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Abstract

The study of turbulence in the oceans and atmosphere is far-flung and ever-reaching
in the academic world with research being done theoretically, experimentally and numeri-
cally. With great strides in the increasing power of numerical computation over the years,
forced and/or stratified homogeneous turbulence has been studied extensively for multiple
simulation setups which give situational results for the inertial range as well as the energy
power-law relationships. Some experimental examples are seen in such setups as raking a
tank filled with uniformly saline water or the application of some dye to investigate internal
wave propagation. On the other hand, numerical simulations often strive to explain certain
behaviours by predominantly varying the Reynolds and Froude numbers but a myriad of
literature also exists that employs the use of the Richardson and Prandtl numbers as well.

One property that homogeneous turbulence does not wholly capture is that of global
intermittency. Turbulent regions occur as patches or clouds in nature and there have
been few pieces of literature that investigate this inhomogeneity of stratified turbulence
and how it behaves when left to freely decay without any forcing. Within this study,
a turbulent cloud is numerically set up within an otherwise quiescent cubic domain to
represent an inhomogeneous turbulent region. Using a similarly sized cubic domain, the
entirety of it is used to model homogeneous turbulence. Then, using direct numerical
simulations, a comparison of the non-forced, freely decaying evolution of homogeneous and
inhomogeneous turbulence is established where results strive to provide an introductory
investigation for the development of a turbulent cloud. This study looks into the evolution
of energy, length scales, Froude and buoyancy Reynolds numbers as well as energy spectra
within the cloud along with a focus on wave presence and energy of the inhomogeneous
system outside of the cloud. It has been found that the shape of the cloud and the initial
stratification used in the simulations play a critical role in the evolution of the cloud and
large stratification indicates to the presence of highly energetic waves propagating at angles
near to the outside edges of the cloud.
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Chapter 1

Introduction

Within this thesis, a comparative and exploratory but also idealized study of homogeneous
and inhomogeneous stratified turbulence is undertaken which finds application and rele-
vance to both the atmosphere and oceans. The main method through which this research
is done is numerical in nature but it is of tantamount importance that the theoretical
understanding of turbulence be embellished upon the open and eager mind of the reader.
Thus, the purpose of this initial chapter seeks to review important background material
critical in the understanding of the two types of turbulence, so as to make the perusal of
this piece of work much easier to comprehend.

1.1 Fluid Mechanics

The million dollar question, and still quite literally so, is that of solving the ever formidable
but glorious Navier-Stokes equations. This remains till today as one of the seven Millen-
nium Prize Problems as defined by the Clay Mathematics Institute on May 24th, 2000
[Devlin, 2002]. It was only in the second half of the twentieth century that numerical com-
putation took over from the steely resolve of our algebraic ancestors in simulating these
equations with a myriad of initialized setups for both ocean and atmospheric models. How-
ever, before enjoying the luxury of modern day computational power, it would bode well to
revisit the theoretical framework established by our Fluid Mechanics foreparents on whose
shoulders we stand and can catapult ourselves into the study of bother homogeneous and
inhomogeneous turbulence.

Of the many forms the classical momentum equations have assumed in an attempt
to solve them, the one of interest in this study is that of the Boussinesq approximation.
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Within this particular simplification, the density ρ is taken as constant in the momentum
and continuity equations and density variations can be neglected except in the the gravity
term. A general rule of thumb as to when this approximation can be implemented, as
given by Kundu et al. [2012] is when:

• the Mach number of the flow is small

• propagation of sound or shock waves is not considered

• the vertical scale of the flow is not too large (as compared to scale height), and

• temperature differences in the fluid is small.

The uniformly stratified Boussinesq equations, without the effects of planetary rotation,
are written as:

Du

Dt
= −∇p+ αT ẑ + ν∇2u, (1.1)

DT

Dt
+ βw = κ∇2T, (1.2)

∇ · u = 0, (1.3)

where u = (u, v, w) is the velocity, p is the perturbation pressure scaled by a reference
density, and T is the potential temperature fluctuation around a linearly varying basic
state. The kinematic viscosity ν and diffusivity κ are constant and related by κ = ν/Pr,
where Pr is the Prandtl number. The constants α and β are the thermal expansivity
and background temperature gradient, respectively. The traditional Boussinesq equations
are derived under the assumption that the density is treated as a constant except in the
gravity term. This density is ρ = ρ′ − ρ̄(z) where ρ′ is the perturbation density, ρ̄(z) is
the background density profile and ρ′ << ρ̄. Given this definition, it can be argued that
the temperature fluctuations are proportional to the density fluctuations. Furthermore, in
this work, β is treated as a constant. As per the assumption of the traditional Boussinesq
equations, the more general case would be to allow this background temperature gradient
to vary with z.

The Boussinesq equations serve as the starting point in the study of stratified turbulence
in the atmosphere and oceans. At this point, a definition of turbulence would be extremely
beneficial to anyone reading this but to do just that would be to stoke the flames of an
already effervescent and both literally and figuratively turbulent academic community.
Thus, it is best to trod on this volatile path by instead describing turbulence. After all, a
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picture is worth a thousand words or even more in this case. Turbulence in fluids is an ever
dynamic process where it is worthwhile to study the energy processes and the length scales
over the region in which it occurs along with the values of characteristic parameters which
provide insight and details as to the behaviour of the same region with time. Additionally,
it may be just as beneficial to give some characteristics of turbulence to help paint a picture
that will help further any such understanding. Kundu et al. [2012] gives:

• fluctuations can be irregular, chaotic and unpredictable in turbulent flows with re-
spect to dependent field parameters like velocity and temperature,

• nonlinearity which presents itself at the end of a non-linear transition process from
instability and vortex-stretching where 3D turbulence maintains its fluctuations,

• vorticity is one characteristic feature of eddies associated to their spinning nature
and a variety of them exist in a range of sizes within the domain,

• dissipation occurs due to viscosity acting on the smallest eddies created from vortex-
stretching transferring energy to smaller scales from the largest eddies,

• diffusivity due to the rapid mixing and diffusion of momentum and heat which stems
from the prominence of agitations and overturning motions.

Understanding how the energy changes within the life cycle of a turbulent region is
important in tracing what happens from large scales to small scales. The largest eddies,
which are the size of the respective domain, contain the most amount of energy in the
turbulent system. This occurs due to these large eddies extracting energy from the mean
flow and in due process, create a strain field which affect eddies which are just smaller
than them. These slightly smaller eddies then extract energy from the larger eddies in the
same manner than the largest eddies extracted energy from the mean flow. This process
continues for subsequent smaller and smaller eddies in which energy is cascaded down
from large to small eddies by interaction with eddies of similar sizes [Kundu et al., 2012].
The word ‘strain field’ has been mentioned and it is worth spending some time on this
term and understanding its importance in this cascade process. Through well constructed
through modern research, the average cascade of energy was first proposed by Richardson
[1965]. The transfer of energy from large to small eddies is driven by vortex stretching
and culminates in dissipation at the Kolmogorov scale. When vorticity is exposed to a
strain-rate field, it is subject to stretching. This vortex stretching involves an exchange
of energy as the strain field does deformation work on the vortices being stretched. With
this, the total amount of energy in the vortices is expected to increase with such an effect
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[Tennekes and Lumley, 1972]. Thus, it can be seen that smaller eddies in the strain-rate
field of a slightly larger eddy extracts energy from it and this downward cascade of energy
occurs and this is called a forward cascade of energy [Tennekes and Lumley, 1972, Kundu
et al., 2012]. There have been studies done on the existence of an inverse energy cascade
which finds prominence in 2D turbulence [Kraichnan, 1967, Davidson, 2004, Kundu et al.,
2012] but with respect to 3D turbulence, the forward energy cascade is what has been
shown to dominate [Kundu et al., 2012].

From all this, calculating the values of energy throughout the life cycle of a turbulent
region gives important information as to the evolution of the turbulent region. The kinetic
and potential energy per unit mass can be calculated in physical space as:

KE =
1

2
(u2 + v2 + w2), (1.4)

PE =
1

2

α

β
T 2. (1.5)

1.1.1 Stratified Turbulence

Characteristic of stratified turbulence are certain parameters which tell various properties
of the habituated fluid. These parameters include but are not limited to the Reynolds
number, Froude number, Richardson number and Prandtl number. Within this study,
the Reynolds and Froude numbers are particularly considered but there are a number of
studies that consider the Richardson [Smyth and Moum, 2000b, Riley and deBruynKops,
2003] and Prandtl [Smyth and Moum, 2000a, Legaspi and Waite, 2020] numbers.

The Reynolds number Re gives the ratio between the inertia and viscous forces in the
fluid. A flow with low Re is characteristic of smooth laminar flow and high Re is testament
to chaotic turbulent flow. The Reynolds number is defined as

Re = Ul/ν, (1.6)

where U is the characteristic flow velocity and l is the characteristic horizontal length scale
of the flow. The Froude number is the ratio between inertia and buoyancy forces and the
smaller this parameter, the more stratified is the fluid in questions. The Froude number is
defined as

Fr = U/Nl, (1.7)

where U is the fluctuation velocity, l is the characteristic length scale of this velocity and N
is the Brunt-Väisälä frequency. As with the length scales, there also exists horizontal and
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vertical Froude numbers Frh and Frv, defined with characteristic horizontal and vertical
length scales lh and lv, respectively. Small horizontal Froude numbers, Frh < 1, are
one of the requirements to indicate a strongly stratified regime along with the vertical
Froude number being Frv ∼ 1 [Waite and Bartello, 2004, Brethouwer et al., 2007]. The
latter point relates an approximate balance between the inertia and buoyancy forces for
stratified turbulence [Maffioli, 2017]. In achieving this value for Frv, the vertical length
scale adjusts to the stratification in the manner of lv ∼ U/N . This infers that the greater
the N , the smaller the lv and this indeed affects the size of the eddies in the turbulent flow.

In Riley and Lelong [2000], two types of scalings were applied to the Navier-Stokes
equations under the Boussinesq approximation and it was found that stratified turbulence
possesses a non-propagating component comprising of vortical motion and a wave compo-
nent based on internal wave theory. Vortical motion describes horizontal and rotational
flow that does not do any work against gravity. Excitement by these eddies is one way that
contributes to the generation of waves in the turbulent region. Just as the total energy
is the sum of the kinetic energy and potential energy, it can also be broken down as the
sum of vortex energy and wave energy, corresponding to the vortical and wave motion in
a stratified flow. The vortex and wave energies can be calculated from the Craya-Herring
decomposition [Kimura and Herring, 2012]. Given a wavenumber vector k and û(k) where
û is the Fourier component of velocity such that k · û = 0, then two independent vectors
can span û in the plane perpendicular to k. These two independent vectors can be broken
down in one that is horizontal and vortical and the other is vertical and wavy [Kimura
and Herring, 2012]. One step further gives the vortex energy as simply the horizontally
rotational kinetic energy and the wave energy as the sum of the horizontally divergent
kinetic energy, the potential energy and the vertical kinetic energy.

It has been mentioned above how strongly stratified turbulence is indicated by the
presence of small Frh. It should also be mentioned how this kind of stratification physi-
cally affects the fluid. In the initial times where turbulence is rampant in a given region,
the erratic and chaotic behaviour can easily be visualized with software by observing the
twisting and curling patterns in the fluid. However, the stratification of a fluid comes soon
into play which acts to suppress the stretching of eddies into quasi-horizontal pancake-like
structures [Hebert and de Bruyn Kops, 2006, Maffioli et al., 2014, Lang and Waite, 2019]).
Thus, a layering of these eddies can be seen given sufficient time where the thickness and
amounts of these layers depend on the stratification of the respective fluid. The greater the
stratification, the thinner these layers and vice-versa. Thus, it helps to establish the rela-
tionship between the stratification given by the buoyancy parameter N to the length scales
observed in the simulated fluid. Given these length scales and velocity of the fluid, the
Reynolds and Froude numbers play significant contributions in categorizing and explaining
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stratified turbulence.

A salient feature of stratified turbulence is the generation and propagation of internal
gravity waves. Within fluid mechanics, there are two wave speeds to be acquainted with.
The first is the phase speed c which gives the speed of individual crests and troughs and the
second is the group speed cg which is the speed in which an envelope of wave packets travel
[Kundu et al., 2012]. In a stratified fluid, internal waves may propagate in any direction
and at any angle to the vertical. Due to this, the direction of the wavenumber becomes
important and its three-dimensionality is utilised k = (k, l,m). Thus, cg no longer refers
to group speed with respect to waves in stratified fluids but rather to group velocity as it
is no longer a scalar quantity [Kundu et al., 2012]. It is this cg that is of interest when
it comes to gravity waves being emanated from a stratified fluid as this is the velocity by
which the wave energy propagates at some certain wavenumbers. Kundu et al. [2012] goes
on to show that the wave motion which is related to the group velocity by definition is
perpendicular to the wavenumber vector as well as the fact that the group velocity vector
is the gradient of wave frequency ω in wavenumber space. Fortunately, in Kundu et al.
[2012], the wave frequency is succinctly defined as ω = Ncosθ where θ is the angle of the
wavevector k to the horizontal and can be calculated through some simple algebra. The
value of the frequency is bounded by 0 ≤ ω ≤ N and for waves in stratified fluids, it
depends only on the direction of the wavenumber and not its magnitude. Maffioli et al.
[2014] took an alternative route to this approach to prove the existence of such gravity
waves by proving their experimental and simulated waves were linear. In terms of wake
studies, various angles for the gravity waves were discovered given the degree of turbulence
as scribed in Zhou and Diamessis [2019] and Rowe et al. [2020].

1.2 Homogeneous Stratified Turbulence

Homogeneous stratified turbulence has occupied the limelight of experimental and numer-
ical simulations for decades and continues to be much pursued due to the sheer versatility
in being able to model various initial conditions and setups. Experimental homogeneous
stratified turbulence has enlightened into many characteristics of turbulence which leads
on to the formation of the world renown and well-loved vortical pancake structures [Billant
and Chomaz, 2000a], various power-law relationships for energy at different length scales
and the generation of internal waves. These experiments are sometimes coupled with nu-
merical simulations to compare and affirm theoretical results or act as points of reference
for more modern papers to agree with results to varying degrees of accuracy. With the
modern advancement in intensive computing capabilities, numerical simulations are ex-
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tremely popular and entire physical setups are modelled purely numerically as in the case
of towing spheres through a tunnel of stratified fluid and analysing the wakes produced.

Another prominent feature of stratified turbulence is the existence of a power-law en-
ergy spectrum for various ranges of wavenumbers. A myriad of literature is present today
which illustrated the slope of these spectra given certain transitory points in the wavenum-
ber values. Kolmogorov [1941b] established the −5/3 power-law relationship for isotropic
unstratified turbulence in the inertial subrange where shear and viscosity do not have much
effect. Even though this power-law was found in 1941, it took some more years into the
twentieth century to confirm this result. In modern literature, it has been a benchmark
that experimental setups and numerical runs strive to achieve this else produce reasons
or considerations as to why differing values were obtained. Spectral slopes vary in strat-
ified turbulence, which is not isotropic, and depends on whether horizontal or vertical
wavenumbers are considered [Maffioli, 2017, Lang and Waite, 2019]. These slopes have
critical markers that involve the buoyancy scale

lb = U/N, (1.8)

[Billant and Chomaz, 2001, Waite, 2011] where U is the velocity of the largest scale eddies
and N has been defined above. The value of the buoyancy scale is also critical in stratified
turbulence as it indicates the thickness of the pancake-like vortices that develop and the
overturning of gravity waves [Waite and Bartello, 2004, Waite, 2011]. The greater the
stratification (the bigger the N), the smaller lb becomes and hence the pancakes become
thinner. Then, there is the Ozmidov scale

lO = (ε/N3)1/2, (1.9)

where ε is the kinetic energy dissipation rate. This scale signifies the transition from
stratified turbulence to isotropic 3D turbulence [Dougherty, 1961, Ozmidov, 1965, Waite,
2011, Lang and Waite, 2019]. Below the Ozmidov scale, the eddies evolve without the
influence of stratification [Brethouwer et al., 2007]. Finally, the Kolmogorov scale, also
known as the dissipation scale,

ld = (ν3/ε)1/4, (1.10)

[Kolmogorov, 1941a] is where viscosity affects the fluid and dissipation of energy from small
scale eddies occurs. This dissipation is defined as ε = 2ν〈sijsij〉 where 〈·〉 is the domain
average and sij is the strain rate tensor [Wyngaard, 2010, Kundu et al., 2012]. Between
the wavenumbers that map these length scales are defined spectral slopes that have been
found in the literature which are indicative for stratified turbulence. For the horizontal
spectra, −5/3 has been found from small wavenumbers to kO = 1/lO and also between
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kO and kd = 1/ld [Almalkie and de Bruyn Kops, 2012, Augier et al., 2012, Brethouwer
et al., 2007, Lang and Waite, 2019]. For the vertical spectra, a steeper slope of −3 has
been discovered [Maffioli, 2017]. Even though this study does not involve rotation through
the Coriolis term in the Navier-Stokes equation, it is still worth mentioning that such
research has found spectral slopes of −5/3 and −3 for divergent and rotational ranges of
wavenumbers in rotating-stratified turbulence [Kitamura and Matsuda, 2006]. It has been
an adventure for a vast amount of research to achieve this proportionality for various types
of stratified turbulence experiments and simulations. However, a range of values can be
found from −1 to −7/3 depending on certain conditions such as if the buoyancy Reynolds
number, defined as

R = ReFr2h, (1.11)

is much greater or much lesser than 1 [Waite and Bartello, 2004, Brethouwer et al., 2007,
Waite, 2011].

Given the introduction of the Reynolds and Froude numbers as well as notable wavenum-
bers numbers, another critical parameter for stratified turbulence is the buoyancy Reynolds
number, which has already been defined in equation (1.11), but can be expressed as a ratio
between the Ozmidov and Kolmogorov wavenumbers such that

R = (kd/kO)4/3, (1.12)

which helps in establishing a large enough inertial range between kO and kd to accurately
measure the small scale behaviour of turbulence [Lang and Waite, 2019]. For strongly
stratified turbulence, the horizontal spectra has a slope of −5/3 when R � 1 otherwise
it becomes steeper [Brethouwer et al., 2007]. In addition to talking about the large scale
behaviour of turbulence, it is equivalently worthwhile to study what happens at the smaller
scales where viscous dissipation plays an important role in energy distribution. Brethouwer
et al. [2007] quoted the importance of studying both Reynolds and Froude numbers in
understanding stratified and strongly stratified turbulence. Various studies alluded to the
importance of the value of Re whilst others extended on the understanding that small
Frh points to a salient feature of stratified turbulence. In Smyth and Moum [2000a] and
Brethouwer et al. [2007], the buoyancy Reynolds number was reintroduced and certain
properties are guaranteed whether R > 1 and R < 1 [Brethouwer et al., 2007]. When
R � 1, anything with length scales at the Ozmidov length scale and greater are affected
by stratification but not so for length scales much smaller than lO; the Kolmogorov length
scale ld falls in this range. When R < 1, viscous effects are prominent at all scales through
vertical shearing activity.

Brethouwer et al. [2007] used the buoyancy Reynolds number to affirm that the −5/3
power law relationship holds for horizontal spectra and that the −3 power-law was found
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for vertical spectra. This occurs, however, for R � 1 which is the characteristic range of
strongly stratified turbulence. Such a power-law is more visible withR � 1 as this tells of a
clear inertial range. Maffioli and Davidson [2016] ran DNS of unforced stratified turbulence

and also found agreement with the k
−5/3
h for horizontal spectra but found no such k−3v for

vertical spectra. Rather, the vertical spectra found closer association with the -5/3 law.
They attributed this to not having sufficiently low enough horizontal Froude number and
suggested that Frh ∼ O(10−3) and a scaling of Frv ∼ 1 would hold over a range of
wavenumbers. However, they alluded to the fact that getting such low horizontal Froude
numbers with R � 1 is computationally expensive. Along with these computational
restrictions, Waite [2011] showed that the effective grid spacing and by extension the

horizontal resolution affects the reproducibility of the k
−5/3
h spectra. With an unresolved

buoyancy scale and coarse grid spacing, spectra are shallower than expected. However, if
the grid spacing ∆x < lb, the spectra is steeper and in particular is k−2h . Other studies
have gotten such a slope but he alludes to the fact that the way parameterizations are done
for eddy viscosity and hyperviscosity are important in resolving microscale turbulence on
the mesoscale. Furthermore, he stresses the need for an appropriate numerical truncation
to ensure an accurate cascade of energy resulting in an appropriate power-law relationship
and to not eliminate any sort of dynamics which would result in otherwise. An example
of this is filtering out horizontal scales at the buoyancy scale but lb is a critical transitory
value for the forward cascade of energy for 3D turbulence.

The vertical spectrum offers quite a few differences to the horizontal one. Firstly, the
vertical spectra have been found to obey a slope of −3 in Maffioli [2017]. In this paper, it
was established that to achieve the slope of −3, the vertical spectra needs to be split into
large scale vertical spectra and small scale vertical spectra using a horizontal demarcation
scale to separate them. Moreover, this particular slope holds for kb ≤ kv ≤ kO. A similar
analysis was done for the potential energy spectra where the golden value of −3 was
again procured but for a smaller range of wavenumbers. Furthermore, as quoted in the
paper, “this evidence supports the existence of a scale-by-scale balance between inertia and
buoyancy occurring in strongly stratified turbulence at large horizontal scales” [Maffioli,
2017]. Such a balance is telling in that that Frv ∼ 1 is also mentioned in Billant and
Chomaz [2000b,c]. Similar to how such ranges can be established, spectral slopes can
transition into each other between them. Carnevale et al. [2001] quoted a slope of −3 for
the buoyancy range into a −5/3 slope for the inertial range and this change of ranges is
demarcated by the Ozmidov wavenumber. Whilst they acknowledged that a full description
of the transition would require a 3D wavevector framework due to the anisotropy of the
buoyancy range and isotropy of the inertial range, Carnevale et al. [2001] defined their
energy sepctra with respect to a general wavenumber k. Moreover, this transition of slopes
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between the large scale buoyancy range and the small scale inertial range occurs only
for periods of active breaking. Breaking was also defined in Carnevale et al. [2001] as
the process where sinusoidal waves on the most disturbed isosurface fold over to form
elongated overturns leading to convectively unstable regions which then break. One point
to note was that they achieved a shallower spectra of −7/3 but the resolution was not
fantastic at 256. When this resolution was doubled, the spectral slope became shallower
which would lead to a more accepted slope value from modern day literature. Another
investigation into the value of the spectral slope comes in Lang and Waite [Lang and
Waite, 2019] where the anisotropy of large scale directional spectra which depends on the
wave vector angle. Near horizontal wavevectors have spectral slopes of −1 or shallow and
near vertical wave-vectors have a slope of −3. These spectra reduce to k

−5/3
h when vertically

integrated but directional spectra have slopes of −5/3 at certain angles. In the interest of
giving scope for such transitional behaviour, Kitamura and Matsuda [2006] found a point
where the rotational component of the spectra having a value of −3 also saw a divergent
component of the spectra following a −5/3 value. It should be duly noted that they cater
for the Coriolis effect which is not done in this study but this point should just serve as
an interesting fact.

Another feature of note for homogeneous turbulence in a stratified fluid is the forma-
tion of pancake-like structures. Though this was introduced in the previous sections, a
detailed explanation as to this salient feature of stratified homogeneous turbulence is done
here. It has been noticed with the onset of turbulence and its subsequent collapse, vor-
tical structures called eddies fill up the entire domain whether it be an experimental or
numerical setup [Herring and Métais, 1989, Waite and Bartello, 2004, Brethouwer et al.,
2007, Almalkie and de Bruyn Kops, 2012]. The largest of these eddies is naturally the
size of the respective domain. It has been mentioned above how these largest eddies can
excite eddies of a slightly smaller size and this process repeats until the domain contained
a myriad of variably sized eddies. Whilst this explanations given provide a step by step
outline as to the evolutionary process of the pancakes, it remains to be seen what causes
them in the first place. The creation of these pancake structures and the coining of the
term as such comes from Billant and Chomaz [2000a,b,c] and their discovery of a new kind
of instability called the zig-zag instability. The stratification of the experimental fluid sup-
presses vertical activity and hence these pancake structures are elongated in the horizontal
direction. Furthermore, the degree of stratification affects how thin these pancakes can be
which in turn affects how much of them can be layered in the domain. The greater the
stratification, the thinner the layers and hence they are more abundant. This thickness
scales with the buoyancy length scale lb = U/N [Billant and Chomaz, 2001]. Knowledge
of the eddy length scales is vital information in calculating Froude numbers as strongly
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stratified regions have Froude numbers Frh � 1 and Frv ∼ 1.

Whilst homogeneous turbulence serves as an important first step in understanding this
natural phenomenon, it has its limitations. One such consideration is that turbulence is not
homogeneous in nature but occurs in patches in the atmosphere and oceans. This feature
of turbulence is called intermittency. Global intermittent turbulence is characterized by
alternating quiescence and bursting processes such as laminar and turbulent states of the
atmospheric boundary layer [He and Basu, 2015] and vertical mixing of pollutants [Mahrt,
1989]. Whilst statistical methods have been used to average the patches of turbulence, it
is of merit to study such systems on a somewhat individual basis. Thus, it is of interest to
study how these turbulent patches singly interact with a non-turbulent environment.

1.3 Inhomogeneous Stratified Turbulence

Homogeneous stratified turbulence, whether in the ocean or atmosphere, has been and still
currently is an ever exciting, effervescent field of study. There are many such experiments
and simulations done which considers forcing, stratification or any combination of those
features. While simulating various initializations of homogeneous turbulence give results
which are quite indicative and telling in its behaviour in nature given certain conditions,
one key characteristic is not accounted for. This is the global or external intermittency
that turbulence possesses. This essentially tells that turbulence occurs in patches or clouds
which can see the organization of such structures on scales larger than the main eddies
[Mahrt, 1989] and involves due consideration of the behaviour of the boundary between
the turbulent and non-turbulent regions [He and Basu, 2015]. The statistical uniformity
that homogeneous turbulence offers does not entirely capture this fact of global or external
intermittency in nature. This definition of intermittency is not to be confused with the
small-scale, microscale, internal or intrinsic definition of the same term which relates to the
statistics of higher-order structure functions, the dissipation of turbulent kinetic energy to
mainly the small sub-regions of individual eddies [Mahrt, 1989] or a focused space/time
study of the small-scale structure within turbulent flows [He and Basu, 2015]. Thus,
understanding how these turbulent patches interact with their surroundings, which are
either not as turbulent or not turbulent at all, is important in understanding the natural
process of turbulence. Such an existence can be defined as inhomogeneous turbulence and
particularly for this study, a turbulent patch is numerically analysed in its evolution in an
otherwise quiescent domain.

Motivation for the initial research into inhomogeneous stratified turbulence has been
presented in Riley and Metcalfe [1987] which sought to simulate a stratified horizontal cloud
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with three different Froude numbers in an otherwise quiescent domain. A first point to note
is that they focused their efforts entirely on inhomogeneous turbulence but in this thesis, a
comparison is also made to homogeneous turbulence of a similarly sized domain. A second
point to note is the size of the cloud used in the respective simulations. What should be
considered is that the horizontal cloud in Riley and Metcalfe (their Figure 1) was defined
to extend infinitely in the x− and y− directions but was localized in the z- or vertical
direction. Their cloud was also initialized to be statistically homogeneous in the horizontal
with a quiescent and stably-stratified background. A similar experimental setup was used
for all simulations in this thesis with the primary difference being in the approaches used.
Though the simulation resolution at that time was 643, encouraging results using Fourier
transforms (through the use of a pseudo-spectral spatial method with an Adams-Bashforth
time-stepping scheme) were produced which showed the evolution of kinetic, potential,
wave and vortex energies in and out of the variously stratified clouds. One particular
result from this paper shows that the vortex energy primarily remains within the cloud
for all simulations ran with three different Froude numbers but a significant amount of
wave energy was found in the initially quiet regions. Several results were presented in
the paper which all attributed the presence of such wave energy to the generation and
propagation of internal waves due to the effects of stratification on the turbulent cloud.
Furthermore, the stronger the stratification, the greater the vertical spread of wave energy
outside the cloud. This also coincided with a greater decrease in vortex energy inside the
cloud. Even though this decrease was small in magnitude and the majority of the vortex
energy remained localized within the cloud, it was believed that this behaviour was partly
related to the subsequent wave radiation [Riley and Metcalfe, 1987]. Thus, it can be seen
that the physical interaction between a turbulent patch and a non-turbulent one is able to
induce internal waves in the latter.

Maffioli et al. [2014] also investigated this interaction between a stratified turbulent
cloud and its non-turbulent surroundings to understand the formation of pancake-like
vortices in the latter region. Before going any further, it is important to note that the
cloud was oriented vertically in Maffioli et al. [2014] as opposed to horizontally in Riley
and Metcalfe [1987] but the mechanism of different interacting regions resulting in the
generation and propagation of internal gravity waves was also present. Maffioli et al. [2014]
proceeded to understand these pancake vortices both experimentally and numerically. In
their experimental setup, they used a tank in which the turbulent region was put on
one side and was then allowed to evolve horizontally towards the other side of the tank.
They performed various pairs of such experiments with pearlessence flakes and fluorescein
(green dye). The former tracks the initial movement of fluid in the turbulent cloud and
internal wave presence in the non-turbulent region adjacent to the turbulent one and the
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latter indicates the cloud edge deformation due to turbulent advection. By considering
the position of these trackers from each other, a lot of information can be initially gained.
The pearlessence flakes were found ahead of the dye and can represent different scenarios.
Horizontally elongated structures as shown by the pearlessence hint to the activity of
internal waves outside of the cloud whereas the displacement of the dye points towards
the deformation of the cloud’s edge due to turbulent advection of the fluid. To further
clarify between these two situations, the numerical simulation is used to quantify these
initial qualitative results. Numerically, Lagrangian particles are dispersed throughout the
turbulent cloud and its position with respect to the pancake vortices is scrutinized. The
edges of the pancake vortices were well ahead of the Lagrangian particles which tells that
internal waves are the reason for such vortices and not advection the turbulent cloud. A
further important results emanating from this paper is that these waves are linear in nature
by an investigation of the group speed of these pancake vortices.

Another popular research area of inhomogeneous turbulence is the evolution of wakes
from moving bodies being towed through a stratified fluid embedded in an otherwise qui-
escent environment [Abdilghanie and Diamessis, 2013, Zhou and Diamessis, 2019, Rowe
et al., 2020]. An immediate comparison of this setup to the one in Riley and Metcalfe
[1987] tells: (a) the removal of the moving body leaves the stratified fluid as an example of
a turbulent cloud in an otherwise quiescent region, (b) wakes are highly turbulent and can
evolve as far as secondary collapsing under stratification which doesn’t happen for a freely
decaying cloud, (c) Froude number calculations vary because the length scale used either
considers the size of the eddies or the diameter of the moving body, (d) wakes have been
calculated to follow the power-law spectra under stratification but no such analysis was
done for the other paper, and (e) wakes are localized formations whereas the cloud’s evo-
lution affected the entire domain. Naturally, a significant amount of detail is emphasized
on the sustainability and collapsing of these wakes as well as the creation of secondary
wakes. In addition to these pivotal points, one major facet of interest is the range of
angles by which internal waves are propagated into these quiescent regions. These angles
are studied in depth in Abdilghanie and Diamessis [2013], Rowe et al. [2020] but not in
Riley and Metcalfe [1987]. It has been found that these angles vary based on the structure
of the stratified fluid due to its turbulent life cycle which lends to a correlation between
the range of these angles and particular time intervals in which they occur. It has been
found that a range of 20◦−70◦ [Rowe et al., 2020] can be observed for the non-equilibrium
regime and it is at the end of this regime where the internal waves become fully horizontal
(parallel to the orientation of the cloud and the direction of growth/spread of the pancake
vortices). Depending on the experimental setup, other ranges for this wave propagation
have been found as 40◦− 55◦ in Abdilghanie and Diamessis [2013] and 35◦− 45◦ in Dohan
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and Sutherland [2003].

1.4 Thesis Objectives

Given the elaboration on both homogeneous and inhomogeneous stratified turbulence, the
motivation for this research is as follows:

1. To compare the evolution of homogeneous and inhomogeneous stratified turbulence
in a purely numerical setting,

2. To investigate and relate parameters such as Froude numbers, length scales, dissipa-
tion and buoyancy Reynolds numbers of inhomogeneous turbulence to those already
well defined for homogeneous turbulence in the academic literature,

3. To analyse the power-law spectra of the turbulent cloud to that established in the
literature for horizontal and vertical wavenumbers in homogeneous turbulence,

4. To study the generation of internal gravity waves emitted from the stratified turbulent
cloud and to what angles do these waves propagate at.

Following this chapter, the numerical scheme and simulation framework is discussed
in Chapter 2, results and their respective discussions are presented in Chapter 3 and a
summary with perspective for future work concludes this thesis in Chapter 4.
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Chapter 2

Methodology

2.1 Numerical Setup

The numerical model employed invokes the application of a spectral transform method
[Durran, 2010] on a triply periodic domain of size Lx × Ly × Lz to solve the uniformly
stratified Boussinesq equations (1.1)-(1.3). This domain is broken up into nx × ny × nz

grid points in physical space and an equivalent number of discrete wavenumbers in Fourier
space. This gives a grid spacing of ∆x = Lx/nx, ∆y = Ly/ny and ∆z = Lz/nz. With the
use of a spectral method, the range of wavenumbers to be considered can be as follows

ki =
2π

Li

j, j = −Ki + 1, ..., Ki, (2.1)

where i ∈ {x, y, z} and Ki = ni/2 ∈ Z is the natural choice for dimensionless truncation
wavenumber and in this study, ni is even.

The equations are numerically computed using the third-order Adams-Bashforth method
with the viscous/diffusion terms treated with a Crank-Nicolson approach [Durran, 2010].
To understand the approach, consider an equation for a given Fourier coefficient ψ

dψ

dt
= F (ψ)− rψ, (2.2)

where r is the viscous/damping rate and F is the total of the nonlinear and linear terms
as in (1.1)-(1.3). With this, the overall Adams-Bashforth and Crank-Nicolson scheme is

ψ(n+1) − ψ(n)

∆t
=

1

12

[
23F (ψ(n))− 16F (ψ(n−1)) + 5F (ψ(n−2))

]
− rψ

(n+1) + ψ(n)

2
, (2.3)
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where ψ(n) is the value of ψ at t = t0 + n∆t. The value of ψ at time n+ 1 depends on the
previous three time steps as

ψ(n+1) =

(
1− r/2
1 + r/2

)
ψ(n) +

∆t

12(1 + r/2)

(
23F (ψ(n))− 16F (ψ(n−1)) + 5F (ψ(n−2))

)
. (2.4)

where the first and second time steps are calculated by a Runge-Kutta method. This
scheme offers impressive stability properties [Durran, 2010] such that once ∆t is sufficiently
small to ensure the stability of the linear and advective terms then the viscous/diffusion
terms will also be stable. In terms of spatial discretization, the Fourier transform is used
and is explained later in this section. Furthermore, the code solves the vorticity formulation
of (1.1):

∂ω

∂t
= ∇× (u× ω) + α

 ∂T/∂y
−∂T/∂x

0

+ ν∇2ω, (2.5)

where ω = ∇ × u and the term in the brackets relates to the baroclinic generation of
vorticity. Using incompressibility, inverting the vorticity gives the velocity by solving

∇2u = −∇× ω, (2.6)

which can be be written in Fourier space as

k2û = ik × ω̂, (2.7)

where û and ω̂ are the Fourier transformed velocity and vorticity respectively. Equation
(2.7) can easily be solved for û by dividing through with k2.

The spectral transform method uses a Fast Fourier Transform (FFT) to move between
the physical and Fourier domains. This is advantageous as it allows model variables to
be calculated in either domain wherever the numerical process is simply easier and less
computationally expensive. An example of this is that quadratic non-linearities are easi-
est to calculate in the physical domain but derivatives are best computed in the Fourier
domain. Given this advantage of the FFT connecting physical and Fourier spaces, energy
calculations which are an important consideration in turbulent studies can be calculated
in either domain. For example, kinetic energy can be calculated in the physical space by
1/2|u|2 but the vortex energy is evaluated in the Fourier space by using the Craya-Herring
decomposition [Kimura and Herring, 2012]. Whichever the space, the amount of energy
is the same as guaranteed by Parseval’s Theorem and with such a robust equivalence, the
FFT is used in this model.
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Given that some calculations are better carried out in physical space such as pointwise
multiplication to compute non-linear terms, one unwelcome situation that can arise is that
of aliasing. Aliasing can arise in the situation of pointwise multiplication of two fields where
the result is of a smaller scale than the available grid spacing and it becomes unresolvable.
This can then lead to numerical instabilities and cause numerical simulations to blow up.
Thus, it is important that aliasing is minimized or eliminated by truncating the range
of the Fourier coefficients. The truncation provided by Ki = ni/2 does not effectively
deal with aliasing and an alternative must be sought. In Durran [2010], truncating the
wavenumbers at ni/3 and rounding down to the nearest integer removes all problems
associated with aliasing but some DNS simulations [Riley and deBruynKops, 2003] have
truncated as far as 15ni/32 which was capable of removing the dominant aliasing error.
For the simulations conducted in this work, the truncation is such that the maximum
wavenumbers are Kx = 4nx/9, Ky = 4ny/9 and Kz = 4nz/9 where nx, ny and nz are
the number of grid points in the respective Cartesian directions [Lang and Waite, 2019,
Legaspi, 2019]. Such a truncation allows in getting more resolution out of the grid whilst
also eliminating most aliasing. Given this range of 8n/9 wavenumbers, the effective grid
resolution for the simulations are

∆x = 9L/8n, (2.8)

where L is the length of one side of the 2π cube.

2.2 Simulation Framework

The simulations were carried out in a cube of length Lx = Ly = Lz = 2π that was
divided into nx = ny = nz = 1024 grid points. The majority of this study seeks to
compare simulations where the entire 2π box is filled with homogeneous turbulence versus
an inhomogeneous setup. The latter is a turbulent cloud being present in the middle of
the domain initially occupying one-quarter of the total space for 3π/4 ≤ z ≤ 5π/4 for all
x and y in an otherwise quiescent box of the same size as in the homogeneous setup. The
cloud was created by extracting an appropriate sized block by applying a window function
on a snapshot from a homogeneous simulation to mimic a patch of turbulence with quiet
regions above and below it. The inhomogeneous setup can be visualized in figure 2.1 with
vorticity being greatest within the cloud and approximately zero elsewhere.

The window function used is

1

2

[
tanh((z − zu)/zw)− tanh((z − zl)/zw)

]
, (2.9)
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where zu = 3Lz/8 is the upper boundary of the cloud, zl = 5Lz/8 is the lower boundary
of the cloud and zw = π/10 = Lz/20 is the thickness of the transition from within the
cloud to outside the cloud as tanh goes from 1 to −1. This is shown in figure 2.1 which
also includes a transect of the vorticity through fixed x and y for all z so as to distinguish
activity within the cloud with the lack thereof outside of the cloud at initial time. The
orientation of the cloud is parallel to the xy-plane as in Riley and Metcalfe [1987] but with
much higher resolution and in Zhou and Diamessis [2019] which studies wake turbulence
of a moving body in a horizontally stratified cloud. A variation to this where the the cloud
was perpendicular to the xy-plane can be seen in Maffioli et al. [2014].
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Figure 2.1: (a) The shape of the tanh window function used to create a turbulent cloud
and (b) a profile of the magnitude of vorticity at fixed x and y for all z taken from the
middle of the domain to help visualize the turbulent and quiescent regions at t = 0.

The homogeneous simulation was initialized by data from a forced unstratified turbu-
lence simulation, which was run until statistical stationarity (energy input via forcing is
equal to energy output by dissipation) was achieved [Lang and Waite, 2019]. After this,
the tanh window in equation (2.9) shown by figure 2.1 was applied to this simulation of
statistical stationarity which is at t = 0. Then, different degrees of stratification were
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utilized, and the simulation was subsequently run without any forcing for 250 time units
where the turbulence was freely decaying. The inhomogeneous setup was initialized and
exposed to same levels of stratification for 250 time units. The kinematic viscosity with its
respective numerical units used in the model is ν = 0.027 × 10−4. This value was chosen
to be as small as possible whilst respecting the resolution required for DNS. In Table 1
of [Lang and Waite, 2019], the ratio of kmax to kd is less than one for their n = 1024
runs and the simulations in this thesis is initialized in the same manner as theirs. With
the evolution of time, ε decreases and the resolution of the Kolgomorov scale gets better.
If an inappropriate ν is chosen such that the Kolgomorov wavenumber kd � kmax, the
turbulence causes an unwanted accumulation of energy near kmax to create the necessary
dissipation. This creates grid-scale noise and can more often than not lead to numerical
instability. However, actual turbulence in nature transfers energy past kmax and is dissi-
pated at kd which means that kmax needs to be greater than kd. Thus, ν is picked so that
dissipation scale is accurately resolved which also satisfies the requirement for DNS [Pope,
2000]. Also, for this setup, κ = ν so that the Prandtl number is 1. The stratifications
utilized are N = 0, 0.15, 0.3 and 0.6. These values of N indicate strong stratification as
they give horizontal Froude values of O(10−2) [Lang and Waite, 2019].

In addition to these choices of N , one more simulation is studied for N = 0.3 but the
initialization of the simulation is forced stratified turbulence with N = 0.3. This particular
simulation and its results will be labelled as N = 0.3(SIC) where SIC is an abbreviation for
‘stratified initial condition’. This run is different from the other four previously mentioned
because it only adjusts to the presence of the cloud whereas the others adjusts to different
stratifications as well as the cloud at t = 0. Other important parameters are quoted in
Table 2.1 for the initial time of the simulations and Table 2.2 records their values at the
final time for the same simulations.

The characteristic length scale of the dominant turbulent eddies have been calculated
in two ways in the literature. In Lindborg [2006] and Brethouwer et al. [2007], the formula
used to calculate the vertical length scale is

lv =

∫ kv,max

0
E(kv)dkv∫ kv,max

0
kvE(kv)dkv

, (2.10)

whereas in Zhou and Diamessis [2019], the vertical length scale is

lv =

∫ kv,max

0
2πk−1v E(kv)dkv∫ kv,max

0
E(kv)dkv

. (2.11)
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The 2π is just a scalar term in the second equation and any concern need not be placed on
that. What is of interest is the choice of two different ways to calculate the vertical length
scale depending on the placement of the kv term. The argument put forward in Appendix
B of Brethouwer et al. [2007] is that having kv to the first power requires E(kv) to fall off
faster that k−2v for large kvlv. To satisfy this condition is to ensure that the spectrum falls
of as k−3v which is expected for stratified turbulence. They also argued that choosing k2v
puts too much emphasis on small scales which adds an extra dependency on the Reynolds
number. However, with the approach of Zhou and Diamessis [2019], the aforementioned
restrictions on the required steepness of the spectra are not needed as their approach allows
for shallower spectra. This makes the second equation more robust as varying power-law
relationships have been found in previous studies. Further, it avoids completely having
to ensure convergence with an kvE(kv) term in the denominator. Given the details on
calculating lv, the horizontal length scale lh can also be calculated from the above equation
(2.11) by using kh and E(kh) where the vertical counterparts are present. Finally, the eddy
time-scale τ can be computed by τ = lh/U where U is the fluctuation velocity (discussed
below). The values of these length and time scales can seen in tables 2.1 and 2.2. From
table 2.1, τ ≈ 70 so the simulation length of 250 time units is a few eddy times scales long,
which is approximately 3.6 in number.

A critical result of these simulations is the production and subsequent analysis of both
horizontal and vertical spectra for the turbulent cloud. These spectra are calculated with
respect to the horizontal wavenumber

kh =
√
k2x + k2y, (2.12)

and vertical wavenumber
kv = |kz|. (2.13)

Following Zhou and Diamessis [2019] in their calculation of the Froude number, the velocity
required is the fluctuation velocity U within the cloud which is

Ui =
√
u2i − ū2i , (2.14)

for i ∈ [1, 2, 3] where (u1, u2, u3) = (u, v, w) and ūi is the average of the respective velocity
component for the cloud region. It is this U that is used to calculate the Froude number
from equation (1.7). Then, as the domain is triply periodic, it means the boundaries in the
x- and y-directions are still periodic due to the orientation of the cloud with respect to the
domain but not so for the z-direction. This poses a problem as the Fourier transform to
produce the vertical spectra requires periodic boundary conditions to be present at the top
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and bottom of the cloud. To achieve this, a Hanning window is used to achieve periodicity
in the z-direction. After getting the fluctuation velocities and triply periodic boundary
conditions for the shape of the cloud, a two-dimensional Discrete Fourier Transform (2D
FFT) is used for obtaining the horizontal spectra and similarly, a one-dimensional Discrete
Fourier Transform (1D FFT) is done for the vertical spectra. In particular, kh may not al-
ways be an integer so it is rounded appropriately to produce such whole values. The Fourier
transformed velocities are then used to calculate the different types of energy present in
the cloud. The energy is then sorted according to their corresponding wavenumbers and
spectra are thus established.

Due to the aforementioned ease of certain evaluations using the FFT and invoking Par-
seval’s Theorem guaranteeing the equivalence of energy between the physical and Fourier
spaces, the energy quantities to be calculated using the wavenumber spectra are kinetic
(KE), potential (PE), vortex (VE) and wave energies (WE):

KE =
1

nz

∑
hz

∑
kh

1

2
(|û|2 + |v̂|2 + |ŵ|2), (2.15)

PE =
1

nz

∑
hz

∑
kh

1

2

α

β
|T̂ |2, (2.16)

VE =
1

nz

∑
hz

∑
kh

1

2

|ikxv̂ − ikyû|2

k2h
, (2.17)

WE =
1

nz

∑
hz

∑
kh

1

2

|ikxû+ ikyv̂|2

k2h
+ PE + KEz. (2.18)

where hz is the vertical grid level index. The Fourier transform performed for the above
energy calculations is in x and y only so that û(kx, ky, z, t), v̂(kx, ky, z, t) and ŵ(kx, ky, z, t).
Also, in calculating the potential energy, it should be emphasized from equations (1.1)-(1.3)
that β is constant.

The final parameter of interest in this study is the eddy frequency ωe at horizontal
wavenumber kh defined as

ωe(kh) =
√
k3hE(kh). (2.19)

The derivation of the above equation (2.19) centres around ‘an eddy of scale r’ which
possesses a scale approximately between r/2 and 3r/2 so that about scale r, it lies in a
band of width ∆r ∼ r [Tennekes and Lumley, 1972, Wyngaard, 2010]. Using the eddy
of scale r, the corresponding wavenumber magnitude can be written as k ∼ 1/r and the
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velocity scale u(r) has a relationship such that

[u(r)]2 ∼ kE(k), (2.20)

where E(k) is energy at wavenumber k [Wyngaard, 2010]. Thus, taking the square root on
both sides of equation (2.20) and multiplying across by k gives the eddy frequency as in
equation (2.19). As discussed in the previous chapter, the action of eddies are important
in the excitement of internal waves [Riley and Metcalfe, 1987, Maffioli et al., 2014]. What
also is known is that the dominant eddies which are also the largest eddies possess the most
energy in the domain. Thus, it is expected that frequency of waves which are generated
and propagated for varying N to be close to the eddy frequency of these dominant eddies.
From ωe(kh), the angle of propagation of these waves can be calculated by assuming that
ωe is similar to the wave frequency ω = Ncos(θ) where θ is the angle that the wavevectors
make with the horizontal.

The output files produced from the simulations underwent post-processing in Mat-
lab and Paraview in an effort to understand the non-forced, decaying behaviour of the
homogeneous and inhomogeneous simulations through graphical plots and pictorial repre-
sentations. These two pieces of software granted many advantages in that the FFT and
inverse FFT are easily calculated via Matlab and a visual representation of the collapsing
of turbulence, the layering of the pancake vortices, extensions of the cloud and propagation
of gravity waves was captured by Paraview. The code used for generating the NetCDF
files were scripted in Fortran, which utilized 512 cores, taking approximately 20 hours to
run. The post-processing of the NetCDF files were done in Matlab which using 12 CPUs
for a approximate completion time of 18 hours. Both the simulations and post-processing
were all performed on Compute Canada’s Graham clusters.

N τ ε lv lh Frv Frh Reb kb
0 70.4 0.191× 10−5 2.49 1.23 - - - -

0.15 70.4 0.191× 10−5 2.49 1.23 0.0470 0.0947 31.4 8.57
0.30 70.4 0.191× 10−5 2.49 1.23 0.0235 0.0473 7.85 17.1
0.60 70.4 0.191× 10−5 2.49 1.23 0.0117 0.0237 1.96 34.3

0.30(SIC) 88.1 0.123× 10−5 2.41 1.84 0.0290 0.0378 5.07 14.3

Table 2.1: Values of parameters at the beginning of the inhomogeneous simulations within
the cloud.
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N τ ε lv lh Frv Frh Reb kb
0 248 9.25× 10−8 2.12 1.30 - - - -

0.15 232 7.57× 10−8 2.60 2.24 0.0248 0.0288 1.25 15.5
0.30 204 1.03× 10−7 2.45 2.26 0.0151 0.0163 0.423 27.1
0.60 185 1.20× 10−7 2.43 2.21 0.0082 0.0090 0.124 50.4

0.30(SIC) 207 1.67× 10−7 2.04 2.54 0.0200 0.0161 0.688 24.4

Table 2.2: Values of parameters at the end of the inhomogeneous simulations within the
cloud.
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Chapter 3

Results

This chapter seeks to compile results from the various simulations so as to accurately
comment on the comparison between homogeneous and inhomogeneous turbulence. In
particular, the behaviour within the cloud is contrasted with that outside of the cloud
and then referenced to the homogeneous turbulence simulations where there is no such
distinction. Outside of the cloud here is defined in this section as z < Lz/4 and z > 3Lz/4
which is a more restricted region to what was defined in Chapter 2. These regions within
the domain can be seen in figure 3.1. The evolution of the turbulent cloud imbibes certain
dynamics into the regions immediately above and below it in which the boundary separating
the cloud from the rest of the domain becomes quite unclear. The influence of the cloud
thus extends beyond the initially defined boundaries through processes such as molecular
diffusion and advection so that to get an accurate representation for the out of cloud
behaviour, calculations are done for the upper and lower quarters of the cubic domain.

The sections in the chapter account for various parameters such as horizontal length
and vertical length scales, horizontal and vertical Froude numbers and buoyancy Reynolds
numbers. In addition to such parameters, a variety of diagnostics is also presented such
as time series for energy, rates of dissipation, possible angles of propagation for internal
gravity waves, and energy spectra at given times. Both these parameters and diagnostics
will be compared to other works done on turbulence to see how they relate to each other.
Within each of these sections, a discussion is also offered so as to aid the reader in their
journey of this comparative and exploratory research effort. For this chapter, UIC refers
to unstratified initial condition and SIC refers to stratified initial condition.
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Figure 3.1: A vertical (x− z) slice of the domain showing the cloud and restricted out of
cloud regions.
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3.1 Energy Time Series

3.1.1 Kinetic Energy
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Figure 3.2: Time series of kinetic energy averaged over the defined cloud region for (a)
N = 0, (c) N = 0.15, (e) N = 0.3, (g) N = 0.6, (i) N = 0.3(SIC) and outside the cloud
region for (b) N = 0, (d) N = 0.15, (f) N = 0.3, (h) N = 0.6, (j) N = 0.3(SIC).

Figure 3.2 compares the evolution of kinetic energy inside the cloud (plots on the left)
and outside the cloud (plots on the right), both normalized by the initial total energy
inside the cloud for the homogeneous and inhomogeneous systems. Within the cloud,
it can be noticed that the decay of the kinetic energy is similar for both system with
the inhomogeneous system decaying slightly faster. This is most noticeable for the more
stratified cases with N = 0.3 and N = 0.6 within the first half of the time allotted for
the simulation. However, a stark contrast comes out of the cloud with respect to the
inhomogeneous run in which there is an overall increase in the amount of kinetic energy
which can be observed. It should be pointed out that this energy is quite small for N = 0
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but it does increase as N get larger. This is seen for panels (d)-(h). An explanation for
this, which appears to be accurate and is discussed further in this chapter, is that the
turbulence in the cloud excites waves which propagate out of the cloud. The SIC case in
panels (i) and (j) has a continuous decrease in kinetic energy within the cloud as compared
to the almost horizontal plateau achieved by the UIC cases for later times t > 100. The
energy outside of the cloud for the SIC case does increase with time but is also a magnitude
of O(10) smaller than that for the UIC cases with N 6= 0. It seems that the adjustment to
stratification plays a role in the out of cloud behaviour when comparing the UIC and SIC
cases. Again, the adjustment to stratification plays in role in the UIC and SIC cases for
N = 0.3.

3.1.2 Potential Energy
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Figure 3.3: Time series of potential energy averaged over the defined cloud region for (a)
N = 0.15, (c) N = 0.3, (e) N = 0.6, (g) N = 0.3(SIC) and outside the cloud region for (b)
N = 0.15, (d) N = 0.3, (f) N = 0.6, (h) N = 0.3(SIC).
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Figure 3.3 compares the evolution of potential energy inside the cloud (plots on the
left) and outside the cloud (plots on the right), both normalized by the initial total energy
inside the cloud for the homogeneous and inhomogeneous systems. The plots show that
the potential energy decays more rapidly for an increasing N in the UIC cases. Due to the
presence of stratification and increasing the strength thereof, this reduction of potential
energy within the turbulent cloud suggests that there is an increase in internal waves being
propagated into the region outside of the cloud. This point is reinforced by the increase
in potential energy outside of the cloud. Consider a reference energy value of 0.02 for
panels (b) N = 0.15, (d) N = 0.3 and (f) N = 0.6 on the right hand side. The potential
energy outside the cloud: is less than half of the reference value for (b), is slightly smaller
than the reference value for (d) and is greater than the reference value for (f). Thus, the
potential energy outside of the cloud increases as N get larger. Another check for this is
to observe the wave energy outside of the cloud (Figure 3.5). It is also worth noting that
the inhomogeneous systems inside the cloud depicted in panels (a), (c) and (e) on the left
hand side all decay to an energy value of approximately 0.05 which is about half the value
of the homogeneous systems for the same region at the end of the simulations. The SIC
case in panels (g) and (h), however, offers different results in that the potential energy in
the cloud for both systems decay to an approximate value of 0.05 with the inhomogeneous
system decaying faster. Also, there is an increase of potential energy outside of the cloud
as shown in panel (h) but is a magnitude of O(10) smaller as compared to the UIC cases
outside of the cloud.

3.1.3 Vortex Energy

Figure 3.4 shows the vortex energy inside the cloud (plots on the left) and outside the
cloud (plots on the right), both normalized by the initial total energy inside the cloud for
the homogeneous and inhomogeneous systems. It can be seen within the cloud that the
inhomogeneous system experiences an extremely similar evolution to that of the homoge-
neous system as shown by the almost perfect overlap of the curves. As can be seen with
greater N , the vortex energy does not decay much with time similar to Riley and Metcalfe
[1987] in that vorticity is localized to the turbulent cloud and does not spread out as easily
to the non-turbulent areas. It can also be noticed that the vortex energy outside of the
cloud is somewhat constant from the horizontal slope of the curves with some oscillatory
behaviour also being present which is particularly displayed in panel (d). This can be
related to waves outside of the cloud. Linear waves do not possess any vortex energy but
due to nonlinearities, there will be a small amount of vortex energy in the waves. This can
also be the case for panels (f) and (g) but there was not a high enough output frequency to
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Figure 3.4: Time series of vortex energy averaged over the defined cloud region for (a)
N = 0, (c) N = 0.15, (e) N = 0.3, (g) N = 0.6, (i) N = 0.3(SIC) and outside the cloud
region for (b) N = 0, (d) N = 0.15, (f) N = 0.3, (h) N = 0.6, (j) N = 0.3(SIC).

resolve. The minuscule energy value of these curves reiterate the fact that the vast amount
of vortex energy remains localized in the turbulent cloud. This slight increase of energy
outside the cloud can be attributed to the evolution of the cloud exciting the originally
quiet regions and causing such vorticity-based structures to appear. Panel (i) shows the
inside of the cloud for the SIC case where the homogeneous system actually decays slightly
faster than the inhomogeneous case. This again points to the vortex energy being localized
within the turbulent cloud and not dissipating to the out of cloud regions as shown by
the homogeneous case. Both systems also have a greater decay as compared to panels (e)
N = 0.3 and (g) N = 0.6 for within the cloud. The energy outside of the cloud for the SIC
case as shown in panel (j) is also of the same magnitude as panels (d), (f) and (h) for the
UIC cases.
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3.1.4 Wave Energy
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Figure 3.5: Time series of wave energy averaged over the defined cloud region for (a) N = 0,
(c) N = 0.15, (e) N = 0.3, (g) N = 0.6, (i) N = 0.3(SIC) and outside the cloud region for
(b) N = 0, (d) N = 0.15, (f) N = 0.3, (h) N = 0.6, (j) N = 0.3(SIC).

Figure 3.5 represents the wave energy inside the cloud (plots on the left) and outside
the cloud (plots on the right), both normalized by the initial total energy inside the cloud
for the homogeneous and inhomogeneous systems. It is observed that the inhomogeneous
system has a greater decay of wave energy than the homogeneous system except in panel
(i). This particular plot must be remembered as being initialized with initial conditions of
N = 0.3 as compared to N = 0 for the other four on the left hand side of figure 3.5. This
means that stratification wasn’t applied at the start of the simulation and this continuous
application of the same N results in a slower decay as compared to the other plots. It can
also be stated that the wave energy in the cloud is lower than its homogeneous counterpart
due to the inhomogeneity of that system. As the regions above and below the cloud are
in no way as turbulent, waves will propagate much easier to these quiescent areas but this
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will not be seen for the homogeneous setup as this difference in regions is not available.
However, some revealing information is given by the results outside the cloud (plots on the
right). A distinct increase in the wave energy can be seen to occur as well as a sustained
amount of wave energy can be observed to be present outside of the cloud with the progress
of time. The wave energy outside of the cloud also increases with larger N as panel (d)
shows a peak at 0.02, panel (f) has values greater that 0.02 and panel (h) has the largest
values of this set. In addition to this observation, there is more wave energy outside of the
cloud, which is a whole magnitude of O(10) larger, than there is vortex energy (figure 3.4)
in the same region. This is quite telling to a significant presence of gravity waves being
present in the once quiescent region. These results are also consistent to figures 3.3 and
3.4 as a movement of potential energy occurs from in the cloud to outside of the cloud
whereas the vortex energy remains localized to within the cloud. Another observation is
that the SIC case has a lot less wave energy out of the cloud than the UIC case with the
same N = 0.3. This behaviour is also observed for the SIC case in figure 3.3. So, clearly
the adjustment to stratification in the UIC case generates a lot of the waves that propagate
out of the cloud.

3.2 Length Scales and Turbulence Parameters

3.2.1 Horizontal and Vertical Length Scales

Figure 3.6 shows the time series of the vertical and horizontal length scales for both in-
homogeneous and homogeneous setups. It can be seen for early times t ≤ 100, that the
horizontal length scale lh is smaller than the vertical length scale lv (equation 2.11) in the
UIC simulations, but similar in magnitude in the SIC simulation. At t = 0, lh ≈ 1.2 which
is almost half of lv ≈ 2.5. Though the UIC simulations are initialized with N = 0 and
expected to be isotropic in nature, these initial length scales do not abide by that. This can
be due partially to an artifact of the window applied to compute the kz spectra. However,
the horizontal length scale increases with time as turbulence decays. This can be possibly
due to the dominant eddies being bigger as the smaller eddies are decaying by the action of
viscosity. However, such a trend is not as clearly observed for the vertical length scale. For
the UIC simulations, lv is found to fluctuate within a narrow range of values but decays
somewhat steadily from 2.5 to close to 2 for the SIC simulation. It can also be noted that
the initial lv is almost equivalent to the final lh for the SIC case. For the horizontal scales,
the stratified simulations all show lh growing in time as the turbulence decays but For lv,
such a trend is not as clear. In fact, there does not seem to be a significant dependence
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Figure 3.6: Vertical length scale for (a) N = 0, (c) N = 0.15, (e) N = 0.3, (g) N = 0.6, (i)
N = 0.3(SIC) and horizontal length scale for (b) N = 0, (d) N = 0.15, (f) N = 0.3, (h)
N = 0.6, (j) N = 0.3(SIC) in the cloud region.

of lh or lv on the stratification N . This offers a surprising result as it is expected, from
previous work on homogeneous turbulence, that with time and varying N , these vertical
lengths should adjust according to lv ∼ U/N but this does not occur in these simulations.

3.2.2 Horizontal and Vertical Froude Numbers

Figure 3.7 displays a continuous decrease in both horizontal and vertical Froude numbers
for increasing time with the inhomogeneous system decaying faster than the homogeneous
one. It can also be immediately noticed that Frh and Frv are less than one. The small
values of Frh are indicative of strongly stratified turbulence and suggests the possibility of
achieving the −5/3 power-law relationship for the horizontal wavenumber energy spectra
provided that R is large enough. Though much research has shown that Frv ∼ O(1) is
found in strongly stratified turbulence, the results produced in this figure are more along
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Figure 3.7: Vertical Froude number for (a) N = 0.15, (c) N = 0.3, (e) N = 0.6, (g)
N = 0.3(SIC) and horizontal Froude number for (b) N = 0.15, (d) N = 0.3, (f) N = 0.6,
(h) N = 0.3(SIC) in the cloud region.

the lines of Frv ∼ O(10−2). Furthermore, for both the UIC and SIC cases, the difference
in the vertical Froude number at the beginning and end of the simulations is small which
correlates to the somewhat constant value of lv from figure 3.6. However, the Frv for
the plots in panels (a), (c) and (e) can be seen to halve with a doubling of stratification
which is expected for approximately constant lv. One other point of observation is panel
(g) which is the vertical Froude number for the SIC simulation. This particular plot is
approximately linear for the Frv time series for both the inhomogeneous and homogeneous
systems whereas the Frv time series for the UIC simulations exhibits nonlinear behaviour
which can be seen at early times t ≤ 50.
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Figure 3.8: Buoyancy Reynolds number in the cloud for (a) N = 0.15, (c) N = 0.3, (e)
N = 0.6, (g) N = 0.3(SIC) and out of the cloud for (b) N = 0.15, (d) N = 0.3, (f) N = 0.6,
(h) N = 0.3(SIC). The dashed horizontal line in panels (a), (c), (e) and (g) is R = 1.

3.2.3 Buoyancy Reynolds Number

In figure 3.8, the buoyancy Reynolds number R decreases faster in the cloud for the in-
homogeneous simulations with UIC. It can also be noticed that the curves in panels (a),
(c) and (e), which are the UIC simulations of increasing N , become increasingly steeper
at earlier times in their descent to the reference value of R = 1. This is expected as
R ∝ 1/N2. It can be seen that all simulations have R > 1 at early times which coupled
with the corresponding values of Frh < 1 indicate a strongly stratified turbulence system
[Brethouwer et al., 2007]. A horizontal line at R = 1 is plotted so as to trace at what
time does the buoyancy Reynolds number dip below 1 into the viscous layered regime.
For N = 0.15, R > 1 for most of the simulation as seen in panel (a). For N = 0.3, it
is above 1 for about 50 time units, which corresponds to 0.7 eddy time scales (table 2.1).
For the largest N = 0, 6, R drops below 1 rapidly and most out of the simulation is in the
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viscous R < 1 regime [Brethouwer et al., 2007]. For panels (a) and (c), the time for each
of the homogeneous and inhomogeneous systems to go below 1 is approximately halved.
An exception lies with panel (e) in that both systems go below 1 before t = 25 which is
greater than half the time taken for the systems to exhibit such similar behaviour as in
panel (c). These can be compared against the spectral plots below. Furthermore, a general
increase in R occurs outside of the cloud albeit the values are quite small. Such an increase
can happen due to the cloud now interacting with the once quiescent region. Moreover, a
decrease of R can be seen for later times in panel (f). Given sufficient time, the right hand
side plots will follow the decreasing pattern of their left hand side counterparts. The SIC
case in panel (g) does not show such a steep decrease as its UIC counterparts and achieves
a value of R = 1 at t just greater than 100 and t just greater than 200 for the inhomo-
geneous and homogeneous systems respectively. In addition to this behaviour inside the
cloud, the SIC case has energy of the same magnitude outside of the cloud, in panel (h),
when compared to UIC cases in panels (d) and (f).

3.3 Dissipation

Within the cloud, figure 3.9 shows that the homogeneous system experiences a greater
degree of dissipation than the inhomogeneous one within the cloud. If this is compared to
figures 3.2-3.3 where the inhomogeneous system sees a quicker loss of kinetic and potential
energies within the cloud, the behaviour in these figures are speculated to be associated to
the propagation of waves rather than dissipation. It can also be seen that for greater N ,
the dissipation undergoes sharper decreases at earlier times which implies that viscosity
comes to the forefront much faster for larger N . This is agreeable as strong stratification
seeks to suppress the turbulence within the cloud facilitating the horizontal layering of
intrinsic vortical structures. It should also be remembered that these vortical structures
excite similar ones at a slightly smaller scale due to the vortex-stretching mechanism and
this process continues as such. With this layering process being hastened by larger N , small
enough vortical structures at the dissipation scale have been created at a quicker pace and
viscosity acts on them at early times as R < 1 (figure 3.8). Also, it can be noticed that
the inhomogeneous system outside of the cloud experiences an increase in dissipation for
panels (b) N = 0 and (d) N = 0.15. This is understandable as these regions are initially
quiet and due to the evolution of the cloud, some activity is created outside of the cloud
and dissipation soon ensued there. Moreover for panels (f) N = 0.3 and (g) N = 0.6 with
stronger stratifications, a certain increase in dissipation is similarly seen but a decrease
soon occurs at later times. Such a decrease is again greater for the case with the largest
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Figure 3.9: Dissipation in the cloud for (a) N = 0, (c) N = 0.15, (e) N = 0.3, (g) N = 0.6,
(i) N = 0.3(SIC) and out of the cloud for (b) N = 0, (d) N = 0.15, (f) N = 0.3, (h)
N = 0.6, (j) N = 0.3(SIC).

N . Given sufficient time, dissipation outside the cloud would also decrease and continue
to do so as visualized in panel (g).

3.4 Cloud Evolution

In this section, changes in the vertical profiles of horizontally averaged energy is docu-
mented at particular times to extract important information in relation to the behaviour
of the cloud. The plots are spaced 50 time units apart to map as much of the total evolution
of the cloud for the length of time that the simulations were run.

Before an elaboration is provided for the evolution of energy inside and outside of the
cloud, it may be helpful first to talk about how the shape of the cloud changes with time.
For the N = 0 simulation (1st row), the cloud appears to get wider with increasing time
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Figure 3.10: Horizontally averaged kinetic energy (1st column), potential energy (2nd
column), vortex energy (3rd column) and wave energy (4th column) vs z at different times
for N = 0 (1st row), N = 0.15 (2nd row), N = 0.3 (3rd row), N = 0.6 (4th row) and
N = 0.3(SIC) (fifth row). The red curve is at t = 50, the green curve is at t = 100, the
blue curve is at t = 150 and the black curve is at t = 200

but such an expansion is not observed for the stratified cases N 6= 0. This is expected as
the presence of no stratification will not inhibit the spread of energy from the cloud to the
upper and lower parts of the domain.

The first column of figure 3.10 shows the evolution of horizontally averaged kinetic
energy with time for different N . There are a couple of features from panels (a), (e), (i),
(m) and (q) which will help in understanding the effects of time and stratification on the
kinetic energy. The first such feature is how the kinetic energy can affect the shape of
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the cloud. The shape of the kinetic energy curves defined at the edges of the cloud region
appear quite sharp and steep for panels (e), (i), (m) and (q). However, for N = 0 in (a),
the kinetic energy curve is not as steep in its direction at the boundaries of the cloud. In
fact, it can be seen that that width of the curve in (a) is slightly wider that the other four
kinetic energy plots which infers that some amount of kinetic energy is present outside the
defined cloud region. This is due to the absence of stratification which allows the cloud
to expand freely due to the highly kinetic turbulent eddies. Where N > 0, stratification
suppresses such vertical expansion as can be seek with kinetic energy being kept tightly
within the cloud’s boundaries. The second feature is how the amount of kinetic energy in
the cloud changes with time. In (a), a clear decrease in the amount of kinetic energy within
the cloud can be seen but this is again due to stratification not being present and allowing
no inhibition of kinetic energy being spread over the quiescent areas due to the activity of
the eddies, However, in the plots which boast of N > 0, there is no such clear decrease
of kinetic energy within the cloud with the evolution of time. Additionally, as N becomes
bigger, the decrease in kinetic energy with time becomes smaller. Stratification not only
suppresses any vertical expansion of the turbulent cloud but also acts to keep the the
majority of the kinetic energy within that same region [Riley and Metcalfe, 1987, Maffioli
et al., 2014]). This also lends some further insight into how the rotational energy and
divergent energy, the sum of which is the total kinetic energy within the cloud, are related
to this situation. If the eddies and subsequent kinetic energy are being kept localized by
the suppression of stratification, then it is a fair assumption that the vortex energy also
has a similar localized behaviour within the cloud. Also, there should be an increase in
wave energy outside of the cloud as the excitement of eddies play a part in the generation
and propagation of waves. The vortex and wave energies will be further investigated in
the third and fourth columns respectively. One noticeable difference between the UIC and
SIC cases at N = 0.3 is the shape of the energy profile. The UIC case seems to be peaked
in the centre of the cloud for all plotted times but the SIC case does not possess such a
feature.

The second column of figure 3.10 shows the evolution of potential energy with time for
different N . The panel (b) which represents N = 0 is absent as potential energy cannot be
calculated for a system with zero stratification due to the lack of buoyancy. Moreover, the
effects of non-zero stratification is important in observing the potential energy outside the
cloud which is necessary in understanding any wave activity in the original quiescent areas.
It can be seen that for all N , the amount of potential energy inside of the cloud decreases
with time. This decrease is more significant that that observed for the kinetic energy. In
addition to such a decrease, it can be seen that the potential energy curves widens to a
range larger than the cloud’s boundaries. Moreover, the decrease of this energy within the
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cloud has a subsequent increase with time in the regions outside of the cloud. This points
to the potential energy spreading throughout the domain with increasing time. Moreover,
outside of the cloud, the amount of potential energy increases with larger N with the
greatest out of cloud presence in panel (n). This contrasts with the kinetic energy plots
where there was significantly less energy present outside of the cloud. Given N > 0 and
the existence of potential energy outside of the cloud, these factors point to the presence
of waves propagating through the non-cloud regions. The appearance of these waves can
be confirmed in the physical space plots in one of the following sections. Regarding the
SIC case, there is much less potential energy outside of the cloud when compared to UIC
at N = 0.3. This is consistent with other results pointing to less wave energy excited by
SIC case (figure 3.5).

The third column of figure 3.10 shows the evolution of vortex energy with time for
different N . If panels (g) and (o) are compared, N = 0.15 vs N = 0.6, the difference
between the curves become less distinct as there is more overlap. This infers that for larger
N , the vortex energy within the cloud remains almost unchanging with the evolution of
time. In other words, the vortex energy remains localized within the turbulent regions with
little diffusion to outside of the cloud. This correlates to the kinetic energy plots (column 1
in figure 3.10) which was also localized to the cloud region. This implies that the decrease
in the kinetic energy with time is due to the propagation of the divergent energy to the
region outside of the cloud which means that the majority of energy in the once quiescent
areas should be comprised of wave energy. Thus, this leads to an observation of the final
column of plots which correspond to this wave energy.

The fourth column of figure 3.10 shows the evolution of wave energy with time for
different N . It can be observed that the wave energy within the cloud decreases with
time for all N . This decrease, however, get smaller for larger N . With the scrutiny of
figure 3.10 thus far, it has been established that the kinetic energy is majorly composed of
vortex energy which is localized to inside of the cloud which means they do not contribute
much to happens on the outside. However, a significant increase in the potential energy
outside of the cloud has been pointed out previously which lends to the supposition that
there should also be a similar increase in the wave energy in the same regions. With this
train of logic, the fourth column in the figure is investigated which does indeed present the
existence of wave energy outside of the turbulent cloud. One difference when comparing
the potential energy plots to the wave energy plots is the behaviour of the curves in the
outside regions of the cloud. The potential energy plots are quite rough and jagged when
compared to the smooth wave energy plots outside the cloud but it also worth noting that
the scale of the former is much smaller than the latter. Also, there is a flat profile of wave
energy outside the cloud at late time for panels (l) N = 0.3 and (p) N = 0.6 which does
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not go to 0 like the vortex energy for the same regions. Also, as suggested in the potential
energy panels (2nd column), there is less wave energy outside of the cloud for the SIC case
than the corresponding UIC case for N = 0.3.

3.5 Physical Space Evolution

This section seeks to provide a visualization of the evolution of the turbulent cloud in
physical space by extracting x− z slices of the y-component of vorticity and the potential
temperature perturbation. The y-component of the vorticity was chosen as it includes
du/dz and therefore shows regions of strong shear. The vorticity component will reveal the
evolution of eddy structures within the cloud as well as the degree of excitation created
outside of the cloud. The potential temperature perturbation will aid in identifying any
wave activity that is occurring outside of the cloud and well as providing a measure of
how the potential and wave energies change within the cloud. For all plots with N > 0
in this section, three reference lines at 75◦, 80◦ and 85◦ are drawn from the vertical and
placed above and to the right of the cloud. These lines will assist in identifying the angles
to which waves’ crests and troughs are propagated in the regions outside of the cloud.
However, the elaboration on these angles will be in section 3.7 which talks about the wave
angle propagation.

Figure 3.11 shows the evolution of the y-component of vorticity for N = 0. This figure
serves as a control when undergoing any comparison with the other cloud setups at various
stratifications with N > 0. In these plots, N = 0 represents the evolution of an unstrat-
ified freely decaying turbulent cloud. Given sufficient time, the turbulent cloud would be
uninhibited in its spread to the regions above and below it with the distinct possibility
than it may completely dissipated before even reaching the bounds of the domain. The
effect of stratification on this turbulent cloud will be seen in the subsequent plots within
this section.

Figures 3.12 and 3.13 show the evolution of the y-component of vorticity and potential
temperature perturbation respectively for N = 0.15. It is immediately communicable what
leaps out in figure 3.12 and it is fair to extrapolate this observation convincingly to all the
other plots with N > 0. The stratification acts as expected to limit the vertical spreading
of the turbulent cloud and the general shape of it is maintained with increasing time.
The phrase ‘general shape’ is used quite liberally here as the boundary of the cloud does
expand a bit from panel (a) so that is not as clearly defined as it was at the beginning of the
simulation. In figure 3.11 for N = 0, evidence of very large eddies, which are the size of the
cloud, are seen moving up and down and spreading to the regions above and below where
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Figure 3.11: Vertical (x− z) slices of the domain showing the y-component of vorticity for
N = 0 at a) t = 0, b) t = 50, c) t = 100, d) t = 150, e) t = 200 and f) t = 250.

the cloud was originally initialized. This causes the broadening of the average thickness of
the cloud. However, in figure 3.12 for N = 0.15, this spread does not occur. Instead, it
can be seen that the large eddies collapse into pancakes with no ‘meandering’ of the large
scales of the cloud as for N = 0 in figure 3.11. What is also visible is a lot of red and
blue bands in the regions outside of the cloud which are propagating at a fairly consistent
angle above and below the cloud. Not only do these bands indicate increased activity in
the once quiet regions no doubt from excitation from the cloud, but their organisation
suggests the action of propagating waves above and below the cloud. To complement the
vorticity picture, figure 3.13 shows the potential temperature perturbations to emphasize
the presence of any possible waves in the upper and lower parts of the domain. It can
be seen the continuum of of colour outside of the cloud as seen in panels (a) and (b) in
figure 3.13 starts to break up into patches as shown in panel (e). Such an organisation of
these patches lends to the hypothesis that not only are internal waves being propagated
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Figure 3.12: Vertical (x− z) slices of the domain showing the y-component of vorticity for
N = 0.15 at a) t = 0, b) t = 50, c) t = 100, d) t = 150, e) t = 200 and f) t = 250.

outside of the cloud but also that the angle of propagation of these waves can be calculated.
Furthermore, it can be observed that within the cloud in figure 3.12, layers are beginning
to form with time due to the vertical suppression of stratification.

Figures 3.14 and 3.15 show the evolution of the y-component of vorticity and potential
temperature perturbation respectively for N = 0.3. The effect of increasing stratification
is becoming more prominent with a larger N in figure 3.14 as compared to figure 3.12. The
layers within the cloud are forming in shorter amounts of time and are quite distinct in panel
(e) where t = 200 with reference to panel (f) where t = 250 in figure 3.12. Furthermore,
the activity outside of cloud is at a greater level as a somewhat uniform distribution of the
red and blue bands is becoming more and more apparent. The degree of the spread of these
bands can be better appreciated in figure 3.15 where it not only forms in shorter times but
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Figure 3.13: Vertical (x− z) slices of the domain showing the potential temperature per-
turbation in the domain for N = 0.15 at a) t = 50, b) t = 100, c) t = 150, d) t = 200 and
e) t = 250.

the quantity of them is greater. In particular for panels (e) and (f), there are some bands
just around the border of the cloud that are in a position that coincides particularly with
the 85◦ reference line. This is extremely encouraging and a further investigation of this
observation will be pursued in the next section. This arrangement of patchiness indicates
to a stronger presence of propagating waves above and below the cloud. These observations
of the more pronounced layering within the cloud as well as the greater out of cloud wave
activity in figures 3.14 and 3.15 when compared to figures 3.12 and 3.13 are due to the
increased N . With this train of thought, the plots for N = 0.6 ought to have even stronger
features.

Figures 3.16 and 3.17 show the evolution of the y-component of vorticity and potential
temperature perturbation respectively for N = 0.6. Increasing the stratification even
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Figure 3.14: Vertical (x− z) slices of the domain showing the y-component of vorticity for
N = 0.3 at a) t = 0, b) t = 50, c) t = 100, d) t = 150, e) t = 200 and f) t = 250.

further, as in figure 3.16, gives rise to two important features. The first is that the layers
are well formed, smooth and distinct in their structures within the cloud. The second is
the propagating of waves into the regions above and below the cloud. For early times as in
panel (b), some wave activity can be seen almost filling the entire domain. Such a spread
was not observed at a similar time for figures 3.12 and 3.14 which directly relates to the
impact of very strong stratification. To further investigate any such wave activity, figure
3.17 is utilized. It is in these figures that the effects of very strong stratification are felt. In
panel (e) of figure 3.15, the region of the cloud can still be distinguished but not as much
for panel (e) in figure 3.17. It can be seen that the shape of the cloud has almost completely
disintegrated with the evolution of time. What this indicates is that the amplitude of the
potential temperature perturbations outside the cloud are just as big as inside the cloud.
This points to a strong presence of wave energy existing in the out of cloud regions. There
is a thorough spread of the potential temperature perturbation throughout the domain
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Figure 3.15: Vertical (x− z) slices of the domain showing the potential temperature per-
turbation in the domain for N = 0.3 at a) t = 50, b) t = 100, c) t = 150, d) t = 200 and
e) t = 250.

with nothing centralized within the bounds that define the cloud. The uniformity of the
red and blue patches outside of the cloud as seen in figures 3.12-3.14 is facilitated much
quicker in the case N = 0.6 again, unsurprisingly, to the larger N and hence, greater wave
activity. Observing the edges of the cloud in both figures display structures that are in
agreement with the the angular reference lines as with the N = 0.3 case.

Figures 3.18 and 3.19 show the evolution of the y-component of vorticity and potential
temperature perturbation respectively for N = 0.3(SIC) and will be compared to figures
3.14 and 3.15 which have the same stratification but with UIC. Comparing panels (b) and
(c) in figures 3.14 and 3.18, N = 0.3(UIC) seems to possess bands outside of the cloud at
earlier times than N = 0.3(SIC). This is what should be expected since the adjustment
of the initially unstratified turbulence to evolve under stratification in the UIC simulation
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Figure 3.16: Vertical (x− z) slices of the domain showing the y-component of vorticity for
N = 0.6 at a) t = 0, b) t = 50, c) t = 100, d) t = 150, e) t = 200 and f) t = 250.

will have more vertical velocity, and therefore excite more waves than the already initially
stratified turbulence in the SIC simulation. Furthermore, for the same panels (b) and (c)
in both figures, a greater degree of layering of the eddies at earlier times can be seen for
the SIC case than the UIC run and a final observation of panel (e) shows the final layers
are much more developed and distinct for the SIC simulation. This can also be attributed
to the fact that the SIC simulation was initialized with stratified turbulence. To confirm
this greater wave activity outside of the cloud at earlier times for the UIC simulation,
the potential temperature perturbation in figures 3.15 and 3.19 is investigated. Referring
now to panels (b) and (c) in these figures show immediately a greater colour intensity and
spread of the patches outside of the cloud for the UIC case when compared to the SIC
simulation. This does indeed cement the fact that the UIC simulation has greater wave
activity outside the cloud at earlier times. The prominence of wave activity outside of
the cloud for the UIC run continues for increasing time as shown in panel (e) but it is
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Figure 3.17: Vertical (x− z) slices of the domain showing the potential temperature per-
turbation in the domain for N = 0.6 at a) t = 50, b) t = 100, c) t = 150, d) t = 200 and
e) t = 250.

worth noting that the patches outside the cloud for the SIC simulation is thinner and more
elongated for all times than its UIC counterpart. This possession of greater wave activity
for the UIC simulation can also seen in figure 3.3 where the potential energy outside the
cloud for the SIC case was an entire magnitude smaller than that of the UIC simulation.
One final point to appreciate is the orientation of structures in both figures at the edges
of the cloud which is in agreeement with the angular reference lines.

It has been observed in this section that for increasing N , there is greater activity
occurring outside of the cloud at earlier times. In particular, the wave presence outside
of the cloud becomes significantly stronger as N in increased from 0.15 to 0.6 so much so
that there is almost no distinguishing factor for the degree of the potential temperature
perturbation for the N = 0.6 case. A comparison between the UIC simulation and the SIC
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Figure 3.18: Vertical (x− z) slices of the domain showing the y-component of vorticity for
N = 0.3(SIC) at a) t = 0, b) t = 50, c) t = 100, d) t = 150, e) t = 200 and f) t = 250.

simulation for N = 0.3 highlighted that the former had a greater amount of waves being
present at earlier times outside of the cloud than the latter. Moreover, as the stratification
changed from N = 0.3(UIC) to N = 0.6 and then N = 0.3(SIC), it appears as though
that different types of waves may be present in the domain. There seems to be one type of
wave near the edges of the cloud and another type far away towards the upper and lower
bounds of the domain. This possible difference will be explored further in section 3.7 which
elaborates on the wave angle propagation.
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Figure 3.19: Vertical (x− z) slices of the domain showing the potential temperature per-
turbation in the domain for N = 0.3(SIC) at a) t = 50, b) t = 100, c) t = 150, d) t = 200
and e) t = 250.

3.6 Spectra

3.6.1 Horizontal Spectra

This subsection is dedicated to analysing the horizontal wavenumber spectra of the total
energy, which is the sum of the kinetic and potential energies, in and out of the cloud
for both inhomogeneous and homogeneous systems. The total energy is used for this
spectral analysis as it provides a simple yet thorough primary approach in investigating
how the inhomogeneous system compares to results derived from homogeneous turbulence.
Furthermore, using the total energy spectra allows for a reasonable number of plots to
be included in this study which facilitates a more focused discussion of the results. All
plots in this subsection contain a line of slope −5/3 at the top right so as to be able to
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compare to the slope of the spectra at varying ranges of horizontal wavenumbers. ‘OC’
in labelled in the plots within this section to refer to the energy outside of the cloud in
the inhomogeneous simulations. Wherever appropriate, the buoyancy wavenumber kb, the
Ozmidov wavenumber kO and the Kolgomorov or dissipation wavenumber kd are labelled
as dashed vertical lines on the figures in both the horizontal and vertical spectra sections.
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Figure 3.20: Horizontal wavenumber spectra of total energy in and out of the cloud for
N = 0 at (a) t = 50, (b) t = 100, (c) t = 150 and (d) t = 200. ‘OC’ is the energy outside
the cloud for the inhomogeneous system.

Figure 3.20 shows the total horizontal wavenumber energy spectra for the simulations
with N = 0. A similar evolution of energy within the cloud for both the homogeneous and
inhomogeneous systems is observed but with the latter having slightly lower energy for all
plotted times. This is likely due to the window that is applied to the initial conditions to
make the cloud, which reduces the energy near the top and bottom of the cloud compared
to the homogeneous case. At all times, there is steepening beyond −5/3 at large wavenum-
bers which is expected near the dissipation wavenumber kd. It can also be seen that the
inhomogeneous energy outside of the cloud increases with time and also assumes a similar
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shape to the curves representing the energy within the cloud but with smaller amplitude.
This is a fairly straightforward expectation as there is no stratification present for these
plots and the cloud is thus uninhibited in its vertical spread to the regions above and below
the cloud. It may even be the case that with sufficient time, all the turbulence will decay
away without even reaching the bounds of the domain. One final observation for figure
3.20 is that there exists a range of wavenumbers for which all spectra has an approximate
−5/3 gradient; careful inspection will reveal a slope that is slightly shallower than −5/3.
The energy in the cloud has such a range for all plotted times but only for later times as
shown in panels (c) and (d) that the inhomogeneous energy outside the cloud exhibits such
a range of wavenumbers. This is again due to the spreading of the once defined turbulent
cloud into the regions above and below it.
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Figure 3.21: Horizontal wavenumber spectra of total energy in and out of the cloud for
N = 0.15 at (a) t = 50, (b) t = 100, (c) t = 150 and (d) t = 200. ‘OC’ is the energy
outside the cloud for the inhomogeneous system.

Figure 3.21 shows the total horizontal wavenumber energy spectra for the simulations
with N = 0.15. Both the homogeneous and inhomogeneous systems have similar spectral

51



shapes throughout the wavenumber range for all times plotted. One difference, however, is
the the inhomogeneous system has a lower energy content than the homogeneous one due
to the window function. For panels (a) and (b) which corresponds to earlier times of the
simulation, it can be seen that the spectral slope is indeed similar to −5/3 by comparing
it to the straight black line at the top right of the plots. This −5/3 spectral slope is
maintained down to the Ozmidov wavenumbers but starts to fall away in a steeper manner
in the dissipation range, which moves to smaller wavenumbers as time progresses. Panels
(c) and (d) display and initial agreement to the −5/3 reference line for the first part of the
buoyancy-Ozmidov range of wavenumbers but then progresses in a steeper manner around
kh ∼ 100. This can be attributed to kd getting smaller as ε decreases, so viscous effects
are felt at smaller kh. Another point to note is the energy outside of the cloud for the
inhomogeneous system. The slope of this curve have no relation to −5/3 as it is much
too steep which is expected due to the small value of R outside of the cloud (figure 3.8).
It is also worth noting that the large-scale energy outside of the cloud, identified as the
maximum in the spectra, is seemingly similar to that inside of the cloud at kh = 3− 4 at
late times. This is shown in panel (d). However, this is a log-log plot which means that this
max value of the ‘OC’ curve is still quite smaller than the energy of the in-cloud spectra
at the same wavenumber. In spite of this, it gives insight that stronger stratification may
bring this max value closer to that in the cloud at a particular wavenumber.

Figure 3.22 shows the total horizontal wavenumber energy spectra for the simulations
with N = 0.3. Both the inhomogeneous and homogeneous systems exhibit similar spectral
behaviour in the cloud with one immediate difference being that the inhomogeneous sys-
tem deviates from the homogeneous system at larger wavenumbers. This deviation gets
bigger and steepens for increasing time. This difference is much more pronounced in fig-
ure 3.22 than the more weakly stratified case in figure 3.21. Another observation is that
the inhomogeneous system possesses less energy than the homogeneous one for all plotted
wavenumbers, as in the above cases. Two salient points are to be mentioned here. Firstly,
the long power-law from small kh to medium kh is actually a little steeper than −5/3, un-
like above (figure 3.21) where it was slightly shallower. Secondly, it has been noticed in the
above figure 3.21 and in this one that the steepening of the spectra in the dissipation range
moves to smaller kh with increasing time. This is due to the changing value of the buoyancy
Reynolds number R (figure 3.8) and its relationship to kO and kd namely R = (kd/kO)4/3

or equivalently R3/4 = (kd/kO). Thus, when R < 1 and is raised to a fractional power,
the result is that kO > kd which means that the dissipation range now advances to smaller
wavenumbers. Thus, in terms of the reference line of slope −5/3, the spectral curves fall
away more steeply than −5/3 at at smaller wavenumbers as viscous effects are now felt at
these scales. The final observation to be made here is the energy outside of the cloud. This
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Figure 3.22: Horizontal wavenumber spectra of total energy in and out of the cloud for
N = 0.3 at (a) t = 50, (b) t = 100, (c) t = 150 and (d) t = 200. ‘OC’ is the energy outside
the cloud for the inhomogeneous system.

‘OC’ curve is much steeper than the −5/3 reference line and this can be reiterated as being
a result of R being small outside of the cloud (figure 3.8). Panel (d) shows quite a close
similarity between the max of the out of cloud spectra and in-cloud spectra at wavenumber
kh = 3− 4. The values of these maxima are actually closer that those shown in panel (d)
of figure 3.21 and indicates an increase in energy out of the cloud when the stratification
is doubled. It should be remembered that is only a qualitative observation as this log-log
plot doesn’t truly indicate quantitatively these energies at kh = 3− 4.

Figure 3.23 shows the total horizontal wavenumber energy spectra for the simulations
with N = 0.6. It continues the tale from figures 3.21-3.22 where the inhomogeneous
system does indeed possess less energy that the homogeneous system in the cloud, as in
the previous cases, but immense scrutiny is now placed on the slope of the spectra in this
figure 3.23. The slope only possesses a −5/3 slope for wavenumbers smaller that kb at early
times in panel (a). As time increases further in panels (b)-(d), the spectra becomes steeper
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Figure 3.23: Horizontal wavenumber spectra of total energy in and out of the cloud for
N = 0.6 at (a) t = 50, (b) t = 100, (c) t = 150 and (d) t = 200. ‘OC’ is the energy outside
the cloud for the inhomogeneous system.

than −5/3 for kh < kb. Referring back to figure 3.8, this does not come as a surprise as
R almost immediately drops below 1 for the N = 0.6 simulation at early times. Thus it
can be expected that the entire spectra will be steeper than −5/3 from the same early
times. Another point to notice is that kO is not labelled in the plots. This is again due to
the relation kd/kO = R3/4 so when R < 1, the ratio of kd to kO changes and hence their
order in the wavenumber range also swaps. One outstanding revelation and certainly a
most welcome one is the now quite close relationship between the out of cloud and inside
the cloud maximum large-scale energies. The distance between is much closer than before
(figures 3.21-3.22) with the curves actually overlapping for a narrow band of wavenumbers
around kh ∼ 10 for panel (d) in figure 3.23. This is quite a significant observation as it tells
that the simulation with the largest N and sufficient time, the energy outside of cloud is
equivalent to that in it. This alludes to the possible strong presence of internal waves being
propagated into the regions outside of the cloud as well as, to an extent, the turbulence in

54



the cloud exciting the regions beyond its boundaries.
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Figure 3.24: Horizontal wavenumber spectra of total energy in and out of the cloud for
N = 0.3(SIC) at (a) t = 50, (b) t = 100, (c) t = 150 and (d) t = 200. ‘OC’ is the energy
outside the cloud for the inhomogeneous system.

Figure 3.24 shows the total horizontal wavenumber energy spectra for the simulations
with N = 0.3(SIC). Again, as in figures 3.20-3.23, that energy within the cloud is almost
equivalent for both the homogeneous and inhomogeneous simulations with the latter having
less energy, as in the previous cases, and deviating slightly from the former especially at
the largest wavenumbers around the Ozmidov wavenumber. It is also noteworthy that in
panels (a)-(c), there is a great agreement with the slope of the spectra with respect to
the −5/3 reference line. It is also important that the impact of the initial conditions be
studied by comparing N = 0.3(UIC) in figure 3.22 and N = 0.3(SIC) in figure 3.24. It
can be seen that for earlier times by comparing panels (a)-(c) in both figures that the SIC
simulation has a much better agreement to the −5/3 slope than the UIC simulation. This
is due to R ≤ 1 at later times for N = 0.3(SIC) than for N = 0.3(UIC) as shown in figure
3.8. It is for this same reason that at later times in panel (d) for both figures, kd appears
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at a smaller wavenumber along with the effect of viscosity for the UIC case than the SIC
case for N = 0.3. Out of all the horizontal wavenumber spectra plots, figures 3.21 and 3.24
boast of a substantial agreement to the −5/3 reference line. Again, this is due to the fact
that R takes the longest time to decrease to 1 (figure 3.8) for both these cases as compared
to the N = 0.3 run in figure 3.22 and the N = 0.6 run in figure 3.23. Furthermore,
there is a peak in the energy spectra for the inhomogeneous system outside of the cloud
at kh = 3 − 4 where the max energy is quite similar but still less than to what is in the
cloud. As always, it is an ever appreciated reminder that this is a log-log plot but what it
does offer is a comparison to the N = 0.3(UIC) case. Inspecting figures 3.22 and 3.24, the
peak of the out of cloud energy is closer to the in-cloud energy for N = 0.3(UIC) than for
N = 0.3(SIC). Additionally, the inhomogeneous system in the cloud for the SIC simulation
does not see such a decrease of energy when contrasted against the UIC simulation. Also,
at larger wavenumbers, this out of cloud spectrum plummets to a gradient much steeper
than −5/3 due to R outside of the cloud is much less 1.

The overall trend that can be observed for these horizontal spectra plots (figures 3.20-
3.24) is the relationship they hold with the buoyancy Reynolds number (figure 3.8). For a
sufficiently large R, the spectral plots follow along with a slope of −5/3. However, greater
stratifications showed that R dipped below 1 much more quickly and this is reflected in
the spectral plots of increasing N in that the spectra becomes steeper at earlier times when
compared to the −5/3 line. This point becomes quite conspicuous for figure 3.23 in that
all plots start to become steeper than −5/3 for increasingly smaller wavenumbers due to
the advancement of the Kolmogorov wavenumber with the evolution of time. This also
coincides with the fact that the simulation with N = 0.6 dives below R = 1 the fastest
and such a small R has been found to give spectra steeper than −5/3 [Brethouwer et al.,
2007]. The energy out of the cloud for all UIC and SIC cases where N 6= 0 is steeper than
−5/3 is due to R < 1 at all times in those regions [Brethouwer et al., 2007]. The large
scale maximum of this energy particularly at small wavenumbers increases for larger N
and it has even been observed that this energy becomes equivalent as that in the cloud.
This is demonstrated in panel (d) of figure 3.23 which is the horizontal wavenumber energy
spectra plot of the strongest stratification N = 0.6 used for all simulations performed in
this thesis.

3.6.2 Vertical Spectra

This subsection is focused on analysing the vertical wavenumber spectra of the total energy
within the cloud. This total energy is also defined here as the sum of the kinetic and
potential energies. The total energy is used again for this spectral analysis, as with the
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previous subsection, because it provides a great first approach in trying to understand the
evolution of the spectra between the inhomogeneous and homogeneous turbulent systems.
All plots in this subsection contain a line of slope −3 at the top right of all plots so as to
be able to compare to the slope of the spectra at varying ranges of vertical wavenumbers.
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Figure 3.25: Vertical wavenumber spectra of total energy within the cloud for N = 0 at
(a) t = 50, (b) t = 100, (c) t = 150 and (d) t = 200.

Figure 3.25 shows the total vertical wavenumber energy spectra for the simulations with
N = 0. The vertical spectra for N = 0 have the same shape and similar amounts of energy
for the homogeneous and inhomogeneous simulations but as was seen in the horizontal
spectra, the latter system also possesses less energy than its former counterpart. Panels
(a)-(d) in figure 3.25 relay one noticeable characteristic of the spectra at all plotted times.
It can be seen that for small wavenumbers, the spectra are shallower than −3 and then
transitions to become much steeper than −3 at larger wavenumbers. This steepness is due
to viscous effects at small enough scales so it can be said from figure 3.25 that the vertical
spectra where N = 0 is shallower than −3 for all times. This is not surprising as this is
the unstratified case, for which the kv spectral slope should be closer to -5/3.
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Figure 3.26: Vertical wavenumber spectra of total energy within the cloud for N = 0.15 at
(a) t = 50, (b) t = 100, (c) t = 150 and (d) t = 200.

Figure 3.26 shows the total vertical wavenumber energy spectra for the simulations
with N = 0.15. The energy in the homogeneous system is almost equivalent to that in the
inhomogeneous system but with the latter having slightly less energy than the former over
the full wavenumber range. This difference between the energy of these systems can be
seen as later times in panels (c) and (d) where the inhomogeneous system presents itself
as having slightly less energy by noticing the deviation from the homoegeneous curve at
large wavenumbers. Upon inspection of all four panels in figure 3.26, the spectra at all
times look shallower than −3 but is certainly steeper than the spectra in figure 3.25. It
seems that as N increases, the slope of the spectra becomes closer to −3. At early times,
the spectra in panel (a) is quite shallow and shows a transition to the steeper dissipation
range at kz = 30−40. As time progresses in panels (b)-(d), the spectra becomes steeper to
have a slope of approximately −2. At best, where the spectra transitions between shallow
and steep spectra, a tangent can be drawn with slope −3 but this does not indicate to a
clear range of wavenumbers with a well defined slope..
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Figure 3.27: Vertical wavenumber spectra of total energy within the cloud for N = 0.3 at
(a) t = 50, (b) t = 100, (c) t = 150 and (d) t = 200.

Figure 3.27 shows the total vertical wavenumber energy spectra for the simulations with
N = 0.3. A trend can be seen to form when comparing the spectra at small wavenumbers
and large wavenumbers in figures 3.26 and 3.27. It appears that at small kz, the spectra get
shallower with increasing N and this can be seen particularly clearly by comparing panels
(c) and (d) in both figures. Furthermore, at larger kz with increasing N , the spectra get
steeper and fall away quite quickly from the reference line of slope −3. A spectrum of slope
−3 is expected for for kz > kb but there is not enough of a range to see it in figure 3.27. One
other comparison between figures 3.26 and figure 3.27 is that the spectra with larger N has
a more parabolic shape than the other. This further emphasizes the increased shallowness
and steepness of the spectra for small and large kz respectively. Such a parabolic shape
indicates that viscous effects are important and that there is no explicit constant slope
especially between kb and kd to be compared to that of −3.

Figure 3.28 shows the total vertical wavenumber energy spectra for the simulations with
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Figure 3.28: Vertical wavenumber spectra of total energy within the cloud for N = 0.6 at
(a) t = 50, (b) t = 100, (c) t = 150 and (d) t = 200.

N = 0.6. This case in which the stratification is the strongest shows at all times in panels
(a)-(d) that the spectra is shallower than −3 at small kz and quite steeper than −3 at large
kz. Panel (d) also has a more robust parabolic shape with a visible ‘peak’ when compared
to same panels in figures 3.26 and 3.27 which also indicates to the greater shallow and steep
slopes of the spectra at the small and large wavenumbers respectively. This ‘peak’ in the
parabolic shape of the spectra also appears to occur at increasingly smaller wavenumbers
for larger N when the same plots are compared. Furthermore, there is not enough of a
range of wavenumbers beyond kb to attempt any observation of the spectra having a −3
slope.

Figure 3.29 shows the total vertical wavenumber energy spectra for the simulations with
N = 0.3(SIC). There is only a slight distinguishing factor between the homogeneous and
inhomogeneous systems which means the energy between the two is roughly equivalent.
However, an immediate observation can be appreciated in that this is the only figure in this
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Figure 3.29: Vertical wavenumber spectra of total energy within the cloud for N = 0.3(SIC)
at (a) t = 50, (b) t = 100, (c) t = 150 and (d) t = 200.

subsection where the spectra clearly agrees with the reference line of slope −3 for a defined
range of wavenumbers. It is worth comparing figures 3.29 and 3.27 which both haveN = 0.3
but are defined as SIC and UIC respectively. The immediate difference between them, as
mentioned above, is that the SIC simulation has spectra has much better agreement to a
−3 slope over a range of wavenumbers whereas the UIC simulation in its predominantly
parabolic shape, does not. It is true that for both cases at small wavenumbers, the spectra
is shallower than −3 but at kz > kb, only the SIC run achieves the −3 slope. It should also
be noted that this −3 slope agreement with the SIC vertical spectra is evident for panels
(a)-(c). In panel (d) with increasing time, the spectra falls away steeply from before the
buoyancy wavenumber kb.

It appears that there is an underlying importance on the initial conditions of the sim-
ulations as the results of the UIC or SIC cases vary significantly. The UIC simulations
never achieved the −3 spectral slope and assumed a parabolic shape. Also, the UIC runs
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have shallow spectra at small vertical wavenumbers and steep spectra at large vertical
wavenumbers. There also was not a large enough range past the buoyancy wavenumber for
a −3 spectral slope to exist. However, for the SIC case, the spectra had a clear agreement
to the reference line of slope −3 in the buoyancy range for a substantial period of time.
It seems as though the adjustment to the stratification plus the effect of the cloud inhibit
the development of some of the expected features of stratified turbulence for the UIC sim-
ulations. However, when the initial conditions are already stratified turbulence, expected
results are obtained which in this case is the −3 spectral slope of vertical wavenumber
total energy, and they persist even as the cloud evolves. Thus, it appears that the initial
conditions have a much more significant impact on the vertical wavenumber spectrum in
the cloud than whether the turbulence is homogeneous or inhomogeneous.

3.7 Wave Angle Propagation

The section seeks to compare the theoretical and observed angles (from the previous sec-
tion) of wave propagation in the regions above and below the clouds which are the parts of
the domain that was originally quiescent at the beginning of the simulations. The graphs
plotted in this section are ωe vs kh so as to utilise the relationship of ωe = Ncos(θ). As
eddies often assist in the exciting of waves, calculating this eddy frequency using equation
2.19 is useful in finding the phase angle θ of waves propagated with a similar frequency.
This θ is the angle of the wavevectors with the horizontal, however, the reference lines
included in the physical space plots in the previous section use this same value of θ but
from the vertical. The reasoning for this particular orientation of these angular reference
lines is that the bands of the waves, which represent the crests and troughs, will be perpen-
dicular to the wavevectors. Thus, these reference lines seek to give an idea of the expected
orientation of the bands of crests and troughs.

Figure 3.30 shows the evolution of the eddy frequency scaled by the stratification such
that ωe/N = cos(θ). The portions of interest in figure 3.30 is the value of the curves at
small horizontal wavenumbers, in particular, kh < 10 as the largest amounts of energy
within the eddies are located within this range. The action of these highly energetic eddies
contribute to the exciting and propagation of waves in the regions outside of the cloud.
Thus, by calculating the frequency of the most energetic eddies, an approximation of the
frequency of the generated waves can be established and then the theoretical phase angle
θ of those waves can be calculated.

For N = 0.15, a bump can be seen at kh = 3 with ωe/N = 0.2. With the progress of
time, this bump remains at the same wavenumber but its subsequent value goes down to
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Figure 3.30: Angle of wave propagation for (a) N = 0.15, (b) N = 0.3, (c) N = 0.6 and
(d) N = 0.3(SIC).

approximately 0.1. Taking the inverse cosine of these values gives a range of 78◦ − 84◦ for
θ. For the other panels with N varying from (b) 0.3, (c) 0.6 and (d) 0.3(SIC), a similar
bump in the plots occur at kh = 3 with its amplitude decreasing with the evolution of time.
The corresponding ωe/N values of these shrinking bumps decrease with increasing N . It
is between 0.075 and 0.1 for N = 0.3, between 0.04 and 0.06 for N = 0.6 and between 0.05
and 0.1 for N = 0.3(SIC). This gives angular ranges of 84◦ − 86◦, 86◦ − 87◦ and 84◦ − 87◦

respectively. It should also be pointed out that range of angles for N = 0.3(UIC) and
N = 0.3(SIC) only differs by 1◦. Observing panels (b) and (d) in figure 3.30, there is a
bigger difference between the amplitude of the kh = 3 bumps for the SIC case than for
the UIC case. This directly infers to the SIC case having a larger range of θ than the
UIC case. Furthermore, referring back to the potential temperature perturbation figures
3.15 and 3.19, the former UIC case had shown stronger wave activity outside of the cloud
when compared to the latter SIC case. This indicates that the narrower range of the UIC
case has a stronger wave presence out of the cloud with respect to the SIC case. Such a
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result is due to the response of the UIC simulation having stratification being applied to
initially unstratified turbulence whereas the SIC simulation continued its evolution from
its initially stratified turbulence.

Given that the ranges of angles for wave propagation have been calculated theoret-
ically for various N , a comparison to the observed angles in the potential temperature
perturbations figures from the previous section is required to justify results. For potential
temperature figures with N = 0.3 and N = 0.6, there are bands near to the cloud’s bound-
aries that roughly agree with the respective range of angles calculated for a particular N .
However, there is also significant wave presence in the upper and lower extremities of the
domain discussed above due to the arrangement of the bands in the vorticity plots and
patches in the potential temperature plots which do not match with the computed angles.
This discrepancy can be explained by invoking the definition of group velocity. For large
θ that is close to 90◦ as with the current cases of large N , the wavevector is almost ver-
tical. This means that the group velocity is almost horizontal [Kundu et al., 2012] and
the wave energy is unable to propagate far away from the cloud. In fact, this direction
of propagation is also almost parallel to the cloud. However, higher frequency waves with
smaller θ have more vertically oriented group velocity. Therefore, even though the higher
frequency waves may be less energetic as they are excited by lower energy eddies, they are
the waves that are able to propagate away from the cloud and can be seen to extend as
far towards the fringes of the domain. This point is emphasized for the N = 0.3 UIC and
SIC simulations. The former had significantly more wave presence if focus is particularly
placed on the edges of the cloud when comparing figures 3.15 and 3.19. This corresponds
to the narrower angular range of the UIC simulation which infers that the wider angular
range of the SIC simulation should have slightly more vertically oriented group velocity.
The arrangement of the bands in figure 3.18 and patches in figure 3.19 at the upper and
lower ends of the domain indicates that there is indeed some wave activity far away from
the cloud.
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Chapter 4

Summary and Conclusions

This thesis seeks to offer a detailed comparison between homogeneous and inhomogeneous
turbulence via direct numerical simulations carried out in a cubic domain. Homogeneous
turbulence studies have been performed for a myriad of initialized conditions, forcing pa-
rameters and varying of stratification that influences the particular system. An equivalent
analysis put forward in studying homogeneous turbulence is not present for that of inho-
mogeneous turbulence. Within this study, the initial conditions on the system of inho-
mogeneous and homogeneous turbulence are taken from simulations of forced turbulence
[Lang and Waite, 2019], with and without stratification. It is of great hope that this serves
as a starting point for more advanced studies in the foreseeable future.

The inhomogeneous turbulence is defined as a turbulent cloud in a cubic domain with
a defined height in the z-direction where above and below this cloud are quiescent regions.
Characteristics emerging from this system of turbulence in the cloud are then compared to
those of homogeneous turbulence which fill another domain of the same size. Analysis was
then performed on the inhomogeneous turbulent cloud and then compared to a similarly
demarcated cloud region for the homogeneous system. This comparison strives to highlight
any distinguishing traits of the inhomogeneous system and this is labelled as that which
is ‘in the cloud’. As time evolves, the boundaries of the cloud become ambiguous and the
region labelled as ‘out of the cloud’ is more restricted to the upper and lower parts of the
domain that what was defined at the beginning of the simulations. Four of the simulations
possessed initial conditions taken from an unstratified simulation with N = 0 [Lang and
Waite, 2019] with the fifth one having a different value of N = 0.3(SIC).

For this comparison between homogeneous and inhomogeneous turbulence, several cri-
teria were studied and analysed. These include energy time series (kinetic, potential, vortex
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and wave), vertical and horizontal Froude numbers, buoyancy Reynolds number, dissipa-
tion, temporal changes of energy (kinetic, potential, vortex and wave) within the cloud,
wave angle propagation, internal wave activity outside of the cloud and computing both
the horizontal and vertical energy spectra. All of these are examined whilst also varying
the degree of stratifications of the simulations.

In general, the inhomogeneous simulations experience greater decay than the homoge-
neous simulations for the energy time series. However, the decay is not significant enough
to offer a stark difference between the simulations and the energies in both system are
quantitatively similar. Horizontal Froude numbers were found to be less than 1 which is
indicative and the presence of strong stratification. However, the vertical Froude numbers
decrease with increasing N rather than maintaining the relationship Frv ∼ O(1). This
is a new result as it is expected that doubling N should halve the vertical length scale lv
which is necessary to keep Frv ∼ O(1). Upon inspection of lv calculated in this thesis,
it remains within a narrow band of values with varying N . With this result, it appears
that the turbulence in the cloud adjusts to both stratification as well as the cloud and it
is unable to develop smaller length scales with Frv ∼ 1 before decaying.

The buoyancy Reynolds number R for all N at initial time started above 1. With the
evolution of time, all simulations eventually dipped to R ∼ 1 with the exception of the
N = 0.6 run which achievedR < 1 at extremely early times in the simulation. Moreover, as
N increases, the simulations reached or breached that threshold value of R = 1 in shorter
periods of time. This decrease of R with time coincides with ranges of wavenumbers to
which the horizontal and vertical spectra are −5/3 and −3 respectively. The general trend
for those simulations with initial condition of N = 0 is that the range of wavenumbers
which correspond to power-law gradients −5/3 and −3 moves to smaller wavenumbers for
increasing time. In addition to this feature, this receding range also shrinks for increasing
N . However, the simulation with initial condition N = 0.3(SIC) boasts the largest range
of the spectra coinciding with −5/3 and −3 and maintains this with progressing time.

Another feature of interest in this study was the increasing presence of waves in the
regions outside of the cloud accompanied by a corresponding decrease of both potential
and wave energies inside the cloud (figures 3.3 and 3.5). Energy time series showed a
definite increase in potential and wave energies outside of the cloud with kinetic and vortex
energy remaining localized within the cloud. Moreover, physical space plots of the second
component of vorticity and potential temperature indicate heavily to the presence of such
internal waves above and below the cloud. Furthermore, larger N promotes greater activity
outside the cloud in shorter periods of time. It was only natural to continue this exciting
development by attempting to calculate the angles by which these waves have propagated.
Using the eddy frequency of the strongest eddies to find the frequency of waves encouraged
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by them, the range of angles find themselves in quasi-horizontal ranges between 76◦− 89◦.
Such large values of the phase angle θ point to almost vertical wavevectors and subsequently
almost horizontal group velocity. Thus, the waves moving with such a group velocity does
not propagate away from the cloud but in a direction near and parallel to it. This can
be seen at later times in figures 3.14-3.18 and 3.15-3.19 where the bands of vorticity and
patches of potential temperature near the edges of the cloud are in good agreement to the
the angular reference lines.

Inhomogeneous turbulence is establishing its seat at the royal but overcrowded table
of its homoegeneous turbulence ancestors. Recent examples of inhomogeneous turbulence
involve 1) analyzing the evolution of various stratified cloud orientations [Maffioli et al.,
2014] and 2) investigating wake evolution dynamics along with internal wave angle prop-
agation for an object being towed through a stratified cloud [Rowe et al., 2020]. Future
work that can be pursued from the research done in this thesis can include and is certainly
not limited to

• an incorporation of forcing into a single inhomogeneous stratified cloud and observe
its spectral evolution with time to possibly confirm a wider range of wavenumbers
that relate to slopes of −5/3 and −3,

• having multiple variably sized stratified clouds in a defined domain, with or without
forcing, and thoroughly explore their behaviour and interactions amongst each other,

• investigate the effect(s) of the size of the cloud,

• simulate bigger domains so there is more room outside the cloud,

• remove the assumption of a constant stratification N2,

• any combination of the above.
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