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Abstract

Small-molecule drugs have dominated the pharmaceutical industry and physician’s pre-

scription pads since the beginning of modern medicine. The most recent decades, however,

are most aptly characterized as the era of biologics. Indeed, 7 of the top 10 revenue-

generating therapeutics in 2020 were biologics, and although they are yet to be counted

among the most commonly prescribed drugs, the drum beat of new product approvals

and demand for biologic therapeutics is intensifying. Despite the potential of biologics as

therapeutics, one of the factors that currently hinder their use is exorbitant cost of pro-

duction. In preceding years, important developments in the optimization of media, feeding

strategies, and downstream processing have led to significant improvement in the yield and

decreased production cost of recombinant therapeutics. The most recent decade, however,

has witnessed a revolution in the field akin to the systems biology approach toward ratio-

nal design practiced for improving microbial production hosts; enabled by advancements in

whole-genome sequencing, genome-scale models, and development of sophisticated genetic

engineering tools, a new wave of engineered production hosts and platforms with improved

or completely novel biochemical properties are being developed, leading to improved prod-

uct yield and quality, and decreased production costs.
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The baculovirus expression vector system (BEVS) is an established platform for the

manufacture of recombinant proteins, viral vaccines, and gene therapy vectors. Despite

the first recombinant protein being produced in the BEVS in the early 1980s, much of the

intervening years has seen it utilized predominantly as a research tool in academic labora-

tories rather than as a commercial manufacturing platform. Consequently, relatively little

attention has been devoted to its improvement as a production platform. Nevertheless,

several BEVS-manufactured vaccines and therapeutics have recently been licensed for use

in animals and humans, signifying that it may yet find mainstream use as a commercial

manufacturing platform.

Although the BEVS boasts many features that make it attractive as a manufacturing

platform, to realize its full potential, intrinsic limitations must be addressed: the lytic in-

fection cycle and resulting short bioprocess duration can limit overall yield of recombinant

proteins, and large amounts of progeny virus, cellular proteins, and debris from lysed cells

are contaminants that necessitate extensive purification steps to achieve product purity.

Additionally, genome instability remains a major barrier to scalability due to rapid loss

of foreign gene expression. Although periodic reports in the literature describe strategies

aimed at reducing contaminant progeny virions or improving yield and/or quality of the

recombinant protein product by targeted deletion or addition of endogenous and heterol-

ogous genes in the baculovirus genome, genomes available commercially remain virtually

unmodified. This thesis seeks to address these issues through the development of genetic

tools aimed at optimization of the baculovirus genome.

We initiated this work by developing a platform for efficient scrutiny of baculovirus

genes through targeted gene disruption and transcriptional repression using CRISPR-Cas9
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technology. Using cell lines that were developed for constitutive expression of the Cas9 or

dCas9 proteins, sequence-specific disruption or downregulation of target genes was achieved

with efficiencies of up to 99%. The key factors affecting efficiency were choice of promoter

for sgRNA expression and spacer sequence selection for gene targeting. CRISPR-mediated

gene disruption was more effective than transcriptional repression in all cases. As a result

of these findings, we confirmed sequence-specific disruption of the AcMNPV GP64 and

VP80 structural proteins for recombinant protein production with reduced baculovirus

contamination. Targeting these genes resulted in greater than 94% reduction in budded

virus release. Importantly, production of the model cytoplasmic protein GFP and a model

virus-like particle based on the HIV-1 Gag protein was not significantly affected by gene

disruption, indicating that our approach could be more efficient than previously reported

strategies.

Next, a microplate-based assay was developed to allow for efficient scrutiny of several

baculovirus genes in parallel. The assay involved transfection of Sf9 cells constitutively

expressing the Cas9 protein with a plasmid encoding a sgRNA, followed by infection with

a recombinant BEV. Expression of a gfp reporter gene and analysis of infectious virus titer

in cell culture supernatants were used as analogs for late gene expression and progeny

budded virus release, thus providing insight toward the effect of various gene disruptions

on the virus infection cycle. The critical factors established in the development of the

assay included viable cell density, choice of transfection reagent, the amount of plasmid

DNA transfected, the ratio of transfection reagent:plasmid DNA, the time interval between

transfection and infection, virus multiplicity of infection, and the time interval between in-

fection and harvest/analysis. The assay was used to scrutinize the effect of disrupting 13
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AcMNPV genes, and the results agreed with those previously reported in all cases. Impor-

tantly, results could be realized in less than 2 weeks, which represented an improvement in

efficiency of up to several months.

Finally, bioinformatics was used to select and evaluate baculovirus promoters with dif-

ferent expression characteristics than those routinely employed for foreign gene expression.

We assesed the selected promoters by expressing model cytoplasmic and secreted proteins,

and provided experimental evidence of the importance of promoter selection for foreign

gene expression. We also examined sequence determinants that may be important for late

gene transcription and translation initiation on a genome-wide scale.
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Introduction

Since Jonas Salk demonstrated efficient replication of poliomyelitis virus in cultured HeLa

cells leading to the first effective polio vaccine more than 50 years ago, animal cell culture

has played an important role in the development and production of medical treatments and

therapeutics [1]. Previously deployed as virus replication hosts for production of ‘native’

human and veterinary vaccines, the development of recombinant DNA biotechnology in

the 1970s and 1980s quickly catapulted animal cell culture to the forefront as a workhorse

of the biopharmaceutical industry for production of vaccines and protein therapeutics [1,

2].

The first recombinant human protein licensed for therapeutic use was human insulin

in 1982 by Genentech. Due to the structural simplicity of the insulin molecule, it was

produced in the bacterium Escherichia coli, which is much more robust, fast growing,

amenable to genetic modification, and has much less stringent growth requirements as

compared to animal cells [2]. Expression of large proteins or proteins that require com-

plex modifications for functionality, however, is problematic in prokaryotic hosts, and the

cellular machinery required for glycosylation and other post-translational modifications

necessary for bioactivity are only available in eukaryotic cells. This has prompted the
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development of bioprocesses based on eukaryotic cell platforms for production of complex

recombinant proteins [2, 3]. To this end, several eukaryotic cell culture systems have been

developed as recombinant protein expression hosts, including yeast and filamentous fungi

(e.g., Saccharomyces cerevisiae and Aspergillus niger), insect (e.g., Spodoptera frugiperda,

Drosophila melanogaster, and Trichoplusia ni), and mammalian cell lines isolated from

various organisms (e.g., human, monkey, hamster, rat, and mouse) [3]. Chief among these

expression systems are mammalian cell lines derived from ovarian cells of the Chinese

hamster (CHO) and human embryonic kidney (HEK 293) [3, 4]. As of 2018, 374 biophar-

maceutical products (excluding vaccines) have gained regulatory approval in the US and

EU. The ascendancy of mammalian production platforms is near absolute; approvals of

biologics produced in mammalian systems has outpaced non-mammalian hosts 4:1 since

2014 and now represent over 50% of recombinant therapeutics approved for human or vet-

erinary use to date [5]. Together, biologics generate over $150 billion USD annually in

revenue [6, 7].

An alternative, non-mammalian, production platform that is nevertheless capable of

producing large and complex recombinant proteins is the baculovirus expression vector

system (BEVS). Despite the dominance of mammalian cells in biopharmaceutical produc-

tion, the last decade has seen ∼10 BEVS-manufactured products approved by the FDA for

veterinary or human use, including the first recombinant adeno-associated virus (rAAV)

gene therapy ever approved.

The BEVS platform consists of a recombinant Autographa californica baculovirus vector

(AcMNPV) capable of infecting cultured cells isolated from the ovarian tissue of its natural

replication hosts, the Fall Armyworm (Spodoptera frugiperda; Sf21 or Sf9 cells) or the
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Cabbage Looper (Trichoplusia ni ; High Five™ or Hi-5 cells) [8]. The recombinant AcMNPV

expression vector (rBEV) is engineered to express the desired recombinant protein upon

infection, typically under the control of the very strong, virus-derived, very late promoters

p10 or polh, the latter of which is among the strongest promoters known in nature [8].

Despite having demonstrated successful expression of a non-native recombinant protein

just a year after expression of human insulin in E. coli and predating the production of

human tissue plasminogen activator (tPA) in CHO cells by 4 years [1], adoption of BEVS

on a commercial scale has been slow [6, 8, 9]. Nevertheless, thousands of recombinant

proteins have been expressed using this system and it has found broader adoption in the

scientific research community, particularly in structural biology applications [10–12].

Historically, improved recombinant protein yields were afforded by improving the bio-

processing strategies employed; optimization of medium composition and feeding strategies,

as well as the operating conditions of the bioreactor and downstream processing have been

the primary drivers of these improvements [13]. A more recent emerging trend, however,

is the progression toward improving yields through engineering the cell used for their pro-

duction. Developments in ‘omics’ technologies - genomic, transcriptomic, proteomic, and

metabolomics - have provided insights of the physiology and underlying cellular processes

of animal cells that contribute to recombinant protein yield, and sophisticated genetic

engineering technologies have enabled developing cell lines with improved specific produc-

tivity. However, genetic engineering tools available for manipulation of the BEVS remain

underdeveloped and far out-paced by many prokaryotic and eukaryotic systems [2, 3, 8,

10].
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The overall objective of this research is to broadly address this issue by establishing

and validating genetic engineering strategies based on CRISPR-Cas9 technology for tar-

geted gene disruption and transcriptional repression. A robust and sensitive system for

gene disruption will enable efficient scrutiny of the rBEV genome toward its optimization

by removing non-essential genes. For genes not amenable to complete disruption, targeted

downregulation (CRISPRi) of genes may provide insight toward rewiring the rBEV to

prolong the infection cycle and improve recombinant protein production. Finally, identi-

fying promoters having different spatiotemporal expression profiles may allow for further

optimization of expression for individual recombinant proteins to maximize yield and/or

product quality. The thesis is divided into 5 chapters. Chapter 1 consists of a broad

literature review of the relevant history, features, and applications of the BEVS, as well

as an overview of CRISPR-Cas technology and its application in insect cell biotechnol-

ogy. Chapter 2 presents the development of CRISPR-Cas9 for targeted gene disruption

and transcriptional repression in the BEVS, while Chapter 3 presents the framework for

an assay to efficiently scrutinize the effect of AcMNPV gene disruptions on late gene ex-

pression and rBEV replication. Chapter 3 confirms the site-specific gene disruption of an

AcMNPV gene and examines expression of a model, complex, recombinant protein biologic

in this system. Finally, Chapter 5 identifies and characterizes endogenous AcMNPV gene

promoters with different expression profiles for use in the BEVS and examines sequence

determinants that may impact late gene expression. Chapters 2-4 have been formatted for

submission.
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Chapter 1

Literature Review

1.1 General biology of Autographa californica multi-

ple nucleopolyhedrovirus

1.1.1 Structural characteristics

Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the type species of

the Alphabaculovirus genus of the Baculoviridae family of viruses, whose natural host

range include invertebrate arthropods belonging to the orders Lepidoptera, Hymenoptera,

Diptera, and Decapoda [14]. AcMNPV is a large, enveloped virus with a rod-shaped

nucleocapsid approximately 300 nm in length and 50 nm in diameter [14]. Its circular,

double-stranded DNA (dsDNA) chromosome is approximately 134 kbp in size, possesses

an A+T content of 59% and encodes an estimated 154 open reading frames (ORFs) [14,

15]. Genome sequence data for AcMNPV has been available since the early 1990s, and an

analysis of its transcriptome over the course of infection in High Five™ cells (Trichoplusia
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ni) was recently reported [15, 16].

1.1.2 Pertinent gene expression of the AcMNPV infection cycle

The infection and replication cycle of AcMNPV is divided into two general phases: the

early phase, during which viral genes are recognized and transcribed by the host cell RNA

polymerase II, and the late phase, characterized by gene recognition and transcription by

a virus-encoded RNA Polymerase. Both the early and late phases can be additionally

subdivided into ‘immediate early’ and ‘delayed early’, and ‘late’ and ‘very late’ phases,

respectively [16]. The immediate early and delayed early genes encode predominantly

transactivators essential for subsequent viral gene expression and subversion of host cell

gene expression and metabolism. The onset of the late phase of infection is marked by

onset of viral DNA replication, and the activity of a virus-encoded RNA polymerase for

expression of viral structural components necessary for the assembly of new nucleocapsids

and envelope proteins [17]. The ‘very late’ class of genes, which is unique to baculoviruses,

is comprised of the very strongly expressed polyhedrin (also referred to as polh) and p10

genes, which encode Polyhedrin and P10 proteins. They form the major components of

the matrix of occlusion bodies in the nucleus of infected cells, and are found associated

with fibrillar structures in both the nucleus and cytoplasm [18]. Importantly, the very late

class of genes is dispensable for progeny virus production [8, 10].

Baculovirus infection causes cell cycle arrest of insect cells at the G2/M phase [19]. Host

gene transcription and translation are significantly affected, with the majority of host genes

down-regulated over the course of infection, and translation of host proteins is completely
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abolished toward the late stages of infection [16, 17, 20–25]. Infection also triggers several

stress responses by the host cell in an effort to prevent virus replication and dissemina-

tion, including the activation of apoptosis, DNA damage, and heat shock responses [17].

Among these, apoptosis, or programmed cell death, is an evolutionarily conserved mecha-

nism among all multicellular organisms [26]. The initiation of the apoptotic pathway may

be stimulated by baculovirus DNA replication, which triggers a host cell signal cascade

involving a family of initiator and effector cysteine-dependent aspartate-directed protease

(caspase) proteins. Caspase activation ultimately culminates in apoptotic body formation,

cell shrinkage, membrane blebbing, condensation of chromatin and DNA fragmentation,

and cellular death [26, 27]. In order to counteract this defense system, baculoviruses have

evolved to block premature apoptosis in infected cells by encoding proteins that are direct

inhibitors of caspases [27, 28]. Notably, the AcMNPV-encoded p35 gene is transcribed in

both the early and late stages of the infection cycle, and its protein product P35 strongly

inhibits the activity of the effector or ‘death’ caspase, Caspase-1, of Sf9 cells (Sf-Caspase-

1) [27, 29–31]. Other baculovirus anti-apoptosis proteins include P49, which inhibits the

initiator caspase Sf-Caspase-X, and a class of proteins called inhibitor of apoptosis (IAPs)

which target pro-Sf-Caspase-1 proenzyme and block its activation [27, 32, 33]. Although

putative iap genes are present in almost all baculovirus genomes sequenced, only a small

subset tested so far have shown anti-apoptotic activity, suggesting that either they may

serve different roles in the infection process, or anti-apoptosis activity is restricted to certain

scenarios or cell types [17]. Interestingly, the iap class of genes encoded by baculoviruses

share homology with putative iap genes of insect cells, suggesting that baculovirus may

have commandeered this strategy from their hosts [27]. AcMNPV encodes two putative
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iap genes, however neither show anti-apoptosis activity [33, 34]. No homolog of P49 is

present in the AcMNPV genome [15, 27].

In addition to late expression factor (lef) proteins stimulating host cell apoptosis, lef

proteins also contribute to host protein translational arrest [23]. Although infected cells

display a significant decline in host gene transcription, AcMNPV apparently up-regulates

the expression of several host genes, particularly those related to metabolism and the

tricarboxylic acid (TCA) cycle [22, 24, 25]. Additionally, members of the 70 kDa heat

shock protein (HSP70) and heat shock cognate (HSC70) family are reportedly up-regulated

in Sf9 cells during infection, ostensibly to support the productive replication of baculovirus

DNA and assembly and maturation of progeny virions [17, 24, 25, 35, 36] (Figure 1.1).

1.2 Historical milestones leading to the ‘invention’ of

BEVS

As introduced above, the preeminent scientific discoveries related to the Baculoviridae fam-

ily and AcMNPV in particular that figured prominently in the development of BEVS as a

tool for recombinant protein production occurred over the course of three decades during

the middle of the past century [8]. Amazingly, however, observations of baculovirus ap-

peared in the scientific literature dating as far back as 1856, 50 years before the derivation

of the name ‘polyhedrosis’ and more than 100 years prior to the isolation of AcMNPV

[37]. Over the course of those intervening 100 years, research focused around purification

of polyhedra from infected insect tissue and recovery of infectious baculovirus virions from

these polyhedra, studying the mechanism of infection of the midgut cells of the host or-
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ganism, and demonstration of baculovirus infection in healthy, cultured insect tissue, in

vitro [37].

The establishment of the first insect cell lines for in vitro culture in the early 1960s

[38–40] was followed quickly by the demonstration of the presence of two infectious bac-

ulovirus forms in an infected insect; while virus found in the hemolymph of an infected

insect could infect cultured tissues in vitro, virus purified from polyhedra could not [41].

This observation led to the understanding that occlusion-derived viruses (ODVs) found in

the polyhedral-shaped occlusion bodies (OBs) were functionally and structurally distinct

from non-ODVs found in hemolympth, which were termed budded viruses (BVs) [37, 38,

41]. Equipped with established, continuously-cultured Lepidopeteran cell lines in which

baculovirus BVs were capable of replication [38, 40, 42, 43], the discovery and isolation of

AcMNPV was reported in 1971 [44].

Owing to its wide host range and ability to infect cells in vitro, AcMNPV garnered

interest in the research community. Thereafter, significant advancements surrounding its

biology and biochemical tools for analysis were quickly established [37]. In addition to

a purification procedure for viruses, procedures for isolation of viral proteins and DNA

followed [45, 46]. The structural differences between ODV and BV forms were discerned and

the plaque assay technique for isolation and quantification of AcMNPV was developed [47–

50]. With the ability to isolate infectious foci from plaques, comparisons of the structural

proteins and genomes of BV and ODV forms using SDS-PAGE and restriction endonuclease

(REN) analyses were performed, and the presence of natural genetic variants was confirmed

[51, 52]. The use of REN analysis also allowed the molecular cloning and mapping of

individual genomic fragments and led to the first physical consensus map of the AcMNPV
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genome and development of transfection methods for introducing baculovirus DNA into

insect cells [53–55]. By analyzing protein patterns in infected cells, the temporal pattern

of virus-specific protein expression was examined, and it was observed that expression was

roughly divided into three distinct temporal classes [21, 56]. Significantly, production of

Polyhedrin protein was reported toward the end of infection, and was proven to be virus-

encoded and subsequently mapped to the genome and sequenced [57–59]. Translational

maps of the AcMNPV genome also appeared, and a second, highly expressed late gene,

p10, was reported [60–63].

Each of these studies contributed to form the extensive scaffold upon which the capstone

discovery leading to BEVS was made: by constructing a series of plasmids with deletions

within the polyhedrin ORF and co-transfecting them into insect cells along with wild-type

AcMNPV DNA, mutant virus having an occlusion negative phenotype was observed and

subsequently plaque purified. Characterization of this phenotype revealed deletions in the

polyhedrin gene, confirming that the Polyhedrin protein was not essential for replication of

virus in cell culture [64]. The coding sequence for the human beta interferon (IFN-β) gene

was cloned under the control of the polh promoter and expressed, confirming AcMNPV as

a tool for expression of recombinant proteins [65].
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1.3 Establishing BEVS as a platform for production

of complex biologics

1.3.1 Development of baculovirus vectors

The earliest recombinant baculovirus expression vectors (rBEVs) were isolated through a

homologous recombination (HR) process. Wild-type AcMNPV DNA was co-transfected

with a transfer plasmid containing the coding sequence of the foreign gene fused to the polh

promoter. The co-transfection produced a mixture of parental and recombinant progeny, in

which the coding sequence for the recombinant gene was inserted at the polyhedrin locus in

the AcMNPV genome [10, 65, 66]. Progeny rBEVs could then be isolated by tedious plaque

assays based on the OB-negative phenotype [64]. The HR process, however, was highly

inefficient, with recombination frequencies of only ∼0.1% [10]. The first major technological

improvement for isolation of rBEVs occurred in 1990 when a unique Bsu36I REN site in the

polyhedrin locus was used to linearize AcMNPV DNA prior to co-transfection. This devel-

opment increased the frequency of HR to ∼25-30% [67]. The selection of rBEVs was further

improved to greater than ∼90% by engineering an additional Bsu36I REN site within an

essential gene (orf1629 ) of AcMNPV [68]. Digestion of wt AcMNPV DNA with Bsu36I

resulted in linearization of the chromosome and concomitant deletion of the essential gene,

with the resulting linearized AcMNPV DNA named BacPAK6 [68]. Co-transfection of the

linear BacPAK6 DNA with a transfer vector containing the foreign gene in addition to the

complementary orf1629 coding sequence allowed for HR to restore the full-length orf1629

gene and accompanying replication of rBEVs [68]. As with previous techniques, isolation
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of rBEVs via plaque assay was still a requirement to remove any parental wt AcMNPV

virus that escaped digestion with Bsu36I [10]. A method to select for rBEVs without the

need for the plaque assay was developed in the same year, and was based on insertion of a

foreign gene into the polyhedrin locus of AcMNPV through site-specific transposition into

the baculovirus genome propagated in E. coli [69]. The AcMNPV genome was modified

to contain a bacterial artificial chromosome (BAC), consisting of a mini-F replicon and

antibiotic selectable marker, which permitted replication and selection of the ‘bacmid’ in

E. coli, an attTn7 site, which is the target sequence for the bacterial transposase Tn7,

and a lacZ gene for blue-white screening [69]. By performing the generation of the rBEV

genome and subsequent purification steps in E. coli rather than Sf9 cells, the need for the

plaque assay was redundant [69]. This development greatly simplified the production of

rBEVs, and as a result, bacmids are used widely for generating rBEVs for expression of

recombinant proteins. Additionally, capitalizing on very efficient genetic engineering tools

based on HR for bacteria, viruses with gene knockouts for function studies or with un-

desirable genes, such as those that affect the quality or stability of recombinant proteins,

have also been developed [8]. Despite these advantages, bacmid systems may be limited to

research or pre-clinical applications, as bacterial sequences and antibiotic resistance genes

present in the viral DNA is undesirable. Bacmid-derived AcMNPV vectors are reportedly

relatively unstable; non-infectious, defective interfering (DI) viruses accumulate upon re-

peated propagation in cell culture [70]. For commercial applications, rBEVS are still made

by classical HR between linearized AcMNPV DNA and transfer plasmids harboring the

heterologous gene flanked by homologous sequence required to restore the orf1629 dele-

tion on the viral genome [8]. Recently, several commercially-available systems have been
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developed that combined the advantages of the bacmid but retained the HR-dependent

production of rBEVs based on the triple-cut, linear DNA BacPAK6 system, including the

flashBAC™ system licensed by Oxford Expression Technologies Ltd, and BacMagic™ (No-

vagen) [71, 72]. In these systems, the AcMNPV gene has a truncated orf1629 gene, and

a BAC containing a replicon and antibiotic resistance gene integrated in place of the polh

gene to enable propagation of the circular viral genome in E. coli [72]. The viral genome

can be isolated and purified from E. coli, and co-transfection with a transfer plasmid con-

taining the foreign gene to insect cells will result in HR between the transfer plasmid and

AcMNPV genome. In this way, integration of the foreign gene is coupled with the concomi-

tant reconstitution of a full-length orf1629 gene to permit viral replication and removal of

bacteria-derived sequences [72]. Additionally, systems for generating rBEVs for expressing

protein complexes comprising multiple subunits from a single baculovirus vector and at

multiple different loci within the baculovirus genome have been developed [8, 73–75].

1.3.2 Engineering BEVS to improve recombinant protein expres-
sion

Deletion or silencing of endogenous AcMNPV genes

The field of recombinant protein expression has benefited immensely from advancements

made in synthetic biology and recombineering technologies that enable targeted genome

modification in a diverse range of cell types and organisms [76, 77]. Capitalizing on these

advancements in genetic engineering tools, attention has been directed toward identifying

and disrupting endogenous AcMNPV-encoded genes that may be detrimental for recom-
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binant protein production quantity, quality, or stability [77]. Following the original dis-

ruptions of polh and orf1629 genes that were fundamental to development of the BEVS

[64, 68], the v-cath and chiA genes, encoding the cysteine protease cathepsin and chitinase,

respectively, were identified as targets for disruption [73, 78, 79]. The chitinase and cathep-

sin proteins are involved in liquefaction of the infected insect host, and evidence suggested

that their activity was contributing to proteolytic breakdown of recombinant proteins in

cell culture [73, 78]. Production of recombinant proteins delivered with a ∆chiA∆v-cath

rBEV led to the host cells staying largely intact 72 hours post infection (hpi) and reduced

proteolytic breakdown, indicating that these gene knockouts contribute significantly to re-

combinant protein stability [73, 78, 80]. Additionally, AcMNPV-encoded p10, p26, and

p74 genes have also been deleted from its genome [81]. These ORFs are located adjacent

to each other in the genome, and encode proteins involved in infectivity of ODVs (P10 and

P74), or have as yet undefined function (P26). All three genes, nevertheless, have been

shown to be nonessential for infectivity of AcMNPV in cell culture [81]. Interestingly, while

the decline in viability was slowest for the BacPAK6 AcMNPV genome, the ∆chiA∆v-cath

rBEV had higher viability at 72 hpi than the ∆chiA∆v-cath∆p10 ∆p26 ∆p74 rBEV. This

observation was contrary to a previous report that rBEVs with ∆p10 disruptions improved

viability [82], and potentially suggests that deletion of chiA, v-cath, p26 and/or p74 may

have an effect on cell viability as well [81]. Nevertheless, the yield of 6 recombinant pro-

teins was improved when the ∆p10 ∆p26 ∆p74 deletions were included in addition to the

∆chiA∆v-cath disruptions [81]. Despite the decrease in cell viability, each of the dele-

tion mutants produced higher yields of recombinant protein, and at an earlier time point

than the control, demonstrating that these gene disruptions improve quantity, quality, and
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stability of recombinant protein expression [81].

Strategies aimed at eliminating the co-production of progeny virus have also been de-

veloped in order to reduce the burden of baculovirus removal on the downstream processing

workflow. Typically, the target product is purified by a combination of filtration and chro-

matography techniques where significant losses can occur at each step. Moreover, rBEVs

and enveloped virus-like particles (VLPs) are often similar in density and thus difficult

to separate using ultracentrifugation and other chromatography-based techniques [83, 84].

To this end, AcMNPV structural proteins that are required for virion assembly can be

targeted for disruption, resulting in abrogated assembly and/or budding of progeny virus.

With this approach, a trans-complementing cell line engineered to express the deleted gene

is required for production of infectious virus, which are subsequently used to infect cells

not expressing the transgene for virus-free production of the target protein or VLP [83,

84]. The vp80 gene, encoding the capsid-associated protein VP80, and gp64, which en-

codes the major envelope protein GP64, have been disrupted using this approach, leading

to expression of recombinant enhanced green fluorescent protein (EGFP) and HIV-1 Gag

VLPs with reduced baculovirus contamination in the supernatant, respectively [85, 86].

In both studies, however, it was noted that replication of the virus was impaired in the

trans-complementing cell line, and overall expression of Gag may have been lower in the

gp64 -disrupted rBEV than the control [85, 86].

Genome instability is an intrinsic property of AcMNPV and possibly baculoviruses in

general, when they are propagated in cell culture; spontaneous loss of large DNA fragments

from the AcMNPV genome and enrichment of fragments containing origins of replication

(ori) lead to accumulation of DI particles that are subsequently unable to propagate inde-
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pendently [72, 87]. The accumuluation of DI particles results in reduction of the amount

of infectious virus and corresponding loss in recombinant protein expression, as large DNA

deletions often include the inserted foreign gene [70, 72, 88]. The genome of AcMNPV

contains five homologous repeat (hr; hr1-5 ) regions dispersed throughout its genome that

function as oris for DNA replication as well as transcriptional enhancers [72]. However,

other non-hr oris have also been identified in the AcMNPV genome [70, 89–92]. To combat

genome instability, the non-hr ori located within the p94 open reading frame was deleted,

resulting in stabilization of the genome [70]. However, recombinant protein expression was

not prolonged, as excision of the bacteria-derived sequences (i.e. mini-F replicon, antibiotic

resistence gene, and inserted foreign gene) was detected upon serial passage [70]. This was

remedied by insertion of an extra copy of the hr-1 sequence in the BAC adjacent to the

foreign gene in an orientation-dependent fashion [93]. It is not yet clear whether this is as

drastic an issue with the more recent developments in rBEV production systems such as

flashBAC or BacMagic that do not contain BAC sequences [71, 72]. Nevertheless, another

method for maintaining expression of foreign genes has been demonstrated, in which its

expression is coupled to the expression of an essential AcMNPV gene using a bicistronic

transcript with the two genes separated by an internal ribosome entry site (IRES) [93, 94].

Recently, an intensive genetic engineering project has been undertaken to improve

BEVS by rewiring the entire BEV genome to enhance DNA stability and recombinant

protein production [77]. Bioinformatics techniques were employed for comparative analysis

with other members of the Alphabaculovirus genus to scrutinize gene synteny, in addition

to extensive literature mining to identify putative essential and nonessential genes in the

AcMNPV genome. Further, techniques were used to identify promoter motifs and repetitive
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features in origins of replication that may be HR ‘hot spots’ [77]. The authors noted that

the result of this analysis suggested that 62 genes could be nonessential, while 94 genes

were classified as putative essential genes based on conservation or gene synteny, or whether

they were unique to AcMNPV. However, it is also important to note the challenges this

type of approach present; the Baculoviridae family is incredibly diverse in their genome

content and organization, with genome size and annotated ORFs ranging from ∼80-180 kbp

and ∼90-180, respectively [95]. Moreover, only ∼30 genes appear to be conserved among all

members, even as sequenced and annotated baculovirus genomes become more available

[95]. As of a decade ago, only 60 of ∼150 AcMNPV ORFs had a proven function whereas

72 were engimatic [96], and although functions have been assigned to additional ORFs

since then, as of 2019 a significant proportion of putative gene annotations still relied on

information from the closely related B. mori NPV (BmNPV) or inferred from homologs

from other more distantly related viruses [97]. To this end, BmNPV is considered a close

phylogenetic relative of AcMNPV, and while other group I Alphabaculovirus members

such as Plutella xylostella MNPV and Rachiplusia ou MNPV appear in fact to be closer

phylogenetically-related variants of AcMNPV, BmNPV has been the focus of considerably

more research attention [95, 97]. Significantly, the BmNPV bacmid system was used to

generate a library of single gene knockout viruses (KOVs) encompassing each of the 141

ORFs in its genome and evaluated for their infectivity phenotype [98]. The results revealed

that 96 KOVs showed the ability to expand infections that were equivalent or slightly

delayed compared to the wild-type control, while 37 KOVs expressed the GFP reporter but

could not propagate infection, and only 10 showed neither GFP expression nor infectivity

[98]. It was further noted that 45 of these KOVs had not been previously reported for
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either BmNPV or AcMNPV, and perhaps more significantly, 9 genes that were previously

identified as essential genes appeared to be nonessential according to this dataset. Since

KOVs were obtained using conventional HR in insect cells prior to the development of the

bacmid system for AcMNPV in the mid-1990s [69], it is possible that some ORFs were

interpreted as essential due to failure of site-specific HR leading to a mutant AcMNPV

genotype that differed from what was desired [98]. Caution must be taken when inferring

AcMNPV gene function from BmNPV homologs, however, as virus-host interactions can

have significant impacts on the phenotypes observed. For example, Mamestra brassicae

NPV, which has a wide host range similar to AcMNPV, showed different protein expression

profiles for both ODV and BVs in different infection hosts [99]. Similarly, the AcMNPV-

encoded hcf-1 gene, encoding host cell-specific factor 1, is dispensable for infectivity in

Sf21 and Sf9 cells, but is required for DNA replication in High Five and Tn-368 cells.

Further, expression of Hcf-1 allowed DNA replication of Hyphantria cunea MNPV, Orgyia

pseudotsugata MNPV, and BmNPV in Tn-368 cells, which are normally not permissive to

infection with any of these viruses [100, 101]. Finally, it appears that the phenotype of

various AcMNPV mutants infecting Sf9 cells may be different than the phenotype observed

for the homologous gene-disrupted BmNPV infecting BmN cells; for example, while a

BmNPV virus with tlp (Bm68) deletion mutant was not essential for infectivity in BmN

cells, disruption of the AcMNPV homologue Ac82 resulted in defective BV production and

reduced or abolished very late gene transcription [98, 102, 103].

Targeted gene silencing or downregulation by RNA interference (RNAi) of AcMNPV

or host cell genes has also shown promise for improving recombinant protein production

in the BEVS. The canonical RNAi mechanism involves the production of RNA molecules
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that inhibit gene expression by interacting with and neutralizing transcribed messenger

RNA (mRNA) molecules through the RNA-induced silencing complex (RISC) pathway.

Endogenously transcribed self-annealing short hairpin RNA (shRNA) molecules or exoge-

nously introduced small interfering RNA (siRNA) or long double stranded RNA (dsRNA)

molecules can lead to RISC-mediated gene silencing [104]. The endogenously transcribed

shRNA, which mimics small, regulatory RNAs commonly expressed in animal and plant

cells called precursor micro-RNAs (pre-miRNAs), must first be processed by the ribonucle-

ase III (RNAse III) enzyme Drosha before being exported to the cytoplasm as a precursor

shRNA (pre-shRNA). There, the RNA molecule (ie. pre-shRNA, siRNA, or dsRNA) is fur-

ther processed by the RNAse III enzyme Dicer and loaded into the RISC [104, 105]. The

major classical components of the RNAi pathway have been identified in Sf21 cells [105],

and several studies have examined the phenotypic impact of gene silencing experiments

using various RNAi approaches in several insects in vivo and cultured cells in vitro [104,

106]. Notably, targeting Caspase-1 in High Five, BmN, and Sf9 cells blocked the apoptotic

pathway and resulted in improved recombinant protein production [107–111]. Similarly,

silencing of the AcMNPV-encoded v-cath, gp64, vp80, or orf34 genes resulted in enhanced

heterologous gene expression, protein quality, or reduction in progeny virus [85, 112–114].

Finally, targeting the host cell fdl gene encoding β-N -acetylglucosaminidase in BmN cells

improved complex-type N -linked glycosylation, while silencing the cycE gene encoding the

cell cycle checkpoint protein Cyclin E resulted in arrest of High Five cells in G1 phase and

increased recombinant protein yield [115].
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Expression of heterologous chaperone proteins

In addition to disruption of endogenous AcMNPV genes, strategies aimed at improving re-

combinant protein expression and stability through expression of heterologous genes either

by the rBEV itself or from the host cell line have been employed [72]. Previous studies

have suggested that mRNA transcript levels of endoplasmic reticulum-located (ER) molec-

ular chaperones decrease in the early stages of infection [116], and subsequent studies have

suggested that co-expression of chaperone or foldase proteins, which are crucial for folding

proteins into their correct final three-dimensional conformation, may improve the quality

of expressed recombinant protein [72]. Co-expression of mammalian folding enzymes such

as calnexin, calreticulin, protein disulfide isomerase (PDI), immunoglobulin (IgG) heavy

chain binding protein (BiP), heat shock protein 70 (Hsp70) and Hsp90 machinery have

also shown promise for improving recombinant protein quality [117–123].

Improving post-translational processing

While insect cells are able to fold, modify, traffic, and assemble polypeptides to produce

highly authentic, correctly processed, and soluble, recombinant proteins, the protein pro-

cessing pathways are not necessarily equivalent to those of other higher eukaryotes such as

mammalian cell lines [3, 10]. Notably, the insect cell N -glycosylation pathway does not pro-

duce complex products with terminal galactose or sialic acid residues; rather, the major in-

sect cell end product is paucimannose N -glycans wherein the N -Acetylglucosamine residue

is trimmed from the N -glycan, leaving bi-antennary mannose moeities [10, 124]. Extensive

effort has been directed at developing insect cell lines expressing mammalian genes encod-
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ing proteins with N -glycan processing activity [10]. Significantly, Sf9 cell lines expressing

several mammalian genes for N -glycan processing have been derived, including five mam-

malian glycosyltransferases (SfSWT-1; human β1,2-N -acetylglucosaminyltransferase I and

II, (GlcNAc-T I, GlcNAc-T II), bovine β1,4-galactosyltransferase (β4Gal-T I), rat α2,6-

sialyltransferase (ST6Gal I), and mouse α2,3-sialyltransferase IV (αST3Gal IV)) [125].

SfSWT-1 cells could produce bi-antennary, terminally sialylated N -glycans [126]. This

cell line was improved upon to encode an additional two mammalian (mouse) genes en-

coding sialic acid synthase (SAS) and CMP-sialic acid synthetase (CMAS) for CMP-sialic

acid biosynthesis, and called SfSWT-3 [127]. Further, SfSWT-4 and SfSWT-5 cell lines

express the minimal set of genes for production of terminally-sialylated N -glycans when

cultured with the sialic acid precursor N -acetylmannosamine from constitutive or inducible

promoters, respectively [128, 129]. These cell lines express the same genes as SfSWT-3 ex-

cept GlcNAc-T I is omitted [128, 129]. SfSWT-4 was further engineered to SfSWT-6,

which additionally expresses a human CMP-sialic acid transporter (hCSAT), which lead

to higher levels of cell surface sialylation and also supported higher levels of recombi-

nant glycoprotein sialylation when cultured in low concentrations of N -acetylmannosamine

[128]. More recently, the fdl gene encoding β-N -acetylglucosaminidase was disrupted in

Sf9 cells. This was an important achievement because FDL catalyzes the removal of a ter-

minal N -acetylglucosamine residue from trimmed N -glycan-processing intermediates and

thus antagonizes further elongation toward homogeneous, terminally sialylated N -glycans

[130].
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Promoter choices for recombinant protein production

While the p10 and polh promoters are able to generate an extraordinary abundance of

mRNA transcripts, the burst of transcription occurs only during the very late stage of

infection. This transcriptional burst primarily occurs when the host cellular machinery

required for protein synthesis and post-translational processing are severly compromised,

and host- and AcMNPV-produced proteases are present at high levels in the culture super-

natant [11, 20]. As such, promoters active earlier in the infection cycle have been sought

as alternatives to the very late promoters, leading to investigation of other endogenous

AcMNPV promoters, constitutively active insect cell promoters, and engineered promoters

thereof [87, 131]. The ie-1 promoter has shown promise for producing more active, correctly

folded and processed secretory pathway eukaryotic proteins than the polh promoter [132].

Similarly, the gp64 promoter produces considerably less mRNA abundance than the polh

promoter, but is active both early in the infection as well as late. Although the abundance

of the HIV-1 GP41 was higher in cell lysates when expressed from the polh promoter, its

expression from the gp64 promoter improved processing and glycosylation [133]. The basic

protein (P6.9) promoter, which appears to be the most active late gene promoter in the

AcMNPV genome [16], has been shown to produce superior yields of correctly assembled

and processed Shaker potassium channels than the polh promoter [134]. Other promoters

employed for recombinant protein expression or analyzed for transcriptional activity include

viral white spot syndrome virus ie-1, cytomegalovirus immediate-early (CMV) promoter,

v-cath, 39k, vp39, OpIE1, OpIE2, as well as tandem promoters such as vp39-polh (pcap-

polh) and tandem ie-1 promoters. Hybrid promoters that combine transcription-enhancing
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hr sequences and viral promoter sequences, including hr3 -vp39, hr5 -ie-1, hr5 -OpIE2, and

hr5 -ie-1-p10 have also been developed [87, 135, 136]. Further, constitutive insect cell-

derived promoters employed in Sf9 cells include hsp70, actin, elongation factor 1 (EF1),

pB2, and enolase [135, 137]. Finally, fully synthetic [138] or endogenous AcMNPV pro-

moters have been engineered for stronger or weaker transcription levels compared to their

wild-type parent, including truncated ie-1 and p10 promoters [139, 140], and a stronger

polh promoter [141, 142]. Despite the growing evidence that promoters active earlier in

the infection cycle may lead to superior yields than the polh promoter despite not being

as active, the search for promoters having higher activity than polh in other baculoviruses

persists [143].

The role of the 3’UTR on gene expression has also been evaluated. Although it is

clear that baculovirus pre-mRNA molecules are processed to generate 5’-capped and 3’-

polyadenylated messengers, functional characterization of the process has remained elusive

[144]. While evidence has suggested that the cannonical eukaryotic ‘AAUAAA’ polyadeny-

lation signal is conserved in the 3’UTR of many baculovirus genes [16, 145], at least one

study has suggested that polyadenylation of late mRNAs was different than early viral

genes (and that of the host cell mRNAs). These researchers found uracil-rich regions

within the ORF of late baculoviral genes that were transcribed and recognized as a termi-

nantion signal analagous to the rho-dependent transcription termination of bacteria [146].

However, bioinformatic analysis performed in recent years appears to support processing of

baculoviral pre-mRNAs by the host polyadenylosome complex [16, 144, 145]. Significantly,

the 3’UTR of simian virus 40 (SV40) is routinely inserted downstream of the polh promoter

in baculovirus transfer plasmids, despite evidence that including the 3’UTR of either the
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polh or p10 genes contributed to higher levels of gene expression than the SV40 3’UTR

[147–150]. Further, addition of a synthetic AT-rich 21-bp sequence (Syn21) in the 5’UTR

and replacing the SV40 3’UTR with the p10 3’UTR increased GFP yield and porcine cir-

covirus type 2 (PCV2) VLPs 4.8-fold and 4.1-fold compared to the standard rBEV cassette

consisting of the polh promoter and SV40 3’UTR [150].

The effect of ‘competition’, either between promoter elements for transcription, or

mRNA molecules for translational machinery, has been reported previously in the literature

[81, 151, 152]. Previous evidence has suggested that expression of proteins from the p10

promoter had a negative impact on the level of transcription [151] and translation [81] of

genes expressed from the polh promoter in the same construct, however no differences in

expression were apparent for genes transcribed from the p10 promoter either in the presence

or absense of an active polh promoter. Similarly, observations of competition were also

suggested for other polh-AcMNPV promoter pairs, including v-cath, gp64, basic, and ie-1

[152]. Contrarily, no competition was observed when 2, 3, and 5 subunit protein complexes

were transcribed from polh and p10 promoters, perhaps indicating that the phenomenon

of ‘competition’ may be more complex than just promoter choice [73].

1.3.3 Bioprocessing strategies for production of recombinant pro-
teins and therapeutics

While animal cells have been cultured for the production of recombinant proteins for the

majority of the last 100 years [2], development of large-scale, industrial bioprocesses lagged

behind until the early 2000s [1]. Several strategies aimed at improving yields of recombi-
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nant proteins and VLPs produced using BEVS have been explored, both at the lab-bench

scale and industrial scale [153, 154]. Developments have included optimized medium com-

positions for improved growth and infectivity, and genetic engineering efforts to improve

production and isolation of rBEVs as well as quantity, quality, and stability of produced

recombinant proteins as outlined in the preceding sections [37, 72, 87]. Additionally, infec-

tion parameters such as multiplicity of infection (MOI) and time of infection (TOI), cell

density at infection (CDI), monocistronic vs polycistronic rBEVs, and the effect of passage

number of the virus and cells have been investigated [153]. Finally, process parameters sur-

rounding bioreactor cultivation and downstream purification have also seen considerable

investigation [153].

The effect of MOI on recombinant protein and VLP production has been investigated

for both total MOI as well as MOI ratios for multiple rBEVs when multiple proteins are

expressed from individual, co-infected, rBEVs [87, 153]. Notably, cells infected at high

MOIs should be in the mid- to late-exponential phase, whereas lower CDI should be used

to ensure peak cell density is reached when all cells are infected when low MOIs are used

[155]. Several studies have also examined the effect of MOI on the formation of VLPs and

multi-protein complexes. Co-infecting four rBEVs each encoding one rotavirus structural

protein at an MOI of 10, 90-95% of particles were observed in their correct, triple-layered

configuration, indicating efficient expression and self-assembly of rotavirus-like particles

at high MOI [156]. Similarly, the amount of VP2 and VP6 expressed individually at an

MOI of 5 matched the expression of these proteins when co-infected with a total MOI

of 10, indicating that transcriptional/translational burden was not evident at an overall

MOI of 10 [157]. However, it was observed that VP6 was produced in excess compared
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to stoichiometric requirements, implying a waste of metabolic resources when equal MOIs

were used [157]. This was corrected by infecting with MOI ratios of the rBEV ecoding

VP6 to the rBEV encoding VP2 of between 0.2 and 0.6, resulting in an increase in the

VP2 fraction of total recombinant protein to an approximately equal ratio with VP6 [157].

This approach was also employed for production of AAV vectors using the BEVS; rBEVs

expressing the AAV replication and structural proteins (BacRep and BacCap, respectively)

could be infected at equal MOIs, whereas a third rBEV encoding the AAV vector genome

(BacITRGFP) could be used at a much lower MOI, resulting in only a slight decrease in

infectious viral particle (IVP) titer compared to the high MOI condition [158]. Interestingly,

at 96 hpi, only a slight decrease in IVP titer was observed for both the equal ratio (MOI =

5:5:5) BacITRGFP/BacRep/BacCap condition and the MOI = 1:9:9 condition as compared

to the high MOI (9:9:9) condition, indicating that much lower amounts of viral stock could

be used to produce approximately the same IVP titer [158].

Similarly, TOI has also been investigated as a parameter that may affect recombinant

protein production when co-infection systems are employed [87, 153]. Particularly in cases

where the native interactions between expressed foreign proteins is temporal in nature,

such as VLP formation or proteins that require complicated post-translational processing,

TOI represents additional degrees of freedom that can be optimized to improve production

[87]. For production of rotavirus-like particles, TOI was effectively used to manipulate

the stoichiometric ratio of VP2:VP6 protein, with a ∼52% increase in VP2 production

and concomitant ∼95% decrease in VP6 when infection with the VP6-encoding rBEV was

delayed 6 hours [157]. Staggering the TOI of viruses has also been examined in other

studies, wherein the MOI of some of the rBEVs was below 1, while the MOI of others
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was above 1, creating a delay in the delivery of the low-MOI rBEVs [87]. Consequently,

only a small subset of the population will be infected initially with these viruses, with a

later, secondary infection of viral progeny [87]. However, this strategy has not necessarily

resulted in improved production, as using MOIs less than 1 resulted in lower IVP titer

of AAV viral vectors [159], and delaying infection of certain rBEVs negatively affected

production of bioactive AAV viral vectors even at high MOI [158].

While co-infection strategies may provide intrinsic advantages such as manipulating

MOI and TOI of individual rBEVs in order to control timing, order and stoichiomet-

ric ratios of recombinant protein expression, these parameters may not be suitable for

industrial-scale production [83, 87, 153]. Infecting with high MOI has been associated

with shorter productive periods and lower volumetric yields, and additionally require large

viral stocks for infection [83, 160]. In contrast, infecting with low MOI permits multiple

cycles of infection which requires smaller viral stocks, but may lead to accumulation of DI

particles [83, 160, 161]. Additionally, infecting at low MOI increases the duration of the

bioreactor cultivation, which may compromise the integrity of the recombinant proteins

due to the presence of proteases and cellular debris in the culture supernatant [160]. Nev-

ertheless, the use of both co-infection strategies using multiple monocistronic rBEVs and

co-expression strategies using a single, polycistronic rBEV have been employed success-

fully for production of simple recombinant proteins and complex, multiprotein complexes

and VLPs [87]. Finally, as noted, mutant DI viruses tend to accumulate in viral stocks

after multiple rounds of passaging, and cell productivity is affected by the physiological

state of the cells [153]. Specifically, virus passage number, culture age, culture state and

energy metabolism, as well as the depletion of nutrients in the medium all contribute to
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the productivity of infected cells [155, 162–165].

In addition to optimization of various infection parameters for improving production of

recombinant proteins and therapeutics using the BEVS, considerable attention has been

given to process parameters surrounding bioreactor cultivation and downstream processing

[153, 164]. Despite a multitude of bioreactors and cultivation modes having been inves-

tigated to varying degrees for the BEVS, the majority of cultivations are carried out in

either batch or fed-batch mode using stirred-tank reactors (STR) [153, 154, 164]. Along

with investigation of the effects of temperature, pH, osmolality, shear stress, dissolved oxy-

gen, and carbon dioxide on insect cell cultivation, medium optimization, development of

feeding strategies, and investigation of different bioreactor systems for cultivation and in-

fection have been systematically examined and reviewed in detail elsewhere (for example,

see [153, 154, 164]). Notably, insect cells are typically cultivated optimally at 27 °C, pH

6.2-6.4, 320-375 mOsm/kg osmolality, and no dissolved CO2 [153]. Although insect cells

tend to be fairly resilient to changes in pH, they are particularly sensitive to shear stress,

osmotic shock, and lactate accumulation [153]. Glucose and the amino acid glutamine are

the main sources of carbon in insect cell cultures, and Sf9 cells have rather efficient glu-

cose metabolism, with ∼80% of glucose being channeled into the tricarboxylic acid (TCA)

pathway to produce pyruvate [166]. Unlike many mammalian cell lines, Sf9 cells do not

produce significant amounts of lactate; rather, under conditions of glucose excess, the main

waste metabolite is the amino acid alanine, whereas ammonia is produced under glucose

limitation [164].
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1.4 BEVS as a production platform for complex bio-

logics and therapeutic applications

The BEVS platform has been used for an incredibly diverse set of applications, ranging

from hosts for basic recombinant protein production and structural biology applications

in research environments to commercial applications such as manufacturing of vaccines

and virus-like particles (Figure 1.2). Owing to their ability to transduce mammalian

cells (known as BacMam technology), the baculovirus itself has become important in drug

discovery applications, and as a gene delivery vector for use in cell and gene therapies as

well as an anti-cancer therapeutic. Subsequently, a number of BEVS-produced therapeutics

have been approved for veterinary or human use by regulatory agencies in multiple countries

(Table 1.1). The following section will describe a few of the applications that BEVS appears

to be well suited as a platform technology.

1.4.1 Vaccines

The BEVS is widely used for recombinant protein production for subunit vaccines, but also

for the production of VLPs to study virus assembly and as antigens for immunization [10].

Employing rBEVs for expression of heterologous viral proteins is particularly valuable for

cases where cell culture-based viral replication systems are not available, such as human

papillomavirus (HPV) and hepatitis C virus (HCV), and for production of vaccines tar-

geted to serotypes of viruses that change frequently, such as Influenza virus [10]. As such,

several enveloped and non-enveloped VLPs, recombinant proteins for subunit vaccines, and

rBEVs displaying or expressing viral antigens have been studied for their utility as vaccine
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Figure 1.2: BEVS as a manufacturing platform. The BEVS has found utility as
a gene transfer vector to support applications such as tissue engineering, gene editing,
cell reprogramming, and drug discovery, and as a platform for production of recombinant
proteins and complex biologics to support research and industrial biopharmaceuticals.
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Table 1.1: Products approved for veterinary or human use

Product Name Type Product Target Species Indication Manufacturer Approved

Porcilis Pesti Subunit Vaccine E2 Pigs
Classical swine fever

virus
MSD Animal Health 2000 (EMA)

Bayovac CSF E2 Subunit Vaccine E2 Pigs
Classical swine fever

virus
Bayer AG/Pfizer
Animal Health

2001 (EMA)a

Circumvent PCV VLP Vaccine ORF2 Pigs
Porcine circovirus

type 2
Merck Animal Health

2007 (FDA)
2009 (EMA)

Ingelvac CircoFLEX VLP Vaccine ORF2 Pigs
Porcine circovirus

type 2
Boehringer Ingelheim

Vetmedica
2006 (FDA)
2008 (EMA)

Porcilis PCV VLP Vaccine ORF2 Pigs
Porcine circovirus

type 2
MSD Animal Health 2009 (EMA)

Flublok Quadrivalent Subunit Vaccine (Seasonal) HA Humans Influenza A & B Sanofi Pasteur 2013 (FDA)

Cervarix VLP Vaccine HPV-16/18 L1 Humans
Human

papillomavirus
GlaxoSmithKline

2009 (FDA)
2007 (EMA)

Provenge Immunotherapy PAP-GM-CSF Humans Prostate Cancer Dendreon
2010 (FDA)

2013 (EMA)a

Glybera Gene Therapy rAAV Humans
Lipoprotein lipase

deficiency
uniQure 2012 (EMA)a

a : Removed from market
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candidates. Several of these studies are summarized in Table 1.2. Significantly, several

BEVS-produced vaccines are currently candidate vaccines in various phases of clinical tri-

als, or currently commercialized and available worldwide, such as the HPV VLP Cervarix

(GlaxoSmithKline) and the Influenza A vaccine Flublok (Protein Sciences) [6, 9, 167, 168].

Additionally, several companies are in various stages of clinical trials evaluating the efficacy

of BEVS-produced vaccines for the current COVID-19 pandemic [169, 170]. Notably, after

returning favourable results from combined Phase 1/2 clinical trials, the SARS-CoV-2 sub-

unit vaccine NVX-CoV2373 (Novavax) is currently in Phase 3 clinical trials in the United

States/Mexico and the United Kingdom [171, 172]. The BEVS-produced subunit vaccine,

which consists of the full length, prefusion conformation S protein co-administered with

Novavax’ Matrix-M™ adjuvant, is only the fifth among more than 200 companies developing

SARS-CoV-2 vaccines to reach Phase 3 clinical trials in the United States [169], and very

recently reported a vaccine efficacy of ∼89% at the primary endpoint of the trial in the UK.

Regulatory agencies in multiple countries have started rolling reviews of NVX-CoV2373

for emergency use authorization, including the European Medicines Agency (EMA), US

Food and Drug Administration (FDA), UK Medicines and Healthcare products Regulatory

Agency (MHRA), and Health Canada.

As noted, production of Influenza vaccines produced using the BEVS is particularly

attractive due to the seasonally-changing nature of prevalent Influenza serotypes [225]. As

a result, new vaccines incorporating the relevant HA (and/or NA) serotypes must be pro-

duced yearly [225]. For enveloped viruses, the primary target for protective immunity is the

envelope glycoproteins [167]. Proper protein glycosylation can affect protein folding, local-

ization, solubility, and immunogenicity, and for many viruses, improper glycosylation can
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Table 1.2: Selected vaccine antigens produced using IC-BEVS

Virus Expressed Proteins Ref.

E
n
v
el

o
p

ed
V

L
P

s

Ebola Virus VP40, GP [173, 174]

Hepatitis B Virus (HBV) Core, Surface antigen [175]

Human Immunodeficiency Virus (HIV) Gag, Env, Pro [176–180]

Severe Acute Repiratory Syndrome Coronavirus (SARS-CoV) S, E, M [181, 182]

Influenza Virus HA, NA, M1, M2 [183–188]

Japanese Encephalitis Virus prM, E [189, 190]

N
o
n

-E
n
v
el

o
p

ed
V

L
P

s

Foot-and-Mouth Disease Virus P12A, 3C [191]

Herpes Simplex Virus (HSV) VP23, VP5, VP21/VP24, VP22a, VP26, VP19 [192, 193]

Human Papillomavirus (HPV) L1, L2 [194, 195]

Polio Virus VP0, VP1, VP3 [196, 197]

Rotavirus VP2, VP4, VP6, VP7 [156, 157, 198–200]

Simian Virus 40 (SV40) VP1, VP2, VP3 [201]

S
u

b
u

n
it

V
a
cc

in
es

Middle East Respiratory Syndrome CoV (MERS-CoV) S RBD (dimer) [202–204]

SARS-CoV S [205]

SARS-CoV-2 S [171]

Japanese Encephalitis Virus E [206]

Rabies Virus G [207, 208]

Influenza HA [209–213]

S
u

rf
a
ce

D
is

p
la

y
/

G
en

e
T

ra
n

sf
er

Influenza

H5N1-HA [214]
VSV-G (display) H5N1-HA [215]
H5N2-HA (display/express) [216]

3xM2e/LTB (display/express) [217]

Zika Virus HERV Env (display), prM, E [218]

Respiratory Syncytial Virus
M2 [219]

F (display/express), VISA (express) [220]

Plasmodium falciparum (Malaria) CS (display/express) [221]

Enterovirus 71 VP1 fused to SP, TMD/CTD of GP64 [222–224]
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be highly detrimental to the antigenicity and immunogenicity of glycoproteins [226, 227].

As insect cells may not necessarily have the ability to produce glycoproteins with struc-

turally authentic mammalian N - or O-glycans, concerns over antigenicity/immunogenicity

of vaccines produced using the BEVS is potentially a serious issue [167]. For Influenza

virus, however, the absense of structurally nonessential glycans on the envelope glycopro-

teins may actually be an effective strategy for vaccine design; truncation of the N -glycan

structures on HA may increase sialic acid binding affinity [226] and facilitate the uptake of

Influenza vaccine candidates by antigen-presenting cells for the adaptive immune response

[228]. Influenza VLPs comprised of HA, NA, M1, and M2 (and several combinations

thereof) and recombinant subunit vaccines have been generated using the BEVS, and have

been demonstrated to induce protective immunity during preclinical and clinical studies

[9, 167, 168]. Vaccines for pandemic Influenza strains have been of particular interest, and

recently the interim results from a Phase 1 clinical trial investigating the immunogenicity

of a chimeric HA-based universal influenza virus vaccine candidate produced using BEVS

was reported (Table 1.3).

In addition to its utility as a production platform for the manufacture of VLPs and

subunit vaccines, the baculovirus itself has been studied extensively for its suitability as

an adjuvant or antigen itself [237]. Owing to developments enabling the display of het-

erologous proteins on the surface of baculovirus particles [10, 238], several studies have

shown that baculoviruses displaying antigenic proteins from pathogens such as Japanese

encephalitis virus, influenza, and malaria can generate high titers of protective antibodies.

Further, rBEVs equipped with a mammalian expression cassette can be combined with

surface display to enhance the vaccine efficacy; vectors that both displayed and expressed
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Table 1.3: Influenza vaccines in clinical development

Drug Name Expressed Proteins Product Type Company/Sponsor Approval Stage US Clinical Trial Registry Ref.

Panblok® H5 A/Indonesia/05/2005 H5N1-HA Subunit PSCa Phase 1/2 (completed) NCT01147068 [229]

Panblok® H7 A/Anhui/01/2013 H7N9-HA Subunit PSCa Phase 1/2 (completed) NCT02464163 [212]

N/A A/California/04/2009 H1N1-HA Subunit PSCa Phase 1/2 (completed) N/A (Australia) [230]

Panblok® H7 A/Anhui/01/2013 H7N9-HA Subunit BARDAb Phase 2 (completed) NCT03283319 N/A

N/A A/California/04/2009 H1N1-HA, NA, M1 VLP Novavax Phase 2 (completed) NCT0107299 [231]

NanoFlu™ Quadrivalent (Seasonal) HA stalk, head Subunit Novavax Phase 3 (ongoing) NCT04120194 [232]

N/A A/Anhui/01/2013 H7H9-HA, NA, M1 VLP Novavax Phase 1/2 (completed) NCT02078674 [233]

N/A A/Indonesia/05/2005 H5N1-HA, NA, M1 VLP Novavax Phase 1/2 (completed) NCT01594320 [234]

N/A Chimeric HA-based universal Subunit PATHc Phase 1 (completed) NCT03300050 [235, 236]

a: Protein Sciences Corporation (now part of Sanofi Pasteur); b: Biomedical Advanced Research and Development Authority (U.S. Department of Health)
c: Program for Appropriate Technology in Health (nonprofit global health organization)

the Plasmodium falciparum circumsporozoite (CS) protein potentiated higher antibody

titers and a more robust interferon-γ-producing T-cell response than either expressing or

displaying-only vectors [221]. Similarly, baculovirus has shown promise as an effective ad-

juvant; immunization of mice with norovirus (NoV) VLPs or ovalbumin (OVA) formulated

with live or inactivated baculovirus improved the immunogenicity of the NoV VLPs and

allowed for a 10-fold lower dose of VLPs, and induced stronger IgG2a antibody and T cell

responses to OVA protein than those responses to NoV VLP or OVA immunization alone

[239]. More thorough reviews on this subject have been published recently [237, 240–242].

1.4.2 Cell and gene therapies

The BEVS has been used for production of viral vectors such as recombinant Adeno-

Associated Virus (rAAV) for gene therapy applications [139]. Glybera, which was the first

rAAV-based gene therapy approved by the FDA, was manufactured using BEVS [243],
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and at least four BEVS-produced gene therapies for Hemophilia A and B are in various

stages of clinical trials. BioMarin Pharmaceutical’s Valoctocogene Roxaparvovec gene

therapy for hemophilia A has returned favourable Phase III results and is expected to

receive FDA approval for human use in the near future [244, 245]. Although the majority

of rAAV production uses HEK293 cells as production host, recent improvements in the

BEVS compare favourably with HEK293-manufactured rAAV, re-affirming the potential

of the BEVS platform in modern medicine [246–248].

Aside from rAAV vectors, BEVS has been used to manufacture lentiviral vectors [249],

re-program mouse embryo fibroblasts into neurons and induced pluripotent stem cells (iP-

SCs) [250, 251], and delivered zinc-finger nucleases (ZFN) to efficiently and site-specifically

integrate the Yamanaka factors (oct3/4, klf4, sox2, and c-myc) at the AAVS1 locus to repro-

gram human fibroblasts to iPSCs [252]. Human adipose-derived stem cells, mesenchymal

stem cells (MSCs), and rabbit bone marrow-derived MSCs have been transduced with

baculovirus expressing the growth factors bone morphogenetic protein 2 (BMP-2), vascu-

lar endothelial growth factor (VEGF), or the human microRNA (miRNA) miR-148b to

accelerate the remodeling and regeneration of bone [253–255]. Importantly, studies have

suggested that rBEV-transduced MSCs feature a safety profile that appears to be appropri-

ate to enable progression toward clinical testing [256, 257]. Moreover, baculovirus-delivered

Sleeping Beauty transposon sustained transgene expression for at least 2 months in mouse

eyes [258], potentially offering evidence of BEVS utility for manufacturing cell therapies

such as chimeric antigen receptor T-cell (CAR-T) therapy [259].
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1.4.3 Cancer therapies and drug discovery

Provenge (Dendreon) is an autologous cellular immunotherapy approved by the FDA in

2010 as a cellular vaccine for metastatic prostate cancer [260]. The therapy involves stim-

ulation of CD52-enriched cells (which include antigen-presenting cells such as monocytes

and dendritic cells (DC), T- and B-cells, and natural killer (NK) cells) ex vivo with BEVS-

produced prostatic acid phosphatase-granulocyte-macrophage colony-stimulating factor

(PAP-GM-CSF) [260]. In addition to Provenge, BEVS has been used for the manufac-

ture of many as yet unapproved therapeutic biomolecules, including immunotherapies,

cytokines, growth factors, and enzymes. Additionally, the rBEV itself has been used as

the therapeutic modality itself: dendritic cells transduced with wildtype baculovirus in-

creased surface expression of co-stimulatory molecules CD80, CD86, and major histocom-

patability complex (MHC) classes I and II, which are responsible for delivering secondary

signals necessary for T-cell activation (CD80 and CD86), and processing and presenting

antigens on the surface of the cell (MHC I and II), respectively. Additionally, these DCs

secreted interferons and other proinflammatory cytokines to reduce the size of lung tumors

caused by Lewis lung carcinoma in mouse model [261]. Further evaluation suggested that

baculovirus-infected DCs induced a non-specific immune response and could be employed

as an immunotherapeutic agent for malignancies in conjunction with other therapeutic

drug regimens [262]. Similarly, intratumoral injection of a rBEV with a human endostatin-

angiostatin (hEA) fusion protein expression cassette flanked by AAV inverted terminal

repeats potently inhibited tumor growth and significantly improved survival in prostate

cancer mouse models [263], and baculovirus delivery of the hEA expression cassette and
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Sleeping Beauty transposon resulted in transgene integration, prolonged expression, and

subsequent suppression of ovarian tumor xenografts in mice [264]. This system was fur-

ther enhanced by displaying the decay accelerating factor (DAF; CD55) on the surface of

the rBEV to inhibit the activation of the complement response and lead to higher trans-

duction efficiency, ultimately delayed tumor growth and prolonged survival compared to

the control [265]. Finally, an engineered rBEV consisting of a trigger-inducible RNA ri-

boswitch sensitive to the expression signatures of miRNAs to enable selective expression

of the pro-apoptotic human BCL2-associated X protein (hBax) transgene was developed.

This system responded to miRNAs highly expressed in hepatocellular carcinoma (HCC;

miRNA-196a) or normal (miR-126) cells to selectively kill HCC cells but not normal cells

in in vitro mixed cell culture experiments [266].

The BEVS has also become an important platform technology in drug discovery appli-

cations. Targeting membrane proteins with agonist or antagonist molecules constitutes a

large proportion of the drug portfiolo of pharmaceutical companies because they are bio-

logically relevant and relatively simple to target. Further, these targets offer a large degree

of chemical tractability; large libraries of chemical compounds can be screened to iden-

tify ones that modulate or interact with the target to elicit a desired biological effect [267].

Consequently, many cell-based assay formats have been developed to enable drug discovery

[268], however the high protein expression requirements are often precluded by the toxicity

of high target protein levels on the host cells thus making stable cell line generation labour

intensive or ineffective [267]. Although transient transfection approaches can be effective

alternative approaches, they are often costly and not particularly suited to high-volume

and high-throughput screening methods that are often required; one such HTS campaign
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initiated with the BacMam platform to identify agonists for Toll-like receptor 7 (TLR7)

consisted of 150 384-well microtiter plates per day for 22 days (potentially ∼1.3 million

unique compounds screened) [267]. Additionally, due to the large cargo capacity of BEVS,

large, multiprotein complexes including accessory proteins can be efficiently produced us-

ing BEVS [73, 267, 269]. In addition to TLR7, agonist and antagonists have been identified

using BacMam technology for fatty acid receptors GPR40 and GPR120 [270], Histone H3

receptors [271], chemokine receptor CCR5 [272], various ion channels [273, 274], and G-

protein-coupled receptors (GPCRs) such as neurokinin 3, prostanoid EP3, GPR103, and

Urotensin II [267, 275].

1.5 CRISPR-Cas9 as a tool for sophisticated genetic

engineering

1.5.1 Discovery and characterization of CRISPR-Cas

The first report of Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)

short-sequence DNA repeats (SSRs) appeared in the literature in 1987, a serendipitous

result of a comprehensive study of the iap gene involved in isozyme conversion of alkaline

phosphatase in E. coli [276, 277]. These ∼30bp, partially palindromic SSRs differed from

most other repetitive elements present in sequenced genomes in that they were interspaced

by non-repetitive sequences of approximately the same length [278, 279]. Significantly,

CRISPR SSRs were found in >40% of sequenced bacterial genomes and >90% of archaea

[278]. CRISPRs were originally hypothesized to be involved in regulation of gene expression
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or DNA repair [278, 280]. However, the observations that the spacer sequences matched

sequences in viral genomes or extra-chromosomal plasmids, and signature genes were iden-

tified as being well-conserved, transcriptionally-active, and typically clustered adjacent to

the SSR elements, altered these theories. The acronyms CRISPR and cas were coined to

describe these genetic elements, and a new hypothesis that CRISPR-Cas systems might be

an adaptive defense mechanism against bacteriophage challenge was proposed [281–283].

This function was demonstrated experimentally in 2007; bacteriophage challenge of a wild-

type strain of the bacterium Streptococcus thermophilus possessing CRISPR loci resulted

in phage-resistant mutants that had acquired new spacers bearing complementary sequence

to the invading phage DNA [284].

Initial analysis of the clusters of signature CRISPR associated cas genes identified three

distinct types of CRISPR systems (Types I-III), each containing multiple subtypes, that

are highly diverse in genetic structure and mechanism [285]. To more accurately describe

the immense variability in genomic architecture and diversity of protein sequences found

at CRISPR loci, this classification system has been recently expanded to encompass two

distinct classes, five types, and 16 subtypes [286]. CRISPR-Cas Types I, II, and III are

the most prevalent systems in both bacteria and archaea, and are differentiated by the

presence of cas3, cas9, and cas10 signature genes, respectively [285, 286]. Type I systems,

comprised of six distinct subtypes (I-A to I-F) in addition to subtype I-U which is comprised

of members yet to be characterized mechanistically, exhibit the greatest diversity (i.e.

number of subtypes), and subtype 1-B is the most abundant CRISPR-Cas system found

in nature [286, 287].

CRISPR-based immunity encompasses three distinct processes, termed adaptation, ex-
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pression, and interference [286, 288]. Adaptation involves the acquisition of specific nu-

cleotide sequence tags that act as the immune “memory” [289]. During periods of preda-

tion, nucleotide sequence tags, referred to as protospacers in their native context within the

nucleotide sequence of invading genetic elements such as bacteriophage and plasmids [281–

283, 289], are rapidly acquired and incorporated into the host genome by host Cas proteins

into vast CRISPR arrays arranged of CRISPR SSRs flanking the foreign sequence, where

they are subsequently termed spacers [289]. Up to 587 unique spacer sequences have been

found in a single CRISPR array, exemplifying the exceptional level of attack experienced

by microorganisms in nature [290, 291]. The Cas proteins involved in acquisition of new

spacers are the only proteins conserved among all CRISPR-Cas subtypes [286]. During

the expression phase, acquired spacer sequences are transcribed and, in conjunction with

Cas proteins, provide resistance against invading genetic elements [286, 289]. CRISPR

arrays are first transcribed into a single precursor CRISPR RNA (pre-crRNA), which is

cleaved into repeat-spacer-repeat units by Cas6 (Type I and III systems) (116) or the ubiq-

uitous housekeeping ribonuclease RNase III enzyme and a small trans-activating crRNA

(tracrRNA) (Type II systems) [292] to yield mature crRNAs. The tracrRNA contains a

25 nucleotide sequence that is complementary to the repeat region of the pre-crRNA, and

base-pairing between these two RNAs results in a double-stranded region that is recog-

nized and processed by RNase III [289, 292]. The Cas9 protein is also required for crRNA

processing in the Type II system [289, 292]. The processed crRNAs recruit and form sta-

ble ribonucleoprotein (crRNP) complexes with specific Cas proteins for target surveillance

and nucleolytic attack of invader DNA during the interference phase of CRISPR immunity

[289]. The crRNAs complex with the multiprotein ‘Cascade’ (Cas complex for antiviral
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defence) in Type I systems and the Csm or Cmr complexes in Type III systems [289].

Although the proteins associated with Type I crRNPs are phylogenetically distinct from

those of Type III, recent structural studies have shown striking architectural similarities

between the two Types [293–295]. The Type II system, conversely, is much more simple

and compact than Type I and III machinery; tracrRNA, crRNA, RNase III, and the Cas9

endonuclease are the sole determinants for target surveillance and interference [289, 296].

The interference phase is characterized by target surveillance by the crRNP complexes

and nucleolytic attack of invading DNA elements. This sequence appears to proceed in

a step-wise manner; first, scanning invader DNA to find a protospacer sequence that is

complementary to the crRNA and discrimination of self from non-self, followed by base

pairing between the seed region of the spacer and the complementary protospacer for strand

displacement, and finally recruitment of a trans-acting nuclease or activation of intrinsic

nuclease activity for interference [289]. Type I and II systems discriminate self from non-

self by scanning DNA for a short nucleotide signature called a protospacer adjacent motif

(PAM) [289]. The PAM is an antigenic signature found adjacent to the protospacer, and

is not represented in the sequence of the spacer integrated into the host’s CRISPR array

during the adaptation phase [277, 289, 297]. In many organisms, the sequence of the PAM

element is highly promiscuous, affording flexibility in recognition of invading protospacers

[297]. The mechanism that Type III systems employ is as yet undefined, however evi-

dence suggests discrimination follows a PAM-independent mechanism [289]. Nevertheless,

base pairing between the crRNA and protospacer results in a conformational change of

the crRNP complex, triggering the recruitment of Cas3 (Type I), Csm6 or Cmr4 (Type

III) nucleases, or activating the intrinsic nucleolytic activity of Cas9 (Type II) for target
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degradation [289].

1.5.2 Development of the CRISPR-Cas system of S. pyogenes
for genetic engineering

Perhaps owing at least in part to the simplicity of the Type II system, CRISPR-Cas of

the human pathogen S. pyogenes has received immense interest in the scientific research

community. As such, phenomenal developments have led to improved understanding of

fundamental CRISPR-Cas biology, as well as enabling CRISPR-Cas9 as a sophisticated

tool for genetic engineering applications [277, 298–300]. The first demonstration that Cas9

could be programmed to produce double-stranded DNA breaks (DSBs) at precise locations

in vitro was reported in 2012 [296], marking the beginning of the ‘CRISPR revolution’ [277,

301]. Initial proof-of-principle studies validating the efficacy of CRISPR-Cas9 in vivo fol-

lowed in quick succession, including single and multiplexed targeting in bacteria [302],

transformed human cancer and pluripotent stem cell lines in culture [303–305], yeast [306],

the model organism zebrafish [307], and the model plants tobacco and thale cress [308].

Since then, hundreds of papers have been published in the literature describing the appli-

cation of CRISPR-Cas9 for genetic engineering in a multitude of organisms in vivo and cell

lines cultured in vitro, as well as further development of CRISPR-Cas9 technology through

engineering its molecular components or developing Cas9 fusion proteins to enhance the

effectiveness of the tool [298, 300, 301].

Although effective genome editing tools have been available for many bacteria for sev-

eral years [309], the ability to introduce DSBs to induce small insertion and deletion (indel)
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mutations via the non-homologous end joining (NHEJ) or homology-directed repair (HDR)

pathways in higher eukaryotes at multiple sites in parallel represented a major advantage

over existing editing tools available such as zinc finger nucleases (ZFNs) or transcription

activator-like effector nucleases (TALENs) [76]. Unlike ZFNs and TALENs, which rec-

ognize customizable DNA sequences through tedious construction of short protein DNA-

binding domains concatenated together with a cleavage domain [76], Cas9 endonuclease is

an RNA-guided nuclease (RGN) which uses simple DNA-RNA base-pairing between the

crRNA and target DNA [300]. Targeting of Cas9 was further simplified by reducing the

dual-RNA requirement of tracrRNA (required for target DNA binding) and crRNA (re-

quired for target DNA recognition) to a single, engineered, chimeric, guide RNA molecule

(sgRNA) that retained the ∼20-nucleotide sequence at the 5’ end that determines DNA

target site via Watson-Crick base-pairing, and the double-stranded structure at the 3’ end

that binds Cas9 [296]. This created a much simpler two-component system in which the

sgRNA could be engineered to target Cas9 to any DNA target site through simple REN

or PCR-based methods, greatly alleviating the complexity of re-targeting. Additionally,

this has inspired the generation of large sgRNA libraries for multiplexing and facilitating

genetic screens through generation of libraries of knockout mutants that are fundamental

in elucidating the relationship between phenotype and underlying genotype [300, 303].

Bioinformatics-based analysis of cas genes revealed protein domains bearing structural

homology to HNH and RuvC-type endonucleases [287, 310]. Cas9, containing domains

homologous to both HNH and RuvC, was found to cleave one strand of dsDNA with

each of the two domains; targeted mutation experiments confirmed that the HNH do-

main cleaves the complementary DNA strand, whereas the Cas9 RuvC-like domain cleaves
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the non-complementary strand [296]. This led to mutants of Cas9 with D10A or H840A

substitutions which rendered the HNH (H840A) or RuvC (D10A) domains catalytically

inactive and Cas9 capable of cutting one strand rather than both strands of target DNA

[296]. These Cas9 ‘nickases’ (Cas9n) were employed alongside pairs of offset sgRNAs to

target DNA for genome editing [300, 303, 304, 311]. Because DNA single-stranded breaks

are repaired very efficiently via the endogenous base excision repair (BER) pathway [312],

genome editing with Cas9n and pairs of offset sgRNAs to produce ssDNA nicks that mimic

dsDNA breaks have shown promise in improving fidelity and reducing off-target or non-

specific effects [300, 311, 313].

In addition to Cas9n mutants, a Cas9 variant with both HNH and RuvC domains

catalytically inactivated by H840A and D10A substitutions, respectively, gave rise to an

effective RNA-guided, DNA-binding protein (dCas9) [277, 314]. Employing this variant

along with sgRNA was shown to be effective at interfering with transcriptional elongation,

or as a steric block to binding of RNA polymerase (RNAP) or transcription factors (TF)

in a system called CRISPR interference (CRISPRi) [314]. CRISPRi has been successfully

implemented in a variety of prokaryotes with efficiencies greater than 90%, however, in

eukaryotic systems repression efficiency appears to be generally not as robust [314–316].

However, tethering dCas9 to protein domains that recruit chromatin-modifying complexes

or are involved in altering DNA methylation, such as the Krüppel-associated box (KRAB)

of Kox1, WRPW domain of Hes1, mSin3 interaction domain (SID), histone deacetylases

(HDAC), histone methyltransferases (HMT), or DNA methyltransferases (DNMT) have

shown substantial promise as effective repressors, with repression efficiencies of greater than

75-80% often reported [315–319]. Correspondingly, tethering dCas9 to viral or eukaryotic
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Figure 1.3: CRISPR-Cas9 tools for genome editing and transcriptional control.
A. Genome editing with donor template, B. Transcriptional repression, and C. Transcrip-
tional activation using VPR activation domains.
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protein domains that enhance or activate transcription has similarly found success [320–

326].

1.5.3 Application of CRISPR-Cas9 in insect cells and baculovirus

Genome editing in D. melanogaster and other insects in vivo

Despite the significant development of CRISPR-Cas9 as a prominent tool for genetic en-

gineering in an immense array of model and less studied organisms, its adoption as a tool

in insect cells in the broad academic community was slower than in other communities

[327]. Nevertheless, a growing body of work is accumulating in the literature describing

the application of CRISPR-Cas9 for genome editing and, more recently, transcriptional

control [327]. As Drosophila melanogaster is one of the pre-eminent model organisms for

biological studies in genetics and physiology, and a model for development, human disease,

and evolution, it has predictably been the insect of choice for CRISPR-Cas9 engineering

to date, both in the whole organism in vivo and cultured cells in vitro [327].

Typically, for genetic engineering studies in vivo, the Cas9 transgene and sgRNA are

injected into germline or somatic cells of the insect in a variety of formats. Transient

expression of the cas9 gene and sgRNA may be achieved via injection of a plasmid, or de-

livered directly as in vitro-transcribed cas9 mRNA and sgRNA or purified Cas9 protein and

sgRNA as a ribonucleoprotein (RNP) complex [327]. Alternatively, the cas9 gene and/or

sgRNA can be integrated into a chromosome for stable expression and propagation of the

gene to offspring [328]. The editing efficiencies achieved vary widely with the approach
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used and the genomic loci targeted for editing, ranging from ∼0.03-100% for knockouts

(KO), and ∼2-38% for knock-ins (KI), in which an editing template is also included to

promote HDR [327]. The promoter chosen for expression of cas9 and sgRNA also appears

to have a significant impact on mutation rates; the nanos promoter, which induces strong

and restricted expression in germ-line cells, has been employed for efficient heritable germ-

line transmission of mutations without widespread targeting in somatic cells, whereas the

actin5c and vasa promoters can induce mutations with high frequencies in germ-line and

somatic cells alike [328–330]. The choice of U6 promoter for expression of the sgRNA also

appears to influence mutation rates. A comparison of the U6:1, U6:2, and U6:3 promoters

revealed that the U6:3 promoter was most effective for driving mutagenesis in both somatic

and germ-line cells. It is worth noting that the majority of studies published have used the

U6:2 promoter for sgRNA expression, however it appears to be the least efficient [327, 328,

330]. The Cas9 ‘nickase’ variant along with dual sgRNA expression for generating offset-

ting ssDNA nicks was also successful at inducing mutation, however the efficiency was low

compared to using wild-type Cas9 [330]. Additionally, simultaneous, multiplexed genome

editing has been demonstrated by expressing dual sgRNAs each targeting a different gene.

Each of the 120 flies screened had the dark cuticle consistent with mutation at the e locus,

and 52% had one or two curled wings, consistent with mutation of the curled (cu) gene

[330]. Finally, co-injection of plasmids encoding Cas9 controlled by the hsp70 promoter

and sgRNA expressed by snRNA U6:2 promoter achieved mutations in the yellow (y) gene

in the somatic cells of 62% of G0 males, whereas co-injection of Cas9 mRNA and sgRNAs

resulted in mutations in 88%, possibly indicating that the in vitro-transcribed platform (or

RNP complexes directly) may be more effective than plasmid-based delivery [331, 332].
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Following these initial studies in D. melanogaster, application of CRISPR technology

was extended to several disease vectors, particularly mosquitoes of the genera Anopheles

and Aedes [333–338], as well as a handful of members of Lepidoptera, including Bombyx

mori, Danaus plexippus, Helicoverpa armigera, Papilio xuthus, Spodoptera litura, S. lit-

toralis, and most recently in S. exigua [333, 339–350]. In the members of Spodoptera, in

vitro-transcribed sgRNA and Cas9 mRNA (S. litura) or Cas9/sgRNA RNPs (S. littoralis

and S. exigua) were employed to generate mutations in SlitPBP3 and Slabd-A (S. litura),

Orco (S. littoralis), or PGE2R genes (S. exigua), with reported mutation efficiencies rang-

ing from ∼10-88% of hatched larvae, and ∼6.6-43.3% for germ-line transmission [345–347,

349]. Similarly, co-injection of in vitro-transcribed sgRNA and Cas9 mRNA to B. mori

preblastoderm embryos resulted in 94-95% of hatched larvae with a mosaic translucent in-

tegument phenotype consistent with BmBLOS2 disruption, with 17% of mutants showing

severe oily skin phenotype (OSP), suggesting complete loss-of-function mutations at the

BmBLOS2 locus [343]. When 2 sgRNAs were co-injected, ∼51% had severe OSP, and upon

crossing of these mutants with wild-type B. mori, ∼37% of G1 egg batches had at least one

individual showing completely translucent skin, indicative of effective germ-line transmis-

sion [343]. Using the same approach, ∼17-35% mutation frequencies were observed for 4

candidate genes in the G0 generation, and the heritable mutation transmission frequency

was ∼29% [342].

Finally, it is worth noting the significant attention of the research community aimed

at developing strategies for the control of insect vector-borne diseases such as malaria,

dengue fever, yellow fever, Zika virus, and West Nile Virus [351]. As strategies employing

insecticides have largely failed to curb or control the transmission of disease from mosquito
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to human, genetic-based strategies have long held the most promise [352]. Indeed, the

potential for using genetic strategies for ‘driving’ anti-pathogen genes into populations of

wild, highly distributed vectors for the disease date back to the late 1960s [353]. Various

‘gene drive’ strategies have been employed over the intervening years, however long lasting

and self-sustaining population suppression has been elusive for a variety of reasons, most

notably the development of resistance alleles that limit the spread of the ‘drive’ allele [351,

352]. The potential of CRISPR-Cas technology for ‘gene drive’ however, may represent

a paradigm shift in this endeavour; indeed, a recent opinion published in the academic

journal Proceedings of the National Academy of Sciences of the United States of America

characterized CRISPR-based gene drive as a biocontrol silver bullet and went on to state

that it may no longer be appropriate to question whether we can, but rather whether we

should control organisms using gene drive [354]. Evidence of its potential is highlighted

by the volume of reports in the literature detailing the implementation of CRISPR-Cas9

as an effective ‘gene drive’ technology in the last few years [355–363]. These recent devel-

opments underpin the importance and impact of CRISPR-Cas technology on insect cell

biotechnology.

Genome editing of cultured insect cells in vitro

Genetic engineering based on CRISPR-Cas9 has also been extended to the D. melanogaster

S2 cell line cultured in vitro. Using plasmid-based delivery of the cas9 gene and sgRNA,

indel mutations at the y locus were induced in approximately 11% of alleles 3 days post

transfection, however this increased to 88% upon culturing the cells with puromcyin to
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select for transfected cells [364]. To promote gene KI via the HDR pathway in S2 cells,

dsDNA donor plasmids were constructed to insert heterologous DNA at the y and AG01

loci, respectively. Genome integration was successful at both loci, with ∼2% of alleles at the

y locus and ∼4% at the AG01 locus positive for integration [364]. The efficiency of KI was

increased to ∼50% by using a PCR-generated KI substrate with homology arms as short

as 29 bp in concert with RNA interference (RNAi) for depletion of the NHEJ enzyme

DNA ligase 4 (lig4) [365]. Finally, CRISPR-Cas9 was employed to target the fdl gene

encoding Fused Lobes (FDL) for knockout [366]. FDL is a Golgi, transmembrane (TM),

β -N -acetylglucosaminidase enzyme involved in the N -glycosylation pathway to produce

paucimannosidic N -glycans in insect cells [366]. Editing with CRISPR-Cas9 produced

indel mutations in the TM domain of FDL and resulted in dramatic changes to the N -

glycosylation profile of recombinant proteins expressed in S2 cells [366].

In the in vitro-cultured cell lines derived from B. mori (BmN and BmE), Cas9-mediated

indel mutations have been introduced at a single genomic locus, large ∼3 kb DNA deletions

using 2 sgRNAs, and multiplexed genome editing using 10 sgRNAs targeted to 6 different

genes each residing on a different chromosome, simultaneously ([341]. To promote HDR

over NHEJ for more sophisticated genetic engineering involving KI of heterologous DNA,

factors involved in the NHEJ pathway were targeted for disruption using CRISPR-Cas9,

including Ku70, Ku80, LigIV, XLF, and XRCC4 [344, 348]. Homologous recombination

efficiency was markedly increased over NHEJ in these cell lines, ranging from ∼4-8-fold more

efficient than control cells with none of the genes required for NHEJ knocked out [348].

Recently, a genome-wide screen to identify genes essential for cell viability was conducted

using CRISPR-Cas9 in the BmE cell line [367]. In this study, a sgRNA library containing 94
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000 sgRNAs targeting ∼17 000 protein coding genes were used to generate stable knockouts

using piggyBac transposition. Over 1000 genes were identified as being essential for cell

viability under the growth conditions tested, of which ∼82% had homologous counterparts

that are essential genes in several other animal species. Importantly, this study represented

the first CRISPR library screening platform for non-model (i.e. not D. melanogaster) insect

cells [367].

For CRISPR-Cas applications in cultured cells, the cas9 gene and sgRNA are often

delivered and expressed via plasmid transfection, as opposed to delivery of in vitro tran-

scribed cas9 and sgRNA mRNA or Cas9/sgRNA RNPs which are more common for in

vivo applications [327]. While the cas9 gene is transcribed by RNA Polymerase II (RNAP

II) to produce mature mRNA, the sgRNA is not polyadenylated and therefore promoters

recognized by RNAP III, and in particular promoters from U6 and H1 genes, are preferen-

tially employed for its expression in animal cells [368]. As mentioned, various U6 snRNAs

and the RNAP III-specific promoters that enable their expression have been identified in

D. melanogaster, B. mori, and various genera of mosquito, but U6 promoters had not been

identified that displayed transcriptional activity in S. frugiperda or T. ni [130, 368–370].

This was remedied in 2017 with a significant advancement: U6 promoters were identified

in Sf9 and High Five cells, enabling plasmid-based genome editing using CRISPR-Cas9 in

both of these cell lines [130]. Additionally, a clonal Sf9 cell line was isolated in which the

fdl gene encoding a processing β -N -acetylglucosaminidase was disrupted. FDL removes a

terminal N -acetyglucosamine residue from trimmed N -glycan-processing intermediates, ef-

fectively eliminating the substrates for N -acetyglucosaminyltransferase II, which is essential

for the elongation process to complex (mammalian-like) N -glycans [130]. This represented
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a significant advancement in developing Sf9 cell lines capable of complex, mammalian-type

N -glycosylation. Screens for isolating RNAP III promoters have been recently conducted

to enable in vitro CRISPR-Cas9 experiments to more disease-relevant mosquito cell lines,

and a mosquito-optimized set of CRISPR-Cas9 plasmids has been developed and demon-

strated in Ae. albopictus and Ae. aegypti cells, which are prolific vectors for several viral

pathogens [368, 371].

Implementation of dCas9 for transcriptional control and epigentic remodeling

Although CRISPR-Cas9 has been implemented as a tool for genome editing in several

insects and insect-derived cell lines, it has so far been limited to D. melanogaster and

more recently B. mori as a tool for transcriptional control. For transcriptional repres-

sion in D. melanogaster, dCas9 and sgRNA were targeted to the male-specific rox1 and

rox2 RNAs, which encode long, non-coding RNAs (lncRNAs) that form complexes with

the male-specific lethal (MSL) proteins to facilitate targeting of the complex to the X

chromosome for hyper-activation of the X-linked genes in male flies [372]. Interestingly,

transcriptional repression in cultured cells in vitro reached ∼95% and ∼90% reduction in

RNA abundance for rox1 and rox2 targets, respectively, without tethering a repressive

protein domain to dCas9 [372]. These reductions in RNA abundance represent repression

efficiencies far superior to those achieved in human cells with dCas9 only, and even rivals

repression efficacy with dCas9-KRAB fusion proteins [316]. Additionally, sgRNAs target-

ing both the non-template and template strand showed effectiveness, suggesting that the

DNA strand bias for silencing observed in human cells may be absent in insect cells [315,
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372]. For transcriptional activation, on the other hand, dCas9 fusions to the transcriptional

activator domain VP64, which is composed of 4 tandem copies of the Herpes Simplex Virus

(HSV) Protein 16 activation domain (AD), or VPR, which has p65 AD of NF-κ B and R

transactivator (Rta) of Epstein-Barr Virus (EBV) appended to dCas9 in addition to VP64,

have been employed in D. melanogaster S2 cells [373]. Activation of Mtk and CecA1 with

dCas9-VPR reached ∼3300-33000-fold transcriptional activation compared to the control,

while dCas9-VP64-mediated activation was substantially lower, reaching ∼270-fold for Mtk

[373]. This study was further extended to examination of two additional dCas9-AD fusions.

The SAM (synergistic activation mediator) AD consists of dCas9-VP64 with a modified

sgRNA containing 2 hairpins to bind MS2 bacteriophage MCP (MS2 Coat Protein) dimers

to recruit the MCP-p65-hsf1 (human heat shock factor 1) activators [320]. Suntag, on the

other hand, consists of dCas9 fused to a chain of 10 GCN4 peptide epitopes to recruit

and bind single chain antibodies specific to the GCN4 epitope fused to VP64 ADs. The

SAM and Suntag systems theoretically recruit 12 and 40 ADs, respectively [320, 322, 374].

The VPR, SAM, and Suntag transcriptional activators all achieved similar levels of gene

induction in the S2 cell line [374]. Finally, the dCas9-VPR system was employed for single-

and multiplexed activation of genes in in vitro cultured cells and fruit flies in vivo [375].

Robust activation was observed for single-target experiments, ranging from ∼10-1000 fold

mRNA change in S2 cells, and ∼6-15 fold for multiplexed activation [375]. The activation

level achieved for a given gene appeared to be inversely correlated with its basal level of

expression (i.e. CRISPR-dCas9 mediated activation was most effective for genes that are

expressed at low levels in a given cell type) [375]. For proof-of-principle dCas9-VPR activa-

tion in vivo, the Wg gene was targeted to drive ectopic Wg expression, producing a partial
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duplication of the wing pouch and other patterning abnormalities ultimately resulting in

death during the early pupal stages [375]. This represented the first in vivo demonstration

of CRISPR-dCas9 mediated transcriptional activation in any multicellular organism [375].

Similar strategies have also been employed for transcriptional repression and activa-

tion in BmE cells, including fusion of dCas9 with KRAB, Hairy, SID, ERD, and SRDX

transcriptional repressors [376], and VP64 and VPR transcriptional activators [377]. While

repression efficiency appeared to vary substantially with the gene target and specific sgRNA

targeted, ∼50% reduction in RNA abundance was achieved for 3 different gene targets in

this demonstration [376], and ∼1.5-8000-fold enhancement of RNA for the dCas-VPR fu-

sion [377]. These results are comparable with those reported in D. melanogaster. Finally,

programmable demethylation of genomic DNA in cultured BmE cells was demonstrated

based on dCas9-TET1 fusions [378]. Since tumor-suppressor genes are frequently methy-

lated during cancer progression and promoter hypermethylation is frequently associated

with gene silencing, targeted demethylation has been employed as a strategy to enhance

gene transcription. In BmE cells, targeted demethylation resulted in the up-regulation of

four genes ∼1.2-1.7 fold compared to control experiments [378].

CRISPR-Cas9 technologoies in the BEVS

Despite the increasing development of CRISPR-Cas technologies in insects in vivo and cul-

tured cells in vitro, CRISPR-Cas9 has seen extremely limited development in the BEVS.

CRISPR-mediated gene disruption was recently applied as an antiviral strategy, in which

sgRNA targeted to the key replication factor ie-1 of BmNPV effectively inhibited virus
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replication [333]. Using stable cell lines expressing cas9 and sgRNA, antiviral efficiency

reached ∼99%, demonstrating the promising potential of the system to provide antiviral

protection in B. mori cell lines [333]. Inhibition of BmNPV was extended to transgenic silk-

worms in which a virus inducible cas9 gene and sgRNA were introduced via the piggyBac

transposon. Innoculation of the transgenic silkworms with BmNPV activated expression

of Cas9 to inhibit BmNPV replication in infected cells by targeting the B. mori ATAD3A

for disruption, which is a mitochondrial protein commandeered by BmNPV to promote

virus replication [379]. Importantly, the transgenic silkworms displayed substantially en-

hanced survival rates compared to the control in response to BmNPV OB infection. The

authors claimed this development could represent an important approach for breeding

disease-resistant insect lines [379]. Finally, Cas9/sgRNA RNPs were co-transfected with

AcMNPV genomic DNA to generate targeted gene disruptions in AcMNPV rBEVs [380].

Isolation of individual viruses from the supernatant of transfected cells followed by screen-

ing for successful knockouts by PCR and Sanger sequencing produced isogenic viral stocks

with the desired mutations. This was further extended to knock-in of a gfp expression

cassette at the chitanase locus of AcMNPV. The editing rate for KO experiments ranged

from 10-40% of the analyzed clones depending on target and specific sgRNA, and ∼20% of

the analyzed clones expressed GFP, for the KI experiments. Interestingly, different clones

having the same disrupted gene appeared to produce different levels of GFP in infected S.

exigua larvae, potentially indicating some clonal variability [380].
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Chapter 2

Adapting CRISPR-Cas9 technology
for the BEVS

As discussed in Chapter 1, disrupting or downregulating various AcMNPV-encoded or

host cell genes appears to be a promising strategy for improving recombinant protein ex-

pression in the BEVS. The traditional approach for generating mutant AcMNPV genomes

involves either conventional homologous recombination in insect cells between a wild-type

BEV genome and a plasmid with homologous regions adjacent to the region to be deleted,

or deleting the gene in a bacmid replicating in E. coli. Both of these strategies can be

time-consuming and labour intensive, and trans-complementation of disrupted essential

genes to produce infectious virus often results in impaired virus replication and transgene

expression. Consequently, the function of many genes in the AcMNPV genome have yet

to be confirmed experimentally, and AcMNPV genomes routinely used for expression of

recombinant proteins remain virtually unmodified. Similarly, gene silencing through RNAi

has also been successfully employed for improving recombinant protein production, how-

ever target sequence selection often requires extensive empirical validation to identify high
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silencing efficiency targets. Even then, some experiments simply do not yield positive re-

sults. In fact, a review paper devoted in part to analyzing unsuccessful RNAi experiments

in Lepidopteran insects has been published [106]. RNAi based on exogenously introduced

dsRNA molecules are limited by transfection efficiency and poorly scalable due to expensive

transfection reagents and synthesis of RNA.

The application of CRISPR-Cas9 technology for gene disruption and transcriptional re-

pression would enable effective scrutiny of targets and offer a scalable and efficient platform

technology. However, this work commenced when CRISPR-Cas9 had not yet been applied

to Sf9 or High Five cells, nor had it been employed in AcMNPV. Further, expression of

the sgRNA is generally conferred using a RNA polymerase III-dependent U6 promoter,

however none had been identified in the Sf9 genome. Consequently, in addition to search-

ing the Sf9 genome to identify an endogenous U6 promoter, testing U6 promoters from

closely related species for activity in Sf9 cells was necessary. The results were submitted

to the journal Viruses. The manuscript is presented below in its original form. Supporting

information is provided in Appendix A.

It is important to note that while this work was ongoing, a U6 promoter was identified

in the Sf9 genome and subsequently used for CRISPR-mediated editing of the Sf9 genome

[130]. This promoter was in fact the same promoter that was identified in our own search,

and while it was important to include these results in this thesis, these results were not

included in the manuscript. As such, this data is included following the manuscript as

supplemental results.
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Comparison of CRISPR-Cas9 tools for transcriptional repression and gene dis-

ruption in the BEVS

Mark R. Bruder1, Sadru-Dean Walji1, and Marc G. Aucoin1

1 Department of Chemical Engineering, University of Waterloo.

2.1 Abstract

The generation of knockout viruses using recombineering of bacmids has greatly acceler-

ated scrutiny of baculovirus genes for a variety of applications. However, the CRISPR-

Cas9 system is a powerful tool that simplifies sequence-specific genome editing and effective

transcriptional regulation of genes compared to traditional recombineering and RNAi ap-

proaches. Here, the effectiveness of the CRISPR-Cas9 system for gene disruption and

transcriptional repression in the BEVS was compared. Cell lines constitutively express-

ing the cas9 or dcas9 gene were developed, and recombinant baculoviruses delivering the

sgRNA were evaluated for disruption or repression of a reporter gfp gene. Finally, the

effect of disruption or downregulation of endogenous AcMNPV gene targets on viral gene

expression and replication was measured. This study provides a proof-of-concept that

CRISPR-Cas9 technology may be an effective tool for efficient scrutiny of baculovirus

genes through targeted gene disruption and transcriptional repression.
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2.2 Introduction

Baculoviruses are a diverse group of enveloped viruses that contain large, double-stranded

DNA (dsDNA) genomes. The insect-specific infection cycle is complex and biphasic; pri-

mary infection of the insect requires occlusion-derived virus (ODVs), which are virions

encapsulated in a proteinaceous matrix, while cell-cell transmission is established by the

budded virus (BV) phenotype [95]. Initial interest in baculoviruses nearly 100 years ago

was for their promise as safe and selective bioinsecticides [381], however a recombinant

baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV; rBEV) was

used to produce human IFN-β in 1983, marking the inception of the baculovirus expression

vector system (BEVS) as a platform for recombinant protein production [65]. Recombinant

AcMNPV and its permissive cell lines Sf9 or High Five is the most common format of the

BEVS [8]. A major milestone of BEVS biotechnology was the development of the bacmid

system, which allowed site-specific integration of foreign genes in the AcMNPV genome

propagated in E. coli [69]. Coupled with the λ-red or RecET recombineering systems [382,

383], mutant AcMNPV genomes with sequence-specific deletions (i.e., knockout viruses,

KOVs) were efficiently obtained, allowing functional studies of many of the ∼150 anno-

tated open reading frames (ORFs) of AcMNPV [96, 384–388]. Studies identifying per os

infectivity factors, genes with insecticidal properties, and gene disruptions that improved

recombinant protein production have also been conducted using bacmid technology [78,

389–391].

Bacmid technology has undeniably propelled baculovirus biotechnology, however like

all genetic engineering approaches, it has drawbacks; even with recombineering, targeted
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gene disruption requires multiple experimental steps to achieve, and genetic instability has

been reported during the ‘hyper-recombination’ state (i.e., during phage recombinase gene

expression) resulting in intramolecular rearrangements in E. coli [392]. While this is largely

abrogated by recombination of the bacmid and transfer vector in insect cells, isolation of

the desired mutant rBEV can be challenging with this approach [72]. Evaluation of KOVs

is typically conducted by transfecting Sf9 cells with the bacmid and observing the spread

of infection, which can be impacted by transfection efficiency and it may fail to identify

ORFs that are amenable to downregulation but not disruption. For example, disruption

of the AcMNPV ORF34 ORF resulted in its categorization as an essential gene, however

its downregulation by RNA interference (RNAi) not only permitted virus replication but

improved heterologous gene expression [114]. Finally, trans-complementing cell lines may

be required to enable production of infective virions when essential genes are targeted for

disruption [85, 393].

Gene silencing via RNAi involves double-stranded RNA (dsRNA) molecules that inhibit

gene expression by triggering the degradation of messenger RNA (mRNA) through the

RNA-induced silencing complex (RISC). The dsRNA molecules are typically introduced

by transfection of small interfering RNAs (siRNAs) directly or plasmids from which short

hairpin RNAs (shRNA) are transcribed. While less prominently employed compared to

gene disruption, RNAi has found utility in the BEVS [104]. Target sequence selection,

however, often requires extensive empirical validation to identify high silencing efficiency

targets, and the effectiveness may be limited by low transfection efficiency or cytotoxicity

of the transfection reagent [394, 395].

The CRISPR-Cas9 system has seen development for precision genome editing and tar-
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geted transcriptome engineering in a multitude of biological organisms over the past decade

[298, 314, 396]. Genome editing was recently reported in Sf9 and High Five cells, and for

genome editing of AcMNPV itself [130, 380]. Here, we have extended upon these recent ad-

vancements by developing engineering tools based on Cas9 and its nuclease deficient variant

dCas9 for targeted gene disruption (CRISPRd) and transcriptional repression (CRISPRi),

respectively. Using cell lines developed for expression of the cas9 or dcas9 genes and

sgRNAs delivered by the rBEV, 4 virus-encoded genes were targeted for gene disruption

and transcriptional repression. In each case, the expected phenotype was observed. Im-

portantly, virus seed stocks could be produced in parental Sf9 cells, and the same rBEVs

could be used for evaluating gene disruption and transcriptional repression. Target gene

selection is achieved by exchanging the spacer sequence of the sgRNA using conventional

PCR. Accordingly, this approach simplifies the generation of KOVs by reducing the exper-

imental steps required and allows for investigation of gene function using gene disruption

and transcriptional repression using the same rBEV.

2.3 Materials and methods

2.3.1 Cells

Sf9 cells were maintained in suspension culture in Gibco SF900 III serum free medium

(Fisher Scientific, Whitby ON) as described previously [152]. Sf9 cells were transfected

as adherent cultures in tissue culture treated 6-well plates (VWR, Mississauga ON) with

Escort IV transfection reagent (Sigma-Aldrich, Oakville ON) according to manufacturer’s
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directions. To derive the transgenic Sf9-Cas9 and Sf9-dCas9 cell lines, parental Sf9 cells

were transfected with the plasmid pOpIE2-Cas9-puro or pOpIE2-dCas9-puro, respectively.

Approximately 48 hours post transfection (hpt), the growth medium was aspirated and

replaced with fresh medium containing 5 µg/ml puromycin (Sigma-Aldrich). Resistant

cells were pooled, adapted back to suspension culture, and maintained for ∼10-15 additional

passages under selective pressure prior to further analysis.

2.3.2 Plasmid construction

All plasmids used in this study were constructed using NEBuilder HiFi DNA Assembly

master mix (New England Biolabs, Whitby ON) according to manufacturer’s directions.

Primers used for construction of all plasmids and retargeting sgRNAs were purchased from

Integrated DNA Technologies (IDT; Coralville, IA) and are listed in Table A.1.

To construct plasmid pOpIE2-Cas9-puro, the cas9-T2A-pac region from pAc-sgRNA-

Cas9 (Addgene #49330, Cambridge MA) [364] and a fragment containing the Orgyia pseu-

dotsugata MNPV immediate-early 2 promoter (OpIE2) and 3’ untranslated region (UTR)

[397], origin of replication (ori), and ampicillin resistance gene (ampR) for propagation in

E. coli were amplified via PCR and the 2 PCR fragments were used in a Gibson assembly

reaction [398]. The resulting plasmid placed the cas9-T2A-puro expression cassette under

the control of the constitutive OpIE2 promoter. To generate plasmid pOpIE2-dCas9-puro,

the dcas9 ORF was amplified from pdCas9::BFP-humanized (Addgene #44247) [314] and

used in a Gibson assembly reaction along with a PCR fragment containing the OpIE2

promoter, T2A-puro cassette, and OpIE2 3’ UTR to place the dCas9 gene under the con-
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stitutive control of the OpIE2 promoter.

For plasmids containing the OpIE2-GFP cassette and SfU6 sgRNA, the mAzami-Green

gene (Addgene #54798; herein referred to as gfp) encoding a monomeric green-emitting

fluorescent protein [399] gene was PCR amplified and placed between the OpIE2 pro-

moter region and 3’ UTR. Separately, the S. frugiperda U6-3 (SfU6) small nuclear RNA

(snRNA) promoter [130] was synthesized as a gblock (IDT), and PCR amplified along

with the single guide RNA (sgRNA) and transcriptional terminator from plasmid pCFD4-

U6:1 U6:3tandemgRNAs (Addgene #49411) [330]. The OpIE2-GFP fragments were in-

serted along with the SfU6-sgRNA DNA fragment into pACUW51 to derive plasmid

pOpIE2GFP-sgRNA.

To construct p10-GFP and p6.9-GFP-encoding CRISPR plasmids, first the coding re-

gion of the p10 gene, including upstream and downstream sequences to include its en-

dogenous promoter and 3’ UTR, was amplified from AcMNPV genomic DNA and inserted

into pACUW51. The p10 ORF was then replaced with the gfp gene, and the SfU6-sgRNA

fragment was inserted downstream to derive p10GFP-sgRNA. Finally, the p6.9 promoter

region was amplified from AcMNPV genomic DNA and inserted in place of the p10 pro-

moter sequence in p10GFP-sgRNA to yield p6.9GFP-sgRNA.

The spacer sequences used to target Cas9 and dCas9 to specific AcMNPV genomic

loci were selected using the sgRNA scorer 2.0 software [400]. Briefly, the coding sequence

for the target gene was submitted to the sgRNA scorer 2.0 software which generated a

list of putative target sites scored according to their predicted activity. For each gene

target, 2-4 target sequences were selected based on two criteria: predicted activity and
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the strand (template or nontemplate) the target sequence resided on. Inverse PCR was

used to retarget sgRNA spacer sequences to the target of interest [401]. Two primers were

designed to anneal to the cas9 handle of the sgRNA sequence and to the U6 promoter

sequence and extend in opposite directions. The desired targeting spacer sequence was

appended to these primer sequences, which were used to amplify the entire plasmid as

a linear fragment. The spacer sequence served as the homologous sequence required for

Gibson assembly to ligate and re-circularize the new plasmid. The spacer sequences used

in this study are presented in Table 2.1.

Table 2.1: Protospacer sequences for sgRNA targets

rBEV Target Protospacer Sequence (5’-3’) PAM Strand

Control n/a caccttgaagcgcatgaact n/a n/a
GFP1 gfp gggcaagggcaacccctacg agg Template
GFP2 gfp gtcgtaggcgaagggcaggg ggg Nontemplate
GFP3 gfp gttgccgtactggaacacgg tgg Nontemplate
GFP4 gfp ccgagggctaccactgggag agg Template
IE1 ie-1 accgtgtcggctccatccgggg tgg Nontemplate
IE2 ie-1 tgatatctgacagcgagactg cgg Template
VL1 vlf-1 acacggactcgaaccggggag cgg Nontemplate
VL2 vlf-1 ggcaacgatgcacgcccgacg agg Template
VP1 vp80 gcccgccgcaatcgccgccg cgg Template
VP2 vp80 gctggatgttacccgcgg cgg Nontemplate
VP3 vp80 tcgatgcggccaggtcgc tgg Nontemplate
VP4 vp80 gcggatcgctaaatgccg tgg Nontemplate
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2.3.3 Virus generation, amplification, and quantification

Plasmids for homologous recombination at the polyhedrin locus in the AcMNPV genome

were co-transfected with flashBACGOLD™ (Oxford Expression Technologies Ltd., Oxford

UK) genomic DNA according to manufacturer’s directions. Supernatant from each trans-

fection was harvested 4-5 days post transfection and used to infect early-exponential phase

(∼1.5− 2× 106 cells/ml) suspension Sf9 cultures at low multiplicity of infection (MOI) to

amplify the rBEVs for 3-4 days or until the viable cell density dropped to ∼80%. After 2

sequential rounds of amplification, the rBEV titer was quantified using end-point dilution

assay (EPDA). Briefly, Sf9 cells were diluted to ∼2.0 × 105 cells/ml, and 100 µl was used

to seed each well of a 96-well plate (VWR). The virus was serially diluted (10−2 to 10−8),

and 10 µl of each dilution was added, in 12 replicates, to the 96-well plate. Plates were

incubated for seven days at 27 °C, after which they were checked for green fluorescence

using a fluorescence microscope. Results were converted from TCID50 and reported as

plaque forming units per ml (pfu/ml).

2.3.4 Infections

Sf9-dCas9 , Sf-Cas9, or the parental Sf9 cells were infected with rBEVs at a density of

∼1.5 − 2 × 106 cells/ml and MOI of 3. Samples were taken at 24, 48, and 72 hours post

infection (hpi) and cells were fixed with 2% paraformaldehyde for ∼30 minutes prior to

further analysis.
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2.3.5 Flow cytometry and analysis

Samples were analyzed using a FACSCalibur™ flow cytometer (BD Biosciences, San Jose

CA) equipped with a 15-mW air-cooled argon-ion laser with an excitation frequency of 488

nm. Samples were run at the low flow setting (12 µl/min) and 10000 events were collected.

Analysis of flow cytometry data was performed using FlowJo® V10 flow cytometry anal-

ysis software (FlowJo LLC, Ashland, OR). Briefly, after applying gates to remove debris

and intrinsic cellular fluorescence from the analysis, median fluorescence intensity in FL1

was calculated.

2.3.6 Real-time reverse transcription polymerase chain reaction
(RT-PCR)

Infected cells (∼1.5 − 2 × 106 cells/ml, MOI = 3) were collected at 0, 24, 48, and 72 hpi

by centrifugation at 1000 × g for 10 min at 4 °C. RNA was extracted using the Geneaid

Total RNA Mini kit (FroggaBio, Concord ON) and 500 ng was used as template for first-

strand cDNA synthesis using the SensiFAST cDNA synthesis kit (FroggaBio) according

to manufacturer’s directions. Real-time PCR was performed using the SensiFAST SYBR

Hi-ROX kit (FroggaBio) according to manufacturer’s directions on an Applied Biosystems

StepOnePlus™ Real-Time PCR System (Fisher Scientific). Primer pairs used for qPCR

are given in Table A.1.
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2.3.7 Western blot

Infected cells (∼1.5 − 2 × 106 cells/ml, MOI = 3) were collected at 0, 24, 48, and 72 hpi

by centrifugation at 1000 × g for 10 min at 4 °C. The cells were lysed in RIPA buffer

(Fisher Scientific), quantified by BCA assay (Fisher Scientific), and ∼10 µg of protein was

separated by electrophoresis in 10% TGX Stain-Free precast mini SDS-PAGE gels (Bio-

Rad, Mississauga ON) according to manufacturer’s directions. After transfer to PVDF

membranes, western blot analysis was performed with anti-Cas9 (MAC133, Sigma-Aldrich)

or anti-GP64 (AcV5, Fisher Scientific) as primary antibodies and goat anti-mouse IgG HRP

secondary (Bio-Rad) and imaged on a ChemiDoc MP Imager (Bio-Rad). The Image Lab

software was used for further image processing (Bio-Rad).

2.3.8 Quantification of baculovirus particles using flow cytome-
try

Sample preparation for analysis via flow cytometry was described previously [402]. Briefly,

samples were diluted in D-PBS and fixed with paraformaldehyde for 1 hour, after which

the samples were subjected to one freeze-thaw cycle followed by incubation with Triton

X-100 to permeabilize the membrane. The nucleic acid stain SYBR Green I was added

and incubated at 80 °C for 10 min in the dark to stain double stranded DNA. After cooling

on ice, the samples were analyzed via flow cytometry. Flow-Set Fluorospheres (Beckman

Coulter, Mississauga ON) were used for calibration and all samples were run in triplicate.
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2.4 Results

2.4.1 Development of a Sf9 cell line for constitutive expression
of Cas9 and dCas9

Expression of the Cas9 and dCas9 proteins were conferred via the development of trans-

genic Sf9 cell lines transfected with plasmids pOpIE2-Cas9-puro and pOpIE2-dCas9-puro,

which include either the cas9 or dcas9 gene and the pac gene sequences separated by the

viral T2A element [403]. After selection with puromycin for at least 2 weeks, resistant

cells were pooled and maintained in suspension culture for an additional ∼10-15 passages

under selective pressure before removing puromycin from the medium. Although rou-

tine maintenance of these cell lines provided no evidence that ectopic expression of either

Cas9 proteins had any effect on their growth, prior to performing any gene disruption or

transcriptional repression experiments, the cell lines were characterized with infection ex-

periments to determine whether there were any distinguishable differences between them

and parental Sf9 cells. As shown in Figure 2.1A, transcription of the gfp reporter and

the viral capsid protein vp39 genes were similar, indicating that there were no discernable

differences in progression of the infection. Similarly, the production of GFP protein from

the viral late gene promoter p6.9 and progeny virus appeared unimpaired (Figure 2.1B &

C). Interestingly, RT-PCR (Figure 2.1A) and western blot data (Figure A.1) indicated that

transcription of cas9 and dcas9 were significantly downregulated by 24 hpi and protein

was undetectable on western blot by 48 hpi.
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Figure 2.1: Sf9-Cas9 and Sf9-dCas9 cells are indistinguishable from the parental
Sf9 cell line. A. RT-PCR expression analysis of virus-encoded vp39 and gfp reporter
gene are not affected by the presence of either cas9 or dcas9 expression. Both cas9 and
dcas9 are downregulated in response to infection. B. GFP fluorescence intensity and C.
progeny virus production are similar between all cell lines.71



2.4.2 Evaluation of CRISPR-mediated repression and disruption
on GFP production

Initial experiments sought to establish transcriptional repression of the rBEV-encoded gfp

gene. Individual rBEVs with sgRNAs targeting the template (GFP1 and GFP4) and non-

template (GFP2 and GFP3) strands within the gfp ORF were constructed, and repression

of gfp transcribed from immediate early (OpIE2), late (p6.9) and very late (p10) promot-

ers was assessed. Sf9-dCas9 cells infected with rBEVs encoding sgRNAs GFP2 and GFP3

showed a marked decrease in the proportion of GFP-positive cells and fluorescence inten-

sity compared to the control at 48 hpi for OpIE2-GFP (Figure A.2A). For p6.9-GFP and

p10-GFP, there appeared to be a slight (p6.9-GFP) or significant (p10-GFP) reduction in

GFP-positive cells at 24 hpi, however there was no difference at 48 and 72 hpi (Figure

2.2A & A.2B). Nevertheless, the fluorescence intensity for GFP2 and GFP3 targets were

reduced compared to the control at all time points for p6.9-GFP, and at 48 and 72 hpi

for p10-GFP. Fluorescence intensity of rBEVs encoding sgRNAs GFP1 and GFP4 were

indistinguishable from the control in all experiments, however, indicating potential strand

bias for CRISPRi.

For CRISPRd experiments, p6.9-GFP rBEVs encoding sgRNAs GFP2, GFP3, and

GFP4 were used to infect Sf9-Cas9 cells. For all 3 sgRNAs, the proportion of GFP-

positive cells was significantly reduced compared to the control at all time points. The

GFP2 sgRNA resulted in the lowest GFP-positive phenotype compared to GFP3 and

GFP4. Significantly, whereas the proportion of GFP-positive cells was higher at 24 hpi

and increased by 48 hpi for GFP3 and GFP4, the rBEV encoding the GFP2 sgRNA was less
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Figure 2.2: CRISPR-mediated targeting of GFP transcribed from the late p6.9
promoter. Percentage of population that is GFP-positive and fluorescence intensity of
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than 10% GFP-positive at 24 hpi and did not increase as the infection progressed. For the

fluorescence intensity measurements of the GFP-positive cells, though, the GFP2 sgRNA

rBEV was only slightly reduced compared to the untargeted control rBEV. Conversely,

the GFP3 and GFP4 sgRNAs had significantly reduced fluorescence intensity compared to

both GFP2 and control (Figure 2.2C & D).

Importantly, parental Sf9 cells infected with each of the p10-GFP (data not shown) and

p6.9-GFP rBEVs produced fluorescence intensity measurements that were both increased

compared to the same infections in either Sf9-Cas9 or Sf9-dCas9 cells and were also all

similar to the control (i.e., untargeted) rBEV. Finally, release of progeny BV was not

statistically different for any of the viruses replicating in any cell line (Figure A.3). Taken

together, these data indicate that production of GFP was influenced by the presence of

both (d)Cas9 and sgRNA and was unaffected in the absence of either of these molecules.

2.4.3 Extension of CRISPRi and CRISPRd to endogenous AcM-
NPV ie-1 and vlf-1 genes

Next, the ability of the CRISPRi and CRISPRd systems to affect the expression of endoge-

nous AcMNPV genes was assessed (Figure 2.3). Spacer sequences were selected to target

the ie-1 and vlf-1 genes encoding immediate-early protein 1 (IE-1) and very late factor 1

(VLF-1), respectively. The ie-1 gene encodes a transcriptional activator, and is essential

for viral DNA replication, late gene expression, and subsequent progeny virus production.

The vlf-1 gene encodes a transcriptional activator for the very late class of genes but has no

effect on late gene promoters. Production of progeny virus and GFP transcribed from the
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p10 promoter was measured to assess the phenotypic impact of these targets in Sf9-dCas9

cells. Similar to previous experiments, the proportion of GFP-positive cells was reduced

at 24 hpi for the IE1 sgRNA, however it increased by 48 hpi and was indistinguishable

from the control. The proportion of GFP-positive cells was not affected for either IE2,

VL1, or VL2. Reduced fluorescence for the rBEVs encoding nontemplate strand-targeting

sgRNAs (IE1 and VL1), but not the sgRNAs targeting the template strand (IE2 and VL2)

was observed. Finally, analysis of progeny virus production showed that the IE1 sgRNA

reduced the infectious virus titer (IVT) ∼90% compared to the control at 48 hpi. The

difference in IVT for the other targets was not statistically significant (Figure 2.3A).

For CRISPRd in Sf9-Cas9 cells, a marked reduction in GFP-positive cells was observed

for both IE1 and IE2 sgRNA rBEVs, but not VL1 or VL2, at all time points. Fluorescence

intensity was also significantly reduced for each sgRNA compared to the untargeted control.

Since VLF-1 stimulates transcription from very late promoters but has no effect on late

genes, rBEVs encoding the VL1 and VL2 sgRNAs and the p6.9-GFP expression cassette

were prepared and used to infect Sf9-Cas9 cells. Importantly, analysis of fluorescence

indicated no difference compared to the control rBEV for both VL1 and VL2 (data not

shown). Finally, the IVT was reduced by ∼99% compared to the control for IE1 and IE2,

and ∼64% for VL2. The measured IVT for VL1 was not statistically different from the

control (Figure 2.3B).

Parental Sf9 cells infected with each of the ie-1 and vlf-1 -targeted sgRNAs showed flu-

orescence and IVT levels that were consistent with control (i.e., non-disrupted/repressed)

levels, indicating that both (d)Cas9 and sgRNA are required for disruption or downregula-

tion of ie-1 and vlf-1 (Figure 2.3C). Additionally, since both fluorescence intensity and IVT
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Figure 2.3: CRISPR-mediated targeting of the AcMNPV ie-1 and vlf-1 genes.
Percent GFP-positive, fluorescence intensity, and IVT for rBEVs in A. Sf-dCas9, B. Sf9-
Cas9, and C. parental Sf9 cells.

76



were similar for all of the rBEV infections in Sf9 cells, it is unlikely that the phenotypes

observed in Sf9-Cas9 or Sf9-dCas9 cells are the result of genetic heterogeneity between the

rBEVs or differences in viral gene expression and/or DNA replication.

2.4.4 CRISPRd is more effective than CRISPRi for obstructing
progeny BV release

Finally, rBEVs with sgRNAs targeting the vp80 gene were prepared and analyzed with

CRISPRi and CRISPRd. The vp80 gene encodes the capsid-associated protein VP80,

and its disruption prevents capsid assembly but has no effect on late gene expression. The

fluorescence intensity was similar for all vp80 -targeting rBEVs compared to the untargeted

control in each cell line, and showed no differences in either Sf9, Sf9-Cas9, or Sf9-dCas9

cells (Figure 2.4A). Similarly, the IVT of infected Sf9 cell culture supernatants for each

rBEV was similar, indicating unimpaired BV release in the absense of Cas9 or dCas9. The

nontemplate strand-targeting VP2, VP3, and VP4 rBEVs reduced IVT ∼79%, ∼68%, and

∼57% compared to the control rBEV, respectively, in Sf9-dCas9 cells, while VP1 was similar

to the control and to the IVT yielded from its infection of parental Sf9 cells. Infection with

VP1 of Sf9-Cas9 cells, on the other hand, reduced the IVT by ∼98% compared to the

untargeted control, and VP2 by ∼96% (Figure 2.4C). The latter result represents an ∼85%

improvement over the result in Sf9-dCas9 cells. Finally, flow cytometry analysis indicated a

reduction in total number of particles in culture supernatant for VP80 targets as compared

to non-targeted control experiments in Sf9-Cas9 cells (Figure 2.4B).
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2.5 Discussion

The present study sought to develop an efficient and robust technology for targeted genome

engineering that would be capable of scrutinizing the effect of gene disruption or repression

on viral gene expression and replication. To this end, transgenic Sf9 cell lines constitutively

expressing the cas9 or dcas9 gene were developed. To test the efficacy of CRISPRd and

CRISPRi using this approach, Sf9-Cas9 and Sf9-dCas9 cells were infected with rBEVs

encoding both the sgRNA and target for disruption or repression. This strategy would

ensure that every cell would receive the genetic code required for (d)Cas9 and sgRNA

expression and thus present the highest probability for having the necessary resolution in

the assay to observe the effects of the target gene disruption or repression.

Since downregulation of host protein expression due to infection with AcMNPV is a

characteristic of the BEVS [404], experiments to assess expression of (d)Cas9 using RT-

PCR and western blot were conducted. Consistent with prior studies, downregulation of

dcas9 and cas9 was observed by 24 hpi, however the baculovirus immediate-early promoter

supported transgene expression until 72 hpi [16, 405]. As the amount of dCas9 protein

present could impact the effectiveness of CRISPRi, the repression of gfp transcribed from

immediate-early (OpIE2), late (p6.9) and very late (p10) promoters were evaluated to es-

tablish the efficiency of repression for promoters differing in temporal and relative strength

expression characteristics. Significant reduction in fluorescence intensity was observed for

each promoter. Additionally, the possibility of a ‘strand bias’ was observed in the BEVS

system, in which robust transcriptional repression can only be achieved by targeting the

sgRNA/dCas9 complex to the nontemplate strand. This phenomenon has been observed in
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various other prokaryotic and eukaryotic systems previously [314, 396]. Experiments con-

ducted with Sf9-Cas9 cells (CRISPRd) showed decreased fluorescence intensity measure-

ments compared to the control and the population of GFP-positive cells was significantly

reduced. Notably, GFP2 was less than 5% GFP-positive, however fluorescence intensity

was higher in Sf9-Cas9 cells than in Sf9-dCas9 cells. This observation is presumably due

to the mechanisms by which CRISPRd and CRISPRi function; for CRISPRi, successful

targeting blocks transcript elongation and leads to a reduction in mRNA produced and

translated by the cell. This ultimately leads to an overall reduction in fluorescence inten-

sity. Gene disruption mediated by CRISPRd results in indel mutations from dsDNA break

repair, and protein expression is impacted by translation but not transcription [277, 314].

Any gene copies that are not successfully targeted or the indel mutation is silent would be

transcribed and translated at wild-type levels.

Finally, endogenous AcMNPV ie-1, vlf-1 and vp80 genes were targeted for transcrip-

tional repression and gene disruption. The IE-1 protein is the major transcriptional regu-

lator of AcMNPV and is responsible for trans-activation of several known early genes [406,

407]. Importantly, it is one of several genes required for late gene expression and viral

genome replication [407, 408]. Deletion of the ie-1 gene results in loss of infectivity [384].

The VLF-1 protein is a regulator of very late gene transcription and is responsible for the

‘transcriptional burst’ observed for the very late class of genes; purified VLF-1 stimulated

transcription of the very late polh promoter in a concentration depended fashion but had

no apparent effect on the late 39k promoter [409, 410]. Complete deletion of the vlf-1 gene

may also impair assembly of BVs, although DNA replication and late gene transcription

appeared to be reduced but permitted [385]. On the other hand, the vp80 gene encodes a
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capsid-associated protein that is essential for BV production but is not essential for viral

late gene expression [85]. Selection of these endogenous genes provided the ability to ob-

serve the efficacy of CRISPRi and CRISPRd in several ways; repression/disruption of ie-1

should impact the entire infection cycle of the rBEV, while targeting vlf-1 should reduce

expression from the very late p10 promoter but not the p6.9 promoter. Finally, disruption

of vp80 expression should impact the production of progeny BV but not inhibit late gene

expression.

Infections with rBEVs encoding sgRNAs targeting each of these genes yielded the ex-

pected result in all three cases; significant reduction in both GFP and progeny virus pro-

duction for IE-1 targets, reduced BV production but unimpaired late gene expression for

VP80 targets, and targeting VLF-1 led to a reduction in fluorescence intensity for GFP

expressed from the p10 promoter but not p6.9. Interestingly, although lower IVT was mea-

sured for VL1 and VL2 rBEVs in Sf9-Cas9 cells (∼42% and ∼64%, respectively) and for

VL1 in Sf9-dCas9 cells (∼50%), only the VL2 rBEV IVT was statistically different from the

control. This could indicate that either the resolution in the assay is not sensitive enough

to detect this difference or that enough VLF-1 was produced to permit replication and

production of progeny virus to near wild-type levels. Nevertheless, these results agree with

a previous study in which deletion of the vlf-1 gene had no effect on late gene transcription

but substantially reduced expression from the very late p10 promoter [385]. Unsurprisingly,

the template-targeting sgRNA VP1 did not result in reduced progeny virus production in

Sf9-dCas9 cells. Targeting the vp80 gene with nontemplate-targeting sgRNAs VP2, VP3,

and VP4, however, reduced IVT by ∼79%, ∼68%, and ∼57%, respectively, however the

result with VP4 was not statistically significant. Given that transcriptional repression ef-
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ficiency has been observed to be inversely correlated to the distance of the target spacer

sequence from the transcriptional start site [314], it may not be entirely surprising that

this sgRNA was less effective.

In addition to the apparent strand bias in the experiments with Sf9-dCas9 cells, the

proportion of cells displaying a GFP-positive phenotype at 24 hpi was substantially lower

for the IE1 rBEV, while fluorescence was substantially reduced at all time points and for

both targets in Sf9-Cas9 cells. Analysis of BV release at 48 hpi also showed ∼90% decrease

in the IVT for IE1 compared to controls for CRISPRi and ∼99% for CRISPRd. This

latter result is significant since a report in which transformed Sf9 cells expressing a ∼470

bp dsRNA molecule targeting the AcMNPV ie-1 gene exhibited strong viral repression at

early stages of infection but subsequent recovery of viral proliferation was observed by the

late stages of the infection cycle [411].

Deletion of the vp80 gene has previously been shown to prevent BV production whilst

permitting replication of viral DNA and transcription of viral late genes at or near wild-

type levels [85]. Results presented here support these conclusions: production of GFP

was similar for each virus in Sf9-dCas9, Sf9-Cas9, and the parental Sf9 cells, however

production of progeny virus was decreased by >90% in Sf9-Cas9 cells. Interestingly, the

supernatant from Sf9 cells infected with the ∆vp80 -rBEV in that study appeared to have

undetectable IVT [85]. Assessment of infected culture supernatants at 4, 8, and 12 hpi here

and previously [152], however, revealed IVT ∼104−105 pfu/ml at each time point (data not

shown), indicating incomplete viral uptake before the onset of progeny BV release. Further,

the trans-complementation strategy resulted in a ∼25-fold decrease in BV seed production

and constitutive expression of the vp80 gene appeared unstable or toxic to Sf9 cells. Finally,
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higher MOI (MOI = 10) was required in order to produce recombinant protein at the same

level as the wild-type rBEV [85]. In this study, there was no difference in GFP production at

MOI = 3 and each of the rBEVs displayed no indication of impaired replication in Sf9 cells.

Taken together, this strategy may contribute to reduced downstream processing complexity

by minimizing rBEV contamination. Nevertheless, targeted disruption of vp80 reduced

the IVT by ∼98% and ∼96% for VP1 and VP2, respectively. Compared to CRISPRi,

these results indicate that CRISPRd may be more effective for reducing progeny virus

production. Finally, to ensure that targeting vp80 resulted in a reduction of particles

released to the culture supernatant as opposed to the release of defective particles that are

not infectious, flow cytometry was used to analyze supernatants from several control and

VP80-targeted infections in Sf9-Cas9 cells. The results indicated ∼90% reduction in particle

concentration in the vp80 -disrupted infections as compared to the control. Consistent with

previous reports in which the ratio of total particles quantified using flow cytometry to IVT

measured using EPDA ranged from 1 to 10 [402], the FC:IVT ratio in the samples analyzed

was ∼5-10 as well.

2.6 Concluding remarks

Taken together, the phenotypes observed in this report are consistent with disruption or

repression of the endogenous AcMNPV ie-1, vlf-1, vp80 genes. The results indicate that

CRISPRd may be more effective than CRISPRi for total disruption of target gene expres-

sion, whereas CRISPRi allows transcription of the targeted gene at levels that are lower

than wild-type, suggesting it may be more appropriate for targets that are not amenable
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to deletion. Consequently, the CRISPRd tool developed here may be more useful for eval-

uating the essentiality of endogenous AcMNPV genes and reducing BV contamination in

culture supernatants, whereas CRISPRi may be more effective for indentifying candidate

targets whose differential expression may contribute to prolonging the infection cycle and

accompanying bioprocess in order to increase yield of the target recombinant molecule.

Importantly, the same rBEVs can be used for both CRISPRd and CRISPRi, which should

allow for a more streamlined approach for scrutinizing baculovirus genes. Thus, these

technologies are a valuable addition to the BEVS biotechnology ‘tool-box’.

2.7 Supporting Results

2.7.1 Materials and methods

Bioinformatics

The S. frugiperda U6 small nuclear RNA (snRNA) promoter was identified by blastn queries

of the S. frugiperda draft genome sequence (Genbank accession GCA 000753635.2) [412]

using the U6-1 or U6-2 snRNA sequences of Bombyx mori [369] as the query sequence.

Putative promoter elements were identified by comparing the consensus sequences of the

B. mori or Drosophila melanogaster U6 promoters [370] to sequences upstream of the S.

frugiperda sequences identified by BLAST. All multiple sequence alignments and consensus

sequence determinations were performed using the msa package in the R programming

environment [413].
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Transient transfection, flow cytometry, and analysis

Sf9-dCas9 cells were seeded on tissue culture treated 6-well plates (∼7.5×105 cells/well)

and transfected with ∼2 µg of plasmid using Escort IV transfection reagent according to

manufacturer’s directions. After incubating at 27 °C for 5-6 hours, the medium was aspi-

rated and fresh SF900 III was added. Plates were incubated for an additional 48 hours

post transfection (hpt), after which the cells were harvested, fixed in 2% paraformaldehyde

(Fisher Scientific) prior to further analysis. Samples were analyzed using a BD FACScal-

ibur flow cytometer and analyzed using FlowJo software, as above. Median fluorescence

intensity of the control was used for gating and the percentage of the population with

fluorescence intensity above and below that threshold was recorded.

2.7.2 Results and Discussion

Lepidopteran but not Dipteran U6 promoters display activity sufficient for
CRISPRi

It was initially hypothesized that robust transcriptional repression would require strong ex-

pression of the sgRNA molecule. The predominance of employing endogenous U6 snRNA

promoters for sgRNA expression in insect cells already in the literature [338, 341, 364,

366] implied that an endogenous RNA Polymerase III (RNAP III)-dependent promoter

or from closely-related homologues would enable high level expression. However, no S.

frugiperda RNAP III promoters had been reported as yet [412], and so experiments to

test U6 snRNA promoters from the closely related lepidopteran B. mori and more dis-
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tantly related dipteranD. melanogaster [370] were conceived, in addition to searching the

S. frugiperda genome for its own U6 snRNA gene. The U6-2 promoter of B. mori (BmU6-2)

and U6-3 promoter of D. melanogaster (DmU6-3) had previously been employed to produce

sgRNA or shRNA molecules, and were chosen for analysis in Sf9 cells [330, 341, 344, 414].

A blastn search of the S. frugiperda genome using the sequence of the B. mori U6-1 or U6-2

snRNA [369] as the search query yielded 4 putative U6 snRNA sequences with very high

query coverage (97-100%) and percent identity (90-97%), suggesting that the sequences

could be a U6 snRNA gene (Figure 2.5). These sequences, along with ∼500 nucleotides

upstream to encompass the putative promoter region, were taken for further analysis. The

upstream sequences were aligned with the consensus sequences of either the B. mori or

D. melanogaster U6 promoter to identify promoter elements. Analysis of one of the pu-

tative hits identified sequence that resembled the proximal sequence element A (PSEA)

and TATA box consensus sequence of B. mori and the interspecies insect PSEA/TATA

consensus sequences for RNA Polymerase III-dependent promoters [370]. Importantly, this

putative promoter sequence was located in the correct orientation adjacent to the putative

snRNA sequence of B. mori U6 and (Figure 2.6). No similarity to the D. melanogaster

U6 promoter sequences was found. The sequence immediately 5’ to the putative snRNA

sequence and ∼400 nucleotides upstream was selected for analysis as a putative SfU6 for

sgRNA expression in experiments along with BmU6 and DmU6.

To test the 3 U6 promoters (SfU6, BmU6, and DmU6), plasmids encoding GFP under

the control of the OpIE2 promoter along with a sgRNA expressed from each of the U6

promoters were constructed. Spacer sequences to target dCas9 to the ORF of the gfp

gene on either the template or nontemplate strand were selected (Figure 2.7A), and the
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Figure 2.5: Putative U6 snRNA genes present in the Sf9 genome. Results from a
blastn query of the Sf9 genome with the U6A snRNA gene of B. mori identified 4 putative
results.
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Figure 2.6: Putative RNAP III-dependent promoter elements associated with
a Sf9 U6 snRNA gene sequence. The U6 promoter consensus sequence of B. mori
was used to identify possible promoter elements located adjacent to sequences identified
by blastn queries of the Sf9 genome with the B. mori U6A snRNA gene sequence.

resulting 6 plasmids were used to transfect Sf9-dCas9 cells. Fluorescence intensity was

analyzed 48 hours post transfection by flow cytometry. The SfU6-driven sgRNA targeting

the nontemplate strand at position 145 (GFP2) showed both a decreased proportion of

GFP-positive cells (Figure 2.7B), and those that were GFP-positive were significantly

lower in fluorescence intensity than the control (Figure 2.7C). The BmU6-driven GFP2

sgRNA also displayed a decrease in fluorescence intensity, however DmU6 GFP2 showed

no difference as compared to the control. The template targeting spacer sequence (GFP1)

expressed using all 3 U6 promoters, on the other hand, displayed fluorescence intensity

distributions indistinguishable from the control transfections.

In light of this result, 2 additional spacer sequence targets were evaluated (GFP3 and

GFP4) (Figure 2.8A). Once again, GFP3 showed both a decreased proportion of GFP-
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Figure 2.7: Lepidopteran U6 promoters appear to permit transcriptional repres-
sion in Sf9-dCas9 cells. A. Schematic representation of the location of template (GFP1)
and nontemplate (GFP2) strand-targeting sgRNAs in the gfp ORF. B. Percentage of the
population displaying GFP-positive phenotype and C. fluorescence intensity less than the
median for the control plasmid encoding no sgRNA. Data is the average of at least 3 in-
dependent replicates at 48 hpt. ** denotes p<0.05, *** denotes p<0.01.
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positive cells as well as an overall decrease in fluorescent intensity, however GFP4 was

similar to the control (Figure 2.8B & C). To ensure that GFP2 and GFP3 did not show

decreased fluorescence because of poor transfection efficiency, plasmids were transfected

to parental Sf9 cells (i.e. not expressing dCas9). The results showed that both sgRNA

targets displayed similar fluorescence intensity patterns compared to the control in Sf9

cells, suggesting that the decrease in fluorescence intensity is due to the presence of dCas9

and sgRNA (Figure 2.8C).
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Figure 2.8: sgRNAs targeting the nontemplate strand permit transcriptional
repression but template strand targets do not. A. Schematic representation of
the 4 sgRNAs targeting the gfp ORF. B. Percentage of the population displaying GFP-
positive phenotype (left panel) and fluorescence intensity lower than the median for the
control (right panel) for in Sf9-dCas9 cells and. C. parental Sf9 cells. Data is the average
of at least 3 independent replicates at 48 hpt. ** denotes p<0.05, *** denotes p<0.01.
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Chapter 3

Efficient scrutiny of AcMNPV genes
using CRISPR-Cas9

The development of CRISPR-mediated gene disruption technology described in Chapter 2

represented a substantial improvement for evaluating AcMNPV gene function over current

platform technologies. First, our approach alleviated the burden of generating the gene

knockout bacmid in E. coli, which requires several experimental steps to produce and select

for the mutant bacmid followed by subsequent removal of the sequences used for selection.

Since generation of the knockout virus is done in parental Sf9 cells (ie., not expressing

Cas9), disrupting essential genes is also simplified; generating a trans-complementing cell

line to allow initial production of infectious virus is also no longer required. However, the

sgRNA required for sequence-specific gene disruption was delivered from the rBEV itself

and represents an inefficiency in the strategy; new rBEVs are required to assess different

sgRNA targets. Further improvement would require episomal expression of the sgRNA.

Therefore, we devised a transfection-infection assay approach in which the sgRNA was

delivered to the cell through transient transfection followed by infection with a rBEV.
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In this way, assessing genomic targets required only a new plasmid, and results could be

generated in less than 2 weeks as compared to more than 5 weeks with our previous strategy

and potentially several months with the traditional approach. The results were submitted

to the journal ACS Synthetic Biology. The manuscript is presented below in its original

form. Supporting information is provided in Appendix B.

Development of a sensitive assay for efficient scrutiny of AcMNPV genes using

CRISPR-Cas9

Mark R. Bruder1 and Marc G. Aucoin1

1 Department of Chemical Engineering, University of Waterloo.

3.1 Abstract

The baculovirus expression vector system is an established platform for production of

recombinant proteins. In addition, owing to its large capacity for genetic insertions, it is

increasingly used for transfer of large, multi-gene cargo to mammalian cells for a wide array

of applications. Baculoviruses have very large genomes and previous studies have demon-

strated improvements in recombinant protein production and genome stability through

removal of some nonessential sequences. However, recombinant baculovirus expression

vectors (rBEVs) in widespread use remain virtually unmodified. Traditional approaches

for generating knockout viruses (KOVs) require several experimental steps to remove the
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target gene prior to generation of virus. In order to optimize rBEV genomes by removing

nonessential sequences, more efficient techniques for establishing and evaluating KOVs are

required. Here, we have developed a sensitive assay utilizing CRISPR-Cas9-mediated gene

targeting to examine the phenotypic impact of disruption of endogenous AcMNPV genes.

For validation, 13 AcMNPV genes were targeted for disruption and evaluated for produc-

tion of GFP and progeny virus. This assay represents an efficient strategy for identifying

essential and nonessential AcMNPV genes through targeted disruption, and represents a

valuable tool for developing an optimized rBEV genome.

3.2 Introduction

The Baculovirus Expression Vector System (BEVS) is an insect-specific manufacturing

platform for expression of recombinant proteins for diverse applications in basic research

and clinical therapeutics [84, 243]. The most commonly used BEVS format is recombinant

Autographa californica multiple nucleopolyhedrovirus (AcMNPV; rBEV) and cultured cells

from a permissive host Spodoptera frugiperda (Sf9 cells) [84]. This system has been used to

produce a multitude of recombinant proteins, antigens for vaccination, and viral vectors,

and a growing number of BEVS products have received regulatory approval for use in hu-

man and veterinary applications [87, 238, 243]. Additionally, rBEVs have been increasingly

used for gene transfer to mammalian cells [250, 252, 415].

A major milestone in BEVS biotechnology was the development of an AcMNPV genome

that could be propagated as a bacterial artificial chromosome (BAC) in E. coli, known

as bacmid technology [69]. This bacmid was modified to carry sequences necessary for
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propagation and selection in E. coli and an attTn7 site to allow for insertion of DNA

sequences by Tn7 transposition. Since then, various improvements have been made to the

bacmid, including alternative or additional insertion sites to accept multiple transgenes

[73, 416–418], and recently the construction and rescue of a synthetic AcMNPV produced

by PCR and homologous recombination in yeast cells was reported [419]. Coupled with

phage-derived recombination proteins [382], the AcMNPV bacmid could be manipulated

to generate sequence-specific gene knockout viruses (KOVs) to study gene function [386,

388, 420, 421], identify gene deletions that enhanced recombinant protein quantity and

quality [78], and improved genome stability [70]. These results indicate that optimization

of the AcMNPV genome by removing nonessential sequences may be an attractive strategy

for improving the BEVS platform [131]. Despite this, BEV genomes in widespread use

remain virtually unmodified and their systematic optimization has remained a persistent

yet elusive goal.

Bacmid technology has undeniably improved the efficiency of generating sequence-

specific gene disruptions compared to traditional approaches [131]. However, generation of

KOVs in E. coli requires multiple experimental steps, and is not particularly amenable to

generating multiple different KOVs in parallel. As of 2012, KOVs had been constructed

for only 40 (∼25%) of AcMNPV genes, and a significant proportion of gene annotations

still rely on information from Bombyx mori NPV (BmNPV), for which a comprehensive

set of single-deletion KOVs exists [95–98, 422]. This strategy may be susceptible to errors,

however, as virus-host interactions may lead to variability in the phenotypes observed. For

example, the AcMNPV hcf-1 gene is not essential for propagation in Sf9 cells, however its

disruption impairs DNA replication in Tn-368 cells [100]. Similarly, Mamestra brassicae
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NPV shows different protein expression profiles in different infection hosts [99]. There-

fore, identification of nonessential baculovirus genes should be scrutinized experimentally

directly in the desired permissive host.

The comprehensive KOV library for BmNPV includes 141 individual bacmids each

having an unique single-gene disruption [98]. The growth properties of each KOV were

evaluated and categorized into 4 phenotypes according to its ability to expand infection

and express the egfp reporter gene. This study represents an attractive strategy for iden-

tifying nonessential genes, however its duplication for the up to ∼125 AcMNPV genes for

which KOVs have not been reported is a formidable task. Here, a transfection-infection

assay was devised in which Sf9 cells expressing the cas9 gene were transfected with a

plasmid encoding a sgRNA to target a desired AcMNPV gene for disruption. These cells

were subsequently infected with a rBEV, thus generating a KOV. The phenotypic impact

of gene disruption was analyzed by evaluating the expression of gfp from the p6.9 or p10

promoter, and measuring infectious virus titer (IVT) in culture supernatants. To evaluate

the approach, 13 candidate AcMNPV genes were selected as targets for disruption. Knock-

out mutants have been reported in the literature previously for each of these genes. This

system correctly differentiated between nonessential and essential genes, consistent with

prior reports. Significantly, since targeting any AcMNPV gene requires only the generation

of a new plasmid for sgRNA expression, this strategy may be more efficient compared to

the bacmid approach, and is amenable to scrutiny of many genes in parallel. Therefore,

this strategy may be useful for efficient experimental scrutiny of AcMNPV genes and al-

low for annotation of the phenotypic impact of targeted gene disruption, leading to the

further optimization of the rBEV genome. Finally, this approach should be broadly appli-
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cable to other baculoviruses for which genome sequence data and methods for producing

recombinant viruses exists [95, 98, 423–425].

3.3 Results and Discussion

The major goal of this study was to establish an efficient process for systematic optimiza-

tion of rBEV genomes. Herein, we describe the successful application of CRISPR-Cas9

technology for efficient scrutiny of the effect of AcMNPV KOVs on viral late gene ex-

pression and progeny virus production. This technique is performed in multi-well plates,

generates results in a few weeks and is amenable to screening many genes simultaneously.

Additionally, this approach should be broadly applicable for scrutinizing gene function and

genome optimization for the more than 60 baculoviruses for which genome sequence data

exists [95].

3.3.1 Preliminary screening of transfection and infection condi-
tions

Initial efforts established the process parameters that yielded consistent transfection effi-

ciency and IVT. Parameters that were considered for the transfection included the transfec-

tion reagent (TR), TR concentration, and plasmid DNA concentration. For the infection,

viable cell density (VCD), multiplicity of infection (MOI) of the rBEV, and time of harvest

(TOH) were evaluated. Finally, the time interval between transfection and infection was

optimized.
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To establish the transfection reagent (Escort IV, FuGENE HD, or GenJet Plus) and

transfection conditions (DNA:cell and TR:DNA) that yielded the highest percentage of

GFP-positive cells, Sf9-Cas9 cells were seeded in tissue culture treated 6-well plates and

transfected with 1.25 pg/cell plasmid (pOpIE2GFP) DNA with a 3:1 ratio of TR:DNA

according to manufacturer’s directions. At 4 hours post transfection (hpt), the transfection

mixture was replaced with fresh medium in half of the replicate wells for each TR. Cells

were harvested at 24 hpt and analyzed via flow cytometry. Transfections using Escort IV

and GenJet Plus reagents ranged from ∼30–50% GFP-positive with a mean fluorescence

intensity of ∼1×106 arbitrary units (au), whereas the FuGENE HD reagent yielded 65-75%

GFP-positive and ∼5 × 106 au mean fluorescence intensity (Figure 3.1). Exchanging the

medium at 4 hpt did not significantly affect transfection efficiency or fluorescence intensity

for any of the TRs. FuGENE HD was selected as the transfection reagent for further

experiments.

To investigate whether further improvements in transfection efficiency could be realized,

a face-centered central composite design of experiment (DoE) using FuGENE HD was

conducted to analyze the effect of the variables held constant in the previous experiment.

Three factor levels were chosen for both variables: 0.5-1.5 pg DNA:cell and 2:1-6:1 TR:DNA

(Table 3.1). The lowest DNA:cell ratio yielded the lowest transfection efficiencies although

there was slight improvement with increasing TR:DNA ratios. Similarly, the mid and

high DNA:cell conditions appeared to follow this trend with increasing TR:DNA ratios

however the mid and high TR:DNA conditions showed similar percent-positive and mean

fluorescence intensity values, possibly indicating a maximum had been reached with the

conditions tested or cytotoxicity associated with FuGENE HD itself.
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Figure 3.1: Transfection of Sf9-Cas9 cells with FuGENE HD yields the highest
transfection efficiency. %-GFP positive vs Mean fluorescence intensity for Sf9-Cas9
cells transfected using different transfection reagents.
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Figure 3.2: Improvement of transfection efficiency with FuGENE HD. %-GFP
positive vs Mean fluorescence intensity for Sf9-Cas9 cells transfected with different amounts
and ratios of DNA and FuGENE HD transfection reagent.
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Table 3.1: Experimental conditions screened for selection of transfection protocol

Label DNA:cell TR:DNA

T1 0.5 2:1
T2 0.5 4:1
T3 0.5 6:1
T4 1.0 2:1
T5 1.0 4:1
T6 1.0 6:1
T7 1.5 2:1
T8 1.5 4:1
T9 1.5 6:1

To establish infection conditions, a Box-Behnken DoE approach was implemented to

ensure reproducibility and ensure high yield of progeny virus (> 2× 108 pfu/ml infectious

viral titer, IVT). The parameters selected for analysis were VCD (∼1.5 − 3 × 106 vc/ml),

MOI (3-7pfu/cell), and TOH (36-60 hpi) (Table 3.2). For the 1.5 × 106 vc/ml condition,

the IVT ranged from ∼0.5−1.8×108 pfu/ml and increased with increasing MOI and TOH.

Similar results were observed for the medium (2.25× 106 vc/ml) and high (3× 106 vc/ml)

cell density conditions, however IVT surpassed ∼2×108 pfu/ml for all MOIs and TOH later

than 48 hpi at these cell densities (Figure 3.3). The fitted second-order response surface

identified both 1st and 2nd order terms as being significant for VCD and TOH (data not

shown). Since the objective was to find conditions that yielded > 2 × 108 pfu/ml rather

than a maximum, the conditions that were chosen for further experiments were VCD =

∼2.5× 106 vc/ml, TOH = 48 hpi, and MOI = 3 pfu/ml.
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Table 3.2: Experimental conditions screened for selection of infection protocol

Label VCD (×106) TOH (hpi) MOI (pfu/cell)

I1 1.5 36 5
I2 3 36 5
I3 1.5 60 5
I4 3 60 5
I5 1.5 48 3
I6 3 48 3
I7 1.5 48 7
I8 3 48 7
I9 2.25 36 3
I10 2.25 60 3
I11 2.25 36 7
I12 2.25 60 7
I13 2.25 48 5
I14 2.25 48 5
I15 2.25 48 5
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Finally, to ensure that the transfection itself did not have a significant effect on the

infectivity of the cells, an experiment was conducted in which cells were transfected under

the conditions described above with either a control plasmid encoding a sgRNA with a

scrambled spacer sequence (Control), TR but no plasmid DNA (Mock), or with sterile

water in place of both the TR and plasmid DNA (Infect). At 24 hpt the medium was

aspirated and replaced with fresh medium containing rBEV (MOI = 3). The infected cells

were harvested at 48 hpi and analyzed by flow cytometry and the IVT was measured using

end-point dilution assay (EPDA). Both of the transfected conditions (Control and Mock)

had similar mean fluorescence intensity and IVT values to the infected only condition

(Figure 3.4), indicating that transfection did not have a negative impact on the infectivity

of the cells. It is worth noting that visual inspection under the microscope indicated that

there was more cell growth in the Infect condition than Mock or Control (data not shown),

suggesting that the transfection reagent may have an impact on cell growth.

3.3.2 Evaluation of the time interval between transfection and
infection and preliminary evaluation of assay performance

The final experimental condition to establish was the time interval between transfection

and infection. Sf9-Cas9 cells were transfected with either a control sgRNA plasmid or a

plasmid with the sgRNA targeted to the AcMNPV ie-1 gene. The medium was aspirated

in replicate wells after various time intervals (4, 8, 16, or 24 hpt) and replaced with fresh

medium containing rBEV. Each condition was allowed to incubate with virus for an ad-

ditional 48 hours after which cells and supernatant were harvested for analysis via flow
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untargeted sgRNA (Control) and compared with cells that were not transfected (Infect).
Following infection, A. fluorescence and B. IVT were analyzed and compared.
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cytometry and EPDA, respectively. After applying gates to remove debris and intrinsic

cellular fluorescence, observations were binned according to fluorescence intensity: negative

(FL1-H < intrinsic cellular fluorescence); low (FL1-H < 105 au); medium (105 au ≤ FL1-H

< 106 au) and high (FL1-H ≥ 106 au). The percentage of observations in the low bin was

similar for the control sgRNA across each timepoint however there was an increase in the

percentage of observations in the low bin and concomitant decrease in the high bin for the

ie-1 target that was apparent in the 16 hpt and 24 hpt conditions (Figure 3.5). Similarly,

there was a statistically significant difference in progeny virus between control and ie-1

targets in the 16 hpt and 24 hpt conditions. These results indicate that the time interval

between transfection and infection should be 16-24 hours.

3.3.3 Evaluation of assay sensitivity

After establishing reproducible transfection efficiency of ∼70-75% and IVT (> 2 × 108

pfu/ml), 13 endogenous AcMNPV genes for which prior detailed deletion mutant studies

have been conducted were scrutinized (Table S3). Additionally, sgRNAs targeting the gfp

reporter gene expressed from the rBEV and untargeted control plasmid were analyzed.

Targeting the gfp gene resulted in decreased fluorescence but similar IVT to the control,

while targeting nonessential genes ac68, odv-e66, and p74 yielded similar fluorescence in-

tensity distribution and IVT profiles as the control (Figure 3.6). Targeting the structural

genes gp64, orf132, vp39, and vp80, on the other hand, yielded decreased progeny virus

production compared to the control only (Figure 3.7). Conversely, dnapol, ie-1 and lef-3

targets resulted in decreased fluorescence intensity and IVT (Figure 3.8). To examine the
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Figure 3.5: The time interval between transfection and infection affects suppres-
sion of GFP and IVT. Sf9-Cas9 cells were transfected with control and targeted sgRNA
plasmids and infected with a GFP-producing rBEV following incubation for different time
intervals. At 48 hpi, samples were harvested and analyzed for A. fluorescence and B. IVT.
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effect of spacer sequence location on the KOV phenotype, 2 additional spacer sequences

were selected to target the lef-3 gene at increasing distance from the 5’ end of the ORF.

Interestingly, the phenotype observed was less distinguishable from the control or nonessen-

tial targets for spacer sequences closer to the 3’ end of the lef-3 ORF (Figure S1). This

result is consistent with a previous study that reported that amino acids 1-125 of Lef-3 were

required for efficient stimulation of DNA replication and late gene expression. Truncated

Lef-3 protein that included the required amino acids also resulted in decreased expression

compared to the full length protein [426].
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Figure 3.6: Nonessential gene targets show similar A. fluorescence intensity and B. IVT
compared to the control while targeting gfp reduces fluorescence only.
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109



10

20

30

40

50

60

70

80

90

100

control DNA−pol ie1 lef3
Gene

%
 P

op
ul

at
io

n

Parameter High Medium Low Negative

A

***

***

***

1e+08

2e+08

3e+08

4e+08

5e+08

control DNA−pol ie1 lef3
Target

pf
u/

m
l

B

Figure 3.8: KOVs with disruptions in genes necessary for DNA replication reduces both
A. fluorescence and B. IVT.

110



Next, spacer sequences were selected to target the p6.9, pk-1, and vlf-1 genes. These

targets were analyzed for their effect on progeny virus production and gene expression

from late (p6.9) and very late (p10) promoters (Figure 3.9 and S2). Previous experiments

have indicated that these genes have an impact on viral DNA replication, transcription, or

are involved in the hyperexpression of the very late genes p10 and polyhedrin. The Vlf-1

protein functions as a very late gene transcriptional activator, and its disruption resulted

in impaired viral DNA replication and assembly into virions. Additionally, transcription

of the very late genes was greatly reduced but the late class was not affected [385]. Our

results indicated that targeting the vlf-1 gene yielded results in broad agreement with this

previous report: reduced fluorescence intensity with the p10GFP rBEV but the p6.9GFP

rBEV was similar to control targets. Further, there was a statistically significant reduction

in IVT compared to the control for both p6.9GFP and p10GFP rBEVs.

Similarly, the Pk-1 protein is required for progeny virus production and regulates the

expression of the very late genes through its kinase activity and as a transcription initiation

complex protein [427, 428]. Disruption of the pk-1 gene did not impact DNA replication

nor significantly impact late gene expression but severely reduced very late gene expression

[428]. Our results indicate that pk-1 disruption resulted in a significant impairment in

expression from the p10 promoter and progeny virus production, however expression from

the p6.9 promoter was also impaired in contrast to previous reports.

The P6.9 protein is involved in viral DNA packaging and virion formation and con-

tributes to transcription regulation. Notably, P6.9 is one of the substrates of phospho-

rylation by PK-1 [429–431]. Our results indicated a moderate impact on gfp expression

from both the late p6.9 promoter and very late p10 promoter and statistically significant
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decrease in IVT for both rBEVs. These findings agree with those reported previously:

although AcMNPV p6.9-null and p6.9 mutant deficient in Pk1-dependent hyperphospho-

rylation resulted in drastic reductions in IVT and very late (polh and p10) gene expression,

only the p6.9-null mutant resulted in reduced expression of the late vp39 gene compared

to wildtype AcMNPV [429–431].
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Figure 3.9: Disrupting non-structural auxillary genes primarily involved in very late gene
expression and genome packaging has variable effects on A. GFP production from the late
p6.9 promoter but results in significant reductions in B. IVT.

Finally, the assay was tested in parental Sf9 cells (ie., not expressing Cas9) with 10

randomly selected targeting plasmids in triplicate. The results showed fluorescence in-
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tensity and IVT similar to the control (untargeted) sgRNA experiments in Sf9-Cas9 cells

(Figure S3). Taken together, this indicates that reduction in fluorescence or IVT is due to

the presence of both Cas9 and sgRNA, and there is no effect when either component are

absent.

3.4 Conclusion

The focus of this study was to develop an efficient method for identifying essential and

nonessential baculovirus genes. To this end, a microplate-based assay using CRISPR-Cas9

mediated gene disruption was developed to evaluate the effect of endogenous AcMNPV

gene disruptions on late gene expression and progeny virus production. Several process

parameters for transfection and infection conditions were assessed, and the assay was used

to evaluate the effect of targeted disruption of AcMNPV genes for which there are previous

reports of gene disruption in the literature. The results obtained were consistent with those

reports for all targets. Importantly, this method is amenable to evaluating several genes

with minimal experimental steps and in parallel. This assay is an efficient method for

identifying essential and nonessential baculovirus genes, and should be broadly applicable

to the study of other baculoviruses.
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3.5 Methods

3.5.1 Cells and culture conditions

Sf9 and Sf9-Cas9 cells were maintained in suspension culture in Gibco SF900 III serum

free medium (Fisher Scientific, Whitby ON) in borosilicate glass Erlenmeyer flasks (VWR,

Mississauga ON) in a non-humidified 27 °C incubator equipped with an orbital shaker at

130 rpm. Puromycin (5µg/ml; Sigma-Aldrich, Oakville ON) was routinely added to the

Sf9-Cas9 culture to ensure expression of the cas9 gene.

3.5.2 Plasmid construction

All plasmids used in this study were constructed using the NEBuilder HiFi DNA Assembly

Master Mix (New England Biolabs, Whitby ON) according to manufacturer’s directions.

Primers used for construction of all plasmids were synthesized by Integrated DNA Tech-

nologies (IDT; Coralville, IA) and are listed in Table S1.

To construct plasmid p10GFP, sequences upstream and downstream of the AcMNPV

p10 gene was amplified from AcMNPV genomic DNA and assembled in a Gibson assembly

reaction with the coding sequence for a green fluorescent protein (gfp) [399]. To construct

plasmid p6.9GFP, the promoter region of the AcMNPV p6.9 gene was amplified from

AcMNPV genomic DNA and inserted in place of the p10 promoter in plasmid p10GFP.

Plasmid OpIE2GFP was constructed by replacing the ie-2 ORF from plasmid pOpIE2E2.3

[397] with the (gfp) gene.
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To construct plasmids expressing the sgRNAs, the SfU6-sgRNA was PCR-amplified

from p6.9GFP-sgRNA and assembled with a PCR-amplified fragment consisting of an

ampicillin resistance gene (ampR) and pBR322 origin of replication (ori) for propagation

in E. coli. For retargeting of sgRNAs, primers encompassing the spacer sequence and either

sequence homologous to the 5’ end of the cas9 handle or 3’ end of the SfU6 promoter se-

quence were used to re-generate the full length, linear pSfU6-sgRNA plasmid with altered

spacer sequence via PCR. After treatment with dpnI restriction endonuclease (New Eng-

land Biolabs) to remove template DNA, the fragment was gel extracted and re-circularized

using Gibson assembly. Spacer sequences for AcMNPV gene targeting were designed using

the CHOP-CHOP online platform (https://chopchop.cbu.uib.no/), and spacer sequences

were selected based on distance from the 5’ end of the ORF, predicted efficiency of target-

ing, and predicted off-target sites within the AcMNPV genome [432]. The spacer sequences

used in this study are given in Table S2.

3.5.3 Transient transfection

Sf9-Cas9 cells were seeded on tissue culture treated 6-well plates (Fisher Scientific) at the

desired density and transfected using Escort IV (Sigma Aldrich), FuGENE® HD (Promega,

Madison WI), or GenJet™ Plus (FroggaBio, Concord ON) transfection reagents according

to manufacturer’s directions. After incubating at 27 °C, cells were harvested, fixed in 2%

paraformaldehyde (Fisher Scientific) prior to further analysis.
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3.5.4 Recombinant baculovirus generation, amplification, and quan-
tification

Plasmids p6.9GFP or p10GFP were co-transfected with flashBACGOLD™ (Oxford Expres-

sion Technologies Ltd., Oxford UK) genomic DNA in to Sf9 cells seeded in tissue culture

treated 6-well plates according to manufacturer’s directions. Supernatant from each trans-

fection was harvested 4-5 days post transfection and used to infect early-exponential phase

(∼1.5− 2× 106 cells/ml) suspension Sf9 cultures at low multiplicity of infection (MOI) to

amplify the rBEVs for 3-4 days or until the viable cell density dropped to ∼85-90%. After 2

sequential rounds of amplification, the rBEV titer was quantified using end-point dilution

assay (EPDA). Briefly, Sf9 cells were seeded to each well of a 96-well plate (Fisher Scien-

tific) at a density of 2.0× 104 cells/ml. Separately, the rBEV was serially diluted (10−2 to

10−8) in fresh SF900 III medium and 10µl of each dilution was added, in 12 replicates, to

the 96-well plate. Plates were incubated for 6-7 days at 27 °C, after which wells were scored

according to visualization of green fluorescence using a fluorescence microscope. Results

were converted from TCID50 and reported as plaque forming units per ml (pfu/ml).

3.5.5 Infections

Sf9-Cas9 cells were seeded on tissue culture treated 6-well plates at various densities and

infected with the p6.9GFP rBEV diluted to the desired multiplicity of infection (MOI) in

fresh SF900 III medium. After incubation at 27 °C for 36-60 hours post infection (hpi),

cells were harvested and fixed with 2% paraformaldehyde prior to further analysis.
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3.5.6 Transfection-infection assay

Sf9-Cas9 or parental Sf9 cells were seeded on tissue culture treated 6-well or 12-well plates

(Fisher Scientific) at a density of ∼2.5 × 106 cells/well (6-well) or ∼9.0 × 105 cells/well

(12-well). After allowing cells to attach for ∼1 hour, the cells were transfected with Fugene

HD transfection reagent according to manufacturer’s directions. After incubation at 27 °C

for 16-24 hours post transfection (hpt), the medium was aspirated and replaced with fresh

SF900 III medium containing rBEV (MOI = 3). The infected wells were incubated for a

further ∼48 hours after which cells and supernatant were harvested for further analysis.

3.5.7 Flow cytometry and analysis

Samples were analyzed using a BD Accuri™ C6 Plus flow cytometer (BD Biosciences, San

Jose CA) equipped with a blue laser with an excitation frequency of 488 nm and 510/15 nm

band-pass filter. Samples were run at the low flow setting (14µl/min) and 10000 events were

collected for analysis using the CSampler Plus autosampler. Analysis of flow cytometry

data was performed using FlowJo® V10 flow cytometry analysis software (FlowJo LLC,

Ashland, OR). For transfection-infection experiments, fluorescence intensity observations

were binned and analyzed according to the proportion of events in each bin. The bins

were defined as: negative (FL1-H < intrinsic cellular fluorescence); low (FL1-H < 105 au);

medium (105 au ≤ FL1-H < 106 au) and high (FL1-H ≥ 106 au)
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Chapter 4

CRISPR-mediated knockouts are
target specific

The phenotypes observed in Chapter 2 were consistent with CRISPR-mediated transcrip-

tional repression and gene disruption of the GFP reporter and target AcMNPV ORFs.

However, due to the lack of commercially available antibodies for target AcMNPV pro-

teins, the specificity of knockouts/knockdowns were not confirmed experimentally through

analysis of the abundance of target proteins. There are, however, commercially available

monoclonal antibodies for the AcMNPV envelope protein GP64. To provide further confir-

mation that generation of knockout viruses (KOVs) with CRISPR-Cas9 is target specific,

rBEVs were constructed to target the gp64 ORF. In addition to the expected phenotypes

of reduced IVT but unaffected late gene expression, analysis of GP64 abundance in the

membrane of Sf9 cells via immunofluorescence staining and total cell lysates via west-

ern blot was possible. Additionally, the manufacturing of recombinant proteins without

contaminating virus in the supernatant is a strategy that has received some attention in

the literature. A major drawback of the traditional approach for deleting essential genes,
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however, is the relatively lower expression yields as compared to replicative rBEVs and

requirement of a trans-complementing cell line expressing the essential gene to produce

initial virus seed stocks. Results from the vp80-null KOV in Chapter 2 suggested that re-

combinant protein yield may be less effected with the CRISPR-mediated KOV approach,

so rBEVs were constructed to express the HIV-1 Gag protein and target the gp64 or vp80

ORF to assess the production of Gag virus-like particles without contaminating rBEVs in

the culture supernatant. The results are formatted for forthcoming submission.

Evaluation of virus-free manufacture of recombinant proteins using CRISPR-

mediated gene disruption in baculovirus-infected insect cells

Mark R. Bruder1 and Marc G. Aucoin1

1 Department of Chemical Engineering, University of Waterloo.

4.1 Abstract

The manufacture and downstream processing of virus-like particles (VLPs) using the bac-

ulovirus expression vector system (BEVS) is complicated by the presence of large con-

centrations of baculovirus particles, which are similar in size and density to VLPs, and

consequently are difficult to separate. To reduce the burden of downstream processing,

CRISPR-Cas9 technology was used to introduce insertion-deletion (indel) mutations within

the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) gp64 open reading
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frame, which encodes the major envelope protein of AcMNPV. After comfirming the site-

specific targeting of gp64 leading to reduced budded virus (BV) release, the gag gene of

human immunodeficiency virus type 1 was expressed to produce Gag VLPs. This approach

was effective for producing VLPs using the BEVS whilst simultaneously obstructing BV

release.

4.2 Introduction

Virus-like particles (VLPs) are an emerging class of biotherapeutic modality for delivery

of therapeutic cargo such as chemotherapy, protein, and nucleic acid-based drugs, and as

antigens for vaccination [433, 434]. VLPs are highly ordered structures that typically self-

assemble from a single or multiple viral structural proteins to mimic the three-dimensional

structure of the natural virus from which the structural proteins are derived. Additionally,

VLPs may be enveloped or nonenveloped, and are replication/infection incompetent, as

they lack the genetic material of the natural virus. Finally, the particulate structure of

VLPs favours uptake by antigen presenting cells and can stimulate robust B cell and T

cell-mediated adaptive and innate immune responses [434, 435].

The Baculovirus Expression Vector System (BEVS) has many features that make it an

attractive platform for VLP production, including ease of manipulation and large capacity

for foreign gene insertion which allows simultaneous expression of multiple proteins from

the same recombinant BEV (rBEV) [87]. As such, the BEVS is a preferred platform for

production of VLPs, and a multitude of studies have reported successful production of

VLPs that mimic many enveloped and nonenveloped viruses [87]. Further, several BEVS-
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produced VLPs have received regulatory approval for human or veterinary use, or are in

various stages of clinical development [84, 234]. Nevertheless, significant process short-

comings must be addressed to realize the full potential of the BEVS for VLP production;

large amounts of progeny virus, proteins, and cell debris resulting from the lytic infec-

tion cycle contaminate the supernatant, requiring extensive purification steps to achieve

pharmaceutical-grade purity for clinical applications. In addition, enveloped VLPs and

baculovirus are often similar in size, density, and have the same constituent membrane

proteins, further complicating downstream processing [84].

To reduce the burden of baculovirus contamination on downstream processing, strate-

gies have been devised wherein a gene encoding a baculovirus structural protein required

for viral genome packaging, nucleocapsid assembly, or release of budded viruses (BV) is

deleted from its genome. To enable initial production of infectious virus seed stocks, a

trans-complementing cell line, in which the deleted gene is constitutively expressed, is re-

quired. The mutant rBEV is then used to infect parental cells (ie., not expressing the

essential gene) for production of the recombinant protein/therapeutic. Using this ap-

proach, the AcMNPV vp80 and gp64 genes have been deleted to produce enhanced green

fluorescent protein (EGFP) and HIV-1 Gag VLPs, respectively [85, 86]. Although these

strategies were successful for reducing the contaminating baculovirus in the supernatant,

initial propagation of the rBEV to generate the required viral seed stocks was impaired

in both systems, and the overall yield of the recombinant protein from the knockout virus

(KOV) may have similarly been affected [85, 86].

Here, a recently developed approach for generating rBEV KOVs using CRISPR-Cas9

was used to target the gp64 gene for disruption. After confirming that targeting the
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gp64 open reading frame (ORF) resulted in decreased GP64 abundance in infected cells,

expression of the green fluorescent protein (GFP) reporter gene was assessed. Consistent

with previous reports, disruption of gp64 reduced progeny virus release but did not affect

expression of GFP. Next, production of HIV-1 Gag VLPs was demonstrated with this

approach. The yield of Gag VLPs was similar for all rBEVs in Sf9-Cas9 cells and Sf9 cells,

further indicating that CRISPR-mediated disruption of structural genes may be an effective

strategy for reducing BV release while maintaining high expression of foreign genes.

4.3 Materials and methods

4.3.1 Cells and culture conditions

Sf9 and Sf9-Cas9 cells were maintained in suspension culture in Gibco SF900 III serum free

medium (Fisher Scientific, Whitby ON) in a non-humidified 27 °C incubator and shaken

at 130 rpm on an orbital shaker. Puromycin (5µg/ml; Sigma-Aldrich, Oakville ON) was

routinely added to the Sf9-Cas9 culture to select for expression of the cas9 gene.

4.3.2 Recombinant baculovirus generation, amplification, and quan-
tification

Transfer plasmids for rBEV generation were co-transfected with flashBACGOLD™(Oxford

Expression Technologies Ltd., Oxford UK) genomic DNA to Sf9 cells using Escort IV trans-

fection reagent (Sigma-Aldrich) according to manufacturer’s directions. Supernatant from
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each transfection was harvested 4-5 days post transfection and used to infect suspension

Sf9 cultures (∼1.5 × 106 cells/ml) at low multiplicity of infection (MOI) for 3-4 days to

amplify the rBEV to higher infectious viral titer (IVT). Following one more round of am-

plification, the rBEV IVT was quantified using end-point dilution assay (EPDA). Briefly,

Sf9 cells were diluted to a density of 2.0× 105 cells/ml and 100 µl was seeded to each well

of a 96-well plate (Fisher Scientific). Separately, the rBEV was serially diluted (10−2 to

10−8) in fresh SF900 III medium and 10 µl of each dilution was added, in 12 replicates, to

the 96-well plate. Plates were incubated for 6-7 days at 27 °C, after which wells were scored

according to visualization of green fluorescence using a fluorescence microscope. Results

were converted from TCID50 and reported as plaque forming units per ml (pfu/ml).

4.3.3 Infections

Sf9-Cas9 or Sf9 cells were infected with rBEVs at a density of ∼1.5−2×106 cells/ml viable

cells/ml at a MOI of 3 pfu/cell. Samples were harvested at the required times (hours post

infection; hpi) wherein cells were centrifuged at 300× g for 10 minutes and resuspended in

2% paraformaldehyde diluted in phosphate buffered saline (PBS) for ∼30 minutes prior to

analysis by flow cytometry. The cell culture supernatant was kept at 4 °C and cell pellets

for western blotting were frozen at −80 °C.

4.3.4 Western blot

Infected cells (∼1.5 − 2 × 106 cells/ml) were collected at ∼20-24 hpi by centrifugation

at 500 × g for 10 min at 4 °C. The cells were lysed in RIPA buffer (Fisher Scientific),
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quantified by Pierce BCA assay (Fisher Scientific), and ∼10 µg of protein was separated by

electrophoresis in 10% TGX Stain-Free precast mini SDS-PAGE gels (Bio-Rad, Mississauga

ON) according to manufacturer’s directions. After transfer to low fluorescence PVDF

membranes, Western blot analysis was performed with anti-GP64 (AcV5, Fisher Scientific)

primary antibody and goat anti-mouse IgG HRP secondary (Bio-Rad) and imaged on a

ChemiDoc MP Imager (Bio-Rad). The Image Lab software (Bio-Rad) was used for further

image processing.

4.3.5 Immunofluorescence

Infected cells (∼1×106) were collected at ∼12-15 hpi or ∼48 hpi by centrifugation at 300×g

for 10 min at 4 °C. The cells were washed twice with cold PBS + 0.5% Bovine Serum

Albumin (PBS-BSA) and incubated with anti-gp64 (AcV1, Fisher Scientific) conjugated

to APC diluted in PBS-BSA (1:1000) for ∼30 min on ice. Cells were washed 3 times in

PBS-BSA and resuspended finally in 200 µl PBS for analysis by flow cytometry.

4.3.6 Flow cytometry and analysis

Fluorescent cells were acquired using a BD Accuri™ C6 Plus flow cytometer (BD Bio-

sciences, San Jose CA) equipped with 488 nm and 640 nm lasers. Samples were run at the

low flow setting and 10000 events were collected and analyzed using FlowJo® V10 flow

cytometry analysis software (FlowJo LLC, Ashland, OR).
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4.3.7 Quantification of baculovirus particles using flow cytome-
try

Sample preparation for analysis via flow cytometry was described previously [402]. Briefly,

samples were diluted in PBS and fixed with paraformaldehyde for 1 hour, subjected to one

freeze-thaw cycle, and incubated with Triton X-100 to permeabilize the membrane. The

nucleic acid stain SYBR Green I was added and incubated at 80 °C for 10 min in the dark

to stain double stranded DNA (dsDNA). After cooling on ice, the samples were analyzed

via flow cytometry. Flow-Set Fluorospheres (Beckman Coulter, Mississauga ON) were used

for calibration and all samples were run in triplicate.

4.3.8 Quantification of Gag-VLPs with enzyme-linked immunosor-
bent assay (ELISA)

The supernatants of Sf9 and Sf9-Cas9 cells infected with Gag-expressing rBEVs were har-

vested by centrifugation at 1000× g for 10 min and filter sterilized with a 0.2 µm syringe

filter. Gag-VLPs were quantified using the HIV-1 p24 ELISA Kit (Xpress Bio Life Science,

Frederick MD) according to manufacturer’s directions. The absorbance was measured us-

ing a Synergy 4 hybrid microplate reader (BioTek, Winooski, VT) at a wavelength of 450

nm. An HIV-1 p24 protein standard of known concentration was used to calculate the Gag

concentration and estimate VLP yield.
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4.4 Results

4.4.1 Targeting the gp64 ORF is site specific

Initial experiments were conducted to confirm that sgRNAs designed to target the gp64

gene were target-specific and resulted in the disruption of progeny virus release. Accord-

ingly, the abundance of GP64 protein was analyzed by western blot and immunofluores-

cence staining in the cell membrane. Analysis of cell lysates from infected cells revealed

that GP64 present in Sf9-Cas9 cells infected with rBEVs targeting the gp64 ORF was

reduced to ∼1% compared to Sf9-Cas9 cells infected with control rBEVs. Parental Sf9 cells

infected with the GP64-1 rBEV, on the other hand, showed GP64 levels indistinguishable

from the control (Figure 4.1). Detection of GP64 in the plasma membrane of infected

cells similarly revealed reduced fluorescence consistent with lower GP64 abundance in Sf9-

Cas9 cells but not parental Sf9 cells (Figure 4.2). Taken together, these data indicate the

sgRNAs designed to target the gp64 ORF result in decreased abundance of GP64 protein.

4.4.2 Cas9-mediated disruption of gp64 impacts progeny virus
production but not late gene expression

Sf9-Cas9 cells infected with rBEVs encoding a gfp reporter gene transcribed from the late

p6.9 gene promoter and sgRNAs targeting the gp64 gene resulted in significant reduction

of infectious viral titer (IVT) at 48 hpi compared to the untargeted control. Specifically,

the mean IVT for control rBEVs in Sf9-Cas9 cells was ∼2.65 × 108 pfu/ml whereas the

IVT for the ∆gp64 KOV was 4.03 × 106 pfu/ml. Conversely, Sf9 cells infected with the
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Figure 4.1: CRISPR-mediated disruption of gp64 is target specific. A. Western
blot and B. total protein normalization data for control and gp64-null KOVs.
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Figure 4.2: CRISPR-mediated disruption of gp64 reduces GP64 abundance in
the membrane of Sf9-Cas9 cells. GFP vs RFP fluorescence intensity for control
and gp64 -targeted rBEVs expressing the reporter GFP (x-axis) and stained with APC-
conjugated anti-GP64 AcV1 antibody (y-axis). The width and height of the boxes and
whiskers represent the IQR and 1.5 × IQR boxplot for GFP and RFP distribution, re-
spectively. Uninfected control: uninfected cells stained with AcV1 mAb; Infected Control:
Infected with non-fluorescent control rBEV stained with AcV1; Control: Sf9-Cas9 cells
infected with untargeted sgRNA, stained with AcV1; GP64-1/GP64-2: Sf9-Cas9 cells in-
fected with gp64 -targeted sgRNAs, stained with AcV1; GP64-1 (Sf9): parental Sf9 cells
infected with GP64-1 rBEV and stained with AcV1.
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same rBEVs yielded IVTs that were indistinguishable from each other (3.03× 108 pfu/ml

and 1.93 × 108 pfu/ml for control and gp64 -targeting sgRNAs, respectively) and similar

to the untargeted control rBEV in Sf9-Cas9 cells (Table 4.1). Analysis of cell culture

supernatants at 8-12 hpi yielded IVT of ∼2.1− 6.9× 104 pfu/ml for all rBEVs in both cell

lines, indicating virus uptake was similar for all rBEVs in Sf9-Cas9 and Sf9 cells (data not

shown). Additionally, late gene expression appeared to be unaffected as there were small

but insignificant differences in fluorescence intensity between control and gp64 -disrupted

rBEVs in both Sf9 and Sf9-Cas9 cells (Figure 4.3A, B). Finally, to confirm that this

approach resulted in significant reduction of total particles in the supernatant as opposed

to only IVT, analysis of cell culture supernatants by flow cytometry revealed that particle

concentration was reduced ∼90% compared to the untargeted control rBEV in Sf9-Cas9

cells (Figure 4.3C). This evidence suggests that CRISPR-mediated disruption of the gp64

gene resulted in a reduction of particles in culture supernatants but does not significantly

impact late gene expression.

Table 4.1: Summary of fluorescence intensity and virus quantification data for rBEVs in
Sf9 and Sf9-Cas9 cells at 48 hpi.

rBEV
Sf9-Cas9 Sf9

FL. Intensity (au) IVT (pfu/ml) Particles/ml FL. Intensity (au) IVT (pfu/ml) Particles/ml

Control 434± 3.96 2.65± 0.59× 108 1.47± 0.76× 109 443± 6.90 3.03± 0.74× 108 -
GP64 367± 5.70 4.03± 1.89× 106 8.93± 2.16× 107 342± 13.70 1.93± 0.65× 108 -
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Figure 4.3: GP64-disrupted KOVs show reduced IVT but unaffected late gene
expression. A. Production of GFP, B. IVT, and C. total particle concentration for
control and gp64 -targeting rBEVs in Sf9-Cas9 and parental Sf9 cells (A and B) or Sf9-
Cas9 cells (C). Solid line: Sf9-Cas9 cells; dashed line: Sf9 cells; untargeted control (circles)
and gp64 -targeted (triangles) rBEVs
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4.4.3 Production of HIV-1 Gag VLPs

In light of these results, the gfp reporter gene was replaced with the HIV-1 gag gene to

investigate the production of Gag VLPs with this system. In addition to targeting the

gp64 ORF for disruption, rBEVs expressing gag and sgRNAs targeting the vp80 ORF

were also prepared. Infecting Sf9-Cas9 cells with rBEVs resulted in ∼99% reduction of

IVT for rBEVs targeting the gp64 and ∼94% for the vp80 target (Figure 4.4A) compared

to the same infections in Sf9 cells. Similarly, GP64 in the plasma membrane was reduced

by ∼99% for the gp64 -targeting sgRNAs. Interestingly, targeting the vp80 ORF resulted

in ∼65% reduction in fluorescence intensity compared to control infections in Sf9 cells,

indicating that targeting the vp80 ORF may have an impact on GP64 expression. Finally,

quantification of Gag VLPs by ELISA indicated VLP yields of ∼2.9−4.6×109 particles/ml

for all rBEVs in both Sf9 and Sf9-Cas9 cells (Table 4.2).

Table 4.2: Production of HIV-1 Gag VLPs in Sf9-Cas9 and Sf9 cells at 48 hpi.

rBEV
Particles/ml

Sf9-Cas9 Sf9

Control 4.10± 0.00× 109 4.61± 0.00× 109

GP64 3.26± 1.45× 109 2.90± 0.77× 109

VP80 3.64± 2.34× 109 3.49± 2.59× 109
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4.5 Discussion

Virus-like particles represent a promising platform for use as vaccine candidates because

they lack the genome but mimic the structure of wildtype viruses. This affords VLPs at-

tractive safety and immunogenicity profiles [436]. As such, VLPs comprised of structural

antigens from a wide variety of viruses have been produced in several heterologous expres-

sion systems, including plant, mammalian, and insect hosts. Among these, mammalian

and insect production platforms remain the most popular, particularly for enveloped VLPs,

due to their ability to display authentic and correctly folded antigens with complex post-

translational modifications (PTMs). While mammalian production hosts are more closely

related to the natural host of the virus and capable of human-like PTMs, the cost of mam-

malian bioprocesses can be very high and the presence of adventitious agents may be a

concern [437]. Insect hosts, and specifically the BEVS, is a scalable production system ca-

pable of exceptionally high expression levels, and as very few opportunistic pathogens can

propagate in both insect and mammalian cells, safety concerns are generally minimized

in this respect [437]. The presence of high concentrations of baculovirus particles that

are co-produced along with VLPs in the culture supernatant, however, complicates and

increases the cost of the downstream process required to purify the VLP [84].

To address this drawback, strategies have been devised to reduce or eliminate progeny

baculovirus production through the targeted deletion of genes encoding structural proteins

that are required for BV release, called knockout viruses (KOVs) [84–86]. This strategy

requires the development of a trans-complementing cell line to enable replication of the

rBEV. However, this approach may be less effective for rBEV seed production, and for-
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eign gene expression and overall yield is reportedly lower than with conventional, wildtype

rBEV systems [85, 86]. We recently developed a novel system for producing KOVs based

on CRISPR-Cas9 mediated introduction of indel mutations in the AcMNPV genome (sub-

mitted article). This system was able to disrupt progeny BV release and/or reduce late

gene expression through targeted disruption of several AcMNPV genes. Targeting the

vp80 gene, which encodes the nucleocapsid-associated protein VP80, with this approach

resulted in reduced BV release but did not appear to significantly impact expression of

the gfp reporter gene. To assess this strategy for its utility as an effective production

platform for VLP production with concomitant reduced BV release, we targeted the AcM-

NPV gp64 gene for disruption. After confirming successful obstruction of GP64 expression,

production of HIV-1 Gag VLPs was assessed.

Initial efforts established and confirmed successful targeting of the gp64 gene using

CRISPR-Cas9. To this end, the abundance of GP64 in infected cell lysates and in the

membrane of infected cells was measured. Our results indicated ∼99% and ∼90-95% re-

duction of GP64 in lysates and in the membrane of infected Sf9-Cas9 cells, respectively.

Importantly, the abundance of GP64 in Sf9 cells infected with rBEVs targeting gp64 was

indistinguishable from control infections, indicating that disruption of GP64 expression

was the result of CRISPR-mediated targeting of the gp64 ORF.

Next, the effect of targeting gp64 on late gene expression and progeny BV release was

measured. Disruption of GP64 resulted in >98% and ∼94% reduction of IVT and total

particles/ml, respectively. This data is consistent with a previous report in which BV

release was reduced by ∼50-98% for different gp64 gene truncations [438]. Similarly, GP64

appeared to be undetectable for the ∆gp64 KOV via western blot, however direct quan-
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tification of BV in the supernatant was not conducted in that report [86]. For late gene

expression, our results indicated that expression of the gfp reporter gene was not signifi-

cantly affected by gp64 disruption. Although the median fluorescence intensity was slightly

lower for gp64 -targeting rBEVs compared to the control, this difference in expression was

similar for both Sf9-Cas9 and Sf9 cell lines. This data could indicate that variability

between individual virus stocks may have accounted for these differences as opposed to

decreased late gene expression as a result of CRISPR-mediated targeting. Nevertheless,

these differences were not statistically significant. This is a significant result, as previous

reports indicated that high MOIs were required for similar EGFP yields between ∆vp80

KOV and the control virus [85], and production of Gag VLPs appeared to be lower via

western blot analysis between the ∆gp64 KOV and the control [86].

Finally, we assessed the production of HIV-1 Gag VLPs with concomitant reduced

BV contamination. The HIV-1 gag ORF encodes a 55 kDa polyprotein (Pr55 or Gag)

that is processed into several proteins, including the 17 kDa matrix protein (p17 or MA),

the 24 kDa capsid protein (p24 or CA), and the 7 kDa nucleocapsid protein (p7 or NC)

[439]. Expression of Gag alone is sufficient for assembly and budding of VLPs, and several

studies have demonstrated production of pseudotyped and non-pseudotyped Gag VLPs

in the BEVS and in uninfected insect cells [86, 436, 440–443]. In addition to targeting

gp64, rBEVs with sgRNAs targeting the vp80 ORF were prepared in order to compare

VLP production using both of these strategies. Similar to previous results, targeting the

gp64 ORF resulted in significant reduction of GP64 abundance in the plasma membrane

of infected cells and IVT. The IVT of vp80 -disrupted rBEVs was also significantly reduced

compared to control infections in Sf9 cells. Unexpectedly, immunofluorescence staining
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of GP64 in the plasma membrane of infected cells was observed to be lower in Sf9-Cas9

cells compared to Sf9 cells, suggesting that disruption of VP80 expression may impact

GP64 production. Reduced GP64 was not observed by western blot analysis of cell lysates

infected with a ∆vp80 KOV previously [85], however staining of GP64 in the membrane

of those cells was not conducted. On the other hand, analysis of VP39 by western blot

indicated lower abundance in cells infected with the ∆gp64 KOV [86]. The results here do

not appear to be associated with off-site targeting of the Cas9/sgRNA ribonucleoprotein

complex, as 2 other sgRNAs targeting the vp80 ORF showed similar results (data not

shown). Similarly, there were insignificant differences between GP64 measurements in the

cell membranes infected with control or vp80 /gp64 -targeted rBEVs (data not shown). As

such, this observation appears to be the result of a potential and as yet unreported inter-

action between vp80 disruption and GP64 expression, and may require further scrutiny to

assess this relationship. Nevertheless, both of these strategies were successful for producing

Gag VLPs with concomitant reduction in rBEV contamination. Importantly, although the

estimated yield of VLPs by p24 ELISA was lower compared to a control (ie., untargeted

rBEV expressing the gag gene), yields of VLPs were similar in Sf9-Cas9 and Sf9 cells for

all of the rBEVs, suggesting that these results might be due to variance among virus seed

stocks as opposed to the strategy itself.

4.6 Concluding remarks

In this report, CRISPR-mediated disruption of the gp64 gene was assessed. After con-

firming that this strategy resulted in target specific obstruction of GP64 and reduced BV
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release, production of HIV-1 Gag VLPs was assessed and compared with a similar strategy

in which the vp80 ORF was targeted for disruption. Both strategies resulted in high level

production of VLPs along with reduced rBEV contamination in culture supernatants.

This strategy may be impactful for simplifying the purification of recombinant proteins

and other complex biologics such as VLPs, and may be an improvement over previously

reported strategies in which initial virus seed production was impaired and overall yield

may be impacted.
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Chapter 5

Alternative promoters for improving
BEVS

Use of the very late polh or p10 promoters to control transcription of foreign genes in

the BEVS is near ubiquitous. A review of the literature found more than 70 individual

publications describing the production of single heterologous proteins or virus-like particles.

Of these, only 3 proteins (of more than 50) were produced using promoters other than

polh or p10 for the single protein studies, and p10 and polh were used for 97 of 105 viral

structural proteins for producing VLPs. Further, 7 of the remaining 8 used a tandem

vp39-polh (cappolh) promoter, leaving only 1 protein expressed by a promoter that did

not include p10 or polh [87]. This strategy is not without reason; by 48 hpi, >30% of total

cellular RNAs in baculovirus-infected cells are polyhedrin or p10 -encoding mRNAs [16].

Despite this incredible abundance of polh and p10-transcribed mRNAs, several studies have

demonstrated that alternative promoters may be more effective for producing recombinant

proteins of higher quality and/or yield. Examples were discussed briefly in Chapter 1.

Characterization of alternative viral promoters, however, has been generally limited to
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those that are transcribed by the host RNA Polymerase II alone or in tandem with a very

late promoter, such as the pIEx/Bac™ family of baculovirus transfer plasmids developed by

Novagen. These vectors consist of the hr5 -ie1 promoter in tandem with the p10 promoter.

While ie-1 enables expression of the foreign gene early in the infection cycle, it is generally

considered a ‘weak’ promoter and active transcription from the host RNAP II may be

downregulated or completely subverted early in the infection cycle. The p10 and polh

promoters are active only during the late stages of the infection cycle, potentially leaving

the intervening time as relatively unproductive for foreign gene expression. Alternatively,

expression of some foreign genes may be toxic to the cell and consequently have a negative

effect on the production bioprocess. As such, use of weaker promoters may be necessary to

avoid the accumulation of the foreign protein at a level that is toxic to the cell. To enable

further optimization of recombinant protein production, characterization of alternative

promoters that allow for optimization of the levels of recombinant protein produced is

desirable.

Additionally, as discussed in Chapter 1, co-infection strategies have been used exten-

sively for production of VLPs and multi-protein complexes. Co-infection allows for manip-

ulation of MOI and TOI parameters of individual rBEVs to provide some control of timing,

order, and stoichiometric ratios of multi-protein complexes. However, high MOIs of each

individual rBEV are required to achieve uptake of each rBEV to every cell; in practice, the

number of infected cells is generally lower than predicted using mathematical modelling

[87]. Integrating multiple foreign genes into the same rBEV for co-expression at least in

part mitigates this drawback, however it also removes the ability to modulate expression

by manipulating MOI or TOI. Employing different promoters to allow for expression of
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foreign genes that have different promoter ‘strength’ and/or temporal activation character-

istics may improve co-expression of proteins that assemble to form multi-protein complexes

such as VLPs with the correct relative abundance/stoichiometric ratios to improve overall

yield and quality.

To improve upon the current ‘catalogue’ of promoters available for foreign gene expres-

sion in the BEVS, we used previously published transcriptome data [16] to select AcMNPV

promoters having different relative transcription strengths. We assessed the selected pro-

moters through expression studies using model cytoplasmic and secreted proteins. This

work also prompted us to investigate if characteristics exist that directly result in the

spatiotemporal properties of baculovirus promoters. For application, we expressed the

adeno-associated virus rep78 gene from each of the promoters to attempt to improve repli-

cation of the AAV genome. This work was conducted with an industrial partner over

approximately 2 years. Due to the sensitive nature of the specific goals of the project,

only a small subset of results pertaining to expression of the rep78 gene are presented as

additional results at the end of this chapter.

Utility of alternative promoters for foreign gene expression using the bac-

ulovirus expression vector system

Mark R. Bruder1 and Marc G. Aucoin1

1 Department of Chemical Engineering, University of Waterloo.
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5.1 Abstract

The baculovirus expression vector system (BEVS) is a widely used platform for recombi-

nant protein production for use in a wide variety of applications. Of particular interest

is production of virus-like particles (VLPs), which consist of multiple viral proteins that

self-assemble in strict stoichiometric ratios to mimic the structure of a virus but lacks its

genetic material. While a significant amount of effort has been spent on optimizing expres-

sion ratios by co-infecting cells with multiple recombinant BEVs and modulating different

process parameters, co-expressing multiple foreign genes from a single rBEV may offer more

promise. However, there is currently a lack of promoters available with which to optimize

co-expression of each foreign gene. To address this, previously published transcriptome

data was used to identify promoters that have incrementally lower expression profiles and

compared by expressing model cytoplasmic and secreted proteins. Bioinformatics was also

used to identify sequence determinants that may be important for late gene transcription

regulation, and translation initiation. The identified promoters and bioinformatics analyses

may be useful for optimizing expression of foreign genes in the BEVS.

5.2 Introduction

The Baculovirus Expression Vector System (BEVS) is a versatile manufacturing platform

for clinically important therapeutic proteins, viral vectors for gene therapy, and antigens

for vaccination. In addition to being scalable, cost efficient, and capable of high product

yields, the ability to rapidly produce a recombinant BEV (rBEV) carrying large foreign
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DNA inserts has catapulted the BEVS platform toward mainstream acceptance in the

biotechnology industry [243]. The current COVID-19 pandemic has underscored the im-

portance of the BEVS for manufacturing antigens for vaccination: the SARS-CoV-2 vaccine

NVX-CoV2373 developed by Novavax and produced using the BEVS platform is poised to

be just the 4th vaccine approved for Emergency Use Authorization (EUA) by the US Food

and Drug Administration (FDA), and would be the first protein subunit vaccine approved

[444].

Although the BEVS has been used as an expression vector for thousands of recombinant

proteins, the vast majority of research has focused on expression of a single foreign gene

using the very strong, very late, polh or p10 promoters [8, 87]. Despite this, many studies

have suggested that earlier promoters may be more effective for producing some foreign

proteins, particularly those that require extensive post-translational processing and/or

secretion, as the very late promoters are most active when host cell processes may be

compromised [87, 131, 133, 134, 405]. For more complex biologics that are composed of

multiple foreign proteins such as virus-like particles (VLPs), co-infection with multiple

monocistronic baculoviruses is a strategy that is routinely employed [87]. Co-infection

allows for optimization of process parameters such as multiplicity of infection (MOI) and

time of infection (TOI) for each individual rBEV to modulate the timing of expression

and stoichiometry of each protein to maximize self-assembly and overall yield. Substantial

improvements in the production of adeno-associated virus (AAV) and rotavirus-like parti-

cles have been realized with this approach [87, 157, 158, 445]. Co-infection with multiple

monocistronic baculoviruses does have potential disadvantages, however: various studies

have suggested that as the number of viruses increases, the proportion of cells that are in-
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fected with each virus (or in equal ratios) decreases, leading to efficiency loss in production

of fully formed VLPs. Further, the burden of copying genetic material of multiple differ-

ent viruses may lead to faster cell death [446]. Polycistronic baculoviruses, on the other

hand, ensure that every protein necessary for the self-assembly of the VLP is expressed

in each infected cell, and various studies have reported higher yields using co-expressed

proteins from polycistronic baculoviruses than co-infections with multiple monocistronic

vectors [87]. Due to the predominance of the p10 and polh promoters on commercially

available transfer vectors, however, modulating expression parameters akin to MOI and

TOI is virtually impossible.

Despite the aforementioned utility of promoters that are active earlier in the infection

cycle for foreign gene expression, previous reports have focused mainly on identifying en-

dogenous or chimeric baculovirus promoters that achieve higher protein expression levels

than the native polh or p10 promoters [131, 137, 142, 143, 447]. For complex VLPs,

however, individual proteins may be required in very different amounts; for example, the

abundance of the four distinct proteins that make up rotavirus-like particles ranges from

60-780 molecules per particle, and the ratios of the integral membrane proteins hemagglu-

tinin (HA), neuraminidase (NA), and matrix (M2) of influenza A virus is approximately

4:1:0.04-0.4 (HA:NA:M2) [157, 448]. Moreover, for many non-enveloped VLPs such as

rotavirus-like particles, a fixed stoichiometry between the four constituent proteins is re-

quired for properly assembled and stable particles. This presents a considerable challenge

for co-expression of the required molecules from a polycistronic rBEV, as the expression

levels of multiple proteins, each having unique characteristics, must be modulated to satisfy

strict stoichiometric requirements. However, the catalogue of promoters that have been
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reported so far for the BEVS includes very few that have lower expression profiles than

p10/polh.

To improve upon the catalogue of rBEV promoters, we used previously reported tran-

scriptome data [16] to select a series of native AcMNPV promoters with different expression

characteristics. The promoters were evaluated and compared by expressing the model cy-

toplasmic protein green fluorescent protein (GFP) and secreted protein secreted alkaline

phosphatase (SEAP). Finally, we aimed to evaluate whether sequence determinants were

identifiable that govern the expression characteristics of late AcMNPV gene expression. In

addition to adding new promoters to the rBEV expression catalogue, to our knowledge this

is the first report of employing bioinformatics analyses for evaluation of AcMNPV promot-

ers. It is our hope that this report may help improve production of complex biologics such

as VLPs from polycistronic rBEVS by allowing for more modulation of expression of each

foreign gene, as well as spur on more comprehensive evaluation of gene expression profiles

to further our understanding of baculovirus gene expression and improve the BEVS as a

biotechnology platform.

5.3 Materials and methods

5.3.1 Plasmid construction

All plasmids used in this study were constructed using the NEBuilder HiFi DNA Assembly

Master Mix (New England Biolabs, Whitby ON) according to manufacturer’s directions.

Primers used for construction of all plasmids were synthesized by Integrated DNA Tech-
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nologies (IDT; Coralville, IA) and are given in Table C.1. The genomic regions for each

promoter are given in Table 5.2. The co-ordinates are based on the RefSeq entry for the

AcMNPV genome (NC 001623.1) [15].

To construct the promoter-GFP transfer plasmids, the selected promoter regions were

amplified from AcMNPV genomic DNA and inserted upstream of the gfp gene encoding

green fluorescent protein (GFP) [399] in plasmid p6.9-GFP, described previously. For

SEAP-expressing plasmids, the gfp in each of the promoter-GFP plasmids was replaced

with the seap gene encoding secreted alkaline phosphatase (SEAP) amplified from pYSEAP

(Addgene # 37326).

5.3.2 Recombinant baculovirus generation, amplification, and quan-
tification

Transfer plasmids for recombinant baculovirus expression vector (rBEV) generation were

co-transfected with flashBACGOLD™ (Oxford Expression Technologies Ltd., Oxford UK)

genomic DNA to Sf9 cells using Escort IV transfection reagent (Sigma-Aldrich, Oakville

ON) according to manufacturer’s directions. Supernatant from each transfection was har-

vested 4-5 days post transfection and used to infect suspension Sf9 cultures (∼1.5 × 106

cells/ml) at low multiplicity of infection (MOI) for 3-4 days to amplify the rBEV. Follow-

ing two rounds of amplification, the rBEV infectious virus titer (IVT) was quantified using

end-point dilution assay (EPDA). Briefly, Sf9 cells were seeded at a density of ∼2.0× 104

cells/well to each well of a 96-well plate (Fisher Scientific). Separately, the rBEV was

serially diluted (10−2 to 10−8) in fresh SF900 III medium and 10 µl of each dilution was
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added in 12 replicates to the 96-well plate containing cells. Plates were incubated for 6-7

days at 27 °C, after which wells were scored according to visualization of green fluorescence

using a fluorescence microscope or cytopathic effects. Results were converted from TCID50

and reported as plaque forming units per ml (pfu/ml).

5.3.3 Infections

Sf9 cells in suspension were infected with rBEVs at a density of ∼1.5 − 2 × 106 cells/ml

viable cells / ml at a MOI of ∼3 pfu/cell. Samples were harvested at the required times

(hours post infection; hpi) wherein cells were centrifuged at 300 × g for 10 minutes and

resuspended in 2% paraformaldehyde diluted in phosphate buffered saline (PBS) for ∼30

min prior to analysis by flow cytometry where appropriate. The cell culture supernatant

was kept at 4 °C for further analysis where appropriate.

5.3.4 Flow cytometry and analysis

Cells infected with GFP-producing rBEVs were analyzed using a FACSCalibur™ flow cy-

tometer (BD Biosciences, San Jose CA) equipped with an argon-ion laser with an excitation

frequency of 488 nm. Samples were run at the low flow setting (12 µl/min) and 10 000

events were collected. Analysis of flow cytometry data was performed using FlowJo® V10

flow cytometry analysis software (FlowJo LLC, Ashland, OR). Results are reported as the

mean of at least 3 independent replicates.
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5.3.5 SEAP activity assays

The supernatants of infections with SEAP-producing rBEVs were harvested by centrifu-

gation at 1000× g for 10 min. SEAP activity was quantified using the SEAP Colorimetric

Reporter Assay Kit (Novus Biologicals, Toronto ON) according to manufacturer’s direc-

tions. The absorbance was measured using a Synergy 4 hybrid microplate reader (BioTek,

Winooski, VT) at a wavelength of 405 nm. The SEAP concentration was determined us-

ing a calibration curve of known SEAP concentration standards. At least 3 independent

replicates were run for each rBEV and each sample was run in triplicate for quantification

of SEAP.

5.3.6 Real-time reverse transcription polymerase chain reaction
(RT-PCR)

RNA was extracted from infected cells using the Geneaid Total RNA Mini kit (FroggaBio,

Concord ON) and 500 ng was used as template for first-strand cDNA synthesis using the

SensiFAST cDNA synthesis kit (FroggaBio) according to manufacturer’s directions. Real-

time PCR was performed using the SensiFAST SYBR Hi-ROX kit (FroggaBio) according

to manufacturer’s directions on an Applied Biosystems StepOnePlus™ Real-Time PCR

System (Fisher Scientific). Primer pairs used for qPCR are given in Table C.1. Analysis

was conducted in the R programming environment using the pcr package [449] using 28S

rRNA as the internal reference gene for data normalization [450].
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5.3.7 Bioinformatics

All bioinformatics analyses were conducted using the R programming environment using

several Bioconductor packages, including msa, genbankr, and ggbio [413, 451, 452].

5.4 Results

5.4.1 Selection of AcMNPV promoters

The transcriptome data mapped to AcMNPV open reading frames (ORFs) [16] as reads

per kilobase of transcript per million mapped reads (RPKM) values were used to select

AcMNPV promoters with different expression characteristics. The ORFs were first di-

vided into ‘classes’ based on the RPKM values (Table 5.1 and Figure C.1 ) to separate

them into groups according to relative transcript abundance. Selection of individual pro-

moters for evaluation was based on two main criteria: transcription should accelerate and

reach steady-state levels early in the infection cycle and maintain expression levels until

the later stages of infection. The promoters from ORFs having a variety of steady-state

RPKM values were selected for evaluation (Figure 5.1 and Table 5.2). The vast majority

of commercially available BEVS transfer plasmids include either the polh or p10 promoter,

while the gp64 and hr5 -ie1-p10 promoters are present in two (Table C.2). As the dif-

ference in expression levels between the gp64/ie1 and polh/p10 promoters is extremely

large (Figure 5.1A), the promoters selected for further analysis were expected to provide

intermediary levels of expression between these levels (Figure 5.1B).
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Table 5.1: RPKM value ranges for AcMNPV transcript ‘classes’

Class RPKM Range ORFs

Very High RPKM ≥ 50000 5
High 20000 ≥ RPKM < 50000 6

Medium 10000 ≥ RPKM < 20000 17
Low 1000 ≥ RPKM < 10000 65

Very Low RPKM < 1000 56

Table 5.2: AcMNPV genomic coordinates for promoters used in this study.

Promoter Coordinates † Predicted Promoter Motifs ‡ Direction Class

polh 4428..4519 TAAG + Very Late
p6.9 86889..87204 CAGT, TAAG − Late
ctx 2246..2447 TAAG − Late

orf75 63528..63912 TAAG − Late
vp39 76578..77103 TAAG − Late

39k/pp31 30070..30398 TATA, CAGT, TAAG − Delayed Early
gp64 109718..110022 TATA, CAGT, TAAG − Early/Late
38k 85984..86276 TAAG − Late

∆p10 118635..118808 TAAG + Very Late

†: based on NCBI ref. NC 001623.1 [15]; ‡: based on ref. [16]
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Figure 5.1: The promoters included on commercially available transfer plasmids
have drastically different transcription profiles. A. The transcript abundance of
AcMNPV polh, p10, gp64, and ie1 ORFs, which are among the only promoters available
on commercial transfer plasmids for foreign gene expression. B. The transcript abundance
profiles of AcMNPV ORFs selected for evaluation of the upstream promoter regions in this
study. Promoters were selected for expression profiles between polh/p10 and gp64/ie1.
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5.4.2 Evaluating the expression profile of AcMNPV promoters

Recombinant BEVs were prepared to express the model cytoplasmic protein GFP and

secreted protein SEAP to assess the expression characteristics of the selected promoters.

In addition to analysis of protein production, RNA was extracted from infected cells at 24,

48, and 72 hpi, and transcription of gfp or seap was analyzed using RT-PCR. Notably, for

intracellular GFP production, the 39k promoter appeared to be the most active promoter

during the earliest stages of the infection, with median fluorescence intensity of ∼100 au

by 12 hpi, whereas the GFP levels were less than 10 au for the other promoters. By

24 hpi, the p6.9 promoter had produced slightly higher levels of GFP compared to 39k.

The polh promoter, on the other hand, was among the lowest in terms of fluorescence

intensity until 24 hpi, after which expression increased rapidly and by 48 hpi the polh-GFP

rBEV produced the highest level of GFP. Production of GFP from the vp39 promoter was

similar to the 39k rBEV in the later stages of the infection, however the ctx and orf75

promoter rBEVs were lower than expected from their respective RPKM values (Figure

5.2A and Table 5.3). The ∆p10, 38k, and gp64 promoter rBEVs yielded fluorescence

intensity measurements that were lowest of the promoters tested, with ∆p10-GFP rBEV

reaching ∼30 au by 48 hpi. RT-PCR data revealed that gfp transcript abundance from

the p6.9 promoter was over two times greater than any other promoter at 24 hpi, and

∼7× higher than the polh promoter. By 48 hpi, transcription from the polh promoter was

only slightly lower than the p6.9 promoter and at 72 hpi was nearly 3× greater than p6.9

(Figure 5.2B).

Expression and secretion of SEAP followed a similar trend to that of GFP. By 24
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Figure 5.2: Production of intracellular GFP from selected AcMNPV promoters.
A. Median fluorescence intensity measured using flow cytometry and B. relative transcript
abundance measured using RT-qPCR at various times post infection.
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hpi, SEAP activity corresponding to ∼2-2.5 mg/l of SEAP protein had been secreted to

the supernatant for the p6.9, 39k, and vp39 promoter rBEVs. Each of the other rBEVs

had produced less than ∼0.5 mg/l SEAP (Figure 5.3A). By 48 hpi, SEAP activity had

more than doubled for the p6.9-SEAP rBEV to ∼5.5 mg/l, whereas 39k and vp39 had

produced ∼50% more (∼3-3.5 mg/l). The SEAP activity produced by the polh-SEAP

rBEV, on the other hand, had increased by 5× in the same time interval and was similar

to 39k and vp39. Despite a significant increase in transcription activity from the polh

promoter between 48 and 72 hpi (and apparent sharp decrease in p6.9-seap transcription),

SEAP activity reached ∼6.5 mg/l and ∼3.75 mg/l for p6.9-SEAP and polh-SEAP rBEVs

at 72 hpi, respectively (Figure 5.3A). Significantly, SEAP production from the 39k and

vp39 promoters was not substantially different from that of the polh promoter despite

significant differences in transcriptional activity (Figure 5.3B). Similar to the GFP results,

the ctx and orf75 promoters produced lower SEAP activity than expected, while the other

promoter rBEVs produced SEAP levels in a similar ranking to GFP expression; production

of SEAP from the gp64 and 38k rBEVs were lowest but their order swapped as compared

to GFP expression. Interestingly, RT-PCR results suggested lower seap mRNA abundance

was produced from the ctx promoter than orf75 (Table 5.3).

5.4.3 Bioinformatics exploration of sequence and genomic archi-
tecture determinants that contribute to promoter activity

The promoter activity results prompted the exploration of specific sequence or genome

architecture determinants that may impact promoter activity. Along with RPKM values
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Figure 5.3: Production of extracellular SEAP from selected AcMNPV promot-
ers. A. Yield of SEAP (mg/l) of culture supernatants measured using a colorimetric SEAP
activity assay and B. relative transcript abundance measured using RT-qPCR at 24, 48,
and 72 hours post infection.
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Table 5.3: Promoters ranked by GFP and SEAP production at 48 hpi.

Promoter

Rank (48 hpi)

ORF GFP SEAP

RPKM Protein qPCR Protein qPCR

polh 1 1 2 2 2
p6.9 2 2 1 1 1
ctx 3 5 4 5 7

orf75 4 6 6 6 4
vp39 5 4 5 3 3
39k 6 3 3 4 5
gp64 7 9 9 8 8
38k 8 8 7 9 9

∆p10 n/a 7 8 7 6

for transcript abundance, putative transcription start sites (TSS) and promoter motifs were

included in the transcriptome data set and were used for further analysis [16]. Additionally,

sequences encompassing the 5’ untranslated region (5’UTR), TSS, and upstream sequences

including the putative promoter motifs were extracted from the AcMNPV genome and

analyzed. Analysis was conducted using the ORFs divided into classes based on RPKM

values. Unsurprisingly, the ‘Very Low’ class had the highest proportion of promoters with

identified ‘TATA’ or ‘CAGT’ motifs, which indicate transcription from the host RNA

Polymerase II (RNAP II). The ‘Low’ and ‘Medium’ classes had fewer RNAP II promoter

motifs than ‘Very Low’, whereas the ‘High’ and ‘Very High’ classes had none (Figure C.2).

Similarly, the ‘TAAG’ motif, which is required for initiation of transcription from the viral

RNAP (vRNAP) was present in the promoter regions for all ORFs in the Medium, High,
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and Very High classes, and was found less frequently in the promoters of ORFs in Low and

Very Low classes. Interestingly, manual inspection of sequences around the TSS of several

genes indicated deviation from the ‘CAGT’ motif. All of the examined ORFs with apparent

deviations were designated as Low or Very Low transcript abundance. Inspection of the

sequence surrounding the TAAG motif of several genes in each class found no deviation

from this motif (data not shown). Next, the 5’UTRs were examined for differences between

each class. The length of the 5’UTR (i.e. the number of nucleotides between the TSS and

ATG start codon) was not statistically different between classes (Figure 5.4A). The A+ T

content, on the other hand, was significantly higher for the Very High class compared to

the other classes (Figure 5.4B).

Various studies in the literature have suggested that the homologous repeat (hr) regions

found in baculovirus genomes have roles as origins of DNA replication (oris) and as tran-

scriptional enhancers that may act in both cis and trans. To investigate whether there was

a relationship between transcript abundance and distance from a hr region, the genome

map of AcMNPV was colour-coded according to class (Figure 5.5) and the distance from

the 5’ end of the hrs to the start codon of each gene was calculated (Figure 5.6). There

did not appear to be any discernible relationship between ORF transcript abundance and

proximity to any of the hrs.

A previous study identified two octamers (5’-ATTGCAAG-3’ and 5’-ATTAGGAA-3’

herein referred to as upstream and downstream, respectively) located within the sequences

upstream of both the p6.9 and vp39 TSSs [453]. The authors hypothesized that these

could be protein binding sites for late gene transcription. To test this hypothesis, se-

quences upstream of each AcMNPV ORF (225 nucleotides upstream of the TAAG motif)
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Figure 5.4: Evaluation of the 5’UTRs of AcMNPV ORFs categorized accord-
ing to transcript abundance. A. Length (in nucleotides) and B. A/T content of the
5’UTR between the late gene promoter motif (5’-TAAG-3’) and translation initiation codon
(ATG).
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Figure 5.6: Distance (in nucleotides) between the start codon and 5’ end of
each homologous region for every AcMNPV ORF categorized according to
transcript abundance. The distance was calculated by subtracting the genomic location
of the 5’ end of each AcMNPV ORF from the genomic location of the 5’ end of each hr.
Positive values represent ORFs located behind (clockwise) to the hr and negative values
represent distances between ORFs that are located in front of (counterclockwise) the hr.
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were searched using these octamer sequences as queries. Only two matching sequences

(upstream of the p6.9 and vp39 TSSs) were found for both queries. A search of the entire

AcMNPV genome only yielded 1 additional match for the downstream motif, which was

located within the coding sequence of the p74 gene, and 4 for the upstream motif, also

found within coding sequences and not close to the TAAG motif for the adjacent down-

stream gene (data not shown). Two mismatches were required for both octamers to yield

possible matches in the ∼225 nucleotides upstream of the TAAG motif for the majority

of AcMNPV ORFs, with multiple putative matches found for each (Figure 5.7). This

same search was performed using the entire AcMNPV genome sequence: 1733 and 1439

matches were found for the upstream and downstream sequences, respectively, and were

roughly divided equally between the coding and noncoding strands for both. Allowing for

2 mismatches in the upstream octamer yielded 52 potential matches in the 29 individ-

ual sequences belonging to ORFs in the Very High, High, and Medium classes. Only 7%

(2 of 29) did not contain a putative match, whereas 38% and 31% had 1 or 2 matches.

Additionally, 11 different octamer sequences were present in more than 1 upstream se-

quence. Although the sequences were dispersed throughout the length of the upstream

regions (Figure 5.7), a multiple sequence alignment (MSA) revealed that the consensus

sequence was 5’-ATTGCAAN-3’. For the downstream octamer, 47 potential matches were

found however 34% of the sequences had no putative matches, and only 31% had either

1 or 2. Inspection revealed that 8 sequences were found in at least two upstream regions

(Table C.4 & C.3). Similar to the upstream motif, although the consensus sequence was

5’-ATTAGGAA-3’, these sequences were located randomly throughout the putative pro-

moter regions. Manual inspection of the upstream regions that only had a single putative
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match for either the upstream or downstream motifs revealed similar results.
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Figure 5.7: The approximate positions of the upstream octamer (blue) and down-
stream octamer (red) in regions upstream of the late gene promoter motif for
the most abundant AcMNPV ORFs.

Finally, sequences surrounding the late gene TSS and translation initiation site (TIS)

were extracted for each ORF and analyzed. Multiple sequence alignments were created

for each class and the consensus sequence for each MSA was calculated for comparison.

The consensus sequences for the nucleotides flanking the translation initiation site (TIS)

and transcription initiation site (TSS) are given in Figure 5.8A and B, respectively. Addi-
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tionally, the consensus sequence for the most abundantly transcribed ORFs excluding polh

and p10 was also included for the sequences surrounding the TSS. Conserved nucleotides

are highlighted in green and the most conserved locations have a box placed around them.

Nucleotide positions −2, −3, and −7 with respect to the TIS (A is +1) appear to be the

most conserved sites flanking the TIS, whereas −4, +6, +9, +10, and +12 (+1 is the first

A in the TAAG motif) are highly conserved sites flanking the TSS.

Very Low A A H W T K H A A M A T G T Y D 16
Low WWWW R W Y A A M A T G A W Y 16
Medium V R R M R A M A A Y A T G R C S 16
High R W H W R T W A A M A T GWM M 16
Very High H N H WW H A A W H A T G N H D 16

Very Low W A T WWM R D W H D T T K R Y WM K H T WWWW T A A GW A WW A WW T WW Y K K W Y W D V WWW D M 52
Low W H WW T WWWW A WWWWWW T T WWWWWWW T A A G A K A W H WWWWW D WW A T WW Y W A W A W 52
Medium T A W A W Y K T K V M K A M W A D A R W A H WW R T A A GW Y W K WW A M W T WWM M WW Y A M H H W R 52
High V WW R S M R H Y R Y V V C H A H K W R WWW A D T A A GW K W A W T WWW A W A A T C K Y C G Y T W A 52
Very High V M V H V H H M A V B R Y M W H D N W D D T W R A T A A G D D WWWWW H W V H W D Y Y R Y WW V W R T 52
Curated R T W K S Y A H T R Y S R M A A Y GWW T WW A R T A A G R K A A WWW A W A W R R H Y K Y M K H WWW 52

R: A/G, Y: C/T, K: G/T, M: A/C, S: C/G, W: A/T, B: C/G/T, D: A/G/T, H: A/C/T, V: A/C/G, N: A/C/G/T

B

A

Figure 5.8: Consensus sequences calculated from multiple sequence alignments.
A. Consensus sequence for the nucleotide sequences flanking the translation initiation site
and B. the late gene promoter motif. Consensus sequences were calculated from multiple
sequence alignments of sequences extracted from AcMNPV ORFs that were categorized
according to transcript abundance.

5.5 Discussion

Since the first recombinant proteins were produced in the early 1980s, considerable re-

search effort has been devoted to improving and optimizing expression of foreign genes in

the BEVS [8]. The majority of this focus has revolved around increasing expression of
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foreign genes over that achieved with the endogenous polh or p10 promoters. This goal

has led to studies identifying novel native promoters, chimeric tandem promoters, and

introducing additional regulatory elements in cis or in trans [131, 137, 142, 143, 447].

While this approach has yielded regulatory elements with higher expression profiles com-

pared to polh, many of these reports have used the model cytoplasmic protein GFP for

evaluation. Contrarily, several studies have suggested that weaker promoters than polh

may improve production of proteins that require extensive post-translational processing

and secretion [131, 133, 134, 405]. Moreover, some multi-protein complexes such as VLPs

have strict stoichiometric requirements for proper assembly, and overproduction of pro-

teins may lead to inefficiencies and wasteful accumulation of unassembled proteins and/or

formation of incomplete or improperly assembled particles. These deficiencies may impact

efficacy of the biologic or economic feasibility of the production process [157]. To improve

production of some recombinant proteins and biologics in the BEVS, it may be necessary

to identify additional promoters with transcription characteristics that allow for the most

efficient expression of each molecule. To augment the current catalogue of promoters for

the BEVS, previously published transcriptome data [16] was used to identify promoters

with transcriptional activities incrementally lower than the polh promoter. While several

of the promoters have been identified previously, to our knowledge at least 3 have not

been previously evaluated. Nevertheless, none of those selected have been compared in

any systematic way nor routinely used for recombinant protein production.

To evaluate and compare the promoters, rBEVs were prepared to express the gfp and

seap genes. For both reporter proteins, expression levels were largely consistent with the

expected ranking compared to the RPKM values for each ORF. However, production of
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GFP and SEAP from the ctx and orf75 promoters were lower than expected, while expres-

sion from the 39k promoter was higher, particularly during the early stages of infection.

This latter result agrees with a previous report in which seap mRNA transcribed from the

39k and p6.9 promoters were similar at 24 hpi [405]. Additionally, previous reports of novel

promoters for the BEVS have shown that expression strength depended on the upstream

sequence selected as the promoter; for example, a 120 bp sequence upstream of the orf46

(pSeL120) gene of Spodoptera exigua MNPV (SeMNPV) produced nearly 2× more GFP

fluorescence intensity in Sf21 cells compared to promoter sequences that were extended to

either 140 bp (pSeL140) or 301 bp (pSeL). Deletion of the 25 nucleotides adjacent to the

translation initiation site from pSeL, on the other hand, nearly abolished GFP produc-

tion entirely [143]. Further, GFP expression from each promoter varied in different cell

lines. In Se301 cells, pSeL140 and pSeL120 produced similar levels of GFP, while pSeL

produced less than half the fluorescence intensity at 96 hpi. In Sf21 and Hi5 cells, however,

pSeL120 remained high whereas pSeL and pSeL140 produced similar but lower levels of

GFP. Interestingly, GFP produced from the AcMNPV polh and p131 promoters, which is

the AcMNPV homolog of the SeMNPV orf46 gene, produced similar levels of GFP in all 3

cell lines tested [143]. Given that the transcriptome data used for analysis here originated

from AcMNPV infection of High Five cells and baculovirus protein expression profiles may

differ between infection hosts [16, 99], the divergence between the expected and observed

transcriptional strengths of the 39k, orf75, and ctx promoters in this report may be due

to host specific factors or promoter sequence selection. Similar to the SeMNPV orf46

promoter, careful scrutiny of the specific sequences included may improve their transcrip-

tional strength. Additionally, it is worth noting that the ctx gene is part of a polycistronic
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transcript with the ac-bro gene, which may have an impact on its transcription [145].

Unsurprisingly, expression of GFP with the polh promoter increased sharply at 24 hpi

and was nearly 2× higher than with the p6.9 promoter by 48 hpi. Despite a drastic in-

crease in transcriptional activity between 48 and 72 hpi, median GFP fluorescence intensity

increased only ∼25%. However, by 72 hpi each of the infected cell populations had experi-

enced precipitous declines in viability (data not shown). Increased permeability of intact

dead/dying cells leading to leakage of GFP molecules out of the cell may account for the

discrepancy between median fluorescence intensity and transcript abundance at 72 hpi,

as has been observed previously [152]. Nevertheless, production of GFP from the other

promoter rBEVs reached peak median fluorescence intensity by ∼36 hpi and maintained

this level until 60 hpi after which fluorescence intensity declined, consistent with the de-

cline in cell viability and results from the p6.9 and polh rBEVs. Interestingly, fluorescence

intensity measurements for the 39k and vp39 rBEVs reached very similar levels, however

production of GFP from the 39k promoter increased sharply by 12 hpi and reached peak

levels by 24 hpi. The ∆p10 promoter, described previously [140], is a truncated AcMNPV

p10 promoter in which the A/T-rich burst sequence for Vlf-1 binding between nucleotides

+39 and +72 (relative to the +1 of the TAAG TSS) has been removed. Removal of the

burst sequence from either the polh or p10 promoter regions strongly attenuates their

transcriptional strength, however they initiate transcription at the same time and level as

the full length promoters [409, 454]. Consistent with these observations, in this study the

∆p10 and polh promoters had similar fluorescence intensity values until 24 hpi after which

the polh promoter’s transcriptional activity sharply increased whereas the ∆p10 promoter

increased GFP production very gradually to reach a maximum fluorescence intensity that
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was ∼2.5% that of polh at 48 hpi.

Expression of SEAP, on the other hand, was substantially higher from the p6.9 pro-

moter than polh. Once again, despite a drastic increase in transcriptional activity between

48 and 72 hpi, SEAP activity from cell culture supernatants only increased by ∼25% to

∼3.5 mg/l for polh. This yield was only ∼50% that of the p6.9 promoter rBEV, and was

statistically indistinguishable from the yield from either the vp39 or 39k rBEVs. This latter

result supports an earlier study in which SEAP activity from transformed insect cells was

substantially higher when the seap gene was transcribed from the 39k promoter than polh.

Important differences in that study may have had an effect on those results; in addition to

transformed cell lines, each promoter was linked to the hr5 ori, which acts as a transactiva-

tor of several early genes including 39K, but may be detrimental for polh activity [405, 455,

456]. In that study, despite transcription of seap being highest with the polh promoter,

a significant proportion of the SEAP protein produced was found in intracellular protein

extracts, indicating that inefficient secretion may have played a large role in the lower ac-

tivity observed. Significantly, a recently published comparative transcriptome analysis of

baculovirus-infected cells revealed significant differences in gene expression between rBEVs

expressing model intracellular (mCherry) and secreted (Hemagluttinin; HA) protein prod-

ucts [457]. Notably, although the proportion of mapped reads were significantly lower

for mCherry transcripts compared to HA transcripts, western blot analysis indicated that

more mCherry protein was produced in both the intracellular and extracellular fractions

as compared to HA. Several host cell genes were regulated specifically in response to the

expression of secreted HA protein; many of the differentially regulated genes were involved

in the stress response to unfolded or misfolded proteins, providing further evidence that

166



protein folding and processing in the endoplasmic reticulum or Golgi apparatus is impaired

or at its capacity when the polh promoter is employed [457].

Based on these results, further analysis was conducted aimed at identifying any genome

architecture or sequence determinants that may impact transcriptional strength. The

5’UTR of the polh and p10 genes are A/T-rich [409, 458], and previous studies have

reported improved foreign gene expression by inserting A/T-rich leader sequences in the

5’UTR of the polh promoter [150, 459]. Additionally, productivity improvements have been

reported by inserting the hr1 or hr5 homologous regions upstream of various promoters to

enhance foreign gene expression in a cis-dependent manner [447, 456, 460–463]. However,

these discoveries often require extensive experimentation and their effectiveness can vary

widely depending on the promoters evaluated. For example, the effectiveness of including

a 21 nucleotide sequence derived from the 5’UTR of a lobster tropomyosin cDNA sequence

was based on extensive experience with expressing several variants of lobster Tropomyosin

proteins [459]. Insertion of the hr1 sequence upstream of promoter regions, on the other

hand, significantly improved GFP production from the p10 promoter, but had no effect

on either the p6.9 or polh promoters [447]. Interestingly, an earlier report suggested that

inserting the hr1 region downstream and in the reverse orientation in the polyhedrin locus

contributed to hyperexpression of the foreign gene [462]. Another study reported that the

hr5 sequence strongly enhanced the 39k promoter but significantly impaired expression

from the polh promoter [456]. We reasoned that if homologous regions could enhance tran-

scription from any AcMNPV gene, the location and orientation of the ORF with respect

to the nearest hr may provide insight toward chimeric promoter design. Additionally,

sequences surrounding the late gene promoter motif, upstream region, and sequences ad-
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jacent to the translation initiation ATG codon as well as the entire 5’UTR were analyzed

for characteristics that may determine expression levels of each class.

Initially, the sequence of the 5’UTR for each AcMNPV ORF was extracted from the

AcMNPV genome for further analysis of any differences that may be distinguishable be-

tween the aforementioned expression classes. The length of the 5’UTR (ie., the number of

nucleotides between the TAAG motif and the ATG initiation codon) was not statistically

different between classes, indicating that the length of 5’UTR sequence does not directly

impact expression levels of AcMNPV genes. The A/T content of the 5’UTRs, however,

was significantly higher for the Very High class compared to the other classes. This is

consistent with previous analyses of the p10 and polyhedrin 5’UTR sequences [458, 464],

however in addition to the polh and p10 5’UTRs, the Very High class includes the p6.9,

odv-e18 and odv-ec27 genes as well. Given that the p6.9 promoter was extremely effective

for both intracellular and extracellular protein production, evaluation of the odv-e18 and

odv-ec27 promoters may be pertinent. On the other hand, the A/T content between the

Low and Medium classes were also significantly different, however the High class was not.

It could reasonably be expected that if A/T content of the 5’UTR played a major role in

gene expression, the High class would have higher A/T content than the Low and Very

Low classes. Similar to the overall length of the 5’UTR, it appears that A/T content may

also not be a significant determining factor in gene expression levels.

Next, the AcMNPV genome was annotated according to the expression class each ORF

was classified as and the distance in nucleotides was calculated between the 5’ end of each

hr and the 5’ end of each AcMNPV ORF. Cursory inspection of the colour coded genome

map suggested that the most abundant ORFs were generally found in close proximity

168



to homologous regions, however no discernible patterns were identifiable for any class.

For example, the p10 ORF, which was found to be enhanced by the insertion of the hr1

sequence upstream of the promoter, is located ∼15 kilobases (kbp) from hr1 in the p10-hr1

orientation. The polh promoter, which was not influenced by hr1 in the same orientation

but contributed to hyperexpression of a foreign gene when it was placed downstream and

in the reverse orientation of the expression cassette, is located ∼4 kbp from the hr1 region

in the hr1-polh orientation. Similarly, the 39k ORF is located ∼46 kbp from hr5, which

strongly enhances its activity. Although the hr regions can clearly enhance transcription

of several promoters, there do not appear to be any obvious clues as to which specific

promoters they may stimulate based on their genomic location or orientation.

The previously reported upstream and downstream octamer sequences were hypothe-

sized to have a role in regulation of late gene expression [453]. The study noted that their

spacing was similar in both sequence contexts; the upstream octamer was located 201 and

190 nucleotides upstream of the ATG initiation codon of the vp39 and p6.9 ORFs, re-

spectively, whereas the downstream octamer was located 120 and 137 nucleotides from the

initiation codons. The placement of these sequences with respect to the TSS was also sim-

ilar: the 5’ end of the upstream sequence is 143 and 148 nucleotides from the TAAG TSS

motif (nearest to the initiation codon) for vp39 and p6.9 ORFs, respectively. It was rea-

soned that if these sequences were important for late transcription, they would be enriched

at positions adjacent to TSSs in the genome, and the upstream regions of highly expressed

ORFs would contain octamers with more optimal sequences and positions, whereas they

may be sub-optimal for less expressed ORFs. While allowing for 2 nucleotide mismatches

yielded putative matches in the majority of these sequences, the random positioning of
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the octamers did not give us confidence that these may be sequences important for gene

expression. Indeed, a genome wide search indicated that the upstream and downstream

octamers with 2 mismatches appear in the genome (on either strand) at a rate of ∼13

and 11 times per 1 kbp, respectively, or ∼1.6 and ∼1.3 per 250 bp on one DNA strand.

These rates are nearly identical to the average number of matches for each octamer in the

225 nucleotide upstream sequences. Given this result and the random dispersion of their

locations, it is unlikely that these octamers are late gene transcription regulatory elements.

Relatively little is understood about the sequence factors that govern translation initi-

ation (TIS) of baculovirus mRNAs. Although several studies have demonstrated that the

mammalian consensus TIS (ie., Kozak leader sequence) allows translation in the BEVs,

the sequences flanking the most highly expressed AcMNPV genes differ significantly from

the Kozak sequence [15]. While inserting the consensus Kozak leader sequence in the

polh promoter did not improve expression of the human basic fibroblast growth factor,

inclusion of bacterial, invertebrate, and A/T-rich synthetic leader sequences have resulted

in substantial improvements in recombinant protein production [150, 459, 465, 466]. In-

terestingly, similar to the polh promoter, the L21 sequence contains an A-rich stretch 9

nucleotides upstream of the initiation codon. This stretch is followed by sequence that is

virtually identical to the consensus Kozak sequence, potentially indicating that the Kozak

sequence may influence translation initiation of some foreign genes. Aside from this simi-

larity, however, these sequences have relatively few nucleotides in common [459]. Further, a

previous study systematically introduced all possible single-nucleotide substitutions in the

nucleotides flanking the initiation codon of the gp64 gene and found that substitutions at

only 2 positions within the gp64 ORF (positions +4 and +5) significantly impacted trans-
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lation efficiency. The authors noted, however, that more complex relationships involving

multiple nucleotide positions may have larger, additive, effects on translation initiation

[467]. Although gene expression is an inherently stochastic process and transcription and

translation are independent and discrete events [468], we reasoned that genes that are

transcribed less may also have less efficient translation initiation. Accordingly, sequences

flanking the ATG initiation codon were extracted from each AcMNPV ORF, and consen-

sus sequences were derived for MSAs from each expression class. Interestingly, although

analysis of the gp64 TIS suggested that nucleotides within the leader sequence upstream

of the ATG had little impact on translation initiation, nucleotides at positions −2, −3,

and −7 showed significant conservation, indicating they could be important for translation

initiation. Although no clear patterns between classes emerged, there are differences that

may be worthy of further exploration. For example, position −4 is a highly conserved A

or less conserved W (A or T) for the Very High and High classes, respectively. The G to

A substitution at the same position increased translation of GP64 by ∼10% [467]. Simi-

larly, substitution of G and T with any other nucleotide at positions +4 and +5 within

the gp64 ORF, respectively, increased expression by ∼1.3-2.8 fold. While these positions

within the p6.9 ORF are 5’-GT-3’, only the ac-bro ORF has G at position +4 and no other

sequence in the Very High and High classes are occupied by T at position +5. While these

observations could be coincidental due to the small number of ORFs in the Very High and

High classes, they could be worthy of further experimental scrutiny by introducing these

mutations in single substitutions and in combinations to measure their effect on foreign

gene expression.

Finally, determining promoter motifs and the underlining mechanisms that control gene
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transcription is a major goal of computational biology [469]. However, aside from the late

gene TSS motif (5’-TAAG-3’), regulation of late gene expression of AcMNPV is not well

understood [16]. Aside from the previously described octamer sequences found upstream

of the vp39 and p6.9 ORFs, a few studies have identified nucleotide regions that have

a large impact on transcription by using linker-scan mutation and deletion strategies to

systematically introduce targeted mutations and truncations within the promoter region

of AcMNPV promoters [141, 453, 454, 458, 464, 470–473]. Many of these studies have sug-

gested that only ∼15-20 nucleotides upstream and downstream of the TSS motif is required

for full strength promoter activity, except for the polh and p10 5’UTRs which have binding

sites for VLF-1 and are required for full activity [474]. However, each of these studies in-

troduced multiple mutations simultaneously and among adjacent nucleotides, potentially

obscuring complex and synergistic relationships between different nucleotide positions. For

example, mutation of 7 or 13 nucleotides in the regions 9 to 18 nucleotides upstream or

6 to 19 nucleotides downstream, respectively, of the TSS of the vp39 promoter resulted

in ∼50% reduction in transcriptional activity, while mutating 9/10 nucleotides between

positions −2 and −11 reduced expression to ∼10% compared to the control [454]. In ad-

dition to consensus sequences derived from MSAs from each expression class, a MSA and

subsequent consensus sequence was calculated for a curated group of promoter sequences

that included all of the promoter regions from the High and Very High classes with the

exception of the 2 very late promoters, p10 and polh. Previous studies have suggested that

the sequences surrounding the TAAG motif of these promoters have a lower affinity for the

vRNAP and function as inefficient late gene promoters [454, 474]. Similar to the analysis

of flanking TIS sequences, few clear patterns emerged, however some similarites may be
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worthy of further exploration. For example, position +7 is A in every sequence in the Cu-

rated class, and is T for polh and p10 and W (A or T) for the other classes. Similarly, −11

and −12 are conserved 5’-AA-3’ dinucleotide in the Curated class, however they are less

conserved as promoter strength decreases. Interestingly, mutations that overlapped both

of these sequences resulted in at least 50% reduction of vp39 promoter activity [454], and

while these observations may be coincidental due to the small number of highly expressed

AcMNPV ORFs, they may be worthy of experimental scrutiny to further examine their

importance to late gene expression regulation.

5.6 Concluding remarks

In this study, promoters with transcriptional activity lower than the polh promoter were

identified, characterized, and compared by evaluating expression of model cytoplasmic and

secreted proteins. Although the polh promoter yielded the highest abundance of GFP,

the p6.9 promoter produced nearly twice the amount of SEAP than polh, and the vp39

and 39k promoters yielded similar levels as polh. This adds further confirmation to previ-

ous reports in which weaker but earlier promoters resulted in higher yield and/or quality

of recombinant proteins than the polh promoter, particularly those that require exten-

sive post-translational processing and secretion. It is expected that the addition of these

new promoters to BEVS arsenal may be useful for optimizing co-expression of individual

protein constituents of complex biologics such as VLPs. Additionally, we used available

transcriptomics and genomics data to scrutinize several determinants that have been pre-

viously hypothesized or suggested to be involved in late gene transcription regulation. As
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high quality transcriptome and proteomic data becomes more available, this general work-

flow may be useful in elucidating sequence determinants governing late gene expression to

optimize promoter and baculovirus genome design.

5.7 Supporting Results

As noted in the introduction to this chapter, the experiments and analysis presented were

conducted as part of a larger project that was sponsored in part by an industrial partner.

As such, the results presented here serve only to provide further evidence for the utility of

the described promoters for optimizing expression of some foreign genes.

5.7.1 Materials and methods

Plasmid construction, recombinant baculovirus generation, amplification, and
quantification

The adeno-associated virus type 2 rep78 and rep52 genes were amplified from plasmid

pFBDLSR [139] and inserted into each of the promoter transfer plasmids described above

to generate rBEVS by homologous recombination. Additional control plasmids consisting

of the truncated Orgyia pseudotsugata NPV ie-1 gene promoter upstream of the rep78

gene and the polh-rep52 cassette from pFBDLSR were constructed in the same manner.

Recombinant baculovirus generation, amplification, and quantification of rep78 and rep52 -

expressing rBEVS was carried out as described above.
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Western blot

Infected cells (∼1.5−2×106 cells/ml) were collected at ∼72 hpi by centrifugation at 500×g

for 10 min at 4 °C. The cells were lysed in RIPA buffer (Fisher Scientific), quantified by

Pierce BCA assay (Fisher Scientific), and ∼20 µg of protein was separated by electrophoresis

in 10% TGX Stain-Free precast mini SDS-PAGE gels (Bio-Rad, Mississauga ON) accord-

ing to manufacturer’s directions. After transfer to low fluorescence PVDF membranes,

Western blot analysis was performed with anti-AAV2 Rep78 (catalog # 03-65169, Amer-

ican Research Products, Inc, Waltham MA) primary antibody and goat anti-mouse IgG

HRP secondary (Bio-Rad) and imaged on a ChemiDoc MP Imager (Bio-Rad). The Image

Lab software (Bio-Rad) was used for further image processing.

5.7.2 Results and Discussion

Production of the adeno-associated virus (AAV) gene therapy vector in insect cells using the

baculovirus expression vector system was first reported in 2002 as an alternative production

platform to the commonly used transient transfection based approach in mammalian cells

[139]. The transient mammalian process requires transfection of multiple plasmids to

each cell in order to produce AAV particles, which is inefficient and challenging to scale

up. Development of cell lines stably replicating the rep genes and capable of inducible

expression have been described, however cytotoxicity of the Rep proteins results in cell

death induced by apoptosis or in low-level expression of rep78 in these cell lines [475–

477]. The BEVS is an attractive system for AAV production since it combines transient

expression and scalability.

175



The first BEVS-based AAV production platform used a truncated ie-1 promoter (∆ie1)

from Orgyia pseudotsugata NPV for expression of the rep78 gene and the AcMNPV polh

promoter for expression of the rep52 gene in a co-expression rBEV [139]. The Rep-

producing baculoviruses produced lower titers than other recombinant baculoviruses, how-

ever, and the authors hypothesized that immediate-early expression of the Rep78 protein

may be negatively affecting the yield of rBEVS. The ∆ie1 promoter was therefore replaced

with a truncated AcMNPV p10 promoter (∆p10) promoter for low level expression of

rep78 late in the infection cycle. Using the ∆p10 promoter yielded a 2-fold increase in the

number of vector genomes per cell [140]. Separately, increasing the multiplicity of infection

of the Rep-producing rBEV (using the truncated ∆ie-1 promoter for production of Rep78)

improved AAV yields compared with modulating other process parameters, indicating that

the Rep78 level is a critical factor in maximizing AAV particle yield [158]. Since the ∆p10

promoter offers relatively low level of transcription, new rBEVs were prepared in which

the rep78 and rep52 genes are transcribed from incrementally stronger promoters to find

the optimal expression levels of Rep78 and Rep52 to improve AAV genome yield.

After amplification and quantification of each rBEV, cells were co-infected with each

promoter-rep78 rBEV (MOI = 2) and the polh-rep52 rBEV (MOI = 2). The cell viability

of infected cells at harvest (∼66-72 hpi) is given in Figure 5.9A. Interestingly, the viability

for cells infected with rep78 -expressing rBEVs transcribed from 39k, vp39, ctx, and p6.9

promoters was significantly lower than the control (DLSR). After experiment 3, each rBEV

was re-amplified and quantified from the original P1 stock to minimize virus degradation.

While the viability of the control, ∆ie1, ∆p10, 38k and orf75 rBEVs remained high for

experiments 4-6, higher expression levels of Rep78 appeared to result in reduced viability
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once again. Supernatant from each infection from experiment 5 was subsequently used to

infect fresh cells, which were collected and analyzed by western blot for expression of the

Rep proteins. Interestingly, no production of Rep78 was measured for 39k, ctx, and p6.9

promoter rBEVs (Figure 5.9B). It appears that high expression of Rep78 results in reduced

viability and instability of the rBEV, leading to loss of transgene expression.
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Figure 5.9: High Rep78 levels appear to result in reduced cell viability. A.
Viability of cells infected with rBEVs expressing rep52 and rep78 at harvest. B. Western
blot analysis of AAV Rep proteins from infected cell lysates at 72 hpi.

178



Chapter 6

Conclusions and Recommendations

The era of biologics is upon us. While significant productivity improvements were realized

in past decades through optimization of growth medium, feeding strategies, and down-

stream purification workflows, attention must now turn to engineering the production host

itself in order to keep up with demand for biologics and develop new classes with novel

properties. A common theme presented in this thesis is the relatively little attention di-

rected toward improving the baculovirus expression vectors themselves; significantly, the

genome remains virtually wild-type despite demonstrations of significant genome instabil-

ity during routine passaging and deletion of non-essential genes that improved expression

of some foreign genes. Additionally, the use of the polh and p10 promoters are virtualy ab-

solute despite demonstrations that promoters active earlier in the infection cycle improved

the yield and/or quality of many recombinant proteins. It is our contention that a general

lack of sophisticated genetic engineering technologies for the BEVS is a major contribu-

tor to this underdevelopment. For example, the traditional approach for scrutinizing the

function of AcMNPV genes involves deletion of the target gene in a bacmid propagating
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in E. coli, and the development of a trans-complementing cell line for generation of initial

virus seed stocks. This process involves multiple tedious and time consuming steps that

may take several months before infectious virus seed stocks are produced.

The major contribution of this thesis is the development of advanced genetic engineering

tools for targeted gene disruption and transcriptional repression. A microplate-based assay

was developed to enable efficient scrutiny of the effect of AcMNPV gene deletions on late

gene expression and progeny infectious budded virus release, with results achievable in 2

weeks. This assay should be used to identify AcMNPV genes that are not essential for late

gene expression or infectious progeny virus, as well as sequences that contribute to genome

instability. It is expected that optimization of the BEV genome through removal of non-

essential genes and sequences detrimental to stability will enhance foreign gene expression.

Following the development of a ‘minimal’ BEV genome, targeted transcriptional repression

can be used to survey its effect on the progression of the infection cycle. It is proposed

that delaying or slowing down the progression of the infection cycle might result in delays

in the viability drop of cells, thus prolonging the bioprocess and resulting in increased

recombinant protein yields. After identifying targets for reduced expression, it may be

possible to modulate their expression through mutating sequences involved in transcription

regulation. Specific sequences that are responsible for late gene transcription regulation,

however, remains poorly understood. While this was not a major goal of this thesis, a

framework that may be useful for identifying specifc sequence determinants that may be

involved in transcriptional regulation was presented. Several nucleotide positions that

appear to be well conserved among the most active promoters of AcMNPV were identified

that may be worthy of further analysis.
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Finally, optimization of process parameters such as MOI and TOI have resulted in

improved production of multiprotein complexes such as VLPs. This strategy generally

requires introduction of each foreign gene on multiple monocistronic rBEVs due to a lim-

ited number of promoters available for optimization of expression on polycistronic rBEVs.

Co-infection strategies, however, suffer from losses in efficiency due to decreases in the

proportion of cells that are infected by each rBEV. To address this, several promoters

were selected and evaluated to augment the current catalogue of available promoters with

expression profiles incrementally weaker than the polh and p10 promoters. This promoter

library can be used to optimize the expression of each protein constituent of multiprotein

complexes to improve assembly, quality, and overall yield of the target biologic. Design of

experiments could be used to develop models to predict the promoter/expression level re-

quired to optimize these parameters to reduce the experimental burden of the optimization

process. The bioinformatics analyses presented may also be useful for further optimization

of transcription or translation of target foreign genes.
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312. Dianov G. L. & Hübscher U. Mammalian base excision repair: the forgotten archangel.
Nucleic Acids Research 41, 3483–3490. doi:10.1093/nar/gkt076 (2013).

313. Hsu P. D., Scott D. A., Weinstein J. A., Ran F. A., Konermann S., Agarwala V., Li
Y., Fine E. J., Wu X., Shalem O., Cradick T. J., Marraffini L. A., Bao G. & Zhang
F. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology
31, 827–832. doi:10.1038/nbt.2647 (2013).

314. Qi L. S., Larson M. H., Gilbert L. A., Doudna J. A., Weissman J. S., Arkin A. P. &
Lim W. A. Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific
Control of Gene Expression. Cell 152, 1173–1183. doi:10.1016/j.cell.2013.02.
022 (2013).

315. Gilbert L. A., Horlbeck M. A., Adamson B., Villalta J. E., Chen Y., Whitehead
E. H., Guimaraes C., Panning B., Ploegh H. L., Bassik M. C., Qi L. S., Kampmann
M. & Weissman J. S. Genome-Scale CRISPR-Mediated Control of Gene Repression
and Activation. Cell 159, 647–661. doi:10.1016/j.cell.2014.09.029 (2014).

316. Gilbert L. A., Larson M. H., Morsut L., Liu Z., Brar G. A., Torres S. E., Stern-
Ginossar N., Brandman O., Whitehead E. H., Doudna J. A., Lim W. A., Weissman
J. S. & Qi L. S. CRISPR-Mediated Modular RNA-Guided Regulation of Transcrip-
tion in Eukaryotes. Cell 154, 442–451. doi:10.1016/j.cell.2013.06.044 (2013).

317. Konermann S., Brigham M. D., Trevino A., Hsu P. D., Heidenreich M., Cong L., Platt
R. J., Scott D. A., Church G. M. & Zhang F. Optical control of mammalian endoge-
nous transcription and epigenetic states. Nature, 1–17. doi:10.1038/nature12466
(2013).

318. McDonald J. I., Celik H., Rois L. E., Fishberger, G F. T., Rees R., Kramer A.,
Martens A., Edwards J. R. & Challen G. A. Reprogrammable CRISPR/Cas9-based
system for inducing site-specific DNA methylation. Biology Open 5, 866–874. doi:10.
1242/bio.019067 (2016).
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Table A.1: Primers used in this study

Plasmid Construct Sequence (5’-3’) Use (template)

pOpIE2-dCas9-
puro

ctgtcattatcttagtttgtattgtcatg
OpIE2 5’/3’ UTR (pOpIE2E2.3)

gctcatgttgtgtcgctg
tacagcgacacaacatgagcatggacaagaagtattctatcggactg

dCas9 (pdCas9:BFP)
ccctcaagcttgcctgatccacctaccttgcgcttcttcttg
ggatcaggcaagcttgagg

T2A/pac (pAc-sgRNA-Cas9)
acaaactaagataatgacagctggatccctcgagtcagg

pOpIE2-Cas9-
puro

tacagcgacacaacatgagcatggacaagaagtattctatcggactg Cas9-puro (pAc-sgRNA-Cas9)

rBEV transfer
plasmids

cactaacctaggtagctgagcgc
rBEV ORF603/ORF1629

cgctggactggcatgaac

OpIE2GFP-
sgRNA

cgaagttcatgccagtccagcggcaaggcgattaagttgggta
OpIE2 5’ UTR

gctcatgttgtgtcgctg
tacagcgacacaacatgagcatggtgagcgtgatcaagc

GFP CDS
caaactaagataatgacagttacttggcctggctgggcagc
ctgtcattatcttagtttgtattgtcatg

OpIE2 3’ UTR
gattaagttgggtaacgccagttc
gaactggcgttacccaacttaatcaatctgcttagggttaggcg

SfU6-sgRNA)
ctcagctacctaggttagtggagagtgcaccatatgcggt

pACUW51-p10

gttctagtggttggctacgtatactccgcgttggagtcttgtgtgcta
p10 region (AcMNPV genome)

tgctttatttgtaaccattataagctgctcgctatacactcgcatggag
gcagcttataatggttacaaataaagc

pACUW51 backbone
ggagtatacgtagccaaccactagaac

p10GFP-sgRNA

cgaagttcatgccagtccagcggatgaagtggttcgcatcct
p10 5’UTR

ggtgatggtgcatgattgtaaataaaatgtaatttacag
atgaatcgtttttaaaataacaaatcaattgttttataa

p10 3’UTR
gatgattaagttgggtaacgccagttcgacatgataagatacattg
atcatgcaccatcaccaccatcatatggtgagtgtgattaaaccag

replace p10 ORF with gfp gene
gttattttaaaaacgattcatggcgcgccttacttggcctggctgg
gaactggcgttacccaacttaatcatctgcttagggttaggcgttttg

SfU6-sgRNA
ctcagctacctaggttagtggagagtgcaccatatgcggt

p6.9GFP-
sgRNA

ccgaagttcatgccagtccagcgaaattccgttttgcgacg p6.9 5’ UTR to replace p10 5’
UTRccatatgatggtggtgatggtgcatgtttaaattgtgtaatttatg

Retarget
sgRNAs

gttttagagctagaaatagcaagttaaaataagg retarget sgRNA† (Cas9 handle)
cggtggtcgagcacga retarget sgRNA† (SfU6)

qPCR primers

cgacgttgctttttgatcct
28S

gcaacgacaagccatcagta
gacgatcgctaggcatttag

VP39
gcgtgttgcttgtgaaac
gacaacagggagaagattgag

(d)Cas9
ggaggttcttatcgaagttagtc
tctacgacatcaggttcgacgg

GFP
tccttcttggccttgtaggtgg

†: spacer sequence appended to 5’ end of sequence
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Figure A.1: Expression of Cas9 and dCas9 is obstructed by infection. Western
blot analysis of infected Sf9, Sf9-Cas9, and Sf9-dCas9 cells for production of A. (d)Cas9
and B. GP64.
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Figure A.2: CRISPRi-mediated repression of gfp transcribed from OpIE2 or p10
promoters. A. Percent GFP-positive cells and proportion with fluorescent intensity below
the median of the control for OpIE2GFP-sgRNA rBEVs and B. Percent GFP-positive and
median fluorescent intensity for p10GFP-sgRNA rBEVs with sgRNAs targeting the gfp
gene.
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Table B.1: Primers used in this study

Plasmid Construct Sequence (5’-3’) Use (template)

pOpIE2GFP

ctgtcattatcttagtttgtattgtcatg
OpIE2 5’/3’ UTR

gttgtgtcgctgtaacagatgc
cagcatctgttacagcgacacaacatggtgagcgtgatcaagcccg

gfp ORF
caatacaaactaagataatgacagttacttggcctggctgggcagc

p10GFP

ccgaagttcatgccagtccagcggcgttggagtcttgtgtgcta
p10 5’ UTR

tcgggcttaatcacactcaccatgattgtaaataaaatgtaatttacag
atggtgagtgtgattaagcccg

gfp ORF
ttacttggcctggctgggcagc
gcccagccaggccaagtaaatgaatcgtttttaaaataacaaatcaattg

p10 3’ UTR
tcgctatacactcgcatggag
ctccatgcgagtgtatagcgagcagcttataatggttacaaataaagc

plasmid backbone
cgctggactggcatgaac

p6.9GFP

ccgaagttcatgccagtccagcgaaattccgttttgcgacg
p6.9 5’ UTR

cgggcttaatcacactcaccatgtttaaattgtgtaatttatgtagc
gctacataaattacacaatttaaacatggtgagtgtgattaagcccg

gfp ORF & backbone
cgctggactggcatgaac

pU6sgRNA

gctttcgctaaggatgatttctggaattctaaagatctgcttaggg
SfU6-sgRNA

‘
cgctacggcgtttcacttctgaggagagtgcaccatatgcggtg
ctcagaagtgaaacgccgtag

plasmid backbone
ctttagaattccagaaatcatccttagc

Retarget sgRNAs
gttttagagctagaaatagcaagttaaaataagg retarget sgRNA† (fwd primer)
cggtggtcgagcacga retarget sgRNA† (rev primer)

†: spacer sequence appended to 5’ end of sequence

Table B.2: Protospacer sequences for CRISPR targets

Gene Target Protospacer Sequence (5’-3’) PAM Strand

GP64 +131 GGAAACGCTGCAAAAGGACG TGG Template
GP64 -160 GTTGTAGTCCGTCTCCACGA TGG Nontemplate
GP64 +384 TTTCGCGACAACGAGGGCCG CGG Template
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Table B.3: Comparison of AcMNPV and BmNPV KOV phenotypes

Target Phenotype

Gene ORF No.† AcMNPV KOV Description from literature Ref. BmNPV‡ This Study

ac68 Ac68/Bm56 No Impairment for BV [421, 478] A A
dnapol Ac65/Bm53 no DNA replication or BV release; late expression not measured [479, 480] C C
gp64 Ac128/Bm105 no BV release [481, 482] C C
ie-1 Ac147/Bm123 Impaired DNA replication & late gene expression [384, 407] D D
lef-3 Ac67/Bm55 Impaired DNA replication & late gene expression [421, 426] D D
odv-e66 Ac46/Bm37 No Impairment for BV [483] A A
orf132 Ac68/Bm109 Impaired nucleocapsid assembly & BV release [484] C C
p6.9 Ac100/Bm84 Impaired nucleocapsid assembly, BV release, & very late gene expression [429, 431] C C
p74 Ac138/Bm115 No Impairment for BV [81] A A/B
pk-1 Ac10/Bm3 Impaired nucleocapsid assembly, BV release, [428, 431] C C/D
vlf-1 Ac77/Bm63 Impaired nucleocapsid assembly, BV release, & very late gene transcription [385, 485] C C
vp39 Ac89/Bm72 Impaired BV release & very late gene transcription [85, 486] C C
vp80 Ac104/Bm88 Impaired nucleocapsid maturation & BV release [85] C C

†: ORF numbers refer to previous reports ([15, 487]), ‡: Taken from [98]

B.2 Supplementary figures
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Figure B.1: The location of the targeting spacer sequence within the lef-3 ORF
may impact the observed phenotype. The impact of KOVs generated with different
sgRNAs on A. GFP production and B. IVT.
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Figure B.2: Disrupting non-structural auxillary genes primarily involved in very late gene
expression and genome packaging has significant effects on A. GFP production from the
very late p10 promoter and reductions in B. IVT.
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Figure B.3: The presence of Cas9 and sgRNA are both necessary for CRISR-
mediated gene disruption resulting in reduction of fluorescence or IVT. A.
Fluorescence and B. IVT for untargeted sgRNAs in Sf9-Cas9 cells and 10 targeted sgRNAs
in Sf9 cells are indistinguishable.
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Table C.1: Primers used in this study

Plasmid Construct Sequence (5’-3’) Description

Promoter-GFP

atggtgagtgtgattaagccc
pHR-GFP (promoterless)

cgctggactggcatgaac
caccgaagttcatgccagtccagcg ccacttgcgagttttgcag

vp39 promoter
cttcatctcgggcttaatcacactcaccat attgttgccgttataaatatgg
caccgaagttcatgccagtccagcg cagcgaagaggagaacaaca

orf75 promoter
cttcatctcgggcttaatcacactcaccat tttaacaaacacttatcaatctattgagc
caccgaagttcatgccagtccagcg tcgtacagctcagtgtacagtttg

38k promoter
gatcttcatctcgggcttaatcacactcaccat aatgtacaaaaatggaccagttacg
caccgaagttcatgccagtccagcg ccccccaaaaattgcac

39k promoter
gatcttcatctcgggcttaatcacactcaccat gtttgcttcttgtaaacctttgaaac
caccgaagttcatgccagtccagcg tcgcccgacgatca

ctx promoter
cttcatctcgggcttaatcacactcaccat attaacggcgattttttaaattatc
caccgaagttcatgccagtccagcg ggttagttccagatagccatcg

gp64 promoter
cttcatctcgggcttaatcacactcaccat cttgcttgtgtgttccttattga
gtatattaattaaaatac atggtgagtgtgattaagccc

∆p10 promoter
ggcttaatcacactcaccat gtattttaattaatatacaaatgatttgataataattc
caccgaagttcatgccagtccagcg aaattccgttttgcgacg

p6.9 promoter
catctcgggcttaatcacactcaccat gtttaaattgtgtaatttatgtagctgta
caccgaagttcatgccagtccagcgcgtaggcctttgaattccg

polh promoter
ggcttaatcacactcaccat atttataggtttttttattacaaaactgttacgaaaacag

Promoter-SEAP

ggcgcgccatgaatcgtttttaaaataac pHR-promoter fwd
atgcttctcttattgctgctgctgggcctgag

SEAP gene
gttattttaaaaacgattcatggcgcgcc ttatgtctgctcgaagcggcc
caggcccagcagcagcaataagagaagcat attgttgccgttataaatatgg vp39 rev
caggcccagcagcagcaataagagaagcat tttaacaaacacttatcaatctattgagc orf75 rev
caggcccagcagcagcaataagagaagcat aatgtacaaaaatggaccagttacg 38k rev
caggcccagcagcagcaataagagaagcat gtttgcttcttgtaaacctttgaaac 39k rev
caggcccagcagcagcaataagagaagcat attaacggcgattttttaaattatc ctx rev
caggcccagcagcagcaataagagaagcat cttgcttgtgtgttccttattga gp64 rev
caggcccagcagcagcaataagagaagcat gtattttaattaatatacaaatgatttg ∆p10 rev
caggcccagcagcagcaataagagaagcat gtttaaattgtgtaatttatgtagctgta p6.9 rev
caggcccagcagcagcaataagagaagcat atttataggtttttttattacaaaactg polh rev

qPCR primers

cgacgttgctttttgatcct
28S

gcaacgacaagccatcagta
tctacgacatcaggttcgacgg

GFP
tccttcttggccttgtaggtgg
agtacccagatgactacagc

SEAP
ggatctcgtatttcatgtctcc
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Table C.2: Promoters on commercially available BEVS transfer plasmids

System Family Plasmid Expression Promoter(s) polyA

T
ra

n
sp

os
it

io
n pFastbac™ pFastbac-1, HT single polh SV40

pFastbac Dual dual polh/p10 SV40, HSV TK

MultiBac™
pIDC, pIDK, pIDS single‡‡ polh/p10 SV40, HSV TK

pFL, pKL, pSPL, pUCDM dual polh/p10 SV40, HSV TK
pACEBac1, pACEBac2 single‡‡ polh/p10 SV40, HSV TK

H
om

ol
og

ou
s

R
ec

om
b
in

at
io

n

pBAC™

pBAC-1/2/3 single polh n/a
pBAC-4x multi polh/p10 synthetic
pBAC-5 single gp64 n/a
pBAC-6† single gp64 n/a

pBACsurf-1‡ single polh n/a

pIEx/Bac™ pIEx/Bac-1/3/4/5 single hr5 -ie1-p10 ie1

pTriEx™ pTriEx-1.1/2/3/4/5/6/7 single p10 rabbit β-globin

pAB™ pAB-6xHis/GST/MBP single polh n/a
pAB-bee/bee-8xHis/bee-FH† single polh n/a

†: secretion signal included; ‡: gp64 fusion for surface display; ‡‡: contains multiplication element for multigene compatability
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Table C.3: Position and sequence of putative upstream octamer matches in relation to
TAAG motif.

ORF Start End Sequence

polh 109 102 ATTGTAAT
p6.9 209 202 ATTACAAT
p6.9 152 145 ATTGCAAG
p6.9 131 124 ATTACAAT
p6.9 27 20 AATGCAAA

Ac-bro 203 196 ATTGCCAC
ctx 203 196 ATTGCCAC

orf73 120 113 ATTGAAAC
orf73 90 83 ATTGAAAA
orf73 34 27 ATTGCAAA
orf74 115 108 ATTGCATA
orf74 22 15 ACTGCCAG
orf74 7 0 ATAGTAAG
orf75 61 54 ATCGCAAT
orf75 19 12 ATCGCAAC
orf75 135 128 ATTATAAG

odv-e25 96 89 ATTGCGAA
orf5 185 178 TTTGCATG
orf5 181 174 CATGCAAG
orf5 160 153 ATTGCGAT
orf5 7 0 CTTGTAAG
lef-2 115 108 ATTGTAAT
pk-1 153 146 TTGGCAAG
pp31 222 215 ATTGCAGG
pp31 165 158 ATTGCACG
pp31 116 109 AATACAAG
orf81 89 82 AATGCAAT
orf81 36 29 ATTTCAAA
orf81 7 0 ATAGTAAG
orf82 200 193 ATTTCATG
orf82 75 68 ATTTCAAT
vp39 203 196 CTTGCGAG
vp39 72 65 ATTTCAAT
vp39 7 0 CTTGTAAG
vp39 145 138 ATTGCAAG
vp39 223 216 CTTGTAAG
vp39 97 90 ATTGCAAG
orf93 215 208 AGTGCATG
orf93 110 103 GTTGCAAG

bv/odv-c42 150 143 GTCGCAAG
bv/odv-c42 72 65 GTTGCAAA
bv/odv-c42 159 152 GTTGCAAA
bv/odv-c42 27 20 GATGCAAG

orf102 71 64 ATTGAAAT
gp16 170 163 ATAGCAAC
gp16 124 117 GTTGCAAG
pp34 147 140 CTTGCAAA
pp34 103 96 ATGGCAAA

orf132 142 135 TTTGCTAG
alk-exo 52 45 AATGCAAT
alk-exo 46 39 ATTGGAAC

49k 155 148 AATGCAAT
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Table C.4: Position and sequence of putative downstream octamer matches in relation to
TAAG motif.

ORF Start End Sequence

p6.9 99 92 ATTAGGAA
p6.9 47 40 ATTTGGGA
p6.9 8 1 ATTAATAA
p10 105 98 ATTCAGAA
p10 72 65 ACTATGAA
p10 64 57 ATTATGCA

odv-ec27 170 163 AGTAGTAA
odv-ec27 37 30 TTTATGAA

orf73 141 134 TTTAGAAA
orf73 100 93 ATAAGGAC
orf74 208 201 AGTAGAAA
orf74 64 57 TTTAGCAA
orf74 8 1 AATAGTAA
orf75 203 196 AAAAGGAA
orf75 132 125 ATAAGTAA
orf75 129 122 AGTAAGAA

odv-e25 160 153 ATTATGTA
odv-e25 119 112 GTTCGGAA
odv-e25 96 89 ATTGCGAA
odv-e25 21 14 ATTGGGAA

lef-2 102 95 TTTACGAA
pp31 141 134 ATTCGGAC
orf81 209 202 ATTATCAA
orf81 8 1 AATAGTAA
orf82 90 83 TTTAAGAA
vp39 182 175 GTTTGGAA
vp39 130 123 AATAGGTA
vp39 64 57 ATTAGGAA
vp39 134 127 GTTTGGAA
vp39 82 75 AATAGGTA
vp39 16 9 ATTAGGAA
orf93 8 1 ATAAGTAA
orf102 147 140 AGTTGGAA
orf102 115 108 ATGAGCAA
orf102 49 42 ATTTGTAA
gp16 183 176 ATTTTGAA
gp16 132 125 ATTAACAA
pp34 60 53 ATTAACAA

alk-exo 143 136 ATCAAGAA
alk-exo 136 129 ACTAAGAA
alk-exo 92 85 GTTGGGAA
alk-exo 47 40 AATTGGAA
alk-exo 22 15 ATTAGGTC
alk-exo 9 2 ATTTGGTA

49k 210 203 ATTAATAA
49k 192 185 GTTATGAA
49k 60 53 ATGTGGAA
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C.2 Supplementary figures

AcMNPV ORFs

0 12 24 36 48

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

HPI

R
P

K
M

Very Low Low Medium High Very High

0 12 24 36 48 0 12 24 36 48 0 12 24 36 48 0 12 24 36 48 0 12 24 36 48
HPI

Figure C.1: Each AcMNPV ORF was categorized according to transcript abundance.
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Figure C.2: Proportion of AcMNPV ORFs with different promoter motifs, cate-
gorized according to transcript abundance. TATA and CAGT motifs are recognized
and transcribed by the host RNAP II whereas the TAAG motif is recognized and tran-
scribed by the viral RNAP.
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vp80 C A T T T G T T A A A T T C T G T G A A A A A A G T A A G A C C T T T A C T G T C C A C G A T C A A G C 52
he65 A A A A T G T G A A A T A T T T T G A G G T A T A T A A G G C T T G A T A C A G G C A C A G T A A G C A 52
orf106 A A C G T G T A A T A T T T T T T A C A A T A T T T A A G T G A A A C A T T A T G A C T T C C A A T A A 52
Splt97 G T C A A G T A C A A C T A T T A T T T G T A G T T A A G C A C A T C . . . . . . . . . . . . . . . . . 35
Haodv-ec43 T A A A A T A A T C T A A A G T C T A A T G A A G T A A G A C A T A T A C A T C A C G . . . . . . . . . 43
orf114 T A C A G A C G C G T T T A C A A C T G A A A T G T A A G A G A T T C T G T C A A C . . . . . . . . . . 42
orf117 A C G A T T A G T A T A A T T A C C A G T A G A A T A A G T A T T T G C C A A A A G T T C A A C A T G A 52
orf120 A A C A A C G A T C G C G A A C G A A A C A C A A T A A G A G C G G T C A C T A C A G G C G A C A T G A 52
pk-2 G T G C C C A T T G T G T G G C C C A A C A G G A T A A G C A A T T C A A C A A A T A T C A T A A A A A 52
chit A C A T A A A A T A A T T A C A A C T T A A A A T T A A G A T A A A T T A A A . . . . . . . . . . . . . 39
v-cath A C A A C A T T T T A A T T T A T C T T A A T T T T A A G T T G T A A T T A T T T T A T G T A A A A A A 52
gp64 G C C A G A T A A A A A T A A T C T T A T C A A T T A A G A T A A A A A G A T A A G A T T A T T A A T C 52
gp64 A A T C T T A T C A A T T A A G A T A A A A A G A T A A G A T T A T T A A T C T A A C A A C G T G C C T 52
gp64 G T A G G C C A G A T A A C G G T C G G G T A T A T A A G A T G C C T C A A T G C T A C T A G T A A A T 52
p24 A A T C T T A T C T T T T T A T C T T A A T T G A T A A G A T T A T T T T T A T C T G G C T G T T A T A 52
p35 T A T A A A T A T T C A A C G T T G C T T G T A T T A A G T G A G C A T T T G A G C T T T A C C A T T G 52
me53 G C A T A T A C A A T C T T A T C T C T A T A G A T A A G G T T T C C A T A T A T A A A G C C T C T C G 52
odv-e56 C C T T T A C T G T G A T A T A T T T A T T A A A T A A G T T T G C T T T A A A . . . . . . . . . . . . 40
orf150 T T C G A C G T C T G C A T T A T T T G T T G T G T A A G G T A T C T C G A C G T A T G A A G C A A C T 52
orf154 T T A T G T T T T T T T T A T T T C A T G T G A T T A A G A A A C T T T T A A G . . . . . . . . . . . . 40
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ptpase A T C A T A T T T A G T T G C G T T T A T G A G A T A A G A T T G A A A G C A C G T G T A A A . . . . . 47
orf20 A A A T G C A T C A T G T G C C G A G C G A T T G T A A G C G A T C A C G A G C C G A C C G T G T T T A 52
orf22 C A T T T T G A A T A T T T A A T T C A A C A A C T A A G T A A T G G C A A T . . . . . . . . . . . . . 39
orf34 T C T T C C A G T T G T T T G C C C G C A A A G A T A A G T C T T T G T T G A T C T A C G G G C A C A C 52
orf38 G A T G G T G C T C G T G T G C G C A A T T T T T T A A G T G T C A A A T A T G T A A A . . . . . . . . 44
p47 G T A A A A C G T T C A A T G T T C G T T T C A T C A T T G T G G C G A T C G T G C C C A C G T A C T C 52
odv-e66 A A T T A A G A A A A A T T T G T A T T A A T A A T A A G C A A C A T T C G A C . . . . . . . . . . . . 40
odv-e66 A A T A T A A A A A C T G T G T G T T T A C A A T T A A G A A A A A T T T G T A T T A A T A A T A A G C 52
orf53 A T G G T G A A C C A G C G A A T T G A C A T A A T A A G C A A G G A C A T T G A G G A T T T A A G A A 52
lef-9 G G C A A C A G A G C G T C G C G A G T T T T T T T A A G T A A C A G C T T T T G C T C C G C T G T G G 52
orf66 T G C A A A G C G C G T T T T G A G T T C A T T G T A A G G A T A T A T T T T C A T T T T T A A A T . . 50
orf66 T A T G T G C T T G T C G T A G C A T T G T T T G T A A G A A T A C A A A T T T A G T T T T A C T T T A 52
orf68 T G A A T C A T T T G A C T A A A C T T T G T T T T C A C A T A A T T T A A A C T A A T G T C A T A G C 52
orf83 T A T G G G C G C C A A C G C C C C G T T T T T T T A A G T A A T A T T C G T C T T C A A T T A T A A A 52
orf96 C G T T A A A G T T G T T T C T A A T T G T G T T T A A G A A C T G T T G A A A G T T G T T G A C G T A 52
lef-5 T A G T G T G G C A A T A G A A A C C A T T C T T T A A G A A A C G A A T A C A T T G G C G G T T T G T 52
orf107 A A C G T G T A A T A T T T T T T A C A A T A T T T A A G T G A A A C A T T A T G A C T T C C A A T A A 52
orf110 T A C T A T G T A T T T T A T T C A A C T A G C A T A A G A T T T A A A G . . . . . . . . . . . . . . . 37
orf115 T C A C A C C A C G C T T T T C A C A C T C A G T T A A G A C G A T C . . . . . . . . . . . . . . . . . 35
orf119 A C A A A A A T A C T C G G A C A T T C T C C A A T A A G T A A A . . . . . . . . . . . . . . . . . . . 33
p74 T T T C A T T A T A T A T T G T T G T T T A T T T T A A G T C C T A T A T A A C . . . . . . . . . . . . 40
ie0 A C G C T C G C T T G C G C G C C G G A T A G T A T A A G T A A T T G A T A A C G G G C A A C G C A A C 52
pe38 A A G C A G G C A C T C A C C A A C T C G T A A G C A C A G T T C G T T G T G A A G T G A A C A C G G A 52

D

E

Figure C.3: Sequences flanking the late gene promoter motif for A. Very High, B. High,
C. Medium, D. Low, and E. Very Low classes.
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T A TA TCA A T G CGAT GAC GTAC

Ac-bro G T G T A T C A A A A T G G C T 16
ctx C G C C G T T A A T A T G C A A 16
orf73 A A A A A G A A A C A T G A A C 16
orf74 A T C A A T A A A A A T G A A A 16
orf75 G T T T G T T A A A A T G T C C 16
orf75 G T T T G T T A A A A T G T C C 16
odv-e25, A A A A C A A A T C A T G T G G 16

T
A
C
G
C
T
G
A
C
T
G
A
T
G
C
A
ACG
T

CG
TA G
T
A
C
C
G
A
G
C
T
A
G
A
C
T A T G TAG AGTC ATCG

orf5 A T A A T A T A T T A T G T A T 16
lef-2 G C C G C G A A G T A T G G C G 16
pk-1 A C G A T T C G T C A T G G C C 16
pp31 A G A A G C A A A C A T G G T A 16
orf81 G A A A C C G C G A A T G A C G 16
orf82 T A T A A G A A A A A T G G C A 16
vp39 C G G C A A C A A T A T G G C G 16
vp39 C G G C A A C A A T A T G G C G 16
vp39 C G G C A A C A A T A T G G C G 16
orf93 C A G C G G T A T C A T G G C G 16
bv/odv-c42 G T C G G T C A C G A T G A G C 16
bv/odv-c42 G T C G G T C A C G A T G A G C 16
orf102 G A A C T C A A C C A T G A T T 16
gp16 G A T T T C A A C A A T G A A C 16
pp34 A T T T C A A A A T A T G A A G 16
orf132 A A A A A T A A G C A T G T C C 16
alk-exo C G T C G A C A T C A T G T T T 16
49k G C A A C G C A A A A T G A G T 16

C
T
A

A
C
T A
T AT ACT A A TA ATC A T G A

T
C
G
T
A

polh A C C T A T A A A T A T G C C G 16
p6.9 C A A T T T A A A C A T G G T T 16
p10 A T T T A C A A T C A T G T C A 16
odv-ec27 T G T A T A A A A A A T G A A A 16

A

B

C
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G
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T
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G
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C
G
A
T
C
A
G
T
GA
T
C T
G
A
G
C
T
A
G
T
C
A A T G GACT GACT CATG

ptpase C A C G T G T A A A A T G T T T 16
orf20 C G C G T G C A C A A T G T G C 16
orf22 T A A T G G C A A T A T G T A T 16
orf34 T T A C T T A T A A A T G A C A 16
orf38 A A T A T G T A A A A T G C G A 16
p47 T T C C A T A G T C A T G T T T 16
odv-e66 A A C A T T C G A C A T G T C T 16
odv-e66 A A C A T T C G A C A T G T C T 16
orf53 C C A C G T C A T T A T G T T C 16
lef-9 C G A T G C G T A T A T G G T G 16
orf66 A T T T T T A A A T A T G C A G 16
orf66 A T T T T T A A A T A T G C A G 16
orf68 G A A A A G T G T A A T G G T A 16
orf83 G G C G T T C A C G A T G A T G 16
orf96 A A A T T G T A A A A T G T T G 16
lef-5 A A A C G A G A A C A T G T C G 16
orf107 A T T A C A A T G A A T G T T T 16
orf110 A G A T T T A A A G A T G A A A 16
orf115 T A A G A C G A T C A T G T T G 16
orf119 A A T A A G T A A A A T G C A T 16
p74 C C T A T A T A A C A T G G C G 16
ie0 G C A A C G C A A C A T G A T A 16
pe38 A A T A A G C A A A A T G C C A 16
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G
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G
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T
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G
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G
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C
A
G
T
A
C A T G CGTA GCTA GACT

orf1629 T G T G G T G G C C A T G A C G 16
orf13 A G C T A A A G C A A T G C T A 16
orf19 A C G T T C C A T A A T G A A T 16
orf23 T A A G C C G T A C A T G T T G 16
pkip A T A A G T C A A A A T G T C T 16
pkip A T A A G T C A A A A T G T C T 16
orf26 T A T A A T A A A T A T G G A C 16
iap-1 A C G A G C T A A A A T G A A C 16
iap-1 A C G A G C T A A A A T G A A C 16
sod A A G A A A C A A C A T G A A A 16
v-fgf A A A G T T C A T C A T G T A T 16
HisP T G C A T T C A C C A T G T G G 16
v-ubi T A G T G T A A A A A T G C A A 16
orf43 G T A A G T C G T C A T G A A C 16
orf44 G C T C A A C A A C A T G C A C 16
orf56 A A A T A T T G A C A T G C T G 16
orf58 G C G C G T C A A C A T G T T T 16
orf59 T C T A A T T A C A A T G T A T 16
orf60 T T T T A T T G A T A T G T T G 16
fp-25k T A T A G T T A A T A T G G A T 16
MTase1 A A G A G T A A A A A T G T T G 16
iap-2 A A A C T A T A A A A T G A A T 16
vlf-1 A T T A A C C A C A A T G A A C 16
orf78 A G T T G T A A A C A T G A A T 16
orf78 A G T T G T A A A C A T G A A T 16
orf79 C T G C A T A A T C A T G G C G 16
gp41 A A T A A A A A G T A T G A C A 16
gp41 A A T A A A A A G T A T G A C A 16
p33 G C T A G T C G C C A T G A T A 16
p143 G A T A G C C A A C A T G A T T 16
38k T T T G T A C A T T A T G G C C 16
p48 C G A A T G C A C C A T G T G C 16
vp80 A C C T T A T A A T A T G A A C 16
vp80 A C C T T A T A A T A T G A A C 16
he65 A C A T T C T A A C A T G G T G 16
orf106 G A A A A A A T A T A T G G A C 16
Splt97 T A A G C A C A T C A T G A A A 16
Haodv-ec43 A T A C A T C A C G A T G G A G 16
orf114 T T C T G T C A A C A T G A G C 16
orf117 T T T T A C C G T C A T G C A T 16
orf120 G T A T A A C A A C A T G A G C 16
pk-2 A C T G T A T A C C A T G A A A 16
chit A T A A A T T A A A A T G T T G 16
v-cath A T G T A A A A A A A T G A A C 16
gp64 C A C A A G C A A G A T G G T A 16
gp64 C A C A A G C A A G A T G G T A 16
gp64 C A C A A G C A A G A T G G T A 16
p24 A A A C G G G A T C A T G A A C 16
p35 C C A T T G C A A A A T G T G T 16
me53 A A C A G T T A C A A T G A A C 16
odv-e56 T T G C T T T A A A A T G A G T 16
orf150 T T C A A T A A A T A T G T T A 16
orf154 A A C T T T T A A G A T G G A T 16

Figure C.4: Sequences flanking the translation initiation site for A. Very High, B. High,
C. Medium, D. Low, and E. Very Low classes.
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