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Abstract

Code search is an important and frequent activity for developers using computational
notebooks (e.g., Jupyter). The flexibility of notebooks brings challenges for effective code
search, where classic search interfaces for traditional software code may be limited. In
this paper, we propose, NBSearch, a novel system that supports semantic code search
in notebook collections and interactive visual exploration of search results. NBSearch
leverages advanced machine learning models to enable natural language search queries and
intuitive visualizations to present complicated intra- and inter-notebook relationships in
the returned results. We developed NBSearch through an iterative participatory design
process with two experts from a large software company. We evaluated the models with
a series of experiments and the whole system with a controlled user study. The results
indicate the feasibility of our analytical pipeline and the effectiveness of NBSearch to
support code search in large notebook collections. As one important aspect of the future
directions, the search quality of NBSearch was further improved by incorporating the
impact of markdowns in notebooks, and its performance was evaluated by comparing to
the original implementation.
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Chapter 1

Introduction

Computational notebooks (e.g., Jupyter) combine code, documentation, and outputs (e.g.,
tables, charts, and images) within a single document, which provides expressive support
for developers, such as adjusting code parameters to see results on the fly. Searching
examples, support, and documentation, such as which code APIs to use and how to use
them, is one vital activity for developers using notebooks, as well as other development
tools [17, 52, 2, 53]. A notebook contains a collection of cells, including markdown cells
for documentation and code cells for scripts. Unlike traditional software code, these cells
can be written and executed in any order, offering great convenience for developers.

However, these unique features of notebooks increase the complexity of code and its
management [17, 64], thus imposing challenges for code search. Developers are often un-
known about which APIs to use [57], e.g., “how can I plot a bar chart in Python?” Semantic
code search (e.g., based on module descriptions and data flows among APIs used by de-
velopers [43]) could address this issue by enabling natural language queries [66]; however,
existing methods may not work appropriately because the structure of a notebook is non-
linear (with loosely-connected cells), unlike a traditional code module. Cells in a notebook
can be relatively independent and a group of cells can serve as a functional unit; meanwhile,
they are interrelated, sharing data, variables, and function calls. We could treat each code
cell as a basic search unit; however, there may not be enough semantic information (e.g.,
comments, docstrings, etc.) available to leverage. Further, to make sense of the search
results, advanced user interfaces, rather than simple ranked lists, are needed [67], because
of the complex relationships between returned cells and notebooks.

To address these challenges, we propose a novel search interface, NBSearch, that pro-
vides effective code search in an extensive collection of notebooks and visual exploration
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of search results. As a first step, we design and develop NBSearch as a standalone tool,
rather than integrating into the Jupyter Notebook environment. We adopt the semantic
search approach that has been demonstrated better performance and user experience [43].
By leveraging deep learning techniques, we enable this approach with individual notebook
cells as basic search units, to accommodate the flexible nature of notebooks. Specifically,
with a large notebook repository [6], we train a translation model to identify mappings
between existing code and text descriptions (e.g., comments) in code cells. We then use
the model to generate text descriptors for code without any comments, so each cell is
associated with code and descriptors, which became our search database. Next, we build
a language model that characterizes all the cell descriptors in a learned semantic space.
When a user initiates a query in natural language, NBSearch utilizes the language model
to process the query and retrieve search results (i.e., a collection of relevant cells from mul-
tiple notebooks) by searching in the semantic space of descriptors based on similarity and
then retrieving associated code segments based on the code-descriptor pairs. To facilitate
the exploration of search results, we design a user interface that exhibits many aspects
(e.g., variables used in code) in the search results. Specifically, it features an interactive
visualization, NBLines, which reveals both intra- and inter-notebook relationships among
cells.

NBSearch is developed through a user-centered, iterative, participatory design process
with two senior developers at Uber (who are also the authors). Over the course of six
months, we maintained regular meetings and consultations with the experts on multiple
communication platforms (e.g., video conferencing, Slack, and emails), in which several pro-
totypes were created and tested (e.g., sketches, low-fidelity, and high-fidelity prototypes).
We evaluated the machine learning models of NBSearch by running comprehensive exper-
iments to compare different model alternatives, using the public notebook repository [6].
The results indicate that our analytical pipeline is promising and reveal deep insights into
selecting models for building the pipeline. Moreover, we assessed the system as a whole by
conducting user studies with 12 professional software engineers and data scientists at Uber
by using their internal notebook collections. The results show that NBSearch is useful and
effective for supporting participants’ code search tasks when programming with notebooks.
Besides, as one important piece of the future extensions, experiments were conducted to
the impact of markdown cells on search quality. The results indicated that it can improve
the performance of the machine learning models used in NBSearch. The code associated
with this thesis can be accessed at https://github.com/WatVis/NBSearch.

In summary, the contributions in this thesis include:

• An analytical pipeline that enables the semantic search of code in computational
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notebook collections with the power of deep learning techniques;

• An interactive system, NBSearch, that allows developers to conduct code search and
browse search results enhanced by a visualization widget, NBLines; and

• Experiments for both the system’s analytical pipeline and user interface, which pro-
vides implications on selecting models for semantic search and designing search in-
terface for computational notebooks.

• Evaluation on markdown cells, which reveals a complementary relationship between
quality of markdown cells and performance of models applied in our pipeline.
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Chapter 2

Background

2.1 Notebooks and Relevant Tools

Computational notebooks (e.g., Jupyter Notebooks and RStudio) have recently emerged as
a form of programming environments that support dynamic development. A notebook is
broken down into cells that appear in two primary forms, including code cells that contain
executable scripts and markdown cells that contain formatted text (supplementing the
comments in code cells). While a notebook is presented linearly, the order of executing
the cells can be arbitrary, and each cell can be executed multiple times as well as edited
between different runs, exhibiting a highly nonlinear programming pattern. Furthermore,
the relationships between markdown cell and code cell are complicated. A markdown cell
can describe code cells immediately after it, and markdown cell can also provide explanation
for previous code cells.

The dynamic nature of notebooks provides much freedom for developers, allowing them
to experiment with different techniques, try out alternative methods, write temporary code,
and conduct exploratory data analysis [30]. However, these features, at the same time,
create challenges in code management, comprehension, and development. For example,
messes in code may accrue during the process, and developers may lose track of their
thought processes. To help track code history, several tools have been proposed, such
as Variolite [28] and Verdant [29], which support fast versioning and visual exploration of
history. Code Gathering Tools [17] help find, clean, recover, and compare versions of code in
Jupyter Notebooks. Further, BURRITO [16] and TRACTUS [61] provide the provenance
of analysis workflows by capturing and displaying code outputs, development activities,
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users’ hypotheses, etc. More recently, the flexibility of notebook-style programming has
been explored for providing code tutorials [18].

Nevertheless, the above tools for notebooks assume developers produce the code, ne-
glecting the support for code search activities that occur quite frequently in software devel-
opment [53]. Developers have to use generic search engines (e.g., Google Search) or those
built for traditional code repositories (e.g., SourceForge), whose effectiveness is unknown
due to the uniqueness of notebooks. In this paper, we focus on supporting code search
for computational notebooks to improve developers’ efficiency in identifying desired code
samples and APIs to use.

2.2 Code Search and Visualization

There exist several code search tools, in addition to generic search engines such as Google.
Sim et al. [57] comprehensively compared Koders [65], Google, Google Code Search,
Krugle [33], and SourceForge [58], with different sizes of search target and motivation
for search. These search engines index code based on API keywords and method signa-
tures, which may have limitations because code cells in notebooks are organized quite freely
and the signatures are difficult to extract. Other approaches have been explored to pro-
vide more semantic features, allowing developers to search more effectively. Examplar [43]
ranks search results using application descriptions, APIs used, and data-flows in code.
CodeGenie [37] leverages a test-driven approach to search reusable code. Sourcerer [38]
uses fine-grained structural information from the code, enabling capabilities that go be-
yond keyword-based search. However, none of the above search engines are designed to
tailor searching code in computational notebooks, which have different characteristics com-
pared to traditional code modules. For example, the code in notebooks is much messier,
broken into small snippets (i.e., cells) that can be presented and executed in an arbitrary
order. The analysis of code structures and semantics in existing tools relies on a clean,
well-documented, and linearly-organized structure, which is often not available in note-
books. We approach this challenge by treating each cell as a search unit and identifying
the relationships between cells within and across notebooks.

On the other hand, approaches for software visualization have been developed to un-
derstand the functional and structural components of existing code. For example, UML
(Unified Modeling Language) is a standard diagram for showing relationships between soft-
ware components. Hoffswell et al. [24] provided an in-situ visualization within the code
to summarize variable values and distributions. Based on a graph model, force-directed
methods have been examined [55]. Similarly, dependency graphs have been adopted to
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reveal connections between variables and functions [1]. Recently, Albireo [64] employs
an interactive graph to visualize relationships of code and markdown cells in a notebook,
while showing the information of variables, functions, and execution paths. TRACTUS [61]
utilizes a tree structure to reveal the process of a hypothesis-driven analysis. While the
above techniques are useful for understanding code in a single notebook, they cannot be
easily applied for visualizing multiple notebooks, which is the case for browsing search
results. NBSearch analyzes the relationships between cells within and between notebooks,
presented in a novel visualization, NBLines. It also reveals the connections among vari-
ables and functions used in a notebook, helping developers make sense of search results
and discover serendipitous opportunities.

2.3 Search Results Exploration

It is important for users to comprehend search results, especially when they do not know
the exact answer; they may try to gain an understanding of a topic to retrieve more specific
or related information for subsequent search actions [62]. Wilson et al. [66] advocated that
the future web search interfaces should emphasize exploration. Users’ search behaviors in
web visualizations have also been explored [11]. There only exist a few works focusing on
the sensemaking of code search results, many techniques have been proposed to visualize
document and website searches or text.

One way of presenting search or recommended results is based on a linear ranked list
like Google. TileBars [19] places a colored bar next to each list item to display docu-
ment length and term frequency. Moreover, PubCloud [34] uses tag clouds to augment a
ranked list. LineUp [14] allows users to visually manipulate a multi-attributed ranked list.
uRank [8] provides on-the-fly search results refinement and reorganization as information
needs evolve.

On the other hand, researchers have utilized a 2D space to present documents with
various layout methods. One approach is to place items based on their attributes (or
facets); for example, PivotPath [9] and PivotSlice [68] display a publication corpus as a
multi-attributed network and position each document interactively with a partition of a
2D canvas. Another approach is projection-based methods. Gomez-Nieto et al. [12] used
an energy-based method to place text snippets of search results with minimal overlap.
MOOCex [67] visualizes a recommended list of videos on a 2D canvas using multidimen-
sional scaling (MDS) with a specific similarity measure. Moreover, space-filling techniques
(e.g., treemaps and 2D tiles) have been used for browsing searching results [4, 31]. Further,
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WebSearchViz [45] and Topic-Relevance Map [48] employ a circular layout, where the dis-
tance to the center represents a document’s relevance, and the section of the circle denotes
a specific topic or cluster. Likewise, RankSpiral [59] employs a spiral layout to render a
ranked list by maximizing information density.

However, it is inadequate to directly apply the above methods in our scenario, because
computational notebooks are different from text documents. For example, many of these
techniques are based on topic analysis and text similarity, which cannot be extracted
from code. Further, unlike documents or websites, the relationships (e.g., commonly-
used variables and APIs) between code cells need to be revealed, but they have different
distributions and characteristics compared to term relationships in documents.
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Chapter 3

Usage Scenario

In this section, we demonstrate the basic usage of NBSearch with a motivating scenario.
Detailed descriptions of the system design and functionalities will be introduced in the
following sections.

Suppose that Tom is a software developer who is using Jupyter Notebooks to explore
different solutions for solving a classification problem from his work. He is new to machine
learning and has heard that the kNN model is a good start. But he does not know what
toolkits or APIs to use or how to apply them. Thus, Tom only has a vague goal in mind,
so he types “knn to perform classification” in the search bar of the NBSearch interface
(Figure 3.1A).

Within a second, a set of relevant notebook cells is returned from the search database,
which is displayed as a ranked list on the Search Result Panel on the left (Figure 3.1B).
Each cell is colored uniquely to indicate the notebook it belongs to. Simultaneously, the
middle Notebook Relationship Panel (Figure 3.1C) displays NBLines, a visualization of all
the other cells within the same notebooks of the searched cells. Each notebook is visualized
as a line, and each cell is shown as a dot, having the same color-coding in the Search Result
Panel. Cells are also aligned based on their similarity and their order in the notebooks.

After briefly browsing the search results, Tom thinks the first returned item looks quite
relevant. He clicks the cell, which triggers the Notebook Panel (Figure 3.1D) to appear,
showing all the cells from that notebook. NBSearch automatically scrolls down to the
searched cell, showing an arrow on the right of the Notebook Panel.

Tom then looks through the notebook and finds that it contains too many cells. Due to
the complexity of the notebook (e.g., cells can be in arbitrary order), Tom has no idea how
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A

B C D

Figure 3.1: A developer is searching “knn to perform classification” with NBSearch and
exploring the results: (A) the Search Bar accepts a user’s queries in natural language
or code keywords; (B) the Search Result Panel displays a ranked list of relevant cells
to the query; (C) the Notebook Relationship Panel visualizes intra- and inter-notebook
relationships of cells based on the search result; and (D) the Notebook Panel shows the
entire notebook containing the selected cell in the search results.

the searched cell is related to other cells in the same notebook, and thus does not know how
to use the code in the cell in a meaningful context. NBSearch has a couple of features to
support Tom to get the context. The colored bar on top of each cell indicates its similarity
with respect to the search cell, and the tags below the bar show all the variables/functions
used in a cell, where the ones sharing with the selected cell are highlighted in gray. Fur-
ther, from the black curves of the visualization on the Notebook Relationship Panel, Tom
easily identifies all the cells having more than two overlapping variables/functions with the
selected cell.

With all the information, Tom finds that many other cells call the function fit and evaluate,
similar to the searched cell. So, by following the arrows on the Notebook Relation-
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ship Panel, he decides to look into the cell that defines that function, which could be
the code that he can actually reuse. Further, he discovers that other cells applying
fit and evaluate use some other models, such as “random forest classifier” and “lin-
ear discriminant analysis”, which are new concepts and methods that Tom has not been
aware of(i.e., serendipitous findings). Thus, he also decides to look into these to see if they
apply to his problem.

10



Chapter 4

NBSearch Design

In this section, we introduce the design process of NBSearch and the design goals that
we distilled based on our consultation with two experts, followed by an overview of the
system.

4.1 Design Process

We employed a participatory design approach to develop NBSearch, in which we actively
involved two expert end-users over a six-month design process. Both experts work at Uber,
which is a large IT company with more than 25K employees. One is a software engineer
with more than three years of professional experience. The other is an engineering manager
who has three years of development experience plus two years of management experience.
They both use Jupyter Notebooks frequently every day to perform data analysis, conduct
coding experiments, develop analytical models, etc. Moreover, both of them have once
contributed to large open-sourced projects for Jupyter Notebooks. Both experts are also
authors of this paper, for their contributions to the deployment of NBSearch using Uber’s
internal data and server as well as participant recruitment (see Section 7.1 and Section 7.2).
However, they were separated from the core research team for the design and development
of NBSearch at the University of Waterloo.

Through the design process, we maintained bi-weekly meetings with the experts, during
which they were presented with the latest ideas, designs, and prototypes for feedback
on further improvements. We also set up a Slack channel to communicate irregularly
for ad-hoc discussion, short consultation, and quick feedback. The whole design process
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of NBSearch consists of three stages: define & ideate (1.5 months), protype & test (3
months), and deploy & evaluate (1.5 months). During the first stage, we conducted a
series of in-depth interview and brainstorming sessions with the experts. Together, we
identified the common practices and seen problems of developers using Jupyter Notebooks
in an enterprise setting. We thus iteratively distilled a set of design goals for guiding
the development of code search systems with computational notebooks (see Section 4.2).
We also drew a blueprint for the system with some level of technical consideration (see
Section 4.3). In the second stage, a series of prototypes were developed and refined based
on our experts’ feedback, including sketches, paper prototypes, analytical components with
various machine learning models, and an interactive working prototype running on a public
notebook corpus. During our meetings with the experts, we invited them to try out our
prototypes and to comment on various aspects including visual design, interface layout,
user interaction, search quality, etc. Figure 4.1 shows some early sketches and mockups
for NBSearch, which set the foundation of our final design shown in Figure 3.1 (also see
chapter 6). Our development of the backend analytical pipelines was also supported by a
set of micro-benchmarks and experiments (see chapter 5). For the third stage, with the
help of our experts, we deployed a fully-functional prototype of NBSearch on an internal
notebook corpus from their company. We also carried out a user study to formally evaluate
NBSearch as a whole with professional data scientists and software engineers at Uber (see
chapter 7).

4.2 Design Goals

As introduced earlier, we distilled the following set of design goals from the first stage of
our design process.

G1: Retrieve relevant code segments with fuzzy search. Notebooks are designed
to facilitate on-the-fly programming, in which developers need to constantly write and
refine code to try different methods [17]. Code search activities with vague goals occur
more often in such exploratory scenarios, and developers usually do not know what exactly
they want to use (e.g., specific APIs) [57]. Especially, our experts mentioned: “For new
employees, it is infeasible to glance through all the notebooks due to the sheer volume. They
often don’t know which keyword to use. This is where contextual search comes in handy.”
Thus, the system needs to go beyond the traditional keyword-based search by supporting
fuzzy search based on semantics. That is, a developer should be able to query in natural
language by describing roughly what they need.

G2: Accommodate the flexibility of computational notebooks. “Seasoned
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Figure 4.1: (a)(b) Early sketches for the NBSearch user interface. (c)(d) Early visualization
designs for showing the connections of multiple notebooks in the search results.

developers often document and publish their workflow by leveraging notebooks’ dynamic
nature for easy reproducibility and interpretability,” said by the experts. However, unlike
traditional software code, each code cell in a notebook is relatively independent, and cells
can be executed at an arbitrary order and for multiple times. This results in loosely
connected code segments in notebooks and a highly nonlinear programming pattern for
developers [17, 61, 64]. Classic code search by indexing functional modules may not be
appropriate, because such concepts are unclear in notebooks. Hence, the system should be
based on cells to adapt their flexibility and enable the discovery of “micro-components or
steps in developers’ workflows.”

G3: Allow for exploring intra- and inter-notebook relationships. Due to the
complex structure of notebooks, the results returned by a search engine, which contain
code cells from multiple notebooks, can be complicated. Representing the results with
a classic ranked list may not be sufficient [67]. Our experts also mentioned: “Existing
platforms such as Google Search and StackOverflow do not help much because most of their
software solutions are built in-house.” For each cell in the search result, code cells from
the same notebook can be relevant to provide a context of the usage of the scripts in that
cell; however, the cells before or after that cell may not be necessarily related because of
the dynamic nature of notebooks. Further, given a specific cell of interest, code cells from
other notebooks, including the cells returned in the search result and other cells co-existing
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Figure 4.2: Overview of the NBSearch system which consists of a front-end user interface
and a back-end search engine that is built based on some preprocessing steps.

in the associated notebooks (but not in the search result), can be useful for serendipitous
discoveries. Therefore, the system should provide an effective means for helping developers
explore such intra- and inter-notebook relationships to make sense of the search results.

4.3 System Overview

Following these design goals, we developed NBSearch with the aforementioned iterative
participatory design process with our experts. An overview of the system architecture is
shown in Figure 4.2. Details of each component will be introduced in the following sections.
Here we provide a high-level description of the system.

First, a search database needs to be built from a notebook corpus, as illustrated in the
preparation & preprocessing step in Figure 4.2. For the notebook corpus, code cells were
extracted and split into two sets: code with comments and code without comments. From
the code cell with comments, a seq2seq translation model (e.g., an LSTM recurrent neural
network [23]) was trained to “translate” code scripts into corresponding comments, which
we call text descriptors of the code. With the trained translation model, a completed
database of code-descriptor pairs of all the code cells in the corpus was generated by
running the model on the code cells without comments. Then, all the text descriptors were
sent to a language model (e.g., Doc2Vec [36]) to learn a semantic vector space of these
texts. Thus, each of the descriptors could be represented by a numerical vector, stored in
a database of descriptor vectors, where more similar descriptors have a closer distance in
the vector space.
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With these trained models and generated databases, NBSearch is able to handle a
user’s query and perform a semantic search of code in the notebook corpus. As described
in chapter 3, when a user initiates a query in natural language on the search bar of the
front-end interface, the back-end leverages the language model to convert this query into its
vector form. Then, it uses this query vector to search in the formerly generated database of
descriptor vectors and retrieve similar descriptors. Based on these descriptors, the system
further looks up in the database of code-descriptor pairs to obtain the associated code
cells. After, these code cells, along with other useful information (e.g., which notebooks
they belong to, other cells within the same notebooks, variables/functions used in code),
are sent to the front-end for search result presentation.

The semantic code search capability of NBSearch does not mean to replace the classic
code keyword-based search. Users can initiate a pure keyword search by using quotation
marks on keywords (e.g., “plot.hist”). This is useful when they know exactly what
APIs to use and want to seek examples of how to use them. The keyword-based search
was implemented with the Okapi BM25 method [42] by indexing the scripts of notebook
code cells, where exact keyword matches are found and ranked by their frequency in code
cells. However, NBSearch does not currently support semantic and keyword-based searches
simultaneously in one single query, which is an interesting future direction.
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Chapter 5

NBSearch Engine

In this section, we introduce the development and evaluation of the back-end search engine
of NBSearch.

5.1 Building Search Database

We first need a corpus of computational notebooks to construct a database to support
code search. We obtained data from UCSD digital collection [6], which contains 1.25M
notebooks crawled from GitHub during 2017. As an initial attempt, in this paper, we
used a sampled portion of the entire dataset for development and experimentation, which
contains about 6K notebooks (around 100K code cells) as our corpus. However, our method
can be directly employed on the entire UCSD notebook collection with larger and stronger
computing resources.

To support semantic code search (G1), at a high level, we want to build a database
maintaining a one-to-one mapping between code segments and text descriptors in natu-
ral language. Specifically, a sentence (i.e., descriptor) that explains the functionality is
the ’semantic’ of that code cell. Therefore, we can process a natural language query to
search similar text descriptors, and thus find the associated code segments performing the
described functions, procedures, etc. The code itself cannot be a meaningful semantic de-
scriptor, because it is significantly different from natural language. Comments embedded
in code are a straightforward source for constructing these descriptors, because they usu-
ally explain the underline semantic meaning of the code, among many other aspects such
as control flows and desired outputs.
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However, not every piece of code contains comments. Further, some comments are not
in natural language (e.g., programmers comment out lines of code to compare different
results). Thus, to utilize the code of the whole corpus, one approach is to generate the
“comments” based on the code. Intuitively, we view it as a translation task in natural
language processing, where we aim to build a model for translating programming language
(e.g., Python code) into natural language (e.g., comments, or text descriptors), with the
existing code and comments as the training data. With the trained model, we can generate
descriptors from code that is without them, and thus build a complete dataset for all the
code in the corpus (Figure 4.2).

5.1.1 Dataset pre-processing

As we consider notebook cells as the basic search unit (G2), we processed the notebook
corpus by cells.

Specifically, we scanned and processed the corpus by concatenating all the comments
in each code cell. Comments with non-English words were ignored for simplicity, and also
comments formed by code where developers simply commented out lines of code during
programming. This is because these comments are not considered as meaningful descriptors
in natural language. In total, we had 27,423 pairs of code and descriptors in our training
set, leaving 77,935 code cells to generate descriptors. We did not consider markdown cells
at first, although they are potential semantic descriptors for the code in a notebook. This is
because it is challenging to identify which code cells are associated with which markdown
cells. A markdown cell may describe multiple code cells in a notebook (which can be
the cells immediately after or some other cells), or just generally describe the settings of
the entire notebook (i.e., associated with no code). Due to this level of complexity, we
decided not to use markdown cells in NBSearch since imprecise, noisy training data may
affect the performance of the model. However, experiment related to relationships between
markdown cell and machine learning models were conducted independently in Section 8.2.
In the future, if there exists a high-quality labelled dataset showing the connections between
markdowns and code in notebooks, our method can be easily applied and extended.

5.1.2 Model training

As mentioned above, we formulated our problem as a translation task in machine learning,
i.e., from Python code (programming language) to text descriptors (natural language).
With recent advances in neural machine translation, we employed the seq2seq model which
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is composed of an encoder and a decoder; both of them are recurrent neural networks
(RNN) [56]. The encoder captures the context of an input sequence into a hidden state
vector, and the decoder produces an output sequence from this hidden state vector. In
machine translation tasks, the current practice also includes an embedding layer and a
batch normalization layer before sending sequences of words (or tokens) to the RNNs, for
a faster and stabler performance [27]. We considered four different RNNs: GRU (gated
recurrent unit) [3], LSTM (long short-term memory) [23], LSTM with Attention [39],
and BiLSTM (bidirectional LSTM) [54]. For all the four models, we set the size of the
embedding layers to 300. The input and output sequences were tokenized, where the
input language (i.e., code) had a vocabulary size of 8,002 and the output language (i.e.,
comments) had a vocabulary size of 4,502. We used 1-layer RNNs with the GRU/ LSTM
having 300 units; however, for BiLSTM, it was doubled because there are two directions
to learn. We trained these models with a batch size of 120 for 30 epochs. Within all the
samples obtained from the preprocessing stage, we used 88% of the data for training and
12% for validation.

5.1.3 Translation model evaluation

We used the BLEU score [46] to assess the performance of our models. It is a metric
(from 0 to 1) for evaluating a generated sentence (i.e., the produced text descriptors) to
a reference sentence (i.e., the original text descriptors associated with the code), where a
score of 1 indicates a perfect match. The BLUE score is usually computed based on n
consecutive words/tokens (i.e., n-grams) in the sentences. A perfect score is not possible
in practice as a translation would have to match the reference exactly, which is not even
possible by human translators. In general, a BLUE score over 0.5 would indicate that
the translation model performs very well and significantly less post-editing is required to
achieve publishable quality [5].

Table 5.1 shows the BLUE scores for 1- to 4-grams and the cumulative averages for the
four models. For the results, we can see that while LSTM with Attention performed well
in the cases of 2- to 4-grams, its accumulative average was the lowest. On the other hand,
the performances of GRU, LSTM and BiLSTM were similar and stable, resulting in higher
cumulative averages than that of LSTM with Attention. But it is difficult to conclude with
the best model among the three; further, human subjective opinions may differ from the
computed scores. We thus manually browsed the results and finally chose LSTM based on
our observations.
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GRU LSTM BiLSTM LSTM w/ Att.

1-gram 0.57495 0.57607 0.58360 0.07025
2-gram 0.58355 0.58127 0.59012 0.61298
3-gram 0.58090 0.58145 0.59142 0.74337
4-gram 0.59440 0.59422 0.60393 0.74951

Cumulative Avg. 0.56372 0.56377 0.57301 0.47570

Table 5.1: Results of the experiments on our public dataset for comparing the performance
of the four translation models: GRU, LSTM, BiLSTM, and LSTM with Attention.

5.2 Enabling Semantic Search

Using the above trained translation model, we were able to generate descriptors for the
code without sufficient comments. By combining the code cells with comments, we built
a complete dataset of code-descriptors pairs for all the notebook code cells (Figure 4.2).
However, having the descriptors for each cell is not enough to support semantic code
search, as a user most likely input some queries that do not match the descriptors exactly.
We need to characterize the similarity between the queries and the available descriptors
in semantics (G1). Therefore, we leveraged neural language models in natural language
processing, which could represent words, phrases, or sentences with vectors in a latent
space. These vectors can be stored in the database, based on which we could retrieve
semantically similar descriptors from an input query by simply computing their cosine
similarity (Figure 4.2).

5.2.1 Language model

In this study, we considered two different language models: Doc2Vec [36] and Sentence-
BERT [50]. Doc2Vec is an unsupervised learning model, which requires no labelled data.
We thus trained our Doc2Vec model using all the descriptors from the database built in
the last step. We set the latent dimension to 300 and the number of epochs as 40 using the
APIs in the Gensim library [49]. The training of Sentence-BERT requires a large number
of labelled sentence pairs that are similar in semantic meanings, which could not be easily
produced in our cases. Fortunately, there are several pre-trained Sentence-BERT models
that have demonstrated superb performance on many NLP tasks [25]. In this study, we
chose the bert-base-uncased model for its speed and performance, which has 12 layers,
768 hidden units, 12 heads, and 110M parameters, pretrained on lower-cased English text.
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Figure 5.1: Results of the survey study on our public dataset for comparing the perfor-
mance of the two language models: Doc2Vec and Sentence-BERT. (a) Distributions of
participants’ selections of the relevant items in the top-10 returned results for each query.
(b) Boxplots of the numbers of participants who thought either of the two search results
more relevant for each query.

5.2.2 Model evaluation

The goal of building the language model is to find descriptors that are semantically similar
to a search query, however, this “semantically similar” criteria is very subjective. Unlike
common language modeling tasks for English, there lacks ground truth or a standard
benchmark to assess the performance of the models. While most of the comments are
written in English words, the usage patterns and distributions may be different. Inspired
by the literature (e.g., [50]), we evaluated the two models using the downstream search
tasks by conducting a survey study. We carefully selected 10 queries and generated 10 sets
of search results for each of the models. These queries represent some common questions
asked by developers in exploratory programming, based on our consultation with the two
experts. Each result contained the top-10 most similar code cells that we retrieved by
computing the cosine similarity of the query and their descriptors. In the study, for each
query of each model, we asked participants to select which ones of the 10 items are relevant
in the search result. They also needed to indicate which search result of the two models is
better. The order of the 10 queries and the order of the two models were randomized in
the survey study.

We distributed our survey via mailing lists and social media at a local university. Fi-
nally, we collected 32 responses; however, some of the participants did not finish all the
10 questions. All participants have a computer science major. The medians of their self-
reported familiarity to visualization tools (e.g., Matplotlib), machine learning tools (e.g.,
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Keras), and Python are 4 (Mode = 4), 4 (Mode = 5), and 5 (Mode = 6), respectively, on
a 1-7 Likert scale (1 = “very unfamiliar” and 7 = “very familiar”). As Figure 5.1b indi-
cates, overall, participants thought Doc2Vec generated more relevant results than Sentence-
BERT. As shown in Figure 5.1a, roughly, there are similar numbers of relevant items chosen
by participants. For some queries such as “plot dataset,” “how to read file,” and “how
to import libraries,” most of the items are voted relevant for both models. Besides the
number of relevant items selected for each query, the more top-ranked items are chosen,
the better the model’s performance is. For most queries, especially “svm,” “train machine
learning model,” and “knn to perform classification,” more participants chose items with
smaller search ranks for Doc2Vec. Further, for all the queries, there are more top-3 items
chosen by participants for Doc2Vec, compared to Sentence-BERT.
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Chapter 6

NBSearch User Interface

With the aforementioned search engine, we could retrieve a set of code cells according
to a natural language query initiated by a user. However, presenting the search results
in a ranked list, like the traditional search engine, is not adequate to understand the
complicated intra- and inter-notebook relationships between cells (G3). We designed a
novel user interface for NBSearch to allow developers to make sense of the search results
interactively and visually, in order to accommodate the flexible and dynamic nature of
computational notebooks.

6.1 Search Result Presentation

As shown in Figure 3.1, the NBSearch user interface consists of four components: (A) the
Search Bar, (B) the Search Result Panel, (C) the Notebook Relationship Panel, and (D)
the Notebook Panel. These panels of NBSearch are interactively linked to many aspects,
such as mouse hovering events. This interface was iterated several times with different
layouts and design, as indicated in Figure 4.1ab.

After NBSearch is launched, only the Search Bar is shown, and a developer can configure
the number of notebook cells to return (i.e., top-k results where k is 10 by default) at the
top-right corner of the UI. We restricted that only one cell from a notebook can be included
in the top-k results, allowing for extending the search scope a bit. This is because some
code cells within a notebook are very similar, because a developer sometimes tries different
methods in exploratory programming by simply changing one or two parameters of the
code [64]. If there is no such restriction, the search results may contain several very similar
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Figure 6.1: Visualizing the search results of query “classification” in NBLines; (a) the lines
view aligning cells (dots) of different notebooks (lines) based on similarity, and (b) the dots
view using a similar alignment but shifting to the left to show the distribution of cells.

code cells. In fact, the back-end search engine of NBSearch returns the whole notebooks
containing the searched code cells to the front-end for display, and thus the information is
not lost due to this restriction. This constraint can be turned off when needed.

After processing a query, the Search Result Panel (Figure 3.1B) appears to display
a ranked list of searched code cells. Meanwhile, the Notebook Relationship Panel (Fig-
ure 3.1C) shows an interactive visualization—NBLines—of the searched code cells and the
notebooks they belong to. The colors on both panels correspond to different notebooks;
when there are more than 20 unique notebooks, the ones beyond the top 20 are colored
in gray. Whenever a cell is clicked on the Search Result or Notebook Relationship Pan-
els, the Notebook Panel (Figure 3.1D) shows the entire notebook containing that cell and
jumps to that cell automatically. The colored bar on top of each cell indicates its similar
with respect to the searched cell; so that the searched cell always has a full-length bar.
Also, a series of tags indicate the variables and functions used in that cell, with dark gray
tags showing the overlapping variables/functions between the selected cell and other cells.
These features of the Notebook Panel help reveal the intra-notebook relationships.

6.2 NBLines

The NBLines visualization displays both the intra- and inter-notebook cell relationships,
allowing a developer to find connections between cells while maintaining a mental model of
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all notebooks. It contains two visual forms: the lines view and the dots view. In the lines
view (Figure 6.1a), each notebook is visualized as a colored line, with cells represented
as dots on the line, where the searched cell has a bigger size and a darker shade. The
visual design was inspired by EgoLines [69] that present relationships between actors in a
temporal dynamic network. The cells across multiple notebooks are aligned based on their
similarity. That is, each row, across the lines, contains cells that similar to each other; at
the same time, the order of the cells in each notebook (i.e., columns) is kept. The order of
the columns (or lines) is based on the search rank of the searched cell in that notebook, as
indicated on Search Result Panel. The visualization reveals the inter-notebook relationship
of cells, allowing a developer to look for similar cells across different notebooks, starting
from the searched cell. This enables serendipitous findings in search results exploration.

When a cell is selected, several black curves appear to indicate the cells sharing more
than n variables/functions within the same notebook. The threshold n can be adjusted
interactively using a slider on top of the view. This reveals the intra-notebook relationship,
allowing a developer to find relevant cells within a notebook. For example, in Figure 6.1b,
the red arrow (on the right) indicates the cells linked by the black curves in the brown note-
book all share the validation data variable. It facilitates the sensemaking of a notebook’s
structure, because the cells can be out of order.

The alignment of the notebook cells is very similar to the multiple sequence align-
ment (MSA) problem in computational biology, where several DNA or RNA sequences are
aligned together to identify similar regions of nucleotide or amino acids in the sequences.
MSA is an NP-hard problem, and a number of approximation algorithms have been pro-
posed. In particular, we employed a progressive multiple sequence alignment algorithm [22]
for its accuracy and speed. Such an approach progressively aligns multiple sequences by
conducting pairwise sequence alignments in order and adjusting the global alignment. Our
case is unlike the sequence alignment in computational biology, where the nucleotide or
amino acids in different sequences need to be the same when aligned. We employed the
cosine similarity between code cells to define the “optimal” alignment—having the smallest
total similarity score for every pair of aligned cells in two sequences. The cell similarity
can be easily computed because our search database contains the vector representation of
all the cells. For example, in Figure 6.1a, the three red arrows (on the left) point to two
exactly same (but from two different notebooks) cells (blue and red) and one similar cell
(purple) on the same row, which all contains code about plotting.

The dots view of NBLines (Figure 6.1b) displays the same information as the lines view,
using the same horizontal alignment and user interactions. However, cells are pushed to the
left and each column may contain cells from multiple notebooks. This allows a developer
to see the distribution of similar cells on all the rows. As shown in Figure 4.1cd, we also

24



experimented with different visual designs for connecting the cells across notebooks in the
dots view during the design process. In the end, we removed them because our experts
thought the visuals were too overwhelming.
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Chapter 7

User Study

We conducted a user study with a set of search tasks based on a real-world notebook corpus
from Uber. Our specific goals of the study are to (S1) assess the usability of NBSearch in
supporting code search for notebooks, (S2) explore the potentials of NBLines and other
result exploration support, and (S3) understand users’ behaviors in code search with NB-
Search. We did not conduct a comparative study since there are no appropriate baselines.
Our experts indicated that Google Search is the most commonly used for searching code
in the public domain; however, the search corpus includes lots of other stuff than code.
Our experts’ company uses an internal StackOverflow platform; however, it is mainly for
question answering. Neither has the capability of searching at the cell level of notebooks
or exploring the results. Thus, we decided to conduct a user study with the above goals
that are exploratory in nature.

7.1 Participants

We recruited 12 participants, nine males and three females, aged 27–41 (four did not
report it), through internal mailing lists at Uber with the help of our experts. They were
all professional software engineers or data scientists with diverse backgrounds and from
different engineering groups, covering a range of cases. Three of them have Bachelor’s,
six have Master’s, and three have PhD degrees. The two experts involved in our design
process were excluded from the participants pool. On a 1-7 Likert Scale, the medians of
participants self-reported familiarity to Jupyter Notebooks and visualization techniques
were 4.5 (Mode = 5) and 4.5 (Mode = 3), respectively (1 = “no experience at all” and 7 =
“using almost everyday”). For the frequencies of conducting code search, six participants
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GRU LSTM BiLSTM LSTM w/ Att.

1-gram 0.62410 0.62203 0.61912 0.26917
2-gram 0.55517 0.55542 0.55353 0.21200
3-gram 0.44067 0.44257 0.44106 0.11814
4-gram 0.34854 0.34851 0.34934 0.05638

Cumulative Avg. 0.36927 0.36912 0.36981 0.06936

Table 7.1: Results of the experiments on Uber internal dataset for comparing the perfor-
mance of the four translation models: GRU, LSTM, BiLSTM, and LSTM with Attention.

indicated they search code for 1-5 times daily, two for 6–10 times, two for 11–15 times, and
two for over 20 times.

7.2 Study Setup

We rebuilt our back-search engine by retraining the translation and language models based
on an internal notebook corpus at Uber, in order to best capture participants’ interests.

We deployed NBSearch with the internal framework from our experts’ company, so
that we could evaluate NBSearch with professional developers on tasks and datasets that
are more meaningful to them. The internal dataset contains 5,583 notebooks with around
365K code cells (around 95K cells with comments). These notebooks were written by
software engineers and data scientists from different groups at Uber, and they often have
usages of internal libraries. We retrained the models using these notebooks with the same
sets of parameters, as described in chapter 5, and evaluated the models by comparing the
BLEU scores and search results (Table 7.1). From the BLEU scores, we can see that GRU,
LSTM, and BiLSTM performed very similar, aligned with our experimental results with the
public dataset. While the cumulative BLEU scores are lower than those in Table 5.1, the
results still reached the quality of “good translations” [5]. We then manually examined the
results of GRU, LSTM, and BiLSTM from a set of search queries via consultations with our
experts, and finally selected GRU for the quality of content in results. We then deployed
the NBSearch user interface with this model. The deployment into the internal platform
has flask applications hosted in docker images. One of the difficulties we encountered was
to resolve the dependency conflicts between the library versions used in NBSearch and the
standard library presets in the docker image.

27



7.3 Procedure

The study was conducted using a remote conferencing software, where participants used
their own computers to access NBSearch deployed on the company’s internal server. During
the study, participants first completed a brief training session to get familiar with the
NBSearch interface by watching a short video.

Then, they were asked to conduct three free-form code search tasks under different
predetermined scenarios, for example, “Imagine that you are writing some python code to
plot your data with some charts, but you have no clue. Now please use the search engine
to see how others write relevant code and find desirable results.” The search scenarios
were carefully developed with our expert users who know the dataset and their daily
activities very well. The goals were to prevent participants from searching stuff they are
not interested or getting too few results due to the sparsity of the dataset. At a high level,
the three task scenarios were about: how to train machine learning models (T1), how to
plot charts from data (T2), and how to use visualization tools (T3). In each task, they
were allowed to use either NBSearch’s semantic or keyword-based search capabilities, or a
combination of both. There was no time limit for the search task, and participants were
instructed to stop until they found what they needed in their minds. The order of the
three tasks was counterbalanced across participants.

After, participants completed a post-study questionnaire about their impression of NB-
Search, followed by a short semi-structured interview. Their search queries and interactions
were logged, and the interview sessions were audio-recorded. The whole study lasted about
30 minutes for each participant.

7.4 Results

In the following, we report our results from the user study, including participants’ perfor-
mance in the search tasks, their questionnaire ratings, and their feedback to the system.

7.4.1 Task Performance

To investigate S1, we computed the average task completions times for the three search
tasks: 5.67 (σ = 3.28), 4 (σ = 1.04), and 5.83 (σ = 1.85) minutes, respectively (Fig-
ure 7.1a). We can observe that participants were able to find the desired code within a
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Figure 7.1: (a) Completion times of the three search tasks. (b) Participants’ satisfaction
level for the results (1=“very unsatisfied” and 7=“very satisfied”).

couple of minutes. There is no obvious difference between different tasks in terms of the
completion time, indicating that NBSearch performed stably.

Moreover, on average, they conducted 1.83 (σ = 1.03), 1.33 (σ = 0.65), and 2.5 (σ =
0.65) queries to find their targets for the three tasks, respectively. Participants’ self-
reported satisfaction with the results found with NBSearch is shown in Figure 7.1b. On
a 7-point Likert scale (1=“very unsatisfied” and 7=“very satisfied”), the medians of the
satisfaction for the three tasks were all 5, with IRQs = 3.5, 3, and 2.5, respectively.
Thus, overall, NBSearch could allow participants to find what they needed within a couple
of queries with a relatively positive experience. However, there were a few cases where
participants were not satisfied with the (partial) results. For example, one participant
in T1 and two in T3 rated 1 (very unsatisfied); this was because they searched for three
or more times before hitting their desirable targets. But note that as the search tasks
are open-ended, there are no definitive right or wrong answers. One reason for the above
lower ratings was that the results were limited by the code in the dataset that suited
for participants’ individual needs. As required by the tasks, they were able to find final
satisfying results but some complained about the relatively long time of searching. No
participant gave up in the middle of the tasks.

Further, to examine S3, we recorded the queries conducted by participants, as shown
in Table 7.2. All participants used the semantic search, and three used a combination of
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T1 regression model, Train→ sklearn→ “sklearn”, Train→ training, Train, Random forest
→ svd → bayes model → linear regression, model.fit → model.train, driver → sushi
→ san francisco, machine learning train → xgboost train, pipeline, Train, model train,
model train

T2 plot some charts, plot chart, “plot”, plot, Plot → “plot”, Histogram, plt.show → mat-
plotlib plt plot → plt scatterplot, matplotlib, how to plot a chart → plot matplotlib,
sns.plot, Chart, plot chart, chart plot

T3 visualization, visualization, Pyplot → “pyplot” → visualization, Charts → bar chart
→ visualization → plot, visualization → plotly → manifold → ”manifold”, bucket →
sampling→ data frame std→ standard deviation→ “mean”, df.filter→ pandas df.filter
→ numpy.matrix.transpose, Sunburst → bar, data visualization, PaleteeTransformer →
transformer, Utilization, michelangelo, pandas Matplotlib plt pd → plt pd → pd apply

Table 7.2: Participants’ search queries. Queries with quotation marks indicate the keyword-
based search and those without indicate the default semantic search. “→” indicates the
sequence of conducting multiple search queries in one task.

semantic and keyword-based searches. They also mentioned that previous search results
helped narrow down the exact APIs to look up. While participants were informed by both
types of search, 83.33% of the queries were purely based on semantic, 2.78% purely based on
keywords, and 13.89% mixed (using both methods but in different queries). This indicates
the tendency of participants’ behaviors. Computed for all the tasks together, 52.78% of
the search activities allowed participants to find their target within one query, 72.22%
within two queries, and 88.89% within three queries. There was no case that participants
conducted more than five queries (only one participant had five). This indicates that in
general NBSearch performed well in finding relevant code within the notebook collection.

7.4.2 Questionnaire Responses

Figure 7.2 shows participants’ ratings on their impression with NBSearch on the post-study
questionnaire, revealing insights into S1 and S2. Overall, NBSearch was perceived helpful
(Q1), easy to learn (Q2), easy to use (Q3), and enjoyable to use (Q4), all having a median
rating of 5. However, the IRQs for easy to learn and easy to use were larger, 4.5 and 4,
respectively. This might be because participants have very different backgrounds in visual-
ization, affecting their acceptance to NBLines. Participants also felt that the three panels
were helpful (Q5-7), all with a median of 5 or more. Two participants rated the Search
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1 2 3 4 5 6 7

Q1. Overall helpful

2 5 2 3

1 2 3 4 5 6 7

Q5. Search Result Panel is helpful

1 1 1 4 3 2

1 2 3 4 5 6 7

Q9. Lines view of NBLines is helpful

2 2 2 5 1

1 2 3 4 5 6 7

Q2. Easy to learn

4 1 3 1 3

1 2 3 4 5 6 7

Q6. Notebook Relaitonship Panel is helpul

1 4 5 2

1 2 3 4 5 6 7

Q10. Curves in NBLines are helpful

2 1 2 2 4 1

1 2 3 4 5 6 7

Q3. Easy to use

3 1 4 1 3

1 2 3 4 5 6 7

Q7. Notebook Panel is helpful

1 1 5 5

1 2 3 4 5 6 7

Q11. Colored bars are helpful

1 3 1 2 3 2

1 2 3 4 5 6 7

Q4. Enjoyable to use

1 1 2 4 3 1

1 2 3 4 5 6 7

Q8. Dots view of NBLines is helpful

1 3 4 1 2 1

1 2 3 4 5 6 7

Q12. Variable/function tags are helpful

1 2 3 4 2

Median IQR Number of Participants

Figure 7.2: Participants’ ratings on the post-study questionnaire (1=“strongly disagree”
and 7=“strongly agree”).

Result Panel (Figure 4.2B) lower because it took them longer (more than three queries) to
get the desired results. Two participants applauded for the Notebook Relationship Panel
(Figure 4.2C), giving the highest rating. The Notebook Panel (Figure 4.2D) was perceived
very useful, too. For NBLines, participants had divergent opinions on the dots view (Q8),
with a median of 4 (IQR = 3.5), but they overall preferred the lines view (Q9), with a
median of 5.5 (IQR = 3). The curves connecting shared variables/functions were perceived
useful in general (Q10), but several mentioned that the view became too messy when there
were many cells connected. For the visual design of the Notebook Panel, there was a large
variance in the usefulness of the colored bars on top of each cell (Q11), but participants
thought the tags for variables and functions were useful (Q12).

7.4.3 Qualitative Feedback

Our interview mainly focused on collecting participants’ feedback on all the aspects of
NBSearch in order to assess S1-3 qualitatively. In general, participants thought NBSearch’s
visual encodings and interface were intuitive, helpful, and clear. They also like the colors:
“It’s comfortable for me to see this interface.”-P11. In the following, we report our results
based on the design goals in chapter 4.

Keyword-Based and Semantic Search. Supporting the semantic search in addition
to the keyword-based approach is one of our key goals (G1). Eleven out of 12 participants
agreed that having both options would improve their efficiency and appreciated the ability
to search in natural language. P10 commented: “For advanced users, they know what they
are searching, so they would prefer keyword-based more [...] I only knew one library can
do visualization, but after using semantic search, I find other libraries are useful.” They
also demanded the two options to be merged in the future. But P2 was not convinced
about semantic search and thought that “the results of the keyword-based search is more
predictable.” For all the five cases involving keyword search (Table 7.2), there were two
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for P2, two for P4, and one for P5. However, P2 and P4 said that the previous semantic
searches in the same task inspired their keywords.

Cell-Based Search and Presentation. To accommodate the dynamic nature of
notebooks, we built NBSearch with code cells as the central unit (G2). We found that
participants had different opinions on how many cells should be displayed in the search
result. Three of them thought it should be below 10, and the others thought it should
be between 10 and 25. Seven participants felt that the default setting (i.e., 10 items) was
appropriate, as P11 said: “Usually people [who] use Google Search don’t check the second
page.” Some returned code cells were very short; while they were relevant, it was difficult
for participants to understand without having enough context. Thus, merging of related
cells in the search results may be developed in the future to allow for a broader search
coverage. Regarding the workflow, P10 suggested switching the position of the Notebook
Panel (Figure 3.1D) with the Notebook Relationship Panel (Figure 3.1C), “because usually
I will firstly browse if the notebook contains good results, and then I will check relationships
of cells.”

Intra- and Inter-Notebook Exploration. To facilitate sensemaking of search re-
sults, we designed NBLines (Figure 6.1) to support exploring intra- and inter-notebook
relationships (G3). Participants appreciated NBLines for its usefulness of “visual guidance
for finding results.”-P9. Also, P6 said that “I think it’s useful because I can realize the posi-
tion that search result locates in a notebook, even if sometimes I still need to read the whole
notebook’s code.” The black curves showing the overlapping variables and functions among
cells were applauded by some participants, such as helping “trace back of the code.”-P2. P4
added: “One of the features that I love is the link. I would like to see which cells are using
the same variables as the current cell when I am doing code search.” While liking it, P5
hoped to “see some details about the notebook in the middle view (Notebook Relationship
Panel).” By adjusting the threshold of overlapping variables/functions, participants were
able to refine their search results easily, as commented by P7: “After changing it a little bit,
I realized it can help me narrow down our search results.” P11 especially liked “the idea
to use the filter,” so that she could clearly see the connections between cells of interests.

Several participants found the dots view (Figure 6.1b) was confusing, “because cells
with the same color are not on the same column.”-P1. They also demanded more time
to get familiar with the visual design. P3 commented: “I’m used to a traditional code
search task; you search, and here are the results; you click it, and you see it.” P4 wanted
to reduce the complexity of the black curves in NBLines: “Ability to focus on variables I
selected can help me find results very fast.”

Some visual cues are designed to augment the Notebook Panel (Figure 3.1D) for sup-
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porting a detailed exploration of a selected notebook. Regarding the colored bar for showing
the cell similarity, half of the participants said that it was a nice-to-have feature but they
did not rely on it. P7 said that it might be “a little distracting,” and P3 “later found they
are representing correlations.” The rest of the participants thought it was useful, especially
P1: “I highly rely on that to find results.” Additionally, P4 thought “the progress bars are
robust and reliable.” The tags showing the variables/functions were appreciated, and P6
suggested to make them more obvious.
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Chapter 8

Discussion

Here, we discuss the limitations of NBSearch and our study, a preliminary analysis of
relationships between markdown cells and code cells, as well as the possible avenues for
extending and generalizing our design.

8.1 Limitations and Future Work

While our study results indicate that NBSearch can facilitate developers with code search
during exploratory programming in large computational notebook repositories, it still has
several limitations. We discuss them below and introduce potential solutions.

First, in NBSearch, we did not involve markdown cells in building our search database
of code-descriptor pairs, because it is hard to precisely identify which code cells are de-
scribed by which markdown cell. Albireo [64] uses a naive method by simply associating
a markdown cell with the code cell after. However, this oversimplifies the scenarios, given
that notebooks are extremely flexible; sometimes a markdown cell may not correspond to
any code in a notebook, and sometimes a markdown cell may describe a group of cells that
are not necessarily the ones following it. It is very challenging to detect the relationships
between code and markdowns using unsupervised methods, which needs a considerable
amount of labelled data available in the future.

Second, currently NBSearch only enables semantic code search at the cell level, as the
flexibility and organization of notebooks are based on cells; however, future extensions can
be made to support search at sub-cell and multi-cell levels. One essential point is that both
will increase the problem complexity since we have more methods of forming basic search
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units. For the sub-cell level, we can leverage the location of comments and the functional
scope of code. For example, if a comment is inline with the start of a for-loop, we can
pair all the code within the scope of the loop with this comment (or descriptors), similar
for functions and statements. By enhancing the cell-level code-descriptor pairs with such
information, the search engine is able to return finer or coarser-grained results based on a
user’s query; and the analytical pipeline of NBSearch can naturally adapt to this new data
without changes.

Third, the front-end interface and back-end models of NBSearch can be enhanced. In
the controlled study, several participants mentioned that they spent quite some time to
get familiar with the system interface, especially the NBLines, while they thought it was
useful to explore the search results. They also thought the dots view was confusing. Future
improvements may include removing the dots view and providing on-demand tutorials for
the lines view. Also, NBSearch currently works as a standalone tool, but future develop-
ment of NBSearch within the Jypyter Notebook eco-system will provide much convenience
to users. This will also require setting up a public server for the search APIs. For the
search engine, there were a couple of participants who were not very satisfied with the
search results for the first few attempts. Trying other models or training them on a larger
repository could resolve this issue; however, this may require humongous data with which
the models can gradually become better, such as Google Search.

Finally, the evaluation of NBSearch can be further enhanced. Additional and larger
testing datasets need to be used to thoroughly assess the performance of the translation
model; and a large Mechanical Turk study, in a similar form to our survey study, may
be conducted to deeply examine the quality of the language model. While we designed
NBSearch through an iterative participatory design process with two experts and evaluated
the system with professionals in the user study, a longer-term deployment is necessary
for investigating the usefulness of NBSearch in practice. While there are currently no
appropriate baselines, a comparative study between NBSearch and its base version (e.g.,
without NBLines and other visual cues) would provide deeper insights into the impact of
the user interface. We leave these studies for future work.

8.2 Preliminary Analysis of Markdown Cells

As mentioned in Section 5.1.1, markdown cells were not considered during the design
process of NBSearch because it was challenging to identify connections between markdown
cells and code cells. However, an intuitive and favored perspective is that a markdown
cell can describe code cells afterward (before encountering the next markdown cell). This
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section evaluates the feasibility and impact of this perspective, but the patterns between
markdown cells and code cells are not constrained.

8.2.1 Dataset Re-Processing

As described in Figure 4.2, after obtaining the translation model and language model, all
of the code cells will be characterized into a learned space. The language model is required
to convert all markdown cells into the same vector space to understand markdown cells’
impact. Without having this process, markdown cells cannot be compared with code cells
because they were in different spaces, and therefore it will be infeasible to evaluate the
impact of markdown cells. Meanwhile, connections between markdown cells and code cells
will be recorded. Specifically, the information of which markdown cell is affecting the
current code cell is recorded based on the hypothesis from the above paragraph. Once the
relationships between markdown cells and code cells are recorded, and all markdown cells
have been converted into the learned space, the process of conducting search under the
impact of markdown cells can start.

8.2.2 Search Engine Redesign

The original search engine enables search by directly comparing input query and all charac-
terized vectors before ranking. For this moment, two data structures, one of them contains
vectors of all code cells, and the other contains characterized vectors of markdown cells,
will be utilized to generate the final answer. Firstly, similarity with code cells and mark-
down cells will be calculated independently. Next, the impact of markdown cells will be
applied to connected code cells with a decay function because, by the previous hypothesis,
we believe a markdown cell is related to code cell immediately after with higher proba-
bility, and it has a low probability for a markdown cell to describe a code cell which is
far away from it. To be precise, in the equation from Figure 8.1, α represents the impact
of markdown cells, and β is the influence factor of machine learning models. Odist means
the original distance between the code cell and input query. D is the decay function that
is decreasing linearly. Specifically, i-th code cell after a markdown cell will have decay
function: D(i) = 1 − i/n, and n represents total number of code cells impacted by the
markdown cell. M is the distance calculated from the markdown cell. By adjusting α and
β, we can control influence of markdown cells and machine learning models back and forth.
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newcode−dist = α ∗D ∗M + β ∗Odist < α + β = 1 >

Figure 8.1: Equation of calculating new distance between code cell and input array. α and
β are weights respectively assigned to markdown cells and machine learning models. Odist:
original distance between code and input query. D: decay function. M : distance between
markdown cell and input query.

Input queries Avg. rank promotion Num. of excluded results

Image manipulation 2.5 4
Use knn to perform classification 1.388889 2
plot some charts 0.157895 1
train machine learning model 6.727273 9
how to import libraries 1.571429 6

Table 8.1: Impact of markdown cells on the top twenty search results.

8.2.3 Results and Analysis

For the purpose of understanding the effectiveness of markdown cells on search results,
similar to Section 5.2.2, markdown cells are evaluated based on downstream search tasks.
In Table 8.1, five queries are selected. For each query, the top 100 results are firstly
generated based on distances with code cells, and another 100 code cells will be returned
based on new criteria described in Section 8.2.2, with α set to 0.42 and β set to 0.58. As
P11 from user study at Section 7.4.3 said:“Usually people [who] use Google Search don’t
check the second page.”, only the first twenty results will be tracked and considered. The
definition of the code cell promotion is the rank of a specific code cell has been incremented
(i.e. previous rank - new rank is greater than 0). An excluded cell means that it was
initially ranked as one of the top twenty results but is ranked greater than 100 after taking
markdown cells into consideration, and excluded cells will not be calculated within the
average promotion. For instance, query “train machine learning model” has nine results
from the top 20 ranked greater than 100 after considering markdown cells, and the rest 11
code cells have been promoted 6.727273 on average to the front.

The original intuitive perspective of markdown cell’s usefulness is that it can save the
quality of machine learning models. Assuming the models perform not well but there
are meaningful markdown cells before desired code cells, then by increasing the influence
factor of markdown cells and decreasing machine learning models’ impact, we can still
have decent results. For example, the first result excluded from query “train machine
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learning model” was “[’from future import division, print function’, ’import unittest’]”,
and the first result that was promoted from this query was “[’X train, X val, y train, y val
= train test split(train df nn, train y, train size=.80, random state=3)’]”. Nevertheless,
the patterns between markdown cells and code cells are not constrained. A markdown cell
may describe prior code cells, and sometimes a group of markdown cells might contribute
a single code cell. Moreover, the quality of markdown cells is as essential as the quality
of training dataset of machine learning models, as it contributes to the eventual semantic
score as well.

However, only one pattern between markdown cells and code cells is considered because
it is hard to identify all possible relationships precisely. At the same time, it is challenging
to determine which pattern the current notebook has and further apply the correct method
to calculate new ranks. For instance, if all markdown cells in notebook A describe prior
code cells, then applying the pattern that assumes markdown cell is describing the latter
code cell will typically not receive better results from notebook A. Therefore, we reserve
identifying all possible connections between markdown and code cells and embed them into
search engine as future work.

8.3 Generalization and Extension

We propose a general architecture to support semantic code search as illustrated in Fig-
ure 4.2. It is flexible enough to incorporate other translation and language models when
more advanced ones are available in natural language processing research. Our test scripts
also provide insights into which models to use for particular data in practice. As the busi-
ness of each company may differ, retraining may be needed on their dataset for better
retrieval; this is because different datasets may have different distributions and patterns of
code usage. Our experts encountered no difficulty in retraining and deploying NBSearch
with their dataset, which indicates the generalizability of our computational flow. We val-
idated NBSearch with a large pool of professionals from Uber, supporting that our design
can be generalized to various cases and needs. However, further validations in different
cases need to be conducted.

Moreover, the NBLines visualization, equipped with a notebook alignment algorithm,
provides an easy means of browsing the intra- and inter-notebook relationships of cells.
It allows users to better understand the notebooks’ structures and discover serendipitous
findings. This can be extended to show sub-cell level relationships when needed, e.g., by
representing the functional unit of code as circles and cells as circle groups. It is useful for
analyzing a collection of computational notebooks at a finer level, as sometimes code cells
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can be quite long depending on a developer’s habits. The visualization itself is general
enough to apply on other problems involving the comparison of multiple sequences, such
as clickstream data in web analytics.
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Chapter 9

Conclusion

We have presented NBSearch, a tool that facilitates code search within large computa-
tional notebook repositories. NBSearch leverages machine learning techniques to support
semantic search in natural language queries, thus allowing developers to vaguely spec-
ify their needs during exploratory programming. A series of experiments were conducted
to compare different models for the back-end search engine. The tool also features an
interactive front-end, including a visualization NBLines, to present the search results in
an intuitive manner, revealing the complicated relationships among cells in multiple note-
books. The development of NBSearch was through a user-centered, iterative, participatory
design process with two professional developers at Uber. Further, the tool was evaluated
with developers and data scientists through a user study with an internal dataset at the
same company. Participants’ feedback to NBSearch reveals its usefulness and effectiveness
in supporting code search for computational notebooks. Moreover, a potential pattern
between markdown cells and code cells was evaluated to investigate how markdown cells
can be integrated to affect the search quality. The results indicate a possible complemen-
tary relationship between the quality of markdown cells and the performance of machine
learning models.
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