

Oracle PO CUT CUTcon CUTcox CIT M R Oracle PO CUT CUTcon CUTcox CIT M R

Weibull distributions with decreasing hazards

Model Size 3.320 2.878 2.836 2.898 2.890 2.304 2.694 2.736 3.278 2.844 2.840 2.956 2.994 2.490 2.832 2.754

# Predictors 1.938 1.682 1.684 1.728 1.728 1.284 1.632 1.618 1.888 1.614 1.632 1.684 1.696 1.446 1.610 1.600

% Correct 45.4 39.8 44.6 43.8 44.2 16.8 45.4 40.2 38.6 32.4 36.0 30.8 36.0 10.0 37.6 33.2

% w/o Noise 77.0 87.0 89.0 86.8 86.4 92.8 91.8 90.0 72.4 81.6 83.4 74.8 80.2 65.4 85.2 82.8

Log-normal distributions

Model Size 3.242 3.174 3.280 3.334 3.362 3.080 3.216 3.220 3.216 3.280 3.256 3.545 3.404 3.758 3.194 3.204

# Predictors 2.112 2.084 2.104 2.122 2.122 2.016 2.076 2.076 2.092 2.106 2.078 2.265 2.138 2.633 2.062 2.080

% Correct 90.4 93.0 91.6 90.4 90.0 89.8 93.6 94.0 91.8 90.4 92.6 75.4 88.4 22.6 94.0 92.8

% w/o Noise 90.4 93.0 91.6 90.4 90.0 94.0 93.6 94.0 91.8 90.4 92.6 75.4 88.4 22.6 94.0 92.8

Bathtub-shaped hazards

Model Size 3.338 3.278 3.246 3.307 3.304 2.814 3.190 3.190 3.342 3.432 3.432 3.520 3.488 3.337 3.366 3.304

# Predictors 2.126 2.104 2.108 2.118 2.124 1.782 2.082 2.078 2.120 2.132 2.140 2.197 2.194 2.245 2.124 2.074

% Correct 88.2 85.4 88.0 86.0 86.8 64.4 90.2 89.4 87.8 81.4 83.8 74.8 80.8 22.8 86.0 86.4

% w/o Noise 88.6 88.4 89.4 88.4 88.6 92.6 91.6 91.4 88.0 83.4 84.8 76.0 81.6 27.2 87.0 88.6
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• Weibull distribution with a decreasing hazard, Wei(0.5, 5eθ).

The settings are similar to those in Fu and Simonoff (2017). Note that the linear propor-

tional hazards assumption is satisfied in the first setup with θ = θ1. The second setting

where θ = θ2 aims to test the effectiveness of our proposed methods in a real-world appli-

cation in which failure times may have a complex structure. For convenience, we denote

the two settings as the proportional hazard setting and the complex setting, respectively.

Adopting the censoring mechanism discussed in Section 2.3.1, we considered a sample

size n = 200 with 500 replications. The prediction performance of failure times and failure

status at 0.25, 0.50, and 0.75 quantiles of the marginal distribution of T are assessed

by prediction errors and reported in Figures 2A4, 2A5, 2A6, and 2A7. The former two

show results of the proportional hazard setting. The Weibull distributions have increasing

hazards in Figure 2A4 and decreasing hazards in Figure 2A5. Similarly, the latter two

show results of the complex setting. The Weibull distributions have increasing hazards in

Figure 2A6 and decreasing hazards in Figure 2A7. In the proportional hazard setting, the

CUT methods based on the conditional inference tree and Cox model estimations of the

conditional survivor function are comparable to the oracle tree. The midpoint imputation,

PO imputation, and the CUT method employing the marginal survivor function give larger

prediction errors, especially when the Weibull failure distributions have increasing hazards.

The conditional inference tree predicts failure status comparably well to the oracle trees

regardless of the dependence structures of the covariates. However, it does not do well when

predicting failure times. In the complex setting, the CUT method based on the conditional

inference tree and Cox model estimations of the conditional survivor function are the only

two approaches comparable to the oracle tree when the Weibull failure distributions have

increasing hazards. As for the decreasing hazards case, all methods are comparable to the

oracle trees, except that the conditional inference tree does not perform well in predicting

failure times, and the midpoint imputation does not do well in predicting failure status.

Since the underlying structure is not of a tree form, the evaluation metrics “model size”

for structure recovery is not applicable here. However, we report “number of predictors”,

“percent correct” and “percent without noise” in Table 2A3 for completeness. As θ is a

function of X1 and X4, we define fitted trees that split on both the covariates and nothing
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else as “correct”, regardless of how many times they appear in the tree models. Similarly,

fitted trees that do not split on X2, X3, and X5 are considered as “without noise”. All the

methods are very conservative and can hardly catch both the influential predictors when the

Weibull failure time distributions have decreasing hazards in both the proportional hazard

and complex settings, although they avoid picking up noise variables most of the times.

When the failure time distributions have increasing hazards, our proposed CUT methods

are comparable to the oracle trees in both the proportional hazard and complex settings.

The PO imputations and the midpoint imputations pick up both influential predictors less

frequently when the covariates are highly correlated, while the right endpoint imputation

is too conservative to do so regardless of the dependence structure of the covariates. Still,

the PO and traditional imputations avoid picking up noise variables comparably to the

oracle trees in most settings. Finally, the conditional inference trees catch the influential

predictors most frequently when the Weibull failure times have increasing hazards in the

proportional hazard setting. Furthermore, we note that the dependence structure of the

covariates does not affect the performance of the conditional inference trees as it does when

the underlying structure has a tree form.
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Figure 2A4: Prediction errors for predicting failure times and failure status with indepen-

dent and highly correlated covariates comparing proposed CART algorithms (PO, CUT,

CUTCon, CUTCox) for interval-censored failure time data and the benchmarks (Ora, CIT,

M) in the proportional hazard setting. The Weibull failure times have increasing hazards.
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Figure 2A5: Prediction errors for predicting failure times and failure status with indepen-

dent and highly correlated covariates comparing proposed CART algorithms (PO, CUT,

CUTCon, CUTCox) for interval-censored failure time data and the benchmarks (Ora, CIT,

M) in the proportional hazard setting. The Weibull failure times have decreasing hazards.
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Figure 2A6: Prediction errors for predicting failure times and failure status with indepen-

dent and highly correlated covariates comparing proposed CART algorithms (PO, CUT,

CUTCon, CUTCox) for interval-censored failure time data and the benchmarks (Ora, CIT,

M) in the complex setting. The Weibull failure times have increasing hazards.
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Figure 2A7: Prediction errors for predicting failure times and failure status with indepen-

dent and highly correlated covariates comparing proposed CART algorithms (PO, CUT,

CUTCon, CUTCox) for interval-censored failure time data and the benchmarks (Ora, CIT,

M) in the complex setting. The Weibull failure times have decreasing hazards.

158



Table 2A3: Structure recovery measures with independent and highly correlated covariates

comparing proposed CART algorithms (PO, CUT, CUTCon, CUTCox) for interval-censored

failure time data and the benchmarks (Oracle, CIT, M, R). Failure times follow Weibull

distributions with fixed shape parameters and scale parameters as functions of covariates.

Independent Covariates Highly Correlated Covariates

Oracle PO CUT CUTcon CUTcox CIT M R Oracle PO CUT CUTcon CUTcox CIT M R

Proportional hazard setting with increasing hazards

# Predictors 2.088 1.986 1.836 2.098 2.148 2.088 1.776 0.502 2.140 2.070 2.090 2.195 2.232 2.337 1.830 0.558

% Correct 59.6 48.4 56.2 63.8 59.8 85.2 53.6 4.8 48.6 20.8 36.4 53.0 51.8 59.8 26.2 2.0

% w/o Noise 79.2 77.6 87.2 80.0 77.4 88.2 88.2 90.6 66.4 40.2 60.0 67.6 66.6 62.6 51.6 69.2

Proportional hazard setting with decreasing hazards

# Predictors 0.500 0.362 0.476 0.906 0.846 0.772 0.388 0.300 0.378 0.334 0.446 0.871 0.696 0.777 0.350 0.310

% Correct 3.0 2.4 4.4 7.6 7.4 5.6 1.2 0.0 1.0 1.0 1.6 2.2 2.6 1.8 0.6 0.2

% w/o Noise 86.2 89.0 90.4 88.8 84.6 92.4 87.6 87.4 81.2 82.8 77.4 72.2 73.2 77.6 80.4 84.4

Complex setting with increasing hazards

# Predictors 2.780 2.028 2.316 2.445 2.474 1.084 1.600 0.448 2.868 2.484 2.788 2.766 2.936 1.796 2.120 0.460

% Correct 47.0 43.2 56.4 55.8 60.0 43.2 44.6 1.6 30.4 22.8 28.2 32.4 31.2 37.0 22.4 0.6

% w/o Noise 47.4 66.8 64.8 61.8 63.0 92.2 79.0 88.6 30.6 36.6 30.0 33.8 31.4 64.4 46.0 86.8

Complex setting with decreasing hazards

# Predictors 0.376 0.274 0.352 0.596 0.512 0.260 0.268 0.318 0.400 0.360 0.530 0.640 0.706 0.340 0.316 0.290

% Correct 2.8 1.8 3.8 8.6 3.4 6.2 1.4 0.4 2.6 2.2 4.4 6.6 5.2 7.0 1.2 0.2

% w/o Noise 87.8 91.2 87.8 84.6 83.2 95.0 89.6 86.2 86.4 87.6 79.2 80.4 76.6 91.8 87.2 86.8
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Appendix 3A: Multiple Stages of Phase II Sub-Sampling

in Adaptive Two-Phase Designs

The adaptive two-phase designs discussed can be extended to accommodate multiple in-

terim stages of phase II sub-sampling labelled as, say, phase IIA, IIB, IIC, and so on. We

next describe how this can be implemented for the maximum likelihood and IPWEE ap-

proaches when we add one more phase to the phase II process. Let ϑ̄C = (β̄′C , γ̄
′
C)′ denote

the parameter estimates following phases IIA and IIB which are used to find the approxi-

mately optimal ψC for the selection model of a phase IIC sub-sample of MC = M−MA−MB

individuals. Following the maximum likelihood approach the score vector for ϑ1 becomes

SC(Y,X1|X2;ϑ1) =
n∑
i=1

SiC(Yi, Xi1|Xi2;ϑ1) =
n∑
i=1

(S ′i1C(ϑ1), S ′i2C(ϑ1))′,

where

Si1C(ϑ1) = RC
i Si1(Yi|Xi; β) + (1−RC

i )EXi1|Yi,Xi2
(Si1(Yi|Xi; β);ϑ1)

Si2C(ϑ1) = RC
i Si2(Xi1|Xi2; γ1) + (1−RC

i )EXi1|Yi,Xi2
(Si2(Xi1|Xi2; γ1);ϑ1) ,

with

RC
i = Ai + (1− Ai)Bi + (1− Ai)(1−Bi)Ci,

for i = 1, . . . , n. Under regularity conditions, the solution to SC(Y,X1|X2;ϑ1) = 0 is

asymptotically normal and

√
n(ϑ̂1 − ϑ1)→ N(0, E[SiC(Yi, Xi1|Xi2;ϑ1)S ′iC(Yi, Xi1|Xi2;ϑ1)]−1), as n→∞,

with expectations taken with respect to Y , X1, X2, A, B, and C. The approximately

optimal ψC is defined as the one that minimizes

asvar[
√
n(β̂1−β1); ϑ̄C , ψA, ψB, ψC ]+λ

[
E(C|A = B = 0; ϑ̄C , ψA, ψB, ψC)− E(MC)

E(NC)

]
, (16)

where NC = n−MA −MB.
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Similarly, the IPWEEs become

n∑
i=1

Ui1C(Yi|Xi; β, ψ
C∗) =

n∑
i=1

RC
i

πC∗i
D′i1Σ−1

i1 (Yi − µi) = 0

n∑
i=1

Ui2C(Ai, Bi, Ci;ψ
C∗) =

n∑
i=1

∂πC∗i
∂ψC∗

1

πC∗i (1− πC∗i )
(RC

i − πC∗i ) = 0,

where

πC∗i = πiA + (1− πiA)πiB + (1− πiA)(1− πiB)πiC

is indexed by ψC∗ which is determined by ψA and ψB in phases IIA and IIB, as well as

ψC to be set in phase IIC. The optimization problem is now to minimize (16) in which the

asymptotic covariance matrix has the sandwich form. The generalization to accommodate

more interim stages are straightforward in principle but more computationally intensive.

We can assess the efficiency gains or losses for the maximum likelihood and IPWEE

approaches as a function of the number of interim stages by generalizing the simulations

for binary X1 to allow for two to four interim stages of phase II sub-sampling. We compare

several simulation set-ups with n = 5000, E(M) = 2000, and E(MA) = 500 having two

to four stages in phase II. Specifically, the setting with E(MB) = 1500 is compared to

those with E(MA) = E(MB) = 500, E(MC) = 1000 and E(MA) = E(MB) = E(MC) =

E(MD) = 500. According to Table 3A1, having additional stages in phase II give slightly

better results in some cases. The comparison among set-ups with E(MA) : E(MB) :

E(MC) : E(MD) = 1:3:0:0, 1:1:2:0, and 1:1:1:1 was repeated for smaller phase II sub-

samples with E(M) = 1000 and E(M) = 400. The efficiency gains in all settings were

negligible and so it is difficult to justify having multiple interim stages in phase II when

the phase II sub-sample size is modest.
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Table 3A1: Average standard errors (ASE), empirical standard errors (ESE), and percent empirical

coverage probabilities (ECP%) of estimators from maximum likelihood (ML) and IPWEE (IPW)

adaptive two-phase designs with SRS or BS employed in a phase IIA sub-sample of size 0.25E(M).

E(MA) : E(MB) : E(MC) : E(MD) = 1:3:0:0, 1:1:2:0, and 1:1:1:1 from left to right. Phase I sample

size n = 5000, phase II sub-sample size E(M) = 2000, and nsim = 1000. Parameter of interest

β1 = 0.916.

No. of stages in phase II

Phase IIA 2 3 4

% Sampling∗ Analysis ASE ESE ECP% ASE ESE ECP% ASE ESE ECP%

25 SRS ML 0.108 0.108 94.7 0.108 0.107 96.1 0.107 0.104 95.9

IPW 0.110 0.114 94.4 0.110 0.111 94.8 0.110 0.111 95.5

25 BS ML 0.108 0.107 94.5 0.108 0.109 94.3 0.108 0.109 94.3

IPW 0.111 0.114 94.7 0.110 0.112 94.7 0.110 0.110 95.5

∗ Percentage of the phase II sub-sample chosen from and the sampling scheme employed in phase

IIA.
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Appendix 4A: Additional Simulation Results for Chap-

ter 4

Here we present simulation results of the sequential two-phase designs discussed in Section

4.3 in a setting where the responses are assumed to have an exchangeable odds ratio. In

other words, we assume

log φ(X,Z) = γ0

in data generation, design, and analysis. We adopt the parameter configuration and the

size of the empirical studies presented in Section 4.3.2. We specify γ0 = log 2 and γ0 = log 4

to reflect a moderate and a strong association between the responses, respectively. Table

4A1 summarizes the empirical biases (EBias), asymptotic standard errors (ASE), empirical

standard errors (ESE), and empirical coverage probabilities (ECP) of designs A-D. Figure

4A1 plots the asymptotic standard error of β̂1 of designs D1 as a function of the proportion

of the individuals in the combined phase II sub-sample that are selected from Study 1.

Table 4A2 summarizes the sampling probabilities of strata (Y, Z) of designs D2 and D1

displayed in Table 4A1.
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Table 4A1: Empirical biases (EBias), average standard errors (ASE), empirical standard errors (ESE),

and empirical coverage probabilities (ECP) of the estimator of parameter of interest from the combined

phase II data using likelihood and inverse weighting methods. A-D refer to designs with different use

of Study 1 data described in Section 4.3.2. For designs A-D1, E(M1) = E(M2) = 0.05n. For designs

D2, E(M2) = 0.1n. “BS” and “opt” stand for balanced sampling and optimal sampling, respectively. An

exchangeable dependence structure is employed in data generation, design, and analysis. Moderate and

strong associations between the responses are reflected by φ(X,Z) = 2 and φ(X,Z) = 4, respectively.

nsim = 1000, n = 5000, and β1 = 0.916.

Stratification Results

Design Study 1 Study 2 Response Model Analysis EBias ASE ESE ECP(%)

φ(X,Z) = 2

A - BS (Y2, Z) Marginal IPW 0.035 0.351 0.354 95.7

ML 0.018 0.298 0.297 95.9

CML 0.018 0.299 0.297 95.9

B BS (Y1, Z) BS (Y2, Z) Marginal IPW -0.062 0.239 0.245 92.9

ML -0.043 0.207 0.213 93.2

CML -0.043 0.206 0.213 93.2

C BS (Y1, Z) BS (Y, Z) Joint IPW 0.009 0.271 0.269 94.8

IPW2 0.008 0.245 0.241 95.0

ML 0.004 0.203 0.200 95.7

CML 0.004 0.205 0.203 95.3

D1 BS (Y1, Z) opt (Y, Z) Joint IPW 0.010 0.227 0.222 96.0

IPW2 0.007 0.220 0.215 96.0

ML 0.005 0.194 0.195 94.8

CML 0.003 0.196 0.196 95.2

D2 - opt (Y2, Z) Marginal IPW - 0.221 - -

ML - 0.184 - -

CML - 0.184 - -

φ(X,Z) = 4

A - BS (Y2, Z) Marginal IPW 0.048 0.351 0.364 95.0

ML 0.026 0.299 0.309 94.8

CML 0.026 0.298 0.309 94.7

B BS (Y1, Z) BS (Y2, Z) Marginal IPW -0.049 0.238 0.235 95.0

ML -0.034 0.206 0.207 94.3

CML -0.034 0.206 0.207 94.3

C BS (Y1, Z) BS (Y, Z) Joint IPW -0.006 0.266 0.271 94.2

IPW2 -0.007 0.243 0.248 94.6

ML -0.004 0.205 0.213 94.0

CML -0.003 0.207 0.215 93.5

D1 BS (Y1, Z) opt (Y, Z) Joint IPW 0.009 0.227 0.222 95.5

IPW2 0.008 0.220 0.217 94.5

ML -0.001 0.194 0.200 94.2

CML -0.001 0.196 0.201 94.9

D2 - opt (Y2, Z) Marginal IPW - 0.221 - -

ML - 0.184 - -

CML - 0.184 - -
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Figure 4A1: Plots of asymptotic standard error of β̂1 of designs D1 as the proportion

of the individuals in the combined phase II sub-sample that are selected from Study 1,

E(M1)/E(M1 +M2), increases. An exchangeable dependence structure is employed in data

generation, design, and analysis. The two rows display graphs of the set-ups with odds

ratio (OR) 2 and 4, respectively. Columns from left to right display graphs of frameworks

of analysis IPW, ML, and CML, respectively. Lower bounds represent the ideal designs

D2 which select an optimal sample of M1 + M2 individuals in Study 2. Upper bounds

represent using BS to select M1 + M2 individuals in Study 1. nsim = 1000, n = 5000,

E(M1 +M2) = 500.
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Table 4A2: Sampling probabilities of 8 strata defined by (Y1, Y2, Z) of our proposed optimal

designs D1 and the ideal optimal designs D2. The Study 1, Study 2, and Net Study 2

rows refer to π1, π2, and π̄2 of the proposed designs D1, respectively. An exchangeable

dependence structure is employed in data generation, design, and analysis. Moderate and

strong associations between the responses are reflected by φ(X,Z) = 2 and φ(X,Z) = 4,

respectively. nsim = 1000, n = 5000, and β1 = 0.916.

Analysis Designs (0,0,0) (1,0,0) (0,1,0) (0,0,1) (1,0,1) (0,1,1) (1,1,0) (1,1,1)

φ(X,Z) = 2

Expected Strata Size 2788 504 504 539 169 169 204 123

Selection Probabilities

IPW D2 0.063 0.063 0.206 0.092 0.092 0.281 0.206 0.281

D1 Study 1 0.019 0.088 0.019 0.088 0.214 0.088 0.088 0.214

D1 Study 2 0.033 0.032 0.169 0.016 0.016 0.089 0.167 0.087

D1 Net Study 2 0.051 0.118 0.185 0.103 0.226 0.169 0.240 0.282

ML D2 0.001 0.001 0.001 0.361 0.361 0.836 0.001 0.836

D1 Study 1 0.019 0.088 0.019 0.088 0.214 0.088 0.088 0.214

D1 Study 2 0.001 0.011 0.011 0.050 0.371 0.370 0.114 0.872

D1 Net Study 2 0.020 0.099 0.030 0.134 0.505 0.426 0.192 0.899

CML D2 0.001 0.001 0.001 0.361 0.361 0.836 0.001 0.836

D1 Study 1 0.019 0.088 0.019 0.088 0.214 0.088 0.088 0.214

D1 Study 2 0.001 0.011 0.011 0.050 0.374 0.373 0.108 0.876

D1 Net Study 2 0.020 0.098 0.029 0.134 0.508 0.429 0.187 0.902

φ(X,Z) = 4

Expected Strata Size 2863 429 429 569 139 139 279 153

Selection Probabilities

IPW D2 0.063 0.063 0.206 0.092 0.092 0.281 0.206 0.281

D1 Study 1 0.019 0.088 0.019 0.088 0.214 0.088 0.088 0.214

D1 Study 2 0.034 0.034 0.162 0.018 0.017 0.088 0.160 0.085

D1 Net Study 2 0.053 0.119 0.178 0.104 0.228 0.168 0.234 0.281

ML D2 0.001 0.001 0.001 0.361 0.361 0.836 0.001 0.836

D1 Study 1 0.019 0.088 0.019 0.088 0.214 0.088 0.088 0.214

D1 Study 2 0.001 0.001 0.001 0.130 0.394 0.394 0.001 0.745

D1 Net Study 2 0.019 0.088 0.019 0.206 0.524 0.448 0.088 0.800

CML D2 0.001 0.001 0.001 0.361 0.361 0.836 0.001 0.836

D1 Study 1 0.019 0.088 0.019 0.088 0.214 0.088 0.088 0.214

D1 Study 2 0.001 0.001 0.001 0.125 0.398 0.398 0.001 0.760

D1 Net Study 2 0.019 0.088 0.019 0.202 0.527 0.451 0.088 0.811
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Appendix 4B: Additional Sequential Two-Phase

Biomarker Studies in Psoriatic Arthritis

In this section, we report a study framed within the psoriatic arthritis (PsA) research

project involving the University of Toronto Psoriatic Arthritis Cohort (UTPAC). We con-

sider a dataset that involves a subset of the full registry of UTPAC comprising 1489 pa-

tients. One particular interest of the PsA research program is to assess the association

between the biomarker matrix metalloproteinase 3 (MMP-3) and joint damage progres-

sion. However, it is not feasible to assay all the biospecimens to measure the MMP-3 levels

of the entire cohort because of budgetary constraints. Similar to Section 4.5, patients have

the conditions of their joints recorded, and the dataset provides auxiliary information such

as gender and the erythrocyte sedimentation rate (ESR) levels for the entire cohort.

We design a focused simulation study to investigate the performance of our proposed

secondary analyses and optimal sequential two-phase designs in the setting of the PsA

program. According to the dataset, 251 patients have their MMP-3 levels measured at a

baseline assessment to study the progression of clinical damaged joints in two years from

the baseline. Such patients serve as pilot data to help with parameter configuration. In

terms of sequential two-phase studies, we let Y1 = 1 if a patient develops two or more

clinically damaged joints of grade 1 (deformity) or higher in two years from the baseline,

and Y1 = 0 otherwise. We let the auxiliary covariate Z = 1 if the baseline ESR level

is greater than 20 for females or greater than 13 for males, and Z = 0 otherwise. The

exposure variable X is defined by dichotomizing the continuous MMP-3 levels according

to its 0.8 quantile. As for the new response of interest in Study 2, it is defined by the

increase in the number of tender and swollen joints in two years from the baseline. We

let Y2 = 1 if a patient develops two or more such joints during the two years. The

response models and the covariates models have the form of (4.1), (4.2), (4.3), (4.4), and

(4.10). Fitting logistic regression models to the data, we let α = (−1.727, 0.736, 0.554)′,

β = (−2.258, 0.809, 0.144)′, γ = (−0.069, 1.322, 0.149,−2.565)′, ξ = (−1.893, 1.391)′, and

ζ = −0.055.

We perform a simulation study with nsim = 500 and phase I sample size n = 5000.
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Suppose that Study 1 employs BS based on 4 strata defined by Y1 and Z to select a sub-

sample of expected size E(M1) = 250 for the measurements of the exposure variables.

Without additional sampling, we perform joint secondary analyses to investigate Y2|X,Z
using Y and Z of the entire dataset as well as X of the M1 patients. Results are displayed

in the top half of Table 4B1. Adopting joint response models, all the secondary analyses

recover the parameter of interest well. Employing the marginal model of Y2 via IPW as in

(4.11) leads to valid results, too. We further consider a subsequent Study 2 with a phase II

sub-sample of expected size E(M2) = 250 to investigate the performance of our proposed

optimal design D1 in the PsA setting. Results are displayed in the bottom half of Table

4B1. Our proposed optimal designs D1 give valid estimates with negligible EBias. The

likelihood methods are found to be more efficient than the IPWEEs, illustrated by smaller

ASEs and ESEs in the D1 rows. Hence, the proposed analyses and designs of sequential

two-phase studies are well adapted to the PsA setting to inspect the relationship between

the disease progression and biomarkers of interest with budget limitations.
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Table 4B1: Empirical biases (EBias), average standard errors (ASE), empirical standard errors (ESE),

and empirical coverage probabilities (ECP) of the parameter estimates of interest following the secondary

analyses (top half) and the combined phase II data of the sequential two-phase designs (bottom half) using

likelihood and inverse weighting methods in the PsA setting. For secondary analyses E(M1) = 250, and

for sequential two-phase studies E(M1) = E(M2) = 250. “BS” and “opt” stand for balanced sampling

and optimal sampling, respectively. The response of Study 1 is whether a patients develops two or more

clinically damaged joints of grade 1 or higher in two years of follow-up. The response of Study 2 is whether

a patients develops two or more tender and swollen joints in two years of follow-up. nsim = 500, n = 5000,

and β1 = 0.809.

Stratification Results

Response Model/Design Study 1 Study 2 Analysis EBias ASE ESE ECP(%)

Secondary analyses

Joint BS (Y1, Z) IPW 0.029 0.460 0.467 95.2

IPW2 0.037 0.457 0.462 95.2

ML 0.007 0.464 0.457 93.4

CML 0.018 0.476 0.468 95.6

Marginal BS (Y1, Z) IPW 0.019 0.463 0.468 95.8

Sequential two-phase studies

D1 BS (Y1, Z) opt (Y, Z) IPW 0.021 0.257 0.262 93.8

IPW2 0.021 0.257 0.262 93.6

ML 0.019 0.245 0.244 96.4

CML 0.019 0.247 0.249 95.6
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