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Abstract 

Purine nucleosides, such as adenosine and guanosine, are important biomolecules 

to regulate physiological functions, including maintain heart and brain health, exert 

inflammatory responses, and take part in metabolisms. Abnormal levels of purine 

nucleosides can lead to serious problems. Therefore, monitoring their concentrations is 

critical for understanding their biological roles and performing related disease 

diagnoses. Compared with conventional methods to detect them, such as high-

performance liquid chromatography (HPLC) and mass spectrometry, DNA aptamer-

based strategies are highly attractive due to their high specificity, binding affinity, low 

cost, and in situ detection ability. Ideally, the aptamers with any desired specific binding 

abilities could be isolated by systematic evolution of ligands by exponential enrichment 

(SELEX); however, currently, some selected aptamers cannot distinguish closely 

related molecules. For example, the widely used adenosine aptamer is effective in 

distinguishing it from other nucleosides (G, C, T and U) but not the adenine 

monophosphate (AMP) and adenine triphosphate (ATP), consequently aptamer-sensing 

platforms built by this sequence are also limited in molecular recognition. In addition, 

the DNA aptamers for guanosine are not isolated yet. On the other hand, to further graft 

aptamers on hydrogel matrix for applications, chemical modifications are also 

inevitable, leading to the high cost of aptamer engineering. To solve these problems, 

the primary focus of this thesis is to improve the specificity of aptamer-based sensors 

for detecting purine nucleosides, and develop a modification-free method for preparing 

DNA-hydrogels at reduced costs. 

Targeting the problem of some SELEX-derived aptamers with intrinsically limited 

specificity, a novel method is developed in chapter 2 to achieve highly specific 

recognition of adenosine. Typically, an entire adenine nucleotide was excised from the 

backbone of the existing adenosine aptamer (mentioned above), in which the resulting 

vacancy on DNA scaffold allowed highly specific re-binding of free adenosine, this 
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way realized its molecular recognition and other cognate analytes including AMP, ATP, 

guanosine, cytidine, uridine, and theophylline are distinguished. This method is termed 

“base-excision”. To characterize the adenosine recognition, SYBR Green I (SGI) 

fluorescence spectroscopy and isothermal titration calorimetry (ITC) were used. The 

ITC demonstrated that one A-excised aptamer strand can bind to two adenosine 

molecules, with a Kd of 17.0 ± 1.9 µM at 10 C, and entropy-driven binding. Since the 

wide-type aptamer cannot discriminate adenosine from AMP and ATP, we attribute this 

improved specificity to the excised site. Finally, the A-excised aptamer was tested in 

diluted fetal bovine serum (FBS) and showed a limit of detection of 46.7 µM adenosine. 

This work provides a facile, cost-effective, and non-SELEX method to engineer 

existing aptamers for new features and better applications. 

In chapter 3, the aptamer engineering strategy described in chapter 2 is further 

used to generate new DNA aptamers for specific recognition of guanosine. Both the 

Na+-binding aptamer and classical adenosine aptamer were manipulated as the base-

excising scaffold. A total of seven guanosine aptamers were designed, in which a 

guanine-excised Na+-aptamer showed the highest binding specificity and affinity for 

guanosine, with an apparent Kd of 0.78 mM. Both the aptamer scaffold generality and 

excised-site generality were systematically studied. This work provides a few 

guanosine binding aptamers by non-SELEX method. It also provides deeper insights 

into engineering aptamers for molecular recognition. 

On the other hand, since the adenosine only differs deoxyadenosine by a 2´-OH 

and the specific recognition of adenosine from their mixture have not been realized by 

current methods, in chapter 4, molecularly imprinted polymers (MIPs) and aptamers as 

two different recognition strategies are combined. A boronic acid-containing monomer, 

3-acrylamidophenylboronic acid (AAPBA), was incorporated into the MIPs to 

specifically target cis-diol moiety in the ribose of adenosine. ITC and SYBR Green I 

staining were used to measure the binding. The AAPBA-containing aptamer-MIP 
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exhibited a 115-fold high selectivity for adenosine against deoxyadenosine at pH 6.4. 

The ribose in adenosine may interact with the boronic acid unit and decrease its 

inhibition effect to the aptamer in the MIP. Whereas for deoxyadenosine, it does not 

bear a cis-diol, and thus cannot rescue the aptamer. This work provides insights into the 

combination of aptamers with other functional groups in MIPs, which may further 

broaden applications in ways that free aptamers cannot achieve alone. 

From an application perspective, since the current preparations of DNA-hydrogels 

are heavily relying on acrydite-modified DNA, lowering the cost of grafting DNA on 

hydrogels is another issue. To this end, a modification-free method is studied in chapter 

5. We show that unmodified penta-adenine (A5) can reach up to 75% conjugation 

efficiency in 8 h under a freezing polymerization condition in polyacrylamide hydrogels. 

DNA incorporation efficiency was reduced by forming duplex or other folded structures 

and by removing the freezing condition. By designing diblock DNA containing an A5 

block, various functional DNA sequences were attached. Such hydrogels were designed 

for ultrasensitive DNA hybridization and Hg2+ detection, with detection limits of 50 

pM and 10 nM, respectively, demonstrating the feasibility of using unmodified DNA 

to replace acrydite-DNA. The same method works for both gel nanoparticles and 

monoliths. This work reveals interesting reaction products by exploiting freezing and 

has provided a cost-effective way to attach DNA to hydrogels. 

Overall, improved molecular recognition of adenosine and guanosine has been 

achieved, through engineering existing aptamers for new functions or combining 

aptamers with other functional molecules in MIPs. To further facilitate the 

incorporation of DNA aptamers in hydrogel systems for various applications, the 

modification-free method is also developed. This thesis deepens our understandings in 

DNA aptamer-based molecular recognition and in nucleic acid chemistry, as well as 

provides opportunities for researchers to achieve more specific adenosine and 



ix 

 

guanosine recognitions in real applications for disease monitoring and diagnosis 

purpose. 
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Chapter 1 Introduction 

1.1 DNA aptamers 

1.1.1 DNA  

Deoxyribonucleic acid (DNA) are functional biomacromolecules that are tightly 

packaged in nucleus and carries genetic information. The conformation of DNA is 

normally described as a right-handed double helix, in which two strands run opposite 

and twist with each other (antiparallel, B-form) (Figure 1.1A). The backbone of DNA 

molecule is built up by sugar-phosphate components, in which phosphodiester bonds 

are presented in linking two nucleotides (Figure 1.1B). Within the DNA structure, each 

nucleotide is composed of three parts: a pentose sugar, a phosphate group and a 

nucleobase. The nucleobases include adenine (A), guanine (G), cytosine (C) and 

thymine (T); and they can interact by forming canonical Watson-Crick base pairs (A-T 

and G-C, Figure 1.1C), or through other non-canonical ways. 

 

Figure 1.1 Chemical structures of DNA. (A) The helical structure of double-stranded 

DNA. (B) A single-stranded DNA showing sugar-phosphate backbone. (C) Four types 

of nucleobases forming Watson-Crick base pairs. 

1.1.2 DNA aptamers for binding small molecules 
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Aptamers are single-stranded oligonucleotides that can specifically bind ligands 

with high affinity. The term “aptamer” was coined by Ellington and Szostak in 1990,1 

when they isolated RNA sequences for organic dyes such as Cibacron Blue. In the same 

year, Tuerk and Gold selected an RNA aptamer for recognizing bacteriophage T4 DNA 

polymerase (gp43),2 where they named this aptamer isolation strategy to be systematic 

evolution of ligands by exponential enrichment (SELEX), indicating high-affinity 

nucleic acid strands for a ligand were isolated and exponentially enriched. After these 

pioneer works, the aptamer field has taken off. Many different targets have been studied 

ranging from small molecules, peptides, proteins to even cells. Although antibodies are 

able to specifically bind analytes with high affinity and specificity, some small-

molecule detections have been shown non-specific on antibody-based assays; and at the 

same time, their high costs, batch-to-batch variation and short shelf life also limit the 

application of antibodies for on-site biosensing.3 Therefore, the isolation of aptamers 

for those small molecules received particular interest. In addition, considering the 

higher stability of DNA than RNA, DNA aptamers are more preferred in practical 

applications. 

In 1995, Huizenga and Szostak isolated the first DNA aptamer for adenosine and 

ATP (Figure 1.2A), with an excellent specificity on nucleobase region (Kd ~6 µM 

adenosine).4 This aptamer has no affinity to other nucleosides containing G, T, U or C 

bases, but it is not sensitive to the phosphate part and cannot distinguish adenosine from 

AMP or ATP. Later, Landry et al. obtained another DNA aptamer for cocaine over its 

metabolites having 0.4-10 µM cocaine affinity (Figure 1.2B).5 To transduce binding 

events to detectable signals for biosensing, these isolated aptamers are often post-

modified by a fluorophore to track their ligand-induced conformational changes. 

Considering that this process requires additional characterization and optimization 

steps to ensure the original recognition abilities of aptamer are reserved, new selections 

for signaling aptamers are also discovered. For example, Nutiu and Li isolated a new 

signaling ATP aptamer, in which the DNA library was designed by having a red domain 
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hybridized with a quencher-labeled complementary oligonucleotide and two flanked 

green domains for ligand recognition (Figure 1.2C).6 In the stem area, a fluorophore-

labeled oligonucleotide (denoted in black) was also included in which its fluorescence 

was initially quenched. Then, upon binding the ATP and a conformational change, the 

quencher-labeled oligonucleotide may dissociate and trigger fluorescence emission. 

After selection, the isolated aptamer complex can be directly used as a sensor. On the 

other hand, to solve the specificity problems for some early obtained aptamers, such as 

the classic adenosine aptamer isolated by Szostak group having poor ability in 

distinguishing adenosine and ATP,4 counterselections7-9 and some non-SELEX based 

strategies10-12 are also developed. 

 

Figure 1.2 The secondary structures of (A) adenosine/ATP DNA aptamer, and (B) 

cocaine DNA aptamer. (C) A scheme describing the structural switching process 

induced by ATP in signaling aptamer. 

1.2 Detection of adenosine and guanosine 

1.2.1 Importance 
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Purine nucleosides play an important role in normal cellular functions and have 

become increasingly important in biomedical and bioanalytical fields. Particularly, 

adenosine is indispensable in modulating functions of heart, brain and kidney, 

especially when involving inflammation. It is produced from extracellular and 

intracellular AMP or S-adenosylmethionine, taking part in hormones regulation and 

biological reactions such as S-adenosylmethionine-dependent methylation.13 On the 

other hand, guanosine, another well-known purine nucleoside, is also important in 

neuroprotection.14 After brain injury, the GMP hydrolyses to guanosine around brain 

tissues to bring neurotrophic effects in central nervous systems, and the guanosine can 

counteract with some neurotoxins like glutamate at the same time to relieve the brain 

damage.15 However, when disorders occur and the self-secreted guanosine cannot 

regulate the body back to normal, diseases can be caused. For example, an inappropriate 

guanosine secretion for glutamatergic simulation induces neuronal dysfunction even 

death.16 Additionally, in the case of consistently high adenosine levels in blood, sickling, 

hemolysis and damage to multiple tissues in sickle cell disease (SCD) may happen.17 

Therefore, determine abnormal levels of adenosine and guanosine is significantly 

important for health monitoring and diseases diagnosis. 

Beyond that, although other purine nucleosides such as inosine (deaminated from 

adenosine and is important for RNA editing)18 and xanthosine (promoting mammary 

stem cells in vivo),19 are also biologically valuable, my research is mainly focus on the 

well-known adenosine and guanosine. Therefore, the following introduction will be 

mainly related to these two purine nucleosides. 

1.2.2 Aptamers for their detection 

Conventional methods for qualifying and quantifying adenosine and guanosine 

rely heavily on chromatographic methods, such as high-performance liquid 

chromatography (HPLC), gas chromatography, mass spectrometry and microdialysis. 

They are highly sensitive and selective, but time-consuming, expensive as well as 
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difficult to operate. In situ detection is also difficult, and samples need to be extracted 

and processed before measurement. To solve these problems, DNA aptamers-based 

sensing platforms (termed aptasensors) for adenosine and guanosine are developed. 

1.2.2.1 Adenosine 

To date, the most aptasensors for detecting adenosine are based on the adenosine 

aptamer sequence isolated by Huizenga and Szostak in 1995 (Figure 1.2A), ranging 

from fluorescent sensors to colorimetric and electrochemical sensors.20-22 Since the 

sequence was able to binding adenosine and ATP with similar affinity, ATP could be 

used as an alternative to trigger the sensor response. Some initial ideas of fluorescent 

sensing rely on labeling a single fluorophore on the aptamer as shown in Figure 1.3A, 

such as the work carried out by Ellington and coworkers, in which a fluorescein was 

labeled on 5´-end, on G7 or between G7 and G8 (the later generated 25% fluorescence 

increase while only 5% for the first two sites).23, 24 To enhance the signal changes, an 

external quencher is more often used. For example, the full-length aptamer could be 

split to two halves, with one strand attached by a fluorophore and the other having a 

quencher (Figure 1.3B).25 Upon binding to adenosine, the two strands were brought 

together and the fluorescence was quenched. Stojanovic et al. used a 5´-rhodamine and 

a 3´-dabcylquencher to screen the binding, achieving 40% fluorescence decrease.26 

Moreover, to achieve signal-on sensing with a lower background and a larger signal 

increase, the structure-signaling aptamer idea was proposed by Nutiu and Li (Figure 

1.3C).27 When hybridizing a fluorophore-labeled DNA and a quencher-labeled DNA to 

a long piece containing adenosine aptamer, the fluorescence was quenched in this initial 

state. Then, adding adenosine released the quencher-contained strand and the 

fluorescence increased. Using this method, the target binding was able to increase the 

fluorescence by 13-fold. Besides molecular quenchers, some nanomaterials like 

graphene oxide are also popular, based on their functions to quench fluorescence by 

adsorbing DNA moiety on their surfaces (Figure 1.3D).28-30 Furthermore, cost-effective 

label-free methods such as by using SYBR Green I (SGI) and thioflavin T (ThT) 
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staining dyes are also widely accepted, based on the mechanism that adenosine binding 

can replace the associated dye from aptamers accompanied by a fluorescence decrease 

(Figure 1.3E).31 For example, Liu et al. incorporated an acrydite-modified aptamer into 

hydrogel microparticles, and used a dye named SYTO-13 to screen adenosine binding 

event.32 A detection limit of 45 µM was determined. 

 

Figure 1.3 Fluorescent sensors for detecting adenosine/ATP based on (A) a covalent 

labeled fluorophore on the full-length aptamer, (B) split aptamer, (C) structure-

switching signaling aptamer, (D) aptamer adsorption on graphene oxide, and (E) a DNA 

staining dye. 

 

Since colorimetric sensors do not need instruments for detection, they are 

alternative strategies to achieve cost-effective sensing. Taking advantage of the 
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distance-dependent color and high extinction coefficient of AuNPs, adenosine binding 

by its aptamer can be visualized by color changes.33-35 For example, Liu and Lu 

employed the adenosine aptamer as a linker to bring the thiol-DNA modified AuNPs 

together to show a blue color (Figure 1.4A).33 Adding adenosine induced the aptamer’s 

conformational change, disassembling the AuNPs to turn the color back to red. The 

detectable range was from 0.3 to 2 mM (Figure 1.4B). Other colorimetric sensors were 

also designed based on the catalytic oxidation of chromogenic 2,2´-azino-bis(3-

ethylbenzthiazoline-6-sulfonic acid) (ABTS) by peroxidase activity,36 or releasing 

AuNPs by aptamer-crosslinked hydrogels.37  

Finally, electrochemical sensors are also attractive in measuring biological 

samples, due to their ultra-high sensitivity (reaching several nM or even lower).38-40 For 

example, Battaglini and coworkers developed an electrochemical split aptamer assay 

for detecting adenosine.41 One aptamer fragment was immobilized on electrode surface, 

and the other was grafted on AuNPs (containing a redox polyelectrolyte for signal 

transduction) (Figure 1.4C). In the presence of adenosine brought two fragments 

together and generated current, yielding a limit of detection of 3.1 nM. 
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Figure 1.4 (A) Colorimetric sensors based on adenosine binding releasing aggregated 

AuNPs. (B) Adenosine titrations to DNA-modified AuNPs aggregates. Reproduced 

with permission.33 Copyright 2006, Wiley-VCH. (C) Electrochemical split aptamer 

assays for detecting adenosine. Reproduced with permission.41 Copyright 2020, Wiley-

VCH. 

1.2.2.2 Guanosine 

Compared to the aptasensors for adenosine, the relevant platforms for guanosine 

were rarely reported, since the DNA aptamer for guanosine has not been isolated yet. 

Although Connell and Yarus selected a guanosine binding RNA aptamer (with a Kd of 

32 µM guanosine), it was not applied in practical applications probably due to the low 

stability of RNA molecules. Recently, several non-SELEX-derived DNA sequences for 

recognizing guanosine have been reported. The Tan group spliced an entire guanine 

nucleotide from a G-quadruplex, in which a vacancy in its secondary may form (left 

panel of Figure 1.5A).10, 42 They found that when this vacancy appeared in top layer of 
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the G-quadruplex, it was able to bind a few guanine derivatives, such as guanosine, 

GMP, GDP and GTP (right panel of Figure 1.5A). Since negatively charged phosphate 

groups tend to be repelled by DNA backbone, the affinities to GMP, GDP and GTP 

gradually decreased. Other nucleosides cannot bind at all. These binding reactions were 

evaluated by dimethyl sulfate (DMS) footprinting and DNA melting experiments. The 

footprinting data in Figure 1.5B shows that guanosine binding was only achieved in the 

presence of K+, indicating the formation of a G-quartet. 

Later, they further developed this system into a fluorescent sensor by extending 

this vacancy-bearing G-quadruplex strand with a hybridized domain, and then 

respectively label the two ends with a fluorophore and a quencher (the left panel in 

Figure 1.5C). The fluorescence was quenched in the initial stage. After adding 

guanosine or GMP, under the driving force of forming the G-quadruplex, the loop part 

switched the structure leading to increased fluorescence.42 However, apart from GMP, 

other analytes like xanthosine, 8-oxo-2’-deoxyguanine (a biomarker of DNA damage), 

and two more guanine-related drugs (Ganciclovir and Acyclovir) all can induce 

increased fluorescence signals. Yang and coworkers characterized a vacancy-bearing 

G-quadruplex by NMR, and revealed that the recognition of guanine moiety involved 

Hoogsteen hydrogen bonding, coordination with K+ and base stacking. Also, an 

additional C1´-H1´•••O4´ (a nonconventional CH•••O hydrogen bond) may exist.43 To 

further improve the guanosine binding specificity, our group developed a base-excised 

strategy,44 in which the non-specific association of GMP, GDP and GTP were all 

eliminated (studied in the Chapter 3). 
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Figure 1.5 (A) Schematic illustration of free guanine-containing ligands fitting into the 

vacancy in the top layer of the G-quadruplex. (B) Quantification of DMS footprinting 

results for a vacancy-bearing G-quadruplex upon binding guanine-containing ligands. 

Reproduced with permission.10 Copyright 2015, National Academy of Sciences. (C) 

Schematic illustration of a defective G-quadruplex based fluorescent sensor for specific 

binding guanine-containing compounds. Reproduced with permission.42 Copyright 

2016, Wiley-VCH. 

1.3 DNA-functionalized hydrogels 

Hydrogels are crosslinked polymer networks consisting of hydrophilic building 

units. Their hydration may be affected by various solution stimuli, like pH, temperature, 

salts, solvent composition and light, thus they have been developed to various stimuli-

responsive platforms.45, 46 For example, poly(N-isopropylacrylamide) (PNIPAm) is a 

temperature-responsive polymer exhibiting a lower critical solution temperature (LCST) 

behaviour. The PNIPAm is hydrophilic and highly swollen at room temperature, 

however when heated above to ~32°C, it turns to hydrophobic and shrink sharply, due 

to thermally induced collapse of the NIPAm units.47 Therefore, temperature-sensitive 

systems often include PNIPAm.48-50 Additionally, polyacrylic acid (PAA) is another 

pH-sensitive polymer due to its highly negatively charged backbone.51 The input 

stimuli toward these responsive hydrogels largely come from the properties of organic 
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monomers, yet responding to biologically relevant molecules (e.g. small molecule 

metabolites and nucleic acids) can hardly be realized in this way. To solve this problem, 

functional biopolymers like proteins and DNA can be grafted to hydrogel backbones to 

enrich their function.52-54 We are particularly interested in exploring DNA-

functionalized hydrogels, since the DNA molecules are programmable, more thermal-

stable, and easy to synthesize and modify. 

1.3.1 Preparation and properties 

The covalent conjugation of DNA to organic hydrogels often needs chemical 

modifications. To graft DNA to polymer networks, two strategies are generally used. 

In the first case, amino-modified oligonucleotides are employed to react with pre-

formed polymers containing succinimidyl ester to achieve conjugating through amide 

bonds (Figure 1.6A). Secondly, acrydite-modified oligonucleotides are also widely 

used to copolymerize with vinyl monomers, in which the DNA grafting and hydrogel 

formation process in one-pot (Figure 1.6B). Normally, the amino modification is viable 

on both the 3´ and 5´-termini of DNA, while that for acrydite is only available on the 

5´-end.45 

 

Figure 1.6 Schematic illustrations of two common strategies for preparing DNA-

hydrogel conjugates: (A) grafting amino-modified DNA to pre-formed succinimido-

polymer; (B) copolymerizing acrydite-modified DNA with acrylamide during free 

radical polymerization. 
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The DNA-hydrogels reserve the properties of normal hydrogels, including good 

biocompatibility and stability; and at the same time, by having the functional DNA, the 

hydrogels are able to bear additional properties and response to more biorelevant 

stimuli. When the DNA hybridization is used to crosslink polymer chains and promote 

gelation, external stimuli like complementary DNA (cDNA) or ligands for aptamer may 

unwind the hybridized strands and degrade gels to chain polymer. For example, Tan et 

al. prepared two DNA fragments-functionalized polyacrylamide, which could be 

further gelled by a longer linker DNA (for both fragments) (Figure 1.7A). Since they 

engineered part of the linker DNA with adenosine aptamer sequence, the crosslinked 

networks could be disrupted by addition of adenosine molecules.55  

Besides to small molecular-responsiveness, the DNA-hydrogels can also be 

sensitive to enzymes, photons, pH, temperature and magnetic field.56, 57 For instance, 

Willner and coworkers designed a pH-responsive DNA-hydrogels through 

incorporating two guanine- and cytosine-rich sequences into the polyacrylamide 

(Figure 1.7B). At pH 7.4, both the intermolecular and intramolecular guanine-cytosine 

pairs were formed based on Watson-Crick interactions, holding the gel backbones 

together. When pH was lowered to 5.0, due to the protonated cytosine, intramolecular 

CG•C+ parallel structures were formed causing the gel degradation.58 Such sol-gel 

transition properties of the DNA-hydrogels enable us to visualize the ligand binding- 

or other stimuli-induced DNA/aptamer conformational changes simply from the status 

changes of the hydrogels. 
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Figure 1.7 (A) DNA-induced gelation and adenosine-induced dissociation of DNA-

functionalized polyacrylamide system. Reproduced with permission.59 Copyright 2008, 

American Chemical Society. (B) pH-responsive and switchable CG•C+ triplex-based 

DNA-hydrogels. Reproduced with permission.60 Copyright 2015, Royal Society of 

Chemistry. 

1.3.2 Molecularly imprinted hydrogels containing DNA 

Molecular imprinted polymers (MIPs) are “artificial antibodies” that can work like 

natural antibody to accept shape complementary and chemical complementary ligands 

but are much more stable, robust and cost-effective than natural antibodies. The MIPs 

are often prepared by copolymerizing functional monomers in the presence of targets. 

After polymerization and removing the target molecules, complementary cavities for 

them are exposed for selective recognition (Figure 1.8).61 When the synthetic 

monomers are hydrophilic reagents, like acrylamide and NIPAm, the MIPs are 

imprinted hydrogels exhibiting specific molecular recognition abilities in water phase.62 
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Figure 1.8 Schematic illustration of the general process of preparing MIPs. Reproduced 

with permission.61 Copyright 2015, American Chemical Society. 

 

Nevertheless, the binding performance of the traditional molecularly imprinted 

hydrogels are relatively low, mainly limited by their weak affinity and insufficient 

specificity. Since the hydrogels can swell significantly in water and deform the 

imprinting sites for molecular recognition, achieving highly specific ligand binding in 

hydrogel-based MIPs are often difficult. To solve this problem, DNA is exploited as a 

macromonomer to functionalize such MIPs, because certain sequence of DNA can 

achieve precise molecular recognition with improved affinity.63 The good stability and 

low cost of DNA also match the properties of MIPs.63 For example, Spivak et al. 

modified two different aptamers (29-mer and 15-mer) that target different sites on 

thrombin (a biomarker in urine for detecting glomerulonephritis) (Figure 1.9A), and 

then copolymerized with acrylamide and N,N´-methylenebisacrylamide (BIS) in the 

presence of thrombin to prepare the MIP hydrogels (Figure 1.9B).64 Subsequent 

removal of thrombin resulted in a notable hydrogel swell, while further rebinding of it 

led to a shrinkage up to ~8% due to the high thrombin-aptamer affinity (Kd of 0.5 nM 

and 100 nM for 29-mer and 15-mer fragments respectively).65 The thrombin MIPs 

showed good specificity over other proteins like bovine serum albumin (BSA), as no 

shrinkage was observed at equilibrium. On the other hand, in addition to study aptamer-

functionalized hydrogels, Liu and coworkers developed a peroxidase-like G-

quadruplex contained MIPs to exploit the DNA catalysis toward a specific substrate.66 
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They incorporated an acrydite-modified G-quadruplex with acrylic monomers to 

imprint 3,3′,5,5′-tetramethylbenzidine (TMB) during polymerization, then removed the 

TMB (Figure 1.9C). Consequently, the selective catalysis of TMB in the presence of 

hydrogel peroxide (also adding hemin as cofactor) was realized, with ~5-fold higher 

Kcat/Km than converting another type of substrate ABTS. In the case of testing non-

molecularly imprinted polymers (NIPs) (i.e. no TMB was added during preparation), 

the specific catalysis of TMB over ABTS can barely be achieved. 

 

Figure 1.9 (A) Chemical structures of acrydite-modified thrombin aptamers. (B) 

Schematic illustration of the preparation of thrombin-targeting MIP hydrogels and the 

visualization of their volume changes binding to thrombin. Reproduced with 

permission.64 copyright 2013, American Chemical Society. (C) Schematic illustration 

of the preparation of DNAzyme-based MIP hydrogels for selectively catalyzing 

TMB.66 Copyright 2019, Wiley-VCH. 

1.3.3 Examples of applications 
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1.3.3.1 Biosensing applications 

The DNA hydrogels have been widely explored in biosensing and biomedical 

applications.67, 68 Firstly, in biosensing field, for noncovalently crosslinked hydrogels 

by DNA hybridization, the analyte-responsive DNA could be used as the crosslinker 

and the sol-gel transition induced by ligand-DNA binding could be manipulated for 

designing the sensor. For example, Tan and colleagues fabricated an acrydite-DNA 

hydrogel network crosslinking by its complementary DNA, in which two short DNA 

fragments were individually grafted on linear polyacrylamide polymers while a longer 

linker was hybridized to both of them acting as a crosslinker (in green, Figure 1.10A).37 

They engineered the linker DNA to cocaine aptamer, and trapped amylose within 

polymer networks. The amylose was able to bind iodine accompanied by blue color 

changes. When in the absence of cocaine, the amylose was protected by polymer 

frameworks, and amylase (can break amylose down to sugar) cannot diffuse into the 

cage, leaving those blue color unchanged (Figure 1.10B). However, in the presence of 

cocaine, the gels were degraded due to cocaine-aptamer binding, then the amylose was 

digested. Consequently, iodine failed to generate any blue color. Other analogues that 

cannot bind to cocaine aptamer cannot bleach the iodine-stained blue gels (Figure 

1.10C). By having this sensor, 20 ng of cocaine was able to be detected. 

Moreover, for hydrogel frameworks covalently crosslinked by organic molecules 

like the BIS,69 the hydrogels often play a role of the DNA carrier. In biosensing 

applications, they can enrich the DNA to achieve lower detection limit, and used for 

separation after centrifugation. For example, Liu and coworkers attached a thymine-

rich DNA on polyacrylamide monoliths to selectively detect Hg2+. By staining the DNA 

by SYBR Green I dye, and comparing the fluorescence changes with and without the 

Hg2+, the detection limit of Hg2+ in a 50 mL water sample was as low as 10 nM.70 
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Figure 1.10 (A) Schematic illustration of the DNA cross-linked hydrogel for visual 

detection of cocaine. Photographs of DNA-gels responding to (B) different 

concentrations of cocaine and (C) two other analogues in the presence of amylase and 

iodine. Note that the amylose was embedded in gel matrix. Reproduced with 

permission.37 Copyright 2010, Wiley-VCH. 

1.3.3.2 Biomedical applications 

Since the DNA molecules are easily to be cleaved by nucleases in biofluids, they 

can be preloaded into protective hydrogel networks for biomedical applications. At the 

same time, to achieve controlled release of drugs rather than load-off in a burst manner, 

hydrogel microstructures are also helpful. In these cases, therapeutic agents such as 

unmethylated cytosine-phosphate-guanine (CpG) oligonucleotides, interfering RNAs 

(siRNAs) and anticancer drugs like doxorubicin have been applied for immunotherapy, 

antisense therapy and chemotherapy.68, 71 For instance, the siRNA-loaded hydrogels are 

effective for gene knockdown in kidney, ovarian and other cell lines.72 Recently, Yang 

et al. incorporated siRNA to DNA hydrogel nanoframeworks by taking advantage of 

cascade hybridization chain reaction (HCR) (Figure 1.11).73 The initial DNA scaffolds 
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(in green) were grafted in hydrogels through acrydite-modification, and then two types 

of DNA hairpins (named H1 and H2) were added to alternatively extend the DNA 

length. The siRNA (in dark blue) and an ATP aptamer sequences (in red) were inserted 

into one of the hairpins. Consequently, when the hydrogel nanoparticles were delivered 

into cells, due to the high concentration of intracellular ATP (around 5-10 mM), the 

release of siRNA was specifically triggered. As a result, levels of relevant mRNA and 

proteins were downregulated, and therapeutic efficacy was achieved. 

Moreover, in the case of delivering unmethylated CpG DNA (a potent activator of 

immune response), Nishikawa et al. intercalated doxorubicin, a model drug for killing 

cancer cells, into CpG DNA-grafted hydrogels for chemo/immunotherapy.74 They 

demonstrated that the CpG DNA hydrogels stimulated cytokine release from murine 

macrophage-like RAW264.7 cells, and the incorporated doxorubicin was slowly 

released. After treatment, the growth of murine adenocarcinoma colon26 tumor in mice 

was effectively inhibited. Overall, the compatibility of DNA hydrogels with nucleic 

acid drugs solved the difficulties for delivering them into target cells. 
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Figure 1.11 Schematic illustration of the DNA-hydrogels for siRNA loading via 

cascade hybridization of DNA hairpins and ATP-triggered release of siRNA. 

Reproduced with permission.73 Copyright 2021, Springer Nature. 

1.4 Research goals and thesis outline 

Developing highly specific aptamers for sensing small biomolecules are of 

particular interest,75 and further combining such functional DNA with hydrogels are 

attractive for applying them in practical bioanalytical and biomedical applications. 

However, some most frequently used aptamers still suffer from limited specificity and 

some other important molecules as “disease indictors” have not been isolated by 
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SELEX yet (although the SELEX can theoretically generate aptamers for any ligand). 

Specifically, since the SELEX-derived adenosine aptamer can hardly differentiate it 

from analogues including deoxyadenosine, AMP, ADP and ATP, my first goal was to 

develop a highly specific sensing platform for adenosine. In addition, given that DNA 

aptamers for guanosine have not been selected yet, a specific binding DNA for 

guanosine is also desirable. Thirdly, based on the fact that current covalent conjugation 

strategies for directing DNA to hydrogels in biosensing and biomedical applications 

heavily rely on chemical modifications on oligonucleotides, which can result in a high 

cost, a modification-free method is also desired. To achieve these goals, the thesis is 

outlined as the following chapters. 

Chapter 2 describes a novel method to engineer base-excised aptamers for highly 

specific recognition of adenosine. In this work, an adenine nucleotide is excised from 

the backbone of a one-site adenosine aptamer, leaving a vacancy for specifically 

rebinding adenosine. The chemical and geometry complementary pockets are expected 

to form. The binding affinity and recognition mechanism are studied. Single phosphate 

distinguishing ability between the adenosine and AMP is investigated, and non-specific 

binding of other cognate analytes including guanosine, cytidine, uridine, theophylline, 

and ATP are tested, according to the SYBR Green I fluorescence spectroscopy and ITC 

results. Finally, the adenine-excised aptamer is applied in diluted serum to check its 

applicability in biofluids. 

Chapter 3 followed the work in the chapter 2 using the base-excised strategy to 

develop a series of DNA aptamers for highly specific recognizing guanosine. Both the 

Na+-binding aptamer and classical adenosine aptamer are manipulated as the base-

excising scaffolds. Guanosine binding affinity and specificity of the base-excised 

aptamers is carefully investigated. Also, aptamer scaffold generality and excised-site 

generality are systematically studied to further demonstrate the feasibility of this 

aptamer-generation strategy in more systems. 
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Chapter 4 describes a method to differentiate adenosine from deoxyadenosine 

(only differ by a -OH) and its cis-diol analogues, by using the molecularly imprinted 

polymers. An acrydite-modified adenosine aptamer and 3-acrylamidophenyboronic 

acid (AAPBA) are used as functional monomers during the MIPs preparation, 

respectively targeting nucleobase and sugar part of the adenosine. The adenosine 

binding affinity and specificity of such (aptamer+AAPBA)-MIPs is evaluated by ITC. 

Since the boronic acid functions can be modulated by pH, the effect of pH and the 

mechanism of boronic acid-assisted adenosine recognition is then studied. 

Chapter 5 describes a modification-free method to conjugate DNA on hydrogel 

nanoparticles and monoliths. The intrinsic reactivity of a penta-adenine (A5) DNA is 

exploited for covalent conjugation, and freezing is used to promote the reaction 

efficiency. The importance of freezing, addition of antifreeze and free radicals are 

studied in detail. In addition, the covalent linking of four homo-DNAs in difference 

lengths (5, 15 and 30-mer) are studied; and the effects of DNA secondary structures 

(including duplex, quadruplex and i-motif) are also investigated. To further develop the 

A5 to an anchor for any DNA sequence grafting, it is extended to a random sequence 

denoted as a A5 diblock DNA. By engineering such A5 diblock DNA with functional 

sequences, the detection of complementary DNA and Hg2+ ions are demonstrated. 

Chapter 6 concludes the conclusions in aforementioned chapters in this thesis, and 

provides the future plan as well as original contributions. 
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Chapter 2 Engineering base-excised aptamers for highly specific 

recognition of adenosine 

The results presented in this chapter have been published as: 

Yuqing Li, Biwu Liu, Zhicheng Huang, Juewen Liu, Engineering base-excised aptamers for 

highly specific recognition of adenosine. Chemical Science, 2020, 11, 2735-2743. 

2.1 Introduction 

Aptamers are single-strand oligonucleotides that can specifically bind to target 

molecules.1, 76, 77 Compared to antibodies, DNA aptamers are much more stable and 

cost-effective. Some aptamers are naturally found in riboswitches, which can regulate 

gene expression and interact with metabolites, such as adenine, flavin mononucleotide, 

and glycine.78 Most aptamers used for designing analytical biosensors are generated 

through a strategy called SELEX (systematic evolution of ligands by exponential 

enrichment).2, 79 SELEX has be applied to various targets ranging from metal ions,80, 81 

small molecules,4, 5 peptides,82 proteins,83 to whole cells.84 Duo to these advantages, 

aptamers are widely used in biosensors,85, 86 cell engineering,87 and therapeutics.88  

The DNA aptamer for ATP or adenosine is one of the most important model 

aptamers. It was first reported by Huizenga and Szostak in 1995, having excellent 

selectivity against the other nucleosides or nucleotides.4 With more than 20 years of 

research, its structure,89 highly conserved nucleotides,90, 91 modification,77 and single-

site binding92 have been revealed. Nevertheless, this aptamer is limited by its inability 

to distinguish the substitutions on the 5 position of adenosine (e.g. cannot distinguish 

adenosine from AMP and ATP). Since adenosine regulates different cellular processes, 

and affects the immune, nervous, respiratory, circulatory and urinary systems, abnormal 

levels of adenosine indicate potential problems in the heart and brain.93, 94 Therefore, it 

is important to differentiate adenosine from AMP and ATP. 
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To improve the aptamer specificity, many efforts have been made. For example, 

Koizumi and Breaker selected a new aptamer that can differentiate cAMP from ATP, 

5´-AMP and 3´-AMP.95 Through extensive negative selections, the Szostak group 

isolated an RNA aptamer for ATP, which specifically targeted the triphosphate moiety.8 

Olsen et al. obtained an aptamer that can monitor the oscillating concentration of ATP 

with high resolution, even if the total concentration of adenine nucleotides 

([ATP]+[ADP]+[AMP]) was stable.96 Nutiu and Li re-discovered the ATP DNA 

aptamer using a new SELEX method,90 and Ellington et al. selected a fluorescein-

labeled ATP RNA aptamer.97 Most recently, Zheng et al. reported an ATP aptamer that 

can be used in cytometric bead assays.98 Although these SELEX strategies are powerful 

for guiding the selectivity, still no aptamers are available for highly selective binding 

of adenosine.  

Since DNA oligonucleotides are chemically synthesized, they allow efficient 

mutation and modification studies.99-101 Recently, it was reported that after omitting a 

base on a DNA duplex or G-quadruplex, the scaffold allowed free adenosine or 

guanosine to re-fit into the vacant site. This was achieved either by introducing an 

abasic-site in duplex,12, 102, 103 or by omitting a whole guanine-nucleotide in a G-

quadruplex.10, 104, 105 These DNA complexes can reach a µM Kd, and behave like 

traditional aptamers. However, they often have a low specificity. Not only the cognate 

analytes can fit into the vacancy,104 pseudo-base pairing may also induce binding.102, 

106 This maybe attributed to their recognition largely relying on secondary structural 

discrimination (simple base pairing).  

To achieve more specific recognition, herein we reported an interesting finding of 

using an aptamer as the scaffold to exclusively recognize adenosine. By deleting a 

nucleotide in the adenosine aptamer, a new strand breaking point was created, and we 

called it a base-excised aptamer. Compared with scaffolds consisting of a duplex and 

G-quadruplex, the base-excised aptamer has more sophisticated 3D structures that may 

allow more intermolecular forces to take place and enable exclusive adenosine 
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recognition. Other nucleosides including cytidine, guanosine, uridine, and cognate 

analytes like AMP, ATP and theophylline all failed to bind. This work provides insights 

into engineering existing aptamers without the need of new SELEX experiments. 

2.2 Materials and Methods 

2.2.1 Chemicals 

All the DNA samples were purchased from Eurofins (Huntsville, AL). The DNA 

sequences are listed in Supporting Information Table 2.1. SYBR Green I (SGI), AMP, 

ATP, theophylline and fetal bovine serum (FBS) were purchased from Sigma-Aldrich. 

Guanosine, adenosine, cytidine, uridine, sodium chloride, magnesium chloride and 4-

(2-hydroxyethyl)piperazine-1-ethanesulfonate (HEPES) were from Mandel Scientific 

(Guelph, Ontario, Canada). Milli-Q water was used to prepare all of the buffers and 

solutions. 

Table 2.1. The DNA sequences used in this work. 

DNA Names Sequences (from 5 to 3) and modifications 

Wide-type 

adenosine Apt 

ACCTGGGGGAGTATTGCGGAGGAAGGT 

One-site Apt ACCTTCGGGGAGTATTGCGGAGGAAGGT 

A10-excised Apt GTATTGCGGAGGAAGGTTTTTAACCTTCGGGG 

Res-A10-Right cut GTATTGCGGAGGAAGGTTTTTAACCTTCGGGGA 

Res-A10-Left cut AGTATTGCGGAGGAAGGTTTTTAACCTTCGGGG 

Duplex-1 GGGGGTATTGCCCCCGCAAGGTTTTTAACCTTG 

Duplex-2 GTATTGCGCCCCGAAGGTTTTTAACCTTCGGGG 

2.2.2 SGI-based binding assays 
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An aptamer (50 nM) was first incubated with 2 mM target molecules, including 

adenosine, AMP, ATP, guanosine, cytidine or uridine, for 5 min in buffer A (20 mM 

HEPES, pH 7.6, containing 100 mM NaCl, 5 mM MgCl2). The aptamer incubated with 

the buffer (without target) was used as control. Then, 50 nM SGI (final concentration) 

was added and the fluorescence spectra were collected (excitation at 485 nm, emission 

at 535 nm). The fluorescence data were analyzed based on (F0-F)/F0, in which F0 and 

F stand for the fluorescence without and with the target molecule, respectively. 

Similarly, a duplex DNA (50 nM) was first incubated with 2 mM cytidine or adenosine 

for 5 min in buffer A, and then 12.5 nM SGI was added (final concentration). The same 

sample without adding adenosine or cytidine was used as control. 

2.2.3 Isothermal titration calorimetry (ITC) 

ITC was performed using a VP-ITC microcalorimeter instrument (MicroCal). All 

samples were ultrasonicated for 5 min (degassing) prior to applying them for ITC. A 

20 µM one-site aptamer, Res-A10-Right cut, and the A10-excised aptamer (in buffer 

A) were loaded in a 1.45 mL cell at 10 °C, respectively. 1 mM adenosine or AMP in 

the same buffer was loaded in a 280 µL syringe. After the first injection of 2 µL, the 

syringe injected 10 µL of the target into the cell each time. Through measuring the heat 

changes and fitting the titration curves to a one-site binding model, thermodynamic data 

including association constant (Ka), enthalpy changes (ΔH), entropy changes (ΔS), free 

energy changes (ΔG), and binding stoichiometry (N) were obtained. The molar ratio 

was calculated from the ITC data based on the ligand/aptamer concentrations.  

2.2.4 Detection in diluted serum 

1% FBS was used for this study. The 1% FBS was prepared by diluting the FBS 

stock in 20 mM HEPES (pH 7.6). Then 50 nM DNA was incubated with or without 2 

mM adenosine in 1% FBS, and stained by 50 nM SGI. Additional 100 mM NaCl and 5 

mM MgCl2 were then added. To evaluate its specificity, the DNA was also incubated 
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with 2 mM AMP in the 1% FBS. At last, different concentrations of adenosine (0.28 to 

2 mM) were titrated to calculate the Kd value. 

2.3 Results and Discussion 

2.3.1 Abasic, based-spliced and base-excised DNA 

To engineer a vacancy-bearing DNA for specifically refill the vacancy, two 

strategies have already been reported. One is to create an abasic site by breaking the N-

glycosylic bond (Figure 2.1A),107 where the number of phosphodiester bonds remains 

the same but one of the bases is removed. The other method is to fully remove an entire 

nucleotide from the original sequence, and join the cleaved strands neatly at the end, 

which we call the base-spliced strategy (Figure 2.1B).10, 104 Although rebinding of the 

deleted parts have been demonstrated in both methods, the specificity remained poor. 

For example, the abasic-site-contained DNA duplex can bind both adenosine and 

theophylline based on cytosine recognition,102, 108 and the vacancy-bearing G-

quadruplex can accept guanosine, GMP, GDP and GTP with similar affinities.104  

In our work here, a new method of DNA engineering is described in Figure 2.1C, 

in which a whole nucleotide is excised, and a break is created (a new 3 and a new 5 

end). This is different from the simple splitting (Figure 2.1D), which creates a break 

but does not remove any base. Besides, the goal of split aptamers is not to detect the 

removed nucleotide.109-111 To demonstrate a better specificity of our base-excised 

aptamer for adenosine, not only the analogues focused on the base part (i.e. guanosine, 

cytidine, uridine and theophylline), but also the substitutions on the 5 position like 

AMP and ATP were carefully tested (Figure 2.1E). 
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Figure 2.1. A scheme showing the differences between (A) abasic site, (B) based-

spliced, (C) based-excised and (D) split aptamers. Note that the 5´ terminus of the 

purchased DNA was -OH (chemically synthesized), rather than phosphate. (E) 

Structure of analytes used: adenosine, guanosine, cytidine, uridine, AMP, ATP and 

theophylline. 

2.3.2 Design of the adenine-excised adenosine aptamer 

To study the molecular recognition in base-excised DNA, the adenosine aptamer 

was chosen as a scaffold. The secondary structure of the wide-type aptamer is shown 

in Figure 2.2A as revealed by Lin and Patel.89 The red A stands for an adenine-

contained ligands, such as adenosine, AMP, ADP and ATP, all of which can be 

accommodated in the aptamer binding pockets. The binding pockets contain G•A 

mismatches, and around them are some stacked bases, including the flanked G•G 

mismatch in one direction and the G•A mismatch in another direction. Therefore, the 

hydrogen bonding and base stacking are main contributors for target recognition.91 

We decided to first excise the A10 adenine within the binding pockets because this 

position is close to the target binding site. Since the original aptamer can bind two 

adenosine molecules and it may complicate data analysis, we used the one-site aptamer 

design by sealing the base pairs on the left side of the aptamer (Figure 2.2A, middle 
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sequence). This one-site aptamer has a similar binding affinity and specificity for 

adenosine.92 After excising a whole A10, two strands were generated. To keep the 

excised-aptamer in one strand, its original 3 and 5 ends were joined together, and a 

new aptamer was generated from the 5 end near the excised site. The final sequence 

was named the A10-excised aptamer (Figure 2.2A, right one). 

 

Figure 2.2. (A) The secondary structure of the wide-type adenosine aptamer, the 

engineered one-site aptamer and the A10-excised aptamer. (B) Fluorescence spectra of 

50 nM A10-excised aptamer mixed with or without 2 mM adenosine in buffer A (20 

mM HEPES, 100 mM NaCl, 5 mM MgCl2). 50 nM SGI (final concentration) was used. 

(C) Comparison of the specificity of the A10-excised aptamer with the wide-type 

aptamer. 50 nM DNA mixed with 2 mM testing molecules, including adenosine, AMP, 

ATP, guanosine, cytidine and uridine in buffer A with 50 nM SGI. (D) Titrating 

adenosine or AMP (40 µM to 2 mM) into 50 nM A10-excised aptamer in buffer A. The 

titration curves were fitted by the equation: (F0-F)/ F0=a[Adenosine]/(Kd+[Adenosine]). 
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(E) Titrating Adenosine or AMP (0.04-0.52 mM) into 50 nM A10-excised Apt in buffer 

A. In orange curve, the DNA was first incubated with 0.5 mM adenosine, then applied 

to AMP titrations. 50 nM SGI was used to indicate the adenosine or AMP binding to 

DNA. 

2.3.3 Adenosine specifically binds to the A10-excised aptamer 

To study the binding performance of the A10-excised aptamer, SGI was used for 

label-free binding assays.112-116 First, a 50 nM A10-excised aptamer was incubated with 

2 mM adenosine (Figure 2.2B). Compared with the DNA without adenosine, the 

fluorescence decreased around 40% at 535 nm (excitation at 485 nm), indicating the 

binding of adenosine. This SGI fluorescence decreasing trend was consistent with 

previously reported studies, which was attributable to displacement of SGI by 

adenosine in the binding pockets.114-116 We then, respectively, incubated AMP, ATP, 

guanosine, cytidine, uridine and theophylline (2 mM each) with the DNA (Figure 2C, 

black bars). Interestingly, they all failed to decrease the fluorescence signal, suggesting 

a lack of binding. For comparison, we also tested the wide-type aptamer with the 

sequence shown in Figure 2.2A. A descending binding trend was observed with 

adenosine, AMP and ATP, whereas negligible fluorescence was found for the other 

three nucleosides and theophylline. Therefore, using this base excised aptamer, the 

specificity for adenosine drastically improved. 

To quantitatively measure binding, we further titrated up to 2 mM adenosine and 

AMP into the A10-excised aptamer (Figure 2.2D). Adenosine showed a Kd of 0.37 mM, 

while AMP failed to bind at any of these concentrations. Therefore, our A10-excised 

aptamer not only distinguished adenosine from C, G and T, but also can distinguished 

the phosphate part showing no binding to even AMP. This adenosine/AMP distinction 

has been a main problem of the original aptamer, which has hindered its application in 

terms of data interpretation, since cellular adenosine pool contains various AMP, ADP, 

ATP and even cAMP.117 It could be that the phosphate containing nucleotides are 
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negatively charged and thus are more repelled by the charges on the phosphate 

backbone of the DNA, while the neutrally charged adenosine is easier to bind. 

Since the original aptamer pocket can accommodate all the adenosine derivatives, 

we attributed this excellent specificity to the excised site, which may only bind 

adenosine, but not AMP. The aptamer pocket can only form when this A10 site was 

filled by adenosine. To test this, we designed a few control experiments. We incubated 

the A10-excised aptamer with 0.5 mM adenosine (half saturation according to Figure 

2.2D), and then titrated AMP (Figure 2.2E). The fluorescence increased, suggesting 

that AMP competed with adenosine and disrupted the binding complex (orange curve). 

This suggests that both sites had to bind adenosine, while one AMP and one adenosine 

were not optimal. Our A10-excised aptamer bears two adenosine binding pockets, with 

one in backbone and the other in loop. Based on the fluorescence data, the improved 

specificity for adenosine was due to the excision of the A from the backbone. 

2.3.4 Splitting at the A10-site (no base excised) 

To further understand the effect of the above design, we then split the aptamer at 

the A10-site (at the right and left side of A10, respectively), but without any nucleotide 

excised. We first cut the right-side phosphodiester bond (Figure 2.3A). Interestingly, it 

showed similar binding specificity to the A10-excised aptamer, in which only the 

adenosine induced ~42% fluorescence decrease, whereas the AMP, ATP, cytidine and 

uridine were all failed to achieve a fluorescence signal change (Figure 2.3B). The 

titration data further confirmed the binding of adenosine, while no AMP binding was 

observed (Figure 2.3C). Half saturation was achieved at 0.94 mM adenosine, and thus 

this splitting modification near the aptamer binding pocket also decreased the binding 

affinity.  

In contrast, when cutting the phosphodiester bond on left side (Figure 2.3D), the 

binding profiles were different (Figure 2.3E). AMP also showed binding, and its 

fluorescence drop was about two third of that of adenosine. These experiments 
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indicated that the right-side and the left-side phosphodiester bonds around the A10-site 

played different roles in helping the loop pockets bind AMP. Breaking the right-side 

one might change the aptamer local folding, resulting in differentiated binding 

preference for adenosine and AMP. For both split aptamers, the observed binding was 

from the original aptamer binding pocket. Therefore, it is not surprising that AMP can 

also bind in some cases.  

 

Figure 2.3. (A) Secondary structure of the Res-A10-Right-cut. (B) Comparison of 

specificity of the Res-A10-Right-cut and the wide-type aptamer. 50 nM DNA mixed 

with 2 mM testing molecules in buffer A (20 mM HEPES, 100 mM NaCl, 5 mM MgCl2) 

with 50 nM SGI. (C) Titrating adenosine or AMP (40 µM to 2 mM) into 50 nM Res-

A10-Right-cut in buffer A. (D) Secondary structure of the Res-A10-Left-cut. (E) 

Comparison of specificity of the Res-A10-Left-cut and wide-type aptamer. (F) Titrating 

adenosine or AMP (40 µM to 2 mM) into Res-A10-Left-cut. 

2.3.5 Studying binding thermodynamics using ITC 

In addition to studying the aptamer binding using fluorescence spectroscopy, we 

also employed ITC. ITC can quantitatively measure the heat changes during the binding 
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process. This can provide rich thermodynamic information, including association 

constant (Ka), enthalpy changes (ΔH), entropy changes (ΔS), free energy changes (ΔG), 

and binding stoichiometry (N).92, 118-120 Figure 2.4A and 2.4B display typical ITC traces 

of titrating adenosine and AMP into the one-site aptamer, consisting of the upper part 

of downward spikes and the lower part of the fitted integrated heat. The one-site 

aptamer was firstly titrated to confirm its similar binding abilities to the wide-type 

aptamer, which cannot distinguish adenosine with AMP. The Kd of the wide-type 

aptamer binding to adenosine was reported to be around 6 µM (room temperature) in 

its original paper,4 and here the Kd for one-site aptamer binding to adenosine was 

measured to be 2.8 ± 0.03 µM (10 degree for all titrations, Table 2.2). The Kd for one-

site aptamer binding to AMP was at 12.2 ± 1.8 µM. Therefore, the aptamer binds 

adenosine slightly tighter than AMP. 

We then titrated adenosine and AMP to the A10-excised aptamer and the Res-

A10-Right-cut respectively (Figure 2.4C-F). Consistent with the fluorescence data 

demonstrated above, they both only bound to adenosine, whereas they failed to accept 

AMP. The Kd of the A10-excised aptamer binding to adenosine was at 17.0 ± 1.9 µM, 

and that of the Res-A10-Right cut was at 11.4 ± 0.2 µM. The Kd of them binding to 

AMP cannot be obtained from the ITC due to undetectable heat changes. It is interesting 

to note that the Kd values obtained from ITC indicated tighter binding than those from 

SGI fluorescence spectroscopy. It could be that SGI might affect the binding. 

Nevertheless, the conclusion of highly selective binding of adenosine remained true for 

both methods. 

Another important parameter was the binding stoichiometry (N), which indicated 

how many adenosine/AMP molecules might interact with one aptamer strand. 

According to Table 2.2, the one-site aptamer binds to adenosine and AMP with a N at 

0.8 ± 0.1 and 1.3 ± 0.3, respectively, indicating a 1:1 binding model. After cutting one 

phosphodiester bond, the Res-A10-Right-cut also bound just one adenosine (N = 0.9 ± 

0.2), but it changed to 1.8 ± 0.3 when excised an adenine from the aptamer backbone. 
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The N obtained from ITC verified our expectations that each A10-excised aptamer was 

able to accept two adenosine molecules, with one situated in the loop and the other in 

the backbone pocket. 

Moreover, the ΔH and ΔS also provide us some information about the driving force 

for aptamer binding. In the one-site aptamer, a big difference in binding adenosine and 

AMP was observed. The ΔH and ΔS for binding adenosine were -13.5 ± 0.4 kcal mole-

1 and -22.2 ± 1.5 cal K-1 mol-1, respectively, indicating enthalpy-driven interaction (base 

pairing). However, AMP titration changed them to -4.7 ± 0.3 kcal mole-1 and 6.0 ± 0.7 

cal K-1 mol-1. The decreased ΔH and increased ΔS revealed entropy-driven binding force 

(base stacking). Since the AMP was negatively charged and tended to be repelled by 

DNA backbone, base-stacking mainly contributed binding. Interestingly, when only 

cutting one phosphodiester bond at the backbone, the ΔH and ΔS of the Res-A10-Right-

cut binding adenosine jumped to -1.0 ± 0.03 kcal mole-1 and 19.1 ± 1.2 cal K-1 mol-1, 

which was very different from the one-site aptamer. After removing a whole A, the ΔH 

and ΔS of the A10-excised aptamer binding adenosine were -1.1 ± 0.1 kcal mole-1 and 

18.0 ± 0.6 cal K-1 mol-1, respectively. Its adenosine binding was mainly driven by base 

stacking.  
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Figure 2.4. ITC traces and integrated heat for 20 µM one-site aptamer titrated by (A) 1 

mM adenosine and (B) AMP in buffer A (20 mM HEPES, pH 7.6, 100 mM NaCl, 5 

mM MgCl2); 20 µM A10-excised aptamer titrated by (C) 1 mM adenosine and (D) 

AMP in buffer A; and 20 µM Res-A10 aptamer titrated by (E) 1 mM adenosine and (E) 

AMP in buffer A. All the titrations were carried out at 10 °C promote aptamer binding, 

and each titration was repeated at least twice. 
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Table 2.2. Thermodynamic data of aptamers binding to adenosine and AMP (at 10 °C). 

Ligands Aptamers N Ka  

(×104 

M-1) 

Kd 

(µM) 

ΔG  

(kcal 

mol-1) 

ΔH  

(kcal 

mol-1) 

ΔS  

(cal 

K-1 

mol-1) 

Adenosine 

One-site Apt  0.8 ± 

0.1 

35.8 

± 0.4 

2.8 ± 

0.03 

-7.2 ± 

0.1 

-13.5 

± 0.4 

-22.2 

± 1.5 

Res-A10-Right-

cut 

0.9 ± 

0.2 

8.8 ± 

0.2 

11.4 

± 0.2 

-6.4 ± 

0.2 

-1.0 ± 

0.03 

19.1 ± 

1.2 

A10-excised Apt 1.8± 

0.3 

5.9 ± 

0.7 

17.0 

± 1.9 

-6.2 ± 

0.1 

-1.1 ± 

0.1 

18.0 ± 

0.6 

AMP 

One-site Apt 1.3 ± 

0.3 

8.3 ± 

1.2 

12.2 

± 1.8 

-6.4 ± 

0.8 

-4.7 ± 

0.3 

6.0 ± 

0.7 

Res-A10-Right-

cut 

 --a     

A10-excised Apt  --a     

a Binding was extremely weak and cannot be obtained by ITC. The error is calculated 

based on fitting by one-site binding model in ITC software. 

2.3.6 Investigating binding sites cooperativity 

In the wide-type adenosine aptamer, one site can be removed (e.g. the one-site 

aptamer used in this work) and it even slightly improved adenosine binding.92 In our 

A10-excised aptamer, we wanted to understand the relationship between the two 

adenosine binding sites. For this purpose, two more sequences were designed, named 

Duplex-1 and Duplex-2, respectively (Figure 2.5A). The Duplex-2 exhibited part of the 
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same binding pockets (on backbone) as the A10-excised aptamer, but its loop pocket 

was removed and replaced by complementary base pairs. If Duplex-2 can recognize the 

target independently, the free adenosine should be able to fit into the vacancy. Since 

the right-side of the Duplex-2 is very short, Duplex-1 was also designed with the 

binding site in the middle to ensure formation of the flanked hairpins (confirmed by 

MFold website server).121 If adenosine can be independently recognized in Duplex-2, 

it should also be recognized in Duplex-1. Therefore, we tested the Duplex-1 first. 

Figure 2.5B shows that cytidine induced a slight fluorescence increase for Duplex-

1 based on the G•C base pairing and stacking (the left black column), but the 

fluorescence barely changed with adenosine (Figure 2.5B, the left red column). 

Therefore, the two sites in the A10-excised aptamer very likely worked cooperatively, 

and removing the one from the loop disrupted the binding ability of the other one on 

backbone. 

For Duplex-2, no fluorescence change was observed regardless of adding cytidine 

or adenosine. Therefore, this small loop near the 5-end of the sequence cannot form 

without the aptamer binding pocket. For comparison, in our A10-excised aptamer, since 

it showed obvious and strong binding toward adenosine, the aptamer needed to 

experience a conformational change in its right part. 
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Figure 2.5. (A) The secondary structure of the designed Duplex-1 and Duplex-2. (B) 

The fluorescence change of 50 nM Duplex-1 and Duplex-2 with 2 mM ligands 

(adenosine or cytidine) in buffer A. The Duplex-1 and Duplex-2 were stained by 12.5 

nM SGI. Fluorescence spectra of the 50 nM A10-excised aptamer mixed with 2 mM 

(C) adenosine and (D) AMP in 1% FBS (diluted in buffer A). The DNA was stained by 

50 nM SGI. (E) Titrating adenosine (0.28 to 2 mM) with the 50 nM A10-excised 

aptamer in 1% FBS. 

2.3.7 Applied the A-excised aptamer in diluted serum 

Based on the data in Figure 2.2D, we calculated the detection limit of the A10-

excised aptamer to be 46.7 µM adenosine. To demonstrate potential analytical 

application in a real sample, we then applied the A10-excised aptamer in 1% fetal 

bovine serum (FBS). Figure 2.5C showed that the aptamer retained adenosine binding, 

with ~38% fluorescence decrease. AMP still showed no signal (Figure 2.5D). The 

fluorescence signal change in the diluted FBS was close to that in the clean buffers 

(~40%, in Figure 2B). Furthermore, we also titrated adenosine with the A10-excised 

aptamer in 1% FBS, and calculated Kd (Figure 5E). The value was about 0.57 mM, 

comparable with 0.37 mM in the clean buffers (based on the SGI bind assays). The 
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experiments demonstrated that our A-excised aptamer was robust. The increased 

background fluorescence disallowed us to test more concentrated serum. Since many 

signal transduction methods are available based on the wide-type aptamer to ultra-

sensitively detect adenosine, the goal of this work is to achieve highly specific 

adenosine recognition. 

2.4 Summary 

Recently, non-SELEX-derived aptamers were reported based on some classic 

DNA structures, such as a duplex and a G-quadruplex, through introducing a vacant-

site on their backbones. Free nucleosides and nucleotides can re-fit into this vacancy. 

However, the selectivity of this strategy is still limited likely due to its dependence on 

these simple secondary structures and interactions (base pairing or even pseudo-base 

pairing). In this work, we employed an aptamer as scaffold, which exhibited a more 

delicate higher structure than a duplex and a G-quadruplex, allowing highly specific 

adenosine recognition. When excising an entire A from the adenosine aptamer 

backbone (termed the A-excised aptamer), only adenosine can fit into the vacancy. 

Other analogues including AMP, ATP, guanosine, cytidine, uridine and theophylline 

all failed to bind. SGI binding assays and ITC were used to verify the adenosine binding 

and investigate related mechanisms. The A10-excised aptamer associated adenosine 

with a Kd of 17.0 ± 1.9 µM at 10 C, mainly driven by base stacking. We demonstrated 

that the A10-excised aptamer can accept two adenosine molecules, with one in the 

excised site (DNA backbone) and the other in the original binding pocket (loop area). 

They worked cooperatively to achieve the high specificity. Finally, this engineered 

aptamer can also work in dilute FBS. This work provides an intriguing example of using 

existing aptamer sequences for enhanced functions. 
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Chapter 3 Engineering base-excised aptamers for highly specific 

recognition of guanosine 

The results presented in this chapter have been published as: 

Yuqing Li, Juewen Liu, Highly specific recognition of guanosine using engineered base excised 

aptamers. Chemistry-A European Journal, 2020, 26, 13644-13651. 

3.1 Introduction 

Purines are of vital importance for transferring genetic information, participating 

in cellular processes, and regulating signaling pathways.122-124 For example, guanosine 

can regulate glutamate transport and uptake in brain cortical slices,125 while adenosine 

can regulate inflammatory responses and limit destruction of inflammatory tissues.126 

Monitoring purines and their derivatives contributes to early diagnosis and treatment of 

diseases, such as brain damage, immunodeficiency and cancer.127-130  

Aptamers are ideal to bind and detect small molecules such as purines.131-135 High 

quality aptamers were found in the riboswitches for adenine and guanine.78, 136-138 

However, it is difficult to use these large RNA molecules (around 100-mer) as 

biosensors for applications outside cells.139-142 While aptamers from SELEX 

(systematic evolution of ligands by exponential enrichment) can be shorter and many 

aptamers can bind adenine derivatives,4, 8, 23, 89, 92, 95, 143, 144 high quality guanosine 

aptamers, especially DNA aptamers, have yet to be reported.90, 145-148 Connell and Yarus 

reported an RNA aptamer that can bind guanosine and guanine nucleotides with similar 

affinity.149 Kiga et al. selected a 32-mer RNA aptamer for xanthine, which can bind 

guanosine with a Kd of 140 µM, but the specificity was poor.145  

Recently, some non-SELEX derived aptamers were reported. For example, a 

vacancy-bearing DNA scaffold (like a duplex or G-quadruplex) can act as an aptamer 

to bind free purine nucleosides.10, 12, 42, 43, 150 We reported a DNA sequence (32-mer) 
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with excellent specificity for adenosine using the adenosine/ATP aptamer as a 

scaffold.11 We named it a base-excised aptamer, in which an adenine nucleotide near 

the aptamer binding site was completely removed, and this engineered sequence turned 

out to have excellent specificity to adenosine (no binding of AMP or ATP).  

Inspired by this finding, we wanted to test whether this base excision method can 

be extended to other scaffolds to achieve high specificity, especially for the specific 

binding of guanosine, which was never achieved before. In this work, a Na+-binding 

aptamer was employed as a scaffold.80, 81, 151, 152 Both G- and A-excised strands were 

studied. By exploring both the Na+ aptamer and the adenosine aptamer, as well as 

different types of excision sites, we obtained a few highly specific aptamers for 

guanosine. At the same time, this work provides deeper insights and a more complete 

picture of the base-excision strategy for molecular recognition.  

3.2 Materials and Methods 

3.2.1 Chemicals 

All the DNA samples were purchased from Eurofins (Huntsville, AL). The DNA 

sequences are listed in Table 3.1. Thioflavin T (ThT), SYBR Green I (SGI), guanosine 

monophosphate (GMP), guanosine triphosphate (GTP), adenosine monophosphate 

(AMP), adenosine triphosphate (ATP), fetal bovine serum (FBS), rubidium chloride, 

and cesium chloride were purchased from Sigma-Aldrich. Guanosine, adenosine, 

cytidine, thymidine, 4-(2-hydroxyethyl)piperazine-1-ethanesulfonate (HEPES), 

sodium chloride,  magnesium chloride, lithium chloride, potassium chloride were 

from Mandel Scientific (Guelph, Ontario, Canada). Milli-Q water was used to prepare 

all buffers and solutions. 
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Table 3.1. The DNA sequences and modifications used in this work.  

DNA Names Sequences (from 5 to 3) and modifications 

Substrate GTCACGAGTCACTATrAGGAAGATGGCGAAA 

Ce13d DNAzyme TTTCGCATAGGTCAAAGGTGGGTGCGAGTTTTTACT

CGTTATAGTGACTCGTGAC 

Ce13d-del-G16 TGCGAGTTTTCTCGTTATAGTGTTCACTATAGGAAG

AACGTCTCGTTAGGTCAAAGGTGG 

Ce13d-del-G15 GTGCGAGTTTTCTCGTTATAGTGTTCACTATAGGAA

GAACGTCTCGTTAGGTCAAAGGTG 

Ce13d-del-G14 GGTGCGAGTTTTCTCGTTATAGTGTTCACTATAGGA

AGAACGTCTCGTTAGGTCAAAGGT 

Ce13d-del-A10 GGTGGGTGCGAGTTTTCTCGTTATAGTGTTCACTAT

AGGAAGAACGTCTCGTTAGGTCAA 

Ce13d-del-A9 AGGTGGGTGCGAGTTTTCTCGTTATAGTGTTCACTA

TAGGAAGAACGTCTCGTTAGGTCA 

Ce13d-del-A8 AAGGTGGGTGCGAGTTTTCTCGTTATAGTGTTCACT

ATAGGAAGAACGTCTCGTTAGGTC 

Random DNA GAGGAAGGTTTTTAACCTTCGGGGAGTATTGC 

MYOG-3332 AGGGTGGGCTGGGAGGT 

Ade apt-del-G19 AGGAAGGTTTTTAACCTTCGGGGAGTATTGCG 

Ade apt-del-G18 GAGGAAGGTTTTTAACCTTCGGGGAGTATTGC 

Ade apt-del-G9 AGTATTGCGGAGGAAGGTTTTTAACCTTCGGG 

Ade apt-del-G8 GAGTATTGCGGAGGAAGGTTTTTAACCTTCGG 
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3.2.2 ThT-based binding assays for Na+ aptamer 

For the G-excised Na+ aptamers, 200 nM DNA was incubated with 2 mM target 

molecules, such as guanosine, GMP, GTP, adenosine, cytidine or thymidine in buffer 

(50 mM HEPES, pH adjusted by LiOH to pH 7.6, 100 mM NaCl). The same DNA 

incubated with the buffer but without a target was used as controls. A final of 10 µM 

ThT was then added to stain the DNA. The fluorescence spectra were measured by 

exciting the sample at 445 nm. The fluorescence data were analyzed using (F0-F)/F0, 

in which F0 and F stand for the fluorescence at 490 nm without and with the target, 

respectively. For the A-excised Na+ aptamers, the experimental conditions were same 

except that 4 µM ThT was used. To quantify Na+ binding specificity, 200 nM DNA 

was incubated with 2 mM guanosine in the buffer. Then 100 mM LiCl, KCl, RbCl, 

CsCl or NH4Cl was individually tested. 

3.2.3 Evaluating Kd and binding cooperativity 

Different concentrations of guanosine, adenosine and GMP (0.35 to 2.5 mM) were 

titrated to 200 nM G16-excised Na+-aptamer in buffer (50 mM HEPES, pH 7.6, 100 

mM NaCl) containing 10 µM ThT. The titration curves were fitted by the one-site 

binding equation (1): 

        (F0-F)/F0 = a + Bmax[Ligand]/(Kd+[Ligand])                   (1) 

where Bmax is the maximum fluorescence change, [Ligand] is the concentration of 

guanosine, adenosine or GMP. For comparison, titration was also performed for a 

vacancy-bearing G-quadruplex called MYOG-3332. Another experiment was by 

adding 100 mM Na+ or Li+ into the 200 nM G-excised Na+-aptamer without or with of 

2 mM guanosine (adenosine was added for the A-excised sequences). 10 µM ThT was 

used for staining the G-excised aptamers, and 4 µM ThT was used for the A-excised 

aptamers. Finally, the F(Li+)/F(Na+) was calculated to analyze the specificity for Na+ 

binding. 



43 

 

3.2.4 Probing binding by 2AP 

1 µM substrate (the rA site replaced by deoxy-2AP) and 2 µM enzyme strand of 

Ce13p or the G16-excised Ce13p were annealed in buffer (50 mM HEPES, adjusted 

pH by LiOH, pH 7.6) and gradually cooled to 4C. Then the samples were transferred 

to a 96-well plate and the fluorescence was measured at room temperature. 100 mM 

NaCl or LiCl was added to investigate the fluorescence change. Then, 2 mM guanosine 

was added to further observe the fluorescence change. The 2AP was excited at 310 nm, 

and the emission spectra were collected from 365 to 440 nm. 

3.2.5 SGI-based assays for the adenosine aptamer 

50 nM G-excised adenosine aptamer was incubated with 2 mM adenosine (as the 

background) and 2 mM target, including guanosine, GMP, GTP, adenosine, cytidine or 

thymidine in buffer (50 mM HEPES, pH 7.6, 100 mM NaCl and 5 mM MgCl2). The 

aptamer incubated with the 2 mM adenosine (without target) was used as control. Then, 

a final of 50 nM SGI was added to stain the DNA. The fluorescence spectra were 

collected at 535 nm (excitation at 485 nm).  

3.2.6 Detection in diluted FBS 

5% FBS was prepared by diluting 50 µL of the FBS in 950 µL of 50 mM HEPES 

(pH 7.6). Then, 200 nM G16-excised Na+-aptamer with different concentrations of 

guanosine (0.35~2.5 mM) were incubated in the 5% FBS with addition of 100 mM 

NaCl. 10 µM ThT was used for staining the DNA, and the fluorescence spectra was 

measured after 15 min from 475 to 600 nm, with the excitation at 445 nm. 

3.3 Results and Discussion 

3.3.1 The base-excision strategy 

Our base-excision method is illustrated in Figure 3.1A, where an entire purine 

nucleotide (A or G) is removed from an aptamer backbone. This break generates the 
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new 3 and 5 termini, and we hope this breaking site will be rejoined by binding the 

excised nucleoside or nucleotide. After excising the A10 in the adenosine aptamer 

(along with a few other changes to stabilize the engineered aptamer, Figure 3.1B), the 

sequence was able to specifically bind adenosine,11 while the original aptamer can 

hardly differentiate adenosine from AMP and ATP.4 

In our current work here, a Na+-specific aptamer was used as a new scaffold 

(Figure 3.1C), and we wanted to test if we can obtain aptamers for both guanosine and 

adenosine. We chose this aptamer since it was well characterized.151-154 The Na+ 

aptamer is in the Ce13d DNAzyme, which contains a substrate stand (in green) and an 

enzyme strand (in red/black). The rA in substrate is the cleavage site. Ce13d requires 

both a lanthanide such as Ce3+ and Na+ for the cleavage activity, while its enzyme loop 

(in red) is a major part of the Na+ aptamer. We picked three consecutive guanines G14, 

G15, G16, and three consecutive adenines A8, A9, A10 in aptamer loop. They are 

adjacent to each other, but played different functions. The G15, G16, A9 and A10 are 

highly conserved, whereas G14 and A8 can be mutated to other nucleotides. 

 

Figure 3.1 (A) A scheme of the base-excision strategy. The secondary structures of (B) 

the wild-type adenosine aptamer that can bind two adenosine molecules denoted by the 

red A letters, and (C) the Na+-aptamer containing Ce13d DNAzyme. The Na+ ion is 

bound in the red loop and the purines studied are numbered. 

3.3.2 Guanosine specifically binds to the G16-excised Na+-aptamer 
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To study aptamer binding, the rA site in the Ce13d DNAzyme was replaced by its 

DNA analog (dA) to prevent cleavage (Figure 3.2A, left sequence). To further facilitate 

our study, a shortened circular form was designed in Figure 3.2A (61-nt, the middle 

sequence). This way, after excising a nucleotide, a 60-nt linear DNA was obtained. In 

the right panel, an example of excised G16 is shown, where its adjacent T became the 

new 5, and G15 became the new 3 (named Ce13d-del-G16 or ΔG16). Similarly, we 

designed DNA sequences with G14 and G15 respectively excised (ΔG14 and ΔG15). 

Thioflavin T (ThT) was used for a label-free binding assays.155-157 With 100 mM 

NaCl, when 2 mM guanosine was added into ΔG16, ~35% fluorescence decrease was 

observed (Figure 3.2B). In contrast, much less fluorescence decrease was observed for 

ΔG15, and no change occurred for ΔG14 (Figure 3.2C). Therefore, the ΔG16 appeared 

to be able to bind guanosine, and this binding displaced some ThT dye to decrease the 

fluorescence signal. 

We then tested the binding specificity of the ΔG16 (Figure 3.2D). Only guanosine 

induced a fluorescence decrease, whereas adenosine, cytidine and thymidine resulted 

in no change. Importantly, GMP and GTP showed no change as well. Thus, a single 

phosphate difference can be effectively distinguished in this Na+-aptamer scaffold. As 

a further control, we tested the effect of different monovalent ions. Only Na+ supported 

binding of guanosine in ΔG16 (Figure 3.2E), suggesting a driving force of guanosine 

binding was the formation of the Na+ binding aptamer. 
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Figure 3.2 (A) The secondary structure of the Ce13d DNAzyme with the rA replaced 

by dA, a shortened circular Ce13d, and ΔG16, which is a linear DNA with G16 excised 

from the circular DNA. (B) The fluorescence spectra of 200 nM G16 without and with 

2 mM guanosine in buffer (50 mM HEPES, pH 7.6 adjusted using LiOH) containing 

100 mM NaCl and 10 µM ThT. The fluorescence intensity of (C) three G-excised Na+-

aptamers bound to guanosine, (D) G16 selectivity, and (E) the effect of metal ions on 

guanosine binding for G16. (F) Guanosine, adenosine and GMP titrations (0.35 to 2.5 

mM) to 200 nM G16. (N.D. = not determined). (G) The summary of F(Li+)/F(Na+) of 

200 nM full-length Ce13d, ΔG16, ΔG15, ΔG14 and random DNA with 100 mM LiCl 

or NaCl. 2 mM guanosine was used to study the cooperativity with Na+. 

3.2.3 Binding affinity and cooperativity 

We gradually titrated guanosine to the ΔG16, and fitted the data by the one-site 

binding equation yielding a Kd of 0.78 mM guanosine (Figure 3.2F). To test if binding 

of guanosine and Na+ was cooperative, we designed the following experiments. Since 

Li+ is smaller than Na+, Li+ can interact with DNA more strongly via electrostatic 
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interactions, and condense DNA to a more compact structure, resulting less ThT 

intercalation.158 Therefore, for a random DNA stained by ThT, we expected a lower 

fluorescence in Li+ than in Na+ (i.e. F(Li+)/F(Na+) ˂  1). For the full-length Ce13d, since 

Na+ can specifically fold it, its ThT fluorescence should be lower in Na+ than in Li+ (i.e. 

F(Li+)/F(Na+) ˃ 1). 

After confirming this (Figure 3.2G, the first bar), we tested the ΔG16. When no 

guanosine was presented, its F(Li+)/F(Na+) was smaller than 1, demonstrating non-

specific Na+ binding. However, once guanosine was added, specific Na+ binding was 

observed. In the same way, we investigated the ΔG15 and ΔG14. Only ΔG14 retained 

a moderate Na+ binding in the absence of guanosine. Our previous dimethyl sulphate 

(DMS) footprinting and cleavage activity studies indicated that G16 and G15 were 

highly conserved and involved in Na+ binding, while G14 was not.153, 159 

We reasoned that the driving force for binding guanosine was to form the aptamer 

pocket for Na+ (folding to a specific tertiary structure). Without Na+, such driving force 

did not exist and thus guanosine cannot bind. However, such binding pocket cannot be 

folded in ΔG16 by Na+ alone. Guanosine was required to be present (Figure 3.3). 

 

Figure 3.3 Cooperative binding of Na+ and guanosine in the G-excised Na+-aptamer. 

3.2.4 Adenosine specifically binds to the A10-excised Na+-aptamer 

On the same Ce13d scaffold, we also tested the binding of adenosine. A8, A9, A10 

were respectively excised in the same way as indicated in Figure 3.2A, and ΔA8, ΔA9 
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and ΔA10 were obtained. The secondary structure of the ΔA10 is shown in Figure 3.4A 

as an example. 

By using the ThT assays, about 32% fluorescence decrease was observed for ΔA10 

when 2 mM adenosine was added (Figure 3.4B), whereas that drop for ΔA8 and ΔA9 

was much smaller (only ~6-10%, Figure 3.4C). Therefore, ΔA10 might be able to bind 

adenosine. We then tested the specificity of ΔA10 by adding guanosine, cytidine, 

thymidine, AMP, and ATP (Figure 3.4D), and none of them showed more than 10% 

signal change. The effect of metal ions on adenosine was also investigated (Figure 3.4E), 

and the binding of adenosine occurred also only in the presence of Na+. 

In the A-excised aptamers, ΔA10 needed the help of adenosine to support its 

specific Na+ binding as well (Figure 3.4F). Our previous study revealed that the A10 is 

a conserved base and cannot be mutated. Taken together with the highly conserved G16 

and the specific guanosine binding of the G16-excised aptamer, we reason the optimal 

excision sites are also important for Na+ recognition. 

 

Figure 3.4 (A) The secondary structure of the A10, and the excised adenine is shown 

in green. (B) The fluorescence spectra of 200 nM A10 without and with 2 mM 

adenosine in buffer containing 100 mM NaCl and 10 µM ThT. The fluorescence change 
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of (C) the three A-excised Na+-aptamers after adding adenosine, (D) A10 selectivity, 

and (E) the effect of metal ions on adenosine binding for A10. (F) The F(Li+)/F(Na+) 

of 200 nM of the full-length Ce13d, ΔA10, ΔA9, ΔA8 and random DNA in 100 mM 

LiCl or NaCl without and with 2 mM adenosine. 

3.2.5 Probing binding using a covalent 2AP label 

The above binding assays were performed using ThT staining. We wanted to have 

an independent verification to further confirm our observations. For this purpose, the 

rA on substrate strand was replaced by a deoxy-2-aminopurine (2AP) (Figure 3.5A). 

2AP is a fluorescent adenine analog sensitive to its base stacking environment with the 

nearby nucleotides. Increasing stacking decreases the 2AP fluorescence.160 Based on 

our previous findings, the A10C and T20A double mutant (called Ce13p, Figure 3.5B) 

had a high response to Na+ binding.151 Here, we used Ce13p, and its G16 was excised 

(Figure 3.5C). To distinguish it from ΔG16 which was from the circular Ce13d scaffold, 

this one was named ΔG16p. 

First, we confirmed that the full-length Ce13p only responded to Na+ (Figure 3.5D) 

but not to Li+ (Figure 3.5E). Upon Na+ binding, the fluorescence of 2AP increased 2.5-

fold, indicating relaxation on the 2AP base stacking (Figure 3.5F).151 Interestingly, in 

ΔG16p, we found an opposite trend. Na+ and guanosine together induced about 30% 

fluorescence decrease (instead of increase, Figure 3.5G), whereas Na+ alone or Li+ and 

guanosine mixture (Figure 3.5H) cannot bring in an obvious fluorescence change. 

Therefore, Na+ and guanosine need to be present simultaneously.  

We noticed that the initial fluorescence of the Ce13p and ΔG16p in the absence of 

Na+ were quite different (Figure 3.5I). After excising G16, the fluorescence of 2AP 

increased about 1.4 times, indicating that this deletion relaxed the 2AP region (right 

inset in Figure 3.5I), which was understandable since the overall structure should be 

floppier after the excision. We reasoned that the binding of Na+ and guanosine in 
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ΔG16p reconstructed the original binding pocket, although it probably cannot fold the 

aptamer to the Ce13p status at the 2AP site (Figure 3.5J). 

Selectivity tests were also performed in the 2AP-modified ΔG16p. Na+ showed 3-

fold or more fluorescence decrease than the other metal ions (Figure 3.5K), and only 

guanosine was able to work with Na+ to achieve the fluorescence increase (Figure 3.5L). 

Therefore, this 2AP assay also indicated specific binding of guanosine in the presence 

of Na+. 

 

Figure 3.5 (A) The structures of adenine and 2AP. The secondary structures of 2AP-

modified (B) Ce13p and (C) ΔG16p. The fluorescence spectra of Ce13p (1 µM 2AP-

substrate strand and 2 µM enzyme strand) with (D) 100 mM Na+ and (E) 100 mM Li+ 

in buffer (50 mM HEPES, pH 7.6 adjusted using LiOH). (F) Schematics of the 2AP 
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fluorescence change of the Ce13p upon Na+ binding. The fluorescence spectra of 

ΔG16p (1 µM 2AP-substrate strand and 2 µM each split enzyme strand) with (G) 100 

mM Na+ and (H) 100 mM Li+, also with 2 mM guanosine. (I) The initial fluorescence 

of the 2AP-labeled Ce13p and ΔG16p without Na+ or guanosine. Inset: schematic 

folding status of the Na+ aptamers in Ce13p and ΔG16p. (K) The effect of metal ions 

(100 mM of each) on 2 mM guanosine binding for ΔG16p. (L) The fluorescent decrease 

of ΔG16p binding to 2 mM nucleosides or nucleotides, in the presence of 100 mM NaCl. 

(J) Schematics of the 2AP fluorescence change of G16p upon Na+ and guanosine 

binding. 

3.2.6 The adenosine aptamer scaffold can also detect both adenosine and guanosine 

To investigate the generality of guanosine sensing using the base-excision method, 

the adenosine aptamer was tested as an alternative scaffold. The secondary structure of 

the wild-type adenosine aptamer is shown in Figure 3.6A (left), in which the red A 

stands for adenosine, AMP or ATP. The four guanines (i.e. G8, G9, G18 and G19) 

around the target binding site played different roles in adenosine recognition (including 

forming G•A mismatches and G•G mismatches).89 We individually excised these four 

G nucleotides for specific guanosine recognition. To simplify the binding model, first 

we removed the left binding pocket to generate an one-site aptamer (middle sequence, 

Figure 3.6A).92 We then sealed the two ends by adding a small loop, which was then 

used for base excision. For example, G19 was deleted in the right panel of Figure 3.6A. 

The other three guanines were excised in same way. The G19, G18, G9 and G8-excised 

sequences were named as ΔG19’, ΔG18’, ΔG9’ and ΔG8’, respectively. 

SGI was used for the binding assays in this part.115, 116, 161 Figure 3.6B shows that 

adding adenosine and guanosine together dropped the fluorescence by ~38% for ΔG19’, 

whereas adenosine or guanosine alone could not drop the signal, indicating that they 

needed to work together to fold the aptamer. In contrast, when adenosine and guanosine 

were both added, no fluorescence change occurred in the ΔG18’, ΔG9’ or ΔG8’ (Figure 



52 

 

3.6C). Likely G19 in this aptamer is most critical for target binding. Apart from 

guanosine, other analogues like cytidine, thymidine, GMP and GTP all failed to bring 

a signal change in ΔG19’ (Figure 3.6D). Thus, a single phosphate can be distinguished 

in the adenosine aptamer scaffold as well. 

It is known that G8, G9, G18, G19 and A10 are all highly conserved, and any 

mutation to them can abolish aptamer binding.4 Our previous study found that the A10-

excised aptamer can specifically recognize adenosine.11 Taken together the G19-

excised aptamer here, and the two more from the Na+-aptamer, highly conserved 

purines are more likely to be the optimal excision sites than the non-conserved ones, 

although not all conserved sites would work. A screening assay is needed to identify 

best excision sites. 

 

Figure 3.6 (A) The secondary structures of the wild-type adenosine aptamer, the 

engineered one-site aptamer, and the G19-excised aptamer. (B) The fluorescence 

spectra of 50 nM ΔG19’ incubated with 2 mM adenosine, guanosine, and their mixture 

in buffer (50 mM HEPES, pH 7.6), with 100 mM NaCl and 5 mM MgCl2. 50 nM SGI 

was used to stain the DNA. The fluorescence intensity of (C) 50 nM various G-excised 

aptamers mixed with 2 mM adenosine and 0 or 2 mM guanosine, and (D) 50 nM ΔG19’ 

mixed with 2 mM adenosine (as background) and 2 mM guanosine, adenosine, cytidine, 

thymidine, GMP or GTP. 
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3.2.7 Comparing aptamer and G-quadruplex scaffolds 

To the best of our knowledge, SELEX-derived guanosine DNA aptamers have not 

yet been reported. Recently, a few vacancy-bearing G-quadruplexes were found to bind 

guanosine and induce the formation of G-quadruplexes.10, 42, 162 For example, a defect 

G-quadruplex (named MYOG-3332) was characterized to be in a parallel conformation 

by Tan et al (Figure 3.7A), in which the top layer bears a guanosine binding pocket.10 

A major difference of our design and our base excision design is that we have a break 

at the intended guanosine binding site and the break generates new termini, while the 

G-quadruplex scaffolds were continuous at the binding site. Nevertheless, it is still an 

interesting comparison for these two ideas of detecting the removed base. 

We used this MYOG-3332 sequence to compare with our base excised aptamers. 

ThT was used to probe the G-quadruplex formation.155 With 100 mM LiCl added, a 

strong fluorescence was observed, while 100 mM KCl had only about 20% of the 

intensity (Figure 3.7B). Since the G-quadruplex formation needed the help of K+, the 

lower fluorescence in K+ can be explained by its folding to a G-quadruplex. Upon 

adding 2 mM guanosine (orange curve, Figure 3.7C), the fluorescence further dropped 

by 30%, demonstrating stabilization of the full G-quadruplex. 

To compare specificity, we then incubated MYOG-3332 with adenosine, cytidine, 

thymidine, GMP or GTP (Figure 3.7D). Although A, C and U had almost no 

fluorescence change, GMP and GTP induced a change comparable to guanosine. 

Therefore, all guanine-bearing molecules can be accommodated by the vacancy 

through forming the G-quartet via the lock-and-key mechanism (e.g. the quadruplex 

structure already formed even without the free guanosine).10 In contrast, our G-excised 

adenosine aptamer and Na+-aptamer exhibited the additional ability to distinguish a 

single phosphate, probably because the aptamer binding involved adaptive 

recognition,163 thus more close to “induced-fitting” complementary. Using our method, 

the apparent Kd values of the MYOG-3332 binding guanosine and GMP were 0.79 mM 
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and 1.31 mM, respectively (Figure 3.7E). Therefore, the guanosine binding affinity of 

the MYOG-3332 was comparable with our G16-excised Na+-aptamer.  

 

Figure 3.7 (A) A scheme of guanosine filling in a vacancy-bearing G-quadruplex 

(named MYOG-3332). The fluorescence spectra of (B) 200 nM MYOG-3332 with 100 

mM KCl or LiCl in buffer (50 mM HEPES, pH 7.6 adjusted using LiOH), and (C) 200 

nM MYOG-3332 with guanosine or K+ alone and with their mixture. 10 µM ThT was 

used to stain the DNA. (D) The bar plot of 200 nM MYOG-3332 with 2 mM guanosine, 

adenosine, cytidine, thymidine, GMP or GTP, with 100 mM KCl added. (E) Guanosine 

and GMP titrations (0.65 to 2.5 mM) to 200 nM MYOG-3332. The Kd was fitted by the 

one site binding equation. 

3.2.8 Additional discussion 

In this work, we used the sodium and adenosine binding aptamers as scaffolds for 

base excision and guanosine binding. In each example, only one optimal site worked. 
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Therefore, whether any given aptamer can be used for base excision or not has to be 

individually tested. In general, the aptamer should bind its target with a well-defined 

three-dimensional structure and contain important guanines involved in target binding. 

We previously excised an adenine from a duplex region but that did not allow rebinding 

of adenosine.11 Therefore, not all DNA structures can be used either.  

3.2.9 Sensing guanosine in serum 

The above studies were all carried out in clean buffers. When extending the 

application of base-excised aptamers to real samples, the matrix effect may appear.164-

166 To investigate the application of our G16-excised Na+-aptamer, we tested it in 5% 

fetal bovine serum (FBS). Figure 3.8A showed that ~30% ThT fluorescence decrease 

was observed in 2 mM guanosine, comparable to the ~35% fluorescence decrease in 

the buffer. Then, guanosine (0.35~2.5 mM) was titrated to the DNA in 5% FBS (Figure 

3.8B), generating a Kd at 0.93 mM. A detection limit of 0.32 mM guanosine was 

obtained, which was comparable to the detection limit at 0.28 mM in clean buffer 

(Figure 3.8C). Therefore, in 5% FBS, the Na+-aptamer was still quite robust. 

 

Figure 3.8 (A) The fluorescence spectra of 200 nM G16 DNA without and with 2 

mM guanosine in 5% FBS (diluted in 50 mM HEPES, pH 7.6, with 100 mM NaCl). (B) 

Titrating various concentrations of guanosine (0.35~2.5 mM) to 200 nM G16 Na+-

aptamer in 5% FBS. 10 µM ThT was used to stain the DNA. (C) Linear fitting for 

titrating guanosine (0.35 to 1.26 mM) into the ΔG16 Na+-aptamer in buffer (50 mM 

HEPES, pH 7.6) and 5% FBS (diluted in same buffer) with 100 mM NaCl. 10 µM ThT 
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was added to stain the DNA. The limit of detection was calculated based on the equation 

of 3σ/k (σ is the relative standard deviation and k is the slope of the fitted equation). 

3.3 Summary 

In summary, we have reported highly selective guanosine binding aptamers 

without performing new aptamer selections. Simply by using the base-excision strategy, 

a Na+-specific aptamer and an adenosine binding aptamer were employed as scaffolds. 

A total of 10 base-excised DNA sequences were studied. Out of these, two optimal 

sequences were obtained and they only bind guanosine but not GMP or GTP. Combined 

with previous biochemical studies, highly conserved purines are more likely to be the 

optimal positions for excision to obtain binding pockets for specific recognition of 

purine nucleoside. Previous aptamer selection attempts for guanosine has not resulted 

in high quality DNA aptamers. The binding sites in our aptamers brought the ends of a 

DNA strand together, which is very difficult to realize in conventional aptamer 

selection. Other aptamer engineering strategies such as removal of a G base without 

breaking the strand did not results in exquisite binding of guanosine, since GMP and 

GTP could also bind. This work provides a useful strategy for engineering guanosine-

binding sequences based on existing aptamers. 
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Chapter 4 Incorporation of boronic acid into aptamer-based 

molecular imprinting hydrogels for highly specific recognition of 

adenosine 

The results presented in this chapter have been published as: 

Yuqing Li, Zijie Zhang, Biwu Liu, Juewen Liu, Incorporation of boronic acid into aptamer-

based molecularly imprinted hydrogels for highly specific recognition of adenosine, ACS 

Applied Bio Materials, 2020, 3, 2568-2576. 

4.1 Introduction 

Molecular recognition is critical for sensing, separation, and targeted 

therapeutics.167-171 Antibodies172, 173 and aptamers92, 163, 174 are specific biopolymers that 

can bind target molecules with high affinity and specificity. However, they have a high 

cost and relatively low stability. Molecularly imprinted polymers (MIPs) are prepared 

by polymerizing various monomers and crosslinkers around a template molecule. After 

removing the template, the resulting cavities allow specific rebinding of the target.175-

177 MIPs are highly stable and cost-effective, but their binding affinity and specificity 

are often lower compared to aptamers or antibodies.178-180  

We are interested in combining these two strategies through the incorporation of 

biological receptors into MIPs to maximize their advantages.63 DNA aptamers are 

oligonucleotide-based ligands,181, 182 which are more stable than antibodies. DNA-

containing MIPs have been reported in a few cases. For example, Spivak et al. used 

full-length aptamers to imprint thrombin as well as a virus.64, 183 Bowen et al. designed 

an aptamer-MIP receptor to detect prostate-specific antigens with a limit of detection 

of 1 pg/mL.184 Liu et al. incorporated a glycoprotein aptamer into polydopamine to 

recognize alkaline phosphatase.185 Our group recently split a DNA aptamer into two 

halves, and found that such aptamer fragments were also able to act as macromonomers 
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to specifically recognize adenosine.111 Recently, through molecular imprinting, we 

achieved specificity for a DNAzyme with peroxidase-like activity.186, 187 An advantage 

of synthetic polymers is the availability of a wide variety of monomers. By rational 

choice of monomers, we may enhance aptamer performance via imprinting.  

Adenosine is an important model molecule in the aptamer field. The adenosine 

aptamer can nicely distinguish adenosine (A) from the three other ribonucleosides (G, 

U, and C), but cannot distinguish adenosine from deoxyadenosine (only differ by a -

OH).4 At the same time, it cannot distinguish adenosine from AMP or ATP either. 

Efforts have been made in selecting new aptamers for improved discrimination of the 

phosphate part in these molecules,8, 96, 98 but distinguishing adenosine and 

deoxyadenosine has yet to be demonstrated. Adenosine and deoxyadenosine regulate 

transfer of different genetic information and take part in various cellular processes. 

Abnormal levels of adenosine indicate unbalanced physiological functions of the heart 

and brain, and improper regulation of oxygen supply for cell stress. Therefore, selective 

detection of adenosine from deoxyadenosine helps monitor physiological activities and 

diagnose the related diseases.123, 188 

Given that adenosine has a cis-diol moiety, which is not present in deoxyadenosine, 

boronic acid might be useful for its discrimination.189-192 To date, boronate-affinity 

imprinting materials have been widely used in recognizing glycoproteins, glycans, 

saccharides, and nucleotides.193-196 All of these works took advantage of boronic acid’s 

ability to bind cis-diol covalently yet reversibly. Recently, we found that the boronic 

acid moiety could non-covalently interact with DNA through hydrogen bonding and 

hydrophobic attractions.197 In this work, we took advantage of both the non-covalent 

and covalent binding properties of boronic acid and copolymerized it with the 

adenosine aptamer to prepare MIPs for enhanced molecular recognition with better 

selectivity.  
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4.2 Materials and Methods 

4.2.1Chemicals 

The DNA samples were purchased from Integrated DNA Technologies (Coralville, 

IA).  3-Acrylamidophenylboronic acid (AAPBA), acrylamide (AAm), N-

isopropylacrylamide (NIPAm), N,N′-methylenebis(acrylamide) (BIS), N-[3-

(dimethylamino)propyl]methacrylamide (DMPA), SYBR Green I (SGI), fetal bovine 

serum (FBS) and sodium dodecyl sulfate (SDS) were purchased from Sigma-Aldrich. 

Ammonium persulfate (APS) and N, N, N′, N′-tetramethylethylenediamine (TEMED) 

were from VWR. Sodium chloride, magnesium chloride, sodium acetate, 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 2-(N-morpholino)-

ethanesulfonic acid (MES), adenosine, and deoxyadenosine were from Mandel 

Scientific (Guelph, Ontario, Canada). All the buffers were prepared in Milli-Q water, 

and the FBS was diluted in HEPES buffers. 

4.2.2 Preparation of imprinted and non-imprinted nanogels 

The nanogels were prepared following our previous method with minor 

modifications.111, 198, 199 Typically, the template adenosine (1 mM) was first incubated 

with the aptamer (20 µM) for 1 h. Then AAPBA (7.17 mM), NIPAm (19 mM), AAm 

(14 mM), BIS (16 mM), and DMPA (0.6 µL) were added in buffer A (20 mM HEPES, 

pH 7.6, 100 mM NaCl, 5 mM MgCl2, 1 mL), and the sample was purged with N2 for 1 

h. After that, the mixture was stored for 6 h in a 4 °C fridge to form pre-polymerization 

complexes. Afterwards, SDS (0.8 mg), APS (0.6 mg), and TEMED (0.3 µL) were added 

to initiate the reaction. After 16 h, the obtained MIPs were collected by centrifugation 

at 15000 rpm for 10 min, followed by extensively washing them with methanol/acetic 

acid (90/10, v/v) and Milli-Q water until no adenosine residue appeared in the washing 

solution. This was confirmed by UV-vis spectroscopy (Agilent 8453A) at 260 nm. 

Finally, the gels were freeze-dried for further use. The non-molecularly imprinted 

polymers (NIPs) were prepared in the same way, except no adenosine was added. 



60 

 

4.2.3 Isothermal titration calorimetry (ITC) 

ITC was performed using a VP-ITC microcalorimeter instrument (MicroCal). All 

solutions were degassed in ultrasonication for 10 min prior to measurements. The gel 

solutions (1 mg/mL), or free aptamer (10 µM) in buffer A was loaded in a 1.45 mL cell 

at 25 °C. The adenosine, deoxyadenosine, or cytidine (5 mM for gels and 1 mM for free 

aptamer) solutions in the same buffer was loaded in a 280 µL syringe. After the first 

injection of 2 µL, the syringe titrated 10 µL of the target into the cell each time. Through 

measuring the heat changes and fitting the titration curves to a one-site binding model, 

the enthalpy change (ΔH) and the association constant (Ka) were obtained. The 

dissociation constant (Kd) and ΔG were calculated by 1/Ka and ΔG =  ̶RTln(Ka), 

respectively. The ΔS was calculated from ΔG = ΔH – TΔS. The molar ratio in the ITC 

data was calculated based on ligand/aptamer concentration or binding site concentration 

in gels. Both the aptamer and AAPBA were calculated in binding sites. 

4.2.4 SGI fluorescence spectroscopy 

To study the optimal staining ratio, different concentrations of SGI (2.5-50 nM) 

were gradually added into 1 mg/mL aptamer-MIP (contained about 2 µM aptamer) in 

buffer A (with or without additional 1 mM adenosine), and the fluorescence intensities 

were compared. Using the optimized condition (7.5 nM SGI), the response of aptamer-

MIP (1 mg/mL) towards 1 mM adenosine, deoxyadenosine, adenosine/deoxyadenosine 

mixture, cytidine, guanosine, thymidine and glucose was respectively tested in buffer 

A. 

4.2.5 TEM and DLS 

The hydrodynamic size of gels were measured by dynamic light scattering (DLS) 

on a Zetasizer Nano ZS90 (Malvern) at 25 °C. 50 µg/mL of the gel particles were 

dispersed in buffer A. The morphology and the size of the gels were measured by 

transmission electron microscopy (TEM, Philips CM 10). 200 µg/mL gels were drop-

case onto a copper grid and dried overnight at room temperature before imaging. 
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4.3 Results and Discussion 

4.3.1 Free aptamer binding adenosine, deoxyadenosine, and cytidine 

The DNA aptamer for adenosine4 is a well-studied system often used in analytical 

applications.200 The original aptamer consists of 27 nucleotides with two target binding 

pockets (Figure 4.1A). It can bind to a number of adenine derivatives, such as adenosine, 

deoxyadenosine, AMP and ATP. Before studying the imprinted gels, we first used ITC 

to quantitatively measure the binding of the free aptamer. ITC is a label-free technique 

that can provide rich thermodynamic information, such as the association constant (Ka), 

enthalpy change (ΔH), entropy change (ΔS), free energy change (ΔG), and binding 

stoichiometry (N).92, 118-120 Figure 4.1C is a typical ITC trace of gradually titrating 

adenosine into the free aptamer. The released heat during binding is indicated by the 

downward spikes in the upper panel of the figure, and the ΔH is recorded as a titration 

curve in the lower panel. Through fitting the titration curve, the Ka can be obtained.   
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Figure 4.1 (A) The secondary structure of the adenosine aptamer. Each aptamer can 

bind two adenosine molecules (A in burgundy colored). (B) Chemical structures of 

adenosine, deoxyadenosine (a different sugar ring), and cytidine (a different base). (C) 

ITC traces and integrated heat for 10 µM aptamer titrated by 1 mM adenosine at pH 7.6 

(20 mM HEPES, with 100 mM NaCl, and 5 mM MgCl2). Comparison of the titration 

curves for aptamer binding with adenosine, deoxyadenosine, and cytidine at (D) pH 7.6, 

and (E) pH 6.4 (20 mM MES). (F) The Ka of the free aptamer binding with adenosine 

and deoxyadenosine at pH 7.6 and 6.4. Cytidine data are not plotted here since it’s 

binding cannot be detected by ITC. Error bars mean standard deviation from at least 2 

independent measurements. 
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First, we titrated the aptamer with adenosine, deoxyadenosine, and cytidine 

(chemical structures in Figure 4.1B) at pH 7.6 and 6.4, respectively. These two pH 

conditions were chosen for testing both the aptamer, and boronic acid (vide infra). 

Figure 4.1D and 4.1E are their titration curves, showing that the aptamer can bind to 

adenosine and deoxyadenosine similarly at these two pH conditions, with a Ka at 10.1 

± 0.9 104 M-1 and 9.4 ± 0.8 104 M-1 respectively (for adenosine, Figure 4.1F), 

whereas cytidine had no binding at either pH as expected. The Kd of binding adenosine 

was calculated from 1/Ka to be around 9.9 µM. In the original paper for selecting this 

aptamer, its Kd for adenosine was 6 ± 3 µM based on analytical ultrafiltration.4 By using 

different methods, the Kd can vary.201 For example, electrospray ionization mass 

spectrometry (ESI-MS) generated a Kd of 5.3 ± 0.6 µM,202 and equilibrated capillary 

electrophoresis (CE) measured a Kd at 2.4 ± 0.4 µM.203 Our value obtained from ITC 

was comparable with these reported values. The thermodynamic data obtained from 

ITC for the free aptamer are summarized in Table 4.1. 

Table 4.1. Thermodynamic data for the free adenosine aptamer binding to various 

ligands (adenosine, deoxyadenosine, and cytidine) at pH 7.6 and 6.4. 

Ligand Aptamer  Ka (×104 

M-1) 

ΔG (kcal 

mol-1) 

ΔH (kcal 

mol-1) 

ΔS (cal K-

1 mol-1) 

Adenosines 

Free aptamer 

(pH7.6) 
10.1 ± 0.9 -6.8 ± 0.8 -8.5 ± 0.8 -5.6 

Free aptamer 

(pH6.4) 
9.4 ± 0.8 -6.7 ± 0.6 -2.6 ± 0.6 13.7 

Deoxyadenosine 

Free aptamer 

(pH7.6) 
9.2 ± 0.9 -6.8 ± 0.5 -5.0 ± 0.5 6.1 

Free aptamer 

(pH6.4) 
8.5 ± 1.0 -6.7 ± 0.4 -2.8 ± 0.4 13.3 
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Cytidine 

Free aptamer 

(pH7.6) 
--a    

Free aptamer 

(pH6.4) 
--a    

a Binding was extremely weak or cannot be obtained by ITC. 

4.3.2 Binding by boronic acid containing hydrogels (no aptamer) 

Since the aptamer cannot distinguish adenosine from deoxyadenosine, and boronic 

acid can capture cis-diols,204, 205 we expected that introducing a boronic acid may bring 

in additional molecular recognition chemistry to help the aptamer. Although boronic 

acid is likely to distinguish adenosine from deoxyadenosine, it alone is unlikely to tell 

adenosine apart from other ribonucleosides such as cytidine.206 Thus, it might be 

necessary to combine boronic acid and the aptamer to form hybrid materials. Before 

combining them, we prepared hydrogel nanoparticles that only contained a boronic acid 

monomer (without the aptamer) to check its binding. In addition to 3-

acrylamidophenylboronic acid (AAPBA) as a functional monomer to target adenosine 

(water-soluble), NIPAm and AAm were also added as monomers to build a hydrogel 

(Figure 4.2A).  
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Figure 4.2 (A) Chemical structures of AAPBA, NIPAm, and AAm. (B) A scheme of a 

boronic acid-functionalized hydrogel binding adenosine. The ITC curves of titrating (C) 

5 mM adenosine and deoxyadenosine into 1 mg/mL boronic acid-hydrogels at pH 7.6 

(20 mM HEPES, 100 mM NaCl, and 5 mM MgCl2); (D) 5 mM adenosine into 1 mg/mL 

boronic acid-hydrogels at pH 7.6 and 6.4 (20 mM MES, 100 mM NaCl and 5 mM 

MgCl2). For each 1 mg/mL boronic acid-hydrogels, it contained around 200 µM 

AAPBA. 

 

For the boronic acid moiety in AAPBA, its most effective pH range for binding to 

cis-diols was pH = pKa ± 1 (AAPBA has a pKa ~ 8.2). Therefore, we checked the 

binding at pH 7.6 first. Figure 4.2C confirmed its binding to adenosine (Ka = 1.0 ± 0.1 

104 M-1, in Table 4.2), while it failed to bind deoxyadenosine. This indicated that the 

boronate/cis-diol chemistry was responsible for the binding of adenosine (Figure 4.2B). 

The hydrogel also bound cytidine with a Ka at 0.9 ± 0.1 104 M-1 (Table 4.2), as cytidine 

also has a cis-diol. 

We then dropped the pH to 6.4 (Figure 4.2D), which was outside the optimal pH 

range of AAPBA, and the adenosine binding was largely lost (green line). Although a 
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more acidic condition could further inhibit cis-diol binding by AAPBA, since the 

aptamer preferred to work near neutral pH, no further lowering of pH was tested.  

Table 4.2 Thermodynamic data for AAPBA-hydrogels binding adenosine, 

deoxyadenosine and cytidine. 

Ligand Hydrogels Ka (×104 

M-1) 

ΔG (kcal 

mol-1) 

ΔH (kcal 

mol-1) 

ΔS (cal K-

1 mol-1) 

Adenosine 

AAPBA-hydrogel 

(pH7.6) 
1.0 ± 0.1 -5.4 ± 0.1 -2.1 ± 0.1 11.3 

AAPBA-hydrogel 

(pH6.4) 

--a    

Deoxyadenosine 
AAPBA-hydrogel 

(pH7.6) 
--a    

Cytidine 
AAPBA-hydrogel 

(pH7.6) 
0.9 ± 0.1 -5.3 ± 0.1 -0.9 ± 0.1 14.7 

a Binding was extremely weak or cannot be obtained by ITC. 

4.3.3 Aptamer-MIPs can distinguish adenosine from deoxyadenosine 

So far, we know that the aptamer alone can distinguish the base part, while boronic 

acid can distinguish the sugar rings. The question then is if we can selectively recognize 

both parts by using the aptamer and boronic acid together. To test this, we first 

incorporated 8.33 mM AAPBA and 20 µM aptamer to prepare the imprinted gels, 

denoted as aptamer-MIPs. We chose to use 20 µM aptamer based on our previous work 

of preparing the aptamer-contain hydrogels,111 and 8.33 mM AAPBA.197 The number 

of boronic acid moieties was far more than that of the aptamer since its binding affinity 

was lower and a higher concentration was needed to achieve saturated binding (vide 

infra).  
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To create shape-complementary binding pockets in MIPs, the acrydite-modified 

aptamer, AAPBA and the other monomers were incubated with adenosine for 6 h before 

initiating the polymerization reaction. Afterwards, the imprinted adenosine was 

removed by extensive washing to generate the binding pockets (Figure 4.3A). For 

comparison, non-imprinted polymers (NIPs) were prepared in the same way, except no 

adenosine was added during polymerization. The hydrodynamic sizes of the gels were 

measured by DLS to be around 400 nm (Figure 4.3B). From TEM, their size was 

between 300 and 400 nm (Figure 4.3C). The gels measured by DLS were fully swelled, 

but the TEM samples were dried and appeared slightly smaller. These experiments 

confirmed that we have successfully prepared hydrogel nanoparticles. 

For each 1 mg/mL aptamer-MIP used for ITC titrations, it contained around 200 

µM AAPBA, and 2 µM aptamer (calculated based on UV-vis and SYBR Green I 

stained fluorescence spectroscopy). To our surprise, this MIP fully distinguished 

adenosine from deoxyadenosine (Figure 4.3D), despite that the aptamer was present in 

the gel. The respective Ka values for adenosine and deoxyadenosine were 3.3 ± 0.3 104 

and 0.03 ± 0.01 104 M-1, respectively (Table 4.3). To evaluate whether an Ka is reliable, 

it must be satisfied by the relationship of 0.1<Ka[M]T<1000, where [M]T is the total 

concentration of the titrated molecules.115 In our case, when titrating 5 mM ligands into 

gels, the reliable Ka should fall between 0.002 104 M-1 and 20 104 M-1. Thus, a Ka 

larger than 20 M-1 was still measurable (e.g. the above Ka of deoxyadenosine of ~30 M-

1 is still an acceptable value).  

To evaluate the specificity of the MIP, we calculated the 

Ka(adenosine)/Ka(deoxyadenosine). The ratio for the aptamer-MIP gels reached 110. 

Yet for the free aptamer (no imprinting), the ratio was just 1.07 (calculation based on 

Table 4.1), indicating that the incorporation of AAPBA into the aptamer-containing 

hydrogels improved specificity by around 100-fold. The very weak binding of 

deoxyadenosine implied that the aptamer might be inhibited by the gel matrix. 



68 

 

Therefore, whether adenosine was bound by the gel matrix (e.g. the boronic acid), or 

by the aptamer, or both, has yet to be determined.  

 

Figure 4.3 (A) A scheme for preparing aptamer-MIPs (containing AAPBA). (B) The 

hydrodynamic size of the aptamer-MIPs (50 µg/mL, dispersed in 20 mM HEPES, pH 

7.6, 100 mM NaCl, 5 mM MgCl2). (C) A TEM micrograph of the aptamer-MIPs. (D) 

The ITC curves of gradually titrating adenosine and deoxyadenosine (5 mM) into the 

aptamer-MIPs (1 mg/mL, containing 200 µM AAPBA and 2 µM aptamer) at pH 7.6 

(20 mM HEPES, 100 mM NaCl, and 5 mM MgCl2). (E) The Ka of the aptamer-MIPs 

(with 0.42, 0.64, 0.83, and 8.33 mM AAPBA during preparation of the gel) for 

adenosine and deoxyadenosine at pH 7.6. 
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Table 4.3. Effect of AAPBA concentration on aptamer-MIPs binding to adenosine and 

deoxyadenosine at pH 7.6. The incorporation of AAPBA enhanced binding specificity 

to adenosine. 

Ligand Aptamer-MIPs Ka (×104 

M-1) 

ΔG (kcal 

mol-1) 

ΔH (kcal 

mol-1) 

ΔS (cal 

K-1 

mol-1) 

Adenosine 

Aptamer-MIP with 

0.42 mM AAPBA  

5.3 ± 0.4 -6.1 ± 0.2 -0.7 ± 0.2 18.0 

Aptamer-MIP with 

0.64 mM AAPBA  

4.3 ± 0.1 -5.7 ± 0.1 -0.7 ± 0.1 16.7 

Aptamer-MIP with 

0.83 mM AAPBA  

4.1 ± 0.2 -5.2 ± 0.2 -0.6 ± 0.2 15.6 

Aptamer-MIP with 

8.33 mM AAPBA  
3.3 ± 0.3 -7.1 ± 0.2 -3.0 ± 0.2 13.9 

Aptamer-NIP with 

8.33 mM AAPBA 
0.9 ± 0.2 -4.5 ± 0.2 -2.0 ± 0.2 8.4 

Deoxyadenosine 

Aptamer-MIP with 

0.42 mM AAPBA  

5.0 ± 0.2 -5.8 ± 0.1 -0.5 ± 0.1 17.5 

Aptamer-MIP with 

0.64 mM AAPBA  

3.6 ± 0.1 -5.6 ± 0.1 -0.3 ± 0.1 18.0 

Aptamer-MIP with 

0.83 mM AAPBA  

2.1 ± 0.1 -5.6 ± 0.1 -0.2 ± 0.1 18.2 

Aptamer-MIP with 

8.33 mM AAPBA  

0.03 ± 

0.01a 
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a Binding was extremely weak or cannot be obtained by ITC. 

 

To further confirm that the inhibiting effect of AAPBA, we then decreased its 

concentration from 8.33 mM to 0.83, 0.64, and 0.42 mM during preparation of the MIPs. 

Figure 4.3E (summarized from Table 4.3) show a gradually increased affinity to 

deoxyadenosine with these gels. When only 0.42 mM AAPBA was added, the aptamer-

MIP bound to adenosine and deoxyadenosine with a similar Ka around 5104 M-1, while 

the difference increased with increasing AAPBA concentration. This experiment 

further verified the inhibiting role of AAPBA. 

After imprinting, the binding pockets in the MIP exhibited higher affinity than the 

NIP (0.9 ± 0.2 104 M-1, Table 4.3). The NIP data further confirmed the inhibition role 

of the gel matrix, likely due to the boronic acid interacting with the aptamer.197 By 

comparing the MIP and NIP data (Figure 4.4A), the effect of imprinting was clear. The 

Ka (aptamer-MIP)/Ka (aptamer-NIP) was around 3.67, demonstrating that imprinting 

process created shape-complementary binding pockets for adenosine, and further 

improved the material binding affinity. 

We then removed the AAPBA monomer, and only used the aptamer with 

NIPAAm and AAm to imprint adenosine. In this case, the gel failed to differentiate 

adenosine from deoxyadenosine (Figure 4.4B). Compared to the free aptamer, which 

had a Ka (adenosine)/Ka (deoxyadenosine) of 1.07, the imprinting process only 

improved the ratio to 1.93. This demonstrated that AAPBA was indispensable for 

distinguishing adenosine from deoxyadenosine, and its role might be related to its 

inhibition effect. 
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Figure 4.4 ITC traces and integrated heat for (A) 1 mg/mL Aptamer-MIP or Aptamer-

NIP (both with AAPBA) titrated by 5mM adenosine at pH 7.6. Imprinting process 

doubled the adenosine binding due to more specific binding sites formed in MIP. (B) 1 

mg/mL Aptamer-MIP (without AAPBA) titrated by 5 mM adenosine and 

deoxyadenosine at pH 7.6. The aptamer cannot tell adenosine from deoxyadenosine in 

MIP without the help of AAPBA . 

4.3.4 pH modulated boronic acid function: aptamer achieved higher specificity at acidic 

pH 

The above work focused on distinguishing adenosine from deoxyadenosine. It 

verifies that boronic acid can inhibit the aptamer function, thus an interesting question 

is whether this system can still distinguish adenosine from other ribonucleosides, such 

as cytidine. Figure 4.5A shows obvious cytidine binding from the AAPBA-containing 

aptamer-MIP (red curve). Since cytidine also bears a ribose (structure in Figure 4.1B), 

it is important to decrease the binding between boronic acid and ribose. We lowered 

the pH to 6.4, at which AAPBA largely lost its binding ability while the aptamer could 

still work.  
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To our surprise, at pH 6.4, the aptamer-MIP exhibited better specificity (Figure 

4.5B and 4.5C): only adenosine binding was observed, while the heat for 

deoxyadenosine and cytidine binding was almost ignorable. Binding of adenosine at 

pH 6.4 (Ka = 4.6 ± 0.6 104 M-1) was even stronger than that at pH 7.6 (Ka = 3.3 ± 0.3 

104 M-1) (summarized in Table 4.4). The Ka(adenosine)/Ka(deoxyadenosine) was 115 

and 110 at pH 6.4 and 7.6, respectively. The discrimination against cytidine at pH 6.4 

also reached 230-fold based on Ka(adenosine)/Ka(cytidine). Overall, at pH 6.4, this 

system can tell adenosine apart from both deoxyadenosine and cytidine. 

 

Figure 4.5 The ITC curves of gradually titrating 5 mM adenosine, deoxyadenosine, and 

cytidine into 1 mg/mL aptamer-MIP (containing 2 µM aptamer and 200 µM AAPBA) 

at (A) pH 7.6 (20 mM HEPES), and (B) pH 6.4 (20 mM MES), both also contained 100 

mM NaCl and 5 mM MgCl2. (C) The Ka values for the aptamer-MIP binding to 

adenosine and deoxyadenosine at pH s7.6 and 6.4. 

Table 4.4. Effect of pH on aptamer-MIPs (with AAPBA). At pH 6.4, non-specific 

binding of cytidine was decreased. 

Ligand Aptamer-MIPs Ka (×104 

M-1) 

ΔG (kcal 

mol-1) 

ΔH (kcal 

mol-1) 

ΔS (cal 

K-1 

mol-1) 

Adenosine 

Aptamer-MIP 

with 8.33 mM 

AAPBA (pH7.6) 

3.3 ± 0.3 -7.1 ± 0.2 -3.0 ± 0.2 13.9 



73 

 

Aptamer-MIP 

with 8.33 mM 

AAPBA (pH6.4) 

4.6 ± 0.6 -6.4 ± 0.1 -0.5 ± 0.1 19.6 

Deoxyadenosine 

Aptamer-MIP 

with 8.33 mM 

AAPBA (pH7.6) 

0.03 ± 

0.01a 
   

 

Aptamer-MIP 

with 8.33 mM 

AAPBA (pH6.4) 

0.04 ± 

0.02a 

   

Cytidine 

Aptamer-MIP 

with 8.33 mM 

AAPBA (pH7.6) 

1.0 ± 0.2 -5.3 ± 0.1 -0.4 ± 0.1 16.4 

Aptamer-MIP 

with 8.33 mM 

AAPBA (pH6.4) 

0.02 ± 

0.01a 
   

a Binding was extremely weak or cannot be obtained by ITC. 

4.3.5 Aptamer-MIP binding measured with SYBR Green I 

The aforementioned ITC data indicated that incorporating AAPBA into the 

aptamer-functionalized MIP, hundred-fold specificity improvement was achieved for 

adenosine. Here, we want to use an independent method to study the binding of the 

aptamer moiety in these gels by using a DNA staining dye, SYBR Green I (SGI).206, 207 

First, we fixed the concentration of the gel to be same as that for ITC (1 mg/mL, 

contained about 2 µM aptamer), and the concentration of SGI was optimized to be 7.5 

nM.  
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We then used this method to measure the aptamer-MIP (contained AAPBA) 

binding to adenosine (Figure 4.6A), deoxyadenosine (Figure 4.6B) and their mixture 

(Figure 4.6C) at pH 7.6. These spectra show that the aptamer-MIP only bound to 

adenosine, even if the ligand was in a mixture. Other nucleosides (cytidine, guanosine 

and thymidine) and glucose were also checked (at pH 6.4, Figure 4.6D, and they barely 

showed any binding. This fluorescence result that the aptamer-MIP can exclusively 

bind to adenosine which was pretty consistent with our ITC data. 

 

Figure 4.6 Fluorescence spectra of 1 mg/mL of the aptamer-MIP mixed with (A) 1 mM 

adenosine, (B) 1 mM deoxyadenosine, and (C) 1 mM adenosine and 1 mM 

deoxyadenosine in 20 mM HEPES (pH 7.6) with 7.5 nM SGI. (D) The specificity of 

the aptamer-MIP (in 20 mM MES, pH 6.4). 

4.3.6 Probing the effect of boronic acid on the aptamer 

In this part, we wanted to understand the mechanism of the improved specificity 

for adenosine. Since the aptamer can bind to adenosine and deoxyadenosine with almost 

no difference, and a high concentration of AAPBA was required to achieve high 



75 

 

specificity, we suspected that the mechanism might be through an interaction between 

AAPBA and the aptamer. Our previous study already indicated non-covalent 

interactions between DNA oligonucleotides and boronic acid.197 To test this, we then 

added glucose (containing a cis-diol) to block the boronic acid on AAPBA. In the 

presence of glucose, when titrating deoxyadenosine to aptamer-MIPs (Figure 4.7A and 

Table 4.5), an obvious binding was observed at both pH 7.6 and 6.4. The Ka of binding 

deoxyadenosine recovered to 6.3  104 M-1 and 5.4  104 M-1, respectively. Since 

adenosine also contained a cis-diol, it may play the role of glucose, and the ribose can 

block the boronic acid from the aptamer, and thus activate aptamer binding (Figure 

4.7B). Whereas for deoxyadenosine, it does not have a cis-diol and thus the aptamer is 

more strongly inhibited. At pH 7.6, it is easy to understand that AAPBA can bind to the 

ribose in adenosine, leaving the un-occupied aptamer binding to its base part.  

Another question is why such high specificity can also be achieved at pH 6.4? 

Since glucose still worked for recovering deoxyadenosine binding at pH 6.4, a boronic 

acid-diol binding equilibrium must also exist (Figure 4.7C). AAPBA can start to form 

the covalent bond at ~pH 6.5,189 but the binding was too weak to be detected by ITC. 

We can consider this reversible binding in the time domain, and boronic acid/cis-diol 

binding/unbinding interactions were in dynamic equilibrium. Although the bond could 

not be stable for a long time at pH 6.4, this interaction might be sufficient for breaking 

the non-covalent boronic acid/aptamer interactions. In summary, a slightly acidic pH 

(pH 6.4) was preferred when using an aptamer-MIP to completely distinguish 

adenosine from deoxyadenosine and cytidine. 
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Figure 4.7 (A) ITC traces and integrated heat for 1 mg/mL aptamer-MIP (containing 2 

µM aptamer, with 1 mM glucose) titrated by 5 mM deoxyadenosine at pH 7.6 (20 mM 

HEPES) and 6.4 (20 mM MES), both with an additional 100 mM NaCl and 5 mM 

MgCl2. Schemes of (B) adenosine replacing the boronic acid moiety from an aptamer-

MIP and (C) the covalent bonding between boronic acid and adenosine at pH 6.4. 

Table 4.5 Effect of glucose on aptamer-MIPs (with AAPBA) binding to 

deoxyadenosine at pH 7.6 and pH 6.4. Glucose recovered deoxyadenosine binding at 

both pH conditions. 

Ligand Aptamer-MIPs Ka (×104 

M-1) 

ΔG (kcal 

mol-1) 

ΔH (kcal 

mol-1) 

ΔS (cal K-

1 mol-1) 

Deoxyadenosine 

Aptamer-MIP 

with 8.33 mM 

AAPBA (pH7.6) 

0.03 ± 

0.01a 
   

Aptamer-MIP 

with 8.33 mM 

AAPBA (pH6.4) 

0.04 ± 

0.02a 
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Aptamer-MIP 

with 8.33 mM 

AAPBA 

(+glucose, 

pH7.6) 

6.3 ± 0.9 -6.5 ± 0.1 -0.4 ± 0.1 20.7 

Aptamer-MIP 

with 8.33 mM 

AAPBA 

(+glucose, 

pH6.4) 

5.4 ± 0.8 -6.5 ± 0.1 -0.2 ± 0.1 21 

a Binding was extremely weak or cannot be obtained by ITC. 

 

4.4 Summary 

Adenosine has been a model analyte for developing aptamer-based biosensors for 

many years. While this aptamer has excellent ability to distinguish the base part, it has 

limited specificity when comes to the sugar ring. Aside from its inability to tell 

adenosine apart from AMP and ATP, it can hardly differentiate adenosine from 

deoxyadenosine, which only differ by a –OH group. Through incorporating boronic 

acid with this aptamer in molecularly imprinted polymers (MIPs), a hundred-fold 

higher specificity for adenosine was achieved. The Ka(adenosine)/Ka(deoxyadenosine) 

for the free aptamer was only 1.07, for aptamer-MIP (without boronic acid) just 

increased to 1.93, but it soared to 110 when a boronic acid unit was incorporate in the 

aptamer-MIP at pH 7.6. By lowering the pH to 6.4, the ratio further increased to 115, 

and non-specific boronic acid/diol interactions with other cis-diol containing molecules 

such as cytidine was also inhibited since stable boronic acid/cis-diol interactions only 

took place at high pH (around the pKa of boronic acid). When adding glucose to screen 

the effect of boronic acid, the deoxyadenosine binding was recovered. Therefore, much 
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of the selectivity was from the aptamer binding by the boronic acid moiety 

noncovalently. This work demonstrated an interesting example of using an aptamer 

with MIP to achieve highly specific molecular recognition. 
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Chapter 5. Conjugating unmodified DNA on hydrogel nanoparticles 

and monoliths 

The results presented in this chapter have been published as: 

Yuqing Li, Hang Gao, Zengyao Qi, Zhicheng Huang, Lingzi Ma, Juewen Liu, Freezing-assisted 

conjugation of unmodified diblock DNA to hydrogel nanoparticles and monoliths for DNA and 

Hg2+ sensing, Angewandte Chemie, 2021, 133, 2-9. 

5.1 Introduction 

DNA as a functional polymer has been used in various nanostructures and smart 

soft materials.208-211 Particularly, DNA-based hydrogels have been actively explored 

due to their biocompatibility, programmability, and stimuli-responsive properties 

enabling various applications such as drug delivery, controlled release, and 

biosensing.46, 54, 68, 211, 212 To reduce the cost and introduce other functions in hydrogels, 

DNA is often conjugated with synthetic polymers such as polyacrylamide and poly(N-

isopropylacrylamide) (polyNIPAm).37, 45, 63, 181, 213, 214 

To achieve covalent conjugation, both amino215 and acrydite57, 216, 217  modified 

DNA strands were used. The former strategy is mainly for functionalizing pre-formed 

succinimido-gels and DNA is attached to the gel surface, while the latter is through 

copolymerization allowing a high DNA loading also in the interior (Figure 5.1A). Other 

more sophisticated modifications such as adding a C-5 alkene on 2-deoxyuridine 

residues were also reported.218, 219 While these modified DNA worked well, using 

unmodified DNA is preferred for cost and synthetic considerations. While unmodified 

DNA strands were reported to functionalize gold nanoparticles,34, 220-222 graphene 

oxide,182, 223 and other materials,182, 224 attaching unmodified DNA to hydrogels has yet 

to be demonstrated.  
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In fact, the nucleobases are reactive with hydrogel monomers. For example, DNA 

could form adducts with acrylamide by adding its nitrogen atoms to the β-carbon of the 

acrylamide (known as Michael addition).225-229 DNA is also vulnerable to various 

radicals,230, 231 such as reacting with hydroxyl radicals (•OH) to form adenine-OH 

adducts.232 We reason that such reactions might be exploited for conjugating 

unmodified DNA to hydrogels. Herein, we report that penta-adenine (A5) can serve as 

a conjugation block to graft DNA on acrylamide- and NIPAm-based hydrogels using a 

freezing-mediated gelation method (Figure 5.1B),101 where up to 75% of DNA 

immobilization was achieved in 8 h. Comparisons were made with acrydite-modified 

DNA, and representative applications including the detection of complementary DNA 

(cDNA) and Hg2+ were demonstrated. 

 

Figure 5.1 Schematic illustrations of two strategies for preparing DNA-hydrogel 

conjugates: (A) copolymerizing acrydite-modified DNA during free radical 

polymerization; and (B) reacting an unmodified diblock DNA containing a A5 block to 

form addcuts with polymers such as polyacrylamide and polyNIPAm. 

5.2 Materials and Methods 

5.2.1 Chemicals 

All DNA samples were from Integrated DNA Technologies Inc. (Coralville, IA, 

USA). The DNA sequences and modifications are listed in Table 5.1. Acrylamide, N-
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isopropylacrylamide (NIPAm), N,N’-methylenebis(acrylamide) (BIS), sodium dodecyl 

sulfate (SDS), mercury acetate, copper chloride, zinc chloride, manganese chloride, 

cobalt chloride, lead acetate, magnesium chloride, calcium chloride, silver nitrate and 

iron chloride were purchased from Sigma-Aldrich. Ammonium persulfate (APS) and 

N,N,N′,N′-tetramethylethylenediamine (TEMED) were from VWR. Sodium chloride, 

potassium chloride, lithium chloride, sodium nitrate, sodium carbonate, sodium 

bicarbonate, tris(hydroxymethyl)aminomethane (Tris), 4-(2-hydroxyethyl)piperazine-

1-ethanesulfonate (HEPES), ethylene glycol, ethanol and dimethyl sulfoxide (DMSO) 

were from Mandel Scientific (Guelph, Ontario, Canada). 10000× SYBR Green I (SGI) 

was purchased from Invitrogen (Carlsbad, CA). 

Table 5.1. The DNA sequences and modifications used in this work. 

DNA Names Sequences (from 5 to 3) and modifications 

A5 DNA AAAAA 

A15 DNA AAAAAAAAAAAAAAA 

T15 DNA TTTTTTTTTTTTTTT 

FAM-A5 [FAM]AAAAA 

FAM-A15 [FAM]AAAAAAAAAAAAAAA 

FAM-A30 [FAM]AAAAAAAAAAAAAAAAAAAAAAAAA

AAAAA 

FAM-T5 [FAM]TTTTT 

FAM-T15 [FAM]TTTTTTTTTTTTTTT 

FAM-T30 [FAM]TTTTTTTTTTTTTTTTTTTTTTTTTTTTT

T 

FAM-C5 [FAM]CCCCC 
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FAM-C15 [FAM]CCCCCCCCCCCCCCC 

FAM-C30 [FAM]CCCCCCCCCCCCCCCCCCCCCCCCCCC

CCC 

FAM-G5 [FAM]GGGGG 

FAM-G15 [FAM]GGGGGGGGGGGGGGG 

A5DNA1-FAM AAAAATATGCGGAGGAAGGT[FAM] 

Acryl-T5DNA1-FAM [Acrydite]TTTTT[6FI]TATGCGGAGGAAGGT 

cDNA1 ACCTTCCTCCGCATA 

A5DNA2 AAAAACCCAGGTTCTCTTCACAGATGCGT 

cDNA2 ACGCATCTGTGAAGAGAACCTGGG 

FAM-cDNA2 [FAM]ACGCATCTGTGAAGAGAACCTGGG 

FAM-Control DNA [FAM]GCATATCGCCCCCCCCCCCCGATATG 

A5DNA3 AAAAACTTCTTTCTTCCCCTTGTTTGTTG 

A5DNA4 AAAAACAACAAACAAGGGGAAGAAAGAAG 

cDNA3 CAACAAACAAGGGGAAGAAAGAAG 

cDNA4 CTTCTTTCTTCCCCTTGTTTGTTG 

 

5.2.2 Preparation of DNA-hydrogel conjugates 

First, 100 nM DNA was mixed with 20 mM acrylamide, 20 mM NIPAm and 16 

mM BIS in 1 mL buffer A (20 mM HEPES, pH 7.6, 4% glycerol). The total monomer 

concentration was 56 mM or 0.6% (w/v). The mixture was purged with N2 for 30 min 

to remove oxygen, after which, the sample was placed in an ice bath (~4°C) for 1 h. 
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When it was completely cooled, 20 µL of 60 mg/mL SDS, 20 µL of 10% w/v APS and 

0.6 µL TEMED were added successively. After initiating the polymerization (in ice 

bath, ~1 min), the tube was quickly transferred to a freezer (-20°C), and the reaction 

proceeded overnight (>16 h). After that, the tube was thawed in tap water for ~3 min, 

and the generated hydrogels were vortexed (~1 min) and sonicated (~2 min) to be 

dispersed. Next, 20 mM HEPES (pH 7.6) was used to wash the products for three times 

by centrifugation at 15000 rpm for 10 min. Finally, the gels were dried by vacuum 

centrifugation (Vacufuge, Eppendorf) for further use. 

5.2.3 Quantification of DNA in hydrogel nanoparticles 

To calculate the DNA incorporation percentage in hydrogel nanoparticles, FAM-

labeled DNA was used during gel preparation. After polymerization, the DNA-

hydrogel conjugates were first centrifuged at 15000 rpm for 10 min, and the supernatant 

was collected. After that, 20 mM HEPES was used to wash the pellets for three times 

and each supernatant was collected as well. Next, the four supernatants were 

individually measured by exciting at 485 nm and the emission at 535 nm was recorded 

(Infinite F200 Pro, Tecan). The fourth supernatant had almost no fluorescence. Based 

on the fluorescence of 100 nM free FAM-DNA in 20 mM HEPES (pH 7.6, no additional 

salt), the DNA incorporation (%) in hydrogel conjugates was calculated. 

5.2.4 Gel electrophoresis 

The 6× gel loading buffer (stock) was diluted to 1× in 8 M urea. Then 10 µL of 

the 1× loading buffer was mixed with 10 µL of freshly prepared gel particle solutions 

(containing 100 nM FAM-DNA). 100 nM free FAM-DNA (no gel nanoparticles) was 

used as a control. To quantify the non-covalently attached DNA, the gel nanoparticles 

were not washed. The final DNA concentration for gel electrophoresis was 50 nM (in 

10 mM HEPES, pH 7.6). Next, 8 µL of the mixture was loaded to 15% denaturing 

polyacrylamide gel and ran at 200 V for 30 min. The results were analyzed by a 

ChemDoc MP imaging system (Bio-Rad). 
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5.2.5 Comparing A5 and acrydite-modified DNA 

Fluorophore-labeled DNA with an A5 block or with an acrydite group was used. 

They were named A5DNA1-FAM and Acryl-T5DNA1-FAM, respectively (Table 5.1). 

First, to rule out the influence of other nucleobases, 5 µM A5DNA1-FAM or Acryl-

T5DNA1-FAM was hybridized with 7.5 µM complementary DNA1 (cDNA1) in 20 

mM HEPES and 100 mM NaCl. 20 µL of the duplex was added to 1 mL monomer 

solution containing 20 mM acrylamide, 20 mM NIPAm, 16 mM BIS and 100 mM NaCl 

in buffer A. The final concentration of the A5DNA1-FAM or Acryl-T5DNA1-FAM was 

100 nM. After overnight polymerization at -20°C, the hydrogel nanoparticles 

containing the A5DNA1-FAM or Acryl-T5DNA1-FAM were obtained, and they were 

washed by 20 mM HEPES for three times to remove the unreacted reagents. The DNA 

incorporation (%) was determined by fluorescence spectroscopy as described in part 

5.2.3. 

5.2.6 A5 diblock DNA containing hydrogels for cDNA capturing 

A DNA containing a 24-mer random sequence and an A5 extension, named 

A5DNA2 (Table 5.1), was used. First, 150 µM A5DNA2 was annealed with 300 µM 

24-mer cDNA2 in 20 mM HEPES containing 100 mM NaCl. Then, 20 µL of the duplex 

was added to 1 mL monomer solution containing 20 mM acrylamide, 20 mM NIPAm, 

16 mM BIS and 100 mM NaCl in buffer A. The final concentration of A5DNA2 used 

during polymerization was 3 µM, and the concentration of covalently grafted DNA on 

hydrogel nanoparticles was estimated to be ~1 µM (based on ~35% incorporation 

efficiency indicated in Figure 5.7C). After polymerization, the cDNA2 was removed 

by hot NaOH (0.1 mM, pH 10, 90°C treatment for 1 min). The NaOH treatment was 

performed three times to fully remove the cDNA2, and Milli-Q water was then used to 

further wash the residual NaOH. Finally, the products were dried by vacuum 

centrifugation. To measure the binding of FAM-cDNA2, 20 mg/mL gel nanoparticles 

containing ~500 nM A5DNA2 were incubated with various concentrations of FAM-
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cDNA2 (from 50 pM to 2 µM) for 10 min, and then centrifuged at 15000 rpm for 10 

min. The quantification of bound FAM-cDNA2 was based on the fluorescence change 

in the supernatants. 

5.2.7 Hg2+ detection 

Similar to the experimental procedure in part 5.2.6 that 150 µM A5DNA3 was first 

annealed with 300 µM cDNA3 in 8 mM Tirs-nitrate (pH 8.0, with 150 mM NaNO3). 

Then 20 µL of the duplex was added to 1 mL monomer solution for gel preparation in 

the Tirs-nitrate buffer, with 150 mM NaNO3 and 4% glycerol. After polymerization 

and removing the cDNA3 by hot NaOH (0.1 mM, pH 10), the products were dried by 

vacuum centrifugation. Then, 20 mg/mL A5DNA3 containing hydrogel nanoparticles 

(containing ~500 nM DNA) were incubated with 5 µM Hg2+ in 8 mM Tris-nitrate buffer 

(pH 8.0, with 150 mM NaNO3) for 5 min. Next, 200 nM SGI was added to stain the 

DNA in the hydrogel nanoparticles (excitation at 490 nm and emission at 535 nm). A 

sample without Hg2+ was used as a control, and the selectivity was studied based on 

measuring the binding of 5 µM other metal ions (Zn2+, Co2+, Cu2+, Mn2+, Pb2+, Mg2+, 

Ca2+, Ag+ and Fe3+). 

5.2.8 DNA conjugation and Hg2+ binding in monolithic gels 

First, 50 µM FAM-cDNA2 was annealed with 100 µM A5DNA2 or the same 

sequenced DNA without an A5 block to form a duplex in 20 mM HEPES (containing 

100 mM NaCl). The diblock DNA was added in excess to ensure that all the FAM-

cDNA2 strands were hybridized. Then, 20 µL of the duplex was added to 1 mL 

monomer mixture containing 60 mM acrylamide, 60 mM NIPAm, 48 mM BIS and 100 

mM NaCl in 20 mM HEPES. Note that no glycerol was added in this experiment. After 

incubating the mixture in an ice bath (~4°C) for 1 h, 20 µL of 10% w/v APS and 0.6 

µL TEMED were added successively, followed by quickly transferring 75 µL solution 

to each well of a transparent 96-well plate. The plate was placed in a freezer (-20°C) 

for overnight reaction (>16 h), and the generated monolithic gels were transferred and 
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soaked in 20 mM HEPES (containing 100 mM NaCl) for at least three times to remove 

unincorporated DNA duplex and unreacted chemicals. Each soaking took 3 h in 1.5 mL 

buffer. Since the soaking buffer also contained salt, the FAM-cDNA2 remained 

hybridized with A5DNA2 in the monolithic gels. Finally, the DNA-monolithic gel 

conjugates were examined by a blue light transilluminator with 470 nm excitation and 

by a ChemDoc MP imaging system (Bio-Rad) respectively to verify that the A5 anchor 

must be included for DNA attachment to the gels. 

To study the function of the DNA in the monolithic gel system, the A5DNA3 (i.e. 

the A5 extended T-rich DNA) was used during the gel preparation steps. Specifically, 

20 µL of 150 µM A5DNA3 complex (already hybridized with 300 µM cDNA3) was 

added to 1 mL monomer mixture containing 60 mM acrylamide, 60 mM NIPAm, 48 

mM BIS and 150 mM NaNO3 in 8 mM Tris-nitrate buffer (pH 8.0, with 150 mM 

NaNO3). The total monomer concentration was 168 mM and calculated to be 2% (w/v). 

No glycerol was added. After incubation in ice for 1 h, 20 µL of 10% w/v APS and 0.6 

µL TEMED were added successively. The sample was quickly transferred to a 96-well 

plate by taking 75 µL aliquots. The plate was placed in a freezer (-20°C) for overnight 

reaction. After that, the cDNA3 was removed by hot NaOH treatment (0.1 mM, pH 10, 

90°C) for 1 min and 0.1 mM NaOH soaking for 1 h. This process was repeated five 

times. Milli-Q water was used to further remove the residual NaOH. Then, 5 µM Hg2+ 

was incubated with the DNA-monolithic gel conjugates in 8 mM Tris-nitrate 

(containing 150 mM NaNO3) for 10 min, and 1 µM SGI was used to stain the gels. The 

same sample without Hg2+ was used as a control. Both the blue light transilluminator 

with 470 nm excitation and a ChemDoc MP imaging system (Bio-Rad) were used to 

confirm Hg2+ binding. 

5.2.9 DLS and TEM 

The hydrodynamic size of A5 DNA-hydrogel conjugates were measured by 

dynamic light scattering (DLS) on a Zetasizer Nano ZS90 (Malvern) at 25°C. For this, 
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50 µg/mL gel particles were dispersed in 20 mM HEPES (pH 7.6). The morphology of 

such dried gels was measured by transmission electron microscopy (TEM, Philips CM 

10). 200 µg/mL gels were drop-cast onto a copper grid and dried overnight at room 

temperature before imaging. 

5.3 Results and Discussion 

5.3.1 Freezing-promoted DNA attachment 

To prepare hydrogel nanoparticles, we chose acrylamide and NIPAm as 

monomers, BIS as a crosslinker, and APS as an initiator along with 100 nM penta-

adenine (A5) DNA in 20 mM pH 7.6 HEPES buffer with 4% glycerol. We wished to 

form gel nanoparticles with covalently attached DNA (Figure 5.2A).233 The 

polymerization reaction was performed at -20°C, and the sample froze under this 

condition. After the reaction and thawing the tubes, the previously clear monomer 

solution turned to a milky dispersion, suggesting the formation of hydrogel 

nanoparticles (Figure 5.2B). 

We found that adding 4% glycerol generated a high yield of hydrogel particles that 

could be well dispersed and easily precipitated by centrifugation (the right tube in 

Figure 5.2B; and Figure 5.2C). The average hydrodynamic size of the 4% glycerol 

sample was around 340 nm by dynamic light scattering (DLS) (Figure 5.2D). The gels 

were also characterized with TEM, showing features of dried gel nanoparticles (Figure 

5.2E). A lower glycerol (0-2%) resulted in bulky gels instead of nanoparticles, while 6% 

glycerol reduced the yield (Figure 5.2C). Glycerol decreased the ratio of the ice/non-

ice phases and may affect polymerization in the non-ice phase.234-236  
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Figure 5.2 (A) Schematic illustration of preparing A5 DNA-hydrogel conjugates via 

freezing radical polymerization. (B) A photograph showing the monomer solutions 

before and after freezing polymerization, and after thawing at room temperature. The 

gels were prepared in buffer A (20 mM HEPES, pH 7.6, 4% glycerol). (C) Effect of 

glycerol concentration (v/v%) on gel yield observed after centrifugation. (D) The 

average hydrodynamic size of A5 DNA-gel particles measured by DLS. (E) A TEM 

micrograph of dried A5 DNA-gel particles. 

 

After confirming formation of gel nanoparticles, we then used a 5-

carboxyfluorescein (FAM) labeled A5 DNA (FAM-A5) to monitor DNA incorporation. 

After the freezing polymerization, we washed away the free DNA by centrifugation, 

and only the pellet was fluorescent (Figure 5.3A), suggesting that the DNA was 



89 

 

associated with the gel nanoparticles. The percentage of DNA incorporation was 

calculated based on the fluorescence intensity remained in the supernatants after 

centrifugation. Using this method, we then optimized the reaction time. The kinetics of 

DNA incorporation were fitted to a first order reaction yielding a rate constant of 2.5 h-

1 (black curve in Figure 5.3B). Notably, as much as ~75% FAM-A5 strands were 

incorporated after an 8 h polymerization, which was comparable to that using acrydite-

modified DNA (~83%).237 The saturation after 8 h may due to the exhaustion of free 

radicals, which were indispensable for the conjugation (vide infra). Interestingly, when 

the polymerization was carried out at 4°C, no more than 10% of the DNA incorporated 

even after 48 h (red curve in Figure 5.3B). Therefore, freezing was critical for DNA 

attachment. 

 

Figure 5.3 (A) Fluorescent photographs of the dispersed and centrifuged FAM-A5 

containing hydrogel nanoparticles. (B) The FAM-A5 incorporation kinetics at -20°C 

and 4°C. Inset: the data within 1 h. (C) Schematic presentation of solutes concentrated 

in micropockets after freezing, leading to efficient DNA attachment. (D) The weight of 
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swelled gels as a function of reaction time. No precipitate appeared until 1 h. Insets: the 

photographs of samples at different time points after centrifugation. 

 

To ensure hydrogel nanoparticles instead of monoliths were produced, our 

monomer concentration was only 0.6% (w/v).238-242 During freezing, a portion of the 

water crystallized to form ice, leaving the solutes in the remaining non-ice regions 

where the monomers and DNA were likely to be concentrated (Figure 5.3C).243 Such a 

concentration effect can accelerate reactions,244-246 which may favor DNA attachment 

and gelation. To study the relationship between freezing and gel yield, we weighed the 

gels (formed at -20°C). No gels precipitated at the point of 45 min (left inset in Figure 

5.3D). After 1 h, the sample fully froze and after thawing, white precipitates started to 

appear, reaching a plateau after 6 h (Figure 5.3D). These experiments demonstrated that 

freezing was essential to promote gelation. The 45 min delay for the hydrogel growth 

was also observed for DNA incorporation (inset in Figure 2B), indicating the 

importance of freezing for capturing the DNA strands. 

To confirm that the DNA was covalently attached instead of physically trapped, 

we then analyzed the FAM-A5 containing hydrogel nanoparticles by gel 

electrophoresis.247, 248 This way, only the non-covalently associated DNA would 

migrate in the electric field. As shown in Figure 5.4A, lane 1 contained the free DNA 

as a control, and lane 2 had the gel monomers but without the initiators (prepared by 

freezing), where the same amount of free DNA was observed. In lane 3, the unwashed 

gel particles were loaded. By comparing the intensity of the free DNA band in lane 3 

with that in lane 1, ~70% DNA was incorporated in the gels, consistent with the above 

washing-based result. The band trapped in the well was assigned to be the DNA in the 

gel nanoparticles, which could not migrate. However, for the sample prepared at 4°C, 

the band of the free FAM-A5 did not change much (comparing lane 6 and lane 4 in 

Figure 5.4A), confirming that freezing was critical for DNA attachment. In addition, 
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we also reacted the FAM-A5 with each acrylic monomer respectively, and found that 

the acrylamide, NIPAm and BIS could all react to form DNA conjugates (Figure 5.4B). 

 

Figure 5.4 Gel micrographes of 50 nM FAM-A5 reacted under different conditions. 

5.3.2 Radical-mediated DNA conjugating 

When the initiator APS was omitted, no gel formed and the DNA failed to attach 

even with freezing (lane 2 of Figure 5.4E), indicating that radicals were critical for 

DNA conjugation. The optimized APS amount was 2 mg when working with 0.6 µL 

TEMED as an accelerator at -20°C (Figure 5.5A-D). In our system, the radicals mainly 

came from APS and they can be transferred to the vinyl group in acrylic monomers. 

Steeken et al. reported that the reaction between adenine and HO• radicals mainly 

happened on the double bond regions of adenine.232 We reason that the reaction 

between A5 DNA and the vinyl radicals in our system might also occur in similar 

regions. 
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Figure 5.5 (A) The effect of APS amount (from 1 to 4 mg) on the FAM-A5 

incorporation % and the gel weight. 0.6 µL TEMED was added for all the samples in 

buffer A (20 mM HEPES, pH 7.6, with addition of 4% glycerol). (B) Photograph for 

the samples in (A). (C) The effect of TEMED volumn (from 0.3 to 1.5 µL) on the FAM-

A5 incorporation % and the gel weight. 2 mg APS was added to all these samples. (D) 

Photograph for the samples in (C). 100 nM FAM-A5 was added to these experiments. 

Given that more initiators can result in more free radicals, appropriate amount of APS 

or TEMED could promote polymer formation. However to much of them generated 

many shorter polymer chains, thus eventually lowered the gel yield. Based on the data, 

0.6 µL TEMED and 2 mg APS were optimal for our 1 mL reaction system. 

5.3.3 A5 is an optimal anchoring sequence 

To understand the generality of this method, we further studied the effect of DNA 

sequence, length, and conformation. First, four FAM-labeled homo-DNAs of different 
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lengths (5, 15 and 30-mer) were respectively used to prepare gel particles. Using the 

washing method, the incorporation efficiency decreased for poly-A and poly-G DNA 

when their length was increased (Figure 5.6A). It might be that longer DNA tended to 

fold on its own especially under the low reaction temperature condition, which may 

shield the bases for reacting with acrylamide. Very short 5-mer DNA might not form 

stable internal structures even under the freezing condition.249 Poly-T incorporated 

more for the longer DNA (from 4.3% to 33.2%), while the incorporation of poly-C was 

length-independent (~15%). Since thymine was not previously reported to covalently 

react with acrylamide, we attribute its incorporation to physical entrapment, which was 

confirmed by gel electrophoresis (Figure 5.6B). Overall, A5 had the highest 

incorporation efficiency. 

 

Figure 5.6 (A) Incorporating efficiency of 100 nM FAM-labeled homo-DNAs of 

different lengths prepared by freezing. (B) Gel micrographes of free FAM-T15 and 

FAM-T30 and their hydrogel conjugates prepared by freezing in buffer A. (C) 

Comparing the incorporation efficiency of double- and single-stranded DNA during gel 

preparation. 100 nM FAM-DNA was hybridized with 150 nM non-label DNA. (D) 

Incorporation of FAM-C15 in hydrogels prepared at pH 5.0 (20 mM acetate), 7.6 (20 
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mM HEPES) and 9.5 (20 mM carbonate). (E) The incorporation percentage of FAM-

G15 in hydrogels prepared with or without addition of 10 mM KCl during freezing 

polymerization (in 20 mM Li-based HEPES, pH 7.6, 4% glycerol). 10 mM LiCl was 

also used to confirm the importance of adding K+. 

5.3.4 Non-structured DNA attaches more favorably 

Since the nucleobases are important for the attachment, we then tested duplex 

DNA, for which the bases are shielded. By hybridizing FAM-A15 with non-labeled T15, 

the incorporated FAM-A15 dropped by 6-fold (<10% incorporated, Figure 5.6C), 

confirming nucleobase-driven DNA grafting. Interestingly, the incorporated FAM-T15 

also dropped by 4.3-fold in the presence of A15, likely due to the decreased entrapment 

due to rigid duplex formation. In addition, we prepared gels with FAM-C15 under 

different pH. The DNA incorporation dropped from 50.3% at pH 9.5 to 10.1% at pH 

7.6 and further to 2.0% at pH 5.0 (Figure 5.6D). Since poly-C DNA tends to adopt an 

i-motif structure at acidic pH,250, 251 a low pH shielded cytosine bases for the reaction. 

Similarly, placing the FAM-G15 in a K+-containing buffer (10 mM KCl) encouraged 

the formation of G-quadruplex,252, 253 thus decreasing guanine exposure and the 

incorporation of G-rich DNA (Figure 5.6E). These results together demonstrated that 

the attachment efficiency can be controlled by tuning DNA sequence, length and 

conformation. 

5.3.5 Comparing A5 and acrydite-modified DNA 

Given the high conjugation yield of A5, we then developed a diblock DNA strategy 

using A5 as an anchoring block. We designed a 20-mer DNA with an A5 block on its 5 

end and a 15-mer block of random sequence containing a FAM label (named A5DNA1-

FAM in Figure 5.7A). For comparison, the same 15-mer sequence with a 5 acrydite 

was used with a T5 spacer (named Acryl-T5DNA1-FAM). To protect the 15-mer block, 

its 15-mer cDNA was hybridized with both DNA before gel preparation (lower panel 

in Figure 5.7A). Since we demonstrated that duplex DNA is disfavored for the reaction, 
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the attachment should occur mainly via the A5 block or the acrydite. After freezing 

polymerization and washing, both products emitted intense fluoresence (Figure 5.7B), 

indicating DNA conjugation. After washing, about 35% A5 diblock DNA and 43% 

acrydite DNA were retained in the gels (left bars in Figure 5.7C). Although A5 DNA 

alone achieved ~75% incorporation (Figure 5.6A), appending a rigid duplex may lower 

the incorporation efficiency possibly by the slower diffusion and steric hindrance from 

the bulky duplex structure hindering the motion of the A5 for reaction.216, 218 Without 

hybridization to the cDNA during gelation, ~10% more incorporation was observed for 

both (right bars in Figure 5.7C). Finally, through testing different DNA concentrations 

(from 50 nM to 200 nM), we found that the incorporation efficiency was quite 

consistent, all being a few percent below that of the acrydite DNA (Figure 5.7D).  

Most previous work using acrydite-DNA was performed at room temperature. As 

demonstrated in this work, their conjugation via DNA bases was low at non-freezing 

conditions, and the reactions mainly proceeded via the acrydite. Under the freezing 

condition, conjugation via DNA bases was promoted. Overall, A5 diblock DNA 

performed well for grafting unmodified oligonucleotides to hydrogel nanoparticles. 
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Figure 5.7 Comparing DNA grafting between a fluorescent A5-containing diblock 

DNA and an acrydite-modified DNA. (A) The upper panel: DNA sequences used. The 

lower panel: cDNA shielding and exposure of the A5 block during gel synthesis. (B) A 

photograph of the gels prepared with the two DNA strands. (C) Comparison of the 

incorporation percentage of the two DNA without and with the cDNA during gel 

synthesis. (D) The effect of DNA concentration on the incorporation efficiency. 

5.3.6 A5 diblock DNA-functionalized hydrogels for cDNA capture 

After achieving conjugation of unmodified DNA, we then explored the 

applications of such conjugates. Acrydite-DNA functionalized hydrogels have been 

widely used for various applications, and DNA hybridization is a key reaction.46, 57, 63, 

254, 255 Herein, we aimed to test whether such applications can also be realized by A5 

diblock DNA. We designed a 24-mer random sequence and extended its 5-terminus by 

A5 (named A5DNA2 in Figure 5.8A). During gel preparation, we hybridized it with its 

24-mer cDNA (named cDNA2 in Figure 5.8A) to protect the recognition block (left 

panel in Figure 5.8B). After the reaction, the cDNA was washed away under denaturing 

conditions, leaving behind the A5 containing DNA (right panel in Figure 5.8B). 

We then tested the gels for capturing its cDNA. To do this, 20 mg/mL gels, 

containing ~500 nM A5DNA2, were incubated with 50 nM FAM-cDNA2 or with a 

random control sequence. After centrifugation, based on the decrease of the 

fluorescence in the supernatants, only the FAM-cDNA2 was specifically captured 

(Figure 5.8C and 5.8D). To quantitatively determine cDNA capture, we gradually 

titrated it to the conjugates. Figure 5.8E shows that 2 µM FAM-cDNA2 saturated the 

binding. Initially, 90% of the cDNA can be captured (inset of Figure 5.8E). If this was 

used as a sensor, the detection limit would be 50 pM (3/slope). Therefore, the DNA 

has retained its hybridization function. However, when the cDNA was omitted during 

gel preparation, the generated nanoparticles had an obviously lower cDNA binding 

capacity (Figure 5.8F), and the saturated cDNA capturing capacity was only about one 
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third, indicating that the cDNA must be added during gel preparation to ensure that 

efficient conjugation occurred only via the A5 block.  

 

Figure 5.8 DNA capturing by A5 diblock DNA-hydrogel conjugates. (A) DNA 

sequences used. (B) Left panel: schematic of forming duplex to only expose the A5 

segment in diblock DNA for conjugating. The right panel: schematic of removing 

cDNA2 by 0.1 mM NaOH at 90°C for 1 min. Fluorescent spectra of the A5 diblock 

DNA-hydrogel conjugates binding to (C) FAM-cDNA2 and (D) FAM-control DNA in 

20 mM HEPES (pH 7.6, with 100 mM NaCl). Titrating various concentrations of FAM-
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cDNA2 to gel conjugates prepared (E) with and (F) without the cDNA2. Inset of (E): 

response at low FAM-cDNA2 concentrations showing nearly 90% capturing efficiency. 

5.3.7 Detection of Hg2+ 

DNA-functionalized hydrogels have been widely used in analytical applications 

such as disease and environemental monitoring.68, 71, 256, 257 The detection of Hg2+ is a 

particularly interesting example, since the gel can help enrich Hg2+, protect the DNA, 

and allowing drying and long-term storage.70, 258, 259 In our work, to explore non-

hybridization-based applications, the detection of Hg2+ was also studied. We appended 

a thymine-rich sequence commonly used for Hg2+ sensing with a 5 A5 block  (Figure 

5.9A, named A5DNA3). After Hg2+ mediated formation of T-Hg2+-T to fold the DNA 

into a hairpin, SYBR Green I (SGI) can stain this structural change with a large 

fluorecence enhancement.260 We expected that the A5DNA3 would also function for 

Hg2+ binding within hydrogels (Figure 5.9B). We then added 5 µM Hg2+ to 20 mg/mL 

gels (~500 nM DNA). Nearly 4-fold fluorescence increase was observed (Figure 5.9C). 

Replacing the thymine to adenine in the sequence failed to bring much signal change 

(Figure 5.9D), verifying that Hg2+ binding was indeed from the T-rich region. Due to 

the small gel size, the signaling kinetics were also very rapid (Figure 5.9E, within 1 

min). Titrating the Hg2+ to the hydrogels achieved a detection limit of 10 nM (Figure 

5.9F), and the sensor also had high specificity for Hg2+ (Figure 5.9G).  
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Figure 5.9 Hg2+ sensing by A5 diblock DNA-hydrogel conjugates. (A) The sequence 

of the A5DNA3. (B) Schematic of Hg2+ binding to A5DNA3 containing hydrogel 

nanoparticles. Fluorescence spectra of 5 µM Hg2+ binding to 20 mg/mL (C) A5DNA3 

containing hydrogels and (D) A-rich DNA (named A5DNA4 in Table 5.1) containing 

hydrogels. Hg2+ binding was stained by 200 nM SGI in 8 mM Tris-nitrate (pH 8.0), 

with 150 mM NaNO3. (E) Kinetics of 20 mg/mL A5DNA3 containing hydrogels 

binding to 5 µM Hg2+. (F) Titrating various concentrations of Hg2+. Inset: the initial 

linear response. (G) The selectivity of the Hg2+ sensor with 5 µM of each metal ion. 

5.3.8 Monolithic gel conjugates 

The above work was all performed using hydrogel nanoparticles. For some 

applications, monolithic gels were used.261-267 We then tested whether the A5 anchor 
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could also be used to prepare DNA conjugates in monolithic gels by increasing the 

monomer concentration from 0.6% to 2%. At the same time, freezing polymerization 

was also performed to promote DNA attachment, and glycerol was omitted to 

encourage forming monolithic gels. We prepared the monoliths in a 96-well plate to 

generate a cylinder shape (Figure 5.10A).  

Using the DNA sequences in Figure 5.8A, we hybridized the two DNA to expose 

the A5 block. As a control, the same DNA but without the A5 block was also used. After 

polymerization and washing, the A5 containing sample exhibited stronger fluorescence 

than the A5-free one (left panel in Figure 5.10B). Subsequent imaging by a gel 

documentation system showed that the A5 bearing duplex had approximately 4-fold 

stronger fluorescence (right panel in Figure 5.10B). To explore the DNA functionality 

in monolithic hydrogels, we used the A5DNA3 during the preparation for binding Hg2+. 

As expected, in the presence of 1 µM SGI, adding 5 µM Hg2+ resulted in strong 

fluorescent (Figure 5.10C), but Hg2+ did not bring a change in the A-rich DNA 

(A5DNA4) sample (Figure 5.10D). Together, these experiments proved that our method 

for grafting the unmodified DNA to hydrogels can be general from gel nanoparticles to 

monoliths. 
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Figure 5.10 (A) Schematic illustration of preparing A5 diblock DNA-monolithic gel 

conjugates in a 96-well plate using freezing polymerization. (B) The incorporation of 

FAM-labeled duplex without and with an A5 block in monoliths imaged by a digital 

camera (left) and by a gel documentation system (right). 5 µM Hg2+ binding by A5 

containing (C) T-rich DNA and (D) A-rich DNA in monoliths, and the DNA was 

stained by 1 µM SGI in 8 mM Tris-nitrate buffer (pH 8.0, with 150 mM NaNO3). 

5.4 Summary 

In summary, we have developed a simple method to covalently incorporate 

unmodified DNA oligonucleotides to hydrogel nanoparticles and monoliths by 

exploiting A5 as an anchoring block. A5 was found to be the optimal choice among 

other DNA sequences and lengths due to the highest reactivity of adenine. By studying 

DNA conformation, unfolded DNA with exposed bases had the highest incorporation 

efficiency. In this system, DNA incorporation and hydrogel formation were completed 

in one-pot in a few hours. A key to the success is the freezing reaction condition to 

ensure sufficient DNA immobilization. Notably, A5 DNA showed ~75% incorporating 

efficiency, and a longer 20-mer A5 diblock strand also exhibited nearly 40% 

incorporation. The DNA-hydrogel conjugates could be applied for ultrasensitive cDNA 

capturing and Hg2+ detection, replacing the traditional acrydite-modified DNA. 

Together, this work provides deeper insights in DNA/hydrogel systems and offers 

opportunities for more researchers to develop DNA-based soft materials at a much 

lower cost. 
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Chapter 6 Conclusions and Future work 

6.1 Conclusions and original contributions 

Functional DNA and DNA-hydrogels have been extensively explored for sensing 

bio-relevant small molecules in analytical and biomedical applications. Nevertheless, 

the limited specificity for some SELEX-derived aptamers (e.g., the adenosine aptamer) 

and the lack of aptamers for important “disease indictors” (e.g., guanosine) have left 

some room for improvement. Additionally, the current strategies for grafting DNA on 

hydrogels require chemical modification of DNA, which increases the cost of using 

them in applications. In this thesis, the programmability, binding specificity, and 

chemical properties of functional DNA are actively exploited to address these issues. 

In chapter 2, I designed a novel “base-excised aptamer” to achieve highly specific 

recognition of adenosine. In this strategy, an entire A nucleotide is excised from the 

adenosine aptamer backbone to create a vacancy for specifically accepting a free 

adenosine. Other analogues including AMP, ATP, guanosine, cytidine, uridine and 

theophylline, none of them can fit into such a pocket. SYBR Green I binding assays 

and ITC were used to verify the specific adenosine binding. Mechanism studies (by 

ITC) show that the adenosine recognition is mainly driven by base stacking, and one 

adenine-excised aptamer can accommodate two adenosine molecules, with one in the 

excised site (DNA backbone) and the other in the original aptamer binding pocket (loop 

area). These two sites work cooperatively to achieve the high specificity. Finally, I also 

demonstrated the application of the A-excised aptamer in dilute FBS. This work 

provides an interesting method of using existing aptamer sequences for enhanced 

functions. 

In chapter 3, to further demonstrate the generality of the base-excised strategies 

proposed in the chapter 2, a Na+-specific aptamer and the original adenosine aptamer 

are also employed as the scaffolds for base deleting and guanosine recognition. I design 

a total of 10 G-excised DNA sequences are studied in this work. Among them, two 
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optimal sequences are obtained, and they only bind guanosine but not GMP or GTP, 

verifying that the sequences can be used as a specific guanosine aptamer. Importantly, 

highly conserved purines are found to be more reasonable excision-positions than less 

conserved ones for specific recognition. This work shows the generality our strategy, 

and generates new guanosine aptamers for application purpose. 

In chapter 4, based on the fact that the adenosine only differs deoxyadenosine by 

a -OH and the specific recognition of adenosine from their mixture can hardly be 

realized by existing aptamers, I develop a polymer-based strategy through 

incorporating boronic acid with the original adenosine aptamer in MIPs. A hundred-

fold higher specificity for adenosine over deoxyadenosine is achieved in this case. The 

ITC provides the Ka(adenosine)/Ka(deoxyadenosine) ratio of our MIPs to be 110 (at pH 

7.6), while that of free aptamer is only 1.07. By lowering the pH to 6.4, the ratio further 

increases to 115, and non-specific cytidine binding is also inhibited. Mechanism studies 

further reveal that much of the selectivity is from the aptamer binding by the boronic 

acid moiety noncovalently. This work demonstrates an alternative strategy of using an 

existing aptamer with tailored MIPs to achieve highly specific molecular recognition. 

In chapter 5, I developed a modification-free method to covalently conjugate DNA 

on polyacrylamide-based hydrogels, by taking using of the intrinsic reactivity of an A5 

DNA. Freezing is used to promote the reaction efficiency from 10% at 4°C to ~75% at 

-20°C. A5 is found to be the optimal choice among other DNA sequences and lengths; 

and by exploiting A5 as an anchoring block, any random sequence and functional DNA 

containing the A5 moiety can be incorporated to hydrogels for application purposes. 

Ultrasensitive cDNA capturing and Hg2+ detection have been demonstrated by this 

unmodified A5 diblock DNA, showing its practicability in replacing the traditional 

acrydite-modified DNA. This work provides deeper insights in DNA/hydrogel systems 

and offers opportunities for more researchers to develop DNA-based soft materials at a 

much lower cost. 
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6.2 Future work 

The results presented in this thesis provide two new strategies to achieve highly 

specific recognition of adenosine and guanosine, in which the first one is through 

engineering base-excised aptamers and the other combines existing adenosine aptamers 

with a functional monomer, boronic acid, in MIPs. To further facilitate the application 

of functional DNA in sensing applications, and in particular, to lower its cost, the 

freezing-assisted conjugation method for grafting unmodified DNA to polyacrylamide-

based hydrogels is developed. Based on these studies, future works could be carried out 

in following aspects. 

First, since the non-SELEX strategies cost much less and more time-efficient than 

SELEX, deeper mechanism studies can be performed to better understand the base-

excised strategies; this way, the field of generating non-SELEX derived aptamers is 

further developed. For example, the structure characterization of our engineered base-

excised aptamers could be carried out to reveal how the binding pockets distinguish the 

adenosine from its analogues. Based on these, more insights are gained for rational and 

efficient sequence design in other aptamers. 

Second, the preparation of the imprinted hydrogels needs to be improved for 

achieving more specific and tighter molecular recognition from the polymer matrix. 

The current specificity of our MIPs largely comes from the functional monomers used 

(i.e. aptamers and boronic acid), while the binding affinity and specificity of the 

polymer matrix itself is relatively weak. To solve this problem, the preparation of MIPs 

may be performed in lower temperatures, in which the ligand-MIPs binding could be 

promoted. The formulation of MIPs could be optimized as well to improve the 

specificity of the binding pockets. 

Finally, more chemical properties and applications of the unmodified DNA-

hydrogel conjugates need to be explored. In addition to their reported applications in 

sensing (for cDNA and Hg2+ detection), other aspects such as stimuli-responsiveness, 
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recognition of small molecules and drug delivery are also important to be studied. More 

research in this new conjugation strategy may provide evidence showing that it indeed 

can rival the traditional acrydite-DNA based conjugation method. 
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