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Abstract

In this thesis, two classes of binary matroids will be discussed: even-cycle and even-cut
matroids, together with problems which are related to their graphical representations. Even-
cycle and even-cut matroids can be represented as signed graphs and grafts, respectively.
A signed graph is a pair (G,Σ) where G is a graph and Σ is a subset of edges of G.
A cycle C of G is a subset of edges of G such that every vertex of the subgraph of G
induced by C has an even degree. We say that C is even in (G,Σ) if |C ∩ Σ| is even.
A matroid M is an even-cycle matroid if there exists a signed graph (G,Σ) such that
circuits of M precisely corresponds to inclusion-wise minimal non-empty even cycles of
(G,Σ). A graft is a pair (G, T ) where G is a graph and T is a subset of vertices of G
such that each component of G contains an even number of vertices in T . Let U be a
subset of vertices of G and let D := δG(U) be a cut of G. We say that D is even in
(G, T ) if |U ∩ T | is even. A matroid M is an even-cut matroid if there exists a graft (G, T )
such that circuits of M corresponds to inclusion-wise minimal non-empty even cuts of (G, T ).

This thesis is motivated by the following three fundamental problems for even-cycle and
even-cut matroids with their graphical representations.

(a) Isomorphism problem: what is the relationship between two representations?

(b) Bounding the number of representations: how many representations can a matroid
have?

(c) Recognition problem: how can we efficiently determine if a given matroid is in the
class? And how can we find a representation if one exists?

These questions for even-cycle and even-cut matroids will be answered in this thesis,
respectively. For Problem (a), it will be characterized when two 4-connected graphs G1 and
G2 have a pair of signatures (Σ1,Σ2) such that (G1,Σ1) and (G2,Σ2) represent the same
even-cycle matroids. This also characterize when G1 and G2 have a pair of terminal sets
(T1, T2) such that (G1, T1) and (G2, T2) represent the same even-cut matroid. For Problem
(b), we introduce another class of binary matroids, called pinch-graphic matroids, which
can generate exponentially many representations even when the matroid is 3-connected.
An even-cycle matroid is a pinch-graphic matroid if there exists a signed graph with a
blocking pair. A blocking pair of a signed graph is a pair of vertices such that every
odd cycles intersects with at least one of them. We prove that there exists a constant c
such that if a matroid is even-cycle matroid that is not pinch-graphic, then the number
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of representations is bounded by c. An analogous result for even-cut matroids that are
not duals of pinch-graphic matroids will be also proven. As an application, we construct
algorithms to solve Problem (c) for even-cycle, even-cut matroids. The input matroids of
these algorithms are binary, and they are given by a (0, 1)-matrix over the finite field GF(2).
The time-complexity of these algorithms is polynomial in the size of the input matrix.
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Chapter 1

Introduction

1.1 Matroids with graphical representations

1.1.1 Graphic and cographic matroids

Before we get into even-cycle and even-cut matroids, let us start with simplest classes of

matroids with graphical representations, which are graphic and cographic matroids. Let

G := (V,E) be a graph with vertex set V and edge set E. In this thesis, we allow parallel

edges and loops in graphs. We denote the vertex set and the edge set of G by V (G) and

E(G), respectively. For a subset W of V (G) and a subset F of E(G), we denote the induced

subgraph of G by W (resp. by F ) by G[U ] (resp. G[F ]). A cycle of a graph G is a subset C

of E(G) such that every vertex of G[C] has an even degree. A polygon of a graph G is an

inclusion-wise minimal non-empty cycle of G. Equivalently, a non-empty subset C of E(G)

is a polygon if G[C] is a connected 2-regular subgraph of G.

Let M be a matroid. We denote by E(M) the ground set (or the edge set) of M . We

1



say that M is graphic if there exists a graph G such that circuits of M precisely correspond

to polygons of G. Then, G is a graph representation of M , and we denote this by M =

cycle(G). Let A be a vertex-edge incidence matrix of G. Then, A represents cycle(G) over

GF(2), so every graphic matroid is binary.

Let G be a graph, and let I, J ⊆ E(G) where I ∩ J = ∅. We denote by G/I \ J the

minor obtained from G by contracting edges in I and deleting edges in J . For a matroid

M , we denote by M/I \ J the minor obtained from M by contracting elements in I and

deleting elements in J . For the contraction (resp. deletion) of one edge e, we simply write

/e (resp. \e) instead of /{e} (resp. \{e}). Let M = cycle(G). Then, G/I \ J is a graph

representation of M/I \ J . In particular, the class of graphic matroids is minor-closed.

For a subset W of V (G), a cut generated by W is the set of edges which have exactly

one end in W , denoted by δG(W ). We say that W is a shore of the cut δG(W ). If W

contains only one vertex v, then we simply write δG(v) instead of δG({v}). A matroid

M is cographic if there exists a graph G such that circuits of M precisely correspond to

inclusion-wise minimal non-empty cuts of G. We say that G is a graph representation of M ,

and denote this by M = cut(G). Graphic and cographic matroids are dual to each other,

and thus, cographic matroids are also binary. Let M = cut(G). Then, G/I \ J is a graph

representation of M \ I/J . In particular, the class of cographic matroids is minor-closed.

1.1.2 Fundamental problems

For graphic matroids, the following three fundamental questions arise:

(a) Isomorphism problem: what is the relationship between two graph representations

of a graphic matroid?

2



(b) Bounding the number of representations: how many graph representations are there

for a graphic matroid?

(c) Recognition problem: how can we efficiently determine if a given matroid is graphic?

How can we find a representation if one exists?

In [55], Whitney proved a theorem that solves (a) and (b). As seen in [51], Tutte solved

(c). Before we state Whitney’s theorem, we need to define two operations. For a graph G,

a 1-flip is either identifying two vertices in distinct components of G or its reverse, that is,

splitting a vertex to increase the number of components by 1. Let (X, Y ) be a partition of

E(G). We say that a vertex v is a boundary vertex of X in G if v is a common vertex of

G[X] and G[Y ]. We denote the set of boundary vertices of X in G by ∂G(X). Note that

∂G(X) = ∂G(Y ). Suppose ∂G(X) = {v1, v2} for some distinct vertices v1 and v2 of G. For

a positive integer k, we denote [k] = {1, 2, . . . , k}. Let G′ be the graph obtained from G[X]

and G[Y ] by identifying, for i ∈ [2], vertex vi of G[X] and vertex v3−i of G[Y ]. We say that

G′ is obtained from G by a 2-flip on the set X. Note that 2-flips on X and Y are the same

operation. Two graphs are equivalent if they are related by a sequence of 1-flips and 2-flips;

otherwise, they are inequivalent. Note that this relation is indeed an equivalence relation.

A single 2-flip on X is illustrated in Figure 1.1.

G G0

X X

Figure 1.1: An example of a 2-flip.

Now, we are ready to state Whitney’s 2-isomorphism theorem.
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Theorem 1.1.1 (Whitney’s 2-isomorphism Theorem). Any two graph representations of a

graphic matroid are equivalent.

Note that Theorem 1.1.1 directly solves Problem (a). It also implies that every graphic

matroid has a unique equivalence class, which solves Problem (b). We denote by rM the rank

function of M and write r(M) for the rank of M , i.e., r(M) = rM (E(M)). The connectivity

function takes X ⊆ E(M) as input and returns λM (X) := rM (X) + rM (E(M)−X)− r(M).

For both r and λ, we omit the index when unambiguous. Consider X ⊆ E(M) where X 6= ∅

and X 6= E(M), and let k be a positive integer. Then X is k-separating if λ(X) ≤ k − 1.

It is exactly k-separating if equality holds. X is a k-separation if it is exactly k-separating

and |X|, |E(M) − X| ≥ k. A 3-separation X is proper if |X|, |E(M)| ≥ 4. A matroid

is 2-connected if it has no 1-separation; it is 3-connected if it 2-connected and has no

2-separation. For a graph G, if cycle(G) is 3-connected, then G is loopless and 3-connected.

Thus, Theorem 1.1.1 implies that every 3-connected graphic matroid has a unique graph

representation up to isolated vertices. As an application, we can construct an efficient

algorithm to determine if a given matroid is graphic, which solves Problem (c). A detailed

description of the algorithm will be given in Chapter 5.

1.1.3 Even-cycle and even-cut matroids

Now, we consider analogous problems for generalized classes of graphic and cographic

matroids, which are even-cycle and even-cut matroids. These matroids have graphical

representations, called signed graphs and grafts, respectively.

A signed graph is a pair (G,Σ) where G is a graph and Σ ⊆ E(G). We say that G and

Σ are the underlying graph and the sign of (G,Σ), respectively. We say that Γ ⊆ E(G)

is a signature of (G,Σ) if Σ ∆ Γ:= (Σ ∪ Γ) − (Σ ∩ Γ) is a cut of G. The operation that
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consists of replacing a signature by another signature is called re-signing. An edge e of

G is odd in (G,Σ) if e ∈ Σ; otherwise, e is even. Also, a cycle C of G is odd in (G,Σ) if

C contains an odd number of odd edges of (G,Σ), i.e., |C ∩ Σ| is odd; otherwise, C is an

even cycle. A matroid M is an even-cycle matroid if there exists a signed graph (G,Σ)

such that circuits of M precisely correspond to inclusion-wise minimal non-empty even

cycles of (G,Σ). Then, (G,Σ) is a signed-graph representation of M , and we denote this

by M = ecycle(G,Σ). Let A be a binary matrix representing cycle(G) over GF(2), and let

A′ be a matrix obtained from A by adding a row corresponding to Σ. Then, A′ represents

ecycle(G,Σ) over GF(2). Thus, even-cycle matroids are binary, and they are elementary

lifts of graphic matroids [40]. Every graphic matroid is an even-cycle matroid since, for

a graph G, cycle(G) = ecycle(G, ∅). However, the converse is not true because the Fano

matroid F7 is not graphic while it is an even-cycle matroid as it is shown in Figure 1.2.

The bold edges represent its signature in Figure 1.2. If an even-cycle matroid M has a

Figure 1.2: A signed-graph representation of F7.

signed-graph representation (G,Σ) with a vertex v ∈ V (G) such that v intersects every odd

cycle, then M is graphic [40].

Consider a signed graph (G,Σ) and I, J ⊆ E(G) where I∩J = ∅. The minor (G,Σ)/I\J

of (G,Σ) is the signed graph defined as follows: If there exists an odd polygon of (G,Σ)

contained in I, then we define (G,Σ)/I \J = (G/I \J, ∅); otherwise, there exists a signature
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Γ of (G,Σ) where Γ ∩ I = ∅, and (G,Σ)/I \ J = (G/I \ J,Γ− J). Note that minors are

only defined up to re-signing. For F ⊆ E(G), we denote by (G,Σ)|F the signed graph

induced by F , i.e., (G,Σ)|F = (G,Σ) \ E(G)− F . Consider an even-cycle matroid M with

a signed-graph representation (G,Σ). Then, (G,Σ)/I \ J is a signed-graph representation

of M/I \ J [40], page 21. In particular, the class of even-cycle matroids is minor-closed.

A graft is a pair (G, T ) where G is a graph and T ⊆ V (G) such that each component of

G contains an even number of vertices of T . We say that G and T are the underlying graph

and the terminal set of (G, T ), respectively. The vertices of T are called terminal vertices

(or simply terminals) of (G, T ). Let W ⊆ V (G) and let D := δG(W ) be a cut of G. Then,

D is odd if |W ∩ T | is odd; otherwise, D is even. It is well-defined because every component

of G contains an even number of terminal vertices. A matroid M is an even-cut matroid if

there exists a graft (G, T ) such that circuits of M precisely correspond to inclusion-wise

minimal non-empty even cuts of (G, T ). Then, (G, T ) is a graft representation of M , and

we denote by M = ecut(G, T ). For a graph G, we denote the subset of vertices of G

whose degrees are odd by Vodd(G). A subset J of E(G) is a T -join of a graft (G, T ) if

Vodd(G[J ]) = T , i.e., if T is precisely the set of vertices of odd degree of the graph induced

by J . Let A be a binary matrix representing cut(G) over GF(2), and let A′ be a matrix

obtained from A by adding a row corresponding a T -join J of (G, T ). Then, A′ represents

ecut(G, T ) over GF(2). Thus, even-cut matroids are binary, and they are elementary lifts

of cographic matroids [40]. Every cographic matroid is an even-cut matroid since for a

graph G, cut(G) = ecut(G, ∅). However, the converse is not true, as is shown in Figure 1.3,

namely, F7 is not cographic while it is an even-cut matroid. The white vertices represent its

terminals in Figure 1.3. If an even-cut matroid M has a graft representation (G, T ) where

|T | ≤ 2, then M is cographic [40].

Consider a graft (G, T ) and I, J ⊆ E(G) where I ∩ J = ∅. The minor (G, T )/I \ J
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Figure 1.3: A graft representation of F7.

is the graft defined as follows: Let H := G/I \ J . If there exists an odd cut of (G, T )

contained in J , then (G, T )/I \ J = (H, ∅); otherwise, there exists a T -join K of (G, T )

where K ∩ J = ∅, and (G, T )/I \ J = (H, Vodd(H[K − I])). For F ⊆ E(G), we denote by

(G, T )|F the graft induced by F , i.e., (G, T )|F = (G, T ) \ E(G)− F . Consider an even-cut

matroid M with a graft representation (G, T ). Then, (G, T )/I \ J is a graft representation

of M \ I/J [40], page 23. In particular, the class of even-cut matroids is minor-closed.

In this thesis, we are interested in the following problems for even-cycle and even-cut

matroids, which are analogous to ones that we have seen in Section 1.1.2.

(a) Isomorphism problem: what is the relationship between two signed-graph representations

(resp. graft representations) of an even-cycle (resp. even-cut) matroid?

(b) Bounding the number of representations: how many signed-graph representations

(resp. graft representations) are there for an even-cycle (resp. even-cut) matroid?

(c) Recognition problem: how can we efficiently determine if a given matroid is an

even-cycle (resp. even-cut) matroid? How can we find a representation if one exists?

Through Sections 1.2, 1.3, 1.4 and 1.5, we will see details for each problems.
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1.1.4 More matroids with graphical representations

In this section, we review matroids with graphical representations other than even-cycle

and even-cut matroids. In [56] and [57], Zaslavsky generalized graphs to biased graphs and

introduced two classes of matroids that arise from biased graphs. A biased graph is a pair

(G,B) where G is a graph and B is a linear class of cycles of G that satisfies the “theta

property”. A theta graph is a graph composed of three internally-disjoint paths of length at

least 1 sharing their end vertices. Note that a theta graph contains exactly three polygons

as subgraphs, each of which is the union of two internally-disjoint paths. We say that (G,B)

satisfies the theta property if, for each theta subgraph H containing two polygons of B, the

third polygon of H is also in B. A cycle of G is called balanced if it is in B; otherwise it is

called unbalanced. The following are examples of biased graphs introduced in [56].

(a) (G, C) where C is the set of all cycles of G.

(b) (G, ∅), that is, no cycle of G is balanced.

(c) (G,B) where G is a gain graph and B is the set of cycles whose gain product is 1.

A gain graph (also called a group-labelled graph) is a directed graph, whose edges

are labelled by elements of a group. A gain product of a cycle C with the given

orientation is the product of group elements labelled in each edge of C according to

their direction. That is, for backward edges, their inverses will be multiplied.

Zaslavsky introduced two classes of matroids that arise from biased graphs: frame and

lift matroids. A frame matroid FM(G,B) which arises from biased graph (G,B) is a matroid

with ground set E(G) such that each circuit precisely corresponds to either

(i) a balanced polygon of (G,B);
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(ii) a tight handcuff of (G,B)—the union of two unbalanced polygons of (G,B) sharing

exactly one common vertex;

(iii) a loose handcuff of (G,B)—the union of two vertex-disjoint unbalanced polygons

C1, C2 and a path P such that for each i ∈ {1, 2}, the intersection of Ci and P is

exactly one vertex; or

(iv) an unbalanced theta subgraph of (G,B)—a theta subgraph containing three distinct

unbalanced polygons.

Figure 1.4 illustrates circuits of frame matroids.

balanced unbalanced unbalanced unbalanced unbalanced
unbalanced

unbalanced

unbalanced

(i) (ii) (iii) (iv)

Figure 1.4: Circuits of frame matroids.

Now, consider frame matroids corresponding to biased graphs (a),(b), and (c). For (a),

every polygon of G is balanced, so there are neither tight handcuffs, loose handcuffs nor

unbalanced theta subgraphs. Thus, circuits of FM(G, C) precisely correspond to polygons

of G, which means FM(G, C) = cycle(G). For (b), no polygon of G is balanced, so each

circuit of FM(G, ∅) is either a tight handcuff, loose handcuff or unbalanced theta subgraph.

This matroid is called bicircular. For (c) with the two-element (say, 1 and −1) group, the

direction of G can be omitted, and each edge of G is labelled by 1 or −1. Then, there is

no unbalanced theta subgraph, so each circuit of FM(G,B) is either a balanced polygon,
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tight handcuff or loose handcuff. This matroid is called signed-graphic. Classes of frame

matroids have been researched in [2, 3, 5, 6, 35, 39].

The second class of matroids which arises from a biased graphs is lift matroids. A lift

matroid LM(G,B) which arises from a biased graph (G,B) is a matroid with ground set

E(G) such that each circuit precisely corresponds to either

(i) a balanced polygon of (G,B);

(ii) a tight handcuff of (G,B);

(iii) a broken handcuff of (G,B) - the union of two vertex-disjoint unbalanced polygons

of (G,B); or

(iv) an unbalanced theta subgraph of (G,B).

Figure 1.5 illustrates circuits of lift matroids.

balanced unbalanced unbalanced unbalanced unbalanced
unbalanced

unbalanced

unbalanced

(i) (ii) (iii) (iv)

Figure 1.5: Circuits of lift matroids.

Similarly, let us consider lift matroids corresponding to biased graphs (a), (b), and

(c). For (a), every polygon of G is balanced, so there are neither tight handcuffs, broken

handcuffs nor unbalanced theta subgraphs. Thus, circuits of LM(G, C) precisely corresponds

to polygons of G, which means that LM(G, C) = cycle(G). For (b), no polygon of G
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is balanced, so each circuit of LM(G, ∅) is either a tight handcuff, broken handcuff or

unbalanced theta subgraph. This matroid is called a bicircular-lift matroid. For (c) with

the two-element (say, 1 and −1) group, there is no unbalanced theta subgraph, so each

circuit of LM(G,B) is either a balanced polygon, tight handcuff, or broken handcuff. Note

that these are precisely inclusion-wise minimal non-empty even cycles of (G,Σ) where Σ

is the set of all edges labelled with −1. Thus, LM(G,B) = ecycle(G,Σ). Classes of lift

matroids have been researched in [4, 5, 6]; in particular, even-cycle matroids have been

researched in [19, 20, 21, 22, 25, 26, 27, 40, 47].

1.2 Isomorphism problem

1.2.1 Equivalence classes for signed graphs and grafts

In this section, we will discuss the following isomorphism problems for even-cycle and

even-cut matroids.

Question 1.2.1.

(a) For an even-cycle matroid M , describe the relationship between two signed-graph

representations, (G1,Σ1) and (G2,Σ2) of M .

(b) For an even-cut matroid M , describe the relationship between two graft representations,

(G1, T1) and (G2, T2) of M .

Theorem 1.1.1 states that any two graph representations of a graphic matroid are

equivalent. The equivalence relation can be generalized to signed graphs and grafts. Note

that Σ ⊆ E(G) is a signature of (G,Σ) if and only if ecycle(G,Σ) = ecycle(G,Γ) [29]. Let
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(G1,Σ1) and (G2,Σ2) be signed graphs such that E(G1) = E(G2), that is, the set of edge-

labels of G1 and G2 are the same. Then, we say that (G1,Σ1) and (G2,Σ2) are equivalent

if they are related by a sequence of 1-flips, 2-flips, and re-signing; otherwise, they are

inequivalent. Note that this relation is indeed an equivalence relation. The following remark

in [40] implies that the isomorphism problem for even-cycle matroids in Question 1.2.1 can

be easily solved when underlying graphs are equivalent.

Remark 1.2.2. Let (G1,Σ1) and (G2,Σ2) be signed graphs such that E(G1) = E(G2).

Then, they are equivalent if and only if G1 and G2 are equivalent and ecycle(G1,Σ1)

= ecycle(G2,Σ2).

Thus, it suffices to restrict our attention to the case where underlying graphs are not

equivalent.

Now, we consider grafts instead of signed graphs. Let (G1, T1) and (G2, T2) be grafts

such that E(G1) = E(G2). We say (G1, T1) and (G2, T2) are equivalent if G1 and G2 are

equivalent and there exists a T1-join J of (G1, T1) that is a T2-join of (G2, T2); otherwise,

they are inequivalent. Note that this relation is indeed an equivalence relation. The following

remark in [40] implies that the isomorphism problem for even-cut matroids in Question 1.2.1

can be easily solved when underlying graphs are equivalent.

Remark 1.2.3. Let (G1, T1), (G2, T2) be grafts such that E(G1) = E(G2). Then, they are

equivalent if and only if G1 and G2 are equivalent and ecut(G1, T1) = ecut(G2, T2)

Similarly, Remark 1.2.3 reduces the isomorphism problem for even-cut matroids to the case

of inequivalent underlying graphs.
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1.2.2 The pairing theorem

In contrast to Theorem 1.1.1, even-cycle matroids (resp. even-cut matroids) can have

inequivalent signed-graph representations (resp. graft representations). Consider Figure 1.6

and denote by G1 the (edge labelled) graph on the left and by G2 the (edge labelled) graph

on the right. Let Σ1 = {3, 5, 8, 13, 14} and Σ2 = {1, 2, 3, 4, 5}. Then, observe that (G1,Σ1)

1

2

3

4

5

13

11

10

7

12

8

14 6

915

1

23

4

5

13

11

107

12

8

14

6 9

15

Figure 1.6: An example of inequivalent representations.

and (G2,Σ2) have the same set of even cycles. Hence, an answer to Question 1.2.1(a) will

involve the aforementioned construction. For i ∈ [2], let Ti = V (Gi). Then, observe that

(G1, T1) and (G2, T2) have the same set of even cuts. Thus, an answer to Question 1.2.1(b)

will involve the aforementioned construction as well. Note that, in this example, a pair of

inequivalent graphs for which we were able to construct both a pair of signed graphs with

the same even-cycles and a pair of grafts with the same even cuts. This is part of a general

phenomena as proven in [26], Proposition 11.

Theorem 1.2.4 (Pairing theorem). Let G1 and G2 be a pair of inequivalent graphs such

that E(G1) = E(G2). Then, the following are equivalent:

(a) there exist Σ1,Σ2 ⊆ E(G1) such that ecycle(G1,Σ1) = ecycle(G2,Σ2).

(b) there exist T1 ⊆ V (G1) and T2 ⊆ V (G2) such that ecut(G1, T1) = ecut(G2, T2).

13



Moreover, if (a) and (b) occur, then Σ1 and Σ2 are unique up to re-signing, and T1 and T2

are unique.

A pair of inequivalent graphs (G1, G2) for which (a) and (b) hold in Theorem 1.2.4 are

called siblings. Also, we say that (Σ1,Σ2) and (T1, T2) are the matching-signature pair and

the matching-terminal pair for (G1, G2), respectively. Thus, Theorem 1.2.4 implies that the

isomorphism problems for even-cycle and even-cut for inequivalent underlying graphs are

equivalent to the following problem.

Question 1.2.5. For siblings (G1, G2), describe the relationship between G1 and G2.

1.2.3 Shih’s theorem

In his Ph.D. thesis [47], Shih solved the following problem.

Question 1.2.6. Let G1, G2 be graphs where E(G1) = E(G2), and let C1, C2 be cycle spaces

of G1, G2, respectively. Suppose that

C1 ⊇ C2 & dim(C1) = dim(C2) + 1. (1.1)

Then, describe the relationship between G1 and G2.

As proven in [11], Proposition 5, the following proposition shows equivalent properties

of (1.1) in Question 1.2.6.

Proposition 1.2.7. Let G1, G2 be graphs where E(G1) = E(G2), and let C1, C2 be cycle

spaces of G1, G2, respectively. Then, the following are equivalent:

(a) (1.1) holds;
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(b) (G1, G2) are siblings with a matching-signature pair (Σ, ∅); and

(c) (G1, G2) are siblings with a matching-terminal pair (∅, T ).

In this case, we say that (G1, G2) are Shih siblings. We will state Shih’s theorem in

Chapter 2, which illustrate every possible construction of Shih siblings.

1.2.4 A general theorem

Let (G1, G2) be siblings with a matching-signature pair (Σ1,Σ2), and let M := ecycle(G1,Σ1)

= ecycle(G2,Σ2). Suppose that M is graphic. Then, there exists a graph G such that

M = cycle(G) = ecycle(G, ∅). Thus, for each i ∈ [2], (Gi, G) are Shih siblings. Then, we say

that (G1, G2) (and also (G2, G1)) are graphic siblings. Similarly, consider siblings (G1, G2)

with a matching-terminal pair (T1, T2), and let M := ecut(G1, T1) = ecut(G2, T2). Suppose

that M is cographic. Then, there exists a graph H such that M = cut(G) = ecut(G, ∅).

Thus, for each i ∈ [2], (G,Gi) are Shih siblings. Then, we say that (G1, G2) (and also

(G2, G1)) are cographic siblings. This observation reduces Question 1.2.5 to the case when

graphs are neither graphic nor cographic siblings.

Question 1.2.8. For siblings (G1, G2) that are neither graphic nor cographic siblings,

describe the relationship between G1 and G2.

Recall the example of siblings in Figure 1.6. We will argue that they are neither graphic

nor cographic siblings. Consider the induced signed graphs of siblings in Figure 1.6 by edge

set {1, 2, 3, 4, 5, 6, 10, 11, 14, 15}, as illustrated in Figure 1.7. The bold edges represent its

signature in Figure 1.7. Note that they are signed-graph representations of cut(K5), which

is not graphic. Since the class of graphic matroids is minor-closed, siblings in Figure 1.6

are not graphic siblings.
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Figure 1.7: Signed-graph representations of cut(K5).

Similarly, consider the induced grafts of siblings in Figure 1.6 by edge set {1, 3, 5, 8, 9, 10,

11, 12, 15}, as illustrated in Figure 1.8. The white vertices represent its terminals in

Figure 1.8. Note that they are graft representations of cycle(K3,3), which is not cographic.

Since the class of cographic matroids is minor-closed, siblings in Figure 1.6 are not cographic

siblings.
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Figure 1.8: Graft representations of cycle(K3,3).

A graph is k-connected if it contains at least (k + 1) vertices, and it does not contain

a set of (k − 1) vertices whose removal disconnects the graph. We will prove a theorem

in Chapter 2 that gives a partial answer to Question 1.2.8 by assuming 4-connectivity of

siblings; that is, we solve the following problem:
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Question 1.2.9. Let G1, G2 be 4-connected graphs such that (G1, G2) are siblings that are

neither graphic nor cographic siblings. Describe the relationship between G1 and G2.

1.3 Bounding the number of representations

1.3.1 Signed-graph representations

Note that Theorem 1.1.1 implies that every graphic matroid has a unique equivalence

class. Similarly, we wonder if the number of equivalence classes of even-cycle matroids are

bounded by a polynomial function of the size of the matroids. However, this is not true,

even when the matroid is 3-connected [30, 40], as we illustrate next.

For a graph G and a subset F of E(G), we denote by VG(F ) the set of vertices of the

induced graph G[F ]. Consider a 2-connected graph H with subsets X1 ⊂ . . . ⊂ Xk ⊂ E(H)

(k ≥ 1) where, for all i ∈ [k], | ∂(Xi)| = 2 and, for all distinct i, j ∈ [k], ∂(Xi) ∩ ∂(Xj) = ∅.

Consider distinct vertices u1, u2, v1, v2 of H where u1, u2 ∈ VH(X1) − ∂(X1) and v1, v2 ∈

VH(E(H)−Xk))− ∂(Xk). Let G be obtained from H by identifying ui and vi for i ∈ [2].

Let Σ = δH(u1) ∆ δH(u2). We call the signed graph (G,Σ) obtained from that construction

a donut. This construction is illustrated in Figure 1.9(i) for the case k = 3.

In that example, let A = X1, B = X2 − X1, C = X3 − X2 and D = E(H) − X3.

The shaded region next to vertices u1 = v1 and u2 = v2 of G corresponds to edges in

Σ. Let M = ecycle(G,Σ). Let us now show how to construct other donuts that are also

signed-graph representations of M . Let S ⊆ [k], and let H ′ be obtained from H by doing a

2-flip on the set Xi for each i ∈ S. Let G′ be obtained from H by identifying for ui and

v3−i for i ∈ [2]. Then (G′,Σ) is a donut that is also a signed-graph representation of M ,

i.e., (G,Σ) and (G′,Σ′) have the same even cycles [40]. This construction is illustrated in
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u1 = v2
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Figure 1.9: Constructing donuts.

Figure 1.9(ii). In this example, we pick S = {1, 2, 3}. There are 2k donuts that we can

obtain in that way, and they will be pairwise inequivalent for suitable choice of graph H.

Consider a signed-graph (G,Σ). A pair of vertices a, b of G is a blocking pair if every

odd polygon of (G,Σ) uses at least one of the vertices a or b. A matroid M is pinch-graphic

if there exists a signed-graph representation (G,Σ) of M with a blocking pair. We say

that (G,Σ) is a blocking-pair representaion of M . Every graphic matroid is pinch-graphic

and every pinch-graphic matroid is an even-cycle matroid. Moreover, the inclusions are

strict. For instance, F ∗7 is pinch-graphic but not graphic, and R10 is an even-cycle matroid

that is not pinch-graphic. We saw that even-cycle matroids are elementary lifts of graphic

matroids. Pinch-graphic matroids are also elementary projections of graphic matroids [40],

page 30.

If a signed graph has a blocking pair, then so does every minor. In particular, the
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class of pinch-graphic matroids is minor-closed. Observe that all of the donuts defined in

Figure 1.9 have a blocking pair. Hence, pinch-graphic matroids can have an exponential

number of pairwise inequivalent blocking-pair representations. On the other hand, there is

a reasonable bound for even-cycle matroids that are not pinch-graphic as the next result

illustrates.

Theorem 1.3.1. There exists a constant c such that every even-cycle matroid that is not

pinch-graphic has fewer than c pairwise inequivalent signed-graph representations.

This result will be the basis for the recognition algorithm for even-cycle matroids. We will

prove Theorem 1.3.1 in Chapter 3.

1.3.2 Graft representations

In this section, we introduce an example in [30, 40] which is analogous to Figure 1.9

in Section 1.3.1. Consider a graft (G, T ) where T = {t1, t2, t3, t4}. Let P1, . . . , Pn be a

partition of E(G) such that, for i ∈ [n], ∂G(Pi) = T . Note that we can construct an example

where n = O(|E(G)|) and ecut(G, T ) is 3-connected. For every i ∈ [n], let Gi = G[Pi].

Pick I ⊆ [n] and for every i ∈ I, let G′i be a graph constructed from Gi by relabelling

the terminals in one of three possible ways: (i) interchange the labels of t1 and t2 and

interchange the labels of t3 and t4; (ii) interchange the labels of t1 and t3 and interchange

the labels of t2 and t4; or (iii) interchange the labels of t1 and t4 and interchange the labels

of t2 and t3. Now, let G′ be obtained by identifying vertices t1 (resp. t2, t3, t4) in each of

G′i for i ∈ [n]. We say that (G, T ) and (G′, T ) are related by shuffling. We illustrate this in

Figure 1.10. It can be readily checked ([40], page 28 and [25]) that ecut(G, T ) = ecut(G′, T ).

It is now straightforward to see that we can have an exponential number of inequivalent

graft representations all related by shuffling.
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(G, T ) (G′, T ′)

Figure 1.10: Constructing shuffles.

A matroid M is pinch-cographic if there is a graft representation (G, T ) of M where

|T | ≤ 4. We say that (G, T ) is a T4 representation of the pinch-cographic matroid M . If a

graft has at most four terminal vertices, then so does every minor. In particular, the class of

pinch-cographic matroids is minor-closed. Observe that for the shuffling operation defined

in Figure 1.10, we have four terminals, i.e., a T4 representation. Hence, pinch-cographic

matroids can have an exponential number of pairwise inequivalent T4 representations. On

the other hand, as the next result illustrates, there is a reasonable bound for even-cut

matroids that are not pinch-cographic.

Theorem 1.3.2. There exists a constant c such that every even-cut matroid that is not

pinch-cographic has fewer than c pairwise inequivalent graft representations.

This result will be the basis for the recognition algorithm for even-cut matroids. We will

prove Theorem 1.3.2 in Chapter 3.
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1.3.3 Blocking-pair representations

In Section 1.3.2, we showed that there exists non-graphic matroids that are 3-connected,

that have an exponential number of blocking-pair representaions, and where the graph

is 3-connected for each blocking-pair representaion. Thus, a stronger condition than 3-

connectivity is critical in the case for pinch-graphic matroids. Recall that a matroid is

3-connected if it 2-connected and has no 2-separation. Let ` ≥ 3 be an integer, then M is

(4, `)-connected if it is 3-connected and for every 3-separation X, |X| ≤ ` or |E(M)−X| ≤ `.

In particular, M is internally 4-connected if it is (4, 3)-connected. Now, we state a theorem

to bound the number of blocking-pair representaions of a pinch-graphic matroid that is not

graphic under a connectivity condition.

Theorem 1.3.3. Let M be a pinch-graphic matroid that is not graphic. If M is (4, 5)-

connected, then the number of blocking-pair representations of M is in O(|E(M)|4).

We postpone the proof of Theorem 1.3.3 until Chapter 3. Note that we could remove

the condition that M be pinch-graphic in the previous result as otherwise the number of

blocking-pair representations is 0 and the result trivially holds. We kept the condition to

emphasize that this is a result about pinch-graphic matroids.

1.4 Small separations in blocking-pair representations

1.4.1 Separations and sums

In Theorem 1.3.3, we assume (4, 5)-connectivity of a pinch-graphic matroid. Thus, we

need to analyze the structure of 1-separations, 2-separations, and proper 3-separations
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in pinch-graphic matroids. A matroid M has a 1-separation if and only if M can be

expressed as a 1-sum, M1 ⊕1 M2. A 2-connected matroid has a 2-separation if and only

if M can be expressed as a 2-sum, M1 ⊕2 M2 [1, 8, 44]. A 3-connected binary matroid

has a proper 3-separation if and only if it can be expressed as a 3-sum, M1 ⊕3 M2 where

|E(Mi)−E(M3−i)| ≥ 4 for i ∈ [2] [44]. (Sums will be formally defined in Section 3.1.3 and

Section 4.1.1.)

1.4.2 Reducible separations

Consider a binary matroid M where M = M1 ⊕k M2 for k ∈ [3]. If M1 or M2 are graphic,

we say that the k-separation X = E(M1)− E(M2) of M is reducible. The following result

will justify the term:

Proposition 1.4.1. Let M = M1⊕kM2 for k ∈ [3] where M1 is graphic. If k ∈ {2, 3}, then

assume that M is k-connected. Then, M is pinch-graphic if and only if M2 is pinch-graphic.

In addition, we have the following useful property,

Proposition 1.4.2. Every 1- and 2-separation of a pinch-graphic matroid is reducible.

Now, suppose that we wish to recognize if a binary matroid M is pinch-graphic. If M has

a 1- or 2-separation X, then you may assume it is reducible; otherwise, by Proposition 1.4.2,

you can deduce M is not pinch-graphic. Then, for some k ∈ [2], you can express M as

M1 ⊕k M2 where X = E(M1)−E(M2) and Mi is graphic for some i ∈ [2]. Finally, because

of Proposition 1.4.1, it suffices to check if M3−i is pinch-graphic. This allows you to reduce

the recognition problem to 3-connected matroids.
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1.4.3 Irreducible 3-separations

If every proper 3-separation of a pinch-graphic matroid was reducible, Proposition 1.4.1

would allow you to reduce the recognition problem to internally 4-connected matroids. Alas,

it is not true. Consider the signed graphs illustrated in Figure 1.11 (i) and (ii). The shaded

(i) (ii)a b

a

b

Figure 1.11: Examples of irreducible 3-separations.

region corresponds to edges X. We indicate a signature with all black edges incident to the

blocking pair a, b. Then, X is a 3-separation of the corresponding pinch-graphic matroid,

and X is generally not reducible. (i) is an example of a compliant 3-separation X, and (ii)

is an example of a recalcitrant 3-separation X, defined below.

Given a matroid M and X ⊆ E(M), denote by clM (X) the closure of X for matroid M .

We denote by M∗ the dual of M . Let M be a matroid, and let X ⊆ E(M) be a proper

3-separation. Suppose |X| ≥ 5 and there exists e ∈ X with e ∈ clM∗(E(M) − X) and

e ∈ clM∗(X − e) (here, we simply write X − e instead of X − {e}). Then, observe that

X − e is also a proper 3-separation. We say that X − e is homologous to X and so is any

set that is obtained by repeat application of the aforementioned procedure.

Let (G,Σ) be a connected signed-graph and consider X ⊆ E(G). The triple (G,Σ, X)

is a Type I or Type II configuration if |X|, |E(G) − X| ≥ 4; G[X] and G[E(G) − X] are

both connected; and | ∂G(X)| = 2. We denote the set of interior vertices of X in G by

IG(X). In addition, for Type I, there exists a blocking pair u, v where u ∈ IG(X) and
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v ∈ IG(E(G) − X) and for Type II, ∂G(X) is a blocking pair (see Figure 1.11 (i) for a

representation of a Type I configuration and Figure 1.11 (ii) for a representation of a Type

II configuration). Consider a pinch-graphic matroid M with a proper 3-separation X. We

say that X is compliant if there exists a representation (G,Σ) for which (G,Σ, X) is a Type

I configuration. We say that X is recalcitrant if there exists a representation (G,Σ) for

which (G,Σ, X) is a Type II configuration.

Here is the promised characterization, which is proven in Chapter 4.

Proposition 1.4.3. Let M be a 3-connected pinch-graphic matroid and let X ′ be a proper

3-separation. Then there exists a homologous proper 3-separation X that is reducible,

compliant, or recalcitrant.

1.5 Recognition algorithm

1.5.1 Even-cycle and even-cut matroids

Tutte [51] gives a recognition algorithm for graphic matroids (as well as for cographic

matroids) when the matroid is given with its binary representation. This algorithm gives a

graph representation when the given matroid is graphic. If there was a polynomial-time

algorithm to recognize binary matroids for general matroids described by an independence

oracle, then we could extend Tutte’s algorithm to general matroids. Alas, Seymour([46])

proved that such an algorithm does not exist. In the same paper, he gives a recognition

algorithm for graphic matroids described by an independence oracle. For frame matroids,

there are analogous results. In [2], it is proven that there is no polynomial-time recognition

algorithm for bicircular matroids even if the matrix representation of a matroid is given.

In [39], they give two recognition algorithms for binary signed graphic matroids: one for
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when a matroid is given by its binary representation, and the other for when a general

matroid is described by an independence oracle. Chen and Whittle [6] proved that there

is no polynomial-time algorithm to recognize frame and lift matroids described by a rank

oracle. The aforementioned classes of lift matroids have not received as much attention.

We will present the following algorithms in Chapter 5:

(1) Given a binary matroid M described by its 0, 1 matrix representation A, we present

an algorithm that will check if M is an even-cycle matroid in time polynomial in the

number of entries of A.

(2) Given a binary matroid M described by its 0, 1 matrix representation A, we present

an algorithm that will check if M is an even-cut matroid in time polynomial in the

number of entries of A.

We believe that these algorithms ought to be fast in practice but have not conducted

numerical experiments. For both algorithms, the bound on the running time depends

on a constant c that arises from the Matroid Minors Project and that has no explicit

bound [13]. However, the algorithm does not use the value c for its computation. Rather,

these algorithms rely on the existence of a polynomial algorithm to check if a binary matroid

is pinch-graphic.

1.5.2 Pinch-graphic matroids

Next, we describe the relation between pinch-graphic and pinch-cographic matroids.

Proposition 1.5.1 ([40], page 26). The dual of a pinch-graphic matroid is a pinch-cographic

matroid, and the dual of a pinch-cographic matroid is a pinch-graphic matroid.
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If [I|A] is a 0, 1 matrix representation of a binary matroid, then
[
A>|I

]
is a 0, 1 matrix

representation of its dual. Thus a polynomial time algorithm to check if a binary matroid is

pinch-graphic can be used to check in polynomial time if a binary matroid is pinch-cographic.

We present an algorithm that solves the following problem in Chapter 5,

(1) Given an internally 4-connected binary matroid M , check if M is a pinch-graphic

matroid in polynomial time.

(2) Given a binary matroid M , check if M is a pinch-graphic matroid or return an

internally 4-connected matroid N that is isomorphic to a minor of M such that M is

pinch-graphic if and only if N is pinch-graphic in polynomial time.

By combining algorithms (1) and (2), we get a polynomial algorithm to check if a binary

matroid M is pinch-graphic, and therefore, we obtain an algorithm for recognizing even-cycle

and even-cut matroids. Namely, we first apply algorithm (2) and establish whether M is

pinch-graphic, or we construct the matroid N and use algorithm (1) to determine whether

N is pinch-graphic.

For all the aforementioned algorithms, we assume that the matroid M is given in terms

of its 0, 1 matrix representation A, and, by a polynomial algorithm, we mean an algorithm

that runs in time polynomial in the number of entries of A.

1.6 Organization of thesis

In Chapter 2, we state Shih’s theorem and aim to prove a theorem to answer Question 1.2.9.

In Chapter 3, we will give some bounds for the number of equivalence classes of graphical
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representations of even-cycle and even-cut matroids. We also bounds the number of blocking-

pair representations of a (4, 6)-connected, pinch-graphic matroid that is not graphic. We

will prove Theorems 1.3.1, 1.3.2 and 1.3.3 in Chapter 3. These theorems will be used

to construct recognition algorithms in Chapter 5. In Chapter 4, we characterize 1-,2-,

and proper 3-separations of pinch-graphic matroids, and then prove Propositions 1.4.1,

1.4.2 and 1.4.3. Furthermore, we characterize compliant and recalcitrant 3-separations.

This characterization is essential to reducing the recognition algorithm for pinch-graphic

matroids into the (4, 3)-connected case. In Chapter 5, we will describe details of algorithms

to recognize even-cycle and even-cut matroids. As a subroutine, these algorithms use a

recognition algorithm for pinch-graphic matroids. In Chapter 6, we discuss other open

questions related to graphical representations of even-cycle and even-cut matroids.
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Chapter 2

Isomorphism problem

The work in this chapter appears in [23]. Let us recall Theorem 1.1.1 and Question 1.2.1

from Section 1.2.

Theorem 1.1.1. Any two graph representations of a graphic matroid are equivalent.

Note that Theorem 1.1.1 also implies that any two graph representations of a cographic

matroid are equivalent since, for a graph G, cycle(G) = cut(G)∗. In this chapter, we are

interested in generalizing Theorem 1.1.1 to even-cycle and even-cut matroids, namely, we

are interested in the following problems:

Question 1.2.1.

(a) For an even-cycle matroid M , describe the relationship between two signed-graph

representations, (G1,Σ1) and (G2,Σ2) of M .

(b) For an even-cut matroid M , describe the relationship between two graft representations,

(G1, T1) and (G2, T2) of M .
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Since ecycle(Gi,Σi) = cycle(Gi) when Σi = ∅, Question 1.2.1(a) generalizes the problem

of characterizing when two graphs have the same cycles. Similarly, ecut(Gi, Ti) = cut(Gi)

when Ti = ∅. Hence, Question 1.2.1(b) generalizes the problem of characterizing when two

graphs have the same cuts.

Recall that (G1, G2) are siblings if they are inequivalent and there exists a matching-

signature pair (Σ1,Σ2) and a matching-terminal pair (T1, T2), that is, ecycle(G1,Σ1) =

ecycle(G2,Σ2) and ecut(G1, T1) = ecut(G2, T2). As seen in Section 1.2.2, the questions in

Question 1.2.1 are equivalent to each other when (G1, G2) are siblings, and therefore, it

suffices to describe the relationship between siblings.

In Section 2.1, we review a beautiful result of Shih that solves Question 1.2.1(a) for the

case when (G1, G2) are siblings and Σ2 = ∅. Equivalently, it solves Question 1.2.1(b) for

the case when (G1, G2) are siblings and T1 = ∅. In this case, the siblings are called Shih

siblings.

The main results of this chapter partially solve Question 1.2.1, namely, when G1 and

G2 are 4-connected. We define operations that preserve even-cycles and operations that

preserve even-cuts in Section 2.2. The formal statement will require a number of definitions

and will be stated in Section 2.3. The proof of these results appears in Sections 2.4, 2.5

and 2.6.

2.1 Shih’s theorem

2.1.1 Constructions

Before we state Shih’s theorem, recall that Shih’s theorem solves the following problems:
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Question 1.2.6. Let G1, G2 be graphs where E(G1) = E(G2), and let C1, C2 be cycle spaces

of G1, G2, respectively. Suppose that

C1 ⊇ C2 & dim(C1) = dim(C2) + 1. (2.1)

Then, describe the relationship between G1 and G2.

Next, we see constructions for pairs of graphs (G1, G2) satisfying (2.1).

Pinching.

Consider a connected graph G2 with distinct vertices a and b, and let G1 be obtained from

G2 by identifying vertices a and b. Let C1, C2 be the set of cycles of G1, G2, respectively.

Then clearly, every cycle of G2 is a cycle of G1. Moreover, as dim(C1) = |E(G1)|−|V (G1)|+1

and dim(C2) = |E(G2)| − |V (G2)|+ 1, we have dim(C1) = dim(C2) + 1.

Wheel pairs.

Consider graphs R1, . . . , Rk with k ≥ 3 and distinct vertices xi, yi, zi ∈ V (Ri) for all i ∈ [k].

Let G1 be obtained from R1, . . . , Rk by identifying yi, zi+1, xi+2 to a vertex for all i ∈ [k]

(where k + 1 = 1 and k + 2 = 2). Let G2 be obtained from R1, . . . , Rk by identifying

z1, . . . , zk to a vertex and, for all i ∈ [k], identifying yi and xi+1 to a vertex (where k+1 = 1).

We say that G2 is a wheel and G1, G2 is a wheel pair. R1, . . . , Rk are the parts of the wheel

G2. Moreover, the wheel pair is proper if we require that for all i ∈ [k], there exists an

xiyi-path of G2[Ri] that avoids zi.

The construction is illustrated in Figure 2.1 for the case k = 6.
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Figure 2.1: Wheel pair G1, G2 with G1 on the left and G2 on the right.

Widget pairs.

Consider graphs R1, R2, R3, R4 with distinct vertices xi, yi, zi ∈ V (Ri) for all i ∈ [4]. Let

G1 be obtained from R1, R2, R3, R4 by identifying y1, z2, x3, x4, identifying x1, y2, z3, y4, and

identifying z1, x2, y3, z4. Let G2 be obtained from R1, R2, R3, R4 by identifying z1, z2, z3,

identifying y1, x2, y4, identifying y2, x3, z4, and identifying x1, y3, x4. We say that G2 is a

widget and G1, G2 is a widget pair. R1, R2, R3, R4 are the parts of the widget G2. Moreover,

the widget pair is proper if it is not a wheel pair. The construction is illustrated in Figure 2.2.
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Figure 2.2: Widget pair G1, G2 with G1 on the left and G2 on the right.
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2.1.2 The characterization

We are now ready to state Shih’s Theorem,

Theorem 2.1.1 (Theorem 1, Chapter 2 in [47], Theorem 3 in [11]). Let G1, G2 be siblings

satisfying (2.1). Then there exist G′1 equivalent to G1 and G′2 equivalent to G2 such that

(a) G′1 is obtained from G′2 by identifying two distinct vertices;

(b) G′1, G
′
2 is a proper wheel pair; or

(c) G′1, G
′
2 is a proper widget pair.

2.2 Moves

2.2.1 Folding and unfolding

Let (G,Σ) be a signed graph. Recall that v, w ∈ V (G) is a blocking pair if every odd cycle

of (G,Σ) uses at least one of v or w. Equivalently, v, w is a blocking pair if there exists a

signature Γ such that every edge of Γ has at least one end in {v, w} [29]. Consider a graft

(H,T ) with terminals T = {t1, t2, t3, t4}. Let G be obtained from H by identifying vertices

t1 and t2 and by identifying vertices t3 and t4. Denote by a the vertex of G corresponding

to t1 = t2 and by b the vertex of G corresponding to t3 = t4. Let Σ = δH(t1) ∆ δH(t3). Then

(G,Σ) is a signed graph with blocking pair a, b. We say that (G,Σ) is obtained from (H,T )

by folding and that (H,T ) is obtained from (G,Σ) by unfolding. When unfolding, even

edges with both ends in a, b can be chosen to have ends t1, t3 or t2, t4; and odd edges with

both ends in a, b can be chosen to have ends t1, t4 or t2, t3. The construction is illustrated

in Figure 2.3. The shaded regions represent the signature in Figure 2.3.
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t4

<latexit sha1_base64="UT+yTZyvBlJjHgLGUlXSCeIek5c=">AAAB7XicbZC7SgNBFIZnvcZ4i1oKMhgEq7CbQtMZsLFMwFwgWcLZyWwyZnZmmZkVwpLS3sZCEVtfIZUPYecz+BJOLoUm/jDw8f/nMOecIOZMG9f9clZW19Y3NjNb2e2d3b393MFhXctEEVojkkvVDEBTzgStGWY4bcaKQhRw2ggG15O8cU+VZlLcmmFM/Qh6goWMgLFWvQ087kMnl3cL7lR4Gbw55K8+xtXvh5NxpZP7bHclSSIqDOGgdctzY+OnoAwjnI6y7UTTGMgAerRlUUBEtZ9Opx3hM+t0cSiVfcLgqfu7I4VI62EU2MoITF8vZhPzv6yVmLDkp0zEiaGCzD4KE46NxJPVcZcpSgwfWgCimJ0Vkz4oIMYeKGuP4C2uvAz1YsG7KBSrbr5cQjNl0DE6RefIQ5eojG5QBdUQQXfoET2jF0c6T86r8zYrXXHmPUfoj5z3H1IRk10=</latexit>↵ <latexit sha1_base64="UT+yTZyvBlJjHgLGUlXSCeIek5c=">AAAB7XicbZC7SgNBFIZnvcZ4i1oKMhgEq7CbQtMZsLFMwFwgWcLZyWwyZnZmmZkVwpLS3sZCEVtfIZUPYecz+BJOLoUm/jDw8f/nMOecIOZMG9f9clZW19Y3NjNb2e2d3b393MFhXctEEVojkkvVDEBTzgStGWY4bcaKQhRw2ggG15O8cU+VZlLcmmFM/Qh6goWMgLFWvQ087kMnl3cL7lR4Gbw55K8+xtXvh5NxpZP7bHclSSIqDOGgdctzY+OnoAwjnI6y7UTTGMgAerRlUUBEtZ9Opx3hM+t0cSiVfcLgqfu7I4VI62EU2MoITF8vZhPzv6yVmLDkp0zEiaGCzD4KE46NxJPVcZcpSgwfWgCimJ0Vkz4oIMYeKGuP4C2uvAz1YsG7KBSrbr5cQjNl0DE6RefIQ5eojG5QBdUQQXfoET2jF0c6T86r8zYrXXHmPUfoj5z3H1IRk10=</latexit>↵
<latexit sha1_base64="kaN3uME8Azzt5uV7U0w492A3Mgc=">AAAB7HicbVC7SgNBFJ31GeMrmtJmMQSswm4KTRmwsYzgJoFkCbOTu8mQ2dll5q4QlnT2NhaK2PopfoCdfoBf4Ac4eRSaeODC4Zx7ufeeIBFco+N8WGvrG5tb27md/O7e/sFh4ei4qeNUMfBYLGLVDqgGwSV4yFFAO1FAo0BAKxhdTv3WLSjNY3mD4wT8iA4kDzmjaCSvGwDSXqHkVJwZ7FXiLkipXizffb99fTZ6hfduP2ZpBBKZoFp3XCdBP6MKORMwyXdTDQllIzqAjqGSRqD9bHbsxC4bpW+HsTIl0Z6pvycyGmk9jgLTGVEc6mVvKv7ndVIMa37GZZIiSDZfFKbCxtiefm73uQKGYmwIZYqbW202pIoyNPnkTQju8surpFmtuOeV6rVJo0bmyJETckrOiEsuSJ1ckQbxCCOc3JNH8mRJ68F6tl7mrWvWYqZI/sB6/QG9r5MT</latexit>

�
<latexit sha1_base64="kaN3uME8Azzt5uV7U0w492A3Mgc=">AAAB7HicbVC7SgNBFJ31GeMrmtJmMQSswm4KTRmwsYzgJoFkCbOTu8mQ2dll5q4QlnT2NhaK2PopfoCdfoBf4Ac4eRSaeODC4Zx7ufeeIBFco+N8WGvrG5tb27md/O7e/sFh4ei4qeNUMfBYLGLVDqgGwSV4yFFAO1FAo0BAKxhdTv3WLSjNY3mD4wT8iA4kDzmjaCSvGwDSXqHkVJwZ7FXiLkipXizffb99fTZ6hfduP2ZpBBKZoFp3XCdBP6MKORMwyXdTDQllIzqAjqGSRqD9bHbsxC4bpW+HsTIl0Z6pvycyGmk9jgLTGVEc6mVvKv7ndVIMa37GZZIiSDZfFKbCxtiefm73uQKGYmwIZYqbW202pIoyNPnkTQju8surpFmtuOeV6rVJo0bmyJETckrOiEsuSJ1ckQbxCCOc3JNH8mRJ68F6tl7mrWvWYqZI/sB6/QG9r5MT</latexit>

�

<latexit sha1_base64="In9BHrcF/p1pHj1/VlF/Dl8YYk0=">AAAB63icbVDLSgNBEOz1GeMr6tHLYBA8hd0cNMeAIB4jmAckS5idnU2GzGOZmRVCyC948aCIV3/Im3/jbLIHTSxoKKq66e6KUs6M9f1vb2Nza3tnt7RX3j84PDqunJx2jMo0oW2iuNK9CBvKmaRtyyynvVRTLCJOu9HkNve7T1QbpuSjnaY0FHgkWcIItrl0p3g8rFT9mr8AWidBQapQoDWsfA1iRTJBpSUcG9MP/NSGM6wtI5zOy4PM0BSTCR7RvqMSC2rC2eLWObp0SowSpV1Jixbq74kZFsZMReQ6BbZjs+rl4n9eP7NJI5wxmWaWSrJclGQcWYXyx1HMNCWWTx3BRDN3KyJjrDGxLp6yCyFYfXmddOq14LpWf6hXm40ijhKcwwVcQQA30IR7aEEbCIzhGV7hzRPei/fufSxbN7xi5gz+wPv8Ae2BjiI=</latexit>

Fold

<latexit sha1_base64="JR718sjjmj7d22q+mWklLeL/+ZU=">AAAB7XicbVBNT8JAEJ3iF+IX6tHLRmLiibQchCOJF4+YWCCBhmy3W1jZ7ja7WxPS8B+8eNAYr/4fb/4bF+hBwZdM8vLeTGbmhSln2rjut1Pa2t7Z3SvvVw4Oj45PqqdnXS0zRahPJJeqH2JNORPUN8xw2k8VxUnIaS+c3i783hNVmknxYGYpDRI8FixmBBsrdX0RSx6NqjW37i6BNolXkBoU6IyqX8NIkiyhwhCOtR54bmqCHCvDCKfzyjDTNMVkisd0YKnACdVBvrx2jq6sEqFYKlvCoKX6eyLHidazJLSdCTYTve4txP+8QWbiVpAzkWaGCrJaFGccGYkWr6OIKUoMn1mCiWL2VkQmWGFibEAVG4K3/vIm6Tbq3k29cd+otVtFHGW4gEu4Bg+a0IY76IAPBB7hGV7hzZHOi/PufKxaS04xcw5/4Hz+AJNCjxk=</latexit>

Unfold

<latexit sha1_base64="GhCAZOxKqKYhEw4nQNRu8d+RViY=">AAAB8XicbVBNSwMxEJ31s9avqkcvwSJUkLJbRHsseNBjRfuB7VKyabYNTbJLkhXK0n/hxYMiXv033vw3pu0etPXBwOO9GWbmBTFn2rjut7Oyura+sZnbym/v7O7tFw4OmzpKFKENEvFItQOsKWeSNgwznLZjRbEIOG0Fo+up33qiSrNIPphxTH2BB5KFjGBjpcfSzXn3ng0EPusVim7ZnQEtEy8jRchQ7xW+uv2IJIJKQzjWuuO5sfFTrAwjnE7y3UTTGJMRHtCOpRILqv10dvEEnVqlj8JI2ZIGzdTfEykWWo9FYDsFNkO96E3F/7xOYsKqnzIZJ4ZKMl8UJhyZCE3fR32mKDF8bAkmitlbERlihYmxIeVtCN7iy8ukWSl7l+XK3UWxVs3iyMExnEAJPLiCGtxCHRpAQMIzvMKbo50X5935mLeuONnMEfyB8/kDLrqP7A==</latexit>

(G,⌃)
<latexit sha1_base64="ECWhSfqP2gCMIl5ueYdx2AEuiek=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBahgpSkiPZY8NJjhaYttKFstpt26WYTdjdCCf0NXjwo4tUf5M1/4zbNQVsfDDzem2Fmnh9zprRtf1uFre2d3b3ifung8Oj4pHx61lVRIgl1ScQj2fexopwJ6mqmOe3HkuLQ57Tnzx6Wfu+JSsUi0dHzmHohnggWMIK1kdxq66ZzPSpX7JqdAW0SJycVyNEelb+G44gkIRWacKzUwLFj7aVYakY4XZSGiaIxJjM8oQNDBQ6p8tLs2AW6MsoYBZE0JTTK1N8TKQ6Vmoe+6Qyxnqp1byn+5w0SHTS8lIk40VSQ1aIg4UhHaPk5GjNJieZzQzCRzNyKyBRLTLTJp2RCcNZf3iTdes25q9UfbyvNRh5HES7gEqrgwD00oQVtcIEAg2d4hTdLWC/Wu/Wxai1Y+cw5/IH1+QNvY43C</latexit>

(H, T )

Figure 2.3: Folding and unfolding.

Proposition 2.2.1 (page 26, [40]). Let (G,Σ) be a signed graph with a blocking pair and

let (H,T ) be obtained from (G,Σ) by unfolding. Then ecycle(G,Σ) = ecut(H,T )∗.

2.2.2 Two operations

We now leverage Proposition 2.2.1 to construct operations that preserve even-cycles in

signed graphs and that preserve even-cuts in grafts.

BP-moves

Consider a signed graph (G,Σ) that has a blocking pair u,w. There exists a signature Γ

where all edges of Γ have at least one end in {u,w}. Denote by (H,T ) a graft obtained

from (G,Σ) by unfolding. Let (H ′, T ′) be a graft equivalent to (H,T ) (see Section 1.2.1).

Suppose |T ′| = 4 and let (G′,Σ′) be obtained from (H ′, T ′) by folding. Then (G′,Σ′) is

obtained from (G,Σ) by a BP-move (short for blocking-pair-move). We say that siblings

(G1, G2) are blocking-pair siblings if there exist a matching-signature pair (Σ1,Σ2) such that

(G1,Σ1) and (G2,Σ2) are related by a BP-move.

Next, we observe that BP-moves preserve even-cycles.

Proposition 2.2.2. If (G′,Σ′) is obtained from (G,Σ) by a BP-move then ecycle(G′,Σ′) =

ecycle(G,Σ).
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Proof. In the aforementioned construction, Proposition 2.2.1 implies that ecycle(G,Σ) =

ecut(H,T )∗ and ecycle(G′,Σ′) = ecut(H ′, T ′)∗. Moreover, by Remark 1.2.3, ecut(H,T ) =

ecut(H ′, T ′). Thus, ecycle(G,Σ) = ecycle(G′,Σ′), as required.

T4-moves

Consider a graft (H,T ) where |T | = 4. Denote by (G,Σ) a signed graph obtained from

(H,T ) by folding. Let (G′,Σ′) be a signed graph equivalent to (G,Σ) (see Section 1.2.1).

Suppose that (G′,Σ′) has a blocking pair a, b and that all odd edges are incident to at least

one of {a, b}. Let (H ′, T ′) be a graft obtained from (G′,Σ′) by unfolding. Then we say that

(H ′, T ′) is obtained from (H,T ) by a T4-move. We say that siblings (H1, H2) are T4 siblings

if there exist a matching-terminal pair (T1, T2) such that (H1, T1) and (H2, T2) are related

by a T4-move.

Next, we observe that T4-moves preserve even-cuts.

Proposition 2.2.3. If (H ′, T ′) is obtained from (H,T ) by a T4-move then ecut(H ′, T ′) =

ecut(H,T ).

Proof. In the aforementioned construction, Proposition 2.2.1 implies that ecut(H,T ) =

ecycle(G,Σ)∗ and ecut(H ′, T ′) = ecycle(G′,Σ′)∗. Moreover, by Remark 1.2.2, ecycle(G,Σ) =

ecut(G′,Σ′). Thus, ecut(H ′, T ′) = ecut(H,T ), as required.
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2.3 Main results

2.3.1 A first characterization

Recall Question 1.2.8 from Section 1.2.4. In this section, we characterize such siblings under

suitable connectivity assumptions.

Question 1.2.8. For siblings (G1, G2) that are neither graphic nor cographic siblings,

describe the relationship between G1 and G2.

We say that siblings (G1, G2) are 4-connected if both G1 and G2 are 4-connected. Here is

our first main result:

Theorem 2.3.1. Let (G1, G2) be 4-connected siblings that are neither graphic nor cographic.

Denote by (Σ1,Σ2) the matching-signature pair and denote by (T1, T2) the matching-terminal

pair. Then, one of the following holds:

(a) si(G1) and si(G2) are isomorphic to subgraphs of K6;

(b) (G1, G2) are blocking-pair siblings;

(c) (G1, G2) are T4 siblings; or

(d) there exists i ∈ [2] (say i = 1) and a graph G′1 such that (G1, G
′
1) are blocking-pair

siblings and (G′1, G2) are cographic siblings.

Here si(Gi) denotes the graph obtained from Gi by replacing each parallel class by a single

edge. Observe that the condition that G1, G2 not be both isomorphic to a subgraph of K6 is

necessary because of the example in Figure 1.6. Indeed, for that example, neither (G1,Σ1)
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nor (G2,Σ2) has a blocking pair, so in particular, no BP-move is possible. Moreover, in

that example, |T1| = |T2| = 6, so in particular, no T4-move is possible. In the next section,

we will state a more refined version of Theorem 2.3.1 and show how it implies this result.

2.3.2 A second characterization

Before we proceed, we need to introduce a key idea. Let G1 and G2 be graphs where

E(G1) = E(G2) = E. For a subset F of E where |F | ≥ 2, we say that F is a pseudo-path

of pair (G1, G2) if |Vodd(Gi[F ])| ≤ 2 for i ∈ [2]. We say that (G1, G2) is closed if, for each

pseudo-path F of (G1, G2), either

(a) F is a cycle in both G1 and G2; or

(b) there exists an edge eF ∈ E such that F ∪ {eF} is a cycle of both G1 and G2.

Proposition 2.3.2. Let (G1, G2) be siblings that are not closed. Then, there exists a pair

of graphs (G′1, G
′
2) where E(G′1) = E(G′2) such that

(a) (G′1, G
′
2) are siblings;

(b) for i ∈ [2], V (Gi) = V (G′i); and

(c) there exists an edge e ∈ E(G′1)− E(G1) such that, for i ∈ [2], G′i \ e = Gi.

(d) G′1 and G′2 have no common cycle C of size at most 2 that contains e.

Proof. Let (Σ1,Σ2) be the matching-signature pair for (G1, G2). Since (G1, G2) are not

closed, there exists a pseudo-path F of (G1, G2) such that F is not a cycle in at least

one of G1 and G2, and, for any edge f ∈ E(G1), F ∪ {f} is not a cycle in at least one
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of G1 and G2. For i ∈ [2], construct G′i as follows: if |Vodd(Gi[F ])| = 2, then add an

edge e joining two odd-degree vertices of Gi, and add a loop e otherwise. Note that

E(G′1) = E(G1) ∪ {e}, and F ∪ {e} is a cycle in both G1 and G2. By the construction,

(b) and (c) hold. For (a), we define Σ′i for i ∈ [2] as follows: if |F ∩ Σi| is odd, then let

Σ′i = Σi ∪ {e}, and let Σ′i = Σi otherwise. Then, by construction, |(F ∪ {e}) ∩ Σ′i| is even.

Since ecycle(G1,Σ1) = ecycle(G2,Σ2) and (F ∪ {e}) ∩ {e} is an even in both (G1,Σ1) and

(G2,Σ2), ecycle(G′1,Σ
′
1) = ecycle(G′2,Σ

′
2), in particular, (G′1, G

′
2) are siblings. For (d), let

C be a common cycle of G′1 and G′2 such that e ∈ C and |C| ≤ 2. Note that C 6= {e};

otherwise, F is a cycle in both G1, G2, giving a contradiction. Suppose by contradiction

that C = {e, f} for some edge f ∈ E(G1). Then, F ∪ {f} is a cycle in both G1, G2, giving

a contradiction as well.

It follows from the previous result that, for any siblings (G1, G2), there exists closed siblings

(G′1, G
′
2) where, for i ∈ [2], Gi is a subgraph of G′i. Thus it will suffice to characterize closed

siblings. By an adjacent blocking pair v, w, we mean a blocking pair v, w where v, w are

joined by an edge. Here is our second main result,

Theorem 2.3.3. Let (G1, G2) be 4-connected, closed siblings that are neither graphic

nor cographic. Denote by (Σ1,Σ2) the matching-signature pair and denote by (T1, T2) the

matching-terminal pair. Then one of the following holds:

(a) si(G1) and si(G2) are isomorphic to K6;

(b) (G1,Σ1) and (G2,Σ2) are blocking-pair siblings;

(c) (G1, T1) and (G2, T2) are T4 siblings; or

(d) for some i ∈ [2], (Gi,Σi) has an adjacent blocking pair.
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Theorem 2.3.3 was originally proved by B. Guenin and I. Pivotto in [24], which is not

published. In the following sections, we will see a much shorter and accessible proof. For

both Theorem 2.3.1 and Theorem 2.3.3, we impose the condition that the siblings be

4-connected.

2.3.3 Reduction

We will show that Theorem 2.3.3 implies Theorem 2.3.1. First we require the following:

Theorem 2.3.4 ([26] Theorem 6). Let (G1, G2) be siblings with a matching-signature pair

(Σ1,Σ2) and a matching-terminal pair (T1, T2).

(a) If D is a an odd cut of (G1, T1), then D is a signature of (G2,Σ2).

(b) If C is an odd cycle of (G1,Σ1), then C is a T2-join of (G2, T2).

Consider for example the siblings (G1, G2) in Figure 1.6 where G1 is the graph on the left

and G2 the graph on the right. The thick edges denote the matching-signature pair (Σ1,Σ2)

and the matching-signature pair (T1, T2) is the set of all vertices of G1 and G2, respectively.

Let u denote the shaded vertex in G1. Since u ∈ T1, δG1(u) = {1, 2, 3, 4, 5} is an odd cut of

(G1, T1), hence a signature of (G2,Σ2). Since C = {3, 4, 10} is an odd cycle of (G1,Σ1), C

is a T2-join of G2.

Remark 2.3.5. Let (G1, G2) be siblings with matching-terminal pairs (T1, T2). If |T1| ≤ 2

or |T2| ≤ 2, then (G1, G2) is cographic.

Proof. We may assume |T1| ≤ 2. If T1 = ∅ then let H = G1 and if |T1| = 2 let H be obtained

from G1 by identifying the vertices in T1. In both cases, cut(H) = ecut(G1, T1).
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Proof of Theorem 2.3.1 (assuming Theorem 2.3.3). By Proposition 2.3.2, there exist closed

siblings (Ĝ1, Ĝ2) such that, for i ∈ [2], Gi is a subgraph of Ĝi. As (G1, G2) are 4-connected,

so are (Ĝ1, Ĝ2) by Proposition 2.3.2 (b). Furthermore, as (G1, G2) are neither graphic nor

cographic siblings, neither are (Ĝ1, Ĝ2). Denote by (Σ̂1, Σ̂2) the matching-signature pair

of (Ĝ1, Ĝ2). Note that (T1, T2) is the matching-terminal pair for (Ĝ1, Ĝ2). We can apply

Theorem 2.3.3 to siblings (Ĝ1, Ĝ2). Let us review each of possible outcomes (a)-(d). For

(a), each of si(G1) and si(G2) is isomorphic to subgraphs of K6. Note that (b) and (c) are

also outcomes of Theorem 2.3.1. Thus, it suffices to consider outcome (d), and we may

assume it is neither outcome (a),(b), nor (c). After possibly interchanging the role of Ĝ1

and Ĝ2 we may assume that (Ĝ1, Σ̂1) has an adjacent blocking pair u,w. After possibly

re-signing, we may assume that edges of Σ̂1 are incident to at least one of {u,w} and that

there exists an edge f = (u,w) ∈ Σ̂1. Let (H,T ) be obtained from (Ĝ1, Σ̂1) by unfolding

where T = {t1, t2, t3, t4} and f = (t1, t2). Let (Ĝ′1, Σ̂
′
1) be obtained by folding (H,T ) so

that we have blocking pair a, b where a = t1 = t2. Then f is an odd loop of (Ĝ′1, Σ̂
′
1). Since

it is not outcome (b), (Ĝ′1, Ĝ2) are siblings. Let (R1, R2) be the matching-terminal pair

for (Ĝ′1, Ĝ2). Since f is an odd loop, Theorem 2.3.4 implies |R2| = 2. By Remark 2.3.5,

Ĝ′1, Ĝ2 are cographic siblings. Let B = E(Ĝi)− E(Gi) and G′1 = Ĝ′1 \ B. Then, (G1, G
′
1)

are blocking-pair siblings, and (G′1, G2) are cographic siblings, as required.

2.4 Counterexamples

We say that (G1, G2) are counterexamples if (G1, G2) are 4-connected, closed siblings that

are neither graphic nor cographic, but none of outcomes (a)-(d) of Theorem 2.3.3 hold.
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2.4.1 Properties of counterexamples

Let e, f be parallel edges in a signed graph (G,Σ). We say that {e, f} is a diamond of

(G,Σ) if exactly one of e, f is in Σ. A signed graph (G,Σ) is simple if G is loopless and, for

every pair of parallel edges e and f , {e, f} is a diamond.

Proposition 2.4.1. If there exists a counterexample then there exists a counterexample

G1, G2 with matching-signature pair Σ1,Σ2 with the property that for i ∈ [2], (Gi,Σi) is

simple.

Proof. We may assume that we picked G1 and G2 to be a counterexample with as few edges

as possible. Let (T1, T2) be the matching-terminal pair for (G1, G2). Suppose that, for some

i ∈ [2] (say i = 1), (G1,Σ1) is not simple. Then, either G1 has a loop e or G1 has parallel

edges e, f that form an even cycle of (G1,Σ1). First, suppose G1 has a loop e. Then, e /∈ Σ1;

otherwise, by Theorem 2.3.4, |T2| = 2, giving a contradiction. Then, (G1 \ e,G2 \ e) are

also counterexamples. Now, suppose that G1 has parallel edges e, f that form an even cycle

of (G1,Σ1). It follows that {e, f} is an even cycle of (G2,Σ2). Moreover, as e is not a loop,

e, f are parallel edges of G2 and G1 \ e,G2 \ e are also counterexamples. In either case,

there exists a counterexample with a fewer number of edges, giving a contradiction.

Let (G,Σ) be a signed graph. We say that v ∈ V (G) is a blocking vertex if every odd

polygon of (G,Σ) uses v. Equivalently, v is a blocking vertex if there exists a signature Γ

such that every edge of Γ is incident to v [29].

Remark 2.4.2 ([27], Lemma 6). If an even-cycle matroid has a representation with a

blocking vertex, then it is graphic.

Proposition 2.4.3. Let G1, G2 be a counterexample with matching-signature pair Σ1,Σ2

and matching-terminal pair T1, T2. Then for i ∈ [2],
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(a) (Gi,Σi) has no blocking vertex,

(b) |Ti| ≥ 4.

Proof. Note that (b) follows from Remark 2.3.5. For (a), we may assume i = 1. If

(G1,Σ1) has a blocking vertex v, then Remark 2.4.2 implies that ecycle(G1,Σ1) is graphic,

contradicting that (G1, G2) are not graphic.

The following is an immediate consequence of Theorem 1.1.1 and Remark 1.2.2:

Remark 2.4.4. Let (G,Σ) and (G′,Σ′) be signed-graph representations of the same even-

cycle matroid. Let C ⊆ E(G) be an odd cycle of both (G,Σ) and (G′,Σ′). Then, (G,Σ) and

(G′,Σ′) are equivalent.

Proposition 2.4.5. Let (G1, G2) be a counterexample with a matching-terminal pair (T1, T2).

If |T1| = |T2| = 4, then no edge of G1 has both ends in Ti for all i ∈ [2].

Proof. Suppose for a contradiction that we have edge f ∈ E(G1) such that f = (ti, t
′
i)

where ti, t
′
i ∈ Ti for all i ∈ [2]. Then, for each i ∈ [2], let (Hi,Γi) be obtained from (Gi, Ti)

by folding so that ti = t′i in Hi. By Proposition 2.2.1,

ecycle(H1,Γ1) = ecut(G1, T1)∗ = ecut(G2, T2)∗ = ecycle(H2,Γ2).

Moreover, by construction, f is an odd loop of (H1,Γ1) and (H2,Γ2). By Remark 2.4.4,

(H1,Γ1) and (H1,Γ2) are equivalent. But then, (G1, T1) and (G2, T2) are related by a

T4-move, contradicting that (G1, G2) are not T4 siblings.

The following is an immediate consequence of Theorem 1.1.1 and Remark 1.2.3:
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Remark 2.4.6. Let (G, T ) and (G′, T ′) be graft representations of the same even-cut

matroid. Let D ⊆ E(G) be an odd cut of both (G, T ) and (G′, T ′). Then, (G, T ) and (G′, T ′)

are equivalent.

Proposition 2.4.7. Let (G1, G2) be a counterexample with a matching-signature pair

(Σ1,Σ2). Suppose, for i ∈ [2], we have vertices ui, wi of Gi such that all edges of Σi are

incident to at least one of ui, wi. Then, δG1(u1) ∩ Σ1 6= δG2(u2) ∩ Σ2.

Proof. Suppose that, for contradiction, we have B := δG1(u1)∩Σ1 = δG2(u2)∩Σ2. Observe

that for i ∈ [2], ui, wi is a blocking pair of (Gi,Σi). Since G1, G2 is a counterexample,

ui, wi are non-adjacent. For i ∈ [2], let (Hi, Ri) be obtained from (Gi,Σi) by unfolding. By

Proposition 2.2.1,

ecut(H1, R1) = ecycle(G1,Σ1)∗ = ecycle(G2,Σ2)∗ = ecut(H2, T2).

Moreover, by construction B is an odd cut of (H1, R1) and (H2, R2). By Remark 2.4.6,

(H1, R1) and (H2, R2) are equivalent. But then, (G1,Σ1) and (G2,Σ2) are related by a

BP-move, contradicting that (G1, G2) are not blocking-pair siblings.

Proposition 2.4.8. Let (G1, G2) be counterexamples with a matching-signature pair (Σ1,Σ2)

and matching-terminal pair (T1, T2) where (G1,Σ1) and (G2,Σ2) are simple. Then, the

following hold for i ∈ [2],

(a) If (Gi,Σi) has a diamond {e, f}, then {e, f} is a matching of G3−i covering T3−i.

(b) If |Ti| = 4, then there is no diamond of (Gi,Σi) with both ends in Ti.

(c) (Gi,Σi) has at most 3 distinct diamonds.

(d) If |T1| ≤ |T2|, then there exists v ∈ T1 not incident to a diamond.
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Proof. For (a), since {e, f} is an odd cycle of (Gi,Σi), it is a T3−i-join of G3−i by

Theorem 2.3.4. Moreover, |T3−i| = 4 by Proposition 2.4.3(b). For (b), suppose for a

contradiction that there is a diamond {e, f} with both ends in Ti. By (a), |T3−i| = 4 and

the ends of e are in T3−i. But this contradicts Proposition 2.4.5. For (c), suppose for a

contradiction that we have, for j ∈ [4], disjoint diamonds ej, fj of (Gi, Ti). By (a), ej, fj

are matchings of G3−i with ends in T3−i. It follows that two edges, say ej, ej′ of these

matching are parallel in G2. Since (G3−i,Σ3−i) is simple, ej, ej′ is a diamond of (G2,Σ2),

contradicting (b). For (d), assume |T1| ≤ |T2|. By Proposition 2.4.3(b), we have |Ti| ≥ 4

for i ∈ [2]. We may assume (G1,Σ1) has a diamond. Thus, by (a), we have |T2| = 4

and in particular |T1| = 4. Suppose for a contradiction for every vertex v of T1 we have

diamond ev, fv incident to v. It follows from (c) that two of these diamonds are the same,

contradicting (b).

2.4.2 Deleting a terminal

To keep the notation light, throughout the remainder of the paper we will use the following

assumptions:

(h1) (G1, G2) is a counterexample;

(h2) (Σ1,Σ2) is the matching-signature pair for (G1, G2);

(h3) (T1, T2) is the matching-terminal pair for (G1, G2) where |T1| ≤ |T2|;

(h4) (G1,Σ1) and (G2,Σ2) are simple;

(h5) Let v̂ ∈ T1 that is incident to no diamond, and, subject to that, the degree of v̂ is

minimized.
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(h6) A := δG1(v̂) and for i ∈ [2], Hi := Gi \ A.

Note that if we have a counterexample then by Proposition 2.4.1 we can assume (h4). The

existence of v̂ in (h5) is guaranteed by Proposition 2.4.8. Note that H1 is obtained from G1

by deleting terminal v̂. Next we identify key properties of H1, H2.

Proposition 2.4.9. Assume (h1)-(h6). Then,

(a) (H1, H2) are closed siblings;

(b) (H1, H2) have matching-signature pair (Σ1 − A, ∅); and

(c) (H1, H2) have matching-terminal pair (∅, T2).

Proof. Since (G1, G2) are counterexamples, they are not cographic siblings, in particular,

T1, T2 6= ∅. Note that A is an odd cut of (G1, T1), but observe that A does not contain an

odd cut A′ of (G2, T2); otherwise, by Theorem 2.3.4, A′ would be a signature of (G1,Σ1),

and, in particular, v̂ would be a blocking vertex, contradicting Proposition 2.4.3. Note that

ecut(G1, T1)/A = cut(G1 \ A) and ecut(G2, T2)/A = ecut(G2 \ A, T2) (see Section 1.1.3).

Since ecut(G1, T1) = ecut(G2, T2), we have cut(H1) = ecut(H2, T2). As T2 6= ∅, (H1, H2)

are cographic siblings with the matching-terminal pair (∅, T2). Hence, (c) holds. To show

(a), it remains to prove that (H1, H2) are closed. Suppose otherwise. Then, there exists

a pseudo-path F of (H1, H2) such that (i) F is not a cycle in one of H1 and H2, and, (ii)

for any edge f ∈ E(H1), F ∪ {f} is not a cycle in one of H1 and H2. Since (G1, G2) is

closed, there exists an edge e ∈ E(G1) such that F ∪ {e} is a cycle in both G1 and G2.

Thus, e /∈ E(H1) and e ∈ A. This contradicts that no edge of F is incident with v̂. By

Theorem 2.3.4, A is a signature of (G2,Σ2). Thus, ecycle(G1,Σ1) = ecycle(G2, A). Then,

ecycle(G1,Σ1) \ A = ecycle(G1 \ A,Σ1 − A) and ecycle(G2, A) \ A = ecycle(G2 \ A, ∅) (see

Section 1.1.3). Hence, ecycle(H1,Σ1 − A) = ecycle(H2, ∅) which implies (b).
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2.4.3 Mates

In a connected graph G, a cut B of G determines the shore of the cut uniquely up to

complementation, i.e. if we have δ(U) = δ(W ) then U = W or U = V (G)−W .

Proposition 2.4.10. Let G be a graph with a cut B and let H be a connected spanning

subgraph of G. If δH(U) = B ∩ E(H) then δG(U) = B.

Proof. Since B is a cut of G, B = δG(W ) for some W ⊆ E(G). It follows that, B∩E(H) =

δH(W ). Since the cut B ∩ E(H) of H determines the shore of the cut uniquely, up to

complementation, U = W or U = V (H)−W = V (G)−W . Hence, δG(U) = δG(W ) = B

as required.

Proposition 2.4.11. Assume (h1)-(h6) and let B ⊆ A be a cut of G1. Then,

(a) if B is an even cut of (G1, T1), then B = ∅; and

(b) if B is an odd cut of (G1, T1), then B = A.

Proof. Let G = G1 \ (A − B). Consider first the case where B 6= ∅. Then as H1 is

connected, so is G. By construction, we have δG(v̂) = B = B ∩ E(G). Then, it follows by

Proposition 2.4.10 that δG1(v̂) = B. But, A = δG1(v̂) by definition, so we proved that if

B 6= ∅, then B = A. If B is an even cut of (G1, T1), then B = ∅ for otherwise B = A but

A is an odd cut of (G1, T1). If B is an odd cut of (G1, T1), then clearly B 6= ∅ and then

B = A.

ConsiderH1, H2 as defined in (h1)-(h6) and let U1 ⊆ V (H1). It follows from Proposition 2.4.9

that δH1(U1) = δH2(U2) for some U2 where |U2 ∩T2| is even. We say that U2 is a mate of U1.
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Proposition 2.4.12. Assume (h1)-(h6) and let U1 ⊆ V (H1) and let U2 be a mate of U1.

For i ∈ [2], let Si = δGi
(Ui) ∩ A. Then, the following hold:

(a) if |U1 ∩ T1| even, then S1 = S2, and

(b) if |U1 ∩ T1| odd, then A = S1 ∪ S2 and S1 ∩ S2 = ∅.

Proof. By definition of mate, δG2(U2) is an even cut of (G2, T2) and hence of (G1, T1). Hence,

δG1(U1) ∆ δG2(U2) = S1 ∆S2 is a cut of (G1, T1) which is even if and only if |U1∩T1| is even.

Since S1 ∆S2 ⊆ A, Proposition 2.4.11 implies that if |U1 ∩ T1| is even, then S1 ∆S2 = ∅,

proving (a), and if |U1 ∩ T1| is odd, then S1 ∆S2 = A, proving (b).

2.4.4 Organization of the remainder of the proof

Our proof will leverage Theorem 2.1.1 as follows,

Proposition 2.4.13. Assume (h1)-(h6). Then there exists H ′2 equivalent to H2 such that

at least one of the following holds:

(a) H1, H
′
2 is a proper widget pair.

(b) H1, H
′
2 is a proper wheel pair.

(c) H1 is obtained from H ′2 by identifying two vertices.

Proof. Proposition 2.4.9 implies that H1, H2 satisfy (2.1). Moreover, H1 is 3-connected

since G1 is 4-connected. The result then follows from Theorem 2.1.1 as H ′1 = H1 in this

case.

Outcomes (a) and (b) of the previous proposition are analyzed in Section 2.5 and outcome

(c) is analyzed in Section 2.6. In all cases we will derive a contradiction.
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2.5 Wheels and widgets

2.5.1 Connectivity

Consider a wheel pair (H1, H2) with parts R1, . . . , Rk for k ≥ 3. Recall that each part Ri

has special vertices xi, yi, zi (see Section 2.1.1). Vertices xi, yi, zi for i ∈ [k] are the boundary

vertices of H1 respectively H2. Vertices of H1 respectively H2 that are not boundary vertices

are interior vertices. For H2 vertices x1, . . . , xk are the rim vertices and z1 = . . . = zk is

the hub. Note, that if v is an interior vertex of H1, H2 then δH1(v) = δH2(v). Similarly, if

H1, H2 is a widget pair with parts R1, R2, R3, R4, then xi, yi, zi for i ∈ [4] are the boundary

vertices and the non-boundary vertices are the interior vertices.

We describe the matching-terminal pairs for wheels and widgets [11].

Proposition 2.5.1. If (H1, H2) is a wheel pair, then the matching-terminal pair is (T1, T2)

where T1 = ∅ and T2 = {x1, . . . , xk} for even k and T2 = {x1, . . . , xk, z1} for odd k. If

H1, H2 is a widget pair, then the matching-terminal pair is (T1, T2) where T1 = ∅ and

T2 = {x1, x2, x3, z1}.

Recall that, for a graph G, X ⊆ E(G) is a 2-separation if G[X], G[E(G) − X] are

connected and ∂(X) = {u, v} for some distinct vertices u, v.

Proposition 2.5.2. Assume (h1)-(h6). If (H1, H
′
2) is a proper widget pair for some H ′2

equivalent to H2, then H ′2 is 3-connected. In particular, H2 = H ′2.

Proof. Recall that H1 is 3-connected by Proposition 2.4.9. It follows readily that H ′2 is

2-connected. Furthermore, if H ′2 is not 3-connected then it must have a 2-separation X.

Then, X is contained in one of its part Ri, i.e. X ⊆ E(Ri). This implies in turn that X is

a 2-separation of H1, giving a contradiction.
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Proposition 2.5.3. Assume (h1)-(h6). If H1, H
′
2 is a proper wheel pair for some H ′2

equivalent to H2 then H ′2 is 3-connected. In particular, H2 = H ′2.

Proof. Let R1, . . . , Rk denote the parts of the wheel pair H1, H
′
2 where k ≥ 3. As the wheel

pair is proper, for all i ∈ [k], there exists an xiyi-path of H ′2[Ri] that avoids zi. Denote by C

the polygon formed by the union of these paths. We call C the rim polygon of H ′2. Denote

by h the hub z1 = . . . = zk of H ′2. Note that H1 is 3-connected since G1 is 4-connected. We

leave it as an exercise to show that this implies in particular that H ′2 is 2-connected.

Claim 1. Let X be a 2-separation of H ′2. Then there does not exist i ∈ [k] such that

X ⊆ E(Ri).

Subproof. Otherwise, X is also a 2-separation of H1, a contradiction as H1 is 3-connected.

♦

Claim 2. There do not exist series edges e, f, g of H ′2 contained in C.

Subproof. Otherwise, two of e, f, g will be in series in H1, a contradiction as H1 is 3-

connected. ♦

A spoke of H ′2 is a path Q with ends h and v where v is the only vertex of Q in the rim

polygon C. Let P be a maximal collection of spokes that are pairwise vertex disjoint except

for the hub h. Since H ′2 is 2-connected, |P| ≥ 2. We will consider two cases in the proof:

|P| ≥ 3 and |P| = 2. A part Ri is trivial if it consists of a unique edge (which, as H1, H
′
2 is

a proper wheel pair, is in C).

Case 1. |P| ≥ 3.

Claim 3. If X is a 2-separation of H ′2, then (after possibly replacing X by E(H ′2)−X) we

have X = {e, f} and for some i ∈ [k], e ∈ Ri, f ∈ Ri+1 (k + 1 = 1) and h /∈ ∂H′2(X).

48



Proof. Suppose for a contradiction that X is a 2-separation of H ′2. Then X (resp. X−E(G))

is not contained in a part Ri by Claim 1. Since H1, H
′
2 is a proper wheel and |P| ≥ 3, we

may assume (after possibly interchanging the role of X and E(H ′2)−X and relabeling the

parts) that X is contained in the union of consecutive parts, say R1, R2, . . . , Rj where u

is a vertex of R1, v a vertex of Rj, ∂H′2(X) = {u, v} and X ∩ E(R`) 6= ∅ for ` ∈ [j]. By

Claim 1, each part R2, . . . , Rj−1 is trivial, X ∩ E(R1) consists of a single edge (say e), and

X ∩ E(Rj) consists of a single edge (say f). But then, Claim 2 implies that j = 2, and the

result follows. We illustrate this in Figure 2.4.
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Figure 2.4: Potential 2-separation in wheel pairs.

We call a pair of edges e, f as in Claim 3 an i-series pair. By Claim 2 no i-series and

j-series pair share an edge. It follows that H ′2 is obtained from H2 by a sequence of 2-flips

on disjoint i-series pairs. To complete the proof of Case 1, it suffices to show that there is

no i-series pair for any i ∈ [k]. Suppose for a contradiction we have say, a 1-series pair e, f .

If R1 consists of a single edge e then we define Q to be a ykzk-path in Rk. If e is not the

only edge of R1 then denote by u the end of e distinct from y1 and we then define Q to be a

uz1-path in R1 (note that Q exists as H1 is 3-connected). Then both Q∪ e and Q∪ f form

a path of H1 (for a set A and element of the ground set a, we write A ∪ a for A ∪ {a} and

write A− a for A− {a}). If H ′2 is obtained from H2 without a 2-flip on {e, f} then Q ∪ e
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is a path of H ′2. But then as H1, H2 is closed by Proposition 2.4.9, there exists g 6= f such

that Q ∪ {e, g} form a cycle of H1, H
′
2, a contradiction as e, f are in series in H ′2. If H ′2 is

obtained from H2 using a 2-flip on {e, f} then Q∪ f is a path of H ′2. But then as H1, H2 is

closed there exists g 6= e such that Q ∪ {f, g} form a cycle of H1, H
′
2, again a contradiction.

Case 2. |P| = 2.

Claim 4. There exists exactly two edges ei, ej incident to h in H ′2 with ei ∈ E(Ri) and

ej ∈ E(Rj) for distinct i, j ∈ [k].

Subproof. Since |P| = 2, there exists, by Menger’s theorem, a pair of vertices ui ∈ V (Ri)

and uj ∈ V (Rj) that separates h from C in H ′2. Thus there exists a 2-separation Y

with ∂H′2(Y ) = {ui, uj} such that h ∈ IH′2(Y ) and C ∩ Y = ∅. Moreover, since h is the

hub of H ′2, Y can be partitioned into 2-separations Yi, Yj so that ∂H′2(Yi) = {ui, h} and

∂H′2(Yj) = {uj, h}. It suffices to show now that Yi (and by the same argument Yj) consists

of a single edge. If ui is an interior vertex of Ri then Yi is a 2-separation contained in Ri

and it follows by Claim 1 that Yi consists of a single edge. Thus, we may assume ui is a

rim vertex yi = xi+1 and Yi is contained in E(Ri) ∪ E(Ri+1). Let Y ′i = Yi ∩ E(Ri) and let

Y ′′i = Yi ∩ E(Ri+1). Then ∂H′2(Y
′
i ) = ∂H′2(Y

′′
i ) = {yi, h}. It follows by Claim 1 that Y ′i and

Y ′′i consists of parallel edges, giving a contradiction as H2 and thus H ′2 is simple. ♦

Claim 5. We may assume k = 5, i.e., H1, H
′
2 is a wheel pair with parts R1, . . . , R5.

Subproof. If k = 3, we can exchange the role of h with any rim vertex yi = xi+1. Note, not

all these vertices can have degree 2, so pick as a hub such a vertex with degree at least

three. It then follows from Claim 4 that we are now in Case 1. Suppose that k is even.

Let (∅, T ′2) be the matching-terminal pair for (H1, H
′
2). Then by Proposition 2.5.1, h /∈ T ′2.

Consider Ri, Rj and ei, ej as in Claim 4. Then δH′2(h) = {ei, ej}, is an even cut of (H ′2, T
′
2)
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and hence a cut of H1, a contradiction as H1 is 3-connected. Finally, Claim 2 and the fact

Ri, Rj are the only non-trivial parts imply k ≤ 6. ♦

By Claim 1 and Claim 4 there are only two non-trivial parts among R1, . . . , R5. We may

assume because of Claim 2 that the non-trivial parts are R1 and R3. Denote by e1 and e3

the edges of R1 and R3 incident to h in H ′2. Let R′1 = R1 \ e1 and let R′3 = R3 \ e3. Denote

by r2, r4, r5 the unique edge in R2, R4, R5 respectively. We describe H1, H
′
2 in Figure 2.5.

Observe that H ′2 has exactly two 2-separations, which are {e1, e3} and {r4, r5}. We also
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<latexit sha1_base64="/e94iUO6+DY4/L2GTfJEVKxLaHQ=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9YO+8Vyq7FXcGsky8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFLupxoSyER1gx1JJI9R+Njt1Qk6t0idhrGxJQ2bq74mMRlqPo8B2RtQM9aI3Ff/zOqkJr/2MyyQ1KNl8UZgKYmIy/Zv0uUJmxNgSyhS3txI2pIoyY9Mp2hC8xZeXSbNa8S4r1fuLcu0mj6MAx3ACZ+DBFdTgDurQAAYDeIZXeHOE8+K8Ox/z1hUnnzmCP3A+fwD0AY2W</latexit>e3

<latexit sha1_base64="g86iePLfVx6JvhjCtrXoSG8myPs=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGieUCyhNlJbzJkdnaZmRXCkk/w4kERr36RN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9qN5Fr1R2K+4MZJl4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4KXZTjQllIzrAjqWSRqj9bHbqhJxapU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvsZl0lqULL5ojAVxMRk+jfpc4XMiLEllClubyVsSBVlxqZTtCF4iy8vk2a14l1Wqvfn5dpNHkcBjuEEzsCDK6jBHdShAQwG8Ayv8OYI58V5dz7mrStOPnMEf+B8/gAK5o2l</latexit>r5
<latexit sha1_base64="GYzB9uqQPqV6JBEBLiRmA2AI75A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPq1frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1bus1u4vKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAGWo2i</latexit>r2

<latexit sha1_base64="SGFaWzIc+Mniexmzl1Lx5oazHbw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOle9Wv98sVt+rOQVaJl5MK5Gj2y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnXqt5FtXZXrzSu8ziKcAKncA4eXEIDbqEJLWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QMJYo2k</latexit>r4

<latexit sha1_base64="lNUIUsm/7xJfmoSJGbcHPQ+q6A4=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj00mNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WjmSToR3QoecgZNVZ6qPe9fqnsVtw5yCrxclKGHI1+6as3iFkaoTRMUK27npsYP6PKcCZwWuylGhPKxnSIXUsljVD72fzUKTm3yoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2naEPwll9eJa1qxbuqVO8vy7XbPI4CnMIZXIAH11CDOjSgCQyG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gDEy413</latexit>

H1

<latexit sha1_base64="/YqHVeIai27Jr2OlLw68UaR85ao=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbRU9ktRT0WvXisYj+gXUo2zbahSXZJskJZ+he8eFDEq3/Im//GbLsHbX0w8Hhvhpl5QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRW0eJIrRFIh6pboA15UzSlmGG026sKBYBp51gcpv5nSeqNIvko5nG1Bd4JFnICDaZ9HA+8Ablilt150CrxMtJBXI0B+Wv/jAiiaDSEI617nlubPwUK8MIp7NSP9E0xmSCR7RnqcSCaj+d3zpDZ1YZojBStqRBc/X3RIqF1lMR2E6BzVgve5n4n9dLTHjtp0zGiaGSLBaFCUcmQtnjaMgUJYZPLcFEMXsrImOsMDE2npINwVt+eZW0a1Xvslq7r1caN3kcRTiBU7gAD66gAXfQhBYQGMMzvMKbI5wX5935WLQWnHzmGP7A+fwBNLqNsg==</latexit>

R0
1

<latexit sha1_base64="V929roL07ZgQsVa7kgV0yeTGwVg=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbRU9mtoh6LXjxWsR/QLiWbZtvQJLskWaEs/QtePCji1T/kzX9jtt2Dtj4YeLw3w8y8IOZMG9f9dgorq2vrG8XN0tb2zu5eef+gpaNEEdokEY9UJ8CaciZp0zDDaSdWFIuA03Ywvs389hNVmkXy0Uxi6gs8lCxkBJtMejjtn/fLFbfqzoCWiZeTCuRo9MtfvUFEEkGlIRxr3fXc2PgpVoYRTqelXqJpjMkYD2nXUokF1X46u3WKTqwyQGGkbEmDZurviRQLrScisJ0Cm5Fe9DLxP6+bmPDaT5mME0MlmS8KE45MhLLH0YApSgyfWIKJYvZWREZYYWJsPCUbgrf48jJp1areZbV2f1Gp3+RxFOEIjuEMPLiCOtxBA5pAYATP8ApvjnBenHfnY95acPKZQ/gD5/MHN8KNtA==</latexit>

R0
3

<latexit sha1_base64="lb+9mhN9sfpq5WCAyZJDBjucdvw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0gH2vX664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSatW9S6rtfuLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP/D5jZQ=</latexit>e1
<latexit sha1_base64="/e94iUO6+DY4/L2GTfJEVKxLaHQ=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Vj04rGi/YA2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9YO+8Vyq7FXcGsky8nJQhR71X+ur2Y5ZGKA0TVOuO5ybGz6gynAmcFLupxoSyER1gx1JJI9R+Njt1Qk6t0idhrGxJQ2bq74mMRlqPo8B2RtQM9aI3Ff/zOqkJr/2MyyQ1KNl8UZgKYmIy/Zv0uUJmxNgSyhS3txI2pIoyY9Mp2hC8xZeXSbNa8S4r1fuLcu0mj6MAx3ACZ+DBFdTgDurQAAYDeIZXeHOE8+K8Ox/z1hUnnzmCP3A+fwD0AY2W</latexit>e3

<latexit sha1_base64="g86iePLfVx6JvhjCtrXoSG8myPs=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGieUCyhNlJbzJkdnaZmRXCkk/w4kERr36RN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LRjBP0IzqQPOSMGis9qN5Fr1R2K+4MZJl4OSlDjnqv9NXtxyyNUBomqNYdz02Mn1FlOBM4KXZTjQllIzrAjqWSRqj9bHbqhJxapU/CWNmShszU3xMZjbQeR4HtjKgZ6kVvKv7ndVITXvsZl0lqULL5ojAVxMRk+jfpc4XMiLEllClubyVsSBVlxqZTtCF4iy8vk2a14l1Wqvfn5dpNHkcBjuEEzsCDK6jBHdShAQwG8Ayv8OYI58V5dz7mrStOPnMEf+B8/gAK5o2l</latexit>r5

<latexit sha1_base64="GYzB9uqQPqV6JBEBLiRmA2AI75A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPq1frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1bus1u4vKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAGWo2i</latexit>r2

<latexit sha1_base64="SGFaWzIc+Mniexmzl1Lx5oazHbw=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOle9Wv98sVt+rOQVaJl5MK5Gj2y1+9QczSCKVhgmrd9dzE+BlVhjOB01Iv1ZhQNqZD7FoqaYTaz+anTsmZVQYkjJUtachc/T2R0UjrSRTYzoiakV72ZuJ/Xjc14ZWfcZmkBiVbLApTQUxMZn+TAVfIjJhYQpni9lbCRlRRZmw6JRuCt/zyKmnXqt5FtXZXrzSu8ziKcAKncA4eXEIDbqEJLWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QMJYo2k</latexit>r4

<latexit sha1_base64="Z/DBpIbTflfwCtindr9W0IafVdE=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbRU9ktRT0WvfRYwX5Au5Rsmm1Dk+ySZIWy9C948aCIV/+QN/+N2XYP2vpg4PHeDDPzgpgzbVz32ylsbG5t7xR3S3v7B4dH5eOTjo4SRWibRDxSvQBrypmkbcMMp71YUSwCTrvB9D7zu09UaRbJRzOLqS/wWLKQEWwyqXk5rA3LFbfqLoDWiZeTCuRoDctfg1FEEkGlIRxr3ffc2PgpVoYRTuelQaJpjMkUj2nfUokF1X66uHWOLqwyQmGkbEmDFurviRQLrWcisJ0Cm4le9TLxP6+fmPDWT5mME0MlWS4KE45MhLLH0YgpSgyfWYKJYvZWRCZYYWJsPCUbgrf68jrp1KredbX2UK807vI4inAG53AFHtxAA5rQgjYQmMAzvMKbI5wX5935WLYWnHzmFP7A+fwBJviNqQ==</latexit>

H 0
2

<latexit sha1_base64="/YqHVeIai27Jr2OlLw68UaR85ao=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbRU9ktRT0WvXisYj+gXUo2zbahSXZJskJZ+he8eFDEq3/Im//GbLsHbX0w8Hhvhpl5QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRW0eJIrRFIh6pboA15UzSlmGG026sKBYBp51gcpv5nSeqNIvko5nG1Bd4JFnICDaZ9HA+8Ablilt150CrxMtJBXI0B+Wv/jAiiaDSEI617nlubPwUK8MIp7NSP9E0xmSCR7RnqcSCaj+d3zpDZ1YZojBStqRBc/X3RIqF1lMR2E6BzVgve5n4n9dLTHjtp0zGiaGSLBaFCUcmQtnjaMgUJYZPLcFEMXsrImOsMDE2npINwVt+eZW0a1Xvslq7r1caN3kcRTiBU7gAD66gAXfQhBYQGMMzvMKbI5wX5935WLQWnHzmGP7A+fwBNLqNsg==</latexit>

R0
1

<latexit sha1_base64="V929roL07ZgQsVa7kgV0yeTGwVg=">AAAB63icbVBNSwMxEJ2tX7V+VT16CRbRU9mtoh6LXjxWsR/QLiWbZtvQJLskWaEs/QtePCji1T/kzX9jtt2Dtj4YeLw3w8y8IOZMG9f9dgorq2vrG8XN0tb2zu5eef+gpaNEEdokEY9UJ8CaciZp0zDDaSdWFIuA03Ywvs389hNVmkXy0Uxi6gs8lCxkBJtMejjtn/fLFbfqzoCWiZeTCuRo9MtfvUFEEkGlIRxr3fXc2PgpVoYRTqelXqJpjMkYD2nXUokF1X46u3WKTqwyQGGkbEmDZurviRQLrScisJ0Cm5Fe9DLxP6+bmPDaT5mME0MlmS8KE45MhLLH0YApSgyfWIKJYvZWREZYYWJsPCUbgrf48jJp1areZbV2f1Gp3+RxFOEIjuEMPLiCOtxBA5pAYATP8ApvjnBenHfnY95acPKZQ/gD5/MHN8KNtA==</latexit>

R0
3

<latexit sha1_base64="GYzB9uqQPqV6JBEBLiRmA2AI75A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPq1frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1bus1u4vKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAGWo2i</latexit>r2

<latexit sha1_base64="FTKbgAGAC/d7mgYODfVt+VXPKF4=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj00mNF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfju5nffuLaiFg94iThfkSHSoSCUbTSQ71f7ZfKbsWdg6wSLydlyNHol756g5ilEVfIJDWm67kJ+hnVKJjk02IvNTyhbEyHvGupohE3fjY/dUrOrTIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4Y2fCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tO0YbgLb+8SlrVindVqd5flmu3eRwFOIUzuAAPrqEGdWhAExgM4Rle4c2Rzovz7nwsWtecfOYE/sD5/AHGT414</latexit>

H2

<latexit sha1_base64="XDB9A9pMS4vDygNVAUzaLJpQQak=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0kPa9frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1bus1u4vKvWbPI4inMApnIMHV1CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAJaI2k</latexit>u1

<latexit sha1_base64="6GCQMi7ukVtKZ0qAro3BLRVsPok=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKqMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh7Rf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8Slq1qndZrd1fVOo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEK7I2l</latexit>u2

‘<latexit sha1_base64="eacOp5//gnEd5oxf5RUWDDgh9WU=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaJUY9ELx4hkUcCGzI79MLI7OxmZlZDCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1mu1C9K1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOb/jQI=</latexit>w

Figure 2.5: Two edges incident to the hub.

describe H2 in Figure 2.5. Denote by w the vertex of H1 incident to e1, r2, r5 and by w′ the

vertex of H1 incident to e3, r2, r4. Recall that v̂ is the vertex picked in (h5).

Claim 6. degG1
(v̂) = 4.

Subproof. By Proposition 2.5.1, |T1| ≥ 6. Proposition 2.4.8 implies that (G1,Σ1) has no

diamond. Note, degH1(w) = 3. It follows that degG1(w) = 4. The result now follows from

(h5). ♦

Now, let A = {a1, a2, a3, a4}. Denote by u1 the vertex of H2 incident to e1, e3 and denote by

u2 the vertex of H2 incident to r4, r5. As G2 is 4-connected, there exist two edges of A, say

a1 and a2, incident to u1. Since G1, G2 are closed, there exists an edge β1 ∈ E(H1) = E(H2)
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such that ∆1 := {a1, a2, β1} is a triangle of both H1 and H2. Similarly, for some i, j ∈ [4] and

β2 ∈ E(H1), we have that ai, aj are incident to u2 and ∆2 := {ai, aj, β2} is a triangle of both

H1 and H2. Now, consider G1. Since G1 is 4-connected, there are two edges in A joining

v̂, w and v̂, w′, respectively. Moreover, for some x ∈ IH1(R
′
1) and x′ ∈ IH1(R

′
3), there are

two edges in A joining v̂, x and v̂, x′, respectively; otherwise, either E(R′1) ∪ e1, E(R′1) ∪ r4,

E(R′3)∪ e3, or E(R′3)∪ r5 is a 3-separation of G1, giving a contradiction. Note that, among

{w,w′, x, x′}, only w and w′ are adjacent. Thus, {i, j} = {1, 2} and β1 = β2 = r2. This

implies that ∆1 = ∆2, giving a contradiction.

2.5.2 Terminals and interior vertices

Proposition 2.5.4. Assume (h1)-(h6). If H1, H2 is a proper wheel pair with parts

R1, . . . , Rk (k ≥ 3), then every part Ri is either a complete graph spanning xi, yi, zi or a

single edge with ends xi, yi. If H1, H2 is a proper widget pair with parts R1, R2, R3, R4, then

every part Ri is a complete graph spanning xi, yi, zi.

Proof. This follows from the fact that H1 is 3-connected by hypothesis and that H1, H2 are

closed siblings by Proposition 2.4.9.

Proposition 2.5.5. Assume (h1)-(h6). If H1, H2 is a proper wheel pair then every vertex

xi, i ∈ [k] is incident to at least one edge of A in G2.

Proof. By Proposition 2.5.1, xi ∈ T2. It follows by Theorem 2.3.4 that Γ = δG2(xi) is a

signature of (G1,Σ1). Suppose that xi is not incident to any edge of A for some i ∈ [k].

Then Γ = δG2(xi) = δH2(xi). But then observe that (G1,Σ1) has an adjacent blocking

pair.
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For proper widget pairs or wheel pairs, Proposition 2.5.1 shows that interior vertices are

not in T2. We show that they are also not in T1, i.e. all terminals are boundary vertices.

Proposition 2.5.6. Assume (h1)-(h6) and that H1, H2 is a proper widget pair or a proper

wheel pair. Let u be an interior vertex of H1, then u /∈ T1.

Proof. We have δH1(u) = δH2(u). By Proposition 2.5.1, u /∈ T2. It follows that {u} ⊆ V (H2)

is a mate of {u} ⊆ V (H1). For i ∈ [2] let Si = δGi
(u) ∩ A. Suppose for a contradiction

that u ∈ T1. Then Proposition 2.4.12 implies that S1 ∪ S2 = A and that S1 ∩ S2 = ∅. By

(h5), |S1| ≤ 1. Moreover, by Theorem 2.3.4, δG1(u) is a signature of (G2,Σ2). Since by

Proposition 2.4.3 (G2,Σ2) has no blocking vertex, S1 contains a single edge, say e. Hence, e

is the only edge of A incident to u in G1 and e is the only edge of A not incident to u in G2.

Case 1. H1, H2 is a widget pair.

Consider first the case where there exists an interior vertex u′ of H1 where u′ ∈ T1 and

u′ 6= u. Then proceeding as above we deduce that there exists e′ ∈ A such that e′ is

the only edge of A incident to u′ in G1 and e′ is the only edge of A not incident to u′ in

G2. It follows that in G2, e is incident to u′ but not u, e′ is incident to u but not u′ and

every edge of A− {e, e′} has ends u, u′. Hence, u, u′ is a blocking pair of (G2,Σ2) since by

Proposition 2.4.9 A is a signature. Thus u, u′ are not adjacent in G2. Therefore, A = {e, e′}

and u, u′ are not in the same part Ri by Proposition 2.5.4. But then observe that any

pair of boundary vertices of H1 is an adjacent blocking pair of (G1,Σ1), a contradiction.

It follows that u is the unique interior vertex of H1 contained in T1. Suppose now that e

has an end u′ in G2 that is an interior vertex of some part Ri. As u′ /∈ T1, it follows from

Proposition 2.4.12 that e has end u′ in G1 as well. Since H1, H2 are closed there exist edges

f ∈ A, g ∈ H1 such that {e, f, g} is triangle of G1, G2 and f is incident to a boundary
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vertex of Ri. But then f 6= e and f is not incident to u in G2 a contradiction. Hence, both

ends of e are boundary vertices. By Proposition 2.5.4 there exists an edge f of H2 such

that e, f is a diamond of (G1,Σ2) which contradicts Proposition 2.4.8(b).

Case 2. H1, H2 is a proper wheel pair.

Let R1, . . . , Rk be the parts of the proper wheel pair. Note that if k = 3, then the wheel

pair is also a widget pair. Thus, we may assume k ≥ 4. Since H1, H2 are closed, for all

edges of A− e the end distinct from v̂ is in the same part Rj for some j ∈ [k]. Without

loss of generality assume j = 1. By Proposition 2.5.1, T2 = {x1, . . . , xk} when k is even

and T2 = {x1, . . . , xk, z1} otherwise. Proposition 2.5.5 says that every vertex xi, i ∈ [k] is

incident to at least one edge of A in G2. Thus none of x3, . . . , xk are incident to edges of

A− e in G2. Hence, k = 4 and by Proposition 2.5.5, x3, x4 are the ends of e in G2. Since

H1, H2 are complete, there exists an edge f of H2 such that e, f is a diamond of (G2,Σ2)

with ends in T2, contradicting Proposition 2.4.8(b).

We can now combine the previous propositions to get the following useful result,

Proposition 2.5.7. Assume (h1)-(h6) and suppose that H1, H2 is a proper widget pair or

a proper wheel pair. Let u be an interior vertex in some part Ri with a boundary vertex xi.

If there exists e ∈ A where e is incident to u in either G1 or G2, then

(a) e is incident to u in both G1 and G2;

(b) the other end, say w, of e distinct from u in G2 is a boundary vertex; and

(c) there exists f ∈ A such that for G1 (resp. G2) f one has end v̂ (resp. w) and one

end in xi.
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Proof. By Proposition 2.5.6, u /∈ T1 and by Proposition 2.5.1 u /∈ T2. Then (a) follows by

Proposition 2.4.12. Let w denote the end of e in G2 that is distinct from u. Then w is not

an interior vertex, for otherwise by (a), e is incident to both u and w, a contradiction as e

is incident to v̂. Hence, (b) holds. Finally, (c) follows from (a) and (b) and the fact that

H1, H2 are closed (see Proposition 2.4.9).

2.5.3 Classification

We can now exclude the case of the widgets, namely,

Proposition 2.5.8. Assume (h1)-(h6). Then H1, H2 is not a widget pair, and if it is a

proper wheel pair, then it has at least 4 parts.

Proof. Because of Proposition 2.5.7 there exists an edge of A in G2 with both ends in the

boundary of H2. Recall that each part Ri is a complete graph. Hence, there exists f that

is parallel to e. Note that e, f is a diamond of (G2,Σ2). If H1, H2 is a widget or a wheel

with 3 parts, then the boundary vertices are {x1, x2, x3, z1}, and then e, f have both ends

in T2. But, this contradicts Proposition 2.4.8(b).

Combining the previous result with Proposition 2.5.2 and Proposition 2.5.3 yields,

Proposition 2.5.9. Assume (h1)-(h6), and suppose we have outcome (a) or (b) of

Proposition 2.4.13. Then we may assume H1, H2 is a proper wheel pair and it has at

least 4 parts.

In light of the previous result, we define (h7).

(h7) H1, H2 is a proper wheel pair with k ≥ 4 parts.
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Assume now (h1)-(h7). We wish to classify proper wheel pairs H1, H2. First we require a

definition. Denote by R1, . . . , Rk the parts of the wheel pair H1, H2. The boundary vertices

of H1 are {z1, . . . , zk}. Because of Proposition 2.5.4 for each i ∈ [k] there exists an edge fi

of H2 with ends xi, yi. We define the mapping Θ : {z1, . . . , zk} → E(H2) where Θ(zi) = fi.

Proposition 2.5.10. Assume (h1)-(h7) and let S denote the boundary vertices of H1 that

are not in T1. Then for every v ∈ S there exists an edge e ∈ A such that e,Θ(v) is a

diamond of (G2,Σ2).

Proof. We may assume that v = z1. Then Θ(v) = f where f is the edge of H2 with ends

x1, y1. Let U = V (R1)−{z1} and observe that U is a mate of {v}. Let S1 = δG1(v)∩A and

let S2 = δG2(U) ∩ A. By Proposition 2.4.12, we have S1 = S2. Moreover, by (h5), we know

that |S1| ≤ 1. It follows by Proposition 2.5.5 that there exist edges ex, ey ∈ A incident to

x1 and y1 respectively in G2. Because of Proposition 2.5.7 we may assume that both ends

of ex and ey are in the boundary. As |S2| ≤ 1 it follows that ex = ey and ex,Θ(v) is the

required diamond.

Proposition 2.5.11. Assume (h1)-(h7). Then |T1| ≤ 6.

Proof. By Proposition 2.5.7 there exists an edge e ∈ A that has both ends in the boundary

of H2. Let Q be an arbitrary path of H2 that has the same ends as e. Then observe that

Q is either a path of H1 or the union of two path of H1. Since Q ∪ e is an odd cycle of

(G2,Σ2), by Theorem 2.3.4 Q ∪ e is a T1-join of G1 and the result follows.

The next proposition reduces classifies the possible configurations for wheel pairs.

Proposition 2.5.12. Assume (h1)-(h7) and let S denote the boundary vertices of H1 that

are not in T1. Suppose H1, H2 is a proper wheel pair with k ≥ 4 parts. Then exactly one of

the following holds,
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(a) k = 5, S = ∅ and |T1| = |T2| = 6.

(b) k = 5, |S| = 2, |T1| = 4 and |T2| = 6.

(c) k = 6, |S| = 3, |T1| = 4 and |T2| = 6.

Proof. First, we prove the following claim.

Claim 1.

(i) For every v ∈ S, there exists a diamond of (G2,Σ2) where one of the edge is θ(v).

(ii) If S 6= ∅ then |T1| = 4.

(iii) |S| ≤ 3.

(iv) If S 6= ∅ then |T2| ≥ 6.

(v) H1, H2 is a wheel pair with k = |S|+ |T1| − 1 parts.

Subproof. Proposition 2.5.10 implies (i). Proposition 2.4.8(a) and (i) then imply (ii). (iii)

follows from Proposition 2.4.8(c) and (i). For (iv), note that, for v ∈ S, the ends of Θ(v) are

contained in T2. Hence, Proposition 2.4.8(b) and (i) imply (iv). Finally, (v) holds because

the boundary vertices of H1 are contained in S ∪ (T1 − v̂). ♦

Consider first the case where S = ∅. Then, by the hypothesis and Claim 1(v), k ≥ 4 and

k = |T1|−1. It follows that |T1| ≥ 6 and thus by Proposition 2.5.11 that |T1| = 6. Therefore,

k = 5 and by Proposition 2.5.1 we have |T2| = 6. This is outcome (a). Thus we may assume

that S 6= ∅. It follows by Claim 1(ii) that |T1| = 4. By Claim 1(v), k = |S| + 3 where

|S| ≤ 3 by Claim 1(iii). Claim 1(iv) imply that |T2| ≥ 6. Therefore, by Proposition 2.5.1

we must have k ≥ 5. As k = |S|+ 3, it follows that |S| ∈ {2, 3}. Since k = |S|+ 3 and by
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Proposition 2.5.1 it follows that |T2| = 6. When |S| = 2 we have outcome (b) and when

|S| = 3 we have outcome (c).

2.5.4 Case analysis

Next we show that each outcome of Proposition 2.5.12 leads to a contradiction.

Proposition 2.5.13. Case (a) in Proposition 2.5.12 does not occur.

We illustrate this proof in Figure 2.6. G1 and G2 are the left and right graphs, respectively.

The square vertices represent T1 and T2.
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Figure 2.6: Case (a) in Proposition 2.5.12.

Proof of Proposition 2.5.13. Recall that case (a) is k = 5, S = ∅ and |T1| = |T2| = 6. The

boundary vertices of H2 which are distinct from z1 = . . . = zk are the rim vertices.

Claim. If e ∈ A then the ends of e in G2 are non-consecutive rim vertices. In particular,

|A| ≤ 5.

Subproof. Suppose u, v denote the ends of e in G2. It follows from the fact that |T1| = 6 and

Proposition 2.4.8(a) that (G2,Σ2) has no diamond. Thus u, v are not consecutive rim vertices
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and u, v are not a rim vertex and the center vertex zi. Therefore, by Proposition 2.5.7, u, v

are all boundary vertices and the result follows. ♦

Since H1, H2 is a proper closed wheel pair we have, for both G1, G2 edges ei = (xi, yi) for

all i ∈ [5] where 5 + 1 = 1. By the Claim and by Proposition 2.5.5 we may assume, up to

symmetry, that we have edges f1, f2, f3 ∈ A where for G2,

f1 = (x2, x4), f2 = (x3, x5), f3 = (x1, x4).

Since {f1, e2, e3} is an odd cycle of (G2,Σ2) it follows that {f1, e2, e3} is a T1-join of G1.

Therefore, f1 = (v̂, x1) in G1. Similarly, we show that f2 = (v̂, x2) and f3 = (v̂, x3) in G1.

Denote by g the edge with ends x4, y4 in G1, G2. Note that {f1, g} is a path of both G1

and G2. It follows as G1, G2 are closed that there exists an edge f4 that has ends v̂, x4 in

G1 and ends x2, x5 in G2. Similarly, we also have an edge f5 that has ends v̂, x5 in G1 and

x1, x3 in G2. But then G1, G2 are both isomorphic to K6, a contradiction.

Proposition 2.5.14. Case (b) in Proposition 2.5.12 does not occur.

We illustrate this proof in Figure 2.7. G1 and G2 are the left and right graphs, respectively.

The square vertices represent T1, T2, and the shaded edges represent the signature of

(G1,Σ1).

Proof of Proposition 2.5.14. Recall that case (b) is k = 5, |S| = 2, |T1| = 4 and |T2| = 6.

Let v1, v2 denote the vertices of S. For all i ∈ [5] denote by ei in Ri with ends xi, yi. Then

for i ∈ [2], Θ(vi) = ei. By Proposition 2.5.10 for all i ∈ [2] there exists fi ∈ A, for which

ei, fi is a diamond of (G2,Σ2). Note that f1, f2 are independent edges of G2, for otherwise

as G1, G2 are closed, we would have an edge f3 ∈ H2 such that {f1, f2, f3} is a triangle,

contradicting the fact that H1, H2 is a wheel pair. Thus we may assume that in G1 and
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Figure 2.7: Case (b) in Proposition 2.5.12.

G2, e1 = (x1, y1), e2 = (x3, y3). For i ∈ [2], ei, fi is a diamond of (G2,Σ2) and hence by

Theorem 2.3.4 a T1-join of G1. It follows that T1 = {x1, y1 = x3, y3, v̂} and that f1 = (v̂, y3)

and f2 = (v̂, x1) in G1. Since {f1, e5} is a path of G1, G2 there exists g1 ∈ A such that

{g1, f1, e5} is a triangle of G1 and G2. Since {f2, e4} is a path of G1, G2 there exists g2 ∈ A

such that {g2, f2, e4} is a triangle of G1 and G2. Let h be the x3, z3 edge of G1, G2. Then as

{h, g2} is a path of G1, G2 there exists g3 such that {h, g2, g3} is triangle of G1, G2. Define,

A1 := {f1, f2, g1, g2, g3}. We have proved that A ⊇ A1.

Claim 1.

(a) There is no edge h ∈ A incident to x1 (resp. z5, z4, y3) in both G1 and G2.

(b) There is no edge h ∈ A−{g1, g2, g3} incident to any of {x2, y2, z2} in both G1 and G2.

Subproof. For (a), note that f2 ∈ A is incident to x1 in G1 but not in G2. Suppose that we

have h ∈ A incident to x1 in both G1 and G2. Then f2 6= h and f2, h are parallel in G1.

Since (G1,Σ1) is simple, h, f2 is a diamond. It follows by Proposition 2.4.8(a) that |T2| ≤ 4,

giving a contradiction. The cases for z5, z4, and y3 are similar. For (b), it follows as in (a)

for if we had such an edge h then gi, h would be a diamond of (G1,Σ1) for some i ∈ [3]. ♦
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Let A2 denote the set of edges of A that have an end in the interior of R2.

Claim 2. A = A1 ∪ A2.

Subproof. Suppose for a contradiction that there exists an edge h ∈ A−(A1∪A2). It follows

from Claim 1 that h has an end that is an interior vertex u of Ri for some i ∈ {1, 3, 4, 5}.

Let L = δH1(u) = δH2(u). As u /∈ T1, δG1(u) ⊇ L ∪ h. It follows from Proposition 2.4.10

that δG2(u) = δG1(u). In particular, e is incident to u in G2. But then, for all i ∈ {1, 3, 4, 5},

e together with Proposition 2.5.7 contradicts Claim 1(b). ♦

By Theorem 2.3.4, Γ = δG2(x1=y5) ∆ δG2

(
V (R5)− {x5, y5, z5}

)
is a signature of (G1,Σ1)

where all edges of Γ are incident to y4 or z4. Hence, y4, z4 is an adjacent blocking pair of

(G1,Σ1), a contradiction.

Proposition 2.5.15. Case (c) in Proposition 2.5.12 does not occur.

We illustrate this proof in Figure 2.8. G1 and G2 are the left and right graphs, respectively.

The square vertices represent T1 and T2.
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t̂

Figure 2.8: Case (c) in Proposition 2.5.12.

Proof of Proposition 2.5.15. Recall that case (c) is k = 6, |S| = 3, |T1| = 4 and |T2| = 6.

Let v1, v2, v3 denote the vertices of S. For all i ∈ [3] denote by ei the edge Θ(vi). By
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Proposition 2.5.10 for all i ∈ [3] there exists fi ∈ A, for which ei, fi is a diamond of (G2,Σ2).

As in the proof of Proposition 2.5.14 we argue that f1, f2, f3 are independent edges of G2.

Thus we may assume that in G1 and G2,

e1 = (x1, y1), e2 = (x3, y3), e3 = (x5, y5).

Proposition 2.4.8(a) implies that for all i ∈ [3], ei, fi is a matching of T1. In particular, the

ends of ei are in T1. It follows that T1 = {x1=y5, y1=x3, y3=x5, v̂}. Hence, in G1, we have

f1 = (v̂, y3), f2 = (v̂, x1), f3 = (v̂, y1).

Next, we show that f1, f2, f3 are the only edges in A.

Claim. A = {f1, f2, f3}.

Subproof. Suppose for a contradiction that there exists g ∈ A−{f1, f2, f3}. We may assume,

by Proposition 2.5.7, that g has both ends in the boundary of G2. Up to symmetry, there

are two cases to consider: (i) g = (y1, z1) in G2 and (ii) g = (y1, x6) in G2. For (i), let h

be the edge of G2 with ends x2, y2. Then {g, h} is an odd cycle of (G2,Σ2) and hence by

Theorem 2.3.4 a T1-join of G1. As |T1| = 4 both ends of h must have ends in T1 in G1,

giving a contradiction. For (ii), let h be the edge of G2 with ends x6, y6. Then {g, h, e1} is

an odd cycle of (G2,Σ2) and hence a T1-join of G1. As |T1| = 4 and e1, f are independent

in G1, e, f1 need to cover 3 vertices of T1, giving a contradiction. ♦

Let H be the graph obtained from G1 by moving f1 so that it has ends z6, z2; moving f2 so

that it has ends z2, z4; moving f3 so that it has ends z4, z6. Then cut(H) = ecut(G1, T1). It

follows that G1, G2 are cographic siblings, giving a contradiction.
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2.6 The pinch case

We have now shown the following.

Proposition 2.6.1. Assume (h1)-(h6). Then there exists H ′2 equivalent to H2 such that

H1 is obtained from H ′2 by identifying two vertices.

Proof. It suffices to show that case (a) and (b) of Proposition 2.4.13 do not occur. By

Proposition 2.5.9, case (a) does not occur, and if (b) occurs, then H1, H2 is a proper wheel

pair and it has at least 4 parts. Then one of cases (a), (b), and (c) of Proposition 2.5.12

must occur. But we showed in Proposition 2.5.13, Proposition 2.5.14, and Proposition 2.5.15

that none of these cases are possible.

In light of the previous result, we define the following:

(h8) H1 is obtained from H ′2 by identifying distinct vertices s, t,

(h9) z denotes the vertex of H1 corresponding to s = t.

Proposition 2.6.2. Assume (h1)-(h6), (h8), and (h9).

(a) If X is a 2-separation of H ′2 then | IH′2(X) ∩ {s, t}| = 1 and ∂H′2(X) ∩ {s, t} = ∅.

(b) There exists a 2-separation X of H ′2.

Proof. (a) follows from the fact that H1 is 3-connected as G1 is 4-connected. Suppose for a

contradiction that (b) does not hold. Then, H ′2 = H2. It then follows that T2 = {s, t} since

cut(H1) = ecut(H ′2, {s, t}), a contradiction to Proposition 2.4.3.

In light of the previous proposition we can find,
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(p1) a 2-separation Y of H ′2 where s ∈ IH′2(Y ), t ∈ IH′2(E(H ′2)− Y ), and

(p2) subject to (p1) we pick Y that is inclusion-wise minimal.

Proposition 2.6.3. Assume (h1)-(h6), (h8), and (h9), and assume Y satisfies (p1) and

(p2).

For every 2-separation X of H ′2 we have Y ⊆ X or Y ⊆ E(H ′2)−X.

Proof. Otherwise X ∩ Y is a 2-separation of H ′2 where X ∩ Y ⊂ Y , contradicting (p2).

We will require the following observation,

Proposition 2.6.4. Assume (h1)-(h6), (h8), and (h9), and assume Y satisfies (p1) and

(p2). Then, T2 ∩ IH′2(Y ) = {s}.

Proof. Observe that cut(H1) = ecut(H ′2, {s, t}) as H1 is obtained from H ′2 by identifying

s and t. By Proposition 2.4.9 (c), cut(H1) = ecut(H2, T2). Thus, ecut(H ′2, {s, t}) =

ecut(H2, T2). By Remark 1.2.3, this implies that there exists a {s, t}-join J of (H ′2, {s, t})

that is also a T2-join of (H2, T2). Let P denote an st-path of H ′2. Then, P is a {s, t}-join

of (H ′2, {s, t}), and J ∆P is a cycle of H ′2. Thus, J ∆P is also a cycle of H2, and P =

(P ∆ J) ∆ J is a T2-join of (H2, T2). It follows from Proposition 2.6.3 that H ′2[Y ] = H2[Y ].

In particular, H ′2[P ∩ Y ] = H2[P ∩ Y ], which implies T2 ∩ IH′2(Y ) = {s}.

Proposition 2.6.5. Assume (h1)-(h6), (h8), (h9).

Then z, v̂ is a blocking pair of (G1,Σ1). In particular, z, v̂ are not adjacent in G1.

Proof. By Proposition 2.6.4, s ∈ T2. It follows from Theorem 2.3.4 that B := δG2(s) is a

signature of (G1,Σ1). Then observe that all edges of B are incident to z or v̂. Finally, as

G1, G2 are a counterexample (G1,Σ1) has no adjacent blocking pair.
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Proposition 2.6.6. Assume (h1)-(h6), (h8), (h9).

Then z /∈ T1 and there exists Ω ∈ A such that δG2(s) ∩ A = δG2(t) ∩ A = {Ω}.

Proof. Observe that {s, t} is a mate of {z}. Let S1 = δG1(z)∩A and let S2 = δG2({s, t})∩A.

By Proposition 2.6.5, z, v̂ are not adjacent in G1. Hence, S1 = ∅. Suppose for a contradiction

that z ∈ T1. It then follows by Proposition 2.4.12 that A = S1 ∆S2 = S2. Hence, every

edge of A has exactly one end in {s, t} in G2. In particular, s, t is a blocking pair of

(G2,Σ2). Denote by A′ the edges in A ∩ δG2(s). Since s ∈ T2, Theorem 2.3.4 implies that

A′ ∪ δH2(s) is a signature of (G1,Σ1). But now a blocking pair z, v̂ of (G1,Σ1), a blocking

pair s, t of (G2,Σ2), and A′ contradict Proposition 2.4.7. Thus z /∈ T1 and it follows from

Proposition 2.4.12 that S2 = S1 = ∅. Hence, edges of A have both or none of their ends in

{s, t}. Let Â be the set of edges of A that have ends r and s in G2. By Theorem 2.3.4 δG2(r)

is a signature of (G1,Σ1). Then Â 6= ∅ for otherwise z is a blocking vertex of (G1,Σ1), a

contradiction to Proposition 2.4.3. Moreover, all edges of Â have the same parity in (G2,Σ2)

as A is a signature. Thus as (G2,Σ2) is simple, Â contains a unique edge Ω.

Proposition 2.6.7. Assume (h1)-(h6), (h8), (h9) and Y satisfying (p1), (p2). Then

T1 ∩ IH1(Y ) = ∅.

Proof. Consider the edge Ω in Proposition 2.6.6.

Claim 1. Ω does not have an end in IH1(Y ).

Subproof. Suppose for a contradiction Ω has end u ∈ IH1(Y ). Proposition 2.4.9 imply that

H1, H2 are closed. Then Proposition 2.6.3 implies that there is an edge f with ends u, z in

H1 and ends u, s in H2. Note that Ω is then incident to f in both G1 and G2. Since G1, G2

are closed, there exists a triangle {f, g,Ω} of G1, G2. But then z, v̂ are joined by g in G1

contradicting Proposition 2.6.5. ♦
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Let P denote an st-path of H2. It follows by Proposition 2.6.6 that P ∪{Ω} is an odd cycle

of (G2, T2). Hence, by Theorem 2.3.4, P ∪ {Ω} is a T1-join of G1. Proposition 2.6.3 implies

that H1[P ] = H2[P ]. Together with Claim 1, this completes the proof.

Assume now (h1)-(h6), (h8), (h9) and that we have Y as in (p1), (p2). We will now

derive a contradiction, thereby completing the proof of Theorem 2.3.3. Denote by a, b the

vertices in ∂H2(Y ) and let Z := Y ∪ {Ω}. Note that s ∈ IG2(Z). To derive a contradiction

we will show that Z is a 3-separation of G2. By possibly interchanging the role of s

and t in the previous arguments, we may assume that IG2(E(G2) − Z) 6= ∅. We have

∂G2(Z) ⊇ {a, b, t} and it suffices to show that equality holds. Suppose for a contradiction

we have an edge e ∈ A− {Ω} that has end u2 ∈ ∂G2(Z). By Proposition 2.6.6, u2 6= s. We

have vertex u1 of G1 and {u2} is a mate of {u1}. By Proposition 2.6.7, u1 /∈ T1 and thus by

Proposition 2.4.12, e is also incident to u1 in G1. As H1, H2 are closed by Proposition 2.4.9

there exists an edge an edge f with ends u1, z in H1 and ends u2, s in H2. As G1, G2 are

closed, there then exists an edge g such that {e, f, g} is a triangle of G1 and G2. However,

g has ends z and v̂, contradicting Proposition 2.6.5. Hence, we have proved Theorem 2.3.3

that characterizes 4-connected closed siblings that are neither graphic nor cographic.
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Chapter 3

Bounding the number of

representations

The work in this chapter appears in [20, 21, 31]. Let us restate Theorem 1.1.1.

Theorem 1.1.1. Any two graph representations of a graphic matroid are equivalent.

Theorem 1.1.1 implies that every graphic matroid has a unique equivalence class of graph

representations, equivalently, every cographic matroid has a unique equivalence class of

graph representations. Since every graph representation of a 3-connected graphic (resp.

cographic) matroid has no 2-separation, there exists at most one graph representation for a

3-connected matroid.

Alas, as seen in Section 1.3.1 and Section 1.3.2, 3-connected even-cycle (resp. even-cut)

matroids can have exponentially many pair-wise inequivalent blocking pair (resp. T4)

representations. Recall that a signed-graph representation is a blocking-pair representation

if it has a blocking pair. A graft representation is a T4 representation if its terminal set

contains at most 4 vertices.
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Recall the three theorems from Section 1.3 that give a polynomial bounds for each of non-

pinch-graphic even-cycle, non-pinch-cographic even-cut and (4, 5)-connected pinch-graphic

matroids, respectively.

Theorem 1.3.1. There exists a constant c such that every even-cycle matroid that is not

pinch-graphic has fewer than c pairwise inequivalent signed-graph representations.

Theorem 1.3.2. There exists a constant c such that every even-cut matroid that is not

pinch-cographic has fewer than c pairwise inequivalent graft representations.

Theorem 1.3.3. Let M be a pinch-graphic matroid that is not graphic. If M is (4, 5)-

connected then the number of blocking-pair representations of M is in O(|E(M)|4).

To prove Theorem 1.3.1, we use the stabilizer theorem for even-cycle matroids proven

by Guenin, Pivotto and Wollan [26], which will be stated in Section 3.1.1. Then, we

characterize 1- and 2-separations in signed-graph representations of non-pinch-graphic

even-cycle matroids in Section 3.1.3. In Section 3.1.4, we prove Theorem 1.3.1.

To prove Theorem 1.3.2, we use similar steps as above. We state the stabilizer theorem

for even-cut matroids [25] in Section 3.2.1, and we characterize, in Section 3.2.3, 1- and

2-separations in graft representations of non-pinch-cographic even-cut matroids. As a result,

we prove the theorem in Section 3.2.4.

A chain theorem obtained by combining existing results will be presented in Section 3.3.1.

We review connectivity in even-cycle and even-cut matroids in Section 3.3.2. We will prove

a strong version of Theorem 1.3.3 in Section 3.3.3 by using two key lemmas that are proved

in Section 3.3.4.
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3.1 Even-cycle matroids

3.1.1 The 3-connected case

The goal of this section is to prove Theorem 1.3.1. First, we will prove Theorem 1.3.1 for

the special case where the even-cycle matroid is 3-connected.

A binary matroid is minimally non-pinch-graphic if it is not pinch-graphic, but every

proper minor is. Minor-closed classes of binary matroids are well-quasi ordered [13]. Hence,

Theorem 3.1.1. There exists a constant c, such that every minimally non-pinch-graphic

(resp. minimally non-pinch-cographic) matroid has at most c elements.

For a matroid N , a connected component of N is a maximal subset F of E(N) such that,

for every pair of edges in F , there exists a circuit of N containing both of them. We

denote by λ1(N) the number of connected components of N . Now, N can be constructed

from a collection Λ2(N) of 3-connected matroids by 1-sum and 2-sum. Cunningham and

Edmonds [8] showed that Λ2(N) is unique up to isomorphism. Let λ2(N) be the number of

matroids in Λ2(N).

Theorem 3.1.2 (Lemos and Oxley [34]). Let N be a non-empty matroid and M be a

minor-minimal 3-connected matroid having N as a minor. Then |E(M)| − |E(N)| ≤

22 (λ1(N)− 1) + 5 (λ2(N)− 1).

Note that, for an even-cycle matroid M , the set of signed-graph representations for M can

be partitioned into equivalence classes.

Theorem 3.1.3 (Guenin, Pivotto, and Wollan [27]). Let M be a 3-connected matroid and

let N be a 3-connected minor of M that is not pinch-graphic. Then there exists a matroid
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Ñ isomorphic to N that is a minor of M such that for every equivalence class F of Ñ , the

set of extensions of F to M is the union of at most two equivalence classes.

Given a binary matroid M we denote by f(M) the number of pairwise inequivalent signed-

graph representations of M (thus M is an even-cycle matroid exactly when f(M) ≥ 1).

Let us now restate and prove Theorem 1.3.1 assuming 3-connectivity.

Theorem 3.1.4. There exists a constant d such that for every 3-connected even-cycle

matroid M that is not pinch-graphic, f(M) ≤ d.

Proof. Since M is not pinch-graphic, it has a minor N that is minimally non-pinch-graphic.

By Theorem 3.1.1, |E(N)| ≤ c for some constant c. In particular, λ1(N), λ2(N) ≤ c. Let

N ′ be a minor-minimal matroid with the following properties:

(a) N ′ is 3-connected,

(b) N is a minor of N ′ and

(c) N ′ is a minor of M .

Since M = N ′ satisfies (a)-(c), N ′ is well-defined. By Theorem 3.1.2,

|E(N ′)| ≤ c+ 22(c− 1) + 5(c− 1) ≤ 28c.

Thus N ′ has a constant number, say c′, of equivalence classes. It follows by Theorem 3.1.3

that there are at most 2c′ equivalence classes for M , i.e. f(M) ≤ 2c′ =: d as required.
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3.1.2 A connectivity function and auxiliary graphs

Recall that, for a matroid M , the connectivity function takes X ⊆ E(M) as input and

returns λM(X) := rM(X) + rM(E(M)−X)− r(M). In this section, we wish to specialize

this function to the case of even-cycle and even-cut matroids. Given a graph H we denote

by κ(H) the number of components of H. A signed graph is bipartite if it has no odd cycle.

Given a signed graph (G,Σ), we define

p[(G,Σ)] :=

0 if (G,Σ) is bipartite

1 otherwise.

Proposition 3.1.5 ([27], Lemma 26). Consider an even-cycle matroid M with a non-

bipartite connected signed-graph representation (G,Σ). Let X, Y be a partition of E(M)

where X, Y are non-empty. Then

λM(X) = | ∂G(X)| − κ(G[X])− κ(G[Y ]) + p[(G,Σ) \X] + p[(G,Σ) \ Y ].

Consider a graph G and a set X ⊆ E(G) where X 6= ∅ and X 6= E(G). We define the

auxiliary graph H for the pair G and X as follows: H is bipartite with bipartition U,W

where vertices in U correspond to components of G[X] and vertices in W correspond to

components in G[E(G)−X]. For every v ∈ ∂G(X) we have an edge ev of H with endpoints

u ∈ U and w ∈ W where u corresponds to the unique component of G[X] containing v and

w corresponds to the unique component of G[E(G)−X] containing v. We give an example

in Figure 3.1. For each of (i), (ii), (iii) we have the auxiliary graph H on top and G where

the non-shaded region correspond to edges in X on the bottom.

Let us restate Proposition 3.1.5 in terms of auxiliary graph,

Proposition 3.1.6. Consider an even-cycle matroid M with a non-bipartite connected

signed-graph representation (G,Σ). Let X, Y be a partition of E(M) where X, Y are
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Figure 3.1: Examples of auxiliary graphs

non-empty. Denote by H the auxiliary graph for the pair G and X. Then

|E(H)| = |V (H)|+ λM(X)− p[(G,Σ) \X]− p[(G,Σ) \ Y ] ≥ |V (H)| − 1.

Proof. Note that |V (H)| = κ(G[X])+κ(G[Y ]) and |E(H)| = | ∂G(X)|. So, Proposition 3.1.5

implies that

λM(X) = |E(H)| − |V (H)|+ p[(G,Σ) \X] + p[(G,Σ) \ Y ].

Finally, as G is connected, so is H. Thus |E(H)| ≥ |V (H)| − 1 and the result follows.

A graph obtained from two disjoint polygons C1, C2 by identifying a vertex of C1 with

a vertex of C2 is a double ear. Recall that a graph that consists of three internally disjoint

ab-paths P1, P2, P3 (all vertices except a, b have degree two) is a theta. The auxiliary graph

in Figure 3.1 (i) is a double ear, and the auxiliary graphs in Figure 3.1 (ii), (iii) are thetas.

Remark 3.1.7. If H is a 2-edge-connected graph where |E(H)| = |V (H)|+ 1 then H is a

theta or a double ear.
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3.1.3 1- and 2-separations in signed graphs

Let M1,M2 be matroids on ground sets E1, E2, respectively where |E1|, |E2| ≥ 1. Suppose

that E1 ∩ E2 = ∅. Then, we define the 1-sum M of M1,M2, denoted by M1 ⊕1 M2, as

follows: the ground set of M is E := E1 ∪ E2 and a subset C of E is a circuit of M if and

only if C is either a circuit of M1 or a circuit of M2.

Let M1,M2 be matroids on ground sets E1, E2, respectively where |E1|, |E2| ≥ 3.

Suppose that E1 ∩ E2 = {Ω} and that Ω is neither a loop nor a coloop of Mi for i ∈ [2].

Then, we define the 2-sum M of M1,M2, denoted by M1 ⊕2 M2, as follows: the ground

set of M is E := E1 ∆E2 and a subset C of E is a circuit of M if and only if either C

is a circuit of M1 \ Ω or M2 \ Ω, or C = C1 ∆C2 where for i ∈ [2], Ci is a circuit of Mi

containing Ω.

Let M be a connected matroid and let X be a 2-separation of M . Then M = M1⊕2 M2

for some matroids M1,M2 where X = E(M1)−E(M2) [44], (2.6). We would like to describe

how M1 and M2 arise from the separation X for the case of binary matroids.

We first require the following folklore observation,

Proposition 3.1.8. Let M be a matroid with matrix representation A and let X ⊆ E(M).

We denote by 〈X〉 the vector space spanned by the columns of A indexed by X. Then

λM(X) = dim [〈X〉 ∩ 〈E(M)−X〉] .

Let M be a binary matroid with matrix representation A, and let X be a 2-separation of

M . Then, λM (X) = 1. It follows from Proposition 3.1.8 that dim [〈X〉 ∩ 〈E(M)−X〉] = 1.

Thus there exists a unique non-zero 0, 1 vector p for which 〈p〉 = 〈X〉 ∩ 〈E(M)−X〉. Let

A+ be obtained from matrix A by adding column p and let N be the binary matroid

represented by matrix A+. Then N is the completion of M with respect to X.
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Proposition 3.1.9. Let M be a binary matroid with a 2-separation X. Let N be the

completion of M with respect to X. Then M = (N \X)⊕2 (N \ E(M)−X).

Proof. Let M1 = N \X and M2 = N \ E(M) −X. Denote by Ω the unique element in

E(M1) ∩ E(M2). It suffices to show that the following statements are equivalent,

(1) C is a circuit of M where C ∩X,C −X 6= ∅,

(2) C = C1 ∆C2 where for i ∈ [2], Ci is a circuit of Mi using Ω.

Let A denote the 0, 1 matrix representation of N . Suppose (1) holds. Let p =
∑

(Aj : j ∈

C ∩X) =
∑

(Aj : j ∈ C −X). Then ∅ 6= p ∈ 〈X〉 ∩ 〈E(M)−X〉 and thus p = AΩ. Hence,

C1 = (C ∩ X) ∪ Ω is a circuit of M1 and C2 = (C − X) ∪ Ω is circuit of M2 satisfying

(2). Suppose (2) holds. Then
∑

(Aj : j ∈ C ∩ X) =
∑

(Aj : j ∈ C − X) = AΩ. Thus∑
(Aj : j ∈ C) = 0, i.e. C is a cycle of M . As C1, C2 are circuits so is C. As AΩ 6= 0 we

have C ∩X,C −X 6= ∅, i.e. (1) holds.

The following straightforward observation will allow us to construct completions,

Remark 3.1.10. Let M be a binary matroid with a 2-separation X. Let N be a binary

matroid where M = N \ Ω for some Ω that is not a loop of N . If we have cycles C and D

of N where Ω ∈ C ∩D and C ⊆ X ∪Ω, D ⊆ (E(M)−X)∪Ω then N is the completion of

M with respect to X.

Here we apply Proposition 3.1.9 to even-cycle and even-cut matroids.

Proposition 3.1.11. Let M = ecycle(G,Σ) with a 2-separation X and let Y = E(M)−X.

Suppose that p[(G,Σ) \X] = p[(G,Σ) \ Y ] = 1. Let (G1,Σ1) be obtained from (G,Σ) \ Y by

adding an odd loop Ω and let (G2,Σ2) be obtained from (G,Σ) \X by adding an odd loop Ω.

Then M = ecycle(G1,Σ1)⊕2 ecycle(G2,Σ2).
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Proof. Let (H,Γ) be the signed-graph obtained from (G,Σ) by adding an odd loop Ω. Note,

Ω is not a loop of ecycle(H,Γ) as Ω ∈ Γ. Since (G,Σ) \X and (G,Σ) \ Y are non-bipartite

there exists odd polygons C1 ⊆ Y and C2 ⊆ X. Then C1 ∪ Ω and C2 ∪ Ω are even-cycles

of (H,Γ). By Remark 3.1.10 ecycle(H,Γ) is the completion of M with respect to X. By

Proposition 3.1.9, M = (N \ Y ) ⊕2 (N \ X). Moreover, N \ Y = ecycle(H,Γ) \ Y =

ecycle(G1,Σ1) and similarly, N \X = ecycle(G2,Σ2).

In Proposition 3.1.11, we say that (G,Σ) is obtained from (G1,Σ1) and (G2,Σ2) by summing

on a loop.

Proposition 3.1.12. Let M = ecycle(G,Σ) with a 2-separation X and let Y = E(M)−X.

Suppose that p[(G,Σ) \ Y ] = 1, p[(G,Σ) \ X] = 0 that G \ X, G \ Y are connected and

that ∂G(X) = {a, b} where a, b are distinct vertices. Then we may assume, after possibly

re-signing, that Σ ⊆ X. Let G1 (resp. G2) be obtained from G \ Y (resp. G \X) by adding

edge Ω = (a, b). Then M = ecycle(G1,Σ)⊕2 cycle(G2).

Proof. As p[(G,Σ)\X] = 0 we may assume Σ ⊆ X. Let (H,Σ) be the signed-graph obtained

from (G,Σ) by adding edge Ω = (a, b). Note, Ω is not a loop of ecycle(H,Σ) as it is not a

loop of H. Since (G,Σ) \ Y is connected and non-bipartite, there exists an {a, b}-join J of

G\Y where |J∩Σ| is even. Since G\X is connected there exists an ab-path P of G\X. Then

J∪Ω and P∪Ω are even cycles of (H,Σ). It follows by Remark 3.1.10 that ecycle(H,Σ) is the

completion of M with respect to X. By Proposition 3.1.9, M = (N\Y )⊕2(N\X). Moreover,

N \ Y = ecycle(H,Σ) \ Y = ecycle(G1,Σ) and N \X = ecycle(H,Σ) \X = cycle(G2).

In Proposition 3.1.12, we say that (G,Σ) is obtained from (G1,Σ) and G2 by summing on

an edge.
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3.1.4 The proof of Theorem 1.3.1

Because of Theorem 3.1.4 and the fact that every matroid M can be constructed from a

collection of 3-connected matroids by 1-sums and 2-sums, it suffices to prove the following

Proposition 3.1.14 and Proposition 3.1.15 to complete the proof of Theorem 1.3.1.

Consider an even-cycle matroid M and a set X ⊆ E(G) where X 6= ∅ and X 6= E(G). A

connected signed-graph representation (G,Σ) of M is extremal for X if among all connected

signed-graph representations of M that are equivalent to (G,Σ), the auxiliary graph for G

and X has fewest number of vertices. (Note that if (G,Σ) is a signed-graph representation

of M then there is an equivalent signed-graph representation that is connected.)

We leave the following as an easy exercise.

Remark 3.1.13. Let (G,Σ) be an extremal signed-graph representation of an even-cycle

matroid M for some X ⊆ E(M). Then the auxiliary graph H for G and X is 2-edge-

connected unless H consists of two vertices joined by a single edge.

Recall that, for a binary matroid M , f(M) is the number of pairwise inequivalent signed-

graph representations of M .

Proposition 3.1.14. If M = M1 ⊕1 M2 for some binary matroids M1,M2 where M is not

graphic then

f(M) ≤ max{f(M1), f(M2)}.

Proof. Define X = E(M1) and Y = E(M2). Then M1 = M \ Y , M2 = M \ X and

λM (X) = 0. Since M is not graphic at least one of M1 or M2 is not graphic. Thus, we may

assume that M1 is not graphic. We may assume that f(M) ≥ 1; otherwise, f(M) = 0 and

the result holds. Let (G,Σ) be a signed-graph representation of M that is extremal for X.
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Then, (G,Σ) \ Y is a representation of M1. In particular, as M1 is not graphic, (G,Σ) \ Y

is not bipartite, i.e. p[(G,Σ) \ Y ] = 1. Let H denote the auxiliary graph for G and X.

Then by Proposition 3.1.6,

|E(H)| = |V (H)| − p[(G,Σ) \X]− p[(G,Σ) \ Y ] ≥ |V (H)| − 1.

Hence, (i) |E(H)| = |V (H)| − 1 and (ii) p[(G,Σ) \X] = 0. By (i) and Remark 3.1.13, we

have |V (H)| = 2 and |E(H)| = 1, i.e. G \X, G \ Y are connected and share exactly one

vertex in G. By (ii), we may assume Σ ⊆ X and M2 = cycle(G \X). Let (G′,Σ′) be any

other signed-graph representation of M that is extremal for X. Then we may assume that

Σ′ ⊆ X and M2 = cycle(G′ \X). Then G \X and G′ \X are equivalent by Theorem 1.1.1.

It follows that (G,Σ) and (G′,Σ′) are equivalent if and only if (G,Σ) \ Y and (G′,Σ′) \ Y

are equivalent. Hence, f(M) = f(M1).

Proposition 3.1.15. If M = M1 ⊕2 M2 for some binary matroids M1,M2 where M is not

pinch-graphic then

f(M) ≤ max{f(M1), f(M2)}.

Proof. Denote by Ω the unique element in E(M1) ∩ E(M2) and let X = E(M1) − Ω,

Y = E(M2) − Ω. We have λM(X) = 1. Let (G,Σ) be a signed-graph representation of

M that is extremal for X. Let H denote the auxiliary graph for G and X. Then by

Proposition 3.1.6

|E(H)| = |V (H)|+ 1− p[(G,Σ) \X]− p[(G,Σ) \ Y ] ≥ |V (H)| − 1. (3.1)

Claim 1. p[(G,Σ) \X] + p[(G,Σ) \ Y ] ≥ 1.

Subproof. Otherwise, by (3.1), we have |E(H)| = |V (H)| + 1. (G,Σ) is extremal for X.

Thus, by Remark 3.1.13, H is 2-edge-connected. Remark 3.1.7 implies that H is a theta or
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a double ear. Consider first the case where H is a theta formed by st-paths P1, P2, P3. As

(G,Σ) is extremal for X and since H is bipartite, either (a) for j ∈ [3], Pj consists of one

edge, or (b) for j ∈ [3], Pj consists of two edges. Case (a) is illustrated in Figure 3.1(ii) and

case (b) is illustrated in Figure 3.1(iii). For both cases we may assume after re-signing that

Σ = δG(r)∩X where r is denoted in the figures. Hence, M is pinch-graphic, a contradiction

(in fact, M is graphic). Consider the case where H is a double ear formed by polygons

C1, C2. As (G,Σ) is extremal for X, C1 and C2 each consist of two parallel edges. This case

is illustrated in Figure 3.1(a). We may assume after re-signing that Σ = [δG(r)∪ δG(s)]∩X

where X is the non-shaded region and r, s are indicated in the figure. But then (G,Σ) has

a blocking pair and M is pinch-graphic, a contradiction. ♦

Claim 2. Suppose p[(G,Σ) \ X] = 0 and p[(G,Σ) \ Y ] = 1. Then we may assume that

Σ ⊆ X. Moreover, M1 = ecycle(G1,Σ), M2 = cycle(G2) where (G,Σ) is obtained from

(G1,Σ) and G2 by a summing on edge Ω. In particular, M2 is graphic.

Subproof. By (3.1), |E(H)| = |V (H)|, and by Remark 3.1.13, H is a 2-connected graph

with exactly one polygon. Since (G,Σ) is extremal for X we have |V (H)| = |E(H)| = 2,

i.e. G \X, G \ Y are connected and share exactly two vertices, say u, v in G. Then the

result holds by Proposition 3.1.12. ♦

Claim 3. Suppose p[(G,Σ) \X] = p[(G,Σ) \ Y ] = 1. Then M1 = ecycle(G1,Σ1), M2 =

ecycle(G2,Σ2) where (G,Σ) is obtained from (G1,Σ1) and (G2,Σ2) by a summing on loop

Ω.

Subproof. By (3.1), |E(H)| = |V (H)| − 1, and by Remark 3.1.13, we have |V (H)| = 2 and

|E(H)| = 1, i.e. G \X, G \ Y are connected and share exactly one vertex in G. Then the

result holds by Proposition 3.1.11. ♦
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M1 and M2 are not both graphic for otherwise so would M , a contradiction. It follows

from Claim 2 that we cannot have extremal representations (G,Σ) and (G′,Σ′) of M with

p[(G,Σ) \X] = 0, p[(G,Σ) \ Y ] = 1 and p[(G′,Σ′) \X] = 1, p[(G′,Σ′) \ Y ] = 0. We may

assume that M1 is not graphic. Hence, because of Claim 1 (G,Σ) is of one of the following

types,

Type 1. p[(G,Σ) \X] = 0 and p[(G,Σ) \ Y ] = 1 or

Type 2. p[(G,Σ) \X] = 1 and p[(G,Σ) \ Y ] = 1.

Let h1 (resp. h2) denote the number of inequivalent representations of M1 with a non-loop

Ω (resp. loop Ω). Let f1 (resp. f2) denote the number of inequivalent Type 1 (resp. Type

2) representations of M . Note, f(M) = f1 + f2 and f(M1) = h1 + h2.

Claim 4. f1 ≤ h1.

Subproof. Consider Type I representations (G,Σ) and (G′,Σ′) of M . Then (G,Σ) is obtained

from (G1,Σ) and G2 by a summing on edge Ω and (G′,Σ′) is obtained from (G′1,Σ
′) and

G′2 by a summing on edge Ω. As M2 = cycle(G2) = cycle(G′2) it follows from Theorem 1.1.1

that G2 and G′2 are equivalent. It follows that (G,Σ) and (G′,Σ′) are equivalent if and only

if (G1,Σ) and (G′1,Σ
′) are equivalent. The result follows. ♦

Claim 5. f2 ≤ h2.

Subproof. Consider Type 2 representations (G,Σ) and (G′,Σ′) of M . Then (G,Σ) is

obtained from (G1,Σ1) and (G2,Σ2) by a summing on loop Ω and (G′,Σ′) is obtained from

(G′1,Σ
′
1) and (G′2,Σ

′
2) by a summing on loop Ω. It follows from Remark 2.4.4 that (G1,Σ1)

and (G′1,Σ
′
1) are equivalent and also that (G2,Σ2) and (G′2,Σ

′
2) are equivalent. Thus (G,Σ)

and (G′,Σ′) are equivalent. It follows that f2 ≤ 1 and clearly, f2 = 0 if h2 = 0. ♦

Then f(M) = f1 + f2 ≤ h1 + h2 = f(M1) as required.
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3.2 Even-cut matroids

3.2.1 The 3-connected case

The goal of this section is to prove Theorem 1.3.2. First, we will prove Theorem 1.3.2 for

the special case where the even-cut matroid is 3-connected.

A binary matroid is minimally non-pinch-cographic if it is not pinch-cographic, but every

proper minor is. Note that, for an even-cut matroid M , the set of graft representations can

be partitioned into equivalence classes.

Theorem 3.2.1 (Guenin, Pivotto [25], [40]). Let M be a 3-connected matroid and let N

be a 3-connected minor of M that is not pinch-cographic. Then there exists a matroid Ñ

isomorphic to N that is a minor of M such that for every equivalence class F of Ñ , the set

of extensions of F to M is the union of at most two equivalence classes.

Given a binary matroid M we denote by g(M) the number of pairwise inequivalent graft

representations of M (thus, M is an even-cut matroid exactly when g(M) ≥ 1).

Theorem 3.2.2. There exists a constant d such that for every 3-connected even-cut matroid

M that is not pinch-cographic, g(M) ≤ d.

The proof is nearly identical to that of Theorem 3.1.4. It suffices to replace in that proof,

pinch-graphic by pinch-cographic, and Theorem 3.1.3 by Theorem 3.2.1.
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3.2.2 A connectivity function and auxiliary graphs

A graft is eulerian if it has no odd cut. Given a graft (G, T ) we define,

q[(G, T )] :=

0 if (G, T ) is eulerian

1 otherwise.

Proposition 3.2.3 ([25]). Consider an even-cut matroid M with a non-eulerian connected

graft representation (G, T ). Let X, Y be a partition of E(M) where X, Y are non-empty.

Then

λM(X) = | ∂G(X)| − κ(G[X])− κ(G[Y ]) + q[(G, T )/X] + q[(G, T )/Y ].

Similarly, we can restate Proposition 3.2.3 in terms of the auxiliary graph.

Proposition 3.2.4. Consider an even-cut matroid M with a non-eulerian connected graft

representation (G, T ). Let X, Y be a partition of E(M) where X, Y are non-empty. Denote

by H the auxiliary graph for the pair G and X. Then

|E(H)| = |V (H)|+ λM(X)− q[(G, T )/X]− q[(G, T )/Y ] ≥ |V (H)| − 1.

We omit the proof as it is similar to that of Proposition 3.1.6.

3.2.3 1- and 2-separations in grafts

In a graft (G, T ) an edge e is a pin with head v if e has an endpoint v ∈ T where v has

degree 1. By adding a pin e to a graft (G, T ) we mean adding a pendent edge e = (u, v) to

G (where v denotes the vertex of degree 1) and replacing the set of terminals by T ∆{u, v}.

Consider a graph G and let α be a subset of edges that are either incident to a fixed vertex
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w or contained in loops. Let G′ be obtained from G by replacing w with vertices w′ and

w′′ such that (i) edges in α ∩ δG(w) are incident to w′, (ii) edges in δG(w)− α are incident

to w′′, and (iii) loops of G in α are joining w′ and w′′. Then G′ is obtained from G by

splitting w according to α. If in addition to (i)-(iii) we add an edge Ω = (w′, w′′) then the

resulting graph is obtained from G by uncontracting Ω at w according to α. Next we state

the analogue of propositions 3.1.11 and 3.1.12 for even-cuts.

Proposition 3.2.5. Let M = ecut(G, T ) with a 2-separation X and let Y = E(M)−X.

Suppose that q[(G, T )/X] = q[(G, T )/Y ] = 1. Let (G1, T1) be obtained from (G, T )/Y

by adding a pin Ω and let (G2, T2) be obtained from (G, T )/X by adding a pin Ω. Then

M = ecut(G1, T1)⊕2 ecut(G2, T2).

Proof. Let (H,R) be the graft obtained from (G, T ) by adding a pin Ω. Note, Ω is not a

loop of ecut(H,R) as Ω is a pin. There exist odd cuts C1 and C2 of (G, T )/Y and (G, T )/X

respectively. Then C1∪Ω and C2∪Ω are even-cuts of (H,R). By Remark 3.1.10, ecut(H,R)

is the completion of M with respect to X. By Proposition 3.1.9, M = (N \ Y )⊕2 (N \X).

Moreover, N \ Y = ecut(H,R) \ Y = ecut ((H,R)/Y ) = ecut(G1, T1). Similarly, N \X =

ecut(G2, T2).

In Proposition 3.2.5, we say that (G, T ) is obtained from (G1, T1) and (G2, T2) by summing

on a pin.

Proposition 3.2.6. Let M = ecut(G, T ) with a 2-separation X and let Y = E(M)−X.

Suppose that q[(G, T )/Y ] = 1, q[(G, T )/X] = 0 that G \X, G \ Y are connected and that

∂G(X) = {a, b} where a, b are distinct vertices. Then, T ⊆ VG(X) and let G1 (resp. G2)

be obtained from G \ Y (resp. G \ X) by adding an edge Ω with endpoints a, b. Then

M = ecut(G1, T )⊕2 cut(G2).
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Proof. As q[(G, T )/X] = 0, we have T ⊆ VG(X). Let H be obtained from G by

uncontracting Ω at a according to X ∩ δG(a) where Ω has endpoints a, a′ in H and a

is incident to X∩δG(a) and a′ is incident to δG(a)∩Y . Since G\X and G\Y are connected

Ω is not a bridge of H, in particular, Ω is not a loop of ecut(H,T ). Since (G, T )/Y is

non-eulerian, there exists an even cut C1 ⊆ X ∪ Ω of (H,T ) where Ω ∈ C1. There exists

a cut C2 ⊆ Y ∪ Ω of H where Ω ∈ C2. Note, C2 is a T -even cut as T ⊆ VG(X). It

follows by Remark 3.1.10 that ecut(H,T ) is the completion of M . By Proposition 3.1.9,

M = (N \ Y ) ⊕2 (N \ X). Moreover, N \ Y = ecut ((H,T )/Y ) = ecut(G1, T ) and

N \X = ecut ((H,T )/X) = cut(G2).

In Proposition 3.2.6, we say that (G, T ) is obtained from (G1, T1) and G2 by summing on

an edge.

3.2.4 The proof of Theorem 1.3.2

Since every matroid M can be constructed from a collection of 3-connected matroids by

1-sums and 2-sums, it suffices to prove propositions 3.2.7 and 3.2.8 to complete the proof of

Theorem 1.3.2.

Consider an even-cut matroid M and a set X ⊆ E(G) where X 6= ∅ and X 6= E(G). A

connected graft representation (G, T ) of M is extremal for X if among all connected graft

representations of M that are equivalent to (G, T ), the auxiliary graph for G and X has

fewest number of vertices. (Note that if (G, T ) is a graft representation of M then there is

an equivalent graft representation that is connected.) Recall that, for a binary matroid M ,

g(M) is the number of pairwise inequivalent graft representations of M .

Proposition 3.2.7. If M = M1 ⊕1 M2 for some binary matroids M1,M2 where M is not
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cographic then

g(M) ≤ max{g(M1), g(M2)}.

Proof. Define X = E(M1) and Y = E(M2). Then M1 = M \ Y , M2 = M \ X and

λM(X) = 0. Since M is not cographic we may assume M1 is not cographic. We may

assume that g(M) ≥ 1; otherwise, g(M) = 0 and the result holds. Let (G, T ) be a graft

representation of M that is extremal for X. Then (G, T )/Y is a representation of M1. In

particular, as M1 is not cographic, (G, T )/Y is not eulerian, i.e. q[(G, T )/Y ] = 1. Let H

denote the auxiliary graph for G and X. Then by Proposition 3.2.4,

|E(H)| = |V (H)| − q[(G,Σ)/X]− q[(G,Σ)/Y ] ≥ |V (H)| − 1.

Hence, (i) |E(H)| = |V (H)| − 1 and (ii) q[(G,Σ)/X] = 0. By (i) and since (G, T ) is

extremal for X, we have |V (H)| = 2 and |E(H)| = 1, i.e. G/X, G/Y are connected and

share exactly one vertex in G. By (ii) we may assume T ⊆ VG(X) and M2 = cut(G/X).

Let (G′, T ′) be any other graft representation of M that is extremal for X. Then we

may assume that T ′ ⊆ VG(X) and M2 = cut(G′/X). Then cut(G/X) = cut(G′/X) or

equivalently, cycle(G/X) = cut(G′/X). It follows by Theorem 1.1.1 that G/X and G′/X

are equivalent. Hence, (G, T ) and (G′, T ′) are equivalent if and only if (G, T )/Y and

(G′, T ′)/Y are equivalent. Thus, g(M) ≤ g(M1).

Proposition 3.2.8. If M = M1 ⊕2 M2 for some binary matroids M1,M2 where M is not

pinch-cographic then

g(M) ≤ max{g(M1), g(M2)}.

Proof. Denote by Ω the unique element in E(M1) ∩ E(M2) and let X = E(M1) − Ω,

Y = E(M2)− Ω. We have λM(X) = 1. Let (G, T ) be a graft representation of M that is
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extremal for X. Let H denote the auxiliary graph for G and X. Then by Proposition 3.2.4

|E(H)| = |V (H)|+ 1− q[(G, T )/X]− q[(G, T )/Y ] ≥ |V (H)| − 1. (3.2)

Claim 1. q[(G, T )/X] + q[(G, T )/Y ] ≥ 1.

Subproof. Otherwise, by (3.2), we have, |E(H)| = |V (H)|+ 1. Because (G, T ) is extremal

for X, H is 2-edge-connected. Remark 3.1.7 implies that H is a theta or a double ear.

Consider first the case where H is a theta formed by st-paths P1, P2, P3. As (G, T ) is

extremal for X and since H is bipartite, either (a) for j ∈ [3], Pj consists of one edge,

or (b) for j ∈ [3], Pj consists of two edges. Case (a) is illustrated in Figure 3.1(ii) and

case (b) is illustrated in Figure 3.1(iii). Since q[(G, T )/X] = q[(G, T )/Y ] = 0 we have

T ⊆ ∂G(X). As M is not pinch-cographic, |T | ≥ 6. Thus, (a) cannot occur and if (b)

occurs then T = ∂G(X). For (b), we may assume that X is the non-shaded region in

the figure. But then (G, T )/X has two terminals, contradicting the fact that (G, T )/X is

eulerian. Consider the case where H is a double ear formed by polygons C1, C2. As (G, T )

is extremal for X, C1 and C2 each consist of two parallel edges. This case is illustrated in

Figure 3.1(a). As in the previous case we must have T ⊆ ∂G(X). Hence, |T | ≤ 4 and in

particular, M is pinch-cographic, a contradiction. ♦

Claim 2. Suppose q[(G, T )/X] = 0 and q[(G, T )/Y ] = 1 then we may assume that

T ⊆ VG(X). Moreover, M1 = ecut(G1, T ), M2 = cut(G2) where (G, T ) is obtained from

(G1, T ) and G2 by a summing on edge Ω. In particular, M2 is cographic.

Subproof. By (3.2), |E(H)| = |V (H)|, and H is a connected graph with exactly one polygon.

Since (G, T ) is extremal for X we have |V (H)| = |E(H)| = 2, i.e., G\X, G\Y are connected

and share exactly two vertices, say u, v in G. Then the result holds by Proposition 3.2.6.

♦
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Claim 3. Suppose q[(G, T )/X] = q[(G, T )/Y ] = 1. Then M1 = ecut(G1, T1), M2 =

ecut(G2, T2) where (G, T ) is obtained from (G1, T1) and (G2, T2) by a summing on pin Ω.

Subproof. By (3.2), |E(H)| = |V (H)|−1 and since H is connected H is a tree. Since (G, T )

is extremal for X we have |V (H)| = 2 and |E(H)| = 1, i.e. G \X, G \ Y are connected

and share exactly one vertex in G. Then the result holds by Proposition 3.2.5. ♦

M1 and M2 are not both cographic for otherwise so would M , a contradiction. It follows

from Claim 2 that we cannot have extremal representations (G, T ) and (G′, T ′) of M with

q[(G, T )/X] = 0, q[(G, T )/Y ] = 1 and q[(G′, T ′)/X] = 1, q[(G′, T ′)/Y ] = 0. We may

assume that M1 is not cographic. Hence, because of Claim 1 (G, T ) is of one of the following

types,

Type 1. q[(G, T )/X] = 0 and q[(G, T )/Y ] = 1 or

Type 2. q[(G, T )/X] = 1 and q[(G, T )/Y ] = 1.

Let h1 (resp. h2) denote the number of inequivalent representations of M1 with a non-pin

Ω (resp. pin Ω). Let g1 (resp. g2) denote the number of inequivalent Type 1 (resp. Type 2)

representations of M . Note, g(M) = g1 + g2 and f(M1) = h1 + h2.

Claim 4. g1 ≤ h1.

Subproof. Consider Type I representations (G, T ) and (G′, T ′) of M . Then (G, T ) is

obtained from (G1, T ) and G2 by a summing on edge Ω and (G′, T ′) is obtained from

(G′1, T
′) and G′2 by a summing on edge Ω. As M2 = cut(G2) = cut(G′2), or equivalently,

cycle(G2) = cycle(G′2), it follows from Theorem 1.1.1 that G2 and G′2 are equivalent. Thus

(G, T ) and (G′, T ′) are equivalent if and only if (G1, T ) and (G′1, T
′) are equivalent. The

result follows. ♦
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Claim 5. g2 ≤ h2.

Subproof. Consider Type 2 representations (G, T ) and (G′, T ′) of M . Then (G, T ) is

obtained from (G1, T1) and (G2, T2) by a summing on a pin Ω and (G′, T ′) is obtained from

(G′1, T
′
1) and (G′2, T

′
2) by a summing on pin Ω. It follows from Remark 2.4.6 that (G1, T1)

and (G′1, T
′
1) are equivalent and also that (G2, T2) and (G′2, T

′
2) are equivalent. Thus (G, T )

and (G′, T ′) are equivalent. It follows that g2 ≤ 1 and clearly, g2 = 0 if h2 = 0. ♦

Then g(M) = g1 + g2 ≤ h1 + h2 = g(M1) as required.

3.3 Pinch-graphic matroids

The goal of this section is to prove Theorem 1.3.3.

3.3.1 Chain theorems

Let M and N be matroids. M contains an N-minor if for some I, J ⊆ E(M) where

I ∩ J = ∅, we have that M/I \ J is isomorphic to N . Note, F7 denotes the Fano matroid,

M(G) is the graphic matroid of graph G, and we write M∗ for the dual of M . Let M be a

binary matroid. We say that a sequence M1, . . . ,Mk of matroids is a good sequence for M if

1. M1 = M and Mk ∈ {F7, F
∗
7 , M(K5)∗, M(K3,3)∗},

2. for all i ∈ [k − 1], Mi+1 is a single element deletion or contraction of Mi,

3. for all i ∈ [k], Mi is (4, 6)-connected.

Here is the key result of this section,
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Proposition 3.3.1. Let M be a binary non-graphic matroid that is (4, 5)-connected. Then

there exists a good sequence M1, . . . ,Mk for M . Moreover, if we are given M by its 0, 1

matrix representation A, then in time polynomial in the number of entries of A we can

construct that good sequence.

The proof will require the following Splitter theorems,

Theorem 3.3.2 (Seymour [44]). Let M be a matroid that is 3-connected that is not a wheel

or a whirl, and let N be a 3-connected proper minor of M . If |E(M)| ≥ 4, then there exists

e ∈ E(M) such that M\e or M/e is 3-connected and contains an N-minor.

Theorem 3.3.3 (Geelen and Zhou [15]). Let M be a binary matroid that is (4, 5)-connected

and let N be an internally 4-connected proper minor of M . If |E(M)| ≥ 7, then there exists

either

(a) e ∈ E(M) such that M\e or M/e is (4, 5)-connected and contains an N-minor; or

(b) e, e′ ∈ E(M) such that M/e\e′ is (4, 5)-connected and contains an N-minor.

To be able to find the good sequence in polynomial time we require the following results,

Proposition 3.3.4 (Cunningham [8]). Let M be a binary matroid described by an m× n

0, 1 matrix A and let k, ` be fixed integers. In time polynomial in m and n, we can either

find a k-separating set X where |X|, |E(M)−X| ≥ ` or establish that none exists.

Proposition 3.3.5 (Tutte [51]). Let M be a binary matroid described by an m × n 0, 1

matrix A. In time polynomial in m and n we can check whether M is graphic.

Note that, for both results, we have actual algorithms, not just proof of existence.

We are ready for the main proof of this section,
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Proof of Proposition 3.3.1. Since M is not graphic there exists a minor N of M which is

minimally non-graphic. It follows from Tutte’s characterizations of regular matroids [49]

and graphic regular matroids [50, 45] that N is isomorphic to one of F7, F
∗
7 , M(K5)

∗,

or M(K3,3)
∗. Let M1 := M and let k = |E(M1)| − |E(N)| + 1. Let us show that there

exists a good sequence by induction on k. If k = 1 then M1 = N and trivially M1 is

the good sequence. Thus, we may assume that k ≥ 2 and in particular that N is a

proper minor of M1. As N ∈ {F7, F
∗
7 , M(K5)

∗, M(K3,3)
∗}, it is internally 4-connected

and |E(M1)| ≥ |E(N)| ≥ 7. It follows then from Theorem 3.3.3 that there exists a

(4, 5)-connected matroid M̃ with an N -minor where

1. M̃ = M1\e or M̃ = M1/e for some e ∈ E(M1); or

2. M̃ = M1\e/e′ for some distinct e, e′ ∈ E(M1).

If (1) occurs, then we let M2 := M̃ . By induction there exists a good sequence M2, . . . ,Mk.

But then M1, . . . ,Mk is a good sequence for M as required. Hence, we may assume that

(2) occurs.

Since M̃ is binary and non-graphic, M̃ is neither a wheel nor a whirl. By Theorem 3.3.2,

there exists a matroid M ′ where either M ′ = M1\f or M ′ = M1/f for some f ∈ E(M1)

such that M ′ is 3-connected and has a minor M ′′ isomorphic to M̃ .

Claim. M ′ is (4, 6)-connected.

Subproof. Suppose for a contradiction that there exists a 3-separation X of M ′ such that

|X|, |E(M ′)−X| ≥ 7. Observe that M ′′ = M ′/f ′ or M ′′ = M ′ \ f ′ for some f ′ ∈ E(M ′).

After possibly replacing X by E(M ′)−X we may assume that f ′ /∈ X. Corollary 8.2.6 in

[36] implies that λM ′′(X) ≤ λM ′(X) = 2. Since M ′′ is 3-connected (as it is isomorphic to M̃)
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λM ′′(X) = 2. But |X|, |E(M ′′)−X| ≥ 6 contradicts the fact that M ′′ is (4, 5)-connected.

♦

Now, we let M2 := M ′ and M3 := M ′′. By induction there exists a good sequence

M3, . . . ,Mk. But then M1,M2,M3, . . . ,Mk is a good sequence for M as required. We

leave it as an exercise to show how to find the sequence in polynomial-time by mean of

Propositions 3.3.4 and 3.3.5.

Theorem 3.3.6. Let M1, . . . ,Mk denote (4, 6)-connected binary matroids where for each

i ∈ [k − 1], Mi+1 is a single element contraction or deletion of Mi. Suppose that Mk is

non-graphic and that |E(Mk)| ∈ O(1). Then for each i ∈ [k], the number of blocking-pair

representations of Mi is in O(|E(Mi)|4).

We will postpone the proof of this result until Section 3.3.3. Combining Proposition 3.3.1

and Theorem 3.3.6 proves Theorem 1.3.3.

Proof of Theorem 1.3.3. Note M is binary as it is a pinch-graphic matroid. It follows from

Proposition 3.3.1 that M admits a good sequence M1, . . . ,Mk. Then |E(Mk)| ≤ 10, hence

|E(Mk)| ∈ O(1). It follows by Theorem 3.3.6 that |E(M)| = |E(M1)| ∈ O(|E(M)|4), as

required.

3.3.2 (4, 6)-Connectivity

In this section, we translate our condition that an even-cycle or an even-cut matroid is

(4, 6)-connected in terms of its signed-graph or graft representation. In particular, we will

see that the graph must be essentially 3-connected and that all 2-separations have bounded

size.
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Even-cycles matroids

Proposition 3.3.7 ([40], Proposition 2.6). Suppose that ecycle(G,Σ) is 3-connected. Then

(a) if G has no loop then G is 2-connected;

(b) G has at most one loop, which is odd;

(c) if X is a 2-separation of G then X contains an odd polygon.

Proposition 3.3.8. Let M = ecycle(G,Σ) be (4, 6)-connected. Then the following hold,

(a) G is 2-connected except for a unique possible odd loop;

(b) if X is a 2-separation of G then X contains an odd polygon;

(c) if X is a 2-separation of G then min{|X|, |E(G)−X|} ≤ 6;

(d) (G,Σ) has no parallel edges of the same parity.

Proof. Since M is 3-connected, Proposition 3.3.7 implies that (a) and (b) hold. For (d), let

e, f ∈ E(M) where e and f are parallel edges of the same parities in (G,Σ). Then, e, f are

parallels of M , contradicting 3-connectivity of M . For (c), suppose X is a 2-separation of

G, and then, by Proposition 3.1.5 and 3-connectivity of M , X is 3-separating. It follows

from (4, 6)-connectivity of M that min{|X|, |E(G)−X|} ≤ 6.

Even-cut matroids

Recall that an edge of a graft (H,T ) is a pin if it has an end v ∈ T of degree 1.

Proposition 3.3.9 ([40], Proposition 2.5). Suppose that ecut(H,T ) is 3-connected. Then
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(a) if H has no bridge, then H is 2-connected;

(b) if H has a bridge e, then e is a pin and (H,T ) has at most one pin;

(c) if X is a 2-separation of H then I(X) ∩ T 6= ∅.

Proposition 3.3.10. Let M = ecut(H,T ) that is (4, 6)-connected. Then the following

hold,

(a) H is 2-connected except for a unique possible pin;

(b) if X is a 2-separation of H then I(X) ∩ T 6= ∅;

(c) if X is a 2-separation of H then min{|X|, |E(H)−X|} ≤ 6;

(d) H has no parallel edges;

(e) every even cut of (H,T ) has cardinality at least 3.

Proof. Since M is 3-connected, Proposition 3.3.9 implies (a) and (b) hold. For (d), let

e, f ∈ E(M) where e and f are parallel edges of H. Then, {e, f} is a cocycle of M ,

contradicting 3-connectivity of M . For (e), let D ⊆ G be an even cut of (H,T ) where

|D| ≤ 2. Then, D is a cycle of M , contradicting 3-connectivity of M . For (c), suppose X is

a 2-separation of H, then by Proposition 3.2.3 and 3-connectivity of M , X is 3-separating.

It follows that min{|X|, |E(H)−X|} ≤ 6, hence (c) holds.

3.3.3 The proof of Theorem 3.3.6

We require the following two results which we will prove in Section 3.3.4.
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Proposition 3.3.11. Let M be a (4, 6)-connected pinch-graphic matroid with a blocking-pair

representation (G,Σ). Then the number of graphs H equivalent to G for which (H,Σ) is a

blocking-pair representation of M is in O(|V (G)|).

Note that this result is asymptotically tight. Indeed consider the following example.

Construct a graph G as follows: pick a polygon with vertices v1, . . . , vn and add a new

vertex c and for all i ∈ [n] add a pair of edges fi, gi with ends c and vi and add a loop Ω.

Let Σ = {fi : i ∈ [n]} ∪ {v1v2,Ω}. Then ecycle(G,Σ) is internally 4-connected. Moreover,

for every i ∈ [n] we can place the loop Ω to be incident to vertex vi or to c. This yields

|V (G)| distinct equivalent signed-graphs each with a blocking-pair.

Proposition 3.3.12. Let M be a (4, 6)-connected non-cographic pinch-cographic matroid

with a T4-representation (H,T ). Then the number of grafts equivalent to (H,T ) is in O(1).

Nice and special representations

We say that a graft (H,T ) is special if |T | = 4, properties (a)-(e) of Proposition 3.3.10 hold,

and there exists an odd cut of cardinality at most 3. We say that a graft (H,T ) is nice if

|T | = 4, properties (a)-(e) of Proposition 3.3.10 hold, and every odd cut has cardinality at

least 4.

Proposition 3.3.13. The number of special representations of a pinch-cographic (4, 6)-

connected matroid M is in O(|E(M)|3).

Proof. Let (H,T ) be a special graft-representation of M . Then, for some set B ⊆ E(H)

with |B| ≤ 3, B is an odd cut of (H,T ). By Remark 2.4.6, all special representations

with a fixed odd cut B are equivalent. Hence, by Proposition 3.3.12, the number of such
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representations is in O(1). As the number of possible choices for a set B ⊆ E(H) with

|B| ≤ 3 is in O(|E(M)|3) the result follows.

For a graph G and v ∈ V (G) we denote the degree of v by dG(v).

Next we show that nice grafts are indeed nice.

Proposition 3.3.14. If (H,T ) is a nice graft, then H is 3-connected.

Proof. Note that (H,T ) satisfies properties (a)-(e) of Proposition 3.3.10.

Claim 1. Cuts of (H,T ) have cardinality at least 3, and odd cuts of (H,T ) have cardinality

at least 4.

Subproof. The result follows from Proposition 3.3.10(e). ♦

In particular, (H,T ) has no pin. Then by (a) H is 2-connected. Suppose for a contradiction

that H is not 3-connected. Then there exists a partition X, Y of the edges of H where

H[X] and H[Y ] are connected, ∂(X) = {u1, u2} for some distinct u1, u2 ∈ V (H), and

I(X), I(Y ) 6= ∅. By (b), there exists z ∈ I(X) ∩ T and by Claim 1, dH(z) ≥ 4. By (d),

there are no parallel edges. Hence, z has at least 4 neighbours and | I(X)| ≥ 3. By Claim 1

vertices v ∈ I(X) satisfy dH(v) ≥ 3. Thus,∑
v∈I(X)

dH(v) ≥ 3| I(X)|+ 1. (1)

Let L denote the edges with one end in I(X) and one end in {u1, u2}. The Claim implies

that |L| ≥ 3. Let G be the graph induced by vertices I(X). Then (1) implies that,∑
v∈I(X)

dG(v) ≥ 3| I(X)|+ 1− |L|. (2)
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Then X consists of edges of G, edges in L and possibly an edge with ends u1, u2. By (2),

|X| ≥ 1

2

∑
v∈I(X)

dG(v) + |L| ≥ 1

2
(3| I(X)|+ 1− |L|) + |L|.

As | I(X)|, |L| ≥ 3 we have |X| ≥ 1
2
(3× 3 + 1− 3) + 3 > 6, a contradiction to (c).

Unstable sets of grafts

Proposition 3.3.15. Suppose ecycle(G,Σ) is (4, 6)-connected and let a, b be a blocking

pair of (G,Σ). Then the number of signatures of (G,Σ) with all edges incident to a or b is

in O(1).

Proof. Let S be the set of signatures of (G,Σ) with all edges incident to a or b. We will

show |S| ∈ O(1). We may assume after re-signing that Σ ∈ S. Pick Γ ∈ S where Γ 6= Σ.

Since Σ ∆ Γ intersects every cycle of G with even parity, it is a cut δ(U) of G. We say that Γ

is skewed if exactly one of a, b is in U . Let Γ1, . . . ,Γ` denote the signatures of S −Σ that are

not skewed. Observe that if Γ ∈ S is skewed, then Γ ∆ δ(a) is not skewed, thus Γ ∆ δ(a) = Γi

for some i ∈ [`]. It follows that |S| ≤ 2` + 1. For all i ∈ [`], Σ ∆ Γi = δ(Ui) and we may

assume that a, b /∈ Ui. Let H1, . . . , Hk denote the components of the graph obtained from G

by deleting vertices a, b. Let i ∈ [`] and j ∈ [k]. Since δ(Ui) is a cut either (i) V (Hk) ⊆ Ui

or (ii) V (Hk) ∩ Ui = ∅. Define for i ∈ [`], the set J(i) = {j ∈ [k] : V (Hk) ⊆ Ui}, i.e. J(i)

indicates what components of H \ {a, b} are contained in the shore Ui of cut Σ ∆ Γi. Now

observe that δ(Ui) are exactly the edges between vertices of Hj and {a, b} for all j ∈ J(i). It

follows that J(i) determines Γi uniquely. Hence, ` is bounded by the number of choices for

J(i) thus ` ≤ 2k. However, as ecycle(G,Σ) is (4, 6)-connected, Proposition 3.3.8(c) implies

that k ∈ O(1). Thus |S| ≤ 2`+ 1 ∈ O(2k) = O(1).
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Let S = {(Hi, Ti) : i ∈ [n]} where (Hi, Ti) are nice grafts. We say that the set S is

unstable if there exists a pinch-cographic matroid M and for all i ∈ [n] there exists a

graph H ′i obtained from Hi by adding an edge Ω with both ends in Ti, so that (H ′i, Ti) is a

representation of M . Observe that this implies that S are all T4-representations of M/Ω.

Proposition 3.3.16. Let S be an unstable set of representations of a matroid M . Then

|S| ∈ O(|E(M)|3).

Proof. Then S = {(Hi, Ti) : i ∈ [n]}. For each i ∈ [n] denote by xi, yi, wi, zi the vertices in

Ti. We may assume that H ′i is obtained from Hi by adding edge Ω with ends xi, yi. Let Gi

be obtained from Hi by identifying xi with yi and by identifying wi with zi. Denote by ai

the vertex of Gi corresponding to xi = yi and denote by bi the vertex of Gi corresponding

to wi = zi. Let Σi = δHi
(xi) ∆ δHi

(wi). Observe that (Gi,Σi) is obtained from (Hi, Ti) by

folding and that ai, bi is a blocking pair of (Gi,Σi). Then let R = {(Gi,Σi) : i ∈ [n]}.

Claim 1. The signed-graphs in R are all pairwise equivalent.

Subproof. Pick i, j ∈ [n]. We will show that (Gi,Σi) and (Gj,Σj) are equivalent. Since S is

unstable, ecut(H ′i, Ti) = ecut(H ′j, Tj). Hence, ecut(H ′i, Ti) \Ω = ecut(H ′j, Tj) \Ω. Note that

ecut(H ′i, Ti) \ Ω = ecut(H ′i/Ω, {wi, zi}) = cut(Gi).

Similarly, ecut(H ′j, Tj)\Ω = cut(Gj). Thus cut(Gi) = cut(Gj). It follows from Theorem 1.1.1

that Gi and Gj are equivalent. Furthermore, by Proposition 2.2.1, (Gi,Σi) and (Gj,Σj) are

blocking-pair representations of M∗. In particular, ecycle(Gi,Σi) = ecycle(Gj,Σj). Hence,

(Gi,Σi) and (Gj,Σj) are equivalent as required. ♦

By Proposition 2.2.1, we know that for each i ∈ [n], (Gi,Σi) is a blocking-pair representation

of the (4, 6)-connected matroid M∗. By Claim 1, the signed graphs in R are equivalent.
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It follows from Proposition 3.3.11, that the number of distinct graphs among G1, . . . , Gn

is in O(|E(M)|). Let K ⊆ [n] such for all k ∈ K, Gk = G for some fixed graph G. There

are at most |V (G)|2 ∈ O(|E(M)|2) distinct blocking pairs {ak, bk} of (G,Σk) among all

k ∈ K. Moreover, by Proposition 3.3.15 there are at most O(1) different signatures Σ`,

` ∈ K for a given blocking pair {ak, bk} of G. It follows that |K| ∈ O(|E(M)|2) and hence

that |S| = |R| ∈ O(|E(M)|3) as required.

Proposition 3.3.17. Let M be a binary matroid, Ω ∈ E(M) that is not a loop of M and

let N = M/Ω where N is (4, 6)-connected. Consider a nice representation (H,T ) of N that

does not extend uniquely to M . Then (H,T ) extends to exactly two representations (H1, T )

and (H2, T ) of M where H1 is obtained from H by adding edge Ω between t1, t2 and where

H2 is obtained from H by adding edge Ω between t3, t4 for some labeling t1, t2, t3, t4 of the

vertices of T .

Proof. Since Ω is not a loop of M there exists a cocircuit D of M with Ω ∈ D. Cocircuits of

even-cut matroids are polygons or inclusion-wise minimal T -joins of the graft representation

[40], Remark 2.2. After possibly replacing D with D∆ J for some T -join J of H, we may

assume that D is a polygon of H1. If D is a cycle of H2 then H1 and H2 have the same

set of cycles, and thus by Theorem 1.1.1 are equivalent. But then as H is 3-connected

by Proposition 3.3.14, so are H1, H2 which implies that H1 = H2, a contradiction. Thus

D is a T -join of H2. Let P = D − Ω. Since D is a polygon of H1, P is a path of H. As

T = {t1, t2, t3, t4} is the set of odd degree vertices in P ∪ Ω of H2 it follows that Ω has

ends say t3, t4 in H2, and that P has end t1, t2 in H. But then Ω has ends t1, t2 in H1 and

H1, H2 are as required.

This last result implies immediately the following,
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Proposition 3.3.18. Let M be a binary matroid, Ω ∈ E(M) that is not a loop of M and

let N = M/Ω where N is (4, 6)-connected. Then the set of nice representations of N that

do not extend uniquely to M form an unstable set.

Extending graft representations

Proposition 3.3.19 ([25] Lemma 9.4). Let N be an even-cut matroid and let F be an

equivalence class of graft-representations of N . Let M be a matroid with a non-coloop

e ∈ E(M) for which N = M \ e. Then the set of extensions of F to M is a (possibly empty)

equivalence class of graft-representations.

Proposition 3.3.20 ([25] Lemma 9.12). Let N be a non-cographic, even-cut matroid and

let F be an equivalence class of graft-representations of N . Let M be a matroid with a

non-loop e ∈ E(M) for which N = M/e. Then the set of extensions of F to M is either a

(possibly empty) equivalence class of graft-representations or the union of two equivalence

classes of graft-representations.

The proof of the main result

Proof of Theorem 3.3.6. For all i ∈ [k] let Ni = M∗
i . Then N1, . . . , Nk denote (4, 6)-

connected binary matroids where for each i ∈ [k − 1], Ni+1 is a single element contraction

or deletion of Ni and where |E(Nk)| ∈ O(1).

Claim 1.

(a) for all i ∈ [k], every representation of Ni has at least four terminals;

(b) for all i ∈ [k], every T4-representation of Ni is nice or special.
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Subproof. By hypothesis, Mk is not graphic, hence Mi is not graphic, or equivalently, Ni

is not cographic, that is, (a) holds. Since Mi is (4, 6)-connected, so is Ni. Then (a) and

Proposition 3.3.10 implies (b). ♦

Denote by f(i) the number of nice representations of Ni.

Claim 2. For all i ∈ [k − 1], f(i) ≤ f(i+ 1) +O(|E(Ni)|3).

Subproof. By Claim 1, every T4-representation of Ni+1 is nice or special. Hence, every T4-

representation of Ni+1 extends either: (i) a nice representation of Ni+1, or (ii) a special

representation of Ni+1. A nice representation of Ni is of Type I if it arises as in (i) and of

Type II if it it arises as in (ii). Note, the definition allows Ni to be of both Type I and Type

II.

Case 1. Ni+1 = Ni \ Ω for some Ω ∈ E(Ni).

Let (H ′, T ′) be a T4-representation of Ni that extends some T4-representation (H,T ) of Ni+1.

Then (H ′, T ′) is obtained from (H,T ) by uncontracting edge Ω. If (H,T ) is special it has an

odd cut B with |B| ≤ 3. But then B is an odd cut of (H ′, T ′) and (H ′, T ′) is not nice. Hence,

nice representations of Ni are only of Type I. Then by Proposition 3.3.14 the equivalence

classes of nice representations of Ni, Ni+1 have cardinality one. By Proposition 3.3.19,

every equivalence class of graft-representations of Ni+1 extends to one (possibly empty)

equivalence class of graft-representations of Ni. It follows that every nice representation of

Ni+1 extends to at most one nice representation of Ni. Therefore, f(i) ≤ f(i+ 1).

Case 2. Ni+1 = Ni/Ω for some Ω ∈ E(Ni).

Let (H,T ) be a representation of Ni+1 and let (H ′, T ′) be a representation of Ni that extends

(H,T ). Then (H ′, T ′) is obtained from (H,T ) by adding edge Ω. By Proposition 3.3.20,
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every equivalence class of graft-representation of Ni+1 extends to at most two equivalence

classes of graft-representations of Ni. By Proposition 3.3.14 the equivalence classes of nice

representations of Ni have cardinality one. Proposition 3.3.13 implies that the number of

special representations of Ni+1 is in O(|E(Ni+1)|3). Therefore, the number of nice Type II

representations of Ni is in O(|E(Ni)|3). Let L be the set of all nice representations of Ni+1

that extend non-uniquely to Ni. Proposition 3.3.18 implies L is an unstable set. Therefore

by Proposition 3.3.16, |L| ∈ O(|E(Ni)|3). Thus the number of Type I nice representations of

Ni is at most, f(i+ 1) + |L| ∈ f(i+ 1) +O(|E(Ni)|3). Hence, f(i) ≤ f(i+ 1) +O(|E(Ni)|3).

♦

As |E(Nk)| ∈ O(1), f(k) ∈ O(1). It then follows from Claim 1 that for all i ∈ [k],

f(i) ∈ O(|E(Ni)|4). (3.3)

Pick ı̂ ∈ [k]. Let R denote the set of all T4-representations of Nı̂. By Claim 1 every graft in

R is special or nice. By Proposition 3.3.13, the number of special representations of Nı̂ is in

O(|E(Nı̂)|3). Together with (3.3) this implies that |R| ∈ O(|E(Nı̂)|4). Let S denote the set

of all blocking-pair representations of Mı̂. Pick an arbitrary representation (G,Σ) ∈ S and

unfold it to get a graft (H,T ). By Proposition 2.2.1, (H,T ) is a T4-representation of Nı̂, i.e.

(H,T ) ∈ R. Moreover, there are at most 12 ways of folding (H,T ) to get a blocking-pair

representation in R, 1 i.e. at most 12 blocking-pair representations of S get mapped to the

same T4-representation of R. It follows that |S| ≤ 12|R| ∈ O(|E(Nı̂)|4) as required.

13 choices for decide which pairs of terminals get identified, and 2× 2 choices for the signature.
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3.3.4 Size of equivalent classes

The goal of this section is to prove Propositions 3.3.11 and 3.3.12. For the former, we

consider blocking-pair representations of a (4, 6)-connected pinch-graphic matroid, and for

the latter, we consider T4-representations of a (4, 6)-connected pinch-cographic matroids.

In both cases these representations have the property that for every 2-separation one side

has cardinality at most 6. This leads to the notion of well connected-graphs that we study

next.

Well connected-graphs

A graph G is well-connected if the following conditions hold:

(w1) |E(G)| ≥ 25;

(w2) G is loopless and 2-connected;

(w3) for every 2-separation X of G, we have min{|X|, |E(G)−X|} ≤ 6;

(w4) parallel classes have cardinality at most two.

Let X be a 2-separation of a well-connected graph G. We say that X is small if |X| ≤ 6.

A small 2-separation X is maximal if it is inclusion maximal among all small 2-separations.

The following is the motivation for considering maximal small 2-separation,

Proposition 3.3.21. In a well-connected graph any two maximal small 2-separations are

disjoint. In particular, every small 2-separation is contained in a unique maximal small

2-separation.
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Before we present the proof we require some definitions. A pair of 2-separations X and Y

cross if all of the following are non-empty,

X ∩ Y, X ∩ (E(G)− Y ), (E(G)−X) ∩ Y and (E(G)−X) ∩ (E(G)− Y ).

A necklace is a graph obtained from a polygon C with at least 4 edges by replacing each

edge by a connected graph. The graphs replacing edges of C are the beads of the necklace.

Proof of Proposition 3.3.21. Let G be a well-connected graph G and consider an arbitrary

pair of maximal small 2-separations X and Y . We need to show that X ∩ Y = ∅. Let

X = E(G)−X and let Y = E(G)−Y . Note that since X, Y are maximal, X∩Y ,X∩Y 6= ∅.

Moreover, since X, Y are small and |E(G)| ≥ 25, X ∪Y 6= V (G), or equivalently X ∩Y 6= ∅.

Thus it suffice to show that X and Y are not crossing. Suppose otherwise. As X, Y cross,

one of the following cases occurs [40],

i. ∂(X ∩ Y ) = ∂(X ∩ Y ) = ∂(X ∩ Y ) = ∂(X ∩ Y ); or

ii. G is a necklace with beads X ∩ Y,X ∩ Y ,X ∩ Y,X ∩ Y .

In both cases, X ∩ Y is either a 2-separation of G, a one edge set, or a set of two parallel

edges. Let Z = X ∪ Y and observe that E(G) − Z = X ∩ Y . Since |X|, |Y | ≤ 6 and

|E(G)| ≥ 25 we have |E(G)− Z| ≥ 7. Clearly, Z is not an edge or a pair of parallel edges

as X, Y ⊆ Z. Thus Z is a small 2-separation. But this contradicts our assumption that X

was a maximal small 2-separation.

We are working in this paper with edge-labeled graphs. At this juncture we need to

concern ourselves with vertex labels as well. Consider a pair of graphs G,G′ with the same

set of (labeled) edges. Then a bijection f : V (G)→ V (G′) is an isomorphism from G to G′

if for every labelled edge e: e has ends u, v in G if and only if e has ends f(u), f(v) in G′.
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Proposition 3.3.22. Consider a well-connected graph G. Let X1, . . . , Xk denote the

maximal small 2-separations of G and let Y = E(G)− (X1 ∪ . . . ∪Xk). Suppose that G′ is

equivalent from G. Then

(a) X1, . . . , Xk are precisely the maximal small 2-separations of G′; and

(b) there is an isomorphism f from G[Y ] to G′[Y ] such that for every i ∈ [k]: f maps

∂G(Xi) to ∂G′(Xi).

Proof. Since G is 2-connected, G and G′ are related by a sequence of 2-flips. It suffices to

prove (a) and (b) when G′ is obtained from G by a single 2-flip on a set Z as we can then

iterate the result. After possibly replacing Z by E(G)−Z we may assume that Z is a small

2-separation of G. For some j ∈ [k], Xj is the maximal small 2-separation of G containing

Z. Let us prove (a). Pick i ∈ [k]. By Proposition 3.3.21 i = j or Xi ∩Xj = ∅. In particular,

Z ⊆ Xi or Z ∩ Xi = ∅ and it follows that Xi is also a 2-separation of G′. Suppose for

contradiction Xi is not maximal in G′. Then there exists a maximal small 2-separation X`

of G′ strictly containing Xi. Note that G can be obtained from G′ by a 2-flip on Z. But

then by the previous argument, X` is a small 2-separation of G, a contradiction as Xi is

maximal in G. Finally, note that (b) follows from the fact that Y ∩ Z ⊆ Y ∩Xj = ∅.

The proof of Proposition 3.3.12

Throughout this section M will denote a (4, 6)-connected pinch-cographic matroid that is

not cographic. Also throughout this section (H,T ) will denote a T4-representation of M .

We will need to show that the number of T4-representations equivalent to (H,T ) is in O(1).

Note that by Proposition 3.3.9, (H,T ) has at most one pin.

Claim 1. Suppose that e = uv is a pin of (H,T ) where v ∈ T has degree 1. Then
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(a) u /∈ T , and

(b) there are exactly 4 equivalent T4-representations that can be obtained from (H,T ) by

moving e.

Proof. Let (H ′, T ′) be a graft equivalent to (H,T ) obtained by moving the end u of e to

some new vertex w. Using the same labeling of the vertices in H \ e and H ′ \ e we have

T ′ = T ∆{u,w}. In particular, u /∈ T for otherwise we can pick w ∈ T and this yields

|T ′| = 2, which implies that M is cographic, a contradiction. Moreover, if w /∈ T then

|T ′| = 6 and (H ′, T ′) is not a T4-representation. It follows that there are exactly 4 possible

T4-representations that can be obtained from (H,T ) by moving the pin e, namely move the

end u of the pin to each terminal T .

If (H,T ) has no pin then we let (G,R) = (H,T ). If (H,T ) has pin e = uv then we let

G = H/e and R = T − v ∪ {w} where w is the vertex of G that corresponds to edge e of H.

Claim 2. We may assume the following hold for the graft (G,R),

(a) G is well-connected;

(b) for any 2-separation X of G we have IG(X) ∩R 6= ∅.

Proof. We may assume |E(G)| ≥ 25 for otherwise trivially the number of grafts equivalent

to (H,T ) is in O(1). By Proposition 3.3.10(a), H is 2-connected except for a unique possible

pin. It follows that G is 2-connected. By Proposition 3.3.10(c), if X is a 2-separation of

H then |X| ≤ 6. By Proposition 3.3.10(d), H and hence G have no parallel edges. This

implies that (w1)-(w4) hold and G is well-connected, i.e. (a) holds. Finally, (b) follows

from Proposition 3.3.10(b).
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Let S be the set of T4-representation that are equivalent to (G,R). Note that it suffices to

show that |S| ∈ O(1) since by Claim 1(b), every graft in S corresponds to at most 4 grafts

equivalent to (H,T ). Let X1, . . . , Xk denote the maximal small 2-separations of G. By

Proposition 3.3.21 X1, . . . , Xk are pairwise disjoint, in particular, for all distinct i, j ∈ [k],

IG(Xi)∩ IG(Xj) = ∅. Because of Claim 2(b), R ∩ IG(Xj) 6= ∅ for all j ∈ [k]. As |R| = 4 it

follows that k ≤ 4. Let Y := E(G)− (X1 ∪ . . . ∪Xk). Pick an arbitrary graft (G′, R′) from

S. By Proposition 3.3.22 there is an isomorphism f from G[Y ] to G′[Y ]. Hence, G and G′

only differ in the subgraphs induced by X1, . . . , Xk. As k ≤ 4 and |Xi| ≤ 6, G′ is obtained

from G by a sequence of 2-flips that is bounded by a constant. Finally, observe that G′

determines the set of terminals R′ uniquely (as an R-join of G must be an R′-join of G′

[40], page 11). Hence, |S| ∈ O(1) as required.

The proof of Proposition 3.3.11

Throughout this section M will denote a (4, 6)-connected pinch-graphic matroid. Also

throughout this section (H,Γ) will denote a blocking-pair representation of M . We will

need to show that the number of graphs H ′ equivalent to H for which (H ′,Γ) has a blocking

pair is in O(|V (H)|). Note that by Proposition 3.3.7, (H,T ) has at most one loop (that is

odd). If (H,Γ) has no loop then we let (G,Σ) = (H,Γ). If (H,Γ) has loop e then we let

G = H \ e and Σ = Γ− e.

Claim 1. We may assume the following hold for the signed graph (G,Σ),

(a) G is well-connected;

(b) if X is a 2-separation of H then X contains an odd polygon.
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Proof. We may assume |E(G)| ≥ 25 for otherwise trivially the number of graphs equivalent

to H is in O(1). By Proposition 3.3.8(a), H is 2-connected except for a unique possible

loop. It follows that G is 2-connected. By Proposition 3.3.8(c), if X is a 2-separation of H

then min{|X|, |E(H)−X|} ≤ 6. By Proposition 3.3.8(d), H and hence G have no parallel

edges of the same parity, in particular, every parallel class has at most two edges. This

implies that (w1)-(w4) hold and G is well-connected, i.e. (a) holds. Finally, (b) follows

from Proposition 3.3.8(b).

Let S be the set of pairs (G′, v) where

i. G′ is equivalent to G;

ii. (G′,Σ) has a blocking pair v, w for some w ∈ V (G′).

We claim that it suffices to show that |S| ∈ O(|V (G)|). Let S ′ denote the set of graphs

H ′ equivalent to H for which (H ′,Γ) has a blocking pair. If (H,Γ) has no loop, then

S ′ = {G : (G, v) ∈ S}. If (H,Γ) has a loop e then S ′ is the set of all graphs obtained by

adding loop e at vertex v for graph G for all (G, v) ∈ S. In both case |S ′| = |S| ∈ O(|V (H)|)

as required.

In the proof of Proposition 3.3.12 we could bound the number of maximal small 2-

separations. Alas, this is not possible in this case. Tackling this more complex situation

requires additional tools.

The blocking vertex lemma

First, we observe the following claim:

106



Claim 2. Let G1, G2 be equivalent graphs where P is a path of both G1 and G2. For i ∈ [2]

let Hi be the graph obtained from Gi by adding an edge e between the ends of P . Then,

H1, H2 are equivalent.

Proof. Note that P ∪ e is a polygon of H1 and H2. The cycle space of Hi is generated

by cycles not containing e and one cycle containing e. Since Hi \ e = Gi and G1, G2 are

equivalent, H1, H2 have the same cycle space and the result follows from Theorem 1.1.1.

Recall that a vertex of a signed graph is a blocking vertex if it intersects every odd polygon.

Claim 3. Let G′ be equivalent to G and let X be a maximal small 2-separation of G and

thus of G′. Suppose that G[E(G) − X] and G′[E(G) − X] are isomorphic and have the

same vertex labelling. Let {v, w} = ∂G(X) = ∂G′(X). If v is a blocking vertex of both

(G[X],Σ ∩X) and (G′[X],Σ ∩X), then G and G′ are isomorphic.

Proof of Claim 3. Let X ′ ⊆ X be an (inclusion-wise) minimal 2-separation of G. Consider

first the case where there exists two internally disjoint paths in G[X ′] between ∂G(X ′).

Then G[X ′] and G′[X ′] are isomorphic and we may use the same vertex labelling for IG(X ′)

and IG′(X ′). Let s ∈ IG(X ′). By Claim 1 there exists an odd polygon C ⊆ X ′. Since v is

a blocking vertex of (G[X],Σ ∩X) and (G′[X],Σ ∩X), C contains v in both G and G′. It

follows that there exists an sv-path P1 contained in X ′ in both G and G′. Consider now

the case where there does not exists two internally disjoint paths in G[X ′] between ∂G(X ′).

Then since X ′ is minimal and since v is a blocking vertex of (G[X],Σ ∩X), X ′ = {f, g, h}

where {f, g} is an odd polygon, both f, g are incident to v and {f, g, h} is a cut. Since

{f, g} is an odd polygon, and since v is a blocking vertex of (G′[X],Σ∩X), f, g are incident

to v in G′. Then define P1 as the path that consists of edge f . In both cases P1 is a path

of G and G′ contained in X with an end in IG(X ′) and an end v. Let t be a vertex in
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IG(E(G) − X) = IG′(E(G) − X). Let P2 be an vt-path in G[E(G) − X] and hence of

G′[E(G) − X]. Then P1 ∪ P2 is an st-path of both G and G′. Let H,H ′ be the graphs

obtained from G,G′ by adding an edge eX′ joining s, t. By Claim 2, H,H ′ are equivalent.

Let J, J ′ be the graphs obtained from G,G′ by adding repeatedly eX′ for every minimal

2-separation X ′ ⊆ X of G. Then, J, J ′ are equivalent and 3-connected. Hence, J, J ′ are

isomorphic and thus so are G and G′.

Denote by X1, . . . , Xk the maximal small 2-separations of G. By Proposition 3.3.21,

X1, . . . , Xk are pairwise disjoint. Let Y = E(G)− (X1 ∪ . . . ∪Xk). Here is our key result

about blocking vertices.

Claim 4. Let G′ be equivalent to G and assume because of Proposition 3.3.22 that G[Y ]

and G′[Y ] have the same vertex labeling. Let i ∈ [k] and denote by v, w the vertices in

∂G(Xi) = ∂G′(Xi). If v is a blocking vertex of both (G[Xi],Σ ∩Xi) and (G′[Xi],Σ ∩Xi),

then G[Y ∪Xi] and G′[Y ∪Xi] are isomorphic.

Proof. G′ is obtained from G by a sequence of 2-flips. Since X1, . . . , Xk are disjoint we can

assume that all 2-flips on sets contained in Xi are done first. Then apply Claim 3 after all

these 2-flips to deduce that G[Y ∪Xi] and G′[Y ∪Xi] are isomorphic as required.

Case analysis

Observe that for distinct i, j ∈ [k], | ∂G(Xi) ∩ ∂G(Xj)| ≤ 1 for otherwise this would

contradict the maximality of the sets Xi, Xj . We say that a vertex v of G is special if there

exists distinct i, j, ` ∈ [k] such that v ∈ ∂G(Xi) ∩ ∂G(Xj) ∩ ∂(X`). Similarly, we define

special vertices of G′.

Claim 5. If v is a special vertex of G then every blocking pair of (G,Σ) contains v.
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Proof. As v is special, there exists distinct i, j, ` ∈ [k] such that v ∈ ∂G(Xi)∩∂G(Xj)∩∂(X`).

By Claim 1 each of Xi, Xj, X` contains an odd polygon Ci, Cj, C`, respectively. Since

V (Ci)− v, V (Cj)− v, V (C`)− v are pairwise disjoint the result follows.

It follows from the previous claim that there are at most two special vertices. We will thus

consider three cases, namely, (1) there are two special vertices, (2) there is exactly one

special vertex and (3) there is no special vertex.

Case 1. G has exactly two special vertices, say v and w.

We will prove that |S| ∈ O(1) in this case. By Claim 5, {v, w} is the unique blocking pair

of (G,Σ). Note that there are three possibility for each i ∈ [k],

i. ∂G(Xi) ∩ {v, w} = {v},

ii. ∂G(Xi) ∩ {v, w} = {w}, or

iii. ∂G(Xi) ∩ {v, w} = {v, w}.

Pick an arbitrary pair (G′, v′) ∈ S. For cases (i) and (ii), by Claim 4, G[Y ∪ Xi] and

G′[Y ∪Xi] are isomorphic. There is at most one i ∈ [k] for case (iii). Thus the graph G′ is

obtained by a sequence of 2-flips on sets contained in Xi. Since |Xi| ≤ 6, there are O(1)

such graphs G′. Finally, observe that v, w are also special vertices of G′. In particular, v, w

is the unique blocking pair of (G′,Σ). It follows that v′ = v or v′ = w. Thus |S| ∈ O(1) as

claimed.

Case 2. G has exactly one special vertex, say v.
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Pick an arbitrary pair (G′, v′) ∈ S. Let us partition the set [k] as follows,

A1 = {i ∈ [k] : v /∈ ∂G(Xi)}

A2 = {i ∈ [k] : v ∈ ∂G(Xi) and v is a blocking vertex of (G′[Xi],Σ ∩Xi)}

A3 = {i ∈ [k] : v ∈ ∂G(Xi) and v is not a blocking vertex of (G′[Xi],Σ ∩Xi)}

Claim 6. |A1| ≤ 2.

Proof. By Claim 5, every blocking pair of (G,Σ) contains v. Let v, w be an arbitrary

blocking pair of (G,Σ). Let i ∈ A1. By Claim 1(b), Xi contains an odd polygon. Since

v /∈ ∂G(Xi) either: (i) w ∈ IG(Xi) or (ii) w ∈ ∂G(Xi). If we have i ∈ A1 with outcome (i)

then there is no j ∈ A1, j 6= i with either outcomes (i) or (ii). Since v is the unique special

vertex of G, there are at most two i ∈ [k] for which outcome (ii) holds. Hence, |A1| ≤ 2.

Claim 7. |A3| ≤ 1.

Proof. Suppose for a contradiction there exists distinct i, j ∈ A3. As v is special, there

exists ` with δG(X`) 3 v. Then there exists odd polygons Ci ⊆ Xi and Cj ⊆ Xj of G′

avoiding v. Moreover, there exists an odd polygon C` ⊆ X`. But then Ci, Cj, C` are vertex

disjoint in G′ which contradicts the fact that (G′,Σ) has a blocking pair.

For i ∈ [3], let Zi =
⋃

(Xi : i ∈ Ai). It follows by Claim 4 that G[Y ∪Z2] and G′[Y ∪Z2] are

isomorphic. Consider first the case where A3 = ∅ and let (G′, v′) ∈ S. Then G′ is obtained

from G by a sequence of 2-flips that are contained in Z1. Since G is well-connected, |Xi| ≤ 6

for all i ∈ [k] and by Claim 6, |Z1| ≤ 12. Hence, there are O(1) such graphs G′. Trivially,

there are |V (G)| choices for the vertex v′, thus |S| ∈ O(|V (G)|) in this case. Consider now

the case where A3 6= ∅ and let (G′, v′) ∈ S. Then by Claim 7 there is a unique element

ı̂ ∈ A3. Then G′ is obtained from G by a sequence of 2-flips that are contained in Z1 ∪ Z3.
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Since |Z1 ∪ Z3| ≤ 18 and since there are at most |A3| ≤ |V (G)| choices to pick the element

ı̂ in A3 the number of such possible graphs G′ is in O(|V (G)|). Observe that every blocking

pair of (G′,Σ) consists of v and a vertex of G′[Xı̂]. Thus, there are O(1) choices for the

vertex v′ and |S| ∈ O(|V (G)|) in this case as well.

Case 3. G has no special vertex.

Let v, w denote a blocking pair of (G,Σ). For every i ∈ [k], Xi contains an odd polygon.

It follows that for all i ∈ [k] either (i) {v, w} ∩ ∂G(Xi) 6= ∅ or (ii) {v, w} ∩ IG(Xi) 6= ∅.

Since neither v nor w are special there are at most 4 elements in [k] for which (i) holds.

Trivially, (ii) can hold for at most 2 elements in [k]. Thus k ≤ 6. Let (G′, v′) ∈ S. Let

Z =
⋃

(Xi : i ∈ [k]) then |Z| ≤ 6k = 36. Then G′ is obtained from G by a sequence of

2-flips that are contained in Z. Hence, there are O(1) such graphs G′. Trivially, there are

|V (G)| choices for the vertex v′, thus |S| ∈ O(|V (G)|) in this case.

In all cases, we have |S| ∈ O(|V (G)|) which completes the proof of Proposition 3.3.11.
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Chapter 4

Separations

The work in this chapter appears in [22, 31]. The goal of this chapter is to characterize

1-, 2- and 3-separations of pinch-graphic matroids. Let M,M1 and M2 be binary matroids

such that M = M1 ⊕k M2 for some k ∈ [3]. Then, we say that the k-separation X =

E(M1)− E(M2) of M is reducible if M1 or M2 are graphic. First, we restate the following

propositions from Section 1.4 that characterize reducible separations.

Proposition 1.4.1. Let M = M1 ⊕k M2 for k ∈ [3] where M1 is graphic. If k = 2,

assume that M is 2-connected, and if k = 3, assume that M is 3-connected. Then, M is

pinch-graphic if and only if M2 is pinch-graphic.

Proposition 1.4.2. Every 1- and 2-separation of a pinch-graphic matroid is reducible.

Propositions 1.4.1 and 1.4.2 will be proved in Sections 4.1 and 4.2, respectively. We will

use these propositions to construct a recognition algorithm for pinch-graphic matroids in

Chapter 5.

As seen in Section 1.4.3, there exist 3-separations that are not reducible. In Section 4.3,

we will characterize non-reducible 3-separations, i.e., we will prove the following proposition:
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Proposition 1.4.3. Let M be a 3-connected pinch-graphic matroid and let X ′ be a proper

3-separation. Then there exists a homologous proper 3-separation X that is reducible,

compliant, or recalcitrant.

4.1 Reducible separations

4.1.1 Sums

Let us recall 1- and 2-sums from Section 3.1.3. Let M1,M2 be matroids on ground sets

E1, E2, respectively where |E1|, |E2| ≥ 1. Suppose that E1 ∩ E2 = ∅. Then, we define the

1-sum M of M1,M2, denoted by M1⊕1M2, as follows: the ground set of M is E := E1 ∪E2

and a subset C of E is a circuit of M if and only if C is either a circuit of M1 or a circuit

of M2. Let M1,M2 be matroids on ground sets E1, E2, respectively where |E1|, |E2| ≥ 3.

Suppose that E1 ∩ E2 = {Ω} and that Ω is not a loop and not a coloop of Mi for i ∈ [2].

Then, we define the 2-sum M of M1,M2, denoted by M1 ⊕2 M2, as follows: the ground

set of M is E := E1 ∆E2 and a subset C of E is a circuit of M if and only if either C

is a circuit of M1 \ Ω or M2 \ Ω, or C = C1 ∆C2 where for i ∈ [2], Ci is a circuit of Mi

containing Ω.

Now, we define 3-sums. Let M1,M2 be binary matroids on ground sets E1, E2,

respectively where |E1|, |E2| ≥ 7. Suppose that E1 ∩ E2 = D where |D| = 3 where

for i ∈ [2], D is a circuit of Mi and D contains no cocircuit of Mi. Then, we define the

3-sum M of M1,M2, denoted by M1⊕3M2, as follows: the ground set of M is E := E1 ∆E2

and a subset C of E is a circuit of M if and only if either C is a circuit of M1 \ D or

M2 \D or C = C1 ∆C2 where for some e ∈ D and for i ∈ [2], Ci is a circuit of Mi with

Ci ∩D = {e}. Note that 3-sums are defined for binary matroids only. If we have matroids
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M = M1 ⊕1 M2 then M1 and M2 are restrictions of M and in particular are minors of M .

Analogous results hold for 2- and 3-sums [44]:

Proposition 4.1.1. Suppose that M = M1 ⊕2 M2 where M is 2-connected, or that M =

M1 ⊕3 M2 where M is 3-connected and binary. Then M1 and M2 are isomorphic to minors

of M .

4.1.2 Completion

Recall Propositions 3.1.8 and 3.1.9 from Section 3.1.3 and the completion with respect to a

2-separation.

Proposition 3.1.8. Let M be a matroid with matrix representation A and let X ⊆ E(M).

We denote by 〈X〉 the vector space spanned by the columns of A indexed by X. Then

λM(X) = dim [〈X〉 ∩ 〈E(M)−X〉] .

Proposition 3.1.9. Let M be a binary matroid with a 2-separation X. Let N be the

completion of M with respect to X. Then M = (N \X)⊕2 (N \ E(M)−X).

Similarly, we define a completion with respect to 3-separation. Let M be a binary

matroid with matrix representation A and let X be a 3-separation of M . Then λM (X) = 2.

By Proposition 3.1.8, dim [〈X〉 ∩ 〈E(M)−X〉] = 2. Thus there exists non-zero 0, 1 vectors

p, q for which 〈{p, q}〉 = 〈X〉 ∩ 〈E(M)−X〉. Let A+ be obtained from matrix A by adding

columns p, q and r = p+ q (where the sum is taken over the two element field). Note that

the set {p, q, r} is uniquely determined by 〈X〉∩ 〈E(M)−X〉. Let N be the binary matroid

represented by matrix A+. Then N is the completion of M with respect to the 3-separation

X. Next, we explain the relevance of the notion of completion for 3-separations, which is

analogous to Proposition 3.1.9.

114



Proposition 4.1.2. Let M be a binary matroid with a proper 3-separation X. Let N be

the completion of M with respect to X. Then M = (N \X)⊕3 (N \ E(M)−X).

The proof of Proposition 4.1.2 is easy and similar to that of Proposition 3.1.9 so we shall

omit it. The following straightforward observation will allow us to construct completions

for 3-separations.

Remark 4.1.3. Let M be a binary matroid with a proper 3-separation X. Let N be a

binary matroid where M = N \ {Ω1,Ω2,Ω3} and where {Ω1,Ω2,Ω3} is a circuit of N .

Suppose for i ∈ [2] we have cycles Ci and Di of N where Ωi ∈ Ci ∩Di and Ci ⊆ X ∪ Ωi,

Di ⊆ (E(M)−X) ∪ Ωi. Then, N is the completion of M with respect to X.

4.1.3 Examples of 3-sums

For a signed graph (G,Σ) and X ⊆ E(G), we denote (G,Σ)|X = (G,Σ) \ E(G)−X.

Proposition 4.1.4. Let M = ecycle(G,Σ) with a proper 3-separation X and let Y =

E(M)−X. Suppose that p[(G,Σ)|X] = p[(G,Σ)|Y ] = 1, that G[X], G[Y ] are connected

and that ∂G(X) = {a, b} where a, b are distinct vertices. Let (G1,Σ1) (resp. (G2,Σ2)) be

obtained from (G,Σ)|X (resp. (G,Σ)|Y ) by adding an even edge Ω1 = (a, b), an odd edge

Ω2 = (a, b) and an odd loop Ω3. Then M = ecycle(G1,Σ1)⊕3 ecycle(G2,Σ2).

Proof. Let (H,Γ) be the signed-graph obtained from (G,Σ) by adding an even edge

Ω1 = (a, b), an odd edge Ω2 = (a, b) and an odd loop Ω3. Since (G,Σ)|X is connected and

non-bipartite, it has an even {a, b}-join J1 and an odd {a, b}-join J2 and since (G,Σ)|Y

is connected and non-bipartite, it has an even ab-join K1 and an odd ab-join K2. For

i ∈ [2], let Ci = Ji ∪ Ωi and let Di = Ki ∪ Ωi. Then for i ∈ [2], Ci and Di are cycles

115



of N := ecycle(H,Γ) where Ωi ∈ Ci ∩ Di and Ci ⊆ X ∪ Ωi, Di ⊆ Y ∪ Ωi. Moreover,

{Ω1,Ω2,Ω3} is a circuit of N . It follows from Remark 4.1.3 that N is the completion of M

with respect to X. By Proposition 4.1.2, M = (N \ Y ) ⊕3 (N \X). Moreover, N \ Y =

ecycle(H,Γ) \ Y = ecycle(G1,Σ1) and N \X = ecycle(H,Γ) \X = ecycle(G2,Σ2).

Proposition 4.1.5. Let M = ecycle(G,Σ) with a proper 3-separation X and let Y =

E(M)−X. Suppose that p[(G,Σ)|X] = 1, p[(G,Σ)|Y ] = 0, that G[X], G[Y ] are connected

and that ∂G(X) = {a, b, c} where a, b, c are distinct vertices. Then we may assume, after

possibly re-signing, that Σ ⊆ X. Let G1 (resp. G2) be obtained from G[X] (resp. G[Y ]) by

adding edges Ω1 = (a, b), Ω2 = (b, c) and Ω3 = (a, c). Then M = ecycle(G1,Σ)⊕3 cycle(G2).

Proof. Let H be the graph obtained from G by adding edges Ω1 = (a, b), Ω2 = (b, c) and

Ω3 = (a, c). Since (G,Σ)|X is connected and non-bipartite, it has an even ab-join J1 and

an even ab-join J2 and since G[Y ] is connected, it has an ab-join K1 and an ab-join K2.

For i ∈ [2], let Ci = Ji ∪ Ωi and let Di = Ki ∪ Ωi. Then for i ∈ [2], Ci and Di are cycles

of N := ecycle(H,Σ) where Ωi ∈ Ci ∩ Di and Ci ⊆ X ∪ Ωi, Di ⊆ Y ∪ Ωi. Moreover,

{Ω1,Ω2,Ω3} is a circuit of N . It follows from Remark 4.1.3 that N is the completion

of M with respect to X. By Proposition 4.1.2, M = (N \ Y ) ⊕3 (N \ X). Moreover,

N \ Y = ecycle(H,Σ) \ Y = ecycle(G1,Σ) and N \X = ecycle(H,Σ) \X = cycle(G2).

4.1.4 Applications

In this section we prove Proposition 1.4.1 by proving Propositions 4.1.6, 4.1.7 and 4.1.8.

Proposition 4.1.6. Let M = M1 ⊕1 M2 where M1 is graphic. Then M is pinch-graphic if

and only if M2 is pinch-graphic.
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Proof. If M is pinch-graphic so is M2 = M \ E(M1) as pinch-graphic matroids form a

minor closed class. Suppose that M2 is pinch-graphic, i.e. M2 = ecycle(G2,Σ) for some

signed-graph (G2,Σ) with a blocking pair, say v, w. Since M1 is graphic, M1 = cycle(G1)

for some graph G1. Then M = ecycle(G,Σ) where G is the union of G1 and G2. As v, w is

a blocking pair of (G,Σ), M is pinch-graphic.

Proposition 4.1.7. Let M = M1 ⊕2 M2 where M1 is graphic and M is 2-connected. Then

M is pinch-graphic if and only if M2 is pinch-graphic.

Proof. If M is pinch-graphic then so is M2 since M2 is isomorphic to a minor of M

(Proposition 4.1.1) and pinch-graphic matroids form a minor closed class. Suppose that M2

is pinch-graphic, i.e. M2 = ecycle(G2,Σ2) for some signed-graph (G2,Σ2) with a blocking

pair, say v, w. Since M1 is graphic, M1 = cycle(G1) for some graph G1. Denote by e the

unique element in E(M1) ∩ E(M2). By definition of 2-sums, e is not a loop or a co-loop of

M1 or M2. In particular, e is not a loop of G1 and not a bridge of G1 or G2.

Case 1. e is not a loop of G2.

After possibly re-signing (G2,Σ2) we may assume e /∈ Σ2. Let G be obtained from G1 and

G2 by identifying edge e and then deleting e. Let M ′ = ecycle(G,Σ2). Proposition 3.1.5 and

the fact that e is not a bridge of G1, G2 implies that λM ′(X) = 1, thus X is a 2-separation of

M ′. By Proposition 3.1.12 M ′ = cycle(G1)⊕2 ecycle(G2,Σ2) = M1 ⊕2 M2. Thus M = M ′

and in particular (G,Σ2) is a representation of M . Finally, observe that v, w is a blocking

pair of (G,Σ2), hence, M is pinch-graphic.

Case 2. e is a loop of G2.

Since e is not a loop of M2, e ∈ Σ2, thus e is incident to v or w in G2. Suppose r, s denote
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the ends of e in G1. Then let Σ1 = δG1(r) and let G′1 be the graph obtained from G1

by identifying r and s. Note that e is an odd loop of (G′1,Σ1) with ends r = s. Let G

be obtained from G1 and G2 by identifying the vertex incident to e and then deleting e.

Let M ′ = ecycle(G,Σ1 ∪ Σ2 − e). Proposition 3.1.5, and the fact that e is not a bridge

of G1, implies that λM ′(X) = 1, thus X is a 2-separation of M ′. By Proposition 3.1.11,

M ′ = ecycle(G′1,Σ1)⊕2 ecycle(G2,Σ2) = M1⊕2M2. Thus M = M ′ and in particular (G,Σ2)

is a representation of M . Finally, observe that v, w is a blocking pair of (G,Σ2), hence, M

is pinch-graphic.

Proposition 4.1.8. Let M = M1 ⊕3 M2 where M1 is graphic and M is 3-connected. Then

M is pinch-graphic if and only if M2 is pinch-graphic.

Proof. Sufficiency follows as in Proposition 4.1.7. Suppose that M2 is pinch-graphic, i.e.

M2 = ecycle(G2,Σ2) for some signed-graph (G2,Σ2) with a blocking pair, say v, w. Since M1

is graphic, M1 = cycle(G1) for some graph G1. Denote by D = {e, f, g} = E(M1) ∩E(M2).

By definition of 3-sum, D is a circuit of M1 of M2. In particular, D is a polygon of G1.

Also by definition of 3-sum D does not contain a cocircuit of M1 or M2. Hence, D does not

contain a cut of G1 or G2. After possibly interchanging the roles of e, f, g we may assume

that one of Case 1 or Case 2 occurs.

Case 1. D is a polygon of G2.

After possibly re-signing (G2,Σ2) we may assume that Σ2 ∩ D = ∅. Let G be obtained

from G1, G2 by identifying e, identifying f , identifying g, and deleting e, f, g. Let M ′ =

ecycle(G,Σ2). Proposition 3.1.5 and the fact that D does not contain a cut of G1, G2,

implies that λM ′(X) = 2, thus X is a 3-separation of M ′. By Proposition 4.1.5 M ′ =

cycle(G1) ⊕3 ecycle(G2,Σ2) = M1 ⊕3 M2. Thus M = M ′ and in particular (G,Σ2) is a
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representation of M . Finally, observe that v, w is a blocking pair of (G,Σ2), hence, M is

pinch-graphic.

Case 2. e, f are parallel and g is a loop in G2. Moreover, {e, f, g} ∩ Σ2 = {f, g}.

Let r be the vertex of G1 incident to g, f and let s be the vertex of G1 incident to g, e.

Then let Σ1 = δG1(r) and let G′1 be the graph obtained from G1 by identifying r and s.

Note that g is an odd loop of (G′1,Σ1) with ends r = s. Since {e, f} is an odd polygon of

(G2,Σ2) we may assume that one of the end of e, f is vertex v of the blocking pair v, w

and that g is incident to v in G2. Let G be obtained from G1 and G2 by identifying vertex

r = s of G1 with vertex v of G2, by identifying the other end of e, f , and then deleting

e, f, g. Let Γ = (Σ1 ∪Σ2)−{e, f, g}. Let M ′ = ecycle(G,Γ). Proposition 3.1.5 and the fact

that D does not contain a cut of G1, G2 implies that λM ′(X) = 2, thus X is a 3-separation

of M ′. By Proposition 4.1.4 M ′ = ecycle(G′1,Σ1) ⊕3 ecycle(G2,Σ2) = M1 ⊕3 M2. Thus

M = M ′ and in particular (G,Γ) is a representation of M . Note that v, w is a blocking

pair of (G,Γ), hence, M is pinch-graphic.

4.2 1- and 2-separations

4.2.1 1-separations

Recall that if a bipartite signed-graph is a representation of an even-cycle matroid, then

that matroid is graphic.

Proposition 4.2.1. If X is a 1-separation of an even-cycle matroid M , then X is reducible.

Proof. Let M = M1 ⊕1 M2 for some M1,M2 where X = E(M1), and let Y = E(M2).
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We may assume that M is not graphic for otherwise so is M1 and X is reducible. Thus

M has a non-bipartite representation (G,Σ). After possible 1-flips, we may assume that

G is connected. Let H be the auxiliary graph for X and (G,Σ). Since λM(X) = 0,

Proposition 3.1.6 (b) implies |V (H)| + 0 − p[(G,Σ)|X] − p[(G,Σ)|Y ] ≥ |V (H)| − 1, or

equivalently, p[(G,Σ)|X] + p[(G,Σ)|Y ] ≤ 1. Thus (G,Σ)|X or (G,Σ)|Y is bipartite. As

(G,Σ)|X and (G,Σ)|Y are representations of M1 and M2 respectively, at least one of M1,M2

is graphic, i.e. X is reducible.

4.2.2 Preliminaries

It remains to prove the following analogous result for 2-separations.

Proposition 4.2.2. If X is a 2-separation of a 2-connected pinch-graphic matroid M , then

X is reducible.

Before we can proceed with the proof we require some preliminaries. Recall that a theta is

a graph H with two distinct vertices r, s ∈ V (H) that consists of three internally disjoint

rs-paths P1, P2, P3 (all vertices of H except r, s have degree two). If |P1| = |P2| = |P3| = k

for some integer k (where Pi are viewed as subsets of edges), then the theta graph is

k-uniform. Consider now a graph H that is obtained from two disjoint polygons C1, C2

by identifying a vertex of C1 with a vertex of C2. Recall that H is called a double ear.

If |C1| = |C2| = k for some integer k (where Ci are viewed as subsets of edges) then the

double ear is k-uniform. In Figure 3.1(i)(p. 72) top graph, we have a 2-uniform double

ear, in Figure 3.1(ii) top graph, we have a 1-uniform theta graph, and in Figure 3.1(iii) top

graph, we have a 2-uniform theta graph. Recall the following remark from Section 3.1.2.

Remark 3.1.7. If H is a 2-edge-connected graph where |E(H)| = |V (H)|+ 1 then H is a

theta or a double ear.
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Consider a signed-graph (G,Σ) and vertices v1, v2 ∈ V (G) where every edge of Σ is

incident to either v1 or v2. So v1, v2 is a blocking pair of (G,Σ). Consider first the case

where there is no odd edge between v1 and v2 and there is no odd loop. Let H be obtained

from G by, for i ∈ [2], splitting vi into v′i, v
′′
i such that δH(v′i) = δG(vi) ∩ Σ. Then let G′ be

obtained from H by identifying v′1 and v′′2 to a new vertex w1 and by identifying v′2 and

v′′1 to a new vertex w2. If (G,Σ) has an odd loop f , then f will have ends w1, w2 in G′

and if (G,Σ) has an odd edge g with ends v1, v2 then g will be an odd loop of (G′,Σ). We

then say that (G′,Σ) is obtained from (G,Σ) by a Lovász-flip on v1, v2 and that w1, w2 is

the resulting blocking pair. Informally, G′ is obtained from G by exchanging the odd edges

incident to v1 with the odd edges incident to v2 where odd loops and odd edges between

v1 and v2 behave like odd walks of length two. It is not difficult to see that Lovász-flips

preserve even cycles [40, 11]. In Figure 4.1 we illustrate a pair of signed-graphs related by

a Lovász-flip. Vertices v1 and v2 are indicated in white. Odd edges correspond to dashed

lines. Even edges are unchanged.

1

2

3 4

1

2

3

4

Figure 4.1: Lovász-flip.
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4.2.3 2-separations

Since X is a 2-separation of M , M = M1 ⊕2 M2 for some matroids M1,M2 where X =

E(M1)− E(M2). Let Y = E(M2)− E(M1). We may assume that M1,M2 are not graphic;

otherwise, X is reducible. Let e denote the unique element in E(M1) ∩ E(M2). Since M is

an even-cycle matroid it has a representation (G,Σ). Note that (G,Σ) is not bipartite for

otherwise M is graphic and then by Proposition 4.1.1 so is M1, a contradiction. Among all

possible connected representation (G,Σ) of M pick one according to the following priorities,

(m1) (G,Σ) has a blocking pair and (G,Σ)|X and (G,Σ)|Y are both non-bipartite,

(m2) (G,Σ)|X is bipartite and (G,Σ)|Y is non-bipartite and we minimize κ(G[X]) +

κ(G[Y ]).

(m3) (G,Σ)|X and (G,Σ)|Y are both non-bipartite and we minimize κ(G[X]) + κ(G[Y ]).

Note for (m2) and (m3) we do not require that (G,Σ) have a blocking pair. Let H denote

the auxiliary graph for X and (G,Σ). Since G is connected, so is H.

Claim 1. (G,Σ) is not picked according to (m1).

Subproof. Suppose otherwise. Proposition 3.1.6 implies, |E(H)| = |V (H)|+ 1 − 1− 1 =

|V (H)| − 1. Since H is connected, H is a tree. Denote by X1, . . . , Xp the connected

components of G[X] and by Y1, . . . , Yq the connected components of G[Y ]. For all j ∈ [p],

(G,Σ)|Xj is non-bipartite, for otherwise Xj is a 1-separation of M by Proposition 3.1.5, a

contradiction. Similarly, (G,Σ)|Yj is non-bipartite for all j ∈ [q]. If for all j ∈ [p], (G,Σ)|Xj

has a blocking vertex and for all j ∈ [q], (G,Σ)|Yj has a blocking vertex then after a

sequence of 1-flips there exists a blocking vertex of (G,Σ), a contradiction as Remark 2.4.2

then implies that M is graphic. Thus we may assume that (G,Σ)|X1 has no blocking vertex
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and that (G,Σ)|X1 has a blocking pair v, w of (G,Σ). Note that p = 1 since otherwise

(G,Σ)|X2 contains an odd polygon that avoids v, w, a contradiction. After possible 1-flips

we may assume that v is vertex of G[Yj ] for all j ∈ [q], in particular, q = 1. Thus G[X] and

G[Y ] are both connected and v ∈ ∂G(X). Let G1 be obtained from G[X] by adding a loop

e1 incident to vertex v and let G2 be obtained from G[Y ] by adding a loop e2 incident to

vertex v. Let Σ1 = (Σ∩X)∪ e1 and Σ2 = (Σ∩Y )∪ e2. It follows by Proposition 3.1.11 that

M = ecycle(G,Σ) = ecycle(G1,Σ1)⊕2 ecycle(G2,Σ2). Thus M2 = ecycle(G2,Σ2). Finally,

note that (G2,Σ2) has a blocking vertex v. It follows from Remark 2.4.2 that M2 is graphic,

a contradiction. ♦

Claim 2. (G,Σ) is not picked according to (m2).

Subproof. Suppose otherwise. Since (G,Σ)|X is bipartite, we may assume after possibly

re-signing that Σ ⊆ Y . Proposition 3.1.6 implies |E(H)| = |V (H)|+ 1− 0− 1 = |V (H)|.

We picked (G,Σ) that minimizes κ(G[X]) + κ(G[Y ]). Since we can rearrange G by 1-flips,

H is bridgeless, hence H is a polygon. Since we can rearrange G by 2-flips, |V (H)| = 2,

i.e. G[X] and G[Y ] are connected and ∂G(X) = {a, b} for some distinct vertices a, b. Let

G1 be obtained from G[X] by adding an edge e1 between a, b and let G2 be obtained

from G[Y ] by adding an edge e2 between a, b. It follows by Proposition 3.1.12 that

M = ecycle(G,Σ) = cycle(G1) ⊕2 ecycle(G2,Σ). Hence, M1 = cycle(G1) is graphic, a

contradiction. ♦

It follows from Claim 1 and Claim 2 that (G,Σ)|X and (G,Σ)|Y are both bipartite.

Proposition 3.1.6 implies that |E(H)| = |V (H)| + 1 − 0 − 0 = |V (H)| + 1. Hence, by

Remark 3.1.7 H is either a theta or a double ear. By the choice (m3) and since we can

rearrange G by 1-flips, H is bridgeless. (Note, that here we are free to perform 1-flips and

2-flips as we are not trying to preserve blocking pairs).
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Case 1. H is a theta.

H consists of three internally disjoint path P1, P2, P3. By (m3) and since we can rearrange

G by 2-flips, for j ∈ [3], |Pj| ∈ [2]. As H is bipartite, |P1|, |P2|, |P3| have the same parity.

Hence, the theta H is 1 or 2-uniform. Consider first the case where H is 1-uniform. Then

G[X] and G[Y ] are connected and | ∂G(X)| = 3. Since (G,Σ)|X and (G,Σ)|Y are bipartite

some vertex of ∂G(X) is a blocking vertex. This implies by Remark 2.4.2 that M is graphic,

a contradiction. Consider now the case where H is 2-uniform. After possibly interchanging

the role of X and Y , (G,Σ) is of the form given in Figure 4.2 where X corresponds to

the shaded region. Since (G,Σ)|X and (G,Σ)|Y are bipartite, some vertex of ∂G(X) is a

blocking vertex. Again, this implies by Remark 2.4.2 that M is graphic, a contradiction.

Figure 4.2: A theta.

Case 2. H is a double ear.

H consists of two polygons C1, C2 sharing a single vertex. Since H is bipartite |C1|, |C2| ≥ 2.

By (m3) and since we can rearrange G by 2-flips, |C1| = |C2| = 2, i.e. the double ear

H is 2-uniform. Thus V (H) = {r, s, t}, E(H) = {a = rs, b = rs, c = st, d = st}. After

possibly interchanging the role of X and Y , we may assume X = R ∪ T where R and T

are the components of G[X] corresponding to r, t ∈ V (H), and that Y = S where S is

the component of G|Y corresponding to s ∈ V (H). Then a, b, c, d ∈ E(H) correspond to
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vertices in ∂G(X) where, ∂G(R) = {a, b} and ∂G(T ) = {c, d}. We illustrate (G,Σ) in

TR S

a

b

c

d

Figure 4.3: A double ear.

Figure 4.3 where X correspond to the shaded region, Since (G,Σ)|X and (G,Σ)|Y are

bipartite after possibly re-signing we have Σ = [δG(a) ∩ R] ∪ [δG(c) ∩ S]. Let (G′,Σ) be

obtained from a Lovász-flip on the blocking pair a, c. Then observe that ∂G′(X) = {b, d},

that (G′,Σ)|X is bipartite and that (G′,Σ)|Y is non-bipartite. But then (G′,Σ) is a

representation as in (m2) contradicting our choice of representation.

4.3 Structure theorem for 3-separations

4.3.1 Representation of 3-connected even-cycle matroid

We will use the following multiple times,

Proposition 4.3.1. Let M be a 3-connected even cycle matroid with representation (G,Σ).

Then (G,Σ) has at most one loop, which is odd. Moreover, if we let G′ be obtained from

G by deleting that loop (if it exists) then G′ is 2-connected and every cut of G contains at

least three edges.

Proof. Since M is 3-connected, M has no loops and parallel elements. Suppose e is a loop

of G. Then e ∈ Σ, for otherwise e is a loop of M . Moreover, if G has distinct loops e, f

then {e, f} is a circuit of M , i.e. e, f are parallel, a contradiction. We may assume that
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G′ is connected by identifying components as we will show that G′ is in fact 2-connected.

Suppose that G′ has a cut vertex v. Then there exists X ⊆ E(G′) such that ∂G′(X) = {v}

and G′[X] and G′[E(G′)−X] are both connected. By moving the loop e of G (if it exists)

we may assume that G[X] and G[E(G)−X] are also connected. Then, by Proposition 3.1.5,

λM(X) = | ∂G(X)| − κ(G[X])− κ(G[E(M)−X]) + p[(G,Σ)|X] + p[(G,Σ)|E(G)−X] ≤

1 − 1 − 1 + 1 + 1 = 1, thus X is 2-separating. If |X| = 1, then the unique element in

X is a bridge of G, i.e. a coloop of M , a contradiction. Thus |X| ≥ 2 and similarly,

|E(G)−X| ≥ 2 and it follows that X is a 2-separation, a contradiction. Finally, if D is a

cut of G then D is cocycle of M ([40], Remark 2.1). It follows that |D| ≥ 3.

4.3.2 The statement

First, we recall a few definitions from Section 1.4.3. Given a matroid M and X ⊆ E(M),

denote by clM (X) the closure of X for matroid M . Let M be a matroid and let X ⊆ E(M)

be a proper 3-separation. Suppose |X| ≥ 5 and suppose that there exists e ∈ X with

e ∈ clM∗(E(M)−X) and e ∈ clM∗(X − e). Then, X − e is also a proper 3-separation of M .

We say that X−e is homologous to X and so is any set that is obtained by repeat application

of the aforementioned procedure. Let (G,Σ) be a connected signed graph and consider

X ⊆ E(G). The triple (G,Σ, X) is a Type I or Type II configuration if |X|, |E(G)−X| ≥ 4,

G[X], G[E(G)−X] are both connected, and | ∂G(X)| = 2. Recall that X is compliant if

there exists a representation (G,Σ) for which (G,Σ, X) is a Type I configuration. We say

that X is recalcitrant if there exists a representation (G,Σ) for which (G,Σ, X) is a Type

II configuration. Now, let us restate Proposition 1.4.3.

Proposition 1.4.3. Let M be a 3-connected pinch-graphic matroid and let X ′ be a proper

3-separation. Then there exists a homologous proper 3-separation X that is reducible,
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compliant, or recalcitrant.

The proof of this result will share some commonality with that of Proposition 4.2.2,

namely we will analyze the auxiliary graph H for a representation (G,Σ) and separation

X homologous to X ′. However, when (G,Σ)|X and (G,Σ)|E(M)−X are both bipartite,

then |E(H)| = |V (H)|+ 3 and a simple-minded analysis of all possible graphs H becomes

very complicated. Instead we will prove a key property in Section 4.3.6 that will bypass

most of the case analysis. The proof of Proposition 1.4.3 will be organized as follows:

Section 4.3.3 presents basic results about closure, Section 4.3.4 indicates how to pick a

suitable representation (G,Σ) and a separation X of M . A key property of the auxiliary

graph is derived in Sections 4.3.5 and 4.3.6. Finally in Section 4.3.7, we analyze the auxiliary

graph, completing the proof.

4.3.3 Closure and small separations

For 3-connected matroids we have the following characterization of homologous separations.

Proposition 4.3.2 (Lemma 3.1 [37]). Let M be a 3-connected matroid where |E(M)| ≥ 9

and let X ⊆ E(M) be a proper 3-separation. Suppose |X| ≥ 5 and that there exists e ∈ X

with e ∈ clM∗(E(M)−X). Then X − e is homologous to X.

Observe that we dropped one of the condition from the definition of homologous separations.

Next we describe what it means for an element to be in the co-closure of a set, for the

case of even-cycle matroids.

Remark 4.3.3. Let M = ecycle(G,Σ) and let X ⊆ E(M), e ∈ E(M) − X. Then the

following are equivalent,
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(a) e ∈ clM∗(X),

(b) there exists a signature D of (G,Σ) or a cut D of G where D −X = {e}.

Proof. Clearly, e ∈ clM∗(X) if and only if there exists a cocircuit D of M with D−X = {e}.

Moreover, cocircuits of M are signatures of (G,Σ) and cuts of G ([40] Remark 2.1).

In the proof of Proposition 1.4.3, we will consider a proper 3-separations X. We will

want to check if X − e is an homologous proper 3-separation for some e /∈ X. A trivial

reason for this not to be the case is if |X| = 4. Let us study such 3-separations,

Proposition 4.3.4. Let M be a 3-connected binary matroid with a 3-separation X where

|X| = 4. Then

(a) rM(X) = rM∗(X) = 3, and

(b) X contain both a circuit and a cocircuit where each have at least three elements.

Proof. Recall, that rM∗(X) = |X| −
[
r(M)− rM(E(M)−X)

]
.

rM(X) + rM∗(X) = rM(X) + |X| − r(M) + rM(E(M)−X) = |X|+ λM(X) = 4 + 2 = 6.

Observe that rM(X) ≥ 3, for otherwise as |X| = 4, M would have a loop or a pair of

parallel elements contradicting the fact that M is 3-connected. Similarly rM∗(X) ≥ 3 and

thus (a) holds. Finally (a) and |X| > 3 implies (b).

4.3.4 Choice of representation and separation

Throughout the proof of Proposition 1.4.3, M denotes a 3-connected pinch-graphic matroid

and X ′ is a proper 3-separation. Since M is pinch-graphic, there exists a signed-graph

(G,Σ) such that
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i. (G,Σ) is a representation of M ,

ii. (G,Σ) has a blocking pair, and

iii. G is connected.

We make the following minimality assumption. Among all choices of (G,Σ) that satisfy

(i)-(iii) and among all choices of homologous separations X of X ′ with Y = E(G)−X we

pick one that minimizes,

κ(G[X]) + κ(G[Y ]). (4.1)

Throughout the remainder of the proof of Proposition 1.4.3, (G,Σ) will denote the

representation of M and X, Y the partition selected according to (4.1). Next we give

some easy properties,

Proposition 4.3.5. We may assume that (G,Σ) is non-bipartite and has no blocking

vertex.

Proof. Otherwise by Remark 2.4.2, M is graphic. Express M as a 3-sum, i.e. M = M1⊕3M2

for some matroids M1,M2 where X = E(M1)− E(M2). Proposition 4.1.1 implies that M1

is isomorphic to a minor of M . Since M is graphic then so is M1. Thus X is reducible and

Proposition 1.4.3 holds.

4.3.5 Edge condition

The following describes necessary conditions for which a signed-graph stops having a

blocking pair after a 2-flip.
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Proposition 4.3.6. Let (H,Γ) be a signed-graph with a blocking pair v, w where H is

2-connected. Let Z be a 2-separation of H and let ∂H(Z) = {u1, u2}. Let H ′ be obtained

from H by a 2-flip on Z and assume that (H ′,Γ) does not have a blocking pair. Then,

exactly one of u1, u2 is in {v, w} (say u1 = v), and there exist odd circuits C1, C2, C3 of

(H,Γ) where C1 ⊆ Z contains u1, and avoids w, u2; C2 ⊆ E(H)−Z contains u1, and avoids

w, u2; and C3 contains w, and avoids u1, u2.

Proof. Label the vertices of H ′ so that vertices distinct from ∂H′(Z) have the same label

as H and vertices in H[Z] and H ′[Z] have the same label. Then {v, w} ∩ ∂H(Z) 6= ∅ for

otherwise v, w would be a blocking pair of H ′ and {v, w} 6= {u1, u2} for otherwise u1, u2

would be a blocking pair of H ′. We may assume, u1 = v. Then C1, C2, C3 exist because

u1, w is a blocking pair of (H,Γ) and for C1 we have that u2, w is not a blocking pair of

(H ′,Γ), for C2 we have that u1, w is not a blocking pair of (H ′,Γ), and for C3 we have that

u1, u2 is not a blocking pair of (H ′,Γ).

We shall also require the following observation about Lovász-flip,

Remark 4.3.7. Let (H,Γ) be a signed-graph with a blocking pair v1, v2 and Γ ⊆ δH(v1) ∪

δH(v2). Consider Z ⊆ E(H) such that H[Z] is connected. Suppose for i ∈ [2],

δH(vi) ∩ Z ∈ {∅, δH(vi) ∩ Σ, δH(vi)− Σ}.

Let (H ′,Γ) be obtained from (H,Γ) by a Lovász-flip on v1, v2. Then H ′[Z] is also connected.

Note, it suffices to observe that if two edges of Z are incident in H then they will be incident

in H ′.

The next result will be key,

Proposition 4.3.8. No component of G[X] or G[Y ] consists of a single edge.
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Proof. Suppose otherwise, i.e. there exists a component of G[X] or G[Y ] that consists of

a single edge e. Without loss of generality, we may assume that e ∈ X. Denote by u, v a

blocking pair of (G,Σ).

Claim 1. e ∈ cl∗(Y ).

Subproof. First consider the case where e not a loop. Since G is connected there exists an

end, say x, of e that is a vertex of G[Y ]. Then D = δG(x) is a cut of G where D− Y = {e}.

Hence, by Remark 4.3.3, e ∈ cl∗(Y ) as required. Now consider the case where e is a loop.

By Proposition 4.3.1, e ∈ Σ. Suppose that (G,Σ)|X − e is non-bipartite. Then G[X − e]

contains one of the two vertices of the blocking pair, say u. Let G′ be obtained from G

by moving e to u. Then (G′,Σ) and X contradict the minimality assumption (4.1). Thus

(G,Σ)|X − e is bipartite and it follows that there exists a signature Γ of (G,Σ) where

Γ− Y = {e}. Thus by Remark 4.3.3, e ∈ cl∗(Y ) as required. ♦

Claim 2. |X| = 4

Subproof. Suppose for a contradiction that |X| ≥ 5. Then by Claim 1 and Proposition 4.3.2,

X − e is homologous to X. But then (G,Σ) and X − e violate the minimality assumption

(4.1). ♦

Claim 3. Circuits of M contained in X avoid e.

Subproof. Since M is binary, circuits and cocircuits have an even number of common

elements. By Claim 1 there is a cocircuit D of M with D − Y = {e}. Let C be a circuit of

M where C ⊆ X. Then, C ∩D ⊆ {e}. It follows that C ∩D = ∅, i.e. e /∈ C. ♦

Denote the elements of X by e, f, g, h. By Proposition 4.3.4 there exists a circuit C ⊆ X

of M with |C| ≥ 3. By Claim 3, e /∈ C, thus C = {f, g, h}. By Proposition 4.3.4 there
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exists a cocircuit D ⊆ X of M with |D| ≥ 3. Since |C ∩D| is even we may assume that

D = {e, f, g}.

Claim 4. e is not a loop of G.

Subproof. Suppose for a contradiction that e is a loop. Then D is not a cut of G. It follows

that D = {e, f, g} is a signature of (G,Σ). By Proposition 4.3.1 e is the only loop of G.

Thus C = {f, g, h} is a polygon of G. Let w denote the common end of f and g. Let G′

be obtained from G by moving e to w. Then (G′,Σ) has a blocking vertex, contradicting

Proposition 4.3.5. ♦

There are two cases for D, namely, D is a cut of G or a signature of (G,Σ). There are two

cases for C, namely, C is a polygon of G or C consists of two parallel edges (exactly one of

which is odd) and an odd loop. We will consider all four possible combinations. Let x, y

denote the ends of edge e.

Case 1. D is a cut and C is a polygon.

Let p, q, r denote the vertices of the polygon C in G where p is incident to f, g. As C is

a cycle of M , C is even in (G,Σ). By exchanging the roles of x, y if needed, there exists

a non-trivial partition Y1, Y2 of Y such that ∂(Y1) = {x, p} and ∂(Y2) = {y, q, r}. Let

Z = Y1 ∪ e, then ∂(Z) = {p, y}. Let G′ be obtained from G by a 2-flip on Z. Suppose for a

contradiction that (G′,Σ) has no blocking pair. Recall, that u, v denotes the blocking pair

of (G,Σ). Then by Proposition 4.3.6 we may assume (i) u = p or (ii) u = y. Moreover, if

(i) occurs then we have an odd circuit C2 ⊆ E(G)− Z that uses p and avoids v. It follows

that C2 uses edges f, g. But then C2 − {f, g} ∪ h is an odd circuit of (G,Σ) that avoids

both u, v, a contradiction. If (ii) occurs we must have a circuit C1 ⊆ Z that uses y, a
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contradiction as e is the only edge of Z incident to y. Hence, (G′,Σ) has a blocking pair

and together with X it contradicts the minimality assumption (4.1).

Case 2. D is a cut and C is not a polygon.

Then as D = {e, f, g}, C consists of parallel edges f, g and loop h. Denote by p and q the

ends of f, g. By exchanging the roles of x, y if needed, there exists a non-trivial partition

Y1, Y2 of Y such that ∂(Y1) = {x, p} and ∂(Y2) = {y, q}. For i ∈ [2] let Zi = Yi ∪ e and let

Gi be obtained from G by a 2-flip on Zi. Suppose for a contradiction that neither (G1,Σ)

nor (G2,Σ) have a blocking pair. Since (G1,Σ) does not have a blocking pair it follows from

Proposition 4.3.6 that (i) u = p or (ii) u = y. However, (ii) does not occur for otherwise

we must have an odd circuit C1 ⊆ Z1 that uses y, a contradiction as e is the only edge of

Z1 incident to y. Hence, (i) holds, i.e. u = p. Applying the same argument to (G2,Σ) we

deduce that v = q, i.e. p, q is a blocking pair of (G,Σ). Since (G1,Σ) has no blocking pair,

Proposition 4.3.6 implies that there exists an odd circuit of (G,Σ) contained in E(G)− Z

that uses p but avoids q, a contradiction as no such circuit exists. Hence, at least one of

(G1,Σ), (G2,Σ) has a blocking pair and with X contradicts the minimality assumption

(4.1).

Case 3. D is a signature and C is a polygon.

Let p be the vertex common to f, g in G. Then x and p is a blocking pair. Let Γ = D∆ δ(x).

Let (G′,Γ) be obtained from (G,Γ) by a Lovász-flip on x and p. Clearly (G′,Γ) has a

blocking pair. Moreover, κ(G′[X]) = 1 and by applying Remark 4.3.7 to each component

of G[Y ] we deduce κ(G′[Y ]) ≤ κ(G[Y ]). Hence, (G′,Σ) together with X, contradicts the

minimality assumption (4.1).

Case 4. D is a signature and C is not a polygon.
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Since C = {f, g, h} is a circuit of M but not a polygon, it is the union of two odd polygons

of (G,Σ). As D = {e, f, g}, one of f or g is a loop. Without loss of generality we may

assume that f is a loop and thus h, g are parallel. Note that f is not a component of

G[X], for otherwise moving it to an end of g, h preserves blocking pairs and contradicts the

minimality assumption (4.1). Thus, f, g, h are incident to a common vertex, say p. Then

end x of e and p is a blocking pair. Let Γ = D∆ δ(x). Let (G′,Γ) be obtained from (G,Γ)

by a Lovász-flip on x and p. Clearly (G′,Γ) has a blocking pair. Moreover, κ(G′[X]) = 1

and by Remark 4.3.7 κ(G′[Y ]) ≤ κ(G[Y ]). Hence, (G′,Σ) together with X, contradicts the

minimality assumption (4.1).

4.3.6 Degree condition

Throughout the remainder of the proof of Proposition 1.4.3, we let H denote the auxiliary

graph for G and X which are selected according the minimality assumption (4.1). Next are

the key properties of the auxiliary graph H.

Proposition 4.3.9. H is bridgeless, in particular every vertex has degree at least two.

Moreover, if a vertex has degree exactly two then the corresponding component of (G,Σ)|X

or (G,Σ)|Y is non-bipartite.

Proof. Note that H is connected since G is connected. Suppose for a contradiction that

H has a bridge e. Since H is connected, H \ e has two components H1 and H2. Let Z

be the set of edges of G in components of G[X] and G[Y ] corresponding to the vertices

of H1. Then ∂G(Z) = {v} for some v ∈ V (G). By Proposition 3.1.5, λM(Z) = | ∂G(Z)| −

κ(G[Z])−κ(G[E(M)−Z])+p[(G,Σ)|Z]+p[(G,Σ)|E(M)−Z] ≤ 1−1−1+1+1 = 1, thus

Z is 2-separating. Moreover, by Proposition 4.3.8, |Z|, |E(M) − Z| ≥ 2, a contradiction

134



as M is 3-connected. Let p be a degree two vertex of H and let Z denote the edges in

the component of G[X] or G[Y ] corresponding to p. Then | ∂G(Z)| = 2. Proposition 4.3.8

implies that |Z|, |E(M) − Z| ≥ 2. Since M is 3-connected, Z is not 2-separating, i.e.

2 ≤ λM(Z) ≤ 2 − 1 − 1 + p[(G,Σ)|Z] + p[(G,Σ)|E(M) − Z]. Thus p[(G,Σ)|Z] = 1, i.e.

(G,Σ)|Z is non-bipartite.

4.3.7 Proof of Proposition 1.4.3

There are three cases to consider depending on whether each of (G,Σ)|X and (G,Σ)|Y

are bipartite (as we can interchange the role of X and Y ). We consider each of these in

Propositions 4.3.10, 4.3.11 and 4.3.13.

Proposition 4.3.10. If (G,Σ)|X and (G,Σ)|Y are non-bipartite then X is reducible,

compliant, or recalcitrant.

Proof. Proposition 3.1.6 implies that |E(H)| = |V (H)|+λM (X)−p[(G,Σ)|X]−p[(G,Σ)|Y ] =

|V (H)| + 2 − 1 − 1 = |V (H)|. Moreover, H is connected and by Proposition 4.3.9 it is

bridgeless. It follows that H is a polygon. Since every vertex of H has degree two,

Proposition 4.3.9 implies that each component of G[X] and G[Y ] is non-bipartite. It follows

that each component of G[X] and G[Y ] contains one of u, v where u, v is the blocking pair

of (G,Σ). This implies that |V (H)| ∈ {2, 4}. Consider first the case where |V (H)| = 4.

Then, we have proper partitions X1, X2 of X and Y1, Y2 or Y where u ∈ ∂(X1) ∩ ∂(Y1)

and v ∈ ∂(X2) ∩ ∂(Y2). Let G′ be obtained from G by a 2-flip of X1, Y2. Then (G′,Σ)

has a blocking pair and (G′,Σ) and X contradict our minimality assumption (4.1). Hence

|V (H)| = 2, i.e. G[X] and G[Y ] are connected and ∂(X) = {a, b} for some vertices a, b of

G.
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Let us now analyze the possible location of the blocking pair u, v. If u ∈ I(X) and

v ∈ I(Y ) or vice-versa then (G,Σ, X) is a Type I configuration and X is compliant. If

{u, v} = {a, b} then (G,Σ, X) is a Type II configuration and X is recalcitrant. Since

(G,Σ)|X and (G,Σ)|Y are non-bipartite, we may thus assume, after possibly interchanging

the role of X, Y and u, v and a, b that u = a and v ∈ I(Y ). After possibly re-signing,

edges of Σ are incident to u or v. Let G1 (resp. G2) be obtained from G[X] (resp. G[Y ])

by adding parallel edges f, g between a and b and adding a loop h incident to a. Let

Σ1 = Σ ∩X ∪ {f, h} and let Σ2 = Σ ∩ Y ∪ {f, h}. Then a is a blocking vertex of (G1,Σ1)

which implies by Remark 2.4.2 that ecycle(G1,Σ1) is graphic. Finally, Proposition 4.1.5

implies that M = ecycle(G1,Σ1)⊕3 ecycle(G2,Σ2). Hence, X is reducible.

Proposition 4.3.11. If (G,Σ)|X is bipartite and (G,Σ)|Y is non-bipartite then X is

reducible.

Proof. Proposition 3.1.6 implies that |E(H)| = |V (H)|+λM (X)−p[(G,Σ)|X]−p[(G,Σ)|Y ] =

|V (H)|+ 2− 0− 1 = |V (H)|+ 1. Recall that H is connected and Proposition 4.3.9 implies

that H is bridgeless. It follows from Remark 3.1.7 that H is a theta or a double ear.

Case 1. H is a theta.

The theta graph H consists of three internally disjoint paths P1, P2, P3. Consider first the

case where H is 1-uniform, i.e. |P1| = |P2| = |P3| = 1. Then G[X] and G[Y ] are connected.

Proposition 4.1.5 implies that M = cycle(G′)⊕3M2 for some graph G′ and for some matroid

M2 where E(G′) = X. But then X is reducible. Thus we may assume H is not 1-uniform,

i.e. |Pi| ≥ 2 for some i ∈ [3]. Since (G,Σ)|X is bipartite, Proposition 4.3.9 implies that

every internal vertex of Pi corresponds to a component of G[Y ]. Thus |Pi| = 2 and as H is

bipartite and is not 1-uniform, |Pi| = 2 for all i ∈ [3]. By Proposition 4.3.9 it follows that
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the degree two vertex vi of Pi correspond to a component G[Yi] of G[Y ] where (G,Σ)|Yi is

non-bipartite. Hence, (G,Σ) has three pairwise vertex disjoint odd circuits, a contradiction

as there exists a blocking pair.

Case 2. H is a double ear.

The double ear graph H consists of two polygons C1 and C2 that share exactly one vertex.

Proposition 4.3.9 implies that H is 2-uniform and that for i ∈ [2] the degree two vertex vi

of Ci corresponds to a component G[Yi] of G[Y ] where (G,Σ)|Yi is non-bipartite. Thus we

may assume for the blocking pair u, v of (G,Σ) that u and v are vertices of G[Y1] and G[Y2]

respectively. Since (G,Σ)|X is bipartite, we may assume Σ ⊆ Y and that all edges of Σ

are incident to u or v. Let (G′,Σ) be obtained from (G,Σ) by a Lovász-flip on u, v. Then

G′[X] and G′[Y ] are connected as G[Yi] contains an odd polygon for each i ∈ [2]. Thus

(G′,Σ) and X contradict our minimality assumption (4.1).

Consider a graph F . A ear of F is a walk P where the two endpoints of P may coincide,

but every other vertex of P has degree two. An ear decomposition of F is a partition of

its edges into a sequence of ears, such that the one or two endpoints of each ear belong to

earlier ears in the sequence and such that the internal vertices of each ear do not belong to

any earlier ear. Additionally, the first ear in the sequence must be a polygon.

Theorem 4.3.12 ([42]). A graph is connected and bridgeless if and only if it has an ear

decomposition.

Proposition 4.3.13. If (G,Σ)|X and (G,Σ)|Y are bipartite then X is reducible, compliant,

or recalcitrant.

Proof. Proposition 3.1.6 implies that |E(H)| = |V (H)|+λM (X)−p[(G,Σ)|X]−p[(G,Σ)|Y ] =

|V (H)| + 2 − 0 − 0 = |V (H)| + 2. Proposition 4.3.9 implies that the minimum degree
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δ(H) of H is at least 3. δ(H) ≥ 3 and |E(H)| = |V (H)| + 2 implies by Theorem 4.3.12

that H is obtained from a polygon C by adding a sequence of two ears, say Q1, Q2. Let

H ′ be the graph obtained from C by adding ear Q1. Then H ′ is either a double ear or a

theta (Remark 3.1.7). Moreover, δ(H) ≥ 3 implies that Q2 consists of a single edge, say f .

Consider first the case where H ′ is a double ear that consists of polygons C and C ′ joined

at a vertex w. Then f has ends in C and C ′ (distinct from w). Since δ(H) ≥ 3, C and

C ′ have each exactly one vertex distinct from w that is incident to f . But then H has a

triangle, a contradiction as H is bipartite. Consider now the case where F is a theta that

is formed by internally disjoint paths P1, P2, P3. We may assume f is not incident to an

internal vertex of P1. As δ(H) ≥ 3, P1 consist of a single edge. It follows that P2 and P3

each have an odd number of edges. As δ(H) ≥ 3 we can assume that P2 has a single edge

and that |P3| ∈ {1, 3}.

Case 1. |P3| = 1.

The ends of f correspond to the degree 3 vertices of H, i.e. H consists of four parallel

edges. Then, G[X] and G[Y ] are connected. Denote by a, b, c, d the vertices of ∂G(X). By

Remark 2.4.2, there is no blocking vertex of (G,Σ). Thus we may assume, after possibly

re-signing and exchanging the roles of a, b, c, d if needed, that Σ = (δG(a)∩X)∪ (δG(b)∩Y ).

Let (G′,Σ′) be obtained from (G,Σ) by a Lovász-flip on a and b. Observe that G′[X]

and G′[Y ] remain connected, but (G′,Σ)|X and (G′,Σ)|Y are non-bipartite. Thus (G′,Σ)

and X satisfy the minimality assumption and thus by Proposition 4.3.10, X is reducible,

compliant, or recalcitrant.

Case 2. |P3| = 3.

Since δ(H) ≥ 3, the ends of f must correspond to internal vertices of P3. It follows that
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H is the graph obtained from a polygon with four edges by replacing edges in a matching

by two parallel edges. We illustrate the auxiliary graph H in Figure 4.4 (left) with the

corresponding graph G (right). Let G′ be obtained from G by a 2-flip on X1 ∪ Y2. Then,

X1

X2

Y1

Y2

X1

Y1

Y2

X2

P1

P2

f

P3

Figure 4.4: Case (2) in Proposition 4.3.13.

by Proposition 4.3.6, (G′,Σ) has a blocking pair. Then (G′,Σ) and X contradict our

minimality assumption (4.1).
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Chapter 5

Recognition Algorithms

The work in this chapter appears in [20, 22, 21, 31]. Tutte [51] proved that one can recognize

whether a binary matroid is graphic in polynomial time. Seymour [46] extended this result

and showed that there exists a polynomial-time algorithm to check whether a matroid

specified by an independence oracle is graphic. Thus, given a binary matroid described by

its 0, 1 matrix representation, we can check in polynomial time if the matroid is graphic

and we can check in polynomial time if the matroid is cographic. We prove the analogous

result for even-cycle matroids, even-cut matroids, and pinch-graphic matroids. Recall from

Section 1.5 that we are interested in constructing the following algorithms:

� Algorithm (1): Given a binary matroid M described by its 0, 1 matrix representation

A, check whether M is an even-cycle matroid, in polynomial time.

� Algorithm (2): Given a binary matroid M described by its 0, 1 matrix representation

A, check whether M is an even-cut matroid, in polynomial time.
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� Algorithm (3): Given a binary matroid M described by its 0, 1 matrix representation

A, check whether M is a pinch-graphic matroid, in polynomial time.

For each of Algorithms (1), (2), and (3), by polynomial time, we mean polynomial in

the number of entries of A. We believe that these algorithms ought to be fast in practice

but have not conducted numerical experiments. For Algorithms (1) and (2), the bound on

the running time depends on a constant c that arises from the Matroid Minors Project and

that has no explicit bound [13]. However, these algorithms do not use the value c for their

computation.

Algorithms (1) and (2) rely on Algorithm (3) as a subroutine. In Section 5.1, we

sketch a simple polynomial time algorithm to check whether a binary matroid is graphic.

In Sections 5.3 and 5.4, we describes Algorithm (1) and (2) for even-cycle and even-cut

matroids, respectively. For Algorithm (3), we construct the following algorithms:

� Algorithm (4): Given an internally 4-connected binary matroid M , check whether

M is a pinch-graphic matroid in polynomial time.

� Algorithm (5): Given a binary matroid M , check whether M is a pinch-graphic

matroid or return an internally 4-connected matroid N that is isomorphic to a minor

of M such that M is pinch-graphic if and only if N is pinch-graphic, in polynomial

time.

By combining Algorithms (4) and (5), we get a polynomial algorithm to check whether a

binary matroid M is pinch-graphic, i.e., Algorithm (3) (thereby completing the description

of the algorithm for recognizing even-cycle and even-cut matroids). Namely, we first apply

Algorithm (5) and either establish whether M is pinch-graphic, or we return the matroid

N . In the latter case, Algorithm (4) to determine whether N is pinch-graphic.

141



For all the aforementioned algorithms, we assume that the matroid M is given in terms

of its 0, 1 matrix representation A. In Sections 5.5 and 5.6, we describes Algorithm (4) and

(5), respectively.

5.1 Graphic matroids

5.1.1 Reduction to the 3-connected case

Recall that a matroid M has a 1-separation if and only if M can be expressed as a 1-sum,

M1 ⊕1 M2. A connected matroid has a 2-separation if and only if M can be expressed

as a 2-sum, M1 ⊕2 M2 [1, 8, 44]. Moreover, for k ∈ [2], M = M1 ⊕k M2 is graphic if and

only if both M1 and M2 are graphic ([36], Corollary 7.1.26). Assume that we know how

to check whether a 3-connected binary matroid is graphic and suppose that we want to

check whether an arbitrary binary matroid M is graphic. If M is 3-connected, then use

the algorithm for 3-connected matroids. Otherwise find a k-separation for k ∈ [2], express

M as M1 ⊕k M2 and recursively check whether M1 and M2 are both graphic. If so, then

M is graphic; otherwise, M is not. We need to be able to check for the presence of 1-

and 2-separations in a binary matroid in polynomial time. Cunningham and Edmonds [8]

showed that the more general problem of checking whether a matroid has a k-separating

set with both separators of size at least ` ≥ k can be reduced to the matroid intersection

problem [10, 33] and be solved in polynomial time for fixed values k and `.
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5.1.2 Graph representations

We say that the representation H of N extends to the representation G of M . Theorem 1.1.1

implies the following result:

Remark 5.1.1. Suppose N is a 3-connected graphic matroid with a graph representation

H. If N is a minor of a 3-connected matroid M , then M is graphic if and only if the

representation H of N extends to a representation of M .

5.1.3 The algorithm

A wheel is the graph obtained by starting with a polygon with at least three edges, adding

a new vertex (the hub) and connecting every vertex of the polygon to the hub. Consider a

3-connected binary matroid M and suppose that we wish to check whether M is graphic.

First, we check whether M is the graphic matroid of a wheel. Otherwise, by Tutte’s

Wheels-and-Whirls Theorem [53], there exists an element e such that either N = M/e or

N = M \ e is 3-connected. Recursively, we check whether N is graphic. If it is not, then

neither is M . Otherwise, we check whether the (unique) representation of N extends to M .

If it does then M is graphic, otherwise it is not.

5.2 Decision problems on grafts and signed graphs

In this section, we describe two polynomially solvable decision problems that will be used

in in the recognition algorithm for even-cycle and even-cut matroids. For a binary matroid

M and C ⊆ E(M), we say that C is a cycle (resp. cocycle) of M if C is a disjoint union of

circuits (resp. cocircuits) of M . We will make repeated use of the following observation.
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Remark 5.2.1. Let M,N be binary matroids with the same ground set E and let e ∈ E.

(a) If M \ e = N \ e and there exists a cycle C of both M,N where e ∈ C, then M = N .

(b) If M/e = N/e and there exists a cocycle D of both M,N where e ∈ D, then M = N .

Proof. (a) Let X ⊆ E such that e ∈ X. Then, X is a cycle of M (resp. N) using e if and

only if X ∆C is a cycle of M (resp. N) not using e. Since M and N have the same set of

cycles not using e, M and N have the same set of cycles using e. Hence, M and N have

the same cycles and M = N . (b) follows by applying (a) to the dual of M and N .

5.2.1 A decision problem on grafts

Consider the following decision problem:

Problem 5.2.2. Given a graft, is there an equivalent graft with at most two terminals?

We are given a graft (G, T ) and want to know if there exists an equivalent graft (G′, T ′)

where |T ′| ≤ 2. Note that the set of terminals of (G, T ) is empty if and only if the T -joins

of (G, T ) are the cycles of G. In particular, because of Remark 1.2.3, if a graft has an

empty set of terminals then so does every equivalent graft. Hence, we may assume that

T 6= ∅ in Problem 5.2.2. Denote by A the matrix obtained from the vertex-edge incidence

matrix of G by adding a column t that is the characteristic vector of the terminals T . Let

M denote the binary matroid represented by matrix A. The matroid M is known as the

graft matroid of (G, T ). Its cycles are the cycles of G and the sets of the form J ∪ t where

J is a T -join of G. The following result is essentially in [45].

Proposition 5.2.3. Let (G, T ) be a graft with T 6= ∅ and let M be the graft matroid of

(G, T ).
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(a) If M is not graphic then no graft equivalent to (G, T ) has two terminals,

(b) If M = cycle(H) for some H, define G′ = H \ t and denote by x, y the endpoints of

edge t in H. Then (G′, {x, y}) is equivalent to (G, T ).

Proof. (a) Suppose there exists a graft (G′, T ′) equivalent to (G, T ) where T ′ = {x, y}. Let

H be the graph obtained from G′ by adding edge t = (x, y). Since (G, T ) and (G′, T ′)

are equivalent, cycle(H) \ t = cycle(G′) = cycle(G) = M \ t. As (G′, T ′) is a graft,

there is a {x, y}-path P of G′. Thus, P ∪ t is a cycle of H, which is a circuit of M .

Then, by Remark 5.2.1 (a), M = cycle(H) and in particular M is graphic. (b) We have

M \t = cycle(H)\t = cycle(H \t) = cycle(G′). Moreover, the matrix representation of M \t

is the vertex-edge incidence matrix ofG, henceM\t = cycle(G). Thus, cycle(G) = cycle(G′),

and by Theorem 1.1.1, G and G′ are equivalent. Since M = cycle(H) the cycles of M using

t are of the form J ∪ t where J is an {x, y}-join of G′. Since M is the graft matroid of

(G, T ) the cycles of M using t are of the form J ∪ t where J is a T -join of G. Hence, T -joins

in G are {x, y}-joins in G′ and in particular, (G, T ) and (G′, {x, y}) are equivalent.

Thus, we can use the algorithm to check if a binary matroid is graphic to solve Problem 5.2.2.

We are requiring here that such an algorithm returns a graph representation in case the

matroid is graphic, but this is indeed the case for [51], for instance.

5.2.2 A decision problem on signed graphs

Consider the following decision problem:

Problem 5.2.4. Given a signed graph, is there an equivalent signed graph with a blocking

vertex?
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We are given a signed graph (G,Σ) and we want to know if there exists an equivalent

signed graph (G′,Σ) with a blocking vertex v. We may assume that G has no loop as

removing loops does not affect the answer to Problem 5.2.4. The following result is essentially

in [18].

Proposition 5.2.5. Let (G,Σ) be a loopless signed-graph, let G+ be obtained from G by

adding a loop Ω and let M = ecycle(G+,Σ ∪ Ω).

a. If M is not graphic then no signed graph equivalent to (G,Σ) has a blocking vertex.

b. If M = cycle(H) for some H define G′ = G/Ω and denote by v the vertex of G′

corresponding to Ω. Then G′ is equivalent to G and v is a blocking vertex of (G′,Σ).

Proof. (a) Suppose some signed-graph (G′,Σ) equivalent to (G,Σ) has a blocking vertex

v. Then for some signature Γ of (G′,Σ) we have Γ ⊆ δG′(v). Let H be obtained from G′

by uncontracting v according to Γ where Ω is the new edge. Then by Remark 5.2.1 (b),

M = cycle(H) and in particular, M is graphic. (b) We have M/Ω = ecycle[(G+,Σ∪Ω)/Ω] =

cycle(G+/Ω) = cycle(G). We also have M/Ω = cycle(H/Ω) = cycle(G′). It follows by

Theorem 1.1.1 that G and G′ are equivalent. Let C be an odd polygon of (G,Σ). Then

C ∪ Ω is an even-cycle of (G+,Σ ∪ Ω). Thus C ∪ Ω is a polygon of H and in particular, C

uses vertex v of G′. Hence, v is a blocking vertex as required.

Thus we can use the algorithm to check if a binary matroid is graphic to solve Problem 5.2.4.
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5.3 Even-cycle matroids

5.3.1 Keeping track of representations

Consider an even-cycle matroid M with a representation (G,Σ). Recall that (H,Γ) =

(G,Σ)/I \ J is a representation of the minor N = M/I \ J . We say that the representation

(H,Γ) of N extends to the representation (G,Σ) of M . Hence, every signed-graph

representation of M extends some signed-graph representations of the minor N . Here

we characterize when a signed-graph representation of an even-cycle matroid extends to a

single element undeletion or uncontraction.

Proposition 5.3.1. Let M be a binary matroid, let e ∈ E(M) and let N = M \ e. Let C

be a cycle of M using e and let (G,Σ) be a signed-graph representation of N . Then (G,Σ)

extends to a representation (H,Γ) of M if and only if for some signature Σ′ of (G,Σ) we

have Γ = Σ′ when |C ∩ Σ′| is even and Γ = Σ′ ∪ e otherwise, and in addition either, (i)

G[C − e] has no odd degree vertex in which case H is obtained from G by adding a loop e;

or (ii) G[C − e] has exactly two odd degree vertices v, w in which case H is obtained from

G by adding an edge e = (v, w).

Proof. (⇒) Suppose (H,Γ) extends the representation (G,Σ) to M . Then |C ∩ Γ| is even

which implies that Γ is as described. Moreover, G = H \ e and (i) occurs if e is a loop of H

and (ii) occurs if e is a not a loop of H. (⇐) By the choice of Γ we have |C ∩ Γ| is even.

Moreover, by the construction (i) or (ii) we obtain H where C is a cycle of H. Hence, C is

an even cycle of (H,Γ) and Remark 5.2.1 (a) implies that M = ecycle(H,Γ).

Proposition 5.3.2. Let M be a binary matroid, let e ∈ E(M) and let N = M/e where N is

non-graphic. Let D be a cocycle of M using e and let (G,Σ) be a signed-graph representation

of N . Then (G,Σ) extends to a representation (H,Σ) of M if and only if either,
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(i) there exists a signature Γ of (G,D − e), or

(ii) there exists a signature Γ of (G, [D − e] ∆ Σ),

where for (i), (ii) all edges of Γ are incident to some vertex v or contained in loops and for

both cases H is obtained from G by uncontracting e at v according to Γ.

Proof. (⇒) Suppose (G,Σ) extends to a representation (H,Σ) of M . Since N is non-graphic,

e is not an odd loop of (H,Σ) and since e is contained in the cocycle D, e is not a loop of

M , that is, e is not an even loop of (H,Σ). Denote by w one of the ends of e in H and let

Γ = δH(w)− e.

Claim. Γ is a signature of (G,D − e) or of (G, [D − e] ∆ Σ).

Subproof. Since D is a cocycle of M , D is a cut of H or a signature of (H,Σ) [40]. Thus

there exists D′ ∈ {D,D∆ Σ} that is a cut of H with e ∈ D′. Then, Γ is a signature of

(G,D′ − e) as Γ ∆(D′ − e) = δH(w) ∆D′ is a cut of H avoiding e so is a cut of G. ♦

Let v be the vertex of G obtained by contracting e from H. The edges of Γ are incident to

v. Finally observe that H is obtained from G by uncontracting e at v according to Γ. (⇐)

Suppose H is obtained from G by uncontracting e at v according to Γ. Then Γ∪ e = δH(w)

where w denotes one of the endpoints of e in H. If Γ is a signature of (G,D − e) then D is

a cut of H. If Γ is a signature of (G, [D − e] ∆ Σ) then D is a signature of (H,Σ). In both

cases D is a cocycle of ecycle(H,Σ) [40] and by Remark 5.2.1 (b), M = ecycle(H,Σ), i.e.

(H,Σ) extends the representation (G,Σ) to M .
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5.3.2 Equivalence classes

In our algorithm, we will keep track of signed-graph representations up to equivalence only.

As a result, we shall require the following two results.

Proposition 5.3.3 ([27] Lemma 12). Let N be an even-cycle matroid and let F be an

equivalence class of signed-graph representations of N . Let M be a binary matroid with

a non-coloop e ∈ E(M) for which N = M \ e. Then the set extensions of F to M is a

(possibly empty) equivalence class.

Proposition 5.3.4 ([27] Lemma 24). Let N be a non-graphic, even-cycle matroid and let

F be an equivalence class of signed-graph representations of N . Let M be a binary matroid

with a non-loop e ∈ E(M) for which N = M/e. Then the set extensions of F to M is

either a (possibly empty) equivalence class of representations or the union of two equivalence

classes F1 and F2. Moreover, in the latter case F1 and F2 arise from respectively case (i)

and (ii) in Proposition 5.3.2.

The statements of Proposition 5.3.3 and 5.3.4 are slightly different from [27], but in the

proofs, the weaker conditions are used as stated. In the previous result the “Moreover”

part of the statement is not given explicitly in [27]. However, a careful reading of the proof

reveals that this is what is shown.

5.3.3 Algorithm (1)

Suppose that we are given a binary matroid M by its 0, 1 matrix representation A. We

assume that we have an oracle to determine if a binary matroid given by its matrix

representation is pinch-graphic. We now describe an algorithm that in oracle polynomial

time in the size of A will determine whether M is an even-cycle matroid.
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First we check if M is pinch-graphic. If it is, then M is an even-cycle matroid and we

stop. Thus, we may assume M is not pinch-graphic. Set N = M . If for any e ∈ E(N),

N/e (resp. N \ e) is not pinch-graphic then replace N with N/e (resp. N \ e). When

we stop we have found a minor N of M that is minimally non pinch-graphic. It follows

by Theorem 3.1.1 that N has constant size and we can find all representations of N , up

to equivalence, in constant time. (A finite algorithm for finding all representations of an

even-cycle matroid is given in [40], page 132.) Then we construct a sequence of matroids

M = M1,M2, . . . ,Mk = N where for every i ∈ [k − 1] either (i) Mi+1 = Mi \ ei for some

ei ∈ E(Mi) that is not a coloop, or (ii) Mi+1 = Mi/ei for some ei ∈ E(Mi) that is not a

loop. In particular, for (i) there exists a cycle of Mi using e and for (ii) a cocycle of Mi

using e. For each i ∈ [k], the set of signed-graph representations of Mi can be partitioned

into equivalence classes and we denote by Ei a set of signed-graph representations that

consist of one representative from each equivalence class. We constructed Ek (the set of

all representations of N up to equivalence). Clearly, M is an even-cycle matroid if and

only if E1 6= ∅. Thus it suffices to show for all i ∈ [k − 1] how to construct Ei from Ei+1.

Consider an arbitrary signed graph (G,Σ) ∈ Ei+1 and let F be the equivalence class that

contains (G,Σ). Let F ′ be the set of extensions of F to Mi. By propositions 5.3.3 and

5.3.4, F ′ is either empty, a single equivalence class, or the union of two equivalence classes.

We will show how to find representatives for each equivalence class in F ′ in polynomial

time. Since, by Theorem 1.3.1 there exists a constant c such that |Ei| ≤ c this will prove

that the algorithm is polynomial.

Consider first the case where Mi+1 = Mi \e. By Proposition 5.3.3, F ′ consists of a single

(possibly empty) equivalence class. Find a cycle C of Mi containing e. By Proposition 5.3.1,

some (G′,Σ′) ∈ F extends to a representation of Mi if G′[C − e] has at most two vertices

of odd degree. Thus, to check for the existence of such a signed-graph (G′,Σ′) we define T
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to be the odd degree vertices of G[C − e], and then use the decision algorithm described in

Section 5.2.1 to check if there exists a graft (G′, T ′) equivalent to (G, T ) where |T ′| ≤ 2. If

the answer is yes, then we can extend some representation (G′,Σ′) ∈ F to Mi as described in

Proposition 5.3.1. If the answer is no, then no representation (G′,Σ′) ∈ F of Mi+1 extends

to Mi and F ′ = ∅. Consider now the case where Mi+1 = Mi/e. By Proposition 5.3.4, F ′

consists of the union of at most two equivalence classes. Find a cocycle D of Mi containing

e. By Proposition 5.3.2, some (G′,Σ′) ∈ F extends to a representation of Mi if either

(G′, D− e) or (G′, [D− e] ∆ Σ) has a blocking vertex v. Then, we use the decision algorithm

described in Section 5.2.2 to first (i) check if there exists G′ equivalent to G such that

(G′, D− e) has a blocking vertex v, or (ii) check if there exists G′ equivalent to G such that

(G, [D − e] ∆ Σ) has a blocking vertex v. For each of (i) and (ii) if the answer is yes then

we can extend some representation (G′,Σ) ∈ F to Mi as described in Proposition 5.3.2.

Moreover, by Proposition 5.3.4 if the answer is yes for both (i) and (ii) F ′ consists of the

union of two equivalence classes if the answer is yes for exactly one of (i) and (ii) F ′ consists

of a single equivalence class, and otherwise F ′ = ∅.

5.4 Even-cut matroids

5.4.1 Keeping track of representations

Consider an even-cut matroid M with a graft representation (G, T ). Recall that (H,R) =

(G, T )/I \ J is a representation of the minor N = M \ I/J . We say that the representation

(H,R) of N extends to the representation (G, T ) of M . Hence, every graft representation of

M extends some graft representations of the minor N . Here we characterize when a graft

representation of an even-cut matroid extends to a single element undeletion or uncontraction.
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We present the analogue of propositions 5.3.1 and 5.3.2, namely propositions 5.4.1 and

5.4.2. We omit the proofs as they are routine and similar to those in Section 5.3.1. To

clarify the statement of the next proposition, observe that cocycles of ecut(G, T ) are cycles

of G and T -joins of (G, T ) [40].

Proposition 5.4.1. Let M be a binary matroid, let e ∈ E(M) and let N = M/e where N

is not cographic. Let D be a cocycle of M using e and let (G, T ) be a graft representation

of N . Pick J an arbitrary T -join of G. Then (G, T ) extends to a representation (H,T ) of

M if and only if either,

(i) G[D − e] has at most two vertices of odd degree, or

(ii) G[J ∆(D − e)] has at most two vertices of odd degree

and for both cases, if there are no vertices of odd degree, then H is obtained from G by

adding loop e and if there are vertices of odd degree u, v, then H is obtained from G by

adding edge e = (u, v).

Proposition 5.4.2. Let M be a binary matroid, let e ∈ E(M) and let N = M \ e. Let C

be a cycle of M using e, let (G, T ) be a graft representation of N . Then (G, T ) extends to

a representation (H,R) of M if and only if there exists a signature Γ of (G,C − e) where

all edges of Γ are incident to some vertex v, and H is obtained from G by uncontracting e

at v according to Γ where e = (v′, v′′) in H, and R = (T − v) ∪X where X ⊆ {v′, v′′} and

v′ ∈ X (resp. v′′ ∈ X) if and only if δH(v′) (resp. δH(v′′)) is not a cycle of M .

5.4.2 Equivalence classes

In our algorithm we will keep track of graft representations up to equivalence only. As a

result we shall require the following two results.
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Proposition 5.4.3 ([25] Lemma 9.4). Let N be an even-cut matroid and let F be an

equivalence class of graft representations of N . Let M be a binary matroid with a non-coloop

e ∈ E(M) for which N = M \ e. Then the set extensions of F to M is a (possibly empty)

equivalence class.

Proposition 5.4.4 ([25] Lemma 9.12). Let N be a non-cographic, even-cut matroid and

let F be an equivalence class of graft representations of N . Let M be a binary matroid with

a non-loop e ∈ E(M) for which N = M/e. Then the set extensions of F to M is either a

(possibly empty) equivalence class of representations or the union of two equivalence classes

F1 and F2. Moreover, in the latter case F1 and F2 arise from respectively case (i) and (ii)

in Proposition 5.4.1.

The statements of Proposition 5.4.3 and 5.4.4 are slightly different from [25], but in the

proofs, the weaker conditions are used as stated.

5.4.3 Algorithm (2)

Suppose that we are given a binary matroid M by its 0, 1 matrix representation A. We

assume that we have an oracle to determine if a binary matroid given by its matrix

representation is pinch-graphic (or equivalently pinch-cographic). We now describe an

algorithm that, in oracle polynomial time in the size of A, will determine whether M is an

even-cut matroid.

First we check if M is pinch-cographic. If it is, then M is an even-cut matroid and we

stop. Thus we may assume M is not pinch-cographic and proceeding as in the previous

algorithm we find a minimally non-pinch-cographic minor N of M . N has constant size and

we can find all representations of N , up to equivalence, in constant time. Then we construct
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a sequence of matroids M = M1,M2, . . . ,Mk = N where for every i ∈ [k − 1] either (i)

Mi+1 = Mi \ ei for some ei ∈ E(Mi) that is not a coloop, or (ii) Mi+1 = Mi/ei for some

ei ∈ E(Mi) that is not a loop. For each i ∈ [k], the set of graft representations of Mi can

be partitioned into equivalence classes and we denote by Ei a set of graft representations

that consist of one representative from each equivalence class. We have Ek and clearly M

is an even-cut matroid if and only if E1 6= ∅. Thus it suffices to show for all i ∈ [k − 1]

how to construct Ei from Ei+1. Consider an arbitrary graft (G, T ) ∈ Ei+1 and let F be the

equivalence class that contains (G, T ). Let F ′ be the set of extensions of F to Mi. By

propositions 5.4.3 and 5.4.4, F ′ is either empty, a single equivalence class, or the union

of two equivalence classes. We will show how to find representatives for each equivalence

class in F ′ in polynomial time. Since, by Theorem 1.3.2 there exists a constant c such that

|Ei| ≤ c this will prove that the algorithm is polynomial.

Consider first the case where Mi+1 = Mi \ e. By Proposition 5.4.3, F ′ consists of

a single (possibly empty) equivalence class. Find a cycle C of Mi containing e. By

Proposition 5.4.2, a graft (G′, T ′) equivalent to (G, T ) extends to a representation of Mi if

there exists a signature Γ of (G′, C − e) where all edges of Γ are incident to some vertex

v. We use the decision algorithm described in Section 5.2.2 to check if there exists a

signed-graph equivalent to (G,C − e) with a blocking vertex v. If the answer is yes then

some representation (G′, T ′) ∈ F extends to Mi as described in Proposition 5.4.2. If the

answer is no then F ′ = ∅. Consider now the case where Mi+1 = Mi/e. By Proposition 5.4.4,

F ′ consists of the union of at most two equivalence classes. Find a cocycle D of Mi

containing e, and let J be a T -join of G. By Proposition 5.4.1, some (G′, T ′) ∈ F extends

to a representation of Mi if either, (i) G′[D − e] has at most two odd degree vertices, or

(ii) G′[J ∆(D − e)] has at most two odd degree vertices. We denote by R1 (resp. R2) the

vertices of odd degree of G[D− e] (resp. of G[J ∆(D− e)]). For ` ∈ [2], we use the decision
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algorithm described in Section 5.2.1 to check if there exists a graft (G′, R′) equivalent to

(G,R`) where |R′| ≤ 2. For each ` ∈ [2] for which the answer is yes, some representation

(G′, T ′) ∈ F extends to Mi as described in Proposition 5.4.1. If the answer is no for ` ∈ [2]

then F ′ = ∅.

5.5 Internally 4-connected pinch-graphic matroids

5.5.1 Keeping track of representations

Consider an even-cycle matroid M with a representation (G,Σ). Let N be a minor of M ,

and let (H,Γ) be a representation of N . Observe that if (G,Σ) has a blocking pair, then

so does (H,Γ). It follows in that case that (G,Σ) is a blocking-pair representation of M

and that (H,Γ) is a blocking-pair representation of N . Hence, the class of pinch-graphic

matroid is also minor-closed. Moreover, every blocking-pair representation of M extends

some blocking-pair representation of the minor N .

Suppose that we have binary matroids M and N where N = M/e or N = M \ e. We

will use Propositions 5.3.1 and 5.3.2 to construct all blocking-pair representations of M

from the blocking-pair representations of N . We will also require the following observation,

Remark 5.5.1. We can check in polynomial time if a signed graph has a blocking pair.

Proof. First observe that we can check if a signed-graph is bipartite by picking a spanning

tree and checking if every fundamental polygon is even. Then we check for every pair of

distinct vertices u, v if the signed graph obtained by deleting u and v is bipartite.
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5.5.2 Algorithm (4)

Recall Proposition 3.3.1 from Section 3.3.1.

Proposition 3.3.1. Let M be a binary non-graphic matroid that is (4, 5)-connected. Then

there exists a good sequence M1, . . . ,Mk for M . Moreover, if we are given M by its 0, 1

matrix representation A, then in time polynomial in the number of entries of A we can

construct that good sequence.

The algorithm will take as input a binary matroid M that is (4, 5)-connected, described

by its 0, 1 representation A and it decides in time polynomial in the size of A if M is

pinch-graphic. (As internally 4-connected matroids are (4, 5)-connected, this yields an

algorithm for checking if an internally 4-connected matroid is pinch-graphic).

First we check if M is graphic (see Proposition 3.3.5). If it is, then we can stop

and M is pinch-graphic. Otherwise there exists a good sequence M1, . . . ,Mk for M by

Proposition 3.3.1. Iteratively, we will construct the set Si of all blocking-pair representations

of Mi. Since Mk ∈ {F7, F
∗
7 , M(K5)

∗, M(K3,3)
∗}, we have |E(Mk)| ≤ 10 and we can find

the set of blocking-pair representations Sk by brute force. Suppose now that for some i ∈ [k]

where i 6= 1 we have constructed the set Si. If Si = ∅ then we stop as M is not pinch-graphic

since every blocking-pair representation of M should extend some representation from Si.

Otherwise either (i) Mi−1 = Mi \ e or (ii) Mi−1 = Mi/e for some e. For case (i) we extend

the blocking-pair representations of Si to Si−1 as in Proposition 5.3.1, and for case (ii) we

extend the blocking-pair representations of Si to Si−1 as in Proposition 5.3.2. In both cases

we use Remark 5.5.1 to only keep the blocking-pair representations. If S1 = ∅ then M is

not pinch-graphic otherwise M is pinch-graphic.

Correctness is clear. Note that the algorithm runs in polynomial time in the size of A
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as we can construct the good sequence in polynomial time and since by Theorem 3.3.6 each

of the sets Si have cardinality O(|E(Mi)|)4.

5.6 Pinch-graphic matroids with small separations

Recall Propositions 1.4.1 and 1.4.2 from Section 1.4.2 and Proposition 1.4.3 from Section 1.4.3.

Proposition 1.4.1. Let M = M1 ⊕k M2 for k ∈ [3] where M1 is graphic. If k = 2,

assume that M is 2-connected, and if k = 3, assume that M is 3-connected. Then, M is

pinch-graphic if and only if M2 is pinch-graphic.

Proposition 1.4.2. Every 1- and 2-separation of a pinch-graphic matroid is reducible.

Proposition 1.4.3. Let M be a 3-connected pinch-graphic matroid and let X ′ be a proper

3-separation. Then there exists a homologous proper 3-separation X that is reducible,

compliant, or recalcitrant.

Let M be a matroid, and let X be either a 1-separation, 2-separation or proper 3-

separation of M . Then, M can be expressed by k-sum of two matroids M1 and M2 where

k ∈ [3]. We can check if X is reducible by applying a recognition algorithm for graphic

matroids to M1 and M2. Thus, we are interested in algorithms checking if X is compliant

or recalcitrant.

5.6.1 Compliant separations

Let us motivate the term “compliant”. Given a 3-connected binary matroid M described

by its 0, 1 matrix representation and given X ⊆ E(M), we will show that we can check in

polynomial time whether X is compliant. The key to that result is the next proposition.
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Proposition 5.6.1. Let M = M1 ⊕3 M2 be a 3-connected binary matroid. Let X =

E(M1)− E(M2) and assume that X is not reducible. Then, the following are equivalent:

(a) X is compliant.

(b) There exists e ∈ E(M1) ∩ E(M2) for which both M1 \ e and M2 \ e are graphic.

The algorithmic details on how to use this result are in Section 5.6.3.

Consider a binary matroid M with an element e and a cycle C using e. Observe that

every cycle of M is either a cycle avoiding e or the symmetric difference of C and a cycle

avoiding e. Thus, Remark 5.6.2 follows.

Remark 5.6.2. Let M,N be binary matroids with the same ground set containing an

element e. Then M = N if and only if all the cycles avoiding e are the same in M and N

and at least one cycle using e is the same in M and N .

Proof of Proposition 5.6.1. Suppose (a) holds. Then (G,Σ, X) is a Type I configuration for

some representation (G,Σ) with blocking pair u, v where u ∈ IG(X) and v is not a vertex

of G[X]. Let G1 be obtained from G[X] by adding a pair of parallel edges e, f between

a, b ∈ ∂G(X) and by adding a loop g to be incident to u. Let Σ1 = Σ ∩ X ∪ {e, g}. By

Proposition 4.1.5, M1 = ecycle(G1,Σ1). Moreover, M1 \ e = ecycle(G1 \ e,Σ1 − e). Then

(G1 \ e,Σ1 − e) has blocking vertex u. Thus, Remark 2.4.2 implies that M1 \ e is graphic.

By interchanging the role of X and E(M)−X we similarly prove that M2 \ e is graphic.

Now, suppose (b) holds. Then M1 \ e = cycle(H) for some graph H. Let f, g be edges of

E(M1) ∩ E(M2) other than e. Since M has no loop, neither does M1 \ e. Hence, H has no

loop. Let r, s denote the ends of g in H. Since f, g are not parallel, we may assume that r is

not incident to f . Let G1 be obtained from H by identifying r and s into t1 and adding an

158



edge e parallel to f . Let Σ1 = δH(r)∪{e}. Observe that {e, f, g} is an even cycle of (G1,Σ1)

and a cycle of M1. It follows from Remark 5.6.2 that M1 = ecycle(G1,Σ1). Similarly,

construct (G2,Σ2) by identifying r and s into t2 where M2 = ecycle(G2,Σ2) where e, f are

parallel edges of G2 and g is a loop G2. Let G be obtained from G1 and G2 by identifying

e, f and deleting e, f, g. Let Σ = [Σ1 ∪ Σ2]− {e, g}. Then Proposition 4.1.4 implies that

M = ecycle(G,Σ). Since X is not reducible, t1 ∈ IG(X) and t2 ∈ IG(E(G)−X). Finally,

observe that (G,Σ, X) is a Type I configuration, i,.e. (a) holds.

5.6.2 Recalcitrant separations

Consider a 3-connected binary matroid M described by its 0, 1 matrix representation. A

natural approach for algorithm (5) is to design a subroutine to check if a proper 3-separation

is recalcitrant in polynomial time. However, this seems to be harder than checking if X

is compliant, so instead we will either establish that X is recalcitrant or find another

proper 3-separation that is reducible. We develop the necessary tools in this section, the

algorithmic details will appear in Section 5.6.3. Throughout this section, M denotes a

3-connected matroid with a proper 3-separation X and Y = E(M)−X.

Working with the completion

Next, we relate representations of M and its completion N with respect to a recalcitrant

separation.

Remark 5.6.3. Suppose that (G,Σ, X) is a Type II configuration and that (G,Σ) is a

representation of M . Let a, b denote the vertices of ∂G(X). Let (H,Γ) be the signed graph

obtained from (G,Σ) by adding an odd loop e1, an even edge e2 with ends a, b and an odd

edge e3 with ends a, b. Then,
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(a) N = ecycle(H,Γ) is the completion of M with respect to X,

(b) if N = ecycle(H ′,Γ′) and (H ′,Γ′)|E(M) = (G,Σ) then (H,Γ) and (H ′,Γ′) are

isomorphic up to moving e1.

Proof. (a) is shown in the proof of Proposition 4.1.4. (b) Let e ∈ E(N) − E(M). Then

by definition of completion there exists cycles C and D of N where C ⊆ X ∪ e, D ⊆

(E(M)−X) ∪ e and e ∈ C ∩D. Thus C ∆D = (C − e) ∪ (D − e) is a cycle of M and in

particular an even-cycle of (G,Σ). It follows that C − e and D − e are either both odd

cycles of (G,Σ) or both ab-joins of G. Hence, e is either an odd loop of (H ′,Γ′) or has ends

a, b in H ′. As elements in E(N)− E(M) form a circuit of N they form an even cycle of

(H ′,Γ′) and the result follows.

Throughout this section N shall denote the completion of M with respect to X. Moreover,

e1, e2, e3 denote the elements of E(N)− E(M).

The next result shows that it suffices to check whether X is recalcitrant for N .

Remark 5.6.4. X is a recalcitrant separation of M if and only if X is a recalcitrant

separation of N .

Proof. Suppose that X is a recalcitrant separation of M . Then, there exists a representation

(G,Σ) of M for which (G,Σ, X) is a Type II configuration with {a, b} = ∂G(X). Then, the

signed graph (H,Γ) obtained from (G,Σ) as in Remark 5.6.3 is a representation of N . Since

a, b is a blocking pair of (G,Σ) it is a blocking pair of (H,Γ). Thus, (H,Γ, X) is a Type

II configuration and X is a recalcitrant separation of N . Suppose that X is a recalcitrant

separation of N . Then there exists a representation (H,Γ) of N for which (H,Γ, X) is a

Type II configuration with {a, b} = ∂H(X). Let (G,Σ) = (H,Γ) \ E(N) − E(M). Then
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(G,Σ) is a representation of M . As X is a proper 3-separation, |X|, |E(G) − X| ≥ 4,

moreover, as M is 3-connected, G[X], G[E(G)−X] are both connected and ∂G(X) = {a, b}.

Finally, as a, b is a blocking pair of (H,Γ) it is also a blocking pair of (G,Σ). Thus (G,Σ, X)

is a Type II configuration and X is a recalcitrant separation of M .

Bilateral representations

A representation (H,Γ) of N is bilateral if, for some {i, j, k} = [3],

i. H[X] and H[Y ] are both connected,

ii. ∂H(X) = {a, b},

iii. ei is a loop and the ends of ej, ek are a, b,

iv. ei, ej ∈ Γ, ek /∈ Γ.

Remark 5.6.5. If (H,Γ, X) is a Type II configuration where N = ecycle(H,Γ) then (H,Γ)

is a bilateral representation of N . Moreover, if (H,Γ) is a bilateral representation of N

with blocking pair a, b then (H,Γ, X) is a Type II configuration.

Next we show that if X is recalcitrant, then we can construct a bilateral representation.

Moreover, it suffices to find an equivalent representation for which ∂(X) is a blocking pair

to certify that the representation is recalcitrant.

Proposition 5.6.6. Suppose X is a recalcitrant separation of N and pick {i, j, k} = [3].

Then,

(a) N/ei = cycle(G) for some graph G.
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Pick an arbitrary graph G′ equivalent to G and let H be obtained from G′ by adding loop ei.

Let Γ be a cocircuit of N using ei. Then, the following also hold:

(b) (H,Γ) is a representation of N .

(c) There exists (H ′,Γ′) equivalent to (H,Γ) for which (H ′,Γ′, X) is a Type II configuration.

(d) (H,Γ) is a bilateral representation of N .

Before we can proceed with the proof we require a number of preliminaries.

Proposition 5.6.7. If X is a recalcitrant separation of N then for every i ∈ [3] there exists

a Type II configuration (H,Γ, X) where (H,Γ) is a representation of N and where ei is an

odd loop.

Proof. Since X is a recalcitrant separation of N there exists a Type II configuration

(H ′,Γ, X) where (H ′,Γ) is a representation of N . Denote by a, b the vertices in ∂H(X). By

Remark 5.6.3, we have that e1, e2, e3 are are either loops or have ends a, b. We may assume

that ei has ends a, b. After possibly re-signing, we have Γ with ei ∈ Γ and Γ ⊆ δH′(a)∪δH′(b).

Let (H,Γ) be obtained from (H ′,Γ) by a Lovász-flip on the blocking pair a, b. Observe that

ei is an odd loop of H. Then (H,Γ, X) is the required Type II configuration.

We will also require the following immediate consequence of Proposition 2.4.10 (see [27],

Lemma 17).

Remark 5.6.8. Two signed-graphs with the same even cycles and a common odd cycle

are equivalent.

We are now ready for the main proof of this section.
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Proof of Proposition 5.6.6. For (a), since X is a recalcitrant separation of N , it follows

by Proposition 5.6.7 that there exists a Type II configuration (H ′,Γ′, X) where N =

ecycle(H ′,Γ′) and where ei is an odd loop of H ′. Since ei is an odd loop, N/ei =

ecycle(H ′,Γ′)/ei = cycle(H ′/ei). Then let G = H ′/ei = H ′ \ ei. For (b), let N ′ =

ecycle(H,Γ). Recall that by Proposition 2.4.10, cycle(G′) = cycle(G). Then

N ′∗ \ ei = (N ′/ei)
∗ = (ecycle(H,Γ)/ei)

∗ = cycle(G′)∗ = (N/ei)
∗ = N∗ \ ei.

By hypothesis Γ is a cocircuit of N . Moreover, Γ is a cocircuit of N ′ as Γ is a signature of

(H,Γ) and signatures correspond to cocircuits. It follows from Remark 5.6.2 that N ′∗ = N∗

i.e. that N = N ′ = ecycle(H,Γ). For (c), note that (b) implies that (H,Γ) and (H ′,Γ′) have

the same set of odd cycles. Moreover, ei is an odd loop of both signed graphs. It follows

from Remark 5.6.8 that (H,Γ) and (H ′,Γ′) are equivalent, proving (c). For (d), note that

Remark 5.6.5 implies that (H ′,Γ′) is a bilateral representation of N . Remark 5.6.3 implies

that ej, ek are joining the ends of δH′(X). Moreover, H is 2-connected by Proposition 4.3.1.

We proved in (c) that H and H ′ are equivalent. Hence, H is obtained from H ′ by a sequence

of 2-flips on sets U ⊆ X or U ∩X = ∅. Thus (H,Γ) is also a bilateral representation of

N .

Solid separations

Proposition 5.6.6 suggests the following procedure for recognizing if X is a recalcitrant

separation of N , pick i ∈ [3] and check if N/ei is graphic. If it is not, then X is not

recalcitrant. Otherwise, N/ei = cycle(G′) for some graph G′, so construct a representation

(H,Γ) of N as described in Proposition 5.6.6. If H is 3-connected, then H = H ′ and it

follows from Remark 5.6.5 that X is recalcitrant if and only if the ends of ej (resp. ek)

form a blocking pair of (H,Γ). Alas H need not be 3-connected. Moving forward, our
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strategy will be to analyze the 2-separations of H. In this section we analyze one such type

of separations.

Let (H,Γ) be a bilateral representation of N . Then Z ⊆ E(H) is a solid separation of

H if the following hold,

i. Z ∩ {e1, e2, e3} = ∅,

ii. H[Z] and H[E(H)− Z] are connected,

iii. | ∂H(Z)| = 2 and ∂H(X) 6= ∂H(Z),

iv. there exists internally disjoint path P1, P2 in H[Z] with ends ∂H(Z) and |P1|, |P2| ≥ 2.

Next we present the key result of this section.

Proposition 5.6.9. Suppose X is a recalcitrant separation of N and (H,Γ) is a bilateral

representation of N . If Z is a solid separation, then Z is a reducible separation of M .

First we require the following observation used in [11].

Remark 5.6.10. Let H be a graph that contains a theta subgraph consisting of internally

disjoint path P1, P2, P3. Let H ′ be a graph equivalent to H. Then P1, P2, P3 are paths of H ′

that form a theta subgraph. Note that the order of the edges in Pi need not be the same in

H and H ′.

Proof of Proposition 5.6.9. Let u, v denote the vertices in ∂H(Z). Because edge ej (resp.

ek) has ends u, v, Z ⊂ X or Z ⊂ Y and we may assume the former. Since Z is solid there

exists internally disjoint uv-paths P1, P2 in H[Z]. Since H[E(H)− Z] is connected there

exists a uv-path P3 in H[E(H) − Z]. Observe that P1, P2, P3 form a theta graph of H.

164



By Proposition 5.6.6 there exists H ′ equivalent to H such that (H ′,Γ, X) is a Type II

configuration. By Remark 5.6.10 P1, P2, P3 form a theta graph of H ′. Denote by u′, v′ the

ends of P1, P2, P3 in H ′. By Proposition 4.3.1 H,H ′ are 2-connected (up to a single loop).

It follows that ∂H′(Z) = {u′, v′} and that H ′[Z] connected.

Claim 1. If u′ or v′ is a blocking vertex of (H ′,Γ)|Z then Z is reducible for M .

Subproof. Suppose for a contradiction that u′ is blocking vertex of (H ′,Γ′). Let (G,Σ) be

obtained from (H ′,Γ)|Z by adding an odd loop f1, an even edge f2 with ends ∂H′(Z) and

an odd edge f3 with ends ∂H′(Z). It follows from Proposition 3.1.5 that Z is 3-separating

in M . As |P1|, |P2| ≥ 2, |Z| ≥ 4. Note, Z ⊆ X hence |E(M) − Z| ≥ 4. Since M is

3-connected, Z must be exactly 3-separating and Z is a proper 3-separation of M . It

follows that M = M1 ⊕3 M2 for some matroids M1,M2 where E(M1) − E(M2) = Z. By

Proposition 4.1.4, M1 is isomorphic to ecycle(G,Σ). Note, u′ is a blocking vertex of (G,Σ).

It follows from Remark 2.4.2 that M1 is graphic, hence by definition Z is reducible. ♦

Because (H ′,Γ, X) is a Type II configuration, the ends of ej (resp. ek) is a blocking pair of

(H ′,Γ). Suppose for a contradiction, Z is not reducible for M . Then by Claim 1 neither

u′ nor v′ is a blocking vertex of (H ′,Γ)|Z. It follows that u′, v′ must be the ends of ej.

Observe that P1, P2, e2 is theta graph. Hence, by Remark 5.6.10, P1, P2, ej is a theta graph

of H. It follows that u, v are the ends of ej in H. But the ends of ej are ∂H(X), hence

∂H(X) = ∂H(Z), contradicting the definition of solid separation.

Kernels

We still need to consider bilateral representations (H,Γ) of N that are not 3-connected

but do not have a solid separation. Consider a signed-graph (H,Γ) and let Z = {f1, f2,
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f3} ⊆ E(H) where H[Z] is connected and ∂H(Z) = {u, v} for some u, v ∈ V (H). Suppose

that f1, f2 form a u, v-path, that f3 is parallel to f2, and that {f2, f3} is an odd polygon.

Then Z is a degenerate separation of H. We say that (H ′,Γ)/f1 is obtained from (H,Γ)

by reducing the degenerate separation Z. The graph obtained from (H,Γ) by reducing all

degenerate separations is the kernel of (H,Γ). We leave the following as an easy exercise,

Remark 5.6.11. Consider a signed-graph (H,Γ) with kernel (H ′,Γ′) and g ∈ E(G)∩E(G′).

Then the ends of g form a blocking pair of (H,Γ) if and only if the ends of g form a blocking

pair of (H ′,Γ′).

In a signed-graph a double path is obtained from an internally disjoint path by replacing

every edge by an odd polygon of size two. The next proposition will be the key for

recognizing recalcitrant separations,

Proposition 5.6.12. Let (H,Γ) be a bilateral representation of N with loop ei. Suppose

that H has no solid separation. Then X is a recalcitrant separation of N if and only the

ends of ej (resp. ek) form a blocking pair of the kernel of (H,Γ).

Proof. Suppose first that the ends of e2 form a blocking pair of the kernel of (H,Γ). It then

follows that the ends of e2 also form a blocking pair of (H,Γ) by Remark 5.6.11. Hence,

(H,Γ, X) is a Type II configuration and by definition X is a recalcitrant separation of N .

Suppose now that X is a recalcitrant separation of N . By Proposition 5.6.6 there exists a

Type II configuration (H ′,Γ, X) where H and H ′ are equivalent. After possibly re-signing

we have kernel (Ĥ,Γ) of (H,Γ) and kernel (Ĥ ′,Γ) of (H ′,Γ) where Ĥ and Ĥ ′ are equivalent.

Suppose that Z is a (not necessarily proper) 2-separation of Ĥ with {u, v} = ∂Ĥ(Z).

Claim 1. Z consists of a single edge or a double path with ends u, v.
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Subproof. Let us proceed by induction on |Z|. Clearly, the result holds if IĤ(Z) = ∅. Since

there is no solid separation we may assume that there exists w ∈ IĤ(Z) and a partition

Z1, Z2 of Z such that Z1, Z2 are 2-separations with ∂Ĥ(Z1) = {u,w} and ∂Ĥ(Z2) = {v, w}.

But then apply induction on Z1, Z2. For i ∈ [2], Zi is either a single edge or a double path. If

Z1 and Z2 are single edges, then we have a degree two vertex contradicting Proposition 4.3.1.

If Zi is an edge and Z3−i is a double path for some i ∈ [2] then we have a trivial separation,

a contradiction. If Z1 and Z2 are both double paths, then so is Z as required. ♦

Claim 2. Z is a double path of length two.

Subproof. Otherwise one of the odd polygon will not be incident to the ends of e2 in Ĥ ′

contradicting the fact that the ends of e2 form a blocking pair of (Ĥ ′,Γ). ♦

The ends of e2 form a blocking pair of (H ′,Γ). It follows by Remark 5.6.11 that the ends of

e2 form a blocking pair of (Ĥ ′,Γ). Since Ĥ and Ĥ ′ are equivalent and because of Claim 1,

the ends of e2 form a blocking pair of (Ĥ,Γ) as required.

5.6.3 Algorithm (5)

In this section, we will show that, when trying to recognize whether a matroid is pinch-

graphic, we can restrict ourselves to internally 4-connected matroids. We will describe a

number of procedures that take a (binary) matroid M as input. In each case, the matroid

will be described by its m×n, 0, 1 matrix representation A. A procedure runs in polynomial

time if its running time is bounded by a polynomial in m and n. The algorithm rely on

Propositions 3.3.4 and 3.3.5 from Section 3.3.1.

Next we describe algorithms that will analyze reducible, compliant, and recalcitrant

separations.
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Algorithm A: reducible separations

The procedure takes as input a pair M and X ⊆ E(M) where either (1) X is a 1-separation

of M ; (2) M is 2-connected and X is a 2-separation of M ; or (3) M is 3-connected and X is a

proper 3-separation of M . In polynomial time, the procedure will either indicate that either

(a) X is not reducible, or (b) return a matroid N where |E(N)| < |E(M)| and where N is

pinch-graphic if and only if M is pinch-graphic. We proceed as follows: X is a k-separation

for some k ∈ [3]. If k = 1, then we let M1 = M \X and M2 = M \(E(M)−X). If k ∈ {2, 3},

then we construct the completion N of M with respect to X and we let M1 = N \X and

M2 = N \ (E(M)−X). Then, M = M1 ⊕k M2 (see Propositions 3.1.9 and 4.1.2). Then,

we check whether there exists i ∈ [2] such Mi is graphic (see Proposition 3.3.5). If not, we

stop and indicate that X is not reducible. Otherwise, we stop and return N := M3−i that

is pinch-graphic if and only if M is pinch-graphic (see Propositions 4.1.6, 4.1.7 and 4.1.8).

Algorithm B: compliant separations

The procedure takes as input a pair M and X ⊆ E(M) where X is a proper 3-separation

of M and M is 3-connected. In polynomial time, the procedure will indicate whether X is

compliant. We proceed as follows: first we construct the completion N of M with respect to

X and we let M1 = N \X and M2 = M \ (E(M)−X). Let {e1, e2, e3} = E(M1) ∩E(M2).

If M1 \ e and M2 \ e are both graphic for some i ∈ [3], then we stop and indicate that X is

compliant. Otherwise, we stop and indicate that X is not compliant. Correctness follows

from Proposition 5.6.1.
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Algorithm C: recalcitrant separations

The procedure takes as input a pair M and X ⊆ E(M) where X is a proper 3-separation

of M and M is 3-connected. In polynomial time, the procedure will do one of the following:

(a) establish that X is recalcitrant, (b) establish that X is not recalcitrant, or (c) return a

matroid N where |E(N)| < |E(M)| and where N is pinch-graphic if and only if M is pinch-

graphic. We proceed as follows: first, we construct the completion N of M with respect to

X and we let M1 = N \X and M2 = N \ (E(M)−X). Let {e1, e2, e3} = E(M1) ∩E(M2).

If M/e1 is not graphic, then we stop and indicate that X is not recalcitrant. Correctness

follows from Proposition 5.6.6 (a). Otherwise, we find a graph G′ for which M/e = cycle(G′).

Construct H by adding loop e1, and let Γ be any cocircuit of M using e1. If (H,Γ) is not

bilateral, then we stop and indicate that X is not recalcitrant. Correctness follows from

Proposition 5.6.6 (c). We then check whether H has a solid separation Z. If it does, we

run procedure A with input M and Z. If procedure A says that Z is not reducible, then

we stop and indicate that X is not recalcitrant. Correctness follows from Proposition 5.6.9.

Otherwise, we stop and return the matroid N given by procedure A. Next, we construct

the kernel of (H,Γ). If the ends of e2 (resp. e3) of the kernel form a blocking pair, then we

indicate that X is recalcitrant; otherwise, we indicate that X not recalcitrant. Correctness

follows from Proposition 5.6.12.

Putting it together

The procedure takes as input a matroid M . In polynomial time it will either (a) establish

that M is pinch-graphic, (b) establish that M is not pinch-graphic, or (c) construct a

matroid N that is internally 4-connected where N is isomorphic to a proper minor of M

and where N is pinch-graphic if and only M is pinch-graphic. Note we can check if M has a
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1-, 2-, or proper 3-separation in polynomial time (see Proposition 3.3.4). Also observe that

if we establish that M has a compliant or a recalcitrant separation then by definition M is

pinch-graphic. Finally note that a proper 3-separation of a 3-connected binary matroid has

at most 8 homologous 3-separations.

We repeat the following steps until we stop,

(1) Try to find a 1-separation or a 2-separation. If there exists such a k-separation, pick one

minimizing k. Use Algorithm A to check whether such a separation X is reducible. If X

is not reducible, then stop and return that M is not pinch-graphic (see Propositions 4.1.7

and 4.1.8). If X is reducible, then set M := N where N is the matroid returned by

Algorithm A and start again at the beginning of (1).

At this stage of the algorithm, the matroid M is 3-connected.

(2) Try to find a proper 3-separation Y . If no such separation exists, we stop and return

M .

(3) For each separation X that is homologous to Y do the following:

(3.1) Use Algorithm A to check whether X is reducible. If it is, then set M := N where

N is the matroid returned by Algorithm A and start again at the beginning of (1).

(3.2) Use Algorithm B to check whether X is compliant. If it is, then stop and return

that M is pinch-graphic.

(3.3) Use Algorithm C. If the algorithm indicates that X is recalcitrant, then stop and

return that M is pinch-graphic. If the algorithm returns a matroid N , then set

M := N and start again at the beginning of (1).
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At this stage, none of the separations homologous to Y is either reducible, compliant or

recalcitrant. Hence, by Proposition 1.4.3, M is not pinch-graphic.

(4) Stop and return that M is not pinch-graphic.
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Chapter 6

Future works

6.1 Isomorphism problem

Consider graphs H and H ′ where E(H) ∩ E(H ′) = {e, f, g} where {e, f, g} is a triangle

of both H and H ′. The graph obtained by identifying e, f, g in H and H ′; and deleting

{e, f, g} is a 3-sum of H and H ′ on e, f, g. 3-sums preserve the sibling property.

Proposition 6.1.1. Let (G1, G2) be siblings with triangle {e, f, g} and let H be a graph

with a triangle {e, f, g}. For i ∈ [2], let G′i be obtained from Gi by a 3-sum of Gi and H on

e, f, g. Then, (G′1, G
′
2) are siblings.

Proof. Let Σ1,Σ2 be a matching-signature pair for G1, G2. Since {e, f, g} is a circuit of both

G1 and G2, it must be even, for otherwise would have cycle(G1) = cycle(G2), contradicting

the fact that G1, G2 are siblings. Hence, we may assume by re-signing that for i ∈ [2],

Σi ∩ {e, f, g} = ∅. Let C be an even cycle of (Gi,Σi) for some i ∈ [2]. We claim that C

is an even cycle of (G3−i,Σ3−i). This is obvious if C ⊆ E(Gi) or if C ⊆ E(H). Thus, we

172



may assume that C = P ∪ Q where P is a path of H and where Q is a path of Gi and

(P ∪Q)∩ {e, f, g} = ∅. After possibly interchanging the role of e, f, g, we may assume that

P and Q have have the same ends as e. But then P ∪ {e} and Q∪ {e} are both even cycles

of (G2,Σ2). But then so is P ∪Q and it follows that ecycle(G′1,Σ1) = ecycle(G′2,Σ2) and

in particular that (G′1, G
′
2) are siblings.

Consider siblings G1 and G2 with matching-terminal pair T1, T2 where for i ∈ [2], Gi is

isomorphic to K6 and |Ti| = 6. An example is given in Figure 1.6. Then repeatedly, pick a

triangle {e, f, g} of G1 that is also a triangle in G2 and for i ∈ [2] replace Gi by a 3-sum of

Gi and some graph H on e, f, g. The resulting pair of graphs are K6-siblings. Note that

they are indeed siblings by Proposition 6.1.1.

We conjecture that Theorem 2.3.1 has an analogue result for the case where the siblings

are 3-connected, namely, we predict the following:

Conjecture 6.1.2. Let (G1, G2) be 3-connected, closed siblings that are neither graphic

nor cographic. Denote by (Σ1,Σ2) the matching-signature pair and denote by (T1, T2) the

matching-terminal pair. Then, one of the following holds:

(a) (G1, G2) are K6 siblings;

(b) (G1, G2) are blocking-pair siblings;

(c) (G1, G2) are T4 siblings;

(d) there exist i ∈ [2] (say i = 1) and a graph G′1 such that (G1, G
′
1) are blocking-pair

siblings, and (G′1, G2) are cographic siblings; or

(e) there exists i ∈ [2] (say i = 1) and a graph G′1 such that (G1, G
′
1) are T4 siblings, and

(G′1, G2) are graphic siblings.
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Note that we added outcome (e). This is necessary because of the following siblings

given in Figure 6.1. Denote by G1 and G2 the graphs on the left and right. The white

vertices represent terminals. Then, (G1, G2) are siblings, but none of outcomes (a)–(d)
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c

b

a

2

6 5

1

7

6

98
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10

2

11

3

4
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c

a

Figure 6.1: A bad example.

arise. However, there exists a graph G′1, as illustrated in Figure 6.2, where (G1, G
′
1) are T4

siblings and (G′1, G2) are graphic siblings, which is outcome (e) in Conjecture 6.1.2. More

examples appear in [23].
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2

6 5
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c

Figure 6.2: Graphic siblings after a T4-move.
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6.2 Excluded minors

6.2.1 Well-known classes

For a minor-closed class of matroids, it is often described as a list of excluded minors. An

excluded minor is a minor-minimal matroid that is not in the class. The sets of the excluded

minors of the following classes are well-known:

(a) {U2,4} for binary matroids [49],

(b) {U2,5, U3,5, F7, F
∗
7 } for ternary matroids [48],

(c) {U2,4, F7, F
∗
7 } for regular matroids [49, 17],

(d) {U2,4, F7, F
∗
7 , cut(K5), cut(K3,3)} for graphic matroids [50] and

(e) {U2,4, F7, F
∗
7 , cycle(K5), cycle(K3,3)} for cographic matroids [50]

6.2.2 Even-cycle and even-cut matroids

We are interested in analogous problems for classes of even-cycle, even-cut, pinch-graphic

and pinch-cographic matroids, namely, we are interested in the following problems:

Problem 6.2.1.

(a) Describe excluded minors for even-cycle matroids,

(b) describe excluded minors for even-cut matroids,

(c) describe excluded minors for pinch-graphic matroids that are even-cycle matroids, and
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(d) describe excluded minors for pinch-cographic matroids that are even-cut matroids.

Let us recall Theorem 3.1.1 from Section 3.1.1, which implies that there is a finite

number of excluded minors for even-cycle matroids.

Theorem 3.1.1. There exists a constant c, such that every minimally non-pinch-graphic

(resp. minimally non-pinch-cographic) matroid has at most c elements.

However, Pivotto and Royle [41] found more than 400 excluded minors for the class of

even-cycle matroids. In [19], it is proved that, for a “highly” connected matroid M , M is

an even-cycle matroid if and only if it does not have a minor isomorphic to PG(3, 2) \ e, L19

or L11. The definitions of these matroids and similar results for even-cut, pinch-graphic

and pinch-cographic matroids can be found in [19].

As shown in [40] (Lemma 7.1 and Lemma 7.2), the following hold:

Lemma 6.2.2. Let M = M1 ⊕1 M2 be a 1-sum of M1 and M2. Then, M is an excluded

minor for even-cycle matroids if and only if both M1 and M2 are minimally non-graphic

matroids.

Lemma 6.2.3. Let M = M1 ⊕1 M2 be a 1-sum of M1 and M2. Then, M is an excluded

minor for even-cut matroids if and only if both M1 and M2 are minimally non-cographic

matroids.

As a corollary of Propositions 1.4.1 and 4.2.1, the following can be proved.

Corollary 6.2.4. Let M = M1 ⊕1 M2 be a 1-sum of M1 and M2. Then, M is an excluded

minor for pinch-graphic matroids if and only if both M1 and M2 are minimally non-graphic

matroids.
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Corollary 6.2.5. Let M = M1 ⊕1 M2 be a 1-sum of M1 and M2. Then, M is an excluded

minor for pinch-cographic matroids if and only if both M1 and M2 are minimally non-

cographic matroids.

As a consequence of the characterization of 1-, 2- and 3-separations of even-cycle

matroids, the following problems can be considered.

Problem 6.2.6.

(a) Describe excluded minors for even-cycle matroids that contain a 2- or 3-separation,

(b) describe excluded minors for even-cut matroids that contain a 2- or 3-separation,

(c) describe excluded minors for pinch-graphic matroids that are even-cycle matroids and

contain a 2- or 3-separation, and

(d) describe excluded minors for pinch-cographic matroids that are even-cut matroids and

contain a 2- or 3-separation.
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List of Notations

(V,E) the graph with vertex set V and edge set E 1

V (G) the vertex set of graph G 1

E(G) the edge set of graph G 1

G[U ] the induced subgraph of G by vertex subset U of G 1

G[F ] the induced subgraph of G by edge subset F of G 1

E(M) the ground set of matroid M 1

cycle(G) the cycle matroid which arises from graph G 2

G/I \ J the minor of graph G obtained by contracting I and deleting J 2

M/I \ J the minor of matroid M obtained by contracting I and deleting J 2

δG(W ) the cut of G generated by vertex set W 2

δG(v) the cut of G generated by vertex v 2

cut(G) the cut matroid which arises from graph G 2
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∂G(X) the intersection of VG(X) and VG(E(G)−X) 3

[k] set {1, 2, . . . , k} 3

rM the rank function of matroid M 4

r(M) the rank of matroid M 4

λM the connectivity function of matroid M 4

(G,Σ) the signed graph with graph G and sign Σ 4

ecycle(G,Σ) the even-cycle matroid which arises from signed graph (G,Σ) 5

(G,Σ)/I \ J the minor of signed graph (G,Σ) obtained by contracting I and deleting J 5

(G,Σ)|F the induced signed graph of (G,Σ) by edge subset F of G 5

(G, T ) the graft with graph G and terminal set T 6

ecut(G, T ) the even-cut matroid which arises from graft (G, T ) 6

Vodd(G) the subset of odd-degree vertices of graph G 6

(G, T )/I \ J the minor of graft (G, T ) obtained by contracting I and deleting J 6

(G, T )|F the induced graft of (G, T ) by edge subset F of G 7

(G,B) the biased graph with graph G and set B of balanced cycles 8

FM(G,B) the frame matroid which arises from biased graph (G,B) 8

LM(G,B) the lift matroid which arises from biased graph (G,B) 10

Σ ∆ Γ the symmetric difference of Σ and Γ 12
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VG(F ) the vertex set of the induced subgraph of G by edge subset F 17

clM(X) the closure of edge subset X for matroid M 23

M∗ the dual of matroid M 23

IG(X) the set of vertices in VG(X)− ∂G(X) 23

λ1(N) the number of connected components of matroid N 69

Λ2(N) the collection of 3-connected matroids that construct matroid N by 1-sums and

2-sums 69

λ2(N) the number of matroids in Λ2(N) 69

f(M) the number of pairwise inequivalent signed-graph representations of matroid M 70

κ(H) the number of components of graph H 71

M1 ⊕1 M2 the 1-sum of matroids M1 and M2 73

M1 ⊕2 M2 the 2-sum of matroids M1 and M2 73

g(M) the number of pairwise inequivalent graft representations of matroid M 80

M1 ⊕3 M2 the 3-sum of matroids M1 and M2 113
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Index

adding a pin, 81

adjacent blocking pair, 37

auxiliary graph, 71

balanced cycle, 8

beads, 102

biased graph, 8

bicircular matroid, 9

bicircular-lift matroid, 11

bilateral, 161

bipartite, 71

blocking pair, 18, 32

adjaecent, 37

blocking vertex, 40, 107

blocking-pair representation, 18, 67

blocking-pair sibling, 33

boundary vertex, 3

of wheel pair, 47

of widget pair, 47

BP-move, 33

broken handcuff, 10

closed, 36

closure, 23, 126

cocycle, 143

cographic matroid, 2

cographic sibling, 15

completion

of 2-separation, 73

of 3-separation, 114

compliant, 23, 24, 126

connectivity function, 4, 71

contraction

graph, 2

matroid, 2

counterexample
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isomorphism problems, 39

cross, 102

cut, 2

cycle, 1

of a binary matroid, 143

degenerate separation, 166

deletion

graph, 2

matroid, 2

diamond, 40

donut graph, 17

double ear, 72, 120

k-uniform, 120

double path, 166

ear, 137

ear decomposition, 137

equivalent

graft, 12

graph, 3

signed graph, 12

eulerian

graft, 81

even

cut, 6

cycle, 5

edge, 5

even-cut matroid, 6

even-cycle matroid, 5

excluded minor, 175

extension

graft, 151

graph representation, 143

signed graph, 147

extremal

graft, 83

signed graph, 76

Fano matroid, 5, 6

folding, 32

(4,`)-connected, 21

4-connected

sibling, 35

frame matroid, 8

gain graph, 8

good sequence, 87

graft, 6

nice, 93

special, 93

graft matroid, 144

graft representation, 6

graph, 1
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graph representation

of cographic matroid, 2

of graphic matroid, 2

graphic matroid, 2

graphic sibling, 15

group-labelled graph, 8

head, 81

homologous, 23, 126

hub, 47

induced

graft, 7

signed graph, 6

subgraph, 1

inequivalent

graft, 12

graph, 3

signed graph, 12

interior vertex

of wheel pair, 47

of widget pair, 47

internally 4-connected, 21

isomorphism, 102

k-connected

graph, 16

k-separating, 4

exactly, 4

k-separation, 4

k-uniform

double ear, 120

theta, 120

kernel, 166

lift matroid, 10

loose handcuff, 9

Lovász-flip, 121

resulting blocking pair, 121

matching-signature pair, 14

matching-terminal pair, 14

mate, 45

matroid, 1

maximal small 2-separation, 101

minimally

non-pinch-cographic, 80

non-pinch-graphic, 69

minor

graft, 6

graph, 2

matroid, 2

signed graph, 5
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N -minor, 87

necklace, 102

nice graft, 93

odd

cut, 6

cycle, 5

edge, 5

1-flip, 3

1-sum, 73, 113, 142

pin, 81, 91

pinch-cographic matroid, 20

pinch-graphic matroid, 18

polygon, 1

proper, 4

pseudo-path, 36

rank function, 4

re-sign, 5

recalcitrant, 23, 24, 126

reducible, 22, 112

reducing, 166

rim polygon, 48

rim vertex, 47

Shih sibling, 15, 29

shore, 2

shuffling, 19

sibling, 14, 29

blocking-pair, 33

cographic, 15

graphic, 15

K6, 173

Shih, 15, 29

T4, 34

sign, 4

signature, 4

signed graph, 4

simple, 40

signed-graph representation, 5

signed-graphic matroid, 10

skewed, 95

small 2-separation, 101

solid separation, 164

special

vertex, 108

special graft, 93

splitting, 82

sum

on a loop, 75

on a pin, 82

on an edge (for grafts), 83
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on an edge (for signed graphs), 75

T -join, 6

T4 representation, 20, 67

T4 sibling, 34

terminal, 6

terminal set, 6

T4-move, 34

theta, 120

k-uniform, 120

theta graph, 8, 72

theta property, 8

3-connected, 4, 21

3-sum, 113

3-sum on a triangle, 172

tight handcuff, 9

2-connected, 4

2-flip, 3

2-separation

cross, 102

maximal small, 101

small, 101

2-sum, 73, 113, 142

Type I

configuration, 23, 126

nice representation, 99

Type II

configuration, 23, 126

nice representation, 99

unbalanced

cycle, 8

theta, 9

uncontracting, 82

underlying graph

of graft, 6

of signed graph, 4

unfolding, 32

unstable, 96

well-connected, 101

wheel, 30, 143

part, 30

proper, 30

wheel pair, 30

widget, 31

part, 31

proper, 31

widget pair, 31
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