Making Decisions with Incomplete and
Inaccurate Information

by

Vijay Menon

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Doctor of Philosophy
in
Computer Science

Waterloo, Ontario, Canada, 2021

(©) Vijay Menon 2021

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: [oannis Caragiannis
Professor
Department of Computer Science, Aarhus University

Supervisor: Kate Larson
Professor
Cheriton School of Computer Science, University of Waterloo

Internal Members: Shai Ben-David
Professor
Cheriton School of Computer Science, University of Waterloo

Eric Blais
Associate Professor
Cheriton School of Computer Science, University of Waterloo

Internal-External Member: Stanko Dimitrov
Associate Professor
Department of Management Sciences, University of Waterloo

11

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

111

Statement of Contributions

The contents of this thesis are based on the following papers that I have co-authored.
1. Text and results in Chapter 2 are based on

[ML18] Vijay Menon and Kate Larson. “Robust and Approximately Stable
Marriages Under Partial Information”. In: Proceedings of the Fourteenth
International Conference on Web and Internet Economics (WINE). 2018,
pp- 341-355

2. Text and results in Chapter 3 are based on

[ML19] Vijay Menon and Kate Larson. “Mechanism Design for Locating
a Facility Under Partial Information”. In: Proceedings of the Twelfth
International Symposium on Algorithmic Game Theory (SAGT). 2019,
pp- 49-62

3. Text and results in Chapter 4 are based on

[MML21] Thomas Ma, Vijay Menon, and Kate Larson. “Improving Welfare
in One-Sided Matching Using Simple Threshold Queries”. In: Proceedings

of the Thirteeth International Joint Conference on Artificial Intelligence
(1JCAI). 2021

4. Text and results in Chapter 5 are based on

[ML20] Vijay Menon and Kate Larson. Algorithmic Stability in Fair Allo-
cation of Indivisible Goods Among Two Agents. 2020. arXiv: 2007.15203
[cs.GT]

v

https://arxiv.org/abs/2007.15203
https://arxiv.org/abs/2007.15203

Abstract

From assigning students to public schools to arriving at divorce settlements, there are many
settings where preferences expressed by a set of stakeholders are used to make decisions
that affect them. Due to its numerous applications, and thanks to the range of questions
involved, such settings have received considerable attention in fields ranging from philosophy
to political science, and particularly from economics and, more recently, computer science.

Although there exists a significant body of literature studying such settings, much of the
work in this space make the assumption that stakeholders provide complete and accurate
preference information to such decision-making procedures. However, due to, say, the high
cognitive burden involved or privacy concerns, this may not always be feasible. The goal of
this thesis is to explicitly address these limitations. We do so by building on previous work
that looks at working with incomplete information, and by introducing solution concepts and
notions that support the design of algorithms and mechanisms that can handle incomplete
and inaccurate information in different settings.

We present our results in two parts. In Part I we look at decision-making in the presence of
incomplete information. We focus on two broad themes, both from the perspective of an
algorithm or mechanism designer. Informally, the first one studies the following question:
Given incomplete preferences, how does one design algorithms that are ‘robust’, i.e., ones
that produce solutions that are “good” with respect to the underlying complete preferences?
We look at this question in context of two well-studied problems, namely, i) (a version of)
the two-sided matching problem and i) (a version of) the facility location problem, and
show how one can design approximately-robust algorithms in such settings. Following this,
we look at the second theme, which considers the following question: Given incomplete
preferences, how can one ask the agents for some more information in order to aid in
the design of ‘robust’ algorithms? We study this question in the context of the one-sided
matching problem and show how even a very small amount of extra information can be
used to get much better outcomes overall.

In Part II we turn our attention to decision-making in the presence of inaccurate information
and look at the following question: How can one design ‘stable’ algorithms, i.e., ones that
do not produce vastly different outcomes as long as there are only small inaccuracies in a
stakeholder’s report of their preferences? We study this in the context of fair allocation of
indivisible goods among two agents and show how, in contrast to popular fair allocation
algorithms, there are alternative algorithms that are fair and approximately-stable.

Acknowledgements

I would first like to thank my advisor, Kate Larson. Kate has always been supportive
and encouraging, has always balanced my pessimism when it comes to my work with her
optimism, and has always given me the freedom to pursue my own interests. I am grateful
to have had the opportunity to work with her over the last several years.

I would also like to thank the members of my committee, Shai Ben-David, Eric Blais,
[oannis Caragiannis, and Stanko Dimitrov, for reading my thesis, for providing feedback,
and for insightful questions.

Finally, I am grateful to my friends for all the good times and their companionship over
the years, and thank my family for their support.

vi

Table of Contents

List of Figures
List of Tables

1 Introduction

1.1 Some Basic Terms and Concepts.

1.2 Overview of the Thesis

1.2.1 Part I. Making decisions with incomplete information

1.2.2 Part II: Making decisions with inaccurate information

I Making Decisions with Incomplete Information

2 Two-Sided Matching Under Partial Information

2.1 Imtroduction
2.1.1 Working with partial information
2.1.2 Measuring the amount of missing information
2.1.3 Our contributionso
214 Related work

2.2 Preliminaries

vii

xii

xiii

co ot ot W =

10

2.2.1 Problem definitions
2.3 Investigating Weakly-Stable Matchings

2.3.1 Using weakly-stable matchings to approximate the §-min-bp-super-
stable-matching problem 0000

2.3.2 Can we do better when restricted to weakly-stable matchings? . . .

2.3.3 The case of one-sided top-truncated preferences: An O(n) approxi-
mation algorithm

2.4 Beyond Weak-Stability oo
2.4.1 Inapproximability of d-min-bp-super-stable-matching

2.4.2 A possible general approach for obtaining a near-tight approximation
factor for -min-bp-super-stable-matching

2.5 DISCUSSION

Mechanism Design for Locating a Facility Under Partial Information
3.1 Introduction
3.2 Preliminaries
3.2.1 Mechanisms, solution concepts, and implementation
3.2.2 Some Q & A on the definitions
3.3 Related Worko
3.4 Implementing the Average Cost Objective
3.4.1 Properties of the minimax optimal solution for avgCost
3.4.2 Implementation in very weakly dominant strategies
3.4.3 Implementation in minimax dominant strategies
3.5 Implementing the Maximum Cost Objective
3.5.1 Implementation in very weakly dominant strategies
3.5.2 Implementation in minimax dominant strategies

3.6 DIscussion

22
24

26
33
33

38
39

4 Improving Welfare in One-Sided Matching Using Threshold Queries 73

4.1 Introduction 73
4.1.1 Our contributionso 76
4.1.2 Related work 78

4.2 Preliminaries 79
4.2.1 Notions of economic efficiency 80
4.2.2 Going beyond completely ordinal or completely cardinal algorithms 83
4.2.3 Finding welfare-optimal priority-p matchings when utilities are known 84

4.3 Improving Welfare using Threshold Queries 86
4.3.1 Adaptive algorithm to achieve (1 4 €)-approximation 86
4.3.2 Non-adaptive algorithms: asking one query per (agent, object) pair 90

4.4 Lower Bounds 96

4.5 Discussion e 99

II Making Decisions with Inaccurate Information 101
5 Algorithmic Stability in Fair Allocation of Indivisible Goods 102

5.1 Imtroduction 102

5.2 Preliminaries 105
5.2.1 Stability 107
5.2.2 Some Q & A on assumptions and definitions 111

5.3 Related Work o 112

5.4 Approximate-Stability in Fair Allocation of Indivisible Goods 114
5.4.1 How (approximately) stable are the existing algorithms? 115
5.4.2 Are there fair and efficient algorithms that are stable? 116

X

5.4.3 A necessary and sufficient condition for PMMS allocations

5.4.4 rank-leximin: An approximately-stable PMMS and PO algorithm for
two agents oL oL Lo

5.5 Weak-Approximate-Stability in Fair Allocation of Indivisible Goods

5.6 Discussion

6 Conclusion

6.1 Future Directions

References

APPENDICES

A Omitted material from Chapter 2
A.1 Missing proofs from Section 2.3.3

A.2 An example of a “bad” weakly-stable matching in the case of one-sided
top-truncated preferences Lo

B Omitted material from Chapter 3
B.1 Revelation principle for minimax dominant strategies
B.2 Minimax optimal solution for avgCost
B.3 Additional claims

B.4 Minimax optimal solution for maxCost

C Omitted material from Chapter 4
C.1 Additional claims
C.2 Missing proofs from Section 4.3.2
C.2.1 Proof of Theorem 31
C.3 Additional discussions

137
139

141

154

155
155

159

162
162
163
168
172

C.3.1 Power of ordinal algorithms

C.3.2 The unit-range case

D Omitted material from Chapter 5

D.1 Brief descriptions of various fair and efficient algorithms

el

List of Figures

2.1
2.2
2.3

Al

The instance Z that is used in the proof of Theorem 5 25
The instance Z that is used in the proof of Theorem 11 32
The instance Z’ that is used in the proof of Theorem 12 35

The instance Z that is used to illustrate that there can be weakly-stable matchings
with O(n?v/§) super-blocking pairs even in the case of one-sided top-truncated
preferences L L e e 160

xii

List of Tables

3.1

4.1

4.2

4.3

Summary of our results which show the bounds obtained under each of the
solution concepts for the objective functions considered. All the bounds are
with respect to deterministic mechanisms.

Example which illustrates how there is a loss in welfare due to not accounting
for preference intensities.o oL

Summary of our results. For X, where X is one of the properties in the
set {Pareto optimal, rank-maximal, max-cardinality rank-maximal, fair}, an
upper bound (UB) of « indicates that there is a deterministic algorithm that
always produces a matching that satisfies X and achieves an a-approximation
to the optimal welfare among matchings that satisfy X. A lower bound
(LB) of 8 indicates that there is no deterministic algorithm that produces
a matching that satisfies X and achieves a S-approximation to the optimal
welfare among matchings that satisfy X.

Responses of the special agents in a Type-j block to queries Q(-,-,T;;) or
Oy, Tha) « v o

Xlil

Chapter 1

Introduction

There are numerous settings where an algorithm interacts with a set of stakeholders and
asks their preferences over a set of outcomes in order to make decisions that affect them. For
instance, centralized algorithms, that ask the students to submit a ranking over the schools
they would like to attend, are used in many cities to assign students to public schools
[AS03; APR05; Abd+05]; in many countries, medical residents are matched to hospitals
using algorithms that ask the residents to submit their preferences over the hospitals and
vice-versa [Rot84; Rot86; Man16; NRM; CARJ; such algorithms are also used to fairly divide
different types of resources (e.g., compute resources [Gho+11]). Perhaps unsurprisingly,
then, and because of the interdisciplinary nature of the questions involved, the design of such
decision-making systems have been extensively studied by mathematicians, philosophers,
political scientists, economists, and, more recently, computer scientists. Collectively, the
study of formal frameworks to analyse and aggregate preferences in collective-decision
making systems has been referred to as social choice theory, and its birth can be dated
back to the 18th century French philosopher and mathematician Condorcet [Con85]. The
more recent field of computational social choice (also commonly referred to as algorithmic
economics, computational economics, algorithmic game theory), under which the work in
this thesis falls, aims to provide a computational lens into such settings.

Despite the existence of a large body of work across disciplines that studies various collective
decision-making settings, there are certain issues that have not received much attention.
One issue, highlighted in this thesis, is that a disproportionate amount of the work on
such problems assume that stakeholders—which could be humans, software agents, or a
combination of both (and so henceforth are referred to as agents)—are capable, and willing,
to provide complete and accurate preference information. While a formal definition of what

it means for preferences to be complete and accurate differs based on the decision-making
setting, for now it is enough to think of the former in terms of a setting where agents are
asked to provide a ranking over all the candidates in, say, an election. As for the latter, for
now it is enough to think of it in terms of a setting where agents are expected to indicate
their exact utility—i.e., their value, which is, say, a positive integer—for different outcomes.

The assumption that agents provide complete and accurate preference information is
reasonable in some settings. For instance, consider a simplified scenario where an agent
is trying to decide which house to rent among the n they have had a viewing for, and
their only concern is whether there is a grocery store within m kilometres from the house.
Assuming that n is small (say, n = 7) and that the agent has access to information on
the distance to the nearest grocery store, it is reasonable to believe that they will be able
provide a ranking over all the houses (with potentially some houses being tied).

However, in many scenarios it is unrealistic to assume this will be the case. Indeed, in
the setting mentioned above, the houses might have different monthly rents, they might
have slightly different amenities, and the agent might care about not just the distance
to the nearest grocery store, but also whether that store is accessible by public transit.
Given this, ranking all the houses might no longer be feasible since it not only requires the
agent to compile all the relevant information for all the houses—which in turn places a
considerable cognitive burden on them—but might also require them to attribute numerical
values to how much they value the different amenities and the ease of access to the grocery
store. More broadly, an agent may not be able to provide complete and accurate preference
information because i) there are just too many options to evaluate and they do not have
much information or the expertise to evaluate them all, 77) they have some privacy concerns
and hence do not want to reveal their complete preferences, and i) determining their
preferences exactly and accurately places too high a cognitive burden on them.

The goal of this thesis is to contribute to the theoretical foundations for the design of
decision-making systems that are capable of handling incomplete and inaccurate information.
The hope is that if there exists a solid foundation for the design of decision-making systems
that can handle more realistic assumptions on the kind of information it has access to, then
the general ideas from the field of (computational) social choice will see wider adoption. So,
with this hope, we make progress towards our goal by

i) considering several settings where assuming availability of complete or accurate
preference information is unrealistic and in turn using them to highlight different
issues that arise when working with incomplete or inaccurate information

ii) expanding or complementing existing work that looks at how to deal with, and design

algorithms for, scenarios where agents’ preferences are incomplete

iii) introducing and analysing new solution concepts and notions that aid in the design
of algorithms that provide certain guarantees even in the presence of incomplete or
inaccurate preferences.

Before we delve more into these points and the technical overview of the work in this thesis,
we present a brief, and informal, introduction to some basic terms and concepts that will
be useful for understanding the rest of this chapter. A more formal treatment of all the
terms and definitions is presented in the respective chapters where they are used.

1.1 Some Basic Terms and Concepts

All the work in this thesis deals with settings where a set of agents provide an algorithm
with their preferences, and the overarching goal in all of these situations is for the algorithm
to select an outcome that is socially desirable. In particular, we consider the following
four settings, namely, i) two-sided matching, ii) one-sided matching, iii) fair allocation
of indivisible goods, and iv) facility location. Each of these settings are well-studied in
the (computational) social choice literature and enable us to highlight different aspects of
working with incomplete and inaccurate preference information. For instance, motivated by
applications in assigning students to public schools, the one-sided matching setting allows us
to think of scenarios where an algorithm, when presented with incomplete preferences, can
ask the agents to provide some more information in order for it to pick a better outcome;
facility location is arguably the simplest setting that allows us to talk about incentive
issues that arise when working with incomplete preference information; and motivated
by observations we encountered on a popular fair division website, the setting of fairly
allocating indivisible objects allows us to highlight the challenges when working with
inaccurate preferences. Below we provide a very broad description of these settings.

i) Two-sided matching: In this setting, there are two disjoint sets of agents U and W,
and each agent in a set provides their preferences over agents in the other set. The
goal is to find a matching—which in turn is a collection of pairs, one from each set,
such that no agent is part of more than one pair—that is socially desirable.

ii) One-sided matching: In this setting, there is a set of agents and a set of objects, and
each agent provides their preferences over the objects. The goal is again to find a
socially desirable matching such that each agent is assigned at most one object.

iii) Fair allocation of indivisible goods: In this setting, there is a set of agents and a set
of indivisible goods, and each agent provides their preferences over the goods. The
goal is to find a fair (which in this case is what is considered to be socially desirable)
assignment (a.k.a. division, allocation), where an assignment is a partition of the
goods among the agents.

iv) Facility location: In this setting, there is a set of agents who have preferences for
where they want a facility (like, say, a public school) to be located, and the goal is to
pick a location that is socially desirable.

Given that we consider several settings, naturally, the definitions of preferences, the outcome
space, and what is socially desirable, etc., will vary depending on the context. Nevertheless,
below we informally introduce some of these terms and related definitions. As mentioned
previously, the formal definitions appear in the chapters.

Preferences: In order to understand how much an agent likes a particular outcome (a.k.a.
alternative), the algorithm requires some information. There are two common approaches
to elicit this information.

i) A common approach is to ask the agents to submit ordinal preferences, which typically
entails that the agents submit a linear or weak order over the set of outcomes. For
an agent i and outcomes a, b, we typically use a >; b (respectively, a =; b) to denote
that agent ¢ strictly prefers (respectively, weakly prefers) outcome a over b.

ii) The second common approach is to ask the agents to submit cardinal preferences,
which entails that the agents submit their utility (a.k.a. value, which can be real
number or integer) for each outcome. For an agent i, we use v; to denote their utility
function (a.k.a. valuation function), and often times we are interested in the cardinal
preferences that are consistent with the given ordinal preferences. Here, by consistent
we mean that, for outcomes a and b, a =; b < v;(a) > v;(b).

Matching: Given two disjoint sets U and W, throughout, we use the term matching to
refer to a bijection p: U — W.

Stable matchings: Although, depending on the application, there are several properties
that can be considered as ‘desirable’ in a two-sided matching setting, a large fraction of the
work on two-sided matching, including Chapter 2 of this thesis, focuses on finding stable
matchings. Given two disjoint sets of agents U and W, where each agent in a set specifies
a linear order over agents in the other set, a matching p is said to be stable if there is
no blocking pair, i.e., a pair (m,w), where m € U and w € W, such that w >, u(m) and
m > (w) (i.e., m prefers w over their partner in the matching and vice-versa).

4

Pareto optimality and Pareto optimal matchings: In general an outcome is called
Pareto optimal if no agent can be made better off without making another agent worse-off.
Although, just like in two-sided matching settings, there are several properties that can
be considered as ‘desirable’ in a one-sided matching setting, the most well-studied one,
and one we consider in Chapter 4, is Pareto optimal matchings. Given a set of agents
N ={ay,...,a,} and objects H = {hy,..., h,}, where agents specify their preferences
over objects, a matching p is Pareto optimal if for all matchings u/,

(Fa; € N, pi'(@i) =i p(ai)) = (Fa; € N pi'(az) <5 plag)) -

In words, a matching pu is Pareto optimal if there is no other matching ' where all the
agents are assigned an object that they prefer at least as much as in the original matching
and there is at least one agent who strictly prefers their assignment in the new matching.

Social welfare: In settings where the agents express cardinal preferences, social welfare
refers to the sum of utilities that the agents have for an outcome. Finding the optimal
(social) welfare refers to the goal of finding the outcome that maximizes social welfare. Note
that an outcome with the optimal social welfare is also Pareto optimal.

Equipped with these informal definitions, in the next section we present an overview of the
structure of the thesis and our results.

1.2 Overview of the Thesis

The results in this thesis are presented in two parts. The first part consists of three chapters
and focusses on making decisions with incomplete information in different settings. The
second part consists of a chapter that looks at making decisions with inaccurate information.

1.2.1 Part I: Making decisions with incomplete information

As mentioned previously, there are several reasons why an agent might not be able, or
willing, to provide complete preferences. (Throughout, we often use the terms ‘incomplete
preferences’ and ‘partial preferences’ interchangeably.) In this part of the thesis we look at
three different settings, one in each chapter, and focus on two broad themes, both from
the perspective of an algorithm or mechanism designer. Informally, the first one deals with
the following question: Given incomplete preferences, how does one design algorithms that

are ‘robust’, i.e., ones that produce solutions that are “good” with respect to the underlying
complete preferences? Chapters 2 and 3 directly deal with this question.

Chapter 2: Two-Sided Matching under Partial Information

In Chapter 2 we consider the well-studied stable marriage (SM) problem. In this problem,
we are given two disjoint sets U and W, where each agent in U and W provides some
preferences over agents in the other set, and the goal is usually to match the agents in U to
the ones in W so that the resulting matching is stable. While the most basic version of this
problem assumes that the agents provide strict linear orders over agents in the other set,
we consider a setting where they are allowed to submit strict weak orders.*

Although the issue of incomplete preferences has been previously studied in the context of
SM, the approach in most of them has been to either work with weakly-stable matchings,
which are stable matchings that arise as a result of an arbitrary linear extension of the
submitted partial orders, or to look at super-stable matchings, which are matchings that
are stable with respect to all the possible linear extensions of the submitted partial orders.
In the case of the former, one key issue is that we often do not really know how “good” a
particular weakly-stable matching is with the respect to the underlying true orders of the
agents, and in the case of the latter they often do not exist. Therefore, in this chapter, we
move away from these extremes and instead try to find a middle-ground when it comes to
working with incomplete information. In particular, we look at answering the following two
questions: i) How can a designer generate matchings that are robust and what is a possible
measure of how “good” a matching is with respect to the underlying complete preferences?
ii) What is the trade-off between the amount of missing information and the “quality” of
solution one can get?

With the goal of resolving these questions through a simple and prior-free approach, we look
at matchings that minimize the maximum number of blocking pairs with respect to all the
possible underlying true orders as a measure of “goodness” or “quality”, and subsequently
provide results on finding such matchings. In particular, we first restrict our attention to
matchings that have to be stable with respect to at least one of the completions (i.e., weakly-
stable matchings) and show that in this case arbitrarily filling-in the missing information
and computing the resulting stable matching can give a non-trivial approximation factor for

LA strict linear order is a binary relation > that is irreflexive, transitive, and connected—meaning,
for two agents a, b, where a # b, either a > b or b > a. A strict weak order a binary relation > that is
irreflexive, transitive, and where for agents a, b, ¢, if @ and b are incomparable—meaning, neither a > b nor
b > a—and b and c are incomparable, then a and ¢ are incomparable.

our problem in certain cases. We complement this result by showing that, even under severe
restrictions on the preferences of the agents, the factor obtained is asymptotically tight in
many cases. We then investigate a special case, where only agents on one side provide strict
weak orders and all the missing information is at the bottom of their preference orders, and
show that in this special case the negative result mentioned above can be circumvented in
order to get a much better approximation factor; this result, too, is tight in many cases.
Finally, we move away from the restriction on weakly-stable matchings and show a general
hardness of approximation result.

Chapter 3: Mechanism Design for Locating a Facility under Partial Information

Continuing with the theme of finding ‘robust’ solutions, we move to Chapter 3 where we
study the facility location problem. Informally, in the simplest version of this problem,
a planner wants to locate a facility on the real line and there are n agents, each with
a preferred location x; for the public facility. The goal, then, is to see if it is possible
to design mechanisms—which can be essentially thought of as algorithms with incentive
built-in—that can minimize some objective function (like, for instance, minimize the sum
of distances for the agents to the facility), perhaps even approximately, and at the same
time incentivize the agents to report their preferred locations truthfully—meaning, no agent
i obtains a higher utility by reporting an 2, # x;.

Although this problem has been extensively studied, the assumption in all of this work
is that the agents are always precisely aware of their preferred locations on the real line.
However, this might not always be the case, and so in this chapter we deal with the scenario
where agents only provide coarse information—namely, that for each agent ¢ their preferred
location lies in some interval K;. While almost all of mechanism design deals with the
case when agents provide complete preference information, we explore the design of robust
mechanisms given such incomplete information when considering two well-studied objective
functions. This in turn raises some technical questions since notions like truthfulness, or
more formally the usual equilibrium solution concepts, are no longer well-defined in this
setting. Therefore, we consider two natural equilibrium solution concepts for this setting,
namely, i) very weak dominance and ¢) minimax dominance. We show that under the
former solution concept, there are no mechanisms that do better than a naive mechanism
which always, irrespective of the information provided by the agents, outputs the same
location. However, when using the latter, weaker, solution concept, we show that one
can do significantly better, and we provide upper and lower bounds on the performance
of mechanisms when considering different objective functions of interest. Furthermore, it

also turns out that our mechanisms can be viewed as extensions to the classical optimal
mechanisms in that they perform optimally when agents precisely specify their preferences.

Chapter 4: Improving Welfare in One-sided Matching using Threshold Queries

While Chapters 2 and 3 deal with the case when the designer has to work with the given
incomplete information, it might be possible to request agents to provide more information
to improve the final outcome. This is precisely the kind of setting considered in Chapter 4
and here we explore the second theme, which considers the following question: Given
incomplete preferences, how can one ask the agents for some more information in order
to design algorithms that produce solutions that are “good” with respect to the underlying
complete preferences?

In particular, here we study one-sided matching problems where n agents have preferences
over m objects and each of them need to be assigned at most one object. Most work on
such problems assume that the agents only have ordinal preferences and usually the goal in
these is to compute a matching that satisfies some notion of economic efficiency like Pareto
optimality. However, agents may have some preference intensities or cardinal utilities that,
e.g., indicate that they like an an object much more than another object. We first show
how not taking these into account can result in a significant loss in social welfare. While
one way to potentially account for these is to directly ask the agents for this information,
such an elicitation process is cognitively demanding. Therefore, we focus on learning more
about their cardinal preferences using simple threshold queries which ask an agent if their
utility for an object is greater than a certain value, and use this in turn to come up with
algorithms that produce a matching that, for a particular economic notion X, satisfies X
and also achieves a good approximation to the optimal welfare among all matchings that
satisfy X. We focus on several notions of economic efficiency, and look at both adaptive
and non-adaptive algorithms. Overall, our results show how one can improve welfare by
even non-adaptively asking the agents for just one bit of extra information per object.

1.2.2 Part II: Making decisions with inaccurate information

In situations where agents are asked for cardinal preferences, attributing exact numerical
values to outcomes can be a cognitively demanding task, and so it is not hard to imagine
scenarios where an agent might make “mistakes” while reporting their preferences—meaning,
instead of reporting x, they might report ' due to the inherent difficulty in attributing
numerical values to preferences. The second part of the thesis deals with a such a setting.

Chapter 5: Algorithmic Stability in Fair Allocation of Indivisible Goods

In Chapter 5 we look at the problem of allocating a set of indivisible goods among a set
of agents. The main constraint is that the goods need to be divided among the agents in
a ‘fair’ way (for specific definitions of what it means to be ‘fair’). Most of the literature
on this problem assume that the agents provide cardinal preferences. However, given the
difficulty in translating preferences to numerical values, ideally we would like algorithms to
not be overly sensitive to the exact numerical values provided.

Therefore, towards this end, and in particular to reduce the impact of “small” or “innocuous”
mistakes, we propose a notion of algorithmic stability for scenarios where cardinal preferences
are elicited. Informally, our definition captures the idea that an agent should not experience
a large change in their utility as long as they make “small” or “innocuous” mistakes while
reporting their preferences. We study this notion in the context of fair and efficient
allocations of indivisible goods among two agents, and show that it is impossible to achieve
exact stability along with even a weak notion of fairness and even approximate efficiency.
As a result, we propose two relaxations to stability, namely, approximate-stability and
weak-approximate-stability, and show how popular fair division algorithms that guarantee
fair and efficient outcomes perform poorly with respect to these relaxations. This leads us
to the explore the possibility of designing new algorithms that are more stable. Towards
this end we present a general characterization result for a notion of fairness called pairwise
maximin share allocations, and in turn use it to design an algorithm that is approximately-
stable and guarantees a pairwise maximin share and Pareto optimal allocation for two
agents. Finally, we present a simple framework that can be used to modify existing fair and
efficient algorithms in order to ensure that they also achieve weak-approximate-stability.

Part 1

Making Decisions with Incomplete
Information

10

Chapter 2

Two-Sided Matching Under Partial
Information

2.1 Introduction

In this chapter we begin with the theme of working with incomplete preferences. In
particular, we are interested in designing ‘robust’ algorithms—informally, algorithms that
when given access to incomplete preferences provide some guarantees with respect to the
underlying complete preferences. We look at this question in the context of two-sided
matching problems. Broadly, two-sided matching problems model scenarios where there are
two disjoint sets of agents that want to be matched with each other. Each agent in a set
has preferences over agents in the other set, and the goal is to match the agents in some
socially desirable way. Given their numerous applications, e.g., in matching students to
dormitories (known as the Stable Roommates problem (SR) [Irv85]), residents to hospitals
(known as the Hospital-Resident problem (HR) [Manl6]) etc., such problems have been
extensively studied (see the books by Gusfield and Irving [GI89] and Manlove [Man13]| for
a survey on two-sided matching problems) and they are ubiquitous in practice.

While the class of two-sided matching problems is large, the focus of this chapter is on
a specific two-sided matching problem called the Stable Marriage problem (SM), first
introduced by Gale and Shapley [GS62]. In SM we are given two disjoint sets U and W
(colloquially referred to as the set of men and women) and each agent in one set specifies
a strict linear order over the agents in the other set. The objective, then, is to find a
stable matching, i.e., a collection of pairs (m,w), where m € U and w € W, such that each

11

man/woman is part of at most one pair and where there is no unmatched pair (m’, w’) such
that m' prefers w’ over their partner in the matching and vice-versa. A pair which satisfies
the latter criterion is called a blocking pair.

Although the assumption that the agents will be able to specify strict linear orders is
not unreasonable in small markets, in general, as the markets get larger, it may not be
feasible for an agent to determine a complete ordering over all the alternatives. Furthermore,
there may arise situations where agents may simply be unwilling to provide their complete
preferences due to, say, privacy concerns. Thus, it is natural for a designer to allow agents
the flexibility to specify partial orders, and so here we assume that the agents submit strict
weak orders! (i.e., strict partial orders where the incomparability relation is transitive) that
are consistent with their underlying true strict linear orders. Although the issue of partially
specified preferences has received attention previously, we argue below that certain aspects
have not been addressed sufficiently.

In particular, the common approach to the question of what constitutes a “good” matching
in such a setting has been to either work with weakly-stable matchings, which are stable
matchings that arise as a result of an arbitrary linear extension of the submitted partial
orders, or to look at super-stable matchings, which are matchings that are stable with
respect to all the possible linear extensions of the submitted partial orders [Irv94; Ras+14].
Although these are useful notions and approaches that are analogous to weakly-stability
and super-stability have been studied in other contexts like, for instance, voting, where one
talks about possible and necessary winners (e.g., see [XC11; Bau+12|), and in the context of
one-sided matchings (e.g., see [AWX15; Azi+19]), one key issue with weak-stability is that
we often do not really know how “good” a particular weakly-stable matching is with the
respect to the underlying true preferences of the agents. And in the case of super-stability,
one key issue that such matchings often do not exist for many instances. Furthermore, we
believe that it is in the interest of the market-designer to understand how robust or “good”
a matching is with respect to the underlying true preferences of the agents, for, if otherwise,
issues relating to instability and market unravelling can arise since the matching that is
output by a mechanism can be arbitrarily bad with respect to these true preferences.

Hence, in this chapter we propose to move away from the extremes of working with either
arbitrary weakly-stable matchings or super-stable matchings, and to find a middle-ground
when it comes to working with partial preference information. To this end, our aim here is to
answer two questions from the perspective of a market-designer: i) How should one handle

LAll our negative results naturally hold for the case when the agents are allowed to specify strict partial
orders. As for our positive results, most of them can be extended for general partial orders, although the
resulting bounds will be worse.

12

partial information so as to be able to provide guarantees with respect to the underlying
true preference orders? i1) What is the trade-off between the amount of missing information
and the quality of a matching that one can achieve? We discuss these in more detail in the
following sections.

2.1.1 Working with partial information

When agents do not submit full preference orderings, there are several possible ways to cope
with the missing information. One approach is to assume that there exists some underlying
distribution from which the agents’ true preferences are drawn (e.g., see [Haz+12]), and
then use this information to find a “good” matching—which is, say, the one with the least
number of blocking pairs in expectation. However, the success of such an approach crucially
depends on having access to information about the underlying preference distributions which
may not always be available. Therefore, here we make no assumptions on the underlying
preference distributions and instead adopt a prior-free and absolute-worst-case approach
where we assume that any of the linear extensions of the given strict partial orders can be
the underlying true order, and we aim to provide solutions that perform well with respect
to all of them. We note that similar worst-case approaches have been looked at previously,
for instance, by Chiesa, Micali, and Allen-Zhu [CMA12] in the context of auctions.

The objective we concern ourselves with here is that of minimizing the number of blocking
pairs, which is well-defined and has been considered previously in the context of matching
problems (for instance, see [ABMO05; BMM10]). In particular, for a given instance Z our
goal is to return a matching pi,, that has the best worst case—i.e., a matching that has
the minimum maximum ‘regret’ after one realises the true underlying preference orders.
We refer to fiop: as the minimax optimal solution.

More precisely, let Z = (py, pw) denote an instance, where py = {puy, -+ ,Du, }, Pw =
{Pwis 3 Pwn bs U ={Ui Yicqr2, ny and W = {w;}ic(1,2,..) are the set of men and women
respectively, and p; is the strict partial order submitted by agent . Additionally, let C'(p;)
denote the set of linear extensions of p;, C' be the Cartesian product of the C(p;)s, i.e.,
C = X,couw C(pi), bp(p, ¢) denote the set of blocking pairs that are associated with the
matching ;1 according to some linear extension ¢ € C, and Mz denote the set of all possible
matchings with respect to Z. Then, the matching p,,: that we are interested in is defined as

fopt = arg min max |bp(u, c)| .
)U'GMI ce

While we are aware of just one work by Drummond and Boutilier [DB13| who consider the

13

minimax regret approach in the context of stable matchings (they consider it mainly in
the context of preference elicitation; see Section 2.1.4 for more details), the approach, in
general, is perhaps reminiscent, for instance, of the works of Hyafil and Boutilier [HB04]
and Lu and Boutilier [LB11| who looked at the minimax regret solution criterion in the
context of mechanism design for games with type uncertainty and preference elicitation in
voting protocols, respectively.

Remark: In the usual definition of a minimax regret solution, there is a second term which
measures the ‘regret’ as a result of choosing a particular solution. That is, in the definition
above, it would usually be i, = arg min,,cg maxcec [bp(p, ¢)| — |bp(pie, ¢)|, where pi. is the
optimal matching (with respect to the objective function |bp()|) for the linear extension
c. This is not included in the definition above because |bp(u., c)| = 0 as every instance of
the marriage problem with linear orders has a stable solution (which by definition has zero
blocking pairs). Additionally, the literature on stable matchings sometimes uses the term
‘regret’ to denote the maximum cost associated with a stable matching, where the cost of a
matching for an agent is the rank of its partner in the matching and the maximum is taken
over all the agents (for instance, see [Man+02]). However, here the term regret is used in
the context of the minimax regret solution criterion.

2.1.2 Measuring the amount of missing information

For the purposes of understanding the trade-off between the amount of missing information
and the “quality” of solution one can achieve, we need a way to measure the amount of
missing information in a given instance, and for this here we adopt the following. For a
given instance Z, the amount of missing information, ¢, is the average fraction of pairwise
comparisons one cannot infer from the given strict partial orders. That is, we know that
if every agent submits a strict linear order over n alternatives, then we can infer (g)
comparisons from it. Now, instead, if an agent ¢ submits a strict partial order p;, then
we denote by ¢; the fraction of these (;) comparisons one cannot infer from p; (this is the
“missing information” in p;). Our § here is defined as

5:% > 6 (2.1)

1icUUW

Although, given a strict partial order p;, it is straightforward to calculate ¢§;, we will
nevertheless assume throughout that § is part of the input. Hence, our definition of an
instance will be modified the following way to include the parameter for missing information:

1= (67pUapW)‘

14

Remark: 6 = 0 denotes the case when all the preferences are strict linear orders. Also, for

an instance with n agents on each side, the least value of 6 when the amount of missing

information is non-zero is %ﬁ (this happens in the case where there is only one agent with
2

just one pairwise comparison missing). However, despite this, in the interest of readability,
we sometimes just write statements of the form “for all § > 0”. Such statements need to be
understood as being true for only realizable or valid values of § that are greater than zero.

2.1.3 Our contributions

The focus in this chapter is on computing the minimax optimal matching, i.e., a matching
that, when given an instance Z, minimizes the maximum number of blocking pairs with
respect to all the possible linear extensions (see Section 2.2.1 for a formal definition of the
problem). Towards this end, we make the following contributions.

e First, we formally define the problem and show that it is equivalent to the problem
of finding a matching that has the minimum number of super-blocking pairs (i.e.,
man-woman pairs where each of them weakly-prefers the other over their current
partners). Although an optimal answer to our question might involve matchings that
have man-woman pairs such that each of them strictly prefers the other over their
partners, we start by focusing on matchings that do not have such pairs. Given the
fact that any matching with no such pairs are weakly-stable, through this setting we
address the question: Given an instance, is it possible to find weakly-stable matching
that performs well, in terms of minimizing the number of blocking pairs, with respect to
all the linear extensions of the given strict partial orders? We show that by arbitrarily
filling-in the missing information and computing the resulting stable matching, one
can obtain a non-trivial approximation factor (i.e., one that is o(n?)) for our problem
for many values of §. We complement this result by showing that, even under severe
restrictions on the preferences of the agents, the factor obtained is asymptotically
tight in many cases.

e By assuming a special structure on the agents’ preferences—one where strict weak
orders are specified by just one set of agents and all the missing information is at
the bottom of their preference orders—we show that there is an O(n)-approximation
algorithm for our problem. The proof of this is via finding a 2-approximation for
another problem (see Problem 3) that might be of independent interest.

e In Section 2.4 we remove the restriction to weakly-stable matchings and show a

15

general hardness of approximation result for our problem. Following this, we discuss
one possible approach that can lead to a near-tight approximation guarantee.

2.1.4 Related work

Starting with the work of Gale and Shapley [GS62|, two-sided matching problems have
been extensively studied, due, in part, to their numerous applications |[GI89; RS90; Man13|.
For instance, it is used to match medical residents to hospitals [Rot84; Rot86; Man16| in
many countries [NRM; CAR], to match students to universities [Rom98; BB04|, etc. We
refer the reader to the books by Gusfield and Irving [GI89] and Manlove [Man13] for a
survey on two-sided matching problems.

In this vast literature, there are several papers that have looked at problems relating to the
topic of chapter, and that broadly deal with missing preference information or uncertainty
in preferences. We discuss them below.

Drummond and Boutilier [DB13] used the minimax regret solution criterion in order to
drive preference elicitation strategies for matching problems. While their paper discusses
about computing robust matchings subject to a minimax regret solution criteria, their focus
was on providing an NP-completeness result and heuristic preference elicitation strategies
for refining the missing information. In contrast, in addition to focusing on understanding
the exact trade-offs between the amount of missing information and the solution “quality”,
our main concern here is to derive approximation algorithms for computing such robust
matchings.

Rastegari et al. [Ras+14] studied a partial information setting in labour markets. However,
again, the focus of this paper was different. They looked at pervasive-employer-optimal
matchings, which are matchings that are employer-optimal (see [Ras+14| for the definitions)
with respect to all the underlying linear extensions. In addition, they also discussed how to
identify, in polynomial time, if a matching is employer-optimal with respect to some linear
extension.

Aziz et al. [Azi} 16| looked at the stable matching problem in settings where there is
uncertainty about the preferences of the agents. They considered three different models of
uncertainty and primarily studied the complexity of computing the stability probability
of a given matching and the question of finding a matching that will have the highest
probability of being stable. In contrast to their work, here we do not make any underlying
distributional assumptions about the preferences of the agents and instead take an absolute
worst-case approach, which in turn implies that our results hold irrespective of the underlying

16

distribution on the completions.

Finally, we also briefly mention another line of research which deals with partial information
settings and goes by the name of interview minimization (see, for instance, the papers by
Rastegari et al. [Ras+13] and Drummond and Boutilier [DB14]). One of the main goals in
this line of work is to come with a matching that is stable (and possibly satisfying some
other desirable property) by conducting as few ‘interviews’ (which in turn helps the agents
in refining their preferences) as possible. We view this work as an interesting, orthogonal,
direction from the one we pursue here.

2.2 Preliminaries

Let U and W be two disjoint sets. The sets U and W are colloquially referred to as the
set of men and women, respectively, and |U| = |W| = n. We assume that each agent in U
and W has a strict linear order (i.e., a ranking without ties) over the agents in the other
set, but this strict linear order may be unknown to the agents or they may be unwilling
to completely disclose the same. Hence, each agent in U and W specifies a strict partial
order over the agents in the other set (which we refer to as their preference order) that is
consistent with their underlying true orders. For an agent ¢, their preference order p; is
consistent with their underlying strict linear order if agent ¢ prefers a to b in p; only if it
prefers a to b according to the underlying linear order.

Throughout, we use py and py, respectively, to denote the collective preference orders of all
the men and women (a.k.a. profile of preferences of men and women). For a strict partial
order p; associated with agent 7, we denote the set of linear extensions associated with p; by
C(pi) and denote by C' the Cartesian product of the C(p;)s, i.e., C = X, _,, C(pi). We
refer to the set C' as “the set of all completions” where the term completion refers to an
element in C'. Also, throughout, we denote strict preferences by = and use > to denote the
relation ‘weakly-prefers’. So, for instance, we say that an agent 7 strictly prefers a to b and
denote this by a >=; b and use a =; b to denote that either ¢ strictly prefers a to b or finds
them incomparable. As mentioned in the introduction, we restrict our attention to the case
when the strict partial orders submitted by the agents are strict weak orders over the set of
agents in the other set.

Remark: Strict weak orders are defined to be strict partial orders where incomparability
is transitive. Hence, although the term tie is used to mean indifference, it is convenient to
think of strict weak orders as rankings with ties. Therefore, throughout, we will use the

17

terms ‘ties” and ‘incomparabilities’ interchangeably, and whenever we say that agent ¢ finds
a and b to be tied, we mean that ¢ finds a and b to be incomparable.

An instance Z of the stable marriage problem (SM) is defined as Z = (0, py, pw), where &
denotes the amount of missing information in that instance and this in turn, as defined in
(2.1), is the average number of pairwise comparisons that are missing from the instance, and
py and py are as defined above. We use M7z to denote the set of all possible matchings
with respect to Z, where a matching p € M is a set of disjoint pairs (m,w), where m € U
and w e W.

Given an instance Z, the goal is usually to come up with a matching ;1 € M7 that is stable.
There are different notions of stability that have been proposed and below we define two of
them that are relevant to our results here: i) weak-stability and i) super-stability. However,
before we look at their definitions we introduce the following terminology that will be used
throughout this chapter. (Note that in the definitions below we implicitly assume that in
any matching p all the agents are matched. This is so because of the standard assumption
that is made in the literature on SM—i.e., the stable marriage problem where every agent
has a strict linear order over all the agents in the other set—that an agent always prefers
to be matched to some agent than to remain unmatched.)

Definition 1 (blocking pair/obvious blocking pair). Given an instance Z and a matching
pw € Mz, (m,w) is said to be a blocking pair associated with p if w >,, p(m) and
m =, p(w). The term blocking pair is usually used in situations where the preferences
of the agents are strict linear orders, so in cases where the preferences of the agents have
missing information, we refer to such a pair as an obvious blocking pair.

Definition 2 (super-blocking pair). Given an instance Z where the agents submit partial
preference orders and a matching p € Mz, we say that (m,w), where pu(m) # w, is a
super-blocking pair with respect to p if w =, p(m) and m >, p(w).

Given the definitions above we can now define weak-stability and super-stability.

Definition 3 (weakly-stable matching). Given an instance Z and matching p € Mz, u is
said to be weakly-stable with respect to Z if it does not have any obvious blocking pairs.
When the preferences of the agents are strict linear orders, such a matching is just referred
to as a stable matching.

Definition 4 (super-stable matching). Given an instance Z and matching y € Mz, u is
said to be super-stable with respect to Z if it does not have any super-blocking pairs.

18

2.2.1 Problem definitions

As mentioned in the introduction, we are interested in finding the minimax optimal matching
where the objective is to minimize the number of blocking pairs, i.e., to find, for an instance
Z, a matching that has the minimum maximum number of blocking pairs with respect to
all the completions of the preferences. This is formally defined below.

Problem 1 (§-minimax-matching). Given a § € [0,1] and an instance Z = (¢', py, pw),
where ¢’ < 0 is the amount of missing information and py, pyw are the preferences submitted
by men and women, respectively, compute ., where

Lopt = arg min max |bp(u, c)| . (2.2)
H‘GMI ceC

Although the problem defined above is our main focus, for the rest of this chapter we
will be talking in terms of the following problem which concerns itself with finding an
approximately super-stable matching (i.e., a super-stable matching with the minimum
number of super-blocking pairs). As we will see below, this is because both the problems
are equivalent.

Problem 2 (J-min-bp-super-stable-matching). Given a 6 € [0,1] and an instance Z =
(0', pu, pw), where &' < § is the amount of missing information and py, py are the preferences

submitted by men and women, respectively, compute /uofft, where
oot = ' -bp ()] (2.3)
[opt = argmin [super-bp(y)| , :

HEMZ

and super-bp(u) is the set of super-blocking pairs associated with u for the instance Z.

Below we show that both the problems are equivalent. However, before that we prove the
following lemma.

Lemma 1. Given an instance T = (8, pu, pw), let u € Mz, « denote the mazimum number
of blocking pairs associated with p for any completion of Z, and [denote the number of
super-blocking pairs associated with p for the instance Z. Then, a = 5.

Proof. First, it is easy to see that if there are a blocking pairs associated with u for
a completion, then there are at least as many super-blocking pairs associated with pu.
Therefore, a < .

19

Next, we will show that if § is the number of super-blocking pairs associated with p, then
7 has at least one completion such that it has § number of blocking pairs associated with
. To see this, for each m; € U and for each w; € W such that (m;, w;) is a super-blocking
pair, do the following;:

e if m; finds w; incomparable to p(m;), then construct a new partial order p;, for m;
such that it is the same as p,,, except for the fact that in p{, we have that m; strictly
prefers w; over pu(m;).

e if w; finds m; incomparable to p(w;), then construct a new partial order piuj for w;
such that it is the same as p,,; except for the fact that in pﬁuj we have that w; strictly
prefers m; over p(w;).

Once the above steps are done, if there still exists any agent whose preference order is
partial, then complete it arbitrarily. Now, consider this instance Z’ that is obtained and
observe that every (m;,w;) which was a super-blocking pair associated with x4 in Z forms a
blocking pair in p with respect to Z'. Therefore, this completion has blocking pairs, and
since the maximum number of blocking pairs in any completion is a;, we have that § < «.
Combining this with the case above, we have that a = 5. O

Given the lemma above, we can now show that the problems are equivalent.

Proposition 2. For any § € [0,1], the d-minimaz-matching and §-min-bp-super-stable-
matching problems are equivalent.

Proof. Let T = (0', py, pw) be an arbitrary instance, where ¢’ < §, and u € Mz. We show
that p is an optimal solution for the d-minimax-matching problem if and only if it is an
optimal solution for the d-min-bp-super-stable-matching problem.

(=) Let us suppose that p is not an optimal solution for the J§-min-bp-super-stable-
matching problem. This implies that there exists some other p' such that [super-bp(u')|
< |super-bp(u)|. However, from Lemma 1 we know that the maximum number of blocking
pairs associated with p/ for any completion with respect to Z is equal to |super-bp(i/)],
which in turn contradicts the fact that p was optimal for the J-minimax-matching problem.

(<) We can prove this analogously as in the case above. O

For the rest of this chapter, we assume that we are always dealing with instances which do
not have a super-stable matching since the existence of such a matching can be checked

20

in polynomial-time [Irv94, Theorem 3.4]. So, now, in the context of the J-min-bp-super-
stable-matching problem, it is easy to show that if the number of super-blocking pairs k in
the optimal solution is a constant, then we can solve it in polynomial-time. We show this
below. Later, in Section 2.4, we will see that the problem is NP-hard, even to approximate.

Proposition 3. An exact solution to the d-min-bp-super-stable-matching problem can be
computed in O(n>*+V) time, where k is the number of super-blocking pairs in the optimal
solution.

Proof. We will describe the algorithm below whose main idea is based on the following
observation.

For an instance Z, consider its optimal solution p,, and let the & super-blocking pairs
associated with jio,x be B = {(my,wy),- -, (mg, wy)}. Next, for each such pair (m;,w;),
put m; (respectively, w;) at the end of w;’s (respectively, m;’s) preference list (i.e., in Z,
make every other man (woman), except those involved in another blocking pair with w;
(m;), rank better than m; (w;)). If either of them are involved in multiple blocking pairs
in B, then make those partners as incomparable at the end of the preference list. Let us
call the resulting instance Z’. Notice that i, is super-stable with respect to Z’ as the
pairs in B are no longer blocking and no new blocking pairs are created because of our
manipulations to the preference list.

Given the above observation, we can now describe the exponential algorithm.

e Initially j = 1. Given a j, try out every possible set of pairs of size j to see if they
are the right blocking pairs.

e For each set generated in the previous step, modify the original instance Z to Z' as
described above and see if Z' has a super-stable matching (as mentioned previously,
this can be done in polynomial time [Irv94, Theorem 3.4]). If yes, then return the
super-stable matching as that is the solution. Otherwise, if none of the sets of size j
result in a “yes”, then go back to step 1 and try again with the next value of j.

Now, it is easy to see that we end up with the optimal solution this way since we try
all possible sets of blocking pairs. As for the time, we know that for each j we have at
most (n?)7 choices of sets and for each set we need at most 2n? time to do the necessary
manipulations to the instance and to check for super-stability. Hence, the total time required

is Zle 2n%+2 = O(n2k+1), O

21

2.3 Investigating Weakly-Stable Matchings

In this section we focus on situations where obvious blocking pairs are not permitted
in the final matching. In particular, we explore the space of weakly-stable matchings
and ask whether it is possible to find weakly-stable matchings that also provide good
approximations to the J-min-bp-super-stable-matching problem (and thus the é-minimax-
matching problem).

2.3.1 Using weakly-stable matchings to approximate the §-min-bp-
super-stable-matching problem

It has previously been established that a matching is weakly-stable if and only if it is stable
with respect to at least one completion [Man-+02, Section 1.2|. Therefore, given this, one
immediate question that arises in the context of approximating the J-min-bp-super-stable-
matching problem is: What if we just fill in the missing information arbitrarily and then
compute a stable matching associated with such a completion? This is the question we
consider here, and we show that weakly-stable matchings do give a non-trivial (i.e., one
that is o(n?), as any matching has only O(n?) super-blocking pairs) approximation bound
for our problem for certain values of §. The proof of the following theorem is through a
simple application of the Cauchy-Schwarz inequality.

Theorem 4. For any 6 > 0 and an instance T = (0', py, pw) where 8" < §, any weakly-
stable matching with respect to Z gives an O (min {n36, nzx/g} -approximation for the

d-min-bp-super-stable-matching problem.

Proof. Let pu be a weakly-stable matching associated with Z. By the definition of weakly-
stable matchings we know that 1 does not have any obvious blocking pairs. This implies
that for every super-blocking pair (m,w) associated with p, either m finds w incomparable
to his partner u(m) or w finds m incomparable to her partner pu(w). If it is the former
then we refer to the super-blocking pair (m,w) as one that is associated with m and if
not we say that it is associated with w. Next, let us suppose that there are d agents who
have a blocking pair associated with them and let b; denote the number of super-blocking
pairs associated with agent 7. So, now, the number of super-blocking pairs, |super-bp(u)],

22

associated with p can be written as

d

d d
|super-bp(u)| = Z b; < Z l;—1) Zéi —d, (2.4)
i=1 i=1

=1

where /; refers to the length of largest tie associated with agent ¢ and the inequality follows
from the definition of an association of a super-blocking pair with an agent.

Additionally, for each i € {1,...,d}, we know that at least () pairwise comparisons are
missing with respect to i (since ¢ has a tie of length ¢;). Therefore, using the Cauchy-Schwarz
inequality, we have that

4 1A A 2 4

! - = 62—€1>— - gi - gz . 25
SR WEERI o s 29
Also, since the total amount of missing information ¢’ in the instance Z is less than or equal

to 0 and since each ¢; > 2 (as it is a weak order and a tie, if it exists, is of length at least 2)
we have that

d< Zd:(éi) < Z () < 5(2n) (Z) < on. (2.6)

Now, using (2.6) and the fact that d is also upper-bounded by 2n (as there are only 2n
agents in the instance), we have that d < min{2n,dn3}. Therefore, using (2.5) and again
using the fact that 0 is the maximum amount of missing information, we have,

% é(ée) Z@ <Z()<52n (Z) (2.7)

This in turn implies that if we solve for Zle ¢;, we have,

d
Y t< % (d + /@ + 8dn2(n — 1)5) < d+ /@ +8dn2(n — 1)s.
=1

So, now, we can use the fact that d < min{2n,dn®} to see that

d
Zﬁi — d < min{4n®8, 5n*V/s}.

i=1

23

Finally, this along with (2.4) gives our result since the number of super-blocking pairs in the
optimal solution is at least 1 (since, as mentioned in Section 2.2.1, we are only considering
instances that do not have a super-stable matching).]

2.3.2 Can we do better when restricted to weakly-stable match-
ings?

While Theorem 4 established an approximation bound for the J-min-bp-super-stable-
matching problem when considering only weakly-stable matchings, it was simply based on
arbitrarily filling-in the missing information. Therefore, there remains the question as to
whether one can be clever about handling the missing information and as a result obtain
improved approximation bounds. In this section we consider this question and show that
for many values of ¢ the approximation factor obtained in Theorem 4 is asymptotically the
best one can achieve when restricted to weakly-stable matchings.

Theorem 5. For any 6 € [i—g,;ll], iof there exists an a-approximation algorithm for J-

min-bp-super-stable-matching that always returns a matching that is weakly-stable, then
a € <n2\/5> Moreover, this result is true even if we allow only one side to specify ties
and also insist that all the ties need to be at the top of the preference order.

Proof. At a very high-level, the key idea in this proof is to create an instance Z such that
if we insist on there being no obvious blocking pairs, then this results in some kind of a
“cascading effect”, thus in turn causing a very sharp blow-up in the number of super-blocking
pairs. With this intuition, we first construct an instance Z as shown in Figure 2.1, where
ties appear only on the women’s side. Furthermore, we define the following:

oy = ”T‘/g, z = 2"—y (for simplicity we assume that y and z are integers; we can

appropriately modify the proof if that is not the case)
L] bj: %-'-jy—l—l,Vj € [O,...Z], Bi:{bifl,...,bi—l},ViE [1,2’]
F={1,....5},S={5+1,...,n}

Wx (Mx) : for some set X, place all the women (men) with index in X in the
increasing order of their indices

WL (ML) : for some set X, place all the women (men) with index in X as tied

[...] : place all the remaining alternatives in some strict order.

24

Women
Men

w1 ima =mi =[]
e Wy e Wae = Wy wa M2 = Mpus)\ {13 > M1
m2:w1>_w2>_['“] w3:m1>-m3>-[..‘}
mg:w2>-w3>—WF\{2’3} - Wg wa My >m4>[.”}
my4 w2 > wa = Wpy(2.4) = Ws

: wa imy = ma =[]
mgivemwy s Weegy - Ws Wwyy t ME 01 = Mg\, = m1 = mpy = Mp\ (1}
: Mp
Mg 2 w1 = Why = Wi\ (oo} = Wars, = Wi\ (1) O el TR ’

: 1ML = M, =my - mp, 1 = M
mpy—1 w1 = why -1 = We\(p,-1} = Ws\B, = Wr\{1} Wh1—1 Bi\{b1—1} S\By 7~ M1~ Mp;—1 {1}

. T
mp, w1 = wpy = Wi\ (p,) = Was\B, = Wr\(1} Why * MBl\{bl} = Mg\p, = m1 = mp = Mp\(1}

Mpy—1 1 W1 > Why—1 > WB2\{b2_1} - WS\32 - WF\{l} Why—1 ¢ Mgl\{b271} - MS\B1 = m1 > Mpy,—1 > MF\{l}
Mp,_y w1 = Wo,_y = We b, 13 = Ws\B. = Wr\(1} Wo,_y i MB\qh._,y = M\, = m1 = my,_, = Mpy 1y

mp,—1 w1 = Wp,—1 > Wp\p,—1} = W\, = Wr\{1}

Wp, —1 * Mgl (b1} - MS\Bl =mi1o-mp,—1 > MF\{l}
Figure 2.1: The instance Z that is used in the proof of Theorem 5

Next, we will show that all the weakly-stable matchings associated with Z have O(n?v/§)
super-blocking pairs, whereas the optimal solution has exactly one super-blocking pair.
To do this, first note that the optimal solution ., associated with the instance is fiop =
{(my,wy), (Mg, ws), ..., (my,,w,)}, where (mg,w;) is the only super-blocking pair (and it
is an obvious blocking pair). Also, it can be verified that the total amount of missing
information in Z is at most . So, next, we prove the following claim.

Claim 1. If p is a weakly-stable matching associated with the instance Z, then Vi &€

Proof. First, note that in any weakly-stable matching my will always be matched to w; as
otherwise it will result in an obvious blocking pair. Next, let us suppose that there exists
an i € {5 +1,...,n} such that p(m;) = w;. Now, we will consider the following two cases
and show that in both the cases this is impossible.

Case 1. m; is matched to a woman w € W\ g1y in g In this case one can see that (my, w;)
forms an obvious blocking pair.

25

Case 2. m, is matched to a woman w € Wy in p: Note that if this is the case, then there
is at least one j € S such that m; is matched with a woman w € Wpr. Now, notice that
(m;,w;) forms an obvious blocking pair. O

Given the claim above, consider a man m whose index is in some block B; and let his
index value be k. From the way the preferences are defined, it is easy to see that in any
weakly-stable matching, m will be matched to a woman w whose index lies in the same
block B; (because otherwise it will result in an obvious blocking pair). At the same time,
from the claim above we know that this w’s index is not k. Now, let us consider the woman
wp, 1 who is the woman with the highest index value in B; and let m’ denote the man who
is matched to wy, 1 in a weakly-stable matching. From the observation above we know that
m’ has an index value in B;. Additionally, given the way the preferences are defined for
m' and using the fact that any woman w, such that p € B; finds all the men in B; \ {p}
to be incomparable, one can see that m’ forms (|B;| — 2) super-blocking pairs (with all
the women in B; except wy, ;1 and the one with the same index value as m'). Also, by
using the same argument again, but with respect to wy, 2, we can show that partner of
wy, 2 in the matching forms at least (| B;| — 3) super-blocking pairs (with all women except
Wy, 2, Wy, 1, and the one with the same index). Continuing this way we see that each
block B; contributes O(|B;|?) super-blocking pairs. And so, since there are z blocks and
|Bj| =y for all j, we have that there are O(n? V/8) super-blocking pairs in any weakly-stable
matching. [

2.3.3 The case of one-sided top-truncated preferences: An O(n)
approximation algorithm

Although Theorem 5 is an inherently negative result, in this section we consider an
interesting restriction on the preferences of the agents and show how this negative result
can be circumvented. In particular, we consider the case where only agents on one side
are allowed to specify ties and all the ties need to be at the bottom. Such a restriction
has been looked at previously in the context of matching problems and as noted by Irving
and Manlove [IMO08§]| is one that appears in practise in the Scottish Foundation Allocation
Scheme (SFAS). Additionally, restricting ties to the bottom models a very well-studied
class of preferences known as top-truncated preferences, which has received considerable
attention in the context of voting (see, for instance, [Bau+12]).

Top-truncated preferences model scenarios where an agent is certain about their most
preferred choices, but is indifferent among the remaining ones or is unsure about them.

26

More precisely, in our setting, the preference order submitted by, say, a woman w is said to
be a top-truncated order if it is a linear order over a subset of U and the remaining men are
all considered to be incomparable by w. In this section we consider one-sided top-truncated
preferences, i.e., where only men or women are allowed to specify top-truncated orders,
and show an O(n)-approximation algorithm for é-min-bp-super-stable-matching under this
setting. (Without loss of generality we assume throughout that only the women submit
strict weak orders.) Although arbitrarily filling-in the missing information and computing
the resulting weakly-stable matching can lead to an O(nzx/g)—approximate matching even
for this restricted case (see Appendix A.2 for an example), we will see that not all weakly-
stable matchings are “bad” and that in fact the O(n)-approximate matching we obtain is
weakly-stable.

However, in order to arrive at this result, we first introduce the following problem which
might be of independent interest. (To the best of our knowledge, this has not been previously
considered in the literature.) Informally, in this problem we are given an instance Z and
are asked if we can delete some of the agents to ensure that the instance, when restricted
to the remaining agents, will have a perfect super-stable matching.

Problem 3 (min-delete-super-stable-matching). Given an instance Z = (6, py, pw), where
0 is the amount of missing information and py, pyy are the preferences submitted by men
and women, respectively, compute the set D of minimum cardinality such that the instance
Z_p = (0_p,pu\p,Pw\D), Where 6_p = m Zie(UUW)\D d;, has a perfect super-stable
matching (i.e., every agent in (U UW) \ D is matched in a super-stable matching).

Below we first show a 2-approximation for the min-delete-super-stable-matching problem
when restricted to the case of one-sided top-truncated preferences. Subsequently, we use
this result in order to get an O(n)-approximation for our problem. However, before that,
we introduce the following terminology which will be used throughout in this section.

e An instance Z of the min-delete-super-stable-matching problem can also be thought
of as the set of agents along with their preference lists. Initially for every agent this
list has all the agents in the other set listed in some order. Now, during the course of
our algorithm sometimes we use the operation “delete(a, b)” which removes agent a
from b’s list and b from a’s. After such a deletion (or after a series of such deletions)
our instance now refers to the set of agents along with their updated lists.

e We say that a matching pu is internally super-stable with respect to an instance Z if p
is super-stable with respect to the instance that is obtained by only considering the
matched agents in p (i.e., consider Z and remove all the agents who are not matched
in p from 7).

27

Procedure: proposeWith(A,7)
1: assign each agent a € A to be free
2: while some a € A is free do
3 b «+ first agent on a’s list
if b is already engaged to agent p && b finds p and a incomparable then
delete (a,b)
else
if b is already engaged to agent p, then assign p to be free
assign a and b to be engaged
for each agent c in b’s list such that a > ¢, delete (c, b)
10: end if
11: end while
12: for each man m do
13: w < first woman on m’s list
14: if there exists m’ such that w finds m and m’ incomparable, then delete (m’, w)

15: end for > deletions in this loop only happen once and removes all the remaining ties
16: return Z > this returns the updated lists
Main:

Input: a one-sided top-truncated instance Z = (6, py, pw)

17: I’ + proposeWith(U,T)

18: 7' + proposeWith(W,Z")

19: while there exists some exposed rotation (mq,wy), (ma, w2), ..., (my,w,) in Z' do

20: for all i € {1,...,r}, delete (m;, w;)

21: T’ + proposeWith(U,Z")

22: T’ + proposeWith(W,Z")

23: end while

24: 1 <+ for all men m € U, match m with the only woman in his list

25: construct G = (U U W, E), where (m,w) € E if (m,w) is super-blocking pair in p w.r.t. Z
26: D < minimum vertex cover of G

27: for each a € D do

28: D« DU u(a)

29: end for

30: return (D, p)

Algorithm 1: For the case of one-sided top-truncated preferences, the set D returned by
the algorithm is a 2-approximation for the min-delete-super-stable-matching problem and
the matching p returned is an O(n)-approximation for §-min-bp-super-stable-matching,.

e We say that an instance Z with no ties has an exposed rotation p = (mq,w),

28

ooy (myyw,) if) in Z,) w; is the first agent in m;’s list and w;41 is the second agent in
m;’s list (here (i 4+ 1) is done modulo 7).

Proposition 6. Algorithm 1 is a polynomial-time 2-approximation algorithm for the min-
delete-super-stable-matching problem when restricted to the case of one-sided top-truncated
preferences.

Proof. The main idea for Algorithm 1 is inspired by the work of Tan [Tan90] who looked at
the problem of finding the maximum internally stable matching for the stable roommates
problem (which is equivalent to the problem of finding the minimum number of agents to
delete so that the rest of the agents will have a stable matching when the instance is just
restricted to themselves). Informally, at a very high level, the key idea in Tan’s algorithm was
to show that some of the entries in each agent’s list can be deleted by running the proposal-
rejection sequence like in Gale-Shapley algorithm and through rotation eliminations, while
at the same time maintaining at least one solution of the maximum size. As we will see
below, this is essentially what we do here as well, adapting this idea as necessary for our
case when there are ties on one side but only at the bottom.

Before we go on to the main lemmas, let us suppose that Z = (4, py, pw) is an arbitrary
instance of the min-delete-super-stable-matching problem when restricted to the case of
one-sided top-truncated preferences, where ¢ is the amount of missing information, py, pw
are the preference orders submitted by the men and women, respectively, and |U| = |W| = n.
Also, let D, be the optimal solution for this instance. This in turn implies that we can
form a perfect and internally super-stable matching of size k = n — D;"t, and that in fact k
is the maximum size of any such matching (as otherwise D,,; cannot be optimal). Next, for
now, let us assume the correctness of the following lemmas (note that all the instances we
talk about in this section are restricted to the case of one-sided top-truncated preferences).
Their proofs appear in Appendix A.1.

Lemma 7. Let Z; denote some instance and Zy denote the instance returned by the procedure
propose With(A, I,), where the set A represents the proposing side. If there exists a matching
of size t in I that is internally super-stable with respect to I, then there exists a matching
of size t in Iy that is internally super-stable with respect to L.

Lemma 8. Let Z; denote some instance that does not contain any ties, (my,wy), (Mo, ws),
oy (my,w,) be a rotation that is exposed in Iy, and Iy be the instance that is obtained by
deleting the entries (m;, w;) for alli € {1,...,7r} from I;. If there exists a matching of size
t in Iy that is internally super-stable with respect to Z, then there exists a matching of size
t in Iy that is internally super-stable with respect to L.

29

Lemma 9. If Z; is an instance that does not contain any exposed rotation, then the list of
every man in Iy has only one woman and vice versa.

Given the above lemmas and given the fact that the instance Z has an internally super-stable

matching of size k = n — %, we can start with the instance Z and repeatedly apply

Lemma 7 and see that the instance Z that we obtain after line 18 of Algorithm 1 has a
matching of size k that is internally super-stable matching with respect to Z. Next, starting
with the instance Z , we can again repeatedly apply Lemma 8 and see that the instance 7'
that remains after line 23 of Algorithm 1 also has a matching of size k that is internally
super-stable matching with respect to Z. Additionally, from Lemma 9 we know that in this
instance each man has only one woman in his list and vice versa. So, now, consider the
matching p that can be obtained by matching each man with the only woman in his list.
Next, consider the bipartite graph G = (V, E') where V = U U W and (m,w) € E if (m,w)
is a super-blocking pair with respect to the originallcinstance 7, and consider a minimum

vertex cover C' of G. We show below that k <n — 5.

Suppose this is false and that Z has an internally super-stable matching of size greater than

n— L. Now, from the discussion above, we know that this implies Z’ also has a matching

2
of size greater than n — @ such that it is internally super-stable with respect to Z. This in
turn implies that we can remove less than |C| agents and have a matching that is internally
super-stable with respect to Z. That is, we can remove less than |C| agents and also at the
same time ensure that for every (m,w) € FE, this matching has only one of m or w matched
in it, for if otherwise it will not be internally super-stable with respect to Z. However, this
implies that |C| is not the size of the minimum vertex cover of GG, and hence we have a

contradiction.

Now, to get our approximation bound, consider the set D that is returned by the algorithm.
We know that D < 2|C| < 4(n — k) = 2D,,;, where the first inequality arises because
of lines 27-29 in Algorithm 1 and the second inequality uses the observation above that
k<n-— % Finally, it is easy to see that all the steps can be done in polynomial-time (it
is well-known through the Kénig’s Theorem that one can find a minimum vertex cover of a
bipartite graph in polynomial-time).]

Given Proposition 6, we can now prove the following theorem.

Theorem 10. For any § > 0, Algorithm 1 is a polynomial-time O(n)-approximation
algorithm for the d-min-bp-super-stable-matching problem when restricted to the case of
one-sided top-truncated preferences. Moreover, the O(n)-approximate matching that is
returned is also weakly-stable.

30

Proof. Consider an arbitrary instance Z of the d-min-bp-super-stable-matching problem
when restricted to the case of one-sided top-truncated preferences. Let pi.,; be the optimal
solution associated with Z. Next, consider the same instance Z for the min-delete-super-
stable-matching problem and let us consider the matching p that is returned by Algorithm 1
for this instance. Also, let D,, be the optimal solution of the min-delete-super-stable-
matching problem for the instance Z and D be the set that is returned by Algorithm 1. (We
can assume throughout that D,, > 1, for if otherwise this implies that it has a super-stable
matching, and as mentioned in Section 2.2.1 we do not consider such instances.) First, it is
easy to see that this matching is weakly-stable (because in every instance that results after
the first proposal-rejection sequence (which is in line 23), a matching that is formed by
matching each man with the first woman on his list will be weakly-stable). Second, note that
we can rewrite p as p = py U pg, where py = p\ {Usep(a, p(a))} and pe = Usep(a, p(a)).
Now, if S; (respectively, Sy) denotes the number of super-blocking pairs associated with
men in gy (respectively, us), then

|super-bp(p)| = S1 + Sz

<(_|D|) D] _|D|
< n-=2) =+

2 2 2
<n-|D|
<20+ Doy, 2.5)
where the second step is using the fact that the men in y; can form at most % super-

blocking pairs with women outside of p; and the men in ps can in the worst case form a
blocking pair with all the women, and the last step is using the fact that D,, > 1 and that
|D| < 2-|Dgypl|, which we know is true by Proposition 6.

Also, if piop is the optimal solution for the 6-min-bp-super-stable-matching problem, then

we know that

‘D 0pt‘
2 Y

|super-bp (popt)| > (2.9)

as otherwise one can delete all the men who are involved in super-blocking pairs in o
and their corresponding partners and get a super-stable matching on the remaining agents.

Finally, combining (2.8) and (2.9) gives us our theorem. O

Before we end this section, we address one final question as to whether, for the class of
one-sided top-truncated preferences, one can obtain a better approximation result if one

31

Women

Men
Wi iMoo Mgy > (M1, -+, M)
my i wy = wy = [wy tmy > []
mo :wg > wi = wa > .. ws :my =[]
mg :wy = wy = w3 - [wy :mg > []
Mp—y t Wn—y+1 > [..] Wpn—yt1 : w;an_y =[]
Mp—yt1 Wp—yt2 = W1 = Wpoyt1 = [..] Wr—yt2 © Mp—y1 = Mp—yy2 > [-]
Mp—yt2 t Wp—yt2 = w1 = wa = [] Wn—y13 : Mpys3 > |- -]
Min—y43 Wny42 = W1 = Wyt =[] |, g imy g > []
Myt Wo—ytg = W1 = Wy > [..] W = []

Figure 2.2: The instance Z that is used in the proof of Theorem 11

continues to consider only weakly-stable matchings. In the theorem below we show that for
o€ Q(%) Algorithm 1 is asymptotically the best one can do under this restriction.

Theorem 11. For § < %, if there exists an a-approximation algorithm for §-min-bp-super-

stable-matching that always returns a matching that is weakly-stable for the case of one-sided
top-truncated preferences, then o € (2 (min {n%\/g, n})

Proof. Consider the instance Z defined in Figure 2.2, where y = min { LZn%\/SJ , n}, the

presence of [...] in a preference list implies that the rest of the alternatives can be placed
in some strict order, and (my,_y41,...,m,) implies that these agents are tied with respect
to wi. Below we show that the statement of the theorem is true when § < %, i.e., show
that in this case o € Q (n%\/g> For § > % it is then trivial to extend our instance by just
having some of the other women (other than w;) specify partial preferences.

First, it is easy to verify that this instance has at most 6 amount of information missing.
Second, one can see that the optimal solution, i.e., the matching with the minimum number
of super-blocking pairs, for this instance is

Lopt = { (M1, w1), (M2, w3), ..., (Mu_yi1, Wayya), (My_yi2, Wwa),

32

(mn—y+3> wn—y—i—?))a SRR (mn; wn)}>
where (my,ws) is the only super-blocking pair.

Given the above observation, let us now consider an arbitrary matching p that is weakly-
stable. Since m; prefers w;,1 the most and vice versa for all i € {1,...,n—y+ 1}, we know
that p(m;) = wiy1. Hence, p(wy) = my, for some k € {n —y +2,...,n}. Additionally, we
also know that for all j € {n—y+2,...,n} such that j # k, wy >,,; u(m;), as none of these
can men can be matched to w,_,o. This in turn implies that since w; finds m;, and m;
incomparable for j € {n —y+2,...,n} such that j # k, (m;,w;) is a super-blocking pair.
Therefore, in any weakly-stable matching p we have (y — 2) € O(n%\/g) super-blocking
pairs.]

2.4 Beyond Weak-Stability

In the previous section we investigated weakly-stable matchings and showed several results
for the case when the output matching is weakly-stable. Here we move away from this
restriction and explore what happens when we do not place any restriction on the matchings.
In particular, we begin this section by showing a general hardness of approximation result,
and then follow it with a discussion on one possible approach that can lead to a near-tight
approximation result.

2.4.1 Inapproximability of §-min-bp-super-stable-matching

We show a hardness of approximation result for the J-min-bp-super-stable-matching problem
through a reduction from the Vertex Cover (VC) problem, which is a well-known NP-
complete problem [Kar72|. In the VC problem, we are given a graph G = (V, E), where
V ={v1,...,u}, and a ky < k and are asked if there exists a subset of the vertices with
size less than or equal to ky such that it contains at least one endpoint of every edge.
When given an instance Z of VC, the key idea in the proof is to create an instance Z' of
0-min-bp-super-stable-matching such that if 7 is a “yes” instance of VC, then Z’ will have
a very small number of super-blocking pairs, and if otherwise, then Z’ will have a large
number of super-blocking pairs.

Theorem 12. For any constant € € (0,1] and § € (0,1), one cannot obtain a polynomial-
time (71\/(_5)1*6 approximation algorithm for the d-min-bp-super-stable-matching problem
unless P = NP.

33

Proof. The proof here is similar to the one by Hamada, Iwama, and Miyazaki [HIM16,
Theorem 1]. The main difference is in the construction of the instance, which in our case is
more involved.

Given an instance Z = (G = (V, E), ko) of the VC problem, where |V| = k, we construct
the following instance Z’ of the d-min-bp-super-stable-matching problem, where

e d=[,y=k'+1z=[F]

o My, ={mq,...,mg}, Ma, = {mggs1,...,mp}, Wa={wy,...,wi}

e for every ¢ < j such that (v;,v;) € F and ¢ € {1,...,2}, S¥ = {szcjl,s%)
T = {18, g, P9 = . g}, and V9 = Dot

o SW = {8V SE} TH ={T}7 .. TH}, P ={P}7 .. P} and Vi = {V}7, ...
)

o My=Ms UMy, S=S¥, T=T%, P=JPY, and V =V

e U=MsUSUPand W=W,UTUV

e for each i, the preference orders of the agents are as given in Figure 2.3. For an
agent a, if Rg appears in its preference list for some R and S, then this implies that
a finds all the agents in Rg as incomparable. Also, |...] denotes that the rest of the
agents can be placed in any order.

Note that n = |U| = |W/| = k + 2yz|E|. Also, the amount of missing information per

£(1) _ (4

k
agent is at most (2)(n 2~ Therefore, the average amount of missing information is
(5 - () _wp — ap |
< (i) < < < 4;2’22 < 4. Next, in order to show the correctness, we prove the
2 2

following claims. Throughout, for every m;, if m; is not matched to a woman in Wy, then
we call such a pair as a bad pair. Additionally, for every s, if 5! is matched to a woman
who is outside of the top three women in his list (i.e., for instance, if 321‘71 is matched with
ihj

2.1), then we again refer to such pairs as bad.
S+,

anyone other than ¢}, w;, or t

Claim 2. If a matching p contains a bad pair, then it has at least y — 1 super-blocking
pairs.

Proof. Consider the case when m; is matched to a woman w’ who is not in Wy. This
implies that it at least forms a super-blocking pair with all w € V;*? such that w # w’. And

34

Men Women

mi:WA>V1i7j>[...] ’UJZ':MA1>-S>-MA2
Sﬂt'l >wz>tz+11>vf’j>[...] tﬁ’fI:MA>sj =S .
sph 0l w4 - VI e] t’l’fQ:MA>s+11>SZ’] [.]

ti’é:MA>3f,2>SlJ*[---]
sil”]z'j:t >—wl>t =V -] :
syl 5w = 5t = Ve] tl’fyZMA>81y1>_Sia]>_[“']
t5h t Ma = sy0 = S0 - []
57 3t2u - w; >téJ1 -V - 1]

t5) Mg = syl = S50 - []

ij . i i.j oo ij g
iyl >wl>t >V =[] g+1,1-MA>5 >SE+1>[...]
/L',' . 27) ’Lu] . Z’

szﬂl.t >w]>t+12>V5H>[...] %+172.MA>5+11>S+1>[]
.3 N] 1,3

§34 %+172>w]>f +15>Vg+1>[...]

i i i.j ti’j My > sz S

SEGRIE t2+1,y = wj = 15%21 =Vl =] - zé] o

U1,13MA>51 >p171>[...]

o - ij . ij i

syt wy =t = VI] Uy s Ma = Sy - pry - [

. . (N 1,5 (]

s’g?y : tlv] — w] — f~+1 1 — VZZJ — [.] 'U271 . MA - 52 b p271 - [.]

Py Uf]l =[]

Uijy t My = Sy = py -]

LR A
20 ’Uz’y [] MA>SZ7'] >p7.7 >[}

Figure 2.3: The instance Z’ that is used in the proof of Theorem 12

since every women in V{’ finds all the men in M, as incomparable, therefore we at least

35

have |V;’/| — 1 = y — 1 super-blocking pairs.

Next, consider the case when there is a man s Who is matched to a woman w’ who is
outside of the top three women in his list. This 1mphes that it at least forms a super-blocking
pair with all w € V;*J such that w # w’. And since we can assume that no women in V»J
is matched to a man in My (as this would anyway result in y — 1 super-blocking pairs as
proved above) and since all of them find the men in S%’ as incomparable, this implies that
we have at least |V»7| — 1 = y — 1 super-blocking pairs. O

Before we go on to the next claim, for every ¢ < j such that (v;,v;) € E, consider the sets
5% and T% and let us the define the following two perfect matchings, p%’ and b’ , between
S and T . The matching u} b (,uQ’J) can be inferred from Figure 2.3 by matching every
man in S$*/ with the woman coloured red (blue) in his list.

:U’zfj = {(51317 tL :) (Sil’,j% t17J2)7 (S Z’J,ya tL J)7

(5§+1 1 f7~J+1,2) (52+1 29 f7~J+1,3)v s (s z’Jyv fljﬂ 1)}
5 = {65180, (51 1), (5, 1),
(241, 1’75) (s 7j+1,2’ %jﬂ,z)a cee (Slz]gﬂ ti;]y)}

Claim 3. For every ¢ < j such that (v;,v;) € E, 7 and i’ are the only perfect matchings
between S* and T% that do not include a bad pair. Moreover, both p;” and j5’ have only
one super-blocking pair (m,w) such that m € S% and w € T%.

Pmof. It is easy to observe the first part. As for the second part, note that none of

321"71, ..., 82 form any super—blocking pair in p; as they are matched to their topmost
ch01ces Also none of s%/ BRI szﬂy form any super—blocking pairs since the only woman

they can form super- blockmg pairs with, which are %/ ti’j respectively, strictly prefers

241200

EAPRIRREE s J, respectively. Hence, the only

) We can make similar arguments with respect to ps to

their currently matched partner which are 5%’
super-blocking pair is (s’ 2, Lt

show that (51771, t1’71) is the only super—blockmg pair. O

Given the two claims above, we can now prove the correctness of the reduction through the
following lemmas.

36

Lemma 13. If 7 = (G, ko) is a “yes” instance of VC, then ' has a solution with at most
2k? super-blocking pairs.

Proof. Let the vertex cover of G be C' and since it is a “yes” instance, we know that |C| < k.
If the size of C' is strictly less than kg, then add arbitrary vertices to it in order to make its
size kg. So from now on we assume that |C| = ko. Next, construct the following matching
u for the instance Z'.

e For every woman w; € Wy, if v; € C, then match w; with some man in My,.
Otherwise, match w; with some man in M4, .

e For every ¢ < j such that (vi,vj) € E, if v; € C, then match every man in S* with a
woman in T/ using 5’ as defined above. Otherwise, match every man in S*/ with a
woman in 7%/ using i}’ as defined above.

e For every i < j such that (v;,v;) € E, match pi’% with U;’jl;

Now, we know that the each man in M, can form at most & super-blocking pairs (one with
each woman in Wy). Additionally, we know from Claim 3 that both x}’ and p%’ have at
most one super-blocking pair, and that none of the men in P form any super-blocking pair
as they all get their topmost choice. Hence, the total number of blocking pairs is at most

24 |E| < 2K2 O

Lemma 14. If T = (G, ko) is a “no” instance of VC, then every matching for ' has at
least y — 1 super-blocking pairs.

Proof. Here we will show that if there exists a matching p with less than y—1 super-blocking
pairs for 7', then Z has a vertex cover of size at most ky. To see this, consider p. Since it
has less than y — 1 blocking pairs, we know from Claim 2 that it does not have any bad
pair. This in turn implies that all the men in M4 are matched with a woman in W, (since
all men in M4 have to be attached to a woman in W, and size of both the sets are equal).

Next, for every i < j such that (v;,v;) € E, let us consider the men and women in S* and
T%. Since, again, we cannot have any bad pairs, we know that there has to be a perfect
matching between these two sets. Additionally, from Claim 3 we know that ,ui and py’ are
the only two perfect matchings that have no bad pairs. Now, for an (i, 7), if we were using
77| then it is easy to see that w; should be matched with a man in M,, as otherwise she

would form a super-blocking pair with all the men in {sz Qoo ST 17}, thus resulting in at

least zy > y — 1 super-blocking pairs for . Similarly, if we were using ,uQ’J , then w; should
be matched with a man in M4, as otherwise we would have at least zy > y — 1 blocking

37

pairs. Therefore, we have that for each edge (v;,v;) € E at least one of the women w; or w;
should be matched to a man in M4,. So, now, if we define C' = {v; | u(w;) € M4, }, then
we have a vertex cover of size at most kg (as size of My, is ko). O

Finally, from Lemmas 13 and 14, we have an inapproximability gap of a;, where

y—l_k:d nvo

] = 2 d+2_1
a2 22 _@>16k54 (since n = 2yzk +k’§8k;+73)
1—e
; _ 2 d_1
> (n\/5> . (since n = 2yzk* + k > 2yz > 2k %)
O

2.4.2 A possible general approach for obtaining a near-tight ap-
proximation factor for J-min-bp-super-stable-matching

While obtaining a general near-tight approximation result for the d-min-bp-super-stable-
matching problem is still open, here we propose a potentially promising direction for this
problem. In particular, we demonstrate how solving even a very relaxed version of the
min-delete-stable-matching problem will be enough to get an O(n)-approximation for J-min-
bp-super-stable-matching in general. Below, we first define the relaxation in question, which
we refer to as an («, §)-approximation to the min-delete-super-stable-matching problem.

Definition 5 ((«, 5)-min-delete-super-stable-matching). Given an instance Z = (9, py,
pw), compute a set D’ such that |D’| < a - |Dgy|, where | D,y is the size of the optimal
solution to the min-delete-super-stable-matching for the same instance, and the instance
I—D’ = (5—D’,pU\D’,pW\D’)7 Where 5—D’ = m ZiE(UUW)\D’ 5i7 has a matching Wlth
at most 3 super-blocking pairs.

Next, we show that an («, §)-approximation to the min-delete-super-stable-matching prob-
lem gives us an (an-+f)-approximation for J-min-bp-super-stable-matching. So, in particular,
if we have an («, f)-approximation where « is a constant and g € O(n), then this in turn
gives us an O(n)-approximation for é-min-bp-super-stable-matching in general.

Proposition 15. [f there exists an («, 5)-approzimation algorithm for the min-delete-super-
stable-matching problem, then there exists an (an + ()-approximation algorithm for the
d-min-bp-super-stable-matching problem.

38

Proof. We can proceed to prove this almost exactly as in the proof of Theorem 10. Here,
if D denotes the («, f)-approximate solution returned by the algorithm, then the only
difference is that we define py to be the matching with the set of agents in (U U W)\ D
such that it has at most [super-blocking pairs (from the definition of the problem we know
that such a matching exists) and ps to be an arbitrary matching on the set of agents in D.
Once we have this, then we can arrive at the bound by proceeding exactly as in the proof of
Theorem 10, with the only difference being that here we would use S;, which is the number

of super-blocking pairs associated with w1, to be equal to <n — |—12)‘> . % + 6. O

2.5 Discussion

The focus of this chapter was on working with partial information in the context of two-sided
matching and in particular to investigate i) what makes a matching “good” in this context
and i) to better understand the trade-off between the amount of missing information and
the quality of different matchings. Towards this end, we introduced a measure for accounting
for missing preference information in an instance, and argued that a natural definition of a
“good” matching in this context is one that minimizes the maximum number of blocking
pairs with respect to all the possible completions. Subsequently, using an equivalent problem
(0-min-bp-super-stable-matching) we first explored the space of matchings that contained
no obvious blocking pairs (i.e., weakly-stable matchings) in order to better understand how
missing preference information affected the quality, in terms of approximation with respect
to the objective of minimizing the number of super-blocking pairs. Later on, by expanding
the space of matchings we considered (i.e., removing the restriction that matches must be
weakly-stable), we asked whether it was possible to improve on the approximation factors
that were achieved under the restriction to weakly-stable matchings.

There are a number of interesting directions for future work. First, while in Section 2.4.2 we
proposed one possible approach that can lead to near-tight approximations, there may be
other approaches that can prove fruitful. Second, given that in many instances a super-stable
matching often does not exist, we believe that the min-delete-super-stable-matching problem
introduced here is potentially of independent interest, since it determines the maximum
number of disjoint pairs of agents that can be matched in order to form a super-stable
matching among themselves. Therefore, an open question is to see if one can obtain general
results on this problem (or its relaxation defined in Definition 5). In Proposition 6 we saw
that a 2-approximation was achievable for the case of one-sided top-truncated preferences
and hence it would also be interesting to determine if there are other interesting classes

39

of preferences for which constant-factor approximations are possible. Finally, there are
possible extensions, like, for instance, allowing incompleteness—meaning the agents can
specify that they are willing to be matched to only a subset of the agents on the other
set—that one could consider and ask similar questions like the ones we considered.

40

Chapter 3

Mechanism Design for Locating a
Facility Under Partial Information

3.1 Introduction

In this chapter we continue on the theme of working with incomplete information and we look
at a classic problem in mechanism design. The field of mechanism design, which originated
in economics and is now extensively studied by both economists and computer scientists,
considers scenarios where there are multiple self-interested agents who are interacting with
a decision-making system, and it aims to design mechanisms—which one can essentially
think of as algorithms with incentives built-in—where rational agents would act in a
socially-desirable way (see Section 3.2 for formal definitions).

A canonical problem in this broad field (see Part I of the book by Nisan et al. [Nis+07]
and the references therein for an introduction to (algorithmic) mechanism design) is that of
locating a public facility on a real line or an interval, which is often referred to as the facility
location problem. In the simplest version of this problem, there are n agents, denoted by
the set [n] = {1,--- ,n}, and each agent i € [n] has a preferred location z; for the public
facility. The cost of an agent for a facility located at p is given by C(z;,p) = |p — w4,
the distance from the facility to the agent’s ideal location, and the task in general is to
locate a facility that minimizes some objective function. The most commonly considered
objective functions are a) sum of costs for the agents and b) the maximum cost for an
agent. In the mechanism design version of the problem, the main question is to see if the
objective under consideration can be implemented, either optimally or approximately, in

41

weakly-dominant strategies. Informally, a strategy, which one can think of as a set of actions
that an agent takes, is weakly-dominant if the outcome associated with it is at as least good
for the agent as the outcome associated with any other strategy, no matter the strategies
of the other players. A mechanism (approximately) implements an objective function in
weakly-dominant strategies if there is a set of weakly-dominant strategies, one for each
agent, where the outcome associated with the mechanism (approximately) optimizes for
the objective function (again, formal definitions appear in Section 3.2).

Although the facility location problem has received much attention, with several different
variants like extensions to multiple facilities (e.g., [PT13; Lu+10]), looking at alternative
objective functions (e.g., [FW13; CFT16]), etc., being extensively studied, the common
assumption in this literature is that the agents are always precisely aware of their preferred
locations on the real line (or the concerned metric space, depending on which variant is
being considered). However, this might not always be the case and it is possible that
the agents currently do not have accurate information on their ideal locations, or their
preferences in general. To illustrate this, imagine a simple scenario where a city wants to
build a school on a particular street (which we assume for simplicity is just a line) and aims
to build one at a location that minimizes the maximum distance any of its residents have
to travel to reach the school. While each of the residents is able to specify which block they
would like the school to be located, some of them are unable to precisely pinpoint where
on the block they would like it because, for example, they do not currently have access
to information (like infrastructure data) to better inform themselves, or they are simply
unwilling to put in the cognitive effort to refine their preferences further. Therefore, instead
of giving a specific location x, they end up giving an interval [a, b], intending to say “I know
that I prefer the school to be built between the points a and b, but I am not exactly sure yet
as to where I want it.”

The above described scenario is precisely the one we are concerned about in this chapter.
That is, in contrast to the standard setting of the facility location problem, we consider the
setting in which agents are uncertain (or partially informed) about their own true locations
x; and the only information they have is that their preferred location z; € [a;, b;], where
b; — a; < ¢ for some parameter § which models the amount of inaccuracy in the agents’
reports. Now, given such partially informed agents, our task is to look at the problem from
the perspective of a designer whose goal is to design ‘robust’ mechanisms under this setting.
Here by ‘robust’ we mean that, for a given performance measure and when considering
implementation under an appropriate solution concept, the mechanism should provide
good guarantees with respect to this measure for all the possible underlying unknown true
locations of the agents. The performance measure we use here is based on the minimax
regret solution criterion, which, informally, for a given objective function, S, is an outcome

42

Average cost Maximum cost
Upper bound Lower bound Upper bound Lower bound

very weak B % B %
dominance 2 [Thm. 18] 2 [Thm. 24|

5

2
minimax %‘5 (only for mechanisms By %6 5
dominance | [Thm. 21] with finite range) [Thm. 25] [GT17, Thm. 5]

[Thm. 23]

Table 3.1: Summary of our results which show the bounds obtained under each of the
solution concepts for the objective functions considered. All the bounds are with respect to
deterministic mechanisms.

that has the “best worst case”, or one that induces the least amount of regret after one
realizes the true input (see Section 3.2.2 for a discussion on the choice of regret as the
performance measure).

More formally, if P = [0, B] denotes the set of all points where a facility can be located
and Z = [a1,b1] X - -+ X [an, b,] denotes the set of all the possible vectors that correspond
to the true preferred locations of the agents, then the minimax optimal solution, pe, for
some objective function S (like the sum of costs or the maximum cost) is given by

opt — i S-[7 — mi S-l; i)
Popt argg)nnrglgg((Z,p) — min 5(p))

J/

~~
maxRegret(p, 7)

where S(I,p) denotes the value of S when evaluated with respect to I € Z and a point p.

Thus, our aim is to design mechanisms that approximately implement the optimal minimax
value (i.e., maxRegret(p,,Z)) with respect to two of the commonly-studied objective
functions—average cost and maximum cost—and under two solution concepts—very weak
dominance and minimax dominance—that naturally extend to our setting (see Section 3.2
for definitions). In particular, we focus on deterministic and anonymous mechanisms, where
anonymity entails that the mechanism returns the same output on any permutation of the
input (in other words, the agents’ identity is irrelevant), and aim to find ones that additively
approximate the optimal minimax value. Our results are summarized in Table 3.1.

43

3.2 Preliminaries

In the standard (mechanism design) version of the facility location problem there are n
agents, denoted by the set [n] = {1,...,n}, and each agent i € [n] has a true preferred!
location £; € [0, B], for some fixed constant B € R.? A vector [= ({1,...,4,), where
¢; € [0, B], is referred to as a location profile and the cost of agent i for a facility located at
p is given by C(£5,p) = |p — €| (or equivalently, their utility is —|p — £f]), the distance from
the facility to the agent’s location.® In general, the task in the facility location problem
is to design mechanisms—which are, informally, functions that map location profiles to a
point (or a distribution over points) in [0, B]—that (approximately) implement the outcome
associated with a particular objective function.

In the version of the problem that we are considering, each agent ¢, although they have a
true location £f € [0, B, is currently unaware of their true location and instead only knows
an interval [a;, b;] C [0, B] such that ¢ € [a;,b;]. The interval [a;, b;], which we denote by
K;, is referred to as the candidate locations of agent i, and we use K; to denote the set of
all possible candidate locations of agent ¢ (succinctly referred to as the set of candidate
locations). Now, given a profile of the set of candidate locations (Ky,...,K,), we have the
following definition.

Definition 6 (§-uncertain-facility-location-game). For alln > 1, B > 0, and § € [0, B], a
profile of the set of candidate locations (Ky,...,K,) is said to induce a é-uncertain-facility-
location-game if, for each i, K; = {[a;, b;] | b; — a; < ¢ and [a;, b;] C [0, B]} (or in words, for
each agent i, their set of candidate locations can only have intervals of length at most §).

Remark: We refer to § as the inaccuracy parameter. In general, when proving lower bounds
we assume that the designer knows this ¢ as this only makes our results stronger, whereas
for positive results we explicitly state what the designer knows about §. Additionally, note
that in the definition above if § = 0, then we have the standard facility location setting
where the set of candidate locations associated with every agent is just a set of points in
[0, B]. For a given profile of candidate locations (K7, ..., K,), we say that “the reports are
exact” when, for each agent i, K; is a single point and not an interval.

'We often omit the term ‘preferred’ and instead just say that £} is agent i’s location.

2Note that here we make the assumption that the domain under consideration is bounded instead
of assuming that the agents can be anywhere on the real line. This is necessary only because we are
focusing on additive approximations instead of the usual multiplicative approximations. (For a slightly
more elaborate explanation, see the introduction section of the paper by Golomb and Tzamos [GT17].)

3This particular utility function that is considered here is equivalent to the notion of symmetric
single-peaked preferences that is often used in the economics literature (see, e.g., [MD11]).

44

3.2.1 Mechanisms, solution concepts, and implementation

A (deterministic) mechanism M = (X, F') in our setting consists of an action space X =
(X1,...,X,), where X is the action space associated with agent i, and an outcome function
F which maps a profile of actions to an outcome in [0, B] (i.e., F': X1 x ... x X, — [0, B]).
A mechanism is said to be direct if, for all i, X; = K;, where K, is the set of all possible
candidate locations of agent ¢. For every agent i, a strategy is a function s;: K; — X;, and
we use X; and A(3;) to respectively denote the set of all pure and mixed strategies of agent
i

Since the outcome of a mechanism needs to be achieved in equilibrium, it remains to be
defined what equilibrium solution concepts we consider. Below we define, in the order of
their relative strengths, the two solution concepts that we use here. We note that the first
(very weak dominance) was also used by Chiesa, Micali, and Allen-Zhu [CMA12] in the
context of auctions.

Definition 7 (very weak dominance). In a mechanism M = (X, F)), an agent i with
candidate locations K; has a very weakly dominant strategy s; € X; if Vs, € X, V(; € K,
and \V/S_Z' S E_Z‘,

C (b, F(si(K), s—i(K—))) < C (6, F(si(K), s—i(K-))) -

In words, the definition above implies that for agent ¢ with candidate locations Kj, it is
always best for ¢ to play the strategy s;, irrespective of the actions of the other players and
irrespective of which of the points in K is her true location.

Definition 8 (minimax dominance). In a mechanism M = (X, F), an agent i with
candidate locations K; has a minimax dominant strategy s; € 3; if Vs, € ¥; and Vs_; € ¥_,,

max Imax C(Zl, F(SZ(KZ), S_i(K_i)) - C(&, F(0'1<Kl), S—i(K—i))>

leK; O'iGA(Ei)

<max max C({;, F(s;(K;),s_i(K_;)) — C(l;, F(o;(K;), s—i(K_;)).

lieK; a’iEA(Ei)

Before we explain what the definition above implies, let p = F(s;(K;),s_;(K_;)) be the
outcome of the mechanism when agent ¢ plays strategy s; and all the others play some s_;.
Now, let us consider the term

maxRegret,(p) = max max C(¢;,p) — C(l;, F(o:(K;),s—i(K_;))), (3.1)

eK; o’iGA(Ei)

45

which calculates agent i’s maximum regret (i.e., the absolute worst case loss agent 7 will
experience if and when she realizes her true location from her candidate locations) for
playing s; and hence getting the output p. Then, what the above definition implies is that
for a regret minimizing agent ¢ with candidate locations K, it is always best for ¢ to play
si, irrespective of the actions of the other players, as any other strategy s; results in an
outcome p’ with respect to which agent i experiences at least as much maximum regret as
she experiences with p.

Remark: Note that both the solution concepts defined above can be seen as natural
extensions of the classical (i.e., the usual mechanism design setting where the agents know
their types exactly) weak dominance notion to our setting. That is, for all i € [n], if K is a
single point, then both of them collapse to the classical weak dominance notion.

As stated previously, for a profile of candidate locations (K7, ..., K,) and some objective
function S, we want mechanisms that “perform well” against all the possible underlying
true locations of the agents, i.e., with respect to all the location profiles I = (¢4,...,¢,)
where ¢; € K,;. Before we define what “perform well” means formally, we first define the
maximum regret associated with a point p € [0, B].

Given an instance Z = K; x ... x K, and an objective function S, if S(I,p) denotes the
value of the function S when evaluated with respect to the vector I € Z and the point p,
then

t(p, L) = I — 1 I.9)). 2
maxRegret(p, Z) max (S(,D) p/ren[(lle]S(,p)> (3.2)

Throughout, we refer to the point p,, as the optimal minimax solution for the instance Z,
where
Popt = arg min maxRegret(p, 7). (3.3)
p€[0,B]
Equipped with this, we can now formally state our objective as trying to find mechanisms

that achieve a good approximation to the optimal minimax value, which for an instance Z
is denoted by OMVg(Z) and is defined as

OMV(Z) = maxRegret(pop:, Z). (3.4)

Finally, now that we have our performance measure, we define implementation in very
weakly dominant and minimax dominant strategies.

Definition 9 (Implementation in very weakly dominant (minimax dominant) strategies).
For a d-uncertain-facility-location-game, we say that a mechanism M = (X, F') implements
a-OMVy, for some o > 0 and some objective function S, in very weakly dominant (minimax

46

dominant) strategies, if for some s = (s1,...,s,), where s; is a very weakly dominant
(minimax dominant) strategy for agent ¢ with candidate locations K,

maxRegret(F'(s1(K1),...s.(K,)),Z) — OMVg(Z) < a.

3.2.2 Some Q & A on the definitions

Why regret? As stated above, our performance measure is based on minimizing the
maximum regret. We argue why this is a good measure by considering some alternatives.

1. Perhaps one of the first approaches that comes to mind is to see if we can, for every
possible input I € Z, bound the ratio of the objective values of a) the outcome that is
returned by the mechanism and b) the optimal outcome for that input. For instance,
this is the approach taken by Chiesa, Micali, and Allen-Zhu [CMA12] in the case
of single good auctions. However, here this is not a good measure because we can
quickly see that this ratio is always unbounded if there exists a point that is in the
candidate locations of all the agents (i.e., if there is a p € [0, B] such that for all
1€ [n],p S [ai, bz])

2. Another natural approach is to show that for all possible inputs we can bound the
difference between the objective values of a) the outcome that is returned by the
mechanism and b) the optimal outcome for that input. For instance, this is the
approach taken by Chiesa, Micali, and Allen-Zhu [CMA15]. Technically, this is
essentially what we are doing when using regret and finding an answer that has a max.
regret that is additively close to the max. regret associated with the minimax optimal
solution (one could argue in a similar way even when approximating multiplicatively—
i.e., when finding an answer that has a max. regret that is multiplicatively close to
the max. regret associated with the minimax optimal solution). The reason why using
regret is more informative is because if we were to just mention that, for all [€ 7,
the point p that is returned by the mechanism satisfies,

S(I7p>_S<Iapl> SXv

where X is the bound we obtain, then the only information this conveys is that for
every I we are additively at most X-far from the optimal objective value, py, for I.
However, instead, if we were to write it as

maxRegret(p, Z) — maxRegret(poy, Z) <Y,

47

where p,,: is the minimax optimal solution, then this conveys two things: a) for
any point p’ there is at least one I € Z such that S(I,p’) — S(I,p;) > Z, where
Z = maxRegret(p,y:) = optimal minimax value (i.e., it gives us a sense on what is
achievable at all—which in turn can be thought of as a natural lower bound) and b)
the point p that is chosen by the mechanism is at most (Y + Z)-far from the optimal
objective value for any I € Z. Hence, to convey these, we employ the notion of regret.

Why additive approximations? Even when working with regret, when it comes to
implementing a particular objective using some solution concept, one could potentially
aim to find a solution p such that F' = %m is bounded (i.e., use a multiplicative
approximation rather than additive). Although this is reasonable, there at at least two

issues that become apparent:

1. When considering implementation in very weakly dominant strategies, it turns out
that there are no bounded mechanisms when using either of the objective functions
(this can be proved by proceeding like in the proof of Theorem 18).

2. When considering the objective of minimizing the maximum cost and minimax
dominant strategies, it is clear that minimax dominant strategies are useless to look
at as there are no bounded mechanisms. Why? Because suppose there was one. Then
this implies that when the reports are exact—meaning every agent reports a single
point—the mechanism should always return the optimal solution associated with
this location profile, for if otherwise F' will not be bounded as minimum maximum
regret when valuations are exact is zero. However, given that a minimax dominant
mechanism is weakly dominant under exact reports, this in turn implies that we now
have a mechanism that implements the optimal solution associated with the max.
cost objective in weakly dominant strategies when the reports are exact. But then,
we already know that there is no such mechanism due to a result by Procaccia and
Tennenholtz [PT13, Theorem 3.2].

Hence, we focus on additive approximations.*

4In mechanism design, there are other contexts in which additive approximations have been considered.
For instance, the work by Golomb and Tzamos [GT17] uses additive approximations in the context of
facility location, Caragiannis, Christodoulou, and Protopapas [CCP19] use in the context of impartial
selection, and Chiesa, Micali, and Allen-Zhu [CMA15| use it in the context of auctions.

48

3.3 Related Work

Equipped with the definitions, we can now better discuss related work. There are two
broad lines of research that are related to the topic of this chapter. The first is, naturally,
the extensive literature that focuses on designing mechanisms in the context of the facility
location problem and the second is the work done in mechanism design which considers
settings where the agents do not completely specify their preferences.

Designing mechanisms with incomplete preferences. A disproportionate amount of
the work in mechanism design considers settings where the agents have complete information
about their preferences. Nevertheless, as one might expect, the issue of agents not specifying
their complete preferences has been considered and the papers that are most relevant to
the topic here are the series of papers by Chiesa, Micali, and Allen-Zhu [CMA12; CMA14;
CMA15], and the works of Hyafil and Boutilier [HB07a; HBO7b|. Below we briefly discuss
each of these papers.

The series of papers by Chiesa, Micali, and Allen-Zhu [CMA12; CMA14; CMA15]| considers
settings where the agents are uncertain about their own types and they look at this model
in the context of auctions. In particular, in their setting the only information agents have
about their valuations is that it is contained in a set K, where K is any subset of the set
of all possible valuations.” Under this setting, Chiesa, Micali, and Allen-Zhu [CMA12]
look at single-item auctions and they provide several results on the fraction of maximum
social welfare that can be achieved under implementation in very weakly dominant and
undominated strategies; subsequently, Chiesa, Micali, and Allen-Zhu [CMA14| study the
performance of VCG mechanisms in the context of combinatorial auctions when the agents
are uncertain about their own types and under undominated and regret-minimizing strategies;
and finally, Chiesa, Micali, and Allen-Zhu [CMA15] analyze the Vickrey mechanism in
the context of multi-unit auctions and, again, when the agents are uncertain about their
types, and in this case they essentially show that it achieves near-optimal performance
(in terms of social welfare) under implementation in undominated strategies. The partial
information model that we use here is inspired by this series of papers. In particular, our

prior-free and absolute worst-case approach under partial information is similar to the one
taken by Chiesa, Micali, and Allen-Zhu [CMA12; CMA14; CMA15] (although such absolute

5Chiesa, Micali, and Allen-Zhu [CMA14] argue that their model is equivalent to the Knightian uncertainty
model that has received much attention in decision theory (see related works section in [CMA14] and the
references therein). However, here we do not use the term Knightian uncertainty, but instead just say that
the agents are partially informed. This is because, the notion we use here, which we believe is the natural
one to consider in the context of our problem, is less general than the notion of Knightian uncertainty.

49

worst-case approaches are not uncommon and have been previously considered in many
different settings). However, our work is also different from theirs in that, unlike auctions,
the problem we consider falls within the domain of mechanism design without money—i.e.,
mechanism design in the context of problems where money cannot be used to incentivize
agents—and so their results do not carry over to our setting.

The other set of papers that are most relevant to the broad theme here is the work of Hyafil
and Boutilier [HB07a; HB07b] who considered the problem of designing mechanisms that
have to make decisions using partial type information. Their focus is again on contexts where
payments are allowed and in [HB07a] they mainly show that a class of mechanisms based
on the minimax regret solution criterion achieves approximate efficiency under approximate
dominant strategy implementation. In [HB07b| their focus is on automated mechanism
design within the same framework. While the overall theme in both their works is similar
to ours, i.e., to look at issues that arise when mechanisms only have access to partial
information, the questions they are concerned with and the model used are different. For
instance, in the context of the models used, whereas in ours and Chiesa et al.’s models
the agents do not know their true types and are therefore providing partial inputs, the
assumption in the works of Hyafil and Boutilier [HB07a; HB0O7b] is that the mechanism has
access to partial types, but agents are aware of their true type. This subtle change in turn
leads to the focus being on solution concepts that are different from ours.

In addition to the papers mentioned above, note that another way to model uncertain
agents is to assume that each of them has a probability distribution which tells them the
probability of a point being their ideal location. For instance, this is the model that is used
by Feige and Tennenholtz [FT11] in the context of task scheduling. However, in our model
the agents do not have any more information than that they are within some interval, which
we emphasize is not equivalent to assuming that, for a given agent, every point in the its
interval is equally likely to be its true preferred location.

Related work on the facility location problem. Starting with the work of Moulin
[Mou80] there has been a flurry of research looking at designing strategyproof mechanisms
(i.e., mechanisms where it is a (weakly) dominant strategy for an agent to reveal her true
preferences) for the facility location problem. These can be broadly divided into two
branches. The first one consists of work, e.g., [Mou80; BJ94; SV02; MD11; Dok+12],
that focuses on characterizing the class of strategyproof mechanisms in different settings
(see [Bar01] and [Nis+07, Chapter 10| for a survey on some of these results). The second
branch consists of more recent papers which fall under the broad umbrella of approximate
mechanism design without money, initially advocated by Procaccia and Tennenholtz [PT13],
that focus on looking at how well a strategyproof mechanism can perform under different

50

objective functions [PT13; Lu+10; FW13; FT16; FSY16]. Our work here, which looks at
the performance of mechanisms under different solution concepts and objective functions
when the agents are partially informed about their own locations, falls under this branch of
the literature.

3.4 Implementing the Average Cost Objective

In this section we consider the objective of locating a facility so as to minimize the average
cost (sometimes succinctly referred to as avgCost and written as AC). While the standard
objective in the facility location setting is to minimize the sum of costs, here, like in work
of Golomb and Tzamos |[GT17|, we use average cost because since we are approximating
additively, it is easy to see that in many cases a deviation from the optimal solution results
in a factor of order n coming up in the approximation bound. Hence, to avoid this, and to
make comparisons with our second objective function, maximum cost, easier we use average
cost.

In the standard setting where the agents know their true location, the average cost of
locating a facility at a point p is defined as %Zie[n] C(z;,p), where z; is the location of
agent ¢. Designing even optimal strategyproof/truthful mechanisms in this case is easy since
one can quickly see that the optimal location for the facility is the median of zy,...,z,
and returning the same is strategyproof. Note that, for some k > 0, when n = 2k + 1, the
median is unique and is the (k + 1)-th largest element. However, when n = 2k, the “median’
can be defined as any point between (and including) the (n/2)-th and ((n/2) 4 1)-th largest
numbers. As a matter of convention, here we consider the (n/2 + 1)-th element to be the
median. Hence, throughout, we always write that the median element is the (k + 1)-th
element, where k = | 7].

9

In contrast to the standard setting, for some ¢ € (0, B] and a corresponding d-uncertain-
facility-location-game, even computing what the minimax optimal solution for the average
cost objective (see (3.3)) is is non-trivial, let alone seeing if it can be implemented with
any of the solution concepts discussed in Section 3.2.1. Therefore, we start by stating
some properties about the minimax optimal solution that will be useful when designing
mechanisms. A complete discussion on how to find the minimax optimal solution when
using the average cost objective, as well as the proofs for the lemmas stated in the next
section, are in Appendix B.2.

ol

3.4.1 Properties of the minimax optimal solution for avgCost

Given the candidate locations K; = [a;, b;] for all i, where, for some ¢ € [0, B], b; — a; < 0,
consider the left endpoints associated with all the agents, i.e., the set {a;}icjn). We denote

the sorted order of these points as Ly, ..., L, (throughout, by sorted order we mean sorted
in non-decreasing order). Similarly, we denote the sorted order of the right endpoints, i.e.,
the points in the set {b; }icn), as Ry, ..., R,. Next, we state the following lemma which gives

a succinct formula for the maximum regret associated with a point p (i.e., maxRegret(p,Z),
where Z = [a1,b1] X ... X [an, by]; see (3.2)). As stated above, all the proofs for lemmas in
the section appear in Appendix B.2.

Lemma 16. Given a point p, the maximum regret associated with p for the average cost
objective can be written as max(objii(p), 0bj3'“(p)), where

e obj{!(p) =1 (2 Zf:j(Ri —p)+ (n—2k)(Ryy1 — p)), where j is the smallest index
such that R; > p and j <k

o 0bjsC(p) =1 (2 Z?:/H_g(p — L))+ (n—2k)(p — Lk+1)> , where h is the largest index
such that L, < p and h > k + 2.

Our next lemma states that the minimax optimal solution, p,,, associated with the avgCost
objective function is always in the interval [Lyi1, Rg11].

Lemma 17. If p,y is the minimaz optimal solution associated with the avgCost objective
function, then pop € [Li+1, Ri1]-

Equipped with these properties, we are now ready to talk about implementation under the
solution concepts defined in Section 3.2.1.

3.4.2 Implementation in very weakly dominant strategies

As discussed in Section 3.2.1, the strongest solution concept that we consider is very weak
dominance, where for an agent ¢, with candidate locations K, strategy s; is very weakly
dominant if it is always best for i to play s;, irrespective of the actions of the other players
and irrespective of which of the points in K; is her true location. While it is indeed a
natural solution concept which extends the classical notion of weak dominance, we will
see below in, Theorem 18, that it is too strong as no deterministic mechanism can achieve

o2

a better approximation bound than %. This in turn implies that, among deterministic

mechanisms, the naive mechanism which always, irrespective of the reports of the agents,
outputs the point % is the best one can do.

Theorem 18. Given a § € (0,B], let M = (X, F) be a deterministic mechanism that
implements a-OMV z¢ in very weakly dominant strategies for a é-uncertain-facility-location-
game. Then, a > g.

Proof. Let us assume for the sake of contradiction that, for some v > 0, o = % — .
First, note that here we can restrict ourselves to direct mechanisms since Chiesa, Micali,
and Allen-Zhu showed that the revelation principle holds with respect to this solution
concept [CMA14, Lemma A.2].5 So, now, let us consider a scenario where the profile of true
candidate locations of the agents are ([a1, b1], ..., [an, by]) and let p = F([a1,b1], ..., [an, by)).
Since reporting the true candidate locations is a very weakly dominant strategy in M, this
implies that for an agent ¢ and for all ¢ € [a;, b;],

[0 —pl < |0—7p, (3:5)
where for some [a}, 0] # [a;, bi], p' = F(la1,b1], ..., [a}, b], ... [an, by)]).
Next, consider the profile of true candidate locations ([ay, bi], ..., [a}, bl], ..., [an, by]). Then,

again, using the fact that reporting the truth is a very weakly dominant strategy, we have
that for agent ¢ and for all ¢’ € [a}, V],

1) 71

[0 —p'| < —pl. (3.6)

(3.5) and (3.6) together imply that for a k € [a;, b;] N [a}, b]],

|k —pl = |k =9/l (3.7)
So, if @ = [a;, b;] N [a}, b}] and |@Q| > 1, then (3.7) implies that p = p'.

17 71

Now, let us consider F([aq,b1],...,[a1,b1]), where a; = 0 and b; = €, and let p = F([aq, b1],
..., a1, b1]). By repeatedly using the observation made above, we have that for § € (0, B],
€ € (0,min{d,~v}), €1 € (0,¢€), and b; = € +i(6 — €1),

p=F(la1,b],...,[a1,b1])

6Informally, revelation principle w.r.t. very weakly dominant strategies states that if a mechanism M
implements a social choice function f in very weakly dominant strategies, then there is a direct mechanism
M’ that implements f and where for every agent reporting their types directly is very weakly dominant
strategy.

93

=F ([bl - 61762]7 [ala bl]a SRR [alv bl])
f F([bg — €1, b3]a [alablL s [alabl])
; F([B — 6173]7 [al, bl], ceey [(11, bl])
= F(B—-e,B],...,[B—ea,B)). (3.8)

Next, it is easy to see that the minimax optimal solution associated with the profile
(lat, ba, - .., Jar, by]) is 2 = £ whereas for the profile ([B — €, B],...,[B — €1, B]) it

29
is B — . Also, from (3.8) we know that M outputs the same point p for both these

B+e¢/2—e€1/2
2

profiles. So, if we assume without loss of generality that p < , this implies that

fOI'I:[B—Gl,B]X...X [B—El,B],

a > maxRegret(p,Z) — OMV 4¢(7)
> regret(p, (B, ..., B)) — OMV 4¢(Z)
> (B/2—€/4+€1/4) —e1/2

> B/2—¢
> B/2—~.
This in turn contradicts our assumption that o = g — 7. [

Although one could argue that this result is somewhat expected given how Chiesa, Micali,
and Allen-Zhu also observed similar poor performance for implementation with very weakly
dominant strategies in the context of the single-item auctions [CMA12, Theorem 1|, we
believe that it is still interesting because not only do we observe a similar result in a setting
that is considerably different from theirs, but this observation also reinforces their view
that one would likely have to look beyond very weakly dominant strategies in settings like
ours. This brings us to our next section, where we consider an alternative, albeit weaker,
but natural, extension to the classical notion of weakly dominant strategies.

3.4.3 Implementation in minimax dominant strategies
Here we move our focus to implementation in minimax dominant strategies and explore

whether by using this weaker solution concept one can obtain a better approximation bound
than the one obtained in the previous section. To this end, we first present a general result

54

that applies to all mechanisms in our setting that are anonymous and minimax dominant,
in particular showing that any such mechanism cannot be onto. Following this, we look
at non-onto mechanisms and here we provide a mechanism that achieves a much better
approximation bound than the one we observed when considering implementation in very
weak dominant strategies.

Remark: Note that in this section we focus only on direct mechanisms. This is without
loss of generality because, like in the case with very weakly dominant strategies, it turns
out that the revelation principle holds in our setting for minimax dominant strategies. A
proof of the same can be found in Appendix B.1.

Theorem 19. Given a § € (0,B], let M = (X, F) be a deterministic mechanism that
1s anonymous and minimax dominant for a d-uncertain-facility-location-game. Then, M
cannot be onto.

Proof. Suppose this were not the case and there exists a deterministic mechanism M that
is anonymous, minimax dominant, and onto. First, note that if we restrict ourselves to
profiles where every agent’s report is a single point (instead of intervals as in our setting),
then M must have n — 1 fixed points y; < ... < y,_1 such that for any profile of single
reports (Z1,...,T,),

M(zy,. .., z,) = median(yy, . . ., Yn—1,T1, - -, Tp)-

This is so because, given the fact that M is anonymous, onto, and minimax dominant in our
setting, when restricted to the setting where reports are single points, M is strategyproof,
anonymous, and onto, and hence we know from the characterization result by Massé and
De Barreda [MD11, Corollary 2| that every such mechanism must have n — 1 fixed points
y1 < ... <y, such that for any profile (z1,...,x,),

Mz, ... x,) = median(y1, . .., Yn_1,P1, - - - Pn)s

where p; is the most preferred alternative of agent i (i.e., agent i’s peak; since the utility of
agent i for an alternative a € [0, B is defined as -|z; — a|, we know that the preferences of
agent 7 is symmetric single-peaked with the peak p; = x;).7®

"The original statement by Massé and De Barreda [MD11, Corollary 2| talks about mechanisms that
are anonymous, strategyproof, and efficient. However, it is known that for strategyproof mechanisms in
(symmetric) single-peaked domains, efficiency is equivalent to being onto (see, e.g., [Nis+07, Lemma 10.1]
for a proof).

81t is worth noting that the characterization result by Massé and De Barreda [MD11, Corollary 2] for
mechanisms that are anonymous, stratgeyproof, and onto under symmetric single-peaked preferences is
the same as Moulin’s characterization of the set of such mechanisms on the general single-peaked domain
[Mou80, Theorem 1]).

95

Now, given the observation above, for 1 < 7 < n — 1, let us consider the smallest j such
that y; # y;41 (if there is no such j define j =n — 1 if y,_; # B and j = 0 otherwise) and
consider the following input profile £,

yj:"'7yj)[£7r}7Z7Ba"‘7B ’
——— —_——
n—j—1 agents j—1 agents

r—~{
5 -

Whereyj<€<r<yj+1,r—€<5,z:£+TT—eand0<e<

In the profile Ly, let @ and b denote the agents who report [/, r] and z, respectively, and let
po = M(Ly). First, note that if £; denotes the profile where agent a reports ¢ instead of
[¢,r] and every other agent reports as in Ly, then

p1 = M(Ly) = median(ys, . .., Yn-1,Yjs - - -, Yj. {, 2, B, ... B) = L.

Also, if L5 denotes the profile where agent a reports r instead of [/, 7] and every other agent
reports as in Lo, then

p2 = M(Ly) = median(yy, ..., Yn-1,Y5,---,Y;, 72, B,...B) = z.
Now, since p; = £ and p, = z, this implies that

{+z

Po = M(EO) - 9)

for, if otherwise, agent a can deviate from L, by reporting ”TZ instead (it is easy to see

that this reduces agent a’s maximum regret), thus violating the fact that M is minimax
dominant.

Given this, consider the profile £3 which is the same as L, except for the fact that agent b
reports (2z — ¢) instead of z. By again using a similar line of reasoning as in the case for
Ly, one can see that

P3 = M(ﬁg) = Z.
However, this in turn implies that agent b can deviate from L to L3, thus again violating
the fact that M is minimax dominant. O

Given the fact that we cannot have an anonymous, minimax dominant, and onto mechanism,
the natural question to consider is if we can find non-onto mechanisms that perform well.
We answer this question in the next section.

o6

Input: a § > 0 and for each agent i, their input interval [a;, b;]
Output: location of the facility p
1. A« {91,92,---,9k}, where g1 = 0,9x < B, and g;4+1 — ¢; = %
2: for each i € {1,...,n} do
3: x; < point closest to a; in A (in case of a tie, break in favour of the point in [a;, b;] if there
exists one, break in favour of point to the left otherwise)
4: y; < point closest to b; in A (break ties as in line 3)
5: if |[zi,yi] N A| == 1 then > the case when x; = y;
6: EZ — T
7: else if |[z;,y;] N A| == 2 then
8: if |[332,y7j N [ai, b1]| < 2 then
9: if a; +b; < x; + y; then
10: b < x;
11: else
12: EZ — Y;
13: end if
14: else
15: b; — x;
16: end if
17: else if |[z;,y;] N A| == 3 then
18: ¢; < z;, where z; is the point in [2;,y;] N A that is neither z; nor y;
19: end if
20: end for
21: return median(¢y,...,4,)

Algorithm 2: g—equispaced—median mechanism

3.4.3.1 Non-onto mechanisms

We first show an upper bound, presenting an anonymous mechanism that implements
3I‘S—OMV Ac in minimax dominant strategies. Following this, we present a conditional lower
bound that shows that one cannot achieve an approximation bound better than g when
considering mechanisms that have a finite range.

An anonymous and minimax dominant mechanism. Consider the g—equispaced—
median mechanism defined in Algorithm 2, which can be thought of as an extension to the
standard median mechanism. The key assumption in this mechanism is that the designer
knows a 0 such that any agent’s candidate locations has a length at most 6. Given this ¢,
the main idea is to divide the interval [0, B] into a set of “grid points” and then map every

57

profile of reports to one of these points, while at the same time ensuring that the mapping
is minimax dominant. In particular, in the case of the %—equispaced—median mechanism,
when ¢ > 0, its range is restricted to the finite set of points A = {g1, g2, ... gm} such that,
foriZl,giH—gi:g,gl:O, and ¢g,, < B.

Below we first prove a lemma where we show that the g—equispaced—median mechanism is
minimax dominant. Subsequently, we then use this to prove our main theorem which shows
that the g-equispaced—median mechanism implements 22-OMV 4¢ in minimax dominant

4
strategies.

Lemma 20. Given a 6 € [0, B] and for every agent i in a d-uncertain-facility-location-game,
reporting the candidate locations |a;, b;| is a minimax dominant strategy for agent i in the
g—equispaced—median mechanism.

Proof. Let us first fix an agent i and let [a;, b;] be their candidate locations. Also, let Ly be
some arbitrary profile of candidate locations, where Lo = ([a1,b1], ..., [an, bn]). We need to
show that it is minimax dominant for agent ¢ to report [a;, b;] in the g—equispaced—median
mechanism (denoted by M from now on), and for this we broadly consider the following two
cases. Intuitively, in both cases what we try to argue is that for an agent ¢ with candidate
locations [a;, b;] the ¢; that is associated with 4 in the mechanism is in fact the agent’s “best
alternative” among the alternatives in A (see line 1 in Algorithm 2).

Case 1: a; = b;. In this case, we show that it is a very weakly dominant strategy for agent
1 to report a;. To see this, let p be the output of M when agent ¢ reports a; and x; be the
point that is closest to a; in A (with ties broken in favour of the point which is to the left
of a;). From line 6 in the mechanism, we know that ¢; = x;. Now, if either ¢; < p or ¢; > p,
then any report that changes the median will only result in the output being further away
from agent 7. And if ¢; = p, then since we choose ¢; to be the point that is closest to a; in
A, it is clear that it is very weakly dominant for the agent to report a;. Hence, from both
the cases above, we have our claim.

Case 2: a; # b;. Let p be the output of M when agent i reports [a;, b;], and let z; and y;
be the points that are closest (with ties being broken in favour of points in [a;, b;] in both
cases) to a; and b;, respectively. From the mechanism we can see that ¢; € [x;,y;]. Next, let
us first consider the case when p < x; or p > y;. In both these cases, given the fact that x;
and y; are the points closest to a; and b;, respectively, p has to be outside [a;, b;]. And so, if
this is the case, then if agent ¢ misreports and the output changes to some p’ < p or p’ > p,
in both cases, it is easy to see that the maximum regret associated with p’ is greater than
the one associated with p. Hence, the only case where an agent ¢ can successfully misreport

o8

is if p € [z, y:]. So, we focus on this scenario below.

Considering the scenario when p € [z;, y;], first, note that the interval [z;,y;] can have at
most three points that are also in A (this is proved in Claim 18, which is in Appendix B.3).
So, given this, let us now consider the following cases.

i) |[xi, ;] N A| = 1. Since p € [x;,y;], this implies that p = x; = ¢;. Therefore, in this

ii)

case, if agent ¢ misreports, then she only experiences a greater maximum regret as the
resulting output p’ would be outside [x;,y;] and we know from our discussion above
that these points have a greater maximum regret than a point in [x;, y;].

|[zi, y;] N A| = 2. First, note that since p € [z;,y;] and the only other point in [z;, y;]
that is also in A is y;, if p < ¢; or p > {;, then agent 7 can only increase her maximum
regret by misreporting and changing the outcome (because the new outcome will be
outside [z;,y;]). Therefore, we only need to consider the case when p = ¢;, and here
we consider the following sub-cases.

(a) p =¥; = z;. From the mechanism we know that this happens only when either

both z; and y; are in [a;, b;] (lines 14-15) or when a; + b; < x; + y; (lines 9-10).
Now, since we know that every point outside [z;, y;] is worse in terms of maximum
regret than x; or y;, we only need to consider the case when agent ¢ misreports
in such a way that it results in the new outcome p’ being equal to y;. And below
we show that under both the conditions stated above (lines 9-10 and 14-15,
both of which result in ¢; being defined as being equal to z; in the mechanism)
the maximum regret associated with y; is at least as much as the one associated
with z;.

To see this, consider the profile where agent i reports a; instead of [a;, b;] and
all the other agents’ reports are the same as in L£y. Let p, be the output of M
for this profile. Note that p, = z; since the /; associated with agent 7 in this
profile is z; and so the outcome in this profile is the same as p = z;. Similarly,
let p, be the outcome when agent i reports b; instead of [a;, b;]. Since the ¢;
associated with agent 7 in this profile is y;, one can see that x; < p, < y;. Now, if
p» = @, then maxRegret,(z;) = 0, where maxRegret,(x;) is the maximum regret
associated with the point x; for agent i (see (3.1) for the definition), and so z; is
definitely better than y;. Therefore, we can ignore this case and instead assume
that p, = y;. So, considering this, since for the maximum regret calculations
only the endpoints a; and b; matter (this is proved in Claim 19, which is in
Appendix B.3), we have that

maXRegreti(yi) = maX{’@i - yz’ - ’@i - pa‘) ‘bi - yz’ - |bi - pb’}

59

= |ai_yi‘ - |ai_pa’ (sincepb:yi andpa:wi)
> b — ;| — b — psl

(depending on the case, use either the fact that z;,y; € [a;,b;] or that a; + b; < x; + yi)
= maXRegreti (LUZ) (since pp = y; and pg = $Z>

Hence, we see that in this case agent ¢ cannot gain by misreporting.

(b) p=¥; = y;. We can show that in this case maxRegret(z;) > maxRegret(y;) by
proceeding similarly as in the case above.

ii) [z, ;) N A| = 3. Let x; < z; < y; be the three points in [z;, ;] N A. Since the length
of [a;, b;] is at most 0, note that both x; and y; cannot be in the interval (a;, b;). So
below we assume without loss of generality that x; < a;. From the mechanism we
know that in this case ¢; = z; (line 18). Also, as in the cases above, note that if
p < {; or p > {;, then agent 7 can only increase her maximum regret by misreporting
and changing the outcome (because, again, the new outcome will be outside [z;, yi]).
Therefore, the only case we need to consider is if p = ¢;, and for this case we show that
both z; and y; have a maximum regret that is at least as much as that associated with
z; (we do not need to consider points outside [z;, y;] since we know that these points
have a worse maximum regret than any of the points in [x;,y;]). Note that if this is
true, then we are done as this shows that agent ¢ cannot benefit from misreporting.

To see why the claim is true, consider the profile where agent ¢ reports a; instead of
[a;, b;] and all the other agents’ reports are the same as in £y. Let p, be the outcome
of M for this profile. Similarly, let p, be the outcome when agent 7 reports b; instead
of [a;, b;]. Note that p, < p = z; and p, > p = z;. Now, since, again, for the maximum
regret calculations only the endpoints a; and b; matter (this is proved in Claim 19,
which is in Appendix B.3), we have that

maxRegret, (z;) = max{|a; — zi| — |a; — pa| , [b; — 2i| — |b; — ps!}
< ’bi - 3?z| - ’bi —pb|
(since x; is the closest point to a; in A and using very weak dominance for single reports)
= maX{|Clz‘ - $z| - |ai —Pa|) |bi - $z| - |bi —Pb|}
(since z; < a; and |b; — pp| < |bi — pa| by very weak dominance for single reports)
= maxRegret,(x;).
Similarly, we can show that maxRegret(z;) < maxRegret(y;). Hence, agent ¢ will not
derive any benefit from misreporting her candidate locations.

Finally, combining all the cases above, we have that the g—equispaced-median mechanism is
minimax dominant. This concludes the proof of our lemma. m

60

Equipped with the lemma above, we can now prove the following theorem.

Theorem 21. Given a 6 € [0, B], the g—equispaced—median mechanism is anonymous and
implements 3I‘S-OM Vac in minimax dominant strategies for a d-uncertain-facility-location-
game.

Proof. From Lemma 20 we know that the mechanism is minimax dominant. Therefore, the
only thing left to show is that it achieves an approximation bound of 3?‘5. To do this, consider
an arbitrary profile of candidate locations Ly, where Lo = ([a1,b1], ..., [an, bs)), and let
Li,...,L, and Ry, ..., R, denote the sorted order of the left endpoints (i.e., {a;}icp,) and
right endpoints (i.e., {b;}ic)), respectively. Next, consider the interval [Lj1, Ry41] that is
associated with the given profile £y, where k = % and Ly, and Ry, are the medians
of the sets {a;}icpn and {b;}icp, respectively. (Note that Ry 1 — Ly < 6 from Claim 15,
which is in Appendix B.3.) Also, let i be an agent who reported an a; such that a; = Ly i1
and j denote one who reported a b; such that b; = Rjy1. Next, from the mechanism,
consider z; (see line 3) and y; (see line 4).

First, for every agent ¢ with b, < Rj4; (and there are k + 1 of them), ¢, < y;. This is
so because, for every agent ¢, the point /. that is associated with the agent is in [z, y.]
and also for two agents ¢, c, if by < b., then y. < y.. Similarly, for every agent d with
aq > L1 (and, again, there are k + 1 of them), ¢4 > x;. Hence, it follows from the two
observations above that the output p of the mechanism, which is the median of {¢;,...,¢,},
will be in the interval [z;, y;].

Second, we will show that if |[x;, y;] N A| = 3, then the output p of the mechanism will be
the point z in interval (x;,y;) such that z € A. To see this, consider the points Ry, ..., Ry
and consider the largest ¢, where ¢ < k, such that R, < z (define ¢ = 0, if Ry > z). We will
assume without of loss of generality that, for each i, the agent associated with R; (i.e., one
who reports a right endpoint such that it is equal to R;) is agent i. Now, for each agent r
from 1 to ¢, the ¢, associated with them in the mechanism is at most z. This is so because,
for each such agent r the y, associated with them at most z. Also, for each agent s from
q+ 1 to k+ 1, the only way the ¢, associated with agent s is greater than z is if the left
endpoints associated with them are greater than Ly, (because if not, then one can see
that the [z, y,] associated with agent s has z; and z in it and so ¢, cannot be greater than
z). Now, let ny be the number of agents among the agents from ¢ + 1 to k + 1 such that
their left endpoints are greater than L, ;. This implies that there are n, agents among the
ones that report a left endpoint in {L, ..., Lxy1} that have a corresponding right endpoint
greater than or equal to R;y;. And this in turn implies that the ¢s associated with these n;
agents can be at most z (because, again, one can see that the [z, y]| associated with such an

61

agent will have z; and z in it). Hence, combining all the observations above, we see that

+((k+1—=(¢g+1)+1)—n1)+n; =k+1 agents report an ¢ that is at most z. Now, we
can employ a similar line of reasoning to show that k + 1 agents report an ¢ that is at least
z. Hence, it follows that the median of {¢q,...,¢,} must be z.

Given the observations above, let us now look at the following cases. In all the cases we
show that any point in [Lyy1, R41] is at a distance of at most % from p, the output of the
mechanism.

Case 1: both z; and y; are not in [Ljyy1, Rig41]. In this case, let us consider the following
sub cases.

a) |[x;,y;] N A| = 2. Since both z; and y; are not in [Lg 1, Ry4+1] and there is no other
point in A that is in [Lyy1, Rry1], we have that the distance from any point in
[Li+1, Ri41] to either x; or y; is at most % (as the distance between z; and y; is g)
Also, from the discussion above we know that the median that is returned by the
mechanism is either x; or y;, so we have our bound.

b) |[z:,y;] N A| = 3. In this case we know from above that the output of the mechanism
p = z, where z € [xz,yj] N A and is neither Z‘l nor y] Therefore, we have that
5
2

z— L) < (z—x) = and (Rpy1 — 2 = 2. Hence, any point in
(+ 5 + Y — , any p
[Li+1, Ry41] is a distance of at most 2 from p.

¢) |z, y;] N A > 3. Since for any interval [a, b] of length at most 0, the [z, y] associated
with it can have at most three points in A (this is proved in Claim 18, which is in
Appendix B.3), where x and y are as defined in the mechanism (see lines 3—4), this
case is impossible.

Case 2: at least one of x; or y; is in [Lgi1, Rk+1]. Let us assume without loss of generality
that x; is the point in [Ly41, Rg41], and let us consider the following sub cases.

a) |[x;,y;] M A| = 2. In this case, if the output of the mechanism p = z;, then we have
that (x; — Lgy1) < % (since, by definition, x; is the point in A that is closest to Lgi1),
and (Rpp1 — ;) < |Ryp1 — y5] + (y; — 25) < § 4 2 (since, by definition, y; is the point
in A that is closest to Ry,1). Hence, any point in [Ly, 1, Rk 1] is a distance of at most
31‘5 from p. On other hand, if the output of the mechanism p = y;, then we have that
(yj — Ligs1) = (y; — @i+ 2 — L) < g+ % (since z; is the point in A that is closest to
Lit1), and |y; — Ry < % (since y; is the point in A that is closest to Ry11). Hence,
when p = y;, any point in [Ly41, Ri41] is a distance of at most %‘5 from p. Combining
the two, we see that our claim is true in this case.

62

b) |[zi,y;] N A| = 3. Here again since p = z, where z € [z;,y;] N A and is neither z; nor
yj, we have that (z — Ly41) < (2 — 2+ 2; — Ligq) < % + % (since x; is the point in A
that is closest to Liy1), and (Rpy1 — 2) < (y; — 2) < 5. Hence, even in this case, any

point in [Lyy1, Ry41] is at a distance of at most %‘5 from p.

Finally, since the output of the mechanism is a distance of at most %5 from any point

in [Ly+1, Ret1], and given the fact that the minimax optimal solution is in [Ljgy1, Rit1]

(from Lemma 17), one can see using Lemma 16 that for Z = [ay,b;] X ... X [ay, by],
maxRegret(p, Z) — OMV 4¢(Z) is also bounded by 3 (this is proved in Claim 20, which is
in Appendix B.3).]

A conditional lower bound. In the context of our motivating example from the intro-
duction, it is possible, and in fact quite likely, that the city can only build the school at a
finite set of locations on the street. Therefore, an interesting class of non-onto mechanisms
to consider is ones which have a finite range. Below, we consider such mechanisms and show
that the approximation bound associated with any mechanism that is anonymous, minimax
dominant, and has a finite range, is at least g. The key idea that is required in order
to show this bound is the following lemma, which informally says that if the mechanism
has a finite range, is minimax dominant, and achieves a bound less than %5, then there is
“sufficient-gap” between four consecutive points in the range, A, of the mechanism. Once
we have this observation it is then in turn used to construct profiles that will result in the
stated bound.

Lemma 22. Given ad € (0, %], let M be a deterministic mechanism that has a finite range
A (of size at least six), is anonymous, and one that implements a-OMV ¢ in minimaz
dominant strategies for a d-uncertain-facility-location-game. Then, either o > %, or
there exists four consecutive points gi, 9o, g3, gs € A such that g1 < g2 < g3 < g4 and
% +dy + %3 > 0, where, for i € [3],d; = giy1 — ;-

Proof. The proof here is broadly similar to the proof of Theorem 19 in that here again we use
a characterization result by Masso and De Barreda [MD11], albeit a different one, and then
construct profiles in order to prove that the claim is true. The result we will rely on is the
one that characterizes the set of anonymous and strategyproof mechanisms in the symmetric
single-peaked domain [MD11, Corollary 1|. In particular, Mass6 and De Barreda showed
that any mechanism that is anonymous and strategyproof in the symmetric single-peaked
domain can be described as a disturbed median. We will not be defining disturbed medians
precisely since the definition is quite involved and we do not need it for the results here,
but broadly a mechanism M’ is a disturbed median if

63

i) it has n + 1 fixed points 0 < y; < ... < ypy1 <1,

ii) its range has a countable number of non-intersecting discontinuity intervals {[a,,
bin) tmen, where M is some indexation set and where for all ¢, y; & [an,, by, for all
m e M,

iii) has a family of anonymous tie-breaking rules, and

iv) behaves the following way with respect to a profile (z1,...,x,) of exact reports:
if median(yy, ..., Yni1, 21, ..., 2n) # dpy for all m € M, where d,, = %, then
M (xy,...,x,) = median(yy, . . . , Yns1,t1, - - -, tn), Where ¢; is the most preferred alter-

native of agent 4 in the range of M’.°

Given the partial description of disturbed medians mentioned above, let us consider the
mechanism M that is anonymous and minimax dominant. First, note that if we restrict
ourselves to profiles where every agent’s report is a single point (instead of intervals as in our
setting), then we know from the result of Massé and De Barreda that M must be a disturbed
median [MD11, Corollary 1]|. Second, note that for each y;, M(y;,...,y;) = median(y, ...,
Yn+1, Yis - - -, ¥i) = y;. Therefore, each y; belongs to A, the range of M. Additionally, also
note that y; and 1,1 are the minimum and maximum elements, respectively, in A, for if
not then for a g € A that is either less than y; or greater than y,,.1, median(yy, ..., yni1,
g,--.,9) # g, which is impossible if g € A and M is minimax dominant.

Next, given the observations above, consider the following two cases.

Case 1: there exists at most 2 points in A that are greater than y,. In this
case, let us consider the points y; and yo. If yo — 43 > 375, then consider the profile £
where n — 1 agents report y; and the last agent reports yo, i.e., Lo = (y1,...,%1,y2). Let
po = M(Ly). From above we know that py = median(yy, ..., Yni1, Y1, ---,Y1,Y2) = Y2 (since
Yo is the (n + 1)-th largest number). However, the minimax optimal solution associated
with this profile is y; and now one can verify from the expressions in Lemma 16 that, for an
appropriate choice of n, o > maxRegret(pg,Z) — OMV 4¢(Z) > 3?5, where Z is the instance
associated with the profile £y. Hence, “the either part” of our lemma is true in this case.

On the other hand, if yo — 11 < 32—‘5, then consider the case when there are two points

9,9 € A such that y» < ¢’ < g and the three points are consecutive in A (the arguments
below can be easily modified when there is only one or zero points greater than y,). Note

9Note that we have only defined disturbed medians for profiles which satisfy the property mentioned
above since we will only be using such profiles in this proof; the interested reader can refer to [MD11,
Definition 7] for a complete definition of disturbed medians.

64

that if ¢/ —y, > 3—26 org—g > 32—‘5, then we can construct profiles like in the case above to
show that o > 315. Therefore, let us assume that this is not the case. Now, this implies that
if dy = (y1 —0) and dy = (B — g), then

B=B—-g+g—y+y—h+h <d2+3—;+%5+3—25+d1.

However, this in turn implies that at least one of d; or ds is at least % — %‘5 > %. So, if we
assume without loss of generality that d; > 3?5, then we can consider the profile £y where
all the agents report 0 (note that by our assumption on dy, 0 ¢ A, because if so, then since
y1 is the minimum element in A, y; should be equal to 0), and let p; = M(L;). Given the
fact that p; > v, this in turn implies that one can verify from the expressions in Lemma 16
that o > maxRegret(p;, Z) — OMV 4c(Z) > 2, where T is the instance associated with the
profile £;. Hence, again, “the either part” of our lemma is true.

Case 2: there are at least 3 points in A that are greater than y,. In this case,
consider four consecutive points g1, g2, g3, g4 in A such that g; > y and g; < g2 < g3 < ga.
Also, for i € [3], let d; denote the distance between the points ¢g; and g¢; ;1. Below we will
show that d—21 +dy + ‘12—3 > 4.

Now, to prove our claim, let us assume for the sake of contradiction that % +dy + %3 < 0.
Also, let us consider the largest j such that y; < g; (note that we have 2 < j < n), and let
us consider the following input profile £,

yja"'7yj7[€77n]>g3>Ba"'7B)
N— ——

n—j agents Jj—2 agents
where £ = (g1 + % —m), 7= (gs+ G +%), 1+ <O —(F+da+ %) n < mn<E,
and v, < d—;.

Let po = M(Ly) and let a and b be the agents who report [/, 7] and g3, respectively, in
Ly. Next, consider the profile £; where the only difference from L is that agent a reports
¢ here instead of [¢,r], and let p; = M(L;). Now, given the fact that g;,¢gs, g3, g4 are
consecutive points in A and g¢; is the unique closest point to £ in A, we know that ¢; is the
most preferred alternative of agent a in the range of M. Therefore, we have that

b1 = media‘n(yb"'7yn+17yj7"‘)yj7glug37B7"'B) = 01,

since g, is the (n + 1)-th largest number.

65

Using a similar line of reasoning one can see that if £5 denotes the profile where agent a
reports r instead of [¢,r] and every other agent reports as in Lo, then

p2 = M(Ly) = median(yy, ..., Ynt1,Yj» - - -» Yj» 94, 93, B, ... B) = gs,

since here g3 is the (n + 1)-th largest number.

Now, since p; = g1 and py = g3, this implies that py = g¢o, for if otherwise agent a can
deviate from L, by reporting g, instead (it is easy to see that this reduces agent a’s
maximum regret), thus violating the fact that M is minimax dominant. Given this, now
consider the profile £3 which is the same as £, except for the fact that agent b reports
g4 instead of g3. Here p; = M(L3) has to be equal to g3 because one can see from the
max. regret calculations associated with agent a that a has a lesser maximum regret for
g3 than for g (this is because of our choice of appropriate v and ;). So if p3 is not
equal to g3, then agent a can move from L3 to £, where L4 is the same as L3 except for
agent a reporting gs instead of [¢,r] (and this would be beneficial for a since the output for
Ly = median(ys, ..., Ynt+1, Y5, - - - Yj» 93, 91, B, ... B) = g3). However, now if p; = g3, then
this implies that agent b can deviate from L, (which, as discussed above, has an output
Po = g2) to L3, thus again violating the fact that M is minimax dominant. Hence, for this
case, we have that %1 +dy + d2—3 > 4.

Finally, combining all the cases above, we have our lemma. O]

Given the lemma above, the proof of our lower bound is straightforward. (Note that below
we ignore mechanisms which have less than six points in their range as one can easily show
that such mechanisms perform poorly.)

Theorem 23. Given a ¢ € (0, %], let M be a deterministic mechanism that has a finite
range (of size at least siz), is anonymous, and one that implements a-OMVac in minimax
dominant strategies for a d-uncertain-facility-location-game. Then, for any e >0, a > %— €.

Proof. Consider the mechanism M and let A denote its range. From Lemma 22 we know
35

that either v > = or there exists four consecutive points g, g2,93,94 € A such that
g1 < g2 < g3 < g4 and % +dy + %3 > 0, where, for i € [3],d; = gix1 — gi- Since the former
case results in a bound that is bigger than the one in the statement of our theorem, below
we just consider the latter case where there exists g1, ¢s2, g3, g4 satisfying the conditions
stated above. Also, since M is minimax dominant and anonymous, we can again make
use of Masso and De Barreda’s characterization result [MD11, Corollary 1] as we did in

Lemma 22.

66

Now, since d—21 +dy + %3 > 0, we know that at least one of di, dy or d3 is at least g. Also if
any of dy,dsy, or ds is at least 9, then it is easy to construct profiles so as to achieve our
bounds. Therefore, for the rest of the proof we assume that d. < d, for all ¢ € [3]. So, given
this, let d; > % for some i € [3], and let us consider the largest j such that y; < ¢; (again,
like in the proof of Lemma 22, j < n). We have the following two cases, where k = | 7].

Case 1: j > n — k. Consider the profile £, where k£ + 1 agents report g; and the
rest of the agents report g; 1. Let pg = M(Ly). Since pg = median(y1, - - ., Yni1, Gis - - - » Gi,
Jit1s - - - Gir1), and since j > n—k, we have that py = g;. Next, consider the profile £, where
the only change from L is that here agent 1 reports [g;, gi+1 — 7], where 0 < v < min(%, g),
instead of g;. Let p; = M(L;). Now, if either p; > g; or p; < g;—1 (if such a point exists in
A), it is easy to see that agent 1 will deviate to Ly since her maximum regret for the point
g; is lesser in either of the cases. This in turn implies that p; = g;. Continuing this way,
one can reason along the same lines that for ¢ < k + 1 the profile L., where L. is the same
as L. 1 except for agent ¢ reporting [g;, g;+1 — 7] instead of g;, the output p. associated

with L. is equal to g;.

Given the observations above, consider the profile £, where the first k£ + 1 agents report

[gi, giv1 — 7] and the rest of the agents report g;11. Now, one can calculate using Algorithm 9
(ngzlizr(f;'“ﬂ). Also, we know
from above that pyr1 = M(Lyy1) = ¢i- And so, using the fact that d; = ¢g;v1 — g; > g
(2k+1)2(5§fl)_gi_w we can now use the expressions from Lemma 16 to
see that maxRegret(pgr1,Z) — OMV e (Z) > (2k+1)2((g£fl)fg"ﬂ), which for an appropriately
chosen value of n and ~ is greater than or equal to g — ¢ for any € > 0.

(in Appendix B.2) that the minimax optimal solution p,,; > git

and that Popt — Pk+1 >

Case 2: j <n — k. We can handle this similarly as in the previous case. In particular,
consider the profile £y where k+1 agents report g; and the rest of the agents report g;1. Let
po = M(Ly). Since pg = median(y1, ..., Yni1, Gis - - - 5 Gi, Git1, - - - Gix1), and since j < n — k,
we know that py = min(g;+1, y;j4+1) (as the (n+1)-th largest number will be either y,41 or gi41).

However, we know that y; is in the range of A since M(y;41,...,y;j+1) = median(yi, .. .,
Ynt1sYjtls - - - Yj+1) = Yj+1, and also that g; and g;41 are consecutive in A. Therefore,
Yi+1 = Gi+1, and we have that py = g;4+1. Next, consider the profile £, where the only

change from L, is that here agent (k + 2) reports [g; + 7, gi1], where 0 < v < min(%, 2),

instead of g;11. Let p; = M(Ly). Now, if either p; > g;+1 (if such a point exists in A) or
m < g;, it is easy to see that agent (k + 2) will deviate to Ly since her maximum regret for
the point g; 11 is lesser in either of the cases. This in turn implies that p; = g;1 2. Continuing
this way one can reason along the same lines that for ¢ > k + 2 the profile £, 1, where
L.__1 is the same as L._,_o except for agent ¢ reporting [g; + 7, gi+1] instead of g; 41, the

67

output p. associated with L, is equal to g;.1.

Given the observations above, consider the profile £,,_;_; where the last n — k — 1 agents
report [g; + 7, ¢i+1] and the rest of the agents report g;. Now, one can calculate using
Algorithm 9 (in Appendix B.2) that the minimax optimal solution p,, = g;. Also, we know
from above that p,,_r_1 = M(L,_k—1) = gi+1. And so, using the fact that d; = ¢g;+1 —g; > %,
we can now use the expressions from Lemma 16 to see that maxRegret(p,_x_1,Z) —

OMV ¢ (Z) > (2’“_2)(9321_91'_7)7 which for an appropriately chosen value of n and ~ is greater
than or equal to g — € for any € > 0.

Finally, combining the two cases above, we have our lower bound. O]

3.5 Implementing the Maximum Cost Objective

In this section we turn our attention to the objective of minimizing the maximum cost
(sometimes succinctly referred to as maxCost and written as MC) which is another well-
studied objective function in the context of the facility location problem. In the standard
setting where the reports are exact, the maximum cost associated with locating a facility
at p is defined as max;cf,) C(z;,p) and if we assume without loss of generality that the z;s
are in sorted order, then one can easily see that the optimal solution to this objective is to
locate the facility at p = 522 However, unlike in the case of the average cost objective
that was considered in Section 3.4, one cannot design an optimal strategyproof mechanism
even when the reports are exact, and it is known that the best one can do in terms of
additive approximation is to achieve a bound of % in the case of deterministic mechanisms
and % in the case of randomized mechanisms [GT17, Theorems 5, 15].

Now, coming to our setting, unlike in the case of the average cost objective, calculating
the minimax optimal solution is straightforward in this case. In fact, given the candidate
locations [a;, b;] for all ¢, if Ly, ..., L, and Ry, ..., R, denote the sorted order of the points in
{a;}icp) and {b;}icp), respectively, then it is not too hard to show that the minimax optimal
solution is the point M (a complete discussion on how to find the minimax optimal
solution when using the maximum cost objective is in Appendix B.4). Therefore, below we
directly move on to implementation using the solution concepts defined in Section 3.2.1.

68

3.5.1 Implementation in very weakly dominant strategies

In the case of the maximum cost objective we again see that very weak dominance is too
strong a solution concept as even here it turns out that we cannot do any better than the
naive mechanism which always outputs the point g as the solution. The following theorem,
which can be proved by proceeding exactly like in the proof of Theorem 18, formalizes this
statement.

Theorem 24. Given a § € (0,B], let M = (X, F) be a deterministic mechanism that
implements a-OM Vo in very weakly dominant strategies for a d-uncertain-facility-location-
game. Then, a > %

Given the negative result, we move on to implementation in minimax dominant strategies
in the hope of getting an analogous positive result as Theorem 21.

3.5.2 Implementation in minimax dominant strategies

When it comes to implementation in minimax dominant strategies, we again see that
even in the case of the maxCost objective function one can do a lot better under this
solution concept than under very weak dominance. But before we see the exact bounds
one can obtain here, recall that Theorem 19 rules out the existence of mechanisms that are
anonymous, minimax dominant, and onto. Hence, our focus will be on non-onto mechanisms.
We note that the ideas in the following section can be broadly described as being similar to
the ones in Section 3.4.3.1 since here, too, we focus on similar “grid-based” mechanisms.

3.5.2.1 Non-onto mechanisms

We show that there exists a mechanism, g-equispaced-phantom—half, that implements
(% + 3g‘s)—OMV mc in minimax dominant strategies. The mechanism, which can be consid-
ered as an extension to the phantom-half mechanism introduced by Golomb and Tzamos
|[GT17],'° is similar to the g—equispaced—median mechanism shown in Algorithm 2. Hence,
we only highlight the changes in the description below.

g-equispaced-phantom—half. Consider the mechanism described in Algorithm 2. We
need to make only two changes: i) instead of the definition of A used in Algorithm 2, we

0Given a profile of exact reports (z1,...,7,), the phantom-half mechanism returns the median of
Tomin, Tmaz and B/2, where X, = min{z;} and x4, = max;{z;}.

69

define it to be the set {g1,...,9;,...,9m}, where g; = %,giﬂ —g; = g, for1<i<k-—1,
go > 0, and g, < B. i) instead of returning the median of the /;s in line 21, we return the
median of the points £,,;,, g, and ,,q., where £, = min{¢;} and £,,,, = max;{¢;}.

Below, we show that the g—equispaced—phantom—half mechanism described above implements
(% + 3g‘s)—OMVMC in minimax dominant strategies.

Theorem 25. Given a § € [0, 2], the g—equispaced—phantom—half mechanism is anony-
mous and one that implements 6% + %)—OMVMC in minimax dominant strategies for a
o-uncertain-facility-location-game.

Proof. The proof that the g—equispaced—phantom—half mechanism is minimax dominant
is very similar to the proof of Lemma 20 where we show that the g—equispaced-median
mechanism is minimax dominant. Therefore, below we only show the approximation bound.

We begin by defining some notation and making a few observations. Let Lo = ([a1,b1], .. .,
[a,,b,]) be a profile of candidate locations of the agents and let Lq,..., L, and Ry,..., R,
be the sorted order of the a;s and b;s, respectively. Also, let ¢; be the ¢; associated with the
agent i in the mechanism (see Algorithm 2), £,,;,, = min;{¢;}, and ¢,,,, = max;{¢;}. From
the mechanism we know that ¢; € [z;,y;], where ; and y; are as defined in the mechanism
(see lines 3-4 in Algorithm 2). Additionally, for two agents i and j, if a; < a;, then it is
clear from the definition of xys (see line 3 in Algorithm 2) that z; < x;. Similarly, it again
follows from the definition of y;s that for two agent ¢ and j, if b; < b;, then y; < y;.

Next, consider the agent associated with L; (i.e., the agent who reports the smallest left
endpoint). Without loss of generality we can assume that this agent is agent 1. From the
discussion above we know that for every agent i > 1, we have that ¢; > x; > x; (since their
left endpoints are at least L;). Therefore, ¢,,;, = min;{¢;} > z;, and since z; > L, — %
(this easily follows from the definition of z; and the fact that the points in A are placed at
a distance of % apart), we have that ,,;, > L1 — %. Now, one can employ a similar line of

reasoning to see all of the following: 4,4, < R, + %, Cppin < R + %, and (40 > Ly — %.

Given all the observations above, we are now ready to prove our bound. To do this, let us
consider the following cases. In each of these cases, we will show that the output p of the
g—equispaced—phantom—half mechanism is at a distance of at most (% + %) from pope, where

from Proposition 44, which is in Appendix B.4, we know that p,, = M.

Case 1: p = %. In this case, we have,

R1+Rn+L1+Ln_ _R1+RH+L1+L7L}

|Popt — p| = max { 1 P, P 1

70

a Rl_L1+Rn+Ln+L1 Rn+Rn_Ln R1+L1
— X —— _ J—
4 2 ’ 2 4 4
< 5 + gmm + B (gmax - %) + 5
- 4 2 72 2 4
(since p= g, R; — L;j <4 (using Claim 15), £yin > L1 — &, and fmaz < Rn + 7)
< 30 . B B n 30 (, 5 <,)
m _ - — since lin < 5 < fmax
MY T TR 2
B B 4 30
48
Case 2: p = (,,;,. In this case, we have,
Ri+R,+ L1+ L, Ri+R,+ L1+ L,
|Popt — p| = max —p,p—
4 4
— L R,+L, L R L
< max LS Z +?1—p,p—71—71} (since Ly < L, R1 < Ry)
2 2 72 2 4

smce D = Llmin, Ri — Ly < (using Claim 15), £pmin > L1 — %, and lin < R1 + %)

B 30
- } (Since g S Zmin S Zmaa:)

(since 6 < %)

"
<max{
{3
m —_—
8
B 3
4 8’

Case 3: p = {4 This can be handled analogously as in Case 2.

Finally, for an instance Z, since from all the cases above we have that [p,: — p| < (% +
2, maxRegret(p,Z) — OMV yc(Z) is also bounded by (£ + 32) (this can seen by using
Lemma 43, which is in Appendix B.4).]

Given this result, it is natural to ask if we have a lower bound like the one in Section 3.4.3.1.
Unfortunately, the only answer we have is the obvious lower bound of % that follows from
the result of Golomb and Tzamos [GT17, Theorem 15| who showed that under exact reports,
and when using deterministic mechanisms, one cannot achieve a bound lower than %

71

3.6 Discussion

The standard assumption in mechanism design that the agents are precisely aware of their
complete preferences may not be realistic in many situations. Hence, we believe that there
is a need to look at models that account for partially informed agents and, at the same time,
design mechanisms that provide robust guarantees. In this chapter, we looked at such a
model in the context of the classic single-facility location problem, where an agent specifies
an interval instead of an exact location, and our focus was on designing robust mechanisms
that perform well with respect to all the possible underlying true locations of the agents.
Towards this end, we looked at two solution concepts, very weak dominance and minimax
dominance, and we showed that, with respect to both the objective functions we considered,
while it was not possible to achieve any good mechanism in the context of the former solution
concept, extensions to the classical optimal mechanisms—i.e., mechanisms that perform
optimally in the classical setting where the agents exactly know their locations—performed
significantly better under the latter, weaker, solution concept. Our results are summarized
in Table 3.1.

There are some immediate open questions in the context of the problem we considered like
looking at randomized mechanisms, providing tighter bounds, and potentially even finding
deterministic mechanisms that perform better than the ones we showed. More broadly, we
believe that it will be interesting to revisit the classic problems in mechanism design, see
if one can look at models which take into account partially informed agents, and design
mechanisms where one can explicitly relate the performance of the mechanism with the
quality of preference information.

72

Chapter 4

Improving Welfare in One-Sided
Matching Using Simple Threshold
Queries

4.1 Introduction

The previous two chapters looked at the question of designing ‘robust’ algorithms, where,
broadly, by ‘robust’ we meant algorithms that when given access to incomplete preference
information performed well with respect to all the possible underlying complete preferences.
Crucially, the assumption in both the previous chapters was that the algorithm has to
work with given incomplete information. However, this might not always be required, for it
might be possible to ask the agents to refine their preferences further. In this chapter, we
look at such a setting in the context of one-sided matching problems. One-sided matching
problems model scenarios where there is a set of n agents who have preferences over a set
of m objects and the goal is to assign each agent to at most one object. Such problems are
ubiquitous. For instance, the case where the objects are houses represents the well-studied
housing allocation problem (e.g., see [HZ79; AS98; Abr+04|) or, when agents have initial
endowments, the housing market problem (e.g., see [SS74; RP77; AS99]). Other examples
include assigning faculty members to school committees, workers to tasks, etc.

Most of the literature on one-sided matching problems typically assume that the agents have
an acceptable set of objects and that they submit a preference order over the acceptable set.
Given this, the standard objective is to come up with an assignment of agent to objects

73

object 1 | object 2 | object 3

agent 1 0.9 0.1 0
agent 2 0.9 0.1 0
agent 3 0.51 0.49 0

Table 4.1: Example which illustrates how there is a loss in welfare due to not accounting
for preference intensities.

(henceforth, matching) such that it satisfies some notion of economic efficiency like, e.g.,
Pareto optimality or rank-maximality. Informally, a matching is Pareto optimal if there is
no other matching where all the agents are assigned to an object that they like at least as
much as the one they are assigned to currently and if there is at least one agent who strictly
prefers the new assignment. A matching is rank-maximal if it maximizes the number of
agents who are matched to their first choice object, and, subject to that, it maximizes the
number of agents matched to their second choice object, and so on.

Although matchings that satisfy such notions are better than arbitrary matchings, their
main drawback is that they do not take into account agents’ preference intensities. To
illustrate this, consider the simple example in Table 4.1 where there are three agents and
three objects. The agents all have the same ordinal preferences, but have different preference
intensities. For instance, agent 3 only has a slight preference for object 1 over object 2 (0.51
vs 0.49), whereas agents 1 and 2 both prefer object 1 much more than object 2 (0.9 vs 0.1).
In this example, if we were concerned about Pareto optimality or rank-maximality, then it
is easy to see that any matching satisfies both these notions. However, it is also clear that
any matching that matches agent 3 to object 3 is worse in terms of overall welfare, since
agent 3 experiences a much larger loss in utility when matched to object 3 instead of object
2, whereas for agents 1 and 2 this difference is very small.

The observation that there might be a loss in welfare due to not capturing preference
intensities (henceforth, cardinal utilities) is not new, and in particular, this has been a much
debated issue surrounding various school-choice mechanisms (e.g., see [ACY11; ACY15]).!
This has also lead to, for instance, proposals for new school choice mechanisms that ask
agents to provide some extra information along with their ordinal preferences [ACY15].
Our work here is partially motivated by this line of work, but takes a more computational
and algorithmic approach to this issue that is similar to the flurry of work that looks
at distortion—which is essentially the cost of using only ordinal information—in various

1School-choice is the problem of allocating students to schools. This is essentially a one-sided matching
problem, except that here the schools usually have, what are called, priorities—which is an ordering over
students that is used only when the school is over-demanded (see, e.g., [ACY11] for formal definitions).

74

settings (e.g., see [PR06; Bou+15; AS16; AZ17; GKM17; AA18|).

In particular, given a one-sided matching instance (which is the set of agents, objects, and
the agents’ preferences), we are still interested in computing matchings that satisfy some
notion of economic efficiency, say, X, but at the same time our aim is to account for the
agents’ cardinal utilities. We do this by aiming to design algorithms that always return
a matching that satisfies X and at the same time achieves a good approximation to the
optimal welfare among all matchings that satisfy X—i.e., the maximum utilitarian social
welfare achievable among matchings that satisfy X. Now, of course, one way to achieve this
is to just ask agents directly for their cardinal utilities, since once we have them we can
compute the matching with the best welfare among ones that satisfy X. However, as one
can imagine, asking agents for their cardinal utilities is cognitively non-trivial, since even
attributing values to objects is not easy in many scenarios. Therefore, here our focus is to
achieve a middle-ground between completely ordinal and completely cardinal elicitation,
and to do this, we use threshold queries which ask an agent if their value for an object is at
least some real number v. Our goal is to ask each agent a small number of such queries
and then use it to pick a matching that achieves a good approximation as described above.

Although the general idea of using queries to elicit some information regarding cardinal
utilities is not new and has even been considered in the context of one-sided matching in
a recent paper [Ama-+21], there are some differences. The main difference between our
approach here and the one by Amanatidis et al. [Ama-+21]| is that the focus in their paper
is to come up with algorithms that have low distortion, whereas our focus is on algorithms
that, for a particular notion of economic efficiency X, always produce a matching that
satisfies X and has a good approximation to the optimal welfare among all matchings that
satisfy X. We believe that while achieving low distortion might be a good objective in
certain settings, it is too reliant on cardinal preferences—the presence of which is already
an assumption. Hence, comparing different algorithms solely based on this value (i.e., the
distortion they achieve) does not seem ideal. Our approach, on the other hand, is less reliant
on cardinal information, using it only to pick a matching from the set of matchings that
satisfy some property X, which in turn is dependent only on the ordinal information that
is arguably more robust. Moreover, the query model used by Amanatidis et al. [Ama-+21]
is much stronger than the one we employ. Ours just asks for a binary answer to whether
the value of an item is greater than some real number v, whereas in their model a query
asks an agent to reveal their utility for the object, which in turn is cognitively much more
demanding. These differences mean that there are no direct overlaps between our results
here and that of Amanatidis et al. [Ama+21].

75

Adaptive thr:eshold Non-adaptive threshold
Ordinal query algorithms ' query algorithms
algorithms (for any € > 0, O(clogn) (}uenes (at most 1 query
per agent, where ¢ = {%—‘) per (agent, object) pair)
UB: O(n?) UB: O(n?/3)
unit-sum | [Theorem 26] 1+€ [Theorems 29 and 31]
valuations | [p. Q(n?) [Theorem 28] LB: Q(y/n)
[Theorem 26] [Theorem 32]
UB: O(n) UB: O(y/n)
unit-range | [Theorem 46] 1+e [Theorem 47]
valuations LB: Q(n) [Theorem 28] LB: Q(y/n)
[Theorem 46] [Theorem 48|

Table 4.2: Summary of our results. For X, where X is one of the properties in the set
{Pareto optimal, rank-maximal, max-cardinality rank-maximal, fair}, an upper bound (UB)
of v indicates that there is a deterministic algorithm that always produces a matching that
satisfies X and achieves an a-approximation to the optimal welfare among matchings that
satisfy X. A lower bound (LB) of /3 indicates that there is no deterministic algorithm that
produces a matching that satisfies X and achieves a S-approximation to the optimal welfare
among matchings that satisfy X.

4.1.1 Ouwur contributions

We consider the following four well-studied types of matchings that satisfy a specific notion
of economic efficiency: i) Pareto optimal matchings, i) rank-maximal matchings, ii)
max-cardinality rank-maximal matchings, and 4v) fair matchings. As mentioned above,
for each of these types, our goal is to find deterministic algorithms that always output a
matching of the corresponding type and one that achieves a good approximation to the
optimal welfare among all matchings of that type. Towards this end, we consider two kinds
of cardinal utilities, namely, unit-sum and unit-range valuations, and show the following
results, which are summarized in Table 4.2.

e We first look at adaptive algorithms—i.e., algorithms that are able to change their
queries depending on how agents answer its previous queries—and show how for each

of the notions mentioned above and for any € > 0, there is a deterministic algorithm

log(n2-1/¢)

that asks O(clogn) queries per agent, where ¢ = {M

_‘, and returns a matching

76

that satisfies this notion and also achieves a (1 + €)-approximation to the optimal
welfare among all matchings that satisfy this notion when the agents have unit-sum
or unit-range valuations.

e While the previous result achieves the best possible approximation one can hope
for—and in particular it results in an O(1)-approximation with just O(log®n) queries
per agent—we believe that the fact it is adaptive is not ideal because of the following
reasons: i) Adaptive algorithms may not be practical in many settings since it involves
waiting for the agents to respond, and potentially having them respond multiple times.
it) For every agent, the algorithm mentioned above potentially asks multiple queries
with respect to the same object and as this number increases, one could argue that it
defeats the real purpose of such algorithms—since responding to them entails that
the agents are somewhat sure about their cardinal utilities.

As a result, we focus on non-adaptive algorithms, which address the first issue
mentioned above, and in order to address the second one, we consider a very special
type of non-adaptive algorithm—one which is allowed to ask at most one query per
(agent, object) pair. We believe that this is the most practical setting to consider for
this problem, since this means every agent is asked to provide just one extra bit of
information per object.?

For this setting, we show how for each of the notions considered, there is a deterministic
algorithm that returns a matching that satisfies this notion and also achieves an
O(n?/®)-approximation to the optimal welfare among all matchings that satisfy this
notion when the agents have unit-sum valuations. We also derive a similar result for
the unit-range case, showing an algorithm that achieves an O(y/n)-approximation.
Note that these bounds are as opposed to a ©(n?) and ©(n) approximation that is
achievable when using only ordinal preferences and when the agents have unit-sum
and unit-range valuations, respectively.

e Finally, we also show that, for all the notions considered, any deterministic algorithm
that uses at most one query per (agent, object) pair can only achieve an approximation
factor of Q(y/n), both for the case when agents have unit-sum or unit-range valuations.
Note that for the unit-range case, this bound in turn is asymptotically tight.

2Also, deploying this seems easier, since instead of the current system which presumably just asks the
agents to list their preferences, now all that needs to be done is to have a checkbox next to it, indicating
whether their answer is a “Yes” or “No” w.r.t. a certain threshold query.

7

4.1.2 Related work

One-sided matching scenarios are ubiquitous and have been well-studied, especially as the
housing allocation or housing market problem both in economics (e.g., see [SS74; HZ79;
RP77; AS98; AS99; SU10]) and in theoretical computer science and computational economics
(e.g., see [Abr+04; Irv04; Abr+06; FFZ14; Ama+21]). Unlike here where we assume that the
agents have underlying cardinal utilities that are consistent with their ordinal preferences,
most of this literature assumes that the agents only have ordinal preferences, and their
goal is usually to find matchings that satisfy some notion of economic efficiency like,
e.g., Pareto optimal matchings [SS74; Abr-+04], rank-maximal matchings [lrv04; Irv+-06],
max-cardinality rank-maximal matchings [MMO05; Abr+06|, and fair matchings [MMO5;
Hua+13].

As mentioned in the Introduction, part of the motivation for our work is derived from work
on the school choice problem that talks about the loss in welfare due to not taking the
preference intensities into account (e.g., [ACY11; ACY15]). Our concern here is on similar
lines, but we take a more computational approach to the problem which is reminiscent of the
vast body of work on distortion (e.g., see [PR06; Bou+15; AS16; AZ17; GKM17; AA18)).
However, unlike this body of work which aims to calculate the worst-case loss in welfare due
to only having ordinal preferences, we assume that, in addition to their ordinal preferences,
it is also possible to obtain some information about the agents’ cardinal utilities. This in
turn is similar to the approach taken by Abramowitz, Anshelevich, and Zhu [AAZ19] in the
context of voting and more closely to the ones by Amanatidis et al. [Ama+20; Ama-+21] in
the context of voting and one-sided matching, respectively. In the work by Abramowitz,
Anshelevich, and Zhu [AAZ19] it assumed that in addition to the ordinal preferences there
is also some information regarding how many agents prefer candidate P over Q above a
certain threshold, whereas in the work by Amanatidis et al. [Ama+20; Ama-+21|, and as is
the case here, it is assumed that the one can use some specific type of query in order to get
more information regarding the cardinal utilities.

Finally, our work is also related to the work that studies the communication complexity
of voting protocols [Man+19; MSW20|, to the work on participatory budgeting which
compares different elicitation methods based on the distortion achieved (e.g., see [Goe+19;
Ben+20]), and is more broadly in line with the growing body of work that explicitly aims
to make mechanisms or algorithms more robust, by either making use of coarse preference
information [CMA12; CMA14; ML19] or by making sure that the algorithms designed
produce solutions that work “well” (in the approximation sense) even under slightly modified
inputs [SYE13; Bre+17; ML18; MV18; CSS19|.

78

4.2 Preliminaries

For k € Z*, let [k] denote the set {1,...,k}. We use N, where |N| = n, to denote the set
of agents {a1,...,a,}, and use H, where |H| = n, to denote the set of objects {h1,...,h,}.
We refer to a; as agent ¢ and h; as object j. Every agent a; is assumed to have a weak
order P; over a subset of objects A; C H. For an agent a;, A; indicates the set of objects
a; is willing to be matched to and we refer to A; as the acceptable set of a; and assume
that |A;| > 1. We use P = (P, ..., P,) to refer to the weak orders of all the agents in
and refer to P as the preference profile of the agents. For an agent a;, and for two objects
hj, hi € A;, we use h; >=; hj to denote that a; strictly prefers h; over hy, and use h; =; hy,
to indicate that h; is either strictly preferred or considered to be equivalent to hj. We refer
toZ=(WN,H,P=(P,...,P,)) as an instance, which encodes all the information about
the agents, objects, and the agents’ preferences, and use I to denote the set of all possible
instances.

Given an instance Z = (N,H,P = (P1,...,P,)), we use Gz = (N UH,E) to denote
the bipartite graph where there as an edge (a;, h;) € € if h; € A;. We refer to Gz as
the graph induced by Z and refer to e = (a;, h;) € € as a rank-k edge if |U;;| = k — 1,
where U;; = {hy € A; | hy >=; h;}. We also use rank(a;, h;) to denote the k such that
(a;, h;) is a rank-k edge and refer to an object h; as a;’s rank-k (or k-th choice) object if
rank(a;, hj) = k.

Although the model described thus far is the standard model in one-sided matching, here
we additionally assume that each agent a; has a cardinal utility function v;: H — [0, 1],
which is consistent with the preference order P; (meaning, hy »=; hy < v;(hy) > v;(h2));
we assume that if h ¢ A;, then v;(h) = 0. In this work we consider two specific kinds
of (normalized) valuation functions which are defined below, and use v = (vq,...,v,) to
denote the valuation profile of agents and V7 to denote the set of all possible valuation
profiles that are consistent with the given preference profile in Z.

1. Unit-sum valuations: Agents are said to have unit-sum valuations if for each agent i,
v; is such that), , vi(h) = 1.

2. Unit-range valuations: Agents have unit-range valuations if for each agent i, there
exists hj, hy € A; such that h; >; hy, and maxpea, v;(h) = 1 and mingeqa, v;(h) = 0.
In words, the most preferred objects have value 1, the least preferred objects have
value 0, and every other acceptable object has value between 0 and 1.

Note that information about the cardinal utilities is not part of an instance Z. Also, note

79

that although the “internal utilities” of the agents may not be normalized, we have to
assume some normalization in order to only use threshold queries. Given this, both unit-sum
and unit-range arise from two natural ways to normalize agents’ “internal utilities”. More
precisely, if u;: H — Rsq is the “internal utility” of an agent, then, for all h €; A, the
corresponding unit-sum and unit-range valuation functions are, respectively,
ui(h)
v;(h) S) and v;(h)

u;(h) — minpe 4, u; (h)

maxpe 4, u;(h) — minpea, u;(h)

For an instance Z, we are interested in matchings that assign agents to objects, and a
matching of agents to objects is a bijection p: N'— H and, for ¢ € N'UH, we refer to u(c)
as ¢’s partner in p or as ¢’s allocation in p. Alternatively, a matching is also defined as a
collection of edges i in Gz such that each vertex is part of at most one edge in . We use
Mg, to denote the set of all possible matchings in Gz. Although for a given instance there
are several possible matchings, we are interested in matchings that satisfy some notion of
economic efficiency; these are defined next.

4.2.1 Notions of economic efficiency

We consider the following well-studied notions: Pareto optimal matchings [SS74; Abr+04],
rank-maximal matchings [Irv04; Irv+06], max-cardinality rank-maximal matchings [MMO05;
Abr+06|, and fair matchings [MMO5; Hua+13]. The latter three are different ways to
strengthen Pareto optimality and are together referred in the rest of this chapter as
signature-based matchings.

Definition 10 (Pareto optimal matchings). Given an instance Z = (N, H,P = (P, ...,
P,)), a matching p € Mg, is Pareto optimal (PO) w.r.t. Z if

V'€ Mgyt (Ja; € Ny (@) =i plai)) = (3a; € Nyl (a) <5 p(ay)) -

In words, a matching p is Pareto optimal if there is no other matching y’ such that every
agent weakly-prefers their allocation in y/ over their allocation in y and at least one agent
(strictly) prefers their allocation in p' over their allocation in .

Definition 11 (Signature-based matchings). Given an instance Z = (N, H,P = (P4, ...,
P,)), and a matching u € Mg,, let s; denote the number of agents that are matched to a
rank-¢ edge in p. Then, p is

80

e rank-maximal if © maximizes the number of agents who are matched to a rank-1
edge and, subject to that, it maximizes the number of agents who are matched to

rank-2 edges, and so on. Formally, if we associate an n-tuple (sy,...,s,) with every
matching in Mg, then p is the matching that has lexicographically the best n-tuple
(s1,...,8,) associated with it.

e max-cardinality rank-maximal if p is a maximum cardinality matching and,
subject to that, is also rank-maximal. Formally, if we associate an (n + 1)-tuple
(- 8i,S1,...,5,) with every matching in Mg, then p is the matching that has
lexicographically the best (n + 1)-tuple (3 ., s;, S1, ..., S,) associated with it.

e fair if y is a maximum cardinality matching and, subject to that, minimizes the
number of agents who are matched to a rank-n edge and, subject to that, minimizes
the number of agents who are matched to a rank-(n — 1) edge, and so on. Formally,

if we associate an (n + 1)-tuple (31", $i, —Spn, —Sn—1, ..., —s1) with every matching
in Mg,, then p is the matching that has lexicographically the best (n + 1)-tuple
(> Siy—Sn, —Sn—1,-..,—s1) associated with it.

For each type of signature-based matching defined above and a matching of that type, we
refer to the corresponding tuple, as defined above, to be the matching’s signature. That is,
for instance, for a max-cardinality rank-maximal matching u, signature of u refers to the
(n+ 1)-tuple (3°7 | Si,81,...,5,). The example below illustrates the difference between
Pareto optimal, rank-maximal, and fair matchings for an instance.

Example 1. Consider an instance with 7 agents and 7 objects, where the preferences of
the agents are as defined in the table below. Here each column corresponds to the strict
preferences of an agent and if the column corresponding to agent, say, a; is hq, hs, hs, then
this implies that a; prefers h; the most, hy second most, and so on. For this instance, the

matching (of size 6) that corresponds to each agent being matched to the object (if any)
coloured blue in its column is an example of a Pareto optimal matching. Similarly, the
matching (of size 5, with signature (3,1,1,0,0,0)) where each agent is matched to the
object (if any) coloured red is an example of a rank-maximal matching, and the matching

81

(of size 7, with signature (7,0,0,—1,0,—5,—1)) where each is matched to the object (if
any) coloured yellow is an example of a fair matching.

It is well-known (see [Irv04; Irv-+06; MMO5; Hua+13; Mic07]) that signature-based match-
ings can be reduced to an instance of the following problem, which we refer to as priority-p
matchings, for a given p = (p1,- -+, pn)-

Definition 12. Given an instance Z = (N, H,P = (Py,...,P,)) and a priority vector
p = (p1,...,pn), where Vi € [n],p; € Z>¢ and 35,k € [n] such that p; # pj, a matching
[€ Mg, is said to be a priority-p matching if p is a matching of maximum weight in Mg,
where a rank-r edge in Gz is assigned the weight p,.

In particular, given an instance Z, we can show that,?

e when p; = n?"=7+Y for all j € [n], a matching is a priority-p matching if and only if
it is rank-maximal matching w.r.t. Z.

e when p; = n®" + n% ") for all j € [n], a matching is a priority-p matching if and
only if it is a max-cardinality rank-maximal matching w.r.t. Z.

e when p; = 4n** — 2n/~! for all j € [n], a matching is a priority-p matching if and
only if it is a fair matching w.r.t. Z.

Although priorty-p matchings can potentially be defined for several values of p, here we
are interested in the three cases described above. Additionally, for ease of exposition,
we also sometimes use priority-p, where p; = 0 for all i € [n] to refer to Pareto optimal
matchings. Note that this is purely for notational convenience (priority-p matching as
defined in Definition 12 is not defined when p; = p; for all i, j € [n]), since the algorithms we
discuss in the context of Pareto optimal matchings are extensions to the ones for priority-p
matchings. Throughout, we use P to denote the priority vectors of interest. That is,
P = {(n®,... n2=3+0 n?) (n?" +n2"D 0 n? 20 n?n o), (4n®n — 2,
cAn® = 2nd7 L 4n® — 2pn))

3The proof of this can be found in Claim 22 in Appendix C.1. Note that such observations have also
been made in previous works (e.g., see [Irv04; Irv+06; MMO05; Hua+13; Mic07]), although the value of p;s
used may be different.

82

4.2.2 Going beyond completely ordinal or completely cardinal al-
gorithms

Given an instance Z, we are interested in deterministic algorithms A that always output a
matching that satisfies one of the economic notions defined in the previous section. However,
even when restricted to such matchings, as the example in the Introduction illustrates, there
are potentially many choices, and there might be a loss in welfare due to not accounting
for the cardinal utilities of the agents. Therefore, ideally we want our algorithm to have
small worst-case loss in welfare. Formally, for an instance Z, consider the set of matchings
S C Mg, such that S is the set of all Pareto optimal/rank-maximal/max-cardinality
rank-maximal /fair matchings in Gz. Next, for a matching p € S, v € V7, and for an edge
e = (a;, hy) € p, let value(e) = v;(h;) and SW(u | v) = >_ ., value(e), the social welfare of
p given the valuations v. (For notational convenience, when v is clear from the context, we
just write SW(u) instead of SW(u | v).) Given this, consider a deterministic algorithm A
where, for all Z € I, A(Z) € S and let L(A), which we refer to as the worst-case welfare
loss of A, be defined as below.

max SW(u" | v)

- _ pres
L(A) = max L(A,T), where L(AT) = sup “gmamT s

(4.1)

As mentioned above, we want algorithms .4 that have as small a value of £L(.A) as possible.
To achieve this, on the one extreme we have completely ordinal algorithms—which are
algorithms that only consider the ordinal preferences. We argue below that that any
deterministic ordinal algorithm has a very poor worst-case loss in welfare, in particular Q(n?)
when agents have unit-sum valuations. The proof of this result appears in Appendix C.3.1.
(The corresponding result showing a bound of Q(n) for unit-range valuations can be found
as Theorem 46 in Appendix C.3.1.)

Theorem 26. Let X denote one of the properties in the set { Pareto-optimal, rank-maximal,
max-cardinality rank-mazximal, and fair}. Let A be a deterministic ordinal algorithm that
always produces a matching that satisfies property X. If there are n agents with unit-sum
valuation functions, then L(A) € Q(n?). Moreover, this bound is asymptotically tight.

At the other extreme, when we have access to all the cardinal utilities, we show (see
Theorem 27) in the next section how, for all the notions considered here, computing the
welfare-optimal matching reduces to the max-weight matching problem. Although this is
ideal, as mentioned in the Introduction, asking agents for cardinal utilities might not be

83

reasonable in many situations, as this is a cognitively involved task. Therefore, in this
chapter, we aim for a middle-ground between completely ordinal and completely cardinal
algorithms. We do this by trying to get at least some information regarding the cardinal
preferences by asking the agents certain queries. In particular, we are interested in the
following type of query, which we refer to as binary threshold query.

Definition 13 (binary threshold query). For an agent a;, object h;, and a real number
tr € [0,1], a binary threshold query, denoted Q(a;, h;,t;), asks agent a; to return 1
(alternatively, asks them to say “Yes”) if v;(h;) > t, and O (alternatively, asks them to say
“No”) otherwise.

Given an instance Z and answers to a certain number of binary threshold queries, our aim
is to design deterministic algorithms .4 that minimize the worst-case welfare loss £(.A) and,
for all Z € I, produces a matching in S (i.e., A(Z) € S), where S is the set of all Pareto
optimal /rank-maximal /max-cardinality rank-maximal/fair matchings in Gz.

Remark: Throughout this chapter, we say that, for an o > 1, an algorithm A achieves an
a-approximation to the optimal social welfare among Pareto-optimal /rank-maximal /max-
cardinality rank-maximal/fair matchings if £(A) < a. Also, note that although the ratio
defined in (4.1) might seem very similar to the notion of distortion that is widely used
in computational social choice literature (e.g., see [PR06; AS16]), it is important to note
that it is different. Here we are interested in algorithms that produce a matching with a
certain property (like Pareto optimality, rank-maximality, etc.) and that has social welfare
as close to the optimal welfare achievable with a matching that satisfies the same property
of interest, whereas in the context of distortion there is no such restriction. That said, it is
also worth noting that in the context of one-sided matching, an algorithm that achieves an
a-approximation to the optimal social welfare among Pareto-optimal matchings also has a
distortion of « since a welfare-optimal matching is also Pareto optimal.

4.2.3 Finding welfare-optimal priority-p matchings when utilities
are known

Before we consider the main question of this chapter, a natural question that arises is on
how to compute the welfare-optimal Pareto optimal or welfare-optimal priority-p matchings
for the priority vectors of interest, when the agents’ utilities are known. Given an instance
Z = (N, H,P) and valuation functions of the agents v = (vy,...,v,), where v;: H — [0, 1],
the welfare-optimal priority-p problem is to find a matching of maximum welfare among

84

Input: an instance Z = (N, H,P = (P,..., P,)), priorities p = (p1,...,pn), where p € P,
and v = (vy,...,vy), where v;: H — [0, 1]
Output: returns a welfare-optimal priority-p matching w.r.t. Z
1: Gz = (N UH,E) « graph induced by Z
2: for e = (a;,h;) € € do
3 r < rank(a;, hj)
4: We < Pr + ’Ui(hj)
5: end for
6: u + max-weight matching in Gz with weights {we }ece
7: return p

Algorithm 3: returns a welfare-optimal priority-p matching.

the set of priority-p matchings. Below, we show how for all the priority vectors of interest,
computing this reduces to an instance of the max-weight matching problem on Gz.

To see this, first note that finding the welfare-optimal Pareto optimal matching directly
reduces to the max-weight matching problem on Gz, where the weight of an edge (a;, h;) is
v;(h;). Therefore, below we show how even the question of computing the welfare-optimal
priority-p matchings for p € PP reduces to the max-weight matching problem on Gz.

Theorem 27. Given an instance T = (N, H,P = (Pi,...,P,)), a vector of priorities
P = (p1,...,pn), where p € P, and v = (vq,...,v,), where v;: H — [0,1], Algorithm 3
returns a welfare-optimal priority-p matching w.r.t. Z.

Proof. Let i be the matching that is returned by Algorithm 3. First, we argue that p is
a priority-p matching w.r.t. Z. To do this, fix a p € P, and let us suppose that p is not
a priority-p matching, but is a max-weight matching in Gz with weights {w,}.ce, where
for e = (a;, hj) and r(e) = rank(a;, h;), we = pree) + vi(h;) (see line 4 in Algorithm 3). Let
i’ be a priority-p matching w.r.t. Z, which by definition means that it is the max-weight
matching in Gz with weights {w] }cce, where w, = p,(). Also, for a matching 1 € Mg,
let W] and W’ [u] denote the sum of the edge weights in p; when using weights {w, }eee
and {w. }cee, respectively.

Next, note that for any matching j; € Mg, W[< Ww]. Additionally, note that, since
p; > n? for all j € [n], W'[i'] = W'[u] > n?. Finally, observe that, Wu] = 3 ., w(e) =
> een Pre) toi(h) < W' +n < W'[p'] < W], where the first inequality follows from the
fact that v;(-) € [0, 1] and the second inequality follows since W’[u/] — W'[u] > n?. However,
note that Wu] < W[y'] is a contradiction since u is the max-weight matching in Gz with

85

weights {we }eee.

Given that y is a priority-p matching, the fact that it is welfare-optimal follows since we
are computing the max-weight matching in Gz and any priority-p matching ' € Mg,. O

4.3 Improving Welfare using Threshold Queries

In this section we look at the main question considered in this chapter, which is broadly:
how can one tmprove social welfare in one-sided matching problems by asking only a small
number of queries regarding cardinal utilities. As mentioned previously, we are interested in
binary threshold queries, Q(a;, hj,tx), which asks an agent q; if a particular object h; is
of value at least t;. Towards this end, we begin by considering adaptive algorithms—i.e.,
algorithms that are allowed to change its queries based on the agents’ responses to its
previous queries—and show how, when considering each of the four notions (i.e., Pareto
optimal, rank-maximal, max-cardinality rank-maximal, and fair matchings) of interest, one
can obtain a (1 + €)-approximation to the optimal welfare among all matchings that satisfy
that notion. Following this, we look at non-adaptive algorithms, which we believe are the
more interesting and practical ones for this setting. In particular, we restrict ourselves to
algorithms that can ask at most one query per (agent, object) pair and show upper and
lower bounds on the approximation achievable. Unless explicitly specified, the results in
this section work with respect to both unit-sum and unit-range valuations.

4.3.1 Adaptive algorithm to achieve (1 + ¢)-approximation

The idea in Algorithm 4 is simple. For a specific choice of ¢, it associates a partition of
objects with respect to every agent, where, for k € [c], an object is in & if agent i’s value
for the object is within the interval By = [ty, tx_1), where t = (2%6)’“, to = 1, and the right
endpoint interval is closed when k = 1. Following this, for every edge e = (a;, h;) in Gz, it
assigns a weight w, = p, + ti, where r = rank(a;, h;), h; € Ei, and t;, is the left endpoint
of the interval By, and computes the max-weight matching on the resulting weighted graph.

lrlog(ngl/e)
log (14€/2)

that uses O(clogn) queries per agent. In particular, this means that one can achieve a
2-approximation using O(log2 n) queries per agent.

Below we show for ¢ = —‘, this results in an (1 + €)-approximation algorithm

Theorem 28. Given an € > 0, an instance T = (N, H,P), and a priority vector p =
(1, .- ypn), Algorithm 4 is an adaptive algorithm that asks O(clogn) queries per agent,

86

Input: an € > 0, an instance Z = (N, H,P), and a priority vector p = (p1,...,pn)

Output: returns a PO matching when p; = 0 for all i € [n] and a priority-p matching when
pebP

Gz = (NUH,E) + graph induced by 7

log(n2-1/e
¢ [12?(1%?2%_‘

t; + (2%_6)1, for i € [c]
for a; € N do
for k € [c] do
ik — {(ai,hj) eé& | Q(ai, hj,tk) =1 and, if k£ > 2, Q(ai, hj,tk_l) = 0}
for e = (a;, hj) € &y, do
r < rank(a;, hj)
value'(e) « tg
We < pr + value'(e)
end for
end for
: end for
: u < max-weight matching in Gz with weights {we }eeg
: if p; = 0 for all 7 € [n] then
w4 with g (from line 14) as the initial endowment, run modified top-trading cycles
(TTC) algorithm by Saban and Sethuraman [SS13, Algorithm 1, Rule 2| and return the
resulting matching
17: end if
18: return p

= e e e e
S A A

Algorithm 4: returns a PO matching that achieves a (1 + €)-approximation to the optimal
social welfare among PO matchings or a priority-p matching that achieves a (1 + ¢)-
approximation to the optimal social welfare among priority-p matchings.

log(n2-1/e)

m-‘ , and returns a

where ¢ = {

i) Pareto optimal matching p that achieves a (14 €)-approzimation to the optimal welfare
amonyg all Pareto optimal matchings when p; = 0 for all i € [n].

it) priority-p matching p that achieves a (1 + €)-approximation to the optimal welfare
among all priority-p matchings when p € P.

Proof. We first argue that Algorithm 4 adaptively asks O(clogn) queries per agent. To
see this, note that for each agent a; and any k € [¢], creating the set & takes O(log|A;|)
queries. This is so because we know a;’s weak order over A;, the set of acceptable objects

87

of a;, and because we are using an adaptive algorithm, we can see the results of one query
before we ask the next. Therefore, we can perform binary search to determine the least
preferred object hj, such that vi(h;,) € [tx, tx-1), where t; = (332)°, to = 1, and the right
endpoint interval is closed when k£ = 1 (note that there could multiple such objects since
we allow ties, but we can still do this since we have the weak order). Additionally, since,
for all k € [c], tx < tg_1, it is easy to see that we can start from k& = 1 and proceed to k = ¢
and form the sets &, = {h € H | h = h;, and, if k > 2,h < hj, ,}. Therefore, since we
create ¢ sets per agent, Algorithm 4 asks O(clogn) queries per agent.

Next, we need to argue that the matching returned is Pareto optimal when p; = 0 for all
i € [n] and is a priority-p matching when p € P. To see this, note that in the former case,
the matching returned (see line 16 in Algorithm 4) is one that is returned by the modified
top-trading cycles (TTC) algorithm by Saban and Sethuraman [SS13, Algorithm 1, Rule
2]. Therefore, we know that it is PO [SS13, Theorem 1]. As for the case when p € P, note
that the matching returned is the max-weight matching in Gz with weights {w, }.ce, where
we = p, + value'(e) (see line 10). Now, since for any e € &, value’(e) € [0, 1], we know from
Theorem 27 that such a matching is a priority-p matching.

Finally, in order to show that the returned matching achieves a (1 4 €)-approximation to
optimal welfare among all Pareto optimal /priority-p matchings, let ©* be the matching that
maximizes the total welfare when true edge-weights (which in turn are the true utilities
of the agents) are known. That is, p* is the max-weight matching in Gz with weights
(w})ees, where, for e = (a;, h;) € €, wi = p, + v;(h;). By Theorem 27 we know that p* is
the welfare-optimal priority-p matching when p € P and it is the welfare optimal Pareto
optimal matching when p; = 0 for all i € [n]. So, now, if y is the matching computed by
Algorithm 4, then we need to show that SW(u*) < (14 ¢€) - SW(p).

To see this, let us partition the edges in p* into sets H and L such that H = {(a;, h;) €
p* | vi(h;) > 55} and L = p* \ H. Next, note that we have chosen the value of ¢ such
that £, > 5. This in turn implies that for any k € [c] and e € &, the value assigned
to e = (a;, h;j) € H in the algorithm (i.e, value’(e) assigned in line 9 in Algorithm 4) is

at least t}ffl -value(e) (and is at most value(e)). So, using this, we have that SW(H) =

>eeg value(e) < 223 value'(e) < 2 - SW(y/), where 4/ is the matching computed in

line 14 and the last inequality follows from the fact that H C £, and p’ is the max-weight
matching in Gz (see line 14).

SW(p*)

W) Note

Finally, in order to get the approximation bound, let us first bound the ratio

38

that since |L| < n and for each e = (a;, h;) € L, v;(h;) < 55, we have,

SW(u) _ SW(H) +SW(L) _
SW(w) — SW()

He . SW() +n-
SW ()

Py (4.2)

Next, note that for the case when p € P, i/ = u1, and since p’ is a priority-p matching, we
have that SW(u') = SW(u) > L, where the inequality follows since in a priority-p matching
at least one of the agents is matched to a rank-1 object (see Claim 23 in Appendix C.1 for
a proof) and the valuations are either unit-sum or unit-range. Therefore, using this along
with (4.2), we have that,

SW(pr) _ 5 - SW() +n-

<l+e
SW(w) — SW(w) B

For the case when p; = 0 for all i € [n], note that x is the matching that is returned by
the modified TTC algorithm by Saban and Sethuraman [SS13, Algorithm 1, Rule 2| on
initial endowments y/. Therefore, since this matching is individually rational and PO [SS13,
Theorems 1, 2|, we have that SW(u) > SW(u'). Hence, using this along with (4.2), we have
that,

SW(p) _ 5 - SW() +n-

22 <l+e
SW(u) — SW(n) -

where the last inequality follows from the fact that SW(u) > %, since in a Pareto optimal
matching at least one of the agents is matched to a rank-1 object (see Claim 23 in
Appendix C.1 for a proof) and the valuations are either unit-sum or unit-range. O]

Remark: As stated previously, an algorithm that produces a PO matching and also
achieves an a-approximation to the optimal welfare among all PO matchings has a distortion
of a, since a welfare-optimal matching is also PO. This in turn implies that, although
the objectives here and in the paper by Amanatidis et al. [Ama-+21| are different, the
distortion guarantees implied by the algorithm above is similar to the one provided by
the A-ThresholdStepFunction algorithm in their paper (which, though, even works for
unrestricted valuations, unlike the case here). Moreover, while the algorithms share some
similarities, we use a weaker query model and, most importantly, for an appropriate choice
of p, our algorithm produces a Pareto optimal or a priority-p matching.

89

4.3.2 Non-adaptive algorithms: asking one query per (agent, ob-
ject) pair

In this section we turn our attention to non-adaptive algorithms, in particular looking at
algorithms that can only ask one query per (agent, object) pair and cannot change these
queries depending on the responses to previous ones. As mentioned in the Introduction, we
believe that, at least in some contexts, this is the more interesting and practical setting to
consider, since such an algorithm does not have to wait for the agents to respond and also
does not require an agent to answer multiple queries with respect to the same object—doing
which would in turn entail that the agent is somewhat sure about their cardinal utilities.

Below, we present two algorithms for when agents have unit-sum valuations, first in the
context of priority-p matchings and second for Pareto optimal matchings. The latter is an
extension of the former and since their proofs are similar, we present only the proof for
Pareto optimal matchings in the main body, relegating the one for priority-p matchings to
Appendix C.2. Informally, the main idea in the algorithm for Pareto optimal matchings
is to first carefully choose a set of values {t;}; € [n] and then ask every agent a; if an
object h; of value at least t,, where r = rank(a;, h;). In particular, we set t; = nl—l/?) and
t; = m, for all i € {2,...,n}. Next, we draw a bipartite graph where there is an
edge between an agent a; and object h;, if the agent answered “Yes” w.r.t. this object; this
edge is assigned a weight ¢,. Following this, we find the max-weight matching in this graph.
Note that not all the agents/objects may have been matched. Therefore, we compute what
we refer to as an auxiliary matching, where the auxiliary matching is a matching that
maximizes the number of agents who are matched with an edge of rank at most | /n/2] in
the case when the max-weight matching in the previous step has no edge of rank-1 (which
happens when every agent responds “NO” to the query w.r.t. their rank-1 object), and is
the matching that maximizes the number of agents who are matched with a rank-1 edge
otherwise. Finally, we combine the max-weight matching computed in the first step with the
auxiliary matching (by adding unmatched pairs from the auxiliary one to the max-weight
one), arbitrarily match any leftover pairs, and run modified TTC algorithm by Saban and
Sethuraman [SS13, Algorithm 1, Rule 2| with the resulting matching as initial endowment.
In the theorem below, we show that this achieves an O(n*?®)-approximation to the optimal
social welfare among PO matchings.

Theorem 29. Given an instance T = (N, H,P = (P1,..., P,)), Algorithm 6 asks one non-
adaptive query per (agent, object) pair and returns a Pareto optimal matching that achieves
an O(n*?®)-approzimation to the optimal welfare among all Pareto optimal matchings for
the case when agents have unit-sum valuations.

90

Input: an instance Z = (N, H,P = (Pi,..., P,)) and priorities p = (p1,...,Pn)
Output: a priority-p matching when p € P
: Gz = (N UH,E) + graph induced by T
t1 nllﬁ X '
t; Y EVE TR foralli € {2,...,n}
for e = (a;,h;) € N x H do
r < rank(a;, hj)
if Q(ai, hj,t,) then
We < pr + 1ty
else
We < Pr
end if
: end for
: u < max-weight matching in Gz, where weights are (we)ceg

: return p

— =
W = O

Algorithm 5: returns a priority-p matching that achieves an O(n?/3)-approximation to
the optimal social welfare among priority-p matchings for the case when the agents have
unit-sum valuations.

Before we prove this, we introduce the following notations and terminologies which will
be useful. Let pu* denote the matching that achieves optimal welfare among all Pareto
optimal matchings when the agents have unit-sum valuations. Let H; denote the set of
agents who are matched to their i-th choice in p* and have value at least t; for their partner
in p*. Similarly, let L; denote the set of agents who are matched to their i-th choice
in p©* and have value less than ¢; for their partner in p*. Additionally, let H = U} | H;,
L = U, L;, and, for some S C N, p§ C u* be the set of edges (a;, h;) such that a; € S
and (a;, hj) € p*. Now, if SW(ug) denotes the sum of values of the edges in pg (calculated
based on the true utilities of the agents), then note that SW(u*) = SW(uj;) + SW(u}) =

E(ai,hj)eu}i] Ul(h]) + Z(ai,h]’)euz U'L(h])
Next, we prove the following lemma.

Lemma 30. Let pprps be the matching that is computed in line 2 in Algorithm 6. Then,
SW(pir) < n?® - SWiparar).-

Proof. Note that pj; C £ and for every e = (ay, hf) € iy, where hﬁ is a /-th choice of
agent a;, the weight t, that is assigned to this edge in Gz is at least # : vi(hﬁ) (and is
at most v;(h')). This is so because t; = =z, t; = m for i > 2, and v;(hf) < §,

91

Input: an instance Z = (N, H,P = (P1,..., Py))
Output: a Pareto optimal matching

1:)y < matching returned by Algorithm 5 on Z and p = (0,...,0)

2t i < oy \ e € parnr | we = 0} > remove edges with weight 0 from 1/, ,,

3: phyas = {(aiy hy) | (@i, hj) € pary and rank(a;, hj) = 1}

4: if |pl;] == 0 then

5: Hhue <— matching in Gz that maximizes the number of agents who are matched with an
edge of rank at most | /n/2|

6: else

T he < matching in Gz where as many agents as possible to a rank-1 edge

8: end if

9 fauz < Maue \ {(a,0) | (a,0) € pl,,, and either a or o is matched in pprps}

10: prest < arbitrarily match the acceptable (agent, object) pairs that are not matched in
sarm Y faus

11: p < with parpmr U flaue U trest @s the initial endowment, run modified top-trading cycles
(TTC) algorithm by Saban and Sethuraman [SS13, Algorithm 1, Rule 2| and return the
resulting matching.

12: return p

Algorithm 6: returns a PO matching achieves an O(n??)-approximation to the optimal
social welfare among PO matchings for the case when the agents have unit-sum valuations.

since the valuations are unit-sum and hﬁ is in the ¢-th choice of agent ¢. Combining these
two observations, we have that SW(u3;) = Z(%hj)e% vi(hj) < n?3 - SW(uaar), where the
last inequality follows by using the fact that sy, (computed in line 2) is the max-weight
matching on the graph Gz, and as discussed above pj; C £ and the edge weights in Gz are
off by a factor of at most n??. O

Equipped with this lemma, we can now prove our theorem.

Proof of Theorem 29. First, note that Algorithm 6 returns a matching p that is Pareto
optimal since it is the matching returned by running modified TTC algorithm by Saban
and Sethuraman [SS13, Algorithm 1, Rule 2| on some initial endowments [SS13, Theorem
1]. Next, let pprpr be the matching computed in line 2 in Algorithm 6, and let pl;,; € parar
be set of edges of rank-1 in ppp,. We will proceed by considering the following two cases

; SW(p") 2/3
and show that in each case e~ € O(n /3.

Case 1: |uj;y,| > 1. For this case, let ul,, be the matching in Gz where as many

92

agents as possible to a rank-1 edge (see line 7 in Algorithm 6) and let figuz = . \
{(a,0) | (a,0) € pl,. and either a or o is matched in ppps}. Below, we will argue that

SW (parar) + SW (ftaus) > max {%, tl}, where X/ is the set of edges of rank-i in !, ,.

2n

Claim 4. If |ph,,,] > 1, then SW(uarar) + SW(ftguz) > max { lX{l,tl}.

Proof. Consider the set of edges in X7, and let X,,, be the edges in X that belong to gy,
(i.e., Xauz = X{ N flgus). By our definition of fi4,,, for each (a;, h;) € X\ Xque, at least
one of a; or h; is matched in fiprps. Therefore,

X\ X
SW(,U/MM) + SW(Maum) Z M : tn + SW(Xaux)

X'\ Xoua 1
Z%‘tn‘i‘p(aux"ﬁ
Sl 1
- 2 n

In the set of inequalities above, the first inequality follows from the fact that there are at
least m unique edges in pyrp and each of them have weight at least ¢,,; the second
inequality follows because each edge in X, is of value at least % (since Xguz = X1 N Loz,
the valuations are unit-sum, and the agents are matched to their first choice in 14, and so

have value at least +).

Additionally, note that since |uh;,,] > 1, SW(uaras) > ¢1. Hence, combining the two
observations above, we have that SW(uarar) + SW (taus) > max{%, t1}. O

Equipped with the claim, next, consider pj and note that,

SW(uy) = SW(pp,) + Y SW(uj,)

=2
S ’Ll‘ . tl + (n — |L1‘) . tQ
<|Xi[-t et (4.3)
where the first inequality uses the facts that, by the definition of L;, every agent in u7,
has value less than ¢; for their partner and that ¢, > t; for i < j and 4,j € [n], and the

final inequality follows since p,, is a matching in Gz where as many agents as possible is
matched to a rank-1 edge.

93

Given the above, if 1/ = pyar U flaus U firest, then we have that,
SW() SWi(uiy) + SW(uy)
SW(u) — SW(parm) + SW(ttaue) + SW (frest)
n?/3. SW(,MMM) + |Xﬂ “t1+n-is
- SW(parnr) + SW(laus)
n?? - SW (uarar) | X7| -t N n -ty
SW (parnr) [Xil/(@2n)
< n?3 42023 4?3, (4.4)

In the set of inequalities above, the first one follows from using Lemma 30 and (4.3); the
second inequality follows from Claim 4; the last inequality follows from our choice of ¢; and
ts.

Case 2: |ul;,;| = 0. For this case, let k = | /n/2] and u,. be the matching in Gz where
as many agents as possible to an edge of rank at most & (see line 5 in Algorithm 6) and let
Pauz = Moy \ {(a,0) | (a,0) € pl,. and either a or o is matched in pprp}. Below, we will
argue that SW(uarar) + SW(ttaus) > %, where X’ = UF_, X! and X/ is the set of edges of
rank-i in g, .

Claim 5. If |;i,,,| = 0, then SW(uarar) + SW(ttaue) > 2

2n

Proof. Since |u};,,| = 0, every agent values their first choice object at a value less than ¢,
(since otherwise |ul,,;| > 1). This implies that, since their valuations are unit-sum, for
j € [k], their value for a rank-j object is at least % (see Claim 21 in Appendix C.1 for a
proof). Next, like in the proof of Claim 4, consider X, = ftauz N X'. Since for every edge
(a;,hj) € X"\ Xquz, at least one of a; or h; is matched in ppa7, and every edge in fupsn
has weight at least ¢,,, we have,

X/ XG,U/SC
SW (ptarar) + SW (paus) > A Koo \2 . tn + SW(Xyuz)
| X"\ Xouel 1
> - 5 tTL X&UCE M
- 2 + | | 2n
!
> @]
- 2n

Given the claim, next, note that,

SW(pp) = 3 SWlui)+ 3 SW(ni,)

i=k+1

94

< (fjm) bt (S |Lz-|) b

i=1 i=k+1

< (Z |X;|> b+ (i |L¢|> “tp1
“t+ (Z |Li |> Tt (4.5)

i=k+1

Equipped with the above, if 1/ = payrar U flauz U frest, then for this case we have that,
SW(p) _ SWi(kgy) +SW (7))
SW(r) SW(kam) + SW(kaus) + SW (4rest)
0% SW (uarar) + [X' - tr + (i 1Lal) - ten
N SW (parar) + SW(Hauz)
n2/3 - SW (puarar) | X' -t n (Zz kit 1L |) glas!
SW(parm) | X[/ (2n) | X[/ (2n)
< n?3 4 20?3 4 8n?/3. (4.6)

In the set of inequalities above, the first one follows from using Lemma 30 and (4.5); the sec-
ond inequality follows Claim 5; the last inequality follows since | X’| > min {k:, Yot |L2|}
(see Claim 24 in Appendix C.1 for a proof).

Finally, combining (4.4) and (4.6), and using the fact that the modified TTC algorithm by
Saban and Sethuraman [SS13, Algorithm 1, Rule 2| is individually rational [SS13, Theorem
2] (which in turn implies SW(p) > SW ('), gives us our theorem. O

Next, we state the following result for priority-p matchings, whose proof, as mentioned
previously, is similar the proof above and hence appears in Appendix C.2.1.

Theorem 31. Given an instance T = (N, H,P = (Py,...,P,)) and a vector of priorities
p=(p1,...,pn), where p € P, Algorithm 5 asks one non-adaptive query per (agent, object)
and returns a priority-p matching that achieves an O(n?/3)-approzimation to the optimal
welfare among all priority-p matchings for the case when agents have unit-sum valuations.

Finally, we also consider the case when agents have unit-range valuations and show how one
can obtain an O(y/n)-approximation to the optimal social welfare among Pareto optimal
and priority-p matchings. Since the algorithms and analyses for these are somewhat similar
to the ones above, we present these results in Appendix C.3.2.1.

95

4.4 Lower Bounds

Here we turn our attention to lower bounds for the case when an algorithm can ask at
most one query per (agent, object) pair—i.e., for the setting considered in Section 4.3.2.
We show that, for the unit-sum and unit-range cases, any deterministic algorithm A that
asks at most one query per (agent, object) pair and produces a Pareto-optimal/rank-
maximal/max-cardinality rank-maximal/fair matching has a worst-case welfare loss of

Q(yn), i.e., LIA) € Q(/n).

Theorem 32. Let X denote one of the properties in the set { Pareto-optimal, rank-mazimal,
maz-cardinality rank-maximal, and fair}. Let A be a non-adaptive deterministic algorithm
that always produces a matching that satisfies property X and asks at most one query
per (agent, object) pair. If there are n agents with unit-sum valuation functions, then

L(A) € Q(/n).

Proof. Let n > 18 and n = 5k +r, where k = L%J and 0 < r < 4. Next, let us construct an
instance Z with the set of agents N, where |[N'| = n and the set of object H, where |H| = n.
We partition the set of agents into sets By, ..., Bxy1 such that | By, 1| = r and |B;| = 5 for
all ¢ € [k]. We will refer to each B;, where i € [k], as a block. Given this, the preferences of
the agents are as defined below, where h; > H \ {h;} implies that all the objects in the set
M\ {h;} are less preferred than h; and are preferred in some arbitrary linear order (which
is the same for all the agents).

Vi € [k], agents in B; have the following preferences : hy > h; 1 = H \ {h1, hi11}
agents in By, 1 have the following preferences : hy = hy, 1 = H \ {h1,hn_1}

Next, since A is a non-adaptive deterministic algorithm that asks at most one query per
(agent, object) pair, we can think of A to consist of two components—an outcome function
f which for an instance Z € I outputs a matching in Mg,, and a |[N| X |H| matrix T,
where T;; € [0, 1] represents the threshold asked to agent a; w.r.t. the object h such that
rank(a;, h) = j (i.e., if A asks the query Q(a;, hl,t), where rank(a;, hl) = j, then Tj; = t).
Note that, for all i € [n], depending on the values of T;; and T}, we can classify a; as
belonging to one of the following four types.

1 1
Type-1:T;; € [0,] Type-2:T; € [5, 1], Tj» € [0, —]

vn

1 1
), Tiz € (—=,1] Type-d: Ty € [—=,1], Tiz € (—=, 1]

Vi 7/ n

N

)7 EQ S [07
1

-4

Type-3 : T}y € [0, —

96

Also, note that, for ¢ € [k], since each block B; has 5 agents, at least two of them will
be classified as the same type (where types are as defined above). For each block B; and
J € [4], we say that B; is a Type-j block if there are at least two agents such that both are
of Type-j and for every 1 < k < j, there is at most one agent of Type-k. We use n; to
denote the number of Type-j blocks, and hence have that > e i = k. Additionally, for a
Type-j block B;, we let ag;—1 and ag; to denote the two agents who are of Type-j in B; (if
there are more than two such agents, consider any two of them and denote them as as; 1
and ag;) and say that ag;_1 and ag; are the special agents in B;.

As a final step before proving the theorem, we need to define a set of valuation profiles that
are consistent with the preferences mentioned above. Our objective will be to show that
there is at least one valuation profile in this set which achieves the desired bound on £(.A).
So, to do this, let us first define the following unit-sum utility functions,*

ug = (2 +€/2,¢2 ¢ — o€, ..., C0 — coe)
up = (1 —=¢y,6,0,...,0) us = (1/2+¢,1/2 —€,0,...,0)
ug=(1/2 —c1 —€,¢1+€,¢o,...,Co) ug=(1/4+¢€1/4—¢€c9,...,09)
us = (1 —=c%,¢2,0...,0) ug=(1l—c1+¢c —¢€0,...,0)
ur = (c1 — ¢, ¢, 3, .., C3) ug = (3c1/4,c1/4,¢c3,...,¢c3),
where u; = (z1,%2,%3...,23) implies that they value their most preferred object at z,

second most preferred object at x5, and every other object at x3, € > 0 is a very small real
number (e < 1/n?* will suffice), ¢; = \/iﬁ, cy = m, and ¢ = ==%. Given this, consider
the following set of valuation profiles Vz, all of which are consistent with the preferences in

7 and where each of them is defined the following way.

i) for i € [k], j € [4], and special agents ag;_1 and ay; in B;, where B; is a Type-j block,
let one of the agents have utility function uy;_; and the other have uy;.

ii) let the agents in N\ {ay, ..., as} have utility function wug.

Note that the only difference between valuation profiles in V7 is w.r.t. the utility functions
of the special agents. Additionally, note that for each v € V7 and for each Type-j block
B, the utility functions, us;_; and uy;, of the special agents have been defined in such a
way that they will respond identically to the queries in 7. This can be seen by considering
Table 4.3 which shows how for all j € [4], the special agents of a Type-j block will respond

4Note that in each of these valuations, objects 3 to n have been given the same value. This is purely
for ease of exposition. To ensure that no two objects have the same value, we can just perturb the values
slightly.

97

Response to Q(-,-,T;1) | Response to Q(, -, Tj2)

special ag'ents in a Type-1 block Vos Yes
(assigned w; and ug)

special ag.ents in a Type-2 block No Ves
(assigned ugz and uy)

special ag.ents in a Type-3 block Yes No
(assigned uz and ug)

special ag.ents in a Type-4 block No No
(assigned w7 and ug)

Table 4.3: Responses of the special agents in a Type-j block to queries Q(:,-,T;;) or
Q('a B ﬂ)

to queries Q(-,-,T;1) or Q(-,-,T;2), and by observing that utility functions us;_; and uy;
have the same values for all objects except the two most preferred ones.

Now, equipped with all of the above, let us first argue about the welfare-optimal matching
that satisfies property X. To do this, consider any v € V7 and consider the matching p*
of size n where in each Type-j block B;, the special agent with utility function us; gets
hiy1 (so they all get their second most preferred object), if |Bgi1| > 0, then one of the
agents in By, gets h,_1, and the rest of the objects are allocated arbitrarily. From the way
the preferences of the agents are defined, it is easy to verify that such a matching satisfies
property X. Also, if Z=n—-2)_ jep) M then from the definition of utility functions us,
for all j € [4], and since the utility of matching h; and all other objects to some agent is at
least (i + ¢/2) and (c? — cq¢), respectively, we have that,

SW(u*) > (3 +¢/2) + (1/2 — e)ny + (1/4 — €)ng + (c1 — €)nsg + ﬂm + (2 —cy6)Z

4
(4.7)
c
> (2 +€/2) + (ny +ny +ns + m)zl + (P —26)Z
vn

> V7 4.8
= 28" (4.8)
where the last inequality follows since n = 5k +r, where 0 < r < 4, implies k = > e i =

|n/5], and n > 18.

Finally, consider A and let i be the matching returned by A for the instance Z when agents
are asked queries in T'. Next, we adversarially pick a v € Vr the following way:

i) for ¢ € [k], if B; is a Type-j block for some j € [4] and if p(ag;—1) = hit1, then

98

consider valuation profile in Vz where ag;_; has utility function ug;_q

ii) for i € [k], if B; is a Type-j block for some j € [4] and if p(as;) = hiy1, then consider
valuation profile in V7 where ay; has utility function ug;_;
Given such a v € Vz, we can now calculate SW(u). And for this, observe that from the

definition of utility functions us;_; for j € [4], and since the utility of matching h; and all
other objects to some agent is at most 1 and ¢?, respectively, we have that,

SW(p) <14cing + (e1 +e)ng +cng +cing + &7
8

<24 —

<24

< %SW(M*) + %SW(M*). (using (4.7) and (4.8)) (4.9)

Rearranging (4.9) we have that SSV\\;V%)) > ‘é—f, or in other words that, £(A) € Q(y/n). O

1
(5711 + (1/4 —€)ny + %ng + (eq — 6)714) (since Z <n)

Finally, we also consider the unit-range case and show that any deterministic algorithm
that asks at most one query per (agent, object) pair and produces a Pareto-optimal /rank-
maximal /max-cardinality rank-maximal /fair matching has £(A) € Q(y/n). The proof of
this appears in C.3.2.2 and is almost identical to the proof of Theorem 32, with the main
difference being in the way utility functions wug, uy, ..., us in the proof are defined.

4.5 Discussion

The focus of this chapter was on one-sided matching problems. While the usual assumption
in such problems is that agents only submit ordinal preferences, it is not hard to imagine
scenarios where agents might have some cardinal preferences which, for instance, indicate
that they like object h; much more than object hy. Although ignoring this information
can lead to a lose in welfare, asking the agents for their cardinal utilities is not ideal, since
determining their exact utilities can be a cognitively-involved task. Therefore, in this
chapter we investigated the benefit of eliciting a small amount of extra information about
agents’ cardinal utilities. In particular, we designed algorithms that used simple threshold
queries and returned a matching satisfying some desirable matching property, while also
achieving a good approximation to the optimal welfare among all matchings satisfying
that property. Overall, our results show how even asking agents for just one bit of extra
information per object can improve welfare.

99

There are a number of future research directions that this work can take. First, the model
in this chapter assumes that each agent needs to be matched to at most one object and that
each object can be matched to at most one agent. However, there are several situations
where more than one agent can be matched to the same object, like when assigning students
to courses or schools. While our results do not directly hold when each object h; has a
capacity constraint ¢;, only minimal modifications are needed. In particular, every time we
construct a graph in any of the algorithms, all that needs to be done is to create c¢; copies for
the node that corresponds to object h;. Other open algorithmic problems include addressing
the gap between the upper and lower bounds for the non-adaptive algorithms, expanding
the set of properties of interest to include, for example, popular matchings [Abr+07], or
asking similar questions in the context of two-sided matching problems.

More broadly, a particularly interesting direction is to better understand the implications
of deploying such an approach in practice. As mentioned in the introduction, we believe
that in many settings non-adaptive algorithms that only ask the agents for a few number of
queries with respect to an object might be the most practical approach to pursue, since it
involves minimal communication overhead. Moreover, deploying something like that seems
easier since the only change that needs to be made to the existing system which asks for
ordinal preferences is to add checkboxes with respect to an object and the corresponding
threshold queries. Nevertheless, there are still challenges to make this truly useful. A
careful reader would have noticed that the thresholds used in our algorithms are very
specific values (like 1/n'/3), which may not be easy to answer. While one potential way to
mitigate some of this difficulty is by multiplying all the threshold values by a large enough
constant so as to make them easier to comprehend, it’s not clear if that would be enough.
Therefore, it might be useful to have studies to better understand the kinds of queries that
are easier to answer and the types of interface-design that can best support queries, as well
as better understand what matching properties are deemed to be most important by users
and designers of systems.

100

Part 11

Making Decisions with Inaccurate
Information

101

Chapter 5

Algorithmic Stability in Fair Allocation
of Indivisible Goods

5.1 Introduction

Until now all the chapters in this thesis dealt with situations where agents submit incomplete
preferences. However, there are many scenarios where it is assumed, and in fact expected,
that the agents provide complete preferences. For example, the assumption that agents
have complete cardinal preferences is crucial in the rent-division setting [Gal+17] and is
typical in the vast literature on fair allocation of both divisible [BT96b] and indivisible
goods [Lip+04|. While one could argue that assuming cardinal preferences is reasonable
in such contexts, there is still the question on how to deal with agents who may not be
completely aware of their preferences. In this chapter we deal with this broad question.
Informally, we look at how to account for agents who, when asked to provide cardinal
preferences, and owing to the fact that they are not precisely aware of their preferences,
may report their preferences inaccurately.

We study this question in the context of fair allocation of indivisible goods where there are
m indivisible goods that need to be fairly (for some notion of fairness) divided amongst
n > 2 agents. Each agent is assumed to have a valuation function which assigns a value for
each good and typically it is assumed that the valuation functions are additive—meaning
that the value of a set of goods is the sum of values of the individual goods in the set. A
popular algorithm for this problem is the maximum Nash welfare (MNW) solution which
computes an allocation that is Pareto optimal (PO) and satisfies a fairness notion called

102

A |B A |B
g1 104 | 162 g1 105 | 162
g2 273 | 250 g2 271|250
gs 186 | 240 g3 186 | 240
gs 437 | 348 gs 438 | 348
(5.1a) Original instance (5.1b) Instance where agent A makes minor
mistakes

EF1 |Car+16|. Informally, in an allocation that satisfies EF1 an agent i does not envy agent
j after she removes some good from j’s bundle, whereas Pareto optimality of an allocation
implies that there is no other allocation where every agent receives at least as much utility
and at least one of the agents strictly more. Given our current state of knowledge on fair
and efficient allocations, the MNW solution essentially provides the best-known guarantees.
However, as we will soon see, there is at least one aspect with respect to which it is lacking.
The issue we will discuss is not specific to MNW but is something that can be raised
with respect to different algorithms that assume access to cardinal preferences in different
settings. Nevertheless, we use MNW here since our motivation to look at this issue stemmed
from observing examples on Spliddit (www.spliddit.org), a popular fair division website
which uses the MNW solution [GP15].

To illustrate our concern, consider an example with two agents (A and B) and four goods
(g1,---,94). As mentioned above, the agents have additive valuations and their values for
the goods are in Table 5.1a. Spliddit uses the MNW solution to compute an EF1 and PO
allocation for this instance, and it returns one where agent A receives {¢2, g4} and agent B
receives {g1,93}. What if, however, agent A made a minor ‘mistake’ while reporting the
values and instead reported the values in Table 5.1b? Note that the two valuations are
almost identical, with the value of each good being off by at most 2. Therefore, intuitively,
it looks like we would, ideally, like to have similar outputs—and more so since the allocation
for the original instance satisfies EF1 and PO even with respect to this new instance.
However, does the MNW solution do this? No, and in fact the allocation returned in this
case is one where agent A gets g4 alone and agent B gets the rest. This in turn implies
that agent A is losing roughly 38% of their utility for the ‘mistake’, which seems highly
undesirable.

The example described above is certainly not one-off, and in fact we will show later how
there are far worse examples for different fair division algorithms. More broadly, we believe
that this is an issue that can arise in many problems where the inputs are assumed to be
cardinal values. After all, it is not hard to imagine scenarios where many of us may find it

103

www.spliddit.org

hard to convert our preferences to precise numerical values. Now, of course, it is easy to
see that if we insist on resolving this issue completely—meaning, if we insist that the agent
making the ‘mistake’ should not experience any change in their outcome—then it cannot
be done in any interesting way as long as we allow the ‘mistakes’ to be arbitrary and also
insist that the algorithm be deterministic.! However, it is possible to impose some structure
on the ‘mistakes’ made by agents. For example, in many settings, it might be reasonable to
assume that agents are able to, at a minimum, maintain the underlying ordinal structure
of their preferences. That is, if an agent considers good g to be the r-th highest valued
good according to their true preference, then this information is also maintained in the
‘mistake’. Note that this is indeed the case in the example above, and so, more broadly, this
is the setting we consider. Our goal in this chapter is to try and address the issue that we
observe in the example, and intuitively we want to design algorithms where an agent does
not experience a large change in their utility as long as their report is only off by a little.

Before we make this more concrete, a reader who is familiar with the algorithmic game
theory (AGT) literature might have the following question: “Why not just consider ordinal
algorithms?” After all, these algorithms will have the property mentioned above when the
underlying ordinal information is maintained, and moreover there is a body of literature
that focuses on designing algorithms that only use ordinal information and still provide good
guarantees with respect to the underlying cardinal values (e.g., see [Bou+15; AS16; AZ17;
GKM17; AA18|). Additionally, and more specifically in the context of fair allocations, there
is also a line of work that considers ordinal algorithms [BEL10; BKK14; Azi+15; SAH17].
While this is certainly a reasonable approach, there are a few reasons why this is inadequate:
i) Constraining algorithms to use only ordinal information might be too restrictive. In fact,
this is indeed the case here since we show that there are no ordinal algorithms that are
EF1 and even approximately PO. Additionally, assuming that the agents only have ordinal
preferences might be too pessimistic in certain situations. i) There are systems like Spliddit
that are used in practice and which explicitly elicit cardinal preferences, and so we believe
that the approach here will be useful in such settings.

Given this, we believe that there is need for a new notion to address this issue. We term this
stability, and informally our notion of stability captures the idea that the utility experienced
by an agent should not change much as long as they make “small” or “innocuous” mistakes
when reporting their preferences.? Although the general idea of algorithmic stability is
certainly not new (see Section 5.3 for a discussion), to best of our knowledge, the notion

! Although there is work on randomized fair allocations (e.g., [BM01; Bud+13]), as pointed out by
Caragiannis et al. [Car+16], randomization is not appropriate for many practical fair division settings
where the outcomes are just used once.

104

of stability we introduce here (formally defined in Section 5.2.1) has not been previously
considered. Therefore, we introduce this notion in the context of problems where cardinal
preferences are elicited, and explicitly advocate for it to be considered during algorithm or
mechanism design. This in turn constitutes what we consider as the main contribution of
this chapter. We believe that if the algorithms for fair division—and in fact any problem
where cardinal preferences are elicited—are to be truly useful in practice they need to have
some guarantees on stability, and so towards this end we consider the problem of designing
stable algorithms in the context of fair allocation of indivisible goods among two agents.

The rest of this chapter is organized as follows. We begin by formally defining the notion
of stability and show how one cannot hope for stable algorithms that are EF1 and even
approximately PO. As a result, we propose two relaxations, namely, approximate-stability
and weak-approximate-stability, and show how existing algorithms that are fair and efficient
perform poorly even in terms of these relaxations. This implies that one has to design new
algorithms, and towards this end we present a simple, albeit exponential, algorithm for two
agents that is approximately-stable and that guarantees pairwise maximin share (PMMS)
and PO allocation; the algorithm is based on a general characterization result for PMMS
allocations which we believe might be of independent interest. Finally, we show how a small
change to the existing two-agent fair division algorithms can get us weak-approximate-
stability along with the properties that these algorithms otherwise satisfy.

5.2 Preliminaries

Let [n] = {1,...,n} denote the set of agents and G = {g1,...,9mn} denote the set of
indivisible goods that needs to divided among these agents. Throughout, we assume that
every agent i € [n] has an additive valuation function v; : 29 — Z>0,® where V denotes the
set of all additive valuation functions, v;(()) = 0, and additivity implies that for a S C G
(which we often refer to as a bundle), v;(S) = >_ g vi({g}). For ease of notation, we often

2In the AGT literature, the term stability is usually used in the context of stable algorithms in two-sided
matching [GS62]. In fact, this is also the case in Chapter 2 where we talk about stability in two-sided
matching. Additionally, the same term is used in many different contexts in the computer science literature
broadly (e.g., in learning theory, or when talking about, say, stable sorting algorithms). Our choice of the
term stability here stems from the usage of this term in learning theory (see Section 5.3 for an extended
discussion) and therefore should not be confused with the notion of stability in two-sided matching.

3We assume valuations are integers to model practical deployment of fair division algorithms (e.g.,
adjusted winner protocol, Spliddit). All the results hold even if we assume that the valuations are
non-negative real numbers.

105

omit {g} and instead just write it as v;(g). We also assume throughout that Vi € [n],
v;(G) =T for some T € Z*, and that Vg € G, v;(g) > 0. Although the assumption that
agents have positive value for a good may not be valid in certain situations, in Section 5.2.2
we argue why this is essential in order to obtain anything interesting in context of our
problem. Finally, for S C G and k € [n], we use II;(S) to denote the set of ordered
partitions of S into k bundles, and for an allocation A € I1,,(G), where A = (A4y,..., A,),
use A; to denote the bundle allocated to agent 1.

We are interested in deterministic algorithms M : V" — II,(G) that produce fair and
efficient (i.e., Pareto optimal) allocations. For i € [n] and a profile of valuation functions
(vi,v—;) € V™, we use v;(M(v;,v_;)) to denote the utility that 7 obtains from the allocation
returned by M. Pareto optimality and the fairness notions considered are defined below.

Definition 14 (f-Pareto optimality (5-PO)). Given a 8 > 1, an allocation A € I1,,(G) is
[-Pareto optimal if

VA" € IL,(G) : (3i € [n],v;(4]) > B-vi(A)) = (3 € [n],v;(A4]) <v;(A;)).

In words, an allocation is f-Pareto-optimal if no agent can be made strictly better-off by
a factor of § without making another agent strictly worse-off; Pareto optimality refers to
the special case when 3 = 1. For allocations A, A’, we say that A’ S-Pareto dominates A if
every agent receives at least as much utility in A’ as in A and at least one agent is strictly
better-off by a factor of 8 in A’.

We consider several notions of fairness, namely, pairwise maximin share (PMMS), envy-
freeness up to least positively valued good (EFX), and envy-freeness up to one good (EF1).
Among these, the main notion we talk about here (and design algorithms for) is PMMS,
which is the strongest and which implies the other two notions. Informally, an allocation A
is said to be a PMMS allocation if every agent 7 is guaranteed to get a bundle A; that she
values more than the bundle she receives when she plays cut-choose with any other agent j
(i.e., she partitions the combined bundle of her allocation and the allocation A; of j and
receives the one she values less).

Definition 15 (pairwise maximin share (PMMS)). An allocation A € I1,,(G) is a pairwise
maximin share (PMMS) allocation if

Vi cui(A > in{ v , _
Vi,Vj € [n] @ vi(4;) > Beﬂrﬁii(uAj)mln{vl(Bl)7UZ(Bz)}

Next, we define EFX and EF1, which as mentioned above are weaker than PMMS.

106

Definition 16 (envy free up to any positively valued good (EFX)). An allocation A € I1,,(G)
is envy-free up to any positively valued good (EFX) if

Vi,Vj € [n],Vg € A; with v;(g) > 0: v;(4;) > vi(A4; \ {g}).

In words, an allocation is said to be EFX if agent ¢ is no longer envious after removing any
positively valued good from agent j’s bundle.

Definition 17 (envy free up to one good (EF1)). An allocation A € I1,,(G) is envy-free up
to one good (EF1) if

Vi,Vj € [n],3g € A; : v;i(A:) > vi(A;\ {g}).

In words, an allocation is said to be EF1 if agent 7 is no longer envious after removing some
good from agent j’s bundle.

In addition to the requirement that the algorithms be fair and efficient, we would also
ideally like it to be stable. We define the notion of stability (and its relaxations) in the
next section.

5.2.1 Stability

At a high-level, our notion of stability captures the idea that an agent should not experience
a large change in utility as long as they make “small” or “innocuous” mistakes while
reporting their preferences. Naturally, a more formal definition requires us to first define
what constitutes a ‘mistake’ and what we mean by “small” or “innocuous” mistakes in the
context of fair division. So, below, for an i € [n], v; € V, and o > 0, we define what we refer
to as a-neighbours of v;. According to this definition, the closer « is to zero, the “smaller’
is the ‘mistake’; since smaller values of « indicate that agent i’s report v} (which in turn is
the ‘mistake’) is closer to their true valuation function v;.

9

Definition 18 (a-neighbours of v; (a-N(v;))). Fori € [n|, T € Z*, a > 0, and v; € V,
define a-N(v;), the set of a-neighbouring valuations of v;, to be the set of all v} such that

hd deg Ul(.Q) =T (i.e., Uz(g) = U;(g)),

e Vg,Vg € G, v(g) > v(g) & V'(g9) > v (¢) (i.e., the ordinal information over the
singletons is maintained), and

107

o [[vi —villy = Xyeg v'(9) —v(g)| <

Throughout, we often refer to the valuation function v; of agent i as its true valuation
function or true report and, for some o > 0, v, € a-N(v;) as its mistake or misreport. Note
that although true valuation function, true report, and misreport are terms one often finds
in the mechanism design literature which considers strategic agents, we emphasize that here
we are not talking about strategic agents, but about agents who are just unsophisticated in
the sense that they are unable to accurately convert their preferences into cardinal values.
Also, although we write o > 0, it should be understood that in the context of our results
here, since the valuation functions of the agents are integral, the only valid values of « are
when it is an integer. We use this notation for ease of exposition and because all our results
hold even if we instead use real-valued valuations.

Now that we know what constitutes a mistake, we can define our notion of stability.

Definition 19 (a-stable algorithm). For o > 0, an algorithm M is said to be a-stable if
Vi € [n], Vv;,Yo_;, and Yo, € a-N(v;),

v; (M (v, v-4)) = v; (M(v],v_y)) . (5.1)

In words, for an a > 0, an algorithm is said to be a-stable if for every agent i € [n] with
valuation function v; and all possible reports of the other agents, the utility agent ¢ obtains
is the same when reporting v; and v..Given the definition above, we have the following for
what it means for an algorithm to be stable.

Definition 20 (stable algorithm). An algorithm M is stable if it is a-stable for all o > 0.
Although the “for all” in the definition above might seem like a strong requirement at first
glance, it is not, for one can easily show that the following observation holds.

Observation 1. An algorithm M is stable if and only if there exists an a > 0 such that
M is a-stable.

Proof. The forward part (i.e., the ‘if’ part) is obvious since by definition an algorithm is
stable if it is a-stable for all a > 0. To see the ‘only if’ part, let us assume that M is
a-stable for some a > 0. Next, for an arbitrary o’ # «, let us consider an arbitrary agent

4We present our results using the L;-norm, although qualitatively they do not change if we use, say,
the L,.-norm.

108

i1 € [n], an arbitrary v; , an arbitrary v;, € o/-N(v;,), and arbitrary reports of the other
agents denoted by v_;, .

First, note that for any o/ < «, we have that
v, € o/-N(v;,) = v}, € a-N(vy,),

which in turn implies that M is o/-stable since it is a-stable.

Next, let us consider an o/ > a. Now, observe that we can construct a (finite) series of
valuations functions v;,, ..., v;,, where for all j € [n], v;;,, € a-N(v;;) and where v;,,, =], .
This along with the fact that M is a-stable implies that, for all j € [n],

Uiy (M (Uij7 U—h)) = Uiy (M<Uij+17 U—i1>>‘
So, using the equalities above, we have,
Uiy (M(Uil) v—l&)) = Vs, (M (vin+1) U—Z&)) = Vs, (M(Ul‘ U—l&))’

thus proving that M is o’-stable.]

It is important to note that the definition for an a-stable algorithm is only saying that
the utility agent ¢ obtains (and not the allocation itself) when moving from v; to v is
the same. Additionally, although the notion of stability in general may look too strong,
it is important to note that there are several algorithms (e.g., the well-known EF1 draft
mechanism |[Car-+16]) that satisfy this definition. In particular, one can immediately see
from the definition of stability that every ordinal fair division algorithm—i.e., an algorithm
that produces the same output for input profiles (vy,...,v,) and (v},...,v)) as long as
Vg,9' € G,vi(g) = vi(g') & vig) = vi(g')—is stable.

However, in general, and as we will see in Section 5.4.2; the equality in (5.1) can be too
strong a requirement. Therefore, in the next section we propose two relaxations to the
strong requirement of stability.

5.2.1.1 Approximate notions of stability

We first introduce the weaker relaxation which we refer to as weak-approximate-stability.
Informally, weak-approximate-stability basically says that the utility that an agent experi-
ences as a result of reporting a neighbouring instance is not too far away from the what
would have been achieved if the reports were exact.

109

Definition 21 ((e, a)-weakly-approximately-stable algorithm). For an o > 0 and € > 1,
an algorithm M is said to be (e, a)-weakly-stable if Vi € [n], Vv;, Vv_;, and Vv, € a-N(v;),

< e (5.2)

oA |

Although the definition above might seem like a natural relaxation of the notion of stability,
as it will become clear soon, it is a bit weak. Therefore, below we introduce the stronger
notion which we refer to as approximate-stability. However, before this, we introduce the
following, which, for a given valuation function v, defines the set, equiv(v), of valuation
functions v such that the ordinal information over the bundles is the same in both v and v'.

Definition 22 (equiv(v)). For a valuation function v : 29 — Z, equiv(v) refers to the
set of all valuation functions v’ such that for all Sy,.5, C G,

v(S1) > v(Sy) & v'(S1) > v'(S2).

In words, equiv(v) refers to set all of valuation functions v’ such that v and v’ induce the
same weak order over the set of all bundles (i.e., over the set 29). Throughout, for an i € [n],
we say that two instances (or profiles) (v;,v_;) and (v}, v_;) are equivalent if v} € equiv(v;).
Also, we say that v; and v} are ordinally equivalent if v} € equiv(v;).

Equipped with this notion, we can now define approximate-stability. Informally, an algorithm
is approximately-stable if it is weakly-approximately-stable and if with respect to every
instance that is equivalent to the true reports, it is stable.

Definition 23 ((¢, «)-approximately-stable algorithm). For an @ > 0 and ¢ > 1, an
algorithm M is said to be (€, a)-approximately-stable if Vi € [n], Vv;, Yv_;,

o Vv € equiv(v;), v; (M(v;,v_;)) = v; (M(v],v_;)), and

o M is (e,)-weakly-approximately-stable.
Note that when e = 1 the definitions for both the relaxations (i.e., weak-approximate-stability
and approximate-stability) collapse to the one for a-stable algorithms. Also, throughout, we

say that an algorithm is e-approximately-stable for o < K if it is (€, «)-approximately-stable
for all @ € (0, K| (similarly for e-weakly-stable).

Although the definition of approximate-stability might be seem a bit contrived at first
glance, it is important to note that this is not the case. The requirement that the algorithm

110

be stable on equivalent instances is natural because of the following observation which states
that with respect to all the notions that we talk about here any algorithm that satisfies
such a notion can always output the same allocation for two instances that are equivalent.’

Observation 2. Let P be a property that is one of EF1, EFX, PMMS, or PO. For all
i € [n], if an allocation (A, ..., A,) satisfies property P with respect to the profile (v;,v_;),
then (Ai,..., A,) also satisfies property P with respect to the profile (v},v_;), where
vl € equiv(v;).

Proof. Consider an arbitrary agent ¢ € [n], and recall from Definition 22 that for any
v € equiv(v;), and for any two sets S1,S2 C G, v;(S1) > vi(S2) if and only v;(S1) > v;(S2).
Given this, the observation follows by using the definitions of the stated properties. O

5.2.2 Some Q & A on assumptions and definitions

Why the assumption of positive values for the goods? To see why we make this
assumption, consider the fair division instance in Table 5.2a. Next, consider an arbitrary
algorithm M that is EF1 and PO, and let us assume w.l.o.g. that the allocation returned
by the algorithm is ({g2}, {¢91}). Now, let us consider the instance in Table 5.2b. Note that
since M returns an allocation that is PO and EF1, therefore the output with respect to
the instance in Table 5.2b has to be either ({g1},{g2}) or (0,{g1, 92}).

A | B Al B
g T-1]|T-1 g T | T-1
g2 1 1 g 0 1
(5.2a) Original instance (5.2b) Instance where agent A makes a mistake

Given this, consider a scenario where the valuation function mentioned in Table 5.2a is
the true valuation (v1) of agent A. When reporting correctly, she receives the good gs.
Table 5.2b shows agent A’s misreport (v}), where @ = 2 and in which case she receives the
good g; or none of the goods. Therefore, now, for any algorithm that is EF1 and PO, we

either have % = %, or 511((9@2)) = 0, and both of these are not informative or useful.

Is there any direct connection by the notion of stability and strategyproofness?
At first glance, the definition of stable algorithms (or its relaxations defined in Section 5.2.1.1)

5Note that Observation 2 is only valid for the exact versions of these notions and not for their
approximate counterparts.

111

might seem very similar to the definition for (approximately) strategyproof algorithms (i.e.,
algorithms where truthful reporting is an (approximately) weakly-dominant strategy for all
the agents). Although there is indeed some similarity, it is important to note that these
are different notions and neither does one imply the other. For instance, there is a stable
algorithm that is EF1 (one can easily see that the well-known EF1 draft algorithm [Car+16,
Sec. 3] is stable), but there is no strategyproof algorithm that is EF1 [Ama+17, App. 4.6].

5.3 Related Work

Now that we have defined our notion, we can better discuss related work. There are several
lines of research that are related to the topic of this chapter. Some of the connections we
discuss are in very different contexts and are by themselves very active areas of research.
In such cases we only provide some pointers to the relevant literature.

Connections to algorithmic stability, differential privacy, and algorithmic fair-
ness. Algorithmic stability captures the idea of stability by employing the principle that
the output of an algorithm should not “change much” when a “small change” is made to
the input. To the best of our knowledge, notions of stability have not been considered in
the computational social choice/algorithmic game theory literature. However, the compu-
tational learning theory literature has considered various notions of stability and has, for
instance, used them to draw connections between the stability of a learning algorithm and
its ability to generalize (e.g., [BE02; Sha+10]). Although the notion of stability here is
based on the same principle, it is defined differently from the ones in this literature. Here
we are concerned about the change in utility than an agent experiences when she perturbs
her input and deem an algorithm to be approximately-stable if this change is small.

Algorithmic stability can in turn be connected to differential privacy [Dwo+06; Dwo06|.
Informally, differential privacy (DP) requires that the probability of an outcome does not
“change much” on “small changes” to the input. Therefore, essentially, DP can be considered
as a notion of algorithmic stability, albeit a very strong one as compared to the ones studied
in the learning theory literature (see the discussion in [Dwo+15, Sec. 1.4]) and the one we
consider. In particular, if we were considering randomized algorithms, it is indeed the case
that an e-differentially private algorithm is exp(e€)-stable, just like how an e-differentially
private algorithm is a (exp(e) — 1)-dominant strategy mechanism [MT07|. Nevertheless, we
believe that the notion we introduce here is independently useful, and is different from DP
in a few ways. First, the motivation is completely different. We believe that our notion may
be important even in situations where privacy is not a concern. Second, in this chapter

112

we are only concerned with deterministic algorithms and one can easily see that DP is
too strong a notion for this case as there are no deterministic and differentially private
algorithms that have a range of at least two.

Finally, the literature on algorithmic (individual-based) fairness captures the idea of fairness
by employing the principle that “similar agents” should be “treated similarly” [Dwo-+12].
Although this notion is employed in contexts where one is talking about two different
individuals, note that one way to think of our stability requirement is to think of it as a
fairness requirement where two agents are considered similar if and only if they have similar
inputs (i.e., say, if one’s input is a perturbation of the other’s). Therefore, thinking this
way, algorithmic fairness can be considered as a generalization of stability, and just like DP
it is much stronger and only applicable in randomized settings. In fact, algorithmic fairness
can be seen as a generalization of DP (see the discussion in [Dwo+12, Sec. 2.3|) and so our
argument above as to why our notion is useful is relevant even in this case.

Connections to robust algorithm and mechanism design. Informally, an algorithm
is said to be robust if it “performs-well” even under “slightly different” inputs or if the
underlying model is different from the one the designer has access to. This notion has
received considerable amount of attention in the algorithmic game theory and social choice
literature. For instance—and although this line of work does not explicitly term their
algorithms as “(approximately) robust™—the flurry of work that takes the implicit utilitarian
view considers scenarios where the agents have underlying cardinal preferences but only
provide ordinal preferences to the designer. The goal of the designer in these settings is to
then use these ordinal preferences in order obtain an algorithm or mechanism that “performs
well” (in the approximation sense, with respect to some objective function) with respect
to all the possible underlying cardinal preferences (e.g., [Bou+15; AS16; AZ17; GKM17;
AA18]). Additionally, and more explicitly, robust algorithm design has been considered,
for instance, in the context of voting (e.g., [SYE13; Bre+17]) and the stable marriage
problem [ML18; MV18; CSS19], and robust mechanism design has been considered in the
context of auctions [CMA12; CMA14; CMA15] and facility location [ML19|. Although,
intuitively, the concepts of robustness and stability might seem quite similar, it is important
to note that they are different. Stability requires that the outcome of an algorithm does
not “change much” if one of the agents slightly modifies its input. Therefore, the emphasis
here is to make sure that the outcomes are not very different as long as there is a small
change to the input associated with one of the agents. Robustness, on the other hand,
requires the outcome of an algorithm to remain “good” (in the approximation sense) even if
the underlying inputs are different from what the algorithm had access to. Therefore, in
this case the emphasis is on making sure that the same output (i.e., one that is computed
with the input the algorithm has access to) is not-too-bad with respect to a set of possible

113

underlying true inputs (but ones the algorithm does not have access to). More broadly, one
can think of robustness as a feature that a designer aspires to to ensure that the outcome
of their algorithm is not-too-bad even if the model assumed, or the input they have access
to, is slightly inaccurate, whereas stability in the context that we use here is more of a
feature that is in service of unsophisticated agents who are prone to making mistakes when
converting their preferences to cardinal values.

Related work on fair division of indivisible goods. The problem of fairly allocating
indivisible goods has received considerable attention, with several works proposing different
notions of fairness [Lip+04; Budll; Car+16] and computing allocations that satisfy these
notions, sometimes along with some efficiency requirements [Car-+16; BKV18; PRI1S;
CGH19]. Our focus in this chapter is also on the problem of computing fair and efficient
allocations, but in contrast to previous work our focus is on coming up with algorithms
that are also (approximately) stable. While many of these papers address the general case
of n > 2 agents, the results here are restricted to the case of two agents.

Although a restricted case, the two agent case is an important one and has been explicitly
considered in several previous works [BKK12; Ram13; BKK14; VK14; Azi15; PR18|. Among
these, the work that is most relevant to our results here is that of Ramaekers [Ram13|.
In particular, and although the results here we derived independently, Ramaekers’s paper
contains two results that are similar to the ones we have here—first, a slightly weaker version
of the n = 2 case of Theorem 34, and second, a slightly weaker version of Theorem 35. The
exact differences are outlined in Sections 5.4.3 and 5.4.4 since we need to introduce a few
more notions to make them clear.

In addition to the papers mentioned above—all of which adopt the model as in this chapter
where the assumption is that the agents have cardinal preferences—there is also work that
considers the case when agents have ordinal preferences [BEL10; BKK14; Azi+15; SAH17].
Although this line of work is related in that ordinal algorithms are stable, it is also quite
different since usually the goal in these papers is to compute fair allocations if they exist or
study the complexity of computing notions like possibly-fair or necessarily-fair allocations.

5.4 Approximate-Stability in Fair Allocation of Indivis-
ible Goods

Our aim is to design (approximately) stable algorithms for allocating a set of indivisible
goods among two agents that guarantee pairwise maximin share (PMMS) and Pareto

114

A | B A |B

g1 T-1 | T-2 g1 T-3 | T-2
gs 1 2 g2 3 2
(5.3a) Original instance (5.3b) Instance where agent A makes a mistake

optimal (PO) allocations. However, before we try to design new algorithms, the first
question that arises is: How do the existing algorithms fare? How stable are they? We
address this below.

5.4.1 How (approximately) stable are the existing algorithms?

We consider the following well-studied algorithms that guarantee PO and at least EF1.
(We refer the reader to Appendix D.1 for brief descriptions of these algorithms.)

i) Adjusted winner protocol [BT96a; BT96b|; returns an EF1 and PO allocation for two
agents.

ii) Leximin solution [PR18|; returns a PMMS and PO allocation for two agents.

iii) Maximum Nash Welfare solution [Car-+16]; returns an EF1 and PO allocation for
any number of agents.

iv) Fisher-market based algorithm [BKV18]|; returns an EF1 and PO allocation for any
number of agents.

All the algorithms mentioned above perform poorly even in terms of the weaker relaxation
of stability, i.e., weak-approximate-stability. To see this, consider the instance in Table 5.3a,
and note that the allocation that is output by any of these algorithms is agent A getting g,
and agent B getting go. Next, consider the instance in Table 5.3b. In this case, if we use
any of these algorithms, then the allocation that is output is agent A getting g, and agent
B getting ¢;.

Given this, let the values mentioned in Table 5.3a constitute the true valuation function
(v1) of agent A. When reporting these, she receives the good g;. Table 5.3b shows agent
A’s misreport (v]) in which case she receives the good go. Recall from the definition

of a-neighbours of v; (Definition 18) that v; € a-N(v;), where a = 4. Therefore, we

, 5183 = -, or in other words, all the four algorithms mentioned above are

(T — 1)-weakly-approximately-stable, even when o = 4.

now have

115

A | B A | B
o5 |3 g £ |T-3
ZEE » ¥l
gs | A g5 |1
g | A g 3|1
(5.4a) Original instance (5.4b) Instance where agent B makes a mistake

5.4.2 Are there fair and efficient algorithms that are stable?

The observation that previously studied algorithms perform poorly even in terms of the
weaker relaxation of stability implies that we need to look for new algorithms. So, now, a
natural question that arises here is: Is there any hope at all for algorithms that are fair,
PO, and stable? Note that without the requirement of PO the answer to this question is a
“Yes™—at least when the fairness notion that is being considered is EF1, since it is easy to
observe that the well-known draft algorithm (where agents take turns picking their favourite
good among the remaining goods) that is EF1 [Car+16, Sec. 3| is stable. However, if we
require PO, then we show that the answer to the question above is a “No,” in that there
are no stable algorithms that always return an EF1 and even approximately-PO allocation.

Theorem 33. Let M be an algorithm that is stable and always returns an EF1 allocation.
Then, for any B in |1, %], M cannot be 5-PO.

Proof. Consider the instance in Table 5.4a which represents agents’ true valuation functions.
For simplicity we assume that 7' mod 9 = 0. Next, since the agents are symmetric and it
is easy to verify that in every EF1 allocation each of the agents have to get exactly two
goods, let us assume w.l.o.g. that agent A receives ¢g;. Given this, now consider the instance
in Table 5.4b where agent B makes a mistake. Let us denote agent B’s true utility function
as v, misreport as v’ € 2--N(v), and (51, S2) and (S, 55) as outcomes for the instances in
Tables 5.4a, 5.4b, respectively. From our discussion above, we know that v(Sy) = &

= =, since
agent B gets two goods from the set {g2, g3, g4}

Since M is stable, we know that v(S;) = v(S5). Now, it is easy to see that this is only
possible if the set S} has exactly two goods from {gs, g3, 94}. So, let us assume w.l.o.g. that
S5 = {g2,93}. If this is the case, then note that the allocation ({g2, g3, 94}, {91}) Pareto
dominates the allocation (S7,55) by a factor of z:((glé)) = 123, which in turn proves our

theorem. O

116

Given this result and our observation in Section 5.4.1 that previously studied algorithms
perform poorly even in terms of weak-approximate-stability, it is clear that the best one
can hope for is to design new algorithms that are fair, efficient, and approximately-stable.
In Section 5.4.4 we show that this is possible. However, before we do that, in the next
section we first present a necessary and sufficient condition for PMMS allocations when
there are n > 2 agents.

5.4.3 A necessary and sufficient condition for existence of PMMS
allocations

The general characterization result for PMMS allocations presented here will be useful in
the next section to design an approximately-stable algorithm that produces a PMMS and
PO allocation for the case of two agents. Additionally, we also believe that the result might
potentially be of independent interest.

For an agent ¢ € [n], aset @ C G, and a set S C @, the result uses a notion of rank of S,
denoted by r2(S), and defined as the number of subsets of @ that have value at most v,(.5).
More formally,

19(8) = [{P | P C Q. u(P) < u(S)} (53)

The notion of rank has been previously considered in the fair division literature by Ramaekers
[Ram13]. In particular, according to our notation, they talk about r§(S) in the context of
fair division among two agents who have a strict preference orders over the subsets of G,
and one of their results is a weaker (since they assume a strict order over subsets of G which
is not assumed here) version of the n = 2 case of the theorem below [Ram13, Thm. 1(2)].

Theorem 34. Given an instance with m indivisible goods and n > 2 agents with additive
valuation functions, an allocation A = (A, ..., Ay,) is a pairwise mazximin share allocation
if and only if Vi € [n],Vj € [n], and K;j = A; U A;,

min {riK”(AZ-), TJKZ"(AJ')} > olKil=1,
Before we present a formal argument to prove this theorem, we present a brief overview.
Overall, the proof uses some observations about the ranking function. In particular, for a
set @ and S C @, one key observation is that the rank of S is high enough (more precisely,
greater than 2/9/=1) if and only if the value of this set is at least half that of). Once we
have this, then the proof essentially follows by combining it with a few other observations
about the ranking function and some simple counting arguments.

117

More formally, we first state the following claims about the ranking function. The proofs of
these directly follow from the way the ranking function is defined.

Claim 6. Let Q C G and i € [n]| be some agent. Then,
i) for AC Q,BCQ, v;(A) < v;(B) & r¥(A) < r?B)
i) r%(A) < r2(B) < r9(A) < r9(B).

Proof. To prove the first part, consider the sets Hy = {P | P C Q,v;(P) < v;(A)} and
Hp = {P | P C Q,v;(P) < v;(B)}. First, observe that v;(A) < v;(B) if and only if
|H4| < |Hg|. Also, from the definition of the ranking function we know that |H4| < |Hp|
if and only if r?(A) < r2(B). Combining these we have our claim.

To prove the second part, observe that from the first part we know that r¢(A) < r2(B)
if and only if v;(A) < v;(B). Next, again using the first part with @) = G, we have that
vi(A) < v;(B) if and only if 77 (A) < rY(B). Combining these we have our claim. O

Claim 7. Let Q C G, i € [n] be some agent, £ € Zsq, and T, = {P | P C Q,r%(P) < (}.
Then,

i) for S C Q, if r¢(S) = ¢, then |T;| = ¢
i) |Ty] < L.

Proof. To prove the first part, consider the set H = {P | P C Q,v;(P) < v;(S)}. First,
note that from Claim 6(i) we can see that H = T,. Next, from the definition of r2(S), we
know that |H| = ¢. Also, every element in H will have a rank at most ¢ (since for each
such set S’ v;(S") < v;(5)) and every element outside of H will have a rank larger than ¢
(since for each such set S’, v;(S") > v;(S)). Hence, i) follows.

To prove the second part, consider the largest ¢ < ¢ such that there exists some S C @)
with r2(S) = ¢. Now, from i) we know that the number of subsets of @ with rank at most

¢’ is exactly ¢ and hence from our choice of ¢’ the statement follows. O

Claim 8. Let A = (Ay,...,A,) be an allocation, and i,j € [n| be some agents. If
KZ] = Az U Aj7 then
vi(K5)

5

ri(Ay) > 2Kl e (A >

)

118

Proof. (=) Let us assume for the sake of contradiction that ¢ = rl.Kij(Ai) > 2lKul=1 but
vi(A;) < % Since ¢ > 2/Kul=1 we know from Claim 7(i) that there exists S and
S¢ = K;; \ S, such that ri(S) < 7l (A;) and ri(S°) < 79 (A;). This in turn implies
that using Claim 6(i) we have that v;(S) < v;(4;) < w and v;(5¢) < v;(4;) < w,
which is impossible since the valuation functions are additive.

(<) Let A be an allocation such that v;(A4;) > vi(l;(“), but riK” (4;) < 2I%il=1 Now, consider

the set H; ={P | P C K;;, ri9(P) > rI(A;)}. From Claim 7(i) and using the fact that
i (Ay) < 216171 we know that [Hy| > 2/5u5l=1 Also, note that every set in H; has, by
Claim 6(i), value greater than v;(A;), which in turn implies that A; ¢ H;. Next, consider
Hy ={P°| P € Hy, P° = K;; \ P}, where additivity implies that every set in H, has value
less than v;(A;). Note that |H;| + |Hs| > 254! and A; is neither in H; nor Hy,, which is
impossible. [

Equipped with the claims above, we are now ready to prove our theorem.

Proof of Theorem 34. (=) Let us assume for the sake of contradiction that A is a PMMS
allocation and that there exists i, j such that min{r; " (A;), Tfij(Aj>} < 2Kul=1 W lo.g.,
let us assume that 7, (A;) < 2/K:41=1. Next, consider the set H = {B | B C Kij,TiKij(B) >
rif9 (A}, Since 1] (A;) < 20l we know from Claim 7(ii) that |H| > 2/K5l= (since

7
there are 2%l subsets of K;j). This implies that there is a set S and its complement

S¢ = K;; \ S such that, 9 (Ay) < min{r! 7 (S), ri(5°)}, which in turn using Claim 6(i)
implies that v;(A;) < min{v;(S), v;(S°)}. However, note that this contradicts the fact that
¢ has an MMS partition w.r.t. j in A.

(<) Let us assume for the sake of contradiction that there exists an agent ¢ such that

i does not have an MMS partition w.r.t. j, but min{rf{”(Ai),ij“ (A;)} > 2lKul=1 This
implies that v;(4;) < w, which in turn using Claim 8 and the fact that min{r;" " (4,),
r]I-(”(Aj)} > 2Kul=1implies that r, 7 (A;) = 2/Kul=1. Next, since i does not perceive
(A, A;) to be an MMS partition w.r.t. j, there must exist a partition (Aj, A}) such that
AU AL = Ky and min{v; (A7), v;(A%)} > v;(A4;). This implies that, using Claim 6(i), we
have that ri 7 (A}) > r(4;) and riK”(A;») > 719 (4;), or in other words that a set (i.e., 4))
and its complement (i.e., A} = K;;\ A}) both have rank greater than ri9 (A;). Now, if this is
case, then one can see that, since T'Z-K Y(A;) = 2I%ul=1 this implies there exists a set S C Kj;

and its complement S¢ = Kj; \ S such that TiKij (S) < riK”(AZ-) and riK” (5°) < riK” (A;).

119

However, this is impossible because we can now use Claim 8 to see that both v;(S) and
v;(.5¢) have value less than @, which in turn contradicts the fact that v; is an additive

valuation function. OJ

In the next section we use this result to show an approximately-stable algorithm that is
PMMS and PO when there are two agents.

5.4.4 rank-leximin: An approximately-stable PMMS and PO al-
gorithm for two agents

The idea of our algorithm is simple. Instead of the well-known Leximin algorithm where one
alms to maximize the minimum utility any agents gets, then the second minimum utility,
and so on, our approach, which we refer to as the rank-leximin algorithm (Algorithm 7),
is to do a leximin-like allocation, but based on the ranks of the bundles that the agents
receive. Here for an agent i and a bundle B C G, by rank we mean r{(B), as defined in
(5.3). That is, the rank-leximin algorithm maximizes the minimum rank of the bundle
that any agent gets, then it maximizes the second minimum rank, then the third minimum
rank, and so on. Note that this in turn induces a comparison operator < between two
partitions and this is formally specified as rank-leximinCMP in Algorithm 7. Although the
original leximin solution also returns a PMMS and PO allocation for two agents, recall
that we observed in Section 5.4.1 that it does not provide any guarantee even in terms of
weak-approximate-stability, even when o = 4. Rank-leximin on the other hand is PMMS
and PO for two agents and, as we will show, is also (2 + 12T‘J‘)—zaupproximately—s.tauble for all
a € (0,%]. Additionally, it also returns an allocation that is PMMS and PO for any number
of agents as long as they report ordinally equivalent valuation functions (see Definition 22).

Remark: Given the characterization result for PMMS allocations, one can come up with
several algorithms that satisfy PMMS and PO. However, we consider rank-leximin here
since it is a natural counterpart to the well-known leximin algorithm [PR18]. Additionally,
it turns out that contrary to our initial belief the idea of rank-leximin is not new. Ramaekers
[Ram13| considered it in the context of algorithms for two-agent fair division that satisfy
Pareto-optimality, anonymity, the unanimity bound, and preference monotonicity (see
[Ram13, Sec. 3| for definitions), where the unanimity bound is a notion that one can show
is equivalent to the notion of Maximin share (MMS) that is used in the computational fair
division literature. So, with caveat that Ramaekers [Ram13| assumes that the agents have
a strict preference orders over the subsets of G (which is not assumed here), the result of
Ramaekers [Ram13, Thm. 2| already proves that rank-leximin is PMMS and PO for two

120

Procedure: rank-leximinCMP (P, T)
Input: two partitions P,T € I1,,(G)
Output: returns true if P < T, i.e., if P is before T in the rank-leximin sorted order
1: Rp < agents sorted in non-decreasing order of the rank of their bundles in P, i.e., based
on rig(Pi), with ties broken in some arbitrary but consistent way throughout
2: Ry < similar ordering as in Rp above, but based on rlg(Tl)
3: for each ¢ € [n] do

4: 14 Rf; > /-th agent in Rp
5: J Rgp > (-th agent in Ry
6: if rY(P) # r¥(T)) then

7: return r9(P) < r]g(T])

8: end if

9: end for

10: return false

Main:

Input: for each agent i € [n], their valuation function v; : 29 — Rxq

Output: an allocation A = (A, ..., A,) that is PMMS and PO

11: £ < perform a rank-Lexmin sort on II,,(G) based on the rank-leximinCMP operator defined
above

12: return A = (44,...,A,) that is the last element in £

Algorithm 7: rank-leximin algorithm

agents (MMS is equivalent to PMMS in the case of two agents), which is the result we
show in Theorem 35. However, we still include our proof because of the indifference issue
mentioned above, and since it almost follows directly from Theorem 34.

Below we first show that the rank-leximin algorithm always returns an allocation that is
PMMS and PO for the case of two agents. The fact that it is PO can be seen by using some
of the properties that we proved about the ranking function in the previous section, while
the other property follows from combining Theorem 34 along with a simple pigeonhole
argument. Following this, we also show that rank-leximin always returns a PMMS and PO
allocation when there are n > 2 agents with ordinally equivalent valuation functions. The
proof of this is slightly more involved and it proceeds by first showing how rank-leximin
returns such an allocation when all the agents have identical valuation functions. Once we
have this, then the theorem follows by repeated application of Observation 2.

Theorem 35. Given an instance with m indivisible goods and two agents with additive
valuation functions, the rank-leximin algorithm (Algorithm 7) returns an allocation that is

121

PMMS and PO.

Proof. Let A = (A4, ..., A,) be the allocation that is returned by the rank-leximin algorithm
(Algorithm 7). Below we will first show that A is PO and subsequently argue why it is
PMMS.

Suppose A is not Pareto optimal. Then there exists another allocation A’ such that for
all i € [n], v;(A}) > v;(A;), and the inequality is strict for at least one of the agents, say
4. This in turn implies that using Claim 6 we have that for all i € [n], r{(A}) > r9(A))
and rjg(A;) > rf(Aj). However, this implies that from the procedure rank-leximinCMP in
Algorithm 7 we have that A < A’, and this in turn directly contradicts the fact that A was
the allocation that was returned.

To show that A is PMMS, consider agent 1 and all the sets S such that r¥(S) > 2™~
From Claim 7 we know that there are at least 2~! + 1 such sets. Therefore, if S¢ =G\ S,
then there is at least one S such that 7§ (S¢) > 2™~!. This implies (5, S¢) is an allocation
such that min{r{(S),r§(S°)} > 2™, Now since rank-leximin maximizes the minimum
rank that any agent receives, we have that min{r{(A;),r§(A3)} > 2™~! and so now we
can use Theorem 34 to see that A is a PMMS allocation.]

Theorem 36. Given an instance with m indivisible goods and n > 2 agents with additive
valuation functions, the rank-leximin algorithm (Algorithm 7) returns an allocation A that
is PMMS and PO if all the agents report ordinally equivalent valuation functions.

Proof. To prove this we first show how rank-Leximin always returns a PMMS and PO
allocation (A, ..., A,) for agents with identical valuation functions. Once we have that,
then the theorem follows by repeated application of Observation 2 and by observing that
the rank-leximin algorithm produces the same output for two instances that are equivalent.

First, note that we already know from the proof of Theorem 35 that it is PO with respect to
any instance with n agents. So we just need to argue that it produces a PMMS allocation

when the reports are identical. To see this, recall from Theorem 34 that we need to show
that for all 7,5 € [n], min{r%(4;), TJQ(A]-)} > 2k=1 where Q = A; U A; and k = |Q].

Suppose this was not the case and there exists agents 7, j such that riQ (A;) < 21 Now,
let us consider the set H = {S | S C @ and T]Q(S) > r2(A;)}. Since r2(4;) < 2671 we

know from Claim 7(ii) that |H| > 2%~ (since there are 2* subsets of) in total). This in
turn implies that, there is a set S and its complement S¢, such that both 7";‘??(5) and TJQ(SC)
Q

are greater than r*(A;). So, now, consider these sets S and S°, and ask agent i to pick

122

the one she values the most. Let us assume without loss of generality that this is .S. Note

that since the valuations are additive and hence v;(S) > 3v;(Q) > v;(4;), we know from
Claim 8 that 7%(S) > 251 > r?(A,). This in turn implies that,
min{r?(5),r7(5} > rf (4;) > min{ry (4,17 (4;)}

= min{ry(5),r7 (59} > r{(4;) > min{r? (4,), 7 (45)},

%)

where the implication follows from the fact that ¢ and j have identical valuation functions
and so for any S C G and A C S, we have 77 (A) = r7(A).

The observation above implies that we can use Claim 6(ii) to see that,

7 e

:min{r?(S),rjg(Sc)} > min{r{ (4;),rY(4;)},

g

min{r{(S),r¢(S)} > min{ry(A;),ry (A;)}

where the implication again follows from the fact that ¢ and j have identical valuation
functions.

Now, consider the allocation A" = (A;,..., 41,5, Aiy1, ..., A1, 9% Aja, ..., Ay). From
the discussion above we know that A < A’ according to the rank-LeximinCMP operator in
Algorithm 7. However, this contradicts the fact that A was the allocation that was returned
by the rank-Leximin algorithm. O

Now that we know rank-leximin produces a PMMS and PO allocation, we will move on to
see how approximately-stable it is in the next section. However, before that we make the
following remark.

Remark: The rank-leximin algorithm takes exponential time. Note that this is not
surprising since finding PMMS allocations is NP-hard even for two identical agents—one
can see this by a straightforward reduction from the well-known Partition problem.

5.4.4.1 rank-leximin is (2 + O(%))-approximately—stable for a < %

Before we show how approximately-stable rank-leximin is, we prove the following claims
which will be useful in order to prove our result.

Claim 9. Let v be an additive utility function and for some o > 0, let v" € a-N(v). Then,
for any 51,55 C G,

i) Jo(S1) =v(S)] < §

123

ii) if v(Sy) > v(S2) and v'(S1) < v'(S3), then v(S;) — v(S2) < a.

Proof. To prove the first part, suppose [v(S1) —v'(S1)] > §. Let Sf = G\ Si. Since v, '
are additive, we know that v(S;) + v(S{) = T (and similarly for v'), and so this in turn
implies that |v'(Sf) — v(Sf)| > §. So, using this, we have,

D lolg) =)l = lvlg) = V(@) + D [v'(g) — v(g)|

geg geST geSs§

> 2 ges, (0(9) = 0" (9))] + [2ges: (v'(9) — v(9))]
= [v(S1) = V(S| + [V'(S]) — v(ST)]
>,

which is a contradiction since v’ € a-N(v).

To prove the second part, observe that from the first part we have,

0(S1) = v(Sh) V(1) + 5 — ((S2) — 3)
v'(S1) —V'(S2) +

Y

IN

where the last inequality follows from the fact that v/(S;) < v/(Ss). O

Claim 10. Given an instance with m indivisible goods and two agents with additive
valuation functions, let (A, A2) be a PMMS allocation. If for an agent i € [2], k = |4;] > 2,
where j # 7, then

i) vi(A;) > vi(M7), where M/ is the maximum valued good of agent 7 in the bundle A,

i) v;(A4;) — vi(A;) < vi(m?), where m] is the minimum valued good of agent i in the
bundle A;

iii) v;(4;) > £=LT
Proof. To prove the first part, let us assume that v;(4;) < vi(M7). Since k > 2, we have
another good g € A; such that g # M;. So, now, consider the allocation (A; U {g}, {M/}).

Note that using additivity we have that min{v;(A4; U {g}), v;(M7)} > v;(4;), which in turn
contradicts the fact that (A4;, A;) is a PMMS allocation.

124

To prove the second part, let us assume that v;(A;) — vi(A4;) > v;(m?). Next, consider the
allocation (A; U {m!}, A;\ {m?}). Note that using additivity we have that min{v;(4; U
{m?}), vi(A;\ {m?})} > vi(A;), which in turn contradicts the fact that (A;, A;) is a PMMS
allocation.

To prove the third part, observe that from the second part we know that v;(A4;) > v;(A4;) —
vi(m]). Also, if k = |A,|, then we can use the fact that the valuation functions are additive

to see that v;(m?) < % So, using these, we have,
; i(4; k—1
) 2) = ulord) 2) - 22— (7 - ugan) (B,
where the last inequality follows from the fact that v;(A4;) +v;(A;) =T.
Finally, rearranging the term above we have our claim. O

Claim 11. Given an instance with m indivisible goods and two agents with additive
valuation functions, let (Aj, As) be the allocation that is returned by the rank-leximin
algorithm for this instance. If k; = 7Y (A;) and ky = 1§ (As), then min{k,, ky} > 2! and
max{ky, ko } > 2" L.

Proof. Since rank-leximin produces a PMMS allocation (Theorem 35), we know from
Theorem 34 that min{k, ko} > 2™ Also, if max{k;, ko} < 2™ ! then using Claim 8
we have that vi(A;) < £ and vy(A,) < £. However, this in turn contradicts the fact that
rank-leximin is Pareto-optimal (Theorem 35) since swapping the bundles improves the
utilities of both the agents. m

Equipped with the claims above, we can now prove the approximate-stability bound for
rank-leximin. The proof here proceeds by first arguing about how rank-leximin is stable
with respect to equivalent instances. This is followed by showing upper and lower bounds
on how weakly-approximately-stable it is, which in turn involves looking at several different
cases and using several properties (some of them proved above and some that we will
introduce as we go along) about the allocation returned by the rank-leximin algorithm.

Theorem 37. Given an instance with m indivisible goods and two agents with additive

valuation functions, the rank-leximin algorithm is (2 + H%)—approximately—stable for all
a<Z.
=3

125

Proof. Let us consider two agents with valuation functions vy, v9. Since the rank-leximin is
symmetric, we can assume w.l.o.g. that agent 1 is the one making a mistake. Throughout,
let us denote this misreport by vj. Also, let rank-leximin(vy,ve) = (Aj, As), and rank-
leximin(v], vy) = (51, S2). Next, let us introduce the following notation that we will use
throughout. For some arbitrary valuations yi, ye, if an allocation (Cj,Cs) precedes an
allocation (Bj, By) in the rank-leximin order with respect to (y1,¥2) (i.e., according to the
rank-leximinCMP function in Algorithm 7), then we denote this by (B1, Ba) >, 4, (C1,C2).
In the case they are equivalent according to the rank-leximin operator, then we denote
it by (B1, Ba) =y, .4, (C1,C2). Additionally, we use (B, B2) =y, 4, (C1,Cs) to denote that
(Cy, Cy) either precedes or is equivalent to (B, Bs).

Equipped with the notations above, we now prove our theorem. To do this, first recall
from the definition of approximate-stability (see Definition 23) that we first need to show
that if v € equiv(vy), then vy (A;) = v1(S1). To see why this is true, consider the rank-
leximinCMP function in Algorithm 7 and observe that since v} € equiv(vy), vy, v} have
the same bundle rankings, and hence for any two partitions P,T € 7,(G), P <y, T (i.e.,
P appears before T in the rank-leximin order) if and only if P <, ,, 7. This in turn
along with the fact that rank-leximin uses a deterministic tie-breaking rule implies that
rank-leximin(vy, vy) = (A4;, A2) = rank-leximin (v}, v2), thus showing that it is stable with
respect to equivalent instances.

Having shown the above, let us move to the second part where we show how weakly-
approxmiately-stable rank-leximin is. For the rest of this proof, let v € a-N(v;), for some
a e (0, %] Also, for i € [2], let the ranking function associated with valuation functions v;

and v/ be 7Y (-) and r;g(-), respectively. Throughout, in order to keep the notations simple,

we use 71(-), 7, (), and r5(-) to refer to r¥(-), r9(-), and r§(-), respectively.

In order to prove the bound on weak-approximate-stability, we show two lemmas. The first
one shows an upper bound of 2 for the ratio % and the second one shows a lower bound
Of @
Lemma 38. For a > 0, if v} € a-N(vy), rank-leximin(vi,vs) = (A1, A2), and rank-
lezimin(v], vy) = (51, S2), then
Ul(Sl)
U1 (Al)

<2

Proof. To prove this, let us consider the following three cases. Note that since rank-leximin
returns a PMMS allocation (Theorem 35) we know from Theorem 34 that these are the
only three cases. Also, note that the bound is trivially true when v;(A4;) — v1(S7) > 0. So

126

below we directly consider the case when vy (S) > vi(A;).

Case 1. r1(A;) > 2™ ': Since r1(A;) > 2™ !, we know using Claim 8 that v;(A;) > I.
Therefore, using this and the fact that v(S;) < T, we have,

01(51)
U1<A1)

<2. (5.4)

Case 2. 1(A;) = 2™ ! and |S;| = 1: First, observe that since |S1| = 1 and vy (A1) < v1(S51),
we have that S; C Ay. This in turn implies v1(S7) < v1(A2) and so using this we have

01(51) U1(A2)
Ul(A1> S Ul(Al).

(5.5)

Now, in order to upper-bound (5.5), consider the following two cases.

i) |As| > 2: Let k = |Ay|. Since k > 2, we know from Claim 10 that vy (A;) > %T.
So, using this, we have

vi(A2) T —vi(A) k
vi(4r) vi(A) Sy-1s? (5.6)

ii) |As| = 1: Since |A3| = 1 and from above we know that S; C As, we have that S; = As.
This in turn implies that rank-leximin(v;, v2) = (A1, A3) and rank-leximin (v}, vy) =
(As, Ay). Next, consider the following observations.

a) ri(A;) = 2™ (recall that this is the case we are considering)

b) r3(As) = 2™ 1 + 1 (since |As| = 1, we know that m5(Ay) < 2™ + 1, because
valuation functions are additive and so any singleton set can have rank at most
2m=1 + 1. However, r5(As) > 2™ + 1, using Claim 11.)

c) 1 (A;) = 2™~ (since |A;| = m — 1, we know that 7 (A;) > 2™~!. However,
r1(Ay) < 2™~ 41, for if not then (Ay, Ag) >y 4, (A2, A1), thus contradicting
the fact that rank-leximin (v}, ve) = (As, 4;))

d) ri(Ay) = 2™+ 1 (since |Ag| =1 = r1(Ag) < 2™ 1 4+ 1, and r1(A42) > r1(A;)
since we are considering the case when v;(Sy) = v1(As) > v1(A1))

e) T’Q(Al) = 2m—1 (since ‘All =m-1= TQ(A1> 2 2m—1, and TQ(Al) < 2m—1 +]_,
for if not then (As, A1) =4, 0, (A1, A2), thus contradicting the fact that rank-
leximin(vy, v9) = (A1, Ay))

127

f) r1(Az) = 2771+ 1 (since [Ap =1 = r{(Ay) < 277"+ 1, and ry(Ay) = 2771 =
r(Ay) > 2™~ + 1 using Claim 11)

Now, combining all the observations above, we can see that (A, As) =y, 4, (A2, A1)
and (Ay, A2) =y 0, (A2, A1). However, note that this in turn is a contradiction because
the rank-leximin algorithm breaks ties deterministically and so it couldn’t have been
the case that rank-leximin(vy,vy) = (Aj, A2) and rank-leximin(vy, vy) = (Asg, Ay).
Hence, this case is impossible.

Case 3. r1(A;) = 2! and |S;| > 2: First, note that since v;(S;) > vi(4;), m1(A4;) =
21" and rank-leximin(vy, vo) = (A, Ay), we have that, for all g € Sy, v1(S; \ {g}) <
v1(A1). Why? Suppose if not, then consider the allocation (S; \ {g}),S2 U {g}), and
observe that (S1 \ {g}), 52 U{g}) =, 0, (A1, As), which in turn contradicts the fact that
rank-leximin(vy, vy) = (Ay, A2). So, now, by adding up all the inequalities with respect all
g € S1, we have that

([S1] = 1) - v1(S1) < [S1] - v1(Ar).

This implies that we can use the fact that |S;| > 2 to see that

Ul(A1> |Sl| —1
Finally, combining (5.4), (5.6), and (5.7), we have our lemma. O

v1(S1)
1

Next, we show a lower bound for - A

Lemma 39. For a € (0, %], if v} € a-N(v1), rank-leximin(vi, v2) = (A1, As), and rank-
lezimin(v], vy) = (51, S2), then

v1(S1)
v1 (A1)
when vy (A;) > v1(51), since otherwise it is trivially lower-bounded by 1. Also, note we can
directly consider the case when v1(Sy) > v1(S1), for otherwise v1(S1) =T — v1(Ss) > % and
v1(S1)
v1 (A1)

Next, let us consider the following cases. Note that, by using Claim 11 with respect to the
allocation (S7,S2), these are the only three cases.

Proof. Since we are trying to show a lower bound for , below we consider the case

SO

> 1. Therefore, throughout this proof, we have v;(S;) > Z.

128

Case 1. r{(51) > 2™ *: Since 7{(S1) > 2™, we know from Claim 8 that v{(S;) > T. Also,
v

since v] € a-N(v1), from Claim 9(i) we have that vj(S1) —v1(S1) < [v1(S1) —v1(S1)] < §
So, using these, we have,
r_a T _«a
Ul(Sl) Z 2 2 2 2 2 Z 14a, (58)
U1 (Al) U1 (Al) T 2 —+ T

where the last inequality follows from the fact that o € (0, %]

Case 2. 7’/1(51) = 2m—1 and min{T1<A1),T2<A2)} = 7"1(14.1): Since IIliIl{Tl(Al),T2<A2)} =
r1(A;) and rank-leximin(vi,ve) = (51,S52), we have that vi(A4;) < v((S1), for if not,
then it is easy to see that (A1, Az) =(u v, (51,52), thus contradicting the fact that
rank-leximin (v}, ve) = (51,52). Also, since v1(A;) > v1(S;) and from above we have
v1(Ay) < v](S), from Claim 9(ii) we have know that v1(A;) — v1(S1) < a. So, now, let us
consider the following two cases.

i) |Se| = 1: First, note that since |Se| = 1 and v (A1) > v1(S1), we have that Sy C A;.
This in turn implies that vy (A;) > v1(Ss2) > % So, now, using these we have,

S Ay) — 2 1
v1(51) Zm(1) 04>1__oz2 _ (5.9)
’Ul(A1> Ul(A1> T 2 + T
where the last inequality follows from the fact that o € (0, £].
ii) |93 > 2: Let k = |S3|. Now, since v;(A;) — v1(51) < a, we have,
01(81) > Ul(sl) 1
’Ul(Al) - U1<Sl) + o UI(SI) +
o
>1- using Claim 9(i
= NS - ta (using ()
o
>1- (using Claim 10(iii))
k—1 et
w1l t 3
1
> I (5.10)
2+ 5
where the last inequality follows from the fact that o € (0, £].

Case 3. 71 (51) = 2™~! and min{r(A),m2(A2)} = ro(Ay): First, note that we can directly
consider the case when min{r;(A;),ro(As)} = ro(As) = 2™L, for if not then we either

129

have v (A1) < v1(S1), which can be handled as in Case 2, or we have that v{(A;) > v|(5)),
which is impossible since this would imply min{rj(A;),r2(A42)} > 2™1 = ri(S;) =
min{r}(S1),r2(S2)}, thus contradicting the fact that rank-leximin (v}, ve) = (Si, S2). Addi-
tionally, since we are considering the case when ry(Ay) = 2! we have from Claim 11 that
r1(A;) > 2™ 1 + 1, which in turn implies, using Claim 8, that v;(A;) > %

Given the observations above, let us now consider the following cases.

i) |S2| > 2 and |S; N Ay > 1: Let k = |Sy| and let X C G such that ri(X) = 2™ 1.
Since rank-leximin(vy, v9) = (Ay, A2) and Vg € G, and Vi € [2], v;(g) > 0, we have that
r1(A;\{g}) < 2™ forif not then min{r;(A;\{g}), m2(A2U{g})} > 2" = ry(Ay) =
min{r(A;),r2(As)}, thus contradicting the fact that rank-leximin(vy, v9) = (A4;, As).
So, next, let us consider a good g € S; N A;. Using the observations above, we have,

(%] (Al) S (%] (X) + v (g) (since r1(A1\{g}) < 2""71)
< (X) + Ul(Sl> (since v1(g) < v1(S1))
< 20,(8)) + . (5.11)

The last inequality is true because either v1(S1) > vy (X), or, if not, then it is easy
to see that, since r}(S1) = 2™ 1 and 71(S;) < r1(X;) = 2™}, there exists an H C G
such that v1(H) > v1(X) > v1(51) and v} (H) < v{(S1). This in turn implies, we can
use Claim 9(ii), to see that v1(H) — v1(S) < a.

So, now, using (5.11), we have,

U1(51)
1(141)

1 _ «
2 22)1 (Al)

vV
N —

v | N

(since v1(A1) >

)

<
Nl e

1
+

v
G

(5.12)

)

—_
Q

2

5

where the last inequality follows from the fact that o € (0, £].

ii) |S2] > 2 and |S; N A;| = 0: Let k = |Ss|. First, note that since |[S; N A;| = 0, we
have that A; C S,. Therefore, using this, we have,

v1(S1) > v1(S1) > v1(51) — 3
Ul(Al) - 'Ul(SQ) - ’01(52) +%
k—1 a
k—1p o«

> Qkkjl i (using Claim 10(iii))
2k—1T +3

1

12«
2+ 122

>

, (5.13)

where the last inequality follows from the fact that k& > 2 and « € (0, £].

iii) |Sy| = 1: First, note that since | S| = 1, ro(S2) < 2™~1 +1, as additivity implies that
any singleton set can have rank at most 2”1 + 1. Also, recall that we are considering
the case when r(S1) = ry(A42) = 2™!. Now, since rank-lexmin (v}, vy) = (51, S2),
we need to have v{(S;) > v} (A;), for if not, then the fact that r5(Ay) = 2™~ and
vi(A1) > v1(S1) implies that (A, A2) =y, (51,52) and (A, Az) =y 4, (S1,52).
However, this is impossible since the rank-leximin algorithm uses a deterministic tie-
breaking rule and hence if this is case, then rank-leximin(vy, v9) and rank-leximin(v}, vs)
cannot be different. Therefore, we have that v](S1) > v} (A1), which in turn can again
be handled as in Case 2.

Finally, combining (5.8)—(5.13), we have that % > 2+11%. O

Since rank-leximin is stable with respect to equivalent instances, and combining the lemmas
above we have that it is (2 4+ 12To‘)—Weakly—appmximautely—s.table for all a < %, our theorem
follows. O]

Note that for a € (0, %], our approximate-stability bound is independent of the choice of T',
whereas for all the previously studied algorithms that we had considered in Section 5.4.1 it
was dependent on 7', and in fact was equal to (T'—1) even when a = 4. Additionally, none of
those algorithms are stable on equivalent instances either (i.e., the bound of (T'— 1) was with
respect to weak-approximate-stability and not the stronger notion of approximate-stability).
Finally, it is interesting to note that although our model assumes that the misreport v’
always maintains the ordinal information (over the singletons) of the true valuation v (see
the second condition in Definition 18), the proof above does not use this fact. This implies
that rank-leximin is stronger than what the theorem indicates since it is (2 + 12Ta)—s‘cauble
for all a < % and for all possible misreports that are within an L; distance of o from the

original valuation.®

6Seeing this, one might wonder “why have the condition of maintaining the ordinal information over the
singletons (i.e., the second condition in Definition 18) then?” The reason is, recall that our original goal
was look for stable algorithms, and so this condition was a natural one to impose since, as mentioned in the
introduction, one cannot hope for stable algorithms without assuming anything about the kind of mistakes
the agents might commit. However, as mentioned in Section 5.4.2, even with this assumption designing
stable algorithms turned out to be impossible, and hence we relaxed the strong requirement of stability to
approximate-stability. And under this relaxed definition, the condition turns out to be not as crucial.

131

Input: for each agent i € [2], their valuation function v;

Output: an allocation A = (A1, As) that satisfies the same properties as M
L g™ < argmaxgeg v1 (g) © in case of tie, pick the one with the lowest index
2: if vy (¢"*) > L then > Phasel
3 return A= ({g7"™).G\ (7))

4: end if
5: return M (v, vq). > Phase 2

Algorithm 8: Framework for modified-M

5.5 Weak-Approximate-Stability in Fair Allocation of
Indivisible Goods

In this section we consider weak-approximate-stability, the weaker notion of approximate
stability defined in Definition 21 and we show how a very simple change to the existing
algorithms can ensure more stability. In particular, we show that any algorithm that returns
a PMMS and PO allocation for two agents can be made (4 + %)-weakly-approximately-
stable for a < % The main idea needed to achieve this is to modify the algorithm that
produces a PMMS and PO allocation and convert it into a two-phase procedure where the
first phase only handles instances where agent 1 has a good of value greater than % In the
case of such instances, we just output the allocation where agent 1 gets the highly-valued
good and all the other goods are given to agent 2. Below, in Algorithm 8, we formally
describe the framework and subsequently show how this very minor change leads to better
stability overall.

Theorem 40. Given an instance with m indivisible goods and two agents with additive
valuation functions, let M be an algorithm that returns a PMMS and PO allocation.
Then, for a < %, modified-M, which refers to the change as described in Algorithm 8, is
4+ GTC“)—weakly—approximately—stable, and returns an allocation that is PMMS and PO.

Proof. We begin by arguing that if M produces a PMMS and PO allocation then so does
modified-M. To see this, note that we just need to show that the output in Phase 1 is
PMMS and PO, since otherwise modified-M returns the same outcome as M. The fact
that it is PMMS is in turn easy to see because agent 1 is envy-free (since they get a good
of value greater than %) and the other agent gets m — 1 goods. As for PO, note that agent
1 gets only one good with value greater than %, so they cannot be made better-off without

making agent 2 worse-off.

132

To show the bound on weak-approximate-stability, let us consider two agents with utility
functions vy, v. Next, for some «a € (0, %], we denote the misreport by agent i € [2] as
v}, and let (—i) denote the agent (i +1) mod 2. Also, let rank-leximin(vy, ve) = (A1, A3),
and, depending on which agent i € [2] is misreporting, let rank-leximin (v}, ve) = (51, S2)
or rank-leximin(vy, v) = (51, S2). We refer to (vy,vs) as the true report, and, depending
on which agent i € [2] is misreporting, refer to (v}, vs) or (vy,v5) as the misreport. Given
an instance, we say that the instance is in ‘Phase 1’ if agent 1 has a good of value greater
than % (this corresponds to the ‘if” statement in Algorithm 8). Otherwise, we say that the
instance is in ‘Phase 2.” Also, throughout, for i € [2], we use ¢/"** to denote the highest
valued good in G according to agent ¢ (if there are multiple goods with the highest value,
pick the one with the lowest index). Recall that, since v, € a-N(v;), ¢i** is the same in v;

and v].

Equipped with the notations above, let us now consider the following cases. Note that since
the allocation returned is identical whenever an instance is in Phase 1, we only need to
analyze these cases.

Case 1. True report is in Phase 1, misreport is in Phase 2: First, since there is a
change in phase due to misreporting and the choice of phase only depends on agent 1’s
valuation function, note that agent 1 is the one misreporting. Given this, below we derive

an upper and lower bound for the ratio le((ill))

Note that since (v1,v2) in Phase 1, we have that A; = {gP**} and vi(g"™) > Z. Therefore,

’Ul(Sl) . U1<Sl) T
vi(Ar) oi(gPe) = v1(g1"™)

< 2. (5.14)

Next, to lower bound the ratio, let us consider the following two cases.
i) |Se| = 1: Since |Sz| = 1, we have that v](S1) > v1(G \ {¢7"**}). Also, since (v}, v9) in
Phase 2, we know that v](¢g7*) < Z. So, now, using these and Claim 9(i), we have

a(S) () -5 @\ fgrhH -5 F-5_ 1
vi(A) = v(4) T v1(Ay) = 7 = 2+4?a’

(5.15)

where the last inequality follows since « € (0, %]

ii) |S2| > 2: Let k = |Ss|. Since k > 2, we can use Claim 9(i) and Claim 10(iii), to see
that

Ul(Sl)

U1 (Al)

k—1
W(S)—§ #T -

’Ul(Al) - T 4+6_a’

N[R
—_

> (5.16)

133

where the last inequality follows from the facts that k¥ > 2 and a € (0, g]

Case 2. True report is in Phase 2, misreport is in Phase 1: Similar to the previous
case, here again we have that agent 1 is the one misreporting. Also, since (v}, v) in Phase

1, we have that S; = {gP"*} and v} (¢7"™) > L. Just like in the previous case, we again

upper and lower bound the ratio le((jll))

For the upper bound, first note that since (v1,vs) is in Phase 2, we have v (¢7"*) < I.
Next, note that we only need to consider the case when ¢i"** € A, ,since otherwise the ratio
is upper-bounded by 1. Also, if [A,| = 1, then note that v (A;) > T — vy (") > £, and
so if this is the case then again the ratio is upper-bounded by 1. Finally, if k = |As| > 2,
then we can use Claim 10(iii) to see that,
vi1(S1) wg™)
vi(A)) wv(4y) T ELT

2k—1

T
2 <. (5.17)

NN GV

For the lower bound, since v} (¢1"*) > £ and « € (0, %], we can use Claim 9(i) to see that,

v1(S1) _ 1 (g7"™) > %_% > 1 .
Ul(Al) Ul(Al) - T - 2+ 4?&

(5.18)

Case 3. True report is in Phase 2, misreport is in Phase 2: Let i € [2] be the agent
who is misreporting. First, for the lower bound, we can proceed exactly as in Cases 1(i)
and 1(ii) above. For the upper bound, let us consider the three cases.

i) i =1 and |As| = 1: Since |As| = 1, we know that vy (A1) > vy (G \ {g/***}). Also,

since (v1,vs) is in Phase 2, v1(g7"*) < Z. So, using this, we have,

vl(Sl) T
(A = Tl = (519)

ii) i =2 and |A;| = 1: First, note that vs(Ay) > I, for, if otherwise, when the agents
report (vy,vq), (Aa, Ay) Pareto dominates (A;, A2), which is a contradiction. This is
because, since [4;] = 1 and we are in Phase 2, v1(A;) < £, and so the allocations

can be swapped to (weakly) improve the utilities of both the agents. Therefore, using

this, we have,

IA

v9(S) vz(zSz) <9 (5.20)

v9(Asg)

iii) |A_;| > 2: Let k = |A_;|. Since k > 2, we can use Claim 10(iii), to see that

< <3. 5.21
Vg (AZ> 2kk—_11 T ()

Finally, combining all the observations, (5.14)-(5.21), from above we have our theorem. [

Note that the simple framework presented in Algorithm 8 can be used with respect to any
algorithm M that is fair and efficient, and so one can derive, perhaps better bounds, when
considering modified versions of specific algorithms (likes the ones in Section 5.4.1) that
provide a PMMS, EFX, or EF1 guarantee. Therefore, although the overall change that is
required to any algorithm is minor, the observation is important if we care about having
algorithms that are more stable, since without this recall that we observed in Section 5.4.1
that all the four previously studied algorithms are (7" — 1)-weakly-approximately-stable
even when o = 4.

5.6 Discussion

The problem considered here was born as a result of an example we came across on the fair
division website, Spliddit [GP15], where it seemed like arguably innocuous mistakes by an
agent had significant ramifications on their utility for the outcome. Thus, the question arose
as to whether such consequences were avoidable, or more broadly if we could have more
stable algorithms in the context of fair allocations. In this chapter we focused on algorithmic
stability in fair and efficient allocation of indivisible goods among two agents, and towards
this end, we introduced a notion of stability and showed how it is impossible to achieve exact
stability along with even a weak notion of fairness like EF1 and even approximate efficiency.
This raised the question of how to relax the strong requirement of stability, and here we
proposed two relaxations, namely, approximate-stability and weak-approximate-stability,
and showed how the previously studied algorithms in fair division that are fair and efficient
perform poorly with respect to these relaxations. This lead to looking for new algorithms,
and here we proposed an approximately-stable algorithm (rank-leximin) that guarantees
a pairwise maximin share and Pareto optimal allocation, and presented a simple general
framework for any fair algorithm to achieve weak-approximate stability. Along the way, we
also provided a characterization result for pairwise maximin share allocations and showed
how (in addition to the two-agent case) such allocations always exist as long as the agents
report ordinally equivalent valuation functions. Overall, while the results demonstrate how

135

one can do better in the context of two-agent fair allocations, our main contribution is in
introducing the notion of stability and its relaxations, and in explicitly advocating for it to
be used in the design of algorithms or mechanisms that elicit cardinal preferences.

Moving forward, we believe that there is a lot of scope for future work. Especially when
given the observation that humans may often find it hard to attribute exact numerical
values to their preferences, we believe that some notion of stability should be considered
when designing algorithms or mechanisms in settings where cardinal values are elicited. This
opens up the possibility of asking similar questions like the ones we have in other settings
where such issues may perhaps be more crucial. Additionally, specific to the problem
considered here, there are several unanswered questions. For instance, the most obvious
one is about the case when there are more than two agents. A careful reader would have
noticed that all the algorithms we talked about here heavily relied on the fact that there
were only two agents, and therefore none of them work when there are more. As another
example—this one in the context of two-agent fair allocations—one question that could be
interesting is to see if there are polynomial-time algorithms that are approximately-stable
and can guarantee EF1/EFX and PO. Given the fact that polynomial time EF1 and PO
algorithms exist for two agents, we believe that it would interesting to see if we can also
additionally guarantee approximate-stability, or prove otherwise—in which case it would
demonstrate a clear separation between unstable and approximately-stable algorithms. The
rank-leximin algorithm presented here is approximately-stable and provides the stated
guarantees in terms of fairness and efficiency, but it is exponential, and we could not answer
this question either in the positive or otherwise. Therefore, this, too, remains to be resolved
by future work.

136

Chapter 6

Conclusion

The focus of this thesis was on collective decision-making settings where the agents inter-
acting with the concerned decision-making procedure do not provide complete or accurate
preference information. In particular, we looked at four settings, each of them highlighting
different aspects of working with incomplete or inaccurate preference information. We
provide a brief summary of our contributions below and connect them with the goals
mentioned in Chapter 1.

The first two technical chapters (Chapters 2 and 3) of the thesis dealt with the question
of designing robust algorithms or mechanisms in settings where agents have incomplete
preferences. Here by robust we meant algorithms or mechanisms that produce solutions
that are good (for specific definitions of good) with respect to all the possible underlying
complete preferences. Chapter 2 dealt with what can perhaps be considered as the most
basic setting when designing robust algorithms in the presence of incomplete preferences.
Here we looked at a version of the two-sided matching problem where agents are allowed
to submit weak orders and the objective was to design algorithms that find matchings
that minimize the maximum number of blocking pairs with respect to all the possible
underlying linear orders. To this end, we provided some approximation algorithms and
some hardness of approximation results in different settings for this problem. Although the
issue of incomplete information had been previously studied in the context of this problem,
the usual approach had been to work with extremes—i.e., to look at matchings that have
no blocking pairs with at least one, or all, of the underlying linear orders. Our work here
can be considered as an extension to this line of work, since here we moved away from
these extremes and tried to find a middle-ground when it comes to working with incomplete
preference information.

137

Continuing with theme of designing robust algorithms or mechanisms, in Chapter 3 we
looked at a version of the facility location problem which allowed us to focus on incentive
issues that arise when working with incomplete preference information. In contrast to the
standard model for this problem, here we introduced a model where the agents only provide
coarse preference information to the mechanism—in particular, agents only indicate that
their preferred location for the facility lies in some interval. This in turn raised the question
on what solution concepts to consider for such a setting, and here we looked at two natural
solution concepts, namely, very weak dominance and minimax dominance. The first one
was previously considered in the context of auction design and the other introduced here.
Following this, we designed mechanisms that, under each of the two solution concepts,
approximately implement the optimal minimax value with respect to two commonly studied
objective functions, and also showed some corresponding lower bounds.

In Chapter 4 we looked at a different aspect when it comes to working with incomplete
preference information. While Chapters 2 and 3 considered the case where algorithms just
use the given incomplete information, here we considered a scenario where the algorithm can
query the agents to get more information. Although, as mentioned in the chapter, there has
been other work that have considered similar settings, our work here complemented these by
looking at a different choice of objective to optimize for and by considering an alternative
type of query the algorithm could use. This line of inquiry was, in turn, motivated by some
applications in the context of school choice—the problem of assigning students to public
schools. In particular, in this chapter, we considered one-sided matching problems where
the objective is to find an assignment of agents to objects that satisfies some desirable
property like Pareto optimality. While most work on this problem assumes that agents
only have ordinal preferences, here we considered a setting where agents may have some
underlying cardinal utilities. We first argued why not taking these into account can result
in significant loss in welfare and subsequently designed algorithms that can query the agents
using threshold queries about their cardinal utilities. Overall, our results showed how even
asking the agents for one bit of extra information per object can result in better social
welfare.

Finally, motivated by some observations on a popular fair division website, in Chapter 5
we considered a scenario where the agents are unsophisticated in the sense that they are
prone to making mistakes while reporting their preferences. In particular, we considered
the problem of fairly allocating a set of indivisible goods among two agents, and introduced
a notion of algorithmic stability which, informally, states that the utility experienced by
an agent should not change much as long as they make of “small” or “innocuous” mistakes
while reporting their preferences. We first showed that it impossible for algorithms to
be fair, Pareto optimal, and stable. Following this, we focused on two relaxations of

138

stability, namely, approximate-stability and weak-approximate-stability, and showed how
the rank-leximin algorithm satisfies the maximin share fairness property, is Pareto optimal,
and approximately-stable. Following this, we also presented a simple framework to modify
existing fair and Pareto optimal algorithms in order to ensure that they also achieve weak-
approximate-stability. Although the results in this chapter work only for the limited case of
two agent fair allocation, we believe that our main contribution here was in highlighting the
issue of stability and in explicitly advocating for it be considered in the design of algorithms,
especially ones which ask the agents for cardinal preference information.

6.1 Future Directions

In Chapters 2-5 we discussed future work in the context of specific questions considered
in those chapters. Here we talk about some broad directions that could potentially be
interesting.

Beyond worst-case analysis. All the results in this thesis are with respect to absolute
worst-case notions where we try to find a desirable outcome (e.g., a matching with the least
number of blocking pairs, or one with maximum welfare) and the bounds presented are with
respect to all possible instances and all possible underlying complete information that is
consistent with the given partial information. While we believe that this is a reasonable first
step, it might be the case that these worst-cases almost never occur in most applications
we care about. Hence, it would be interesting to see if one can get better algorithms by
assuming certain structure—ones which are ideally motivated from real applications—on
the kinds of input an algorithm will face. For instance, suppose there is reason to believe
that agents’ preferences will be correlated. In this case, one question that might potentially
be interesting is to see if we can define a suitable parameter to describes how correlated
they are and then come up with algorithms that achieve better bounds for different values
of this parameter. More broadly, it would be interesting to see if, based on some properties,
we can classify “plausible inputs” (i.e., the kinds of input an algorithm is likely to encounter
in an application) into certain classes and then see if it is possible to design class-specific
algorithms that do well on instances from the corresponding class.

Combining theoretical analysis with experiments. The focus of this thesis was on
theoretical analysis of different settings. While such analysis is useful in proving that the
algorithms presented guarantee certain outcomes, there might still be challenges in realising
these guarantees if one we were to actually deploy these in some application. For instance,
while the theoretical analysis from Chapter 4 says that one can improve welfare by even just

139

asking one bit of extra information per object, the algorithms presented there ask for very
specific threshold queries which might perhaps be hard to answer in practice. Therefore, it
would be interesting to study, for example, what kind of queries are easier to answer and
the types of interface-design that can best support queries. More broadly, we believe that
it would be interesting to start with a theoretical model and analysis, run experiments to
see the challenges in deploying these, or the challenges in realising these guarantees, and
then tweak the model and analysis based on such observations.

Randomization. All the results in this thesis are on deterministic algorithms or mecha-
nisms. Since all the problems considered here were ones that were not previously studied,
it was natural as a first step to understand the limits of determinism, as determinism can
in fact be a hard constraint in many applications. However, there might be settings where
randomization is allowed and where in fact it might be beneficial in terms of getting better
outcomes. Therefore, it would be interesting to extend all the results here to this case, and
in the process perhaps get much better bounds than the ones presented here.

140

References

[AA1S]

[AAZ19)

[Abd-+05]

[ABMO5]

|[Abr+04]

[Abr+06]

[Abr-+07]

Ben Abramowitz and Elliot Anshelevich. “Utilitarians Without Utilities: Maxi-
mizing Social Welfare for Graph Problems Using Only Ordinal Preferences”. In:
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence
(AAAI). 2018, pp. 894-901 (cit. on pp. 75, 78, 104, 113).

Ben Abramowitz, Elliot Anshelevich, and Wennan Zhu. “ Awareness of Voter
Passion Greatly Improves the Distortion of Metric Social Choice”. In: Proceed-
ings of the Fifteenth International Conference on Web and Internet Economics
(WINE). 2019, pp. 316 (cit. on p. 78).

Atila Abdulkadiroglu, Parag A Pathak, Alvin E Roth, and Tayfun Sénmez.
“The Boston Public School Match”. In: American Economic Review 95.2 (2005),
pp. 368-371 (cit. on p. 1).

David J. Abraham, Péter Bir6, and David Manlove. ““ Almost stable” Match-
ings in the Roommates Problem”. In: Proceedings of the Third International
Workshop on Approzimation and Online Algorithms (WAOA). 2005, pp. 1-14
(cit. on p. 13).

David J. Abraham, Katarina Cechlarova, David F Manlove, and Kurt Mehlhorn.
“Pareto Optimality in House Allocation Problems”. In: Proceedings of the
Fifteenth International Symposium on Algorithms and Computation (ISAAC).
2004, pp. 3-15 (cit. on pp. 73, 78, 80).

David J. Abraham, Ning Chen, Vijay Kumar, and Vahab S Mirrokni. “Assign-
ment Problems in Rental Markets”. In: Proceedings of the Second International
Workshop on Internet and Network Economics (WINE). 2006, pp. 198-213
(cit. on pp. 78, 80).

David J Abraham, Robert W Irving, Telikepalli Kavitha, and Kurt Mehlhorn.
“Popular Matchings”. In: SIAM Journal on Computing 37.4 (2007), pp. 1030—
1045 (cit. on p. 100).

141

[ACY11]

[ACY15]

[Ama+17|

[Ama+20)]

[Ama+21|

|APROS]

|AS03)

[AS16]

[AS98]

|AS99)

Atila Abdulkadiroglu, Yeon-Koo Che, and Yosuke Yasuda. “Resolving Conflict-
ing Preferences in School Choice: The “Boston Mechanism” Reconsidered”. In:
American Economic Review 101.1 (2011), pp. 399-410 (cit. on pp. 74, 78).

Atila Abdulkadiroglu, Yeon-Koo Che, and Yosuke Yasuda. “Expanding “Choice”
in School Choice”. In: American Economic Journal: Microeconomics 7.1 (2015),
pp. 1-42 (cit. on pp. 74, 78).

Georgios Amanatidis, Georgios Birmpas, George Christodoulou, and Vangelis
Mar-kakis. “Truthful Allocation Mechanisms Without Payments: Characteri-
zation and Implications on Fairness”. In: Proceedings of the Fighteenth ACM
Conference on Economics and Computation (EC). 2017, pp. 545-562 (cit. on
p. 112).

Georgios Amanatidis, Georgios Birmpas, Aris Filos-Ratsikas, and Alexandros A.
Voudouris. “Peeking Behind the Ordinal Curtain: Improving Distortion via
Cardinal Queries”. In: Proceedings of the Thirty-Fourth AAAI Conference on
Artificial Intelligence (AAAI). 2020, pp. 1782-1789 (cit. on p. 78).

Georgios Amanatidis, Georgios Birmpas, Aris Filos-Ratsikas, and Alexandros A.
Voudouris. “A Few Queries Go a Long Way: Information-Distortion Tradeoffs
in Matching”. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial
Intelligence (AAAI). 2021 (cit. on pp. 75, 78, 89, 180).

Atila Abdulkadiroglu, Parag A Pathak, and Alvin E Roth. “The New York City
High School Match”. In: American Economic Review 95.2 (2005), pp. 364-367
(cit. on p. 1).

Atila Abdulkadiroglu and Tayfun Sénmez. “School choice: A Mechanism Design
Approach”. In: American economic review 93.3 (2003), pp. 729-747 (cit. on
p. 1).

Elliot Anshelevich and Shreyas Sekar. “Blind, Greedy, and Random: Algorithms
for Matching and Clustering Using Only Ordinal Information”. In: Proceedings
of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI). 2016,
pp. 383-389 (cit. on pp. 75, 78, 84, 104, 113).

Atila Abdulkadiroglu and Tayfun Sénmez. “Random Serial Dictatorship and
the Core From Random Endowments in House Allocation Problems”. In:
Econometrica 66.3 (1998), pp. 689-701 (cit. on pp. 73, 78).

Atila Abdulkadiroglu and Tayfun Sénmez. “House Allocation With Existing
Tenants”. In: Journal of Economic Theory 88.2 (1999), pp. 233-260 (cit. on
pp. 73, 78).

142

[AWX15]

[AZ17]

[Azi+15]

|Azi+16]

[Azi+19]

[Azi15]

[Bar01]

[Bau-+12]

IBBO4|

[BE02]

Haris Aziz, Toby Walsh, and Lirong Xia. “Possible and necessary allocations
via sequential mechanisms”. In: Proceedings of the Twenty-Fourth International
Joint Conference on Artificial Intelligence (IJCAI). 2015, pp. 468-474 (cit. on

p. 12).
Elliot Anshelevich and Wennan Zhu. “Tradeoffs Between Information and
Ordinal Approximation for Bipartite Matching”. In: Proceedings of the Tenth

International Symposium on Algorithmic Game Theory (SAGT). 2017, pp. 267—
279 (cit. on pp. 75, 78, 104, 113).

Haris Aziz, Serge Gaspers, Simon Mackenzie, and Toby Walsh. “Fair Assignment
of Indivisible Objects Under Ordinal Preferences”. In: Artificial Intelligence
227 (2015), pp. 71-92 (cit. on pp. 104, 114).

Haris Aziz, Péter Biro, Serge Gaspers, Ronald de Haan, Nicholas Mattei, and
Baharak Rastegari. “Stable Matching With Uncertain Linear Preferences”.
In: Proceedings of the Ninth International Symposium on Algorithmic Game
Theory (SAGT). 2016, pp. 195-206 (cit. on p. 16).

Haris Aziz, Péter Bir6, Jérome Lang, Julien Lesca, and Jérome Monnot. “Effi-
cient reallocation under additive and responsive preferences”. In: Theoretical
Computer Science 790 (2019), pp. 1-15 (cit. on p. 12).

Haris Aziz. “A Note on the Undercut Procedure”. In: Social Choice and Welfare
45.4 (Dec. 2015), pp. 723-728 (cit. on p. 114).

Salvador Barbera. “An Introduction to Strategy-Proof Social Choice Functions”.
In: Social Choice and Welfare 18.4 (2001), pp. 619-653 (cit. on p. 50).

Dorothea Baumeister, Piotr Faliszewski, Jérome Lang, and Jorg Rothe. “Cam-
paigns for Lazy Voters: Truncated Ballots”. In: Proceedings of the Eleventh
International Conference on Autonomous Agents and Multiagent Systems (AA-
MAS). 2012, pp. 577-584 (cit. on pp. 12, 26).

Mourad Baiou and Michel Balinski. “Student Admissions and Faculty Recruit-
ment”. In: Theoretical Computer Science 322.2 (2004), pp. 245-265 (cit. on
p. 16).

Olivier Bousquet and André Elisseeft. “Stability and Generalization”. In: Journal

of Machine Learning Research (JMLR) 2.Mar (2002), pp. 499-526 (cit. on
p. 112).

143

[BEL10]

[Ben-+20|

[BJ94]

[BKK12|

[BKK14]

[BKV18)]

[BMOL]

[BMM10]

[Bou+15]

[Bre+17]

[BT964)]

Sylvain Bouveret, Ulle Endriss, and Jérome Lang. “Fair Division Under Ordi-
nal Preferences: Computing Envy-Free Allocations of Indivisible Goods”. In:

Proceedings of the Nineteenth European Conference on Artificial Intelligence
(ECAI). 2010, pp. 387-392 (cit. on pp. 104, 114).

Gerdus Benade, Swaprava Nath, Ariel D Procaccia, and Nisarg Shah. “Prefer-
ence Elicitation for Participatory Budgeting”. In: Management Science, Articles
in Advance (2020), pp. 1-15 (cit. on p. 78).

Salvador Barbera and Matthew Jackson. “A Characterization of Strategy-Proof
Social Choice Functions for Economies With Pure Public Goods”. In: Social
Choice and Welfare 11.3 (1994), pp. 241-252 (cit. on p. 50).

Steven J Brams, D Marc Kilgour, and Christian Klamler. “The Undercut
Procedure: An Algorithm for the Envy-Free Division of Indivisible Items”. In:
Social Choice and Welfare 39.2-3 (2012), pp. 615-631 (cit. on p. 114).

Steven J Brams, M Kilgour, and Christian Klamler. “Two-Person Fair Division
of Indivisible Items: An Efficient, Envy-Free Algorithm”. In: Notices of the
AMS 61.2 (2014), pp. 130-141 (cit. on pp. 104, 114).

Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. “Find-
ing Fair and Efficient Allocations”. In: Proceedings of the Nineteenth ACM
Conference on Economics and Computation (EC). 2018, pp. 557-574 (cit. on
pp. 114-115, 186).

Anna Bogomolnaia and Hervé Moulin. “A New Solution to the Random As-
signment Problem”. In: Journal of Economic Theory 100.2 (2001), pp. 295-328
(cit. on p. 104).

Péter Biro, David Manlove, and Shubham Mittal. “Size versus Stability in
the Marriage Problem”. In: Theoretical Computer Science 411.16-18 (2010),
pp. 1828-1841 (cit. on p. 13).

Craig Boutilier, loannis Caragiannis, Simi Haber, Tyler Lu, Ariel D Procaccia,
and Or Sheffet. “Optimal Social Choice Functions: A Utilitarian View”. In:
Artificial Intelligence 227 (2015), pp. 190-213 (cit. on pp. 75, 78, 104, 113).

Robert Bredereck, Piotr Faliszewski, Andrzej Kaczmarczyk, Rolf Niedermeier,
Piotr Skowron, and Nimrod Talmon. “Robustness Among Multiwinner Voting
Rules”. In: Proceedings of the Tenth International Symposium on Algorithmic
Game Theory (SAGT). 2017, pp. 80-92 (cit. on pp. 78, 113).

Steven J Brams and Alan D Taylor. “A Procedure for Divorce Settlements”. In:
Mediation Quarterly 13.3 (1996), pp. 191-205 (cit. on pp. 115, 185).

144

[BTI6D)

[Bud+13]

[Bud11]

[CAR|

|Car+-16]

[CCP19)

[CFT16]

|CGH19]

[CMA12]

[CMA14]

Steven J Brams and Alan D Taylor. Fair Division: From Cake-Cutting to
Dispute Resolution. Cambridge University Press, 1996 (cit. on pp. 102, 115,
185).

Eric Budish, Yeon-Koo Che, Fuhito Kojima, and Paul Milgrom. “Designing
Random Allocation Mechanisms: Theory and Applications”. In: American
Economic Review 103.2 (2013), pp. 585-623 (cit. on p. 104).

Eric Budish. “The Combinatorial Assignment Problem: Approximate Competi-
tive Equilibrium from Equal Incomes”. In: Journal of Political Economy 119.6
(2011), pp. 1061-1103 (cit. on p. 114).

CARMS: Canadian Resident Matching Service. URL: https://www.carms.ca/
(visited on 06/22/2021) (cit. on pp. 1, 16).

loannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D Procaccia, Nisarg
Shah, and Junxing Wang. “The Unreasonable Fairness of Maximum Nash
Welfare”. In: Proceedings of the Seventeenth ACM Conference on Economics
and Computation (EC). 2016, pp. 305-322 (cit. on pp. 103-104, 109, 112,
114-116, 186).

loannis Caragiannis, George Christodoulou, and Nicos Protopapas. “Impartial
selection with additive approximation guarantees”. In: Proceedings of the Twefith
International Symposium on Algorithmic Game Theory (SAGT). Springer. 2019,
pp. 269-283 (cit. on p. 48).

Qingpeng Cai, Aris Filos-Ratsikas, and Pingzhong Tang. “Facility Location
With Minimax Envy”. In: Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence (IJCAI). 2016, pp. 137-143 (cit. on p. 42).

Ioannis Caragiannis, Nick Gravin, and Xin Huang. “Envy-freeness up to Any
Item with High Nash Welfare: The Virtue of Donating Items”. In: Proceedings
of the Twentieth ACM Conference on Economics and Computation (EC). 2019,
pp. 527-545 (cit. on p. 114).

Alessandro Chiesa, Silvio Micali, and Zeyuan Allen-Zhu. “Mechanism Design
with Approximate Valuations”. In: Proceedings of the Third Innovations in
Theoretical Computer Science (ITCS). 2012, pp. 34-38 (cit. on pp. 13, 45, 47,
49, 54, 78, 113).

Alessandro Chiesa, Silvio Micali, and Zeyuan Allen-Zhu. “Knightian Self Un-
certainty in the VCG Mechanism for Unrestricted Combinatorial Auctions”. In:
Proceedings of the Fifteenth ACM Conference on Economics and Computation
(EC). 2014, pp. 619-620 (cit. on pp. 49, 53, 78, 113).

145

https://www.carms.ca/

[CMA15]

[Con85|

[CSS19)

[DB13]

[DB14]

[Dok+12]

[Dwo+06]

[Dwo+12]

[Dwo+15]

[Dwo06|

Alessandro Chiesa, Silvio Micali, and Zeyuan Allen-Zhu. “Knightian Analysis
of the Vickrey Mechanism”. In: Econometrica 83.5 (2015), pp. 1727-1754. ISSN:
1468-0262 (cit. on pp. 47-49, 113).

Marquis De Condorcet. Essai sur l’application de ’analyse a la probabilité des
décisions rendues a la pluralité des voizr. L'imprimerie royale, 1785 (cit. on
p. 1).

Jiehua Chen, Piotr Skowron, and Manuel Sorge. “Matchings Under Preferences:
StrenGth of Stability and Trade-Offs”. In: Proceedings of the Twentieth ACM

Conference on Economics and Computation (EC). 2019, pp. 41-59 (cit. on
pp. 78, 113).

Joanna Drummond and Craig Boutilier. “Elicitation and Approximately Stable
Matching With Partial Preferences”. In: Proceedings of the Twenty-Third
International Joint Conference on Artificial Intelligence (IJCAI). 2013, pp. 97—
105 (cit. on pp. 13, 16).

Joanna Drummond and Craig Boutilier. “Preference Elicitation and Interview
Minimization in Stable Matchings”. In: Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence (AAAI). 2014, pp. 645-653 (cit. on p. 17).

Elad Dokow, Michal Feldman, Reshef Meir, and Ilan Nehama. “Mechanism
Design on Discrete Lines and Cycles”. In: Proceedings of the Thirteenth ACM
Conference on Electronic Commerce (EC). ACM. 2012, pp. 423-440 (cit. on
p. 50).

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. “Calibrating

Noise to Sensitivity in Private Data Analysis”. In: Theory of Cryptography
Conference (TCC). 2006, pp. 265-284 (cit. on p. 112).

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard
Zemel. “Fairness Through Awareness”. In: Proceedings of the Third Innovations
in Theoretical Computer Science Conference (ITCS). 2012, pp. 214-226 (cit. on
p. 113).

Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Rein-
gold, and Aaron Leon Roth. “Preserving Statistical Validity in Adaptive Data
Analysis”. In: Proceedings of the Forty-Seventh ACM Symposium on Theory of
Computing (STOC). 2015, pp. 117-126 (cit. on p. 112).

Cynthia Dwork. “Differential Privacy”. In: Proceedings of the Thirty-Third
International Colloquium on Automata, Languages and Programming (ICALP).
2006, pp. 1-12 (cit. on p. 112).

146

[FFZ14]

[FSY16]

[FT11]

[FT16]

[FW13]

|Gal+17]

|Gho+11]

G189

[GKM17]

[Goe+19]

Aris Filos-Ratsikas, Sgren Kristoffer Stiil Frederiksen, and Jie Zhang. “Social
Welfare in One-Sided Matchings: Random Priority and Beyond”. In: Proceedings
of the Seventh International Symposium on Algorithmic Game Theory (SAGT).
2014, pp. 1-12 (cit. on p. 78).

Itai Feigenbaum, Jay Sethuraman, and Chun Ye. “Approximately Optimal
Mechanisms for Strategyproof Facility Location: Minimizing Lp Norm of Costs”.
In: Mathematics of Operations Research 42.2 (2016), pp. 434447 (cit. on p. 51).

Uriel Feige and Moshe Tennenholtz. “Mechanism Design With Uncertain Inputs:
(To Err Is Human, to Forgive Divine)”. In: Proceedings of the Forty-Third Annual
ACM Symposium on Theory of Computing (STOC). 2011, pp. 549-558 (cit. on
p. 50).

Dimitris Fotakis and Christos Tzamos. “Strategyproof Facility Location for
Concave Cost Functions”. In: Algorithmica 76.1 (2016), pp. 143-167 (cit. on
p. 51).

Michal Feldman and Yoav Wilf. “Strategyproof Facility Location and the Least

Squares Objective”. In: Proceedings of the Fourteenth ACM Conference on
FElectronic Commerce (EC). 2013, pp. 873-890 (cit. on pp. 42, 51).

Ya’akov Gal, Moshe Mash, Ariel D Procaccia, and Yair Zick. “Which is the
fairest (rent division) of them all?” In: Journal of the ACM (JACM) 64.6
(2017), pp. 1-22 (cit. on p. 102).

Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker,
and Ion Stoica. “Dominant Resource Fairness: Fair Allocation of Multiple
Resource Types”. In: Proceedings of the §th USENIX conference on Networked
systems design and implementation. 2011, pp. 323-336 (cit. on p. 1).

Dan Gusfield and Robert W. Irving. The Stable Marriage Problem - Structure
and Algorithms. Foundations of computing series. MIT Press, 1989 (cit. on
pp. 11, 16).

Ashish Goel, Anilesh K Krishnaswamy, and Kamesh Munagala. “Metric Sis-
tortion of Social Choice Rules: Lower Bounds and Fairness Properties”. In:

Proceedings of the Eighteenth ACM Conference on Economics and Computation
(EC). 2017, pp. 287-304 (cit. on pp. 75, 78, 104, 113).

Ashish Goel, Anilesh K Krishnaswamy, Sukolsak Sakshuwong, and Tanja Aita-
murto. “Knapsack Voting for Participatory Budgeting”. In: ACM Transactions
on Economics and Computation 7.2 (2019), pp. 1-27 (cit. on p. 78).

147

|GP15]

[GS62]

[GT17]

|Haz+12]

[HB04]

[HBO7a]

[HBO7D)

[HIM16]

[Hua+13|

[HZ79]

[IMOS]

Jonathan Goldman and Ariel D Procaccia. “Spliddit: Unleashing Fair Division
Algorithms”. In: ACM SIGecom Exchanges 13.2 (2015), pp. 41-46 (cit. on
pp. 103, 135).

David Gale and Lloyd S Shapley. “College Admissions and the Stability of
Marriage”. In: The American Mathematical Monthly 69.1 (1962), pp. 9-15
(cit. on pp. 11, 16, 105).

Iddan Golomb and Christos Tzamos. Truthful Facility Location With Additive
Errors. 2017. arXiv: 1701.00529 [cs.GT] (cit. on pp. 43-44, 48, 51, 68-69,
71).

Noam Hazon, Yonatan Aumann, Sarit Kraus, and Michael Wooldridge. “On the

evaluation of election outcomes under uncertainty”. In: Artificial Intelligence
189 (2012), pp. 1-18 (cit. on p. 13).

Nathanael Hyafil and Craig Boutilier. “Regret Minimizing Equilibria and
Mechanisms for Games With Strict Type Uncertainty”. In: Proceedings of the
Twentieth Conference on Uncertainty in Artificial Intelligence (UAI). 2004,
pp. 268277 (cit. on p. 14).

Nathanaél Hyafil and Craig Boutilier. “Mechanism Design With Partial Rev-
elation”. In: Proceedings of the Twentieth International Joint Conference on
Artificial Intelligence (IJCAI). 2007, pp. 1333-1340 (cit. on pp. 49-50).

Nathanaél Hyafil and Craig Boutilier. “Partial Revelation Automated Mecha-
nism Design”. In: Proceedings of the Twenty-Second National Conference on
Artificial Intelligence (AAAI). 2007, pp. 7277 (cit. on pp. 49-50).

Koki Hamada, Kazuo Iwama, and Shuichi Miyazaki. “The Hospitals/Residents
Problem with Lower Quotas”. In: Algorithmica 74.1 (2016), pp. 440-465 (cit. on
p. 34).

Chien-Chung Huang, Telikepalli Kavitha, Kurt Mehlhorn, and Dimitrios
Michail. “Fair Matchings and Related Problems”. In: JARCS Annual Con-

ference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS). 2013 (cit. on pp. 78, 80, 82).

Aanund Hylland and Richard Zeckhauser. “The Efficient Allocation of Individ-
uals to Positions”. In: Journal of Political economy 87.2 (1979), pp. 293-314
(cit. on pp. 73, 78).

Robert W. Irving and David Manlove. “Approximation Algorithms for Hard
Variants of the Stable Marriage and Hospitals/Residents Problems”. In: Journal
of Combinatorial Optimization 16.3 (2008), pp. 279-292 (cit. on p. 26).

148

https://arxiv.org/abs/1701.00529

[Irv+-06]

[Irv04]
[Irv85]
[Irv94]

[Kar72]

ILB11]

|Lip-+04]

[Lu-+10]

[Man+02]

[Man-+19|

[Man13|

Robert W. Irving, Telikepalli Kavitha, Kurt Mehlhorn, Dimitrios Michail, and
Katarzyna E. Paluch. “Rank-Maximal Matchings”. In: ACM Transactions on
Algorithms 2.4 (Oct. 2006), pp. 602-610 (cit. on pp. 78, 80, 82).

Robert W. Irving. Greedy Matchings. 2004. University of Glasgow, Computing
Science Department Research Report: TR-2004-177 (cit. on pp. 78, 80, 82).

Robert W. Irving. “An Efficient Algorithm for the “Stable Roommates” Prob-
lem”. In: Journal of Algorithms 6.4 (1985), pp. 577-595 (cit. on p. 11).

Robert W. Irving. “Stable Marriage and Indifference”. In: Discrete Applied
Mathematics 48.3 (1994), pp. 261-272 (cit. on pp. 12, 21).

Richard M. Karp. “Reducibility Among Combinatorial Problems”. In: Proceed-
ings of the Symposium on the Complexity of Computer Computations. 1972,
pp. 85-103 (cit. on p. 33).

Tyler Lu and Craig Boutilier. “Robust Approximation and Incremental Elicita-
tion in Voting Protocols”. In: Proceedings of the Twenty-Second International
Joint Conference on Artificial Intelligence (IJCAI). 2011, pp. 287293 (cit. on
p. 14).

Richard J Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi.
“On Approximately Fair Allocations of Indivisible Goods”. In: Proceedings of
the Fifth ACM conference on Electronic Commerce (EC). 2004, pp. 125-131
(cit. on pp. 102, 114).

Pinyan Lu, Xiaorui Sun, Yajun Wang, and Zeyuan Allen Zhu. “Asymptotically
Optimal Strategy-Proof Mechanisms for Two-Facility Games”. In: Proceedings
of the Eleventh ACM Conference on Electronic Commerce (EC). 2010, pp. 315—
324 (cit. on pp. 42, 51).

David Manlove, Robert W. Irving, Kazuo Iwama, Shuichi Miyazaki, and Ya-
sufumi Morita. “Hard Variants of Stable Marriage”. In: Theoretical Computer
Science 276.1-2 (2002), pp. 261-279 (cit. on pp. 14, 22).

Debmalya Mandal, Ariel D. Procaccia, Nisarg Shah, and David P. Woodruff.
“Efficient and Thrifty Voting by Any Means Necessary”. In: Proceedings of the
Thirty-Third Conference on Neural Information Processing Systems (NeurIPS).
2019, pp. 7178-7189 (cit. on p. 78).

David F. Manlove. Algorithmics of Matching Under Preferences. Vol. 2. Series
on Theoretical Computer Science. WorldScientific, 2013 (cit. on pp. 11, 16).

149

TR-2004-177

[Man16]

IMD11]

[Mic07]

[ML18]

[ML19]

[ML20]

[MMO5]

[IMML21]

[Mous80|

[IMSW20]

[MTO7]

David F. Manlove. “Hospitals/Residents Problem”. In: Encyclopedia of Algo-
rithms. 2016, pp. 926-930 (cit. on pp. 1, 11, 16).

Jordi Massé and Inés Moreno De Barreda. “On Strategy-Proofness and Sym-
metric Single-Peakedness”. In: Games and Economic Behavior 72.2 (2011),
pp. 467-484 (cit. on pp. 44, 50, 55, 63-64, 66).

Dimitrios Michail. “Reducing Rank-Maximal to Maximum Weight Matching”.
In: Theoretical Computer Science 389.1-2 (2007), pp. 125-132 (cit. on p. 82).

Vijay Menon and Kate Larson. “Robust and Approximately Stable Marriages
Under Partial Information”. In: Proceedings of the Fourteenth International
Conference on Web and Internet Economics (WINE). 2018, pp. 341-355 (cit. on
pp. iv, 78, 113).

Vijay Menon and Kate Larson. “Mechanism Design for Locating a Facility Under
Partial Information”. In: Proceedings of the Twelfth International Symposium
on Algorithmic Game Theory (SAGT). 2019, pp. 49-62 (cit. on pp. iv, 78, 113).

Vijay Menon and Kate Larson. Algorithmic Stability in Fair Allocation of
Indivisible Goods Among Two Agents. 2020. arXiv: 2007 .15203 [cs.GT] (cit.
on p. iv).

Kurt Mehlhorn and Dimitrios Michail. “Network Problems With Non-
Polynomial Weights and Applications”. Manuscript. 2005 (cit. on pp. 78, 80,
82).

Thomas Ma, Vijay Menon, and Kate Larson. “Improving Welfare in One-Sided
Matching Using Simple Threshold Queries”. In: Proceedings of the Thirteeth
International Joint Conference on Artificial Intelligence (IJCAI). 2021 (cit. on
p. iv).

Hervé Moulin. “On Strategy-Proofness and Single Peakedness”. In: Public
Choice 35.4 (1980), pp. 437-455 (cit. on pp. 50, 55).

Debmalya Mandal, Nisarg Shah, and David P. Woodruff. “Optimal
Communication-Distortion Tradeoff in Voting”. In: Proceedings of the
Twenty-First ACM Conference on Economics and Computation (EC). 2020,
pp. 795-813 (cit. on p. 78).

Frank McSherry and Kunal Talwar. “Mechanism Design via Differential Pri-
vacy”. In: Proceedings of the Forty-Fighth IEEE Symposium on Foundations of
Computer Science (FOCS). 2007, pp. 94-103 (cit. on p. 112).

150

https://arxiv.org/abs/2007.15203

MV 18]

[Nis+07]
INRM]

[PROG]

[PR18]|

[PT13]

[Ram13|

|[Ras+13]

|[Ras+14|

[Rom98|

[Rot&4|

Tung Mai and Vijay V. Vazirani. “Finding Stable Matchings That Are Robust to
Errors in the Input”. In: Proceedings of the Twenty-Sixzth European Symposium
on Algorithms (ESA). 2018, 60:1-60:11 (cit. on pp. 78, 113).

Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V Vazirani. Algorithmic
Game Theory. Cambridge University Press, 2007 (cit. on pp. 41, 50, 55).

NRMP: National Resident Matching Program. URL: https://www.nrmp.org/
(visited on 06,/22/2021) (cit. on pp. 1, 16).

Ariel D Procaccia and Jeffrey S. Rosenschein. “The Distortion of Cardinal
Preferences in Voting”. In: International Workshop on Cooperative Information
Agents. 2006, pp. 317-331 (cit. on pp. 75, 78, 84).

Benjamin Plaut and Tim Roughgarden. “Almost Envy-freeness with General
Valuations”. In: Proceedings of the Twenty-Ninth ACM-SIAM Symposium on
Discrete Algorithms (SODA). 2018, pp. 2584-2603 (cit. on pp. 114-115, 120,
185).

Ariel D Procaccia and Moshe Tennenholtz. “ Approximate Mechanism Design
Without Money”. In: ACM Transactions on Economics and Computation 1.4
(2013), pp. 18:1-18:26 (cit. on pp. 42, 48, 50-51).

Eve Ramaekers. “Fair Allocation of Indivisible Goods: The Two-Agent Case”.
In: Social Choice and Welfare 41.2 (2013), pp. 359-380 (cit. on pp. 114, 117,
120).

Baharak Rastegari, Anne Condon, Nicole Immorlica, and Kevin Leyton-Brown.
“Two-Sided Matching With Partial Information”. In: Proceedings of the Four-
teenth ACM Conference on FElectronic Commerce (EC). 2013, pp. 733-750
(cit. on p. 17).

Baharak Rastegari, Anne Condon, Nicole Immorlica, Robert Irving, and Kevin
Leyton-Brown. “Reasoning About Optimal Stable Matchings Under Partial
Information”. In: Proceedings of the Fifteenth ACM Conference on Economics
and Computation (EC). 2014, pp. 431-448 (cit. on pp. 12, 16).

Antonio Romero-Medina. “Implementation of Stable Solutions in a Restricted
Matching Market”. In: Review of Economic Design 3.2 (1998), pp. 137-147
(cit. on p. 16).

Alvin E Roth. “The Evolution of the Labor Market for Medical Interns and
Residents: A Case Study in Game Theory”. In: Journal of political Economy
92.6 (1984), pp. 991-1016 (cit. on pp. 1, 16).

151

https://www.nrmp.org/

|[Rot86]

[RP77]

[RS90]

[SAH17|

[Sha+10]

9S13]

SS74]

[SU10]

[SV02]

ISYE13]

[Tan90)|

Alvin E Roth. “On the Allocation of Residents to Rural Hospitals: A General
Property of Two-Sided Matching Markets”. In: Econometrica: Journal of the
Econometric Society (1986), pp. 425-427 (cit. on pp. 1, 16).

Alvin E. Roth and Andrew Postlewaite. “Weak Versus Strong Domination in a
Market With Indivisible Goods”. In: Journal of Mathematical Economics 4.2
(1977), pp. 131-137 (cit. on pp. 73, 78).

Alvin E. Roth and Marilda A. Oliveira Sotomayor. Two-Sided Matching: A
Study in Game-Theoretic Modeling and Analysis. Econometric Society Mono-
graphs. Cambridge University Press, 1990 (cit. on p. 16).

Erel Segal-Halevi, Haris Aziz, and Avinatan Hassidim. “Fair Allocation Based
on Diminishing Differences”. In: Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence (IJCAI). 2017, pp. 1254-1261 (cit. on
pp. 104, 114).

Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan.
“Learnability, Stability and Uniform Convergence”. In: Journal of Machine
Learning Research (JMLR) 11.0ct (2010), pp. 2635-2670 (cit. on p. 112).

Daniela Saban and Jay Sethuraman. “House allocation with indifferences: a
generalization and a unified view”. In: Proceedings of the Fourteenth ACM
conference on Electronic Commerce (EC). 2013, pp. 803-820 (cit. on pp. 87-90,
92, 95, 182-183).

Lloyd Shapley and Herbert Scarf. “On Cores and Indivisibility”. In: Journal of
Mathematical Economics 1.1 (1974), pp. 23-37 (cit. on pp. 73, 78, 80).

Tayfun Sénmez and M Utku Unver. “House Allocation With Existing Tenants:
A Characterization”. In: Games and Economic Behavior 69.2 (2010), pp. 425
445 (cit. on p. 78).

James Schummer and Rakesh V Vohra. “Strategy-Proof Location on a Network”.
In: Journal of Economic Theory 104.2 (2002), pp. 405428 (cit. on p. 50).

Dmitry Shiryaev, Lan Yu, and Edith Elkind. “On Elections With Robust Win-
ners”. In: Proceedings of the Twelfth International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS). 2013, pp. 415-422 (cit. on pp. 78,
113).

Jimmy J. M. Tan. “A Maximum Stable Matching for the Roommates Problem”.
In: BIT Numerical Mathematics 30.4 (1990), pp. 631-640 (cit. on p. 29).

152

[VK14]

IXC11]

Rudolf Vetschera and D Marc Kilgour. “Fair Division of Indivisible Items
Between Two Players: Design Parameters for Contested Pile Methods”. In:
Theory and Decision 76.4 (2014), pp. 547-572 (cit. on p. 114).

Lirong Xia and Vincent Conitzer. “Determining Possible and Necessary Winners
Given Partial Orders”. In: Journal of Artificial Intelligence Research (JAIR)
41 (2011), pp. 25-67 (cit. on p. 12).

153

APPENDICES

154

Appendix A

Omitted material from Chapter 2

A.1 Missing proofs from Section 2.3.3

Lemma 7. Let Z; denote some instance and Zy denote the instance returned by the procedure
propose With(A, I,), where the set A represents the proposing side. If there exists a matching
of size t in Iy that is internally super-stable with respect to I, then there exists a matching
of size t in Iy that is internally super-stable with respect to T.

Proof. In order to prove this, we need a few claims. However, before that let us introduce
the following terminology. When the procedure proposeWith(A,Z;) is executed, for every
run of the while loop in line 2 with respect to an agent a, we can track the instance that
is currently being used. That is, initially we have the instance Z; and this is referred to
as the instance that is “currently being used” by the agent a,, where a; is the first agent
with respect whom the while loop is executed. Now, after the first run of the while loop
(w.r.t. a;) we have an updated instance (because of some delete operations that happened
in lines 3-10), say, Z.,. Therefore, the next time the while loop is run with respect to
some agent ao, this is the instance that is “currently being used” with respect to a;. We
use this terminology in the following claim.

Claim 12. Let a € A be an agent who is assigned to be ‘free’ in proposeWith(A,Z;), Zey
denote the instance that is currently being used with respect to a, and Z] be the instance
obtained by running lines 3—10 with respect to agent a. If there exists a matching of size ¢
in Z.,. that is internally super-stable with respect to Z, then there exists a matching of
size t in 7 that is internally super-stable with respect to Z.

155

Proof. First, note that every time the procedure proposeWith() is called with the set A,
the agents in this set do not have any ties. This is because, when proposeWith() is called
with the set of women W for the first time in line 18, all ties are already broken due to the
first call of proposeWith() with the set of men in line 17. Therefore, in all the arguments
below we do not need to concern ourselves with issues that can arise as a result of the
agents in A having ties.

Now, to prove this claim we consider the following two cases separately.

1. when b, the first agent in a’s list, is either engaged to p, but prefers a to p, or is not
engaged currently

2. when b is engaged to p € A and finds p and a incomparable

Case 1: In this case the only change that happens to the instance Z.,,.. are due to deletions
of the form (c,b) where a > c¢. Let the resulting instance be Zj. So, in order to prove
that Z;] has a matching of size ¢ that is internally super-stable with respect to Z, we just
need to prove that there exists a matching of size t in Z.,,., that is internally super-stable
matching with respect to Z and does not have any matches of the form (c¢,b). Now, let us
suppose that’s not the case and that in every matching pu of size ¢t in Z.,,., that is internally
super-stable with respect to Z there exists such a pair. This in turn implies that a is
unmatched in p, for if otherwise (a,b) will form an obvious-blocking pair. Hence, we can
form the matching p/ = (1\ (¢,b)) U (a,b). Note that x4 is internally-stable with respect to
7 as this does not introduce any new super-blocking pair (since b is the first agent on a’s
list and b does not block any other agent in i’ as he prefers the new partner over his old
partner ¢) and has the same size as p. This in turn is a contradiction and hence we have
that 7] has a matching of size t that is internally super-stable with respect to Z.

Case 2: In this case, the only change that happens to the instance Z.,,, is the deletion
of (a,b). Let the resulting instance be Zj. So, in order to prove that Z| has a matching
of size t that is internally super-stable with respect to Z, we just need to prove that there
exists a matching of size t in Z.,,, that is internally super-stable matching with respect to
7 and does not have any matches of the form (a,b). Suppose that’s not the case and that
every matching u of size t in Z.,,, that is internally super-stable matching with respect
to Z has (a,b). This in turn implies that p is unmatched in p, for if otherwise (p,b)
will form a super-blocking pair (since b is the first agent on p’s list and b finds p and a
incomparable). Hence, we can now form the matching ' = (u \ (a,b)) U (p,b), which is
internally super-stable with respect to Z as this does not introduce any new super-blocking
pair (since i) b is the first agent on p’s list and i) b does not block any other agent in p’ as
it finds a and b incomparable and so if he blocks someone now he also blocked them when

156

(a,b) was present, thus contradicting the fact that p was internally super-stable) and has
the same size as p. This in turn is a contradiction and hence, again, we have that Z] has a
matching of size ¢ that is internally super-stable with respect to Z. O]

Next, we have the following claim whose proof is very similar to Case 2 in the proof of
Claim 12.

Claim 13. Let m be a man, w be the first woman on m’s list, Z3 be some instance obtained
after line 11, and Z, be the instance obtained after deleting each (m’, w) in line 14. If there
exists a matching of size t in Z3 that is internally super-stable with respect to Z, then there
exists a matching of size ¢ in Z, that is internally super-stable with respect to Z.

Given the two claims above, we are now ready to prove Lemma 7. First, starting with Z;
and by repeatedly using Claim 12 with respect to each free agent a € A, we can see that
the instance Z; that we obtain at the end of the while loop (i.e., line 11) has a matching
of size t that is internally super-stable matching with respect to the initial instance Z.
Second, starting with Z] and by repeatedly using Claim 13 with respect to each man, we
can see that the instance Z, that is returned from the procedure proposeWith(A,Z;) has a
matching of size t that is internally super-stable with respect to the instance Z. This in
turn proves our lemma. O

Lemma 8. Let Z; denote some instance that does not contain any ties, (my,wy), (Mg, ws),
ooy (my,w,) be a rotation that is exposed in Iy, and Iy be the instance that is obtained by
deleting the entries (m;, w;) for alli € {1,...,7r} from I,. If there exists a matching of size
t in Iy that is internally super-stable with respect to I, then there exists a matching of size
t in Iy that is internally super-stable with respect to L.

Proof. Let u be a matching of size ¢ in Z; that is internally super-stable with respect to Z.
We will consider the following two cases separately and show that in each case there exists
a matching of size t in Z, that is internally super-stable with respect to Z.

1. forallie{1,...,r}, (m;,w;) € p
2. there exists some j € {1,...,7} such that (m;,w;) ¢ p

Case 1: Consider the matching y that is obtained by removing (m;, w;) and instead adding
(mi, wip1) for all ¢ € {1,...,r} (here i + 1 is done modulo 7). Now, it is easy to see that
this does not lead to any new internal super-blocking pairs with respect to Z. Hence, ' is
internally super-stable with respect to Z, has the same size as p (as every agent matched in
p is also matched in u'), and all the matched pairs in p’ are in Zs.

157

Case 2: First, note that if (m;,w;) ¢ u for all ¢ € {1,...,r}, then we are done as the
only deleted entries in Z, are (m;, w;) for all i € {1,...,r}. So this implies that we can,
without loss of generality, consider the smallest k € {1,...,r} such that (m;, w;) ¢ p for all
g eA{l,... k}, but (my41,wr1) € p (since there is at least one j such that (m;, w;) ¢ pu,
this can always be done because we can re-index the rotation so that the first element
(mq,w;) of the rotation is not in u). Let Z) be the instance that is formed by deleting
the entries (m;,w;) for all ¢ € {1,...,k + 1}. Below, we will show that 7} satisfies the
conditions of the lemma, i.e., we show that Z) has a matching of size ¢ that is internally
super-stable with respect to Z. And so once we have that, we can just repeat this argument
until we get to the instance Z,.

To see why 7} satisfies the conditions of the lemma, notice that mj needs to be unmatched
in p, for if otherwise then (my, wg11) will be an obvious blocking-pair. This in turn implies
that we can construct another matching ' such that ' = (1 \ (Mpg1, Wet1)) U (M, Wet1),
both of them have the same size, and all the matched pairs in y' are in Zj. Also, one can
see that this does not lead to any new super-blocking pairs since i) w1 improved and so
will not be part of any new super-blocking pair and i) my does not form a super-blocking
pair as it is matched to the agent who is second in his list and w;, who is first in his list, if
matched in p, has to be matched to someone better (as my is the last agent in wy’s list). O

Lemma 9. If 7, is an instance that does not contain any exposed rotation, then the list of
every man in I, has only one woman and vice versa.

Proof. First, note that, throughout, an agent a is in b’s list if and only if b is in a’s list.
Second, we prove the following claim.

Claim 14. Let Z, be some initial instance, Z3 be the instance that is obtained after running
the procedure proposeWith() with the men’s side proposing, and Z; be the instance that is
obtained after running the procedure proposeWith() with the women’s side proposing. For
any two agents a and b in Zy, if a is the only agent in b’s list, then b is the only agent in a’s
list.

Proof. To prove our claim let us consider the following two cases in the instance Z3.

1. there exists a woman w; such that m; is the only man on w;’s list, but m; has at
least one other woman other than w; in his list

2. there exists a man m; such that w,; is the only woman on m;’s list, but w; has at
least one other man other than m; in her list

158

Case 1: Since we are looking at Z3, note that w; must be the first woman on m,’s list, for
if otherwise there is some other man, say, m; who is not engaged (because w; has only m;
in her list). However, we know that this is not possible and so w is the first woman on
my’s list. Therefore, now, when we run the procedure proposeWith() with the women’s
side proposing, w; will propose to m; and as a result m; will delete all other women from
his list. And so, in Z4, w; is the only agent in m;’s list and vice versa.

Case 2: For this case, let us suppose that even after running the procedure proposeWith()
with the women’s side proposing, w; still has at least one other man other than m; in her
list (if not, then we are already done). Let this man be msy. This in turn implies that in
the engagement relation that results, at least one of the women, say, wy, is not engaged
(because m; has only w; in his list). However, we know that this is not possible as this
would imply that the engagement relation has an obvious blocking pair (my, wy), where my,
is the last agent on wy’s list (and we know this cannot happen since we are just running
the same proposal-rejection sequence as in the Gale-Shapley algorithm). O]

Given the observations above, let us assume for the sake of contradiction that there exists
an instance Z; such that it does not have any exposed rotation but has at least one agent
who has a list of size greater than one. Using Claim 14 and the fact that an agent a is in
b’s list if and only if b is in a’s list, we can assume without loss of generality that there
exists a man m; such that he has at least two women in his list. Let w; and wy be the
first and second woman, respectively, in m4’s list. Since Z; is obtained after running the
procedure proposeWith() twice, once each with the men’s and women’s side proposing, from
Claim 14 we know that mo, who is the last man on wsy’s list, too has at least two women in
his list as otherwise ws would also have just one man my in her list. Let w3 be the second
woman in msy’s list. Now, we can see that we can just inductively keep on applying the
above argument and form the following pairs p = (my, wy), (Mg, we), (M3, w3), . .., (M, w,)
for some r € {2,...,n}, where m; is the last man on w;’s list and w;; is the second
woman on m;’s list. However, note that p is an exposed rotation, and hence we have a
contradiction. O]

A.2 An example of a “bad” weakly-stable matching in
the case of one-sided top-truncated preferences

Consider the instance Z as shown in Figure A.1, where ties appear only on the women’s
side. Furthermore, we define the following:

159

Mpy—1
my

z—1

mp,—1

Men

w1
cwy = Weyy = Wy = ... = Wg,

w2
Twp = w > [

w3
tw2 = w3 = Wpy(233 = Ws wa
twe = wa = Weyg2.4y = Ws

w

Lwg > wn - WF\{Q’%} - Ws

swi = Wei\ (v} = W = Wars, = Wr\(1}

fwy = Wsl\{b.rl} mwn 1 = Weng, = Wiy |0
cwi = Wea\ (b} = Wby = Warpy = W\ 13 o
fwi = W\ (bg-1) = Wea—1 = Weng, = Wiy | @bp1
Dwy > WBZ\{b.zfl} =wy, = Wa\B, = Wr\(1} Wh, 4
Swp > WBZ\{b;_l} mwo—1 = Wevs, = Wiy |y,

:m1>m% >[}

T
:MS\Bl = mi1 = My, >-MF\{1} - MBl\{bo}

Mg\, = m1 = mp—1 > Mp\(1y > Mgl\{bl—l}

: Mg\, = m1 = my, = Mp\(13 = ME\ 14,3
: Mo\p, = m1 > mp,—1 = Mp\ (1} > Mgl\{bgq}

i Mg\p, = m1=my, = Mp\ 1y > Mgl\{bz_l}

MS\31 =mi o= myp, 1 - MF\{l} - Mgl {b—1}

Figure A.1: The instance Z that is used to illustrate that there can be weakly-stable matchings
with O(n? \/5) super-blocking pairs even in the case of one-sided top-truncated preferences

n2’ 4 2

§e 8,1, y= M, z=3 (for simplicity we assume that y and z are integers; we

can appropriately modify the proof if that is not the case)

o b= +jy+1,Vjel0,...,7]

Bi = {bi—h e

b =1} Vie [l 2, F={1,...,5},S={5+1,...,n}

Wx (Mx) : for some set X, place all the women (men) with index in X in the
increasing order of their indices

WE(ME) : for some set X, place all the women (men) with index in X as tied

e [...] : place all the remaining alternatives in some strict order.

First thing is to see that the optimal solution M, associated with the instance is

Mopt == {(mla 'l,Ul), (m27 w2)7

160

ey (Mp,wi) Y

where (mg,wy) is the only super-blocking pair (and it is an obvious blocking pair). Also, it
can be verified that the total amount of missing information in Z is at most 9.

Now, consider the matching M, where

M= {(ml,wg), (a2, wi), (M3, ws3), (Mg, wy), ..., (M2, wa),

(mbm wbo+1)7 (mbo—‘rh wbo+2)7 sy (mb1—27 wb1—1)7 (mbl—h wbo)7
(mb17wb1+1)7 (mb1+17 wb1+2)7 sy (mb2*27 wb2*1)7 (me*h wbl)? SR
R (mbz—17 wbz—1+1)’ (mbz—1+17 wbz—1+2)7 SRR (mbz*% wbz*1)7 (mbz*]-? wbz—l)}'

It is easy to check that M is weakly-stable. Also, it can be verified that it has O(n?v/¢)
super-blocking pairs (this is because with respect to each block B; one can see that M has
O (| B;]?) super-blocking pairs). O

161

Appendix B

Omitted material from Chapter 3

B.1 Revelation principle for minimax dominant strate-
gies

Below we show that in the setting under consideration the revelation principle holds with
respect to minimax dominant strategies.

Lemma 41. Let M be a mechanism that implements a social choice function f in minimax
dominant strategies. Then, there exists a direct mechanism M’ that implements f and
where for every agent i reporting her candidate locations K; is a minimax dominant strategy.

Proof. Let (s1,...,8,) be the minimax dominant strategy in M such that f(Kq,...,
K,) = F(s1(Ky),...,s,(K,)), where F(-) is the outcome function associated with M.
Next, let us define the outcome function, F”, associated with M’ as

F'(Ky,...,K,) =F(s1(Ky),...,s,(Kp)). (B.1)
Now, using the fact that (si,...,s,) is a minimax dominant strategy in M, we have that
VK[,VK_;,
max max C(&, F(SZ(KZ), S,i(K,i)) - C(&, F(O}(&), S,Z'(K,Z))

leK; o’z‘GA(Ei)

S max 1max C(&, F(SZ(KZ/), S—Z(K—Z)) - C(&, F(O’Z(&), S—Z(K—Z))) (B2)

leK; O'Z'EA(ZZ')

162

Additionally, if ¢; is the true location of agent ¢, then, again, using the fact that (sq,...,s,)
is a minimax dominant strategy, we have that Vs, € ¥, VK_,;,

O, Fsi(ly), s_i(K_1)) < O(L;, F(sK(6), s_i(K_1)). (B.3)

Therefore,

min C(&, F(O’Z(&), S—i(K—i>> = C(&, F(Sl(&), S—i(K—i>)7

O'Z'EA(EZ')
and using this in (B.2) we have that VK, VK _;,

max C(&, F(Sl(Kz), S_i(K_i>)) — C(&, F(Sl(&), S_i(K_i)))

ZiEKi
< max C (0, Fsi(Kj), s-i(K))) = O, F(si(6), si(K-))). (B4)
€8
This in turn implies that using (B.1) we have that VK, VK _;,

max C(&,F/(KZ, K—z)) - C(EZ,F/(&, K—z)) S max C(EZ,F/(K;, K—z)) - C(E“F/(&, K_Z)),

leK; leK;

or in other words that reporting the candidate locations K; is a minimax dominant strategy
in M'. O

B.2 Minimax optimal solution for avgCost

Given the candidate locations K; = [a;, b;] for all 4, where, for some § € [0, B, b; —a; < 4, in
this section we are concerned with computing the minimax optimal solution p,,; such that
Popt = arg min,,¢ (o 5 Maxrer (S(I,p) — miny ¢, B S(I,p’)), where Z = [a1,b1] X ... X [ay, by]
and S is the average cost function. Note that from the discussion in Section 3.4 we know that
for any I € Z, minycpo, 5 S(I,p") = S(I, pr), where p; is the median of the points in the vector
I. Therefore, we can rewrite the definition of poy as popr = arg miny gy g maxyez S (I,p) —
S(I,pr). Next, we introduce the following notation.

Notation: Consider the left endpoints associated with all the agents, i.e., the set {a;}icpn-
We denote the sorted order of these points as L, ..., L, (throughout, by sorted order we
mean sorted in non-decreasing order). Similarly, we denote the sorted order of the right
endpoints, i.e., the points in the set {b;}icp, as Ry, ..., R,. Additionally, for i € [n], we use
M; to denote the mean of L; and R; (i.e., M; = #) Throughout, for Z = K7 x ... x K,
we refer to an element of 7 as an “input” and whenever we refer to an input I € Z, where

163

I = (0y,...,0,), we assume without loss of generality that the [;s are in sorted order
(because the agents can always be re-indexed). Also, given a point p, let Z;(p) C Z be the
set of all inputs I; = ({q,...,¢,) such that {;,; > p. Similarly, let Zy(p) C Z be the set of
all inputs Iy = (¢,...,¢,) such that £ ; < p. Often when the point p is clear from the
context, we write Z; and Z, to refer to Z;(p) and Zy(p), respectively.

Armed with the notation defined above, we can now prove the following lemma (which
is also stated in Section 3.4), which gives a concise formula to find the maximum regret
associated with a point p for the average cost objective.

Lemma 16. Given a point p, the mazimum regret associated with p for the average cost
objective can be written as max(objii®(p), 0bj3'“(p)), where

e 0bji“(p) =2 (2 Zf:j(Ri —p)+ (n—2k)(Ryy1 — p)), where j is the smallest index
such that R; > p and j <k

e 0bjs'“(p) =+ (2 Z?:]H_z(p — L)+ (n—2k)(p— Lk+1)> , where h is the largest index
such that L, < p and h > k + 2.

Proof. To prove this, consider the maximum regret associated with locating the facility
at p which is given by max;c7 S(I,p) — S(I, pr). Given the fact that Z = Z; UZ,, we can
rewrite this as max(maxy, ez, S(I1,p) — S(I1,pr,), maxpez, S(l2,p) — S(1s, pr,)). Now, let
us consider each of these terms separately in the cases below.

Case 1: maxy, ez, S(I1,p) — S(I1,pr,). Let us consider an arbitrary input Iy = (¢4,...,40,)
that belongs to Z; (if Z; = (), then we define maxy, ez, S(I1,p) — S(I1,pr,) = 0). Now, the
regret associated with I; is given by

regret(p> [1) = S([lap) - S(Ibph)

IR -
= - <Z [6i — pl — Z |6; — €k+1|) (as pr, = bus1)
i=1 =1
1 k n—k k n—k
== (Z [=l + D (Ceri = p) = (Zwkﬂ)+ Y (i — e,m)))
=1 =1

i=1 =2
(as€k+1 >pand ¥ <... an)

S|

<Z (16 —pl + 4 — p) + (n — 2k) (l41 — p))

i=1

164

%(D4l —p)+ Z((&-—p)+€i—p)+(n—2k)(£k+1—p))

i=1 i=j
(where j is the smallest index such that I; > p and j < k)

%<2ie S)+ (= 2) (G —)).

Therefore, if 0bj\°(p) = maxy,cz, S(I1,p) — S(I1, p1,), then we have that

ey Leli n

0bj%(p) = max S(I,, p) — S(I, pr,) = max — (22 (¢; — (n — 2k)(Lksq —p)) .

And so, now since ¢; € [L;, R;] (this is proved in Claim 16, which is in Appendix B.3), we

have that
obj*¢ (2 Z (n —2k)(Rg1 — p)> :

where j is smallest index such that R; > p and j < k.

Case 2: maxy,er, S(Iy,p) —S(ls, pr,). Like in the previous case, consider an arbitrary input
I, = (¢,...,0) that belongs to Z, (if Z, = (), then we define maxy, ez, S(I2,p) —S(I2, pr,) =
0). Now, doing a similar analysis as in Case 1, we will see that the regret associated with

I, is given by X (2 Z?:k+2(p —)+ (n—2k)(p — Ekﬂ)), where h is the largest index such
that ¢, < p and h > k + 2. Therefore, 0bjs'“(p) = maxy,ez, S(I,p) — S(Is, p1,) =
1 (2 Z?:k+2(p — L)+ (n—2k)(p— Lk+1)), where h is largest index such that L, < p and
h>k+2.

Hence, combining both the cases we have that the maximum regret associated with p is
max(0bj{'“ (p), 0bjs'“ (p)). O

Using the lemma proved above, one can show that for the minimax optimal solution, pg,
01 (Dopt) = 0073 (popt) (this is proved in Claim 17, which is in Appendix B.3). And this
observation in turn brings us to our next lemma (which is, again, also stated in Section 3.4)
which shows that p,,: is always in the interval [Lg 1, Ri1].

Lemma 17. If poy is the minimaz optimal solution associated with the avgCost objective
function, then popt € [Li+1, Rit1]-

165

Proof. Let us assume for the sake of contradiction that pop < Lii+1 O Dopr > Rit1. We will
consider each of these cases separately and show that for both the cases M, has a lesser
maximum regret, thus contradicting the fact that p,, is the minimax optimal solution.

Case 1: popt < Lji1. From Lemma 16 we know that n - 0bji'®(Myy,) = QZf:j(Ri —
Mpi1) + (n —2k)(Rgt1 — Mg11), where j is smallest index such that R; > M4, and j < k
(if there is no such 7, then set j = k + 1). Next, consider the input I; = (Ry,. .., Roxi1)
that belongs to Z; (popt) and let us calculate the regret associated with p,, for .

1
regret(popt7 Il) =—12 popt (TL — 2k)(Rk+l - popt)
n

(j’ is the smallest index such that R > popt and j/ < k)

1

= n (pOPt) + (n — 2k)(Ryt1 — pOpt)> (7 < j since Rj > Miy1 > popt)
1

> E < R Lk+1) + (n — 2]{5) (sz—i-l — popt)> (as Popt < Lk+1)
1

> I < — (2Mpy1 — Riy1)) + (0 — 2k) (Rpqr — (2Mpy1 — sz+1)))

(aS Lyy1 =2Mgqq — Rk+1)

. 1 .
= 0bj1“ (Mis) + —(n = 2j + 2)(Risr = Mis)-

Now, since p,¢ is the optimal solution and maxRegret(popt, Z) = 0bji'C (popt) (from Claim 17),
we have that 0bj{'“ (popt) > regret(popr, [1), which in turn implies that from above we have

. . 1 .
b1 (Popt) > 0bj{C (M41) + ﬁ(" —2j + 2)(Riy1 — Miya). (B.5)

Next, let us consider 0bj3'“(p,p). Note that, given Claim 16 and since py < Lgii,
Zo(popt) = 0. Therefore, 0bj3' (popt) = 0, and so from Claim 17 we know that since p,y; is
an optimal solution, 0bj;'% (popt) = 0073 (popt) = 0. However, j < k + 1, and hence from
(B.5) we have that 0bj{'“(p,yt) > 0, thus in turn contradicting the fact that p,, is the
minimax optimal solution.

Case 2: py,t > Ri11. We can do a similar analysis as in Case 1 to again show that this
cannot be the case.

166

Hence, from both the cases above, we have that poy: € [Lgy1, Ri+1]- O

Input: For each agent i, their input interval [a;, b;]
Output: Minimax optimal solution for the given instance
1: popt < 0, mR < oo
2: Let {Li}ic[n be the sorted order the points in {a;};cn) and {R;}ic[n) be the sorted order
the points in {b; }icpn
3: Let C'= {Ri,LJ’|i <k+1,j>2k+1,Lg <R, Ly < Rii1} and H = {hq,... 7h|C|} be
the sorted order of the points in C.
for each h; € H, where i € {1,...,|C|} do
x; < #(Rj), where R; > h; and j < k
y; < #(L;), where Lj < h; and j > k + 2
Sl «+ > °(Rj), where R; > h; and j < k
512 — Z(Lj),where Lj <h;and j > k+2
end for
10: for each [h;, hit1], where i € {1,...,|C|} do
11: if ObleC(hz) == Ob]éqc(hl) and ObleC(hl) < mR then > Is h; a possible solution?
12: Popt < hi, mR < objflc(hi)
13: end if
14: if obj{!C(hiy1) == 0bjs'C (hiy1) and 0bj{'C (hi11) < mR then > Is hiyy a possible solution?
15: Popt < hiy1, mR < obj{® (hiy1)
16: end ifn—Zk:)Mk 1+SL 452
17: pi < $i+1+yj+(ni-5}€) :
18: if p; € (hl, hi+1) and Objiqc(pi) < mR then > Is p; feasible and is it a possible solution?
19: Popt < Di; mR < Objflc(pi)
20: end if
21: end for

22: return pope

> If popt € (hi,hit1), then use the fact that obj{*C (popt) = 0054 (Popt)

Algorithm 9: Algorithm to compute the minimax optimal solution.

Equipped with the lemmas proved above, we are now ready to compute the minimax
optimal solution.

Proposition 42. If p,, @s the minimaz optimal solution associated with the avgCost
objective function, then Algorithm 1 computes po in O(nlogn) time.

Proof. We know from Lemma 17 that poyt € [Lit1, Ri+1]. So, all we are doing in Algorithm 1
is to consider all the points in C' = {R;, L;[i < k+ 1,7 > k+ 1, R, > Ly11,L; < Rj41} in

167

sorted order (which is the set H in the algorithm) and check if for every interval [h;, k1],
whether pot = hiy Dopt = Rit1, OF Popt € (i, hiy1) (see lines 10-21). In the last case,
since there are no points in C' that are between h; and h;,1, we can use the fact that for
an optimal point pept, 0031 (Popt) = 0b75'C (pept) (this is proved in Claim 17, which is in
Appendix B.3) to obtain a value of p; (line 17). In line 18 we just check if this point actually
lies in (h;, hiy1) and also see if it is better than the best solution we currently have.

Through the cases we consider in Algorithm 1 we are trying out all possible values the
minimax optimal solution can take and hence the correctness follows. Also, it is easy to see
that this can be done in O(nlogn) time. O

B.3 Additional claims

Claim 15. For all 7 € [n], L; < R;. Additionally, R; — L; < 6.

Proof. Note that the statement is true if we show that for every L; there are at most (i —1)
values in {Rj}repn) such that they have a value less than L; (this is enough as this would
imply that R; > L;). To see why that is true, consider the numbers L;, ..., L, which are
left endpoints of the reports of some agents. We know that each of these have a right
endpoint associated with them (i.e., a &/, where the input is of the form [L;,¢']) that are
greater than them. Now, these constitute (n — ¢+ 1) numbers and since there are only n in
total, there can at most i — 1 of them that have value less than L;.

To see the second part of the claim, consider the smallest j such that R; — L; > 6. Now,
if b is the right endpoint associated with L;, then the fact that R; — L; > § implies that
b < R; (because otherwise R; — L; < b — L; <). Additionally, this in turn also implies
that for some Ly, where k € {1,...,j — 1}, there is a right endpoint b associated with Ly
such that b > R;. However, since j is the smallest index value such that R; — L; > §, we
now have a contradiction as 6 < R; — L; < R; — Ly, < b — L <. O

Claim 16. For any input [= (¢4,...,4,), {; € [L;, R;].

Proof. Recall that, as mentioned under notations in Appendix B.2, the ¢s are in sorted
order and [is valid input if and only if there is a entry associated with every agent in it
(i.e., for every agent 4, 3j: ¢; € [a;, b;]). Now, let us assume for the sake of contradiction
that ¢; < L;. This implies that for I to be a valid input, there has to be (n — ¢ + 1) values
in it that are greater than ¢;—one from each agent i who reported an interval [a;, b;] such

168

that a; > L;. However, this is not possible since there can only be at most (n — 7) values
greater than /; as /; is the ith element in a sorted list.

Similarly, one can argue analogously for the case when ¢; > R;. Therefore, ¢; € [L;, R;]. O

Claim 17. If p,,; is a minimax optimal solution, then 0bj;'C (popt) = 0055\ (Popt)-

Proof. For the sake of contradiction, let us assume without loss of generality that obj{i¢(
Dopt) < 0073 (popt). Also, for the point p,p, let j be the smallest index such that R; > pop
and j < k (if no such j, then set j = k + 1) and let h be the largest index such that
L, < popt and h > k + 2 (if no such h, then set h = k + 1). Note that if n is even, then
both j and h cannot be k + 1, for if so then 0bji'®(pop:) would be equal to 0bjs'C (popt)-

n(ObjéL‘c (popt)_Objf‘C (popt))
max((n—2j5+2),(2h—n))

Now, consider the point p = p,,r — €, where € = , and let us compute

obj{'“(p) and objs'“ (p).

I |

Objflc(p) = - (QZ(Rz —p) + (n = 2k)(Rry1 — p))

(j’ the smallest index such that R;s > p and j' < k (if no such j/, then set j' = k + 1))

(2 Z(Ri — (Popt — €)) + (1 — 2k)(Rps1 — (popt — e))) (note that 5 = ;)

SRS

. 1 .
= 0051 (Popt) + —€(n—2j +2)

Objflc (p0pt> + ObjzAC (pf)pt)
2
< Objfc (popt)'

<

Computing o0bjs'“(p) similarly we see that 0bj3C (p) < 0bjs'®(popt). Now, since objii®(
p) < 0073 (popt) and 0bjs'C (p) < 0b75C (Pept), this implies that p,,; cannot be the minimax
optimal solution as its maximum regret is larger than that of p’s. O]

Claim 18. In the 2-equispaced-median mechanism, let [a,b] be an interval of length at
most § and let z and y be the points that are closest (with ties being broken in favour of
points in [a, b] in both cases) to a and b, respectively. Then, the interval [z, y| can have at
most 3 points that are also in A.

"because if not then p,,: is not optimal since we can move to Rj # R; and it can be verified that this
point has regret less than that of p,p;.

169

Proof. Suppose this were not the case and there existed two other points 2’ < 3 such that
')y € Aand 2/,y € (x,y). Now, for this to happen x has to be less than a and y has to
be greater than b, for if otherwise then using the fact that x and y are the points that are
the closest (with ties broken in favour of points in [a, b]) to a and b, respectively, one can
see that we can have only at most 3 points in [z, y]. However, this would imply that

20—a)=0b—y +y -2 +2"—a)+ (b—a)
> =0+ —a)+(a—2)+(-a)

(b —y' >y—>band 2’ —a > a— z, because z,y are closest to a,b and using the tie-breaking rule)
— /
=y—2)+y—2)
= 25, (y —rz=y—y +y —a'+2' —z= % as the distance between points in A is g)

which in turn contradicts the fact that b —a < 4. O

Claim 19. Consider a mechanism M = (X, F') such that it is very weakly dominant for
any agent to report her candidate locations if it is a single point. Let ¢ be an agent with
candidate locations K; = [a;, b;] and p be the outcome of the mechanism for some profile of
candidate locations (K;, K_;). Then, if p, and p, are the outcomes of M for the profiles
(a;, K_;) and (b;, K_;), respectively,

maxRegret,(p) = max(|a; — p| — |a; — pal, [b: — p| — |bs — py|).

Proof. From (3.1) we know that

maXRegreti(p) = gne%?(alenAa()é) C<£Zup) - C(E’L? F<O-7,(K’L)7 Sfi(K*i)))u

where s_;(K_;) is some set of strategies played by the others.

Now, since it very weakly dominant for any agent to report her true candidate locations if
it is a single point in M, we have that

maxRegret; (p) = max C(¢;,p) — C(4;, pr)

&;GKZ‘
where py is the outcome of M for the profile (¢,s_;(K_;)).

Given this, let us assume that the claim is false. This implies that there exists a ¢ € (a;, b;)
such that C(c, p) —C(c, p.) > C(a;, p) —C(ai, pa) and C(c, p)—C(c, pe) > C(bi, p) —C(bi, pp)-
However, we will show that this is impossible in both the cases below.

170

Case 1: ¢ < p. In this case, we have,

C(e,p) — Cle,pe) = ¢ —pl — |e — pc|
= (p—ai) + (@ —c) = |c = pl
(p—az) |a; — pal + (@i — ¢) + |a; — pa| — |c — pl
) — Clai, pa) + (a;i —) + |a; — pa| — ¢ — pcl
) O(aupa> (ai - C) + |ai _p6’ - |C _p0|

(using very weak dominance for single reports)

< C(a;,p) — C(a;,pa).

Case 2: ¢ > p. We can handle this analogously as in Case 1 and show that C(c,p) —
C(e,pe) < C(bi,p) — C(bi, po)- O

Claim 20. Let p,, be the minimax optimal solution associated with Z = [ay,b1] % ... X
[an, by) for the avgCost objective. Then, if p is a point such that |[p — py| = d and k = [7],

then
n — 2k

n

-d < maxRegret(p,Z) — OMV ¢ (Z) < d.

Proof. If {L;}icpn) and {R;}icp, denote the sorted order of the sets {a;}icpy and {b; }icpn),
respectively, then from Lemma 16 we know that for any point p the maximum regret
associated with p can written as max(0bji'“(p), objs'°(p)), where
e 00j1%(p) = <2 Zz i(Ri —p)+ (n—2k)(Ry1 —)), where j is the smallest index
such that R] > pand j <k (if no such j, then set j =k + 1)

e 0bj3“(p) =+ (2 S (= L)+ (n—2k)(p — Lk+1)), where h is the largest index
such that L, < p and h > k + 2 (if no such h, then set h =k + 1).

Additionally, if p, is the minimax optimal solution, we know from Claim 17 that OMV 4¢(
7)= Objflo(poz)t) = Objéqo(pom)‘

Now, let us assume without loss of generality that p < p,,. Then, it clear that from above
that 0bj7'%(p) > 0bji'C (pept) and that 0bj3'C (p) < 0bj3'C (Pept). So comsidering 0bji'® (p), we
have

obji¢ (22 (n — 2k)(Rps1 —))

171

SRS

j'-1 k
(2 Z(RZ - p) + 2 Z(Rl - p) + (n - Qk)(RkJrl - popt +popt - p))
i=j i=5"

(where j' > j is the smallest index such that R;s > popt)

1 j'—1 . k
< n (2 Z(pozot —p)+n- ObleC(pOPt) +2 Z(pom —p) + (n = 2k)(popt — p))
i=j i=j"
(since R; < popt fori < j' —1and n- objfc(pgpt) =2 Zf:j'(Ri —p)+ (n—2k)(Ri41 — Popz))
1
<= (2kd + (n — 2k)d + 1 - 0bj;* (Popt)) (popt —p < dandj>1)
— d+ OMV 0 ().

To see the upper bound, it is easy to see from above that one can set j = k + 1 and hence
we would have that 0bjii¢(p) — OMV 4¢(Z) > =28 (p,, — p) = =2k g, O

n n

B.4 Minimax optimal solution for maxCost

Given the candidate locations [a;, b;] for all i, where, for some § € [0, B], b; — a; < 9,
here we are concerned with computing the minimax optimal solution p,, such that p,, =
arg min,cp g Maxrer (S(I,p) — minyepo 5 S(I,p)), where = [ay,b1] % ... X [a,, b,] and S
is the maximum cost function. Note that from the discussion in Section 3.5 we know that if
I =(¢,...,0,) (as stated previously, we can assume without loss of generality that the /;s
are in sorted order) is a valid input in Z, then min,¢jo 5) S(I,p") = S(I,pr), where p; = %
Therefore, we can rewrite the definition of poy as por = argmin,e g maxsez S(1,p) —

S(I,p[)

Next, we prove the following lemma.

Lemma 43. Given a point p, the mazimum regret associated with p for the mazximum cost
objective can written as max(objM(p), 0bj % (p)), where

o objC(p) = B —p

o ob}C(p) = p - Ligte,

Proof. Consider the maximum regret associated with locating the facility at p, which is
given by maxsez S(I,p) — S(I,pr), and the sets Z7,Z),, where Z] C 7 is the set of all inputs
such that for every Ij = (f1,...,¢,) that belongs to 7'y, 44 > p and T C T is the set

172

of all inputs such that for every I, = (¢{,...,¢) that belongs to Z, Zi;% < p. Since

7 =77 UZ), we can rewrite maximum regret associated with locating the facility at p

max{objf\/lc(p)aObjéwc(p)}»

where 0bj¢(p) = maxjer S(If,p) — S}, pr) and obj}'“(p) = maxper, S(I3,p) —
S(I3,pr;). So, now, let us consider each of these terms separately in the cases below.

Case 1: 0bjM%(p). Let us consider an arbitrary input I; = (¢,,...,£,) that belongs to Z}
(if Z{ = 0, then we define maxp ez S(I7,p) — S(I1,p1,) = 0). Now, the regret associated
with [] is given by

regret(p, [i) = S(I{ap) - S(Iivpfi)

b+,
= mas (6, — pl. 6 i} — |6~ O
—tn-p) - (0= O5) (s < 25
it

Therefore, making use of the fact that ¢; € [L;, R;] (this is proved in Claim 16, which is in
Appendix B.3), we have that

obj"“(p) = max S(I1,p) — S(I1, pr;)

Ie1]
(61 + Uy)
= max -
Ie1]
R+ R,
= P (B.6)
Case 2: 0bj}°(p). Like in the previous case, consider an arbitrary input I5 = (¢/,... (')

that belongs to Zj (if Z; = 0, then we define maxy;ez; S(I5, p) — S(I3,pr) = 0). Now, doing
a similar analysis as in Case 1, we will see that the regret associated with I is given by

- %. Hence, again, making use of the fact that ¢; € [L;, R;] (see Claim 16), we have
that

0bjy"" (p) = max S(Iy, p) — S(I3, py)
2 2

173

(0+ 1,)
= max -
ILeT) 2

L1+Ln

. (B.7)

=p

Combining (B.6) and (B.7), we have our lemma. O

Equipped with the lemma proved above, we can now find the minimax optimal solution for
the maximum cost objective.

Proposition 44. If p,, is the minimaz optimal solution associated with the maximum cost

objective, then pop = M.

Proof. Note that the statement immediately follows if we prove that for a minimax optimal
solution, popt, 0011 (Dopt) = 0bJM (popt). And the latter proposition is easy to see, for if
0bi M (popt) # 003 (Dopt), then using Lemma 43 we can see that the maximum regret
associated with p,, is greater than BitBa—Li—In whereas the maximum regret associated
with the point L”Rﬁw is exactly W. O

174

Appendix C

Omitted material from Chapter 4

C.1 Additional claims

Claim 21. For ¢ € [n], let a; € N and let v; be the valuation function of a;, where v; is

a unit-sum valuation function and for all h € A; such that rank(a;, h) = 1, v;(h) < —15.

Then, for all j € [k], where k = | /n/2], and h € A; such that rank(a;, h) = j, v;(h) zn 3=

Proof. Let t; = —. For any j € [k] and h € A; such that rank(a;, h) = j, we will show
that v;(h) > 17;(](;331 To see this, consider the smallest j* such that for h* € A; with

rank(a;, h*) = j* and v;(h*) < % Note that j* > 2, since v; is a unit-sum valuation

function and hence v;(h) > + for all h € A; such that rank(a;, h) = 1.

Next, note that, for any ¢ € {2,...,n} and U, = {h € A; | rank(a;,h) < ¢ — 1}, if there
exists an h € A; such that rank(a;, h) = ¢, then it follows from the definition of rank that
|Ug| = € — 1 . Therefore, using this below, we have that,

Z vi(h) = v;(R*) + Z vi(h) + Z vi(h)
hEA; heU;x AN\(Uj=U{R*})
<v(h*) 4+ (GF = 1) - t1 + (n— j°) - v;(h")
1— (" =Dt

<G =D - G- 1) S

=1.

175

However, this in turn contradicts the fact that v; is a unit-sum valuation function.

Therefore, since t; < i, for all j € [k] and h € A; such that rank(a;, h) = j, we have that

1= =Dt 1=kt - 1—k- 5 .

vilh) 2 n—0G-1) "n=-0G-1) " n-(G-1) " 2n

Claim 22. Given an instance Z = (N, H,P = (P,..., P,)), a matching p is a

i) rank-maximal matching w.r.t. Z if and only if it is a priority-p matching, where
p = (p17 . 7pn) and7 fOI"j E [TL]’ p] ey nQ(n_j'f'l).

ii) max-cardinality rank-maximal matching w.r.t. Z if and only if it is a priority-p
matching, where p = (py,...,p,) and, for j € [n], p; = n?" + n2(*=9).

iii) fair matching w.r.t. Z if and only if it is a priority-p matching, where p = (p1,...,pn)
and, for j € [n], p; = 4n®* — 2nU~Y,

Proof. i). (=) Suppose p is a priority-p matching (which in turn implies that it is the

max-weight matching in Gz with weights {w.}.ce, where, for an edge e = (a;, h;) and

r = rank(a;, hj), w. = p,), but is not rank-maximal w.r.t. Z. Let y/ be a rank-maximal
/

matching w.r.t. Z, and the let the signatures of p and y' be (s1,...,s,) and (s7,...,s)),
respectively. Since p is not rank-maximal, consider the smallest j € [n] such that s; = s/
for all i < j and s; < s}. Next, note that both p and i are matchings in Gz, and that the
weight of a j-th ranked edge is n>®=7+Y_ This in turn implies that weight of ;/ is greater
than weight of i, since n?=7t1) > 5 . n2(»=J) or in other words that taking a j-th ranked
edge in Gz with weights {w,}ece is more beneficial than taking any number of edges of

lower rank. However, this contradicts the fact that p is the max-weight matching in Gz.

(<) Suppose p is a rank-maximal matching, but is not a priority-p matching. This implies
there is another matching y’ such that ' has a higher weight than p in Gz with weights
{we}ees, where, for an edge e = (a;, h;) and r = rank(a;, h;), w. = p,. Also note that p/
cannot be rank-maximal, since all rank-maximal matchings will have the same weight in
Gz with weights {w, }ecs. Given this, it is easy to see that we have a contradiction given
our choice of p;s and the fact that ;s is rank-maximal.

ii). (=) Suppose p is a priority-p matching. First we will argue that u is a max-cardinality
matching in Gz. To see this, suppose not. This implies there is another matching y’ such
that |u/| > |p|. Next, note that if W[u| denotes the weight of 1 in Gz with weights {we }ece,

176

then W{u] < |p| - p1. Also, note that we have, W[u'] > |¢/] - n®* > |u| - p1 > Wy, where
the second inequality follows from the fact that || — || > 1 and || < n. However, this in
turn contradicts the fact that p is a priority-p matching.

Now that we have the established that u is a max-cardinality matching, we need to show
that it is rank-maximal (among max-cardinality matchings). And the proof of this can be
obtained by proceeding as in the corresponding case in i) above.

(<) The proof of this can be obtained by proceeding as in the corresponding case in i)
above.

iii). This case can be handled as in ii) above, with the only difference being that the
signature in this case is the (n + 1)-tuple (3 7| i, —Sn, —Sn—1,- .., —S1). O

Claim 23. Given an instance Z = (N, H,P) and priorities p = (p1,...,p,), where p € P,
let ;1 denote a Pareto optimal matching or a priority-p matching w.r.t. Z. If B; denotes the
set of agents matched to a rank-i edge in u, k is a positive integer that is at most [n/2],
and B = UY_| B;, then |B| > min {k, |u|}.

Proof. Let B" = U, B; be the set of agents who are matched to an object of rank at
least £+ 1 in p. In order to prove our claim, let us first consider the case when k > |u|.
For this case we will show that |B’| = 0, thus implying that |B| = u. To see this, suppose
|B'| > 1. Without loss of generality, let a; € |B| and let OF = {h € A, | rank(a,,h) < k}.
Since p is a Pareto optimal or priority-p matching, all the objects in OF are matched
to some agent in A"\ {a;}, because if there exists an unmatched, say, h; € OF, then
p\ {a1, u(ar)} U{ay, hi} Pareto dominates p and has the same size as u. However, this in
turn implies |p| > (|O%| 4+ 1) = k + 1, a contradiction.

Next, let us consider the case when k < |u|. To prove our claim, let us assume for the sake
of contradiction that |B| < k, which in turn, along with the fact that k& < |u/|, implies that
|B'| > 1. Let Y = |B’| and w.l.o.g. let us assume that {a;,...ay} are the agents in B’
Note that, for i € [Y], a; finds at least k + 1 objects acceptable since they are matched to
an object of rank at least k + 1.

Now, consider any i € [Y] and let OF = {h € A; | rank(a;, h) < k}. As argued above for
the case when k > |p, since u is a Pareto optimal matching or a priority-p matching, all the
objects in OF are matched to some agent. Additionally, also note that, when combined with
the previous observation, there is at least one object, say, hf € OF such that it is matched
to an agent, say, a, € B’ such that rank(a,, h{) > k + 1 (because otherwise, |B| > k, a
contradiction); we will refer to h$ as a;’s special object. Given all the observations above,

177

we will now argue that if p is such that |B| < k, then there exists a matching p’ such that
i/ Pareto dominates p and has the same size as u.

To see this, consider the graph G’ = ({aq,--- ,ay},E’), where there is a directed edge from
a; to a; if p(a;) = h (ie., if a; is matched to a;’s special object). Since, for every ¢ € [Y],
a; has a special object h$ and h{ is matched to one of the agents in {a, - ,ay} \ {a;},
note that this graph has to have a cycle. So, now, consider this cycle and implement the
trade indicated by this cycle—meaning, if (a;,a;) is an edge in this cycle, then allocate
p(a;) to a;. Note that the resulting matching, say, 1’ has the same size as p and also Pareto
dominates y (since every agent a; in this cycle gets an object that is in OF), which in turn
contradicts the fact that p is a Pareto optimal or priority-p matching. O]

Claim 24. Given an instance Z = (N, H, P), let p; be any arbitrary matching in Gz, and
1o denote the matching in Gz that matches as many agents as possible with an edge of rank
at most k, where k = |/n/2|. If L; and X denote the set of agents matched to a rank-i
edge in 4 and fis, respectively, and X’ = U¥_, X/, then |X'| > min {k, (3, |Li]) }-

Proof. Let Y = 37", | |L;|, i.e., the number of agents who are matched to an object of
rank at least k + 1 in p;. Since all the agents in U}, ,L; find at least k& + 1 objects
acceptable, this implies that there is a matching of size z = min{k, Y} in Gz where all the
agents are matched to a rank-i edge, where i € [k]. Now, since ps is the matching in Gz
that matches as many agents as possible with an edge of rank at most k, X' > z. O

C.2 Missing proofs from Section 4.3.2

C.2.1 Proof of Theorem 31

Theorem 31. Given an instance T = (N, H,P = (Py,...,P,)) and a vector of priorities
p=(p1,...,pn), where p € P, Algorithm 5 asks one non-adaptive query per (agent, object)
and returns a priority-p matching that achieves an O(n?/3)-approzimation to the optimal
welfare among all priority-p matchings for the case when agents have unit-sum valuations.

To prove this, we use the same notations and terminologies that were introduced for the
proof of Theorem 29, except that now these are defined with respect to priority-p matchings.
Next, we prove the following lemma, which is almost identical to Lemma 30.

Lemma 45. Let j be the matching that is computed in line 12 in Algorithm 5. Then,
SW(piy) < n?® - SW(p).

178

Proof. This can be proved by proceeding exactly as in the proof of Lemma 30. n

Proof of Theorem 31. First, it is easy to see that for the given priority vector p € P the
matching returned by Algorithm 5 is a priority-p matching. Next, let .S be the set of agents
who answered “Yes” w.r.t. ¢; (i.e., all these agent have a value of at least ¢; for (one of) their
first choice object(s)). Also, let B; be the number of agents who are matched to (one of)
their i-th choice object(s) in u. Note that since u is a priority-p matching, we know that
|B;| = |H;| + |L;| for all i € [n] (since all priority-p matchings have the same signature).
Additionally, we also know that SW(u) > |By|- £, since the agents have unit-sum valuations.

Now, if |S| > 1, then we have that,
SW(p) _ SW(ug) +SW(ug)

SW(u) SW(u)

 SWi(p) +SW(pg,) + 300, SW(ug,)
B SW(w)
< n*3 - SW(u) + |Byi| - t1 +n -ty
- SW(w)

n?3 .- SW(u) |Bi|-ti n-ty

SW () Bil -yt

< 23 42 423, (C.1)

where the first inequality by using Lemma 45 and the fact that L; < By, second inequality
follows from the fact that SW(u) > ¢4, since |S| > 1. and the final inequality follows from
our choice of t; and t,.

On the other hand, if |S| = 0, then, first, let &k = |¢/n/2]. Next, note that every agent
values their first choice at a value less than t;. This in turn implies that, since their
valuations are unit-sum, for j € [k], their value for a rank-j object is at least 5 (sce
Claim 21 in Appendix C.1 for a proof). Additionally, let B = U B, and B’ = U, | B;;
from Claim 23 we know that |B| > min{k, |u|}. Given this, we have,
SW(p) _ SW(py) +SW(u)
SW(u) SW(u)
* k * n *
SW () + Zi:l SW(:U’Li) + Zi:kﬂ SW(MLZ-)
SW(n)

W) + (S0 1Bl) 1+ (S 1Bi) e
: SWir)

(C.2)

179

n?/3 . SW(u) + |B| - t1 + |B'| - trga

SW(n)
n*PSW(p) [Bl-ti |B]ten
SW(n) |B|/(2n) — |B|/(2n)
< 3 4 20?3 4 8n?/3, (C.3)

where the first inequality follows from using Lemma 45 and the fact that L; < B; for all
i € [n], the second inequality follows from Claim 5, and the final inequality follows since
|B| > min{k, |p|} and t51 < 2/n.

Finally, combining (C.1) and (C.2) gives us our theorem. O

C.3 Additional discussions

C.3.1 Power of ordinal algorithms

In this section we look at the power of ordinal algorithms—meaning we want to understand
the worst-case loss in welfare experienced by an ordinal algorithm (i.e., an algorithm which
only uses the ordinal information given by the agents). We argue that when agents have
unit-sum valuations functions, any deterministic algorithm A is such that £(A) € Q(n?).
The proof of this is similar to the proof of result by Amanatidis et al. where they show that
the distortion of any deterministic ordinal algorithm is Q(n?) [Ama+21, Thm. 1]. Also, just
like in Amanatidis et al. [Ama-+21, Thm. 1], this bound is asymptotically tight.

Theorem 26. Let X denote one of the properties in the set { Pareto-optimal, rank-maximal,
mazx-cardinality rank-mazimal, and fair}. Let A be a deterministic ordinal algorithm that
always produces a matching that satisfies property X . If there are n agents with unit-sum
valuation functions, then L(A) € Q(n?). Moreover, this bound is asymptotically tight.

Proof (sketch). The proof here follows almost directly from the proof of Theorem 1 in
the paper by Amanatidis et al. [Ama+21] where they show that the distortion of any
deterministic ordinal algorithm is Q(n?).

The main observation to note is that for the instance they construct if there are j pairs of
agents and if an agent in the ¢-th pair gets the top-choice object a, then any matching M
that matches the other agent in the ¢-th pair to their second choice b;, one of the agents in
pair £ € [j]\ {¢} to their second choice by, and the remaining agents to their highest possible

180

choice (i.e., for pair ¢ € [j] \ {i}, allocate object ¢, to the agent who has not received
their second choice) is Pareto-optimal /rank-maximal /max-cardinality rank-maximal/fair.

Given this, one can construct valuation functions as described in their proof and see that an
ordinal algorithm cannot distinguish between matchings that have welfare of at least n/4
and ones which have a welfare of at most 1/n, thus resulting in a lower bound of Q(n?).

Finally, to see that the bound is tight, first note that when agents have unit-sum valuation
functions, as long as there is at least one agent who is matched to their top-choice object,
L(A) € O(n?), since the maximum social welfare achievable is n, and the agent who
gets their top-choice has a value of at least 1/n for their top-choice object. Now, in
order to achieve this, one can run any Pareto-optimal /rank-maximal /max-cardinality rank-
maximal/fair algorithm and the matching returned by any such algorithm has at least one
agent matched to a rank-1 object (see Claim 23 in Appendix C.1 for a proof). O

One can derive a similar lower bound for unit-range valuations and show that it is Q(n).
This can be done by making similar observations as in the proof of Theorem 26. The only
part that needs to be modified is in the way the valuation functions are defined; all we need
to do here is to define the value of each top-choice object to be 1 and the least preferred
object to be 0. Moreover, this is again asymptotically tight because of the exact same
reason mentioned above for unit-sum valuations. The only difference is that when agent
have unit-range valuations, the value of the top-choice object is 1, thus resulting in an O(n)
bound.

Theorem 46. Let X denote one of the properties in the set { Pareto-optimal, rank-maximal,
maz-cardinality rank-mazimal, and fair}. Let A be a deterministic ordinal algorithm that
always produces a matching with property X . If there are n agents with unit-range valuation
functions, then L(A) € Q(n). Moreover, this bound is asymptotically tight.

C.3.2 The unit-range case

In this section we discuss the case when agents have unit-range valuations. Note that the
adaptive algorithm presented in Section 4.3.1 works for both the unit-sum and unit-range
case. Therefore, here we look at the non-adaptive case, in particular focussing on the case
when an algorithm is allowed to ask at most one query per (agent, object) pair.

181

Input: an instance Z = (N, H,P = (P,..., P,)) and priorities p = (p1,...,pn)
Output: returns a Pareto optimal matching when p; = 0 for all ¢ € [n], priority-p matching
otherwise
Gz = (W UH,E) + graph induced by Z
t1 <1
t; ﬁ, forallie {2,...,n}
for e = (a;,h,) € N x H do

r < rank(a;, hj)

if Q(ai, hj, tT) then

We <— Pr + tr
else
We < Pr

end if
: end for
: i < max-weight matching in Gz, where weights are (we)eeg
: if p; = 0 for all 7 € [n] then

i < with p as the initial endowment, run modified top-trading cycles (TTC) algorithm
by Saban and Sethuraman [SS13, Algorithm 1, Rule 2| and return the resulting matching.
15: end if
16: return p

=== =

Algorithm 10: An O(y/n)-approximation algorithm for finding the optimal social welfare
among Pareto optimal or priority-p matchings for the case when the agents have unit-range
valuations.

C.3.2.1 Improving welfare when asking one query per (agent, object) pair

Here we show an algorithm that achieves an O(y/n)-approximation to the optimal welfare
among all Pareto optimal or priority-p matchings when it is allowed to ask at most one query
per (agent, object) pair. In the next section, we will show that this is asymptotically optimal.
At a high-level, the algorithm is very similar to Algorithm 5, with the main difference being
that instead of ¢;s defined there, where we used t; = # and t; = m for all
i € {2,...,n}, here the values are more uniform and we use t; = 1 and t; = \/%7 for all
i € {2,...,n}. Note that the query Q(a;, hj,t1), where h; is such that rank(a;, h;) =1, is
not really useful since all the agents will answer “Yes” to this because of the fact that they
have unit-range valuations. Nevertheless, we still use it in Algorithm 10 to make it clear
that it is very similar to Algorithm 5.

Theorem 47. Given an instance T = (N, H,P = (P,..., P,)), and a vector of priorities

182

p=(p1,...,pn), where p € PU{(0,...,0)}, Algorithm 10 asks one non-adaptive query per
(agent, object) pair and for the case when agents have unit-range valuations returns a

i) Pareto optimal matching that achieves an O(\/n)-approximation to the optimal welfare
amonyg all Pareto optimal matchings when p; =0 for all i € [n].

ii) priority-p matching that achieves an O(y/n)-approzimation to the optimal welfare
among all priority-p matchings when p € P.

Proof. Just like we did to prove Theorem 29 let us introduce some notation. Given the
priority vector p, let u* denote the matching that achieves the optimal social welfare among
Pareto optimal or priority-p matchings when the agents have unit-range valuations. Let H;
denote the set of agents who are matched to their i-th choice in p* and have value at least
t; for their partner in p*. Similarly, let L; denote the set of agents who are matched to their
i-th choice in p* and have value less than ¢; for their partner in p*. We define H = U} | H;
L = U, L;, and, for some S C N, p§ C u* be the set of edges (a;, h;) such that a; € S
and (a;, h;) € p*.

Additionally, let i/ be the matching that is computed in line 12 in Algorithm 10. Note
that if p is the matching returned by Algorithm 10, then y/ = p when p € P. Also, for
the case when p; = 0 for all i € [n|, SW(p) > SW(y'), since p is the matching returned
by the modified TTC algorithm by Saban and Sethuraman [SS13, Algorithm 1, Rule 2]
with initial endowments p’ and we know that the resulting matching is individually rational
[SS13, Theorem 2|.

Next, it is easy to see that the matching is Pareto optimal when p; = 0 for all ¢ € [n] and
is a priority-p matching when p € P. (This can be seen by proceeding exactly like in the
second paragraph of the proof of Theorem 28.)

Finally, in order to bound the approximation ratio, we will directly bound the ratio of

SSV\X]%)). To do this, first note that we can proceed exactly like in the proof of Lemma 30 to

see that SW(u3;) < v/n-SW(y'). This is so because the only difference is in the way the
t;s are defined for all ¢ € [n]. Second, note that SW(u}) < |uj| - \/Lﬁ < y/n, where the first
inequality follows since |L;| = 0 and every agent in L; for ¢ € {2,...,n} has value at most
t; = 1/4/n for their good, and the second inequality follows since |u}| < n. Therefore, we
have that,

SW(p*) — SW(pg) +SW(pg) _ v/n-SW')+n -
W) T SW S sw) =2V (C4)

183

where the last inequality follows since SW(u) > 1, as there is at least one agent who is
matched to a rank-1 edge in p (since u is either a Pareto optimal or a priority-p matching
and hence we can use Claim 23). O

C.3.2.2 Lower bounds

Here we derive a lower bound that is similar to one for unit-sum valuations and show that any
deterministic algorithm A that produces a Pareto-optimal /rank-maximal/max-cardinality
rank-maximal /fair matching and that asks at most one query per (agent, object) pair has
L(A) € Q(y/n). Note that this implies that Algorithm 10 is asymptotically optimal.

Theorem 48. Let X denote one of the properties in the set { Pareto-optimal, rank-maximal,
max-cardinality rank-maximal, and fair}. Let A be a non-adaptive deterministic algorithm
that always produces a matching with property X and asks at most one query per (agent,
object) pair. If there are n agents with unit-range valuation functions, then L(A) € Q(y/n).

Proof (sketch). The proof of this is almost identical to the proof of Theorem 32, with the

main difference being the way the utility functions ug, uy, ..., us are defined. For this proof,
we redefine ug, uq, ..., ug the following way, to ensure that they are unit-range valuation
functions.

ug = (1,¢1,0,...,0)

u; = (1,¢1,0,...,0) = (1, 1/20 -, 0)

:<161+60 - 0) u4—(1 1/4—¢€,0,...,0)

us = (1, cl, ...,O) =1, — 5 0)

ur = (1,¢2,0,...,0) = (1, 01/40 O),

Given these definitions, one can now proceed exactly like in the proof of Theorem 32. Note
that the proof will be simpler in this case because for unit-range valuations, the queries of
the form Q(-,-,T}1) are not useful, since by definition all unit-range utility functions have
value 1 for the most preferred good. m

184

Appendix D

Omitted material from Chapter 5

D.1 Brief descriptions of various fair and efficient algo-
rithms

Here we provide brief descriptions of the following algorithms that guarantee PO and at
least EF1.

i) Adjusted winner protocol [BT96a; BT96b|: The adjusted winner protocol returns an
EF1 and PO allocation for two agents and it proceeds the following way.

e One of the players (say, player 1) is designated as the winner and the other
player is the loser. Initially, all the goods are allocated to the winner.

e Sort the goods by decreasing value of v,(g)/v,(g), where vy(g) (respectively,
vw(g)) is the value that the loser (respectively, winner) attributes to good g.

e At each step, among the goods that the winner has, consider the “best” good
according to the order in step 2 (i.e., one with the highest value of vy(g) /v, (g)),
and allocate it to the loser. Continue this process until the loser does not envy
the winner by more than one good.

ii) Leximin solution [PR18|. The leximin solution returns a PMMS and PO allocation
for two agents by finding an allocation that maximizes the minimum utility any agent
gets, then, subject to that, maximizes the second minimum utility any agent gets,
and so on.

185

iii)

iv)

Maximum Nash Welfare solution [Car+16]. The maximum Nash welfare solution
returns an EF1 and PO allocation for any number of agents by finding an allocation
that maximizes the product of utilities of the agents.

Fisher-market based algorithm [BKV18|. The algorithm by Barman, Krishnamurthy,
and Vaish [BKV18| returns an EF1 and PO allocation for any number of agents. The
algorithm is quite involved and requires several definitions, so we only provide a very
brief and high-level description here. We refer the reader to Algorithm 1 in [BKV1§|
for a complete description.

e The main idea in this algorithm is to start with a Pareto optimal allocation
(in particular, a welfare maximizing allocation) that corresponds to a market
equilibrium of a Fisher market. Following this, it performs a series of swaps
between the agents ensuring that each intermediate allocation is an equilibrium
outcome, and it does this until the allocation satisfies what is referred to as price
envy-freeness up to one good (or a suitable approximation of it). The latter
property entails that at the current prices spending of any agent ¢ is at least as
much as the spending of another agent j up to the removal of the highest priced
good from agent j’s bundle.

186

	List of Figures
	List of Tables
	Introduction
	Some Basic Terms and Concepts
	Overview of the Thesis
	Part I: Making decisions with incomplete information
	Part II: Making decisions with inaccurate information

	I Making Decisions with Incomplete Information
	Two-Sided Matching Under Partial Information
	Introduction
	Working with partial information
	Measuring the amount of missing information
	Our contributions
	Related work

	Preliminaries
	Problem definitions

	Investigating Weakly-Stable Matchings
	
	Can we do better when restricted to weakly-stable matchings?
	

	Beyond Weak-Stability
	
	

	Discussion

	Mechanism Design for Locating a Facility Under Partial Information
	Introduction
	Preliminaries
	Mechanisms, solution concepts, and implementation
	Some Q & A on the definitions

	Related Work
	Implementing the Average Cost Objective
	
	Implementation in very weakly dominant strategies
	Implementation in minimax dominant strategies

	Implementing the Maximum Cost Objective
	Implementation in very weakly dominant strategies
	Implementation in minimax dominant strategies

	Discussion

	Improving Welfare in One-Sided Matching Using Threshold Queries
	Introduction
	Our contributions
	Related work

	Preliminaries
	Notions of economic efficiency
	Going beyond completely ordinal or completely cardinal algorithms
	Finding welfare-optimal priority-p matchings when utilities are known

	Improving Welfare using Threshold Queries
	Adaptive algorithm to achieve -approximation
	Non-adaptive algorithms: asking one query per (agent, object) pair

	Lower Bounds
	Discussion

	II Making Decisions with Inaccurate Information
	Algorithmic Stability in Fair Allocation of Indivisible Goods
	Introduction
	Preliminaries
	Stability
	Some Q & A on assumptions and definitions

	Related Work
	Approximate-Stability in Fair Allocation of Indivisible Goods
	How (approximately) stable are the existing algorithms?
	Are there fair and efficient algorithms that are stable?
	A necessary and sufficient condition for PMMS allocations
	rank-leximin: An approximately-stable PMMS and PO algorithm for two agents

	Weak-Approximate-Stability in Fair Allocation of Indivisible Goods
	Discussion

	Conclusion
	Future Directions

	References
	APPENDICES
	Omitted material from
	Missing proofs from
	An example of a ``bad'' weakly-stable matching in the case of one-sided top-truncated preferences

	Omitted material from arg2
	Revelation principle for minimax dominant strategies
	
	Additional claims
	Minimax optimal solution for maxCost

	Omitted material from
	Additional claims
	Missing proofs from
	Proof of

	Additional discussions
	Power of ordinal algorithms
	The unit-range case

	Omitted material from
	Brief descriptions of various fair and efficient algorithms

