

Semi-Automated Microscopic Traffic Flow Simulation Development

Using Smart City Data

by

Qiao (Ray) Lei

A thesis

presented to the University of Waterloo
in fulfilment of the

thesis requirement for the degree of
Master of Applied Science

in
Civil Engineering

Waterloo, Ontario, Canada, 2021
© Qiao (Ray) Lei 2021

ii

Author’s declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Microscopic traffic simulation models have been widely used by transportation planners
and engineers for conducting various road network planning and traffic engineering tasks.
Before a traffic simulation model is applied, it must be calibrated carefully to the ground
truth using traffic data collected in the field. Due to data limitation, traffic simulation
models are often calibrated on the basis of macroscopic traffic measures such as traffic
volume, travel time, and traffic stream fundamentals. In recent years, emerging smart city
sensor technologies, such as video cameras, Bluetooth/Wi-Fi detectors, and Lidar, are
enabling continuous collection of large volume, high-resolution trajectory data of road
users, making it possible to estimate some behaviour parameters of traffic simulation
models directly from these data. This thesis research is intended to explore this
opportunity with the specific objective of developing methodology to estimate traffic
simulation model parameters from smart city data with automated or semi-automated
calibration procedures. A comprehensive set of calibration procedures are proposed,
including both direct methods of estimating model parameters from data and indirect
methods of estimating some model parameters using an optimization algorithm. Most of
the proposed procedures are designed in such a way so that they can be completed in a
semi-automated way with multiple Python scripts.

The developed methodology is illustrated in a case study involving calibration of a
VISSIM simulation model using an available dataset of vehicle trajectories - NGSIM
(Next Generation Simulation) traffic data. While most parameters can be directly
determined from the dataset, some parameters from the selected parameter set are
determined using Neutral Network. The modelling results suggested that the best
performed parameter set generates less than 10% error compared to the field
measurements in term of travel time and speed, respectively.

iv

Acknowledgements

I would like to thank my supervisors, Dr. Chris Bachmann, and Dr. Liping Fu, for
guiding me through the process to complete this thesis. A special thanks goes to Dr. Chris
Bachmann for providing lots of supports to me both academically and emotionally
throughout the tough pandemic period.

v

Table of Contents

List of Figures ... vii
List of Tables ... viii
1 Introduction ... 1

1.1 Traffic Simulation Models ... 1

1.2 Smart City Data Applications .. 4

1.3 Calibration of Microscopic Simulation Models Using Smart City Data 6

1.4 Research Objective ... 7

1.5 Scope .. 8

1.6 Structure of Thesis ... 9

2 Literature Review ... 11

2.1 Parameter Selection .. 11

2.2 Parameter Determination with Field Data .. 13

2.2.1 Direct Estimation .. 14

2.2.2 Model Calibration ... 17

2.3 Gaps .. 28

3 Data and Methodology ... 30

3.1 Field Data ... 30

3.2 Proposed Methodology .. 35

3.2.1 Network Building.. 35

3.2.2 Parameter Selection .. 40

3.2.3 Sensitivity Analysis .. 41

3.2.4 Model Evaluation .. 44

3.2.5 Parameter Determination Using Smart City Data 45

3.2.6 Model Calibration Using ANN ... 54

4 Parameter Results from the NGSIM Data ... 57

4.1 Desired Speed ... 57

4.2 Desired Acceleration/Deceleration .. 57

4.3 Car Following Model ... 61

4.3.1 Standstill Distance .. 61

4.3.2 Desired Safety Distance .. 61

4.3.3 Additive and Multiple Parts of desired safety distance 62

4.4 Lane Changing Model .. 62

4.4.1 Maximum Deceleration and Accepted Deceleration 62

vi

4.4.2 Minimum Headway .. 63

4.4.3 Safety Distance Reduction Factor ... 64

4.5 Summary of Key Findings ... 64

5 Model Calibration and Evaluation .. 66

5.1 Evaluation of Parameters Determined from Smart City Data 66

5.2 Neural Network Combination Calibration Results .. 67

5.2.1 Experiment 1: Smart City Data + NN Calibration 67

5.2.2 Experiment 2: NN Calibration Only ... 68

5.2.3 Experiment 3: NN Calibration + Desired Speed Distribution 70

5.2.1 Experiment 4: NN Calibration + Desired Speed Distribution & Desired
Acceleration/Deceleration... 71

5.3 Calibration Performance Using Different Field Measurements 72

5.4 Summary of Key Findings ... 73

5.5 Summary of Proposed Calibration Process .. 75

6 Conclusion ... 77

6.1 Contributions and Key Findings .. 77

6.2 Recommendations .. 79

References ... 80

Appendices .. 85

Appendix A – Python Scripts for Determining VISSIM Parameters 86

Appendix B – Python Scripts for Run VISSIM in COM Interface 105

Appendix C – Python Scripts for Neural Network Calibration 107

vii

List of Figures

Figure 1 Calibration Process.. 18
Figure 2 Convergence of GA Fitness Value with Generation 21
Figure 3 Comparison of Travel Times by Different Parameter Sets 22
Figure 4 Local Parameter Calibration Convergence Diagram 25
Figure 5 Neural Network Representation ... 26
Figure 6 Perceptron Model .. 27
Figure 7 Peachtree St from 10th St to 14th St .. 31
Figure 8 Vehicle Speed Distribution ... 33
Figure 9 Vehicle Acceleration Distribution .. 34
Figure 10 Space Headway Distribution .. 34
Figure 11 Time Headway Distribution ... 35
Figure 12 VISSIM Road Network Layout .. 36
Figure 13 Intersection of Peachtree Street & 11th Street ... 37
Figure 14 Data Collection Location... 39
Figure 15 VISSIM Overview.. 40
Figure 16 VISSIM Default Desired Speed Distribution (56 km/h)............................. 46
Figure 17 Comparison of MANE Using Different Speed Thresholds 47
Figure 18 VISSIM Default Desired Acceleration/Deceleration Function 48
Figure 19 Car-following Model.. 49
Figure 20 Flow Chart of Extract Lane Change Data .. 53
Figure 21 Neural Network Calibration Process ... 56
Figure 22 Desired Speed Distribution of Peachtree Street .. 57
Figure 23 Desired Acceleration/Deceleration Estimated from NGSIM Data 58
Figure 24 Desired acceleration and deceleration ... 59
Figure 25 Modified Desired Acceleration/Deceleration Estimated from NGSIM Data
... 60
Figure 26 Standstill Distance Distribution ... 61
Figure 27 Distribution of the Following Distance .. 62
Figure 28 Vehicle Deceleration Distribution .. 63
Figure 29 Changing in MANE with Different Calibration Targets 73
Figure 30 Proposed Calibration Process... 75

viii

List of Tables

Table 1 Traffic Data Collection Technologies .. 6
Table 2 Summary of Important Traffic Simulation Modelling Parameters from
Literature ... 13
Table 3 Summary of Studies Using GAs ... 20
Table 4 Summary of Studies Using SPSA... 23
Table 5 NGSIM Data Description ... 32
Table 6 Parameter Selection .. 41
Table 7 VISSIM Parameter Range ... 42
Table 8 ANOVA Results ... 43
Table 9 Threshold Test Results for Desired Acceleration/Deceleration 48
Table 10 Threshold Test Results for Desired Safety Distance 51
Table 11 Cut-off Points for Desired Acceleration/Deceleration Calculation 59
Table 12 Maximum Deceleration and Accepted Deceleration 63
Table 13 Parameters Determined from NGSIM data ... 65
Table 14 Parameter Values and MANE Results .. 66
Table 15 First Experiment Parameter Values and MANE Results 68
Table 16 Second Experiment Parameter Values and MANE Results 69
Table 17 Third Experiment Parameter Values and MANE Results 70
Table 18 Fourth Experiment Parameter Values and MANE Results 72
Table 19 Evaluation Results with Different Parameter Settings 74

1

1 Introduction

1.1 Traffic Simulation Models

Traffic simulation models are analysis tools that aim to reproduce real-world traffic

behaviour in a computer environment. They are widely used in roadway design, urban

planning, and traffic management (Alexiadis & Chandra, 2004). Compared to a

traditional traffic analysis tool such as the Highway Capacity Manual (National Research

Council (U.S.). Transportation Research Board, 2010), traffic simulation models are

more effective at analyzing congested traffic systems and can help modellers understand

congestion formation and its impact on the wider system behaviour. In addition, some

real-world factors that are not considered in the traditional traffic analysis tools, such as

interaction between individual vehicles and variability in driver/vehicle characteristics,

can be modelled in traffic simulation models.

Traffic simulation models are generally divided into three categories according to their

modelling scope: macroscopic, microscopic, and mesoscopic. The macroscopic modeling

of traffic flows is based on the continuum theory of traffic flow, which entails the

description of the time(t)–space(x) evolution of the three major traffic stream variables

characterizing traffic flows in a macroscopic perspective: speed (u), flow (q), and density

(k). It is assumed that between two locations in a motorway section without entrances and

exits, the number of vehicles is conserved (Barceló, 2010). This theory is represented by

the conservation equation in hydrodynamics:

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 (1)

where 𝑞𝑞 is flow (𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑣𝑣
ℎ𝑟𝑟

), 𝑥𝑥 is distance (km), 𝑘𝑘 is density (𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑣𝑣
𝜕𝜕𝑘𝑘

) and 𝑡𝑡 is time (hr).

Equation 1 can be extended to include entrance and off ramps.

For a given road section, it is empirically known that speed is a function of density. For

example, Greenshields (1934) proposed a linear relationship between speed and density:

𝑢𝑢 = 𝑢𝑢𝑓𝑓 −
𝑢𝑢𝑓𝑓
𝜕𝜕𝑗𝑗
𝑘𝑘 (2)

2

where 𝑢𝑢 is speed (𝑘𝑘𝑘𝑘/ℎ𝑟𝑟), 𝑢𝑢𝑓𝑓 is free flow speed 𝑘𝑘𝑘𝑘/ℎ𝑟𝑟), 𝑘𝑘 is density (𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑣𝑣/𝑘𝑘𝑘𝑘),

and 𝑘𝑘𝑗𝑗is jam density (𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑣𝑣/𝑘𝑘𝑘𝑘).

The Greenshields model is now used as a textbook model because later studies found that

the linear speed-density relationship may not be the best representation of the observed

data. Many researchers started to develop non-linear models for speed-density

relationship (Greenberg, 1959 and Underwood, 1959). Van Aerde (1995) proposed a non-

linear model represented by five equations. Although Van Aerde model requires more

parameters, it provides more degrees of freedom to reflect different traffic behavior

across different roadway facilities (Rakha & Crowther, 2002).

Finally, the relationship between the macroscopic traffic flow variables is governed by a

definitional equation:

𝑞𝑞 = 𝑢𝑢𝑘𝑘 (3)

where 𝑞𝑞 is traffic flow rate (𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑣𝑣/ℎ𝑟𝑟), 𝑢𝑢 is speed (km/h), and 𝑘𝑘 is density

(𝑣𝑣𝑣𝑣ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑣𝑣/𝑘𝑘𝑘𝑘).

A macroscopic simulation model takes place on a road section-by-section basis,

repeatedly applying equations 1 to 3 through the simulation horizon. For example, Payne

(1979) developed FREFLOW, Haj Salem et al. (1994) developed METACOR, and

Papageorgiou et al. (2010) developed METANET. Similarly, Daganzo (1994) proposed a

cell transmission model (CTM) that describes the traffic’s evolution over time (e.g.

traffic building, propagation, and dissipation of queues) by applying flow-density

relationship to each section of road. Due to limited levels of detail, they do not have the

ability to analyze transportation improvements in as much detail as the microscopic

models. Therefore, use of macroscopic simulation models is relatively uncommon in

practice (Papageorgiou et al. 2010).

Microscopic models simulate the movement of individual vehicles based on car-

following and lane-changing theories. Pipe (1953) developed car-following model based

on the concept of distance headway. He pointed out that the following vehicle needs to

maintain a safe distance with the vehicle at least the length of a car for every ten miles

per hour of speed at which the following vehicle is traveling. In the late 1950s, the

3

General Motors Group developed a series of mathematical models based on extensive

field experiments. The main idea of GM models is that the driver’s response to accelerate

and deaccelerate is in proportion to the magnitude of the stimulus occurring at time 𝑡𝑡 and

begins after a time lag 𝑇𝑇. This theory can be expressed as a stimulus-response function:

𝑅𝑅𝑣𝑣𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑣𝑣 (𝑡𝑡 + 𝑇𝑇) = 𝑆𝑆𝑣𝑣𝑅𝑅𝑅𝑅𝑖𝑖𝑡𝑡𝑖𝑖𝑣𝑣𝑖𝑖𝑡𝑡𝑆𝑆 × 𝑆𝑆𝑡𝑡𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖𝑢𝑢𝑅𝑅 (𝑡𝑡) (4)

By utilizing Equation 4, the acceleration or deceleration of the following vehicle can be

modelled as Equation 5:

𝑎𝑎𝑛𝑛+1𝜕𝜕 = �𝛼𝛼 �𝑣𝑣𝑛𝑛+1𝑡𝑡+𝑇𝑇�
𝑚𝑚

(𝜕𝜕𝑛𝑛𝑡𝑡 −𝜕𝜕𝑛𝑛+1𝑡𝑡)𝑙𝑙
� [𝑣𝑣𝑛𝑛𝜕𝜕 − 𝑣𝑣𝑛𝑛+1𝜕𝜕] (5)

where 𝑎𝑎𝑛𝑛+1𝜕𝜕 is the acceleration(𝑘𝑘/𝑅𝑅2) of following vehicle at time 𝑡𝑡, 𝑇𝑇 is the reaction

time, 𝑥𝑥𝑛𝑛𝜕𝜕 and 𝑥𝑥𝑛𝑛+1𝜕𝜕 are locations (𝑘𝑘) of leading vehicle and following vehicle, 𝑣𝑣𝑛𝑛𝜕𝜕 and

𝑣𝑣𝑛𝑛+1𝜕𝜕 are speeds (𝑘𝑘/𝑅𝑅) of leading vehicle and following vehicle, l is a distance headway

exponent, m is a speed exponent, and α is a sensitivity coefficient. The follower’s

response to leading vehicle is represented by acceleration or deceleration and the stimulus

is represented by the variation in the relative speeds. Gipps (1981) improves the stimulus-

response model by imposing limitations for desired speed, maximum braking, safety

distance, and reaction time.

A different approach was taken by Wiedemann (1974) who proposed the psycho-physical

models that have been implemented in several popular microsimulation software

packages such as VISSIM and PARAMICS (PTV AG, 2020). These models assume that

the behaviour of the following vehicle is not influenced by the speed difference at large

spacing; at small spacing, the behaviour of the following vehicle is influenced by the

combination of relative speeds and distance headways.

In the microscopic modelling process, stochastic arrivals are applied for vehicles entering

a transportation network and vehicles are tracked through the network over small time

intervals. Also, upon entry, each vehicle is assigned a destination, a vehicle type, and a

driver type according to the modelling settings. Hence, microscopic models require much

more data and computing power than macroscopic models. Nonetheless, microscopic

simulation models are usually used for the operational design of transportation systems

4

with several intersections or major corridors. Due to the extensive and complex

calculations required for microscopic traffic simulations, software is needed. PTV

VISSIM is one of the leading microscopic simulation programs for modeling multimodal

transport operations. It is used world-wide for traffic studies, city planning, and

development evaluation purposes. VISSIM is used as the microscopic traffic flow

simulation tool in this research.

Mesoscopic simulation models combine the properties of both microscopic and

macroscopic simulation models. As in microscopic models, the mesoscopic models’ unit

of traffic flow is the individual vehicle. Their movement, however, follows the approach

of the macroscopic models and is governed by the average speed on the travel link

(Alexiadis & Chandra, 2004). For example, in the DYNASMART mesoscopic simulation

model, the section speeds are usually calculated using the Greenshields speed-density

relationship and each individual traveler will seek their best path (Jayakrishan et al.,

1994). The INTEGRATION model applied a similar approach in which the individual

vehicle desired speed is determined based on a link specific microscopic car following

relationship that is calibrated macroscopically to yield the appropriate target aggregate

speed-flow attributes for that particular link (Van Aerde, 1996). Dynameq also uses a

similar approach in which the optimal assignment for each individual vehicle is

determined based on the simulated path travel times (Mahut and Florian, 2010).

1.2 Smart City Data Applications

A smart city is an urban area that uses information and communication technologies to

collect data to improve the operational efficiency, quality of government services and

societal welfare (Rouse, 2019). The development of smart city technology is stimulating

significant changes in urban transportation management with many application examples

such as adaptive traffic signal control, active pedestrian safety measures, and innovative

infrastructure development projects.

Congestion is one of the most prominent issues of urban transportation management.

Traffic congestion not only reduces mobility but also has negative impacts on the

environment, public health, and quality of life. Smart city technology can help cities

5

mitigate congestion by monitoring traffic in real-time, providing travel advice to road

users, and adjusting signal timing systems to better facilitate traffic (Guo et al., 2020).

Another use of smart city technology that benefits the transportation system is road safety

management. For example, while traditional data collection only records the number of

reported accidents at specific areas, smart city technology can identify hot spots for both

accidents and near-miss events (i.e., conflicts). This information can be used to develop

risk mitigation strategies before tragic accidents occur (Mer Group, 2020).

Data collected by smart city technology can also help governing bodies to make

evidence-based decisions. With substantial smart city data such as traffic volume, travel

time, and road user behaviours, governments can make more educated decisions on urban

planning and infrastructure improvements.

In the past, traffic data were often collected by loop detectors, which can detect a vehicle

and determine its speed when passing over the induction loops. However, this method

only collects data from the vehicles for a brief moment and it can not track how vehicles

move along the roadway. More recently, Bluetooth/Wi-Fi detector is used to collect

traffic data because the network with multiple Bluetooth/Wi-Fi detectors can track a

vehicle’s movement such as average travel time within a road section and turning

movements by tracking the MAC address of electronic devices on board (Hidayat et al.,

2018). However, this technology still cannot record the more detailed continuous

movement of the vehicle in small timesteps. In the last decade, video cameras have

become popular due to its wide range of uses. Tracking algorithms can recognize

different types of road users from the video footage and track the continuous movement

of objects. However, this method it limited under adverse weather conditions and the

video footage are often protected due to privacy issues. In addition, because the video

footage is a 2D representation of the 3D real-world, the video needs to be properly

calibrated, therefore the accuracy of the traffic data is criticized by many researchers

(Coifman and Li, 2017). While video cameras are still a major technology used for traffic

data collection at present, more advanced smart city technologies such as Radar (Radio

Detection and Ranging) and LiDAR (Light Detection and Ranging) are emerging. These

technologies emit radio waves or light and receive a returned signal after being bounced

6

back from the objects in view. LiDAR is capable of producing high-resolution imaging to

replace video camera data while most Radar is less capable. Table 1 lists the types of

traffic data collected by different technologies.

Table 1 Traffic Data Collection Technologies

Technology Trajectory Traffic
Volume

Segment
Travel time

Spot
Speed

Turning
movement

counts

Lane
change

Data source
(Example)

Loop
detector      

Government
Agencies,
NGSIM

Bluetooth/
Wi-Fi

detector
      SMATS

Video
Camera      

Miovision,
NGSIM

Radar/
LiDAR       Blue city

In the current practice, smart city traffic data are mostly collected by video cameras and

Radar/ LiDAR with some supplementary data from loop detectors and Bluetooth/Wi-Fi

detectors. All sensors in the road network collect data concurrently and over long time-

periods, allowing for time-synchronized datasets reflecting true and complete

observations of traffic conditions in the road network over time. Therefore, smart city

traffic data provide more detailed information of traffic conditions compared to

traditional data collection methods.

1.3 Calibration of Microscopic Simulation Models Using Smart City Data

Although traffic simulation modelling has already been used in practice for decades to

help planners and engineers assess design and management alternatives, it is often

viewed by non-modellers as an inexact science at best, and as an unreliable “black-box”

technology at worst (Hellinga, 1998). Traffic simulation models must be calibrated to

local conditions before they can be used as a trustworthy traffic analysis tool.

Historically, the main challenge to calibration has been very limited data that reflect real-

world traffic conditions and some data (e.g. driver behaviours) are hard to collect

(Wunderlich et al., 2019). Many calibration studies have been done for traffic simulation

modelling. However, most of these studies determined model parameter values by

7

solving an optimization problem with the objective of minimizing the differences

between simulated and observed aggregated traffic behaviors (e.g., traffic volume, travel

time, and speed-density relationship) (Ma and Abdulhai, 2002; Kim, et al., 2005; Park

and Qi, 2005; Yu et al., 2006; Lidbe et al., 2017) while some studies only estimated very

few VISSIM parameters with a relatively small sample size of traffic data (Lu et al.,

2016).

In recent years, the emerging smart city technologies provide an opportunity towards

better traffic simulation modelling by providing more reliable and detailed traffic data for

input calibration and validation. Microscopic simulation models are important tools to

utilize the smart city data and design solutions for different transportation improvements.

With the availability of smart city data, it becomes possible to obtain the characteristics

of each individual vehicle such as vehicle speed, vehicle acceleration, following distance,

etc., and use this information to directly calibrate the constituent user behaviour models

of microscopic simulation models. However, the smart city data are often used as

measure of effectiveness to validate the calibrated model instead of model calibration.

While the development of smart city technology gives transportation engineers an

opportunity towards better modelling of the real-world traffic, there is currently no

guidelines or recommended processes to determine what information can be extracted

from smart city data and how to incorporate these data to build more representative traffic

simulation models.

1.4 Research Objective

This research has three primary objectives, which aim to improve the overall veracity and

efficiency of the microscopic traffic simulation modelling process. The first objective is

to make microscopic traffic simulation models better reflect the real-world traffic

conditions by leveraging smart city data. The second objective is to automate the

modelling process as much as possible by developing semi-automated calibration

techniques. The third objective is to propose a standardized calibration method for

microscopic simulation models using smart city data for future applications. These

objectives involve the following major research tasks:

8

• Literature Review

• Data analysis

• Network development

• Parameter selection

• Sensitivity analysis

• Parameter determination

• Model calibration

• Model evaluation

A literature review is conducted on the selection of high-priority microscopic traffic

simulation parameters, and the associated methods used to determine their values. Data

analysis consists of analyzing the collected smart city traffic data and extracting the

elements required for modelling. A VISSIM model of the transportation network within a

study area is built and required parameters for modelling are input to VISSIM. The model

outputs are compared with the observed traffic measures to validate the model. Modelling

parameters without real-world observations are calibrated to minimize the difference

between modelling results and the real-world scenario using an Artificial Neural Network

(ANN). The data input and calibration processes are automated as much as possible using

scripts and algorithms.

1.5 Scope

This research uses traffic data collected from an arterial section on Peachtree Street - a

north-south urban arterial road in Atlanta, GA. The section selected for data collection

crosses the central business district of Midtown Atlanta, which can represent the typical

urban traffic condition in north America large cities. This research focuses on the traffic

conditions of the urban area. Analysis of freeway traffic is not within the scope of this

thesis. The traffic data was collected in 2006 by Federal Highway Administration

(FHWA). This dataset was selected because it represents the types of data that could be

expected from smart city sensors such as video cameras and Lidar. The data was

collected by synchronized video cameras, including high-resolution vehicle trajectories

that include many attributes necessary for determining VISSIM parameters. The quality

9

of the data may not be as accurate as data collected by current data collection

technologies. However, the data quality does not impact the results of this research

because this research focuses on developing methodologies to calibrate VISSIM

parameters. The microscopic traffic simulation software used in this study is VISSIM.

Implementation in other microscopic traffic simulation software is not considered.

1.6 Structure of Thesis

The structure of the thesis is as follows:

Chapter 2 provides an in-depth review of the literature on VISSIM model calibrations. The

first part discusses how critical VISSIM parameters are selected. This review includes the

introduction of a typical parameter selection process and a summary of parameters used by

other studies. The second part of Chapter 2 focuses on different traffic data collection

methods and how driving behaviours are determined from the field data. The last part of

Chapter 2 introduces different VISSIM model calibration methods from early approaches to

more recent optimization algorithms.

Chapter 3 describes the proposed methodology for microscopic traffic simulation model

calibration. The data used for this study come from the Next Generation Simulation

(NGSIM) dataset. An urban arterial corridor is selected as the study site. The VISSIM

network is constructed based on the signal plan and road geometry when the traffic data were

collected. The parameters selected for this study focus on vehicle performance and driving

behaviour models including following behaviour, car following model (Wiedemann 74) and

lane changing. Then an ANOVA (analysis of variance) sensitivity test is proposed to identify

key parameters and eliminate parameters that have less effect on model results. However, for

the sake of developing procedures to determine different parameter values from smart city

data, all parameters are kept for further analysis regardless of the sensitivity test results. Next,

the methods of using smart city data to determine values of selected parameters are

discussed. For parameters that cannot be determined directly from the traffic data, a

calibration method using ANN is adopted.

Chapter 4, Chapter 5, and Chapter 6 present the key analysis results obtained by following

the methodology proposed in Chapter 3. Chapter 4 discusses the results of the parameter

determination based on the smart city data. A summary section is included to summarize

10

main findings from this chapter. Chapter 5 discusses the results of the model calibration and

model evaluation. The objection function values, measuring speed and travel time errors, are

compared between different calibrations to evaluate the performance of each parameter set.

Chapter 6 summaries the proposed model calibration process based on the calibration

methodologies and results discussed in the previous sections.

Chapter 7 summarizes the thesis. Key findings and a summary of contributions of the thesis

are presented. In addition, areas for future work are also discussed.

11

2 Literature Review

This literature review is comprised of two main sections. The first part discusses the

selection of microscopic traffic simulation parameters. Secondly, methods used to

determine the microscopic traffic simulation parameter values are reviewed.

2.1 Parameter Selection

Regardless of traffic simulation software package being used, a microscopic traffic

simulation model generally includes a set of model parameters that can be changed by

users to control simulation output. For example, in VISSIM, parameters can be generally

divided into two categories: (a) driver behaviour parameters and (b) vehicle performance

parameters (Kim et al., 2005). Driver behaviour parameters define drivers’ behaviour

when they perform car following and lane changing maneuvers. Vehicle performance

parameters define a vehicle’s speed and acceleration on the road. Dozens of parameters in

VISSIM can be changed in the calibration process to match observed traffic data. While

these parameters give modellers many degrees of freedom when modelling, it also raises

the question of which parameters are most important for matching observed traffic data.

To answer this question, Miller (2009) proposes a parameter selection process for

VISSIM modelling. The first step of the process is to eliminate certain parameters

immediately based on engineering judgment. The modeller needs to make decisions

based on their priori knowledge about which parameters will not meaningfully impact the

simulation performance and which parameters are not applicable for the study scope. For

example, the Wiedemann 74 car following model is often used for arterial traffic, while

the Wiedemann 99 car following model is often used for freeway traffic. If the model

does not include one of these facility types, then only the parameters for the relevant car

following model require calibration. Dowling et al. (2004) also suggests following the

software documentation to determine the set of parameters that affect simulation

performance, depending on the specific car-following and lane-changing logic

implemented in the software.

12

After the first step, if it is unclear whether a parameter should be eliminated, it is

recommended to conduct a sensitivity analysis to quickly determine if the parameter in

question could potentially affect the measures of effectiveness of the model. Jie et al.

(2011) and Lu et al. (2016) conduct sensitivity analysis by changing each parameter value

by a definite amount while other parameters were set to default values. The simulation

result is then compared with the result received from the default parameter set.

Inconsequential parameters were excluded for further consideration in subsequent model

calibration.

Most research related to VISSIM modelling follows a similar process. Park and Qi (2005)

select the modelling parameters by firstly conducting a trial-and-error test for each

parameter to see if the parameter affects the simulation results. Rather than simply

changing each parameter value by a definite amount, they utilize the analysis of variance

(ANOVA) to identify which parameters are more critical to the simulation result. The

values of each parameter were made discrete, separated into several groups, and a one-

way ANOVA procedure was then used to test the null hypothesis that the means for two

or more groups were equal. If the results were sensitive to the parameter, the means for

different groups should be statistically different.

By utilizing these parameter selection techniques, some parameters are often selected by

researchers for calibration, while other parameters were shown to be inconsequential to

the modelling results. Table 2 lists the parameters that are often selected to calibrate in

different studies.

13

Table 2 Summary of Important Traffic Simulation Modelling Parameters from

Literature

Parameter Reference

Desired speed Park and Schneeberger (2003), Park and Qi (2005), Park et al.
(2006), Miller (2009), Jie et al. (2011), Lu et al. (2016)

Desired acceleration/deceleration Jie et al. (2011), Lu et al. (2016)

Number of interaction objects Park and Schneeberger (2003), Park and Qi (2005), Kim et al.
(2005), Park et al. (2006), Miller (2009)

Look ahead distance Park and Schneeberger (2003), Kim et al. (2005), Miller (2009)

Average standstill distance
Park and Schneeberger (2003), Park and Qi (2005), Kim et al.
(2005), Park et al. (2006), Yu et al. (2006), Miller (2009), Lu et
al. (2016), Lidbe et al. (2017)

Additive part of desired safety distance Park and Qi (2005), Kim et al. (2005), Park et al. (2006), Yu et
al. (2006), Miller (2009), Lu et al. (2016), Lidbe et al. (2017)

Multiple part of desired safety distance Park and Qi (2005), Kim et al. (2005), Park et al. (2006), Yu et
al. (2006), Miller (2009), Lu et al. (2016), Lidbe et al. (2017)

Maximum deceleration Park et al. (2006), Yu et al. (2006), Miller (2009), Lidbe et al.
(2017)

-1 m/𝑅𝑅2 per distance (Reduction rate) Park et al. (2006), Yu et al. (2006), Miller (2009), Lidbe et al.
(2017)

Accepted deceleration Park et al. (2006), Yu et al. (2006), Miller (2009), Lidbe et al.
(2017)

Waiting Time Before Diffusion Park and Schneeberger (2003), Park et al. (2006), Yu et al.
(2006), Miller (2009), Lidbe et al. (2017)

Minimum Headway for lane changing Park and Schneeberger (2003), Park et al. (2006), Yu et al.
(2006), Miller (2009), Lidbe et al. (2017)

Safety distance reduction factor Miller (2009), Lidbe et al. (2017)

2.2 Parameter Determination with Field Data

After the important parameters are selected for calibration, the next step is to determine

their values, since the default parameter values provided by VISSIM could lead to

discrepancies between the simulated results and observed field data, and ultimately to

inaccurate results (Rrecaj, 2015). In general, there are two approaches to determine

parameter values: (a) direct estimation and (b) calibration. Direct estimation obtains the

parameter values directly from observed field data. Calibration refers to selecting a

combination of parameter values that produce a simulation result that best matches real-

world traffic observations (often aggregates, such as travel times). These two approaches

can also be used together to improve the accuracy of the calibration.

14

2.2.1 Direct Estimation

The most reliable way to determine parameter values in VISSIM is to directly estimate

them from field data. For example, the desired speed, desired acceleration, and average

standstill distance can be estimated from the real-world traffic. However, due to

limitations in data collection technology in the past, there is often a lack of traffic data

available for modellers to use. In most cases, only hourly volume and aggregated turning

movement counts are collected from traditional sensors (e.g., loop detectors). Therefore,

it can be hard for modellers to determine these parameter values in VISSIM. To make

models better represent real-world traffic, different technologies can be leveraged to

collect more traffic data that can capture detailed vehicle characteristics and driving

behaviours.

2.2.1.1 On-board Data Collection

Survey-based approaches usually rely on instrumented vehicles (IVs), equipped with

GPS, radar, cameras or other sensors. The behaviour of vehicle itself, as well as the

surrounding vehicles, are recorded for analysis.

Bifulco et al. (2014) present a large survey based on the naturalistic (on-the-road)

observation of driving behaviour with a detailed data collection methodology. The first

step of the survey is to define participants. A systematic method is used to recruit

participants based on their gender, age, and education level. The distribution of those

attributes should be comparable to the real-world population data. In addition, drivers

should be divided into different clusters based on their driving behaviour by answering a

pre-selection questionnaire.

The second step of Bifulco et al. (2014)’s methodology is to conduct the experiment. The

testing route is divided into different sections with different road characteristics. Drivers

are assigned to different time slots from 8:30 a.m. to 6:30 p.m. After the experiment is

finished, each driver is asked to fill a post-driving questionnaire in order to ascertain in

what way the driver’s mood was influenced by the experiment. The trajectories of each

driver and surrounding vehicles are collected by the experiment. Researchers can analyze

the trajectory data to determine different trip characteristics and driving behaviour

15

parameters. Although this method can collect very accurate and detailed driving data, the

time and cost of this approach is very high and collected data set is usually small. In

addition, because drivers are aware that their behaviours are being recorded, the

experimental result might be unrepresentative.

To make it easier to obtain driving behaviour survey data, the second Strategic Highway

Research Program (SHRP 2) was initiated to study the role of driving performance and

behaviour in road safety. Over 3,000 volunteer passenger vehicle drivers from different

sex and age groups participated this naturalistic driving study. Data collected include

speed, acceleration, braking, lane position, camera views of forward, rear, and driver’s

face and hands. These data were used to develop and evaluate safety countermeasures

designed to prevent and reduce the risk of traffic incidents (Hallmark et al., 2014).

Another alternative is to retrieve data from transport companies. For example, Jie et al.

(2011) uses GPS tracking data from more than 6,000 taxis to determine the acceleration

and deceleration profiles. However, this data may not be representative of the general

public’s driving behaviour.

2.2.1.2 Roadside Data Collection

There are many roadside installed technologies that can be used to collect traffic data. For

example, the radar speed detectors deployed in school zones and video cameras installed

at the intersections both can be used to collect more detailed traffic data. Different from

using on-board sensors to record movement of individual vehicles, roadside equipment

can track the trajectories of many vehicles at the same time.

The most used roadside equipment for traffic data collection is video cameras. Although

video cameras are already deployed in many cities, they are mostly used for the purpose

of law enforcement rather than traffic analysis due to limitations on the number of

monitored road sections and lack of expertise. Nonetheless, a number of researchers have

developed tracking algorithm for vehicles. Video-based traffic analysis consists of four

main steps: data collection, preprocessing, processing, and analysis of video data (Ismail,

2010). Jackson et al. (2013) has done a thorough analysis on each of the four steps. For

data collection, a mobile flexible camera unit is preferred since surveillance video

16

cameras are not always available and the quality of the video often does not meet the

basic study requirements. The preprocessing includes vibration correction and camera

calibration which allows the projection of real-world measurements onto the image

camera space. The processing consists of extracting the road user trajectories from the

video data. Analysis includes the manipulation and interpretation of trajectories, speeds,

and other parameters of interest.

Saunier and Sayed (2006) developed an open-source software, Traffic Intelligence, to

track the movement of different objects. During video processing, individual pixels are

detected and tracked from frame to frame and recorded as feature trajectories. A moving

object will have multiple features on it, which must therefore be grouped. Then, feature

trajectories are grouped based on consistent common motion.

Several researchers have applied this software for video processing. St-Aubin et al.

(2013) conduct a surrogate safety analysis at a highway ramp to study the effectiveness of

a lane-change ban treatment. The trajectory data processed by Traffic Intelligence are

used to generate a Time-to-Collision (TTC) measurement between any pair of road users.

Lu et al. (2016) proposes a video-based approach to incorporate direct estimations of car-

following parameters into the process of VISSIM model calibration. In their study,

desired speeds and desired acceleration rates from a stationary position through an

intersection are extracted from vehicle trajectories processed by the Traffic Intelligence

software.

The video-based approach is also employed in the Next Generation Simulation program

(NGSIM), a public-private project between the Federal Highway Administration

(FHWA) of USA and several commercial micro-simulation software developers. Many

researchers have used shared trajectories from NGSIM to perform traffic analysis.

Montanino and Punzo (2013) propose a multistep filtering procedure for NGSIM

trajectory data. The filtering procedure consists of the following steps: (1) remove the

outliers; (2) cut off the high- and medium-frequency responses in the speed profile; (3)

remove the residual unphysical acceleration values and preserve the consistency

requirements; and (4) cut off the high- and medium-frequency responses eventually

generated from Step 3. Zhong et al. (2016) utilize the data collected on April 13, 2005,

17

which is a 15-min time frame observation (4:00–4:15 pm) on a stretch of Interstate 80 in

San Francisco, California. The Intelligent Driving Model (IDM), a widely used car

following model, was calibrated using this dataset.

Other than cameras, Radar and LiDAR are new technologies have been applied for traffic

data collection (Hilpert et al., 2018; Xu et al., 2018). Compared to camera, Radar/LiDAR

can collect data under adverse weather conditions. More importantly, LiDAR is able to

construct 3D imaging of the roadway and identify different road activities. However, the

application of Radar and LiDAR is currently limited by their expensive equipment costs.

2.2.2 Model Calibration

In practice, many microscopic simulation models are calibrated on a trial-and-error basis

to determine which parameter values minimize the estimation error between simulation

results and field observations of certain macroscopic traffic flow measures, such as travel

time and flow rate.

Hellinga (1998) summarizes the common issues related to the calibration of traffic

simulation models and describes the overall calibration process. The first phase of

calibration is to understand the modelling objective, the available data, and the evaluation

criteria. This phase is commonly conducted for all calibration methods prior to the

commencement of any modelling. The second phase is initial calibration of network

coding, link characteristics, driving behaviour and original-destination traffic demands. In

state-of-the-art microscopic traffic simulation software, this step can be done easily by

using various built-in functionalities. The third phase is to compare the simulation result

with field conditions and test against the previously established criteria. If these criteria

are met, then the model is considered to be adequately calibrated. The flow chart for each

phase is shown in Figure 1.

18

Figure 1 Calibration Process (Hellinga, 1998)

The model calibration framework for microsimulation traffic models proposed by

Hellinga (1998) is still applicable today. However, various approaches have been

developed to find the “best parameter set”.

2.2.2.1 Early Approaches

Several approaches for microsimulation model calibration were proposed before artificial

intelligence techniques were developed and popularized.

The principle of manual search entails searching for the model parameters manually on a

trial-and-error basis. While using this approach, a modeller changes the value of a

selected parameter based on previous knowledge and experience. This approach is

commonly used in practice and easy to understand, however, the calibration result is

often not robust (Kim, et al., 2005).

Because the relationship between parameters and simulation outputs are complicated by

various interactions within the simulation, some researchers tried to use regression

models to mathematically relate the influence of parameters on the simulation results.

Park and Schneeberger (2003) use the Latin hypercube sampling (LHS) method to

19

generate hundreds of combinations of selected VISSIM parameters and build a regression

model where independent variables are VISSIM parameters and the dependent variable is

travel time. Then, the field measured travel time is set as the target value to determine

combinations of parameters producing travel time values close to the field measured

travel time. Afterwards, travel times are collected from multiple simulation runs with

selected parameter sets. The t-test is applied with simulated travel times to confirm the

statistic significance between simulated travel times and field data.

The gradient approach changes initial parameters based on the perceived direction of the

maximum increase of the objective function. Each parameter is changed in proportion to

the magnitude of its slope with the simulation model. The goal is to produce an optimal

value of the objective functions (Kim, et al., 2005). However, this method may only

capture the local optimal rather than the global optimal value (Ma and Abdulhai, 2002).

2.2.2.2 Genetic Algorithm

Because the calibration of a microscopic simulation model is very complex and stochastic

in nature, it is sometimes formulated as an optimization problem and solved by heuristic

methods (Ma et al. 2007). A genetic algorithm (GA) is a meta-heuristic optimization

technique that uses the concept from evolutionary biology to search for a global

minimum. The name “GA” comes from the fact that the algorithms are mimicking

evolutionary biology techniques. A GA works by starting with an initial generation of

candidate solutions, akin to chromosomes, that are tested against the objective function.

Then, subsequent generations are generated from the first generation through selection,

crossover, and mutation. Selection means to retain the best-performing parent from one to

the next generation. Crossover means to combine the genetic information of two parents

to generate new offspring. Mutation is the process to take a parent and mutate certain

variables to create a child. This process allows a GA to avoid falling into local minima

and helps them to fully explore the solution space.

GAs has been employed in calibrating simulation models in many studies to create the

best set of input parameters so that the model produces results similar to reality (Miller,

2009). The list of studies using GAs for model calibration is shown in Table 3.

20

Table 3 Summary of Studies Using GAs

Authors Measure of Performance Fitness Function Software
Ma and Abdulhai (2002) Link flow Global Relative Error PARAMICS

Yu et al (2003) Speed Sum of Squared Error VISSIM

Kim et al.
(2005) Travel time

Moses’ test, Wilcoxon
test, and

Kolmogorov–Smirnov
test

VISSIM

Park and Qi (2005) Travel time fitness value VISSIM
Yu et al. (2006) Speed, traffic volume Sum of Squared Error VISSIM

Ma et al. (2007)
Capacity,
Critical

Occupancy

GEH (Geoffrey E.
Havers) PARAMICS

Abdalhaq and Baker (2014) Travel time Average Error SUMO
Lidbe et al. (2017) Traffic volume, Travel times GEH VISSIM

Yu and Fan (2017) Flow, speed Mean Absolute
Normalized Error VISSIM

Park and Qi (2005) utilize the GA for VISSIM model parameter calibration. Before the

calibration starts, critical parameters include simulation resolution, number of observed

preceding vehicles, maximum look-ahead distance, average standstill distance, saturation

flow rate, minimum headway, minimum gap time, desired speed, and their appropriate

ranges are identified from a sensitivity test and feasibility test. Then, the GA starts by

generating a number of individuals in the population, each of which represents a feasible

set of parameters. The parameter sets are inputted to the simulation model to obtain the

simulation result (e.g., travel time). After each run, or generation, the results are

measured and assigned a level of fitness. The fitness function shown in Equation 6 is

used to compare the relative difference between the simulated results and field

measurements:

𝐹𝐹𝐹𝐹 =
�𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑙𝑙𝑓𝑓−𝑇𝑇𝑇𝑇𝑠𝑠𝑓𝑓𝑚𝑚�

𝑇𝑇𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓𝑙𝑙𝑓𝑓
 (6)

where 𝐹𝐹𝐹𝐹 is fitness value, 𝑇𝑇𝑇𝑇𝑓𝑓𝑖𝑖𝑣𝑣𝑖𝑖𝑑𝑑 is the average travel time (seconds) from the field, and

𝑇𝑇𝑇𝑇𝑠𝑠𝑖𝑖𝑘𝑘 is the average travel time (seconds) from the simulation.

Based on the level of fitness, the parameter sets with good fitness value are selected as

parents to populate the next generation (i.e., next parameter sets). Figure 2 demonstrates

21

the convergence of fitness value over subsequent generations. The results of the study by

Park and Qi (2005) are based on 10 generations with a population size of 20. The

crossover rate is 0.8 which means 80% of offspring are made by crossover and the

mutation rate is 0.05 which means 5% of parameter sets should be mutated in one

generation.

Figure 2 Convergence of GA Fitness Value with Generation (Park and Qi, 2005)

In addition to the average travel time, Park and Qi (2005) also compare the travel time

distribution of different parameter sets. Other than the GA-optimized parameter set with

best fitness value, they also run simulations with the VISSIM default parameter set and a

best-guess parameter set developed on the basis of the engineers’ knowledge of local

traffic conditions. According to Figure 3, the travel time distribution obtained from

default parameter set and the best-guess parameter set are far away from the field travel

times collected over 3 days. On the other hand, all three field measurements fall within

the simulated distribution of the GA-optimized parameter set.

22

Figure 3 Comparison of Travel Times by Different Parameter Sets (Park and Qi,

2005)

Kim et al. (2005) also utilizes a GA to calibrate a VISSIM model. Different from Park

and Qi (2005), they recognize that the best parameter set found by minimizing aggregated

performance measures (e.g., average travel time) based objective function may not be

valid because this assumption is true only when the distributions for the simulated and

observed travel times are identical. Therefore, instead of using average travel time

collected from the field, they collect the travel time of individual vehicles from the site.

In the GA process, nonparametric statistical tests (e.g. Moses’ test, Wilcoxon test, and

Kolmogorov Smirnov test) are used to evaluate each candidate solution (i.e., parameter

set) based on the mean and dispersion of the individual travel time distribution. After the

accepted parameter sets are selected, then the mean absolute error ratio (MAER) shown

in Equation 7 is used to measure the difference between simulated result and filed

measurement.

𝑀𝑀𝑀𝑀𝑀𝑀𝑅𝑅 =
∑ �𝑆𝑆𝑓𝑓−𝑂𝑂𝑓𝑓𝑂𝑂𝑓𝑓

�𝑛𝑛
𝑓𝑓=1

𝑛𝑛
 (7)

23

where 𝑆𝑆𝑖𝑖 is the travel time from simulation model, 𝑂𝑂𝑖𝑖 is observed travel time, and n is

number of observations.

Ma and Abdulhai (2002), Yu et al. (2003), Yu et al. (2006), Abdalhaq and Abu Baker

(2014), and Lidbe et al. (2017) use a similar methodology with different tuning on the

GA parameters (e.g., crossover rate and mutation rate). For example, Abdalhaq and Abu

Baker (2014) use the average crossover method which is taking the average value of the

parameters from all the parent parameter sets to create the next generations. In addition,

Ma et al. (2007) compares the GA with another heuristic algorithm, the simultaneous

perturbation stochastic approximation (SPSA). The detail of the SPSA is introduced in

the next section.

2.2.2.3 Simultaneous Perturbation Stochastic Approximation

Simultaneous perturbation stochastic approximation (SPSA) is an efficient method for

optimizing computationally expensive, ‘‘black-box’’ traffic simulations (Hale et al.,

2014). The fundamental idea of SPSA is to search for the optimal point that corresponds

to the zero gradient of the objective function. To avoid the solution falling into local

optima, the algorithm uses stochastic vector to determine the direction of choosing values

to calculate the gradient (Abdalhaq and Abu Baker, 2014). The list of studies using SPSA

for model calibration is shown in Table 4.

Table 4 Summary of Studies Using SPSA

Authors Measure of Performance Fitness Function Software
Ma et al. (2007) Capacity GEH PARAMICS

Lee and Ozbay (2009) Flow, Speed Mean Square Variation PARAMICS
Paz et al. (2012) Vehicle counts, speed GEH CORSIM

Abdalhaq and Abu Baker
(2014) Travel time Average Error SUMO

Hale et al. (2015) Speed, Density
Minimize the difference

between simulated and field
measured outputs

FRESIM

Ma et al. (2007) successfully calibrate the PARAMICS traffic model with the SPSA. In

that study, the SPSA is set up in the following way. For the system, an objective function

𝐿𝐿(𝜃𝜃) is used to evaluate the fitness between the simulated results and field measurements,

24

where 𝜃𝜃 are the parameters selected to be calibrated. The fitness between simulated

results and field conditions as measured by GEH statistic is shown in Equation 8:

𝐺𝐺𝑀𝑀𝐺𝐺 = �
2(𝑉𝑉𝑝𝑝−𝑉𝑉𝑚𝑚)2

(𝑉𝑉𝑝𝑝+𝑉𝑉𝑚𝑚)
 (8)

where 𝐹𝐹𝑝𝑝 is the traffic volume (veh/hr) predicted by the model and 𝐹𝐹𝑘𝑘 is the traffic

volume (veh/hr) measured in the field.

Assuming that 𝐿𝐿(𝜃𝜃) is differentiable over 𝜃𝜃, the minimum of 𝐿𝐿(𝜃𝜃) can be obtained at a

zero gradient:

𝑔𝑔(𝜃𝜃) = �𝜕𝜕𝐿𝐿(𝜃𝜃)
𝜕𝜕𝜃𝜃

�
𝜃𝜃=𝜃𝜃∗

= 0 (9)

Starting at an initial guess of 𝜃𝜃0, the SPSA method applies a series of stochastic

perturbations to the candidate parameter sets to update the best solutions until the

approximation of the 𝑔𝑔(𝜃𝜃) converges to zero.

Ma et al. (2007) also compares the calibration results of using the SPSA and a GA. As

shown in Figure 4, for the SPSA method, the fitness values converge very quickly after

few iterations, but they become very oscillatory during the remaining process, which is

sensible given the stochastic perturbations involved at each iteration. On the other hand,

the GA method has a smoother convergence process and the difference between

maximum and minimum fitness values become smaller which means that the GA method

reaches a more stable optimal solution.

25

Figure 4 Local Parameter Calibration Convergence Diagram (Ma et al., 2007)

Abdalhaq and Baker (2014) also compare the performance of the SPSA and GA. They

conduct calibration by using the SPSA and GA on two different sites. The average fitness

result shows that the SPSA performs well on a simple network while the GA performs

better on a more complex network. Lee and Ozbay (2009) propose enhanced SPSA (E-

SPSA) by combining the Bayesian sampling approach and SPSA. Similar to the study

done by Kim et al. (2005) that is introduced in the previous section, the Kolmogorov–

Smirnov test is performed to ensure that the distribution of the simulation results

represented real traffic conditions.

2.2.2.4 Artificial Neural Network

An Artificial Neural Networks (ANN) is an Artificial Intelligence (AI) technique that

emulates the function of the human brain. ANN develop their understandings by finding

relationships and patterns in data and learn through experience. An ANN is formed from

26

artificial neurons connected with coefficients, which constitute the neural structure, and

are organized in layers (Agatonovic-Kustrin and Beresford, 2000). The representation of

a basic ANN is shown in Figure 5.

Figure 5 Neural Network Representation

In the ANN, input nodes can take inputs to the neural network. Then, based on the

connection weights, the artificial neuron computes the weighted sum of the inputs and

modifies the data received through the transfer function in the hidden layer to generate an

output signal, which represents the activation of the neuron. The transfer function is used

to introduce non-linearity to the network. Common transfer functions used for ANN

include Sigmoid Function, Hyperbolic Tangent Function, and Gaussian Function. The

representation of this process is shown in Figure 6. Training of the ANN is the process of

adjusting the connection weights between neurons to reproduce the input-output results

of the training dataset with minimal error (Daguano, 2019).

27

Figure 6 Perceptron Model

Daguano (2019) proposes a methodology to train ANN that can calibrate microscopic

traffic simulation models. As for other calibration methods, calibration using ANN also

starts with selecting parameters and defining ranges for those parameters. After

identifying the parameters to calibrate, a user can collect desired network performance

measurements output by running the VISSIM model with different input parameters

many times (e.g., 2000 times). Because the purpose of this study is to determine VISSIM

parameter values from field measurements, the input/output order of the traffic simulator

is reversed when the dataset for ANN training is constructed. In other words, the

simulation outputs (network performance measurements) are used as inputs to the ANN,

and the simulation inputs (calibration parameters) are the desired outputs of the modeled

ANN. After the training of the neural network is completed, the neural network can

generate a model that describes the relationship between network performance

measurements and VISSIM parameters. Therefore, when aggregate network performance

measurements (travel time, speed, etc.) are available, the model can determine the

appropriate VISSIM parameter values that will generate similar results from the VISSIM

model.

Different from the other calibration methods, ANN are designed to establish the

relationship between microscopic traffic simulation parameters and outputs, rather than

find the “best” parameter set by trial-and-error. ANN users can obtain parameter sets for

different field measurement calibration targets, while other calibration methods would

28

require users to rerun all of their simulations again if the calibration targets are changed.

In addition, the formulation of the genetic algorithm is relatively complicated: the fitness

function, population size, rate of mutation and crossover, and selection criteria for the

new population need to be carefully selected (Yang, 2014). Therefore, an ANN is

selected for calibration of unobservable parameters in this research.

2.3 Gaps

In summary, numerous studies have been conducted on the calibration of microscopic

traffic simulation parameters. However, there are a few gaps between existing literature

and the emerging real-world application needs and opportunities.

The techniques used for the calibration of microsimulation parameters rely heavily on

engineering judgement and optimization-based calibration algorithms. Although some

studies generate results that are close to the pre-defined measures of performance, the

wider representativeness of the calibrated models outside of these measures remains

questionable. The fundamental reason for relying on optimization-based calibration is the

historic lack of data. In most existing studies, the type of traffic data collected are very

limited and they are often used as a measure of performance for validation of the model.

However, the development of smart city technology provides an opportunity to

modellers. It is likely that in the foreseeable future, it will be easier and cheaper to collect

various types of traffic data for transportation studies. Hence, there is an opportunity to

improve the accuracy of the microsimulation models since many parameters can be

directly determined from the field data and multiple measures of performance can be

used for model validation.

Few studies have utilized field data to calibrate traffic modelling parameters and they are

not directly compatible with VISSIM model calibration. For instance, Zhong et al. (2016)

utilized field traffic data to calibrate the IDM car following model but it is not used in the

VISSIM model. The other example is Lu et al. (2016), which however focused only on

calibrating the VISSIM car following model parameters. This research focuses on not

only the calibration of VISSIM traffic model, but also developing methodologies of

determining as many parameter values as possible. At the same time, standardized

29

approaches need to be developed to ensure appropriate and consistent use of these data

for model development. The best practices are introduced, and some recommendations

are made while introducing the proposed methodologies. The following parts of this

thesis utilize smart city data to improve the representativeness of microscopic traffic

simulation models and develop standardized approaches to use these data for calibration

purposes.

30

3 Data and Methodology

3.1 Field Data

This study uses the Next Generation Simulation (NGSIM) dataset to test the usage of

smart city data in microscopic traffic simulation calibration. The NGSIM program was

initiated by the Federal Highway Administration (FHWA) with a primary focus on

collecting supporting data and documentation for microscopic traffic modelling. The data

was collected by synchronized video cameras, as would be the case in many smarty city

implementations. Hence, the processed data contains similar data compared to the outputs

of other smart city data sources.

An arterial section on Peachtree Street in Atlanta, GA, was selected from the NGSIM

database to model the urban traffic environment. This location was selected because its

road geometry (e.g., two-lane highway, signalized intersection and stop-controlled

intersection) is comparable to many North America urban roads. Figure 7 shows the

schematic of the study area.

The traffic data were collected from 4:00 p.m. to 4:15 p.m on November 9th, 2006. The

posted speed is 35 mph (56 km/h). This arterial section is approximately 640 m in length

and includes five intersections—four signalized intersections and one stop–controlled

intersection. The raw video data were processed by NGVIDEO, a customized software

that can convert video to vehicle trajectory data. The vehicle information is updated at

one-tenth of second intervals to capture the continuous movement of the vehicle. The

vehicle data collected in 15 minutes consists of 873,887 observations of 1,545 individual

vehicles. Information related to vehicle movements can be determined from the trajectory

data. Table 5 lists the data types that are available for developing a microscopic traffic

simulation model.

31

Figure 7 Peachtree St from 10th St to 14th St (Cambridge Systematics Inc., 2007)

32

Table 5 NGSIM Data Description

Attributes Description
Vehicle ID Vehicle identification number

Vehicle Speed Instantaneous velocity of vehicle
Vehicle Acceleration Instantaneous acceleration of vehicle

Vehicle Class Vehicle type: motorcycle, auto, truck
Vehicle Length Length of vehicle

Lane ID Current lane position of vehicle
Origin Origin zones of the vehicle

Destination Destination zones of the vehicle
Direction Moving direction of the vehicle: EB, NB, WB, SB

Intersection Intersection in which the vehicle is traveling
Movement Movement of the vehicle: through, left-turn, right-turn

Preceding Vehicle Vehicle ID of the lead vehicle in the same lane.
Following Vehicle Vehicle ID of the vehicle following the subject vehicle in the same lane

Space Headway Spacing provides the distance between the front-center of a vehicle to the front-
center of the preceding vehicle

Time Headway Time Headway provides the time to travel from the front-center of a vehicle (at
the speed of the vehicle) to the front-center of the preceding vehicle

Among these attributes, vehicle speed, vehicle acceleration, vehicle’s space headway and

time headway, and lane position are most important for VISSIM parameter analysis. The

distributions of these attributes are shown in Figure 8 to Figure 11.

There are some errors in the database. Some records have zero space and time headways

(measured from their preceding vehicles), which implies that one vehicle is on the top of

another one. Also, time headways at a speed of zero are removed because they are shown

as either 0 or 9999.99 in the database.

Figure 8 demonstrates the distribution of instantaneous speed of each vehicle record. The

unit of speed is 𝑓𝑓𝑡𝑡/𝑅𝑅 in the original database. All units in this study are converted to the

33

metric system. Most vehicles have speeds less than 60 km/h.

Figure 8 Vehicle Speed Distribution

Figure 9 demonstrates the distribution of vehicle acceleration. The acceleration is

numerically derived from the tracked vehicle positions (Thiemann et al., 2008). The unit

of acceleration was 𝑓𝑓𝑡𝑡/𝑅𝑅2 in the original database. The most notable feature of this figure

is that about 70% of acceleration observations are within -1 to 0 𝑘𝑘/𝑅𝑅2 (deceleration).

This is because more than 50% of all acceleration observations have an acceleration of

zero. Part of the reason is that about 20% of vehicle records are in a standstill position.

However, other than records with zero acceleration, a large portion of observations are

within -1 to 1 𝑘𝑘/𝑅𝑅2. Because human drivers are not perfect, it is very common for them

to accelerate or decelerate a little bit when they want to maintain their speed.

34

Figure 9 Vehicle Acceleration Distribution

Figure 10 shows the distribution of the space headway. The lowest space headway is

around 5m since it includes the car length of the leading vehicle. More than 60% of space

headway observations are within 5m to 10m which implies this range is the most

common space headway between two vehicles.

Figure 10 Space Headway Distribution

35

Figure 11 shows the distribution of the time headway. About 40% of time headway

observations are within 0s to 6s which implies this range is the most common time

headway between two vehicles.

Figure 11 Time Headway Distribution

3.2 Proposed Methodology

The methodology of using smart city data to develop a microscopic simulation model

includes six main steps: network building, parameter selection, sensitivity analysis,

parameter determination from direct observation, parameter calibration for unobserved

parameters, and model evaluation. The details of each step are discussed individually in

the following subsections.

3.2.1 Network Building

The microscopic traffic simulation model was created in PTV VISSIM 20 (PTV Group,

2020). The road section shown in Figure 7 was coded in VISSIM. A screenshot of

VISSIM road network layout is shown in Figure 12.

36

Figure 12 VISSIM Road Network Layout

37

3.2.1.1 Road Geometry

The road geometry of a VISSIM model is usually determined from the built-in map

services in VISSIM or Google maps. However, due to vast changes in the study area

since 2006, the geometry of the roadway for this study was constructed based on the

aerial photo and CAD diagram provided by the NGSIM dataset, reflecting the roadway

length and lane configuration in 2006. A comparison between 2006 and the existing

intersection condition at Peachtree Street and 11th street is shown in Figure 13.

Figure 13 Intersection of Peachtree Street & 11th Street (2006 and 2021)

3.2.1.2 Vehicle Volume and Turning Ratio

The vehicle volume inputs and vehicle routings are usually based on turning movements

counts (TMC) provided by the municipalities or data collection companies. In this study,

they were determined from the NGSIM Peachtree Street (Atlanta) Data Analysis

Summary Report (Cambridge Systematics Inc. 2007), which summarizes the number of

vehicles and vehicle turning directions observed from the video data for each

intersection.

3.2.1.3 Signal Control

Signal timing plans of the study intersections in 2006 were provided by the Georgia

Department of Transportation. The signal timing plans were used to program signal

controllers in VISSIM through the Ring Barrier Control (RBC) tool.

38

3.2.1.4 Collection of Simulation Data

Data collection points and vehicle travel times segments were set up in the VISSIM

model to collect desired model outputs such as vehicle speeds and travel times. In

practice, the modelling outputs are compared with the field measurements to calibrate the

VISSIM model. Smart city data can provide different types of field measurements

collected from different places in the network to improve modelling accuracy. Different

metrics are used for different modelling purposes. For example, travel time is usually

used when the purpose of modelling is to evaluate operational performance, but it may

not be a valid measure when the modelling purpose is related to safety or emissions. In

this study, northbound and southbound average travel times and the average speed at the

midpoints of each section are used to evaluate the model performance. Average travel

times and average speeds are arithmetic averages measured over the 15 minutes study

period. The average travel times are computed for the entire corridor length because most

recorded vehicles are travelling along the Peachtree Street corridor. Figure 14 illustrates

the approximate data collection locations placed in the VISSIM model.

39

Figure 14 Data Collection Location

40

3.2.2 Parameter Selection

Building a VISSIM model usually consists of two parts as shown in Figure 15. The first

part involves building the traffic network by drawing road geometry, inputting traffic

volumes, routing vehicles, and designing intersection controls discussed in the previous

section. The second part of building a VISSIM model involves defining parameters that

are related to vehicle performance and driving behaviour models. The parameters

highlighted with red represent the parameters that cannot be extracted from the smart city

dataset (i.e., unobserved parameters).

Figure 15 VISSIM Overview

This study focuses on the VISSIM parameters selected for model calibration in previous

studies as discussed in the literature review. The selected parameters mainly focus on car

following behaviour and lane change behaviour. Traffic network building components

41

are not considered in this study since they are already well developed in the current

practice. The list of selected parameters is shown in Table 6.

Table 6 Parameter Selection

Category Parameter

Vehicle Performance
Desired speed

Desired acceleration/deceleration

Following behavior
Look ahead distance (min and max)

Number of interaction objects

Car following model
Average standstill distance

Additive part of desired safety distance
Multiple part of desired safety distance

Lane change

Maximum deceleration (Own and trailing)
-1 𝑘𝑘/𝑅𝑅2 per distance (Own and trailing)
Accepted deceleration (Own and trailing)

Waiting Time Before Diffusion
Minimum Headway for lane changing

Safety distance reduction factor

3.2.3 Sensitivity Analysis

Due to the complexity of microscopic traffic simulation models, the effect of each

parameter to the modelling result is unpredictable for different traffic networks.

Therefore, sensitivity analysis is required to identify key parameters and eliminate

parameters that have less effect on model results.

One-way ANOVA tests are performed to test the sensitivity of simulation results to the

different parameters values. In each test, the selected parameter is changed to a different

value to generate multiple modelling results and the one-way ANOVA can test the null

hypothesis that the means for two or more groups are equal. If the studied parameter is

sensitive to the result, the means for different groups should be statistically different

(Park and Qi, 2005). The statistical significance is evaluated by the p-values. In this

study, parameters with p-value less than 0.05 are considered statistically significant.

Northbound average travel time and the northbound average speed at road section 3 were

selected for the sensitivity analysis to verify the impact of changing parameter values on

both travel time and speed. The data collection locations may impact the analysis results.

42

For example, modellers could get very different results regarding the importance of a

parameter from speed data obtained from a mid-block compared to speed data obtained at

a roundabout.

Each parameter was tested for three scenarios within its range that was determined from

the previous studies and each scenario runs 30 times with different random seeds. Table 7

summarizes the range of each parameter based on previous studies (Park and Qi 2005;

Park et al. 2006; Miller 2009). Table 8 summarizes the ANOVA test results for selected

VISSIM parameters.

Table 7 VISSIM Parameter Range

Parameters Range
Desired Speed Distribution (km/h) ±1.0-15.0

Look-ahead distance min (m) 0 to100
Look-ahead distance max (m) 150 to 250
Number of interaction objects 2 to 8

Average standstill distance (m) 1 to 5
Additive part of desired safety distance 1 to 5
Multiple part of desired safety distance 1 to 6
Maximum Deceleration (own) (𝑘𝑘/𝑅𝑅2) -5 to -1

Maximum Deceleration (trailing) (𝑘𝑘/𝑅𝑅2) -5 to -1
-1 𝑘𝑘/𝑅𝑅2 per distance (own) (m) 50 to 200

-1 𝑘𝑘/𝑅𝑅2 per distance (trailing) (m) 50 to 200
Accepted Deceleration (own) (𝑘𝑘/𝑅𝑅2) -1.5 to -0.1

Accepted Deceleration (trailing) (𝑘𝑘/𝑅𝑅2) -1.5 to -0.1
Min. headway (front/rear) (m) 0.5 to 7

Safety distance reduction factor 0.3 to 0.9
Waiting time before diffusion (s) 40 to 80

43

Table 8 ANOVA Results

Category Parameters
p-value

NB Travel Time Section 3 Speed (NB)

Vehicle
Performance

Desired Speed Distribution 0.0000 0.0000
Desired Acceleration 0.0000 0.0000
Desired Deceleration 0.3519 0.0000

Following
Behaviour

Look-ahead distance min (m) 0.9872 0.7360
Look-ahead distance max (m) 0.0019 0.0001
Number of interaction objects 0.9098 0.0428

Car following
model

Average standstill distance (m) 0.0011 0.0000
Additive part of desired safety distance 0.0000 0.0000
Multiple part of desired safety distance 0.0000 0.0000

Lane change

Maximum Deceleration (own) (𝑘𝑘/𝑅𝑅2) 0.9994 0.9991
Maximum Deceleration (trailing) (𝑘𝑘/𝑅𝑅2) 0.9264 0.8508

-1 𝑘𝑘/𝑅𝑅2 per distance (own) (m) 1.0000 1.0000
-1 𝑘𝑘/𝑅𝑅2 per distance (trailing) (m) 1.0000 1.0000

Accepted Deceleration (own) (𝑘𝑘/𝑅𝑅2) 1.0000 1.0000
Accepted Deceleration (trailing) (𝑘𝑘/𝑅𝑅2) 1.0000 1.0000

Min. headway (front/rear) (m) 0.4397 0.0238
Safety distance reduction factor 0.9302 0.7778

Waiting time before diffusion (s) 0.9995 0.9995

Based on the results shown in Table 8, In the vehicle performance parameters, desired

speed distribution and desired acceleration have a statistically significant effect on

northbound travel time and all three vehicle performance parameters have a statistically

significant effect on northbound speed at section 3. These three parameters are important

since they directly impact a vehicle’s speed and acceleration in the model.

In the following behaviour parameters, the minimum look-ahead distance does not have a

statistically significant effect on travel time and speed since it is not usually considered

for longitudinal movement of the vehicle. The maximum look-ahead distance is

statistically significant and important for travel time and speed of vehicles since it

decides how vehicles react to the preceding vehicles. The number of interaction objects is

only critical to vehicle point speed (statistically significant) because it could affect the

vehicle decision at some section of the road (e.g., decelerate when too many vehicles are

around) but it has minor impact on larger scale travel times (insufficient evidence to

reject the null hypothesis).

44

All car following model parameters have a statistically significant effect on vehicle travel

times and vehicle speeds. Theses parameters decide the space headway a following

vehicle should keep and when the following vehicle should accelerate or decelerate.

Almost all lane changing parameters do not have much impact on vehicle travel times

and vehicle speeds since these parameters are designed to model lane change behaviours.

In practice, parameters that are not statistically significant can be excluded for further

calibration consideration. However, for the purpose of this study, all selected parameters

are kept in order to explore the connections between smart city data and these parameters.

3.2.4 Model Evaluation

An objective function is used to measure the difference between field observations and

simulation results. In this study, the Mean Absolute Normalized Error (MANE) function

(Yu and Fan, 2017) is used because it is an appropriate objective function form for

problems with multiple types of performance measurements (e.g., travel time and speed).

The MANE function is provided by Equation 10.

𝑀𝑀𝑖𝑖𝑅𝑅𝑖𝑖𝑘𝑘𝑖𝑖𝑀𝑀𝑣𝑣 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡,𝑣𝑣) = 1
𝐽𝐽
∑ �𝜕𝜕𝑜𝑜𝑜𝑜𝑠𝑠,𝑗𝑗−𝜕𝜕𝑠𝑠𝑓𝑓𝑚𝑚,𝑗𝑗�

𝜕𝜕𝑜𝑜𝑜𝑜𝑠𝑠,𝑗𝑗

𝐽𝐽
𝑗𝑗=1 + 1

𝐾𝐾
∑ �𝑣𝑣𝑜𝑜𝑜𝑜𝑠𝑠,𝑘𝑘−𝑣𝑣𝑠𝑠𝑓𝑓𝑚𝑚,𝑘𝑘�

𝑣𝑣𝑜𝑜𝑜𝑜𝑠𝑠,𝑘𝑘

𝐾𝐾
𝜕𝜕=1 (10)

where

𝑡𝑡𝑜𝑜𝑜𝑜𝑠𝑠,𝑗𝑗 is observed average travel time for a given section j.

𝑡𝑡𝑠𝑠𝑖𝑖𝑘𝑘,𝑗𝑗 is simulated travel time for a given section j.

𝑣𝑣𝑜𝑜𝑜𝑜𝑠𝑠,𝜕𝜕 is observed average speed at a given location k.

𝑣𝑣𝑠𝑠𝑖𝑖𝑘𝑘,𝜕𝜕 is simulated average speed at a given location k.

𝐽𝐽 is total number of travel time collection sections.

𝐾𝐾 is total number of speed collection locations.

45

3.2.5 Parameter Determination Using Smart City Data

The key difference of this research compared to previous studies is the focus on

determining model parameters directly from traffic data. For this study, the NGSIM

dataset is the primary data source used to convert vehicle trajectories to VISSIM

parameters. Smart city traffic data from other data sources should also be able to follow

the proposed procedures. The proposed procedures are discussed in the following

sections and the parameter results are presented in Chapter 4. The Python scripts

developed for determining parameter values are included in Appendix A.

3.2.5.1 Following Behavior

The following behavior in VISSIM defines how vehicles interact with the other objects in

the network. Look ahead distance defines how far a vehicle can see forward in order to

react to other vehicles and interaction objects that are in front of or next to it on the same

link. However, look ahead distance and number of interaction objects and are not

observable form any type of field traffic data. Therefore, these two parameters need to be

calibrated by methods other than direct observation.

3.2.5.2 Desired Speed

Desired speed (m/s) is the speed a vehicle wants to maintain if it is not hindered by other

vehicles or objects in the network. By default, the desired speed distribution is a uniform

distribution and the cumulative distribution appearing as a straight line. For example, the

desired speed distribution for a posted speed of 50 km/h is shown in Figure 16. However,

the desired speed is affected by many different factors such as local driver population,

land use, street parking and sidewalk presence (Silvano et al., 2020). Therefore,

VISSIM’s default distribution may not be able to capture the characteristics of the

modelled roadway.

46

Figure 16 VISSIM Default Desired Speed Distribution (56 km/h)

To modify the desired speed using smart city data, it is necessary to determine if the

observed vehicles are travelling at the free flow state. However, the driving state cannot

be directly observed. In previous studies related to desired speed estimation, a threshold

time headway is normally used. In the study by Vogel (2002), vehicles with different

speeds were classified in groups of one second time headways from 1 to 12s. Their result

indicated that all vehicles with more than 6s time headway were in the free flow regime.

In order to only include vehicles travelling in a free flow state, a 6s headway threshold is

used for the desired speed analysis. In addition, to eliminate outliers that are travelling

extremely slow, a minimum speed threshold must be applied. The speed threshold for

desired speed was obtained by comparing the field observations and simulation results

when different minimum speed thresholds were applied. The results of the comparison is

shown in Figure 17. Velocity of 40 km/h was used as the minimum speed threshold

because it resulted in the lowest MANE. Then, the maximum speed of each recorded

vehicle traveling at free flow state can be plotted in a probability plot to show the

47

cumulative distribution of the desired speed.

Figure 17 Comparison of MANE Using Different Speed Thresholds

3.2.5.3 Desired Acceleration/Deceleration

In VISSIM, desired acceleration/deceleration (𝑘𝑘/𝑅𝑅2) are functions of the vehicle’s

current speed. As shown in Figure 18, VISSIM defines minimum, median, and maximum

desired acceleration/deceleration at a certain speed to account for different driving

behaviours and vehicle properties. A vehicle’s actual acceleration/deceleration rates at a

certain speed will change between the maximum-minimum range following a stochastic

distribution.

48

Figure 18 VISSIM Default Desired Acceleration/Deceleration Function

With the acceleration/deceleration and speed data available in the smart city dataset, the

relationship between desired acceleration/deceleration and current speed can be

developed. As in VISSIM’s default settings, the observed speeds can be classified into

different intervals for every 10 km/h increment. Percentile thresholds can be used to

determine the minimum, median and maximum acceleration/deceleration for each speed

interval to eliminate outliers and irregular behaviours.

To decide what percentile thresholds to use, different percentile values can be tested by

running the VISSIM model with different percentile thresholds (5th, 10th, and 15th

percentiles for minimum acceleration/deceleration, 50th percentile for median

acceleration/deceleration, and 95th, 90th, and 85th percentiles for maximum

acceleration/deceleration). In this research, the minimum, median and maximum desired

acceleration/deceleration determined by using 5th, 50th, and 95th percentiles of the

acceleration data were found to generate the least MANE. The results of the threshold

test are shown in Table 9.

Table 9 Threshold Test Results for Desired Acceleration/Deceleration
Test Minimum Median Maximum MANE

#1 5th 50th 95th 0.161

#2 10th 50th 90th 0.175

#3 15th 50th 85th 0.164

49

3.2.5.4 Car Following Model

In VISSIM, the car following behaviour in urban environments is modelled by the

Wiedemann 74 model as shown in Figure 19. This car following model was originally

developed by Wiedemann in 1974 and it was recalibrated using instrumented vehicle to

measure the thresholds shown in Figure 19 (Reiter, 1994). When a faster vehicle

approaches a leading vehicle, the faster vehicle will start decelerating to match the speed

of the leading vehicle. However, the speed of the following vehicle may get too low

because the driver cannot accurately estimate the leading vehicle speed. Then, the

following vehicle will accelerate a little to match the speed of the leading vehicle. This

results in an iterative process of acceleration and deceleration due to the driver’s

imperfections in determining the exact speed of the lead vehicle (Aghabayk et al., 2013).

In VISSIM, two thresholds in Figure 19 can be modified by the user: the distance

between two stationary vehicles (ax) and the minimum following distance which is

considered as a safe distance by drivers (d).

Figure 19 Car-following Model (VISSIM, 2020)

Following state

Free flow state

Approaching state

Braking state

Collision state

d

bx

ax

50

Three parameters can be changed to modify the two-car following behaviour thresholds:

average standstill distance, additive part of safety distance, and multiplicative part of

safety distance. The relationship between those parameters and desired safety distance is

shown in Equation 11 and 12.

𝑑𝑑 = 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑥𝑥 (11)

𝑏𝑏𝑥𝑥 = (𝑏𝑏𝑥𝑥𝑎𝑎𝑑𝑑𝑑𝑑 + 𝑏𝑏𝑥𝑥𝑘𝑘𝑢𝑢𝑖𝑖𝜕𝜕 × 𝑀𝑀)√𝑣𝑣 (12)

where 𝑑𝑑 is the desired safety distance (m), 𝑎𝑎𝑥𝑥 is the standstill distance (m), 𝑏𝑏𝑥𝑥𝑎𝑎𝑑𝑑𝑑𝑑 is the

additive part of safety distance, 𝑏𝑏𝑥𝑥𝑘𝑘𝑢𝑢𝑖𝑖𝜕𝜕 is the multiplicative part of safety distance, 𝑀𝑀 is a

random value between 0 and 1 that is truncated normally distributed around 0.5 with a

standard deviation of 0.15, and 𝑣𝑣 is the following vehicle speed (m/s).

To determine parameter values used in Equation 11 and 12, the traffic data must contain

following distance between two vehicles and the following vehicle speed. In the NGSIM

dataset, space headway is used to record the distance from following vehicle to its

proceeding vehicle. The space headway is measured as the distance between the front-

center of a vehicle to the front-center of the preceding vehicle. Therefore, the length of

the preceding vehicle is subtracted from the space headway to determine the desired

safety distance. The desired safety distance can be calculated by Equation 13:

𝑓𝑓𝑅𝑅𝑖𝑖𝑖𝑖𝑅𝑅𝑓𝑓𝑖𝑖𝑅𝑅𝑔𝑔 𝑑𝑑𝑖𝑖𝑅𝑅𝑡𝑡𝑎𝑎𝑅𝑅𝑖𝑖𝑣𝑣 = space headway − preceding vehicle length (13)

Desired safety distance is the minimum safety following distance considered by drivers.

To account for extreme values and outliers, the 5th, 10th, and 15th percentiles of the

following distances for each vehicle recorded in the database is tested to represent the

minimum safety following distance. The value of the desired safety distance will impact

the values of 𝑏𝑏𝑥𝑥𝑎𝑎𝑑𝑑𝑑𝑑 and 𝑏𝑏𝑥𝑥𝑘𝑘𝑢𝑢𝑖𝑖𝜕𝜕. For this research, the minimum safety following

distances determined by using 10th percentile of the following distances was found to

generate the least MANE. The results of the threshold test are shown in Table 10. Then,

the collected desired safety distances for each vehicle are used to calibrate the other

parameters in the Equation 12.

51

Table 10 Threshold Test Results for Desired Safety Distance
Percentile MANE

5th 0.172

10th 0.169

15th 0.170

Standstill distance is the distance between two stationary vehicles. To estimate it, all

vehicle records that have zero speed and a stationary preceding vehicle are extracted from

the database. Then, the standstill distance can be calculated by using Equation 13.

After the standstill distance and desired safety distance between each pair of vehicles are

determined, 𝑏𝑏𝑥𝑥 can be calculated by Equation 11. Equation 12 can be transformed to

Equation 14 by moving known values to one side:

𝑜𝑜𝜕𝜕
√𝑣𝑣

= (𝑏𝑏𝑥𝑥𝑎𝑎𝑑𝑑𝑑𝑑 + 𝑏𝑏𝑥𝑥𝑘𝑘𝑢𝑢𝑖𝑖𝜕𝜕 × 𝑀𝑀) (14)

𝑏𝑏𝑥𝑥𝑎𝑎𝑑𝑑𝑑𝑑 and 𝑏𝑏𝑥𝑥𝑘𝑘𝑢𝑢𝑖𝑖𝜕𝜕 are two parameters can not be directly observed from the field traffic

data, but they can be estimated from their mathematical relationship with 𝑏𝑏𝑥𝑥. The

coefficient (𝑏𝑏𝑥𝑥𝑎𝑎𝑑𝑑𝑑𝑑 + 𝑏𝑏𝑥𝑥𝑘𝑘𝑢𝑢𝑖𝑖𝜕𝜕 × 𝑀𝑀) follows a normal distribution with mean of 𝑏𝑏𝑥𝑥𝑎𝑎𝑑𝑑𝑑𝑑 +

0.5𝑏𝑏𝑥𝑥𝑘𝑘𝑢𝑢𝑖𝑖𝜕𝜕 and standard deviation of 0.15𝑏𝑏𝑥𝑥𝑘𝑘𝑢𝑢𝑖𝑖𝜕𝜕. Therefore, when mean and standard

deviation of 𝑏𝑏𝑥𝑥 are known, 𝑏𝑏𝑥𝑥𝑎𝑎𝑑𝑑𝑑𝑑 and 𝑏𝑏𝑥𝑥𝑘𝑘𝑢𝑢𝑖𝑖𝜕𝜕 can be solved from the following

equations:

𝜇𝜇𝑜𝑜𝑏𝑏
√𝑣𝑣

= (𝑏𝑏𝑥𝑥𝑎𝑎𝑑𝑑𝑑𝑑 + 0.5𝑏𝑏𝑥𝑥𝑘𝑘𝑢𝑢𝑖𝑖𝜕𝜕) (15)

𝜎𝜎𝑜𝑜𝑏𝑏
√𝑣𝑣

= 0.15𝑏𝑏𝑥𝑥𝑘𝑘𝑢𝑢𝑖𝑖𝜕𝜕 (16)

where 𝜇𝜇𝑜𝑜𝑏𝑏
√𝑣𝑣

 is mean of 𝑜𝑜𝜕𝜕
√𝑣𝑣

 and 𝜎𝜎𝑜𝑜𝑏𝑏
√𝑣𝑣

 is standard deviation of 𝑜𝑜𝜕𝜕
√𝑣𝑣

.

However, sometimes Equations 15 and 16 results in values of 𝑏𝑏𝑥𝑥𝑎𝑎𝑑𝑑𝑑𝑑 and 𝑏𝑏𝑥𝑥𝑘𝑘𝑢𝑢𝑖𝑖𝜕𝜕 that are

not within reasonable ranges. According to previous studies, parameter ranges are

modified on the basis of the field speed data and the estimated saturation flow rates (Park

and Qi, 2005). Coefficient 𝑏𝑏𝑥𝑥𝑎𝑎𝑑𝑑𝑑𝑑 should be between 1.0 to 5.0 and 𝑏𝑏𝑥𝑥𝑘𝑘𝑢𝑢𝑖𝑖𝜕𝜕 should be

52

between 1.0 to 6.0. A linear program is proposed in this research to impose these

constraints on 𝑏𝑏𝑥𝑥𝑎𝑎𝑑𝑑𝑑𝑑 and 𝑏𝑏𝑥𝑥𝑘𝑘𝑢𝑢𝑖𝑖𝜕𝜕, which can be solved by minimizing the objective:

 𝜎𝜎𝑜𝑜𝑏𝑏
√𝑣𝑣
− 0.15𝑏𝑏𝑥𝑥𝑘𝑘𝑢𝑢𝑖𝑖𝜕𝜕 (17)

Subject to:

𝜇𝜇𝑜𝑜𝑏𝑏
√𝑣𝑣

= 𝑏𝑏𝑥𝑥𝑎𝑎𝑑𝑑𝑑𝑑 + 0.5𝑏𝑏𝑥𝑥𝑘𝑘𝑢𝑢𝑖𝑖𝜕𝜕 (18)

1 ≤ 𝑏𝑏𝑥𝑥𝑎𝑎𝑑𝑑𝑑𝑑 ≤ 5 (19)

1 ≤ 𝑏𝑏𝑥𝑥𝑘𝑘𝑢𝑢𝑖𝑖𝜕𝜕 ≤ 6 (18)

3.2.5.5 Lane Change

In VISSIM, two types of lane changes are modelled. The first type of lane change is

necessary for a vehicle to reach the next connector of a route, while the second type of

lane change occurs if there is more space available in an adjacent lane and a higher speed

is desired (PTV AG, 2020). However, most users only use the default parameter values

because classic traffic data collection does not include lane change information. With

smart city traffic data, this study proposes procedures to determine values for the lane

change parameters previously shown in Table 6.

Figure 20 shows the entire process of extracting lane change data. Firstly, it is essential to

extract vehicle records related to lane changing from the database. In the NGSIM

database, Lane ID is used to track the current lane position of a vehicle. To identify lane

change behaviour, an algorithm searches for the timestamp when there is a change in

Lane ID in a series of vehicle records with same Vehicle ID. Previous study of the

NGSIM dataset lane change behaviour indicated that the duration of most lane change

behaviors is within 3-6s (Li et al., 2020). Therefore, it is assumed that 2s before and after

when the lane change occurs are the times when lane changing starts and ends,

respectively. Finally, the acceleration and distance headway data of the lane change

vehicles and their trailing vehicles are recorded for further analysis.

53

Figure 20 Flow Chart of Extract Lane Change Data

Maximum deceleration (𝑘𝑘/𝑅𝑅2) and accepted deceleration (𝑘𝑘/𝑅𝑅2) are the upper and

lower bounds of deceleration for the lane changing vehicle and trailing vehicle during a

necessary lane change. These two parameters are used to model the necessary lane

change situation when a lane changing vehicle and trailing vehicle on the desired lane

have to decelerate to create a gap for the lane changing vehicle. After obtaining the travel

54

data of the lane changing vehicle and trailing vehicle, the maximum deceleration and

accepted deceleration can be determined from the vehicle deceleration data.

-1 𝑘𝑘/𝑅𝑅2 per distance (m per -1 𝑘𝑘/𝑅𝑅2) is how deceleration changes from maximum

deceleration to accepted deceleration with increasing distance from the emergency stop

distance. Because there is no information about distance to emergency stop spot, -1 𝑘𝑘/𝑅𝑅2

per distance cannot be determined from the database.

Waiting time before diffusion (s) is the maximum amount of time a vehicle can wait at

the emergency stop distance for a necessary lane change. When this time is reached, the

vehicle is removed from the network. This parameter cannot be determined from field

data.

Minimum headway (m) for lane changing is the minimum distance between two vehicles

that must be available after a lane change. This parameter can be determined by recording

the headway between a lane changing vehicle and trailing vehicle after the lane change is

completed.

Safety distance reduction factor is the percentage of safety following distance that is

reduced during lane changing. After a lane change is completed, the original safety

distance is taken into account again. The difference between the minimum headway and

maximum headway during the lane changing can be used to determine this parameter.

3.2.6 Model Calibration Using ANN

As discussed in the previous section, not all parameters can be observed. Hence, some

need to be calibrated by optimizing some goodness of fit measure (e.g., segment speed or

travel time). For this research, a neural network is used to calibrate the remaining

parameters. The Python scripts used to calibrate VISSIM parameters using Neural

Network are modified based on the research done by Daguano (2019) are included in

Appendix B and C. VISSIM COM interface and neural networks scripts are coded in

Python. COM interface is used to automatically run a VISSIM model with different

inputs because the calibration of a VISSIM model requires thousands of runs.

TensorFlow (Abadi et al., 2016) is an open-source library released by Google to

55

implement Machine Learning in Python. It operates as a platform for the machine

learning. Keras (Chollet, 2015) is a neural network library that runs on top of TensorFlow

and can simplify the creation of feedforward neural network models. It is used to

configure the neural network such as define number of inputs and outputs, width of

hidden layer, selection of transfer function, etc. The main approach was discussed in

Section 2.2.2.4. In this study, based on the analysis results of Daguano (2019) for neural

networks with different number of hidden layers and neurons, a neural network with 1

hidden layer and 50 neurons is created. The transfer function used in this study is

Sigmoid function. This transfer function is used to ensure the signal output of each

neuron is between 0 to 1:

𝑆𝑆 = 1
1+𝑣𝑣−𝑏𝑏

 (19)

where x is inputs variables and y is neural network signal outputs.

At the beginning of the calibration, 2000 uniformly distributed parameter values are

generated for each selected parameter within its defined range. Then, every generated

parameter set is used as inputs to the VISSIM model to generate desired outputs (e.g.,

travel times and speeds) through VISSIM COM interface. After finishing all simulation

runs, the inputs and outputs are combined as one dataset. Because the purpose of VISSIM

calibration is to find the most appropriate parameter set (i.e., calibration output) based on

the known field measurements (i.e., calibration input), the input/output order of the

dataset is flipped before neural network training. Neural network training is the iterative

process of tuning the weights of the neurons. The objective of the training process is to

minimize the difference between outputs of neural network and the desired outputs from

the training dataset. The training stops when the maximum training epochs is reached or

the validation error starts to increase. After training and testing are completed, a trained

neural network that explains the relationship between vehicle performance measures

(e.g., travel times and speeds) and VISSIM parameters is created. Then, the testing

dataset is processed by the trained Neural network to evaluate the training performance

for each variable. Correlations between the predicted parameter outputs and the

56

parameter outputs from the testing dataset are calculated with Equation 20 (Daguano,

2019).

𝑟𝑟𝑥𝑥𝑆𝑆 = ∑(𝑥𝑥𝑖𝑖−𝑥𝑥�)(𝑆𝑆𝑖𝑖−𝑆𝑆�)

�(𝑥𝑥𝑖𝑖−𝑥𝑥�)2(𝑆𝑆𝑖𝑖−𝑆𝑆�)2
,−1 ≤ 𝑟𝑟𝑥𝑥𝑆𝑆 ≤ 1 (20)

where x is the predicted parameter outputs from the Neural Network and y is the

parameter values from the testing dataset.

Parameters with correlations less than 0.3 are considered as low correlation and it is

suggested to use the VISSIM default parameters values for these parameters (Ratner,

2009). In the end, field collected measurements can be used as inputs to the trained neural

network and selected VISSIM parameters are generated as outputs. The general process

for model calibration using a neural network is demonstrated in Figure 21.

Figure 21 Neural Network Calibration Process

57

4 Parameter Results from the NGSIM Data

This section presents the VISSIM parameters determined from the NGSIM data by

following the methods proposed in Section 3.2.5.

4.1 Desired Speed

Figure 22 demonstrates the desired speed distribution obtained from the NGSIM data.

The result obtained from NGSIM data shows a similar distribution pattern compared to

the VISSIM default distribution (Figure 16).

Figure 22 Desired Speed Distribution of Peachtree Street

4.2 Desired Acceleration/Deceleration

Figure 23 shows the desired acceleration/deceleration values from the NGSIM data by

following the methodology described in the previous chapter. The minimum, median and

maximum desired acceleration/deceleration are determined by using 5th, 50th, and 95th

percentiles of the acceleration data. Compared to the VISSIM default setting (Figure 18),

the maximum desired acceleration values are similar to the VISSIM defaults, while the

58

median and minimum values are not. The results shown in Figure 23 share similar trends

with the desired acceleration/deceleration relationship obtained in Jie et al. (2011) as

shown in Figure 24. However, the results obtained from this study are closer to the

VISSIM default setting compare to the results of Jie et al. (2011).

Figure 23 Desired Acceleration/Deceleration Estimated from NGSIM Data

59

Figure 24 Desired acceleration and deceleration (Jie et al., 2011)

The difference between the VISSIM default settings and the results generated in this

study and the previous study are partly because it is hard for drivers to maintain a

constant speed. Figure 9 indicates that significant amount of acceleration data is within -1

𝑘𝑘/𝑅𝑅2 to 1 𝑘𝑘/𝑅𝑅2. Therefore, the minimum desired acceleration/deceleration in both

studies are a lot lower than the VISSIM default because they also capture these small

speed variances.

In order to generate more accurate results, some acceleration data in the lower ranges

should be removed. It is recommended to set a cut-off point somewhere between 0 to 1

𝑘𝑘/𝑅𝑅2 (0 to -1 𝑘𝑘/𝑅𝑅2 for deceleration) when determining the desired

acceleration/deceleration for each speed range to force the trend of each line close to the

trend of the VISSIM default desired acceleration/deceleration function. The cut-off points

used in this study are listed in Table 11.

Table 11 Cut-off Points for Desired Acceleration/Deceleration Calculation

Speed Interval (km/h)
Acceleration

Thresholds (𝑘𝑘/𝑅𝑅2)

Deceleration

Thresholds (𝑘𝑘/𝑅𝑅2)

0-10 1.0 -1.0

10-20 0.5 -0.5

20-30 0.5 -0.5

30-40 0.5 -0.5

40-50 0.5 -0.5

50-60 0.1 -0.1

60

The modified desired acceleration/deceleration values are shown in Figure 25. The trend

lines (dashed-red) for each case are used to generate VISSIM inputs, not the raw values.

The modified desired acceleration/deceleration values are more similar to the VISSIM

default settings and they are more representative of intended accelerations and

decelerations compared to the previous results (Figure 23).

Figure 25 Modified Desired Acceleration/Deceleration Estimated from NGSIM Data

61

4.3 Car Following Model

4.3.1 Standstill Distance

The distribution of the distance between two stationary vehicles is plotted in Figure 26.

Due to errors in automated video processing, some vehicle records might have a space

headway less than the length of the preceding vehicle which results in a negative distance

between two vehicles. On the other hand, some vehicle records might have very large

standstill distance (e.g., > 10m). These data are removed from the results. The standstill

distances of 216 vehicles are determined from the NGSIM database after removing

unreasonable data and the average standstill distance is about 2.8m. Therefore, 2.8m is

used as the parameter value for the average standstill distance.

Figure 26 Standstill Distance Distribution

4.3.2 Desired Safety Distance

The distribution of the desired safety distance for each vehicle recorded in the NGSIM

database is shown in Figure 27. This figure indicates that most vehicles have a desired

safety following distance less than 10m. Therefore, vehicles with desired safety greater

than 10m are excluded since they do not represent the general driving behaviour in the

study area.

62

Figure 27 Distribution of the Following Distance

4.3.3 Additive and Multiple Parts of desired safety distance

After determining the standstill distance (2.8m) and desired safety distance between each

pair of leading-following vehicles, the other two parameters for the Wiedemann 74 car

following model, 𝑏𝑏𝑥𝑥𝑎𝑎𝑑𝑑𝑑𝑑 and 𝑏𝑏𝑥𝑥𝑘𝑘𝑢𝑢𝑖𝑖𝜕𝜕, are derived from Equations 9 to 14, and the linear

program formed by Equations 15 to 18. The linear program finds that 𝑏𝑏𝑥𝑥𝑎𝑎𝑑𝑑𝑑𝑑 has a value

of 1.0m and 𝑏𝑏𝑥𝑥𝑘𝑘𝑢𝑢𝑖𝑖𝜕𝜕 has a value of 3.87m.

4.4 Lane Changing Model

The lane changing data are extracted from the NGSIM database by following the process

demonstrated in52 Section 3.2.5.5.

4.4.1 Maximum Deceleration and Accepted Deceleration

The distribution of the lane changing vehicle and trailing vehicle deceleration rates are

shown in Figure 28. In both distributions, the percentage of data between -0.5 𝑘𝑘/𝑅𝑅2 and

0 𝑘𝑘/𝑅𝑅2 is extremely high. It is reasonable to assume that decelerating vehicles in this

range did not decelerate to accommodate necessary lane change but rather were in a state

of deceleration as a part of the normal driving speed variance. Therefore, for the purpose

63

of determining the maximum deceleration rate and accepted deceleration rate necessary

for lane changes, the data in the range between -0.5 𝑘𝑘/𝑅𝑅2and 0 𝑘𝑘/𝑅𝑅2 are removed. The

95th, 90th, and 85th percentiles are tested to represent the maximum deceleration rate and

5th, 10th, and 15th percentiles are tested to represent the accepted deceleration rate for a

lane changing vehicle and trailing vehicle. However, the MANEs are same when using

different thresholds for maximum deceleration rate and accepted deceleration rate of a

lane changing vehicle and trailing vehicle. Therefore, any threshold value can be used.

For this research, 85th and 15th percentiles are chosen because the results they generated

are closest to the VISSIM default values. The results are shown in Table 12.

Figure 28 Vehicle Deceleration Distribution

Table 12 Maximum Deceleration and Accepted Deceleration

 Lane changing Vehicle Trailing Vehicle
Maximum Deceleration (𝑘𝑘/𝑅𝑅2) -3.49 (-4.0*) -3.47 (-3.0*)
Accepted Deceleration (𝑘𝑘/𝑅𝑅2) -0.95 (-1.0*) -0.94 (-1.0*)

*Default value in VISSIM

4.4.2 Minimum Headway

The minimum headway that must be available after a lane change is determined by

finding the minimum distance from a trailing vehicle to the lane changing vehicle at the

end of the lane changing process. The minimum headway of 0.55m is determined from

the lane changing data extracted from the MGSIM database; the default value is 0.5m in

VISSIM.

64

4.4.3 Safety Distance Reduction Factor

The safety distance reduction factor is determined by finding the average ratio of

minimum distance headway and maximum distance headway between a trailing vehicle

and lane changing vehicle during a lane change. Vehicle records with maximum distance

headways less than 10m are considered by following the same rule used in section 4.3.2.

The safety distance reduction factor of 0.8 is determined from the lane changing data

extracted from the NGSIM database; the default value is 0.6 in VISSIM.

4.5 Summary of Key Findings

This section describes a case study on how to calibrate a microscopic traffic simulation

model (VISSIM) by applying the proposed methodology described in Chapter 3 using

smart city-like vehicle trajectory data (NGSIM data). Table 13 summarizes the

differences between the VISSIM default parameters and those estimated from the

NGSIM data. The percentage difference between VISSIM default and parameter value

estimated from the NGSIM data for car following parameters are relatively large because

the additive part and multiple part of desired safety distance cannot be directly estimated

in the field. These two parameters are determined by using a linear program that

minimizes the difference between the observed following distance and car following

model output. Overall, the results indicates that while some VISSIM default parameter

values are close to the field measured values, there is still a large gap between default

values and estimated values for many parameters. Therefore, it is necessary to utilize

smart city data to verify if the VISSIM default parameter values fit the real-world traffic

conditions under study.

65

Table 13 Parameters Determined from NGSIM data

Category Parameters Default
Calibrated

(Smart
city data)

Absolute
Difference

%
Difference

Vehicle
Performance

Desired speed distribution lower
bound (km/h) 54 40 14 26%

Desired speed distribution upper
bound
(km/h)

64 58 6 9%

Desired acceleration at 0 -10
km/h (𝑘𝑘/𝑅𝑅2) 3.00 2.66 0.34 11%

Desired deceleration at 0 -10
km/h (𝑘𝑘/𝑅𝑅2) -2.75 -2.44 -0.31 11%

Car following
model

Average standstill distance (m) 2 2.8 -0.8 -40%
Additive part of desired safety

distance 2 1 1 50%

Multiple part of desired safety
distance 3 3.87 -0.87 -29%

Lane change

Maximum deceleration (own)
(𝑘𝑘/𝑅𝑅2) -4 -3.49 -0.51 13%

Maximum deceleration
(trailing) (𝑘𝑘/𝑅𝑅2) -3 -3.47 0.47 -16%

Accepted deceleration (own)
(𝑘𝑘/𝑅𝑅2) -1 -0.95 -0.05 5%

Accepted deceleration (trailing)
(𝑘𝑘/𝑅𝑅2) -1 -0.94 -0.06 6%

Min. headway (front/rear) (m) 0.5 0.55 -0.05 -10%
Safety distance reduction factor 0.6 0.8 -0.2 -33%

The other key finding is that field measurements cannot be directly used to determine

VISSIM parameters due to difference in nature between real-world driving and computer

simulated driving states. For instance, in the process of determining desired

acceleration/deceleration and maximum deceleration/accepted deceleration for lane

changes, the data in the low range are removed because these acceleration/deceleration

data reflect unconscious reactions of drivers (in the “following state”), rather than

intended accelerations and decelerations in another driving “state”. It is important to

consider the impact of human factors to the usability of traffic data.

66

5 Model Calibration and Evaluation

5.1 Evaluation of Parameters Determined from Smart City Data

The value of the parameters determined from smart city data is evaluated by comparing

the MANE value of the simulation results with the MANE value generated by the

VISSIM default parameters. Parameters that could not be determined directly from the

smart city dataset remain at their default values. Each parameter set is implemented in

VISSIM and run 200 times with different random seeds. Then, the modelling results are

compared with the field measurements. The summary of parameter values and MANE

results are shown in Table 14.

Table 14 Parameter Values and MANE Results

Category Parameters Default Calibrated (Smart
city data)

Vehicle
performance

Desired speed distribution* 54 km/h-64 km/h 40 km/h-58 km/h

Desired acceleration* Default Modified
See Figure 25

Desired deceleration* Default Modified
See Figure 25

Following
behaviour

Look-ahead distance min (m)** 0 0
Look-ahead distance max (m)** 250 250
Number of interaction objects** 4 4

Car following
model

Average standstill distance (m)* 2 2.8
Additive part of desired safety distance* 2 1
Multiple part of desired safety distance* 3 3.87

Lane change

Maximum deceleration (own) (𝑘𝑘/𝑅𝑅2)* -4 -3.49
Maximum deceleration (trailing) (𝑘𝑘/𝑅𝑅2)* -3 -3.47

-1 𝑘𝑘/𝑅𝑅2 per distance (own) (m)** 100 100
-1 𝑘𝑘/𝑅𝑅2 per distance (trailing) (m)** 100 100
Accepted deceleration (own) (𝑘𝑘/𝑅𝑅2)* -1 -0.95

Accepted deceleration (trailing) (𝑘𝑘/𝑅𝑅2)* -1 -0.94
Min. headway (front/rear) (m)* 0.5 0.55

Safety distance reduction factor* 0.6 0.8
Waiting time before diffusion (s)** 60 60

MANE
Travel time 0.071 0.075

Speed 0.290 0.081
Total 0.362 0.156

* Directly estimated parameters. ** Parameters cannot be directly measured.

67

According to the objective function results, although the travel time errors are similar

between the two parameter sets, the performance of the estimated parameter set is more

than three times better than the default parameter set in term of reproducing real-world

vehicle travel speeds. The average difference between field measurements and modelling

results are below 10% for average travel times and average section speeds using the

estimated parameter set.

5.2 Neural Network Combination Calibration Results

To further improve the model accuracy (i.e., reduce MANE), the parameters that could

not be directly estimated from the smart city data can be calibrated. The VISSIM model

is calibrated using a neural network according to the methodology described in the

section 3.2.6.

5.2.1 Experiment 1: Smart City Data + NN Calibration

In the first experiment, in addition to the parameters determined in Section 4, the neural

network is used to calibrate the model parameters that cannot be directly estimated. The

purpose of this experiment is to verify if the calibration performance is improved after

using neural network to calibrate these parameters compare to the results in Table 14.

The MANE values of the modelling results generated from the combination of directly

estimated parameters and neural network calibrated parameters are shown in Table 15.

Correlation coefficient value represents the correlation between NN calibrated VISSIM

input parameter and the vehicle performance measures. Parameters with correlations less

than 0.3 are considered as low correlation and it is suggested to use the VISSIM default

parameters values for these parameters.

68

Table 15 First Experiment Parameter Values and MANE Results

Category Parameters

Combined
(Smart city

data and
NN)

Correlation
Coefficients

Vehicle performance

Desired speed distribution* 40 -58 km/h -

Desired acceleration* Modified
See Figure 25 -

Desired deceleration* Modified
See Figure 25 -

Following behaviour
Look-ahead distance min (m)** 52.5 -0.004
Look-ahead distance max (m)** 251.73 0.84
Number of interaction objects** 7 0.68

Car following model
Average standstill distance (m)* 2.8 -

Additive part of desired safety distance* 1 -
Multiple part of desired safety distance* 3.87 -

Lane change

Maximum deceleration (own) (𝑘𝑘/𝑅𝑅2)* -3.49 -
Maximum deceleration (trailing) (𝑘𝑘/𝑅𝑅2)* -3.47 -

-1 𝑘𝑘/𝑅𝑅2 per distance (own) (m)** 124.88 -0.04
-1 𝑘𝑘/𝑅𝑅2 per distance (trailing) (m)** 124.48 -0.08
Accepted deceleration (own) (𝑘𝑘/𝑅𝑅2)* -0.95 -

Accepted deceleration (trailing) (𝑘𝑘/𝑅𝑅2)* -0.94 -
Min. headway (front/rear) (m)* 0.55 -

Safety distance reduction factor* 0.8 -
Waiting time before diffusion (s)** 61 0.007

MANE
Travel time 0.074

Speed 0.082
Total 0.156

* Directly estimated parameters. ** Parameters calibrated by the NN.

After calibrating parameters that cannot be directly estimated from the field data, the

MANE results are almost the same compared to the results in Table 14 for the estimated

parameter set. This result is expected because travel time and speed are not sensitive to

most of the calibrated parameters in this experiment according to the sensitivity analysis

(section 3.2.3).

5.2.2 Experiment 2: NN Calibration Only

In the second experiment, all selected parameters are calibrated using the neural network

assuming there are no smart city data available. The purpose of this experiment is to test

the performance of the neural network calibration and compare with the modelling

performance of the directly determined parameter set. However, since the desired speed

69

distribution and desired acceleration/deceleration functions are not editable through the

COM interface, three desired speed distribution ranges (e.g., ± 5, ± 10, and ± 15 km/h

from posted speed limit) and the default desired acceleration/deceleration functions are

used since it is the common practice in the previous studies (Park and Schneeberger

2003; Park and Qi 2005; Park et al. 2006; Miller 2009; Daguano 2019). Two thousand

parameter sets are tested in VISSIM. The calibrated parameter set and MANE results are

shown in Table 16.

Table 16 Second Experiment Parameter Values and MANE Results

Category Parameters Calibrated
(NN)

Correlation
Coefficients

Vehicle
performance

Desired speed distribution** 46 -70 km/h 0.88
Desired acceleration Default -
Desired deceleration Default -

Following
behaviour

Look-ahead distance min (m)** 63 -0.06
Look-ahead distance max (m)** 250 0.66
Number of interaction objects** 5 0.05

Car following
model

Average standstill distance (m)** 3.0 0.86
Additive part of desired safety distance** 3.0 0.73
Multiple part of desired safety distance** 3.5 0.40

Lane change

Maximum deceleration (own) (𝑘𝑘/𝑅𝑅2)** -3.0 0.39
Maximum deceleration (trailing) (𝑘𝑘/𝑅𝑅2)** -3.0 0.19

-1 𝑘𝑘/𝑅𝑅2 per distance (own) (m)** 125 0.02
-1 𝑘𝑘/𝑅𝑅2 per distance (trailing) (m)** 125 0.0001

Accepted deceleration (own) (𝑘𝑘/𝑅𝑅2)** -0.81 0.19
Accepted deceleration (trailing) (𝑘𝑘/𝑅𝑅2)** -0.76 0.11

Min. headway (front/rear) (m)** 3.7 0.62
Safety distance reduction factor** 0.6 0.10
Waiting time before diffusion (s)** 60 -0.03

MANE
Travel time 0.058

Speed 0.224
Total 0.282

* Directly estimated parameters. ** Parameters calibrated by the NN.

Compared to the results demonstrated in Table 14, although there is a 22% decrease in

travel time error, the error in speed measurement almost tripled. The main reason for the

increase in speed measurement error is that the neural network did not explore the entire

range for the desired speed distribution due to the limitations of the VISSIM COM

interface. This result indicates that the neural network is capable of optimizing the

70

VISSIM model, but because of the limitations in VISSIM, it is difficult to reproduce real-

world vehicle speeds.

5.2.3 Experiment 3: NN Calibration + Desired Speed Distribution

In the third experiment, to accommodate the high percentage error in travel speed

obtained from the second experiment, the desired speed distribution determined from the

smart city data is used for all simulation runs. The purpose of this experiment is to verify

if the high percentage error in travel speed in Experiment 2 was due to poorly calibrated

desired speed distribution. Two thousand parameter sets are tested in VISSIM. The

calibrated parameter set and MANE results are shown in Table 17.

Table 17 Third Experiment Parameter Values and MANE Results

Category Parameters Calibrated
(NN)

Correlation
Coefficients

Vehicle
performance

Desired speed distribution* 40 -58
km/h -

Desired acceleration Default -
Desired deceleration Default -

Following
behaviour

Look-ahead distance min (m)** 51 -0.03
Look-ahead distance max (m)** 251 0.80
Number of interaction objects** 5 0.16

Car
following

model

Average standstill distance (m)** 3.1 0.89
Additive part of desired safety distance** 3.0 0.70
Multiple part of desired safety distance** 3.7 0.38

Lane change

Maximum deceleration (own) (𝑘𝑘/𝑅𝑅2)** -3.0 0.17
Maximum deceleration (trailing) (𝑘𝑘/𝑅𝑅2)** -2.9 0.10

-1 𝑘𝑘/𝑅𝑅2 per distance (own) (m)** 124 -0.06
-1 𝑘𝑘/𝑅𝑅2 per distance (trailing) (m)** 127 -0.05

Accepted deceleration (own) (𝑘𝑘/𝑅𝑅2)** -0.8 0.08
Accepted deceleration (trailing) (𝑘𝑘/𝑅𝑅2)** -0.8 0.07

Min. headway (front/rear) (m)** 3.7 0.60
Safety distance reduction factor** 0.6 0.16
Waiting time before diffusion (s)** 62 0.03

MANE
Travel time 0.082

Speed 0.091

Total 0.173
* Directly estimated parameters. ** Parameters calibrated by the NN.

71

Compared to results from Experiment 2, although the travel time error has increased, the

speed error is reduced by more than half. This result indicates that the desired speed

distribution has a large impact on VISSIM’s travel time and speed outputs. Also, because

the desired speed distribution cannot be changed through VISSIM COM interface, it is

very difficult to find the optimal desired speed distribution by heuristic search. Therefore,

it is essential to obtain appropriate desired speed distributions from the field data in order

to reproduce real-world traffic conditions.

5.2.1 Experiment 4: NN Calibration + Desired Speed Distribution & Desired
Acceleration/Deceleration

The fourth experiment is same as the third experiment except the desired acceleration and

desired deceleration are replaced with the estimated parameters from the smart city data.

The purpose of this experiment is to determine the importance of the desired

acceleration/deceleration to the modelling results. The calibrated parameter set and

MANE results are shown in Table 18.

72

Table 18 Fourth Experiment Parameter Values and MANE Results

Category Parameters Calibrated
(NN)

Correlation
Coefficients

Vehicle
Performance

Desired Speed Distribution* 40 -58
km/h -

Desired Acceleration* Modified
See Figure 25 -

Desired Deceleration* Modified
See Figure 25 -

Following
Behaviour

Look-ahead distance min (m)** 51 -0.04
Look-ahead distance max (m)** 250 0.70
Number of interaction objects** 5 0.04

Car
following

model

Average standstill distance (m)** 3.2 0.89
Additive part of desired safety distance** 3.0 0.70
Multiple part of desired safety distance** 3.6 0.30

Lane change

Maximum Deceleration (own) (𝑘𝑘/𝑅𝑅2)** -3.1 0.30
Maximum Deceleration (trailing) (𝑘𝑘/𝑅𝑅2)** -3.0 0.17

-1 𝑘𝑘/𝑅𝑅2 per distance (own) (m)** 126 -0.18
-1 𝑘𝑘/𝑅𝑅2 per distance (trailing) (m)** 128 -0.15

Accepted Deceleration (own) (𝑘𝑘/𝑅𝑅2)** -0.8 -0.15
Accepted Deceleration (trailing) (𝑘𝑘/𝑅𝑅2)** -0.4 0.03

Min. headway (front/rear) (m)** 3.7 0.38
Safety distance reduction factor** 0.6 0.11
Waiting time before diffusion (s)** 61 0.07

MANE
Travel Time 0.096

Speed 0.081

Total 0.177
* Directly estimated parameters. ** Parameters calibrated by the NN.

Compared to the results obtained from the third experiment, there is a slight increase in

travel time error and a decrease in speed error.

5.3 Calibration Performance Using Different Field Measurements

In this section, the impact of calibration targets to the calibration performance is

evaluated. On the basis of Experiment 3, instead of having two travel times and eight

speeds field measurements as calibration targets, different combinations of travel time

and speed measurements are explored. Figure 29 demonstrates the change in MANE with

different calibration targets.

73

Figure 29 Changing in MANE with Different Calibration Targets

Based on the results in Figure 29, when more travel times are used as calibration targets,

the MANE of the travel time decreases, which means the modelled vehicle travel times

are getting closer to the real-world vehicle travel times. On the other hand, the MANE of

the vehicle speed increases, which means the modelled vehicle speeds deviate from the

real-world vehicle speeds. When more speeds measurements are used as calibration

targets, the MANE of the travel time increases and the MANE of the vehicle speed

increases. The results from this test are intuitive and it also proves the proposed

calibration works properly. Overall, the total MANE does not vary much when travel

speeds are used as calibration targets. This suggests that the section travel speeds are

highly correlated with each other.

5.4 Summary of Key Findings

Table 19 summarizes the evaluation results of the different VISSIM model parameter

calibrations. Overall, the VISSIM default parameter values produce the worst fit with

field observed measurements. On the other hand, the parameter set determined from the

smart city data has the best fit. Experiment 1 of using estimated parameter values and

74

Neural Network calibration method produces a similar result. However, it was proved in

the sensitivity analysis that the Neural Network calibrated parameters in this experiment

(#1) are not statistically significant to the modelling results. In the following experiments,

more parameters are calibrated using the Neural Network. In Experiment 2, all

parameters are calibrated using the Neural Network. It shows better performance than

VISSIM default but it is still a lot worse than the estimated parameter set. In Experiment

3, on the basis of Experiment 2, the desired speed distribution is changed to the estimated

values, which improves the performance substantially. In Experiment 4, on the basis of

Experiment 3, the desired speed distribution and desired acceleration/deceleration rates

are changed to the estimated values but it does not produce much of a difference overall

compared to Experiment 3 (better speeds but worse travel times).

Table 19 Evaluation Results with Different Parameter Settings

VISSIM Default
Calibrated
(Smart city

data)

Smart city data + Neural Network Calibration

 EXP #1 EXP #2 EXP #3 EXP #4

MANE
Travel time 0.071 0.075 0.074 0.058 0.082 0.096

Speed 0.29 0.081 0.082 0.224 0.091 0.081
Total 0.362 0.156 0.156 0.282 0.173 0.177

The following key findings are summarized for this chapter: (1) Using VISSIM default

parameter set results in poor fit with the field observations; (2) Using the parameter set

determined from the smart city data and calibrated by the Neural Network can improve

the modelling performance; (3) The parameter set determined from smart city data shows

the best fit with the field observations; and (4) The desired speed distribution has the

most impact on the modelling results when the measures of performance are travel times

and vehicle speeds.

75

5.5 Summary of Proposed Calibration Process

This section summarizes the proposed microscopic traffic simulation model calibration

process using smart city data based on the calibration methodologies and results

discussed in the previous sections. As shown in Figure 30, the entire process is divided

into three parts.

Figure 30 Proposed Calibration Process

In the first part, the modelling network is set up and parameters of interest are selected. A

sensitivity analysis should be conducted to identify parameters that are statistically

significant to the desired modelling outputs. Parameters that are statistically significant

are carried forward to next steps. Then, a fitness function should be established for the

purpose of model evaluation.

The second part involves processing the smart city data. The detailed records of vehicle

movements can be used to determine modelling parameters directly. Furthermore, smart

city data can be processed to provide network performance measures that can be used as

calibration targets (e.g., link speeds and travel times).

76

The third part uses an optimization algorithm as a supplementary method to calibrate

parameters that cannot be determined from the field data. The detailed calibration process

may vary among different optimization algorithms.

After all three parts are finished, the modeler should be able to obtain one or more

parameter sets by combining the parameters determined directly from the field data with

those calibrated by the optimization algorithm. The performances of different parameter

sets can then be evaluated, and the parameter set with best performance is selected.

77

6 Conclusion

Microscopic traffic simulation has become an important tool used by planners and

engineers for traffic analysis, road network planning, and policy making. However,

microscopic traffic modelling is often viewed as an inaccurate science because different

calibration approaches are followed and the calibrated parameters are sometimes hard to

justify. One of the main reasons behind this situation is that modelers do not have access

to the right type of data that allow them to model the micro level behavior of the traffic

directly. In recent years, emerging smart city technologies can provide more reliable and

detailed traffic data. With availability of smart city data, modelers should be able to better

calibrate modelling parameters; however, there is no guidelines or recommended

processes to determine what information can be extracted from smart city data and how

to incorporate these data to build more representative traffic simulation models.

Literature review of microscopic traffic simulation model calibration yielded very limited

useful information about how to utilize smart city data. Instead, studies on microscopic

traffic simulation model calibration are mostly related to calibration by solving an

optimization problem with the objective of minimizing the differences between simulated

and observed aggregated traffic behaviors. A few studies utilize smart city data but some

of them are not focusing on microscopic traffic simulation models (Zhong et al. 2016)

and some studies only determine a few parameters (Lu et al., 2016). Hence, this research

has attempted to address this gap by proposing a methodology for determining modelling

parameter values from smart city data as well as standardized procedures of model

calibration with these data. The entire process is conducted in a semi-automated way with

multiple Python scripts for each module of the research.

6.1 Contributions and Key Findings

This research is conducted to improve the veracity of microsimulation models and the

efficiency of the microscopic traffic simulation calibration process. In this aspect, this

research has successfully developed standardized processes to determine VISSIM

parameters that can better reflect real-world traffic scenarios using smart city data. In

addition, a neural network is used for VISSIM parameter calibration as a supplement to

78

determine VISSIM parameters that are not observable from field data. The performance

of this joint calibration technique is compared through several experiments involving a

variety of smart city data.

Several key findings were arrived from this study. First, in order to properly calibrate a

VISSIM model, real-world traffic data (smart city data) are needed for all types of

calibration methods due to the nature of VISSIM. Methodologies for determining VSSIM

parameter values are developed and tested with the NGSIM data. The comparison

between VISSIM default parameter values and parameter values determined from smart

city data indicates there is a large gap between them. In addition, the modelling results

show that the parameter set calibrated by smart city data gives the best modelling

performance while the VISSIM default generates the worse results in these experiments.

ANN calibration is tested both as a supplement technique to calibrate parameters cannot

be determined from the field data and an independent calibration technique. The results

indicate that ANN calibration does not give the best performance by itself, but it can be

used with the smart city data calibration. Next, if smart city traffic data are used for

parameter determination, the data need to be carefully processed. Other than removing

outliers and unreasonable data points, the range of data should be carefully examined to

accommodate the modelling environment. For example, for vehicle acceleration and

deceleration data collection, the collection results will have data with very small

accelerations or decelerations because sometimes human drivers are not able to keep their

speeds constant but they are not intending to accelerate or decelerate (unconscious

reactions). Including this portion of data will heavily impact the accuracy of parameters

related to intended acceleration and deceleration. The impact of each parameter to the

modelling results were examined. The one-way ANOVA test was performed to analyze

the sensitivity of each parameter to identify key parameters and eliminate parameters that

have less effect on model results. Finally, after experimenting with different ANN

calibration setups, the desired speed distribution was found to be the most critical

VISSIM parameter when performance measurements are travel time and vehicle speed.

79

6.2 Recommendations

In this research, only travel time and vehicle speed are used for calibration measurements

due to lack of network performance data. Therefore, some parameter results cannot be

verified since they are not statistically significant affecting travel time and vehicle speed.

In the future work, different types of calibration target can be tested to verify these

parameters. Also, the data used in this research were collected by video cameras. As

other new technologies (i.e., LiDAR) gain popularity in the field of traffic data collection,

the calibration process might change due to differences in accuracy or other data

attributes.

80

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Zheng, X. (2016).

Tensorflow: A system for large-scale machine learning. In 12th USENIX
symposium on operating systems design and implementation (OSDI'16) (pp. 265-
283).

Abdalhaq, B. K., & Abu Baker, M. I. (2014). Using Meta Heuristic Algorithms to
Improve Traffic Simulation. Journal of Algorithms and Optimization, 2(4), 110–
128.

Agatonovic-Kustrin, S., & Beresford, R. (2000). Basic concepts of artificial neural
network (ANN) modeling and its application in pharmaceutical research. Journal
of Pharmaceutical and Biomedical Analysis, 22(5), 717–727.
https://doi.org/10.1016/s0731-7085(99)00272-1

Aghabayk, K., Sarvi, M., Young, W., & Kautzsch, L. (2013). A Novel Methodology for
Evolutionary Calibration of Vissim by Multi-Threading. Australasian Transport
Research Forum. , Brisbane, Australia.

Alexiadis, J., K, & Chandra, A. (2004). Traffic Analysis Toolbox Volume I: Traffic
Analysis Tools Primer. FHWA.

Bifulco, G. N., Galante, F., Pariota, L., Russo Spena, M., & Del Gais, P. (2014). Data
Collection for Traffic and Drivers’ Behaviour Studies: A Large-scale Survey.
Procedia - Social and Behavioral Sciences, 111(2014), 721–730.
https://doi.org/10.1016/j.sbspro.2014.01.106

Cambridge Systematics, Inc. (2007). NGSIM Peachtree Street (Atlanta) Data Analysis.
FHWA.

Chollet, F. (2015). keras. GitHub. https://github.com/fchollet/keras
Coifman, B., & Li, L. (2017). A critical evaluation of the Next Generation Simulation

(NGSIM) vehicle trajectory dataset. Transportation Research Part B:
Methodological, 105(4), 362–377. https://doi.org/10.1016/j.trb.2017.09.018

Daganzo, C. F. (1994). The cell transmission model: A dynamic representation of
highway traffic consistent with the hydrodynamic theory. Transportation
Research Part B: Methodological, 28(4), 269–287. https://doi.org/10.1016/0191-
2615(94)90002-7

Daguano, R. F. (2019). Automatic calibration of traffic microsimulations with artificial
neural networks [MSc Thesis].

Dowling, R., Skabardonis, A., Halkias, J., McHale, G., & Zammit, G. (2004). Guidelines
for Calibration of Microsimulation Models: Framework and Applications.
Transportation Research Record: Journal of the Transportation Research Board,
1876(1), 1–9. https://doi.org/10.3141/1876-01

Gipps, P. G. (1981). A behavioural car-following model for computer simulation.
Transportation Research Part B: Methodological, 15(2), 105–111.
https://doi.org/10.1016/0191-2615(81)90037-0

Greenberg, H. (1959). An Analysis of Traffic Flow. Operations Research, 7(1), 79–85.
https://doi.org/10.1287/opre.7.1.79

Greenshields, B. D. (1933). The Photographic Method of studying Traffic Behaviour.
13th Annual Meeting of the Highway Research Board.

81

Guo, Y., Tang, Z., & Guo, J. (2020). Could a Smart City Ameliorate Urban Traffic
Congestion? A Quasi-Natural Experiment Based on a Smart City Pilot Program in
China. Sustainability, 12(6), 2291. https://doi.org/10.3390/su12062291

Haj Salem, H., Chrisoulakis, J., Papageorgiou, M., Elloumi, N., & Papadakos, P. (1994).
The use of METACOR tool for integrated urban and interurban traffic control.
Evaluation in corridor peripherique, Paris. Proceedings of VNIS’94 - 1994 Vehicle
Navigation and Information Systems Conference.
https://doi.org/10.1109/vnis.1994.396773

Hale, D. K., Antoniou, C., Brackstone, M., Michalaka, D., Moreno, A. T., & Parikh, K.
(2015). Optimization-based assisted calibration of traffic simulation models.
Transportation Research Part C: Emerging Technologies, 55(2015), 100–115.
https://doi.org/10.1016/j.trc.2015.01.018

Hallmark, S. L., Oneyear, N., Tyner, S., Wang, B., Carney, C., & Mcgehee, D. (2014).
Analysis of Naturalistic Driving Study Data: Roadway Departures on Rural Two-
Lane Curves. Washington, D.C. Transportation Research Board.

Hellinga, B.R. (1998), Requirement for the Calibration of Traffic Simulation Models.
Department of Civil Engineering, University of Waterloo.

Hidayat, A., Terabe, S., & Yaginuma, H. (2018). WiFi Scanner Technologies for
Obtaining Travel Data about Circulator Bus Passengers: Case Study in Obuse,
Nagano Prefecture, Japan. Transportation Research Record: Journal of the
Transportation Research Board, 2672(45), 45–54.
https://doi.org/10.1177/0361198118776153

Hilpert, M., Johnson, M., Kioumourtzoglou, M.-A., Adria-Mora, B., Peters, A., Ross, J.,
& Chillrud, S. (2018). A New Approach for Inferring Traffic-Related Air
Pollution: Use of Radar-Calibrated Crowd-Sourced Traffic Data. ISEE
Conference Abstracts, 2018(1). https://doi.org/10.1289/isesisee.2018.p03.2020

Ismail, K. A. (2010). Application of computer vision techniques for automated road
safety analysis and traffic data collection [PhD Thesis].

Jackson, S., Miranda-Moreno, L. F., St-Aubin, P., & Saunier, N. (2013). Flexible, Mobile
Video Camera System and Open Source Video Analysis Software for Road
Safety and Behavioral Analysis. Transportation Research Record: Journal of the
Transportation Research Board, 2365(1), 90–98. https://doi.org/10.3141/2365-12

Jaume Barceló. (2010). Fundamentals of traffic simulation. Springer.
Jayakrishnan, R., Mahmassani, H. S., & Hu, T.-Y. (1994). An evaluation tool for

advanced traffic information and management systems in urban networks.
Transportation Research Part C: Emerging Technologies, 2(3), 129–147.
https://doi.org/10.1016/0968-090x(94)90005-1

Jie, L., Fangfang, Z., van Zuylen, H., & Shoufeng, L. (2011). Calibration of a micro
simulation program for a Chinese city. Procedia - Social and Behavioral
Sciences, 20, 263–272. https://doi.org/10.1016/j.sbspro.2011.08.032

Kim, S.-J., Kim, W., & Rilett, L. R. (2005). Calibration of Microsimulation Models
Using Nonparametric Statistical Techniques. Transportation Research Record:
Journal of the Transportation Research Board, 1935(1), 111–119.
https://doi.org/10.1177/0361198105193500113

Lee, J.-B., & Ozbay, K. (2009). New Calibration Methodology for Microscopic Traffic
Simulation Using Enhanced Simultaneous Perturbation Stochastic Approximation

82

Approach. Transportation Research Record: Journal of the Transportation
Research Board, 2124(1), 233–240. https://doi.org/10.3141/2124-23

Lidbe, A. D., Hainen, A. M., & Jones, S. L. (2017). Comparative study of simulated
annealing, tabu search, and the genetic algorithm for calibration of the
microsimulation model. SIMULATION, 93(1), 21–33.
https://doi.org/10.1177/0037549716683028

Li, Z., Huang, X., Wang, J., & Tong, T. (2020). Lane Change Behavior Research Based
on NGSIM Vehicle Trajectory Data. Chinese Control and Decision Conference 2020.
Lu, Z., Fu, T., Fu, L., Shiravi, S., & Jiang, C. (2016). A video-based approach to

calibrating car-following parameters in VISSIM for urban traffic. International
Journal of Transportation Science and Technology, 5(1), 1–9.
https://doi.org/10.1016/j.ijtst.2016.06.001

Mahut, M., & Florian, M. (2010). Traffic simulation with dynameq. In Fundamentals of
traffic simulation (pp. 323-361). Springer, New York, NY.

Ma, J., Dong, H., & Zhang, H. M. (2007). Calibration of Microsimulation with Heuristic
Optimization Methods. Transportation Research Record: Journal of the
Transportation Research Board, 1999(1), 208–217. https://doi.org/10.3141/1999-
22

Ma, T., & Abdulhai, B. (2002). Genetic Algorithm-Based Optimization Approach and
Generic Tool for Calibrating Traffic Microscopic Simulation Parameters.
Transportation Research Record: Journal of the Transportation Research Board,
1800(1), 6–15. https://doi.org/10.3141/1800-02

Mer Group. (2020). Big Data in SMART Cities Saves Lives. https://mer-group.com/big-
data-in-smart-cities-saves-lives/

Miller, D. M. (2009). Developing a Procedure to Identify Parameters for Calibration of a
Vissim Model [Msc Thesis].

Montanino, M., & Punzo, V. (2013). Making NGSIM Data Usable for Studies on Traffic
Flow Theory. Transportation Research Record: Journal of the Transportation
Research Board, 2390(1), 99–111. https://doi.org/10.3141/2390-11

National Research Council (U.S.). Transportation Research Board. (2010). HCM 2010:
Highway Capacity Manual. Transportation Research Board.

Papageorgiou, M., Papamichail, I., Messmer, A., & Wang, Y. (2010). Traffic Simulation
with METANET. Fundamentals of Traffic Simulation, 399–430.
https://doi.org/10.1007/978-1-4419-6142-6_11

Park, B. (Brian), & Qi, H. (Maggie). (2005). Development and Evaluation of a Procedure
for the Calibration of Simulation Models. Transportation Research Record:
Journal of the Transportation Research Board, 1934(1), 208–217.
https://doi.org/10.1177/0361198105193400122

Park, B. (Brian), & Schneeberger, J. D. (2003). Microscopic Simulation Model
Calibration and Validation: Case Study of VISSIM Simulation Model for a
Coordinated Actuated Signal System. Transportation Research Record: Journal
of the Transportation Research Board, 1856(1), 185–192.
https://doi.org/10.3141/1856-20

Park, B. (Brian), Won, J., & Yun, I. (2006). Application of Microscopic Simulation
Model Calibration and Validation Procedure. Transportation Research Record:

https://doi.org/10.3141/2390-11

83

Journal of the Transportation Research Board, 1978(1), 113–122.
https://doi.org/10.1177/0361198106197800115

Payne, H. J. (1979). FREFLO: A macroscopic simulation model of freeway traffic.
Transportation Research Record, 722.

Pipes, L. A. (1953). An Operational Analysis of Traffic Dynamics. Journal of Applied
Physics, 24(3), 274–281. https://doi.org/10.1063/1.1721265

PTV AG. (2020). PTV Vissim 2020 User Manual. PTV AG, Karlsruhe, Germany.
Rainer Wiedemann. (1974). Simulation des Strassenverkehrsflusses. Institut Für

Verkehrswesen Der Universität Karlsruhe.
Rakha, H., & Crowther, B. (2002). Comparison of Greenshields, Pipes, and Van Aerde

Car-Following and Traffic Stream Models. Transportation Research Record:
Journal of the Transportation Research Board, 1802(1), 248–262.
https://doi.org/10.3141/1802-28

Ratner, B. (2009). The correlation coefficient: Its values range between +1/−1, or do
they? Journal of Targeting, Measurement and Analysis for Marketing, 17(2),
139–142. https://doi.org/10.1057/jt.2009.5

Reiter, U. (1994). Empirical Studies as Basis for Traffic Flow Models. Second
International Symposium on Highway Capacity, 2, 493–502.

Rouse, M. (2019). What is smart city? IoT Agenda.
https://internetofthingsagenda.techtarget.com/definition/smart-city

Rrecaj, A. A., & M.Bombol, K. (2015). Calibration and Validation of the VISSIM
Parameters - State of the Art. TEM Journa, 4(3), 255–269.

Saunier, N., & Sayed, T. (2006). A feature-based tracking algorithm for vehicles in
intersections. 3rd Canadian Conference on Computer and Robot Vision.

Silvano, A. P., Koutsopoulos, H. N., & Farah, H. (2020). Free flow speed estimation: A
probabilistic, latent approach. Impact of speed limit changes and road
characteristics. Transportation Research Part A: Policy and Practice, 138(2020),
283–298. https://doi.org/10.1016/j.tra.2020.05.024

St-Aubin, P., Miranda-Moreno, L., & Saunier, N. (2013). An automated surrogate safety
analysis at protected highway ramps using cross-sectional and before–after video
data. Transportation Research Part C: Emerging Technologies, 36, 284–295.
https://doi.org/10.1016/j.trc.2013.08.015

Thiemann, C., Treiber, M., & Kesting, A. (2008). Estimating Acceleration and Lane-
Changing Dynamics from Next Generation Simulation Trajectory Data.
Transportation Research Record: Journal of the Transportation Research Board,
2088(1), 90–101. https://doi.org/10.3141/2088-10

Underwood, R. T. (1961). Speed, volume, and density relationship: quality and theory of
traffic flow. Yale Bureau of Highway Traffic, 141–188.

Van Aerde, M. (1995). A single regime speed-flow-density relationship for freeways and
arterials. 74th TRB Annual Meeting.

Van Aerde, M. (1996). INTEGRATION: Overview of Simulation Features. Queen’s
University.

Vogel, K. (2002). What characterizes a “free vehicle” in an urban area?. Transportation
Research Part F: Traffic Psychology and Behaviour, 5(1), 15–29.
https://doi.org/10.1016/s1369-8478(02)00003-7

https://doi.org/10.3141/1802-28

84

Wunderlich, K., Vasudevan, M., & Wang, P. (2019). Traffic Analysis Toolbox Volume
III: Guidelines for Applying Traffic Microsimulation Modeling Software 2019
Update to the 2004 Version. FHWA.

Xu, J., Hilker, N., Turchet, M., Al-Rijleh, M.-K., Tu, R., Wang, A., Fallahshorshani, M.,
Evans, G., & Hatzopoulou, M. (2018). Contrasting the direct use of data from
traffic radars and video-cameras with traffic simulation in the estimation of road
emissions and PM hotspot analysis. Transportation Research Part D: Transport
and Environment, 62, 90–101. https://doi.org/10.1016/j.trd.2018.02.010

Yang, X.-S. (2014). Nature-inspired optimization algorithms. Elsevier.
Yu, L., Yu, L., Chen, X., Wan, T., & Guo, J. (2006). Calibration of Vissim for Bus Rapid

Transit Systems in Beijing Using GPS Data. Journal of Public Transportation,
9(3), 239–257. https://doi.org/10.5038/2375-0901.9.3.13

Yu, M., & David) Fan, W. (2017). Calibration of microscopic traffic simulation models
using metaheuristic algorithms. International Journal of Transportation Science
and Technology, 6(1), 63–77. https://doi.org/10.1016/j.ijtst.2017.05.001

Zhong, R. X., Fu, K. Y., Sumalee, A., Ngoduy, D., & Lam, W. H. K. (2016). A cross-
entropy method and probabilistic sensitivity analysis framework for calibrating
microscopic traffic models. Transportation Research Part C: Emerging
Technologies, 63, 147–169. https://doi.org/10.1016/j.trc.2015.12.006

85

Appendices

86

Appendix A – Python Scripts for Determining VISSIM Parameters

87

1: Desired Speed Distribution

import pandas as pd

import numpy as np

df = pd.read_csv("NGSIM_Peachtree_Vehicle_Trajectories.csv")

#only keep time headway greater than 6s (free flow state)

time_headway_6s=df[(df['Time_Headway'] >6) & (df['v_Vel'] >=0) & (df['v_Class'] ==2)]

speed0=time_headway_6s.groupby('Vehicle_ID', sort = False).max()

speed=speed0['v_Vel']

speed_sorted=speed.sort_values()

speed_number_of_rows=len(speed)

i=0

rank=[]

for i in range (0, speed_number_of_rows):

 rank.append(i+1)

speed = speed_sorted.tolist()

p=[]

i=0

for i in range(0, speed_number_of_rows):

 p.append(rank[i]/(len(rank)+1))

import matplotlib.pyplot as plt

fig=plt.plot(speed,p)

plt.xlabel('Speed (km/h)', fontsize=12)

plt.ylabel('Cumulative Probability', fontsize=12)

plt.ylim((0.0,1.0))

plt.grid(True)

import statsmodels.api as sm

from sklearn.metrics import r2_score

speed2 = sm.add_constant(speed)

est = sm.OLS(p, speed2)

est2 = est.fit()

result = pd.DataFrame.transpose(pd.DataFrame([est2.params,est2.tvalues,est2.pvalues,est2.bse]))

result.columns = ['coef','t_test','p_test','std_error']

z = np.polyfit(speed,p, 1)

p_hat = np.poly1d(z)(speed)

plt.plot(speed,p_hat,"r--")

text = f"$y={z[0]:0.3f}\;x{z[1]:+0.3f}\nR^2 = {r2_score(p,p_hat):0.3f}$"

plt.gca().text(0.05, 0.95, text,transform=plt.gca().transAxes,

 fontsize=14, verticalalignment='top')

print(est2.summary())

88

2: Desired Acceleration

import pandas as pd

import numpy as np

df = pd.read_csv("NGSIM_Peachtree_Vehicle_Trajectories.csv")

#speed between 0, 10

df1=df[(df['v_Vel'] >0) & (df['v_Vel'] <10) & (df['v_Acc'] >0)& (df['v_Class'] ==2)]

a=df1['v_Acc']

import matplotlib.pyplot as plt

plt.figure(0)

plt.xlabel('Acceleration (m/s^2)', fontsize=12)

plt.ylabel('Count', fontsize=12)

plt.ylim((0,20000))

plt.grid(True)

bin_edge= [0, 0.5,1,2,2.5,3,3.5,4]

plt.hist(a, bins= bin_edge)

plt.title('Vehicle Acceleration')

min_acc1 = df1.v_Acc.quantile(0.15)

mean_acc1 = df1.v_Acc.quantile(0.5)

max_acc1 = df1.v_Acc.quantile(0.85)

#speed between 10, 20

df1=df[(df['v_Vel'] >=10) & (df['v_Vel'] <20) & (df['v_Acc'] >0)& (df['v_Class'] ==2)]

a=df1['v_Acc']

import matplotlib.pyplot as plt

plt.figure(1)

plt.xlabel('Acceleration (m/s^2)', fontsize=12)

plt.ylabel('Count', fontsize=12)

plt.ylim((0,20000))

plt.grid(True)

bin_edge= [0, 0.5,1,2,2.5,3,3.5,4]

plt.hist(a, bins= bin_edge)

plt.title('Vehicle Acceleration')

min_acc2 = df1.v_Acc.quantile(0.15)

mean_acc2 = df1.v_Acc.quantile(0.5)

max_acc2 = df1.v_Acc.quantile(0.85)

#speed between 20, 30

df1=df[(df['v_Vel'] >=20) & (df['v_Vel'] <30) & (df['v_Acc'] >0)& (df['v_Class'] ==2)]

a=df1['v_Acc']

89

import matplotlib.pyplot as plt

plt.figure(2)

plt.xlabel('Acceleration (m/s^2)', fontsize=12)

plt.ylabel('Count', fontsize=12)

plt.ylim((0,20000))

plt.grid(True)

bin_edge= [0, 0.5,1,2,2.5,3,3.5,4]

plt.hist(a, bins= bin_edge)

plt.title('Vehicle Acceleration')

min_acc3 = df1.v_Acc.quantile(0.15)

mean_acc3 = df1.v_Acc.quantile(0.5)

max_acc3 = df1.v_Acc.quantile(0.85)

#speed between 30, 40

df1=df[(df['v_Vel'] >=30) & (df['v_Vel'] <40) & (df['v_Acc'] >0)& (df['v_Class'] ==2)]

a=df1['v_Acc']

import matplotlib.pyplot as plt

plt.figure(3)

plt.xlabel('Acceleration (m/s^2)', fontsize=12)

plt.ylabel('Count', fontsize=12)

plt.ylim((0,20000))

plt.grid(True)

bin_edge= [0, 0.5,1,2,2.5,3,3.5,4]

plt.hist(a, bins= bin_edge)

plt.title('Vehicle Acceleration')

min_acc4 = df1.v_Acc.quantile(0.15)

mean_acc4 = df1.v_Acc.quantile(0.5)

max_acc4 = df1.v_Acc.quantile(0.85)

#speed between 40, 50

df1=df[(df['v_Vel'] >=40) & (df['v_Vel'] <50) & (df['v_Acc'] >0)& (df['v_Class'] ==2)]

a=df1['v_Acc']

import matplotlib.pyplot as plt

plt.figure(4)

plt.xlabel('Acceleration (m/s^2)', fontsize=12)

plt.ylabel('Count', fontsize=12)

plt.ylim((0,20000))

plt.grid(True)

bin_edge= [0, 0.5,1,2,2.5,3,3.5,4]

plt.hist(a, bins= bin_edge)

plt.title('Vehicle Acceleration')

90

min_acc5 = df1.v_Acc.quantile(0.15)

mean_acc5 = df1.v_Acc.quantile(0.5)

max_acc5 = df1.v_Acc.quantile(0.85)

#speed between 50, 60

df1=df[(df['v_Vel'] >=50) & (df['v_Vel'] <60) & (df['v_Acc'] >0)& (df['v_Class'] ==2)]

a=df1['v_Acc']

import matplotlib.pyplot as plt

plt.figure(5)

plt.xlabel('Acceleration (m/s^2)', fontsize=12)

plt.ylabel('Count', fontsize=12)

plt.ylim((0,20000))

plt.grid(True)

bin_edge= [0, 0.5,1,2,2.5,3,3.5,4]

plt.hist(a, bins= bin_edge)

plt.title('Vehicle Acceleration')

min_acc6 = df1.v_Acc.quantile(0.15)

mean_acc6 = df1.v_Acc.quantile(0.5)

max_acc6 = df1.v_Acc.quantile(0.85)

max_acc=[max_acc1, max_acc2, max_acc3, max_acc4, max_acc5, max_acc6]

med_acc=[mean_acc1, mean_acc2, mean_acc3, mean_acc4, mean_acc5, mean_acc6]

min_acc=[min_acc1, min_acc2, min_acc3, min_acc4, min_acc5, min_acc6]

x=[5, 15, 25, 35, 45, 55]

import matplotlib.pyplot as plt

fig=plt.figure()

ax1 = fig.add_subplot(111)

ax1.plot(x, max_acc, c='b', marker="s", label='Maximum')

ax1.plot(x, med_acc, c='r', marker="s", label='Median')

ax1.plot(x, min_acc, c='g', marker="s", label='Minimum')

plt.legend(bbox_to_anchor=(1.05, 1), loc='best');

plt.xlabel('Speed (km/h)', fontsize=12)

plt.ylabel('Acceleration (m/s2)', fontsize=12)

plt.title('Desired Acceleration')

plt.ylim((0.0,4.0))

plt.xlim((0,60))

ax1.yaxis.grid()

import statsmodels.api as sm

from sklearn.metrics import r2_score

91

x2 = sm.add_constant(x)

est = sm.OLS(max_acc, x2)

est2 = est.fit()

result = pd.DataFrame.transpose(pd.DataFrame([est2.params,est2.tvalues,est2.pvalues,est2.bse]))

result.columns = ['coef','t_test','p_test','std_error']

z = np.polyfit(x,max_acc, 1)

p_hat = np.poly1d(z)(x)

plt.plot(x,p_hat,"r--")

text = f"$y={z[0]:0.3f}\;x{z[1]:+0.3f}$"

plt.gca().text(0.03, 0.85, text,transform=plt.gca().transAxes,

 fontsize=14, verticalalignment='top')

print(est2.summary())

x2 = sm.add_constant(x)

est = sm.OLS(med_acc, x2)

est2 = est.fit()

result = pd.DataFrame.transpose(pd.DataFrame([est2.params,est2.tvalues,est2.pvalues,est2.bse]))

result.columns = ['coef','t_test','p_test','std_error']

z = np.polyfit(x,med_acc, 1)

p_hat = np.poly1d(z)(x)

plt.plot(x,p_hat,"r--")

text = f"$y={z[0]:0.3f}\;x{z[1]:+0.3f}$"

plt.gca().text(0.03, 0.6, text,transform=plt.gca().transAxes,

 fontsize=14, verticalalignment='top')

print(est2.summary())

x2 = sm.add_constant(x)

est = sm.OLS(min_acc, x2)

est2 = est.fit()

result = pd.DataFrame.transpose(pd.DataFrame([est2.params,est2.tvalues,est2.pvalues,est2.bse]))

result.columns = ['coef','t_test','p_test','std_error']

z = np.polyfit(x,min_acc, 1)

p_hat = np.poly1d(z)(x)

plt.plot(x,p_hat,"r--")

text = f"$y={z[0]:0.3f}\;x{z[1]:+0.3f}$"

plt.gca().text(0.03, 0.2, text,transform=plt.gca().transAxes,

 fontsize=14, verticalalignment='top')

print(est2.summary())

92

3: Desired Deceleration

import pandas as pd

import numpy as np

df = pd.read_csv("NGSIM_Peachtree_Vehicle_Trajectories.csv")

#speed between 0, 10

df1=df[(df['v_Vel'] >0) & (df['v_Vel'] <10) & (df['v_Acc'] <0)& (df['v_Class'] ==2)]

min_acc1 = df1.v_Acc.quantile(0.95)

mean_acc1 = df1.v_Acc.quantile(0.5)

max_acc1 = df1.v_Acc.quantile(0.05)

#speed between 10, 20

df1=df[(df['v_Vel'] >=10) & (df['v_Vel'] <20) & (df['v_Acc'] <0)& (df['v_Class'] ==2)]

min_acc2 = df1.v_Acc.quantile(0.95)

mean_acc2 = df1.v_Acc.quantile(0.5)

max_acc2 = df1.v_Acc.quantile(0.05)

#speed between 20, 30

df1=df[(df['v_Vel'] >=20) & (df['v_Vel'] <30) & (df['v_Acc'] <0)& (df['v_Class'] ==2)]

min_acc3 = df1.v_Acc.quantile(0.95)

mean_acc3 = df1.v_Acc.quantile(0.5)

max_acc3 = df1.v_Acc.quantile(0.05)

#speed between 30, 40

df1=df[(df['v_Vel'] >=30) & (df['v_Vel'] <40) & (df['v_Acc'] <0)& (df['v_Class'] ==2)]

min_acc4 = df1.v_Acc.quantile(0.95)

mean_acc4 = df1.v_Acc.quantile(0.5)

max_acc4 = df1.v_Acc.quantile(0.05)

#speed between 40, 50

df1=df[(df['v_Vel'] >=40) & (df['v_Vel'] <50) & (df['v_Acc'] <0)& (df['v_Class'] ==2)]

min_acc5 = df1.v_Acc.quantile(0.95)

mean_acc5 = df1.v_Acc.quantile(0.5)

max_acc5 = df1.v_Acc.quantile(0.05)

#speed between 50, 60

df1=df[(df['v_Vel'] >=50) & (df['v_Vel'] <60) & (df['v_Acc'] <0)& (df['v_Class'] ==2)]

min_acc6 = df1.v_Acc.quantile(0.95)

mean_acc6 = df1.v_Acc.quantile(0.5)

max_acc6 = df1.v_Acc.quantile(0.05)

93

max_acc=[abs(max_acc1), abs(max_acc2), abs(max_acc3), abs(max_acc4), abs(max_acc5), abs(max_acc6)]

med_acc=[abs(mean_acc1), abs(mean_acc2), abs(mean_acc3), abs(mean_acc4), abs(mean_acc5), abs(mean_acc6)]

min_acc=[abs(min_acc1), abs(min_acc2), abs(min_acc3), abs(min_acc4), abs(min_acc5), abs(min_acc6)]

x=[5, 15, 25, 35, 45, 55]

import matplotlib.pyplot as plt

fig=plt.figure()

ax1 = fig.add_subplot(111)

ax1.plot(x, max_acc, c='b', marker="s", label='Maximum')

ax1.plot(x, med_acc, c='r', marker="s", label='Median')

ax1.plot(x, min_acc, c='g', marker="s", label='Minimum')

plt.legend(bbox_to_anchor=(1.05, 1), loc='best');

plt.xlabel('Speed (km/h)', fontsize=12)

plt.ylabel('Deceleration (m/s2)', fontsize=12)

plt.title('Desired Deceleration')

plt.ylim((0.0,4.0))

plt.xlim((0,60))

ax1.yaxis.grid()

import statsmodels.api as sm

from sklearn.metrics import r2_score

x2 = sm.add_constant(x)

est = sm.OLS(max_acc, x2)

est2 = est.fit()

result = pd.DataFrame.transpose(pd.DataFrame([est2.params,est2.tvalues,est2.pvalues,est2.bse]))

result.columns = ['coef','t_test','p_test','std_error']

z = np.polyfit(x,max_acc, 1)

p_hat = np.poly1d(z)(x)

plt.plot(x,p_hat,"r--")

text = f"$y={z[0]:0.3f}\;x{z[1]:+0.3f}$"

plt.gca().text(0.03, 0.85, text,transform=plt.gca().transAxes,

 fontsize=14, verticalalignment='top')

print(est2.summary())

x2 = sm.add_constant(x)

est = sm.OLS(med_acc, x2)

est2 = est.fit()

result = pd.DataFrame.transpose(pd.DataFrame([est2.params,est2.tvalues,est2.pvalues,est2.bse]))

result.columns = ['coef','t_test','p_test','std_error']

z = np.polyfit(x,med_acc, 1)

94

p_hat = np.poly1d(z)(x)

plt.plot(x,p_hat,"r--")

text = f"$y={z[0]:0.3f}\;x{z[1]:+0.3f}$"

plt.gca().text(0.03, 0.6, text,transform=plt.gca().transAxes,

 fontsize=14, verticalalignment='top')

print(est2.summary())

x2 = sm.add_constant(x)

est = sm.OLS(min_acc, x2)

est2 = est.fit()

result = pd.DataFrame.transpose(pd.DataFrame([est2.params,est2.tvalues,est2.pvalues,est2.bse]))

result.columns = ['coef','t_test','p_test','std_error']

z = np.polyfit(x,min_acc, 1)

p_hat = np.poly1d(z)(x)

plt.plot(x,p_hat,"r--")

text = f"$y={z[0]:0.3f}\;x{z[1]:+0.3f}$"

plt.gca().text(0.03, 0.18, text,transform=plt.gca().transAxes,

 fontsize=14, verticalalignment='top')

print(est2.summary())

95

4: Standstill Distance

import pandas as pd

import numpy as np

df = pd.read_csv("NGSIM_Peachtree_Vehicle_Trajectories.csv")

df0 = df[(df['Space_Headway'] !=0) & (df['Preceding']!=0) & (df['v_Vel']==0) & (df['v_Acc']==0)]

#Sort the database to generate preceding vehicle data for each vehicle record in the original database one by one

df1=df0.reset_index()

index = df1.index

number_of_rows = len(index)

i=0

df3= pd.read_csv("preceding_vehicle_records.csv")

df5= pd.read_csv("following_vehicle_records.csv")

for i in range (0, number_of_rows-1):

 vehicle_i = df1['Vehicle_ID'].values[i]

 preceding_vehicle_i = df1['Preceding'].values[i]

 timestep_i = df1['Global_Time'].values[i]

 direction = df1['Direction'].values[i]

 #df2 is a temporary df to store preceding vehicle data

 df2 = df[(df['Global_Time'] == timestep_i) & (df['Vehicle_ID'] == preceding_vehicle_i) & (df['Following'] ==

vehicle_i) & (df['Direction'] == direction) & (df['v_Vel'] == 0) & (df['v_Acc']==0)]

 if len(df2) != 1:

 df2 = []

 else:

 #df4 is a temporary df to store following vehicle data

 df4=df1.iloc[i]

 df3 = df3.append(df2) #preceding

 df5 = df5.append(df4) #following

 continue

 continue

df6=df3.reset_index() #preceding

df7=df5.reset_index() #following

headway=df7['Space_Headway']

v_length=df6['v_length']

distance=headway-v_length

Vehicle_ID= df7[‘Vehicle_ID’]

df8 = pd.DataFrame({'v_length’: v_length, 'distance': distance})

df9=df8.loc[df8.groupby('Vehicle_ID')['distance'].idxmin()]

96

df10 = df9[(df9['distance']>0) & (df9['distance']<= 10)]

distance=df10['distance']

average_standstill_distance=statistics. mean(distance)

import matplotlib.pyplot as plt

#fig=plt.scatter(speed_d,distance)

plt.xlabel('ΔX (m)', fontsize=12)

plt.ylabel('Number of Vehicles', fontsize=12)

#plt.ylim((0.0,10))

plt.grid(True)

bin_edge= [0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10]

plt.hist(distance, bins= bin_edge)

97

5: Following Distance

df = pd.read_csv("NGSIM_Peachtree_Vehicle_Trajectories.csv")

df0 = df[(df['Space_Headway'] < 10) & (df['Space_Headway'] !=0) & (df['Preceding']!=0)& (df['v_Vel']==0)]

#Sort the database to generate preceding vehicle data for each vehicle record in the original database one by one

df1=df0.reset_index()

index = df1.index

number_of_rows = len(index)

i=0

df3= pd.read_csv("preceding_vehicle_records.csv")

for i in range (0, number_of_rows-1):

 #speed=df['v_Vel'].values[i]

 #speed_preceding=df['v_Vel'].values[i]

 vehicle_i = df1['Vehicle_ID'].values[i]

 preceding_vehicle_i = df1['Preceding'].values[i]

 timestep_i = df1['Global_Time'].values[i]

 direction = df1['Direction'].values[i]

 #df1 is a temporary df to store preceding vehicle data

 df2 = df[(df['Global_Time'] == timestep_i) & (df['Vehicle_ID'] == preceding_vehicle_i) & (df['Following'] ==

vehicle_i)&(df['Direction'] == direction)]

 if len(df2) != 1:

 update_df1 =df1.drop([i])

 df2 = []

 else:

 df3 = df3.append(df2)

 continue

 continue

#distance (head to bumper) between two vehicle

df4=df1.reset_index()

df5=df3.reset_index()

headway=df4['Space_Headway']

v_length=df5['v_length']

distance=headway-v_length

#speed difference

speed1=df4['v_Vel']

speed2=df5['v_Vel']

speed_d=speed1-speed2

df4.to_csv('following2.csv')

df5.to_csv('preceding2.csv')

import matplotlib.pyplot as plt

98

fig=plt.scatter(speed_d,distance)

plt.xlabel('ΔV', fontsize=12)

plt.ylabel('ΔX', fontsize=12)

plt.ylim((0.0,10))

plt.grid(True)

plt.hist(distance, bins=6)

99

import pandas as pd

import numpy as np

import statistics

df1 = pd.read_csv("following2.csv")

df2 = pd.read_csv("preceding2.csv")

#distance (head to bumper) between two vehicle

headway=df1['Space_Headway']

v_length=df2['v_length']

distance=headway-v_length

#speed difference

speed1=df1['v_Vel']

speed2=df2['v_Vel']

acc=df1['v_Acc']

dv=speed1-speed2

v_id=df1['Vehicle_ID']

data = {'Vehicle_ID':v_id, 'speed_follow':speed1, 'speed_preced':speed2, 'speed_diff':dv, 'distance':distance,

'acceleration': acc}

df = pd.DataFrame(data)

df=df[(df['distance'] > 2.8) & (df['distance'] < 100)]

dfmin=df.loc[df.groupby('Vehicle_ID')['distance'].idxmin()]

df['pctile']=df.groupby('Vehicle_ID')['distance'].rank(pct=True)

df['difference']=df['pctile']-0.1

df['difference']=df['difference'].abs()

dfmin=df.loc[df.groupby('Vehicle_ID')['difference'].idxmin()]

dfmin=dfmin[(dfmin['difference'] <0.2) & (dfmin['distance'] < 10)]

v=dfmin['speed_follow']/3.6

d=dfmin['distance']

ax=2.8

parameter=(d-ax)/np.sqrt(v)

mean=statistics. mean(parameter)

std=statistics. stdev(parameter)

#linear programing

import the library pulp as p

import pulp as p

Create a LP Minimization problem

Lp_prob = p.LpProblem('Problem', p.LpMinimize)

Create problem Variables

x = p.LpVariable("x", lowBound = 1, upBound=5) # Create a variable x >= 0 bxadd

y = p.LpVariable("y", lowBound = 1, upBound=6) # Create a variable y >= 0 bxmult

100

Objective Function

Lp_prob += std - 0.15 * y

Constraints:

Lp_prob += x + 0.5 * y == mean

Lp_prob += x >= 1

Lp_prob += x <= 5

Lp_prob += y >= 1

Lp_prob += y <= 6

Display the problem

print(Lp_prob)

status = Lp_prob.solve() # Solver

print(p.LpStatus[status]) # The solution status

Printing the final solution

print(p.value(x), p.value(y), p.value(Lp_prob.objective))

6: Lane Changing Vehicle Parameters

import pandas as pd

df = pd.read_csv("NGSIM_Peachtree_Vehicle_Trajectories.csv")

Remove data with lane ID 0 or greater than 4, and no following vehicle

df1 = df[(df['Lane_ID'] > 0) & (df['Lane_ID'] <= 4)& (df['Following'] > 0)]

index = df1.index

number_of_rows = len(index)

i=0

#lane changing vehicle record

df2= pd.read_csv("lane_changing_vehicle_records.csv")

#lane trailing vehicle record

df3= pd.read_csv("trailing_vehicle_records.csv")

#Get lane change information

for i in range (0, number_of_rows-1):

#information of vehicle i

 vehicle_i = df1['Vehicle_ID'].values[i]

 lane_i = df1['Lane_ID'].values[i]

 i_new=i+1

#information of vehicle i_new

 vehicle_i_new=df1['Vehicle_ID'].values[i_new]

 lane_i_new = df1['Lane_ID'].values[i_new]

 if(vehicle_i != vehicle_i_new):

 continue

101

 else:

 if(lane_i == lane_i_new):

 continue

 else: df2.loc[df1.index[i_new]] = df1.iloc[i_new]

 continue

#get lane change data for 4s interval

df4= pd.read_csv("lane_changing_vehicle_records_4s.csv")

#append lane change data for 4s interval from df1 to df4 base on timestep and vehicle ID in df2

df2_number_of_rows=len(df2)

i=0

for i in range (0, df2_number_of_rows-1):

 vehicle_i = df2['Vehicle_ID'].values[i]

 timestep_i = df2['Global_Time'].values[i]

 #df5 is a temporary df to store data for each lane change movement

 df5 = df1[(df1['Global_Time'] <= timestep_i+1900) & (df1['Global_Time'] >= timestep_i-2000) &

(df1['Vehicle_ID'] == vehicle_i)]

 df5_number_of_rows=len(df5)

 if df5_number_of_rows ==40: #check if it has 40 frames (4s) data

 df4=df4.append(df5)

 continue

#Determine Max and desired deceleration

#Remove positive acc

df4_filtered = df4[df4['v_Acc'] <-0.5]

desired_dec = df4_filtered.v_Acc.quantile(0.85)

Max_dec = df4_filtered.v_Acc.quantile(0.15)

a=df4_filtered['v_Acc']

import matplotlib.pyplot as plt

plt.figure(0)

plt.xlabel('Deceleration (m/s^2)', fontsize=12)

plt.ylabel('Count', fontsize=12)

plt.ylim((0,1800))

plt.grid(True)

bin_edge= [-4, -3.5,-3,-2.5,-2,-1.5,-1,-0.5,0]

plt.hist(a, bins= bin_edge)

plt.title('Lane Changing Vehicle Deceleration')

7: Trailing Vehicle Parameters

import pandas as pd

import numpy as np

#Master database

df = pd.read_csv("NGSIM_Peachtree_Vehicle_Trajectories.csv")

102

Remove data with lane ID 0 or greater than 4

df1 = df[(df['Lane_ID'] > 0) & (df['Lane_ID'] <= 4)]

index = df1.index

number_of_rows = len(index)

i=0

#lane changing vehicle record

df2= pd.read_csv("lane_changing_vehicle_records.csv")

#trailing vehicle record

df3= pd.read_csv("trailing_vehicle_records.csv")

#Get lane change information

for i in range (0, number_of_rows-1):

#information of vehicle i

 vehicle_i = df1['Vehicle_ID'].values[i]

 lane_i = df1['Lane_ID'].values[i]

 i_new=i+1

#information of vehicle i_new

 vehicle_i_new=df1['Vehicle_ID'].values[i_new]

 lane_i_new = df1['Lane_ID'].values[i_new]

 if(vehicle_i != vehicle_i_new):

 continue

 else:

 if(lane_i == lane_i_new):

 continue

 else: df2.loc[df1.index[i_new]] = df1.iloc[i_new]

 continue

#append trailing vehicle data from df1 to df6 base on timestep and vehicle ID in df2

df2_number_of_rows=len(df2)

i=0

for i in range (0, df2_number_of_rows-1):

 vehicle_i = df2['Vehicle_ID'].values[i]

 timestep_i = df2['Global_Time'].values[i]

 #df5 is a temporary df to store data for each lane change movement

 df5 = df1[(df1['Global_Time'] == timestep_i) & (df1['Preceding'] == vehicle_i)]

 df3 = df3.append(df5)

 continue

#get lane change data for 4s interval (trailing vehicle)

df6= pd.read_csv("trailing_vehicle_records_4s.csv")

#append trailing vehicle data for 4s interval from df1 to df6 base on timestep and vehicle ID in df2

df3_number_of_rows=len(df3)

i=0

103

for i in range (0, df3_number_of_rows-1):

 vehicle_i = df3['Vehicle_ID'].values[i]

 timestep_i = df3['Global_Time'].values[i]

 #df5 is a temporary df to store data for each lane change movement

 df5 = df1[(df1['Global_Time'] <= timestep_i+1900) & (df1['Global_Time'] >= timestep_i-2000) &

(df1['Vehicle_ID'] == vehicle_i)]

 df5_number_of_rows=len(df5)

 if df5_number_of_rows ==40: #check if it has 40 frames (4s) data

 df6=df6.append(df5)

 continue

Minimum headway

df7=df6.iloc[39::40, :]

#lane changing vehicle record

df8= pd.read_csv("vehicle length.csv")

#Get headway

df7['Preceding_v_length'] = df7['Preceding'].map(df8.set_index('Preceding')['Preceding_v_length'])

df7['new_headway']=df7['Space_Headway']-df7['Preceding_v_length']

df7_filtered = df7[df7['new_headway'] >0]

min_headway=df7_filtered.new_headway.min()

Safety distance reduction factor

#get lane change data for 2s interval (trailing vehicle)

df61= pd.read_csv("trailing_vehicle_records_4s.csv")

#append trailing vehicle data for 4s interval from df1 to df6 base on timestep and vehicle ID in df2

df3_number_of_rows=len(df3)

i=0

for i in range (0, df3_number_of_rows-1):

 vehicle_i = df3['Vehicle_ID'].values[i]

 timestep_i = df3['Global_Time'].values[i]

 #df5 is a temporary df to store data for each lane change movement

 df51 = df1[(df1['Global_Time'] < timestep_i) & (df1['Global_Time'] >= timestep_i-2000) & (df1['Vehicle_ID'] ==

vehicle_i)]

 df51_number_of_rows=len(df51)

 if df51_number_of_rows ==20: #check if it has 40 frames (4s) data

 df61=df61.append(df51)

 continue

df9=df61

#Get headway

df9['Preceding_v_length'] = df9['Preceding'].map(df8.set_index('Preceding')['Preceding_v_length'])

df9['new_headway']=df9['Space_Headway']-df9['Preceding_v_length']

104

n=20

df10=df9.groupby(np.arange(len(df9))//n)['new_headway'].max()

df11=df9.groupby(np.arange(len(df9))//n)['new_headway'].min()

df12=pd.concat([df10, df11], axis=1)

df12.columns = ['max', 'min']

df12=df12[(df12['max']>0) & (df12['max']<10) & (df12['min']>0)& (df12['min']<10)]

df12['ratio']=df12['min']/df12['max']

factor=df12['ratio'].mean()

#Determine Max and desired deceleration

#Remove positive acc

df6_filtered = df6[df6['v_Acc'] <-0.5]

desired_dec = df6_filtered.v_Acc.quantile(0.9)

Max_dec = df6_filtered.v_Acc.quantile(0.1)

a=df6_filtered['v_Acc']

import matplotlib.pyplot as plt

plt.figure(0)

plt.xlabel('Deceleration (m/s^2)', fontsize=12)

plt.ylabel('Count', fontsize=12)

plt.ylim((0,1800))

plt.grid(True)

bin_edge= [-4, -3.5,-3,-2.5,-2,-1.5,-1,-0.5,0]

plt.hist(a, bins= bin_edge)

plt.title('Trailing Vehicle Deceleration')

b=df7_filtered['new_headway']

plt.figure(1)

plt.xlabel('Headway after Lane Change', fontsize=12)

plt.ylabel('Count', fontsize=12)

plt.ylim((0,10))

plt.grid(True)

bin_edge= [0,1,2,3,4,5,6,7,8,9,10]

plt.hist(b, bins= bin_edge)

105

Appendix B – Python Scripts for Run VISSIM in COM Interface

106

import win32com.client as com

Vissim = com.Dispatch("Vissim.Vissim-64.200")

Filename = 'E:\\Final thesis\\NGSIM\\VISSIM\\Peachtree st default.inpx'

Vissim.loadNet(Filename)

Vissim.Graphics.CurrentNetworkWindow.SetAttValue('QuickMode',1)

import format:

import csv

with open('inputs2.csv', 'r') as csvfile:

 driving_behavior_list = Vissim.Net.DrivingBehaviors.GetAll()

 myfile = csv.reader(csvfile, delimiter=',')

 input_variable_names = next(myfile)

 for k in range(800):

 this_line = next(myfile)

 Vissim.Net.DrivingBehaviors.GetAll()

 driving_behavior_list[0].SetAttValue("LookAheadDistMin", this_line[0])

 driving_behavior_list[0].SetAttValue("LookAheadDistMax", this_line[1])

 driving_behavior_list[0].SetAttValue("NumInteractObj", this_line[2])

 driving_behavior_list[0].SetAttValue("DecelRedDistOwn", this_line[3])

 driving_behavior_list[0].SetAttValue("DecelRedDistTrail", this_line[4])

 driving_behavior_list[0].SetAttValue("DiffusTm", this_line[5])

 driving_behavior_list[0].SetAttValue("W74ax", this_line[6])

 driving_behavior_list[0].SetAttValue("W74bxAdd", this_line[7])

 driving_behavior_list[0].SetAttValue("W74bxMult", this_line[8])

 driving_behavior_list[0].SetAttValue("MaxDecelOwn", this_line[9])

 driving_behavior_list[0].SetAttValue("MaxDecelTrail", this_line[10])

 driving_behavior_list[0].SetAttValue("AccDecelOwn", this_line[11])

 driving_behavior_list[0].SetAttValue("AccDecelTrail", this_line[12])

 driving_behavior_list[0].SetAttValue("MinFrontRearClear", this_line[13])

 driving_behavior_list[0].SetAttValue("SafDistFactLnChg", this_line[14])

 Vissim.Simulation.RunContinuous()

107

Appendix C – Python Scripts for Neural Network Calibration

108

Create Dataset

import pandas as pd

inputs = pd.read_csv('inputs.csv', decimal=',', sep=',')

times = pd.read_excel('results.xlsx', decimal=',', sep=',', sheet_name='Time')

speeds = pd.read_excel('results.xlsx', decimal=',', sep=',', sheet_name='Speed')

times = times.pivot(index='SimRun', columns='VehicleTravelTimeMeasurement')

times = times.reset_index()

speeds = speeds.pivot(index='SimRun', columns='DataCollectionMeasurement')

speeds = speeds.reset_index()

dataset = pd.concat([times, speeds, inputs], axis=1)

dataset.columns = dataset.columns.map(str)

dataset.rename(columns='_'.join, inplace=True)

dataset.columns = dataset.columns.str.replace('[^a-zA-Z0-9]', '')

dataset = dataset.drop(columns='SimRun')

dataset = dataset.dropna()

dataset.to_csv('dataset_1.csv', decimal='.', sep=',', index=False)

Neural Network Training

import matplotlib.pyplot as plt
import keras
import numpy as np
import pandas as pd
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense
import pickle

layer_width = [50]

n_inputs = 10
n_outputs = 15

config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
tf.compat.v1.keras.backend.set_session(tf.compat.v1.Session(config=config))

dataset = pd.read_csv('dataset_1.csv')

train_dataset = dataset.sample(frac=0.8, random_state=0)
test_dataset = dataset.drop(train_dataset.index)

train_stats = train_dataset.describe()
train_stats = train_stats.transpose()
train_stats.to_csv('train_stats1.csv')

def norm(x):
 return (x - train_stats['mean']) / train_stats['std']

normed_train_data = norm(train_dataset)
normed_test_data = norm(test_dataset)

train_data_as_numpy = normed_train_data.values
test_data_as_numpy = normed_test_data.values

109

x_train = train_data_as_numpy[:, 0:n_inputs]
y_train = train_data_as_numpy[:, n_inputs:]
x_test = test_data_as_numpy[:, 0:n_inputs]
y_test = test_data_as_numpy[:, n_inputs:]

for width in layer_width:
 model = Sequential()
 model.add(Dense(units=width, activation='sigmoid', input_dim=n_inputs))
 model.add(Dense(units=width, activation='sigmoid'))
 model.add(Dense(units=n_outputs, activation='sigmoid'))

 model.compile(loss='mean_squared_error', optimizer='Nadam', metrics=['mean_squared_error']
 early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', min_delta=0, patience=2)
 history = model.fit(x_train, y_train, validation_split=0.2, epochs=50000,callbacks=[early_stop], verbose=1)

 def plot_history(history):
 hist = pd.DataFrame(history.history)
 hist['epoch'] = history.epoch
 plt.figure()
 plt.xlabel('Epoch')
 plt.ylabel('Mean Square Error')
 plt.plot(hist['epoch'], hist['mean_squared_error'], label='Train Error')
 plt.plot(hist['epoch'], hist['val_mean_squared_error'], label='Val Error')
 plt.ylim([0, 1])
 plt.legend()
 plt.show()

 plot_history(history)
 hist = pd.DataFrame(history.history)
 with open('history.txt', 'wb') as file:
 pickle.dump(history.history, file)
 loss, mse = model.evaluate(x_test, y_test, verbose=0)
 outputs = model.predict(x_test, verbose=0)
 correlations = np.zeros(outputs.shape[1])
 for i in range(len(correlations)):
 correlations[i] = np.corrcoef(y_test[:, i], outputs[:, i])[0, 1]

 print(normed_test_data.columns.values[n_inputs:])
 print(correlations)
 model.save("calibration_nn.h5")
 del model

Load NN
from keras.models import load_model
import keras
import pandas as pd
import numpy as np

new_inputs = pd.read_csv('new_inputs.csv', sep=',', decimal='.')
model = load_model('calibration12_nn.h5')
train_stats = pd.read_csv('train_stats12.csv', index_col=0, sep=',', decimal='.')
input_stats = train_stats.drop(index=['W74ax', 'W74bxAdd', 'W74bxMult', 'MaxDecelOwn', 'MaxDecelTrail',
'AccDecelOwn', 'AccDecelTrail', 'MinFrontRearClear', 'SafDistFactLnChg','LookAheadDistMin','LookAheadDistMax',
'NumInteractObj', 'DecelRedDistOwn', 'DecelRedDistTrail','DiffusTm'])
#input_stats = train_stats.drop(index=['Speedlowerbound', 'Speedhigherbound','W74ax', 'W74bxAdd', 'W74bxMult',
'MaxDecelOwn', 'MaxDecelTrail', 'AccDecelOwn', 'AccDecelTrail', 'MinFrontRearClear',
'SafDistFactLnChg','LookAheadDistMin','LookAheadDistMax', 'NumInteractObj', 'DecelRedDistOwn',
'DecelRedDistTrail','DiffusTm'])
#input_stats = train_stats.drop(index=['LookAheadDistMin','LookAheadDistMax', 'NumInteractObj',
'DecelRedDistOwn', 'DecelRedDistTrail','DiffusTm'])
def norm(x):
 return (x - input_stats['mean']) / input_stats['std']

110

normed_new_inputs = norm(new_inputs)
x_numpy = normed_new_inputs.values
y_numpy = model.predict(x_numpy)
new_outputs = pd.DataFrame(y_numpy, columns=['W74ax', 'W74bxAdd', 'W74bxMult', 'MaxDecelOwn',
'MaxDecelTrail', 'AccDecelOwn', 'AccDecelTrail', 'MinFrontRearClear',
'SafDistFactLnChg','LookAheadDistMin','LookAheadDistMax', 'NumInteractObj', 'DecelRedDistOwn',
'DecelRedDistTrail','DiffusTm'])
output_stats = train_stats.loc[['W74ax', 'W74bxAdd', 'W74bxMult', 'MaxDecelOwn', 'MaxDecelTrail', 'AccDecelOwn',
'AccDecelTrail', 'MinFrontRearClear', 'SafDistFactLnChg','LookAheadDistMin','LookAheadDistMax',
'NumInteractObj', 'DecelRedDistOwn', 'DecelRedDistTrail','DiffusTm']]
#new_outputs = pd.DataFrame(y_numpy, columns=['Speedlowerbound', 'Speedhigherbound','W74ax', 'W74bxAdd',
'W74bxMult', 'MaxDecelOwn', 'MaxDecelTrail', 'AccDecelOwn', 'AccDecelTrail', 'MinFrontRearClear',
'SafDistFactLnChg','LookAheadDistMin','LookAheadDistMax', 'NumInteractObj', 'DecelRedDistOwn',
'DecelRedDistTrail','DiffusTm'])
#output_stats = train_stats.loc[['Speedlowerbound', 'Speedhigherbound','W74ax', 'W74bxAdd', 'W74bxMult',
'MaxDecelOwn', 'MaxDecelTrail', 'AccDecelOwn', 'AccDecelTrail', 'MinFrontRearClear',
'SafDistFactLnChg','LookAheadDistMin','LookAheadDistMax', 'NumInteractObj', 'DecelRedDistOwn',
'DecelRedDistTrail','DiffusTm']]
#new_outputs = pd.DataFrame(y_numpy, columns=['LookAheadDistMin','LookAheadDistMax', 'NumInteractObj',
'DecelRedDistOwn', 'DecelRedDistTrail','DiffusTm'])
#output_stats = train_stats.loc[['LookAheadDistMin','LookAheadDistMax', 'NumInteractObj', 'DecelRedDistOwn',
'DecelRedDistTrail','DiffusTm']]
def denorm(y):
 return (y * output_stats['std']) + output_stats['mean']

new_outputs = denorm(new_outputs)
new_outputs.to_csv("new_outputs12.csv", index=False)

Re-run VISSIM with Calibrated Parameters

import win32com.client as com
Vissim = com.Dispatch("Vissim.Vissim-64.200")
Filename = 'E:\\Final thesis\\NGSIM\\VISSIM\\Peachtree st default.inpx'
Vissim.loadNet(Filename)
import csv
with open('new_outputs4.csv', 'r') as csvfile:
 driving_behavior_list = Vissim.Net.DrivingBehaviors.GetAll()
 myfile = csv.reader(csvfile, delimiter=',')
 input_variable_names = next(myfile)
 for k in range(1):
 this_line = next(myfile)

 driving_behavior_list[0].SetAttValue("W74ax", this_line[0])
 driving_behavior_list[0].SetAttValue("W74bxAdd", this_line[1])
 driving_behavior_list[0].SetAttValue("W74bxMult", this_line[2])
 driving_behavior_list[0].SetAttValue("MaxDecelOwn", this_line[3])
 driving_behavior_list[0].SetAttValue("MaxDecelTrail", this_line[4])
 driving_behavior_list[0].SetAttValue("AccDecelOwn", this_line[5])
 driving_behavior_list[0].SetAttValue("AccDecelTrail", this_line[6])
 driving_behavior_list[0].SetAttValue("MinFrontRearClear", this_line[7])
 driving_behavior_list[0].SetAttValue("SafDistFactLnChg", this_line[8])
 driving_behavior_list[0].SetAttValue("LookAheadDistMin", this_line[9])
 driving_behavior_list[0].SetAttValue("LookAheadDistMax", this_line[10])
 driving_behavior_list[0].SetAttValue("NumInteractObj", this_line[11])
 driving_behavior_list[0].SetAttValue("DecelRedDistOwn", this_line[12])
 driving_behavior_list[0].SetAttValue("DecelRedDistTrail", this_line[13])
 driving_behavior_list[0].SetAttValue("DiffusTm", this_line[14])
 Vissim.Simulation.RunContinuous()

	List of Figures
	List of Tables
	1 Introduction
	1.1 Traffic Simulation Models
	1.2 Smart City Data Applications
	1.3 Calibration of Microscopic Simulation Models Using Smart City Data
	1.4 Research Objective
	1.5 Scope
	1.6 Structure of Thesis

	2 Literature Review
	2.1 Parameter Selection
	2.2 Parameter Determination with Field Data
	2.2.1 Direct Estimation
	2.2.1.1 On-board Data Collection
	2.2.1.2 Roadside Data Collection

	2.2.2 Model Calibration
	2.2.2.1 Early Approaches
	2.2.2.2 Genetic Algorithm
	2.2.2.3 Simultaneous Perturbation Stochastic Approximation
	2.2.2.4 Artificial Neural Network

	2.3 Gaps

	3 Data and Methodology
	3.1 Field Data
	3.2 Proposed Methodology
	3.2.1 Network Building
	3.2.1.1 Road Geometry
	3.2.1.2 Vehicle Volume and Turning Ratio
	3.2.1.3 Signal Control
	3.2.1.4 Collection of Simulation Data

	3.2.2 Parameter Selection
	3.2.3 Sensitivity Analysis
	3.2.4 Model Evaluation
	3.2.5 Parameter Determination Using Smart City Data
	3.2.5.1 Following Behavior
	3.2.5.2 Desired Speed
	3.2.5.3 Desired Acceleration/Deceleration
	3.2.5.4 Car Following Model
	3.2.5.5 Lane Change

	3.2.6 Model Calibration Using ANN

	4 Parameter Results from the NGSIM Data
	4.1 Desired Speed
	4.2 Desired Acceleration/Deceleration
	4.3 Car Following Model
	4.3.1 Standstill Distance
	4.3.2 Desired Safety Distance
	4.3.3 Additive and Multiple Parts of desired safety distance

	4.4 Lane Changing Model
	4.4.1 Maximum Deceleration and Accepted Deceleration
	4.4.2 Minimum Headway
	4.4.3 Safety Distance Reduction Factor

	4.5 Summary of Key Findings

	5 Model Calibration and Evaluation
	5.1 Evaluation of Parameters Determined from Smart City Data
	5.2 Neural Network Combination Calibration Results
	5.2.1 Experiment 1: Smart City Data + NN Calibration
	5.2.2 Experiment 2: NN Calibration Only
	5.2.3 Experiment 3: NN Calibration + Desired Speed Distribution
	5.2.1 Experiment 4: NN Calibration + Desired Speed Distribution & Desired Acceleration/Deceleration

	5.3 Calibration Performance Using Different Field Measurements
	5.4 Summary of Key Findings
	5.5 Summary of Proposed Calibration Process

	6 Conclusion
	6.1 Contributions and Key Findings
	6.2 Recommendations

	References
	Appendices
	Appendix A – Python Scripts for Determining VISSIM Parameters
	Appendix B – Python Scripts for Run VISSIM in COM Interface
	Appendix C – Python Scripts for Neural Network Calibration

