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Abstract 

As the largest organ of the mammalian body, skin is associated with commensal 

microorganisms that impact host health. Characterizing host-microbe associations is critical 

to our understanding of skin health, function, and disease, and the potential co-evolutionary 

relationships that have occurred throughout mammalian and prokaryotic evolution. The 

research within this thesis focused on profiling the bacteria and archaea that inhabit 

mammalian skin using two phylogenetic marker genes: cpn60 and 16S rRNA. The cpn60 

gene was applied to mammalian skin swab samples to provide increased taxonomic 

resolution for microbial populations on mammalian skin. Datasets previously generated using 

the 16S rRNA gene were included to assess archaeal populations associated with the skin and 

skin-associated surfaces. 

Previous research into the mammalian skin microbiome using the 16S rRNA gene 

identified evidence for phylosymbiosis within the Perissodactyla and Artiodactyla, as well as 

highlighted core taxa common to all sampled mammalian skin. The increased taxonomic 

resolution provided by the cpn60 gene has the potential to reveal additional co-evolutionary 

patterns and can more thoroughly probe specific populations of the mammalian skin 

microbiome. Chapter 2 of this thesis describes a newly generated cpn60 gene dataset sourced 

from the mammalian skin microbiome of Carnivora, Perissodactyla, Artiodactyla, and 

Primate hosts. Significant patterns of phylosymbiosis for Artiodactyla and Perissodactyla 

were confirmed when using weighted (p = 4.43x10-2) and unweighted (p = 4.36x10-2) 

UniFrac metrics, which are observations not made previously with a comparable 16S rRNA 

gene dataset. Using the cpn60 gene, specific Staphylococcaceae communities were 

successfully delimited from their genus classifications, with improved species-level 

resolution for Macrococcus, Staphylococcus, and Salinicoccus, compared to the 16S rRNA 

gene dataset. Additionally, Jeotgalicoccus halophilus was detected broadly within 

mammalian skin microbiomes, representing a first report of widescale association of this 

species with mammalian skin. These results demonstrate associations between mammalian 

hosts and skin-associated taxa warrants further investigation. Future amplicon-based skin 
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microbiome studies focusing on host-microbe interactions would benefit from continued use 

of the cpn60 gene given the increased taxonomic resolution that it provides. 

Limited skin-related archaea research has not yet allowed for a consensus on the 

prevalence of skin-associated archaea. Recent studies suggest that archaea are consistently 

detected and relatively abundant on human skin, with skin “archaeomes” dominated by 

putative ammonia oxidizers of the Nitrososphaeria class (Thermoproteota phylum - formerly 

Thaumarchaeota). Chapter 3 evaluated new and existing 16S rRNA gene sequence data 

sourced from mammalian skin and skin-associated surfaces, generated with two commonly 

used universal prokaryotic primers sets, to assess archaeal prevalence, relative abundance, 

and taxonomic distributions. Archaeal 16S rRNA gene sequences were detected in only 

17.5% of 1,688 sample high-throughput sequence data, with most of the archaea-positive 

samples associated with non-human mammalian skin. Only 5.9% of human-associated skin 

sample datasets contained sequences affiliated with archaeal 16S rRNA genes. When 

detected, the relative abundance of sequences affiliated with archaeal ASVs was less than 1% 

for most mammalian skin samples and did not exceed 2% for any samples. Although several 

computer keyboard microbial profiles were dominated by Nitrososphaeria sequences, all 

other skin microbiome datasets tested were primarily composed of sequences affiliated with 

Methanobacteriota and Halobacteriota phyla. Our findings revise downwards recent 

estimates of human skin archaeal distributions and relative abundances, especially those 

affiliated with the Nitrososphaeria, reflecting a limited and infrequent archaeal presence 

within the mammalian skin microbiome. 

This work provides insight in the microbial communities of mammalian skin-

associated bacteria and archaea, their relationships with mammalian hosts. Increased 

sequencing depth and mammalian host representation could reveal additional co-evolutionary 

patterns, and the species-level resolution provided by the cpn60 gene could be used to target 

additional microbial populations of interest. Likewise, additional research into the 

mammalian skin archaeome would benefit from further comparisons of universal and 

archaea-specific primers and help elucidate potential differences in abundance and 

distribution caused by regionality.  
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Chapter 1 

1.1 Introduction 

As the largest organ of mammalian bodies, skin serves as a protective barrier to 

separate temporal fluctuations of external conditions from the regulated internal environment 

of the host. Skin has evolved with its mammalian host [1] to endure stresses associated with 

specific host environments, with the purpose of maintaining skin barrier integrity. Because 

external forces experienced by the skin, such as exposure to extreme heat or cold, moisture, 

or mechanical forces can vary among hosts, differences among mammalian skin surfaces can 

be similarly variable [2]. Exploring such host-specific variation is essential for understanding 

the importance of skin for host function and health. However, mammalian skin does not exist 

in isolation, nor is skin health and function confined to and dependent on the intrinsic 

properties of the skin alone. Just as mammals interact with their local environments, so too 

do the microorganisms that inhabit mammalian skin. The interconnectivity between skin 

microbiota and host health is evolutionarily linked. Mammalian immune systems have 

adapted and evolved temporally with microbial populations – of pathogens and commensals 

alike – for hundreds of millions of years [1]. As such, researchers interested in mammalian 

skin health and function must incorporate a microbiological perspective in their work. By 

profiling the mammalian skin microbiome and establishing a baseline knowledge of the 

microorganisms associated with specific mammals, questions regarding mammalian skin 

health and function can be more thoroughly answered. 

1.2 Mammalian skin 

1.2.1 The physiology of mammalian skin 

All skin research is dependent on and influenced by the physical structure of the skin. 

Skin physiology is complex but can be generalized into two primary layers: the epidermis 

and the dermis. Along with hair, glands, and nails, the epidermis and dermis represent the 

“integumentary system” of mammals [2, 3]. The epidermis consists of the top-most skin 

layers (i.e., between four and five layers), is without vasculature, and provides water 

resistance, protection from mechanical abrasion, and prevents microorganisms from 
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penetrating into the dermis and into soft tissues and the blood stream. The outer-most layers 

of the epidermis, the stratum corneum, stratum lucidium (i.e., an additional layer found in the 

“thick skin” of the soles, palms, and digits), and the stratum granulosum are comprised of 

heavily cornified keratinocytes that resist mechanical abrasion and mitigate immediate 

damage to the skin [2, 3]. It is within these first few layers where most skin-associated 

microbiota are found, although microbial communities can also extend further into the 

subepidermal compartments [4]. The dermis is comprised of several layers involved in 

producing keratinocytes and immune cells, houses various sensory cells, and provides the 

vasculature and protein-rich matrix that provides flexibility and tension, and supports the 

upper layers of the skin [2, 3]. The epidermis and dermis together represent the protective 

barrier that mammals depend on for survival. Despite variations in evolutionary history and 

such as the proportion and distribution of apocrine and eccrine glands within the mammalian 

order of Primates [5], the basic structure of mammalian skin is fundamentally shared among 

mammals. 

1.2.2 The mammalian skin environment is chemically diverse 

Skin is a chemically complex environment and the types and concentrations of skin-

associated secretions varies by host and habitat. Intrinsic physiochemical characteristics of 

skin include pH, sebum production, and hydration; collectively, these can have a large impact 

on skin barrier function [6]. As well, lipid type and concentration can vary with host and with 

host features (i.e., age, physiology) [7–9]. Various “allelochemics” that play an important 

role in mammalian behaviour modification (e.g., territory marking, hunting, mate selection) 

can be both localized or dispersed broadly across the host skin [10, 11]. Spatial distribution 

and abundance of the dermal apocrine and eccrine glands is host dependent and will result in 

differences in sweating [5] and the release of pheromones across the surface of the skin [3]. 

Human skin is unique because of hygiene practices, skin care products, and synthetic textiles, 

and thus has considerable chemical heterogeneity [12, 13]. 
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1.3 The mammalian skin microbiome 

Together, the physical and chemical characteristics of mammalian skin establish a 

habitat capable of supporting a diverse community of microorganisms. This community 

includes representatives from all the domains of life: Bacteria, Archaea, and Eukarya. 

However, the focus of this thesis will be on the prokaryotes alone, which include members of 

the Bacteria and Archaea. 

1.3.1 Bacterial communities of mammalian skin 

Prior to the modern discipline of microbial ecology, skin-associated bacteria were 

explored through the lens of disease. One of the earliest references to disease-causing skin 

bacteria is by Sir Arthur Clark, who in an 1821 essay regarding the fumigation treatment for 

skin disorders, remarked that “… others believe that … the diseases originate from 

animolculae” [14]. Decades later, German “microscopal observers” would find stronger 

evidence of “animalciili” in acne punctata pustules [15], followed by the suggestion that 

healthy individuals also shared skin-associated microorganisms [16, 17]. The application of 

modern microbial techniques and ecological theory to mammalian skin microbiome research 

has greatly improved understanding of skin-associated microbiota and their relation to skin 

and host health.  

Bacteria are the most abundant members of the mammalian skin microbiome and 

have thus been a dominant research focus. Because of this, bacterial communities of the skin 

have been thoroughly characterized. An established “core” skin microbiota consist primarily 

of taxa affiliated with the Actinobacteria, Firmicutes, Proteobacteria, and Bacteroidetes 

[18]. The proportions of these taxa vary based on host individuality [19], age [20], body 

region [21], cohabitation [22, 23], and the surrounding built environment [23, 24]. Features 

dependent on the mammalian host, such and hair/fur coverage and underlying skin 

physiology [25, 26], as well as the host itself [27], may also impact skin-associated bacterial 

communities. This is in addition to temporal variations, which are stronger determinants of 

the skin microbiome compared to the microbiota of the gut or mouth [28], although the skin 

microbiome can still retain temporal stability [29]. Additionally, skin topography can have a 
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large influence on microbiome spatiality [30] and, although the majority of bacteria live on 

the outer layers of the epidermis [31], others suggest that skin bacteria may extend into 

subepidermal tissue [4]. 

1.3.2 Archaeal communities on mammalian skin 

The Archaea is the most recently discovered domain of life, having only been 

formalized in the late 1970s [32]. As such, knowledge of archaeal distributions and 

ecological roles is lacking, compared to bacteria, which have benefited from centuries of 

study. Archaea differ from their bacterial counterparts, often by containing unique metabolic 

pathways [33], such as methanogenesis [34], and distinct cell membranes composed of 

isoprenoid-glycerol ethers [35]. Although initially thought to be relegated to extreme 

environments only, archaea have seen a considerable level of discovery and taxonomic 

radiation, elevating them from their “extremophile” status to one of accepted ubiquity within 

global environments [36–38]. However, skin-associated archaea have been poorly studied 

and thus represent a new frontier in mammalian skin research.  

In the last half decade, archaea have been reported as skin microbiota members of 

multiple individuals and body locations [39–42]. Probst and colleagues were the first to 

demonstrate that archaea can be detected as representatives of human skin microbiota, 

possibly representing as much as 8% of the total microbial community [43]. A subsequent 

study suggested that human skin archaeal communities could exceed 10% abundance, with 

such communities dominated by putative ammonia-oxidizing archaea (AOA) of the class 

Nitrososphaeria (previously phyla Crenarchaeota/Thaumarchaeota, now Thermoproteota) 

[40]. In contrast, extensive skin sampling of cohabitating couples revealed average archaeal 

sequence relative abundances of less than 0.5%, with archaea detected only for a few samples 

[22]. Furthermore, a large-scale human metagenome survey revealed that archaea accounted 

for approximately 1% of all human metagenome sequences, with the majority of these 

sequences affiliated with the Methanobacteriota phylum from gut or mucosal membranes 

[44]. A comprehensive analysis of mammalian skin concluded that less than 0.1% of all 

sequences were associated with archaea, with most sequences affiliated with the 
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Methanobacteriota and Halobacteriota phyla [27]. Because of such limited research, there is 

no consensus on the taxonomic representation and abundance of archaea on mammalian skin, 

nor an understanding of how the skin “archaeome” may contribute to host physiology or skin 

microbial ecology more broadly. 

1.4 Host-microbe interactions 

1.4.1 Host-microbe evolution and phylosymbiosis 

Microorganisms and their mammalian hosts share a longstanding evolutionary 

connection [45]. Initial predatory and nutritional interactions between ancestors of modern 

bacteria and eukaryotes are thought to have led to multicellularity [46], and further developed 

to include complex metabolic symbioses [45] and vertebrate innate immune responses [47, 

48]. Given variations in physiology [25], hair and fur coverage [25, 26], geographic origin 

and habitat features [49], and evolutionary histories and relatedness [27], the mammalian 

skin environment is ideal for host-specific microbial co-evolution. Because of the variations 

provided by the mammalian host, microbial community assemblage is thought to be 

deterministic (i.e., influenced by specific environmental or host factors) rather than stochastic 

(i.e., random assemblage, birth-death events) [50]. For mammals, evidence suggests that host 

phylogeny correlates with microbial community composition (i.e., phylosymbiosis) [27]. 

Phylosymbiosis is a pattern wherein the microbial community composition of a host 

reflects the host’s environmental and phylogenetic history [51–53], with more distantly 

related host species showing greater differences in microbial community composition 

compared to their more closely related members [27]. Phylosymbiosis can occur from both 

stochastic and deterministic processes with co-evolution as one mechanism that can lead to 

observations of phylosymbiosis [53]. Observed patterns of phylosymbiosis, as reflected in 

microbial community composition linked to host evolutionary history, is distinct from co-

evolution, although phylosymbiosis can be influenced by or facilitate the development of co-

evolutionary interactions between the host and associated microbiota. Co-evolution results 

from maintained close associations between organisms (e.g., mammalian host and skin 

microorganisms) wherein the associations result in reciprocal changes in the genotype of the 
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organisms over evolutionary time [52]. Phylosymbiosis caused by stochastic processes could 

foster close interactions between the host and associated microbiota over time, potentially 

leading to co-evolutionary relationships. Therefore, the study of phylosymbiosis of 

mammalian skin highlights key microbe-host associations that could indicate existing or the 

potential for future development of co-evolutionary relationships within class Mammalia. 

Furthermore, understanding host-microbe relationships can help inform and direct future 

research in managing microbial populations that have the potential to impact skin health and 

function.  

Most phylosymbiosis research of both of invertebrates and vertebrates relates to the 

gut microbiome because of its functional importance and relative stability [54–58]. Gut 

phylosymbiosis studies of Nasonia wasps, mice, mosquitos [51], and hominids [56, 58] show 

increased diversity of their microbiome as host distance increases. Phylosymbiosis has also 

been linked to a decrease in fitness in wasps that received transplanted microbiomes from 

distant relatives [51]. In hominids, the gut microbiota is influenced by host phylogeny, an 

observation that was maintained despite masking confounding factors such as proximity, 

diet, or local environment [56]. As well, the use of Bacteroidaceae-specific PCR primers 

allowed for higher resolution species analysis that revealed evidence for co-evolution as a 

mechanism for phylosymbiosis, detected among hominid gut microbiota [56]. Conversely, 

chipmunk gut microbiomes were shown to be more influenced by environment change or 

other external factors rather than phylosymbiosis [59].  

Relative to the gut microbiome, non-human mammalian skin has received less 

attention and is thus generally lacking microbial community comparisons and evidence for 

phylosymbiosis. Ross and colleagues showed first evidence of phylosymbiosis within the 

Perissodactyla and Artiodactyla orders, which constitute odd-toes and even-toed ungulates, 

respectively [27]. Their study also identified a core microbiome common to all sampled 

orders [27]. This core microbiome includes soil-associated bacteria, such as Agrobacterium 

and Arthrobacter, and taxa from the common skin bacterial genus Staphylococcus [27, 60, 

61]. A core Primate axillary microbiome containing Staphylococcus was also identified in a 

study that showed support for skin phylosymbiosis among sampled primates [25]. As well, 
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the same study showed that the distribution of Staphylococcus was one of the main 

contributors to beta diversity among primates. However, observations of amphibian [62] and 

bat [63] skin microbiomes did not reveal significant evidence for phylosymbiosis. Thus, 

phylosymbiosis might not be universally relevant to mammalian skin, could be masked by 

external factors, or is not observable with the limited taxonomic resolution provided by 16S 

rRNA gene analyses.  

1.4.2 The influence of microbes on skin health and disease 

The assemblage of microorganisms on the skin has a direct impact on the health and 

function of the skin itself and therefore on the host. Host-microbe interactions on the skin are 

evolutionarily linked [48], and range from commensal (and arguably mutualistic) to parasitic 

or pathogenic [64]. Commensal microbes are involved in regulating immune responses and 

act as an extension of the innate immune system [65] while also occupying nutritional and 

spatial niches that prevent pathogenic bacterium from establishing themselves on the skin 

[47]. Recently, bacteria have been suggested to induce skin regeneration following damage 

[66]. However, these relationships are dynamic and prokaryotes that commonly maintain 

mutualistic relationships can become opportunistic pathogens when the integrity of the skin 

barrier is broken [67] or when microbial communities are disrupted [68, 69]. For example, 

Staphylococcus epidermidis is a commensal bacterium very commonly found on skin, has 

not evolved to cause disease, yet is the most frequent opportunistic pathogen and cause of 

nosocomial infections [70]. Whether commensal or pathogenic, skin-associated prokaryotes 

have a major impact on skin function. 

 Currently, all mammal-associated prokaryotic pathogens are of bacterial origin and 

there are no known archaeal pathogens belonging to mammalian hosts, on the skin or 

otherwise [71]. Although no causal relationships have been identified, halophilic archaea 

have been found in the biopsied tissues of inflammatory bowel disease patients [72] and 

methanogenic archaea are suggested to be a contributor to human obesity [73]. A lack of 

detected archaeal pathogens may relate to the metabolic requirements of archaea that are 

distinct from their mammalian hosts [74] such that they do not compete for the same 
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resources [75]. Additionally, Gill and Brinkman [75] hypothesize that the development of 

pathogenic traits is evolutionarily rare, and that the non-overlap between bacterial and 

archaeal phages and constrained lateral gene transfer has limited pathogen development in 

archaea. Regardless, the comparatively limited depth of skin-associated archaeal research has 

impeded exploration into the influence that skin-associated archaea might have on skin 

health.  

1.5 Profiling skin-associated microbial communities 

The tools and techniques used for profiling microbial communities have experienced 

great advances in recent decades. The advent of high-throughput sequencing methods and 

their associated bioinformatic tools, coupled with developments in both universal and taxa-

specific primers, have provided the means for both broad and specific characterizations of 

microbial communities. Of the many tools available, this thesis will focus on the widely used 

16S rRNA gene and the more recently developed chaperonin 60 (cpn60) universal 

phylogenetic markers.  

1.5.1 The 16S rRNA gene phylogenetic marker 

The 16S ribosomal RNA (16S rRNA) is critical for protein synthesis because of its 

structural and functional role within ribosomes. As a result, the 16S rRNA gene is present in 

all prokaryotic genomes, often encoded by several copies within the same microorganism 

[76]. Although generally highly conserved, the 16S rRNA gene contains nine hypervariable 

regions that allow for mutability and sequence divergence over time. From a microbiology 

perspective, this universal dependence and combination of both conserved and variable 

regions is ideal for the identification and classification of microorganisms. Thus, the 16S 

rRNA gene is now the most widely used phylogenetic marker for amplicon-based studies of 

prokaryotic communities [76]. 

It was Carl Woese’s early use of the 5S rRNA [77] gene and transition to the 16S 

rRNA gene that allowed for first proposal of the three-domain tree of life [32], which became 

solidified years later [78]. Woese’s seminal contribution laid the framework for the 

development and use of 16S rRNA gene primers for profiling environmental microbiota [79]. 
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Prior to short-read high-throughput sequencing, 16S rRNA gene sequencing was performed 

with by amplification, cloning, and sequencing of near-full length genes [80, 81]. Although 

full-length 16S rRNA genes provide higher taxonomic resolution and phylogenetic accuracy, 

the reduction in cost and time presented by short-read sequencing was a necessary 

compromise [82]. In response, 16S rRNA gene primers were developed to meet the size 

limitations imposed by sequencing technologies and the differences in phylogenetic 

resolution offered by the nine 16S rRNA hypervariable regions [83, 84]. Because of the 

variety of ways that 16S rRNA gene amplicon datasets can be generated, and the potential 

bias that those methods might introduce to taxonomic classification and analysis, efforts have 

been made to standardize 16S rRNA gene-based amplicon studies. One of the most 

prominent of these is the Earth Microbiome Project (EMP). Originally developed as a 

“collaborative effort to characterize microbial life on this planet” [85], the EMP also provides 

a sample collection and processing framework with the goal of standardizing 16S rRNA gene 

based microbial analysis [86]. Additionally, the EMP has also facilitated the widescale use of 

the 515F [87], 805R [88], and 926R [89] 16S rRNA gene primer sets. In combination with 

extensive 16S rRNA gene reference databases from the NCBI [90], the Genome Taxonomy 

Database [91, 92], and SILVA database [93, 94], 16S rRNA gene amplicon sequencing has 

been established as the standard for amplicon-based studies.  

1.5.2 Chaperonin-60 as an alternative phylogenetic marker 

Despite its usefulness and widespread support, the 16S rRNA gene has limitations. 

For example, although full 16S rRNA gene sequences are ideal for taxonomic classification 

[82], producing them is costly and time consuming. Additionally, although the 16S rRNA 

gene is often used in short-read high-throughput sequencing, the limited read length and high 

nucleotide conservation of the gene fragment limits phylogenetic resolution and thus 

taxonomic classification [95]. Thus, taxonomy derived from the 16S rRNA gene are 

commonly limited to a genus or species resolution [95]. Additionally, because prokaryotic 

genomes often contain multiple copies of the 16S rRNA gene, intragenomic heterogeneity 

and relative abundance bias is a concern for microbiome studies [96]. In response to these 
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limitations, several alternative universal phylogenetic gene markers have been proposed, 

such as rpoB [96, 97], gyrB [98–100], and cpn60 [101].  

Since first proposing cpn60 as a universal phylogenetic marker for microbiome 

studies [102, 103], methodological development has led to establishment of a reference 

database [104], PCR primer development and validation [101, 105, 106], and increased 

adoption by the scientific community [107–112]. Several features of the cpn60 gene make it 

a useful phylogenetic marker. The cpn60 gene itself, alternatively known as hsp60 [102], 

encodes for a 60kDa GroEL protein belonging to a family of type I chaperonins present in 

bacteria and chloroplasts, with equivalent type II chaperonins found in archaea and 

eukaryotes [113]. The structure of the GroEL protein consists of two stacked heptameric 

rings of seven identical subunits, which when combined with the complimentary GroES 

protein “lid”, assist in cellular protein folding [114, 115]. Like the 16S rRNA gene, the 

presence of cpn60, and function of GroEL, is essential for cell survival and thus present in all 

prokaryotic life [116]. However, unlike the 16S rRNA gene, the copy number of cpn60 gene 

for most organisms is one, even though multiple copies exist in several taxa [101]. 

Additionally, the cpn60 gene contains a much greater sequence diversity compared to the 

16S rRNA gene, with a lower median nucleotide identity and greater barcode gap [101]. 

Furthermore, the primers used to amplify the 274 – 828 “universal target” region of the 

cpn60 gene [101] produces an amplicon of approximately 554 bp in length. Although this 

length exceeds current short-read high-throughput sequencing technology, only 150 to 250 

bases of the forward read is necessary to produce sufficient data for taxonomic classification 

to the species level [117], allowing it to be used on current sequencing platforms (e.g., 

MiSeq; Illumina). Because of intrinsic features of the cpn60 gene, active development of 

primers and reference databases, and increased taxonomic resolution, the cpn60 gene is a 

powerful complement to the 16S rRNA gene for use as a universal phylogenetic marker 

within the context of microbial community characterization and phylosymbiosis/co-evolution 

research.  
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1.6 Thesis structure and objectives 

This thesis is separated into four chapters, with Chapters 1 and 4 providing 

introduction and conclusion context for the research chapters, respectively. The main 

research presented in this thesis is described in Chapters 2 and 3, both of which involve 

profiling microbial communities found on mammalian skin and skin-associated surfaces. 

The first research chapter, Chapter 2, provides the first documented use of the cpn60 

phylogenetic marker for profiling mammalian skin microbial communities. The objective of 

Chapter 2 was to evaluate the cpn60 gene as an alternative to the commonly used 16S rRNA 

gene through direct comparisons of mammalian skin microbial profiles. In addition, this 

chapter leveraged cpn60-based microbial profiles to assess evidence for phylosymbiosis 

within class Mammalia. The cpn60 gene data were also used to explore Staphylococcaceae 

taxa as core mammalian skin populations as potential indicators of specific host-microbe 

associations. Because of the increase in taxonomic resolution provided by the cpn60 gene 

marker [108, 117], analysis using the cpn60 gene has the potential to provide more confident 

species and strain-level classifications compared to the 16S rRNA gene when using 

amplicon-based methods, and might better reveal patterns of phylosymbiosis or co-evolution. 

As well, because species and strain-level variation can have a considerable impact on disease 

state, the application of cpn60-based methods for skin microbiome analysis can provide 

microbial profiles with higher taxonomic resolution and species identification and has 

particular importance with respect to mammalian skin and host health.  

The second research chapter, Chapter 3, reviews what is currently known about skin-

associated archaea and contributes to the discussion surrounding the skin archaeome. The 

first objective was to evaluate mammalian skin and skin-associated datasets that were 

previously generated using the Pro341F/Pro805R primers for potential bias against archaeal 

16S rRNA gene amplification by comparing them with newly generated profiles using primer 

pairs 515F-Y/926R. The second objective was to combine these datasets [22, 27, 118] with 

newly generated human skin (fingers) and skin-associated (keyboards) 16S rRNA gene 

amplicon sequence data and compare the relative abundance, sample prevalence, and 

taxonomic proportions of skin-associated archaea. Because of the limited research 
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surrounding skin-associated archaea, the work presented in Chapter 3 provides a substantial 

contribution to existing skin-associated archaea literature by suggesting limited distributions 

and abundances of archaea within the skin microbiome. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

13 

Chapter 2 

Validating the cpn60 gene for high-resolution profiling of the mammalian 

skin microbiome  

2.1 Introduction 

Performing universal prokaryotic profiling of microbial communities requires that the 

targeted phylogenetic marker has several important features. First, it must be universally 

present in all prokaryotes. Second, it should ideally be present in low copy number, or 

multiple copies should have high similarity. Third, it should contain sufficient nucleotide 

dissimilarity among species to be phylogenetically informative. The cpn60 gene is ideal in 

that it is universally present, usually contains one copy per genome, and is taxonomically 

informative enough to provide confident species-level classification when compared to the 

commonly used 16S rRNA gene [101]. Applying the cpn60 gene to the mammalian skin 

microbiome has the potential to generate prokaryotic microbial profiles with increased 

species-level taxonomic resolution that can be used to address questions regarding host-

microbe patterns, such as phylosymbiosis and co-evolution.  

 Patterns of phylosymbiosis on mammalian skin were observed recently for 

Artiodactyla and Perissodactyla, using 16S rRNA genes clustered within 99% identity OTUs 

[27]. Also observed from the same study was the presence of a “core” mammalian skin 

microbiome consisting of taxa affiliated with Staphylococcus and other genera [27]. 

Although another study observed phylosymbiosis for primate skin microbiota, they identified 

a core primate skin microbial community where Staphylococcus members were differentially 

distributed among primate hosts [25]. Both studies produced microbial profiles based on the 

16S rRNA gene and OTU-based clustering and are thus less capable of species-level 

classification [95]. By using the increased taxonomic resolution provided by the cpn60 gene, 

in combination with amplicon sequence variants (ASVs) capable of identifying individual 

amplicon sequences [119], the mammalian skin microbiota could be more thoroughly 

characterized and evaluated for patterns such as phylosymbiosis and co-evolution. As well, 

specific microbial genera present across all mammalian skin, such as those included within 
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the family Staphylococcaceae, could be further defined to the species level to provide insight 

into species-level dynamics and host-microbe interactions. Finally, cpn60-based methods 

have yet to be applied to mammalian skin, although used previously for microbial profiling 

of the vagina [110, 111, 120] and pig feces [105]. Thus, profiling the mammalian skin 

microbiome using both the cpn60 and 16S rRNA genes could help validate the cpn60 gene 

for skin microbiome profiling and provide novel insight into mammalian skin microbial 

communities as they relate to host phylogeny.  

2.2 Methods 

2.2.1 Sample selection, PCR amplification, and high-throughput sequencing 

Mammalian skin swabs were obtained and their genomic DNA were extracted as part 

of a previous 16S rRNA gene survey [27]. From these, a representative 95 sample subset was 

chosen for cpn60-based sequencing and microbial profiling. The PCR amplification and 

high-throughput sequencing of samples was completed at the University of Saskatchewan, in 

collaboration with Dr. Janet Hill, as previously described [121, 122] The cpn60 gene was 

PCR amplified using a primer mix comprised of 100 µM M279 (5’ – 

GAIIIIGCIGGIGAYGGIACIACIAC – 3’), M280 (5’ – YKIYKITCICCRAAICCIGGIGC– 

3’), M1612 (5’ – GAIIIIGCIGGYGACGGYACSACSAC– 3’), and M1613 (5’ – 

CGRCGRTCRCCGAAGCCSGGIGCCTT– 3’). Primers were combined in a 1:3 molar ratio 

of M279 and M280 (3 µL each) and M1612 and M1613 (9 µL each) and diluted in 276 µL of 

Ultrapure water for a total volume of 300 µL. All PCR tubes, plates, and Ultrapure water 

used for PCR and sequencing were decontaminated prior to use by exposing to UV light for 

20 minutes. A PCR master mix was prepared using 38.1 µL of UV-treated Ultrapure water, 

0.4 µL of Invitrogen Platinum Taq (ThermoFisher Scientific), 5 µL of 10X Thermopol 

buffer, 1 µL of 10 mM dNTPs, and 1 µL of the 1:3 primer cocktail for a total reaction 

volume of 50 µL for 2 µL of template. The amplification reaction conditions were 95°C 

initial denaturation for 5 minutes, followed by 40 cycles of denaturation at 95°C for 30 

seconds, annealing at 60°C for 30 seconds, extension at 72°C for 30 seconds, and a final 

extension at 72°C for 2 minutes. All PCR amplifications were first visualized on a 1% 
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ethidium bromide gel then extracted from the gel and purified using NucleoMag beads 

(Macherey-Nagel) as previously described [122]. The purified amplicon library was 

sequenced using a 401x101 cycle using TG MiSeq Reagent Nano Kit v2 (Illumina Canada, 

MS-103-1003) on a MiSeq (Illumina).  

2.2.2 Processing of sequence reads 

Demultiplexed sequences were processed to generate ASVs using QIIME2 version 

2019.10.0 [43]. Only the forward reads containing a 400-nucleotide long amplicon were 

imported into QIIME2. Forwards reads were truncated to 200 nucleotides using DADA2 

version 2019.10.0 [123]. The trimmed reads were then denoised and chimeric sequences 

removed prior to ASV generation using with DADA2. Three taxonomic classification 

strategies were assessed prior to analysis. The first two used a naïve Bayes classifier, one 

using the cpnDB reference database [104], and the second using the cpnDB in combination 

with sequences retrieved from the NCBI using BLAST results (“cpnDB_B”). Representative 

sequences produced from DADA2 and nucleotide BLAST were used to query the NCBI non-

redundant, cultured-only reference database with an e-value cutoff of 1e-6. The top three 

results for each sequence query were retained to create a database containing 16,624 

sequences. Replicates and sequences below 180 nucleotides were removed (4,400) and the 

remaining sequences (12,224) were combined with the cpnDB (5,489) to create a final 

database of 17,713 reference sequences. The third strategy used VSEARCH [124] against the 

cpnDB_B as an alternative to the naïve Bayes classifier, a similar method to watered-BLAST 

[120]. All taxonomic information used in the databases originated from the NCBI [90] and 

were accessed through Entrez Direct [125].  

All cpn60 sequences generated for the current study were deposited in the European 

Nucleotide Archive (ENA) under project accession number PRJEB43503. All ASV and 

species-collapsed data tables have been made available at 10.6084/m9.figshare.14955753 

(ASV table) and 10.6084/m9.figshare.14955744 (species-collapsed, Staphylococcaceae-only 

table). 
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2.2.3 Mammalian COXI gene, 16S rRNA gene, and cpn60 gene microbial dendrograms 

Cytochrome oxidase I (COXI) genes for the Cape eland, donkey, goat, horse, olive 

baboon, Przewalski’s horse, sheep, spotted hyena, and Sumatran orangutan were obtained 

from a previous study [27] and used to construct a mammalian COXI-based phylogeny. The 

mammalian COXI gene sequences were aligned using ClustalW [126] in MEGA X version 

10.1.8 [127], with trimming and gap removal as appropriate. The optimal nucleotide 

substitution model was determined using JModelTest2 version 2.1.10 [128, 129]. For the 

mammalian COXI gene, a maximum likelihood dendrogram was constructed using MEGA X 

with a GTR +G +I substitutional model and with a confidence assessment of 1000 bootstraps. 

The mammalian phylogeny was then compared with literature and confirmed for accuracy.  

 Microbial dendrograms were created using 16S rRNA gene sequences obtained from 

a previously generated amplicon dataset [27] and the cpn60 gene sequences from this current 

study. For the 16S rRNA and cpn60 gene microbial dendrograms, the respective ASV tables 

were sample-collapsed based on mammalian host, and the ASV read counts were summed 

for each category. Bray-Curtis, unweighted UniFrac, and weighted UniFrac distance matrices 

for the ASV tables were generated using the QIIME2 diversity beta-rarefaction command, 

rarefied to 1000 reads, and used to construct UPGMA dendrograms with a confidence 

assessment of 1000 bootstraps. 

2.2.4 Phylosymbiosis 

Mammalian COXI gene and microbial 16S rRNA and cpn60 gene dendrograms were 

compared and evaluated for congruence using the vegan and ape packages in R as previously 

described [27]. Phylosymbiosis was assessed with Robinson-Foulds for both the 16S rRNA 

and cpn60 gene dendrograms against the mammalian COXI dendrogram. The significance of 

the Robinson-Foulds metric was determined by evaluating the mammalian COXI gene 

dendrogram against 100,000 randomly generated trees containing identical terminal nodes 

(i.e., taxa). Congruency between dendrograms were measured with the normalized Robinson-

Foulds score, ranging between 0 and 1, with 0 representing perfect congruency. Random 

dendrograms were considered significant if they obtained Robinson-Foulds scores equal to or 
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better than those obtained from comparisons between the mammalian phylogeny and the 

microbial gene (16S rRNA or cpn60) dendrograms. 

2.3 Results 

To assess microbial communities of mammalian skin using the cpn60 gene, 95 

representative skin swab samples already extracted for genomic DNA and sequenced from a 

previous project [27] were selected for further amplification and sequencing of the cpn60 

gene. This cpn60 gene dataset contained samples from 19 unique mammals, with varying 

representation in terms of both number of samples and read proportions (Table 2-1). Of the 

95 samples submitted for sequencing, 88 unique samples contained at least one read, with 

most samples associated with <500 total reads (Figure 2-1). The horse and Przewalski’s 

horse samples represented 36.6% and 25.4% of all sequenced cpn60 gene reads, respectively, 

followed by the olive baboon (15.8%) and Cape eland (10.0%). All other mammalian groups 

represented fewer than 5% of total cpn60 gene reads. To avoid downstream analysis issues 

related to shallow sequencing depth, all samples with fewer than 1000 reads were removed, 

resulting in a final dataset of 37 samples (Table 2-2). These 37 samples (42.0% of the 

original dataset) represented 97.6% (118,645) of all the cpn60 gene reads produced 

(121,622). Read loss was therefore minimal, although mammalian host representation in the 

dataset was reduced from 19 hosts to 9: the Cape eland, donkey, goat, horse, olive baboon, 

Przewalski’s horse, sheep, spotted hyena, and the Sumatran orangutan (Figure 2-2).
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Table 2-1 Summary of the mammalian skin samples included within the study and the cpn60 

gene reads produced during sequencing. 

Mammalian host Samples Reads 
Average per 

sample 
Standard 
deviation 

Proportion of 
dataset (%) 

African lion 1 9 NA NA 0.0 
Alpaca 3 473 157.7 267.0 0.4 
Arctic wolf 6 17 2.8 1.9 0.0 
Beaver 1 1 NA NA 0.0 
Cape eland 5 12157 2431.4 1483.7 10.0 
Cat 2 13 6.5 7.8 0.0 
Cheetah 2 7 3.5 3.5 0.0 
Donkey 1 2986 NA NA 2.5 
Giant panda 4 690 172.5 307.9 0.6 
Goat 1 1785 NA NA 1.5 
Horse 18 44588 2477.1 2172.7 36.7 
Olive baboon 9 19245 2138.3 1745.3 15.8 
Przewalski’s horse 12 30953 2579.4 2749.9 25.5 
Rabbit 2 84 42.0 58.0 0.1 
River otter 1 2 NA NA 0.0 
Sheep 1 5142 NA NA 4.2 
Spotted hyena 1 1441 NA NA 1.2 
Straw-coloured fruit bat 2 5 2.5 2.1 0.0 
Sumatran orangutan 8 1699 212.4 404.7 1.4 
Swamp wallaby 2 296 148.0 15.6 0.2 
Two-toed sloth 2 7 3.5 0.7 0.0 
White lion 4 22 5.5 9.0 0.0 
Total 88 121622 NA NA NA 

“NA” indicates values for which an average, standard deviation, and proportion could not be 

calculated because of singleton samples.
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Figure 2-1 The total number and distribution of cpn60 gene reads produced following 

sequencing and processing of the reads through DADA2. The average number of reads for 

each mammalian host is indicated with orange squares.
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Table 2-2 Summary of dataset with samples containing at least 1000 reads. 

Mammalian host Samples Reads 
Average reads 

per sample 
Standard 
deviation 

Proportion of 
dataset (%) 

Cape eland 4 12152 3038 694 10.2 

Donkey 1 2986 NA NA 2.5 

Goat 1 1785 NA NA 1.5 

Horse 13 43990 3383 1860 37.1 

Olive baboon 7 19168 2738 1473 16.2 

Przewalski’s horse 8 30817 3852 2515 26.0 

Sheep 1 5142 NA NA 4.3 

Spotted hyena 1 1441 NA NA 1.2 

Sumatran orangutan 1 1164 NA NA 1.0 

Total 37 118645 NA NA NA 

“NA” indicates values for which an average, standard deviation, and proportion could not be 

calculated because of singleton samples.
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Figure 2-2 The total number and distribution of cpn60 gene reads within the final 37-sample 

dataset, following processing through DADA2. The average number of reads per mammalian 

host is indicated with an orange box. 
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Three taxonomic classification strategies were assessed prior to taxa-based analyses 

(Figure 2-3). Both naïve Bayes based classifiers (cpnDB and cpnDB_B) produced similar 

taxonomic profiles. The VSEARCH classifier performed poorly, failing to classify most of 

the sequences beyond a domain or phylum level. The cpn60 gene amplicons used for analysis 

were assigned taxonomy using the cpnDB_B strategy. Mammalian skin samples generated 

sequences with both genus-resolved and unresolved/unclassified taxa and were shown to be 

distinct based on mammalian host (Figure 2-4). The olive baboon samples had the most 

visually distinct and consistent microbial profiles of any other mammalian host. These 

profiles were represented by Prevotella, Prophyromonas, and Butyricicoccus, which were 

almost exclusive to the olive baboons. The Cape eland, horse, and Przewalski’s horse 

samples had less consistent microbial profiles among samples. The Cape eland samples 

contained sequences associated with Jeotgalicoccus that were shared sparingly between the 

goat, horse, and sheep. For horses, microbial community profiles were more inconsistent 

between samples and contained horse-exclusive sequences associated with Moraxella and 

Salinicoccus genera. The microbial profiles of the Przewalski’s horse samples were more 

consistent and contained exclusive sequences affiliated with Planomicrobium and 

Macrococcus. Of the singleton samples, the Sumatran orangutan microbial profiles included 

more unique genera (nine) than the donkey (four), goat (two), sheep (zero), and spotted 

hyena (one). Across all samples, Corynebacterium was the most prevalent and represented in 

moderate relative abundance (>5%) within the goat, horse, olive baboon, Przewalski’s horse, 

and sheep, though in cases reached as high as 75% of the total community. Sequences 

affiliated with Acidobacteria were also present on the donkey, horse, olive baboon and 

Przewalski’s horse at relative abundances ranging from 4% to 38%. The most observed 

sequences belonged to unclassified bacteria (Bacteria_394) which were present in 35 of the 

37 samples in high abundance, as well as an unresolved Proteobacteria 

(Proteobacteria_383) that was present in 30 of the 37 samples. Other unresolved taxa include 

Staphylococcaceae (Staphylococcaceae_138), and Clostridiales (Clostridiales_177), which 

were also shared among several samples.  

 Comparisons made between the new cpn60 gene microbial profiles and those 

generated previously using the 16S rRNA gene showed minimal overlap in their detected 
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taxa, although similar patterns in microbial community composition and differentiation based 

on mammalian host. Samples from the cpn60 and 16S rRNA gene datasets contained both 

unique and overlapping genera at >3% relative abundance within their respective sample 

pairs (Figure 2-5). Overall, a large proportion of taxa were unable to be resolved to a genus 

level in the cpn60 gene dataset. Both the horse and Przewalski’s horse samples detected 

Corynebacterium in the cpn60 and 16S rRNA gene datasets, as well as Salinicoccus in the 

horse samples, and Massilia in the Przewalski’s horses. The goat samples included sequences 

associated with the genera Massilia, and Sphingomonas in high relative abundance, for both 

the cpn60 and 16S rRNA gene datasets, though shared no additional genera.  
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Figure 2-3 Comparisons of sequence taxonomic affiliations provided by the naïve-Bayes and 

VSEARCH classifiers. The cpn60 gene ASV tables were collapsed to a species level for each 

classifier method. Bubble sizes and associated numeric values represent the relative 

abundances of taxa for a given sample.  
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Figure 2-4 The distribution, relative abundance, and taxonomic affiliation of cpn60 gene 

sequences for selected mammalian hosts. The ASVs were collapsed to the genus level and 

filtered at >3% relative abundance. Bubble sizes and associated numeric values represent the 

relative abundances of taxa for a given sample. 
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Figure 2-5 Comparison of relative abundances and prevalence of genera within the cpn60 

(blue) and 16S rRNA (red) gene datasets. The ASVs were collapsed to a genus level and 

filtered for taxa greater than 3% relative abundance. Bubble sizes and associated numeric 

values represent the relative abundances of taxa for a given sample. 
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In addition to direct taxonomic comparisons among samples, principal coordinate 

analyses (PCoA) can be used to compare microbial community composition 

similarity/dissimilarity independent of taxonomic classifications. Using such an approach, 

the results showed how olive baboon sample profiles were distinct, with samples grouping 

separately for each tested metric (Figure 2-6). The Przewalski’s horse and Cape eland 

samples had similarly strong and distinct associations with each other and for most metrics. 

All other mammalian host samples grouped homogenously within the horse samples for each 

diversity metric. An analysis of community composition between the cpn60 and 16S rRNA 

gene datasets showed congruence (Figure 2-7). Procrustes analysis of ordinations made with 

the cpn60 and 16S rRNA genes demonstrated significant correlations (p < 0.05%) with 

correlation coefficients of 0.91, 0.69, and 0.66 for Bray-Curtis, weighted UniFrac, and 

unweighted UniFrac, respectively.  

Evidence of phylosymbiosis within the cpn60 and 16S rRNA gene microbial profiles 

was assessed through comparing microbial community composition dendrograms against a 

COXI mammalian dendrogram representing mammalian phylogenetic history. Significant (p 

= 6.73x10-3) patterns of phylosymbiosis were observed in the 16S rRNA gene Bray-Curtis 

microbial dendrogram for clades containing the Cape eland, goat, and sheep (Artiodactyla) 

and the donkey, Przewalski’s horse, and horse (Perissodactyla), although was not significant 

for the cpn60-based microbial dendrogram (Figure 2-8). Conversely, significant results were 

observed for the cpn60 gene unweighted (p = 4.36x10-2) (Figure 2-9) and weighted (Figure 

2-10) (p = 4.43x10-2) UniFrac microbial dendrograms for Artiodactyla (Cape eland excluded) 

and Perissodactyla, although not within the 16S rRNA gene-based dendrograms. Neither the 

Primates (olive baboon and Sumatran orangutan) nor Carnivora (spotted hyena) displayed 

patterns of phylosymbiosis in either the cpn60 or 16S rRNA gene microbial dendrograms 

using any of the diversity metrics.  
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Figure 2-6 PCoA plots generated using the cpn60 gene show differentiation between 

microbial community composition of mammalian hosts. Samples were rarefied to 1000 reads 

for each metric.  
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Figure 2-7 Procrustes analysis between ordinations produced by 16S rRNA (primary plot) 

and cpn60 (secondary plot) gene profiles. The analysis was completed with 100,000 

permutations to calculate significance. Arrow tips indicate the ordination of the secondary 

plot.  
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 To demonstrate how the taxonomic resolution provided by the cpn60 gene might be 

used to survey specific microbial populations on mammalian skin, reads associated with 

Staphylococcaceae were isolated from both the cpn60 and 16S rRNA gene datasets and 

compared. From the 37 samples with greater than 1000 reads, 33 contained 

Staphylococcaceae-associated reads (Figure 2-11). The spotted hyena sample contained no 

Staphylococcaceae-associated reads and was therefore removed from further analysis. The 

proportion of reads associated with Staphylococcaceae varied between mammalian host and 

ranged from 0.8% (2/2307 reads) to 26.0% (1339/5142 reads), though most samples (23/33, 

69.9%) were below 10% relative abundance (Figure 2-12, bottom panel). The olive baboon 

and Sumatran orangutan samples contained the fewest number of reads associated with 

Staphylococcaceae, with no sample exceeding 1% relative abundance. The distribution of 

specific Staphylococcaceae species differed between mammalian host (Figure 2-12, top 

panel). Reads associated with Jeotgalicoccus halophilus were present among all mammalian 

hosts excluding the donkey, and an unresolved Staphylococcaceae species was similarly 

present, though absent from the Przewalski’s horses and Sumatran orangutan. For the 

Przewalski’s horses, Macrococcus carouselicus was the dominant species in most samples 

though three samples also contained Salinicoccus species that were shared with the horse 

samples. Horse samples were the most variable with overlap between many other 

mammalian skin samples, though also contained unique sequences associated with 

Staphylococcus fleurettii, Salinicoccus halodurans, and Macrococcus brunensis. The cape 

eland samples contained Staphylococcaceae populations evenly split between an unresolved 

Staphylococcaceae and Jeotgalicoccus halophilus. Comparisons made between the cpn60 

(Figure 2-13, top panel) and 16S rRNA gene (Figure 2-13, bottom panel) Staphylococcaceae 

profiles shows improved definition of Staphylococcaceae populations when using the cpn60 

gene. Most of the profiles produced using the 16S rRNA gene have large relative abundances 

of unresolved Staphylococcaceae sequences with only two resolved species (Macrococcus 

brunensis and Salinicoccus roseus) present in the dataset. Comparatively, the cpn60 gene 

profiles are dominated with species-resolved populations with few exceptions. The disparity 

in taxonomic resolution between the two phylogenetic markers is most obvious within the 

Prezwalski’s horse samples where the large majority of Staphylococcaceae associated 
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sequences become resolved to Macrococcus carouselicus when switching from the 16S 

rRNA gene to the cpn60 gene marker. 
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Figure 2-11 Abundance and distribution of Staphylococcaceae-associated cpn60 reads 

between mammalian hosts. The average number of reads for each host is indicated with an 

orange square.  
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Figure 2-12 The relative abundance of all Staphylococcaceae species detected (top panel) and the proportion of Staphylococcaceae 

reads for each m
am

m
alian hosts (bottom

 panel). Taxa unresolved to a species level are indicated w
ith an *. B

ubble sizes and 

associated num
eric values represent the relative abundances of taxa for a given sam

ple.
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Figure 2-13 R
elative abundance and distribution of Staphylococcaceae species betw
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alian hosts generated by am
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of the cpn60 (A
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2.4 Discussion 

2.4.1 Validating the cpn60 gene for microbial profiling of mammalian skin and 

assessing phylosymbiosis 

An important goal of this study was to compare microbial profiles generated by the 

cpn60 and 16S rRNA genes with respect to community composition and host differentiation. 

To do this, The Procrustes analysis [130] was used to compare ordinations prepared with 

these genes and different distance metrics. When applied to PCoA ordinations, the Procrustes 

analysis scales, translates, and rotates two plots, one atop the other, to produce a final plot 

that minimizes the sum of squares between all points [130]. This process can be completed 

repeatedly to assess significance of the correlation between ordinations. With respect to the 

cpn60 and 16S rRNA genes, the Procrustes analysis allows for the comparison between 

microbial community composition without the requirement of identical taxonomic 

nomenclature. Each of the metrics tested (Bray-Curtis, unweighted/weighted UniFrac) were 

all strongly correlated and significant, indicating that community compositions generated 

with the cpn60 and 16S rRNA gene were similar (Figure 2-7). However, the microbial 

profiles generated by these genes could be very different but produce the same pattern in 

multidimensional ordination space. For example, a dataset containing three samples, A, B, 

and C with unique ASVs 1, 2, and 3 would separate in ordinate space within a PCoA plot. A 

second dataset containing samples A, B, and C with unique ASVs 4, 5, and 6 would separate 

similarly, and when assessed with a Procrustes analysis would produce a strong correlation 

with the first. This is a particular issue for the Bray-Curtis metric, where differences in 

taxonomic profiles are not accounted for, because the distances among samples are based on 

ASV presence/absence and relative abundances independent of phylogeny. The inclusion of 

phylogeny in the UniFrac metric compensates for the potential differences in taxonomy 

between the cpn60 and 16S rRNA gene datasets. Referring to the previous example, if ASVs 

are instead collapsed to a species level and assigned taxonomic identifiers, dataset A, B, and 

C could now contain sp. 1, sp. 1, and sp. 2. Because two ASVs have been collapsed into 

identical taxonomic identifiers, the distances between A and B will be reduced and the 

correlation of the Procrustes analysis between plots will also decrease. This is likely the 
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reason that the UniFrac metrics tested showed a lower correlation compared to the Bray-

Curtis metric.  

Comparing microbial profiles generated by two separate universal prokaryotic 

phylogenetic markers should ideally produce profiles with a similar taxa and relative 

abundances, which should reflect the true microbial communities of the samples. Although 

both the cpn60 and 16S rRNA gene profiles were compositionally similar, the taxonomic 

profiles had large differences (Figure 2-5). Different gene markers used for amplicon-based 

studies are subject to different biases and may not always be directly comparable. For 

example, the 16S rRNA gene is influenced by gene copy number [76, 131], nucleotide GC 

content [132, 133], and certain bacterial proportions [134], all of which have been shown to 

impact microbial profiles. Profiles generated with the cpn60 gene could contain similar 

biases with exception to the gene copy number, although recent developments have sought to 

eliminate biases based on primer degeneracy and annealing temperature [106]. The largest 

influence on the microbial profiles and the cause for discrepancy between sample pairs 

within this dataset is the separate sequence reference database used for each dataset. The 

availability of curated cpn60 gene reference databases is limited. The only currently 

maintained cpn60 database is the cpnDB [104], which contains approximately 7,000 

sequences in its non-redundant database. Although this was increased to 17,713 sequences by 

combining it with nucleotide BLAST results, the cpnDB is surpassed by the SILVA 138.1 

database, which contains over 510,000 non-redundant 16S rRNA gene reference sequences 

[93]. A large proportion of the cpn60 gene reads were unclassified bacteria (i.e., 

unresolved_1582) or remained unresolved to the genus level. An increase in database 

coverage for the cpn60 gene would result in increased classification of sequences and assist 

in comparing the taxonomic overlap between the cpn60 and 16S rRNA gene datasets.  

In addition to the lack of database coverage, a more immediate factor affecting 

sample pair congruity within this study is the use of two separate taxonomy databases. In 

combination with the reference sequence databases, taxonomy databases provide the full 

taxonomic lineage for affiliated sequences. The direct comparisons of taxonomy profiles 
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between two phylogenetic markers requires that ASVs be collapsed into taxonomic levels 

(e.g., genus or species), which is entirely dependent on the taxonomy reference database 

provided. Much like sequences with a single nucleotide difference may be interpreted as 

unique ASVs, taxa with names that differ by as little as one character in their lineage will be 

classified as separate taxa. In this study, the 16S rRNA gene database used the SILVA 

database [93, 94] that obtains its taxonomic information from a combination of sources, 

including the NCBI and GTDB [92], and undergoes further manual annotations. In contrast, 

the cpnDB does not maintain a taxonomy reference database. Instead, the cpn60 gene dataset 

uses a taxonomy reference database based on NCBI taxonomy that was specifically 

generated for this thesis (Chapter 2.2.2). Although manual curation of the taxonomy database 

was completed at a broad level, fine-level curation was beyond the scope of this study. As 

such, differences between the cpn60 and 16S rRNA gene profiles may have been affected by 

incongruous taxonomies between databases. For example, two Corynebacterium genera (i.e., 

Corynebacterium 1_94 and Corynebacterium_93) were present in the data (Figure 2-5). A 

successful collapse to the genus level should have placed the associated ASVs into a single 

common Corynebacterium genus. In this case, the difference is the inclusion of a “_1” at the 

end the Corynebacterium lineage within the 16S rRNA gene taxonomy file (or inversely, a 

missing “_1” in the cpn60 gene taxonomy file). Similarly, Massilia is separated into 

Massilia_1203 and Massilia_1347. Here, the differences are a result of higher taxonomic 

reclassification: Massilia has been reclassified under class Gammaproteobacteria within the 

16S rRNA taxonomy based on the GTDB [92], whereas the NCBI taxonomy and SILVA 

database currently maintains the original class Betaproteobacteria lineage. As such, ASVs 

associated with the same genus are listed as two separate taxa instead of one, and the 

difference is “invisible” at the genus level. Should the cpn60 gene continue to be used as an 

alternative phylogenetic marker to the 16S rRNA gene, it would be important that a reference 

taxonomy database, containing compatible taxonomic lineages with the SILVA database, be 

maintained alongside the cpnDB so that direct comparisons can be made. Alternatively, a 

combination of BLAST and Smith-Waterman alignments (watered-BLAST) has been used 
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previously to assign taxonomy to cpn60 gene datasets [120], though this method also uses the 

NCBI taxonomy database and would be subject to the same incompatibility issues.  

Despite difficulties with direct taxonomic comparisons, compositional analysis of the 

cpn60 gene microbial profiles observed phylosymbiosis within Perissodactyla (Donkey, 

horse, and Przewalski’s horse) and Artiodactyla (sheep and goat) [27] with moderate 

congruency, using the unweighted and weighted UniFrac metrics (Figures 2-8, Figure 2-9). 

These observations have been made previously using the 16S rRNA gene, although required 

Artiodactyla and Perissodactyla dendrograms to be isolated from other mammalian classes 

[27]. Because the mammalian hosts included in the study varied in location and age, and are 

more impacted by potentially transient environmental microorganisms, phylosymbiosis 

patterns could be masked when nonhuman mammals from multiple mammalian classes are 

included together for analysis [27]. Because this current study relies on samples originally 

obtained from the previous publication [27], the same confounding factors are present and 

could be impacting the analysis. Notwithstanding, cpn60-based microbial dendrograms 

produced significant and congruent phylosymbiosis results for Artiodactyla and 

Perissodactyla, without requiring isolating them from other mammalian classes. These 

observations were not present when using the 16S rRNA gene profiles and the same 

collection of mammalian hosts, suggesting that the taxonomic resolution provided by the 

cpn60 gene has allowed for more delineation among genus- and species-level taxa. However, 

mammalian host representation is limited within this current study, and the inclusion of 

additional samples might result in masking of the phylosymbiosis pattern, as seen previously 

[27].  

One of the largest influences on the cpn60-based UniFrac diversity metrics is the 

abundance of unclassified and unresolved high-level taxa (i.e., phylum, class, order). These 

taxa can represent a large proportion of sample reads, in some cases more than 50% of the 

reads within a sample and are present in almost every sample. The presence of abundant and 

prevalent unclassified taxa would be expected to reduce distances between samples, masking 

more subtle differences in the microbiota and additional phylosymbiosis patterns when using 

both the weighted and unweighted UniFrac measures. Although the 16S rRNA gene 
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reference database is considerably more extensive, the V4-V5 fragment of the 16S rRNA 

gene lacks sufficient nucleotide diversity to confidently resolve species [95]. Thus, ASVs are 

classified into less-informative genus-level groups that are shared generally among 

mammalian hosts. Because it is more likely for common genera to be dispersed among 

mammalian skin samples, mammalian host microbial profiles become less phylogenetically 

distinct in the absence of species-level classification. However, the capability of the cpn60 

gene to differentiate species [101] allows for common genera to be further resolved. 

Specifically for the unweighted UniFrac metric, the species-level phylogenetic resolution 

provided by the cpn60 gene would have a considerable impact because these shallow-branch 

taxa contribute nearly 90% of the sample distance [135]. For the weighted UniFrac, deep-

branch taxa are largely responsible for sample distances [135] and therefore should be less 

influenced by an increase in phylogenetic resolution unless it results in changes to deep-

branch topology. That phylogenetic-based UniFrac metrics produced significant 

phylosymbiosis results only with the cpn60 microbial profiles could suggest that the 

phylogenetic resolution provided by the cpn60 gene reveals subtle compositional differences 

not observable when using the 16S rRNA gene.  

2.4.2 Using cpn60 to define species within Staphylococcaceae 

A proposed benefit of the cpn60 gene is its ability to universally resolve specific 

communities of mammalian skin to the species level and reveal host-microorganism 

associations and potential co-evolutionary relationships. To that end, Staphylococcaceae was 

chosen given the ubiquity of affiliated taxa among mammalian hosts [27] and relevance of 

certain members to skin health and disease. When using the cpn60 gene, Staphylococcaceae 

communities had more species-resolved taxa compared to profiles generated using the 16S 

rRNA gene. The species Macrococcus carouselicus, first observed on horses and thus named 

after a carousel [136], is predominant on Przewalski’s horses although absent on the other 

horses within the study. Similarly, Macrococcus equipercicus was resolved alongside M. 

carouselicus, indicating that complex communities exist within more general 16S rRNA gene 

genus classifications. The distribution of these taxa suggests either a strong host-specificity 

for Przewalski’s horses, potential co-evolutionary histories, or an environmental influence. 
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The Przewalski’s horse is considered a true “wild horse” having remained undomesticated 

and relatively isolated to the Asian steppes [137]. The skin of Przewalski’s horses could be 

different to that of the common domesticated horses include in this study, and thus harbour 

distinct microbial communities. However, although the horses included in this analysis were 

regularly brushed (daily to weekly), the Przewalski’s horses were not groomed in any 

capacity. As such, the Staphylococcaceae community of the Przewalski’s horse could 

represent a more “natural” state common to all horses, in contrast to the domesticated horses 

where their microbiomes are continually disturbed by human interaction. Regardless, 

differences in, or disruption to, Staphylococcaceae populations could impact horse species 

and their susceptibility to disease given that Staphylococcaceae has a major role in equine 

pastern dermatitis [138].  

The most prominent Staphylococcaceae member affiliated with the cpn60 dataset is 

Jeotgalicoccus halophilus. The comparable 16S rRNA gene dataset [27] also contains the 

genus Jeotgalicoccus with similar proportions for the cape eland and several horse samples, 

although most Staphylococcaceae affiliated sequences belong to the Macrococcus genus 

(83.7%). None of the Jeotgalicoccus ASVs within the 16S rRNA gene dataset were resolved 

to J. halophilus. The genus Jeotgalicoccus was originally isolated from a traditional Korean 

fermented seafood [139], with other members of the genus captured as aerosols from pig 

[140] and turkey [141] farms. Specifically, J. halophilus was first isolated from a salt lake 

[142] and has since been detected as an airborne bacterium in hatcheries [143] and in 

association with marine corals [144]. There is no additional literature that mentions J. 

halophilus in association with mammalian skin, although this does not exclude their previous 

detection. Querying the NCBI database for “Jeotgalicoccus halophilus” returned sequences 

obtained from the environmental studies previously mentioned, though also included a 

bovine mastitis study in which J. halophilus was detected [145].  

Although the genus Jeotgalicoccus was detected previously on mammalian skin using 

the 16S rRNA gene [27], the cpn60 gene has allowed for taxonomic delineation of the J. 

halophilus from the other species therein. Within the Primates, J. halophilus represents the 

totality of the Staphylococcaceae associated reads (Figure 2-12, top panel), although this is 
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likely due to limited sequencing depth and low read count. However, the Cape eland samples 

have a considerably higher Staphylococcaceae read depth, with J. halophilus representing at 

least half the total reads, and are the predominant species-resolved taxa. Similarly, the sheep 

sample, which contained the highest proportion of Staphylococcacea-associated reads, also 

had a high proportion of J. halophilus, suggesting that the relative abundance and prevalence 

of this taxon is not an artifact of limited read depth. Additionally, given its absence in several 

samples and two mammalian hosts (i.e., donkey and Przewalski’s horse), it is unlikely to be a 

contaminant introduced from within the lab environment during sample extraction and 

processing.   

The importance or role of J. halophilus in the context of mammalian skin is unknown. 

As a facultative anaerobe with basic metabolic requirements, a growth range of 4 to 40 °C, 

and salt tolerability of 0.1 to 16% w/v [142], it is well suited for survival on the skin. As 

well, it is coagulase and oxidase positive and resistant to several natural antibiotics [142], 

which could indicate its ability to act as an opportunistic pathogen. Similarly, for all the 

Staphylococcaceae observed in association with mammalian hosts, it is difficult to make 

conclusions about their involvement in skin function, health, and disease. For example, 

Staphylococcus fleuretti, found in a single horse sample, is a coagulase-negative organism 

associated with various animal diseases and has been indicated as a potential contributor to 

methicillin resistance within the environment [146]. However, the horse from which the 

sample was taken had no reported skin health issues, though did have a mild respiratory 

infection [27]. Even well-established pathogens, like S. aureus or S. epidermidis, can exist in 

non-disease states within the skin microbiome only causing issues when the skin barrier is 

broken or when the community is disrupted [68, 69]. Thus, the detection of disease-

associated genera or species on mammalian skin can provide only a limited insight into host-

microbe dynamics. Ultimately, more work is necessary to further define the interactions these 

bacterial species might have with their mammalian hosts. Regardless, that they have been 

detected at all on mammalian skin demonstrates the ability for cpn60 to resolve species and 

its application towards profiling the mammalian skin microbiome.  
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Despite the taxonomic resolution provided by the cpn60 gene and the observations of 

specific Staphylococcaceae communities of the mammalian skin microbiome, further 

analysis of the cpn60 gene dataset is limited by shallow sequencing depth and mammalian 

host representation. Many of the samples originally sent for sequencing (58%) did not 

produce a sufficient read depth (i.e., > 1000 reads) and had to be removed to avoid bias 

during analysis. The microbial biomass on mammalian skin is variable and can be 

comparably low, with dry-swab sampling of the skin producing the least amount of biomass 

compared to other methods [147]. The samples used in this current study were collected via 

the dry-swabbing method [27] and therefore are likely to have relatively low biomass and 

associated DNA yields. Additionally, the samples are several years old (>3 at time of 

sequencing), have been stored at -20°C instead of the recommended -80°C for skin samples 

[147]. Combined, these factors may have impacted the integrity of the extracted DNA, 

resulting in reduced amplification yield and subsequent sequencing depth. The cpn60 gene 

itself has a median copy number of one copy per genome [101] and so would also limit the 

amount of template available in PCR and the number of reads available for sequencing. 

Future exploration of specific communities of the mammalian skin microbiome using the 

cpn60 gene would benefit greatly from using genomic DNA that has been recently extracted 

from mammalian skin samples, ideally collected using wet-swabbing or tape-stripping to 

increase biomass [147].  

2.5 Conclusion 

The increased taxonomic resolution provided by the cpn60 marker gene provided 

greater phylogenetic context for the mammalian skin microbiome profiles generated here. 

Using the cpn60 gene, phylosymbiosis was observed in mammals belonging to class 

Perissodactyla and Artiodactyla when using the phylogeny-based UniFrac distance metric, 

which was not possible for the 16S rRNA gene. Resolving species from within genus 

classifications provide important insight into the distribution and presence of specific taxa 

among mammalian hosts and their potential impacts on host skin health and disease. The 

cpn60 gene also revealed previously unobserved associations between mammalian hosts and 

specific taxa, such as the case of Jeotgalicoccus halophilus, that might have otherwise 
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remained unnoticed. Importantly, amplification of the cpn60 gene does not exclude specific 

bacterial communities over others (i.e., archaea-specific or species-specific primers) and can 

thus be used for both whole microbial community and species-specific profiling. Although 

the 16S rRNA gene is likely to remain as the dominantly used marker for amplicon-based 

studies, the cpn60 gene is complementary to microbiome studies where universal low-level 

taxonomic resolution is desired. However, if cpn60 amplicon studies are to be compared with 

those produced using the 16S rRNA gene, it is imperative that a standardized taxonomy 

database be maintained alongside the cpnDB sequence reference database. In lieu of a 

separate taxonomy database, progress towards integrating the cpnDB with existing taxonomy 

databases, such as SILVA [93, 94] or the ribosomal database project [148] will be valuable 

for future cpn60-based research.  
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Chapter 31 

Archaea are rare and infrequent members of mammalian skin microbiome 

3.1 Archaea on mammalian skin 

Mammalian skin, which includes both humans and non-human mammals, hosts 

spatially and temporally diverse microbial communities due to extensive chemical and 

physical variability. Skin topography and epithelial cell type [149], underlying vasculature 

and endocrine system physiology [150], moisture and oil content [151], and pheromones [11] 

can all influence microbial colonization and establishment, and these vary according to 

mammalian host and body site. For instance, sebaceous and apocrine gland secretions create 

local anoxic areas that provide metabolic substrates for microbial growth [151, 152]. Human 

apocrine glands are located primarily in the armpits (i.e., axillae), whereas rhesus monkeys 

and baboons have a more diffuse apocrine system [5]. The microbial communities that 

develop according to these physiological differences, primarily represented by 

Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria [21], have direct and 

measurable impacts on host health. For humans, shifts away from a “normal” microbial 

community composition are associated with eczema [153, 154] and psoriasis [155]. Similar 

links between mammalian dysbiosis and disease have been reported for dogs [23, 156], 

bovines [157], and camels [158]. Therefore, the interconnectivity between mammalian skin 

physiology, host health, and skin microbiota underscores the importance of elucidating 

factors that control the diversity and composition of skin-associated microbiomes.  

The microbiota of mammals are dominated by bacteria [22, 44, 151, 159, 160], 

although high-throughput sequencing approaches have captured archaeal signatures as well. 

Early research exploring archaea in mammals focused primarily on the gastrointestinal tract, 

where methanogenic Methanobacteriota (formerly Euryarchaeota [91]) members were first 

detected [72, 161–163]. In this context, archaeal communities have been characterized 

sufficiently to predict mutualistic contributions to host metabolism [42, 73] as well being 

 
1 A version of this chapter has been accepted for publication as: 
Umbach AK, Stegelmeier AA, Neufeld JD. Archaea are rare and uncommon members of the mammalian skin 
microbiome. mSystems 2021. DOI:10.1128/mSystems.00642-21 
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implicated in disease etiology [164, 165]. Archaea are now widely accepted as members of 

the gut and mucosal microbiota of mammals and more recently have been reported within 

human breast milk [166]. In contrast to many gut-associated studies, the mammalian skin 

“archaeome” is poorly characterized, to the extent that archaea have often been excluded 

from comprehensive skin microbiome reviews due to insufficient data [151, 167, 168]. 

However, in the last half decade archaea have been reported as skin microbiota members of 

multiple individuals and body locations [39–42]. Limited existing research on the skin 

archaeome demonstrates the need for additional study of mammalian skin and its associated 

archaeal populations in this emerging field of study. 

To our knowledge, Probst and colleagues were the first to demonstrate that archaea 

can be detected as representatives of human skin microbiota [43]. By sampling torsos of 13 

individuals, their study using archaea-targeting methods estimated that human skin harbours 

an average archaeal relative abundance of 0.60% and as high as 4.2% of the total microbial 

community [43]. In considering bacterial and archaeal 16S rRNA gene copy number, Probst 

et al. suggests that these values could increase to an average of 1.40% and maximum of 

9.86% [43]. A subsequent study also using an archaea-targeted approach detected an average 

human skin archaeal community of 1.1% for ages 1 to 11 years, 0.2% for ages 12 to 60, and 

4.7% for ages 61 to 75, with a maximum of up to 10.4%, and were dominated by putative 

ammonia-oxidizing archaea (AOA) of the class Nitrososphaeria (previously phyla 

Crenarchaeota/Thaumarchaeota, now Thermoproteota) [40]. In contrast, studies using 

universal prokaryotic (i.e., Bacteria and Archaea) detection methods suggest a limited skin-

associated archaea community. Extensive skin sampling of cohabitating couples revealed 

average archaeal sequence relative abundances of less than 0.5%, with archaea detected only 

for a few samples [22]. A human skin study evaluating the impact of polycyclic aromatic 

hydrocarbons pollutants observed similarly low archaeal relative abundances of less than 

0.01% [169]. Furthermore, a large-scale human metagenome survey revealed that archaea 

accounted for approximately 1% of all human metagenome sequences, with the majority of 

these sequences affiliated with the Methanobacteriota phylum from gut or mucosal 

membranes [44]. A large study consisting of 589 mammalian skin swab samples concluded 
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that less than 0.1% of all sequences were associated with archaea, with most sequences 

affiliated with the Methanobacteriota and Halobacteriota phyla [27]. More recently, a 

shotgun metagenome study investigating udder cleft dermatitis on dairy cows observed 

archaea associated reads nearing 7% relative abundance, represented primarily by 

Methanobacteriota [170]. 

Skin-associated built environments, such as keyboards and door handles, can 

potentially act as an extension of the skin environment through high frequency contact and 

deposition of skin microorganisms. Both keyboard and phone microbiomes are influenced by 

the corresponding finger microbiomes of their users [24, 171] and keyboard microbiomes 

reflect the skin of their users such that they can be used to identify their specific user [24]. 

From a survey of campus door handle microbiomes, the results revealed that door handles 

produced microbial profiles that were more similar to skin than to soil or other external 

environments [118]. Archaeal taxa detected on these handles were primarily affiliated with 

Methanobacteriota and Halobacteriota phyla, although archaea were detected at a low 

relative abundance of less than 0.01% of all amplicon sequences [118]. Thus, profiling the 

archaeome of skin-associated surfaces will enable a better understanding of the detected skin-

associated archaea and their allochthonous or autochthonous origins. 

In order to help further address archaeal diversity and relative abundance on 

mammalian skin, this work explored archaeal sequences associated with skin and skin-

associated environments using previously published data from human skin [22], non-human 

mammalian skin [27], and door handles [118], as well as newly generated fingertip and 

keyboard sample data. Using multiple primers sets for a subset of samples, this study 

evaluated 16S rRNA gene amplicon sequence profiles from 1,058 skin samples (i.e., 458 

human, 600 non-human mammalian) and 630 skin-associated samples (i.e., 240 keyboard, 

390 door handles), for a total of 1,688 sample profiles. The results demonstrate infrequently 

detected presence and low archaeal relative abundances on skin and skin-associated surfaces, 

with only few exceptions. When detected, mammalian skin sequences that affiliated with 

archaea were primarily assigned to the Methanobacteriota and Halobacteriota phyla; 

putative AOA from the Nitrososphaeria were largely undetectable. 
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3.2 Skin archaea methods 

3.2.1 Sample collection, selection, and processing 

Keyboard and finger swab samples from individuals between the ages of 18 and 70 

were collected for this study in accordance with the University of Waterloo Office of 

Research Ethics (ORE) project 40212. After participants washed their hands, the index and 

middle fingers on the left and right hands were swabbed for 30 seconds in a circular motion 

with a sterile foam swab (Puritan Medical Products, ME, USA). Participants were then asked 

to perform a typing exercise ten times (“The quick brown fox jumped over the lazy dog 

1234567890”). The same fingers were swabbed again using new sterile swabs. Twenty-four 

keyboard keys per keyboard were selected to capture different usage frequencies based on an 

analysis with WhatPulse version 2.8.0. Each individual key was swabbed for 30 seconds with 

a new sterile swab. All swabs were then stored in applicator tubes in a -20°C freezer. 

Genomic DNA was extracted from swab samples using the PowerSoil DNA Isolation Kit 

(Qiagen, Canada) using the manufacturer’s protocol with minor protocol modifications. 

Swab tips were removed with a flame-sterilized sterile scalpel and deposited into a 

PowerSoil bead-beating tube and incubated at 70°C for 10 minutes on a rotating holder. The 

tubes were then subjected to mechanical lysis using a FastPrep24 agitator (MP Biomedicals, 

OH, USA) at 5.5 m/s for 45 seconds and extracted following manufacturer protocols. The 

samples were eluted in 10 mM Tris and stored at -20°C prior to PCR amplification and 

sequencing. 

Previously published data from mammalian [27] and human [22] skin studies, and a 

campus door handle survey [118], were compiled here for comparison. The 

Pro341F/Pro805R V3-V4 primers used in these studies were selected based on their original 

design for increased archaeal detection [172]. In order to test whether archaeal distributions 

were influenced by universal prokaryotic primers used in generating results for these earlier 

studies (Pro341F/Pro805R; V3-V4 regions; [172]), this research obtained extracted DNA 

from 38 human and 54 mammalian skin samples (92 samples total) to generate new 16S 

rRNA gene profiles using additional universal prokaryotic primers as detailed below. 

Samples included in the primer set comparison were selected based on previously observed 
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archaeal sequences in those samples such that samples with greater archaeal relative 

abundances were selected to increase the likelihood of obtaining sequences for direct 

comparison.  

3.2.2 PCR and sequencing 

The V4-V5 regions of the 16S rRNA gene were amplified from all fingertip swabs, 

keyboard swabs, and 90-sample subset of human/mammalian skin (see above) using 

universal prokaryotic primers 515F-Y (5’- GTGYCAGCMGCCGCGGTAA - 3’) [87] and 

926R (5’ - CCGYCAATTYMTTTRAGTTT - 3’) [89]. Both primers were modified to 

include a 6-base barcode sequence used for identification of amplicons, an adaptor sequence 

for flow cell binding, and an Illumina primer binding site [173]. The PCR was performed in a 

sterile ISO 5 HEPA PCR hood, which was cleaned with 70% ethanol before being treated 

with UV for 15 minutes prior to use. A PCR master mix was created using UV-treated PCR-

grade water, 1x ThermoPol buffer, 0.2 µM forward primer, 0.2 µM reverse primer, 200 µM 

dNTPs, 15 µg BSA, 0.625 units of Hot Start Taq DNA polymerase (New England Biolabs, 

MA, USA), and 1 µL of DNA template in each 25-µL reaction. Positive and negative PCR 

controls were included, as were extraction kit controls. Amplification was performed using a 

T100 thermal cycler (Bio-Rad Laboratories, Canada) using the following reaction conditions: 

95°C initial denaturation for 3 minutes, and 40 cycles of 95°C denaturation for 30 seconds, 

55°C annealing for 30 seconds, 68°C extension for 1 minutes, with a final extension at 68°C 

for 7 minutes. All PCR amplifications were performed in triplicate then pooled in equimolar 

quantities before purifying on a 1% ethidium bromide gel. Amplicons were extracted from 

the gel and purified using a Wizard SV Gel and PCR Clean-Up System (Promega, WI, USA). 

The library was diluted to 8 pM and 15% PhiX control v3 (Illumina, Canada) was added 

prior to sequencing. The 515F-Y/926R samples were sequenced on a 2x250 cycle TG MiSeq 

Reagent Nano Kit v2 (Illumina Canada, MS-103-1003) on a MiSeq (Illumina). The keyboard 

and fingers samples were sequenced using a 2x250 cycle MiSeq Reagent Kit v2 (Illumina 

Canada, MS-102-2003). 
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3.2.3 Processing of sequencing reads 

Sequence reads were demultiplexed using the MiSeq Reporter software version 

2.5.0.5 (Illumina). Demultiplexed sequences were processed to generate amplicon sequence 

variants (ASVs) using QIIME2 [174], managed by Automation, eXtension, and Integration 

of Microbial Ecology (AXIOME) v3.0 [175]. The impact that truncation length and primer 

sequence removal methods might have on downstream archaeal and bacterial read processing 

archaeal proportions was assessed. Forward and reverse reads were trimmed using cut-adapt 

[176] version 2019.7.10 to a shared 515 to 805 nucleotide V4 region across all datasets using 

primers 515F-Y and Pro805R (3’ - GACTACNVGGGTATCTAATCC - 5’). Trimmed reads 

were denoised, merged, and chimeras removed using DADA2 version 2019.10.0 [123] while 

maintaining a minimum of 12-base overlap for the forward and reverse reads. The ASVs 

were classified using a naïve Bayes classifier trained with the SILVA 132 SSURef NR99 

database [94], with additional taxonomic annotation and reassignment using the GTDB in 

order to ensure compliance with SILVA 138 classifications [91]. Additional 454 

pyrosequencing data from a previous human skin microbiome study (“Roche 454”) [40] was 

imported as single-end reads through QIIME2 using the qiime dada2 denoise-pyro command 

and trimmed using an identical workflow to the paired-end reads, excluding the merge-

denoising step. Negative controls were manually inspected to ensure that they were distinct 

from sample profiles and were treated appropriately. Only two ASVs had overlap among 

three controls and four non-human mammalian skin samples. Because these ASVs were 

observed in only a small number of controls (3/81) and had low read proportions for both the 

controls and samples, these ASVs were left in to avoid removal of potentially valid skin-

associated archaeal reads. Because the Roche 454 dataset was generated with archaea-

specific primers, these data are limited to analysis of the identities and distributions of 

archaeal genera rather than their relative abundances in relation to bacteria. 

All 515F-Y/926R sequences generated for the current study were deposited in the 

European Nucleotide Archive (ENA) under project accession number PRJEB42587 

(human/mammalian skin 92-sample subset) and PRJEB42589 (finger and computer keyboard 

swabs). Sequence data from project IDs PRJNA385010 (mammalian skin [27]), 
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PRJNA345497 (human skin [22]), and PRJNA313528 (human skin [40]) were retrieved from 

the Sequence Read Archive. Sequence data from project PRJEB10962 (campus door handles 

[118]) was retrieved from the European Nucleotide Archive.  

3.2.4 Tree generation 

The 16S rRNA gene multiple sequence alignment of all archaeal ASVs was 

performed using ClustalW [126], with a gap opening penalty of 15.0 and a gap extension 

penalty of 6.66, in MEGA X version 10.1.8 [127]. Sequence alignments were trimmed for 

gaps as appropriate. A maximum likelihood tree was generated in MEGA X using a GTR +G 

+I nucleotide substitution model; confidence was assessed with 1000 bootstraps. 

3.2.5 Assessment of primer coverage 

Universal prokaryotic and archaea-specific primers used in this current and previous 

studies were analyzed in silico for their coverage of the domain Archaea. Forward and 

reverse primer sequences were entered into SILVA TestPrime version 1.0 using the SSU 138 

database [177]. Primers were tested without allowing mismatches (“Zero mismatch”) and by 

allowing a single mismatch provided that it did not occur within five bases proximal to the 3’ 

end (“One mismatch”). Database coverage was parsed from the “taxonomy browser” into 

three categories: “Bacteria”, “Archaea” and “Nitrososphaeria”. 
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3.3 Results 

This study evaluated archaeal distributions within eight 16S rRNA gene amplicon 

datasets (Table 3-1; Supplemental dataset S1 

[https://figshare.com/articles/dataset/Supplemental_dataset_S1_xlsx/14248580]). Four were 

collected from previously published data (“mammalian skin”, “human skin”, and “campus 

door handles”, “Roche 454”), two were from newly obtained samples (“keyboard” and 

“fingers”), one represented a subset of the mammalian and human skin data with 92 samples 

prioritized by archaeal presence (“Pro341F/Pro805R”), and another was composed of the 

same sample subset that was processed again for sequencing by using an alternate universal 

prokaryotic primer set (“515F-Y/926R”). All primers used to generate amplicon data 

included in this study were tested in silico for primer coverage. The Pro341F/Pro805R and 

515F-Y/926R comparison datasets were generated to test for possible primer bias against 

archaeal 16S rRNA gene sequences in previous data. Overall, coverage of the Archaea 

domain for the universal prokaryotic primers (i.e., Pro341F/Pro805R, 515F-Y/926R) was 

extensive (Table 3-2). Both primers had greater than 65% coverage of Archaea at zero 

mismatches, although Nitrososphaeria coverage was limited depending on the primer set 

(515F-Y/926R, 83%; Pro341F/Pro805R, 16%). However, with only one mismatch permitted 

(not proximal to the 3’ end), both primers had greater than 85% coverage for both Archaea 

and Nitrososphaeria. Conversely, archaea-specific primers (i.e., 344af/517ur, 344af/915ar) 

that were used to generate Roche 454 data had below 50% coverage for Archaea at zero 

mismatch but increased to 65% to 71% for one non-3’-end mismatch. Coverage of 

Nitrososphaeria with these archaea-specific primers remained below 40% for both zero and 

one mismatch.  
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To assess the impact that truncating the 16S rRNA gene amplicons from different 

studies to a common 515 to 805 region might have on archaeal taxonomic proportions and 

relative abundance, several truncation strategies were evaluated. Archaeal taxonomic 

proportions remained largely unchanged regardless of method, except for the quality-

trimmed “515_Tr” approach (Figure 3-1). The proportion of archaea and bacteria-associated 

reads was also unaffected for most of the datasets with the chosen method, although the 

nonhuman mammalian skin and door handle datasets showed an increased in bacteria-

associated reads and a decrease in archaea-associated reads (Figure 3-2).  

Archaeal relative abundances (Figure 3-3A) and ASV profiles (Figure 3-3B) were 

similar based on profiles generated with the 515F-Y/926 and Pro341F/Pro805R primer pairs. 

Archaea were detected in 26 and 18 of the 92 samples (28% and 20% of samples) for the 

515F-Y/926R and Pro341F/Pro805R primer pairs, respectively (Table 3-3), with an average 

archaeon-associated read count of 25 ± 49 and 14 ± 19 (Supplemental dataset S1 

[https://figshare.com/articles/dataset/Supplemental_dataset_S1_xlsx/14248580]). Of the 20 

samples with detectable archaea generated with only one of the two primer pairs, archaeal 

relative abundances did not exceed 0.3%, except for a single mammalian skin sample with a 

relative abundance of 0.65%. Archaea on human skin were largely undetected, regardless of 

the primer pair used. For samples with archaea detected using both primers sets, archaeon-

associated ASV profiles were similar (Figure 3-3B). Samples with a low number of reads 

varied the most from their paired samples, whereas pairs with higher read counts were highly 

similar (Figure 3-3B). The 16S rRNA gene profiles generated using the 515F-Y/926R primer 

set typically contained additional archaeon-associated ASVs (Figure 3-3B), albeit in lower 

abundance compared to the dominant ASVs common to paired samples analyzed with both 

primer sets.  

Of the eight datasets included in our analysis (Table 3-3), the subset mammalian skin 

samples that were amplified with 515F-Y/926R universal prokaryotic primers had the highest 

archaeal relative abundances, representing 0.12±0.22% of all reads overall (Figure 3-4A). 

The non-human mammalian skin sample set had the second highest archaeal relative 

abundance (0.08±0.04%) and accounted for the majority of archaea-positive samples (194; 
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65.5%) within the study, although most samples (352; 64.5%) did not contain any detected 

archaea. Human skin had a very low archaeal relative abundance (2.0x10-3±0.02%) with only 

a fraction of samples (5.9%) containing archaeon-associated sequences. The archaeal relative 

abundance of the finger dataset was similarly low (0.01±0.06%) and confined to two samples 

(2.5% of dataset), and keyboard and door handle datasets were also low (0.02±0.09% and 

7.0x10-3 ±0.04%). Despite these average relative abundances, most samples from all eight 

datasets (excluding the previously published Roche 454 dataset, 1,392; 82.5%) had no 

detected archaeal reads, despite thousands of reads per sample. Although most samples had 

no detected archaea, several samples (296; 17.5%) contained archaeon-associated sequences, 

though none exceeded 2% relative abundance. For example, sample “16SOB” was sourced 

from an olive baboon and had the highest archaeal relative abundance of any mammalian 

skin sample (1.51% with primers Pro341F/Pro805R; 1.82% with primers 515F-Y/926R). The 

only other sample with an archaeal relative abundance greater than 1% belonged to the 

keyboard dataset, at 1.12%, sourced from a female participant between 20 and 29 years of 

age. Together, the data generated with both universal primer sets yielded only a small 

proportion of archaea-positive skin or skin-associated surface samples. 

The taxonomic distribution of archaea (Figure 3-4B) and the number of archaeal 

ASVs varied among datasets and were dominated primarily by only a few phyla. Non-human 

mammalian skin was dominated by Methanobacteriota sequences, which constituted 82.2% 

of all archaeal reads. Halobacteriota and Nitrososphaeria were the next most prevalent 

phyla, corresponding to 14.0% and 1.99% of archaeal reads, respectively. Conversely, the 

human skin archaeome was comprised of Halobacteriota (43.8% of archaeal reads), 

Methanobacteriota (24.4% of archaeal reads), and Nanoarchaeota (22.7% of archaeal reads). 

Similar to the mammalian skin archaeome, Nitrososphaeria represented a small proportion of 

archaea sequences (4.6% of archaeal reads). The finger swab dataset contained archaea 

belonging to only the Methanobacteriota and Halobacteriota phyla, at 74.6% and 25.4% of 

archaeal reads, respectively. The Pro341F/Pro805R and 515F-Y/926R datasets, representing 

a subset of all human and mammalian skin samples, both revealed high proportions of 

Methanobacteriota and Halobacteriota. Overall, within all archaeal sequences from the 
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subset of all mammals and humans, the 515F-Y/926R dataset showed an increase in 

Nitrososphaeria proportions (18.7% of archaeal reads) compared to Pro341F/Pro805R (7.3% 

of archaeal reads). Campus door handles were dominated by Methanobacteriota (46.9% of 

archaeal reads) and Halobacteriota (42.4% of archaeal reads). In contrast, sampled computer 

keyboards were dominated by Nitrososphaeria (54.3% of archaeal reads) and Nanoarchaeota 

(25.7% of archaeal reads).  
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Figure 3-2  The effect of truncation and primer removal methods on archaeal and bacterial 

read numbers following processing through DADA2. The “Tr” and “UnTr” samples refer to 

quality-trimmed and untrimmed datasets respectively, with primer sequences removed from 

the reads by manually trimming the 5’ end. The “CA” samples refers to cut-adapt [176] 

which was used for primer sequence removal. Samples with the “515” prefix indicate those 

in which the 16S rRNA gene reads were excised to the common 515 to 805 region used in 

the study. All changes within the sample datasets were compared to their original quality-

truncated dataset (Tr), indicated by the dashed line at 1.0. 
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Figure 3-4 Archaeal 16S rRNA 

gene relative abundances (A). 

The relative abundance of 

archaeal sequences was 

calculated by dividing the 

number of sequences affiliated 

with archaeal ASVs by the total 

number of sequences for each 

sample. Relative abundance 

averages for all samples in each 

dataset is indicted by orange 

squares within the boxplot. The 

taxonomic proportion of the 

archaeome of the skin and skin-

associated surfaces is separated 

by phyla or class (B). Archaeal 

taxonomic proportions include 

archaeal 16S rRNA gene reads 

only and represent the 

proportion of archaeal reads 

belonging to each phylum or 

class. Class Nitrososphaeria was 

separated from the phylum 

Thermoproteota to highlight 

putative AOA-associated 

archaea specifically. The 

Thermoproteota category thus 

does not contain any 

Nitrososphaeria-associated 

reads.
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Analysis of all archaeal genera present within each dataset (including the Roche 454) 

showed some overlap, with 31 of 54 genera observed in at least two datasets (Figure 3-5). 

The remaining 23 genera were unique to a single dataset. These unique genera span the 

archaeal DPANN and TACK superphyla and include ASVs present at various relative 

abundances. Within the Methanobacteriota, Methanobrevibacter was the most common 

genus, found in nearly all samples, and was also present in the previously published Roche 

454 human skin amplicon dataset [40]. Another genus affiliated with the Methanobacteriota 

is Methanosphaera, which was found associated with several samples, either alone or in 

combination with Methanobrevibacter sequences. Various Halobacteriota were present, with 

Halococcus/Halococcaceae and Methanocorpusculum found within several mammalian skin 

samples, including the Roche 454 dataset. Although the Halobacteriota (excluding 

Methanocorpusculum) were not prevalent across samples within a dataset, they accounted for 

a considerable proportion of all archaeal reads (Figure 3-4B). The AOA-associated 

Nitrososphaeria were present but were rare and detected in only 79 of 1,710 samples (4.6%) 

included in this analysis (Roche 454 included). Of those 79, 49 (62.0%) belonged to the 

Roche 454 dataset. The non-human mammalian skin and Roche 454 datasets shared the same 

Nitrososphaeria-classified genera, except for one ASV that could not be resolved to the 

genus level (i.e., “Nitrosotaleaceae_54”), which was associated exclusively with the Roche 

454 dataset (Figure 3-5). On non-human mammalian skin, AOA-associated genera were 

found on the skin of several mammals (i.e., olive baboon, squirrel, donkey, dog, groundhog, 

cheetah, and asian elephant). The genus Nitrosocosmicus was absent from human skin 

datasets, although ASVs associated with this genus were present in all other datasets (i.e., 

non-human mammalian skin, keyboards, fingers, Roche 454, door handles) and was one of 

the more common archaeal genera detected.
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Figure 3-5 D
istribution of all archaeal genera across skin and skin-associated surfaces. The A

SV
 table w

as collapsed to the genus level and then 

filtered for archaeal taxa and contains any sam
ple w

ith a non-zero num
ber of archaeal 16S rR

N
A

 gene reads. The size of the bubbles represents the 

relative abundance of the genera w
ith respect to the total num

ber of archaeal 16S rR
N

A
 gene reads w

ithin a sam
ple. A

rchaeal A
SV

s not resolved 

to a genus level w
ere collapsed to their m

ost resolved taxonom
ic level and are indicated w

ith an “*” and are referred to as “genera” w
ithin the 

results and discussion. A
 hum

an skin dataset [32] w
as included for com

parison. 
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An analysis of 193 archaeal ASVs associated with new and previously published 

datasets analyzed in this study (Roche 454 excluded) revealed that detected archaeal ASVs 

were differentially distributed between datasets, and that the overlap between datasets was 

limited (Figure 3-6). The non-human mammalian dataset contained 57 of the 69 (82.6%) 

Methanobacteriota ASVs detected; 49 (71.0%) of those were unique to the dataset. The 

remaining eight ASVs were observed in two or more datasets, including three 

Methanobacteriota ASVs that were present in three datasets (44329_Methanobacteriaceae, 

12677_Methanobacteriaceae, 8955_Methanobacteriaceae). The Halobacteriota were 

similarly dominant, with 35 of 52 (67.3%) total ASVs were unique to non-human 

mammalian skin. Only a single Halobacteriota ASV, “43418_Methanosaetaceae”, was 

shared between more than one dataset and belonged to both non-human mammalian skin and 

human skin samples. The 21 Nitrososphaeria ASVs originated solely from non-human 

mammalian skin (n=9; 42.9%), keyboard (n=4; 19.0%), door handles (n=4; 19.0%), and 

human skin (n=1; 4.8%) datasets, with Nitrososphaeria absent from the separate finger 

dataset. The remaining three (14.2%) Nitrososphaeria ASVs were shared between datasets, 

with two of the ASVs were shared between two datasets, and a single ASV, 

“26019_Nitrososphaeraceae” shared among three datasets: non-human mammalian skin, 

keyboard, and campus door handles. The ASVs associated with Thermoproteota, 

Iainarchaeota, and Nanoarchaeota represented the remaining 51 (26.4%) ASVs and were 

observed more broadly within multiple datasets but had no overlap among datasets. 
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Figure 3-6 The prevalence and overlap of archaeal ASVs on skin and skin-associated 

surfaces. The tree contains all archaeal ASVs from each dataset. ASVs in black are 16S 

rRNA gene reference sequences retrieved from the NCBI and SILVA databases, whereas 

remaining ASVs are coloured by their respective class or phylum. Because not all ASVs 

were resolved to a species or genus level, all ASVs were renamed to a family level for 

consistency. ASV overlap between datasets is indicated through the heatmap squares. The 

maximum likelihood tree was constructed using a GTR +G +I model with 1000 bootstrap 

replicates. 
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3.4 Discussion 

3.4.1 Archaea on mammalian skin are rare and uncommon 

This amplicon-based assessment of skin and skin-associated microbiota revealed an 

infrequent and low-abundance distribution of archaea among all 1,688 samples from skin and 

skin-associated amplicon datasets. The limited detection of archaea on mammalian skin 

suggests that archaeal communities are relatively rare, of low relative abundance, and below 

common detection limits when using PCR with universal prokaryotic primers and high-

throughput sequencing. The disparity between human skin and non-human mammalian skin 

is expected considering the large differences in their local environment and hygiene 

practices. Most non-human mammalian skin samples contained no detectable archaeal 

sequences and no sample exceeded 2%. Given differences in skin physiology, living 

conditions, and geographic origins of the host, it was not unexpected to observe large 

variations in archaeal distributions among mammalian skin samples, particularly within 

samples where archaea were detected. For example, although human and non-human 

mammalian skin both contained sequences associated with Methanobrevibacter, non-human 

mammalian skin had a much greater comparable abundance and sample prevalence. 

Although Methanobrevibacter taxa are typically host-associated within the gut [178, 179], 

they are suggested to be distributed in soil [180] and water [181] and previous results suggest 

that a transient environmental skin layer is common for mammalian hosts [27]. It is perhaps 

more likely that gut-associated Methanobrevibacter are instead being deposited into the 

environment, via animal feces, which are then taken up onto the skin. The AOA are abundant 

members of soil (and other environments) where they contribute to the biogeochemical 

cycling of nitrogen [182] and were also found sporadically and at low relative abundance 

among mammalian skin samples. Nitrososphaeria-associated reads comprised only a small 

portion of the total archaeal reads in non-human mammalian skin (1.9%) and human skin 

(4.5%) and are likely derived from environmental sources [182, 183]. Terrestrial and semi-

aquatic non-human mammals in close contact with their respective environments and debris 

(e.g., feces, urine) without the routine hygiene practices of humans, are perhaps more likely 

to have skin communities containing allochthonous archaea from environmental reservoirs. 
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The 12 shared archaea-associated ASVs in all datasets were associated with the 

Methanobacteriota, Nitrososphaeria, and Halobacteriota. These taxa have been observed in 

environmental [180, 181] or commercial (e.g., food, cosmetics) [184] samples which might 

explain their ubiquity across datasets.  

The skin-associated built environments were equally absent of detected archaea, with 

the majority of keyboard (93.8%) and campus door handle (90.0%) samples containing no 

detected archaea. The keyboard and door handle built environments have different chemical 

and physical environments from skin, but via frequent human contact can develop skin-like 

microenvironments and microbial communities [24, 171]. The few archaeal sequences 

present on campus door handles were associated with archaea in a similar pattern as observed 

in human and non-human mammalian skin: primarily Methanobacteriota and 

Halobacteriota, and likely derived from environmental reservoirs as suggested elsewhere 

[118]. Additionally, food and cosmetic reservoirs for Halobacteriota-associated genera have 

been identified [184] and might serve as an explanation for the observed archaeal sequences. 

However, although only representing less than 0.02% of the total reads, the archaeal 

community proportions observed on keyboards were markedly different from any other 

analyzed dataset within this study. Instead of a dominance of Methanobacteriota, as seen in 

other datasets analyzed here, the AOA-associated class Nitrososphaeria collectively 

contributed more than 50% of archaeal reads. Most of these reads (>90%) can be attributed to 

two individuals: a female between the age of 20 and 29, and a female of greater than 60 years 

of age. The detected Nitrososphaeria may not be entirely representative of the typical 

keyboard microbiota given that Nitrososphaeria associated reads were absent from most 

other keyboard sample data. Instead, these sequences might be attributed to individual 

differences in the keyboard users themselves or their activity habits (e.g., eating multiple 

meals at the keyboard, local environment).  

Metagenomic studies focusing on skin-associated archaea are rare, making 

assessment of the skin archaeome difficult. Only a small number of studies address skin 

archaea directly with archaea-targeted approaches [39–41, 43]. All other skin-associated 

archaea data is produced from holistic skin microbiome studies utilizing universal 
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prokaryotic primers and 16S rRNA gene amplicon sequencing [22, 27, 169] or metagenome-

assembled genomes [19, 44, 170], where skin-associated archaea attention is minimalized 

due to their low abundance. The data presented on the rarity of skin-associated archaea in this 

current work, along with the comparisons made to existing skin archaea literature, represents 

the near-entirety of skin archaeome research. However, skin microbiome profiling can be 

impacted by several factors which could affect the profiling of the skin archaeome. For 

example, our current study samples only the outermost portion of the epidermis (i.e., stratum 

corneum) although it is suggested that the lower epidermis and subepidermal areas of the 

skin might harbour microbial communities [4]. As well, our study encompasses a human 

population specific to a region in North America, and regionality and race has been shown to 

impact skin communities [185]. Furthermore, individual hygiene habits, such as deodorant 

use [186] and showering [147] alter microbial community composition. Within this current 

study, there was the potential that shortening the 16S rRNA gene amplicons to the common 

515 to 805 region could impact the classification of archaeal sequences and taxonomic 

proportions. Taxonomic proportions were shown not to be impacted by quality trimming and 

truncation method (Figure 3-1), although some datasets (i.e., nonhuman mammalian skin and 

door handles) experienced changes in proportions. In the case of the nonhuman mammalian 

skin and door handles datasets, proportional changes in archaeal relative abundance are a 

result of up to a two-fold increase in the number of bacteria-associated reads output from 

DADA2 after removing manual quality-based read truncation steps (i.e., “Tr” vs “UnTr”). 

Quality trimming can have a large impact on read assignment and read merging within high-

throughput amplicon sequencing datasets, particularly with lower quality sequencing data 

[187, 188]. Both the nonhuman mammalian skin and door handle datasets contained lower-

quality sequence data that might have been impacted by excess subjective quality-based 

trimming. In absence of manual quality trimming, DADA2 still applies an automatic quality 

filtering step that removes spurious and chimeric sequences [123]. Therefore, the increased 

number of bacteria-associated reads in the untruncated “UnTr” datasets is likely an accurate 

representation of the expected read numbers, and by extension, archaeal proportions. Despite 

these areas of concern, our results provide a meaningful contribution to the knowledge of the 
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skin archaeome but highlights an area of research that is lacking and that would benefit from 

additional contributions and comparisons. 

3.4.2 Implications for previous studies of human skin archaea 

Although the same genera were shared between this study and those from a Roche 

454 dataset (e.g., Figure 3-5), our data suggest much lower archaeal relative abundances for 

human skin samples than what has been previously estimated using qPCR archaeal and 

bacterial 16S rRNA proportions [40, 43]. Primary causes for these differences may be 

primer- and method-specific. Successful detection of archaeal sequences is dependent on 

using primers that include adequate coverage of the domain Archaea. This current study 

leveraged two universal prokaryotic primer pairs that, at least in silico, have extensive 

coverage of the archaeal and bacterial domains (Table 3-2). The same DNA extraction 

method and 515F-Y/926R prokaryotic primers were recently used to detect archaeon-

associated ASVs of the AOA Nitrosocosmicus genus in wastewater treatment plants [189], 

with very high agreement between archaeal abundances (~1%) observed among amplicon-

based, qPCR, metagenomic, and fluorescent in situ hybridization (FISH) methods [189, 190]. 

Additionally, an evaluation of several common universal prokaryotic primers concluded that 

515F-Y/926R was the optimal primer pair for detecting archaea in marine ecosystems [191]. 

This work also demonstrates with direct comparisons that archaeal detection between both 

primer pairs is similar. Universal prokaryotic primers allow archaea to be co-amplified 

alongside bacteria, providing a sample-by-sample characterization of archaeal relative 

abundances. Although this provides community context, it has been suggested that co-

amplification of bacteria and archaea could introduce bias against archaea because of low 

template exclusion [192, 193]. Alternatively, studies by Probst et al. [43] and Moissl-

Eichinger et al. [40] estimated absolute abundances based on qPCR using archaea-specific 

344af/517ur primers. Taxonomic information was generated using the 344af/915ar primers 

separately for 16S rRNA gene sequencing [40]. Although community context is lost, because 

of the exclusion of bacterial 16S rRNA genes during amplification, the archaea-specific 

primers could amplify rare archaeal 16S rRNA gene sequences that otherwise might be 

outcompeted by bacterial 16S rRNA template.  
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Extraction bias and uncertainty associated with qPCR amplicon specificity and the 

capacity for the 344af/517ur primers to unintentionally amplify bacterial template is a 

concern. Using biased extraction methods that do not account for the physiological 

differences between bacteria and archaea cell structures (e.g., S-layer, methanochondroitin) 

[194] has been suggested as a reason for low archaeal abundances observed on skin [40]. The 

PowerSoil kits used in this current study do not impact archaeal diversity [195] and the 

additional pre-treatment steps included in this work should minimize bias. However, post-

extraction non-specific amplification of bacterial sequences could result in an over-

estimation of archaeal abundances during qPCR. Justification for this concern is found in the 

344af/915ar sequencing data of Moissl-Eichinger et al. [40]. Although this primer pair was 

used only to generate archaeal taxonomic data, several samples contained bacterial sequence 

contamination ranging from 10% to 50% of all reads. The primers used for qPCR share the 

same archaea-specific forward primer that was used in sequencing (344af), but also a 

universal prokaryotic 517ur reverse primer. Although the primer pair shows very low 

bacterial coverage in silico [41], the less specific 344af/517ur pair might have amplified 

bacterial 16S rRNA gene sequences. If so, the co-amplification of bacterial sequences during 

archaeal qPCR quantification could be undetected, and both the bacterial and archaeal 

products would be unintentionally combined and used to quantify archaea. The resulting 

abundances would be overestimated and could explain the high reported archaeal 

abundances. If not attributed to regional differences (e.g., cultural or regional differences in 

skin communities, surrounding environment, lifestyles), relatively high skin archaeal 

abundances previously reported could be attributed to methodological bias. 

Although PCR and primer biases that confound archaeal amplification may exist, this 

work maintains that if archaea are routinely abundant on mammalian skin, the large sample 

size presented in our study would have revealed this to be the case. In the least, it would be 

expected that the number of samples with detected archaeal sequences would be higher than 

currently presented, regardless of abundance. Notwithstanding, the differences in quantitation 

method do not explain the taxonomic profile differences observed in literature. Whereas this 

work shows considerable Methanobacteriota and Halobacteriota dominance, some prior 
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literature suggests that Nitrososphaeria were the most abundant taxa [40, 43]. If 

Nitrososphaeria were a common skin community member, it would be expected that the 

increased archaeal coverage and large sample size of this current study would reveal more 

Nitrososphaeria prevalence or relative abundance among samples. Indeed, this is the case for 

the keyboard microbiome, where more than 50% of the archaeal sequences belong to 

Nitrososphaeria.  

Other than potential methodological bias, the differences between our amplicon data 

and previous qPCR or Roche 454 data might be explained by geographical origins of human 

subjects (such as personal hygiene, activity type, or geographic region; Canada versus 

Northern Europe) or some other yet unidentified factor. For example, the gut microbiome of 

individuals in areas of Europe contain more Methanobacteriota sequences compared to 

individuals in North America [196]. Although there is extensive literature that attempts to 

define a core skin pan-microbiome [21, 160, 197], archaea are often absent from these 

studies and reviews. If archaea are established members of the skin microbiome, then the 

potential regional (e.g., forest vs grassland) [198] and population differences that drive the 

observed variation in diversity and abundance could have a considerable and currently poorly 

quantified impact on archaeal abundance on human skin. 

Previous research of human skin archaea also used fluorescence in situ hybridization 

(FISH) [43] and Fourier transform infrared focal plane array hyperspectral imaging (FTIR-

FPA) [40]. Both methods suggested the presence of archaea on human skin, although they do 

not offer quantitative information and are not linked to any other sample data [40]. Although 

FISH was intended to verify the presence of archaea on human skin [43], the ARC915 probe 

has extensive coverage for several archaeal phyla including Methanobacteriota and 

Halobacteriota. Thus, cells observed with this method should interpreted cautiously and 

should be confirmed in the future with multiple probes and samples to help verify the identity 

of FISH-positive cells. 

3.4.3 Skin as a potential habitat for archaea 

Although the presented data suggests that archaeal occurrences on human skin are 

infrequent, and that occurrences on mammalian skin are comparatively more common though 
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still rare, the presence of archaeon-associated sequences in some samples may nonetheless be 

relevant to host habitat and health. Archaeon-associated genera and ASVs shared amongst 

datasets could provide insight into common archaeal detection, colonization, or 

contamination of the skin and skin-associated surfaces. For example, many of the prominent 

archaeal genera observed in our datasets were observed in the Roche 454 human skin dataset 

produced in a separate lab, with different methods, and in a distant geographic location [40]. 

The detection of these shared archaea, despite differences in detection techniques, might 

suggest the existence of a more “core” archaeome comprised of ubiquitous soil-associated 

archaea, albeit at very low abundance. The one Nitrososphaeria and three Methanobacteriota 

associated ASVs which overlapped concomitantly with human and non-human mammalian 

skin could represent archaeal skin ecotypes that might be more adapted to the physical and 

chemical environment of mammalian skin.  

With such low archaeal abundances detected in our study, it is difficult to make 

conclusions about whether the skin archaea represent autochthonous populations or 

allochthonous environmental contaminants. However, there are several features of 

mammalian skin that might allow archaeal populations to establish. For example, mutualistic 

relationships between acetogenic bacteria and methanogenic Methanobacteriota archaea 

have been documented [199] and it could be that the same community interactions are 

occurring on the skin, although it would require localized zones of anoxia. These anoxic 

zones could exist on the skin as a natural result of sebum and apocrine secretion onto the skin 

surface [151, 152]. Although sequences associated with acetogenic bacteria and 

methanogenic archaea were found within the same samples [27], it is uncertain whether such 

syntrophic interactions occur.  

Several halophilic genera were detected on mammalian skin in addition to other skin-

associated environments. Although mammalian skin might be a suitable environment for 

Halobacteriota archaea, due to its varying salinity compared to other surface environments, 

these microorganisms are more likely to be contamination from food and skin care products 

due to their frequent consumption and use by humans [184]. However, halophilic archaea 
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have been previously reported in the human oral and intestinal tracts [72, 200], which could 

provide a route through which they might colonize skin or renew their populations. 

Putative AOA associated genera were detected within a relatively small number of 

mammalian skin samples. Non-human mammalian skin could be exposed to ammonia-

containing substrates from their environment (e.g., animal waste) and provide an energy 

source to AOA established on skin surfaces. Mammalian skin might also passively diffuse 

ammonia [201, 202] or excrete it in sweat [203], and there is the potential for localized skin 

diseases to increase ammonia production [204]. Furthermore, common shampoos and hand 

soaps often contain ammonia derivatives that could facilitate AOA growth. Notwithstanding, 

Nitrososphaeria associated reads made up only a small portion of the total archaeal reads 

(non-human mammalian skin 1.9%; human skin 4.5%). If non-human mammalian skin can 

maintain a suitable environment for AOA metabolism, these archaea appear to represent rare 

and relatively low abundance populations. 

3.5 Conclusion 

The exploration and microbial profiling of the skin and of skin-associated 

environments is an integral component to understanding the interactions of the skin 

microbiome and host health. This work provides evidence that archaea are rare and 

infrequent members of human and non-human mammalian skin, and skin-associated 

surfaces. For samples with detectable archaea, individual host and environmental variation 

might explain archaeal distributions. Shared ASVs and genera among datasets provide 

insight into this rare biosphere skin archaeome, regardless of whether they are autochthonous 

or allochthonous community members. Overall, this work challenges recent literature 

suggesting an unexpected abundance of archaea on human skin specifically and suggest that 

future research using shared samples and validated and standardized methods could help 

confirm our downward estimates of the numerical relevance of the skin archaeome. For 

example, future skin archaeome characterization using universal prokaryotic primers could 

benefit from an internal sequencing workflow standard made of both archaeal and bacterial 

16S rRNA gene sequence templates [205]. Overall, our amplicon-based data agree with 
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comprehensive skin microbiome metagenomic assessment, demonstrating that “archaea were 

nearly absent on skin” [19]. 

  



 

78 

Chapter 4 

Conclusion and recommendations 

4.1 Summary 

The mammalian skin microbiome is complex and an integral component of 

mammalian skin health and function. Although the microbial communities of human skin 

have been thoroughly characterized, non-human mammalian skin research has received less 

attention. Identifying the microbiota in association with mammalian skin is a step towards 

understanding mammalian skin itself and the host-microorganism relationships that helped 

define it [1]. Importantly, by establishing baseline knowledge of what constitutes a “normal” 

mammalian skin microbiome, researchers interested in skin disease might better understand 

how microbial communities impact, or are impacted by, various skin pathologies. 

Additionally, co-evolutionary histories shared among mammalian hosts and their skin 

microbiota cannot be fully explored without first establishing which microbiota are present. 

 Chapter 2 of this thesis demonstrates how the alternative phylogenetic marker, cpn60, 

can be used to generate high-resolution microbial profiles of mammalian skin that produce 

confident species-level taxonomic classifications. Through these high-resolution profiles, 

hypotheses regarding phylosymbiosis and co-evolutionary relationships between the 

mammalian host and skin microbiota can be better tested. This work highlights the 

importance of species-level resolution in amplicon-based studies and the emergence of 

phylosymbiosis patterns and host-microorganism associations that remain undetected with 

traditional 16S rRNA gene sequencing. In doing so, this chapter contributes to an existing 

framework for using the cpn60 gene to profile microbial communities [110, 117], validates 

its use for profiling the mammalian skin microbiome, and presents observations of host-

microorganism associations that merit additional cpn60-based research.  

 Chapter 3 of this thesis bridges a considerable knowledge gap of the archaeal 

communities that reside on mammalian skin. In surveying the mammalian skin archaeome, I 

expand on existing skin archaea literature [40, 43] and provide an overview of the archaeal 

communities present on human and nonhuman mammalian skin, as well as skin-associated 
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built environments of the keyboard and door handles. My research shows that archaea are 

infrequently detected on both skin and skin-associated surfaces when using universal 

prokaryotic primers, exist at relatively low abundance, and are dominated by 

Methanobacteriota and Halobacteriota when detected. Moreover, this research provides a 

summary of archaeal sequences detected in association with mammalian hosts and will serve 

as starting point for exploring the potential co-evolutionary relationships that archaea might 

share with skin-associated bacteria or the host skin environment itself. 

4.2 Validation of cpn60, observations of phylosymbiosis, and high-resolution profiling 

of the mammalian skin microbiota 

Although the 16S rRNA gene has extensive support for resolving taxonomy in 

amplicon-based studies [92, 93, 174], it has limited taxonomic resolution when used with 

short-read sequences that are typically produced using high-throughput sequencing [95]. 

Thus, use of the 16S rRNA gene for profiling the mammalian skin microbiome provides a 

thorough survey of the skin microbiota to the genus level, but prevents confident species-

levels analysis. Although phylosymbiosis of mammalian skin has been observed previously 

using the 16S rRNA gene [27], additional co-evolutionary patterns could be present but 

masked by the limited resolving power of the marker gene. Previous co-evolutionary studies 

exploring patterns of phylosymbiosis [56] have benefitted from non-16S rRNA gene, 

species-specific markers, because their increased taxonomic resolution and species-level 

analyses have enabled the observation of more subtle co-evolutionary relationships. 

However, use of bacterium-specific markers requires an a priori knowledge of the microbial 

community that might not be available and excludes other microbial populations of interest. 

Alternatively, the cpn60 gene marker is both universal in coverage and capable of species-

level resolution, though has not yet been used for profiling mammalian skin. My work 

presented in Chapter 2 validates cpn60 for use in profiling microbial communities of 

mammalian skin and provides a high-resolution analysis of the microbiota within the skin 

microbiome. In doing so, this work provides a framework for future cpn60 use on 

mammalian skin and has highlighted host-microorganism associations of specific 

Staphylococcaceae species that could have a co-evolutionary influence.  
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 My work using the cpn60 gene provided a high-detail microbial profile of 

mammalian skin that included skin swab samples from Artiodactyla, Perissodactyla, 

Carnivora, and Primate hosts. This work also produced direct paired-sample validation of 

cpn60 and 16S rRNA gene microbial profiles using both taxonomic and community 

composition comparisons. Direct taxonomic comparisons of cpn60 and 16S rRNA gene 

microbial profiles have been made in the past using small well-annotated databases and have 

shown strong similarity [120, 206]. The taxonomy-based comparisons of the cpn60 and 16S 

rRNA gene datasets in this thesis showed incongruities (Figure 2-5), although this work used 

a considerably larger database that could not be as meticulously annotated to match the 

taxonomies of the 16S rRNA gene database. My work reinforces the need for a cpn60 gene 

taxonomy database that is compatible with the current 16S rRNA gene taxonomy classifiers 

if extensive taxonomic comparisons between the cpn60 and 16S rRNA gene markers is 

desired. However, the cpn60 and 16S rRNA gene profiles were compositionally similar, 

producing significant correlations using Procrustes analysis for Bray-Curtis and weighted and 

unweighted UniFrac ordinations (Figure 2-7). Therefore, direct taxonomic compatibility 

between the cpn60 and 16S rRNA gene databases are not required for analysis of 

phylosymbiosis or additional co-evolutionary relationships but would nonetheless be useful 

for future cpn60-based research.  

 The cpn60 gene microbial profiles were examined for evidence of phylosymbiosis 

identified previously in Artiodactyla and Perissodactyla using the 16S rRNA gene [27]. This 

work was able to confirm evidence of phylosymbiosis when using the UniFrac distance 

metric (Figure 2-8, Figure 2-9) for Artiodactyla and Perissodactyla, suggesting that the cpn60 

gene microbial profiles contained phylogenetic differences in microbial community 

composition that went previously unseen when using the 16S rRNA gene. The observation of 

phylosymbiosis could suggest co-evolutionary relationships between mammalian hosts and 

their microbiota. To further explore these relationships, this work leveraged the taxonomic 

resolution provided by the cpn60 gene microbial profiles to survey Staphylococcaceae 

communities common among mammalian hosts (Figure 2-12). Several Staphylococcaceae 

species were found in association with mammalian hosts (i.e., Macrococcus carouselicus and 
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Przewalski’s horse; Salinicoccus sp. with horses) and Jeotgalicoccus halophilus was 

observed in proportionally high relative abundance and prevalence among mammalian hosts. 

The species J. halophilus has limited association with the mammalian skin microbiome in 

literature and thus highlights a potentially important host-microorganism interaction, and the 

detection of additional resolved skin-associated species suggests that the future use of the 

cpn60 gene could reveal subtle differences in skin microbial communities between 

mammalian hosts. Although this work attempted to further assess these Staphylococcaceae 

populations for evidence of phylosymbiosis and co-evolution, such analyses were not 

possible due to shallow sequencing depth and limited mammalian host representation.  

Future microbiome studies using the cpn60 gene would benefit from increased 

sequencing depth to help reduce bias and provide more information for read and proportion-

based analyses. Minimal time between sample collection, DNA extraction, and sequencing, 

along with skin sampling practices that maximizes the collected biomass, would help ensure 

a sufficient sequencing depth is achieved. Additionally, taxonomy for the cpnDB reference 

sequences must be maintained separately or standardized with other commonly used 16S 

rRNA gene databases [93, 94, 148] for direct comparisons. Although Staphylococcaceae was 

selected because it represents a core skin community member and has importance to skin 

disease, alternative microbiota might be equally important to survey using the cpn60 gene. 

For example, several samples within this study had proportionally very few 

Staphylococcaceae-associated reads and thus could not be used for analysis. Future work 

might benefit from identifying proportionally more abundant core genera observed 

previously [27], or focus on specific populations on a sample-by-sample basis for further 

species-level analysis, all of which can be accomplished with a single dataset generated with 

the cpn60 gene. As such, this work demonstrates the versatility of the cpn60 gene for both 

broad and species-level profiling of microbial communities and as a complement to 

traditional 16S rRNA gene microbial profiling. 
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4.3 Skin-associated archaea are infrequent and in low relative abundance on 

mammalian skin 

The 16S rRNA gene is widely used in amplicon-based studies [76] for profiling 

bacterial and archaeal communities. Although bacterial skin-associated communities have 

been thoroughly profiled for human skin [149, 167, 197], archaeal communities of human 

and non-human mammalian skin have been comparatively neglected. Only a small number of 

studies focused on the human skin archaeome exist [40, 43] and non-human mammalian skin 

associated archaea are often excluded from discussion or included in microbial profiling 

studies as an aside [27, 170]. As such, there exists a substantial gap in knowledge of the 

mammalian skin archaeome and the potential host-microorganism interactions occurring 

therein.  

Chapter 3 of my thesis work contributes a necessary review of mammalian skin-

associated archaea research and reports the relative abundances, distribution, and taxonomic 

proportions of archaea across mammalian skin and skin-associated surfaces. The limited 

detection of archaea on skin and skin-associated surfaces using the 16S rRNA gene suggests 

that archaea are infrequently detected and in relatively low abundance (i.e., <0.1% of the 

total community, for all environments) (Figure 3-4A). When detected, skin-associated 

archaea were primarily represented by Methanobacteriota and Halobacteriota (Figure 3-4B), 

in contrast to the Nitrososphaeria dominance previously observed [40, 43]. These 

observations suggest either a methodological bias resultant from detection differences in 

universal prokaryotic and archaea-specific primers, or a geographic influence on archaeal 

distribution and abundance on mammalian skin. My thesis work also revealed that archaeal 

sequences associated with Methanobrevibacter, Methanocorpusculum, and various halophilic 

archaea were prevalent across multiple datasets (Figure 3-5, Figure 3-6). The prevalence of 

these archaeon-associated sequences suggests either frequent uptake from the environment 

(e.g., gut-associated archaea deposited via feces and transferred to the skin) or a currently 

undefined host-archaeon association on mammalian skin. Additional work is necessary to 

identify whether skin-associated archaea are transient features of the skin microbiome or if 

the skin can support environments that would allow archaeal metabolism and persistent 
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archaeal populations. Methanogenic archaea could exist in anoxic areas of the skin and 

survive using acetoclastic methanogenesis in combination with acetogenic bacteria [199], 

and sweat [203] and breath [204] could provide Nitrososphaeria with the required ammonia. 

However, the development of co-evolutionary relationships between a host and 

microorganism requires relatively stable ecological conditions and a moderate degree of 

microbial prevalence [64], which does not exist for archaea on mammalian skin. Thus, co-

evolution might play a small or non-existent role in host-archaeon associations on 

mammalian skin. 

The work presented in Chapter 3 highlights several areas of improvement for future 

skin-related archaeal research. My work has demonstrated that the primer pairs 

Pro341F/Pro805 and 515F-Y/926R are similarly capable of detecting archaea on mammalian 

skin (Figure 3-3). However, future work should further evaluate the potential methodological 

biases between universal prokaryotic primers and their archaeon-specific complements. 

Although these comparisons do exist [39, 41], they are limited in the number and variety of 

skin samples. Comparisons between universal prokaryotic and archaeon-specific primers 

should be made using the same samples and should include a variety of hosts and sampling 

sites. As well, the use of internal sequencing standards [205] could help quantify potential 

bias. Additionally, surveying the archaeome of geographically distant human populations 

could provide additional insight into the diversity of the human skin archaeome. 
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