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Abstract

We develop a method to connect the infinite-dimensional description of optical continuous-
variable quantum key distribution (QKD) protocols to a finite-dimensional formulation.
The secure key rates of the optical QKD protocols can then be evaluated using recently-
developed reliable numerical methods for key rate calculations. We apply this method to
obtain asymptotic key rates for discrete-modulated continuous-variable QKD protocols,
which are of practical significance due to their experimental simplicity and potential for
large-scale deployment in quantum-secured networks. Importantly, our security proof does
not require the photon-number cuto↵ assumption relied upon in previous works. We also
demonstrate that our method can provide practical advantages over the flag-state squasher
when applied to discrete-variable protocols.
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Chapter 1

Introduction

Quantum key distribution (QKD) has emerged as an exciting and practical quantum tech-
nology. It enables two remote parties, Alice and Bob, to establish information-theoretically
secure keys even in the presence of an eavesdropper, Eve. These keys can then be used
in many other cryptographic applications, such as the one-time pad. To prove QKD to
be secure with a specified key rate, we need to assume a quantum-mechanical model for
Alice and Bob’s devices, but do not have to assume anything about the processing power
available to the eavesdropper [2].

For a given QKD protocol, the goal of a security proof is to find a lower bound on
the secure key rate. Analytical methods for this task can be very involved, tend to be
restricted to symmetric protocols, and can introduce looseness in the lower bounds. These
issues are ameliorated by the recent development of tight, reliable numerical methods for
finding secure key rates [3, 4]. At a high level, these methods determine the key rate by
solving a particular convex optimization over the set of quantum states that could be held
by Alice and Bob. When the bipartite Hilbert space is infinite dimensional, the numerical
methods cannot be used directly.

This is a highly relevant problem because QKD protocols are almost always imple-
mented using quantum optics, which means the quantum state can have any number of
photons and is thus infinite dimensional. Fortunately, for many discrete-variable (DV)
protocols, the numerical methods can be applied by using the squashing map [5–8] or the
more general flag-state squasher [9] to reduce the problem to finite dimensions. However,
these squashing approaches do not seem applicable to continuous-variable (CV) protocols.
Additionally, even for DV protocols, the flag-state squasher can have challenging runtimes
[10].
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Discrete-modulated continuous-variable QKD (DMCVQKD) is a family of protocols
that utilize existing telecommunication infrastructure, including homodyne or conjugate
homodyne detection [11–13]. They are thus promising candidates for deployment in large
scale quantum-secured networks. In comparison to Gaussian-modulated CVQKD (GM-
CVQKD) [14–16], discrete modulation with a small number of signal states is less de-
manding on the source modulator and on the error-correction protocols, yet is expected
to achieve similar key rates. Whille DMCVQKD has clear experimental advantages, its
security proofs are challenging.

It is thus of interest to establish tight lower bounds on the secure key rates for DM-
CVQKD. Of particular interest is DMCVQKD with a reasonably small number of modu-
lated states, say in the range 4� 16, which is expected to outperform constellations with
just two or three states and essentially achieve the key rates of GMCVQKD, while still
maintaining ease of experimental implementation.

There are analytic asymptotic security proofs of DMCVQKD with two [17] or three
[18] modulated states. A full finite-key analysis of binary-modulated DMCVQKD has also
been recently completed in Ref. [19]. However, these proofs are di�cult to generalize to
larger numbers of modulated states.

Another class of analytic DMCVQKD security proofs works well for very large numbers
of modulated states. Roughly speaking, these proofs work by showing the discrete modula-
tion is close to a Gaussian one. Such an approach has led to analytic security proofs in Ref.
[20] and more recently in Ref. [21]. The analytic lower bounds are tight as the number
of modulated signal states goes to infinity and the discrete modulation approximates a
Gaussian one. Unfortunately, the lower bounds are quite pessimistic for reasonably small
numbers of modulated states.

Recent works have numerically studied asymptotic security proofs for DMCVQKD with,
in principle, any number of modulated states [22, 23]. However, these approaches assume
the state is finite-dimensional, known as the photon-number cuto↵ assumption. Thus,
while these results seem numerically plausible, they do not constitute a rigorous asymptotic
security proof, as the cuto↵ assumption cannot be justified.

In this thesis, we present the dimension reduction method [1] to tightly lower bound the
key rate of an infinite-dimensional QKD protocol in terms of a finite-dimensional convex
optimization. In combination with existing numerical tools for solving finite-dimensional
convex optimizations, this enables us to find tight, reliable key rates for general device-
dependent QKD protocols in infinite-dimensional Hilbert spaces. Our dimension reduction
method can also be applied to study other quantum information tasks, such as entangle-
ment verification [24].
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As a result, our method can provide a complete asymptotic security proof for discrete-
modulated continuous-variable protocols with any number of modulated states, with tight
key rates and without relying on the photon-number cuto↵ assumption. While our focus
in this thesis is on calculating asymptotic key rates, we expect key elements of our method
to lift to a finite-key analysis.

Our dimension reduction method also provides an alternative approach to study pro-
tocols admitting a flag-state squasher. We consider unbalanced phase-encoded BB84 as
an example, and show that our method can have an improved runtime compared to the
flag-state squasher, while providing similar results.

The remainder of this thesis is structured as follows. In Chapter 2, we provide a
brief theory primer and background on relevant concepts. In Chapter 3, we review the
basic principles of quantum key distribution and how the key rate can be formulated as
a convex optimization. In Chapter 4 we develop our framework for dimension reduction,
in more generality than is needed for QKD. We then specialize our general method to
asymptotic key rate calculations. In Chapter 5, we apply our method to calculate key
rates for DMCVQKD, and use this to perform a thorough security analysis of the protocol,
including modelling postselection and trusted noise. We also explore and evaluate di↵erent
strategies to improve the key rate. In Chapter 6 we compare our method with the flag-state
squasher. Finally, we provide concluding remarks and avenues for future work in Chapter
7. Certain technical details are relegated to the Appendices.
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Chapter 2

Background

Quantum mechanics describes phenomena at very small scales. Quantum information
combines ideas from quantum mechanics, such as superposition and entanglement, with
concepts from information theory, like entropy and algorithms. We first review the basic
mathematical framework of quantum information in Sec. 2.1. Our review is based on Refs.
[25] and [26]. The former is an excellent reference for finite-dimensional Hilbert spaces, and
provides a logical progression to build up the relevant concepts. The latter does the same
for infinite-dimensional Hilbert spaces, providing a rigorous and self-contained treatment of
functional analysis geared towards quantum information theory. We then touch on relevant
aspects of quantum entropies in Sec. 2.2, for which Ref. [27] is a good reference. In Sec.
2.3, we discuss semidefinite programming and convex optimization, which are covered in
Refs. [25] and [28]. Finally, we introduce some essentials of quantum optics in Sec. 2.4; a
thorough treament is found in Ref. [29].

2.1 Quantum Information Theory

We summarize the building blocks of quantum information, including Hilbert spaces, states,
and channels. Our discussion is based on Refs. [26] and [25].

2.1.1 Hilbert Space

A Hilbert space is the backdrop for all our quantum information concepts. A Hilbert space
is a vector space over the field of complex numbers endowed with some additional structure.
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Namely, it has an inner product between any two vectors u, v, denoted by hu|vi. The inner
product is linear, symmetric, and positive-definite.

The inner product induces a norm on the Hilbert space, via kvk =
p

hv|vi. This is
all we need to define a finite-dimensional Hilbert space. For infinite-dimensional Hilbert
spaces, there is an additional caveat. This is that the vector space must be complete in
the norm induced by the inner product. That is, it must be a Banach space.1

An orthonormal set in a Hilbert space is a collection of vectors {va} satisfying hva|vbi =
�ab, where the latter symbol is the Kronecker delta. All Hilbert spaces permit orthonormal
bases, conventionally denoted by {ea}, which are orthonormal sets that are not the proper
subset of any orthonormal set (i.e. they are maximal).

2.1.2 Operators

Given two normed vector spaces V and W , consider a linear function, or operator T from
V to W . The operator norm of T is defined as

kTk
1

= sup
{x2V :kxkV T}

{kTxkW}. (2.1)

A function is bounded if it has a finite operator norm.

We can now define some important spaces associated to normed linear spaces V,W .

The first is the space of all bounded linear functionals from V to . This is itself a
normed linear space, known as the dual space of V , and is denoted by V d. The dual space
is always a Banach space.

For each element h of a Hilbert space H, we can define a bounded linear functional fh
via the inner product

fh(k) = hh|ki . (2.2)

In fact, it can be shown that every linear functional in H
d is of this form. The map h ! fh

is a conjugate linear bijection, as for all k 2 H,

fch1+h2(k) = hch1 + h2|ki (2.3)

= c hh1|ki+ hh2|ki (2.4)

= cfh1(k) + fh2(k) (2.5)

1Note this is still a requirement in the finite-dimensional case, but it can be shown that all finite-
dimensional normed spaces are necessarily complete.
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By the Cauchy-Schwarz inequality, this map is also norm-preserving, i.e. an isometry.
Thus, as normed linear spaces, H and H

d are conjugate isomorphic. This fact motivates
Dirac’s bra-ket notation: | i denotes a vector in H labelled by  , while h�| denotes the
linear functional in H

d which maps an input vector | i to the inner product h�| i. In this
notation, | ih�| is an operator in B(H) sending |✓i to h�|✓i | i.

We can also consider the space of all bounded operators from V to W . This is denoted
by B(V,W ), while B(V, V ) is denoted simply by B(V ). When W is a Banach space, so too
is B(V,W ). The space of all operators, unbounded or bounded, from V to W is denoted
by L(V,W ).

To every operator T 2 B(H) we can associate a partner known as its adjoint.2 The
adjoint of T , denoted by T †, is the unique operator satisfying

hh|Tki =
⌦
T †h

��k
↵

8h, k 2 H. (2.6)

A bounded operator is defined to be self-adjoint or Hermitian if it is equal to its adjoint.
Defining adjoints for unbounded operators is more involved, and we refer the interested
reader to Definition 3.78. in Ref. [26]. We also caution that for unbounded operators, the
notions of self-adjointness and Hermiticity are not the same (see Definition 3.82 in Ref.
[26]).

H is used to denote the identity operator on H, which maps vectors to themselves.

An operator U 2 B(H,K) is an isometry if U †U = H. It is a unitary if additionally
UU † = K.

An important set of bounded operators are the projections. Suppose V is a closed
subspace of a Hilbert space H. The perpendicular subspace is defined as

V
? = {h 2 H : hh|vi = 0, 8v 2 V}. (2.7)

Every h 2 H can be uniquely written as h = v + w, where v 2 V and w 2 V
?. The

(orthogonal) projection of H onto V is the map ⇧V : h ! v. In this thesis, projections will
be denoted by ⇧, and the associated projection onto the perpendicular subspace by ⇧ (i.e.
⇧+ ⇧ = H).

Given an invertible operator T 2 B(H), its inverse is denoted by T�1, so that T�1T =
TT�1 = H. Even if an operator is not invertible, one can define the generalized inverse
(also known as the Moore-Penrose pseudo-inverse) which inherits some of the properties

2To be clear, this is the Hilbert space adjoint. There is also a procedure to take adjoints in all Banach
spaces, and the two notions do not agree.
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of an inverse. It is denoted by T g, and satisfies T gT = ⇧supp(T ) and TT g = ⇧im(T ) (see
Theorem 9 and the subsequent corollary of Ref. [30] for proofs). The preceding notation
indicates the projectors onto two closed subspaces: the support and the closure of the
image of T , respectively. The intuition behind this idea is that when T is restricted to its
support, then it is an invertible operator.

2.1.3 States

Given a physical system, its quantum-mechanical state is a description of the system, or
of our knowledge of the system, at a given time. We will sometimes use the term register
to refer to such a physical system. Mathematically, states are a special subset of bounded
operators acting on the Hilbert space of the system. To introduce this class of operators,
we need some prerequisites.

Spectrum

The spectrum of an operator can be thought of as a generalization of the concept of
eigenvalues. The spectrum of a bounded operator T 2 B(H) is

�(T ) = {z 2 : (z � T ) does not have an inverse}. (2.8)

Functional Calculus

We now cover the notion of applying continuous functions to self-adjoint operators. Let
T 2 B(H) and T = T †. If we have a polynomial p(x) = anxn + ...+ a0, then we can define
p(T ) = anT n + ...+ a0 , and p(T ) 2 B(H).

For f : �(T ) ! a continuous function, there is a sequence of polynomials {pn}
converging uniformly to f . The sequence pn(T ) is itself Cauchy, in the operator norm, so
we define its limit as f(T ). (Recall that a sequence {an} is Cauchy if, for all ✏ > 0, there
exists N such that kan � amk < ✏ for all n,m > N .)

Positive Operators

T 2 B(H) is positive semidefinite if

hh|Thi � 0 8h 2 H, (2.9)
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and positive-definite if the above inequality is strict. The notation T > S (T � S) indicates
T � S is positive (semi)definite. In this thesis, the term positive is taken to mean positive
semidefinite. We will sometimes use the notation Pos (H) to denote the set of positive
operators on a Hilbert space H. Positive operators are necessarily self-adjoint, and have a
real and nonnegative spectrum.

Compact Operators

An operator T 2 B(H) is defined to be compact if the closure of the set

{Th : khk  1} (2.10)

is compact in H. (Recall that a compact set is one where every sequence has a convergent
subsequence.) In words, this states that the closure of the image of the unit ball is compact.
Defining the rank of an operator as the dimension of its range, the above definition is
equivalent to requiring that T can be approximated arbitrarily closely in operator norm
by finite-rank operators. By the spectral theorem, compact self-adjoint operators admit
an eigendecomposition, with at most countably many eigenvalues. The set of compact
operators will be denoted by (H).

Trace-Class

For any T 2 B(H), T †T is a manifestly self-adjoint operator with a real and nonnegative
spectrum. By the functional calculus,

p

T †T is then well-defined and we denote this as the
absolute value |T |.

Further suppose T is compact, so that |T | is a positive compact operator. It then has a
countable set of eigenvalues (counted with multiplicities). The eigenvalues of |T |, denoted
by si(T ), are referred to as the singular values of T .

We can use this to define an important set of norms. The Schatten p-norm of T is

kTkp =

 
X

n

|sn(T )|
p

! 1
p

. (2.11)

for 1  p < 1. The set of operators with finite p-norm is called the Schatten p-class,
denoted by SCp. As a shorthand, SC1 is defined to just be B(H).
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SC1 is also known as the set of trace-class operators TC(H). For every trace-class
operator T , we can define the trace functional via

Tr(T ) =
X

hea|Teai , (2.12)

where the choice of orthonormal basis {ea} does not matter. The trace function is cyclic.

A very useful bound on the trace is given by Hölder’s inequality. Let 1  p, q  1 and
1
p +

1
q = 1. Such pairs of numbers are called Hölder conjugates. Let T 2 SCp and S 2 SCq.

Then, TS is a trace-class operator, and

|Tr(TS)|  kTkpkSkq. (2.13)

Definition

We can pull this all together to mathematically define what a quantum state is. The
quantum states, or density operators, on a Hilbert space H are the positive, trace-class
operators with unit trace

D(H) = {⇢ : ⇢ 2 TC(H),Tr(⇢) = 1, ⇢ � 0}. (2.14)

We will sometimes deal with the subnormalized states D̃(H), which are defined the same
as above, but with Tr(⇢)  1. It is useful to note that TC(H) is spanned by elements of
D(H).

The simplest states are pure states. A pure state is a density operator that can be
written as ⇢ = | ih |, for some unit vector | i. We will sometimes just refer to | i as the
state. The most general class of states are mixed states. Intuitively, these can be thought
of as a classical mixture or convex combination of pure states.

Once we have chosen a preferred basis, say {|ii}, the state of a classical system can be
captured in the density operator formulation as a diagonal operator

⇢classical =
X

i

p(i) |iihi| . (2.15)

A classical-quantum (CQ) state is a bipartite state with the following form (see Sec
2.1.4 for an explanation of the tensor product)

⇢CQ =
X

i

p(i) |iihi|⌦ �i. (2.16)

We refer to the �i as conditional states.
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2.1.4 Multipartite Systems

Our discussion covers bipartite systems, and inductively extends to multipartite systems
A1...An formed from a finite set of registers. We first clarify the notation used in the rest
of this thesis. Given a register R, the associated Hilbert space is denoted by HR. For
classical registers, the alphabet, which is the set of values the register can take, is denoted
by SR.

In order to understand bipartite systems, we must introduce the tensor product. The
tensor product space V ⌦W is the unique vector space of dimension |V ||W | spanned by
elementary tensors of the form v ⌦ w, for v 2 V and w 2 W . The tensor map ⌦ is a
bilinear mapping.

Suppose we have two registers, A and B. The Hilbert space describing the composite
register AB, is given by the tensor product3 HAB = HA ⌦ HB. If {ea} and {fb} are or-
thonormal bases forHA andHB, then the elementary tensors {ea⌦fb} form an orthonormal
basis for HAB.

Given operators T 2 B(HA) and S 2 B(HB), the operator T ⌦S is defined on elemen-
tary tensors by (T ⌦ S)(v ⌦ w) = Tv ⌦ Sw, and extends to all vectors by linearity.

Given a bipartite state ⇢AB, ⇢A represents the reduced state on the first register, and is
obtained by tracing out the second register ⇢A = TrB(⇢AB) (see Sec. 2.1.5). This operation
is called the partial trace, and the subscripts indicate the systems being traced out.

Given a quantum state ⇢ 2 D(H1), it is always possible to find a purification of ⇢ in a
larger Hilbert space. There exists | i 2 H1⌦H2, where H2 = H1, such that Tr2(| ih |) =
⇢. This purification is unique, up to a unitary on the second system.

Entanglement

An important property of bipartite states is entanglement. A state ⇢AB is separable if it
can be expressed as

⇢AB =
X

i

Xi ⌦ Yi Xi, Yi � 0 8i (2.17)

A state with exactly one term in the above expansion is called a product state. A state is
entangled if it is not separable. Entanglement is an important nonclassical correlation.

3More precisely, the metric space completion of the algebraic tensor product.
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2.1.5 Channels

While density operators describe the state of a physical system, quantum channels describe
processes that change the state of a system. Channels are linear maps which satisfy some
additional postulates.

Definition

Mathematically, a channel is a completely positive and trace-preserving (CPTP) linear
map � from TC(HX) to TC(HY ). As the name suggests, � is trace-preserving if

Tr(�(X)) = Tr(X) 8X 2 TC(HX). (2.18)

� is positive if
�(P ) � 0 8P 2 TC(HX), P � 0. (2.19)

This ensures the channel maps positive operators to positive operators. Complete positivity
is a stronger condition, ensuring that when the channel acts on a subsystem of a composite
system, the composite output state is positive. To define this notion precisely, we need
the tensor product of two linear maps. Analogously to tensor products of operators, the
tensor product of � and  is defined on product states by (�⌦ )(⇢⌦ �) = �(⇢)⌦ (�),
and extends to all density operators by linearity.

Stated precisely, � is completely positive if �⌦ n is positive for all n, where n is the
identity channel on H = n. Note we will use the notation for the identity quantum
channel. It should be clear from context whether denotes the identity operator or the
identity channel.

Representations and Properties

There are di↵erent but equivalent representations of quantum channels; two that we will
use are the Kraus and Stinespring representations.

The Kraus representation of a channel is

�(X) =
X

i

KiXKi
†, (2.20)

where Ki 2 B(HX ,HY ) are known as Kraus operators. The sum
P

Ki
†Ki converges to

HX in the strong topology.
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Given channels �A : TC(HA
X) ! TC(HA

Y ) and �B : TC(HB
X) ! TC(HB

Y ), with Kraus
operators {KA

i } and {KB
j }, the composite channel �A ⌦ �B : TC(HA

X ⌦H
B
X) ! TC(HA

Y ⌦

H
B
Y ) is given by the Kraus operators {KA

i ⌦KB
j }.

The trace is an important example of a quantum channel, Tr : H ! , as is the partial
trace, A ⌦ TrB : HA ⌦HB ! HA.4

In the Stinespring representation, any channel can be realized isometrically in a larger
Hilbert space. That is, for any channel � there exists a Hilbert space HE and an isometry
V 2 B(HX ,HY ⌦HE) such that

�(X) = TrE(V XV †). (2.21)

The system E is customarily thought of as the environment (or Eve, as we will see later).

If the output of a quantum channel is classical on any input state, then the channel
is called quantum-to-classical. We will see that such channels can always be realized by a
measurement (see Eq. (2.24)).

Every linear map � : TC(HX) ! TC(HY ) has an adjoint �† : B(HY ) ! B(HX), which
is the unique linear map such that

Tr(M�(⇢)) = Tr
�
�†(M)⇢

�
8⇢ 2 D(HX), M 2 B(HY ). (2.22)

If the channel � is given by the Kraus operators Ki, then �† is given by the Kraus operators
Ki

†, and is thus a completely positive and unital map (unital means �†( HY ) = HX ).

2.1.6 Measurements

A measurement device in quantum mechanics can be thought of as a instrument which
acts on a quantum state, and returns classical outcomes with some probability distribu-
tion. For the purposes of this thesis, we will only be concerned with so-called destructive
measurements, where the system is assumed to be discarded after measurement.

Projective Operator-Valued Measures

The mathematical description of measurements is in terms of projective operator-valued
measures, or POVMs for short. In the following discussion S is defined to be the set of all
possible measurement outcomes.

4We implicitly use the fact that H⌦ = H.
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To define a POVM in full generality, we first need the notion of a �-algebra. A �-algebra
A is a collection of subsets of S, satisfying:

1. S 2 A.

2. X 2 A =) S\X 2 A.

3. Xi 2 A =)
S

i Xi 2 A.

A POVM is a map P : A ! B(H) satisfying:

1. P (X) � 0 8X 2 A.

2. P (S) = H.

3.
P

i P (Xi)
w
�! P (

S
i Xi) for all sequences of disjoint sets {Xi}, where

w
�! denotes weak

convergence.

The probability of getting an outcome in X is

p(X) = Tr(⇢P (X)). (2.23)

The probabilities are always well-defined by Hölder’s inequality (Eq. (2.13)). We will
generally write PX ⌘ P (X). We refer to the PX as POVM elements, or POVMs for short.

Often, we will consider a finite set S of measurement outcomes. In this case, there are
finitely many POVM elements, indexed discretely, and one does not need the framework
of �-algebras. However, for heterodyne measurements (see Sec. 2.4.2), S = , so we do
need to consider the more formal definition of a POVM.

One important fact that we will make use of (see Sec. 4.2.3) is that every quantum-to-
classical channel can be realized by a POVM,

�Q!C(X) =
X

i

Tr(XPi) |iihi| . (2.24)

Observables

Another way to describe a measurement is in terms of observables. An observable is a
self-adjoint operator Ô 2 L(H). The expected value of a measurement of the observable
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is then Tr
⇣
⇢Ô
⌘
. The shorthand

D
Ô
E
is often used to denote the expectation value of the

observable, where the underlying state is implicit.

If Ô is unbounded,
D
Ô
E
may not be defined. This is not paradoxical since discussing

observables really only makes sense in terms of expectation values. To gain a better
understanding of this situation, consider an observable expressed as

Ô =
X

i

wiPi. (2.25)

for a POVM {Pi}. Physically, the POVM is the complete description of a measurement
apparatus in quantum mechanics. Now, suppose that on outcome i, the measurement
apparatus, instead of outputting the outcome i, instead outputs the real-valued weight wi.
On any particular measurement, some value wi is obtained, while the average weight is

Tr
⇣
⇢Ô
⌘
. That

D
Ô
E
is undefined only means that over a large number of repetitions, the

average will not converge.

2.1.7 Distance Measures

Distance measures quantify the notion that two quantum states are more or less di↵erent.
We have already covered the trace norm above, and the trace distance is simply defined as
one half of the trace norm

1

2
k⇢̃� �̃k1. (2.26)

The fidelity is another measure of the closeness of states, defined as

F (⇢̃, �̃) = Tr

✓q
p

�̃⇢̃
p

�̃

◆
. (2.27)

The Fuchs-van de Graaf inequalities [31] relate fidelity and trace distance as follows,

1� F (⇢̃, �̃) 
1

2
k⇢̃� �̃k1 

p
1� F (⇢̃, �̃)2. (2.28)

The trace distance between a state and its projection can be bounded in the following
manner, which is tighter than the result one would get just from applying the Fuchs-van
de Graaf inequalities,

1

2
k⇢� ⇧⇢⇧k1 

q
Tr
�
⇢⇧
�
. (2.29)
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The proof of this fact can be found in Lemma 5 of Ref. [32], which is a slight tightening
of the gentle measurement lemma in Ref. [33].

It is impossible to perfectly distinguish two non-orthogonal quantum states. More
generally, any physical process can only bring two states closer together. This is captured
by the fact that trace distance is monotonically decreasing under any CPTNI map �,

1

2
k⇢̃� �̃k1 �

1

2
k�(⇢̃)� �(�̃)k1. (2.30)

2.2 Quantum Entropies

There are many entropic quantities which are of theoretical interest or quantify the re-
sources required for di↵erent tasks in information theory. All such quantities can be
viewed as generalizations of a corresponding classical one. The classical one can be re-
covered by considering classical input states only, so in the following we generally only give
the definitions for the quantum ones.

2.2.1 Shannon Entropy and von Neumann Entropy

Entropy is a central concept in information theory. It provides a way to quantify ran-
domness or uncertainty. For a classical discrete probability distribution p(i), the Shannon
entropy is defined as

H(p) =
X

i

p(i) log2
1

p(i)
. (2.31)

The base of the logarithm in the above expression determines the units. We will exclusively
use base-2 logarithms in this thesis, so that the entropy is measured in bits. We will denote
the binary entropy by h(x) ⌘ �x log x� (1� x) log(1� x).

The von Neumann entropy of a quantum state is defined in an analogous manner,

H(⇢X) = H(X)⇢X = �Tr(⇢X log ⇢X) =
X

i

�(i) log
1

�(i)
, (2.32)

where �(i) are the eigenvalues, with multiplicities, of ⇢X . Written in this form, it is
clear that the von Neumann entropy is the Shannon entropy evaluated on the probability
distribution �(i).
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A brief remark regarding notation: given a multipartite state ⇢X1X2...Xn , we will either
write H(X1X2..Xk)⇢ or H(⇢X1X2...Xk

) to denote the entropy of the reduced state ⇢X1X2...Xk
.5

The von Neumann entropy is strongly subadditive, meaning that for any state ⇢XY Z ,

H(XY Z) +H(Z)  H(XZ) +H(Y Z). (2.33)

2.2.2 Quantum Relative Entropy

The quantum relative entropy, known in the classical case as the Kullback-Leibler diver-
gence, is a useful intermediate quantity for defining other entropies. It captures the notion
of how di↵erent two quantum states are, and is defined as

D(⇢||�) =

(
Tr(⇢ log ⇢� ⇢ log �) if supp(⇢) ✓ supp(�)

1 otherwise.
(2.34)

where supp denotes the support.

2.2.3 Conditional Entropy

The conditional entropy is the entropy of a system X, given that one has some side infor-
mation Y ,

H(X|Y )⇢XY = H(XY )⇢XY �H(Y )⇢Y . (2.35)

The conditional entropy is scalar-linear, so it can be defined on subnormalized states as

H(X|Y )⇢̃XY = Tr(⇢̃XY )H(X|Y )⇢XY . (2.36)

A useful characterization of the conditional entropy is in terms of the relative entropy

H(X|Y )⇢XY = �min
⌧Y

D(⇢XY || X ⌦ ⌧Y ), (2.37)

where the minimum is attained at ⌧Y = ⇢Y .

5In the first notation, if the state is understood from context, it may not be written explicitly as a
subscript. Conversely, in the second notation, the registers may not be written explicitly.

16



2.2.4 Mutual Information

The mutual information measures the correlation between two registers X and Y ,

I(X : Y )⇢XY = H(X)⇢X +H(Y )⇢Y �H(XY )⇢XY = H(X)⇢X �H(X|Y )⇢XY . (2.38)

The mutual information evaluated on a classical-quantum state is also known as the Holevo
quantity, and can be written as

I(X : Y )⇢XY = �(X|Y )⇢XY = H
⇣X

p(i)�i
⌘
�

X
p(i)H(�i) (2.39)

where ⇢XY =
P

i p(i) |iihi|X ⌦ �i
Y .

2.3 Semidefinite Programming and Convex Optimiza-
tion

Semidefinite programs (SDPs) are useful tools in a variety of fields, and have been in-
creasingly applied to quantum information in recent years. Convex optimization is a more
general notion, which encompasses many classes of interesting problems. Both types of
optimizations are particularly useful because they can generally be e�ciently solved. This
section is based on Ref. [25], which covers SDPs in finite dimensions, and Ref. [34], which
has additional details regarding the formulation of SDPs in infinite dimensions.

LetA 2 B(HX) be a bounded self-adjoint operator, on a potentially infinite-dimensional
Hilbert space HX . Let B 2 TC(HY ) be a trace-class self-adjoint operator on a finite-
dimensional Hilbert space HY . Let � : TC(HX) ! TC(HY ) be a linear map which
preserves self-adjointness. Recall that � has an adjoint �† : B(HY ) ! B(HX), which is
the unique linear map satisfying Eq. (2.22).

A semidefinite program is then the pair of convex optimization problems:

Primal Form

minimize:
X

Tr(AX)

subject to: �(X)  B (2.40)

X 2 Pos (HX)

X 2 TC(HX)

Dual Form

maximize:
Y

� Tr(BY )

subject to: �†(Y ) � �A (2.41)

Y 2 Pos (HY )

Y 2 B(HY )
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Let ↵ and � denote the solutions of the primal and dual respectively. Semidefinite
programs obey weak duality, which means that ↵ � �. Strong duality means ↵ = �.
Slater’s theorem provides su�cient conditions for strong duality to hold. Namely, if the
dual problem is feasible, and there is a strictly feasible primal solution, i.e. X > 0 and
�(X)  B, then strong duality holds [25, 34].

More generally, one can consider convex optimizations, where the objective function
and feasible set are both convex. Such optimizations arise in many cases of interest, and
can often be e�ciently solved numerically.

2.4 Quantum Optics

Quantum key distribution is implemented overwhelmingly using optics. To model QKD
systems, it is therefore important to understand some quantum optics. For the purposes
of this thesis, it su�ces to understand the quantization of single modes of light, the phase
space representation, and some basic optical elements. We provide a brief overview of these
concepts in this section; our discussion is based on Ref. [29].

2.4.1 Simple Harmonic Oscillator

Given a physical setup, such as a cavity or an optical fiber, consider a particular solution
to Maxwell’s equations at a given frequency !. This is known as a mode. Following the
procedure of canonical quantization, the electric and magnetic fields can be promoted to
operators. It turns out that, mathematically, such a single mode of light is exactly equiv-
alent to a quantum simple harmonic oscillator (QSHO). We briefly review this formalism,
drawing parallels between the terminology for quantized light and a QSHO. A thorough
description of the QSHO can be found in Ref. [35].

A basis for the Hilbert space is formed by the Fock states {|ni}1n=0, where n corresponds
to the number of photons in the state. The ladder operators â† and â create or annihilate
a photon of energy ~!. That is,

â |ni =
p
n |n� 1i , (2.42)

â† |ni =
p
n+ 1 |n+ 1i , (2.43)

with the exception that â |0i is the zero vector. |0i is referred to as the vacuum state. From
these relations, it can be seen that the Fock states are eigenstates of the photon number
operator n̂ ⌘ â†â. The ladder operators obey the commutation relation [â, â†] = 1.

18



The quadrature operators X̂ and P̂ , analogous to position and momentum, are dimen-
sionless operators proportional to the electric and magnetic field operators. (Note that
units can always be restored using dimensional analysis.) There are two di↵erent conven-
tions to define the quadratures, natural units (NU) and shot noise units (SNU). In this
thesis, we use SNU unless otherwise mentioned. For SNU, the quadratures are defined by
the ladder operators via

X̂ =
1
p
2
(â† + â), (2.44)

P̂ =
i
p
2
(â† � â). (2.45)

Shot noise units correspond to setting ~ = 1. In natural units, the definitions of the
quadratures are the same except there is no prefactor of 1

p
2
. This corresponds to setting

~ = 2.

2.4.2 Important Classes of States

Coherent States

A particularly important class of states are the coherent states {|↵i}↵2 . They are the
eigenstates of the lowering operator,

â |↵i = ↵ |↵i . (2.46)

The coherent state |0i is just the vacuum state.

These states are easy to create experimentally, as the output of a laser is a coherent
state. Coherent states form an overcomplete basis for the Hilbert space. A measurement
with respect to this basis is called a heterodyne measurement, and is described by the
POVM {

1
⇡ |↵ih↵|}↵2 . Note that 1

⇡

R
↵2 |↵ih↵| d2↵ = .

A coherent state can be represented as a Poisson distribution of Fock states

|↵i = e
�|↵|2

2

1X

n=0

↵n

p
n!

|ni . (2.47)

From this representation follows the well-known formula for the overlap of two coherent
states,

h↵j|↵ii = exp

✓
i Im(↵i↵

⇤

j )�
1

2
|↵i � ↵j|

2

◆
(2.48)

(see Eq. 3.61 of Ref. [29] for a full derivation).
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Gaussian States

Gaussian states are those states whose Husimi Q-function (see Sec. 2.4.3) is a two-
dimensional Gaussian distribution over the complex plane. As Gaussian distributions are
completely characterized by their first and second moments, Gaussian states have a finite-
dimensional representation in terms of their covariance matrix. This makes them relatively
easy to handle theoretically. A thorough reference on Gaussian states and Gaussian oper-
ations is given in Ref. [36].

Thermal States

A thermal state represents a state in thermal equilibrium, and is defined as

⇢th(n̄) =
1

1 + n̄

1X

n=0

✓
n̄

1 + n̄

◆n

|nihn| , (2.49)

where n̄ is the mean photon number. Note Tr(⇢thn̂) = n̄ and Tr(⇢thn̂2) = n̄(1 + 2n̄).

2.4.3 Phase Space and Displacement

Single-mode states can be visualized in a two-dimensional phase space. Unlike classical
mechanics, where the states are points in phase space, in quantum mechanics the states
are quasiprobability distributions over phase space. One particular quasiprobability distri-
bution we will make use of is the Husimi Q-function [37], defined as

Q(↵) =
1

⇡
h↵|⇢|↵i . (2.50)

An important unitary operator is the displacement operator, defined as

D̂ (�) = exp
�
�â† � �â

�
. (2.51)

As the name suggests, this operator displaces states in phase space. In particular, its action
on coherent states is D̂ (�) |↵i = ei Im(�↵)

|↵ + �i. Given a complex number �, we will use
the shorthand Ô� ⌘ D̂ (�) ÔD̂† (�) and |n�i ⌘ D̂ (�) |ni.
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Figure 2.1: Graphical depiction of beam splitter transforming input modes into output
modes.

2.4.4 Beam Splitters

There are a variety of optical elements which can change the state of light. When modelling
these components, it is convenient to work in the Heisenberg picture. In particular, we
assume the state is always the vacuum state, and view the ladder operators as being
modified. We briefly summarize a symmetric beam splitter here, but a fuller discussion
can be found in Ref. [29]. A beam splitter is a two-input, two-output device. The two
input modes are labelled 0, 1, while the two output modes are labelled 2, 3 (Fig. 2.1).

A symmetric beam splitter is characterized by its transmittance ⌘, and transforms the
ladder operators as ✓

â2
â3

◆
=

✓ p
⌘

p
1� ⌘

�
p
1� ⌘

p
⌘

◆✓
â0
â1

◆
. (2.52)

To use this formula, we first express the input state in terms of ladder operators acting
on the vacuum. Then, replacing the input ladder operators with output ladder operators
according to Eq. (2.52) gives the output state.
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Chapter 3

Quantum Key Distribution

Consider the following scenario. Alice and Bob are two honest parties who are remotely
separated. They have access to an untrusted quantum channel and an authenticated public
classical channel.1 The quantum channel is entirely under the control of an eavesdropper,
Eve. Eve is also able to view (but not tamper with) all messages sent on the classical
channel.

Remarkably, in this scenario, it is possible for Alice and Bob to establish a shared,
secret key using quantum key distribution (QKD). Broadly speaking, QKD is possible due
to two key principles of quantum mechanics: the no-cloning theorem [38] and monogamy
of entanglement [39]. The first implies that when Eve tries to distinguish non-orthogonal
states, she will necessarily introduce errors that Alice and Bob can catch and use to de-
termine how much Eve tampers with the channel. The second guarantees that, once Alice
and Bob establish they have a highly entangled state, Eve cannot be strongly correlated
to their data.

If limited to classical systems only, it is not possible to generate a key in this scenario. If,
however, one puts restrictions on the eavesdropper, such as limited computational power,
then it is possible to generate secret keys in the classical scenario as well; using techniques
such as Di�e-Hellmann key exchange [40]. Thus, one key advantage of QKD over sim-
ilar classical protocols is that the eavesdropper is limited only by the laws of quantum
mechanics [2]. This means keys generated via QKD are information-theoretically secure,

1To authenticate their messages over an untrusted, public classical channel, Alice and Bob can use
some shared secret bits along with a classical message authentication procedure. In this sense, QKD is
more properly referred to as quantum key growing, as the parties need to start out with some key bits for
authentication on the first run of QKD. In future runs, they can use a portion of the key already generated.
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instead of just computationally secure. The second key advantage of QKD over its classical
counterparts is perfect forward secrecy, meaning that keys generated via QKD are as secure
in the future as when they were generated. That is, the discovery of new attacks on or
weaknesses in the protocol will not compromise the security of already-generated keys. See
Ref. [41] for a nuanced discussion of the security guarantees of QKD, and its potential role
in a larger quantum network.

The first ideas on using quantum mechanics for cryptography were introduced by Wies-
ner in the 1960s [42]. The first complete QKD protocol was then developed by Bennett
and Brassard in 1984, and is referred to as BB84 [43]. This protocol relies on single-photon
threshold detectors, and is hence classified as a discrete-variable (DV) protocol. In 1999,
Ralph introduced the first continuous-variable (CV) protocol [11]. CV protocols are classed
as such because the measurements involve homodyne or heterodyne detection. Due to their
simpler detection setup, CV protocols are easier to implement experimentally. However,
their security analysis has lagged behind that of DV protocols. Reviews of QKD protocols
and security analyses can be found in Refs. [44–46].

Among technologies harnessing quantum information, QKD enjoys relatively widespread
experimental implementation, including over long distances [47], with space-based satellites
[48], and in commercial plug-and-play products [49].

In this chapter, we first review the steps of a QKD protocol and the entanglement-
based and prepare-and-measure formulations in Sec. 3.1. We then briefly outline the
security definition of QKD, and the corresponding formula for the secure key rate in Sec.
3.2. Finally, we summarize the existing numerics framework for key rate calculations in
finite-dimensional Hilbert spaces in Sec. 3.3.

3.1 QKD Protocols

A protocol is a specific procedure that Alice and Bob follow to generate their secret key. It
consists of a quantum phase, where quantum states are sent and measured, followed by a
classical phase, where the measurement data is postprocessed to correct errors and remove
Eve’s correlations. There can be di↵erent variations of protocols, such as where Alice
and Bob both send signals to a third party, Charlie, who then does all the measurements.
Here, we consider protocols where only Alice and Bob perform measurements. We consider
device-dependent protocols, where the devices of Alice and Bob are assumed to be trusted
and fully characterized (see Sec. 3.2.3).
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3.1.1 Protocol Steps

An entanglement-based (EB) protocol is one where Alice and Bob each receive one part of
a bipartite state and perform measurements on it.2 The steps of a generic entanglement-
based protocol are as follows.

1. Alice and Bob start with a bipartite quantum state ⇢AB 2 HA⌦HB. This state may
be established with the help of an untrusted third party.

2. Alice and Bob measure their subsystems with POVMs {P i
A} and {P j

B}.
3 The al-

phabets for i and j are Smsmt
A and Smsmt

B . To each outcome i, j, they associate
two pieces of classical data: a public announcement ai, bj and a private measure-
ment result ↵i, �j. The respective alphabets from which the values are drawn are
Spub
A , Spub

B , Spriv
A , Spriv

B .

After repeating the previous two steps for a large number of rounds N , Alice and Bob
proceed to the classical phase.

3. Alice and Bob choose a random subset of m rounds to use for parameter estimation.
For these testing rounds, they announce their measurement outcomes. This allows
them to determine the frequency f of each possible outcome (i, j). (The frequency is
simply the count of the number of times the joint outcome (i, j) is obtained, divided
by m.)

4. Based on the frequencies of each joint outcome f(i, j) from parameter estimation,
Alice and Bob decide whether or not to abort the protocol. This is represented by
a binary function A : F ! {0, 1}; where A = 0 if the protocol is continued and
A = 1 if aborted. Here, F is the space of all possible frequency distributions on
Smsmt
A ⇥ Smsmt

B .

We now proceed with the steps if the protocol is not aborted. All following discussion
concerns the data from the remaining N �m rounds only.

5. Alice and Bob announce their public data. Based on the joint announcements, they
may decide to discard some rounds. This is referred to as postselection. It is repre-
sented by a binary function d : Spub

A ⇥Spub
B ! {0, 1}; where d = 0 if the signal is kept

and d = 1 if discarded.
2As we will see in the next section, this encapsulates prepare-and-measure protocols as well.
3We use discrete indices for simplicity, but the POVM can more generally be indexed by a �-algebra

(see Sec. 2.1.6).
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6. Based on the public announcements and their own private data, one party performs
the key map.4 When Alice (Bob) performs the key map, it is conventionally referred
to as direct (reverse) reconciliation. In the following discussion, we consider the case
where Bob performs the key map. For a M -ary key, the key map is a function5

g : Spub
A ⇥ Spub

B ⇥ Spriv
B ! {0, 1, ...,M � 1,?} ⌘ SZ . The ? symbol is only used to

flag the discarded or sifted signals, so g(a, b, �) = ? () d(a, b) = 1. This models
postselection (see above step) in a unified manner as part of the key map.

7. Alice and Bob then perform error correction (EC) using the classical channel to get
Alice’s data to agree with the sifted key established by Bob. In the process, they will
reveal some information over the public classical channel.

8. Alice and Bob perform privacy amplification (PA). To do this, they first determine
how long their final secret key can be while still being secure.6 Then, they choose
a two-universal hash function from the appropriate family, communicate this choice
publicly, and apply the function to obtain the final shared secret key, of length l.7

In practice, the discarded signals are simply removed before performing error correction
and privacy amplification. We include them with the discard flag ? only to formulate the
protocol in a trace-preserving manner.

3.1.2 Source-Replacement Scheme

A prepare-and-measure (P&M) protocol is one where Alice prepares signal states and sends
them to Bob, who then performs a measurement. It is now known that any such protocol
can be realized by an entanglement-based one. The first work towards this was in Ref. [50],
where it was noted that Einstein-Podolsky-Rosen (EPR) pairs could be used to implement
BB84. A more general setting was considered in Ref. [51], and it was noted that prepare-
and-measure continuous-variable protocols could be thought of as virtual entanglement-

4The nomenclature ”key map” can be confusing. Strictly speaking, this map generates the raw key,
which only becomes the true final key after error correction and privacy amplification.

5While this may seem limited to deterministic key maps, note that one can define the measurement
POVMs to introduce randomness into the key.

6This is exactly what a security proof for the protocol provides, a lower bound on the length of the key,
as a function of the parameter estimation results and the error correction leakage.

7The analysis of the classical error correction and privacy amplification steps, including modifications
to the order of the two steps and di↵erent strategies for PA and EC, is a deep and interesting field in its
own right. It is however outside the scope of this thesis.
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based protocols. Finally, the ideas from the preceding papers were generalized to arbitrary
prepare-and-measure protocols in Ref. [52].

This principle, which allows us to rewrite any P&M protocol as an EB one, is known
as the source-replacement scheme. Thus, the description of EB protocols above encom-
passes P&M protocols as well. It should be emphasized that source-replacement is only a
conceptual step; the physical implementation of the protocol does not change.

In this thesis, we focus on the case where the signal states are chosen from a finite
set of pure states. Concretely, suppose Alice prepares signal states | ii with probability
p(i). In the source-replacement scheme, this is modelled as Alice preparing the state
⌧AA0 =

P
ij

p
p(i)p(j) |iihj|A⌦ | iih j|A0 . System A0 is sent through the unknown quantum

channel to Bob, and becomes system B. Alice’s virtual measurement in this EB description
is given by the POVM {|iihi|A}.

In addition to the usual constraints from parameter estimation, for P&M protocols
there is an extra constraint on ⇢AB. As Eve cannot access Alice’s system, the reduced
density matrix of ⌧A must be the same as ⇢A. Thus, for P&M protocols the additional
constraint is ⇢A = ⌧A =

P
ij

p
p(i)p(j) h j| ii |iihj|. Note that ⌧A is closely related to the

Gram matrix of signal states.

3.2 Key Rate and Security Definition

In order to evaluate and compare QKD protocols, we must first define what it means for
a QKD protocol to be secure. Once this is done, we can calculate the key rate, which is
a measure of the e�ciency of a QKD protocol. It quantifies how many bits of secret key
are generated per round. For the purposes of this thesis, it is not important to understand
the details of the QKD security definition; it su�ces to take the Devetak-Winter formula
[53] as a starting point. Nevertheless, it is good to have an overview of the underlying
concepts.

3.2.1 QKD Security Definition

So far, we have taken an operational view of QKD protocols. To discuss the security
definition, we now consider QKD protocols in a slightly more abstract light. At a high-
level, the QKD protocol takes quantum states as input, and outputs a pair of keys to Alice
and Bob. We desire that Alice and Bob receive the same key (correctness), and that an
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eavesdropper does not know the key (secrecy) [54]. We now formalize these two notions.
The reader is directed to Sec. 6.1 of Ref. [54] for further details.

Recall that a QKD protocol lasts for N rounds, and each round Alice and Bob receive
a (possibly di↵erent) state in HA ⌦ HB. The cumulative input Hilbert space is then
(HA ⌦ HB)⌦N , and the input state denoted by ⇢A⌦NB⌦N . We also want to consider the
eavesdropper Eve, who is only limited by the laws of quantum mechanics. Without loss of
generality, we can assume Eve, with her register denoted by EN , holds the purification of
⇢A⌦NB⌦N .

We can always assume Eve at least holds the purifying register, as if she does not,
giving this information to her could only reduce the key rate. On the other hand, if Eve
held the purifying register and any additional register E 0, the purity of ⇢A⌦NB⌦NEN

implies
the total state would be ⇢A⌦NB⌦NEN

⌦ �E0 . The product form of this state means there
are no correlations between E 0 and the remaining registers, so it does not help Eve in any
way. For the purification, recall that it su�ces to choose HEN to have the same dimension
as (HA ⌦HB)⌦N (see Sec. 2.1.4).

Let S be the set of all possible keys of length l. Then, the output keys to Alice and
Bob are held in respective classical registers KA and KB, with associated Hilbert spaces
HKA = HKB = |S|.

We also need to account for the public information revealed during the course of the
protocol. We let HCN be the Hilbert space, with dimension as large as needed, containing
all classical public communication exchanged by Alice and Bob during the protocol. This
includes their parameter estimation information, any announcements regarding sifting,
error-correction information, and a choice of hash function for privacy amplification (see
Fig. 6.4 in Ref. [54]).

We can now formally define the QKD protocol as being a completely positive and trace
non-increasing map. This map is from D((HA⌦HB)⌦N

⌦HEN ) to D̃(HKA ⌦HKB ⌦HCN ⌦

HEN ), acting trivially on HEN , with the requirement that the final state �̃ is classical-
classical-classical-quantum. The protocol is not trace-preserving because it may abort, in
which case it outputs the zero operator (see Sec. 6.1.3 of Ref. [54]).

With the formal definition of a protocol complete, we can now mathematically define
what we mean by security. A protocol is said to be ✏-secure if, for all input states, the
output state satisfies

1

2
k�̃KAKBCNEN � �̃idealk1  ✏. (3.1)

Here, �̃ideal =
P

s2S
1
|S|

|sihs|KA
⌦ |sihs|KB

⌦ �̃CNEN , where �̃CNEN = TrKAKB(�̃KAKBCNEN ).
Up to normalization, �̃ideal is the output of the ideal QKD protocol, in that the key is the
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same between Alice and Bob (correct), and is uniformly random and completely uncorre-
lated to Eve (secret) (see also Remark 6.1.3 in Ref. [54]). Intuitively then, this security
definition captures the notion that a secure QKD protocol produces outputs that are close
to ideal, regardless of the input state. ✏ can be interpreted as the failure probability of the
protocol. That is, the probability that the protocol does not abort and fails to provide a
correct and secret key. For further motivation of this security definition, see the discussion
leading up to Eq. 11 in Ref. [55].

Note that a protocol which always aborts is secure under this definition, though it is
certainly not useful.

To understand why the security definition in Eq. (3.1) is a composable definition, con-
sider applying any subsequent ideal cryptographic protocol, represented by some CPTNI
map. By the monotonicity of trace distance under CPTNI maps, it follows that the outputs
of this new protocol on the real and ideal state are no further apart in trace distance. Hence,
the overall process comprising the initial QKD protocol and the subsequent cryptographic
protocol is still ✏-secure.8

3.2.2 Key Rate

Given the complete description of a QKD protocol, except for the size l of the output
string, and a particular value of the security parameter ✏, we wish to determine a value of
l such that the protocol is ✏-secure. In other words, we want to know how much to shrink
the key in the final step of privacy amplification. This is known as a security proof. By
the leftover hash lemma, this can be determined by solving a minimization of an entropic
quantity known as the smooth min-entropy [54].

In full generality, computing this quantity is very challenging. There can be N > 106

rounds so the Hilbert spaces are very large, one has to contend with the fact that the
input state could be entangled across multiple rounds, there are statistical fluctuations
in the parameter estimation step, etc. Indeed, many basic questions about quantum key
distribution remain open. For example, while it is known that entanglement is necessary
for QKD [52], it is not known if it is su�cient. In the most general scenarios, one is
typically content with any reasonable lower bound on the key rate, though it may not be
clear how tight the answer is. In this context, tight means that the value of l is close to
the largest value of l such that the protocol is still ✏-secure.

8By the triangle inequality, if the subsequent protocol is instead ✏0-secure, then the composite protocol
is (✏+ ✏0)-secure.
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To simplify the problem, we can instead consider more restricted scenarios, in which case
relatively simple and tight formulas for the key rate do exist. At the risk of overgeneralizing,
the development behind most QKD security proofs is to first find the key rate under some
restrictive assumptions, and then over time lift these assumptions at the cost of some
decrease in the key rate.

One often considers restrictions on the form of the input states, leading to various
classes of security proofs. Restrictions on the input state can equivalently be thought of
as restrictions on the actions Eve is allowed to take. The most general attack, with no
restrictions, is referred to as a coherent attack.

Asymptotic IID Collective Scenario

In this thesis, we focus on the independent and identically distributed (IID) collective
scenario. It corresponds to a restricted attack where Eve interacts with the quantum state
in the same manner and with a fresh ancilla each round. After all the rounds, she is
however able to make a joint measurement on all the ancillas. This should not be confused
with an individual attack, where Eve must measure each ancilla separately for each round.

Mathematically, this corresponds to the input state having the form ⇢A⌦NB⌦NEN
=

⇢⌦N
ABE. As has been discussed above, without loss of generality, E is taken to be the

purifying register of ⇢ABE.

The main advantage of studying the IID collective scenario is that we can determine
the key rate just by considering one round. We do not have to consider the huge input
state across all of the (potentially millions of!) rounds.

We further specialize to the asymptotic scenario, which is when the number of rounds
N ! 1. The main advantage of this is that we do not have to worry about statistical
fluctuations, as all the frequencies from parameter estimation become probabilities. We
model this by saying the expectations {�k} of certain coarse-grained observables {�kAB}

are known. Alice and Bob could always benefit from using their full fine-grained data, so
that {�k} = {P i

A⌦P j
B}. However, it can be challenging to deal with this set of observables

when the alphabet is infinite (e.g. see Sec. 5.1.1), so we allow the flexibility to use a
di↵erent set of observables, which are linear combinations of the fine-grained POVMs. The
number of rounds m used for parameter estimation is chosen to be a vanishingly small
fraction of N , so that there is no reduction in the key rate due to rounds consumed in
parameter estimation.

Ultimately, one hopes to lift asymptotic collective security proofs to coherent attacks
and to the regime of finite N . For protocols where HA and HB are finite-dimensional, and
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where the protocol is invariant under permuting the di↵erent rounds, asymptotic coherent
attacks are no stronger than collective ones, due to the quantum de Finetti theorem [56].
In brief, this theorem states that, after discarding some subsystems of an approximately
symmetric (permutation-invariant) state, the state on the remaining subsystems can be
approximated by a convex combination of IID states.

For protocols in infinite-dimensional spaces, the situation is a bit more subtle. While
there are quantum de Finetti theorems that apply in infinite dimensions, they are slightly
more involved than their finite-dimensional counterparts, requiring additional assumptions
to make similar claims [57]. It is thus expected that the asymptotic collective key rate
for infinite-dimensional protocols is the same as the asymptotic coherent key rate, but
rigorously proving this requires some small additional steps.

Postprocessing Channel

Recall that by the IID collective assumption, we only need to consider a single round
of the QKD protocol. To model this, we now define the channel corresponding to the
measurement and key generation (collectively called postprocessing) that Alice and Bob
perform.

We introduce registers Ã and B̃ to hold the public announcements, A and B to hold
the private measurement data, and Z to hold the result of the key map. As noted above,
without loss of generality, Eve has access to the register E purifying ⇢AB and the public
information.

It is worth noting that the public information in this context only includes the public
announcements ai, bj. It does not include parameter estimation announcements, because
the IID structure means Eve does not learn anything about the non-discarded signals from
this information. It also does not include the information leaked during error correction,
as that will be modelled separately. Finally it does not include the announcement of which
hash function is used, as the information this gives Eve is already accounted for in the key
rate formula.

Alice and Bob’s measurement can be described by a channel �AB
M that is simply given

by TrAB(�AB
T ), where

�AB
T (⇢ABE) =

X

i,j

|aiihai|Ã ⌦ |↵iih↵i|A ⌦ |bjihbj|B̃ ⌦ |�jih�j|B

⌦

✓q
P i
A ⌦

q
P j
B

◆
⇢ABE

✓q
P i
A ⌦

q
P j
B

◆�
. (3.2)
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The action of the key map can be represented by the isometry

V =
X

Spub
A ,Spub

B ,Spriv
B

|g(a, b, �)iZ ⌦ |aiha|Ã ⌦ |bihb|B̃ ⌦ |�ih�|B . (3.3)

The final state between all parties is then V �AB
M (⇢ABE)V †. We can pull the partial trace in

the measurement channel �AB
M through the isometry V . Then, the final classical-quantum

state between the register holding the result of the key map and Eve is

�Z[E] = TrAABB(V �
AB
T (⇢ABE)V

†), (3.4)

⌘ �(⇢ABE). (3.5)

The channel � characterizes the postprocessing steps and [E] denotes the composite register
EÃB̃. Note that discarded signals will not contribute to the key rate, as �Z[E] is block-
diagonal in the classical announcements. To compute �, it is thus simpler and equivalent
to not apply the POVM elements leading to discarded outcomes, rather than use a discard
symbol [23]. In this case, the postprocessing map is completely positive and trace non-
increasing.

Asymptotic Key Rate Formula

Given ⇢AB, the asymptotic secure key rate in the IID collective scenario is given by the
Devetak-Winter formula [53]:

R1 =
l

N
= I(Z : X)� �(Z|[E]), (3.6)

where the entropic quantities are evaluated on the postprocessed state after a single round,
�(⇢ABE), and X refers to the party who does not perform the key map. Note that there
is no dependence on the security parameter ✏, due to the asymptotic limit.

In general, the state ⇢AB is unknown. However, it is constrained by Alice and Bob
through testing. To determine a lower bound on the key rate, the Devetak-Winter formula
should be evaluated on the worst-case state compatible with these constraints. This can
be formalized as a convex optimization problem [3].

The Devetak-Winter formula is first rearranged as,

R1 = H(Z|[E])�H(Z) + I(Z : X), (3.7)

= H(Z|[E])�H(Z|X). (3.8)
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Only the first term needs to be optimized over. The second term is replaced by the
actual error-correction cost �leakEC which is the number of bits leaked to perform error cor-
rection, normalized per round. For realistic error correction, �leakEC will be larger than the
Shannon limit H(Z|X) (see Sec. 3.3.5).

As a shorthand notation, we write the convex objective function as

fQKD(⇢AB) = H(Z|[E])�(⇢ABE). (3.9)

To define the feasible set of the optimization, we use the information from parameter
estimation. Additionally, for P&M protocols we have a constraint on the reduced density
matrix ⇢A. This defines the convex feasible set as

SQKD = {⇢ 2 Pos (HAB) : Tr(⇢) = 1,

TrB(⇢) = ⌧A,

Tr(⇢�i) = �i}.

(3.10)

Then, the convex optimization for the key rate is [4]

R1 = min
⇢AB2SQKD

[fQKD(⇢AB)]� �leakEC . (3.11)

Note that both the objective function and feasible set are convex so that Eq. (3.11) is
a convex optimization.

When the Hilbert space HAB is finite-dimensional, this problem can be reliably solved
numerically [3, 4]. However, when the Hilbert space is infinite-dimensional, it is clearly
not possible to directly solve this optimization numerically. We develop the dimension
reduction method (see Sec. 4) which, for all QKD protocols, allows us to compute tight
lower bounds on the asymptotic key rate by relating the infinite-dimensional optimization
to a finite-dimensional one. We can then numerically solve the finite-dimensional problem
using methods similar to Ref. [4] to get tight lower bounds on the key rate for protocols
where the state lives in an infinite-dimensional Hilbert space.

3.2.3 Security Promise and Assumptions

In this thesis, we are interested in device-dependent QKD. Under this assumption, HA and
HB are known, as is the exact CPTNI map the protocol implements.
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In reality, the behaviour of a physical apparatus may deviate from the idealized model.
Eavesdropping attacks enabled in this manner are referred to as side-channel attacks. Dis-
covering new side channels and improving the modelling of realistic devices is an important
virtuous cycle in QKD security analysis.

We note that alternatives exist. In measurement-device-independent QKD [58], Alice
and Bob both have sources and the measurement is done by an untrusted third party. In
this case, one only needs to model Alice and Bob’s sources, and not the detectors. Device-
independent QKD [59] enables secure key generation without any detailed modelling of
Alice and Bob’s devices.9 Presently however, it su↵ers from poor performance compared
to device-dependent QKD.

3.3 Numerical Optimization Formulation

From the previous section, we see that the asymptotic key rate is given by a minimization
over the possible states held by Alice and Bob. For finite-dimensional Hilbert spaces, this
optimization can be solved numerically, in principle. In practice, however, no numerical
solver is perfect and computers have finite floating-point precision. Thus, directly solving
this minimization will return at best an approximate minimum. This does not su�ce for
a rigorous QKD security proof, where it is essential that we obtain true lower bounds
on the key rate. The numerical framework presented in Ref. [4] addresses the issue of
determining reliable lower bounds on the secure key rate despite numerical imprecision,
when the Hilbert space is finite-dimensional.

This section summarizes the numerical framework presented in Ref. [4], with modifi-
cations to the calculation of the loosened dual problem, due to the fact that we consider
a di↵erent feasible set, and due to the fact that we have a slightly di↵erent method to
calculate the expansion.

Beginning with the original primal problem from Eq. (3.11), the optimization is modi-
fied in successive steps to account for numerical precision. Ultimately, we wish to consider
some form of dual problem, which will provide reliable lower bounds on the key rate. How-
ever, directly working with the dual of Eq. (3.11) is challenging because f is a nonlinear
function. Hence, we first construct a linearized primal problem, and then take its dual.

9There are always some minimal assumptions on the devices. For example, they cannot just stealthily
leak the key to Eve.
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3.3.1 Di↵erent Form of Objective Function

In Section 4.0.2 of Ref. [4], the objective function is rewritten as a quantum relative
entropy. The definition is equivalent to Eq. (3.9), and involves similar postprocessing
maps. However, it is slightly di↵erent in directly discarding the postselected signals, and
hence involving a completely positive and trace non-increasing map. We briefly summarize
the definition here.

First, for each announcement b 2 Spub
B , we define an operator Kb as

Kb =
X

{j : bj=b}

q
P j
B ⌦ |bjiB̃ ⌦ |�jiB , (3.12)

and similarly for each a 2 Spub
A

Ka =
X

{i : ai=a}

q
P i
A ⌦ |aiiÃ ⌦ |↵iiA . (3.13)

Then, the projector which implements the sifting step is defined as

⇧sift =
X

{a,b : d(a,b)=0}

|aiha|Ã ⌦ |bihb|B̃ . (3.14)

Finally, the key map isometry V is the same as defined above (Eq. (3.3)). Then, the
Kraus operators of the map G are defined as

{V ⇧sift (Ka ⌦Kb)}a2Spub
A , b2Spub

B
. (3.15)

The map Z simply dephases the Z register, so has Kraus operators

{|zihz|}z2SZ . (3.16)

With these maps defined, the alternative form of the objective function is

fQKD(⇢AB) = D(G(⇢AB)||Z(G(⇢AB))). (3.17)
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3.3.2 Primal Reformulation

The first step of the numerical framework is to determine an approximate solution to Eq.
(3.11). There are di↵erent algorithms to do this; the one used in Ref. [4] and in this thesis
is the Frank-Wolfe method [60].10

If the solution returned by the Frank-Wolfe method is not positive semidefinite, then
it is perturbed by taking a mixture with a small multiple of the identity. We refer to
this final solution as ⇢guess. It will not necessarily be an optimal point, nor satisfy all the
constraints. However, it is guaranteed to be positive semidefinite and have unit trace.

A convex function is lower-bounded by its tangent hyperplane at any point. Using the
same convention as Ref. [62], the gradient of fQKD is defined as

rfQKD(⇢) =
X

ij

@fQKD(�)

@�ij

���
�=⇢

|jihi| . (3.18)

We then have that

fQKD(�) � fQKD(⇢guess) + Tr
�
(� � ⇢guess)rfQKD(⇢guess)

�
. (3.19)

Re-introducing the minimization,

min
�2SQKD

fQKD(�) � fQKD(⇢guess)

+ Tr
�
�⇢guessrfQKD(⇢guess)

�
+ min

�2SQKD
Tr
�
�rfQKD(⇢guess)

�
. (3.20)

The last term on the right-hand side is the reformulated primal problem. With regards to
tightness, note that Eq. (3.20) holds with equality when ⇢guess is the true minimum.

Before proceeding with the dual problem, we note a technical caveat. The gradient of
the function is not defined if G(⇢opt) is not full-rank. Hence, a perturbed function fQKD

✏pert is
introduced, defined by

fQKD
✏pert (⇢) = D(G✏pert(⇢)||Z(G✏pert(⇢))), (3.21)

where G✏pert(⇢) = (1� ✏)G(⇢) + ✏Tr( ) . This perturbed function is then used in Eq. (3.20).

In practice, ✏pert = 10�14 is used.

10A promising new approach has been recently presented in Ref. [61], though it currently applies to a
restricted class of optimizations only.
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3.3.3 Numerical Imprecision

It is not always possible to perfectly represent the set SQKD numerically. To ensure a
reliable lower bound, one should ensure a potentially larger set SQKD

expanded is used. The
details of how large this expansion should be depend on how SQKD is defined, so we defer
a detailed discussion on this matter to Appendix B. More details can be found in Appendix
D of Ref. [4].

3.3.4 Dual SDP

After expanding the feasible set, and perturbing the objective function, the primal problem
of interest is

min
�2SQKD

expanded

Tr
⇣
�rfQKD

✏pert (⇢guess)
⌘
. (3.22)

Finding the approximate minimum ⇢guess has been the objective of the first step of the
numerical framework. The second step of the framework is to numerically solve the dual
problem to Eq. (3.22). Of course, any numerical solution will only be approximately the
optimal solution. This is why we solve the dual, since it ensures that any feasible answer
is a lower bound on the primal problem. The specific form of the dual depends on how
SQKD
expanded is defined, so we defer the detailed discussion to Appendix B.

3.3.5 Simulation

In a real experiment, the expectations are obtained from measurement, and the number
of bits leaked during error correction is directly observed. As theorists, we simulate data
as expected from a typical implementation, in order to evaluate the expected performance
of a protocol. It should be emphasized that this simulation step is not a security proof
assumption. The security proof does not assume that Eve’s attack is known. Simulation
is merely determining representative inputs on which to run the security proof.

Expectations

In order to calculate the expectation values �i for the observables �i (Eq. (3.10)), one first
chooses a model for the channel. Then, Bob’s conditional states can be calculated, and
the conditional expectations determined.
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Error-Correction Cost

The Shannon limit H(Z|X) gives the minimum cost for asymptotic error correction. How-
ever, real error-correcting codes do not always reach this Shannon limit. Therefore, to cal-
culate error-correction cost, one first uses the channel model to calculate H(Z|X). Then,
a further factor is introduced to model the realistic error-correction cost. There are two
di↵erent parameterizations that are typically used.

The first is
�leakEC = fH(Z|X). (3.23)

The range of the parameter is 1  f 
H(Z)

H(Z|X) . The lower bound is because the EC cost
is never less than the Shannon limit, while the upper bound arises because the EC cost is
never more than the entropy of the key. Reporting error-correction costs in terms of f is
common in DVQKD.

The second parametrization is

�leakEC = (1� �EC)H(Z) + �ECH(Z|X). (3.24)

The range of the parameter is 0  �EC  1. Here the upper bound is to enforce �leakEC �

H(Z|X), while the lower bound enforces �leakEC  H(Z). Reporting error-correction costs
in terms of �EC is common in CVQKD. (Just like H(Z|X), H(Z) is calculated using the
channel model.)

As many theoretical QKD analyses focus on bounding H(Z|[E]), the modelling of error-
correction costs can sometimes be an afterthought. However, especially when it comes to
designing protocols and comparing their performance, it is important to accurately consider
the e↵ect of realistic error correction. See for example the discussion of the error-correction
cost for DMCVQKD in Secs. 5.6 and 5.7.1.

Typically, the choice of modelling via f or �EC is made so that setting the parameter to
a constant value, independent of distance or other channel parameters, accurately reflects
the EC cost. Constant f and constant �EC however, are rather di↵erent heuristics, and can
lead to substantial di↵erences in the protocol performance. This is not to be confused with
the fact that, at any fixed value of all the channel parameters, one could always express
the EC cost equivalently in terms of f or �EC just by reparametrizing.

37



Chapter 4

Dimension Reduction Method

The motivation for the dimension reduction method is as follows. On one hand, we have an
expression for the key rate as a convex minimization (Eq. (3.11)). When the Hilbert space
is finite-dimensional, we can use the existing numerical framework to e�ciently compute
tight and reliable lower bounds on the key rate. On the other hand, for all continuous-
variable protocols, and for almost all experimental implementations of discrete-variable
protocols, the relevant Hilbert space is one or more optical modes, and is hence infinite-
dimensional. We cannot directly compute the key rate for these protocols numerically.
Ostensibly, we should be able to work in some finite-dimensional subspace and still compute
a good approximation to the key rate. Proving that we can indeed do so, and rigorously
finding a lower bound from the approximate answer, is the core of the dimension reduction
method.

Note that the squashing model [5–8] and flag-state squasher [9] solve a similar problem
for the class of discrete-variable protocols. In fact, as is discussed in Sec. 6, the dimension
reduction method can serve as an alternative to the flag-state squasher for DV protocols,
where it can o↵er better numerical performance while achieving the same key rates.

While our primary application is to QKD, we present the key ideas of the dimension
reduction method in greater generality; as a procedure to lower bound infinite-dimensional
convex minimizations. Such an optimization problem arises in many di↵erent contexts.
Thus, not only is our method relevant for QKD asymptotic [4] and finite key rate calcu-
lations [62], but it applies to evaluating other tasks in quantum communication, such as
entanglement verification [24].

We first establish the general method in Sec. 4.1, and then show how to apply it to
QKD in Sec. 4.2.
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4.1 General Result

We start by defining the infinite-dimensional optimization of interest. Let H1 be a sepa-
rable Hilbert space. As the notation suggests, H1 may be an infinite-dimensional Hilbert
space. (It may also just be a very large finite-dimensional space.) Let S1 be a convex
subset of D̃(H1). Finally, let f be a convex function from D̃(H1) to . Consider the
convex optimization problem

inf
⇢̃2S1

f(⇢̃). (4.1)

Our goal is to find tight lower bounds on Eq. (4.1), without being able to directly solve the
optimization. To do this, we will relate it to a suitably chosen finite-dimensional convex
minimization (Eq. (4.2)), which can then be solved numerically1; along with an analytic
correction term.

The intuition which guides our solution is that solving Eq. (4.1) over some finite-
dimensional subspace should give an approximation to the actual optimum. However, in
the context of QKD key rate calculations, an approximate lower bound does not su�ce,
and hence we need to rigorously relate the minima from the finite- and infinite-dimensional
problems.

4.1.1 Preliminary Definitions

This section covers the relevant concepts and notation for proving our main result.

Finite-Dimensional Optimization

We first define the notation for the finite-dimensional optimization. This requires choosing
the finite-dimensional subspace of H1 in which we will work. Let HN be this subspace,
and ⇧ the projection onto this subspace. Let the new feasible set be SN , which is a convex
subset of D̃(HN). Then, the finite-dimensional optimization we will consider is

inf
⇢̃2SN

f(⇢̃). (4.2)

1Note that in order for Eq. (4.2) to be computationally tractable, there is an implicit assumption that
computing f on finite-dimensional operators is numerically possible.
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Uniform Closeness to Decreasing Under Projection

To help prove our main theorem, we next introduce a property of the function f that we
will later need.

Definition 4.1.1. Given a projection ⇧, a function f : D̃(H1) ! is uniformly close to
decreasing under projection (UCDUP) on S ✓ D̃(H1) with correction term � if, for every
state �̃ 2 S, it satisfies

F (�̃,⇧�̃⇧) � Tr(�̃)�W =) f(⇧�̃⇧)� f(�̃)  �(W ), (4.3)

where � is a nonnegative, increasing function satisfying �(0) = 0.

We make some remarks regarding this definition. Being UCDUP involves four quanti-
ties: a specific projection ⇧, the function f , a set S and a correction term �. The choice
of correction term is not unique, there may be smaller (better) and larger (worse) ones.
Given the same function, there may be di↵erent choices of correction term depending on
the set.

The UCDUP property has some similarities to uniform-continuity with respect to trace
distance. In fact, it is implied by the latter. Given this, one might wonder why we have
introduced the UCDUP property. The answer is, because being UCDUP is a weaker
condition, we may be able to find smaller � than implied by a uniform-continuity bound.
A good example of this is in Appendix A.

In some cases, it may be possible to set � = 0. This is the case for bounding the QKD
objective function when the key map POVM elements commute with ⇧ (see Sec. 4.2.3).
It is also the case for some entanglement measures [24].

The following way to re-express the condition for being UCDUP will be very useful to
us later on.

Lemma 1.
F (�̃,⇧�̃⇧) � Tr(�̃)�W () Tr

�
�̃⇧
�
 W. (4.4)
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Proof. Expanding the definition of fidelity,

F (�̃,⇧�̃⇧) = Tr

✓q
p

�̃⇧�̃⇧
p

�̃

◆
(4.5)

= Tr

✓q
p

�̃⇧
p

�̃
p

�̃⇧
p

�̃

◆
(4.6)

= Tr
⇣p

�̃⇧
p

�̃
⌘

(4.7)

= Tr(�̃⇧). (4.8)

Then,

F (�̃,⇧�̃⇧) � Tr(�̃)�W () Tr(�̃⇧) � Tr(�̃)�W (4.9)

() Tr
�
�̃⇧
�
 W (4.10)

4.1.2 Theorem Statement

Theorem 1 (Relating Finite- and Infinite-Dimensional Optimizations). Assume Tr
�
⇢̃⇧
�


W for all ⇢̃ 2 S1. Further assume ⇧S1⇧ ✓ SN . Finally, suppose f is UCDUP on S1

with correction term �. Then,

inf

⇢̃2SN

f(⇢̃)

�
��(W ) 


inf

⇢̃2S1
f(⇢̃)

�
. (4.11)

Proof. For clarity, we first prove the theorem under the assumption that there exist feasible
operators ⇢̃1 and ⇢̃N achieving the respective infima. We then extend the proof to hold
without this assumption.

At a high level, our proof method is illustrated in Fig. 4.1. In order to relate the
objective function f evaluated at the two optimal operators, ⇢̃1 and ⇢̃N , we introduce an
auxiliary variable, ⇢̃⇧ ⌘ ⇧⇢̃1⇧. This variable is the projection of the infinite-dimensional
optimum ⇢̃1 onto the chosen finite subspace. We relate the optima to this auxiliary variable
separately, and then to each other.

Inequality 1, Finite Set: We first relate f(⇢̃N) and f(⇢̃⇧). By definition, ⇢̃⇧ 2 ⇧S1⇧.
By the assumption that ⇧S1⇧ ✓ SN , it follows that ⇢̃⇧ 2 SN . Thus, ⇢̃⇧ is feasible for the
minimization over SN . Since ⇢̃N achieves the infimum, it follows that

f(⇢̃N)  f(⇢̃⇧). (4.12)
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ρ̃
∞

Πρ̃∞Π
ρ̃
N

D̃(HN)

D̃ (H∞)

SN

f (Πρ̃∞Π)−∆ (W ) ≤ f (ρ̃∞)

f (Πρ̃∞Π) ≥ f
(

ρ̃
N

)

W

Figure 4.1: Pictorial representation of Theorem (1). The set SN is chosen to contain the
projection ⇧⇢̃1⇧. This auxiliary variable is used to relate f(⇢̃1) and f(⇢̃N)

Inequality 2, Projection: By assumption, Tr
�
⇢̃1⇧

�
 W , and f is UCDUP on S1

with correction term �. By definition (see Eq. (4.3)),

f(⇢̃⇧)��(W )  f(⇢̃1). (4.13)

Thus, under the assumption that the infima are reached, the theorem follows from
chaining the inequalities in Eq. (4.12) and Eq. (4.13).

We now extend the proof to the case where the infima are not necessarily reached. Let
⇢̃1n be a sequence of operators approaching the infimum of the infinite-dimensional problem
Eq. (4.1). Let ⇢̃⇧n ⌘ ⇧⇢̃1n ⇧. Each ⇢̃

⇧
n is feasible for the finite-dimensional minimization, so

inf ⇢̃2SN f(⇢̃)  f(⇢̃⇧n ) for all n. For each n, it is also still the case that f(⇢̃⇧n ) � �(W ) 
f(⇢̃1n ). We thus have 

inf
⇢̃2SN

f(⇢̃)

�
��(W )  f(⇢̃1n ) 8n. (4.14)

Taking the infimum over all n gives the desired theorem statement.
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4.1.3 Procedural Viewpoint

In order to apply this theorem, in addition to choosing HN and SN , we need to determine
an expression for the correction term � and a suitable value for W (see Sec. 4.2). For the
latter quantity, we want to choose the smallest value of W satisfying

W � sup
⇢̃2S1

Tr
�
⇢̃⇧
�
. (4.15)

We thus see that the determination of W itself involves an infinite-dimensional optimiza-
tion. In practice, this optimization tends to be considerably easier to solve than the original
one (Eq. (4.1)). In particular, when S1 is the feasible set of a semidefinite program (SDP),
known as a spectrahedron, then any feasible solution to the dual problem is a feasible value
for W .2 Note that W will not only be used to determine the correction term �(W ), but
also to parametrize the set SN we choose (see Sec. 4.2.4).

Another remark is that, assuming one wants to obtain the largest lower bound on the
original minimization, the best choice of the finite set is SN = ⇧S1⇧. However, in general
it seems di�cult to find a closed form expression for this set: so in practice we often resort
to slightly looser definitions of SN .

To clarify the roles of the di↵erent quantities, and to better enable its application to dif-
ferent problems of interest, we summarize the dimension reduction method in a procedural
manner in Fig. 4.2.

4.2 Application to QKD

Having developed a general method to lower-bound convex minimizations, we now show
how it can be applied to asymptotic QKD key rate calculations. The initial infinite-
dimensional optimization is Eq. (3.11) (see Sec. 3.2.2), so that H1 = HAB, f = fQKD,
and S1 = SQKD.

As shown in the flowchart, four inputs are needed to apply Theorem (1): the subspace
HN onto which ⇧ projects, the bound on weight outside the subspace W , the correction
term �, and the finite set SN . Choosing or determining the first two of these quantities
is very specific to the QKD protocol being considered. Thus, in this section we only give
some general remarks on their derivation. On the other hand, the forms of the second two
quantities are protocol-agnostic, so we can derive them in detail here.

2For the QKD protocols we study, we can obtain tight values of W by analytically solving the dual or
a relaxed version of the primal problem (see Sec. 4.2.2).

43



Start: inf ⇢̃2S1 f(⇢̃)

Inputs: H1, f , S1

Choose HN Determine �

Find W

Determine SN

Outputs: SN , �(W )

End: inf ⇢̃2SN f(⇢̃)��(W )

Figure 4.2: Flowchart indicating the key steps in applying the dimension reduction
method.
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4.2.1 Finite Subspace ⇧

This step is intimately related to the protocol being studied. There are no restrictions on
the choice of finite subspace HN . However, there are two considerations to keep in mind
to get the best key rates.

The first consideration is that certain choices will lead to a smaller W . The dimension
of the finite subspace will generally be upper-bounded by considerations of runtime or
numerical solver limitations. For a fixed finite dimension N then, the choice of subspace
minimizing W would be the one containing the most weight of ⇢̃1. That is, choosing
the first N eigenvectors of ⇢̃1 minimizes the weight outside the subspace. Here, the
eigenvectors are ordered so that the corresponding eigenvalues are listed largest to smallest.
However, the state ⇢̃1 is unknown. A good heuristic is to instead choose the subspace
containing the most weight of the expected state under a representative channel model
(see Sec. 5.5.1). That is, one derives ⇢AB for an honest implementation of the protocol,
and chooses the subspace to be the first N eigenvectors. This is conceptually similar
to assuming a particular channel for the purpose of designing a QKD protocol or error-
correcting code.

The second consideration is choosing the projection to commute, or almost commute,
with the objective function POVM elements (see Sec. 4.2.3) or the constraint operators
(see Sec. 4.2.4). In the former case, this leads to a smaller correction term �. In the latter
case, it enables tighter definitions of the finite set SN .

Note that although the original Hilbert space H1 is bipartite, if ⇧ is not of the form
⇧A ⌦ ⇧B, the projected space HN will not be bipartite. Nevertheless, it is still possible
to derive constraints on ⇢A, though one has to be cautious in defining the operations of
partial trace and its adjoint (see Appendix C.3).

4.2.2 Weight W

This step is also protocol-specific. For S1 as given in Eq. (3.10), the bound on W shown
in Eq. (4.15) is a semidefinite program. After writing down the dual of this SDP, finding
any feasible solution su�ces for W . Indeed, this is the approach taken for DMCVQKD
(see Sec. 5.5.2). A di↵erent approach is used for unbalanced phase-encoded BB84. The
monotonicity of cross-clicks or double-clicks with increasing photon number, along with
Markov’s inequality, is used to bound W [10].
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4.2.3 Correction Term �

Recall our objective function f = fQKD is given in Eq. (3.9). We will show that it
is UCDUP and determine the correction term � as a function of W . We first present a
general analytic correction term which does not depend on the details of the postprocessing
map (see Eq. (3.5)) and is thus applicable to all protocols. We then show that when the
postprocessing map satisfies a certain property, which holds for some protocols, we can
omit the correction term entirely, i.e. � = 0. Finally, we consider a third form of the
correction term, which again applies to all protocols, and interpolates between the two
previous cases. While we present all three cases for completeness, the reader who is not
interested in the development of the concepts should directly skip to the third form of the
correction term, as it completely subsumes the previous two cases.

Recall our goal is to compute an upper bound on

f(⇧⇢̃1⇧)� f(⇢̃1), (4.16)

where f(⇢AB) = H(Z|[E])�(⇢ABE).

Define ⌅AB to be a dephasing channel associated with the projector ⇧ as

⌅AB(⇢) ⌘ ⇧⇢⇧+ ⇧⇢⇧. (4.17)

While the correction terms di↵er in how they bound the trace distance, all use the same
continuity bound for conditional entropy. We thus present it in a lemma here.

Lemma 2. Let HA and HB be two Hilbert spaces, where the dimension of HA is |A|
while HB can be infinite-dimensional. Let ⇢̃AB, �̃AB 2 D̃(HA ⌦HB) be two subnormalized,
classical-quantum states with Tr(⇢̃AB) � Tr(�̃AB). If

1
2k⇢̃AB � �̃ABk1  ✏, then

H(A|B)�̃AB �H(A|B)⇢̃AB  ✏ log2 |A|+ (1 + ✏)h

✓
✏

1 + ✏

◆
, (4.18)

where h(x) is the binary entropy function.

Proof. This result is a generalization of Lemma 2 in Ref. [63], which was derived for
normalized states. The proof of the extension to subnormalized states is given in Appendix
A.
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General Case

With Lemma 2 in hand, we will prove that f is UCDUP on D(H1) in the following
theorem. Note this is su�cient as for any QKD protocol, S1 ✓ D(H1).

Theorem 2. For any projection ⇧, the QKD objective function f is UCDUP on D(H1)
with correction term

�(W ) =
p

W log2 |Z|+
⇣
1 +

p

W
⌘
h

 p
W

1 +
p
W

!
, (4.19)

where |Z| is the dimension of the key map register.

Proof. As per the definition of UCDUP, let �AB 2 D(H1) be a state satisfying
F (�AB,⇧�AB⇧) = Tr(�AB⇧) � 1 �W . Let �ABE be a purification of �AB and note that
�̃⇧
ABE ⌘ ⇧�ABE⇧ is a purification of ⇧�AB⇧. Since ⇧ only acts on the AB subsystem,

Tr
�
�̃⇧
ABE

�
= Tr(⇧�AB⇧). By Eq. (2.29), it follows that

1

2

���ABE � �̃⇧
ABE

��
1


p

W. (4.20)

By the monotonicity of trace distance under channels, we have

1

2

��⌧Z[E] � ⌧̃⇧Z[E]

��
1


p

W (4.21)

where ⌧Z[E] = �(�ABE) and ⌧̃⇧Z[E] = �(�̃⇧
ABE) (recall � is the postprocessing map defined

in Eq. (3.5)).

Since � is trace-preserving, Tr
�
⌧Z[E]

�
� Tr

⇣
⌧̃⇧Z[E]

⌘
. Thus, we can apply Lemma 2 to

obtain

f(⇧�AB⇧)� f(�AB) = H(Z|[E])⌧̃⇧Z[E]
�H(Z|[E])⌧Z[E]

(4.22)



p

W log2 |Z|+ (1 +
p

W )h

 p
W

1 +
p
W

!
. (4.23)

This is precisely the condition we require for f to be UCDUP, so we identify the right-hand
side as �(W ).
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For a key map with M outcomes, the dimension of the key map register is |Z| = M . For
the purpose of this argument, the discard symbol ? does not count towards a key outcome.
The reason for this is that instead of ?, one could use any pre-existing key symbol to flag
discarded signals. Since the classical-quantum state �Z[E] between the key map register
and Eve is block-diagonal in the classical announcements (Eq. (3.5)), Eve could identify
the discarded signals from those public announcements alone. This would leave the value
of the objective function unchanged. Indeed, the ? symbol is only used for clarity in our
presentation.

Block-Diagonal (Commuting) Case

If the key map POVM elements are block-diagonal with respect to ⇧ and ⇧, the correction
term is zero.

Theorem 3. Let � be defined by the POVMs {P i
A} and {P j

B} and a key map isometry V .
If all POVM elements are block-diagonal, that is [P i

A ⌦ P j
B,⇧] = 0 8i, j, then

�(W ) = 0. (4.24)

Proof. Recall that ⇧ only acts on the AB subsystem. Then, ⇧⇢ABE⇧ is a purification of
⇧⇢AB⇧. ⇧ commutes with V as they act on di↵erent subsystems, and commutes with all
elements of the POVMs {P i

A} and {P j
B} by assumption. By the definition of �AB

T (Eq.
(3.2)), it then follows that

⇧ V �AB
T (⇢ABE) V † ⇧ = V �AB

T (⇧⇢ABE⇧) V † (4.25)

and analogously for ⇧.

We have

f(⇢AB) = H(Z|[E])�(⇢ABE) (4.26)

= H(Z|[E])TrAABB(V �AB
T (⇢ABE)V †) (4.27)

= H(Z|[E])TrAABB(⌅AB(V �AB
T (⇢ABE)V †)) (4.28)

= H(Z|[E])TrAABB(V �AB
T (⌅AB(⇢ABE))V †) (4.29)

� H(Z|[E])�(⇧⇢ABE⇧) +H(Z|[E])�(⇧⇢ABE⇧) (4.30)

� H(Z|[E])�(⇧⇢ABE⇧) (4.31)

= f(⇧⇢AB⇧), (4.32)
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where we have in Eq. (4.28) freely introduced the dephasing channel (defined in Eq. (4.17))
as it will be traced out, in Eq. (4.30) used the concavity of conditional entropy, and in Eq.
(4.31) used the nonnegativity of conditional entropy for classical-quantum states (see Eq.
(3.5)).

Almost Block-Diagonal (Partially-Commuting) Case

In principle, we expect there to be a correction term which interpolates between the two
previous cases, with a dependence on ‘how much’ the projection commutes with the post-
processing channel. This would allow a smaller correction term than Theorem 2 for proto-
cols where the POVM is almost, but not fully, block-diagonal. We derive such a correction
term in this section.

We begin by expressing the postprocessing map in a specific manner. First, let us
combine the public announcement registers Ã and B̃ (see Sec. 3.2.2) into a single register
C, over an alphabet SC = Spub

A ⇥ Spub
B . Observe that the map � (Eq. (3.5)) is a quantum-

to-classical channel from AB to ZC. It follows that � can be realized by a measurement
(Eq. (2.24)). Then, � has the form

�(⇢ABE) =
X

z2SZ
c2SC

|zihz|Z ⌦ |cihc|C ⌦ TrAB [(P z,c
AB ⌦ E)⇢ABE] , (4.33)

where
{P z,c

AB}z2SZ
c2SC

(4.34)

is some POVM.3 For simplicity, we re-index the POVM by k 2 SK ⌘ SZ ⇥ SC .

We now state the theorem for the improved correction term. Recall that Xg denotes
the generalized inverse of X. Also recall that the postselection symbol ? does not count
toward the dimension of the key map register |Z|.

Theorem 4. Consider the QKD objective function f(⇢AB) = H(Z|[E])�(⇢ABE), with the
map � defined by a POVM {Pk}k2SK . With respect to any projection ⇧, write each Pk as
a block matrix

Pk =

✓
⇧Pk⇧ ⇧Pk⇧
⇧Pk⇧ ⇧Pk⇧

◆
⌘

✓
Ak Bk

Bk
† Dk

◆
. (4.35)

3Concretely, one can construct this POVM by following through the action of the key map and the
corresponding coarse-graining of the original POVM it induces.
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For this projection ⇧, the QKD objective function f is UCDUP on D(H1) with cor-
rection term

�(W ) = c log2 |Z|+ (1 + c)h

✓
c

1 + c

◆
, (4.36)

where |Z| is the dimension of the key map register and

c =
p

W max
k2SK

���
p
Ak

g
Bk

p
Dk

g
���
1

. (4.37)

The quantity maxk2SK

��pAk
g
Bk

p
Dk

g��
1

has a nice interpretation as quantifying how
close to block-diagonal the POVM elements are. It is 0 when all the POVMs are block-
diagonal, since then Bk = 0 for all k. By the positivity of each Pk, this quantity is also
upper-bounded by 1 (this is made clear in the proof of Lemma 4). Hence, this correction
term interpolates between the two cases we considered earlier, as c ranges from 0 to

p
W .

In order to prove this theorem, we introduce two lemmas. The following lemma lets us
work with the dephased state instead of the projected one.

Lemma 3. For any state ⇢AB, f(⇧⇢AB⇧)  H(Z|[E])�(⌅(⇢ABE))

Proof. Expanding definitions, we have that

f(⇧⇢AB⇧) = H(Z|[E])�(⇧⇢ABE⇧) (4.38)

 H(Z|[E])�(⇧⇢ABE⇧) +H(Z|[E])�(⇧⇢ABE⇧) (4.39)

 H(Z|[E])�(⇧⇢ABE⇧)+�(⇧⇢ABE⇧) (4.40)

= H(Z|[E])�(⇧⇢ABE⇧+⇧⇢ABE⇧) (4.41)

= H(Z|[E])�(⌅(⇢ABE)). (4.42)

Line (4.39) follows because the second term is the conditional entropy of a CQ state and
thus nonnegative, (4.40) follows because conditional entropy is concave, and (4.41) follows
simply because the map � is linear.

The next lemma bounds the trace norm for a specific form of operator.

Lemma 4. Let P be a POVM element. With respect to a projection ⇧, write P as a block
matrix

P =

✓
⇧P⇧ ⇧P⇧
⇧P⇧ ⇧P⇧

◆
⌘

✓
A B
B† D

◆
. (4.43)
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Define H =

✓
0 B
B† 0

◆
as the o↵-diagonal portion of P .

Let ⇢ be a state, and define two new states corresponding to the normalized on-diagonal
blocks of ⇢: ⇢⇧ = ⇧⇢⇧

Tr(⇢⇧) and ⇢⇧ = ⇧⇢⇧

Tr(⇢⇧)
. Define the measurement probabilities r =

Tr
�
⇢⇧P

�
and s = Tr

⇣
⇢⇧P

⌘
. As usual, let W � Tr

�
⇢⇧
�
.

It holds that
k
p
⇢H

p
⇢k1  (r + s)

p

W
���
p

A
g
B
p

D
g
���
1

, (4.44)

where (·)g denotes the generalized inverse.

Proof. Using the SDP formulation for trace norm [25],
��p⇢Hp

⇢
��
1

= minimize:
X

TrX

subject to: X �
p
⇢H

p
⇢

X � �
p
⇢H

p
⇢ (4.45)

X � 0.

Amoment’s reflection convinces us thatX can always be chosen to satisfyX = ⇧im(⇢)X⇧im(⇢)

(⇧im(⇢) is the projection onto the image of ⇢, which is a closed subspace). WLOG, we can
then reparametrize X as

p
⇢R

p
⇢. This lets us rewrite the SDP (4.45) as

��p⇢Hp
⇢
��
1

= minimize:
R

Tr(⇢R)

subject to:
p
⇢R

p
⇢ �

p
⇢H

p
⇢

p
⇢R

p
⇢ � �

p
⇢H

p
⇢ (4.46)

R � 0.

As this is a minimization, any feasible value provides an upper bound. It su�ces to choose
a positive R satisfying R � ±H.

The remainder of the proof consists of three steps. We first choose the feasible guess
for R. We then show that it is indeed feasible. Finally, we calculate the corresponding
value of the objective function.

To specify the guess for R, note the following facts. P is positive since it is a POVM
element. In terms of the block matrix characterization,

✓
A B
B† D

◆
� 0. (4.47)
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By Theorem IX.5.9 of Ref. [64], this positivity implies
p
A

g
B
p
D

g
⌘ K is a contraction,

i.e. kKk
1

 1.4 Let kKk
1

= �. Note � ranges from 0 to 1 and quantifies how close
to block-diagonal the POVM element is. In particular, � = 0 when the POVM is exactly
block-diagonal, since then B = K = 0.

We now specify our guess to be

R = a⇧P⇧+ b⇧P⇧, (4.48)

with the constants a = �
p
W and b = �

p
W

(assuming W 6= 0, as the lemma follows

immediately otherwise).5

Let us verify that this guess is feasible. Since R is manifestly positive, all that remains
is to show R±H � 0. Written in terms of block matrices, this condition is equivalent to

R±H =

✓
aA ±B
±B† bD

◆
� 0. (4.49)

Again by Theorem IX.5.9 of Ref. [64], this condition is satisfied if
p
aA

g
(±B)

p
bD

g
is

a contraction. Noting that
p
ab = �, this simplifies as

p

aA
g
(±B)

p

bD
g
=

1
p
ab

p

A
g
(±B)

p

D
g

(4.50)

= ±
1

�
K (4.51)

=
±K

kKk
1

. (4.52)

The operator on the last line clearly has unit norm so is a contraction. Thus, it follows
that R±H � 0 and R is a feasible guess.

The objective function value is

Tr(⇢R) = aTr(⇢A) + bTr(⇢D) (4.53)

= aTr(⇢⇧P⇧) + bTr
�
⇢⇧P⇧

�
. (4.54)

4In Ref. [64], this theorem is proven for finite-dimensional matrices where B is a square block. However,
nothing precludes the proof from applying in infinite dimensions and with rectangular blocks.

5We thank Thomas van Himbeeck for key ideas leading to this feasible guess.
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The first term can be upper bounded as

aTr(⇢⇧P⇧) = aTr(⇧⇢⇧ ⇧P⇧) (4.55)

= aTr(⇧⇢⇧) Tr
�
⇢⇧P

�
(4.56)

 aTr
�
⇢⇧P

�
(4.57)

= �
p

Wr. (4.58)

Similarly for the second term,

bTr
�
⇢⇧P⇧

�
= bTr

�
⇧⇢⇧ ⇧P⇧

�
(4.59)

= bTr
�
⇧⇢⇧

�
Tr
⇣
⇢⇧P

⌘
(4.60)

 bW Tr
⇣
⇢⇧P

⌘
(4.61)

= �
p

Ws. (4.62)

Thus, the feasible choice of R in Eq. (4.48) leads to the following upper bound on Eq.
(4.46),

k
p
⇢H

p
⇢k1  (r + s)�

p

W, (4.63)

and the proof is complete.

Proof of Theorem 4. As per the definition of UCDUP, let ⇢AB 2 D(H1) be a state sat-
isfying Tr

�
⇢AB⇧

�
 W . We need to bound the trace distance between �(⌅(⇢ABE)) and

�(⇢ABE). We have

�(⌅(⇢ABE)) =
X

k

|kihk|K ⌦ TrAB

⇥
(P k

AB ⌦ E)⌅(⇢ABE)
⇤

(4.64)

=
X

k

|kihk|K ⌦ TrAB

⇥
(⌅(P k

AB)⌦ E)⇢ABE

⇤
(4.65)

since the channel ⌅ is self-adjoint. {⌅(P k)} is also a POVM. In writing �(⌅(⇢ABE)) in
this manner, it now looks like we are comparing the e↵ect of two di↵erent channels on the
same input, instead of the same channel on two di↵erent inputs.
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Since the trace norm is additive over blocks, we have

k�(⇢ABE)� �(⌅(⇢ABE))k1 =

�����
X

k

|kihk|K ⌦ TrAB

⇥�⇥
P k
AB � ⌅(P k

AB)
⇤
⌦ E

�
⇢ABE

⇤
�����
1

(4.66)

=
X

k

��TrAB

⇥�⇥
P k
AB � ⌅(P k

AB)
⇤
⌦ E

�
⇢ABE

⇤��
1
. (4.67)

To proceed, we find a more useful form for Eve’s conditional states. Recall that Eve’s
register E purifies ⇢AB. We can thus assume that Eve’s register has the same dimension
as Alice and Bob’s (see Sec. 2.1.4). That is, HE = HAB. There then exists a bijective
isometry V : HAB ! HE. (To construct such an isometry, simply choose a basis |iiAB for
HAB and a basis |iiE for HE, and define V |iiAB = |iiE.) Via the vectorization mapping,
it can easily be shown that

TrAB

��
P k
AB ⌦ E

�
⇢ABE

�
= V

�p
⇢ABP

k
AB

p
⇢AB

�
V †, (4.68)

and similarly for ⌅(P k
AB).

Applying this identity to Eq. (4.67), we have

k�(⇢ABE)� �(⌅(⇢ABE))k1 =
X

k

��V
�p

⇢AB

⇥
P k
AB � ⌅(P k

AB)
⇤p

⇢AB

�
V †
��
1

(4.69)

=
X

k

���p⇢AB

⇥
P k
AB � ⌅(P k

AB)
⇤p

⇢AB

���
1

(4.70)

=
X

k

���p⇢AB

⇥
⇧P k

AB⇧+ ⇧P k
AB⇧

⇤p
⇢AB

���
1
. (4.71)

In keeping with our previous notation, we define ⇢⇧ = ⇧⇢⇧
Tr(⇢⇧) and ⇢⇧ = ⇧⇢⇧

Tr(⇢⇧)
, as well

as the probability distributions r(k) = Tr
�
⇢⇧Pk

�
and s(k) = Tr

⇣
⇢⇧Pk

⌘
. By Lemma 4 we
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have
X

k

���p⇢AB

⇥
⇧P k

AB⇧+ ⇧P k
AB⇧

⇤p
⇢AB

���
1


X

k

(r(k) + s(k))
p

W
���
p
Ak

g
Bk

p
Dk

g
���
1

(4.72)

=
p

W

✓X

k

r(k)
���
p

Ak

g
Bk

p
Dk

g
���
1

+
X

k

s(k)
���
p

Ak

g
Bk

p
Dk

g
���
1

◆
(4.73)



p

W

✓
max

k

���
p

Ak

g
Bk

p
Dk

g
���
1

+max
k

���
p

Ak

g
Bk

p
Dk

g
���
1

◆
(4.74)

= 2
p

W

✓
max

k

���
p
Ak

g
Bk

p
Dk

g
���
1

◆
, (4.75)

where in Eq. (4.73) we used the fact that the sums over r(k) and over s(k) are both
convex combinations of

��pAk
g
Bk

p
Dk

g��
1
, and hence upper-bounded by the largest of

these terms. Re-inserting this bound in Eq. (4.71), we have

k�(⇢ABE)� �(⌅(⇢ABE))k1  2
p

W
⇣
max

k

���
p

Ak

g
Bk

p
Dk

g
���
1

⌘
(4.76)

or
1

2
k�(⇢ABE)� �(⌅(⇢ABE))k1 

p

W
⇣
max

k

���
p

Ak

g
Bk

p
Dk

g
���
1

⌘
. (4.77)

Letting c =
p
W
�
maxk

��pAk
g
Bk

p
Dk

g��
1

�
, by the continuity bound in Lemma 2, we

have

H(Z|[E])�(⌅(⇢ABE)) � f(⇢AB)  c log2 |Z|+ (1 + c)h

✓
c

1 + c

◆
. (4.78)

By Lemma 3, and the definition of UCDUP (Eq. (4.3)), the theorem statement follows.

4.2.4 Finite Set SN

Recall that the feasible set S1 for the infinite-dimensional optimization is given in Eq.
(3.10). The form of this set is common to all protocols. To define the expanded set, the
approach we take is to individually expand each constraint of S1, using W as a parameter.
Note that in order to have the highest key rates, we want SN to be as small as possible,
while still satisfying the containment SN ◆ ⇧S1⇧.
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It is an interesting question whether one can do better than this. Indeed, one might
expect that given S1 and ⇧, an analytic formula for ⇧S1⇧ exists. However, we are not
aware of any such result, and hence resort to the heuristics in this section.6

Assuming � 2 S1, we will now list constraints that �̃⇧
⌘ ⇧�⇧ must satisfy. Generally

speaking, there are multiple options. We try to present them in order of the tightest ones
requiring the most assumptions first and the looser but more general ones last.

Trace Constraint

We begin with the trace constraint, Tr(�) = 1, which can be easily expanded. By the
definition of W in Eq. (4.15), 1�W  Tr

�
�̃⇧
�
 1.

Expectation Constraints

We next consider the expectation constraints, Tr(��i) = �i. We choose to define the
loosened constraints as �min

i  Tr
�
�̃⇧�i

�
 �max

i , where

�max
i = sup

⇢2S1

Tr(�i ⇧⇢⇧), (4.79)

�min
i = inf

⇢2S1
Tr(�i ⇧⇢⇧). (4.80)

That is, we do not change the constraint operators �i. We now find bounds on �max
i and

�min
i in two di↵erent cases.

We first consider the case where [⇧,�i] = 0 and �i � 0 8i. This condition is satisfied
for the protocols we study in this thesis. We emphasize that this is not a particularly
strong assumption. With a judicious choice of ⇧, this condition can be achieved for many
protocols. In the following theorem, we derive the desired bounds on expectations in the
finite subspace.

Theorem 5. Let �i � 0 and [⇧,�i] = 0. If Tr
�
⇢⇧
�
 W and Tr(⇢�i) = �i, then

�i �Wk�ik1  Tr(⇧⇢⇧ �i)  �i. (4.81)
6The problem is, given the constraints specifying a spectrahedron and a projection, find the constraints

defining the projection of this spectrahedron, i.e. its shadow. Solving this problem for polyhedra is easy.
One first enumerates the extreme points of the polyhedron; noting that the polyhedron is the convex hull
of its extreme points. Then, the shadow of the polyhedron is just the convex hull of the projections of the
extreme points. In contrast, a literature search suggests this problem is di�cult to solve for an arbitrary
spectrahedron.
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Proof. By the commutation relation, it follows that

Tr(⇧⇢⇧�i) = Tr
⇣p

�i⇧⇢⇧
p
�i

⌘
(4.82)

= Tr
⇣
⇧
p
�i⇢
p
�i⇧

⌘
. (4.83)

We now find the upper and lower bounds separately.

For the upper bound, we simply note that the trace of a positive operator can only
decrease under projection. Then,

Tr
⇣
⇧
p
�i⇢
p
�i⇧

⌘
 Tr

⇣p
�i⇢
p
�i

⌘
(4.84)

= �i. (4.85)

For the lower bound,

Tr
⇣
⇧
p
�i⇢
p
�i⇧

⌘
= Tr

⇣p
�i⇢
p
�i

⌘
� Tr

⇣
⇧
p
�i⇢
p
�i⇧

⌘
(4.86)

= �i � Tr
�
⇧⇢⇧ �i

�
(4.87)

� �i �
��⇧⇢⇧

��
1
k�ik1 (4.88)

� �i �Wk�ik1, (4.89)

where in Eq. (4.88) we used Hölder’s inequality (Eq. (2.13)). Note that this lower bound
is trivial for unbounded observables.

We next consider the general case without any assumptions on �i. While the following
theorem is more general, it is not as tight as the preceding one in the cases where both
can be applied.

Theorem 6. Let �i be self-adjoint. If Tr
�
⇢⇧
�
 W and Tr(⇢�i) = �i, then

�i � 2
p

Wk�ik1  Tr(⇧⇢⇧ �i)  �i + 2
p

Wk�ik1. (4.90)

Proof. We have

|�i � Tr(⇧⇢⇧ �i)| = |Tr(⇢�i)� Tr(⇧⇢⇧ �i)| (4.91)

= |Tr[(⇢� ⇧⇢⇧)�i]| (4.92)

 k⇢� ⇧⇢⇧k1k�ik1 (4.93)

 2
p

Wk�ik1, (4.94)

where in Eq. (4.93) we used Hölder’s inequality (Eq. (2.13)) and in Eq. (4.94) we used
Eq. (2.29).
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The previous two theorems seem to suggest that it is not possible to derive loosened
constraints when �i are unbounded observables. This is not the case. It is indeed possible
to bound the change in expectation under projection for unbounded, non-commuting, and
non-positive observables �i. However, doing so seems to be very specific to the set of
observables considered, and hence it is di�cult to give an overarching result. See Ref. [24]
for an example of loosened bounds derived for the specific unbounded observables X̂ and
P̂ under a projection in the Fock basis.

Reduced State Constraint

Finally we consider the reduced state constraint TrB(�) = ⌧A. There are (at least) three
di↵erent ways to expand this constraint. It is not clear which constraint is the tightest,
especially when considered together with the other constraints in the optimization. From
a practical perspective, one can simply use all three constraints simultaneously, ensuring
the smallest SN and highest key rate.

The first loosened constraint uses a complete Hermitian basis {Hk} on system A. This
basis can always be chosen so that each Hk is positive and kHkk1 = 1. The original
constraint can then be expressed as Tr((Hk ⌦ B)�) = Tr(Hk⌧A), and expanded as an
expectation constraint in the previous section. If the projection is of the form ⇧ = A⌦⇧B,
then each Hk ⌦ B commutes with ⇧, so the tighter expansion from Theorem 5 can be
used. If some Hk ⌦ B do not commute with ⇧, then Theorem 6 must be used which
means this method of expansion is looser than the third method discussed below.7 For this
reason, we can think of this first method as really only being useful when ⇧ = A ⌦ ⇧B.

The second method applies when the projection has the form ⇧ = ⇧A ⌦ ⇧B. We have

⇧A TrB(�)⇧A = TrB [(⇧A ⌦ B)�(⇧A ⌦ B)] (4.95)

= TrB
⇥
(⇧A ⌦ [⇧B + ⇧B])�(⇧A ⌦ [⇧B + ⇧B])

⇤
(4.96)

= TrB [(⇧A ⌦ ⇧B)�(⇧A ⌦ ⇧B)] + TrB
⇥
(⇧A ⌦ ⇧B)�(⇧A ⌦ ⇧B)

⇤
(4.97)

� TrB [(⇧A ⌦ ⇧B)�(⇧A ⌦ ⇧B)] (4.98)

= TrB(�̃
⇧), (4.99)

where in Eq. (4.97) we used the fact that partial trace is cyclic over the subsystem being
traced out. The constraint is thus TrB(�̃⇧)  ⇧A⌧A⇧A. Note that this constraint can be

7This is because a bound of 2
p
W on each element of the matrix is worse than a bound of 2

p
W on the

trace distance of the matrix.
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used even when ⌧A is infinite-dimensional. When ⇧ = A ⌦ ⇧B, this loosened constraint
is implied by the first one. At first glance, this constraint seems useless since it is always
satisfied by the zero matrix. However, there are other constraints in the optimization,
namely one which lower bounds the trace. Taking this into account, it is di�cult to
determine a priori which reduced state constraint expansion is best.

The third method is to use a trace distance argument. By Eq. (2.29), 1
2

��� � �̃⇧
��
1


p
W . By the monotonicity of trace distance under channels, and by the fact that taking

the partial trace is a channel, this implies the constraint 1
2

��⌧A � TrB(�̃⇧)
��
1


p
W .

Summary

For a generic protocol, one may use combinations of all the expanded constraints listed
above. By construction, SN will be a convex subset of D̃(HN) containing ⇧S1⇧. The
tightness of the feasible set is guaranteed by the fact that for W = 0, SN = S1.

We remark that there may be even better methods to define SN by using specific details
of the protocol being considered. In practice however, the results we obtain, especially in
comparison to the flag-state squasher (see Sec. 6.2), provide strong evidence that our
choice of SN is close to the optimal set ⇧S1⇧.

In this thesis, we will focus on the case where the observables are positive operators
and commute with the projection. For ease of reference, we summarize the definitions of
the original infinite-dimensional optimization:

minimize:
⇢

f(⇢)

subject to: Tr(⇢) = 1

TrB(⇢) = ⌧A (4.100)

Tr(⇢�i) = �i
⇢ 2 Pos (H1) ,

and the expanded finite-dimensional optimization:

minimize:
⇢̃

f(⇢̃)

subject to: 1�W  Tr(⇢̃)  1
1

2
kTrB(⇢̃)� ⌧Ak1 

p

W (4.101)

�i �Wk�ik1  Tr(⇢̃�i)  �i
⇢̃ 2 Pos (HN) .
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When ⇧ = ⇧A ⌦ ⇧B, the constraint on the reduced density matrix is instead TrB(⇢̃⇧) 
⇧A⌧A⇧A.

Note that the constraint operators �i and the POVM elements Pk defining f are them-
selves infinite-dimensional. However, as Tr(⇧⇢⇧ X) = Tr[(⇧⇢⇧)(⇧X⇧)], we can equiva-
lently set �i ! ⇧�i⇧ and Pk ! ⇧Pk⇧. We tacitly assume this substitution is made in
order to represent the optimizations numerically.
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Chapter 5

Discrete-Modulated
Continuous-Variable QKD

Continuous-variable QKD emerged as an alternative to discrete-variable protocols [11].
Instead of relying on single-photon detectors, which can be expensive, require low oper-
ating temperatures, or have issues with dark counts and low repetition rates, CVQKD
utilizes homodyne or heterodyne detectors.1 As these detectors can be integrated into ex-
isting telecommunication infrastructure, CVQKD protocols are promising candidates for
deployment in large-scale quantum-secured networks.

Our interest is in a particular class of prepare-and-measure CVQKD protocols. These
protocols are characterized by Alice sending coherent states to Bob, who then performs a
homodyne or heterodyne measurement. Information is encoded in the location of the states
in phase space. If Alice samples the coherent state amplitudes according to a Gaussian
probability distribution over phase space, it is referred to as Gaussian modulation (GM)
[14–16]. If she instead chooses the amplitudes from a finite set, it is referred to as discrete
modulation (DM) [11–13].

In comparison to GM, DM is less demanding on the source modulator and on the error-
correction protocols, yet is expected to achieve similar key rates. This makes it an enticing
protocol to study.

The security analysis for GM is significantly more mature than for DM. This is because
the optimal attack for GM, under typical observed statistics, is also Gaussian [65, 66].
Gaussian states have a finite-dimensional representation in terms of covariance matrices,

1In this context, heterodyne refers to conjugate homodyne detection.
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and this makes it easier to handle the security proofs. Key rates for GMCVQKD have
even been calculated in the finite-key regime [67, 68].

This chapter is organized as follows. In Secs. 5.1 and 5.2, we review the DMCVQKD
protocol. After setting up the infinite-dimensional optimization in Secs. 5.3 and 5.4,
we apply the dimension reduction method in Sec. 5.5. In Sec. 5.6 we consider some
representative numerical results, and in Sec. 5.7 we explore di↵erent strategies to improve
the protocol’s performance.

5.1 Protocol Description

Strictly speaking, DMCVQKD is a blanket term for a family of protocols with variations
in the signal states, measurement devices, and classical postprocessing steps.

The steps of a generic protocol are as follows. In each round of the quantum phase,
Alice chooses a coherent signal state from the constellation {|↵ii}

d�1
i=0 with probability p(i).

She sends the state to Bob, who then performs a homodyne or heterodyne measurement.
Alice or Bob then performs the key map, which may include postselection. Finally, they
perform the usual steps of error correction and privacy amplification. As discussed in
Sec. 3.1.2, we can recast this prepare-and-measure protocol as an entanglement-based one.
Then, we think of Alice preparing the state

X

ij

p
p(i)p(j) |iihj|A ⌦ |↵iih↵j|A0 , (5.1)

sending A0 to Bob, and measuring with the POVM {|iihi|A}
d�1
i=0 .

In this thesis, we will focus on the case where Bob performs a heterodyne measurement.
We will also focus on Bob performing the key map (see Sec. 3.1.1), also known as reverse
reconciliation [69], as it outperforms direct reconciliation at long distances. The security
proof we will present can easily be applied to direct reconciliation as well. However, the
generalization to homodyne detection would be more involved. The result of a heterodyne
measurement is two real numbers, which we represent as a complex number ⇣. To perform
the key map (see Sec. 3.1.1), Bob partitions the complex plane into regions Az, where
z 2 {0, 1, ...,M � 1,?} = SZ . Then, the outcome ⇣ is assigned to the key symbol z when
⇣ lies in the region Az. Recall that ? corresponds to postselection, i.e. signals that are
discarded.

Our security proof works for any set of coherent signal states, postselection region, and
key map. Indeed, most of our following results will be presented in this generality. Later,
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Im(⇣)

Re(⇣)�a

�p

Figure 5.1: Phase space regions for the key map, with amplitude and phase postselection,
for reverse reconciliation in quadrature phase-shift keying (M = 4) DMCVQKD. Bob
obtains the measurement result ⇣ from the heterodyne detector. He maps the outcome to
the symbol of the region containing ⇣. �a and �p are amplitude and phase postselection
parameters, respectively. The ? region corresponds to signals that are discarded.

we will primarily focus on the specific case of phase-shift keying. In this case, the signal
states are chosen uniformly at random from {

��↵e2⇡ik/M
↵
}
M�1
k=0 for a positive signal state

amplitude ↵; and each Az is a slice of pie in the complex plane from ✓ = 2⇡(z�1/2)
M , 2⇡(z+1/2)

M ]
(not accounting for postselection). The key map is visualized in Fig. 5.1, for the specific
case M = 4, which is known as quadrature phase-shift keying, and a specific postselection
pattern.

5.1.1 Bob’s Measurement

Up till now, we have been deliberately vague about Bob’s measurement procedure, as there
are a number of details to consider.
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Ideal Detectors and Trusted Noise

We will actually consider two di↵erent ways of modelling the heterodyne detection.

The first model treats the entire heterodyne apparatus as ideal. Bob’s POVM is then
a (scaled) projection onto the coherent states { 1

⇡ |⇣ih⇣|}⇣2 .

The second model, which encompasses the first, is the trusted noise scenario [70, 71].
It is a particular way to model imperfections in the heterodyne apparatus which is com-
monly used in CVQKD. Namely, the two homodyne detectors comprising the heterodyne
measurement have an associated e�ciency and electronic noise. It is an important aspect
of our security proof that it extends to this scenario where Bob has imperfect but charac-
terized detectors. The security of DMCVQKD under trusted noise has been investigated
in Ref. [72] under the photon-number cuto↵ assumption.

To illustrate our approach, we focus on the case where the two detectors have the same
e�ciency ⌘d and electronic noise ⌫el. The POVM is then a (scaled) projection on displaced

thermal states
n

1
⌘d⇡

D̂
⇣

⇣
p
⌘d

⌘
⇢th(n̄)D̂†

⇣
⇣

p
⌘d

⌘o

⇣2
where the mean photon number of the

thermal state is n̄ = 1�⌘d+⌫el
⌘d

[72]. We refer the reader to Ref. [72] for a derivation of this
POVM from the optical model for the apparatus. Setting ⌘d = 1, ⌫el = 0 recovers the ideal
detector scenario, where the projection is onto displaced vacuum states.

Generically, we will use {G⇣}⇣2 to denote Bob’s POVM. Unless otherwise specified, it
should be assumed that all discussion is in the ideal detector case.

Coarse-Graining of Measurement Result

The result of each heterodyne measurement can be represented as a complex number.
However, the numerics framework cannot directly handle a register holding a continuous
outcome in the definition of the postprocessing map (Eq. (3.5)) for the objective function
(Eq. (3.9)).2 Thus, we instead work with a coarse-graining of Bob’s measurement for the
key map.

Recall that for the key map, Bob assigns the measurement result ⇣ to the key symbol
z 2 SZ when ⇣ lies in the region Az of the complex plane. This notion is e↵ectively captured

2It might be possible to consider a discretization or binning of the heterodyne outcome. One would
have to find a middle ground between the dimension the numerics framework can handle, and the fineness
of the binning.
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by defining the coarse-grained POVM

Rz =

Z

Az

G⇣ d2⇣. (5.2)

The POVM elements Rz are referred to as region operators. It su�ces to only use this
coarse-grained POVM in the key rate objective function.

Similarly for parameter estimation, it is not clear how to represent the constraints
arising from all the fine-grained measurement results. One approach might be to note that
in the ideal detector case, and in the asymptotic limit, Bob’s measurement determines the
Husimi Q-function. Then, he could perform complete tomography to uniquely determine
the received conditional states. To determine the key rate, it would then only remain to
optimize over the o↵-diagonal blocks of ⇢AB. However, such a security proof would almost
certainly not be suitable for a finite-key analysis. This is because this type of security proof
would seemingly only work in the finite regime if a large fraction of rounds were used for
parameter estimation, in order to perform approximate tomography. Since only a small
fraction of rounds would remain for key generation, the key rate would likely be poor;
compared to if fewer rounds were used for parameter estimation along with a di↵erent
security proof technique.

So for the constraints, we again assume Bob performs a coarse-graining of his data,
which translates to him determining the expectations of some finite set of observables.
Note the coarse-graining is just a classical step after the physical measurement, so we have
the freedom to perform di↵erent coarse-grainings after the fact, as long as the fine-grained
data is stored in the interim.

In particular, we will consider coarse-grained observables which depend on the signal
state that was sent. We re-emphasize that this is easy to physically realize. Bob simply
stores all the fine-grained data from his measurements during the quantum phase of the
protocol. During parameter estimation, Alice announces which signal state was sent on
the testing rounds. For each signal state, Bob considers the data from the corresponding
rounds only, and coarse grains it accordingly. In Appendix E, we show in detail how to
calculate the coarse-grained expectations from the fine-grained measurement data.

By no means is the choice of observables unique. In Sec. 5.3, we discuss how we settled
on the particular choice of observables used.
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Figure 5.2: Schematic of beam splitter implementing the loss-only Gaussian channel.

5.2 Generalized Beam Splitting Attack

The idea behind the generalized beam splitting attack, discovered in Ref. [73], is that
under certain circumstances Bob and Eve’s conditional states decouple and it is possible to
determine Eve’s conditional states. In particular, suppose Alice and Bob share a Gaussian
channel with loss ⌘. This is equivalent to modelling the signal as passing through a beam
splitter with a vacuum state at the second input port (Fig. 5.2). They can determine that
the channel is indeed (unitarily equivalent to) a pure-loss channel, only given that they have
statistics compatible with said channel. In other words, ⇢ABE is known (up to an irrelevant
unitary on Eve’s system). In still other words, the key rate can be determined analytically
by simply evaluating the objective function on this state. This fact is very important
in guiding our intuition in later sections. For this reason, before further discussion of
the security proof for DMCVQKD, it is instructive to elucidate some key details of this
generalized beam splitting scenario. Bob is assumed to have ideal detectors, but we will
show in Sec. 5.3.2 that the reasoning of this section extends to the trusted noise scenario.

Under this channel, the joint state is ⇢ABE = | ih | with

| iABE =
X

i

p
p(i) |iiA |

p
⌘↵iiB

���
p

1� ⌘↵i

E

E
. (5.3)

Pretending that the state is unknown, let’s see how Alice and Bob can determine that this
is indeed the tripartite state.
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Recall that in the source-replacement picture, Alice prepares the state

| iAA0 =
X

i

p
p(i) |iiA |↵iiA0 (5.4)

and sends A0 to Bob. Bob determines the expectations of X̂, P̂ , X̂2 and P̂ 2 for each
conditional state. He will find that these states saturate Heisenberg’s uncertainty principle
[74],

(�X)(�P ) �
1

2
, (5.5)

where

�X ⌘

rD
X̂2
E
�

D
X̂
E2

, (5.6)

�P ⌘

rD
P̂ 2
E
�

D
P̂
E2

. (5.7)

These so-called minimum uncertainty states can only be squeezed or coherent states [75].
These states are uniquely determined by their first and second moments. In particular,
Bob will observe that �X and �P are the same, so he knows his conditional state is a

coherent state. Because he knows
D
X̂
E
and

D
P̂
E
, he also knows where the coherent state

is centered. In summary, Bob will know that his conditional states are
��p⌘↵i

↵
.

In the Stinespring representation, the channel action is some isometry V : A0
! BE,

taking the signal states |↵iiA0 to |�iiBE = V |↵iiA0 . Then,

| iABE = ( A ⌦ V ) | iAA0 (5.8)

=
X

i

p
p(i) |iiA |�iiBE . (5.9)

By the Schmidt decomposition, write

|�iiBE =
RiX

r=0

�ri |✓
r
i iB |!r

i iE . (5.10)

But we know that TrE(|�iih�i|BE) =
��p⌘↵i

↵⌦p
⌘↵i

��
B
. It follows immediately thatRi = 1 8i.

In words, the only way the partial trace of a bipartite pure state is pure, is if the bipartite
state is a product state. We can thus write

|�iiBE = |
p
⌘↵iiB |!iiE . (5.11)
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This allows us to express the overlap of the signal states as

h�j|�ii = h
p
⌘↵j|

p
⌘↵ii h!j|!ii (5.12)

= exp


⌘

✓
i Im(↵i↵

⇤

j )�
1

2
|↵i � ↵j|

2

◆�
h!j|!ii , (5.13)

(see Eq. (2.48) for the formula for the overlap of two coherent states). But on the other
hand, we also know the inner product of the signal states as prepared by Alice

h�j|�ii = h↵j|V
†V |↵ii (5.14)

= h↵j|↵ii (5.15)

= exp

✓
i Im(↵i↵

⇤

j )�
1

2
|↵i � ↵j|

2

◆
. (5.16)

Equating Eq. (5.13) and Eq. (5.16), we have

exp


⌘

✓
i Im(↵i↵

⇤

j )�
1

2
|↵i � ↵j|

2

◆�
h!j|!ii = exp

✓
i Im(↵i↵

⇤

j )�
1

2
|↵i � ↵j|

2

◆
(5.17)

h!j|!ii = exp


(1� ⌘)

✓
i Im(↵i↵

⇤

j )�
1

2
|↵i � ↵j|

2

◆�
.

(5.18)

Thus, up to an irrelevant unitary on her system, Eve’s conditional states are |!iiE =��p1� ⌘↵i

↵
E
. We now know ⇢ABE, so the key rate can be determined analytically (for any

key map, postselection choice, and other classical postprocessing steps).

There are two important takeaways from this example. The first is that ⇢ABE, and
hence the key rate, is completely determined. The second is that Bob did not have to
perform a complete tomographic measurement to determine his conditional states; they
were known from the expectations of a small number of observables.

5.3 Observables

As discussed, we need to choose a set of coarse-grained observables for Bob’s side of param-
eter estimation. Typically, these observables are taken to be the quadratures, X̂ and P̂ ,
and their higher moments [23]. We introduce a new set of observables. These observables
are built to capture the intuition behind the generalized beam splitting attack.
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5.3.1 Ideal Detector

Let’s first discuss the ideal detector scenario. For any operator Ô, recall we use the short-
hand notation Ô� ⌘ D̂ (�) ÔD̂† (�) where D̂ (�) is the displacement operator with complex
parameter �.

Consider the displacements3

�i =
p
⌘↵i i = 0, ..., d� 1. (5.19)

Denoting the photon number operator by n̂ ⌘ â†â, consider the observable n̂�i . It is
easy to see that the vacuum state is the only state for which hn̂i = 0. Since coherent
states are just displaced vacuum states, it is immediate that |�ii is the only state for which
the displaced expectation value hn̂�ii = 0. Thus, for the ith conditional state, if Bob only
determines hn̂�ii, he can still confirm if the channel is loss-only, and apply the reasoning
of the generalized beam splitting attack.

Another way to put it is that originally, we considered the expectations of four di↵erent
observables, X̂, P̂ , X̂2 and P̂ 2, in order to uniquely determine the conditional state. Now,
we can do it with just one. Note also that n̂�i is a linear combination of the quadratures
and their second moments, and in some sense we see that it is the right linear combination.

Intuitively, this observable measures how spread out a state is compared to the coherent
state |�ii. We can think of this as characterizing the deviation from a generalized beam
splitting attack.

The discussion so far has applied to the protocol itself and to its original infinite-
dimensional formulation. This choice of coarse-grained observables is of independent in-
terest as it elucidates some of the essential working principles of the DMCVQKD protocol.

But this choice of observables also has important implications for the finite-dimensional
formulation via the dimension reduction method. Recall that in the dimension reduction
method, one step is to bound the weight outside the subspace. The observables we choose
here will have an important role to play in that capacity as well. Unfortunately, it turns out
that just having n̂�i is insu�cient to get W and the correction term �(W ) small enough.
By small enough, we mean that the correction term is a small fraction of the key rate.
Hence, we add in a second-order constraint n̂2

�i
.

3It may seem that ⌘ and ↵i have to be known exactly. This is not the case. This particular choice of
{�i} is based on the expected channel behavior in an honest implementation of the protocol. We emphasize
however that our security proof method works for any choice of {�i}. For example, in an experiment where
the parameters are not known exactly, a good guess for the displacements will su�ce. See Appendix E for
a detailed discussion of how this security proof for DMCVQKD is applied with data from an experiment.
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Finally, recall that one consideration in choosing the projection is to have it commute
with the observables. The observables we have chosen here will commute with the projec-
tion we later define (Eq. (5.65)), dovetailing with a natural choice for the finite subspace.

Adding in Alice’s POVM from the source-replacement scheme, the overall observables
for parameter estimation are

{�i} = {|iihi|⌦ n̂�i , |iihi|⌦ n̂2
�i
}
d�1
i=0 . (5.20)

5.3.2 Trusted Noise

We now turn our attention to the trusted noise scenario. It turns out that, for our specific
choice of observables in Eq. (5.20), there is a simple relationship between the ideal observ-
ables we’ve defined and their noisy counterparts. We begin with some general background,
and then proceed to analyze the specific observables for DMCVQKD.

Definition of Observables

Recall that an observable is simply a weighted linear combination of some POVM elements,
where the weights represent a value which is associated with each POVM element (see Sec.
2.1.6).

Then, an observable Ô in the ideal detector scenario is just a weighted linear combina-
tion of the ideal POVM elements,

Ô =

Z

⇣2

wÔ(⇣)
1

⇡
|⇣ih⇣| d2⇣. (5.21)

Here wÔ is a function representing the weight associated to the outcome ⇣.

Now consider the trusted noise scenario. If Bob performs the same coarse-graining, in
the sense of mapping his raw measurement outcomes ⇣ to weights via the same function
wÔ(⇣), then he is really measuring the observable

h
Ô
i0
=

Z

⇣2

wÔ(⇣) G⇣ d2⇣. (5.22)

Here, we’ve introduced the notation [·]0 for the noisy version of an observable.
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Trusted Noise Observables

In the trusted noise scenario, we use the following coarse-grained observables

{�i} = {|iihi|⌦
⇥
n̂p

⌘d�i

⇤0
, |iihi|⌦

h
n̂2
p
⌘d�i

i0
}
d�1
i=0 . (5.23)

We now motivate why we consider this choice. Aside from the obvious analogy with
the ideal detector scenario, another reason is that these observables turn out to be closely
related to the ones defined in the ideal detector case, as we now prove. It is di�cult to
directly compare the expressions for the observables themselves. Instead, we consider the
Husimi Q-function of the observables (see Sec. 2.4.3 for a definition of this quasiprobabil-
ity). As the observables are uniquely specified by their Husimi Q-functions, it su�ces to
show that their Q-functions are equal.

Observable Weights

The first step is to determine the weights wn̂�i
and wn̂2

�i
, so that we can compute the

requisite integral. We begin by finding wn̂ and wn̂2 . A method to do this is found in Eq.
(7.20) of Ref. [76]. We first write the operator in antinormal ordering and then replace
the ladder operators â, â† with ⇣, ⇣⇤.

n̂ = ââ† � 1 =) wn̂(⇣) = |⇣|2 � 1, (5.24)

n̂2 = â2(â†)2 � 3n̂� 2 =) wn̂2(⇣) = |⇣|4 � 3|⇣|2 + 1. (5.25)

To find w for the displaced observables, we simply perform a change of variables,

n̂� = D̂ (�) n̂D̂† (�) (5.26)

= D̂ (�)

✓
1

⇡

Z
(|⇣|2 � 1) |⇣ih⇣| d2⇣

◆
D̂† (�) (5.27)

=
1

⇡

Z
(|⇣|2 � 1) |⇣ + �ih⇣ + �| d2⇣ (5.28)

=
1

⇡

Z
(|⇣ � �|2 � 1) |⇣ih⇣| d2⇣, (5.29)

and similarly for n̂2
�. Thus,

wn̂�
(⇣) = |⇣ � �|2 � 1, (5.30)

and

wn̂2
�
(⇣) = |⇣ � �|4 � 3|⇣ � �|2 + 1. (5.31)
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Q-function of Noisy Observables

We can now calculate the noisy observables using Eq. (5.22). We simplify our notation by
writing ⇢th ⌘ ⇢th(n̄). We make use of the following identity,

h�|⇢th(n̄)|�i =
e�|�|2/(1+n̄)

1 + n̄
, (5.32)

which can be easily verified by a calculation in the Fock basis.

By definition,

[n̂�]
0 =

Z
(|⇣ � �|2 � 1)G⇣ d2⇣ (5.33)

=
⌘d
⇡

Z  ����⇣ �
�

p
⌘d

����
2

�
1

⌘d

!
D(⇣)⇢thD

†(⇣) d2⇣. (5.34)

Then,

h↵| [n̂�]
0
|↵i =

⌘d
⇡

Z ✓
|⇣ � �0

|
2
�

1

⌘d

◆
h↵� ⇣| ⇢th |↵� ⇣i d2⇣ (5.35)

=
⌘d

⇡(1 + n̄)

Z ✓
|⇣ + ↵� �0

|
2
�

1

⌘d

◆
e

�|⇣|2
1+n̄ d2⇣. (5.36)

where �0 = �/
p
⌘d. Converting to polar coordinates, the integral is

h↵| [n̂�]
0
|↵i =

⌘d
⇡(1 + n̄)

Z ✓
r2 + �⇤rei✓ + �re�i✓ + |�|2 �

1

⌘d

◆
e

�r2

1+n̄ r dr d✓ (5.37)

= ⌘d|�|
2 + ⌫el, (5.38)

where � = ↵� �0.

Similarly,

⇥
n̂2
�

⇤0
=

1

⇡⌘d

Z �
|⇣ � �|4 � 3|⇣ � �|2 + 1

�
D̂

✓
⇣

p
⌘d

◆
⇢thD̂

†

✓
⇣

p
⌘d

◆
d2⇣ (5.39)

=
1

⇡

Z ⇣
⌘2d|⇣ � �0

|
4
� 3⌘d|⇣ � �0

|
2 + 1

⌘
D̂ (⇣) ⇢thD̂

† (⇣) d2⇣. (5.40)
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The Q-function is then

h↵|
⇥
n̂2
�

⇤0
|↵i =

1

⇡(1 + n̄)

Z ⇣
⌘2d|⇣ + ↵� �0

|
4
� 3⌘d|⇣ + ↵� �0

|
2 + 1

⌘
e

�|⇣|2
1+n̄ d2⇣ (5.41)

=
1

⇡(1 + n̄)
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+ ⌘2d|�|
41

2
�

3

2
⌘d|�|
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(5.43)

= ⌘2d|�|
4 + ⌘d(4⌫el + 1)|�|2 + 2⌫2el + ⌫el. (5.44)

Relationship between Ideal and Noisy Observables

We have now determined the Q-function of the noisy observables. The Q-functions of the
ideal observables are easy to calculate. Namely,

h↵| n̂�0 |↵i = h↵� �0
| n̂ |↵� �0

i (5.45)

= |↵� �0
|
2 (5.46)

= |�|2, (5.47)

and

h↵| n̂2
�0 |↵i = h↵� �0

| n̂2
|↵� �0

i (5.48)

= |↵� �0
|
4 (5.49)

= |�|4. (5.50)

Comparing the Q-functions of the noisy observables in Eqs. (5.38) and (5.44) to those
of the ideal observables in Eqs. (5.47) and (5.50), and using the uniqueness of the Husimi
Q-function, we have

[n̂�]
0 = ⌘dn̂ �p

⌘d

+ ⌫el , (5.51)
⇥
n̂2
�

⇤0
= ⌘2dn̂

2
�p
⌘d

+ ⌘d(4⌫el + 1� ⌘d)n̂ �p
⌘d

+ (2⌫2el + ⌫el) . (5.52)
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Written slightly di↵erently, the ideal and noisy observables are related by linear com-
binations,

⇥
n̂p

⌘d�i

⇤0
= ⌘dn̂�i + ⌫el , (5.53)

h
n̂2
p
⌘d�i

i0
= ⌘2dn̂

2
�i
+ ⌘d(4⌫el + 1� ⌘d)n̂�i + (2⌫2el + ⌫el) . (5.54)

So in the trusted noise scenario, Bob determines the expectations of the observables
displaced by

p
⌘d�i. With these noisy expectations, he can then recreate the expectations

of the ideal observables by inverting the relationships in Eqs. (5.53), (5.54). Explicitly,

hn̂�ii
e↵ =

D⇥
n̂p

⌘d�i

⇤0E
� ⌫el

⌘d
, (5.55)
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n̂2
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⌘d�i

i0�
� 2⌫2el � ⌫el � (4⌫el + 1� ⌘d)

⇣D⇥
n̂p

⌘d�i

⇤0E
� ⌫el

⌘◆
. (5.56)

This provides one interesting piece of evidence about why trusted noise does not signif-
icantly impact key rates. Namely, given a fixed channel model, the set of states in the key
rate optimization is the same whether Bob’s detection is ideal or noisy. The only change in
the key rate optimization is in the objective function, through the POVM defining Bob’s
key map.

As an interesting corollary, this shows that even in the trusted noise scenario, Alice and
Bob can verify the statistics of the generalized beam splitting attack, as long as ⌘d 6= 0.

5.4 Infinite-Dimensional Optimization

In order to specify the protocol optimization, all that remains is to explicitly define the ob-
jective function. The only public announcements in this protocol (not including parameter
estimation, error correction nor privacy amplification) are for sifting. Since Bob defines the
key map and makes the sifting decision, this means that Alice’s data is irrelevant for the
postprocessing map.4 Thus, for the purpose of the postprocessing map, we can take Alice’s
POVM to trivially be { A}. Recall Bob’s POVM is comprised of the region operators (Eq.
(5.2)).

4It is, of course, relevant in calculating the error-correction cost.
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We are considering reverse reconciliation. Recall Bob maps his fine-grained result ⇣ to
the key symbol z, whereAz is the region of the complex plane containing ⇣ (see Sec. 5.1). As
discussed in Sec. 5.1.1, for the purposes of the key map, Bob’s measurement is described by
the coarse-grained POVM formed by the region operators, defined as Rz =

R
Az

1
⇡ |⇣ih⇣| d

2⇣,
with z 2 {0, ...,M � 1,?}.

So, the key map g simply maps Bob’s private measurement result to the key sym-
bol. The key map isometry is then trivial, and we can think of it as a relabelling of the
register B to Z. The simplified completely positive and trace non-increasing form of the
postprocessing map � in Eq. (3.5) is then

�ideal(⇢ABE) =
M�1X

z=0

|zihz|Z ⌦ TrAB[⇢ABE ( A ⌦Rz
B)], (5.57)

For the trusted noise scenario, the only di↵erence is that the region operators are noisy

�noisy(⇢ABE) =
M�1X

z=0

|zihz|Z ⌦ TrAB[⇢ABE ( A ⌦ [Rz
B]

0)] (5.58)

where [Rz
B]

0 =
R
Az

1
⌘d⇡

D̂
⇣

⇣
p
⌘d

⌘
⇢th(n̄)D̂†

⇣
⇣

p
⌘d

⌘
d2⇣.

Accordingly, the two objective functions are

f ideal(⇢AB) = H(Z|E)�ideal(⇢ABE), (5.59)

and
fnoisy(⇢AB) = H(Z|E)�noisy(⇢ABE). (5.60)

Having formalized the description of the protocol, we are now able to write down the
infinite-dimensional optimization for DMCVQKD, in both the ideal detector and trusted
noise scenarios. HA is the Hilbert space with dimension equal to the number of signal
states d; HB is the Hilbert space of a single optical mode. Recall that in addition to
the constraints from parameter estimation, from the source-replacement scheme (see Sec.
3.1.2) we have a constraint that the reduced density matrix is

⌧A ⌘

X

i,j

p
p(i)p(j) h↵j|↵ii |iihj| . (5.61)

The optimizations are defined in Eq. (5.62) and Eq. (5.63).
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Infinite-dimensional optimization for DMCVQKD (Ideal Detector)

minimize:
⇢

f ideal(⇢)

subject to: Tr(⇢) = 1

TrB(⇢) = ⌧A

Tr
h
⇢
⇣

1
p(i) |iihi|⌦ n̂�i

⌘i
= hn̂�ii (5.62)
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1
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↵

⇢ 2 Pos (HA ⌦HB) .

Infinite-dimensional optimization for DMCVQKD (Trusted Noise)

minimize:
⇢

fnoisy(⇢)

subject to: Tr(⇢) = 1

TrB(⇢) = ⌧A

Tr
h
⇢
⇣

1
p(i) |iihi|⌦ n̂�i

⌘i
= hn̂�ii

e↵ (5.63)

Tr
h
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1
p(i) |iihi|⌦ n̂2

�i

⌘i
=
⌦
n̂2
�i

↵e↵

⇢ 2 Pos (HA ⌦HB) .

where hn̂�ii
e↵ and

⌦
n̂2
�i

↵e↵
are as defined in Eqs. (5.55), (5.56).

5.5 Applying Dimension Reduction Method

Having completed the formulation of the infinite-dimensional key rate optimization for the
DMCVQKD protocol (Eq. (5.62)), we can now apply the dimension reduction method
to get a tractable finite-dimensional optimization. Recall that the nontrivial steps of this
method are choosing the finite subspace ⇧ and determining W , as the other steps are
protocol-agnostic. We present some of these sections in more of a chronological fashion,
covering some of the ideas that didn’t work. The purpose of this is to illustrate how these

76



challenges were overcome, thereby providing greater intuition for future applications of this
method.

5.5.1 Finite Subspace ⇧

The first idea for the finite subspace was to simply use a truncated Fock basis. This is
a common choice for approximating quantum optics calculations [22, 72]. However, the
weight outside this subspace was too large, leading to a correction term larger than the
key rate.

Instead, consider a Gaussian channel with loss and excess noise. As discussed in Sec.
5.6, this is a typical channel model for a fiber-based implementation of the DMCVQKD
protocol. If the excess noise is zero, the conditional states are coherent states, so a trun-
cation in the Fock basis necessarily throws away some information. This suggests that
using a basis with the coherent states themselves would be better. In particular, for the ith

signal state, we would want the basis to include the received coherent state |0i�i
(Recall

our notation that complex subscripts indicate displacement, so that |n�i ⌘ D̂ (�) |ni.).

When there is nonzero excess noise, the conditional states are instead displaced thermal
states. This means some weight leaks into displaced Fock states with n > 0. For the ith

signal state, the best projection on HB is thus

⇧N
B�i

=
NX

n=0

|n�iihn�i | . (5.64)

We will refer to N as the subspace dimension parameter.5 Combining these projectors for
each conditional state, the projection operator on the total Hilbert space is

⇧N
⌘

d�1X

i=0

|iihi|A ⌦ ⇧N
B�i

. (5.65)

Note this is an application of our general principle: choose the subspace containing the
most weight of the state under a typical channel model. Also note that this projection
commutes with the observables (Eq. (5.20)) because ⇧N

B�i
commutes with n̂�i . We use this

fact to define the finite set (see Sec. 5.5.4).

5This nomenclature is admittedly clunky, but we want to be careful not to confuse N with the dimension
of each conditional subspace (N + 1) nor with the total finite dimension (d(N + 1)).
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We re-emphasize that unlike the truncated Fock basis considered in previous work
[22, 23], our finite subspace contains the full weight of the state when the channel is purely
lossy. This is important as it ensures our numerics exactly reproduces the analytically
solvable loss-only case.

5.5.2 Weight W

To bound the weight outside the subspace, we analytically solve the dual of the SDP in Eq.
(4.15). Our result is stated in the following theorem. It applies to both the ideal detector
and trusted noise cases, since the same expectations are determined in both cases.

Theorem 7 (Bound on W for DMCVQKD). For the DMCVQKD protocol, with ⇧N as
defined in Eq. (5.65), the weight outside the subspace W is bounded by

W =
d�1X

i=0

p(i)

⌦
n̂2
�i

↵
� hn̂�ii

N(N + 1)
, (5.66)

for N > 0.

Proof. To prove this theorem, we will consider Bob’s conditional states

⇢iB = 1
p(i) TrA [⇢AB (|iihi|A ⌦ B)]. Let ⇧N

B�i
⌘ B � ⇧N

B�i
and let Wi ⌘ Tr

⇣
⇢iB⇧

N
B�i

⌘
be the

weight of the ith conditional state. We first show that W =
P

i p(i)Wi.

Tr
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�
= Tr

"
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!#
(5.67)

=
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i=0

Tr
⇣
⇢̃iB⇧

N
B�i

⌘
(5.68)

=
d�1X

i=0

p(i)Wi. (5.69)

Now, we only need to bound the weight of each conditional state. Using the constraints
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from Eq. (5.62), each of these bounds can be expressed as a primal SDP.

maximize:
⇢

Tr
⇣
⇧N

B�i
⇢
⌘

subject to: Tr(⇢) = 1

Tr(n̂�i⇢) = hn̂�ii (5.70)
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⇢ 2 Pos (HB) .

In order to find an upper bound on this primal SDP we consider its dual. By weak duality,
it holds that a feasible solution to the dual SDP upper bounds the primal. In fact, strong
duality holds for this SDP, so this upper bound can be made tight.

minimize:
~y

y1 + hn̂�ii y2 +
⌦
n̂2
�i

↵
y3

subject to: y1 B + y2n̂�i + y3n̂
2
�i
� ⇧N

B�i
� 0 (5.71)

~y 2
3.

For N > 0, a feasible solution for the dual is

0

@
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y2
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1

A =

0

@
0
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N(N+1)
1

N(N+1)

1

A . (5.72)

The feasibility of this solution can be easily verified as all operators in the constraint are
diagonal in the |n�ii basis, so positivity is implied if and only if the diagonal entries are
nonnegative. In fact this dual solution is optimal, as can be seen by exhibiting the primal
feasible solution

⇢ = D̂ (�i)

"✓
1� hn̂�ii

✓
1 +

1

N + 1

◆
+
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n̂2
�i

↵ 1
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◆
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↵ 1
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|1ih1|+
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|N + 1ihN + 1|

#
D̂† (�i) . (5.73)

The dual solution leads to the objective value Wi =

D
n̂2
�i

E
�hn̂�ii

N(N+1) . Substituting into Eq.

(5.69), the proof is complete.
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5.5.3 Correction Term �

The projection does not commute with the POVMs forming the key map, and hence we use
the general correction term from Theorem 2. The correction term depends on the weight
W and key map register dimension |Z|. We use the value of W determined in Theorem
7. Regardless of whether postselection is performed, |Z| is equal to the number of key
outcomes only, not including ? (see Sec. 4.2.3).

We could do no worse by using the correction term in the partially-commuting case from
Theorem 4. However, numerical calculations suggest that the POVMs for DMCVQKD
typically have large o↵-diagonal blocks. That is, the quantity c

p
W

in Theorem 4, which is a
normalized measure of the “block-diagonalness” of the POVM, is around 1. Hence for this
protocol we may not see much qualitative improvement over the general correction term
by using the partially-commuting correction term. This seems plausible, as information in
this protocol is encoded into the amplitude and/or phase of states in phase space, But the
Fock states are phase-invariant, so a projection in the Fock basis, or even a displaced Fock
basis, is very non-commutative with the POVMs. It is an interesting avenue for future
work to explore this further.

5.5.4 Finite Set SN

By design, the projection ⇧N (Eq. (5.65)) commutes with the positive observables �i (Eq.
(5.20)). We can thus use the form of SN in Eq. (4.101). Note that the lower bounds in Eq.
(4.101) are not useful as the observables �i are unbounded. Recall HN is the subspace of
HAB onto which ⇧N projects. The finite-dimensional optimizations are presented in Eq.
(5.74) and Eq. (5.75).
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Finite-dimensional optimization for DMCVQKD (Ideal Detector)

minimize:
⇢̃

f ideal(⇢̃)

subject to: 1�W  Tr(⇢̃)  1
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Finite-dimensional optimization for DMCVQKD (Trusted Noise)

minimize:
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fnoisy(⇢̃)
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are as defined in Eqs.

(5.55), (5.56).
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5.6 Simulation Results

To understand the performance of this protocol and demonstrate our security proof ap-
proach, we simulate data obtained from a typical experiment. Note that this simulation
discussion pertains not only to this section, but the following sections as well.

We model the signal states as passing through a noisy and lossy Gaussian channel. The
transmittance ⌘ is modelled as a function of distance d according to ⌘ = 10�k·d/10, where
k is the attenuation factor of the channel. We use a typical value for commercial-grade
fiber, k = 0.2 dB/km. The excess noise ⇠ is taken to be fixed at the channel input, for
example as preparation noise, so that Bob sees the e↵ective noise � = ⌘⇠. The expectation
values for this simulation are hn̂�ii = �/2 and

⌦
n̂2
�i

↵
= �(1 + �)/2, as derived in Appendix

D. This implies W = �2/[2N(N + 1)]. We emphasize that our security proof does not
depend on these parameter choices and simulation model, which are only used to illustrate
the performance of the protocol in a typical implementation.

The error-correction cost is calculated by simulating the joint probability distribution
obtained by Alice and Bob (see Appendix D).To account for realistic error-correction costs,
we model the �leakEC term in the key rate (see Eq. (3.11)), using an e�ciency parameter
�EC (see Eq. (3.24)). We use a representative value of �EC = 0.95 for all modulation
schemes and at all distances. This e�ciency can likely be achieved by using low-density
parity-check (LDPC) codes [77] adapted to discrete modulations. Very recent work [78]
has achieved similar e�ciencies using a variation on LDPC codes known as the multiple
decoding attempts scheme. In principle, these codes can be applied to arbitrary modulation
schemes [78], which will be relevant when we consider simulations for di↵erent signal state
constellations in Sec. 5.7.2. Nevertheless, we caution that setting �EC = 0.95 is ultimately
only a heuristic for modelling the EC cost, and more study of the details of these EC codes
is warranted to ascertain the accuracy of this heuristic, especially at long distances and
correspondingly low signal-to-noise ratios.

Our algorithms are implemented in Matlab (versions R2019B or R2021A), using the
convex optimization package CVX (versions 2.1 or 2.2) [79, 80] with the solverMosek (ver-
sions 8.0.0.60 or 9.1.9) [81]. The Frank-Wolfe algorithm, with a maximum of 30 iterations,
is used to solve the first step of the numerical method.

Some general remarks regarding parameter optimization: unless otherwise stated, pa-
rameter optimizations use the fminbnd algorithm included in the Matlab distribution,
which uses a combination of parabolic interpolation and golden-section search. In some
cases, we instead use a coarse-grained search over parameters, either individually or jointly.
Due to the inherent unpredictability of numerical solvers, and the fact that search algo-
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rithms can get stuck in local minima, the parameter values returned by these numerical
methods are not always exactly optimal. Generally speaking, this has a rather small im-
pact on the results, because the key rate does not seem to vary rapidly with respect to
any of the protocol parameters we consider in this or later sections. In some cases, a large
outlier in the returned optimal parameters is evident. In this case, in order to produce
relatively smooth plots, we slightly tweak the numerically-returned optimal parameters at
these points by hand, roughly fitting them to the overall trend from the other points.

We emphasize that all key rate plots include the correction term unless stated otherwise.
That is, R1 = Cnum � �leakEC � �(W ), where Cnum denotes the reliable numerical lower
bound on f(⇢̃N). In order to evaluate the e↵ect of the correction term, and to compare
with previous work using the photon number cuto↵ assumption, we will find it useful to
consider the uncorrected values, defined as Cnum � �leakEC .

All results in this section are for phase-shift keying with M = 4, using amplitude
and phase postselection (see Fig. 5.1). We present key rate plots for di↵erent choices
of channel parameters ⌘ and ⇠, protocol parameters ↵, �a, and �p, and the subspace
dimension parameter N . For the trusted noise scenario, we also consider ⌘d and ⌫el.

5.6.1 Understanding the Dimension Reduction Method

We first examine some results relating to the dimension reduction method itself.

In Fig. 5.3, we compare the key rates and uncorrected values from our dimension
reduction method to the key rates under the photon number cuto↵ assumption obtained
in Ref. [23]. In order to enable a meaningful comparison, we use the protocol parameters
from Ref. [23]. The uncorrected values, which are equal to the key rate before subtracting
the correction term �, are essentially identical to those in Ref. [23]. As the results from
Ref. [23] are an upper bound on the key rate, this indicates our choice of SN is tight.
Further, our corrected key rates are very close to the uncorrected values. This illustrates
our correction term is small for reasonable values of the subspace dimension parameter N ,
at low channel excess noise (see Fig. 5.4).

As our key rates are similar to the ones under the cuto↵ assumption, the qualitative
conclusions of previous work [23, 72] are confirmed to hold under our precise treatment,
without the previous working assumptions. That is, we are able to lift the assumption that
the state is finite-dimensional, with minimal impact on the key rate.

To illustrate the relative size of the correction term, we plot it as a fraction of the
uncorrected value in Fig. 5.4, at a fixed distance of 15 km. More precisely, for each value

83



Figure 5.3: Comparison of key rates and uncorrected values from our dimension
reduction method with key rates under the photon number cuto↵ assumption from Ref.
[23]. Results are plotted versus distance with excess noise ⇠ = 0.01, and are in the ideal
detector scenario. Postselection parameters and signal state intensities from Ref. [23] are
used: ↵ = 0.6, �p = 0, and �a is optimized with a coarse-grained search over [0.5, 0.65].
The subspace dimension parameter is N = 20 and M = 4.
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Figure 5.4: The fractional correction term versus the subspace dimension parameter N
for di↵erent values of excess noise, in the ideal detector scenario. The distance is 15 km,
M = 4, ↵ = 0.8, �a = 0.5, and �p = 0.

of excess noise ⇠ and subspace dimension parameter N , we plot the fractional correction
term �(W )/Cnum, where W = (⌘⇠)2/[2N(N+1)], while Cnum is computed at a fixed value
of N = 40 for each ⇠. (In the range considered here, Cnum has a negligible dependence on
N .) The protocol parameters are M = 4, ↵ = 0.8, �a = 0.5, and �p = 0 for each value of
excess noise.

As expected, for a pure-loss channel the correction term is zero. This is because the
finite subspace fully contains the loss-only simulation state, as discussed in Sec. 5.5.1. For
small values of excess noise, the correction term is negligible even for small N . For larger
values of excess noise, and especially in the high loss regime, N must be increased to obtain
reasonable results. This is because the correction term scales like the loss ⌘ for all values
of excess noise ⇠, while, for nonzero ⇠, the key rate scales worse than ⌘.

5.6.2 Key Rates and Optimal Protocol Parameters

In Fig. 5.5, we plot the ideal detector key rates for di↵erent channel parameters, using
amplitude and phase postselection. The signal state intensity and postselection parameters
are numerically optimized for each distance and value of excess noise, using N = 10. The
key rates are calculated using N = 40, except for a small number of points where we use

85



Figure 5.5: Ideal detector secure key rates versus transmission distance, for di↵erent
values of excess noise ⇠, with optimized postselection parameters and signal state
intensity. For each point, the better of the two results from N = 30 and N = 40 is used,
with the majority of points from N = 40. Postselection can improve the noise tolerance
and range of the protocol. The protocol is M = 4 phase-shift keying.

N = 30 to ameliorate numeric issues, as discussed in Appendix B.2. Using postselection
extends the range of the protocol for high excess noise while also reducing the amount of
data processing for error correction, which can be a bottleneck in actual implementations.
For example, for 2% excess noise, postselection increases the maximum distance by around
50 km, while discarding 40% of the signals. The small number of outlying points that
deviate from the trend are due to numerical issues inherent to convex solvers. We emphasize
that these key rates are still rigorous, and can be improved by using higher-precision
numerical methods.

We plot the optimal protocol parameters to gain a better understanding of the protocol
behaviour. The optimal signal state amplitudes ↵opt are shown in Fig. 5.6. The optimiza-
tion range [0.5, 2] is su�cient for almost all parameter choices, though ↵opt tends to infinity
as distance and excess noise tend to zero. The general trend is that ↵opt decreases as dis-
tance and excess noise increase. With ↵opt fixed, �a is optimized over [0, 1]. (One could
jointly optimize all protocol parameters, but we do not expect this to noticeably improve
the key rates.) The optimal postselection amplitudes �aopt are shown in Fig. 5.7. The
general trend is that �aopt increases as distance and excess noise increase. We find that the
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Figure 5.6: Optimal signal state amplitude ↵opt versus transmission distance, for di↵erent
values of excess noise ⇠ and in the ideal detector scenario. The amplitude is optimized in
the range [0.5, 2], with �a = �p = 0 and N = 10.

optimal value for �p seems to always be zero, so phase postselection is omitted altogether.
We will consider other postselection patterns in Sec. 5.7.1.

5.6.3 Trusted Noise

In Fig. 5.8, we consider the key rates in the trusted detector noise scenario. We take the
channel to have 1% excess noise, and consider di↵erent values of detector e�ciency and
electronic noise. The protocol parameters are optimized for the ideal detector scenario,
and the same parameters are used for each of the di↵erent trusted noise cases. We observe
that even with large detector imperfections and 1% channel excess noise, it is possible
to generate secure key at long distances. As expected, trusted detector noise does not
significantly alter the scaling of the key rates. This is markedly di↵erent from the e↵ect of
channel excess noise (see Fig. 5.5).

5.6.4 Comparison to Gaussian Modulation

Discrete-modulated (DM) CVQKD is intended to be a more experimentally feasible al-
ternative to Gaussian-modulated (GM) CVQKD. It is thus of interest to compare the
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Figure 5.7: Optimal amplitude postselection parameter �aopt versus transmission
distance, for di↵erent values of excess noise ⇠ and in the ideal detector scenario. The
amplitude is optimized in the range [0, 1], with ↵ = ↵opt, �p = 0 and N = 10.

Figure 5.8: Key rates versus distance for di↵erent trusted detector imperfections, with
excess noise ⇠ = 0.01. Protocols are evaluated with the same optimized protocol
parameters, including postselection, as in Fig. 5.5. The subspace dimension parameter is
N = 5 and M = 4.
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Figure 5.9: Comparison of Gaussian [82] and discrete-modulation key rates for di↵erent
values of excess noise ⇠, in the trusted noise scenario with ⌘d = 0.6, ⌫el = 0.05.
Parameters for both protocols are optimized. The subspace dimension parameter is
N = 5. The discrete-modulated protocol uses M = 4 phase-shift keying.

performance of the two protocols. We perform a very basic comparison in Fig. 5.9, using
the same error-correction e�ciency �EC = 0.95, detector loss ⌘d = 0.6, and electronic noise
⌫el = 0.05. The modulation variance is optimized for GM, using the key rate formula in
Ref. [82]. The optimized protocol parameters for DM are the same as in Fig. 5.8. We
note that a complete and in-depth comparison of the two protocols would have to account
for many more implementation details. For a pure-loss channel, the GM key rates are
around an order of magnitude higher. At higher excess noise, the gap is larger as GM is
more robust to channel noise. However, both protocols are largely una↵ected by trusted
detector imperfections. We will see in Sec. 5.7.2 that the tolerance of DM to channel noise
can be improved by using a larger constellation of signal states.

5.7 Improving Protocol Performance

With the numerical key rate toolbox in hand, we can explore variations on the DMCVQKD
protocol to enhance its performance. In particular, we consider di↵erent postselection
regions and di↵erent signal state constellations. All simulation results in this section follow
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the same setup as outlined at the beginning of Sec. 5.6.

5.7.1 Optimal Postselection

The idea of postselection in CVQKD was first introduced in Ref. [13] in the context of a
Gaussian-modulated protocol, as a generalization of the classical idea of advantage distil-
lation [83]. It was shown that postselection enables the protocol with direct reconciliation
to reach losses greater than 3 dB. It was not considered relevant for reverse reconciliation,
as then Eve’s information is always less than Bob’s.

Postselection was later studied in Ref. [73] for binary-modulated DMCVQKD, and the
optimal postselection region determined in the loss-only scenario. Importantly, realistic
error correction (i.e not at the Shannon limit) was considered, which made postselection
relevant for reverse reconciliation. Postselection was also studied in Ref. [84] for phase-
shift keying with larger M , but only for direct reconciliation as realistic error correction
was not considered.

Our contribution is firstly to clarify the role of the announcement structure in designing
optimal postselection. In doing so, we arrive at a generalization of the concept of e↵ective
binary channels which was introduced in Ref. [73]. Secondly, we use this result to extend
the study of optimal postselection to reverse reconciliation with realistic error-correction
costs for phase-shift keying with larger M . We also demonstrate the sensitivity of the op-
timal postselection region to di↵erent error-correction costs. Finally, we propose heuristics
for the postselection region for the DMCVQKD protocol without announcements.

Intuitively, the idea behind postselection is as follows. Unlike the situation with
Wyner’s wire-tap channel [85], Alice and Bob share a “resource” in the form of authenti-
cated communication, and they can harness this to gain an advantage over the eavesdrop-
per. When Bob gets an ambiguous measurement result, he simply lets Alice know and
they discard that round. But when Eve gets an ambiguous result, she cannot do so. By
discarding some data in this manner, Alice and Bob can improve the correlations of their
remaining information and then by Wyner’s wire-tap bound can generate a secret key.

General Problem Formulation

We first precisely define the scenario we are considering for designing optimal postselection,
and then see how the announcement structure aids in solving the resultant optimization.

Without loss of generality, we suppose Bob performs the key map and makes the post-
selection decision. Assume the input state ⇢ABE is known, and that the protocol steps,
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excluding postselection, are fixed. Consider the state after measurement, announcements,
and key generation. Recalling our definition of the postprocessing map in Sec. 3.2.2, this
is the state V �AB

M (⇢ABE)V †. We model each party as having a copy of all classical public
announcements, in registers CA, CB, and CE. To simplify the notation, we use composite
registers [A] = ACA, [B] = BCB, and [E] = ECE. The postprocessed state is a CCQ
state between Alice, Bob, and Eve. As usual, S[A] and S[B] denote the alphabets for the
corresponding classical registers.

Now, we introduce a new classical register L. This holds the conditioning variable
l 2 SL, on which we condition whether or not to postselect. l is a function of Bob’s
information, represented by l = gp(j), with j 2 S[B]. In other words, the information in L
is a coarse-graining of that in [B].6 Writing the new register explicitly, the postprocessed
CCQC state is

⇢post =
X

i2S[A]

j2S[B]

p(i, j) |g(j)ihg(j)|Z ⌦ |iihi|[A] ⌦ |jihj|[B] ⌦ ⇢i,j[E] ⌦ |gp(j)ihgp(j)|L . (5.76)

Recall that the key map g is a function of j with output alphabet SZ = {0, ...,M � 1,?}.

We model postselection in the following manner. A subset S0 of the alphabet SL is
chosen. If l 2 S0, then “keep” is announced. If l /2 S0, then “discard” is announced,
and the key symbol is changed to ?. The optimal postselection choice is then the subset
S0 maximizing the key rate. Finding this subset can be formulated as an optimization
problem.

First, the state after postselection is

⇢(S0) =
X

i
j:l(j)2S0

p(i, j) |g(j)ihg(j)|Z⌦|iihi|[A]⌦|jihj|[B]⌦⇢
i,j
[E]⌦|gp(j)ihgp(j)|L⌦|keepihkeep|D

+
X

i
j:l(j)/2S0

p(i, j) |?ih?|Z ⌦ |iihi|[A]⌦ |jihj|[B]⌦ ⇢i,j[E]⌦ |gp(j)ihgp(j)|L⌦ |discardihdiscard|D .

(5.77)

The key rate is then7

R(⇢(S0)) = H(Z|[E]D)⇢(S0) �H(Z|[A]D)⇢(S0) (5.78)

6The astute reader may wonder why we would ever limit L to not contain all possible decision-making
information. As we will see shortly, this will be because we announce L publicly.

7Assuming error correction is performed at the Shannon limit. We will later consider realistic error-
correction costs.
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As we have noted earlier, the conditional entropy is additive over blocks so the discard
block does not contribute to the key rate (since the conditional entropy of a CQ state is
bounded by the logarithm of the number of outcomes, and there is only one key outcome,
?, when “discard” is announced). Thus, we can equivalently think of the key rate formula
as being

R(⇢(S0)) = H(Z|[E])⇢̃(S0) �H(Z|[A])⇢̃(S0) (5.79)

where

⇢̃(S0) =
X

i
j:l(j)2S0

p(i, j) |g(j)ihg(j)|Z ⌦ |iihi|[A] ⌦ |jihj|[B] ⌦ ⇢i,j[E] ⌦ |gp(j)ihgp(j)|L . (5.80)

Then, the optimization we want to solve is

sup
S0

R(⇢̃(S0)). (5.81)

This optimization is over all possible subsets S0, or in other words, over the power set of
SL. This can be a challenging computation. In particular, when SL is continuous, it is not
even clear how to formulate such an optimization. We thus need a better way to frame the
problem.

The key idea is to have the register L become public. Then, the key rate formula
becomes

R(⇢̃(S0)) = H(Z|[E]L)⇢̃(S0) �H(Z|[A]L)⇢̃(S0) (5.82)

The conditional entropy is additive over blocks, when the classical register is being con-
ditioned on. Thus, the key rate can be decomposed into contributions from each block.
With p(l) ⌘

P
j:gp(j)=l p(j), the conditional states ⇢l are

⇢l =
1

p(l)
hl|L ⇢post |liL (5.83)

and the key rate is then

R(⇢̃(S0)) =
X

l2S0

p(l)[H(Z|[E])⇢l �H(Z|[A])⇢l ]. (5.84)

From this expression, we can read o↵ that the optimal postselection set S0 simply consists
of those l for which H(Z|EL)⇢l � H(Z|XL)⇢l > 0; where the strict inequality is so that
we reduce our data processing burden by discarding signals that will not help us. There

92



is no longer any need to search over the power set. Thus, by announcing the conditioning
variable, we greatly simplify the determination of the optimal postselection set.

As mentioned above, this can be understood as a generalization of the concept of ef-
fective binary channels [73]. For a key map with M outcomes (not including ?), each l
corresponds to an e↵ective M -ary channel, and we only keep those channels which con-
tribute positively to the key rate.

Application to DMCVQKD

We now consider finding the optimal postselection region for DMCVQKD with phase-
shift keying. We first need to make a choice for the conditioning variable. We consider
postselecting on Bob’s outcomes only. The most fine-grained choice we could make is to
let l be Bob’s heterodyne measurement result ⇣. But since we are announcing l, this would
reveal all information to Eve.

We make the simplifying (and likely optimal) assumption that the discard regions
respect the 2⇡

M rotational symmetry of the protocol. In that case, ⇣ is discarded if and only
if all elements in the coset C(⇣) = {⇣, e2⇡i/M⇣, ..., e2⇡i(M�1)/M⇣} are discarded. Intuitively,
the key information is encoded in the phase, so revealing the coset should not help Eve
much. We thus set the conditioning variable to be the coset of Bob’s outcome gp(⇣) = C(⇣).
We will conventionally label each coset by its representative in the first region, i.e. the
slice of the complex plane from ✓ : [�⇡

M , ⇡
M ]. This region will be denoted by Acoset. Since

we are considering symmetric postselection regions, we only need to determine which ⇣ in
the first region are kept, and can then just rotate this region to obtain the others.

Unfortunately, as has been discussed, the numerics framework cannot directly model
continuous registers, though it might be possible to consider some coarse-graining or bin-
ning of the measurement outcome. We thus study the optimal postselection region in the
loss-only case, where the key rate can be determined analytically. We then use this result,
which is for the protocol with coset announcements, to motivate heuristics for the protocol
without announcements, which is the one we can implement in the numerical key rate
framework.

Loss-Only Case

In the loss-only scenario, ⇢ABE is known (Eq. (5.3)) by the generalized beam splitting
attack (see Sec. 5.2). Any measurement outcome ⇣ for Bob is uniquely identified by its
coset l 2 Acoset and its index within the coset z, and we notate this via ⇣ = ⇣zl = le2⇡iz/M .
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Visually, the index z identifies which 2⇡
M rotation of Acoset contains ⇣, and l identifies the

location of the complex number within this rotated Acoset. Instead of integrating over all
⇣, we can instead sum over z and integrate over l. Recall that the coset label l is taken to
lie in the region Acoset. The postprocessed state ⇢ZABEL is then

⇢ =
M�1X

i=0

M�1X

z=0

Z

Acoset

d2l p(i, ⇣zl) |zihz|Z ⌦ |iihi|A ⌦ |⇣zlih⇣zl|B ⌦ ⇢iE ⌦ |lihl|L . (5.85)

Note that Eve’s conditional states ⇢iE =
��p1� ⌘↵i

↵⌦p
1� ⌘↵i

�� have no dependence on
⇣, due to the product form of Bob and Eve’s combined conditional states (Eq. (5.3)).
p(i) is the a priori signal state preparation probability, which we have taken to be 1

M .
Conditioned on Alice sending |↵ii, Bob’s probability distribution follows directly from the

(ideal) heterodyne POVM as p(⇣|i) = 1
⇡

��⌦⇣
��p⌘↵i

↵��2 = 1
⇡e

�|⇣�
p
⌘↵i|

2

.

We thus have

⇢l =
1

p(l)

X

z,i

p(i, ⇣zl) |zihz|Z ⌦ |iihi|A ⌦ |⇣zlih⇣zl|B ⌦ ⇢iE (5.86)

=
1

p(l)

X

z,i

1

M⇡
e�|⇣zl�

p
⌘↵i|

2

|zihz|Z ⌦ |iihi|A ⌦ |⇣zlih⇣zl|B ⌦

���
p

1� ⌘↵i

EDp
1� ⌘↵i

���
E
.

(5.87)

The normalization factor is p(l) =
P

zi
1

M⇡e
�|⇣zl�

p
⌘↵i|

2

. By symmetry, this is equal to

p(l) =
P

i
1
⇡e

�|⇣0l�
p
⌘↵i|

2

.

With the state written out explicitly, we now compute H(Z|E)⇢l and H(Z|A)⇢l (we are
considering reverse reconciliation).

H(Z|A) is simply calculated on the classical probability distribution q(z, i) = p(i,⇣zl)
p(l) as

H(qZA)�H(qA).

H(Z|E) is calculated on the CQ state

X

z

|zihz|Z ⌦

X

i

q(z, i)
���
p
1� ⌘↵i

EDp
1� ⌘↵i

���
E
, (5.88)
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which expands as

H(Z|E)⇢l =
X

z

H

 
X

i

q(z, i)
���
p

1� ⌘↵i

EDp
1� ⌘↵i

���
E

!

�H

 
X

zi

q(z, i)
���
p
1� ⌘↵i

EDp
1� ⌘↵i

���
E

!
. (5.89)

Eve’s states are infinite-dimensional, so to evaluate the entropy we use the fact that
H(
P

i p(i) | iih i|) = H(
P

ij

p
p(i)p(j) h j| ii |iihj|). (This fact follows by considering

the pure state
P

i

p
p(i) | ii |ii, and noting that both reduced density matrices of a bipar-

tite pure state have the same entropy.) Finally, the total key rate is
R
l p(l)[H(Z|E)⇢l �

flH(Z|A)⇢l ], where the integral is only taken over l giving a positive contribution to the
key rate.

Influence of Error Correction

As mentioned above, when error correction is performed at the Shannon limit, reverse
reconciliation does not benefit from postselection. Hence, it is important to account for
the realistic cost of error correction. We find that the optimal postselection region is very
sensitive to the cost of error correction. Thus, we emphasize that the qualitative conclusions
we make in the following section are intimately related to how we have assigned the error
correction cost. For di↵erent error-correcting codes, the analysis will need to be redone.
Our general method however, can always be run again with the new cost modelled, and
indeed for experimental runs can directly use the known leakage.

Recall we can think of each l as corresponding to an e↵ective channel, with associated
key rate H(Z|E)⇢l �H(Z|A)⇢l . Importantly, in each e↵ective channel, Alice and Bob share
a discrete probability distribution q(z, i). We can thus apply error-correction techniques
for discrete-variable protocols. For simplicity, we consider M = 4 and assume that Bob
and Alice assign their 4 outcomes to 2 bits, via the mapping 0 ! 00, 1 ! 01, 2 ! 11 and
3 ! 10. This creates an e↵ective binary symmetric channel, with an associated quantum
bit error rate (QBER). (Note that the specific choice of mapping minimizes the e↵ective
QBER, as the coherent states diametrically opposite each other are the least likely to be
confused with each other.) For error correction, we consider the Cascade protocol, which is
the prototypical choice for discrete-variable QKD. One caveat is that most error-correction
codes for DV protocols are designed to work at low QBER. In our case, e↵ective channels
with l close to the origin will have QBER close to 1

2 . It is part of our assumptions on
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Figure 5.10: Heatmap of the di↵erence [H(Z|E)⇢l � flH(Z|A)⇢l ] over phase space. The
contour where this quantity is 0 is indicated by the dashed blue line. The optimal
postselection region (i.e. the set of discarded outcomes) extends from the origin to this
contour. For 4-PSK with coset announcements and realistic error correction, in the ideal
detector and loss-only scenarios, at distance 20 km and ↵ = 0.7.

the modelling of error correction that one can find codes extrapolating the performance of
Cascade up to maximal QBER.

Denote the QBER for each e↵ective channel l by QBERl. Linearly fitting to the
e�ciency of Cascade [86], we set fl = 1.05 + 5

11QBERl.8 The postselected region then
consists of those l for which [H(Z|E)⇢l � flH(Z|A)⇢l ]  0. In Figure 5.10, we show the
optimal postselection region at a distance of 20 km, with ↵ = 0.7. The shape is akin to
a rounded square, and, interestingly, includes the centers of the received coherent signal
states. As an indication of the sensitivity of the optimal postselection region to the error-
correction cost, if we set �l = 0.95, performing no postselection is optimal.

Postselection Heuristics

We now consider heuristics for better postselection for DMCVQKD without announce-
ments. We will still consider symmetric postselection. This means the first region A0 is

8We also put an upper bound of �leakEC  log2(M) = 2.
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Amplitude and Phase Hyperbolic
Parameter Initialized

Value
Optimal
Value

Parameter Initialized
Value

Optimal
Value

↵ 0.6 0.67 ↵ 0.6 0.67
�a 0.5 0.69 �h 0.5 0.40
�p 0.05 0.0047 �s 0.95 0.04

Table 5.1: Optimal protocol parameters for M = 4 phase-shift keying, at distance 150 km
and 2% excess noise, with error-correction e�ciency �EC = 95%.

some non-discarded subset of the slice ✓ : [� ⇡
M , ⇡

M ], and the remaining regions are obtained
by rotations of 2⇡

M .

We consider a hyperbolic postselection region. For the first region operator, we keep
points within the first slice which additionally satisfy x2

��sy2 � �h. The ranges of the
parameters are �h : [0,1) and �s : [�1,1].

We now compare this hyperbolic scheme to the amplitude and phase scheme. To
evaluate the optimal parameters, we use the fminsearch function in Matlab. We consider
a distance of 150 km, with ⇠ = 0.02. We jointly optimize ↵, �a and �p, for the amplitude
and phase postselection pattern. We jointly optimize ↵, �h and �s for the hyperbolic
postselection region. The function fminsearch does not accept ranges on the parameters
to be optimized, but instead takes an initialization point. We set fminsearch to target an
accuracy of 10�6 in the objective function value, and 10�2 in the norm of the parameter
vector. The error-correction e�ciency �EC is set to 0.95.

The parameter results are summarized in Table 5.1. The uncorrected key rate for
amplitude and phase is 2.79⇥10�5, while for hyperbolic it is 2.80⇥10�5. Both postselection
schemes seem to perform essentially the same. Though we recognize that the parameter
optimization is not exact, it seems that the optimal values are �p = 0 and �s = 0 (this is
consistent with our observations in Sec. 5.6 regarding phase postselection).

We consider another point, this time at distance 10 km and 5% excess noise. We
find that the Mosek solver is not as consistent at this point, so we instead use SDPT3.
Moreover, fminsearch gets stuck in local minima, so we instead perform a coarse-grained
search jointly over all three parameters. For the amplitude and phase, we optimize ↵ from
0.6 to 1.1 in increments of 0.1, �a from 0.4 to 0.9 in increments of 0.05, and �p from 0 to
0.05 in increments of 0.01. For hyperbolic, we optimize ↵ the same, �h from 0.4 to 0.7 in
increments of 0.05, and �s from 0 to 1 in increments of 0.1.

The parameter results are summarized in Table 5.2. The uncorrected key rate for
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Amplitude and Phase Hyperbolic
Parameter Optimal

Value
Parameter Optimal

Value
↵ 0.8 ↵ 0.8
�a 0.5 �h 0.4
�p 0 �s -1

Table 5.2: Optimal protocol parameters for M = 4 phase-shift keying, at distance 10 km
and 5% excess noise, with error-correction e�ciency �EC = 95%.

amplitude and phase is 0.028, while for hyperbolic it is 0.027. Again, the two postselection
schemes perform similarly. In fact, note that the choice �s = �1 is just a circular arc.

The conclusion we draw is that hyperbolic postselection does not perform much bet-
ter than amplitude and phase postselection, which in turn works just as well with only
amplitude postselection; which is what we will thus consider in the following section.

We remark however that the numerical solver sometimes has large gaps between the
approximate primal result and the dual lower bound. This indicates that the dual value
is not always tight. Moreover, the approximate primal result can also be inconsistent.
This is especially apparent when considering small changes to the input parameters, which
sometimes lead to large fluctuations in the key rate, purely due to the unpredictability
of numerical solvers. Unlike for key rate plots, we do not simply adjust the returned
values by hand (see the discussion at the beginning of Sec. 5.6), as this would defeat
the purpose of the comparison. Given a more robust numerical method, one might find
somewhat di↵erent qualitative conclusions regarding postselection regions; especially with
regards to small perturbations of input parameters. We defer a more extensive exploration
of postselection regions, especially in concert with di↵erent signal state constellations, to
future work: especially once the more robust numerical approach from Ref. [61] can be
extended to apply to DMCVQKD with the dimension reduction method.

5.7.2 Larger Constellations

Using larger constellations o↵ers a path to improving the performance of DMCVQKD, for
two reasons. The first is that Alice has a larger alphabet, allowing her to encode more
information per signal state. The second is that the parameter estimation from each signal
state further constrains Eve’s channel action. These two notions can be decoupled, and
this is precisely the idea behind decoy states [87, 88], which are only used to constrain
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the channel action, not to generate the raw key. Recall that, asymptotically, parameter
estimation is performed using only a vanishing fraction of the rounds of the QKD protocol.
Thus, using decoy states can only improve the asymptotic key rate.

In order to understand the impact of decoy states on the performance of DMCVQKD,
we consider the limiting case of infinite decoy states. Suppose all coherent states are used as
decoy states. For each coherent state, Bob can determine the received conditional state by
performing state tomography. Since the coherent states form a basis for density operators
on Fock space, the channel action on any state is known, and hence the channel itself is
fully determined.

Thus, in the limit of infinite decoy states, Alice and Bob know their shared state ⇢AB.
The key rate objective function is then evaluated directly on the known state. Computing
the key rates for M = 4 phase-shift keying in this manner, we find they are very similar
to the key rates without using decoy states. We are led to conclude that, given an extra
state prepared by Alice, it is more beneficial to put it towards key generation than decoy
states, and hence we focus on this idea in our constellations.

Again, we refer the reader to Sec. 5.6 for all details regarding the simulation for
the following plots. Based on our findings in previous sections, we only use amplitude
postselection for phase-shift keying.

In Fig. 5.11, we compare the performance of M = 4 and M = 8 phase-shift keying. As
our interest is in the relative performance of these two schemes, we plot the uncorrected
values rather than the corrected key rates. The protocol parameters for M = 4 are the
same as in Fig. 5.5. For M = 8, first the signal state amplitude ↵ is coarsely optimized
over the range 0.6 to 2 in increments of 0.1, with no postselection. Then, with ↵opt fixed,
the postselection parameter �a is optimized over the range 0.5 to 1.4, also in increments
of 0.1 (�p = 0).

At 0% and 1 % excess noise, the larger constellation has a relatively modest improve-
ment over the smaller one. The improvement is approximately a constant factor, though it
is slightly more pronounced at longer distances. At 2% excess noise, the di↵erence is much
more significant. For 8-PSK, the key rate scaling is approximately linear, with a slope only
slightly decreased from the loss-only case, while for 4-PSK, the scaling is initially linear
but drops o↵ at around 120 km. At 5% excess noise, 8-PSK almost doubles the maximum
distance, and also achieves a large constant factor improvement in the key rate.

It thus seems that using larger constellations is most impactful at somewhat higher
values of excess noise. In practice, the choice to use a larger constellation would have to
be balanced with an associated increase in preparation noise. We remark that once the
preparation noise is characterized (say as a function of M), it can be easily modelled in our
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Figure 5.11: Ideal detector uncorrected values for phase-shift keying with M = 4 and
M = 8. Protocols are evaluated with optimized protocol parameters, including
postselection. The subspace dimension parameter is N = 10.

existing numerics. One simply adds an additional term expanding the constraint on the
trace distance between the simulated and actual reduced density matrices (see the third
line of Eq. (5.75)).9 With this, one could optimize the value of M taking into account
realistic modulator performance.

At least in classical telecommunications, it is known that even larger values of M in
phase-shift keying o↵er only marginal improvements. We find a similar saturation of per-
formance when testing M = 16 PSK. As an alternative, one typically considers modulation
schemes which encode information in both phase and amplitude. This is known as ampli-
tude and phase-shift keying (APSK).

Classically, there is an extensive body of literature on the design of discrete-modulated
constellations which approach the performance of Gaussian modulation (e.g. see Ref. [89]).
These designs include variations on the location of the signal states, as well as the a priori
probabilities with which they are prepared. They provide good heuristics for designing
quantum constellations in the context of DMCVQKD.

A fairly extensive exploration of di↵erent classical constellations is completed in Ref.
[90]. We consider the so-called (5,11) constellation, which o↵ers some of the best perfor-

9This observation regarding modelling source imperfections is due to Shlok Nahar.
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Figure 5.12: Coherent signal state constellation for the (5,11) protocol. It consists of 16
signal states, 5 spaced equally on the inner circle with radius ↵in, and 11 on the outer
circle with radius ↵out. Each inner state is chosen with probability pin

5 , and each outer

one with probability 1�pin

11 .

mance of all 16 state modulations that are considered in Ref. [90]. As the name suggests,
the (5,11) constellation consists of two concentric rings with 5 and 11 states respectively.
As a natural decoding scheme, we construct the region operators in a similar pattern. A
visualization of this constellation and its parameters is provided in Fig. 5.12, while the
region operators and their parameters are depicted in Fig. 5.13. We considered a relative
phase shift between the two rings, but found that this had a negligible impact on the key
rate.

In Fig. 5.14, we compare the performance of the (5,11) discrete-modulated constellation
with Gaussian modulation. We use ⇠ = 0.01 which is a typical value for channel excess
noise. For simplicity, the DM protocol parameters are coarsely optimized at a distance
of 100 km, and the same parameters are used at all distances (see Table 5.3). This is
evident at very short distances, where the key rate could be pushed higher by using larger
signal state amplitudes (see Fig. 5.6 for a representative example of how the signal state
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Figure 5.13: Phase space regions for the reverse reconciliation key map for the (5,11)
protocol. Bob obtains the measurement result ⇣ from the heterodyne detector. He maps
the outcome to the symbol of the region containing ⇣. �in

a and �out
a are amplitude

postselection parameters corresponding to the radii of the innermost and outermost
circles. rm is the radius of the middle circle. The two ? regions correspond to signals
that are discarded.

102



Parameter Optimal Value
↵in 0.743
↵out 1.708
pin 0.623
�in

a 0.319
�out

a 0.977
rm 0.977

Table 5.3: Protocol parameters used in Fig. 5.14 for the (5,11) protocol. Values are
approximately optimal at distance 100 km and 1% excess noise. Refer to Fig. 5.12 and
Fig. 5.13 for descriptions of all the parameters.

amplitude is large at zero distance but quickly decreases, plateauing at around 40 km).
We use a subspace dimension parameter of N = 5, which at the considered value of excess
noise, is su�cient to ensure the correction term is small.

The DMCVQKD protocol with just 16 modulated states achieves essentially the same
key rate as Gaussian modulation, even at very long distances and with excess noise. This
demonstrates that discrete-modulated CVQKD is a promising alternative to Gaussian mod-
ulation. As we have noted before, a more thorough comparison of the protocols, delving
into implementation details like error-correction cost and modulation precision, would be
in order.
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Figure 5.14: Comparison of Gaussian-modulated [82] CVQKD with the (5,11)
DMCVQKD protocol. Key rates are plotted against distance, at excess noise ⇠ = 0.01, in
the ideal detector scenario. For Gaussian modulation, the variance is optimized at each
distance. For discrete modulation, the protocol parameters are approximately optimized
at a distance of 100 km, and the same parameters are then used at all distances. The
subspace dimension parameter is N = 5.
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Chapter 6

Comparison to Flag-State Squasher

Our dimension reduction (DR) approach encompasses another method known as the flag-
state squasher (FSS) [9]. The FSS also obtains lower bounds on the key rate by solving
a finite-dimensional optimization. However, the FSS is restricted to protocols where both
the key map POVM elements and constraint observables commute with the projection.
Notably, this is not the case for DMCVQKD. In this section, we compare our method
to the FSS both analytically and numerically. This demonstrates the advantages of our
method and o↵ers further insight into the FSS approach.

6.1 Analytical Comparison

We briefly summarize the FSS, deferring a complete description to Ref. [9]. As usual,
Alice’s POVM is given by {|jihj|A}, while Bob’s POVM is {�i

B}. The corresponding
probabilities are {�ij}. The FSS also requires choosing a projection ⇧ = A ⌦ ⇧B onto
a finite subspace and upper-bounding the weight W outside that subspace. It is assumed
that [�i

B,⇧B] = 0.

Define a flag Hilbert space HF , with dimension equal to the number of elements in
Bob’s POVM. The finite-dimensional optimization is over density matrices in HN � HF .
Bob’s new POVM is �̃i = ⇧ �i ⇧ � |iihi|F . Alice’s POVM and the expectation values
are unchanged. The objective function is fFSS(⇢̃N � �̃F ) = f(⇢̃N), i.e. it simply discards
the flag portion and evaluates the usual key rate function on the remaining portion. This
completes the formulation of the finite-dimensional optimization for the FSS.
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The squashing map ⇤B is a channel from H1 to HN � HF defined as ⇤B(⇢1) =
⇧⇢1⇧ �

P
i TrB[⇢1(�i

� ⇧�i⇧)] |iihi|F . Note that ⇢1 is feasible for the original infinite-
dimensional optimization if and only if ⇤(⇢1) is feasible for the finite-dimensional one. In
this sense, we can think of the flag-state squasher as implicitly solving over the tightest
possible choice of SN , namely ⇧S1⇧.

As a special case, our method can be applied to any protocol admitting a flag-state
squasher. The FSS requires choosing a projection ⇧ and getting a bound on weight W ,
which establishes the first two steps of our method. Since the key map POVM elements
commute with the projection, we can set � = 0 (Theorem 3). All observables are POVM
elements, so we can use the explicit form of SN in Eq. (4.101). This establishes the last
two steps of our method. We can now compare both approaches in the following theorem.

Theorem 8. For a fixed projection ⇧ and weight W , our dimension reduction (DR) method
gives the same key rate as the flag-state squasher (FSS) when SN = ⇧S1⇧.

Proof. Let ⇤(⇢1) = ⇢̃N � �̃F be a state reaching the minimum in the FSS optimization.
By definition, fFSS(⇢̃N � �̃F ) = fDR(⇢̃N). By the definition of ⇤, ⇢̃N = ⇧⇢1⇧. Thus,
⇢̃N 2 SN , so is feasible for the dimension reduction optimization. Since this optimization
is a minimization, R1

FSS � R1

DR.

Conversely, let ⇢̃N be a subnormalized state reaching the minimum in the dimension
reduction optimization. By the definition of SN , ⇢̃N = ⇧⇢1⇧ for some state ⇢1 2 S1.
By definition, fDR(⇢̃N) = fFSS(⇤(⇢1)). By the property of the squashing map, ⇤(⇢1) is
feasible for the FSS optimization. Since the FSS optimization is a minimization, R1

DR �

R1

FSS.

If SN is not chosen optimally, then our dimension reduction method gives a lower key
rate. In practice, our explicit prescription for choosing SN in Eq. (4.101) gives very similar
key rates to the flag state squasher (see Sec. 6.2), suggesting this choice is essentially
optimal.

In addition to being more general, our method has an important advantage compared
to the flag-state squasher. Our finite-dimensional optimization is over a smaller Hilbert
space, since we do not require flag-state dimensions. Therefore, if we compare at a fixed
total dimension, which roughly determines the runtime, our method can give higher key
rates than the flag-state squasher. Some protocols can have a very large number of POVM
constraints. For the flag-state squasher, using all the constraints would make the runtime
prohibitive, as the dimension of the problem depends on the number of constraints. Thus,
a smaller set of coarse-grained POVM elements is typically used. Our dimension reduction
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method is not limited by the number of constraints and can thus handle the fine-grained
POVM directly, potentially giving better key rates.

6.2 Numerical Comparison: Unbalanced
Phase-Encoded BB84

Having provided an analytical comparison between our method and the flag-state squasher,
we now perform a sample numerical comparison of the two methods. We will consider the
unbalanced phase-encoded BB84 protocol, to which the flag state squasher has recently
been applied in Ref. [10]. We defer a complete description of the protocol to Ref. [10].
Briefly, this is a phase-encoded BB84 protocol where Alice and Bob’s interferometers each
have a loss 1 �  only in the arm with the phase modulator; hence the term unbalanced.
The projection is ⇧B =

P
0n1,n2
n1+n2N

|n1, n2ihn1, n2|, where |n1, n2i are two-mode Fock basis

states. The weight W is bounded using the fact that the frequency of cross-clicks increases
with photon number [10].

In Fig. 6.1 we compare the key rates from our method and the flag-state squasher, for
a channel with transmittance ⌘ and for di↵erent interferometer asymmetric transmittance
. All parameters are the same as in Figure 3(a) of Ref. [10], and the signal state intensity
is optimized separately for each method and parameter choice. We see that our method
gives essentially identical key rates. In conjunction with Theorem 8, this provides strong
numerical evidence that our heuristic choice of SN in Eq. (4.101) is tight. While a more
thorough benchmarking would be in order, we remark that for generating the data in
Fig. 6.1, our method was approximately five times faster than the flag-state squasher as
implemented in Ref. [10] (using the same SDPT3 solver [91, 92]).
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Figure 6.1: Key rates for unbalanced phase-encoded BB84 versus transmission e�ciency
⌘, for di↵erent values of asymmetric interferometer loss 1� . It is clear that the key
rates from our dimension reduction method are nearly identical to those from the
flag-state squasher, indicating the tightness of our method in practice. In generating the
data for this graph, our dimension reduction method was approximately five times faster
than the flag-state squasher as implemented in Ref. [10].
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Chapter 7

Conclusion

In summary, we establish a framework to lower bound a large dimensional convex opti-
mization using a judiciously chosen smaller dimensional one. We show how this framework
can be used to reduce the dimension of QKD key rate calculations. This allows existing
numerical tools for finite-dimensional key rate calculations to be applied to protocols in
infinite-dimensional Hilbert spaces. This extends the advantages of numerical key rate
calculations, including modelling imperfections in devices and exploring classical postpro-
cessing strategies, to such protocols. An important application of our method is to prove
the asymptotic security of DMCVQKD with an arbitrary constellation and postselection
parameters.

As concrete examples, we apply this method to the quadrature phase-shift keying
scheme in both ideal and trusted detector noise scenarios. We show that discrete mod-
ulation key rates can scale similarly to Gaussian modulation. Moreover, we rigorously
demonstrate that postselection of data can improve the key rates for DMCVQKD. We
harness the numerical framework to explore di↵erent strategies to improve the key rate.
We demonstrate that discrete-modulated CVQKD, with as few as 16 modulated states,
can achieve key rates extremely similar to Gaussian-modulated CVQKD.

We also show how the flag-state squasher can be understood in the language of the
dimension reduction method, and compare the methods analytically. Using unbalanced
phase-encoded BB84 as an example, we show that our approach can achieve key rates
nearly identical to those from the flag-state squasher, while having an improved runtime.

Three directions for future work are as follows.

The first direction is using our flexible numerical key rate framework to explore further
variations on the DMCVQKD protocol. As has been discussed, there is a wealth of liter-

109



ature on optimizing the performance of classical discrete-modulated communication. It is
both interesting and practically relevant to see how these strategies can be adapted to the
quantum case to improve the key rate.

Another avenue of research is applying the dimension reduction method to obtain secu-
rity proofs for other unsolved protocols. One interesting example is Gaussian modulation
with postselection. Due to the postselection step, it can no longer be assumed that the
optimal attack is Gaussian. By projecting on both Alice and Bob’s Fock spaces, we expect
one could establish the security of this protocol using the dimension reduction method.
Beyond QKD, the dimension reduction method can be applied to study other quantum
communication protocols, such as entanglement verification.

Finally, given the recent development of a finite-key numerical framework [62], we
hope to see the dimension reduction method extended to finite-key analysis of protocols in
infinite-dimensional Hilbert spaces. We expect that key elements of the method, including
bounding the weight outside the subspace and expanding the feasible set, will lift to the
finite-key analysis.
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Appendix A

Uniform Continuity Bound on
Conditional Entropy

Here we prove an extension of Lemma 2 in Ref. [63] to subnormalized states. Our de-
velopment closely parallels that result. Although we are only interested in showing the
conditional entropy is uniformly close to decreasing under projection with correction �,
we will e↵ectively have to derive uniform continuity to determine �; so for completeness
we give the overall uniform continuity bound as well. Note that the correction term in Eq.
(A.3) is smaller than Eq. (A.2).

Theorem 9 (Uniform Continuity and UCDUP of Conditional Entropy). Let HA and HB be
two Hilbert spaces where the dimension of HA is |A| while HB can be infinite-dimensional.
Let ⇢̃AB, �̃AB 2 D̃(HA⌦HB) be two subnormalized states; we will omit the system subscripts
for readability. WLOG, suppose Tr(⇢̃) � Tr(�̃). Let 1

2k⇢̃� �̃k1  ✏  1, 1
2 Tr(⇢̃� �̃) = �

and 1
2 Tr(⇢̃+ �̃) = a. Let ✏0 = ✏+ � and ✏00 = ✏� �. Then, it holds that

|H(A|B)⇢̃ �H(A|B)�̃|  2✏ log2 |A|+ (a+ ✏)max

⇢
h

✓
✏0

a+ ✏

◆
, h

✓
✏00

a+ ✏

◆�
. (A.1)

If ⇢̃ and �̃ are classical-quantum states, that is ⇢̃ =
P

|A|

i=1 |iihi|A ⌦ ⇢̃iB and

�̃ =
P

|A|

i=1 |iihi|A ⌦ �̃i
B, then

|H(A|B)⇢̃ �H(A|B)�̃|  ✏0 log2 |A|+ (a+ ✏)max

⇢
h

✓
✏0

a+ ✏

◆
, h

✓
✏00

a+ ✏

◆�
, (A.2)

and

H(A|B)�̃ �H(A|B)⇢̃  ✏00 log2 |A|+ (a+ ✏)h

✓
✏00

a+ ✏

◆
. (A.3)
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Proof. We can assume 1
2k⇢̃� �̃k1 = ✏ since our bound will be increasing in ✏. Note that

�  ✏. As usual, ⇢ and � denote the normalized ⇢̃ and �̃. Let ·+ denote the positive
part of a Hermitian operator. The proof consists of a series of operator inequalities and
applications of strong subadditivity.

We first determine the trace of the positive and negative parts of ⇢̃ � �̃. To do this,
consider the eigenvalues �i of ⇢̃� �̃. By assumption,

P
|�i| = k⇢̃� �̃k1 = 2✏ and

P
�i =

Tr(⇢̃� �̃) = 2�. Thus, Tr[(⇢̃� �̃)+] =
P

�i�0 �i = ✏ + � = ✏0. Similarly, Tr[(⇢̃� �̃)�] =
�
P

�i<0 �i = ✏� � = ✏00.

Thus, 1
✏0 (⇢̃ � �̃)+ and 1

✏00 (⇢̃ � �̃)� are normalized states. Denote them by ⌧ and ⌧ 0

respectively. After some rearrangement, we can define a third state ! satisfying

! =
Tr �̃

Tr �̃ + ✏0
� +

✏0

Tr �̃ + ✏0
⌧ =

Tr ⇢̃

Tr ⇢̃+ ✏00
⇢+

✏00

Tr ⇢̃+ ✏00
⌧ 0. (A.4)

Note that Tr �̃+✏0 = Tr ⇢̃+✏00 = a+✏. We will find an upper and lower bound on H(A|B)!,
and combine them to get our final result.

The lower bound simply follows from the concavity of conditional entropy and the
definition of ! in Eq. (A.4),

H(A|B)! �
Tr �̃

a+ ✏
H(A|B)� +

✏0

a+ ✏
H(A|B)⌧ . (A.5)

For the upper bound, we first rewrite the conditional entropy in terms of the relative
entropy as follows [27],

�H(A|B)!AB = min
⇠B

D(!AB|| A ⌦ ⇠B). (A.6)

Note that the minimum is achieved at ⇠B = !B = TrA(!AB). Expanding the definition of
the relative entropy, we have

H(A|B)! = �D(!AB|| A ⌦ !B) (A.7)

= H(!) + Tr[!( A ⌦ log2 !B)]. (A.8)

We upper bound the first term using strong subadditivity,

H(!) = H

✓
Tr ⇢̃

a+ ✏
⇢+

✏00

a+ ✏
⌧ 0
◆

(A.9)


Tr ⇢̃

a+ ✏
H(⇢) +

✏00

a+ ✏
H(⌧ 0) + h

✓
✏00

a+ ✏

◆
. (A.10)
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In the second term, we simply insert the definition of ! and expand. Thus, we have

H(A|B)! 
Tr ⇢̃

a+ ✏
H(⇢) +

✏00

a+ ✏
H(⌧ 0) +

Tr ⇢̃

a+ ✏
Tr[⇢( A ⌦ log2 !B)] (A.11)

+
✏00

a+ ✏
Tr[⌧ 0( A ⌦ log2 !B)] + h

✓
✏00

a+ ✏

◆
(A.12)

= �
Tr ⇢̃

a+ ✏
D(⇢|| A ⌦ !B)�

✏00

a+ ✏
D(⌧ 0|| A ⌦ !B) + h

✓
✏00

a+ ✏

◆
, (A.13)

where we have recombined the terms into relative entropies. We now use the relation in
Eq. (A.6) again, to obtain

H(A|B)! 
Tr ⇢̃

a+ ✏
H(A|B)⇢ +

✏00

a+ ✏
H(A|B)⌧ 0 + h

✓
✏00

a+ ✏

◆
. (A.14)

The upper and lower bounds on H(A|B)!, in Eq. (A.14) and Eq. (A.5) respectively,
can be combined to obtain

Tr �̃

a+ ✏
H(A|B)� +

✏0

a+ ✏
H(A|B)⌧ 

Tr ⇢̃

a+ ✏
H(A|B)⇢ +

✏00

a+ ✏
H(A|B)⌧ 0 + h

✓
✏00

a+ ✏

◆
,

(A.15)

H(A|B)�̃ �H(A|B)⇢̃  ✏00H(A|B)⌧ 0 � ✏0H(A|B)⌧ + (a+ ✏)h

✓
✏00

a+ ✏

◆
.

(A.16)

By repeating the proof but interchanging the two expressions for !, we similarly obtain

H(A|B)⇢̃ �H(A|B)�̃  ✏0H(A|B)⌧ � ✏00H(A|B)⌧ 0 + (a+ ✏)h

✓
✏0

a+ ✏

◆
. (A.17)

Conditional entropies of normalized states are bounded between ± log2 |A|. Thus, we
have

|H(A|B)⇢̃ �H(A|B)�̃|  2✏ log2 |A|+ (a+ ✏)max

⇢
h

✓
✏0

a+ ✏

◆
, h

✓
✏00

a+ ✏

◆�
. (A.18)

When ⇢̃ and �̃ are both classical-quantum states, ⌧ and ⌧ 0 are also both classical-
quantum states. Then, their conditional entropy is between 0 and log2 |A|. This gives the
tighter bound of

|H(A|B)⇢̃ �H(A|B)�̃|  ✏0 log2 |A|+ (a+ ✏)max

⇢
h

✓
✏0

a+ ✏

◆
, h

✓
✏00

a+ ✏

◆�
. (A.19)
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Similarly,

H(A|B)�̃ �H(A|B)⇢̃  ✏00 log2 |A|+ (a+ ✏)h

✓
✏00

a+ ✏

◆
. (A.20)

Corollary 1. Let ⇢̃AB and �̃AB be two bipartite subnormalized classical-quantum states
with Tr(⇢̃) � Tr(�̃); the dimension of system B can be infinite. Let 1

2k⇢̃� �̃k1  ✏  1.
Then,

H(A|B)�̃ �H(A|B)⇢̃  ✏ log2 |A|+ (1 + ✏)h

✓
✏

1 + ✏

◆
. (A.21)

Proof. Begin with the third statement of Theorem 9. We can upper bound ✏00 in the
first term on the right-hand side by ✏. Then, since the function g(a) = (a + ✏)h

�
c

a+✏

�
is

increasing on a 2 [0, 1], we can upper bound the second term on the right-hand side by
evaluating it at a = 1. We have

✏00

1 + ✏


✏

1 + ✏


1

2
. (A.22)

Since the binary entropy is increasing on [0, 12 ],

h

✓
✏00

1 + ✏

◆
 h

✓
✏

1 + ✏

◆
. (A.23)

Thus we can replace ✏00 with ✏ in the second term as well. This leaves us with the desired
expression.
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Appendix B

Numerical Framework Formulation

In this Appendix, we provide additional details regarding the numerics framework and its
formulation for the DMCVQKD protocol with the dimension reduction method.

B.1 Explicit SDPs

To apply the numerical framework, we need the feasible set of the convex minimization
to be that of an SDP. To show that SN (Eq. (4.101)) is such a set, we rewrite the trace
distance constraint for the reduced density matrix. The trace norm can be expressed as an
SDP [25], which allows us to rewrite the constraint using slack variables. This equivalent
reformulation of the finite-dimensional optimization is given by:

minimize:
⇢̃,R,S

f(⇢̃)

subject to: 1�W  Tr(⇢̃)  1

Tr(R) + Tr(S)  2
p

W

TrB(⇢̃)�R  ⌧A
� S � TrB(⇢̃)  �⌧A (B.1)

�i �Wk�ik1  Tr(⇢̃�i)  �i
⇢̃ 2 Pos (HN)

R, S 2 Pos (HA) .

Let ⇠ denote the adjoint of the partial trace map TrB restricted to operators on HN .
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Following the numerical framework, the corresponding dual linearized SDP is:

maximize:
~y,ys,Y1,Y2

� ~y · (~� + ~✏rep)� ys(2
p

W + ✏0rep)

� Tr(⌧AY1) + Tr(⌧AY2)

subject to:
2mX

i=1

yi�i + ⇠(Y1)� ⇠(Y2) � �rf(⇢opt)

ys A � Y1

ys A � Y2 (B.2)

~y 2
2m
�0

ys 2 �0

Y1, Y2 2 Pos (HA) ,

where ~� = ({�i}mi=1, {Wk�ik � �i}mi=1), ~� = ({�i}
m
i=1, {��i}

m
i=1), and ~✏rep and ✏0rep are the

expansion parameters which account for finite numerical precision (see Appendix B.2 for
further discussion).

As noted in Sec. 4.2.4, the finite-dimensional optimization has a slightly di↵erent form
when the projection only acts on Bob’s system, that is ⇧ = A⌦⇧B. In this case, the dual
SDP is the same as above, but the term in the objective function and both constraints
involving ys are removed, Y2 is set to zero, and the term �✏0rep Tr(Y1) is added to the
objective function.

B.2 Modification to Dual Expansion

As has been summarized in Sec. 3.3, the numerical framework presented in Ref. [4] is tight
in principle. We observe the following issue in practice. The near-optimal ⇢guess computed
in the first step often has constraint violations, due to the inherent imprecision of convex
solvers. For example, for the quadrature phase-shift keying protocol, at all distances and
values of excess noise, and for our particular implementation using Matlab and CVX with
the Mosek solver, these violations are typically 10�7

� 10�6. At distances approaching
200 km, the simulated expectation values hn̂�ii and

⌦
n̂2
�i

↵
are both small; approximately

10�6 for the nonzero values of excess noise we consider. Since the constraint violation is
the same order of magnitude as the expectation, the first step solution is e↵ectively an
optimal state for double the excess noise. Given the poor scaling of the protocol with
excess noise, this implies the approximate key rate from this first step will be much lower
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than its theoretical value. Since the first step upper bounds the second step, this implies
a poor second step result. One way to ameliorate this is to solve with a smaller N so
that the solver returns a better first step solution. Thus, purely due to numerical precision
issues, solving with N = 30 instead of N = 40 can improve the key rate at long distances.
Even though the correction term �(W ) is slightly larger, this is more than o↵set by the
improved quality of the first step solution. This suggests that due to numerical issues, one
should choose the finite dimension carefully, even though analytically a larger dimension
is always better.

The reason the first step upper bounds the second step is due to the expansion of the
feasible set. Referring to the notation in Appendix D of Ref. [4], the large constraint
violations lead to a large value of ✏0, which controls how much the set is expanded for
the second step. However, the choice ✏0 = max(✏rep, ✏sol) (Equation (165) of Ref. [4]) is
pessimistic. One only needs to choose ✏0 = ✏rep. As noted in Equation (162) of Ref. [4],
this is su�cient to provide a reliable lower bound when accounting for finite numerical
precision. Further, note that f(⇢) is lower bounded by a tangent hyperplane at any point
in its domain. Thus, it is not necessary to expand the feasible set further to include the
point returned by the first step. This change gives improved results in practice, while still
being reliable and tight.

In previous work using the numerical framework of Ref. [4], it has been assumed that
✏rep  ✏sol. Hence the issue of how to suitably choose ✏rep has not been considered. As
noted in Ref. [4], rigorously determining ✏rep for a particular implementation can be an
involved process. For our Matlab implementation, which has precision better than 10�15,
we conservatively use 10�10 for ✏0rep and all elements of ~✏rep. Finally note that in our
numerical evaluation of the unbalanced phase-encoded BB84 protocol, we continue to use
the original, larger set expansion as in Ref. [4]. This is to ensure a fair comparison to the
flag-state squasher numerical results.

As is remarked in Ref. [4], the numerical framework does not account for errors in
function evaluation, as these are implementation-dependent; but in principle, the e↵ect
of these errors can be accounted for for a given implementation. One expects that this
would not have a noticeable e↵ect on the key rates. For the specific case of DMCVQKD,
one area of caution is that we use numerical integration to generate the matrix elements
for the POVM which defines the key map, which necessarily introduces some small errors
due to the limits of floating-point arithmetic. While comparison to the analytic key rates
in simple cases makes it clear our results are accurate and reliable, it would be nice to
have a self-contained bound on the objective function evaluation error, though it is likely
negligible. This could then be accounted for in the dual by adding ✏func to rf(⇢opt) (see
Eq. (B.2)).
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B.3 DMCVQKD Numerical Details

The objective function can be equivalently formulated as a conditional entropy (Eq. (3.9))
and as a quantum relative entropy (Eq. (3.17)). The former is used in this thesis for
analytic results, while the latter is used in the numerical framework. We thus give the
quantum relative entropy formulation here.

The Kraus operator for the G map in the quantum relative entropy formulation is

K =
M�1X

z=0

A ⌦

p
Rz

B ⌦ |ziZ . (B.3)

Note that in keeping with the trace non-increasing definition of G, the Kraus operator does
not include the region operator for discarded signals. We have omitted trivial or redundant
registers [23].

In Ref. [4], the initial point for the Frank-Wolfe iteration is itself found using a SDP.
For DMCVQKD, we simply use the simulation state for the loss-only scenario as the
initialization point. Note that this point always satisfies the constraints, as nonzero excess
noise only increases the conditional photon number expectations.
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Appendix C

Matrix Operations in Displaced Basis

Recall our basis is {|iiA ⌦ |n�iiB}. We calculate the matrix elements of certain operators
in this basis and evaluate the action of relevant channels.

C.1 Constraints

Our constraint operators take a particularly simple form in the displaced basis. The matrix
elements are

hi| hm�i | (|kihk|⌦ n̂�k
) |ji

��n�j

↵
= �ik�jk hm�k

| n̂�k
|n�k

i (C.1)

= �ik�jk�mnn. (C.2)

Similarly, for n̂2
�k
, they are �ik�jk�mnn2.

C.2 Ideal and Trusted Noise Region Operators

Recall the ideal detector POVM elements (Eq. (5.57)) are

P k = A ⌦Rk
B, (C.3)
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where Rk
B are the region operators. The matrix elements are

P k
ijmn = hi| hm�i |

�
A ⌦Rk

B

�
|ji
��n�j

↵
(C.4)

= �ij hm�i |R
k
B

��n�j

↵
(C.5)

= hm�i |R
k
B |n�ii (C.6)

=
1

⇡

Z

Ak

re�||2 
m⇤n

p
m!n!

d✓ dr, (C.7)

where  = rei✓ � �i.

Analogously, recall the trusted noise POVM elements (Eq. (5.58)) are

P k = A ⌦
⇥
Rk

B

⇤0
, (C.8)

The matrix elements are similarly
⇥
P k
⇤0
ijmn

= hm�i |
⇥
Rk

B

⇤0
|n�ii , (C.9)

=

Z

Ak

hm�i |G⇣ |n�ii d
2⇣, (C.10)

=
1

⌘d⇡

Z

Ak

hm|D

✓
⇣

p
⌘d

� �i

◆
⇢th(n̄)D

†

✓
⇣

p
⌘d

� �i

◆
|ni d2⇣, (C.11)

=

Z

Ak

hm|G⇣�
p
⌘d�i |ni d

2⇣. (C.12)

We use the expression in Equation (B1) in Ref. [72] for the Fock basis matrix elements
of the noisy fine-grained POVM G⇣ . Again with  = rei✓ �

p
⌘d�i and 0 = /

p
⌘d =

rei✓/
p
⌘d � �i we have

hm|G |ni =
1

⌘d⇡
exp

 
�|0|2

(1 + n̄)

!
n̄m

(1 + n̄)n+1

�
0
�n�m

r
m!

n!
L(n�m)
m

 
�|0|2

n̄(1 + n̄)

!
. (C.13)

We have now specified the integrand in polar coordinates for both the ideal and trusted
noise cases. The next step is to specify the regions over which we integrate. As we will see
shortly, we only need to directly compute the integrals for the first region operator.

For amplitude and phase postselection, the integration limits for R0 are

Z ⇡
M ��p

�⇡
M +�p

Z
1

�a

[...] dr d✓. (C.14)
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For hyperbolic postselection, the integration limits for R0 are

Z ⇡
M

�⇡
M

Z
1

r
�h

cos2 ✓��s sin2 ✓

[...] dr d✓. (C.15)

These integrals are computed in Matlab.

Harnessing Rotational Symmetry

Computing these integrals is numerically intensive, so we make use of a symmetry property
to simplify the calculations, at least for the phase-shift keying case. We give the argument
in the trusted noise case only, and the ideal detector scenario is recovered as a special
case. All indexing in this section is modulo M . Uk = e

2⇡ik
M n̂ is the unitary e↵ecting a

counter-clockwise rotation of 2⇡k
M around the origin in phase space.

For phase-shift keying we have that
⇥
Rk

B

⇤0
= Uk [R0

B]
0 Uk

†. Moreover, for the particular
channel model we consider, |�ki = Uk |�0i. Given this rotational symmetry, we can simplify
the calculation of matrix elements as follows.

We first note that the matrix elements of the region operators in the displaced basis
are the same as the Fock basis elements of the displaced region operators. That is,

hm�i |
⇥
Rk

B

⇤0
|n�ii = hm| D̂† (�i)

⇥
Rk

B

⇤0
D̂ (�i) |ni . (C.16)

By symmetry, and the commutation relation between the rotation and displacement uni-
taries, we have

UkD̂
† (�i)

⇥
R0

B

⇤0
D̂ (�i)Uk

† = D̂† (�i+k)Uk

⇥
R0

B

⇤0
Uk

†D̂ (�i+k) (C.17)

= D̂† (�i+k)
⇥
Rk

B

⇤0
D̂ (�i+k) (C.18)

Each Uk is diagonal in the Fock basis, with hn|Uk |ni = exp
�
n2⇡ik

M

�
, so commutes

with the projection ⇧Fock =
PN

n=0 |nihn|. Thus, it su�ces to determine the M matrices
hm�i | [R

0
B]

0
|n�ii, and then use matrix multiplication (in the Fock basis) with Uk to generate

the remaining hm�i |
⇥
Rk

B

⇤0
|n�ii. This is more e�cient than directly computing the integrals

for all M2 matrices.
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C.3 Channels

Our basis for the bipartite Hilbert space is not of the form |iiA⌦ |jiB, where |iiA and |jiB
are bases for HA and HB respectively. Matrix multiplication proceeds as normal, since
we simply have some orthonormal basis. However, operations that care about subsystems,
namely the partial trace and its adjoint, have a di↵erent matrix representation than the
typical presentation. We have

⇢AB =
X

i,j,m,n

cijmn |iihj|⌦
��m�i

↵⌦
n�j

�� , (C.19)

where the coe�cients c are the matrix elements of ⇢. We denote this matrix by M⇢, and
its matrix elements are

M⇢ =
X

i,j,m,n

cijmn |iihj|⌦ |mihn| . (C.20)

The reduced density matrix is

⇢A =
X

i,j,m,n

cijmn |iihj|
⌦
n�j

��m�i

↵
. (C.21)

Defining
G =

X

i,j,m,n

⌦
n�j

��m�i

↵
|iihj|⌦

��m�i

↵⌦
n�j

�� , (C.22)

we have that
hi|⇢A|ji = ⇢ij �Gij, (C.23)

where the subscripts on the bipartite operators indicate the respective block matrix, and
� is the element-wise dot product. Note that each Gij can be thought of as a basis change
unitary in HB. An explicit formula for the elements of G is

⌦
n�j

��m�i

↵
= hn|D†(�j)D(�i) |mi (C.24)

= exp(i Im(��j�
⇤

i )) hn|D(�i � �j) |mi (C.25)

= exp

 
i Im(��j�

⇤

i )�
|�i � �j|

2

2

!
p

m!n!

min(m,n)X

k=0

1

k!(m� k)!(n� k)!
(�i � �j)

n�k(�⇤

j � �⇤

i )
m�k. (C.26)
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We compute and store this matrix once at the beginning of the optimization algorithm,
and use it each time to calculate the partial trace.

The adjoint of the partial trace also has a matrix representation involving G. The
adjoint of the partial trace is ⇠(�A) = �A ⌦ B. Letting

�A =
X

ij

cij |iihj| , (C.27)

we seek dijmn such that

�A ⌦ B =
X

ijmn

dijmn |iihj|⌦
��m�i

↵⌦
n�j

�� . (C.28)

This implies X

mn

dijmn

��m�i

↵⌦
n�j

�� = cij B 8i, j. (C.29)

Taking the bra-ket on both sides, we obtain dijmn = cij
⌦
m�i

��n�j

↵
. We recognize the factor

on the right-hand side as G⇤. Thus, we have that

⇠(�A) =
X

ijmn

cij |iihj|⌦G⇤

ij. (C.30)
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Appendix D

Simulated Expectations and
Error-Correction Cost

We discuss how the coarse-grained expectations can be determined from a heterodyne
measurement, and what the expectation values are for the simulation. We focus on the
trusted detector noise scenario, as the ideal detector results can be recovered as a special
case.

Bob’s measurement results determine a probability density p(⇣) = Tr(⇢G⇣) over the
complex plane. In general, given an observable � =

R
⇣2 w�(⇣) G⇣ d2⇣, the expectation

value is then

Tr(⇢�) =

Z

⇣2

w�(⇣) p(⇣) d
2⇣. (D.1)

For the ith conditional state, Bob’s coarse-grained observables are n̂�i and n̂2
�i
. The cor-

responding functions wn̂�i
and wn̂2

�i
are given in Eqs. (5.30) and (5.31). Using his mea-

surement result p(⇣), Bob can thus compute the integral (D.1) to determine the desired
expectations for each conditional state (see Appendix E for more details).

Note that for the typical quadratures X̂ and P̂ , we have that

X̂ =
1
p
2
(â† + â) =) wX̂(⇣) =

p

2Re(⇣), (D.2)

P̂ =
i
p
2
(â† � â) =) wP̂ (⇣) =

p

2 Im(⇣). (D.3)

Thus, by expanding wn̂�i
(⇣) and wn̂2

�i
(⇣) as polynomials in Re(⇣) and Im(⇣), we can also

relate the expectations of n̂�i and n̂2
�i
to the moments and cross-terms of the measurement
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data of quadratures X̂ and P̂ . Again, for a detailed description of this calculation, see
Appendix E.

We now consider the expectations under the simulated channel model. After passing
through a Gaussian channel with loss ⌘ and excess noise ⇠, a coherent signal state becomes
a displaced thermal state

|↵iih↵i| ! D̂ (�i) ⇢th(
�
2)D̂

† (�i) (D.4)

where � = ⌘⇠ and �i =
p
⌘↵i. The expectation values for each conditional state are

straightforward to calculate,

Tr
⇣
n̂�iD̂ (�i) ⇢th(

�
2)D̂

† (�i)
⌘
= Tr

�
n̂ ⇢th(

�
2)
�
=
�

2
(D.5)

and

Tr
⇣
n̂2
�i
D̂ (�i) ⇢th(

�
2)D̂

† (�i)
⌘
=
�(1 + �)

2
. (D.6)

For the reduced state constraint, we simply use the formula for the overlap of two
coherent states (Eq. (2.48)), reproduced below for convenience,

h↵j|↵ii = exp

✓
i Im(↵i↵

⇤

j )�
1

2
|↵i � ↵j|

2

◆
. (D.7)

The error-correction cost is determined by the simulated joint probability distribution.
Given Alice prepares |↵ii, the probability Bob gets the key map outcome j, with i 2

{0, 1, ...,M � 1} and j 2 {0, 1, ...,M � 1,?}, is given by the following integral

p(j|i) = Tr
⇣
RjD̂ (�i) ⇢th(

�
2)D̂

† (�i)
⌘

(D.8)

=

Z

Aj

Tr
⇣
G⇣D̂ (�i) ⇢th(

�
2)D̂

† (�i)
⌘
d2⇣. (D.9)

The integrand, which is the overlap of two displaced thermal states, is given by [72]

Tr
⇣
G⇣D̂ (�i) ⇢th(

�
2)D̂

† (�i)
⌘
=

1

⇡(1 + 1
2⌘d� + ⌫el)

exp

 
�
��⇣ �p

⌘d�i
��2

1 + 1
2⌘d� + ⌫el

!
. (D.10)

The integral in Eq. (D.9) is converted to polar coordinates and computed in Matlab. As
the signal states are distributed uniformly, pA(i) =

1
M . Then, pAB(i, j) =

1
M p(j|i). Since

discarded signals do not incur an error-correction cost, we remove the outcome j =? and
renormalize p accordingly. Denoting this sifted probability distribution by q, the error-
correction cost is

�leakEC = (1� p(?))(log2(M)� �EC [H(qA) +H(qB)�H(qAB)]). (D.11)
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Appendix E

Experimental Implementation

In this section, we outline how raw heterodyne measurement data from an experimental
implementation is processed to be used in our numerical framework for DMCVQKD key
rate calculations. Again we give the results in the trusted noise scenario, and the ideal
detector scenario is recovered as a special case.

From the experiment, the known parameters are the signal state amplitudes ↵i, the a
priori probabilities p(i), the detector e�ciency ⌘d, the detector electronic noise ⌫el (in shot
noise units), and Bob’s heterodyne measurement results from the testing rounds.

In order to apply the numerical framework, the main steps are to specify the parameters
for the finite subspace and determine the constraints for the optimization. The formula
for W and the correction term �(W ) can be used directly.

Each heterodyne measurement, which is comprised of two homodyne detections, returns
two real numbers, x and p. These correspond to the quadratures X̂ and P̂ , and we assume
that the values are reported in shot-noise units (see Sec. 2.4.1). If they are instead reported
in natural units, one simply divides both numbers by

p
2 to convert to shot noise units.

E.1 Choosing Finite Subspace

The subspace dimension N can be chosen freely by the experimentalist. Larger N reduce
the correction term, but also increase the numerical run time. A typical choice would be
N = 10.

To specify the subspace, the only other step is to choose the displacements �k (see Sec.
5.5.1). To do this, we use the information from the testing rounds. Once Alice announces
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which state was sent on each testing round, Bob can group together the measurement re-
sults by the corresponding conditional state. For the kth conditional state, let {(xk

j , p
k
j )}

Ck
j=1

be the list of all corresponding measurement results.

Recall the weight functions wn̂(⇣) = |⇣|2 � 1 and wn̂2(⇣) = |⇣|4 � 3|⇣|2 +1 (Eqs. (5.24),
(5.25)), as well as wX̂(⇣) =

p
2Re(⇣) and wP̂ (⇣) =

p
2 Im(⇣) (Eqs. (D.2), (D.3)).

We simply set each �k to be the average complex displacement, with a normalization
due to the detector e�ciency and to the factor of

p
2 in the weight function,

�k ⌘
1

p
2⌘d

1

Ck

CkX

j=1

xk
j + ipkj . (E.1)

E.2 Determining Expectations

Next, we need to calculate the expectations
D⇥

n̂p
⌘d�k

⇤0E
and

⌧h
n̂2p

⌘d�k

i0�
. To do this, it

is simplest to displace the raw data first. The displaced values are

x̃k
j = xk

j �
p

2⌘d Re(�k), (E.2)

p̃kj = pkj �
p

2⌘d Im(�k). (E.3)

Calculating the expectations of the displaced observables on the original undisplaced data
is the same as calculating the expectations of the undisplaced observables on the displaced
data. We have that

wn̂(⇣) = |⇣|2 � 1 (E.4)

= Re(⇣)2 + Im(⇣)2 � 1 (E.5)

=

⇥p
2Re(⇣)]2 + [

p
2 Im(⇣)

⇤2

2
� 1 (E.6)

=
w2

X̂
+ w2

P̂

2
� 1. (E.7)
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Similarly,

wn̂2(⇣) = |⇣|4 � 3|⇣|2 + 1 (E.8)

=
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Re(⇣)2 + Im(⇣)2
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2
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Now, referring to Eq. (D.1), we can simply replace the integral over the probability
distribution p(⇣), with a summation over the discrete probability distribution obtained
from measurement. Directly from Eqs. (E.7), (E.12), we then have

D⇥
n̂p

⌘d�k

⇤0E
=

1

Ck

CkX
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1

2
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and
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p
⌘d�k

i0�
=

1
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4
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4 +
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4
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4
�

3
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�
(E.14)

From this, one reconstructs the e↵ective ideal expectations, per Eqs. (5.55), (5.56).
This is also an appropriate place to remark that the challenge in generalizing our security
proof to the DMCVQKD protocol with homodyne detection is in estimating the cross
terms between the two quadratures (the second term in Eq. (E.14)).

E.3 Overall Formulation

Recall the form of the finite-dimensional optimization in Eq. (5.75). For each key genera-
tion round, Bob maps his measurement result (x, p) to the key symbol k when the complex
number x + ip lies in the region Ak of the complex plane. The choices of Ak define the
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region operators, which in turn define the objective function fnoisy for the optimization
(see Eq. (5.60)). The expectation constraints have been derived above, and the reduced
state constraint ⌧A is known directly from the experimental values of ↵i and p(i). This
completes the processing of experimental data into the numerics framework.

138


	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	Quantum Information Theory
	Hilbert Space
	Operators
	States
	Multipartite Systems
	Channels
	Measurements
	Distance Measures

	Quantum Entropies
	Shannon Entropy and von Neumann Entropy
	Quantum Relative Entropy
	Conditional Entropy
	Mutual Information

	Semidefinite Programming and Convex Optimization
	Quantum Optics
	Simple Harmonic Oscillator
	Important Classes of States
	Phase Space and Displacement
	Beam Splitters


	Quantum Key Distribution
	QKD Protocols
	Protocol Steps
	Source-Replacement Scheme

	Key Rate and Security Definition
	QKD Security Definition
	Key Rate
	Security Promise and Assumptions

	Numerical Optimization Formulation
	Different Form of Objective Function
	Primal Reformulation
	Numerical Imprecision
	Dual SDP
	Simulation


	Dimension Reduction Method
	General Result
	Preliminary Definitions
	Theorem Statement
	Procedural Viewpoint

	Application to QKD
	Finite Subspace 
	Weight W
	Correction Term 
	Finite Set SN


	Discrete-Modulated Continuous-Variable QKD
	Protocol Description
	Bob's Measurement

	Generalized Beam Splitting Attack
	Observables
	Ideal Detector
	Trusted Noise

	Infinite-Dimensional Optimization
	Applying Dimension Reduction Method
	Finite Subspace 
	Weight W
	Correction Term 
	Finite Set SN

	Simulation Results
	Understanding the Dimension Reduction Method
	Key Rates and Optimal Protocol Parameters
	Trusted Noise
	Comparison to Gaussian Modulation

	Improving Protocol Performance
	Optimal Postselection
	Larger Constellations


	Comparison to Flag-State Squasher
	Analytical Comparison
	Numerical Comparison: Unbalanced Phase-Encoded BB84

	Conclusion
	References
	APPENDICES
	Uniform Continuity Bound on Conditional Entropy 
	Numerical Framework Formulation
	Explicit SDPs
	Modification to Dual Expansion 
	DMCVQKD Numerical Details

	Matrix Operations in Displaced Basis
	Constraints
	Ideal and Trusted Noise Region Operators
	Channels

	Simulated Expectations and Error-Correction Cost
	Experimental Implementation
	Choosing Finite Subspace
	Determining Expectations
	Overall Formulation


