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Abstract

An alternative approach to orbital-free density functional theory based on polymer self-
consistent field theory for modelling diatomic molecules is proposed. The ability of the
theory to accurately model the bonding characteristics of diatomic molecules will elevate
the theory beyond simple atomic system calculations. Homonuclear diatomic molecules
H2, N2, O2 and F2 modelled using this theory exhibit molecular bonding in agreement
with known results. Heteronuclear diatomic molecules CO and HF also exhibit molecular
bonding. The calculated electron density contours are found to be in agreement with known
density functional theory results. Bond lengths for the majority of diatomic molecules
studied are found to deviate less than 8% when compared to accepted experimental results
and less than 9% when compared to Kohn-Sham density functional theory results, with
the exception of O2 and F2, which deviated significantly from both results. The bond
dissociation energy for H2 is found to be within 16% of the accepted experimental value,
but the fundamental vibrational frequency does not agree well with experimental results.
The main approximations in the theory are a Fermi-Amaldi factor in the electron-electron
interaction that corrects for electron self-interactions and Pauli potential based on excluded
volume arguments to account for the Pauli exclusion principle. The governing modified
diffusion equation is solved in terms of a basis set that encodes the cylindrical symmetry
of diatomic molecules.
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Chapter 1

Introduction

1.1 Motivation

Predicting the properties of quantum systems of electrons is fundamental to understanding
how the universe behaves at small length scales. Specifically, understanding the charac-
teristics of molecular bonding in diatomic molecules provides insight into the foundation
of how all molecules behave. The study of diatomic molecules is essential to a variety of
applications, such as understanding oxidation in materials [1], or the role of nitrogen in
greenhouse-gas balance in the atmosphere [2].

The Thomas-Fermi model was one of the first well-known attempts at a comprehensive the-
oretical model to describe quantum systems of electrons [3]. This model assumed that the
system’s kinetic energy term in the Hamiltonian was the same as that of a uniform electron
gas. As might be expected, the model performed poorly when describing most quantum
systems, including atoms and molecules, since the distribution of their electrons is far from
uniform. The successor to the Thomas-Fermi model is density functional theory (DFT)
which is regarded by many as the most well-known and accurate theoretical model that
can predict the behaviour of quantum systems of electrons. DFT was originally formulated
by Kohn and Sham in 1965 [4, 5]. Through the Hohenberg-Kohn theorems [6] and the the-
orems of DFT, it is proven that DFT is an exact theory; however, finding the exact form
is difficult. Instead, approximations are made, and finding more accurate approximations
of the theory is the central motivation for continued studies of DFT. The theme of DFT is
that instead of using the many-body quantum wave function to describe the system and
then solving the Schrödinger equation, a single-body electron density is used to describe
the system, and then an eigenvalue equation or equivalent is solved. The advantage of this
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method is that the single-body electron density is much easier to construct compared to
the many-body wave function. As well, it provides an easy-to-implement approximation
scheme that has been utilized since DFT’s inception. In the Hamiltonian, for the multi-
particle system, the kinetic energy term and potential energy term are approximated as
their non-interacting counterparts, and all these ignored interactions are grouped into a
third term called the exchange-correlation energy. The exchange-correlation energy only
contributes a small fraction of the total energy of the system, and so will not significantly
affect the accuracy of the calculations. If the exact exchange-correlation energy were to be
found, it would make all DFT calculations exact. There is extensive research on determin-
ing its exact form, but it is yet to be found [3, 4]. The useful approximation method and
the fact that DFT is exact in principle is what has given DFT its popularity as the most
powerful computational tool for describing quantum systems of electrons.

There are two general approaches to DFT that take on different advantages and disad-
vantages. The first is Kohn-Sham density functional theory (KS-DFT), which sacrifices
computational efficiency for improved accuracy [7]. This manifests in the use of artificial
orbitals to describe the electron density instead of working with the electron density itself.
The orbitals allow the non-interacting kinetic energy to be written exactly; however, the
governing equation is an eigenvalue equation that needs to be solved for each electron in
the system. The second is orbital-free density functional theory (OF-DFT), which takes
the opposite approach and sacrifices accuracy for improved computational efficiency [8].
OF-DFT works with the electron density directly, and so the non-interacting kinetic energy
must be approximated; however, only a single eigenvalue equation or equivalent must be
solved for the entire system. So, in addition to searching for the exact exchange-correlation
energy, OF-DFT also concerns itself with finding the exact non-interacting kinetic energy
expressed with respect to the electron density directly.

Currently, KS-DFT has gained greater widespread use over OF-DFT due to its improved
accuracy. However, if the exact non-interacting kinetic energy were to be found for OF-
DFT, it would become the leading DFT theory overnight as it would be equally accurate
but far more computationally efficient. For that reason, it is worth investigating and for-
mulating different approaches to OF-DFT that might be able to solve the non-interacting
kinetic energy problem, increase the accuracy of the approximations or provide an alterna-
tive perspective on the problem that could potentially lead to advancements in the future.
One such proposal is the present theory, which uses an alternative approach to OF-DFT
based on ideas from self-consistent field theory (SCFT). Proving that this theory can ac-
curately model diatomic molecules is a great first step in validating its ability to predict
molecular bonding and how the theory compares to other OF-DFT methods. Additionally,
the theory offers an alternative ensemble perspective into constructing OF-DFT and offers
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a comparison between classical and quantum mechanics.

1.2 Objectives

The OF-DFT theory presented here offers an alternative viewpoint, with the potential to
provide more accurate results compared to other OF-DFT methods if a rigorous exchange-
correlation energy is implemented, as the inexactness of the non-interacting kinetic energy
has been pushed to the exchange-correlation energy. The alternative approach to OF-DFT
is based on a statistical mechanics ensemble interpretation of DFT, compared to the usual
formulation based on ideas from quantum mechanics. Additionally, the theorems of DFT
are not used to construct the theory, but instead, ideas from polymer SCFT are used.

The advantage of polymer SCFT as the basis of this OF-DFT approach is that it provides
readers who are familiar with SCFT the opportunity to understand the theory without pre-
vious knowledge of DFT. It also provides a comparison of the similarity between Gaussian
distributed ring polymers in SCFT and quantum particles in DFT.

The primary objective of this research is to construct a representation of the current OF-
DFT theory that can model a variety of quantum systems. Specifically, provide accurate
quantitative results for the physical properties of homonuclear and heteronuclear diatomic
molecules.

The secondary objective is to demonstrate that the current theory provides a more accurate
model of diatomic molecules compared to other OF-DFT formulations that rely on basic
approximations for the non-interacting kinetic energy. Specifically, demonstrating that the
theory can model the correct electron density structure and predict molecular bonding.

To achieve these objectives, the alternative approach to OF-DFT is derived in its entirety,
starting from basic concepts in quantum mechanics and statistical mechanics. This allows
for all the differences from traditional DFT approaches to be examined, as well as identify
the approximations made to construct the theory. How these differences and approxima-
tions affect the results when modelling diatomic molecules is also investigated.

1.3 Overview

The thesis consists of five chapters. Chapter 2 describes the foundational concepts that mo-
tivate this research. An overview of DFT is provided in section 2.2, where the Hohenberg-
Kohn theorems are proven in subsection 2.2.1, the Kohn-Sham formulation of DFT is
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constructed in subsection 2.2.2 and OF-DFT is constructed along with different approxi-
mations for the non-interacting kinetic energy term in subsection 2.2.3. A description of
SCFT for Gaussian distributed polymers in an external field is given in section 2.3.

In chapter 3 the present theory on the alternative approach to OF-DFT is derived. Section
3.2, constructs the majority of the necessary equations needed to describe the theory,
including the solution to the modified diffusion equation that governs the theory. Section
3.3 provides a description of the basis set necessary to model diatomic molecules. Section
3.4, investigates the spectral forms of the potentials and fields that are present in systems of
diatomic molecules. Section 3.5 brings together all components of the theory to construct
the Helmholtz free energy.

Chapter 4 investigates the results when modelling diatomic molecules using the present
theory. Section 4.2 discusses the computational methods used to generate the physical
properties of diatomic molecules. Section 4.3 examines the qualitative aspects of the calcu-
lated electron density contours for the diatomic molecules. Section 4.4 provides a summary
of the bond lengths for the various diatomic molecules and quantitatively compares the re-
sults to known values. Section 4.5 briefly describes the calculation process for determining
the bond dissociation energy and fundamental vibrational frequency of diatomic molecules
using the current theory. Section 4.6 discusses the limitations of the theory and necessary
steps to improve the results.

Chapter 5 gives concluding remarks on the modelling of diatomic molecules using the
current implementation of the alternative approach to OF-DFT.
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Chapter 2

Background

2.1 Introduction

Shortly after the discovery of quantum mechanics, in the early 20th century, physicists
were using it to theoretically study the characteristics of a variety of microscopic systems.
This process was improved further, when Schrödinger published his eponymous equation
in 1926 [9]. The Schrödinger equation gained widespread use in the physics community
for its ability to describe the dynamics of any quantum system exactly. Although it is an
extremely useful tool, for complex systems, solving the Schrödinger equation in a closed-
form is typically not possible and even finding the solution can be difficult. Such as in the
case of quantum systems of atoms or molecules, where the analytical Schrödinger equation
solution exists only for the hydrogen atom. Directly finding the solution to the Schrödinger
equation for atoms or molecules with more particles can be tedious, if not unsolvable.
To avoid this complication, approximations are made to the Schrödinger equation or an
approximate equivalent governing equation is used. One of the most primitive models
for determining the properties of atoms and molecules that did not explicitly solve the
Schrödinger equation, is the Thomas-Fermi model [3].

The Thomas-Fermi model allows the complicated electron wave function from the
Schrödinger equation to be replaced with a much simpler electron density. It assumes
that the electrons are uniformly distributed throughout phase space and so, as one would
expect, does not give accurate results for atoms and molecules, as these systems are highly
non-uniform. Regardless of the quantitative accuracy of the Thomas-Fermi model, it rep-
resents one of the earliest methods for replacing the wave function with the electron density
and is often considered as the forerunner to the much more accurate, density functional
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theory [3].

In 1964 and 1965, Hohenberg, Kohn and Sham [6, 5] greatly improved upon the Thomas-
Fermi model and the idea that the many-body wave function can be replaced with a
single-body electron density. They formulated an exact complete theory, density functional
theory, that is equivalent to solving the Schrödinger equation. This allows for the study of
complex quantum systems where solving the Schrödinger equation would be intractable.
They showed that there exists an exact functional of the electron density that completely
characterizes the quantum system, specifically the ground-state energy, and outlined a
process for determining this density. Although they were unable to find the exact ground-
state electron density, an approximation scheme and calculation process was demonstrated.
The proof that there is an exact ground-state energy functional has been the driving force
behind the advancement of DFT since its inception.

Improving upon the different approximations present when calculating the ground-state
electron density in DFT has become a massive area of research and discussion in the
physics community [4]. There is a wide array of different approaches and approximation
methods for improving the accuracy, computational efficiency or providing a more in-
depth understanding of the various functionals present in the theory. Each category of
these improvements marches DFT forward, expanding its applicability in modelling and
understanding a wider variety of quantum systems.

The chapter begins with an introduction to DFT, discussing the Hohenberg-Kohn theorems
that form the foundation of DFT. The two popular approaches to DFT, Kohn-Sham and
orbital-free, are then discussed. Following is an introduction to SCFT, specifically the
theory of a Gaussian distributed polymer in an external field, which is relevant to the
discussion on the alternative approach to OF-DFT presented in the theory chapter.

2.2 Density Functional Theory

2.2.1 Hohenberg-Kohn Theorems

The origins of DFT start with the seminal paper by Hohenberg and Kohn from 1964 [6],
where the two fundamental theorems that form the basis of the theory are discussed. The
overall theme of the theorems is that the total ground-state energy of a quantum system
of electrons is uniquely determined by the electron density.

Consider the total energy of a quantum system of electrons that is a functional of the
electron density, E[n]. The system is under the influence of an external potential and all
the inter-electron interactions are still present. The total energy can be written as [3, 10]
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E[n] =

∫
drn(r)Vext(r) +G[n], (2.1)

where G[n] is the contribution of all the inter-electron interactions to the total energy and
is also a functional of the electron density. G[n] can be written as,

G[n] = K[n] + Vee[n] (2.2)

where K[n] is the total kinetic energy and Vee[n] is the total Coulombic electron-electron
interaction energy. It should be noted that the Hohenberg-Kohn theorems give no recipe
for finding the functional forms of K[n] and Vee[n] [3, 6].

In terms of operator notation, the total energy of the system can be rewritten as the
expectation value of the Hamiltonian,

E = 〈ψ|Ĥ|ψ〉 = 〈ψ|V̂ext|ψ〉+ 〈ψ|Ĝ|ψ〉 , (2.3)

where V̂ ext and Ĝ are the operator forms of Vext(r) and, G[n] respectively, before the
expectation value has been taken and a basis chosen. To avoid obscuring the results when
proving the theorems, the most basic case will be assumed, the ground-state energy of the
system is non-degenerate.

Theorem 1: For a quantum system of electrons in an external potential, Vext(r), the
ground-state electron density, nGS(r), uniquely determines Vext(r) to within a trivial addi-
tive constant [3, 6, 10].

Assume there is a ground-state electron density of the system, nGS(r), with an external
potential, V̂ext,1, and a total ground-state energy, E1 = 〈ψ1|Ĥ1|ψ1〉, where ψ1 is the wave
function that is a ground-state energy eigenstate of the Hamiltonian, H1. Now, assume
there is another external potential, V̂ext,2, and another total ground-state energy, E2 =

〈ψ2|Ĥ2|ψ2〉, where ψ2 is the wave function that is a ground-state energy eigenstate of the
Hamiltonian, H2, that leads to the same ground-state electron density, nGS(r). The total
energy of these two states are,

E1 = 〈ψ1|Ĥ1|ψ1〉 = V̂ext,1 + Ĝ (2.4)

E2 = 〈ψ2|Ĥ2|ψ2〉 = V̂ext,2 + Ĝ. (2.5)
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First, it needs to be proven that the two different external potentials that differ by more
than a constant, lead to two different ground-state wave functions [3, 10]. Taking the
difference of equations 2.4 and 2.5,

E1 − E2 = 〈ψ1|Ĥ1|ψ1〉 − 〈ψ2|Ĥ2|ψ2〉 = 〈ψ1|V̂ext,1|ψ1〉 − 〈ψ2|V̂ext,2|ψ2〉 . (2.6)

Assume that the systems have the same ground-state wave function, ψ1 = ψ2, and since
the operators are local, the wave functions can be dropped. So, equation 2.6 becomes,

E1 − E2 = V̂ext,1 − V̂ext,2. (2.7)

The difference in energies is a constant, so if these two external potentials are to have the
same ground-state wave function they must differ only by a constant, proving the first part
of the theorem. Thus, for every external potential, V̂ext, there is a corresponding unique
wave function ψ.

The second part in proving the theorem relies on proof by contradiction and the variational
principle that is given by,

E ≤ 〈ψ|Ĥ|ψ〉 , (2.8)

where E is the ground-state energy, H is the Hamiltonian and ψ is an arbitrary eigenstate of
the Hamiltonian. It needs to be proven that if there are two different wave functions, they
cannot lead to the same ground-state electron density [3, 10]. Start with the system of two
different external potentials and different ground-state energies from before. Assume that,
ψ1 6= ψ2 but both wave functions have the same ground-state density nGS(r). Applying
the variational principle,

E1 < 〈ψ2|Ĥ1|ψ2〉 = 〈ψ2|Ĥ2|ψ2〉+ 〈ψ2|Ĥ1 − Ĥ2|ψ2〉

E1 < E2 +

∫
drnGS(r) (Vext,1(r)− Vext,2(r)) , (2.9)

where the external potential has been written in the position basis with respect to ψ2.
Similarly,
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E2 < 〈ψ1|Ĥ2|ψ1〉 = 〈ψ1|Ĥ1|ψ1〉+ 〈ψ1|Ĥ2 − Ĥ1|ψ1〉

E2 < E1 +

∫
drnGS(r) (Vext,2(r)− Vext,1(r)) , (2.10)

where the external potential has been written in the position basis with respect to ψ1.
In both sets of equations that use the variational principle, the external potential can be
written in the same form, as both systems yield the same ground-state electron density.
Now, summing equations 2.9 and 2.10,

E1 + E2 < E1 + E2. (2.11)

Giving the desired contradiction, both systems with a different wave function cannot lead to
the same ground-state electron density. Combining the results of both proofs, the theorem
is proven, the electron density uniquely determines the external potential.

Theorem 2: The ground-state electron density can be determined from the ground-state
total energy functional through the variation principle by varying only the electron density
[3, 6, 10].

From the first Hohenberg-Kohn theorem, the total energy of a quantum system of electrons
is a functional of the electron density, and therefore the eigenstate wave functions of the
Hamiltonian are also a functional of the electron density. Using the variational principle,
the total energy for an arbitrary eigenstate of the Hamiltonian obeys the relation,

E[n] = 〈 ψ[n] |H| ψ[n] 〉 ≥ EGS[nGS], (2.12)

where the equality holds when n(r) = nGS(r). The ground-state electron density can
then be found by minimizing the total energy functional through variations of the electron
density. The electron density that minimizes the total energy will be the ground-state
electron density. A Lagrange multiplier is included in the total energy equation to enforce
conservation of particle number. The variation of the total energy with respect to the
electron density is,

δ

δn(r)

(
E[n]− µ

(∫
dr′n(r′)−N

))
= 0, (2.13)

where µ is the Lagrange multiplier and N is the total number of electrons. Bringing
through the functional derivative, equation 2.13 becomes,
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δE[n]

δn(r)
= µ, (2.14)

where the functional derivative, δn(r′)/δn(r) = δ(r′ − r), has been used and the Lagrange
multiplier, µ, corresponds to the chemical potential. The value that minimizes the variation
of the total energy with respect to the electron density is the chemical potential, and from
that condition the ground-state total energy can be determined.

The second Hohenberg-Kohn theorem has now been proven, and the path towards formu-
lating a complete theory based on these theorems lies ahead.

2.2.2 Kohn-Sham Density Functional Theory

Following in the footsteps of Hohenberg and Kohn, in 1965 Kohn and Sham fully developed
DFT [5, 6]. DFT is often regarded as the most accurate computational method for calcu-
lating the properties of complex quantum systems such as atoms, molecules, and periodic
systems/solid-state lattices [3, 4]. This “original” approach to DFT is commonly known as
Kohn-Sham DFT after the creators of the theory and is discussed in this section. Natural
units are used throughout the section, me = ~ = e = 1

4πε0
= 1.

As mentioned above, the Hohenberg-Kohn theorems do not specify the functional forms
of K[n] and Vee[n], so the first step of the KS-DFT approach is determining these forms.
Specifically, instead of directly finding the functional forms with respect to the electron
density, a set of Slater determinant orthonormal orbitals Ψi are chosen, that are typically
expressed in the position basis [7, 11]. The orbitals are related to the electron density by,

n(r) = 2
N∑
i=1

|Ψi(r)|2 , (2.15)

where the factor of 2 is included to account for the two electrons populating each or-
bital due to spin. Allowing only two electrons per orbital provides partial enforcement
of the Pauli exclusion principle. To describe K[n] and Vee[n] using orbitals, the kinetic
energy is approximated as a kinetic energy for non-interacting electrons, and the electron-
electron potential energy is approximated as a classical Coulomb potential energy. The
non-interacting kinetic energy is,

K0[n] = −1

2

N∑
i=1

2

∫
drΨ∗i (r)∇2Ψi(r). (2.16)
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The Coulomb or Hartree potential energy is,

J [n] =
1

2

∫ ∫
drdr′

n(r)n(r′)

|r− r′|
, (2.17)

where the factor 1
2

is to correct for electron self-interactions. The errors made in ap-
proximating the kinetic energy and electron-electron potential energy are grouped into
the exchange-correlation energy, EXC [n]. The energy attributed to the Pauli exclusion
principle is also grouped into EXC [n]. The total energy of the system is,

E[n] = K0[n] + J [n] +

∫
drn(r)Vext(r) + EXC [n]. (2.18)

The benefit of using the approximations K0[n] and J [n] is that they are easily calculated,
closed-form expressions and that EXC [n] only contributes a small part to the total energy
[4].

Using the second Hohenberg-Kohn theorem, the ground-state energy of the system is de-
termined through variational minimization of the total energy with respect to the electron
density. Since the electron density is expressed in terms of orbitals, the ground-state can
be equivalently determined through variation of the orbitals, specifically, Ψ∗i [3]. In terms
of Kohn-Sham functionals, the ground-state energy obeys the condition,

δK0[n]

δΨ∗i (r)
+

δJ [n]

δΨ∗i (r)
+

δ

δΨ∗i (r)

∫
dr′n(r′)Vext(r

′) +
δEXC [n]

δΨ∗i (r)

− δ

δΨ∗i (r)
2

N∑
j=1

N∑
k=1

εjk

(∫
dr′Ψ∗j(r

′)Ψk(r
′)− δjk

)
= 0, (2.19)

where εij is the Lagrange multiplier that enforces the orthonormality condition of the
orbitals, ∫

drΨ∗i (r)Ψj(r) = δij. (2.20)

The conservation of the number of particles is automatically enforced if the orbitals are
orthonormal.
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For functionals of the electron density directly, the chain rule is used when functionally
differentiating,

δX[n]

δΨ∗i (r)
=

N∑
j=1

δn(r)

δΨ∗j
·
δΨ∗j
δΨ∗i
· δX[n]

δn(r)
= 2Ψi(r)

δX[n]

δn(r)
, (2.21)

where X[n] is an arbitrary functional of the electron density directly. The definition of
the electron density in terms of orbitals, from equation 2.15, has been used to complete
the chain rule identity. Expanding the functionals and taking the functional derivatives,
equation 2.19 becomes,

−1

2
∇2Ψi(r) +

(∫
dr

n(r)

|r− r′|

)
Ψi(r) + Vext(r)Ψi(r)

+
δEXC [n]

δn(r)
Ψi(r)−

N∑
j=1

εijΨj(r) = 0. (2.22)

All the operators are Hermitian, and so the orbitals can be unitarily transformed into a
basis diagonal in εij [3]. The result is called the Kohn-Sham equation,

− 1

2
∇2Ψi(r) + VKS(r)Ψi(r) = εijΨi(r), (2.23)

where VKS(r) =
∫
dr n(r)
|r−r′|+Vext(r)+ δEXC [n]

δn(r)
and εij are the Kohn-Sham orbital eigenvalues.

Comparing 2.14 with 2.23, the maximum eigenvalue, εmax, corresponds to the chemical
potential, µ [3]. Other eigenvalues do not have a well-defined physical interpretation.
The Kohn-Sham equation is the governing equation in KS-DFT, and the solution to the
equation is the ground-state energy of the system.

The only contribution to the total energy that is yet to be determined is the exchanged
correlation functional, EXC [n]. In all approaches to DFT, the exchange-correlation func-
tional must be approximated. There is extensive literature in finding the most accurate
exchange-correlation functional [12]. A common yet simple approach for approximating
EXC [n] is the local density approximation that assumes the exchange-correlation density
effects are the same as a local uniform electron gas [5, 13]. The local-density approximation
is,
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ELDA
XC [n] = −3

4

(
3

π

)1/3 ∫
drn(r)4/3. (2.24)

There are more complicated approaches to determining the exchange-correlation functional,
but they will not be discussed [12]. All components of Kohn-Sham DFT have been fully
specified, and the ground-state total energy and electron density can be determined by
self-consistently solving the Kohn-Sham equation.

2.2.3 Orbital-Free Density Functional Theory

Orbital-free DFT follows more closely the original spirit of the Hohenberg-Kohn theorems,
as the total energy of the system is determined directly from the electron density. Since the
electron density is the fundamental function of the theory, compared to the mathematically
constructed orbitals in KS-DFT, there is no ambiguity in the physical meaning of any of
the constants, variables, functions or functionals in the system [8, 14]. Specifically, the
Kohn-Sham orbitals and their corresponding eigenvalues do not have a physical meaning
in the quantum system they describe.

To determine the ground-state energy of the system in OF-DFT, a very similar procedure
from KS-DFT is followed. However, since there are no orbitals, the non-interacting ki-
netic energy functional from KS-DFT cannot be used. Instead, the non-interacting kinetic
energy must be approximated and be a functional of the electron density directly [15].
Additionally, since the Kohn-Sham orbitals partially enforce the Pauli exclusion princi-
ple, without them the full Pauli exclusion principle must be approximated and included
in the non-interacting kinetic energy functional, exchange-correlation functional or as an
additional term in the total energy functional [16].

There is extensive literature attempting to find the exact or most accurate non-interacting
kinetic energy functional in OF-DFT [14]. It is important to note that the non-interacting
kinetic energy is of the same magnitude as the total energy, as demonstrated through the
virial theorem, and so the approximation scheme for the non-interacting kinetic energy has
a significant effect on the accuracy of the theory [14].

The first attempt at approximating the kinetic energy was borrowed from the Thomas-
Fermi model and assumes the kinetic energy of the system is the same as a uniform electron
gas [8]. The Thomas-Fermi kinetic energy will be determined using the Sommerfeld model
of electrons [17].

The derivation of the Thomas-Fermi kinetic energy is written independently; however, it
should be noted that the derivation borrows on ideas from Ashcroft and Mermin [17].
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Starting from the time-independent Schrödinger equation for a free particle with periodic
boundary conditions, the Schrödinger equation is,

Hψ(r) = − ~2

2m
∇2ψ(r) = Eψ(r). (2.25)

With solution,

ψk(r) =
1√
V
eik·r. (2.26)

where V is the volume of the box that the periodic boundary conditions need to satisfy,
and

k =
2mE

~2
(2.27)

is a position-independent vector. The 1/
√
V factor is the normalization condition of the

wave function. For a box of length L, the boundary conditions for the wave function is
given by

ψ(x, y, z) = ψ(x+ L, y, z)

ψ(x, y, z) = ψ(x, y + L, z)

ψ(x, y, z) = ψ(x, y, z + L). (2.28)

For the boundary conditions to be satisfied, the wave function at the boundary must be

eikxL = eikyL = eikzL = 1. (2.29)

This only occurs if,

kx =
2πnx
L

, ky =
2πny
L

, kz =
2πnz
L

, (2.30)

where nx, ny, nz are integers. Each k value must reside in a volume
(

2π
L

)3
and the number

of k points in a volume Ω of k-space is
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Ω

(2π/L)3
=

ΩL3

8π3
. (2.31)

For a system of free electrons obeying the Pauli exclusion principle, two electrons will
populate each k point in a structure that minimizes the energy of the system. The resulting
configuration is a Fermi sphere with volume

4πk3
F

3
, (2.32)

where kF is the radius of the Fermi sphere and is the highest populated k point. The
number of electrons in the Fermi sphere is

N = 2 ·
(

4πk3
F

3

)(
L3

8π3

)
=

k3
F

3π2
V, (2.33)

where V = L3 and N is the number of electrons. The electron density of this configuration
is

n =
k3
F

3π2
, (2.34)

where n is the electron density. The energy of this system is the sum of all the electrons
in the Fermi sphere. To determine the explicit form of the energy, the definition of k from
equation 2.27 is used. The energy is,

E = 2 · ~
2

2m

∑
k≤kF

k2. (2.35)

Assuming the size of the system is macroscopic and so the spacing between k points is
continuous, the sum can be approximated as an integral. The energy density is,

E

V
= 2 · ~

2

2m

∫
k<kF

dk

8π3
k2 =

~2k5
F

10π2m
. (2.36)

Substituting in the value of the electron density from equation 2.34 and setting ~ = m = 1,
the energy density takes the form of the Thomas-Fermi energy density,
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E

V
=

(
3

10

)(
3π2
)2/3

n5/3 = c0n
5/3. (2.37)

where c0 = (3/10) (3π2)
2/3

. The Thomas-Fermi kinetic energy is,

KTF =
3

10

(
3π2
)2/3

∫
drn(r)5/3. (2.38)

Although the Thomas-Fermi kinetic energy takes a simple and easy to compute form, it
is crude and does not accurately represent the physical characteristics of most quantum
systems. Atoms and molecules have highly non-uniform electron densities and the Thomas-
Fermi kinetic energy performs poorly in these cases, failing to predict atomic shell structure
and molecular bonding [8, 14]. The use of the Thomas-Fermi kinetic energy is very limited
in scope, and a more accurate non-interacting kinetic energy approximation would greatly
improve the applicability of OF-DFT.

A well-known improvement to the Thomas-Fermi kinetic energy is the von Weizsäcker non-
interacting kinetic energy functional, which includes gradients of the density and does not
assume the kinetic energy of the system is the same as a uniform electron gas. To construct
the von Weizsäcker functional, the orbitals from KS-DFT in equation 2.15 are used. The
electron density for the individual orbitals will also be used,

n(r) = 2
N∑
i=1

ni(r), (2.39)

where ni(r) is the electron density of the individual orbitals. Applying the Laplacian
operator to equation 2.15 and using the Hermitian property of the gradient operator,

∇2n(r) = 2
N∑
i=1

(
Ψ∗i (r)∇2Ψi(r) +∇Ψi(r)∇Ψ∗i (r)

)
. (2.40)

Integrating both sides of the equation with respect to, r it can be seen that the first term
on the right-hand side is just the Kohn-Sham kinetic energy K0[n] from equation 2.16.
Rearranging equation 2.40,

K0[n] = −1

4

∫
dr∇2n(r) +

1

2

∫
dr

N∑
i=1

∇Ψi(r)∇Ψ∗i (r). (2.41)
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Multiplying each term in the sum by ni(r) in the numerator and denominator,

K0[n] = −1

4

∫
dr∇2n(r) +

1

8

∫
dr

N∑
i=1

|∇ni(r)|2

ni(r)
. (2.42)

The divergence theorem can be applied to the first term, that is, the integral over the
Laplacian of the electron density,

K0[n] = −1

4

∮
dr∇n(r) +

1

8

∫
dr

N∑
i=1

|∇ni(r)|2

ni(r)
. (2.43)

For quantum systems with finite extent, such as atoms and molecules, the gradient of
the electron density approaches zero at large distances and so the surface integral is zero
[8]. If the system under consideration only has one orbital or in the case of OF-DFT, all
systems are considered to have only one “orbital”, then the non-interacting kinetic energy
functional is the von Weizsäcker functional and is given by,

KvW =
1

8

∫
dr
|∇n(r)|2

n(r)
. (2.44)

The gradient-dependent electron density greatly improves the accuracy of the non-
interacting kinetic energy in modelling quantum systems. Specifically, the von Weizsäcker
functional is exact for two-electron systems and provides a better approximation for sys-
tems with quickly varying electron densities than the Thomas-Fermi functional. However,
the von Weizsäcker functional does not provide accurate results for multi-orbital systems,
such as most diatomic molecules [8]. In some cases, the sum of both the Thomas-Fermi and
von Weizsäcker functionals are used as the non-interacting kinetic energy functional, and
this combination does slightly improve the accuracy compared to the use of the individual
functionals. However, this combination still does not address many of the fundamental
issues present in these approximations.

There are many far more advanced and complicated approximations to the non-interacting
kinetic energy that improve upon the von Weizsäcker functional that will not be discussed
[8, 14, 15]. However, the Thomas-Fermi functional and von Weizsäcker functional are some
of the most well-known non-interacting kinetic energy functionals and many of the more
advanced methods contain or limit to these more basic functionals. It should be noted
that the exact form of the non-interacting kinetic energy is yet to be discovered [15].
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The ground-state energy and electron density in OF-DFT is determined in a similar process
as KS-DFT, except the total energy is varied with respect to the electron density instead
of the complex conjugate of the orbitals. The resulting equation is,

δKOF [n]

δn(r)
+

1

2

∫
dr

n(r)

|r− r′|
+ Vext(r) +

δEXC [n]

δn(r)
= µ (2.45)

where KOF [n] is the non-interacting kinetic energy functional of choice that is directly
dependent on the electron density. Without the exact form of the non-interacting kinetic
energy, OF-DFT is generally less accurate than KS-DFT, since, in addition to the exchange-
correlation functional being approximated, the full Pauli potential and non-interacting
kinetic energy must be approximated. The advantage to OF-DFT is that only a single
governing equation (2.45) must be solved for the entire system, compared to KS-DFT
where an eigenvalue equation (2.23) must be solved for each electron in the system [8, 14].
This represents an enormous computational advantage over KS-DFT, especially for systems
with a large number of electrons.

The final frontier of DFT is finding the exact form of the exchange-correlation functional
and, in the case of OF-DFT, finding the exact form of the non-interacting kinetic energy
functional in terms of the electron density as well. If both functionals are found, DFT would
be an exact theory, which would represent a significant leap forward in the computational
modelling of quantum systems. If only the exact form of the non-interacting kinetic energy
functional were to be found, OF-DFT would be the leading choice for DFT calculations as it
would offer the same accuracy as KS-DFT but with a significant increase in computational
efficiency.

2.3 Self-Consistent Field Theory for a Gaussian Poly-

mer in an External Field

This section is written independently; however, it should be noted that this section borrows
on ideas from Matsen [18].

The behaviour of a Gaussian distributed polymer chain melt in an external field is described
by self-consistent field theory [18, 19]. For large molecular polymer chains, the microscopic
behaviour of all the individual small molecule monomers is extremely difficult to character-
ize due to the sheer number of particles. However, if the macroscopic properties of the entire
polymer are the only characteristics of interest, then many of the individual monomers seg-
ments can be grouped and averaged to form a larger segment, these segments are referred
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to as coarse-grained segments. The advantage of coarse-graining polymers is that the com-
plex position probability distributions of the individual monomers are grouped together
and due to the central limit theorem these coarse-grained segments position probability
distributions become Gaussian distributions [18]. This allows the macroscopic character-
istics of the polymer to be calculated much more easily while still maintaining accuracy.
The disadvantage of the coarse-graining process is that the individual microscopic charac-
teristics of the polymer are lost. The Gaussian distributed coarse-grained segment position
probability distribution is

lim
m→∞

pm(r) =

(
3

2πa2

)3/2

exp

(
−3r2

2a2

)
, (2.46)

where a is the statistical length of the segment and m is the number of monomers
constituting each coarse-grained segment. The statistical segment length is defined as
a = R0N

−1/2 = bm1/2, where R0 = aN1/2 and b is a proportionality constant. N = M/m,
where M is the total number of monomers constituting the polymer. Although the position
probability distribution of the coarse-grained segment is only a Gaussian distribution at
asymptotically large m, the approximation gives reasonable accuracy at finite m [18].

Consider a polymer chain in the presence of an external static field w(r), assume the field
varies slowly enough such that the chain can be divided into N Gaussian distributed coarse-
grained segments of volume, ρ−1

0 , with the field being constant in the neighbourhood of
each segment. The positional configuration of the coarse-grained segments are described by
the function, rc(s), where 0 ≤ s ≤ 1 is the parameterization of the polymer backbone, such
that equal intervals of s have the same molecular weight. The subscript c indicates that the
position vector is referring to the polymer configuration. The energy of the coarse-grained
polymer configuration in an interval, s1 ≤ s ≤ s2, is

E[rc; s1, s2]

kBT
=

∫ s2

s1

ds

(
3

2a2N
|r′c(s)|2 + w(rc(s))

)
, (2.47)

where r′c(s) is the time derivative of the coarse-grained polymer configuration. The first
term in the energy resembles a kinetic energy and comes from the Gaussian position prob-
ability distribution. The second term resembles a potential energy term and is the energy
from the external field.

The partition function of the full polymer is important for characterizing the polymer’s
behaviour, as the partition function can be used to calculate macroscopic quantities of the
system, such as average segment distribution and entropy. The full partition function will
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now be constructed. Starting with the first sN segments of the coarse-grained polymer,
this will be known as a polymer fragment, with 0 ≤ s ≤ 1. The beginning of the fragment
obeys, rc(0) = r0, and the end of the fragment obeys, rc(s) = r. The energy of the fragment
is E[rc; 0, s], and its partition function with one of the fragment’s ends fixed at s = 0 is

z(r, r0, s) ∝
∫
Drc exp

(
−E[rc; 0, s]

kBT

)
δ(rc(0)− r0)δ(rc(s)− r). (2.48)

The delta functions are included in the partition function to ensure the boundary conditions
for the fragment ends are obeyed. The functional integral is over all fragment configura-
tions, rc(t), where 0 ≤ t ≤ s. To transform the proportionality relation in equation 2.48
to an equality, a factor containing the kinetic energy and a functional integral over all the
momenta of the monomers should be included. However, the form of the kinetic energy for
the fragment allows the momenta to be integrated out and included as a proportionality
factor in the partition function. To calculate the exact form of the proportionality factor,
the exact degrees of freedom of all monomers in the fragment would be required, but during
the coarse-graining process, this information is lost. Overall, the proportionality factor is
not necessary to the form of the full partition function being constructed. So, equation
2.48 will be kept as a proportionality relation [18].

Due to the locality of the polymer fragment energy, the energy can be equivalently written
as a superposition,

E[rc; 0, s] = E[rc; 0, t] + E[rc; t, s]. (2.49)

This allows the partition function of the fragment to be written as a recursion relation, this
is performed by using the superposition of energies along with inclusion of a delta function
for the new coordinate r1 and then integrating over this new coordinate. The recursion
relation is,

z(r, r0, s) =
1

a3N3/2

∫
dr1z(r, r1, t)z(r1, r0, s− t) (2.50)

where the constant factor 1/a3N3/2, is chosen to ensure the partition function is dimen-
sionless and to assign a value to the proportionality factor. The value of the constant was
chosen for convenience and does not have any physical meaning. The recursion relation
describes the partition function for the polymer fragment of sN segments in terms of the
partition function of two smaller fragments. For a fragment composed of zero segments,
the recursion relation implies,
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z(r, r0, 0) = a3N3/2δ(r− r0), (2.51)

since the beginning and end of the chain should be at the same position for a fragment of
zero length.

The task of finding the partition function for long fragments can be accomplished by solving
the partition function for very short fragments and using the recursion relation to build
up progressively longer fragments until the desired fragment length partition function is
found. These very short fragments must have a partition function such that the field does
not change over the length of the fragment, and so can be regarded as a constant. This
partition function is z(r, r0, ε) where ε is small and satisfies the constant field condition for
the fragment length,

|r− r0| . a(εN)1/2. (2.52)

For this small fragment partition function, the field adds a constant energy of εw(r)kBT
for each fragment configuration and so will not affect the position probability distribution
of the fragment. Assuming that the position probability distribution obeys a Gaussian
distribution as in equation 2.46, using the form of the partition function from equation
2.48, expanding the energy using equation 2.47 and discretizing the integrand, the small
fragment partition function is,

z(r, r0, ε) ≈
(

3

2πε

)3/2

exp

(
−3 |r− r0|2

2a2Nε
− εw(r)

)
. (2.53)

The small fragment partition function for εN segments is normalized such that in the limit
ε → 0 it reduces to equation 2.51. The large fragment partition function can now be
iteratively built up from the small partition function. Using equation 2.50, this relation is
given by,

z(r, r0, s+ ε) =
1

(a2N)3/2

∫
drεz(r, r + rε, ε)z(r + rε, r0, s). (2.54)

The condition in equation 2.52 indicates that z(r + rε, r0, s) needs to only be accurate for
|rε| . a(εN)1/2 and so, this partition function can be expanded in a Taylor series of rε to
second order,
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z(r, r0, s+ ε) =
1

(a2N)3/2

∫
drεz(r, r + rε, ε)

[
1 + rε · ∇+

1

2
(rε · ∇)2

]
z(r, r0, s). (2.55)

In this form and using equation 2.53, the integration over rε can now be performed. Rec-
ognizing that the field term in the exponent can be factored out of the integral and that
the integrand is simply a Gaussian over all space, the partition function is,

z(r, r0, s+ ε) ≈ exp (εw(r))

(
1 +

a2Nε

6
∇2

)
z(r, r0, s). (2.56)

Expanding exp (εw(r)) in a Taylor series and truncating the partition function expansion
to first order in ε, the partition function is,

z(r, r0, s+ ε) ≈
[
1 +

(
a2N

6
∇2 − w(r)

)
ε

]
z(r, r0, s). (2.57)

Similarly, z(r, r0, s + ε) can be directly expanded in a Taylor series of s + ε centered at s
and truncated at first order in ε. The partition function for this expansion is,

z(r, r0, s+ ε) =

(
1 + ε

∂

∂s

)
z(r, r0, s). (2.58)

Equating the Taylor series expanded partition functions from equations 2.57 and 2.58,

∂

∂s
z(r, r0, s) =

(
a2N

6
∇2 − w(r)

)
z(r, r0, s). (2.59)

The resulting modified diffusion equation is used to solve for z(r, r0, s).

Another important quantity of the coarse-grained segment polymer is the local or partial
partition function for the polymer fragments with a free end at s = 0, this is given by,

z(r, s) ∝
∫
Drc exp

(
−E[rc; 0, s]

kBT

)
δ (rc(s)− r) . (2.60)

Equivalently, the partition function in equation 2.60, can be constructed from the partition
function with both ends fixed, z(r, r0, s),
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z(r, s) =
1

(a2N)3/2

∫
dr0z(r, r0, s). (2.61)

So, z(r, s) also satisfies the modified diffusion equation 2.59 as the differential operators
are linear and can be moved inside or outside the integral. As well, equation 2.51 can be
used to determine the s = 0 condition for equation 2.61,

z(r, 0) = 1. (2.62)

The partial partition function for a polymer fragment of (1− s)N segments with the end
at s = 1 fixed, can be constructed in a similar way as z(r, r0, s). The complementary
partition function is,

z†(r, r0, s) ∝
∫
Drc exp

(
−E[rc; s, 1]

kBT

)
δ(rc(1)− r0)δ(rc(s)− r). (2.63)

The condition when s = 1 can also be specified using a recursion relation for the comple-
mentary partition function,

z†(r, r0, 1) = (a2N)3/2δ(r− r0). (2.64)

The modified diffusion equation for the complementary partition function can be con-
structed in an equivalent way as was done for the partition function,

∂

∂s
z†(r, r0, s) = −

(
a2N

6
∇2 − w(r)

)
z†(r, r0, s). (2.65)

As well, the local or partial complementary partition function for the polymer fragment
with a free end at s = 1, can be constructed from the complementary partition function,

z†(r, s) =
1

(a2N)3/2

∫
dr0z

†(r, r0, s). (2.66)

From equation 2.64, the partial complimentary partition function satisfies the following
s = 1 condition,

z†(r, 1) = 1. (2.67)
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The partition function for the complete coarse grained Gaussian distributed polymer in
an external field can be constructed from the integral of the partial partition function and
complementary partial partition function, where both ends of the polymer are free. The
full partition function is,

Z[w] =

∫
drz(r, s)z†(r, s) ∝

∫
Drc exp

(
−E[rc; 0, 1]

kBT

)
(2.68)

The full partition function of a Gaussian distributed coarse-grained polymer in an external
field has been determined. The procedure for determining the characteristics of the Gaus-
sian distributed coarse-grained polymer in an external field and the resulting equations
follow many of the same steps when deriving the alternative approach to OF-DFT in the
theory chapter.
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Chapter 3

Theory

3.1 Introduction

In quantum mechanics, determining the ground-state behaviour of stationary many-body
systems is often approached using density functional theory [7]. The basis of the theory
relies on the Hohenberg-Kohn theorems that prove the ground-state energy of a quan-
tum system is a unique functional of the electron density [6]. The main objective of
DFT then is to determine the ground-state electron density of the system. In DFT, the
Hamiltonian is approximated as consisting of a non-interacting kinetic energy functional
term, a non-interacting potential energy functional term and an exchange-correlation func-
tional term that approximates the correlation characteristics of electrons and the exchange-
statistics arising from the fermionic nature of electrons. Within the field, there are two
well-established categories that the various approaches to DFT fall under, Kohn-Sham den-
sity functional theory and orbital-free density functional theory. The KS-DFT method uses
a basis set of functions that are eigenfunctions of the Hamiltonian to solve an eigenvalue
equation. The solution to the eigenvalue equation is used to calculate the ground-state
electron density. This method generally provides very accurate results but suffers in com-
putational efficiency as an eigenvalue equation must be solved for each electron [3]. In
OF-DFT, the non-interacting kinetic energy functional must be approximated and from
there the electron density is solved for directly [8]. The advantage, in comparison to KS-
DFT, is only one eigenvalue equation or an equivalent governing equation needs to be
solved for the entire system, providing computational efficiency. The disadvantage is the
non-interacting kinetic energy functional in addition to the exchange-correlation functional
must be approximated [20].
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There has been extensive research in formulating various approaches to DFT in order to
improve its accuracy, increase computational efficiency or provide a more profound insight
into the theory [4]. Focusing on the OF-DFT approach and borrowing from the ideas of
Feynman and Hibbs [21] on the mapping of classical mechanics to quantum mechanics, it
can be shown that an isomorphism exists between SCFT and DFT. Furthermore, it can
be shown that an isomorphism exists between 4-D Gaussian distributed ring polymers in
thermal space and 3-D quantum particles. SCFT is used extensively in the study of poly-
mers, with the governing equation being a modified diffusion equation that determines the
characteristics of the polymer [18, 19]. The focus of this chapter is deriving an alternative
approach to OF-DFT using concepts from SCFT and investigating the relationship between
quantum particles and polymers. Specifically, using this SCFT based OF-DFT approach
to determine the electron density and ground-state energy of a diatomic molecule.

The chapter begins with a derivation of the overall framework of theory, discussing the
governing modified diffusion equation and other important equations and their similarities
to the ideas of SCFT. The modified diffusion equation is then solved self-consistently using
techniques from polymer SCFT. Lastly, the basis set dependent potentials and fields are
calculated for diatomic molecules, allowing the electron density and free energy to be
determined.

The overall derivation and self-consistent calculation process in the present theory was
originally developed by Thompson [20, 22]. However, the theory was only implemented in
atomic systems with a spherically symmetric basis set. The goal of the current approach
is to improve the results of the initial implementation of the theory by modelling a more
complex system, diatomic molecules, using a more advanced cylindrically symmetric basis
set while still retaining the original self-consistent calculation process.

3.2 Self-Consistent Field Theory Equations

The overall goal is to construct an alternative approach to OF-DFT theory without the
theorems of DFT, based on ideas from quantum mechanics, statistical mechanics and
SCFT. This approach starts from “first principles” and is done in the canonical ensemble,
contrary to the typically DFT approach where the grand canonical ensemble is used [23, 24].
The canonical ensemble allows for a more convenient derivation as in most cases the number
of particles is known and so fixing the number of particles makes calculations easier. The
derivation closely follows the work of Thompson [20, 22].
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3.2.1 Mean Field Quantities

Consider a quantum system in the canonical ensemble with N identical indistinguishable
particles, specifically electrons, of mass m, in a volume V and at temperature T . The
quantum Hamiltonian in terms of the kinetic energy K and the potential energy U in
position representation is,

H = K + U

= − ~
2m

N∑
i=1

∇2
i + U({r}), (3.1)

where ∇2
i is acting on particle i at position ri and the potential energy U({r}) acts on the

set of all N particle positions {r} = {r1, r2, ..., rN}. The quantum partition function in the
canonical ensemble is given by,

QN(β) =
∑
i

e−βEi , (3.2)

where Ei are the energy states of the system and β = 1/kBT with kB as the Boltzmann
constant. As will be shown in appendix C, the quantum partition function can be written
equivalently in classical form as,

QN(β) =
1

h3N

∫
· · ·
∫
d{r}d{p}e−βHw({r}, {p}, β), (3.3)

where {p} = {p1,p2, ...,pN} is the set of all N particle momenta, d{r}, d{p} is the
integration over all positions and momenta respectively and H is the classical Hamiltonian
that takes the usual form,

H =
N∑
i=1

pi
2m

+ U({r}). (3.4)

A factor of 1
N !

is missing in equation 3.3 as permutation arguments are ignored, this will
be justified shortly. For a purely classical system w({r}, {p}, β) = 1. From appendix C, it
is shown that for quantum systems w({r}, {p}, β) must satisfy,
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e−βHe
i
~
∑
i pi·ri = e−βHe

i
~
∑
i pi·riw({r}, {p}, β)

≡ F ({r}, {p}, β). (3.5)

The function w({r}, {p}, β) can be written using an independent particle approximation
with an exchange-correlation correction as

w({r}, {p}, β) = gxc({r}, β)
N∏
i=1

w̃(ri,pi, β) (3.6)

where gxc({r}, β) includes all quantum correlations and exchange effects necessary to en-
force the indistinguishability of quantum particles, including the 1

N !
factor. Although,

w̃(ri,pi, β) already depends on β this can also be included in gxc({r}, β) so that the
exchange-correlation function can be rewritten in a convenient form,

gxc({r}, β) ≡ e−βUxc({r}). (3.7)

Using equation 3.6, the quantum partition function can be written as,

QN(β) =
1

h3N

∫
· · ·
∫
d{r}d{p}e−βH̃

N∏
i=1

w̃(ri,pi, β) (3.8)

where H̃ = H + Uxc({r}). Now the potentials can be rewritten in terms of a density
operator [25] given by,

n̂(r) =
N∑
i=1

δ(r− ri). (3.9)

Including Uxc with the other potential terms, the Hamiltonian can be written as,

H̃ =
N∑
i=1

p2
i

2m
+ U [n̂] (3.10)

where the potentials are functionals of the density operator. Inserting the expanded form
of H̃ back into the quantum partition function,
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QN(β) =
1

h3N

∫
· · ·
∫
d{r}d{p}e−βU [n̂]

N∏
i=1

e−β
p2
i

2m w̃(ri,pi, β). (3.11)

To proceed, the definition of the functional Dirac delta is used,

e−βU [n̂] =

∫
DN δ[N − n̂]e−βU [N ] (3.12)

where DN = limN→∞
∏N

i=1 dNi [26] is the functional integral over the electron density N .
Inserting the functional Dirac delta into the quantum partition function gives,

QN(β) =
1

h3N

∫
DN δ[N − n̂]e−βU [N ]

∫
· · ·
∫
d{r}d{p}

N∏
i=1

e−β
p2
i

2m w̃(ri,pi, β). (3.13)

The Fourier transform definition of the functional Dirac delta is,

δ[N − n̂] =

∫
DWeβ

∫
dr′W(r′,β)(N (r′,β)−n̂(r′)) (3.14)

whereW(r′, β) is an arbitrary field. Investigating the exponent in equation 3.14 and using
the definition of the density operator,

β

∫
dr′W(r′, β)(N (r′, β)− n̂(r′)) = β

∫
dr′W(r′, β)N (r′, β)− β

∫
dr′W(r′, β)n̂(r′)

= β

∫
dr′W(r′, β)N (r′, β)

− β
∫
dr′W(r′, β)

N∑
i=1

δ(r′ − ri)

= β

∫
dr′W(r′, β)N (r′, β)− βW(ri, β).

Inserting the simplified Fourier transform Dirac delta into the quantum partition function,
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QN(β) =
1

h3N

∫
DN

∫
DWe−βU [N ]+β

∫
dr′W(r′,β)N (r′,β)

×
∫
· · ·
∫
d{r}d{p}

N∏
i=1

e−βHeff(ri,pi)w̃(ri,pi, β) (3.15)

where Heff(ri,pi, β) = pi
2m

+W(ri, β).

A single particle quantum partition function subject to the effective Hamiltonian can be
defined as,

Q(β) =
1

h3

∫ ∫
drdpe−βHeff(r,p,β)w̃(r,p, β). (3.16)

The single partition function is then substituted into the full partition function,

QN(β) =

∫
DN

∫
DWQ(β)Ne−βU [N ]+β

∫
dr′W(r′,β)N (r′,β). (3.17)

To evaluate the integrals, a saddle point approximation is implemented that takes the
general form [27], ∫

dxef(x) =

∫
dxef(x0)+ 1

2
(x−x0)2f ′′(x0)+... (3.18)

where f(x) is an arbitrary function that has been Taylor expanded around the point x0

that is defined to be a minimum point on the real axis of the function and so f ′(x) = 0. The
Taylor series is truncated at either the first term or the second term so that the function
can be integrated trivially or as a Gaussian, respectively.

Moving on to using the saddle point approximation for the full quantum partition function,
it is assumed that W(r′, β) and N (r′, β) will obtain minimum field and electron density
values at ω(r′, β) and, n(r′, β) respectively. These mean field values will be the values
the functional Taylor series is expanded upon and since they are minimums the first order
derivatives will be zero and the series will be truncated at the first term. Relabelling r′ as
r the quantum partition function is

QN(β) = Q(β)Ne−βU [n]+β
∫
drω(r,β)n(r,β). (3.19)
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The expression can still be considered exact if the classical correlations which are ignored
in the mean-field approximation are included in the exchange-correlation potential.

With the fully simplified form of the quantum partition function, the Helmholtz free energy
of the system can now be obtained using the partition function relation from the canonical
ensemble, F = −kBT lnQN(β), giving,

F [n, ω]

kBT
= −N lnQ(β) + βU [n]− β

∫
drω(r, β)n(r, β). (3.20)

The expression for the mean fields can be found by taking the functional derivative with
respect to the mean field particle density in the free energy,

δF [n, ω]/kBT

δn(r′, β)
= 0 = β

δU [n]

δn(r′, β)
− β

∫
drω(r, β)

δn(r, β)

δn(r′, β)

= β
δU [n]

δn(r′, β)
− β

∫
drω(r, β)δ(r− r′)

= β
δU [n]

δn(r′, β)
− βω(r′, β).

Relabelling r′ as r, the mean fields are,

ω(r, β) =
δU [n]

δn(r, β)
. (3.21)

The mean field particle density is found by taking the functional derivative of the mean
fields in the free energy,

δF [n, ω]/kBT

δω(r′, β)
= 0 = −N δ ln (Q(β))

δω(r′, β)
− β

∫
dr
δω(r, β)

δω(r′, β)
n(r, β)

= − N

Q(β)

δQ(β)

δω(r′, β)
− β

∫
drδ(r− r′)n(r, β)

= − N

Q(β)

δQ(β)

δω(r′, β)
− βn(r′, β)).

Relabelling r′ as r, the mean field particle density is,
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n(r, β) = − N

βQ(β)

δQ(β)

δω(r, β)
. (3.22)

These equations can be fully solved once the potentials U [n] of the system are specified.

3.2.2 Modified Diffusion Equation

Revisiting the single particle partition function, it will obey the same relation between the
classical and quantum partition function from equation 3.3 that the full partition function
obeyed,

e−βHKSe
i
~p·r = e−βHeffe

i
~p·rw̃(r,p, β)

≡ V q(r,p, β) (3.23)

where HKS = − ~2

2m
∇2 +W(r, β) and the subscript “KS” indicates that this is the same

operator as in the Kohn-Sham equations of KS-DFT. A volume factor has been included
in the definition for convenience. q(r,p, β) is used instead of F ({r}, {p}, β) to distinguish
between the single particle and multi-particle comparison of the quantum partition function
in classical form. Differentiating the above equation with respect to β, the following relation
is obeyed,

∂q(r,p, β)

∂β
=

~2

2m
∇2q(r,p, β)−W(r, β)q(r,p, β). (3.24)

Using the mean field value for the fields, the modified diffusion equation is,

∂q(r,p, β)

∂β
=

~2

2m
∇2q(r,p, β)− ω(r, β)q(r,p, β) (3.25)

with initial condition,

q(r,p, 0) = V e
i
~r·p. (3.26)

The single-particle partition function is then,
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Q(β) =
1

V 2

1

h3

∫ ∫
drdpq(r,p, β)q∗(r,p, 0). (3.27)

The modified diffusion equation 3.25, can be solved more easily if the momentum coor-
dinates, p, are Fourier transformed to position coordinates, r0, in q(r,p, β). The Fourier
transform is

q(r,p, β) = h3

∫
dr0e

i
~r0·pq(r, r0, β). (3.28)

Substituting the Fourier transformed expression into the modified diffusion equation,

∂q(r, r0, β)

∂β
=

~2

2m
∇2q(r, r0, β)− ω(r, β)q(r, r0, β) (3.29)

with initial condition,

q(r, r0, 0) = V

∫
dpe−

i
~r0·pe

i
~r·p = V

∫
dpe

i
~ (r−r0)·p = V δ(r− r0). (3.30)

The modified diffusion equation can now be solved and takes the same form as the Kac-
Feynman solution from appendix D [21, 28],

q(r, r0, β) = VN

∫ r

r0

Dre
∫ β
0 dτ{− m

2~2 | dr(τ)
dτ |

2
−ω(r(τ))} (3.31)

where N is a normalization constant, Dr = limN→∞
∏N−1

i=1 dri and the solution describes
the thermal trajectory of a quantum particle which acts as an imaginary time component.
Another interpretation is that the solution describes the unnormalized probability of a
particle at a high classical temperature (β = 0) known to be at position r0, being found at
position r when at low quantum temperature (β > 0). The solution takes the same form
as an imaginary time quantum propagator.

Using the Fourier transformed expression, q(r, r0, β), The single particle partition function
can be rewritten as,
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Q(β) =
1

V 2

1

h3

∫ ∫
drdpq(r,p, β)q∗(r,p, 0) =

1

V

∫ ∫ ∫
drdpdr0e

i
~r0·pq(r, r0, β)e−

i
~r·p

=
1

V

∫ ∫
drdr0δ(r0 − r)q(r, r0, β)

Q(β) =
1

V

∫
drq(r, r, β). (3.32)

With the solution to the modified diffusion equation and the explicit form of the quantum
partition function, the mean-field particle density can be further specified as

n(r, β) = − N

βQ(β)

δQ(β)

δω(r, β)

= − 1

V

N

βQ(β)

∫
dr
δq(r, r, β)

δω(r, β)

= − n0

βQ(β)
(−βq(r, r, β))

n(r, β) =
n0

Q(β)
q(r, r, β) (3.33)

where n0 = N
V

is the uniform electron density.

3.2.3 Spectral Solution to the Modified Diffusion Equation

To solve for the ground-state electron density in the present case of molecular systems,
the fields, electron density and modified diffusion equation are numerically solved self-
consistently. In a brute force approach, the limiting computational factor is the requirement
of solving the modified diffusion equation for each position coordinate r0. This is extremely
computationally expensive, however, following Matsen [18], these same equations can be
solved spectrally for the same numerical cost as solving a single modified diffusion equation,
allowing complicated three-dimensional systems to be studied with reasonable computation
power. The spectral method expands spatially dependent functions in a superposition of
infinite orthonormal basis functions, {fi(r)}, that encode the symmetry of the system and
are chosen to be eigenvalues of the Laplacian operator, the modified diffusion equation
then becomes a separable differential equation. The basis functions obey the eigenvalue
equation for the Laplacian,
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∇2fi(r) = λifi(r) (3.34)

where λi are the eigenvalues of the Laplacian operator with respect to the basis set {fi(r)}.
The basis functions also obey an orthonormality condition,

1

V

∫
drfi(r)fj(r) = δij. (3.35)

An arbitrary function of position can be expanded using the basis functions as,

g(r) =
∑
i

gifi(r). (3.36)

So, instead of solving directly for g(r) at every position, a finite number of coefficients gi
can be solved to achieve the desired accuracy of the calculation. Additionally, for functions
of two spatial coordinates a bilinear spectral expansion in position can be performed,

g(r, r0) =
∑
ij

gijfi(r)fj(r0). (3.37)

With this method, the single-particle quantum partition function, Q(β), is spectrally ex-
panded,

Q(β) =
1

V

∫
drq(r, r, β)

=
∑
ij

qij(β)
1

V

∫
drfi(r)fj(r)

Q(β) =
∑
i

qii(β). (3.38)

The electron density n(r) can also be spectrally expanded on both sides of the equation,

n(r, β) =
n0

Q(β)
q(r, r, β)∑

i

ni(β)fi(r) =
n0

Q(β)

∑
jk

qjk(β)fj(r)fk(r).

35



Multiplying both sides of the equation by 1
V

and fl(r) then integrating over r and relabelling
indices, the electron density is,

nk(β) =
n0

Q(β)

∑
ij

qij(β)Γijk (3.39)

where,

Γijk =
1

V

∫
drfi(r)fj(r)fk(r) (3.40)

is the gamma tensor. The only unspecified quantities are the spectral coefficients, qij(β),
these can be determined by spectrally expanding the modified diffusion equation and solv-
ing the resulting differential equation using the relation,

q(r, r0, β) =
∑
ij

qij(β)fi(r)fj(r0). (3.41)

Substituting into the modified diffusion equation,

∑
ij

∂qij(β)

∂β
fi(r)fj(r0) =

~2

2m

∑
i′j′

qi′j′(β)λi′fi′(r)fj′(r0)

−
∑
i′′j′′k

qi′′j′′(β)ωk(β)fi′′(r)fj′′(r0)fk(r) (3.42)

where ωk(β) are the spectral components of the fields. Multiplying both sides of the
equation by 1

V 2 , fn(r), fm(r0), integrating both sides with respect to r and r0 and relabelling
indices, the resulting equation is,

∂qij(β)

∂β
=

~2

2m

∑
k

λiδikqkj(β)−
∑
kl

ωl(β)Γiklqkj(β) =
∑
k

Aikqkj(β) (3.43)

where

Aik =
~2

2m
λiδik −

∑
l

wl(β)Γikl. (3.44)
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The solution to this set of separable differential equations is,

qij(β) =
∑
k

qkj(0)eβAik (3.45)

where qkj(0) are the spectral components of the initial conditions which can be determined
by spectrally expanding q(r, r0, 0),

q(r, r0, 0) =
∑
ij

qij(0)fi(r)fj(r0) = V δ(r− r0). (3.46)

Using equation 3.46, both sides of the equation are multiplied by 1
V 2 , fk(r), fl(r0) and

integrated over r and r0. Relabelling indices the initial condition is,

qkj(0) = δkj. (3.47)

The simplified spectral solution to the modified diffusion equation is,

qij(β) = eβAij . (3.48)

The exponential of the matrix can be calculated by diagonalization. The equivalent diag-
onalized representation is

qij(β) =
∑
k

Pike
βαkPkj (3.49)

where αk are the eigenvalues of the matrix A and the columns of P are the normalized
eigenvectors of A. The problem of solving a modified diffusion equation for every point
in coordinate space has been reduced to finding the eigenvalues and eigenvectors of the
matrix A for a finite basis set size, significantly reducing the computational cost when
calculating the modified diffusion equation solution. The quantum propagator is solved
iteratively using an appropriate basis set size until self-consistency and the desired accuracy
has been achieved. Compared to other DFT approaches, only a single modified diffusion
equation needs to be solved each cycle, compared to a single eigenvalue equation per cycle
in OF-DFT or a set of N eigenvalue equations per cycle for KS-DFT [8, 14, 20].
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3.3 Cylindrically Symmetric Basis Set

The present theory has already been demonstrated to be valid for atomic systems, as shown
by Thompson [20, 22]. However, further validation of the theory can be achieved by de-
termining the ensemble average electron densities of diatomic molecular systems. Using
the electron density values, the free energy can be calculated and used to determine other
useful properties of diatomic molecules such as the bond length, bond dissociation energy
and the fundamental vibrational frequency. Some approaches to OF-DFT that utilize the
Thomas-Fermi or Von Weizsäcker functional as the non-interacting kinetic energy term,
do not provide accurate results for most diatomic molecules and so establishing the occur-
rence of bonding in the present theory will validate its applicability beyond basic OF-DFT
approaches [3, 8].

As ensemble average electron densities of diatomic molecules possess cylindrical symmetry,
a suitable basis set will encode this symmetry, specifically, cylindrical Bessel functions for
the radial, r, coordinate and a Fourier series for the axial, z, coordinate. The angular, θ,
coordinate does not need to be explicitly represented in the basis set, as ensemble averaging
of the electron densities will remove any angular dependence in the density. The motivation
for this approximation is from the structure of electron orbitals in diatomic molecules. If
the ensemble configurations of all the molecular orbitals present in a diatomic molecule are
averaged, the resulting molecular orbitals will be cylindrically symmetric, with the angular
dependence vanishing. For example, visualizing an ensemble of σ and π molecular orbitals
that are averaged over all the possible configurations. The resulting ensemble-averaged
electron density of these σ and π molecular orbitals would be the same for all angles, and
so the electron density has no angular dependence.

For a diatomic molecule inside a cylindrical box, the orthonormalized basis set is given by,

f0j(r, z) =

√
2

J1(γ0,j)
J0

(
γ0,j

r

R

)
· 1√

2
(3.50)

f(2i)j(r, z) =

√
2

J1(γ0,j)
J0

(
γ0,j

r

R

)
· cos

2π(2i)z

Z
(3.51)

f(2i−1)j(r, z) =

√
2

J1(γ0,j)
J0

(
γ0,j

r

R

)
· sin 2π(2i− 1)z

Z
(3.52)

where J0, J1 are the zeroth and first order cylindrical Bessel functions respectively, γ0,j is
the jth zero of the zeroth order cylindrical Bessel function, R is the radius of the cylindrical
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box going from 0 to R and Z is the height of the cylindrical box going from −Z
2

to Z
2
.

Box dimensions are chosen large enough so that the electron densities go to zero at the
boundary. The volume of the cylindrical box is V = πR2Z. The basis functions are
eigenfunctions of the Laplacian operator with corresponding eigenvalues,

λ0j = −
(γ0,j

R

)2

(3.53)

λij = −
(γ0,j

R

)2

−
(

2πi

Z

)2

. (3.54)

The indices i, j in the basis functions and eigenvalues both start at one. The summary of
the basis set derivation is provided in appendix A. The values for the gamma tensor are
summarized in appendix B. Although the basis functions and eigenvalues depend on two
indices, i for the r coordinate and j for the z coordinate, the two indices will be suppressed
to only one index to avoid cumbersome notation and keep the generality of the derivation.
The calculations for a single index are nearly identical to when both indices are used. The
full two index form will be used when either the basis functions or eigenvalues need to be
explicitly written.

3.4 Potentials and Fields

3.4.1 External Potential

Now that the basis set has been specified, the field spectral coefficients, ωi(β), for diatomic
molecule systems can be determined. The spectral field coefficients can be used to spec-
ify Aik, solve for the quantum propagator spectral coefficients, qij(β), and calculate the
electron density spectral coefficients, ni(β).

The external field spectral coefficients, ωexti , that are due to the Coulomb interaction be-
tween the nuclei and the electrons will be investigated. The Coulomb potential for this
interaction is,

U ext[n] = −
∑
k

∫ ∫
drdr′n(r, β)V(|r− r′|) kρnuc(r′) (3.55)

where V(|r − r′|) = 1
4πε0

1
|r−r′| is the Coulomb potential, kρnuc(r′) is the charge density of

the kth nucleus and
∑

k is the sum over the number of nuclei, in the case of diatomic
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molecules, this number is two. The nuclei are treated as stationary point particles and can
be displaced symmetrically about the origin along the z-axis without loss of generality, to
represent different atomic distances. The nuclear charge density will be represented by a
Dirac delta as,

kρ(r)nuc = kNδ(r)δ(z − kznuc)δ(θ) (3.56)

where kN is the electric charge of the kth nucleus and kznuc is the position along the z-
axis of the kth nucleus, for the present case of diatomic molecules 1znuc = −2znuc. Using
equation 3.21, the mean field of the external potential is

ωext(r′′) =
δU ext[n]

n(r′′, β)
= −

∑
k

∫ ∫
drdr′δ(r− r′′)V(|r− r′|) kρnuc(r′)

= −
∑
k

∫
dr′V(|r′′ − r′|) kρnuc(r′).

Relabelling r′′ as r,

ωext(r) = −
∑
k

∫
dr′V(|r− r′|) kρnuc(r′). (3.57)

The external potential can now be written in terms of its respective field as,

U ext[n] =

∫
drn(r, β)ωext(r). (3.58)

Spectrally expanding the electron density and the field,

U ext[n] =
∑
ij

∫
drni(β)ωextj fi(r)fj(r).

Multiplying the numerator and denominator by V , the orthonormality condition can be
used to write the external potential as,

U ext[n] = V
∑
i

ni(β)ωexti (3.59)
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where ni(β) are the spectral components of the electron density and ωexti are the spectral
components of the external field. To determine the values of ωexti , equation 3.57 is written
as a Poisson equation, since its current form is the same as the solution to the Poisson
equation. This equivalence is most easily seen when investigating the solution of the Poisson
equation for an arbitrary function. The Poisson equation is,

∇2g(r) = f(r) (3.60)

where g and f are arbitrary functions. The solution to equation 3.60 is,

g(r) = −
∫
dr′

f(r′)

4π|r− r′|
. (3.61)

Back to ωexti (r), its Poisson equation is,

∇2ωext(r) =
∑
k

1

ε0
kρnuc(r). (3.62)

The surface terms arising from the boundary conditions of the cylindrical box in the Poisson
equation are taken to be zero. However, the actual form of the surface term has not been
determined and so could likely be non-zero. It is possible that the Poisson surface term
is only dependent on the size of the box, and so will become less significant as the size of
the box increases. As well, the Poisson surface term will only affect the free energy of the
system in the form of an additive constant, since the box size is the same throughout the
calculations, and the physical quantities of interest for diatomic molecular systems will not
be affected by this constant shift in the free energy. Specifically, the physical quantities
involve differences between free energy values, the curvature of the free energy at different
atomic separations and the atomic separation where the free energy is at a minimum, these
measurements correspond to bond dissociation energy, fundamental vibrational frequency
and bond length respectively.

In equation 3.62, multiplying the numerator and denominator by 4π and using natural
units for the rest of the chapter where 1

4πε0
= 1, ~ = 1 and me = 1, me is the mass of the

electron and spectrally expanding ωext(r) and kρnuc(r), the Poisson equation is,
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∑
i

ωexti ∇2fi(r) =
∑
jk

4π kρnucj fj(r)∑
i

ωexti λifi(r) =
∑
jk

4π kρnucj fj(r).

Multiplying both sides of the equation by 1
V

, fl(r) and integrating with respect to r,

∑
i

ωexti λi
1

V

∫
drfi(r)fl(r) =

∑
jk

4π kρnucj

1

V

∫
drfj(r)fl(r)

ωextl =
∑
k

4π kρnucl

relabel index l as i,

ωexti =
∑
k

4π kρnuci

λi
. (3.63)

The spectral form of the nuclear charge density now needs to be determined,

kρnuc(r) = kNδ(r)δ(z − kznuc)δ(θ) =
∑
i

kρnuci fi(r).

Multiplying the equation by 1
V

, fj(r) and integrating with respect to r,

1

V

∫
dr kNδ(r)δ(z − kznuc)δ(θ)fj(r) =

∑
i

kρnuci

1

V

∫
drfi(r)fj(r)

kN

V
fj(0,

kznuc) = kρnucj .

Relabel index j as i

kρnuci =
kN

V
fi(0,

kznuc). (3.64)
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The external potential is

ωexti =
∑
k

4π kN

V

fi(0,
kznuc)

λi
. (3.65)

Expanding the basis functions and eigenvalues in explicit form,

ωext0j = −
∑
k

4π kN

V

√
2

J1 (γ0,j)

(
1√
2
· 1(γ0,j

R

)2

)
(3.66)

ωext(2i)j = −
∑
k

4π kN

V

√
2

J1 (γ0,j)

cos

(
2π(2i) kznuc

Z

)
· 1(γ0,j

R

)2
+
(

2π(2i)
Z

)2

 (3.67)

ωext(2i−1)j = −
∑
k

4π kN

V

√
2

J1 (γ0,j)

sin

(
2π(2i− 1) kznuc

Z

)
· 1(γ0,j

R

)2
+
(

2π(2i−1)
Z

)2

 .

(3.68)

3.4.2 Electron-Electron Potential

There is another Coulomb interaction, the electron-electron potential, U ee[n],

U ee[n] =
1

2

∫ ∫
drdr′n(r, β)V(|r− r′|)n(r′, β). (3.69)

The factor of 1
2

is for double counting of the electrons in the electron densities. The
spectrally expanded form of the electron-electron field follows a similar derivation as the
external field. Using 3.21 the electron-electron mean-field is

ωee(r′′, β) =
δU ee[n]

δn(r′′)
=

1

2

∫ ∫
drdr′δ(r− r′′)V(|r− r′|)n(r, β′)

+
1

2

∫ ∫
drdr′n(r, β)V(|r− r′|)δ(r′ − r′′)

=
1

2

∫
dr′V(|r′′ − r′|)n(r′, β)

+
1

2

∫
drn(r, β)V(|r− r′′|).
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Since the Coulomb potential only depends on the absolute value of the distance between
particles, the order of the position vectors can be swapped without changing the potential.
In the second term, r can be relabelled as r′ and after that for the entire expression r′′ can
be relabelled as r. The electron-electron field is

ωee(r, β) =

∫
dr′V(|r− r′|)n(r′, β). (3.70)

Substituting the electron-electron field into the electron-electron potential,

U ee[n] =
1

2

∫
drn(r, β)ωee(r, β). (3.71)

Spectrally expanding,

U ee[n] =
1

2

∑
ij

∫
drni(β)ωeej (β)fi(r)fj(r)

multiplying the numerator and denominator by V , and using the orthogonality condition,
the electron-electron potential is

U ee[n] =
V

2

∑
i

ni(β)ωeei (β). (3.72)

To determine the explicit form of ωeei the integral expression of ωee(r) is written as a Poisson
equation. As before, the surface terms in the Poisson equation will be ignored.

∇2ωee(r, β) = −4πn(r, β) (3.73)

Spectrally expanding,

∑
i

ωeei (β)∇2fi(r) = −4π
∑
j

nj(β)fj(r)∑
i

ωeei (β)λifi(r) = −4π
∑
j

nj(β)fj(r).
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Multiplying both sides of the equation by 1
V

, fk(r) and integrating with respect to r,

∑
i

ωeei (β)λi
1

V

∫
drfi(r)fk(r) = −4π

∑
j

nj(β)
1

V

∫
drfj(r)fk(r)

ωeek (β)λk = −4πnk(β).

Relabel index k as i,

ωeei (β) =
−4πni(β)

λi
. (3.74)

To correct for self-interactions in the electron-electron potential, a Fermi-Amaldi factor of
(N − 1)/N is included in the field and potential. The Fermi-Amaldi factor is the only
exchange-correlation effect considered, it will correct for electron self-interactions exactly
for N = 1 and asymptotically large N . Although, the Fermi-Amaldi factor is often con-
sidered crude for most values of N , it is simple to implement and the calculated diatomic
molecule properties can be compared to well-known sources to determine the effect of the
correction. The complete two index form of the electron-electron field is

ωee0j(β) =

(
N − 1

N

)
4πnij(β)(γ0,j

R

)2 (3.75)

ωeeij (β) =

(
N − 1

N

)
4πnij(β)(γ0,j

R

)2
+
(

2πi
Z

)2 . (3.76)

3.4.3 Pauli Potential

The last field that needs to be determined is the mean-field of the Pauli potential and will
incorporate the quantum Pauli exclusion principle. Considering quantum particles in the
present theory are equivalently described as ring polymers, the current implementation
of the Pauli potential will be based on the classical analog of the exclusion principle, the
excluded volume. Ring polymers are paired to account for the spin of the electron, each
pair is considered a distinct chemical species and a Dirac delta function energy penalty
is applied to different chemical species of ring polymers attempting to occupy the same
space. The Pauli potential will then depend on the electron densities of the electron pairs,
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and the sum of all the pair electron densities will be the total electron density. Using these
ideas, the Pauli potential is,

UP [{n}] =
1

2

∑
ij
i 6=j

∫ ∫
drdr′ in(r, β)Vxv(r− r′) jn(r′, β) (3.77)

where {n} is the set of all electron pair densities, the summations are over the electron
pairs, in(r, β) indicates the ith pair electron density and Vxv(r− r′) is the excluded volume
interaction energy,

Vxv(r− r′) = g−1
0 δ(r− r′). (3.78)

g−1
0 is a constant that needs to be determined and gives the strength of the interaction

with units inverse density of states. The form of the Pauli potential in equation 3.78 is an
approximation, as the exact form is

Vxv(r(s)− r′(s)) = g−1
0 δ(r(s)− r′(s)) (3.79)

where r(s) is a parameterized curve describing the path of the polymer-like quantum par-
ticle through 4-D thermal space. Specifically, s is the imaginary time parameter that
describes the thermal trajectory of the particle from 0 to β. The potential in equation 3.79
only acts on pairs of particles in the same place and at the same imaginary time. This is
in comparison to equation 3.78 that is a mean-field approximation and only acts on pairs
of particles when they are in the same place regardless of their imaginary time thermal
trajectory and so overestimates the strength of the Pauli potential. The approximated
Pauli potential is used instead, as implementing the exact Pauli potential is difficult. The
expanded Pauli potential is,

UP [{n}] =
1

2

∑
ij
i 6=j

∫ ∫
drdr′ in(r, β)g−1

0 δ(r− r′) jn(r′, β)

=
1

2

∑
ij
i 6=j

g−1
0

∫
dr′ in(r′, β) jn(r′, β)

=
1

2

∑
ij

g−1
ij

∫
dr′ in(r′, β) jn(r′, β)
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where g−1
ij = (1− δij)g−1

0 . Relabelling r′ as r, the Pauli potential is,

UP [{n}] =
1

2

∑
ij

g−1
ij

∫
dr in(r, β) jn(r, β). (3.80)

The Pauli potential interaction between quantum particles should be universal, and so the
constant g−1

0 should not be free. The value for g−1
0 can be found by comparing predictions

to experimental results, and in doing so, no assumptions about the internal structure of the
polymer-like quantum particles need to be made as the internal structure is not known.
Another, more straightforward approach is to use theoretical results from well-accepted
exact models. Specifically, comparing the present theories’ Pauli potential to a uniform
gas of quantum particles that only interact through the exclusion principle [17]. The energy
density of this system of electrons is the Thomas-Fermi energy density,

UP

V
= c0n

5/3
0 (3.81)

where c0 is a constant with value,

c0 =
3

10
(3π2)2/3. (3.82)

Using these same assumptions for the Pauli potential, and rephrasing it as an energy
density, c0 can be used to determine the value of g−1

0 . Taking the uniform density limit of
3.80,

UP [{n}] =
1

2

∑
ij

g−1
ij

∫
dr in0 jn0

UP [{n}] =
V

2

∑
ij

g−1
ij in0 jn0 (3.83)

where in0 is the uniform electron density for the pair of electrons with density in(r, β).
Multiplying both sides by 1

V
and explicitly writing the uniform densities as in0 = iN

V
, where

iN is the number of particles in the pair, either 0, 1 or 2, gives

UP [{n}]
V

=
1

2V 2

∑
ij

g−1
ij iN jN. (3.84)
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Using the same assumption as in the Thomas-Fermi energy density, assume a large number
of electrons and so all pairs can be approximated to have Ni = 2 without loss of generality,

UP [{n}]
V

=
4

2V 2

∑
ij

g−1
ij

UP [{n}]
V

=
2g−1

0

V 2

(
N2

4
− N

2

)
(3.85)

where N is the total number of electrons and each sum is over pairs containing two electrons
and the number of terms in each sum is N

2
terms. For a large number of electrons, the N

2

term can be ignored as N2 >> N . The uniform Pauli potential energy density is,

UP [{n}]
V

=
g−1

0

2
n2

0. (3.86)

Comparing the Pauli potential energy density to the Thomas-Fermi energy density, they
differ by a factor of n

1/3
0 and it may appear that the excluded volume type Pauli potential

is inconsistent with the Pauli exclusion principle. Another approach that avoids the mean-
filed approximation uses polymer scaling theory to show that the excluded volume Pauli
potential correctly scales with the density [22]. The n

1/3
0 discrepancy could be accounted

for by correlation corrections to the Pauli potential, but diatomic molecular systems do not
necessarily have a large number of electrons and are not uniform in their electron density.
As such, correlation corrections to the Pauli potential will not be explored.

Keeping with the uniform limit mean field approach of the Pauli potential, c0 can be used
to determine the value of g−1

0 , assuming both the Thomas-Fermi energy density and Pauli
potential energy density have the same factor. Equating factors,

g−1
0 = 2c0 =

3

5
(3π2)2/3 ≈ 5.742468. (3.87)

With the value of the constant g−1
0 determined, the heterogeneous Pauli potential in 3.80

can be revisited to determine its mean field description. Using 3.21, the Pauli mean field
is
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kω
P (r′, β) =

δUP [{n}]
δ kn(r′, β)

=
1

2

∑
ij
i 6=j

g−1
0

∫
drδikδ(r− r′) jn(r, β)

+
1

2

∑
ij
i 6=j

g−1
0

∫
dr in(r, β)δjkδ(r− r′)

kω
P (r′, β) =

1

2
g−1

0

∑
j 6=k

jn(r′, β) +
1

2
g−1

0

∑
i 6=k

in(r′, β).

Since both sums are separate, the sum indices can be relabelled to an identical index, j
without changing the result, relabel the k index as i and relabel r′ to r. The Pauli field is

iω
P (r, β) = g−1

0

∑
j 6=i

jn(r, β). (3.88)

The Pauli field can be used to write the Pauli potential as,

UP [{n}] =
1

2

∑
i

∫
dr in(r, β) iω

P (r, β). (3.89)

Multiplying the numerator and denominator by V and spectrally expanding, the Pauli
potential is

UP [{n}] =
V

2

∑
i

∑
jk

inj(β) iω
P
k (β)

1

V

∫
drfj(r)fk(r).

Using the orthonormality condition,

UP [{n}] =
V

2

∑
i

∑
j

inj(β) iω
P
j (β). (3.90)

To determine iω
P
j , the expression for iω

P (r) can be spectrally expanded,

∑
k

iω
P
k (β)fk(r) = g−1

0

∑
j 6=i

∑
l

jnl(β)fl(r).
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Multiplying both sides by 1
V

, fm(r) and integrating with respect to r,

∑
k

iω
P
k (β)

1

V

∫
drfk(r)fm(r) = g−1

0

∑
j 6=i

∑
l

jnl(β)
1

V

∫
drfl(r)fm(r)

iω
P
m(β) = g−1

0

∑
j 6=i

jnm(β).

Relabel index m as k, the Pauli field spectral form is

iω
P
k (β) = g−1

0

∑
j 6=i

jnk(β). (3.91)

3.4.4 Nuclei Potential

All the fields under consideration have been fully specified. However, there is one last
potential that does not have a corresponding field but needs to be determined for a diatomic
molecular system, the Coulomb potential between the nuclei of the atoms, Unuc. There
is no corresponding field for the nuclei potential, as it does not depend on the electron
density. Unuc is given by,

Unuc =

∫
drdr′ 1ρnuc(r)V(|r− r′|) 2ρnuc(r′). (3.92)

Expanding the nuclear charge densities,

Unuc =

∫ ∫
drdr′ 1Nδ(r)δ(z − 1znuc)δ(θ)V(|r− r′|) 2Nδ(r′)δ(z′ − 2znuc)δ(θ′)

Unuc = 1NV(|1znuc − 2znuc|) 2N.

The nuclei potential is

Unuc =
1N 2N

|1znuc − 2znuc|
. (3.93)

It is not necessary to spectrally expand Unuc as all the real space quantities in equation
3.93 are already known and can be easily computed.
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It can be easily shown that the nuclei field is zero,

ωnuc(r, β) =
δUnuc

δn(r, β)
= 0. (3.94)

3.5 Helmholtz Free Energy

All the potentials and fields have been fully specified and the expanded form of the
Helmholtz free energy can be established. To incorporate ideas of electron pairs into the
free energy, the first term can be equivalently written, (N/β) lnQ(β) =

∑
i (iN/β) ln iQ(β).

The Helmholtz free energy is,

F [n,w] = −
∑
i

iN

β
ln iQ(β) + U ext[n] + U ee[n] + UP [{n}] + Unuc

−
∫
drωext(r)n(r, β)−

∫
drωee(r, β)n(r, β)−

∑
i

∫
dr iω

P (r, β) in(r, β)

= −
∑
i

iN

β
ln iQ(β) +

1N 2N

|1znuc − 2znuc|

+

∫
drωext(r)n(r, β) +

1

2

∫
drωee(r, β)n(r, β) +

1

2

∑
i

∫
dr iω

P (r, β) in(r, β)

−
∫
drωext(r)n(r, β)−

∫
drωee(r, β)n(r, β)−

∑
i

∫
dr iω

P (r, β) in(r, β).

Simplifying, the free energy is

F [n,w] = −
∑
i

iN

β
ln iQ(β) +

1N 2N

|1znuc − 2znuc|

− 1

2

∫
drωee(r, β)n(r, β)− 1

2

∑
i

∫
dr iω

P (r, β) in(r, β). (3.95)

Spectrally expanding the fields,
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F [n,w] = −
∑
i

iN

β
ln iQ(β) +

1N 2N

|1znuc − 2znuc|

− 1

2

∑
jk

∫
drωeej (β)nk(β)fj(r)fk(r)− 1

2

∑
i

∑
jk

∫
dr iω

P
j (β) ink(β) ifj(r) ifk(r).

Multiplying the numerator and denominator of both field terms by V and integrating, the
spectral field expansion of the free energy is

F [n,w] = −
∑
i

iN

β
ln iQ(β)+

1N 2N

|1znuc − 2znuc|
−V

2

∑
j

(
ωeej (β)nj(β) +

∑
i

iω
P
j (β) inj(β)

)
.

(3.96)

The external field, wext, does not appear in the free energy expression as it does not
explicitly depend on the electron density and so is cancelled out by the external potential.
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Chapter 4

Diatomic Molecules

4.1 Introduction

The characteristics of diatomic molecules are calculated using the present theory, an al-
ternative approach to OF-DFT based on ideas from SCFT. All homonuclear diatomic
molecules composed of atomic pairs in the first two rows of the periodic table were investi-
gated. Two heteronuclear diatomic molecules that are known to be stable under common
conditions were also investigated. The electron density contours and bond lengths for
all the diatomic molecules that exhibited bonding are presented and compared to known
results. The bond dissociation energy and fundamental vibrational frequency for the hy-
drogen molecule are also compared. The free energy at different atomic separations for the
hydrogen molecule is shown. The computational methods used to calculate the physical
properties of the diatomic molecules are described.

Demonstrating the ability of the present theory to predict molecular bonding and calcu-
late the physical properties of diatomic molecules is a fundamental step in validating the
usefulness of the theory. It proves that the electron density structure emulates the physical
system more closely than other OF-DFT theories that implement the Thomas-Fermi func-
tional or Von Weizsäcker functional as their non-interacting kinetic energy functional since
both functionals are inaccurate for multi-orbital systems, such as most diatomic molecules
[8]. It will also demonstrate that a wider variety of quantum systems can be investigated
in the future with the expectation that the theory will give reasonable results. Some of
these systems may be larger molecules or solid-state lattices, where OF-DFT is commonly
implemented [29, 30, 31].

The calculation results for diatomic molecules presented in this chapter using the present
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theory with a cylindrically symmetric basis set were performed independently.

4.2 Computational Methods

The method for determining the electron density that gives the ground-state free energy
of the system was performed computationally in Python.

Initial electron density

Spectrally decompose govern-
ing quantities to function space

Solve the modified diffusion equation

Calculate governing quantities

Check if the square of the L2-norm of
the fields between iterations is ≤ 10−9

Convert governing quan-
tities back to real space

Yes

No

Figure 4.1: Flowchart of the computational algorithm used to determine the electron den-
sity of diatomic molecules.

The self-consistent calculation process obeys the flowchart in figure 4.1. Start with a
guess for the initial electron density, in the case of diatomic molecules, the individual
atoms were calculated separately, and then the results combined as an initial guess for the
molecule composed of those two atoms. To calculate the ground-state electron density of
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the individual atoms, the analytical hydrogen atom solution is used as an initial guess and
the ground-state electron density of the hydrogen atom is found. The atom the next atomic
number up is then calculated using the previous atom’s ground-state electron density as
the initial guess. This process of building up the atom is done until the desired atomic
element has been reached. After the initial guess, the governing quantities, the electron
density, quantum propagator and fields are spectrally decomposed to the function space
of the basis set. The modified diffusion equation is then solved, and the new governing
quantities are calculated. The square of the L2-norm for the total field values between
the current iteration and previous iteration is then calculated. If the square of the L2-
norm is less than 10−9 the convergence criterion has been met and the electron density,
quantum propagator and fields are converted back to real space. The ground-state free
energy is then calculated. If the square of the L2-norm is greater than 10−9, the governing
quantities are plugged back into the modified diffusion equation and the cycle repeats until
the convergence criterion has been met. To improve the computational efficiency, Picard
and Anderson mixing algorithms were implemented so that the convergence criterion is met
more quickly. During the computational procedure, the value for the thermal parameter,
β, was chosen to be large enough such that the system had reached the ground-state
temperature. Note that a large β value corresponds to a low temperature.

4.3 Electron Density

Using the alternative approach to OF-DFT with cylindrically symmetric basis functions,
the total electron density contours for common stable diatomic molecules in the first two
rows of the periodic table are presented. The total electron density contour plots provide a
fundamental test of the theory, as the electron density is used to determine the ground-state
free energy as well as any of the other physical properties relevant to the molecules.
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(a) (b)

(c) (d)

Figure 4.2: Total electron density contour plot of homonuclear diatomic molecules, (a) H2,
(b) N2, (c) O2, (d) F2. For (a), both axes are identically spaced from −4 to 4 Bohr radii,
a0. The outermost contour is 0.001 e/a3

0 and the innermost contour is 0.2 e/a3
0. For the

remaining contour plots (b), (c), and (d) both axes are identically spaced from −3 to 3 a0.
The outermost contour is 0.04 e/a3

0 and the innermost contour is 8 e/a3
0.
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All the contour plots have been post-processed to eliminate high-frequency noise and to
increase the readability of the plots. The post-processing was done by averaging each data
point with a small number of other data points in its vicinity. The source of the noise
is the oscillatory nature of the Bessel functions, sines and cosines in the basis set. This
leads to high-frequency oscillations near the edge of the box where a larger number of basis
functions are required to capture the comparatively small electron density in that region.
Averaging each data point with nearby points within a single period of the oscillations
allows for the underlying structure of the electron density to be captured. This averaging
process allows for the true predictions of the electron density structure from the theory to
be viewed without the basis set choice obscuring the results.

The separation distance of atomic centers is such that the total free energy of the molecule
is minimized. The location of the atomic centers are artificially marked with a cross. The
contour plots of the diatomic molecules are cross-sections of the r-z plane in cylindrical
coordinates, with the z-axis along the vertical and r-axis along the horizontal. The negative
r-axis contour values are the positive r-axis values reflected along the z-axis mirror plane
so that complete contours are formed. The contour plots for each molecule share a similar
contour distribution scheme that follows the format of Matta and Gillespie [32], starting
at the outermost contour with 0.001 e/a3

0 then 2 × 10n e/a3
0, 4 × 10n e/a3

0, 8 × 10n e/a3
0

where n starts at −3 and increases in steps of unity. Depending on the molecule, the
outermost contour is the minimum electron density that still makes up a relevant portion
of the total electron density and is not dominated by noise, and the innermost contour is
the maximum electron density value rounded down to meet the nearest electron density
value in the contour distribution scheme.
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(a) (b)

Figure 4.3: Total electron density contour plot of heteronuclear diatomic molecules, (a)
CO, (b) HF. For (a) and (b), both axes are identically spaced from −3 to 3 a0. The
outermost contour is 0.04 e/a3

0 and the innermost contour is 8 e/a3
0. In (a), the carbon

nucleus is on the bottom and the oxygen nucleus is on the top. In (b), the hydrogen nucleus
is on the bottom and the fluorine nucleus is on the top.

The electron density of the hydrogen molecule is the simplest case and represents a first
test of the theory, demonstrating that molecular bonding occurs and that the electron
densities are shared between the individual atoms. The electron density contour plot can
be found in figure 4.2 (a). The hydrogen molecule only hosts two electrons in total and
so, there is no Pauli exclusion principle and the excluded volume description of the Pauli
potential will not impact the electron density distribution. However, the Fermi-Amaldi
self-interaction correction factor will be at its least accurate value.

The remaining stable homonuclear diatomic molecules are N2, O2 and F2, their more
complex electron density structure provides the ability to examine the effects of the ap-
proximations in the theory due to the increased number of electrons and the presence of
the Pauli potential. It can be seen in figure 4.2 (b), (c) and (d), that the contours for
these three molecules obey the correct trend with the innermost contour at 8 e/a3

0 moving
outward as the number of electrons increase, indicating that the peak electron density
is larger, and the density gradient is steeper near the nucleus. For all the homonuclear
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diatomic molecules, the contours are symmetric about the r axis mirror plane, indicating
that the electron densities around each atomic center are symmetric.

The electron density contours for HF and CO in figure 4.3, both have asymmetric electron
density distributions about the r axis mirror plane, as would be expected since the indi-
vidual atoms are different. Interestingly, for HF, the external potential from the hydrogen
nucleus is so small that there are no contours centered around its nucleus, this does not
occur in any other contour plot. However, the influence of the potential from the hydrogen
nucleus is still clearly visible in the total electron density distribution. For the contour plot
of CO, it can be directly compared to a similar contour plot of the same molecule from
Matta and Gillespie. In agreement with Matta and Gillespie, the electron density gradient
is steeper near the oxygen nucleus than it is near the carbon nucleus. However, the elec-
tron densities from Matta and Gillespie reach a higher peak near the nuclei compared to
the present theory. This is not unexpected, as the limited basis set size prevents regions
of highly varying electron densities from being captured, and the electron density varies
significantly in these peak regions. Overall, the peak electron densities are not expected to
affect physical predictions and are not of great concern. The electron density contours for
all the diatomic molecules studied are qualitatively accurate compared to known results
from other DFT methods.

4.4 Bond Lengths

The bonding characteristics were studied for homonuclear pairs of atoms in the first two
rows of the periodic table. The only homonuclear pairs of atoms that displayed a clear
free energy minimum when observing different atomic separations and therefore exhibited
molecular boding, were H2, N2, O2, and F2. There was an exception where C2 displayed
a very shallow minimum, much lower than the other diatomic molecules and with a bond
dissociation energy significantly lower than the bond dissociation energy of single carbon
bonds in alkanes [33]. On the other hand, it is known that diatomic carbon can exist as
vapour under exotic conditions [34], and the predicted bond length for C2 of 2.2 Bohr radii is
only 6.4 % of the experimental value of 2.35 [34, 35]. Considering the approximations made
within the model and the shallowness of the minimum, it was judged that the minimum
should not be considered as molecular bonding. All other homonuclear atomic pairs in the
first two rows of the periodic table that were not mentioned above did not display free
energy minimums.

Two heteronuclear diatomic molecules, CO and HF, bonding characteristics were also
investigated. Both molecules had clear free energy minimums, and therefore molecular
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bonding occurred.

Molecule
SCFT
Bond Length

KS-DFT
Bond Length
[36, 37]

NIST
Bond Length
[38, 39]

SCFT
KS-DFT
% Difference

SCFT
NIST
% Difference

H2 1.42 ± 0.01 1.404a 1.401 1.14 1.35
N2 2.0 ± 0.1 2.088a 2.074 4.21 3.57
O2 1.8 ± 0.1 2.285b 2.282 21.23 21.12
F2 1.6 ± 0.1 2.651a 2.668 39.65 40.03
CO 2.0 ± 0.1 2.151a 2.132 7.02 6.19
HF 1.6 ± 0.1 1.748a 1.733 8.47 7.67

Table 4.1: Differences in OF-DFT based on SCFT, KS-DFT and experimental bond lengths
for diatomic molecules. aUsing B3LYP exchange-correlation functional and the 6-31G(d,p)
basis set. bUsing B3LYP exchange-correlation functional and the aug-CC-PVDZ basis set.

Using the location of the free energy minimums, the bond lengths were determined for all
six diatomic molecules studied. The results are summarized in Table 4.1. The SCFT bond
length results were fairly accurate when compared with NIST experimental values. The
majority of molecules had under an 8% difference, the exceptions being O2 and F2. The
large deviation of these molecules’ bond lengths from the experimental values could be
attributed to the high electronegativity of the O and F atoms [40]. The Fermi-Amaldi and
Pauli potential approximations present in the theory may not model the electronegative
character of atoms properly, leading to inaccurate physical properties. For all diatomic
molecules, except for H2, the calculated bond length underestimates the experimental
bond length. Observing trends in the bond lengths, calculated from the present theory, the
homonuclear diatomic molecule bond length decreases as the number of electrons increases,
whereas the bond length increases as the number of electrons increases for the experimental
bond length values. There are too few results to indicate that this trend is significant, and
the two heteronuclear molecules do not follow this incorrect bond length trend, as HF has a
shorter bond length and fewer electrons than CO. However, a possible explanation for this
trend behaviour could be attributed to the lower-than-expected electron density near the
core, as mentioned in the comparison of the CO contour plot with the same plot from Matta
and Gillespie. The lower electron density near the core could be improperly shielding the
valence electron densities and so the external potential from the nucleus will be stronger
than expected in the valence region, resulting in an over-binding of the valence electron
densities and a decreased bond length. Comparing the SCFT bond lengths with the KS-
DFT calculated bond lengths, a similar discrepancy is observed as in the comparison with
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NIST bond length values. The KS-DFT and NIST bond lengths both have similar values,
and so this is expected. Interestingly, for the majority of diatomic molecules, the KS-DFT
method overestimates bond lengths except for F2, whereas the SCFT method generally
underestimates the bond lengths except for H2. This leads to the discrepancy in bond
length values between SCFT and KS-DFT being generally greater than the discrepancy
between SCFT and NIST bond length values.

The SCFT bond lengths can also be compared with the results of Finzel [35, 41] which
uses a first-order atomic fragment OF-DFT method for several dimers, both exotic and
common. Due to the approximations in the present theory, only the common diatomic
molecules with robust bonding were investigated. Comparing the results for N2, O2, and
CO with those of Finzel, they find percentage differences from experimental results as 10.9,
18.9, and 3.2, respectively. So, the estimate for N2 in the present theory is significantly
better, but the estimates for O2 and CO are somewhat worse. Finzel reports mean absolute
percentage errors (MAPE) which is the average of the percentage differences. For these
three molecules, their results give a MAPE of 11 % compared to 10.3 % in this work. In
other words, the two methods for these three molecules are comparable. For more exotic
molecules, Finzel predicts bonding for Be2 but not C2 whereas the reverse is found for the
results presented here. As mentioned, the minimum energy found for C2 is not considered
to be bonding, despite a respectable prediction of the bond length.
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Figure 4.4: Free energy for two hydrogen atoms at different atomic separations. The
position coordinate is in reference to the origin, the actual distance between the two atoms
will be twice the position value. The dot marks the free energy minimum.

The plot of the free energy at different atomic separations for a pair of hydrogen atoms
can be found in figure 4.4. Similar plots were constructed for all homonuclear atomic pairs
from hydrogen to neon, as well as the two heteronuclear pairs, HF and CO. The presence
of a minimum free energy value in these plots was used to determine if bonding occurred,
and the position of the free energy minimum was used to calculate bond length.

4.5 Bond Dissociation Energy and Fundamental Vi-

brational Frequency for Hydrogen

For all the diatomic molecules, excluding hydrogen, the bond dissociation energies could
not be accurately determined. To calculate the bond dissociation energies of the diatomic
molecules, the difference must be taken between the free energy values at different atomic
separations, specifically, the difference between the free energy minimum and the asymp-
totic free energy. Although these molecules exhibited a clear free energy minimum, at
large separations, the size of the box was too small, and the free energy did not asymptote.
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As well, at these large separations where the individual atoms should not be interacting
with one another, the Fermi-Amaldi correction does not completely cancel the Coulomb
electron-electron interaction. This issue could be remedied by increasing the size of the
box, but this would require an even larger basis set, and the basis set size is one of the
primary limitations of the current construction of the theory. It was possible to make the
box size sufficiently large for hydrogen and so its bond dissociation energy was calculated
as 0.14 Hartrees compared to the experimental value [33] of 0.1661 Hartrees, a 15.71%
discrepancy between results. As mentioned earlier, the Fermi-Amaldi factor would be at
its least accurate value for hydrogen, and so it is surprising how closely the calculated bond
dissociation energy resembles the experimental value. This is a good indication that given
an improved basis set with a larger box size, reasonable bond dissociation energies could be
found for the other diatomic molecules. Alternatively, the bond dissociation energy could
be calculated by taking the difference of the molecular free energy minimum and twice the
free energy from the independent atom calculation. However, the Poisson surface term
arising from the finite box size would not cancel correctly, and so this method was not
explored.

The fundamental vibrational frequencies of the diatomic molecules could be calculated as
well. This is performed by examining the free energy at different atomic separations and
mapping the curvature of the region around the minimum free energy to a spring constant
for the simple harmonic oscillator. This was only done for hydrogen, as a preliminary
test, and the agreement with NIST experimental results was poor. The calculated value
from the present theory, 8367 cm−1, is nearly double the NIST value [38], 4161 cm−1, a
difference of 101%. There is no reason to expect the results would improve for the other
diatomic molecules, and so they were not calculated.

4.6 Limitations

The basis functions used to calculate the properties of the diatomic molecules are conve-
nient as they are a complete orthonormal set, so building up the basis set is trivial. They
are also eigenfunctions of the Laplacian, and so the governing modified diffusion equation is
easily spectrally decomposed. However, due to the oscillator nature of the basis functions,
they are not computationally efficient, and a large number of basis sets are required to
achieve results with negligible noise. The need for a large basis set size is due to the fact
that for each additional coordinate being modelled, the actual number of basis functions
representing each coordinate is the total number of coordinates root the total number of
basis functions. For example, in a system of 3 coordinates and modelled by 1000 basis
functions, the number of basis functions per coordinate is 3

√
1000 = 10. As mentioned in
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the theory chapter, this is why a cylindrical averaging approximation was implemented in
the calculation process. It captures the general electron density structure of the diatomic
molecule without the need to model the angular coordinate. This approximation is phys-
ically reasonable as the present theory is an ensemble interpretation, and it significantly
improves the computational efficiency of the calculation. The computational efficiency is
further improved by grouping all angular-dependent physical orbitals with the same radial
and axial dependence into the same artificial shell in the theory. This orbital grouping
approximation is motivated by the energy difference between angular dependent orbitals
being significantly smaller than the energy difference between radially and axially depen-
dent orbitals. The culmination of these orbital approximations is that the core electrons
of each atom are represented in their own shells, whereas the valence electrons in each
atom are grouped into a single shell. Unfortunately, in doing this, the angular dependence
of the molecular orbitals is not captured. Another drawback of this approach is that all
the valence electrons in the single-shell do not feel a Pauli exclusion principle from other
electrons in the same shell, which should occur in a full, physically equivalent theory.

The current results for diatomic molecules are fine for the proof-of-concept nature of this
work where qualitative and semi-quantitative results are of interest, but in the future,
to obtain increased quantitative accuracy Gaussian basis sets can be used. The use of
Gaussians is more computationally efficient and would remove the need to use cylindrical
averaging on the orbitals and the grouping of multiple electron pairs into a single shell
[42]. They have not been implemented, as Gaussian basis sets are a large field of research
and the proof that this alternative approach to OF-DFT demonstrates molecular bonding
is the primary concern. Other improvements to the theory would include the use of pseu-
dopotentials, where the effect of the core electrons on the valence electrons are described as
a potential instead of fully modelling the core electron densities, improving computational
efficiency [14]. As well, using more advanced exchange-correlation functionals beyond the
current implementation of the Pauli potential and Fermi-Amaldi correction would improve
the overall accuracy of the theory [43, 44].
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Chapter 5

Conclusions

In this work, the alternative approach to OF-DFT based on ideas from SCFT has been
successfully applied to systems of diatomic molecules. In doing so, the validity of this
theory in predicting correct electron density structure and molecular bonding has been
achieved. Demonstrating that the theory provides a more accurate picture of the prop-
erties of diatomic molecules compared to other basic OF-DFT methods that implement
the Thomas-Fermi or von Weizsäcker functional as their non-interacting kinetic energy
functional.

The necessary physics and mathematics for understanding the present OF-DFT theory and
the motivation behind the theory was reviewed in chapter 2. The foundational Hohenberg-
Kohn theorems of DFT were proven and applied to the construction of KS-DFT and
OF-DFT. The different approximation schemes between these two approaches were out-
lined, and common approximation methods for each theory were presented. The SCFT of
Gaussian distributed polymers in an external field was reviewed.

The complete OF-DFT theory based on ideas from SCFT was fully constructed in chap-
ter 3. The governing quantities of the theory, the electron density, fields and quantum
propagator as well as the governing modified diffusion equation were derived from a “first
principles” approach. The theory demonstrates a useful comparison that 4-D thermal
space Gaussian ring polymers and 3-D quantum particles are isomorphic. This provides
an alternative ensemble interpretation viewpoint of constructing DFT from SCFT. Special
consideration is given to the cylindrical basis set that is necessary to determine the electron
density and ground-state free energy of diatomic molecules. This demonstrates that in the
present theory, it is possible to model any system with cylindrical symmetry and extends
the applicability of the theory beyond just atoms [20].
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The physical properties of a variety of homonuclear and heteronuclear diatomic molecules
were calculated using the present theory and the results presented in chapter 4. Six di-
atomic molecules were investigated in total, H2, N2, O2, F2, CO and HF. For the electron
density contour plots of diatomic molecules, they were shown to be in qualitative agreement
with known DFT results. Specifically, when comparing the electron density of CO with a
similar plot from Matta and Gillespie [32], it was found that the structure of the contours
were very similar, with a slight deviation in peak electron density that should not affect
the physical properties that are calculated using the electron density. The bond lengths
for all the diatomic molecules were compared with known experimental values from NIST
[38, 39] and KS-DFT calculations [36, 37], with the majority being in agreement to within
less than 8% and 9% respectively, with notable deviations being O2 and F2. The bond
dissociation energy and fundamental vibrational frequency for hydrogen was calculated,
with the bond dissociation energy deviating 16% from the experimental value and the vi-
brational frequency varying significantly from the experimental value. Limitations to the
theory were discussed, providing reasoning for the discrepancy in some of the calculated
physical properties, as well as, why only the bond dissociation energy and fundamental
vibrational frequency for hydrogen was calculated.

Overall, the present theory was successfully applied to modelling homonuclear and het-
eronuclear diatomic molecules. Molecular bonding was demonstrated between pairs of
atoms, producing semi-quantitative and qualitative results for the diatomic molecules’
physical properties. The electron density contours were found to be in qualitative agree-
ment with known DFT results. Bond lengths were quantitatively accurate for the majority
of diatomic molecules studied, with notable exceptions O2 and F2. For H2, the bond disso-
ciation energy was semi-quantitatively accurate and the fundamental vibrational frequency
varied significantly from the experimental value. The results could potentially be improved
if a Gaussian basis set centered around the atomic centers was implemented.

The current OF-DFT approach has its advantages in that the symmetry of the system can
be encoded in the basis set and that the exact form of the non-interacting kinetic energy
functional is only limited by the exchange-correlation functional. In contrast, to other OF-
DFT theories where the non-interacting kinetic energy functional and exchange-correlation
functional are both approximated. The disadvantage being the large number of basis sets
required to model the system and the use of the crude Fermi-Amaldi factor to correct for
electron-electron interactions. The present work provides a steppingstone for the model to
continue to be applied to more complex quantum systems.
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Appendix A

Derivation of Cylindrically
Symmetric Basis Set

To determine the basis set with the desired cylindrical symmetry, the orthonormal eigen-
functions of the Laplacian need to be determined. This is done by solving the Helmholtz
equation in cylindrical coordinates. The solution is [45],

fnm(r, z) = J0(mr) (A0 + An cos(nz) +Bn sin(nz)) (A.1)

where J0 is the zeroth order cylindrical Bessel function, n,m are constants and A0, An, Bn

are the normalization constants, all of which need to be determined. The simplest method
for determining the constants n,m is to perform the calculations for each coordinate sep-
arately. Starting with the radial coordinate, the orthogonality condition requires

∫ R

0

rdrJ0(mr)J0(m′r) = R
mJ0(m′R)J1(mR)−m′J0(mR)J1(m′R)

m2 −m′2
= 0 (A.2)

where J1 is the first order cylindrical Bessel function and m 6= m′. The most obvious
choice is to let J0(mR) = 0 and J0(m′R) = 0. So, m =

γ0,j

R
and m′ =

γ0,j′

R
where γ0,j is

the jth zero of the zeroth-order cylindrical Bessel function. To determine the constant of
the axial coordinate, different combinations of orthogonality conditions for each term will
be investigated. The orthogonality condition involving two constant terms does not need
to be calculated as it does not explicitly depend on the n constant and only one constant
term exists in the basis set. Starting with the constant and cosine term, the orthogonality
condition requires
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∫ Z/2

−Z/2
dz cos(nz) =

2

n
sin

(
n
Z

2

)
= 0. (A.3)

Requiring sin
(
nZ

2

)
= 0. So, n = i2π

Z
where i is an integer. The solution to the constant,

n, can be used to determine if the solution is valid for all other orthogonality condition
combinations. The next combination is the constant and sine term,

∫ Z/2

−Z/2
dz sin

(
i
2πz

Z

)
= 0. (A.4)

So, the orthogonality condition holds. The next combination is a sine and sine term,

∫ Z/2

−Z/2
dz sin

(
i
2πz

Z

)
sin

(
i′

2πz

Z

)
= Z

i cos(iπ)

0︷ ︸︸ ︷
sin(i′π)−i′ cos(i′π)

0︷ ︸︸ ︷
sin(iπ)

i′2π − i2π
= 0. (A.5)

Again, the orthogonality condition holds. The cosine and cosine term combination is next,

∫ Z/2

−Z/2
dz cos

(
i
2πz

Z

)
cos

(
i′

2πz

Z

)
= Z

i′ cos(iπ)

0︷ ︸︸ ︷
sin(i′π)−i cos(i′π)

0︷ ︸︸ ︷
sin(iπ)

i′2π − i2π
= 0. (A.6)

The orthogonality condition holds. Next is cosine and sine term,

∫ Z/2

−Z/2
dz cos

(
i
2πz

Z

)
sin

(
i′

2πz

Z

)
= 0. (A.7)

The orthogonality condition holds. The axial coordinate orthogonality constant has been
verified for all z component basis functions combinations. The basis functions can be
written with different z component index labels as
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f0j(r, z) = J0

(
γ0,j

r

R

)
· A0 (A.8)

f(2i)j(r, z) = J0

(
γ0,j

r

R

)
· A(2i) cos

(
2π(2i)z

Z

)
(A.9)

f(2i−1)j(r, z) = J0

(
γ0,j

r

R

)
·B(2i−1) sin

(
2π(2i− 1)z

Z

)
. (A.10)

The cosine and sine index are even and odd respectively, as to which z component basis
function term is used, that depends on whether the z component index is even or odd. The
basis set needs to be normalized for each z component basis set, starting with the constant
term

1 =
1

V

∫ R

0

∫ 2π

0

∫ Z/2

−Z/2
drdθdzr|f0j(r, z)|2

=
1

V

∫ R

0

∫ 2π

0

∫ Z/2

−Z/2
drdθdzrJ2

0 (γ0,j
r

R
)A2

0

=
2πZ

πR2Z
A2

0

R2

2
(

0︷ ︸︸ ︷
J2

0 (γ0,j) +J2
1 (γ0,j))

1 = A2
0J

2
1 (γ0,j).

The normalization constant for the z component constant term is,

A0 =
1

J1(γ0,j)
. (A.11)

Next is the normalization constant for the z component cosine term,
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1 =
1

V

∫ R

0

∫ 2π

0

∫ Z/2

−Z/2
drdθdzr|f(2i)j(r, z)|2

=
1

V

∫ R

0

∫ 2π

0

∫ Z/2

−Z/2
drdθdzrJ2

0 (γ0,j
r

R
)A2

(2i) cos2(
2π(2i)z

Z
)

= A2
(2i)

J2
1 (γ0,j)

Z

Z

2

1 = A2
(2i)

J2
1 (γ0,j)

2
.

The normalization constant for the z component cosine term is,

A(2i) =

√
2

J1(γ0,j)
. (A.12)

Lastly, the normalization constant for the z component sine term,

1 =
1

V

∫ R

0

∫ 2π

0

∫ Z/2

−Z/2
drdθdzr|f(2i−1)j(r, z)|2

=
1

V

∫ R

0

∫ 2π

0

∫ Z/2

−Z/2
drdθdzrJ2

0 (γ0,j
r

R
)B2

(2i−1) sin2(
2π(2i− 1)z

Z
)

= B2
(2i−1)

J2
1 (γ0,j)

Z

Z

2

1 = B2
(2i−1)

J2
1 (γ0,j)

2
.

The normalization constant for the z component sine term is,

B(2i−1) =

√
2

J1(γ0,j)
. (A.13)

All the constants have been determined and the orthonormal basis function is fully speci-
fied. The full basis function is,
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f0j(r, z) =

√
2

J1(γ0,j)
J0

(
γ0,j

r

R

)
· 1√

2
(A.14)

f(2i)j(r, z) =

√
2

J1(γ0,j)
J0

(
γ0,j

r

R

)
· cos

2π(2i)z

Z
(A.15)

f(2i−1)j(r, z) =

√
2

J1(γ0,j)
J0

(
γ0,j

r

R

)
· sin 2π(2i− 1)z

Z
. (A.16)

The eigenvalues of the Laplacian operator for the basis set now need to be calculated. As
before, the procedure is split up into the different z component basis set terms. Starting
with the constant term,

∇2f0j(r, z) =

(
1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂θ2
+

∂2

∂z2

)
1

J1(γ0,j)
J0

(
γ0,j

r

R

)
=

1

J1(γ0,j)

1

r

∂

∂r

(
r
∂

∂r

)
J0

(
γ0,j

r

R

)
= −

(γ0,j

R

)2 1

J1(γ0,j)
J0

(
γ0,j

r

R

)
= −

(γ0,j

R

)2

f0j(r, z).

The constant term eigenvalue of the Laplacian operator is

λ0j = −
γ2

0,j

R2
. (A.17)

Next, is the eigenvalue for the z component cosine term,

∇2f(2i)j(r, z) =

√
2

J1(γ0,j)
cos

(
2π(2i)z

Z

)
1

r

∂

∂r

(
r
∂

∂r

)
J0

(
γ0,j

r

R

)
+

√
2

J1(γ0,j)
J0

(
γ0,j

r

R

) ∂2

∂z2
cos

(
2π(2i)z

Z

)
=

(
−
(γ0,j

R

)2

−
(

2π(2i)

Z

)2
)
f(2i)j(r, z).
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The cosine term eigenvalue is,

λ(2i)j = −
(γ0,j

R

)2

−
(

2π(2i)

Z

)2

. (A.18)

Lastly, the eigenvalue for the z component sine term is calculated,

∇2f(2i−1)j(r, z) =

√
2

J1(γ0,j)
sin

(
2π(2i− 1)z

Z

)
1

r

∂

∂r

(
r
∂

∂r

)
J0

(
γ0,j

r

R

)
+

√
2

J1(γ0,j)
J0

(
γ0,j

r

R

) ∂2

∂z2
sin

(
2π(2i− 1)z

Z

)
=

(
−
(γ0,j

R

)2

−
(

2π(2i− 1)

Z

)2
)
f(2i−1)j(r, z).

The sine term eigenvalue is,

λ(2i−1)j = −
(γ0,j

R

)2

−
(

2π(2i− 1)

Z

)2

. (A.19)
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Appendix B

Gamma Tensor

To determine the full explicit form of the gamma tensor with all the different z component
index combinations is quite cumbersome and so only the unique gamma tensor indices
will be explicitly calculated, and all the other indices can be determined by permuting the
indices of the unique expressions. The fully expanded index form of the gamma tensor is,

Γij,i′j′,i′′j′′ =
1

V

∫
drfij(r)fi′j′(r)fi′′j′′(r). (B.1)

It should be noted that the integral of the product of three zeroth-order Bessel functions do
not have an analytical solution and so needs to be numerically integrated to determine the
value of the gamma tensor indices. To avoid obscuring the results of the different indices
in the gamma tensor, this Bessel function integral as well as any factors that are consistent
for all gamma tensor indices will be written in a compact form as,

Irj,j′,j′′ =
2

R2
·
√

2

J1(γ0,j)
·
√

2

J1(γ0,j′)
·
√

2

J1(γ0,j′′)

∫ R

0

dr rJ0(γ0,j
r

R
) ·J0(γ0,j′

r

R
) ·J0(γ0,j′′

r

R
) (B.2)

where Irj,j′,j′′ indicates that it is the integral expression for the radial r component of the
gamma tensor. The different combinations of the axial coordinate, z, terms for the gamma
tensor will now be explored, starting with all constant terms for the z component,

Γ0j,0j′,0j′′ = Irj,j′,j′′
1

Z

∫ Z/2

−Z/2
dz

1

23/2
=
Irj,j′,j′′

23/2
. (B.3)
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Next is two constant terms and one cosine term for the z component,

Γ(2i)j,0j′,0j′′ = Irj,j′,j′′
1

Z

∫ Z/2

−Z/2
dz

1

2
· cos

2π(2i)z

Z
=
Irj,j′,j′′

2
· sinc π(2i) (B.4)

where sincx = sinx
x

. Now two constant terms and one sine term,

Γ(2i−1)j,0j′,0j′′ = Irj,j′,j′′
1

Z

∫ Z/2

−Z/2
dz

1

2
· sin 2π(2i− 1)z

Z
= 0. (B.5)

Now, one constant term and two cosine terms,

Γ(2i)j,(2i′)j′,0j′′ = Irj,j′,j′′
1

Z

∫ Z/2

−Z/2
dz

1√
2
· cos

2π(2i)z

Z
· cos

2π(2i′)z

Z

=
Irj,j′,j′′

23/2
(sinc π((2i)− (2i′)) + sinc π((2i) + (2i′))) . (B.6)

Now, one constant term and two sine terms,

Γ(2i−1)j,(2i′−1)j′,0j′′ = Irj,j′,j′′
1

Z

∫ Z/2

−Z/2
dz

1√
2
· sin 2π(2i− 1)z

Z
· sin 2π(2i′ − 1)z

Z

=
Irj,j′,j′′

23/2
(sinc π((2i− 1)− (2i′ − 1))− sinc π((2i− 1) + (2i′ − 1))) .

(B.7)

Now, one constant term, one cosine term and one sine term,

Γ(2i)j,(2i′−1)j′,0j′′ = Irj,j′,j′′
1

Z

∫ Z/2

−Z/2
dz

1√
2
· cos

2π(2i)z

Z
· sin 2π(2i′ − 1)z

Z
= 0. (B.8)

Now, one cosine term and two sine terms,
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Γ(2i)j,(2i′−1)j′,(2i′′−1)j′′ = Irj,j′,j′′
1

Z

∫ Z/2

−Z/2
dz cos

2π(2i)z

Z
· sin 2π(2i′ − 1)z

Z
· sin 2π(2i′′ − 1)z

Z

=
Irj,j′,j′′

4
(− sincπ((2i)− (2i′ − 1)− (2i′′ − 1))

+ sinc π((2i) + (2i′ − 1)− (2i′′ − 1))

+ sinc π((2i)− (2i′ − 1) + (2i′′ − 1))

− sincπ((2i) + (2i′ − 1) + (2i′′ − 1))) . (B.9)

Now, two cosine terms and one sine term,

Γ(2i)j,(2i′)j′,(2i′′−1)j′′ = Irj,j′,j′′
1

Z

∫ Z/2

−Z/2
dz cos

2π(2i)z

Z
· cos

2π(2i′)z

Z
· sin 2π(2i′′ − 1)z

Z
= 0.

(B.10)

Now, three cosine terms,

Γ(2i)j,(2i′)j′,(2i′′)j′′ = Irj,j′,j′′
1

Z

∫ Z/2

−Z/2
dz cos

2π(2i)z

Z
· cos

2π(2i′)z

Z
· cos

2π(2i′′)z

Z

=
Irj,j′,j′′

4
(sincπ((2i)− (2i′)− (2i′′)) + sinc π((2i) + (2i′)− (2i′′))

+ sinc π((2i)− (2i′) + (2i′′)) + sinc π((2i) + (2i′) + (2i′′))) . (B.11)

Now, three sine terms,

Γ(2i−1)j,(2i′−1)j′,(2i′′−1)j′′ = Irj,j′,j′′
1

Z

·
∫ Z/2

−Z/2
dz sin

2π(2i− 1)z

Z
· sin 2π(2i′ − 1)z

Z
· sin 2π(2i′′ − 1)z

Z

= 0. (B.12)

All other gamma tensor indices will have the same form but with the i, i′, i′′, j, j′ and j′′,
indices reordered.
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Appendix C

Quantum and Classical Partition
Function

A direct relation from the quantum partition function to the classical partition function
can be demonstrated through an expansion of the quantum partition function in powers
of ~ with the leading term being the classical partition function [46, 47, 48]. The complete
derivation involves a permutation operator to describe the symmetric or anti-symmetric
properties in coordinate particle exchange, resulting in a 1

N !
factor in the final expression.

The inclusion of such effects would detract from the overall intent of the derivation, that
is, to demonstrate the expansion of the quantum partition function. As such, particle
exchange effects will be ignored.

Starting with an ensemble of N quantum particles, the quantum partition function in the
position basis is

Q =
N∑
i=1

∫
d{r}ψ∗i ({r})e−βHψi({r}) (C.1)

where H is the quantum Hamiltonian,

H =
∑
i

− ~2

2m
∇2
i + U [{r}] (C.2)

and ψi({r}) are a complete orthonormal set of eigenfunctions of the Hamiltonian. Introduc-
ing eigenfunctions of the momentum operator in the position representation (i~∇iψ(r) =
piψ(r)),
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φ({r}, {p}) = exp

(
i

~

N∑
i=1

pi · ri

)
. (C.3)

ψi({r}) can be expanded in terms of momentum eigenfunction basis,

ψi({r}) =

∫
d{p}ai({p}) exp

(
i

~

N∑
j=1

pj · rj

)
. (C.4)

This expression takes the form of a Fourier transform and, thus, the ai({p}) coefficients
are the Fourier transform of ψi({r}). Taking the inverse Fourier transform,

ai({p}) =
1

(2π~)3N

∫
d{r}ψi({r}) exp

(
− i
~

N∑
j=1

pj · rj

)
. (C.5)

Equation C.4 can be substituted into the quantum partition function,

Q =
N∑
i=1

∫
d{r}

∫
d{p}ψ∗i ({r})ai({p})e−βH exp

(
i

~

N∑
j=1

pj · rj

)
. (C.6)

The explicit form of ai({p}) can be substituted into the partition function using equation
C.5,

Q =
1

(2π~)3N

∫
d{r}

∫
d{r′}

∫
d{p}

(
N∑
i=1

ψ∗i ({r})ψi({r′})

)

· exp

(
− i
~

N∑
j=1

pj · r′j

)
e−βH exp

(
i

~

N∑
j=1

pj · rj

)
. (C.7)

TO proceed, the orthogonality condition of the wave function is required,

∫
d{r′}

(
N∑
i=1

ψ∗i ({r})ψi({r′})

)
f({r′}) =

∫
d{r′}δ({r′ − r})f({r′}) = f({r})
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where f({r′}) is any integrable function. Using the orthogonality condition, the partition
function can be simplified to,

Q =
1

h3N

∫
d{r}

∫
d{p} exp

(
− i
~

N∑
i=1

pi · ri

)
e−βH exp

(
i

~

N∑
i=1

pi · ri

)
. (C.8)

In the partition function, if the quantum Hamiltonian (H) were to be replaced by its
classical counterpart (H) the exponents would commute and the partition function would
be for a continuous system of N classical particles. A function w({r}, {p}, β) can be
defined that contains all the non-classical effects in the quantum partition function, using
this function the following relation can be formulated,

e−βH exp

(
i

~

N∑
i=1

pi · ri

)
= e−βH exp

(
i

~

N∑
i=1

pi · ri

)
w({r}, {p}, β) = F ({r}, {p}, β).

(C.9)

Rewriting the quantum partition function using this relation,

Q =
1

h3N

∫
d{r}

∫
d{p}e−βHw({r}, {p}, β). (C.10)

To investigate the classical limit of the quantum partition function, the following limits
should hold, w({r}, {p}, β) → 1 as lim~→0. To prove this F ({r}, {p}, β) is differentiated
with respect to β,

∂F ({r}, {p}, β)

∂β
=

∂

∂β
e−βH exp

(
i

~

N∑
i=1

pi · ri

)

=
∂

∂β
(1− βH +

β2

2
H2 + . . .) exp

(
i

~

N∑
i=1

pi · ri

)
,

with the boundary condition, F ({r}, {p}, 0) = exp
(
i
~
∑N

i=1 pi · ri
)

. Taking derivatives,

∂F ({r}, {p}, β)

∂β
= −HF ({r}, {p}, β). (C.11)
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The differential equation can be solved using a variation on the WKB method [49] which
uses successive approximations of w({r}, {p}, β) in powers of ~, assuming that ~ is small
compared to other quantities in the equation. The expansion is,

w({r}, {p}, β) =
∞∑
i=0

hiwi({r}, {p}, β). (C.12)

Substituting the classical expression for F ({r}, {p}, β) from equation C.9 into equation
C.11 and writing out the first few terms of the w({r}, {p}, β) expansion,

(
∂w0

∂β
+ ~

∂w1

∂β
+O(~2)

)
e−βH exp

(
i

~

N∑
i=1

pi · ri

)

−He−βH exp

(
i

~

N∑
i=1

pi · ri

)(
w0 + ~w1 +O(~2)

)
= −

(
− ~2

2m
∇2 + U({r})

)
e−βH exp

(
i

~

N∑
i=1

pi · ri

)(
w0 + ~w1 +O(~2)

)
.

Expanding the classical Hamiltonian, H = p2

2m
+ U({r}), operating with the Laplacian,

cancelling the e−βH exp
(
i
~
∑N

i=1 pi · ri
)

factors on both sides of the equation and grouping

the second order or higher ~ terms,

(
∂w0

∂β
+ ~

∂w1

∂β
+O(~2)

)
−H

(
w0 + ~w1 +O(~2)

)
= −U({r})

(
w0 + ~w1 +O(~2)

)
− p2

i

2m

(
w0 + ~w1 +O(~2)

)
+
i~
m

(
N∑
i=1

pi · ∇iw0 − βw0

N∑
i=1

pi · ∇iU({r})

)
+O(~2).

Cancelling the classical Hamiltonian terms on both sides of the equation,

(
∂w0

∂β
+ ~

∂w1

∂β
+O(~2)

)
=
i~
m

(
N∑
i=1

pi · ∇iw0 − βw0

N∑
i=1

pi · ∇iU({r})

)
+O(~2). (C.13)
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Splitting the equation in powers of ~, the zeroth order equation gives,

∂w0

∂β
= 0.

So,

w0 = C

where C is an arbitrary constant. The boundary condition for F ({r}, {p}, 0) can be
rephrased as w({r}, {p}, 0) = 1. So, expansion of w({r}, {p}, 0) in terms of ~ can be
written as,

1 = w0({r}, {p}, 0) + ~w1({r}, {p}, 0) +O(~2). (C.14)

Comparing terms with the same order of ~,

w0({r}, {p}, 0) = 1 (C.15)

wj({r}, {p}, 0) = 0, j ≥ 1. (C.16)

Since the value of w({r}, {p}, β) is a constant and therefore independent of the value for
β,

w({r}, {p}, β) = 1. (C.17)

Looking back at the original expression for F ({r}, {p}, β) it is now obvious that as ~→ 0
or β → 0 the quantum partition function is equivalent to the classical partition function.
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Appendix D

Kac-Feynman Differential Equation
Solution

Starting with the time-dependent Schrödinger equation for a time-independent Hamilto-
nian, the Kac-Feynman path integral solution is proven [21, 50]. It is then shown that
the path integral solution is equivalent to the partition function and satisfies the modified
diffusion equation at an imaginary time of ~β.

The time-dependent Schrödinger equation is,

i~
∂

∂t
|ψ(t)〉 = H |ψ(t)〉 . (D.1)

Solving the separable differential equation at a time t and initial time t0 = 0,

|ψ(t)〉 = exp

(
− i
~
Ht
)
|ψ(t0 = 0)〉 (D.2)

multiplying 〈rN | to both sides of the equation and writing the initial state in the position
basis, |ψ(t0 = 0)〉 =

∫∞
−∞ dr0 〈r0|ψ(t0 = 0)〉 |r0〉,

〈rN |ψ(t)〉 =

∫ ∞
−∞

dr0 〈rN | exp

(
− i
~
Ht
)
|r0〉 〈r0|ψ(t0 = 0)〉 . (D.3)

The matrix elements of the time evolution operator will be referred to as the propagator
U(rN , t; r0, 0) and is explicitly written as
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U(rN , t; r0, 0) = 〈rN | exp

(
− i
~
Ht
)
|r0〉 . (D.4)

Discretizing the time evolution over N intervals, the time evolution operator is,

[
exp

(
− i
~
H t

N

)]N
.

Defining the time intervals as ε = t
N

and taking the limit as N → ∞ the time evolution
operator is,

exp

(
−iε
~
H
)

= exp

(
−iε
~

(
P̂

2

2m
+ V (R̂)

))
' exp

(
−iε
~

P̂
2

2m

)
exp

(
−iε
~
V (R̂)

)
. (D.5)

Assuming that the values for the operators are not too large and ε is small. The commutator
terms in the Baker-Campbell-Hausdorff formula eAeB = eA+B+ 1

2
[A,B]+... are of increasing

order in ε and therefore go to zero. Expanding the propagator for N time intervals,

U(rN , t; r0, 0)

= 〈rN | exp

(
−iε
~

P̂
2

2m

)
exp

(
−iε
~
V (R̂)

)
· exp

(
−iε
~

P̂
2

2m

)
exp

(
−iε
~
V (R̂)

)
· . . .︸ ︷︷ ︸

N time evolution operators

|r0〉 .

(D.6)

Introducing a resolution of the identity in the position basis, 1 =
∫∞
−∞ dr |r〉 , 〈r|, between

each time evolution operator,
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U(rN , t; r0, 0) =

∫ N−1∏
i=1

dri 〈rN | exp

(
−iε
~

P̂
2

2m

)
exp

(
−iε
~
V (R̂)

)
|rN−1〉

〈rN−1| exp

(
−iε
~

P̂
2

2m

)
exp

(
−iε
~
V (R̂)

)
|rN−2〉

. . .

〈r2| exp

(
−iε
~

P̂
2

2m

)
exp

(
−iε
~
V (R̂)

)
|r1〉

〈r1| exp

(
−iε
~

P̂
2

2m

)
exp

(
−iε
~
V (R̂)

)
|r0〉 .

Examining a single time evolution operator matrix element,

〈rN | exp

(
−iε
~

P̂
2

2m

)
exp

(
−iε
~
V (R̂)

)
|rN−1〉

= 〈rN | exp

(
−iε
~

P̂
2

2m

)
|rN−1〉 exp

(
−iε
~
V (rN−1)

)
.

To evaluate 〈rN | exp
(
− iε

~
P̂

2

2m

)
|rN−1〉 a resolution of the identity in the momentum basis,

1 = 1
2π~

∫∞
−∞ dp |p〉 〈p|, is inserted,

1

2π~

∫ ∞
−∞

dp 〈rN | exp

(
−iε
~

P̂
2

2m

)
|p〉 〈p|rN−1〉

=
1

2π~

∫ ∞
−∞

dp 〈rN |p〉 exp

(
−iε
~

p2

2m

)
〈p|rN−1〉 .

Substituting the inner product of position and momentum 〈r|p〉 = exp
(
i
~p · r

)
,
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1

2π~

∫ ∞
−∞

dp exp

(
i

~
p · (rN − rN−1)

)
exp

(
−iε
~

p2

2m

)
=

1

2π~

∫ ∞
−∞

dp exp

(
−iε
~

p2

2m
+
i

~
p · (rN − rN−1)

)
=

√
m

2πi~ε
exp

(
im(rN − rN−1)2

2~ε

)
.

Taking this logic and applying it to the N time evolution matrix elements, a compact form
of the propagator can be determined,

U(rN , t; r0, 0) =
( m

2πi~ε

)N
2

∫ N−1∏
i=1

dri exp

(
N∑
i=1

im(ri − ri−1)2

2~ε
− iε

~
V (ri−1)

)
. (D.7)

Taking the limit as N → ∞, so ε → 0 the time evolution will be continuous, as before.
The propagator is written as,

U(rN , t; r0, 0) =

∫
Dr exp

(
i

~

∫ t

0

dt

[
m

2

∣∣∣∣drdt
∣∣∣∣2 − V (r(t))

])
(D.8)

where,

Dr = lim
N→∞

( m

2πi~ε

)N
2

∫ N−1∏
i=1

dri. (D.9)

If a Wick rotation t = −iτ is performed so that the propagator now describes an imaginary
time trajectory. The derivation of this imaginary time propagator can be easily performed
following the same procedure as outlined previously. The imaginary time propagator is,

U(rN , τ ; r0, 0) = 〈rN | exp

(
−1

~
Hτ
)
|r0〉 =

∫
Dr exp

(
−1

~

∫ τ

0

dτ

[
m

2

∣∣∣∣drdτ
∣∣∣∣2 + V (r(τ))

])
.

(D.10)
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Moving on to consider the quantum partition function,

Q = Tr exp (−βH) . (D.11)

The trace is invariant under unitary change of basis and so can be expanded in the position
basis,

Q =

∫ ∞
−∞

dr 〈r| exp (−βH) |r〉 . (D.12)

Focusing on the argument in the integrand and multiplying both the numerator and de-
nominator by ~

Q =

∫ ∞
−∞

dr 〈r| exp

(
−1

~
β~ · H

)
|r〉 . (D.13)

The partition function now takes the same form as the imaginary time propagator, with
an integral endpoint τ = β~. The solution is already known from equation D.10,

Q = U(r, β~; r, 0) =

∫
Dr exp

(
−1

~

∫ β~

0

dτ

[
m

2

∣∣∣∣drdτ
∣∣∣∣2 + V (r(τ))

])
. (D.14)
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