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Abstract

We study two different deformation theory problems on manifolds with a nearly G2-
structure. The first involves studying the deformation theory of nearly G2 manifolds.
These are seven dimensional manifolds admitting real Killing spinors. We show that the
infinitesimal deformations of nearly G2-structures are obstructed in general. Explicitly, we
prove that the infinitesimal deformations of the homogeneous nearly G2-structure on the
Aloff–Wallach space are all obstructed to second order. We also completely describe the
de Rham cohomology of nearly G2 manifolds.

In the second problem we study the deformation theory of G2 instantons on nearly
G2 manifolds. We make use of the one-to-one correspondence between nearly parallel
G2-structures and real Killing spinors to formulate the deformation theory in terms of
spinors and Dirac operators. We prove that the space of infinitesimal deformations of an
instanton is isomorphic to the kernel of an elliptic operator. Using this formulation we
prove that abelian instantons are rigid. Then we apply our results to explicitly describe
the deformation space of the canonical connection on the four normal homogeneous nearly
G2 manifolds.

We also describe the infinitesimal deformation space of the SU(3) instantons on Sasaki–
Einstein 7-folds which are nearly G2 manifolds with two Killing spinors. A Sasaki–Einstein
structure on a 7-dimensional manifold is equivalent to a 1-parameter family of nearly G2-
structures. We show that the deformation space can be described as an eigenspace of a
twisted Dirac operator.
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Chapter 1

Introduction

In this thesis we primarily focus on 7-dimensional manifolds with (non-parallel) Killing
spinors. A Killing spinor is a section η of the spinor bundle /S of a Riemannian spin
manifold (Mn, g) for which there exists a non-zero constant λ such that for all vector field
X, the covariant derivative ∇Xη (the lift of the Levi-Civita connection) and the Clifford
multiplication X · η are related by the equation

∇Xη = λX · η.

Solutions of this equation occur quite naturally in differential geometry as well as in math-
ematical physics. On a compact Riemannian spin manifold with non-negative scalar cur-
vature R there is a lower bound for the first eigenvalue of the Dirac operator involving
R, and eigenspinors to this lower bound are Killing spinors (see [Hij86]). Furthermore,
Killing spinors are special solutions of the so-called twistor equation and in the case of a
compact manifold they generate - up to a conformal change of the metric - all solutions
of the twistor equation. The construction of models in supergravity also depends on Rie-
mannian manifolds with Killing spinors. Such manifolds are Einstein with scalar curvature
R = 4n(n − l)λ2 (see [BFGK91, Sec 1.5, Thm 8]). For some Lie group G ⊂ SO(n) they
admit a G-structure which is the reduction of the structure group of the frame bundle
from SO(n) to G. The G-structure is however not torsion-free since the holonomy group
of the Levi-Civita connection is not a subgroup of G. Nevertheless, manifolds with real
Killing spinors are closely related to manifolds with torsion-free G-structures since the cone
metric over such manifolds has special holonomy (see [Bär93]). For example the cone over
a 6-dimensional nearly Kähler manifold has a torsion-free G2-structure and the cone over
a nearly G2 manifold has a torsion-free Spin(7)-structure.
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In dimension 7, manifolds with real unit Killing spinor come equipped with a particular
type of G2-structure and are known as nearly G2 manifolds. Our investigation of these
nearly G2 manifolds is two-fold. First we set up the deformation theory of nearly G2-
structures. We describe the first and second order deformations of nearly G2-structures
and use them to prove the rigidity of the infinitesimal deformations of a nearly G2-structure
on the Aloff–Wallach space X1,1. This work is done in a joint paper with Shubham Dwivedi
[DS20]. Similar results were earlier proved by [Fos17] for nearly Kähler 6-manifolds.

The second route we embark upon is to understand the gauge theory on nearly G2

manifolds. Over a manifold equipped with a Killing spinor η, we consider connections
∇ of curvature F∇ that satisfy F∇ · η = 0. Those connections are called instantons and
are, as proved in [HN12] solutions to the Yang–Mills equation (which itself is described in
more details in Chapter 5). Harland–Nölle (still in [HN12]) also constructed a distinguished
connection, the canonical connection on the tangent bundle which is an analog to the Levi-
Civita connection on manifolds with torsion-free G-structure. One can define the canonical
connection for any manifold with a G-structure such that G ⊂ SO(n). Thus we have the
splitting so(n) = g⊕ g⊥ and the canonical connection is the restriction of the Levi-Civita
connection on g. The canonical connection is a G-instanton and has holonomy contained
in G. Thus a better understanding of the canonical connection is a crucial ingredient in the
geometry of manifolds with real Killing spinors. The deformation space of the canonical
connection in the nearly Kähler 6-dimensional case was studied in [CH16] and in the nearly
G2 case by the author in [Sin21]. This last paper is the topic of Chapter 7 where we study
the deformation space of instantons on manifolds with a nearly G2-structure.

Gauge theory and instantons have been a very active area of research for many years.
In gauge theory one often tries to understand the connections on vector and principal
bundles over manifolds. In search of the “best” connection on a vector or principal bundle
that is, the one for which the curvature is closest to zero, we come across instantons. These
instantons are critical points of the Yang–Mills functional and in some cases minimize the
functional. One of the successful applications of gauge theory comes from the seminal
work of Donaldson [Don83] where he showed that the moduli space of anti-self-dual (ASD)
instantons can be used to assign numerical invariants to smooth 4-manifolds. In a hope
to achieve a similar feat in dimension 7 on manifolds with a G2 structure in [DT98] and
[DS11] it was suggested that counting G2 instantons “appropriately” might yield a geometric
invariant of G2 manifolds.

For a Riemannian manifold (M, g) the holonomy group Hol(g) is the group generated by
all parallel transports for the Levi-Civita connection along closed null-homotopic loops on
M . In 1955, Marcel Berger gave his famous Holonomy Theorem [Ber55] which states that
for an irreducible non-symmetric Riemannian manifold, there are finitely many possible
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holonomy groups listed in Table 1.1. Here by definition Sp(q) · Sp(1) = Sp(q)×Sp(1)
Z2

for the
obvious Z2 generated by the action of (−1,−1).

dim(M) Hol(g) Nomenclature
n SO(n) Oriented Riemannian

2m U(m) Kähler
2m SU(m) Calabi–Yau
4q Sp(q) Hyper-Kähler
4q Sp(q) · Sp(1) Quaternionic-Kähler
7 G2 G2 holonomy
8 Spin(7) Spin(7) holonomy

Table 1.1: Berger’s holonomy theorem

Berger’s Holonomy Theorem only lists the possible holonomy groups, but it was initially
not known which of these groups appear as holonomy groups of Riemannian manifolds.
In particular, no Riemannian manifolds with holonomy group G2 were known until 1984
when Bryant constructed the first local examples [Bry87] followed by complete non-compact
examples in [BS89] and finally compact examples in [Joy96]. It is now known that all of
these possibilities can occur as holonomy groups of manifolds.

The holonomy groups U(m), SU(m), Sp(q), Sp(q) · Sp(1),G2, Spin(7) are called special
holonomies and the groups G2 and Spin(7) are also referred as exceptional holonomies due
to the nature of their Lie groups.

Another way to think about manifolds with special holonomy is via G-structures. A
reduction of a principal G-bundle P → M to a subgroup H ⊂ G is a principal H-bundle
Q → M together with a smooth map ν : Q → P which covers the identity on M and is
H-equivariant. In terms of transition maps, a G-bundle can be reduced to H if and only
if the transition maps can be taken to have values in H.

Definition 1.0.1. For a Lie group G ⊂ GL(n,R) a G-structure onM is a reduction of the
structure group of the frame bundle F(M) from GL(n) to G. It is a principal subbundle
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PG of the frame bundle F(M) satisfying

G GL(n)

PG F(M)

M

If G ⊂ O(n), the G-structure has an underlying Riemannian metric, which we denote
by g. An orientation along with a compatible metric g is called an SO(n)-structure on
M which is equivalent to a reduction of the structure group of F(M) from GL(n,R) to
SO(n). Another example is an almost Hermitian structure on M which is defined by an
almost complex structure J such that g(JX, JY ) = g(X, Y ) for all X, Y ∈ Γ(TM). It is
easy to check that such a structure exists only if n = 2m that is n is even. An almost
Hermitian structure on M is a reduction of the structure group of the frame bundle from
GL(2m,R) to U(m). We call a connection ∇ on TM compatible with the G-structure P , if
the corresponding connection on F(M) reduces to P . For a fixed connection ∇ on F(M)
there is a compatible G-structure P if and only if Hol(∇) ⊂ G (for a proof of this fact
refer to [Joy07, Proposition 2.6.3]).

Manifolds with special algebraic structures have gained immense popularity in mathe-
matics since they serve as the primary and sometimes the only known examples of manifolds
with some desired geometric properties such as Ricci-flatness or positive Einstein. In fact,
all currently known examples of irreducible and non-symmetric compact Ricci-flat man-
ifolds have special holonomy. In particular, G2 manifolds are always Ricci-flat. On the
physics side these manifolds are studied in much detail due to their importance in su-
pergravity and superstring theory, in particular for finding solutions which preserve some
supersymmetry.

We start the discussion by setting up the groundwork and notation in Chapter 2 by
discussing some well known standard material on manifolds with G2-structures. We define
a G2-structure on a 7-dimensional manifold M . We also see how the G2-structure induces
a decomposition of differential forms on M . Then we see a classification of G2-structures
into 16 types based on their torsion form.

In Chapter 3 we discuss an alternative and equivalent way to define a G2-structure
using spinors. We begin by giving a brief introduction to spin geometry and then discuss
the one-to-one correspondence between a G2-structure form and a real unit spinor. In
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many instances thinking of a G2-structure as a unit spinor makes computation easier as
we see in Chapters 6, 7, and 8 where we use this equivalence to study the deformations of
nearly G2-structures and G2, SU(3) instantons.

From Chapter 4 we leave the realm of general G2-structures and focus on manifolds
with nearly G2-structure. These manifolds do not have reduced holonomy and in fact their
holonomy group is the full SO(7). With respect to the spinorial description discussed in
Chapter 3 nearly G2-structure is equivalent to the presence of a unit Killing spinor η on
the spinor bundle. The spinor bundle /S in this case decomposes as

/S = Λ0η ⊕ Λ1 · η ∼= Λ0(T ∗M)⊕ Λ1(T ∗M).

In some situations to make the statement cleaner we use the notation

S0 := Λ0η, S1 := Λ1 · η.

These manifolds are positive Einstein (see [HN12]) and are thus an important class of
manifolds to study. Nearly G2 manifolds have a lot in common with the 6-dimensional
nearly Kähler manifolds and thus earlier works on 6-dimensional nearly Kähler manifolds
motivates the study of these nearly G2 manifolds. Another motivation comes from the fact
that the cone over these manifolds have holonomy equal to either Spin(7), SU(4), or Sp(2)
depending on the dimension of the space of Killing spinors on M . This property makes
these spaces particularly important in the construction and understanding of manifolds
with torsion-free Spin(7)-structures.

In Chapter 5 we begin the discussion of gauge theory on G2 manifolds. We define what
is the 7-dimensional analogue of the self-dual connections on 4-manifolds. We also study
many equivalent definitions to define a G2 instanton. For a 7-dimensional manifold M7

with a G2-structure ϕ and a unit spinor σ associated to ϕ, a connection A on M is a G2

instanton if its curvature FA satisfies the algebraic condition

FA ∧ ϕ = ∗ϕFA.

The above condition is equivalent to FA · σ = 0 as shown in Chapter 5. When the G2-
structure is parallel these instantons clearly solve the Yang–Mills equation d∗∇F = 0. The
analogous result was proved in the nearly G2 case by Harland–Nölle [HN12]. They showed
that the instantons on manifolds with real Killing spinors solve the Yang–Mills equation
which makes the study of instantons on nearly G2 manifolds important from the point of
view of gauge theory in higher dimensions. However G2 instantons in the parallel case are
the minimizers of the Yang–Mills functional which is not necessarily true for the nearly
parallel case, as proved by Ball–Oliveira in [BO19].
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The new results in this thesis are regarding the deformation theory of nearly G2-
structures, G2 instantons on nearly G2 manifolds, and SU(3) instantons on Sasaki–Einstein
7-folds.

In Chapter 6, we study the deformation theory of nearly G2 manifolds. The infinites-
imal deformations of nearly G2 manifolds were studied by Alexandrov–Semmelmann in
[AS12] where they identified the space of infinitesimal deformations with an eigenspace
of the Laplacian acting on co-closed 3-forms on M of type Ω3

27. We address the ques-
tion of whether nearly G2 manifolds have obstructed or unobstructed deformations, i.e.,
whether infinitesimal deformations can be integrated to genuine deformations. This could
potentially give new examples of nearly G2 manifolds. Another application of studying the
deformation theory of nearly G2 manifolds can be to develop the deformation theory of
Spin(7) conifolds which are asymptotically conical and conically singular Spin(7) manifolds,
similar to the theory developed by Karigiannis–Lotay [KL20] for G2 conifolds. Lehmann
[Leh21] studies the deformation theory of asymptotically conical Spin(7)−manifolds.

The study of deformation theory of special algebraic structures is not new. Deformations
of Einstein metrics were studied by Koiso where he showed [Koi82, Theorem 6.12] that
the infinitesimal deformations of Einstein metrics is in general obstructed, by exhibiting
certain Einstein symmetric spaces which admit non-trivial infinitesimal Einstein deforma-
tions which cannot be integrated to second order. The deformation theory of nearly Kähler
structures on homogeneous 6-manifolds was studied by Moroianu–Nagy–Semmelmann in
[MNS08]. They identified the space of infinitesimal deformations with an eigenspace of
the Laplacian acting on co-closed primitive (1, 1)-forms. Using this, they proved that the
nearly Kähler structures on CP3 and S3× S3 are rigid and the flag manifold F3 admits an
8-dimensional space of infinitesimal deformations. Later, Foscolo proved [Fos17, Theorem
5.3] that the infinitesimal deformations of the flag manifold F3 are all obstructed. We
follow a strategy similar to [Fos17]. After introducing a modified Dirac operator on nearly
G2 manifolds, we use its properties and the Hodge decomposition theorem to completely
describe the cohomology of a complete nearly G2 manifold. We prove our first two main
results of the paper which characterize harmonic forms. These are the following.

Theorem 4.3.7. Let (M,ϕ, ψ) be a compact nearly G2 manifold. Then every harmonic
4-form lies in Ω4

27. Equivalently, every harmonic 3-form lies in Ω3
27.

Theorem 4.3.8 Let (M,ϕ, ψ) be a compact nearly G2 manifold. Then every harmonic
2-form lies in Ω2

14. Equivalently, every harmonic 5-form lies in Ω5
14.

We note that Theorem 4.3.8 was originally proved by Ball–Oliveira [BO19, Remark 15].
We give a different proof in this paper.
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We use the properties of the modified Dirac operator, explicitly we use Proposition 4.3.6,
to prove a slice theorem for the action of the diffeomorphism group on the space of nearly
G2-structures on M in Proposition 6.1.1. Using this, in Theorem 6.1.2 we obtain a new
proof of the identification of the space of infinitesimal nearly G2 deformations with an
eigenspace of the Laplacian acting on co-closed 3-forms of type Ω3

27, a result originally due
to Alexandrov–Semmelmann [AS12].

To study higher order deformations of nearly G2 manifolds, we use the point view of
Hitchin [Hit01] where he interprets nearly G2-structures as constrained critical points of
a functional defined on the space Ω3 × Ω4

exact. This approach is inspired from the work of
Foscolo [Fos17] where he used similar ideas to study second order deformations of nearly
Kähler structures on 6-manifolds. The advantage of this approach is that it allows us
to view the nearly G2 equation (4.1.1) as the vanishing of a smooth map (cf. equation
(6.1.10)) on Ω4

+,exact, the space of exact positive 4-forms on M , given by

Φ : Ω4
+,exact × Γ(TM) −→ Ω4

exact.

Thus the obstructions on the first order deformations of a nearly G2-structure to be in-
tegrated to higher order deformations can be characterized by Im(DΦ) which we do in
Proposition 6.1.5.

Finally, we use the general deformation theory of nearly G2-structures developed in the
first part of the paper to study the infinitesimal deformations of the Aloff–Wallach space
SU(3)×SU(2)
SU(2)×U(1)

. It was expected in [Fos17] that the infinitesimal deformations of the Aloff–
Wallach space might be obstructed to higher orders. In §6.3 we confirm this expectation.
More precisely, we prove the following.

Theorem 6.3.1. The infinitesimal deformations of the homogeneous nearly G2-structure
on the Aloff–Wallach space X1,1

∼= SU(3)×SU(2)
SU(2)×U(1)

are all obstructed.

In Chapter 7, we investigate the infinitesimal deformation space of G2 instantons on
nearly G2 manifolds by applying a similar approach to [CH16]. In [CH16] Charbonneau–
Harland studied the infinitesimal deformation space of irreducible instantons with semi-
simple structure group on nearly Kähler 6-manifolds by identifying it with the eigenspace
of a Dirac operator. A significant difference between nearly G2 manifolds and the 6-
dimensional nearly Kähler manifolds is that the Killing spinors η and vol ·η are linearly
dependent in the former and independent in the latter case. This prevents us from having a
result like [CH16, Proposition 4(iii)] where one can relate the λ2-eigenspace of the square of
the Dirac operator to the λ-eigenspace of the Dirac operator which makes the computation
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of the infinitesimal deformation space much more convenient. In fact we show that such
a relation does not exist in the nearly G2 case by explicitly computing the kernel of the
elliptic operator for the homogeneous nearly G2 manifolds.

We prove the following main theorems for a nearly G2 instanton A on a principal bundle
P with curvature FA. Let EM be a vector bundle associated to P and the Dirac operator
D−1,A is as defined in (7.1.2).

Theorem 7.1.2. The space of infinitesimal deformations of a G2 instanton A on a princi-
pal bundle P over a nearly G2 manifold is isomorphic to the kernel of the elliptic operator(

D−1,A + 2 Id
)

: Γ(S1 ⊗ AdP)→ Γ(S1 ⊗ AdP).

Theorem 7.1.7. Any G2 instanton A on a principal G-bundle over a compact nearly G2

manifold M is rigid if

(i) the structure group G is abelian, or

(ii) all the eigenvalues of the operator

LA : Λ1 ⊗ AdP → Λ1 ⊗ AdP
w 7→ −2wyFA

are greater than −28
5
.

A similar result as above has been proved in [BO19, Proposition 8] when the structure group
is abelian or the eigenvalues are less than 6. The proof of the upper bound in [BO19] uses
the Weitzenböck formula on the connection associated to the Levi-Civita connection and
A. Our proof of the lower bound on the eigenvalue uses the Schrödinger–Lichnerowicz
formula for the family of Dirac operators constructed in Chapter 7.

We describe the infinitesimal deformation space of the canonical connection on all the
homogeneous nearly G2 manifolds whose nearly G2 metric is normal, that is it is a scalar
multiple of the Killing form. By considering the actions of the Lie groups H and G2

on G/H we can view the canonical connection as an H-connection or a G2-connection.
We compute its infinitesimal deformation spaces in both of these cases. The results are
recorded in Theorem 7.2. It would be interesting to see if these infinitesimal deformations
are genuine. As of now, the author is unaware of any known family of nearly G2 instantons
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for which the infinitesimal deformations are the ones found in Theorem 7.2. We remark
that we still do not know if any of the deformations we found are genuine and can be
integrated to generate new examples of G2 instantons but one can try to see if any of them
are obstructed to second order by using some ideas from Chapter 6.

In Chapter 8 we discuss the infintesimal deformation space of Sasaki instantons on
7-dimensional Sasaki–Einstein manifolds. These manifolds are orientable and spin and the
cone over them has an SU(4)-structure. The Sasaki–Einstein manifolds come equipped
with a contact structure defined by a Reeb vector field ξ, the 1-form dual to ξ denoted
by η and Φ ∈ Γ(End(TM). There are two Killing spinors on M which correspond to two
orthogonal nearly parallel G2-structures ϕ1, ϕ2 associated to unit real Killing spinors µ1, µ2

respectively. These two G2-structures are related by the equation

ϕ2 = −ϕ1 + 2(ξ ⌟ ϕ1) ∧ η.

One can show that a connection A on a principal bundle P over M is a Sasaki instanton if
and only if it is a G2 instanton with respect to both ϕ1 and ϕ2. Using this characterization
we can define the infinitesimal deformation space of a Sasaki instanton on M as the kernel
of a Dirac operator similar to the nearly parallel case. As in the case of proper nearly G2

structures where the dimension of the space of Killing spinors is 1, we have the decompo-
sition of the spinor bundle /S = S0 ⊕ S1. The decomposition depends on the choice of the
Killing spinor but since µ2 = ξ · µ1 both decompositions are isomorphic. Thus we get the
following theorem.

Theorem 8.2.2 The space of infinitesimal deformations of a Sasaki instanton A on a
principal bundle P over a 7-dimensional Sasakian manifold M is isomorphic to the kernel
of the operator (

D0,A +
5

2
Id
)

: Γ(S1 ⊗ AdP)→ Γ(S1 ⊗ AdP).

Again, one can define a canonical connection on a Sasakian manifold, and it is a Sasaki
instanton. In [HN12] it was shown that the characteristic homogeneous connection on a
homogeneous 7-dimensional Sasakian manifold is the same as this canonical connection.
Thus the above theorem can be used to describe the deformation space of the characteristic
homogeneous connection for the homogeneous 7-dimensional Sasaki manifolds.
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1.1 Notations and conventions

Throughout the thesis, unless otherwise stated, we compute in a local orthonormal frame,
so all indices are subscripts and any repeated indices are summed over all values from 1 to
7. Our convention for labelling the Riemann curvature tensor is

Rijkmem = (∇i∇j −∇j∇i −∇[ei,ej ]) ek,

in terms of the orthonormal frame {e1, e2, . . . , e7}. With this convention, the Ricci tensor
is Rjk = Rljkl, and the Ricci identity is

∇i∇jXk −∇j∇iXk = −RijklXl. (1.1.1)

We use the metric to identify the vector fields and 1-forms by the musical isomorphisms.
As such, throughout the thesis, we use them interchangeably without mention.

We have the following contraction identities between ϕ and ψ, whose proofs can be found
in [Kar09].

ϕijkϕabk = giagjb − gibgja − ψijab, (1.1.2)
ϕijkϕajk = 6gia (1.1.3)

and

ϕijkψabck = giaϕjbc + gibϕajc + gicϕabj − gjaϕibc − gjbϕaic − gjcϕabi, (1.1.4)
ϕijkψabjk = −4ϕiab, (1.1.5)
ψijklψabkl = 4giagjb − 4gibgja − 2ψijab (1.1.6)
ψijklψajkl = 24gia. (1.1.7)

We denote the Lie algebra associated to any Lie group G by the corresponding gothic
letter g.
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Chapter 2

Preliminaries on G2 geometry

This chapter comprises of a introduction to G2 geometry. We start the section by defining
G2-structures on a seven dimensional manifold and also discuss the decomposition of the
space of differential forms on such a manifold in §2.1. We define and describe the torsion of
a G2-structure and also discuss how this gives rise to the 16 distinct classes of G2-structure
are used throughout the thesis. Most of the material in this chapter can be found in
[Joy00]. Some other references are [Bry06], [Kar10], [Kar20], [Dwi20].

2.1 Manifolds with G2-structure

Let M7 be a smooth 7-dimensional manifold. A G2-structure on M is a reduction of the
structure group of the frame bundle from GL(7,R) to the Lie group G2 ⊂ SO(7). Such a
structure exists on M if and only if the manifold is orientable and spinnable, conditions
which are equivalent to the vanishing of the first and second Stiefel–Whitney classes. The
exceptional Lie group G2 can be defined as the stabiliser of a special 3-form on R7.

Let V = R7. The group GL(7,R) acts on Λi(V ∗) for all i = 0, . . . , 7. Let {ei, i = 1 . . . 7}
be the standard basis of V ∗. We write ei1i2...ip for ei1 ∧ ei2 ∧ · · · ∧ eip .
Definition 2.1.1. Let

ϕ0 = e123 − e167 − e527 − e563 − e415 − e426 − e437. (2.1.1)

Then the stabilizer of ϕ0 under the action of GL(7,R) on Λ3(V ∗) is the Lie group G2, that
is

G2 = {A ∈ GL(7,R) | A∗ϕ0 = ϕ0}. (2.1.2)
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The 3-form ϕ0 is called the standard G2 form.

The Lie group G2 is compact, connected, simply-connected, simple and 14-dimensional.
It also preserves the Euclidean metric

g0 = (e1)2 + (e2)2 + (e3)2 + (e4)2 + (e5)2 + (e6)2 + (e7)2

and the volume form

vol0 = e1234567

and thus it follows that G2 ⊂ SO(7). Since G2 preserves both the metric and orientation it
also preserves the Hodge star ∗ϕ0 and thus the 4-form ψ0 = ∗ϕ0ϕ0 which is explicitly given
by

ψ0 = ∗ϕ0ϕ0 = e4567 − e4523 − e4163 − e4127 − e2637 − e1537 − e1526. (2.1.3)

Remark 2.1.1. Using the expression of ϕ0 and g0 we can check that for all i, j ∈ {1, . . . , 7}

(eiyϕ0) ∧ (ejyϕ0) ∧ ϕ0 = −6(g0)ij vol0 .

Now let M be a 7-dimensional oriented manifold. By using the standard G2 form in
(2.1.1) for any point p ∈M we can define a subset Λ3

+(M)p of the space Λ3T ∗pM by

Λ3
+(M)p = {ϕp ∈ Λ3T ∗pM | ∃ isomorphism ρ : TpM → R7, ρ∗ϕ0 = ϕp}.

Since G2 preserves ϕ0, we have the isomorphism Λ3
+(M)p ∼= GL(7,R)/G2, which implies

that dim(Λ3
+(M)p) = dim(GL(7,R))−dim(G2) = 49−14 = 35 = dim(Λ3T ∗pM). Therefore

Λ3
+(M)p is an open subset of Λ3T ∗pM

Define Λ3
+(M) = ∪p∈M Λ3

+(M)p to be the bundle over M with fibre Λ3
+(M)p at each

p ∈ M . A 3-form ϕ is positive if for each p ∈ M ϕp ∈ Λ3
+(M)p that is, there is a linear

isomorphism between TpM and R7 identifying ϕp to ϕ0 of (2.1.1).

Similarly one can define the set Λ4
+(M)p to be the set of 4-forms ψp ∈ Λ4T ∗pM such

that there is an isomorphism identifying ψp to ψ0 of (2.1.3). By duality one can see that
Λ4

+(M) is an open subbundle of Λ4T ∗M with fibre GL(7,R)/G2 and the sections of Λ4
+(M)

are the positive 4-forms. One can define the fibre bundles Λ3
+,Λ

4
+ on any 7-dimensional

manifold but they only admit global sections if w1 = w2 = 0.
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On the other hand the frame bundle F(M) over M is the principal GL(7,R) bundle
over M whose fibre at each point p ∈M is the set of isomorphisms from TpM to R7. Thus
for a positive 3-form ϕ we can define a subbundle P of F(M) for which the fibre at each
point p ∈ M is the set of isomorphisms from TpM to R7 which identify ϕp and ϕ0. The
fibre of P is G2 and thus by Definition 1.0.1, P defines a G2-structure on M .

Conversely given a G2-structure P onM one can define a 3-form ϕ, a 4-form ψ, a metric
g at each point corresponding to the standard 3-form ϕ0, the standard 4-form ψ0 and the
metric g0 respectively. The positivity of the 3-form implies that P has to be oriented and
thus there is volume form associated to every such G2-strucutre.

Hence we get that there is a one-to-one correspondence between positive 3-forms and
oriented G2-structures. From the point of view of differential geometry, a G2-structure on
M is equivalently defined by a 3-form ϕ on M that satisfies a certain pointwise algebraic
non-degeneracy condition. Such a 3-form nonlinearly induces a Riemannian metric gϕ and
an orientation volϕ on M and hence a Hodge star operator ∗ϕ. We denote the Hodge dual
4-form ∗ϕϕ by ψ. Pointwise we have |ϕ| = |ψ| = 7, where the norm is taken with respect to
the metric induced by ϕ. We can define the metric gϕ and the volume form volϕ explicitly.
The expressions are non-linear in ϕ. For defining the metric gϕ we define a Λ7T ∗M valued
bi-linear form Bϕ on M . Let x1, x2, . . . , x7 be local coordinates on an open set U ⊂ M .
For i, j ∈ {1, 2, . . . , 7}

(Bϕ)ijdx
1 ∧ dx2 ∧ · · · ∧ dx7 =

(
∂

∂xi
yϕ

)
∧
(

∂

∂xj
yϕ

)
∧ ϕ. (2.1.4)

Since the 2-forms
(
∂
∂xi

yϕ
)
and

(
∂
∂xj

yϕ
)
commute, Bϕ is symmetric. Using Remark 2.1.1

we can see that the 3-form ϕ is a G2-structure if and only if

(Bϕ)ij = −6(gϕ)ij
√

det gϕ.

This implies det(Bϕ) = (−6
√

det gϕ)7 det gϕ = −67(
√

det gϕ)9. Thus the explicit ex-
pression for gϕ is given by

gϕ = −
Bϕ

6
√

det gϕ
=

Bϕ

6
2
9 (detBϕ)

1
9

. (2.1.5)

The volume volϕ is given by

volϕ =
√

det gϕdx
1 ∧ dx2 ∧ · · · ∧ dx7. (2.1.6)
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Using the above expressions for the metric gϕ (2.1.5) and orientation volϕ (2.1.6) we
can explictly compute the Hodge star ∗ϕ and thus the 4-form ∗ϕϕ = ψ.

Remark 2.1.2. If the 3-form ϕ defines a G2-structure on M then the metric gϕ obtained
by the above procedure in (2.1.5) is to be Riemannian, detBϕ must be non-vanishing, and
gϕ must be positive definite everywhere in U . This provides another way to check that the
space of positive 3-forms is open as both of these conditions are open.

Definition 2.1.2. A 7-dimensional manifold M together with a G2-structure ϕ ∈ Λ3
+(M)

on M is a G2 manifold.

Remark 2.1.3. The G2-structure on M is torsion-free if it is parallel with respect to the
Levi–Civita connection. Thus for torsion-free G2-structure Hol(gϕ) ⊂ G2. Many authors
use the term G2 manifold to denote torsion-free G2 manifold but in this thesis we use the
term G2 manifold to denote a manifold a with a G2-structure of any torsion.

From now on we denote a G2-structure onM by the tuple (ϕ, g) where ϕ is the positive
3-form and g is the associated metric. We also drop the subscript ϕ from g, ψ, ∗, vol if
there is no risk of confusion.

Example 2.1.4. (R7, ϕ0) is a G2 manifold.

Example 2.1.5. Let (S, ω1, ω2, ω3) be a hyperkähler surface and denote by (δ1, δ2, δ3) a
parallel orthonormal frame on R3. Then

ϕ := δ1 ∧ δ2 ∧ δ3 − δ1 ∧ ω1 − δ2 ∧ ω2 − δ3 ∧ ω3

defines a torsion-free G2–structure on R3 × S. The metric and orientation induced by ϕ
agree with the standard metric and orientation on R3 × S.

In [BS89] Bryant–Salamon found explicit torsion-free G2–structures on Λ+S4,Λ+CP 2

and on R4 × S3, the total space of the spin bundle on S3, whose associated metrics are
complete and have Hol(gϕ) = G2. Other examples of torsion-free G2 manifolds can be
constructed as a cone over nearly Kähler 6-manifolds. Compact examples of torsion-free
G2 manifolds were constructed by Joyce via a generalised Kummer construction intro-
duced in [Joy96], Joyce–Karigiannis by gluing families of Eguchi–Hanson spaces in [JK21],
the twisted connected sum construction pioneered by Kovalev [Kov03] and extended by
Corti–Haskins–Nordström–Pacini [CHNP15]. The work of Corti–Haskins–Nordström–Pacini
in particular provides us with an ample supply of examples of torsion-free G2–manifolds

14



2.2 Decomposition of space of forms

The Lie group G2 acts as the subgroup of SO(7) on the exterior powers of the standard
representation of SO(7) on R7. The action on ΛpR7 is reducible For 2 ≤ p ≤ 5. We denote
by Ωk

l the irreducible subspace of Ωk with pointwise dimension l. Given a G2-structure ϕ,
we have the following description of the space of forms :

Ω2
7 = {Xyϕ | X ∈ Γ(TM)} = {β ∈ Ω2(M) | ∗(ϕ ∧ β) = −2β}, (2.2.1)

Ω2
14 = {β ∈ Ω2(M) | β ∧ ψ = 0} = {β ∈ Ω2 | ∗(ϕ ∧ β) = β}. (2.2.2)

Ω3
1 = {fϕ | f ∈ C∞(M)}, (2.2.3)

Ω3
7 = {Xyψ | X ∈ Γ(TM)} = {∗(α ∧ ϕ) | α ∈ Ω1}, (2.2.4)

Ω3
27 = {η ∈ Ω3 | η ∧ ϕ = 0 = η ∧ ψ}. (2.2.5)

Thus a G2-structure on M induces a splitting of the spaces of differential forms on M into
irreducible G2 representations.

Ω2(M) = Ω2
7(M)⊕ Ω2

14(M),

Ω3(M) = Ω3
1(M)⊕ Ω3

7(M) ⊕ Ω3
27(M),

Ω4(M) = Ω4
1(M)⊕ Ω4

7(M) ⊕ Ω4
27(M),

Ω5(M) = Ω5
7(M)⊕ Ω5

14(M),

(2.2.6)

Since ϕ, ψ and ∗ are all G2 invariant it is easy to see that the spaces defined above are all
G2 representations. In a local orthonormal frame, the above conditions can be re-written
as

β ∈ Ω2
7 ⇐⇒ βijψabij = −4βab, (2.2.7)

β ∈ Ω2
14 ⇐⇒ βijψabij = 2βab ⇐⇒ βijϕijk = 0. (2.2.8)

Moreover, the space Ω3
27 is isomorphic to the space of sections of S2

0(T ∗M), the traceless
symmetric 2-tensors on M, where the isomorphism iϕ is given explicitly as

η =
1

6
ηijkdx

i ∧ dxj ∧ dxk ∈ Ω3
27

iϕ←→ habdx
adxb ∈ C∞(S2

0(T ∗M))

where ηijk = hipϕpjk + hjpϕipk + hkpϕijp.
(2.2.9)

The description of Ω4
1,Ω

4
7,Ω

4
27,Ω

5
7 and Ω5

14 are obtained by taking the Hodge star of (2.2.3),
(2.2.4), (2.2.5), (2.2.1) and (2.2.2) respectively.
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Remark 2.2.1. Some authors prefer to use the opposite orientation than we do for the
orientation induced by ϕ (for example in [Bry06] and [Joy00]). This changes the sign of the
Hodge star ∗ and the eigenvalues (−2,+1) in (2.2.1) and (2.2.2) are replaced by (+2,−1).

2.3 Torsion of G2-structure

For any subgroup G ⊂ SO(n), there is a unique G-equivariant splitting so(n) = g ⊕ g⊥

obtained by using the standard O(n)-invariant inner product on so(n).

For any G-structure P over M , one has the associated orthonormal frame bundle P =
P ·O(n). One can then pull back the Levi-Civita connection ∇ on P to P and decompose it
uniquely in the form∇ = θ+τ where θ takes values in g and τ takes values in g⊥ ∼= so(n)/g.
The 1-form θ defines a natural connection on P . For the standard representation of g on
Rn and ρ : G → End((g⊥ ⊗ Rn)) being the product representation of Rn and the adjoint
representation g, the 1-form τ represents a section T of the associated torsion bundle
P ×ρ (g⊥ ⊗ Rn).

For a G2-structure the torsion function τ takes values in g⊥2 ⊗R7. Since the Lie algebra
g2 has rank 2 any irreducible representation of g2 can be represented by Vp,q where the
pair of integers (p, q) corresponds to the highest weight of the representation. The torsion
space g⊥2 ⊗ R7 ∼= R7 ⊗ R7 has the irreducible G2 splitting

g⊥2 ⊗ R7 ∼= R7 ⊗ R7 ∼= V1,0 ⊗ V1,0
∼= V0,0 ⊕ V1,0 ⊕ V0,1 ⊕ V2,0

∼= R⊕ R7 ⊕ g2 ⊕ S2
0(R7)

∼= Λ0 ⊕ Λ1 ⊕ Λ2
14 ⊕ Λ3

27.

(2.3.1)

Here S2
0(R7) denotes symmetric, traceless endomorphisms of R7. A differential geometric

way to define the torsion of a G2-structure ϕ is by considering the tensor ∇ϕ ∈ Γ(T ∗M ⊗
Λ3T ∗M) where ∇ is the Levi-Civita connection associated to ϕ. For any vector field
X, ∇Xϕ lies only in the Ω3

7 component of Ω3 as proved in [Kar09, Lemma 2.24]. Thus
∇ϕ ∈ Γ(T ∗M ⊗ Λ3

7T
∗M) and in fact given a G2-structure ϕ on M , we can decompose

dϕ and dψ according to (2.2.6) to define all of the irreducible constituents of the torsion
function τ . This defines the torsion forms, which are unique differential forms τ0 ∈ Ω0(M),
τ1 ∈ Ω1(M), τ2 ∈ Ω2

14(M) and τ3 ∈ Ω3
27(M) such that (see [Kar09])

dϕ = τ0ψ + 3τ1 ∧ ϕ+ ∗ϕτ3, (2.3.2)
dψ = 4τ1 ∧ ψ + ∗ϕτ2. (2.3.3)
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The vanishing (or non-vanishing) of the τi’s gives rise to the 16 classes of G2-structures
(see [FG82]). We note four of the more interesting classes of G2-structures in Table 2.1.

Torsion form Defining equation G2-structure
τ0 = τ1 = τ2 = τ3 = 0 ∇ϕ = 0 ⇐⇒ dϕ = dψ = 0 torsion-free
τ0 = τ1 = τ3 = 0, τ2 6= 0 dϕ = 0 closed
τ1 = τ2 = 0, τ0 or τ3 6= 0 d∗ϕ = 0 co-closed
τ1 = τ2 = τ3 = 0, τ0 6= 0 dϕ = τ0ψ nearly parallel

Table 2.1: Some classes of G2-structures

In this thesis we are mostly interested in nearly parallel G2-structures that is those for
which τ0 is the only non-vanishing torsion form. More on nearly parallel G2-structures is
discussed in Chapter 4.

The full torsion tensor T of a G2-structure is a 2-tensor satisfying

∇iϕjkl = Timψmjkl, (2.3.4)

Tlm =
1

24
(∇lϕabc)ψmabc, (2.3.5)

∇mψijkl = −Tmiϕjkl + Tmjϕikl − Tmkϕijl + Tmlϕijk. (2.3.6)

The full torsion T is related to the torsion forms by (see [Kar09])

Tlm =
τ0

4
glm − (τ3)lm + (τ1)lm −

1

2
(τ2)lm. (2.3.7)

Remark 2.3.1. The space Ω2
7 is isomorphic to the space of vector fields and hence to the

space of 1-forms. Thus in (2.3.7), we are viewing τ1 as an element of Ω2
7 which justifies the

expression (τ1)lm.

Relation between the curvature and torsion of a G2-structure: Given a G2-
structure ϕ with torsion Tlm, we have the expressions for the Ricci curvature Rij and the
scalar curvature R of its associated metric g which can be found in [Bry06] or [Kar09]. If
we denote by |C|2 = CijCklg

ikgjl the matrix norm we have that

Rjk = (∇iTjm −∇jTim)ϕmki − TjlTlk + tr(T )Tjk − TjbTlpψlpbk, (2.3.8)
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R = −12∇i(τ1)i +
21

8
τ0

2 − |τ3|2 + 5|τ1|2 −
1

4
|τ2|2. (2.3.9)

From here it is immediate that torsion-free G2-structures are Ricci flat and nearly parallel
G2-structures are positive Einstein.

Some useful identitiesWe use the following identities many times in the thesis. They
are all proved in [Kar05, Lemma 2.2.1 and Lemma 2.2.3] and we collect them here for the
convenience of the reader. First, we note that if α is a k-form and w is a vector field then

∗(wyα) = (−1)k+1(w ∧ ∗α), (2.3.10)
∗(w ∧ α) = (−1)k(wy ∗ α). (2.3.11)

If α is a 1-form then we have the following identities

∗(ϕ ∧ ∗(ϕ ∧ α)) = −4α, (2.3.12)
ψ ∧ ∗(ϕ ∧ α) = 0, (2.3.13)

∗(ψ ∧ ∗(ψ ∧ α)) = 3α, (2.3.14)
ϕ ∧ ∗(ψ ∧ α) = −2(ψ ∧ α). (2.3.15)

Suppose w is a vector field then we have the following identities

ϕ ∧ (wyψ) = −4 ∗ w, (2.3.16)
ψ ∧ (wyψ) = 0, (2.3.17)
ψ ∧ (wyϕ) = 3 ∗ w, (2.3.18)
ϕ ∧ (wyϕ) = −2 ∗ (wyϕ). (2.3.19)

Let Θ: Ω3
+ → Ω4

+ be the non-linear map which associates to any G2-structure ϕ, the
dual 4-form ψ = Θ(ϕ) = ∗ϕ with respect to the metric g. We note that Θ−1 : Ω4

+ → Ω3
+ is

defined only when we fix the orientation on M . See [Hit01, §8] for more details. We need
the following result from [Joy00, Proposition 10.3.5].

Proposition 2.3.2. Let ϕ be a G2-structure on M with ψ = ∗ϕ. Let ξ be a 3-form which
has sufficiently small pointwise norm with respect to g so that ϕ+ξ is still a positive 3-form
and η be a 4-form with small enough pointwise norm so that ψ + η is a positive 4-form.
Then
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(1) the image of ξ under the linearization of Θ at ϕ is

Θ̂(ξ) = ∗ϕ
(4

3
π1(ξ) + π7(ξ)− π27(ξ)

)
. (2.3.20)

(2) the image of η under the linearization of Θ−1 at ψ is

Θ̂−1(η) = ∗ϕ
(3

4
π1(η) + π7(η)− π27(η)

)
. (2.3.21)
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Chapter 3

Spinorial description of G2-structures

In this chapter we discuss an alternative and equivalent way to define G2-structures using
spin geometry. In some cases it gives a much neater and easier framework to work with
G2-structures that we introduced in Chapter 2.

3.1 Brief introduction to spin geometry

Some general references of what follows and much more about spin geometry are [LM89]
and [Har90].

Let V be an n-dimensional vector space over R or C, let q be any positive definite
quadratic form on V . Given a pair (V, q) we can construct the Clifford algebra Cl(V, q) as
the quotient of the tensor algebra

⊕∞
r=0

⊗r V by the ideal generated by v ⊗ v + q(v) as
v ranges over V . The associated graded algebra Cl(V, q) is isomorphic as vector space to
the exterior algebra Λ∗V (see [LM89, Proposition 1.2] for a proof of this). For any repre-
sentation (ρ,W ) of the Clifford algebra Cl(V, q) one can define the Clifford multiplication
between α an element of Cl(V, q) and w an element of W by α · w = ρ(α)w.

Let us now assume V = Rn with q being the quadratic form induced by the standard
inner product on Rn. The Clifford algebra is denoted by Cln here. We have the following
uselful proposition.

Proposition 3.1.1. With respect to the canonical isomorphism Cln ∼= Λ∗Rn, Clifford
multiplication between v ∈ Rn and α ∈ Cln is given by

v · α = v ∧ α− vyα.
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In the above proposition v can be thought of as a 1-form and α can be any arbitary
p-form on Rn.

The Clifford algebras Cln have been classified, and this classification reduces them (up
to isomorphism) to familiar matrix algebras over R,C, or H. We denote byK(n) the matrix
algebra of n×n matrix over the field K = R,C, or H. We describe the classification result
for n ≤ 8 in the following table. For n > 8, Cln can be computed using the isomorphism
Cln+8

∼= Cln ⊗ Cl8 (see [LM89, Theorem 4.3]).

n 1 2 3 4 5 6 7 8
Cln C H H⊕H H(2) C(4) R(8) R(8)⊕ R(8) R(16)

Now we shall define the spin groups and the associated spin representations. The spin
group Spin(n) is defined as the universal cover of SO(n) if n ≥ 3. For n ≥ 3, SO(n) is a
connected Lie group with π1(SO(n)) = Z2. Thus it has a double cover which is the Lie
group Spin(n). The Lie group Spin(n) is a compact, simply connected Lie group. The
covering map π : Spin(n)→ SO(n) is a Lie group homomorphism. The group Spin(n) can
also be realised as a subset of Cln as follows.

Let V × = {v ∈ V | q(v) 6= 0} and define

P (V, q) = {v1 · · · vr ∈ Cl(V, q) | v1, . . . , vr is a finite sequence in V ×}
Pin(V, q) = {v1 · · · vr ∈ P (V, q) | q(vj) = 1 for all j}.

Then the Lie group Spin(V, q) is defined as

Spin(V, q) = {v1 · · · vr ∈ Pin(V, q) | r is even}.

Thus Spin(V, q) ⊂ Cl(V, q). We define

S = {v ∈ V | q(v) = 1}.

Definition 3.1.2. The spin representation ∆n is the representation of Spin(n) on S ob-
tained by the restriction of the standard representation of Cln on S.

It has the following properties:

i) ∆2m is a complex representation of Spin(2m), with complex dimension 2m. For
n = 2m we can define the complex volume form, volC = im vol and we have that
vol2C = −1 (see [LM89, Section 1.5]). We define ∆2m

± = (1±volC) ·∆2m and thus ∆2m

splits into a direct sum ∆2m = ∆2m
+ ⊕∆2m

− . Thus ∆2m
± are irreducible representations

of Spin(2m) with complex dimension 2m−1.
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ii) ∆2m+1 is a complex representation of Spin(2m + 1), with complex dimension 2m. It
is irreducible.

iii) When n = 8k− 1, 8k, or 8k+ 1, for a real representation ∆n
R of Spin(n) we have that

∆n = ∆n
R ⊗R C.

Spinor bundle over a Riemannian manifold: Let (M, g) be an n-dimensional
Riemannian manifold. As we have seen in Chapter 1 a choice of an orientation and metric
on M is in one-to-one correspondence with a SO(n)-structure PSO(n) on M . Similarly a
choice of a spin structure on M is equivalent to a Spin(n)-structure. Since Spin(n) is the
double cover of SO(n) we have the univeral covering homomorphism ξ0 : Spin(n)→ SO(n)
with kernel Z2.

Definition 3.1.3. A spin structure on M is a principal Spin(n)-bundle PSpin(n) over M
together with the 2-sheeted covering

ξ : PSpin(n) → PSO(n),

such that ξ(pg) = ξ(p)ξ0(g) for all p ∈ PSpin(n) and g ∈ Spin(n).

The bundle PSpin(n) can be regarded as a double cover of PSO(n), and ξ as the covering
map. Just as we need the first Stiefel–Whitney class w1(M) to vanish for a manifold
to be orientable, spin structures do not exist on every manifold. In fact, an oriented
Riemannian manifold M admits a spin structure if and only if the second Stiefel–Whitney
class w2(M) = 0. We call M a spin manifold (or spinnable) if w2(M) = 0, that is, if M
admits a spin structure. The family of spin structures onM is parametrized by H1(M,Z2)
and thus a spin structure on M may not be unique. The space H1(M,Z2) is finite if M
is compact, and zero if M is simply connected. Therefore on a simply connected spin
manifold there is a unique spin structure.

Let (M, g) be an oriented spin Riemannian n-manifold. Given a spin structure (PSpin(n), ξ)
onM we can define the (complex) spin bundle /S →M to be the associated Spin(n)-bundle
/S = PSpin(n) ×Spin(n) ∆n. The bundle /S is a complex vector bundle over M , with fibre at
each point being the spin representation ∆n. Sections of /S are called spinors. If n = 2m,
then ∆n splits as ∆n = ∆n

+ ⊕ ∆n
−, and so /S also splits as /S = /S+ ⊕ /S−. The vector

subbubdles /S± of /S has fibre ∆n
± which we introduced above. Sections of /S+, /S− are called

positive and negative spinors respectively. As we saw before in dimensions 8k− 1, 8k, and
8k + 1 along with the complex spin representation ∆n there is a real spin representation
denoted by ∆n

R. In this case one can define the real spin bundle /SR = PSpin(n) ×Spin(n) ∆n
R.

We shall always work with real spinors, unless we explicitly say otherwise.
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The Levi-Civita connection ∇ of g on PSO(n) can be lifted locally to a connection on
PSpin(n) via the local isomorphism ξ : PSpin(n) → PSO(n). Thus, PSpin(n) also carries a natural
connection which induces a covariant derivative ∇S : Γ(/S)→ Γ(T ∗M ⊗ /S) on /S, called the
spin connection.

On the other hand the the Clifford multiplication defines a natural linear map from
T ∗M ⊗ /S to /S. Composing this map with ∇S gives a first-order, linear partial differential
operator D : Γ(/S)→ Γ(/S) called the Dirac operator.

Definition 3.1.4. For a spinor α, the Dirac operator associated to a connection ∇S on
/S(M) is given in a local orthonormal frame ei of Γ(TM) by

Dα = ei · ∇S
ei
α. (3.1.1)

It is straightforward to check that the Dirac operator is self-adjoint and elliptic. In
even dimensions, it splits as a sum D = D+ ⊕D−, where D+ maps Γ(/S+) → Γ(/S−) and
D− maps Γ(/S−)→ Γ(/S+). Here D± are both first-order linear elliptic operators, D− is the
formal adjoint of D+, and vice versa. The result of changing the orientation ofM is, in even
dimensions, to exchange /S+ and /S−, and D+ and D−. In odd dimensions however there is
no such splitting of the Dirac operator and the Clifford multiplication by the volume form
preserves the Dirac operator.

3.2 Correspondence between a G2-structure and a unit
spinor

From now on let (M7, ϕ) be a manifold with G2-structure. We saw in the previous section
that on spin manifolds we can define a spinor bundle. Now we show that M is a spin
manifold. There is a one-to-one correspondence between isometric G2-structures on M
and real unit spinors up to sign on /S(M). The following proposition states that the
condition of M being spin (or equivalently w2(M) = 0) is necessary and sufficient for the
existence of a G2-structure on M . We sketch the proof here, see [LM89, Theorem 10.6] for
a detailed exposition.

Proposition 3.2.1. A 7-dimensional manifold M carries a G2-structure if and only if it
is a spin manifold.

Proof. Suppose M has a G2-structure P . Since G2 is connected and simply connected the
embedding ι : G2 ↪−→ SO(7) lifts to a homomorphism ι̃ : G2 ↪−→ Spin(7) between the universal
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covers of G2 and SO(7). Using the embedding ι̃ we may define PSpin(n) = P ×G2 Spin(7)
which is a double cover of P with fibre Spin(7). Thus M is spin.

For the converse suppose M is spin. Then the fibre of the spinor bundle /S(M) at each
point has dimension 23 = 8 > dim(M). Thus there exists a nowhere vanishing cross-section
σ of /S. Then one can show that the subgroup of Spin(7) preserving σ is isomorphic to G2

and we can identify the sphere of unit spinors in /S(M) with PSpin(n)/G2. Thus the unit
real spinor σ/‖σ‖ defines a G2 reduction.

For a 7-dimensional Riemannian manifold M with a G2-structure ϕ, the spinor bundle
/S is a rank 8 real vector bundle over M . At each point p ∈ M , we can identify the
fiber of /S with R ⊕ TpM ∼= R ⊕ R7 ∼= Re(O) ⊕ Im(O) = O. Thus /S is isomorphic to
the bundle R ⊕ TM = Λ0 ⊕ Λ1. The real Clifford algebra in dimension 7 is isomorphic
to End(R8) ⊕ End(R8). There are two inequivalent irreducible 8-dimensional Spin(8)-
representations S+, S− of Cl7 defined via the left and right representation respectively. See
[LM89, Proposition 5.9, Ch1] for a proof. There is a natural way to define S± via the
octonions O. An element in O can be defined via a pair of quaternions a, b. The octonion
multiplication of p = (a, b), q = (c, d) ∈ O is given by

p · q = (a, b) · (c, d) = (ac− db̄, da+ bc̄). (3.2.1)

The multiplication so defined is neither commutative nor associative. The conjugate of
p = (a, b) ∈ O is defined by p̄ = (ā,−b). We can set

Re(p) =
1

2
(p+ p̄), Im(p) =

1

2
(p− p̄).

An inner product on O can be defined by 〈p, q〉 = Re(p· q̄). We now consider R7 = ImO and
R8 = O with the induced inner product. For any v ∈ ImO we define a linear endomorphism
λv of R8 by setting λv(x) = v · x for x ∈ O = R8. This endomorphism can be extended
to a representation of Cl7 on R8 which is irreducible for dimensional reasons. The other
representation can be generated by ρv(x) = −v·x. These two representations are equivalent
when restricted to Spin(7) but are inequivalent on Spin(8) ∼= Cl7 (refer to [LM89, Section
1.8] for more details).

In this thesis, we choose R7 to act on R8 by ρv(x) = −v ·x. Let Eij denote the standard
basis of so(8). Then our choice for the real representation of the Clifford algebra on /S can
be generated by the following action of R7 on /S:

e1 7→ E18 + E27 − E36 − E45, e2 7→ −E17 + E28 + E35 − E46,
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e3 7→ −E16 + E25 − E38 + E47, e4 7→ −E15 − E26 − E37 − E48,

e5 7→ −E13 − E24 + E57 + E68, e6 7→ E14 − E23 − E58 + E67,

e7 7→ E12 − E34 − E56 + E78.

Under the isomorphism /S ⊗ /S = /S ⊗ /S∗ = Λ∗T ∗M = ⊕7
k=0Λk(T ∗M), the “square” of a

unit spinor decomposes as follows ([LM89, Theorem 10.19]).

Theorem 3.2.2. For any unit spinor σ ∈ Γ(/S), there exists a G2-structure ϕ and the dual
4-form ψ such that

σ ⊗ σ = 1 + ϕ+ ψ + vol .

The globally defined unit spinor σ induces a G2-structure ϕ and the cross product ×
by

ϕ(X, Y, Z) := (X · Y · Z · σ, σ) =: g(X × Y, Z).

The above theorem establishes a relation between G2 structures and unit real spinor. With
respect to the local orthonormal frame {e1, . . . e7}, we have (X × Y )l = XiYjϕijl. We have
an orthogonal decomposition of the spinor bundle

/S = (Λ0TM · σ)⊕ (Λ1TM · σ) ∼= Λ0TM ⊕ Λ1TM.

Under this isomorphism any spinor s = fσ+α·σ ∈ /S can be written as s = (f, α) ∈ Λ0⊕Λ1.

As shown in [Kar10] the Clifford multiplication of a 1-form Y and a spinor (f, Z) is the
octonionic product of an imaginary octonion and an octonion and is thus given by

Y · (f, Z) = −(−〈Y, Z〉, fY + Y × Z). (3.2.2)

Note that the product defined above differs from [Kar10] by a negative sign due to our
choice of the representation of Cl7 on /S. We define the Clifford multiplication of any p-form

β =
1

p!
βi1...ipei1 ∧ e2 ∧ · · · ∧ eip with a spinor by

β · (f,X) =
1

p!
βi1...ip(ei1 · (ei2 · . . . · (eip · (f,X)) . . .)).

We record an identity for Clifford algebras for later use and refer the reader to [LM89,
Proposition 3.8, Ch1] for the proof.
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Proposition 3.2.1. For α ∈ Λp(M), we have∑
j

ej · α · ej = (−1)p+1(n− 2p) α.

For the vector bundle /S the fibre over each point is a G2-representation. Since G2

preserves the 3-form ϕ the map µ 7→ ϕ ·µ from /S to /S acts by scalar identity on irreducible
G2 representations by Schur’s lemma. The same argument holds for the 4-form ψ.

Lemma 3.2.3. The subbundles of /S isomorphic to Λ0 and Λ1 are eigenspaces of the op-
erations of Clifford multiplication by ϕ and ψ. The associated eigenvalues are

Λ0 Λ1

ϕ 7 −1
ψ 7 −1.

Proof. For the sub-bundles Λ0,Λ1 ⊂ /S, the fibre at each point are irreducible G2-representations
and thus are eigenspaces of the operators defined by the Clifford multiplication by ϕ, ψ
respectively. By Schur’s Lemma there exist real constants λ0, λ1, µ0, µ1 such that for all
f ∈ Λ0, α ∈ Λ1

ϕ · f = λ0f, ϕ · α = λ1α,

ψ · f = µ0f, ψ · α = µ1α.

Proposition 3.2.1 then implies
∑

i ei · ϕ · ei = ϕ and
∑

i ei · ψ · ei = ψ thus

λ0f = ϕ · f =
7∑
i=1

ei · ϕ · ei · f,

µ0f = ψ · f =
7∑
i=1

ei · ψ · ei · f.

Using the fact that ei · f ∈ Λ1 and summing over i we get

λ0 + 7λ1 = 0, (R1)
µ0 + 7µ1 = 0. (R2)

We find the eigenvalues corresponding to Λ0 by explicit calculations and use relations
(R1) and (R2) to show the result for Λ1. Let (f, 0) ∈ Λ0 be a spinor. In the local
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orthonormal frame e1, . . . , e7, we write ϕ = 1
6
ϕijkei ∧ ej ∧ ek, with ϕijk skew-symmetric in

each pair of indices. Using (3.2.2) we get that

ϕ · (f, 0) =
1

6
ϕijkei · (ej · (ek · (f, 0))) = −1

6
ϕijkei · (ej · (0, fek))

=
1

6
ϕijkei · (−fδkj, fϕjktet)

= −1

6
ϕijk(−fϕijk,−fδkjei + fϕjktϕitpep).

By using the skew-symmetry of ϕ and the contraction identities ϕijkϕijl = 6δkl, ϕijkϕijk =
42 (see [Kar09]), we get

ϕ · (f, 0) =
1

6
(42f,−6fδitϕitpep) = (7f, 0).

Similarly, in the above local orthonormal frame, ψ = 1
24
ψijklei∧ej∧ek∧el and using (3.2.2)

we get

ψ · (f, 0) =
1

24
ψijklei · (ej · (ek · (el · (f, 0)))) = − 1

24
ψijklei · (ej · (ek · (0, fel)))

=
1

24
ψijklei · (ej · (−fδkl, fϕklpep))

= − 1

24
ψijklei · (−fϕklpδjp,−fδklej + fϕklpϕjptet)

=
1

24
ψijkl(fδklδij − fϕklpϕjptδit,−fϕklpδjpei − fδklϕijses + fϕklpϕjptϕitrer).

Here we can use the skew-symmetry of ψ, the contraction identity ψijklϕklp = −4ϕijp along
with the contraction identities of ϕ mentioned before to obtain

ψ · (f, 0) =
1

24
(24δilδilf, 0) =

1

24
(24.7f, 0) = (7f, 0).

Substituting λ0 = 7 and µ0 = 7 in relations (R1), (R2) respectively proves the desired
result.

Let ∇ be the Levi-Civita connection on M induced by the G2-structure ϕ. We denote
the lift of ∇ on /S by ∇ as well. Motivated by the fact that Λ1TM · σ = σ⊥ we have the
following definition [ACFH15, Definition 4.2]
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Definition 3.2.4. There exists an endomorphism S of TM7 such that for every tangent
vector X on M ,

∇Xσ = S(X) · σ. (3.2.3)

The endomorphism S is called the intrinsic endomorphism of (M, g, ϕ).

We have the following lemma relating the intrinsic torsion of the G2-structure ϕ with
the intrinsic endomorphism S. We have the following lemma (see [ACFH15, Lemma 4.3]
for a proof).

Lemma 3.2.5. The intrinsic endomorphism S satisfies

∇V ϕ(X, Y, Z) = 2ψ(S(V ), X, Y, Z). (3.2.4)

G2-structure Spinorial equations Description of S
torsion-free ∇Xσ = 0 S ≡ 0

Closed ∇X×Y σ = Y∇Xσ −X∇Y σ + 2g(Y, S(X))σ S ∈ g2

Co-closed (X∇Y σ, σ) = (Y∇Xσ, σ) S ∈ R⊕ S2
0R7

Nearly parallel ∇Xσ = λX · σ S = λid

Table 3.1: G2 classes in terms of intrinsic torsion

An easy calculation in local coordinates shows thatX ·σ = −
1

3
(Xyϕ)·σ forX ∈ Γ(TM).

Thus the intrinsic torsion ∇Xϕ = S(X) · σ = −
1

3
(S(X)yϕ) · σ. This identity gives another

way to prove the pointwise decomposition of torsion forms as in (2.3.1) since

End(R7) ∼= R⊕ R7 ⊕ g2 ⊕ S2
0R7.

Thus we can define the classes of G2-structures by defining the intrinsic torsion S. We do
so for the classes mentioned in Table 2.1. See [ACFH15, Table 4.1] for a description of all
the 16 classes of G2-structure in terms of the intrinsic endomorphism.

From Table 3.1 we can see that if the G2-structure is torsion-free, that is dϕ = dψ = 0,
then the unit spinor σ is parallel. Since σ is G2 invariant this reduces the holonomy to G2.
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Chapter 4

Nearly G2 manifolds

4.1 Manifolds with nearly parallel G2-structure

In this chapter we discuss one of the sixteen classes of G2-structures known as the nearly
parallel. In later chapters we focus solely on manifolds with these special G2-structures so
here we note some important properties and identities related to these manifolds.

Let (M7, ϕ, σ, g) be a manifold with a G2-structure where ϕ denoted the positive 3-form
and σ is the associated real unit spinor on the spinor bundle over M . From Tables 2.1 and
3.1 we can see that for nearly parallel G2-structures the only non-vanishing torsion form
is τ0, thus in this case we see from (2.3.7) that Tij =

τ0

4
gij. If τ0 is the only non-vanishing

torsion component, (2.3.2) and (2.3.3) imply

dϕ = τ0ψ and dψ = 0. (4.1.1)

From the spinorial point of view the above equation implies that the intrinsic endomor-
phism S defined in Chapter 3 by ∇Xσ = S(X) · σ is given by S = λid for some non-zero
scalar λ. We recall that ∇ in the equation here is the lift of the Levi-Civita connection
associated to g.

Definition 4.1.1. A real spinor σ ∈ Γ(/S) is a Killing spinor if for some non-zero δ ∈ R,
we have for all X ∈ Γ(TM) that

∇Xσ = δX · σ. (4.1.2)

The scalar δ is known as the Killing constant for the Killing spinor σ.
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For a manifold M with a nearly G2-structure ϕ, using (2.3.8) and (2.3.9) we see that
the Ricci curvature Ric and the scalar curvature R are related to τ0 by

Rij =
3

8
τ0

2gij, (4.1.3)

R =
21

8
τ0

2. (4.1.4)

Given a nearly parallel G2-structure ϕ that satisfies (4.1.1) there exists a real Killing
spinor η that satisfies (4.1.2) with δ = −1

2

√
R
42

and vice-versa (see [BFGK91, Theorem 6,
Chapter 4.4]). Thus for a nearly G2 manifold, (4.1.4) implies that δ = − τ0

8
. Switching

− τ0
8
to τ0

8
corresponds to changing the orientation of M . See [BFGK91, Section 4.4] and

[Bär93] for more details.

The nearly parallel G2-structures inducing the given metric and spin structure are in
bijective correspondence with the projectivization of the space of Killing spinors on the
real spinor bundle. Thus there is a one-to-one correspondence between nearly parallel
G2-structures and unit real Killing spinors on M . Summing up we have the following
definition.

Definition 4.1.2. Let ϕ be a G2-structure with associated real spinor η. The G2-structure
is a nearly parallel G2 structure if τ0 is the only non-vanishing component of the torsion,
that is

dϕ = τ0ψ and dψ = 0. (4.1.5)

Equivalently with respect to the associated real unit spinor η the G2-structure is nearly
parallel if

∇Xη = −τ0

8
X · η. (4.1.6)

Remark 4.1.3. If ϕ is a nearly G2-structure onM then since dϕ = τ0ψ, we get dτ0∧ψ = 0
and hence dτ0 = 0, as wedge product with ψ is an isomorphism from Ω1

7(M) to Ω5
7(M).

Thus τ0 is a constant, if M is connected.

Using (4.1.6) and Remark 4.1.3 we can see that the unit spinor associated to a nearly
G2-structure is a Killing spinor with Killing constant − τ0

8
.

Manifolds with nearly parallel G2-structures have several nice properties which can be
found in detail in [BFGK91]. In particular they are positive Einstein.
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One can alter the constant τ0 by rescaling the metric which changes its magnitude and
readjusting the orientation which alters the sign of τ0. In this thesis we use τ0 = 4. The
particular choice of τ0 is made since the unit 7-sphere S7 has scalar curvature 42 and thus
τ0 = 4. With this choice of τ0 our nearly G2-structure ϕ and Killing spinor η satisfies the
equations

dϕ = 4ψ,

∇Xη = −1

2
X · η. (4.1.7)

For this choice of τ0, (4.1.3) and (4.1.4) force the Ricci curvature and the scalar curvature
to be 6g and 42 respectively.

Remark 4.1.1. Since nearly G2 manifolds are positive Einstein (Ricg = 6g) it follows
from Myers’s theorem that complete nearly G2 manifolds are compact.

Friedrich–Kath–Moroianu–Semmelmann in [FKMS97] showed that, excluding the case
of the round 7-dimensional sphere, there are three types of nearly parallel G2-structures
depending on the dimension of the space K/S of all Killing spinors. The dimension of K/S
is bounded above by 3, giving rise to the three different types:

1. dim(K/S) = 1: type 1 or proper nearly G2 manifolds,

2. dim(K/S) = 2: type 2 or Sasaki-Einstein manifolds,

3. dim(K/S) = 3: type 3 or 3-Sasakian manifolds.

The cones over these manifolds have holonomy contained in Spin(7), specifically Spin(7),
SU(4), Sp(2), when the nearly parallel G2-structure on the link is of type 1, 2, 3 respec-
tively. This property makes these spaces particularly important in the construction and
understanding of manifolds with torsion-free Spin(7)-structures.

Remark 4.1.2. Throughout the thesis we abuse notation by denoting the space of Killing
spinors at each point over the manifold and the subset of Killing spinors in Γ(/S) by the
same notation K/S.

A common feature between nearly Kähler 6-manifolds and manifolds with nearly par-
allel G2-structures is the presence of a unique canonical connection ∇can with totally skew-
symmetric torsion defined below. The Killing spinor η is parallel with respect to this
connection and thus we have Hol(∇can) ⊂ G2. It was proved by Cleyton–Swann in [CS04,
Theorem 6.3] that a G-irreducible Riemannian manifold (M, g) with an invariant skew-
symmetric non-vanishing intrinsic torsion falls in one of the following categories:

31



1. it is locally isometric to a non-symmetric isotropy irreducible homogeneous space, or,

2. it is a nearly Kähler 6-manifold, or,

3. it is a nearly G2 manifold.

For the nearly G2 manifold (M,ϕ) we define a 1-parameter family of connections on
TM that include the canonical connection ∇can. Let t ∈ R and let ∇t be the 1-parameter
family of connections on TM defined for all X, Y, Z ∈ Γ(TM) by

g(∇t
XY, Z) = g(∇LC

X Y, Z) +
t

3
ϕ(X, Y, Z). (4.1.8)

Let T t be the torsion (1, 2)-tensor of ∇t. Since the connection ∇LC is torsion-free

g(X,T t(Y, Z)) = g(X,∇t
YZ)− g(X,∇t

ZY )− g(X, [Y, Z])

= g(∇LC
Y Z,X) +

t

3
ϕ(Y, Z,X)− g(∇LC

Z Y,X)− t

3
ϕ(Z, Y,X)

− g(X, [Y, Z])

=
2t

3
ϕ(X, Y, Z).

Therefore the torsion tensor T t is given by

T t(X, Y ) =
2t

3
ϕ(X, Y, ·) (4.1.9)

which is proportional to ϕ and is thus totally skew-symmetric.

By [LM89, Theorem 4.14], the lift of the connection ∇t on the spinor bundle, also
denoted by ∇t, acts on sections µ of /S as

∇t
Xµ = ∇LC

X µ+
t

6
(iXϕ) · µ. (4.1.10)

The space of real Killing spinors is isomorphic to Λ0. Thus for a Killing spinor η it follows
from (4.1.7) and Lemma 3.2.3 that for any vector field X since X · ϕ+ ϕ ·X = −2 iXϕ,

∇t
Xη = ∇0

Xη +
t

6
(iXϕ) · η
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= −1

2
X · η − t

12
(X · ϕ+ ϕ ·X) · η

= −1

2
X · η − t

12
(7X · η −X · η)

= −t+ 1

2
X · η.

Therefore η is parallel with respect to the connection ∇−1. The connection ∇−1 thus has
holonomy group contained in G2 with totally skew-symmetric torsion and is therefore the
canonical connection on the nearly G2 manifold M described in [CS04].

Definition 4.1.4. The canonical connection on nearly G2 manifold (M,ϕ) is defined by

∇LC
X Y − 1

3
ϕ(X, Y, ·). (4.1.11)

Owing to its position in the 1-parameter family of connections defined in (4.1.8) we
denote this by ∇−1 throughout the thesis.

Proposition 4.1.3. The Ricci tensor Rict of the connection ∇t is given by

Rict = (6− 2t2

3
)g.

Proof. By using the expression of the Ricci tensor for a connection with a totally skew-
symmetric torsion from [FI02], we have

Rict(X, Y ) = Ric0(X, Y )− t

3
d∗ϕ(X, Y )− 2t2

9
g(iXϕ, iY ϕ)

The Ricci tensor for the Levi-Civita connection is given by Ric0 = 6g. Since dψ = 0,
ϕ is co-closed and the second term in the above expression vanishes. The third term
can be calculated in a local orthonormal frame e1, . . . , e7 using the contraction identity
ϕijkϕijl = 6δkl as follows:

g(iXϕ, iY ϕ) =
1

4

∑
i,j,k,α,β,γ

XkYγϕijkϕαβγg(ei ∧ ej, eα ∧ eβ)

=
1

4

∑
i,j,k,γ

XkYγ(ϕijkϕijγ − ϕijkϕjiγ)

= 3
∑
k,γ

XkYγδkγ = 3g(X, Y ).

Summing up all the terms together give the desired identity for Rict.
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4.2 Some first order differential operators

In this section, we discuss various first order differential operators on a manifold with a
nearly G2-structure and prove some identities involving them.

For f ∈ C∞(M), we have the vector field grad f given by

(grad f)k = ∇kf

and for any vector field X we have the divergence of X which is a function divX = ∇kXk.
On a manifold with a G2-structure ϕ, for a vector field X ∈ Γ(TM), we define the curl of
X as

(curlX)k = ∇iXjϕijk (4.2.1)

which can also be written as

(curlX) = ∗(dX ∧ ψ) (4.2.2)

and so up to G2-equivariant isomorphisms, the vector field curlX is the projection of the
2-form dX onto the Ω2

7 component. In fact, we have the following.

Proposition 4.2.1. Let X be a vector field on M . The Ω2
7 component of dX is given by

π7(dX) =
1

3
(curlX)yϕ =

1

3
∗ (curlX ∧ ψ). (4.2.3)

Proof. We know that π7(dX) = Wyϕ for some vector field W . Using (2.3.18) we compute

curlX = ∗(dX ∧ ψ) = ∗(π7(dX) ∧ ψ) = ∗((Wyϕ) ∧ ψ) = 3W

which gives (4.2.3).

In the next proposition we state and prove various relations among the first order differ-
ential operators described above. We prove the results for any G2-structure and state the
results for nearly G2-structures. These formulas are generalizations of the formulas first
proved for torsion-free G2-structures by Karigiannis [Kar10, Proposition 4.4].
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Remark 4.2.2. For fixed i, j, the Riemann curvature tensor Rijkl is skew-symmetric in
k and l and hence

Rijkl = (π7(Rm))ijkl + (π14(Rm))ijkl.

Explicitly,

(π7(Rm))ijkl =
1

3
Rijkl −

1

6
Rabklψabij, (π14(Rm))ijkl =

2

3
Rijkl +

1

6
Rabklψabij.

Moreover, from [Kar09, eq. (4.17)], we have

(π7(Rm))ijkl = (π7(Rm))mijϕmkl where π7(Rm)mij =
1

6
Rijklϕklm. (4.2.4)

Proposition 4.2.3. Let f ∈ C∞(M) and X be a vector field on M with a G2-structure ϕ.
Then

curl(grad f) = 0, (4.2.5)

div(curlX) = (π7(Rm))jjlXl −∇iXj(4(τ1)ij − (τ2)ij), (4.2.6)

curl(curlX)l = ∇l(divX) +RlmXm −∆Xl + (curlX)mTml − (∇lXi −∇iXl)(τ1)msϕmsi

− trT (curlX)l −∇iXjTisϕjsl −∇iXjTjsϕsil. (4.2.7)

Proof. We compute

curl(grad f) = ∇i(∇jf)ϕijk = 0

as ϕ is skew-symmetric, thus proving (4.2.5).

For (4.2.6) we use the Ricci identity (1.1.1) to get

div(curlX) = ∇k(∇iXjϕijk)

= ∇k∇iXjϕijk +∇iXj∇kϕijk

=
1

2
(∇k∇iXj −∇i∇kXj)ϕijk +∇iXjTkmψmijk (by (2.3.4), (2.2.7), (2.2.8))

= −1

2
RkijlXlϕijk −∇iXj(4(τ1)ij − (τ2)ij) (by (2.3.7))

= 3(π7(Rm))jljXl −∇iXj(4(τ1)ij − (τ2)ij) (by (4.2.4)).

We have also used the fact that the symmetric part of T vanishes when contracted with ψ.
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Finally we use the contraction identities (1.1.2) and (1.1.4) and the Ricci identity (1.1.1)
to compute

(curl(curlX))l = ∇m(∇iXjϕijk)ϕmkl

= (∇m∇iXjϕijk +∇iXjTmsψsijk)ϕlmk

= ∇m∇iXj(gilgjm − gimgjl − ψijlm)

−∇iXjTms(gmsϕlij + gmiϕslj + gmjϕsil − glsϕmij − gliϕsmj − gljϕsim)

= ∇j∇lXj −∆Xl −
1

2
(∇m∇iXj −∇i∇mXj)ψijlm − trT∇iXjϕijl −∇iXjTisϕslj

−∇iXmTmsϕsil +∇iXjTmlϕmij +∇lXjTmsϕsmj +∇iXlTmsϕmsi.

Using the fact that Rabcdψabck = 0 and (2.2.8) we get that

(curl(curlX))l = ∇l(divX) +RlmXm −∆Xl − trT (curlX)l −∇iXjTisϕjsl −∇iXmTmsϕsil

+ (curlX)mTml −∇lXj(τ1)msϕmsj +∇iXl(τ1)msϕmsi.

We can rearrange the above equation to get

(curl(curlX))l = ∇l(divX) +RlmXm −∆Xl + (curlX)mTml + (∇iXl −∇lXi)(τ1)msϕmsi

− trT (curlX)l −∇iXjTisϕjsl −∇iXjTjsϕsil.

For a nearly G2-structure we have Tij =
τ0

4
gij and Rij =

3τ0
2

8
gij. Moreover from [Kar09,

eq. (4.18)],

(π7(Rm))jjl = −∇l(trT ) +∇j(Tlj) + TlaTjbϕabj = 0.

Thus using the Weitzenböck formula for X, ∇∗∇Xl = −∇j∇jXl = (∆dX)l − RilXi, we
get the following.

Corollary 4.2.4. Let f ∈ C∞(M) and X be a vector field onM with a nearly G2-structure
ϕ. Then

curl(grad f) = 0, (4.2.8)
div(curlX) = 0, (4.2.9)

curl(curlX) = grad(divX)−∆X +
3τ0

2

8
X − τ0(curlX), (4.2.10)

= ∆dX + grad(divX)− τ0(curlX). (4.2.11)
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4.2.1 Identities for 2-forms and 3-forms

In this subsection, we prove some identities for 2-forms and 3-forms on a manifold with a
nearly G2-structure. These identities are used several times in the thesis.

Lemma 4.2.5. Let (M,ϕ) be a manifold with a G2-structure. If β = β7 + β14 is a 2-form
then

(1) ∗(β ∧ ϕ) = −2β7 + β14.

(2) ∗(β ∧ β ∧ ϕ) = −2|β7|2 + |β14|2.

Proof. The identity in (1) follows from (2.2.1) and (2.2.2). For (2) we note that for 7-
dimensional manifolds ∗2(α) = α for a k-form α, so

β ∧ β ∧ ϕ = β ∧ ∗2(β ∧ ϕ) = β ∧ ∗(−2β7 + β14)

and the decomposition of 2-forms is orthogonal.

Lemma 4.2.6. Let (M,ϕ) be a manifold with a G2-structure. Let σ = fϕ+ σ7 + σ27 be a
3-form on M and let σ7 = Xyψ for some vector field X on M . Then

(1) ∗(σ ∧ ϕ) = 4X.

(2) ∗(σ ∧ ψ) = 7f .

Proof. For (1), using the fact that Ω3
1⊕Ω3

27 lies in the kernel of wedge product with ϕ and
(2.3.16), we have

∗(σ ∧ ϕ) = ∗((fϕ+ σ7 + σ27) ∧ ϕ) = ∗(σ7 ∧ ϕ) = ∗((Xy ∗ ϕ) ∧ ϕ)

= 4X. (4.2.12)

For (2) we note that Ω3
7 ⊕ Ω3

27 lies in the kernel of wedge product with ψ and ϕ ∧ ψ =
7 vol.

Next, we explicitly derive the expressions for the exterior derivative and the divergence
of various components of 2-forms and 3-forms on a manifold with a nearly G2-structure.
Some of these identities are new, at least in the present form and we believe that they are
useful in other contexts as well.
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Lemma 4.2.7. Suppose (M,ϕ) is a manifold with a nearly G2-structure. Let f ∈ C∞(M),
β ∈ Ω2

14 and X ∈ Γ(TM). Then

(1) d(fϕ) = df ∧ ϕ+ τ0fψ,

(2) d∗(fϕ) = −(df)yϕ,

(3) dβ =
1

4
∗ (d∗β ∧ ϕ) + π27(dβ),

(4) d(Xyϕ) = −3

7
(d∗X)ϕ+

1

2
∗
((3τ0

2
X+curlX

)
∧ϕ
)

+iϕ

(1

2
(∇iXj+∇jXi)+

1

7
(d∗X)gij

)
,

(5) d∗(Xyϕ) = curlX,

(6) d(Xyψ) = −4

7
(d∗X)ψ+

(1

2
curlX − τ0

4
X
)
∧ϕ−∗iϕ

(1

2
(∇iXj +∇jXj) +

1

7
(d∗X)gij

)
.

Proof. Using (4.1.1) we have

d(fϕ) = df ∧ ϕ+ fdϕ

= df ∧ ϕ+ τ0fψ

which proves (1). For part (2) we compute

d∗(fϕ) = − ∗ d ∗ (fϕ) = − ∗ d(f ∗ ϕ) = − ∗ (df ∧ ∗ϕ) = −dfyϕ

as dψ = 0.

We prove part (3). Since dβ is a 3-form, we have

dβ = π1(dβ) + π7(dβ) + π27(dβ). (4.2.13)

We compute each term on the right hand side of (4.2.13). We repeatedly use the identities
(2.3.10)–(2.3.19). Suppose

π1(dβ) = aϕ

for some a ∈ C∞(M). Since Ω3
7 ⊕ Ω3

27 lies in the kernel of wedge product with ψ and
β ∧ ψ = 0 for β ∈ Ω2

14, we have

0 = d(β ∧ ψ) = dβ ∧ ψ = π1(dβ) ∧ ψ = 7a vol
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and hence

π1(dβ) = 0.

Suppose π7(dβ) = Xyψ for X ∈ Γ(TM). Using (2.2.2) and Lemma 4.2.6 (1), we have

d∗β = ∗d ∗ (β) = − ∗ d(β ∧ ϕ) = − ∗ (dβ ∧ ϕ)− τ0 ∗ (β ∧ ψ) = −4X.

Thus

π7(dβ) = −1

4
d∗βyψ =

1

4
∗ (d∗β ∧ ϕ),

which proves (3).

Since d(Xyϕ) is a 3-form, so we write

d(Xyϕ) = π1(d(Xyϕ)) + π7(d(Xyϕ)) + π27(d(Xyϕ)) (4.2.14)

and calculate each term on the right hand side. As before, assume

π1(d(Xyϕ)) = aϕ

for some a ∈ C∞(M). Then

d((Xyϕ) ∧ ψ) = π1(d(Xyϕ)) ∧ ψ = 7a vol

and hence 7a = ∗d((Xyϕ) ∧ ψ) = ∗d(3 ∗X). So we get that

a =
3

7
∗ d ∗X = −3

7
d∗X.

Assume that

π7(d(Xyϕ)) = Y yψ

for some Y ∈ Γ(TM). Using the fact that Ω3
1 ⊕ Ω3

27 lies in the kernel of wedge product
with ϕ we get

d((Xyϕ) ∧ ϕ) = d(Xyϕ) ∧ ϕ+ (Xyϕ) ∧ dϕ
= π7(d(Xyϕ)) ∧ ϕ+ τ0(Xyϕ) ∧ ψ = (Y yψ) ∧ ϕ+ 3τ0 ∗X.
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So we get

4 ∗ Y + 3τ0 ∗X = d((Xyϕ) ∧ ϕ) = d(−2 ∗ (Xyϕ)) = −2d(X ∧ ψ) = −2(dX) ∧ ψ

which gives

Y =
1

2

(
− ∗((dX) ∧ ψ)− 3τ0

2
X
)

= −1

2

(
curlX +

3τ0

2
X
)

and hence

π7(d(Xyϕ)) =
1

2
∗
((

curlX +
3τ0

2
X
)
∧ ϕ
)
.

Recall the map iϕ from (2.2.9). To calculate π27(d(Xyϕ)) we have

d(Xyϕ)imnϕjmn + d(Xyϕ)jmnϕimn

=
[−3

7
(d∗X)ϕimn −

1

2

((
curlX +

3τ0

2
X
)
yψ
)
imn

+ i(h0)imn

]
ϕjmn

+
[−3

7
(d∗X)ϕjmn −

1

2

((
curlX +

3τ0

2
X
)
yψ
)
jmn

+ i(h0)jmn

]
ϕimn

=− 36

7
(d∗X)gij + 8(h0)ij −

1

2

(
curlX +

3τ0

2
X
)
s
ψsimnϕjmn (4.2.15)

− 1

2

(
curlX +

3τ0

2
X
)
s
ψsjmnϕimn

=− 36

7
(d∗X)gij + 8(h0)ij. (4.2.16)

We calculate the left hand side of (4.2.16). Using (2.3.4) and (4.1.1) we have

d(Xyϕ)imnϕjmn + d(Xyϕ)jmnϕimn = (∇i(Xlϕlmn)−∇m(Xlϕlin) +∇n(Xlϕlim))ϕjmn

+ (∇j(Xlϕlmn)−∇m(Xlϕljn) +∇n(Xlϕljm))ϕimn

= (∇iXlϕlmn −∇mXlϕlin +∇nXlϕlim)ϕjmn

+
τ0

4
(Xlψilmn −Xlψmlin +Xlψnlim)ϕjmn

+ (∇jXlϕlmn −∇mXlϕljn +∇nXlϕljm)ϕimn

+
τ0

4
(Xlψjlmn −Xlψmljn +Xlψnljm)ϕimn.
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So

d(Xyϕ)imnϕjmn + d(Xyϕ)jmnϕimn = (∇iXlϕlmnϕjmn − 2∇mXlϕlinϕjmn)

+
τ0

4
(Xlψilmn −Xlψmlin +Xlψnlim)ϕjmn

(∇jXlϕlmnϕimn − 2∇mXlϕljnϕimn)

+
τ0

4
(Xlψjlmn −Xlψmljn +Xlψnljm)ϕimn.

We use the contraction identities (1.1.2), (1.1.3) and (1.1.4) to get

d(Xyϕ)imnϕjmn + d(Xyϕ)jmnϕimn = 4∇iXj + 4∇jXi + 4(divX)gij

+
τ0

4
(−4Xlϕilj + 4Xlϕlij + 4Xlϕlij)

+
τ0

4
(−4Xlϕjli + 4Xlϕlji + 4Xlϕlji)

= 4∇iXj + 4∇jXi − 4(d∗X)gij

and so from (4.2.16) we get

−36

7
(d∗X)gij + 8(h0)ij = 4∇iXj + 4∇jXi − 4(d∗X)gij

and thus

(h0)ij =
1

2
(∇iXj +∇jXi) +

1

7
(d∗X)gij

which completes the proof of (4).

We obtain (5) by

d∗(Xyϕ) = ∗d ∗ (Xyϕ) = ∗d(X ∧ ψ) = ∗(dX ∧ ψ) = curlX.

To prove part (6), we notice that since dψ = 0, d(Xyψ) = LXψ which is the image of
LXϕ = d(Xyϕ) + τ0Xyψ under the linearization of the map Θ. We then use part (4) of
the lemma and (2.3.20) to get part (6).

We use the following important lemma on several occasions.
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Lemma 4.2.8. Let ϕ be a nearly G2-structure on M and α be a 3-form so that

α = fϕ+ ∗(X ∧ ϕ) + α0

where α0 ∈ Ω3
27 with α0 = iϕ(h) where h is a symmetric traceless 2-tensor. Then

π1(dα) =
(
τ0f +

4

7
d∗X

)
ψ, (4.2.17)

π7(dα) =
(
df +

τ0

4
X − 1

2
curlX − 1

2
div h

)
∧ ϕ, (4.2.18)

π7(d∗α) = ∗
(

(−df + τ0X +
2

3
curlX − 2

3
div h) ∧ ψ

)
. (4.2.19)

Proof. We note that ∗α = fψ + (X ∧ ϕ) + ∗α0 and since ϕ is a nearly G2-structure hence

dα = df ∧ ϕ+ τ0fψ + d ∗ (X ∧ ϕ) + dα0 (4.2.20)

and

d∗α = − ∗ d ∗ α = − ∗ (df ∧ ψ)− ∗d(X ∧ ϕ) + d∗α0. (4.2.21)

Now π1(dα) = λψ for some λ ∈ C∞(M). We use Lemma 4.2.7 (6) to get,

7λ = 〈λψ, ψ〉 = 〈π1(dα), ψ〉 = 〈dα, ψ〉
= 〈df ∧ ϕ+ τ0fψ + d ∗ (X ∧ ϕ) + dα0, ψ〉
= 〈df ∧ ϕ, ψ〉+ 7τ0f + 4d∗X + 〈dα0, ψ〉. (4.2.22)

The first term on the right hand side of (4.2.22) is 0 as df ∧ ϕ ∈ Ω4
7 and ψ ∈ Ω4

1. The last
term is also 0 as from (2.2.5)

〈dα0, ψ〉 vol = dα0 ∧ ϕ = d(α0 ∧ ϕ) + τ0α0 ∧ ψ = 0.

Thus we get that

7λ = 7τ0f + 4d∗X =⇒ λ = τ0f +
4

7
d∗X

which gives (4.2.17).

To derive (4.2.18) and (4.2.19), we need to contract α0 ∈ Ω3
27 with ϕ on two indices and

with ψ on three indices. Using (2.2.9) and the contraction identities (1.1.2) and (1.1.5), a
short computation gives

α0ijkϕajk = 4hia, (4.2.23)
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α0ijkψaijk = 0. (4.2.24)

Suppose π7(dα) = Y ∧ ϕ for some 1-form Y . Note that for an arbitrary 1-form Z we have

〈Y ∧ ϕ,Z ∧ ϕ〉 vol = Y ∧ ϕ ∧ ∗(Z ∧ ϕ)

= −Y ∧ ϕ ∧ (Zyψ) = 4Y ∧ ∗Z
= 4〈Y, Z〉 vol .

So from (4.2.20) we have

4〈Y, Z〉 = 〈Y ∧ ϕ,Z ∧ ϕ〉 = 〈π7(dα), Z ∧ ϕ〉 = 〈dα, Z ∧ ϕ〉
= 〈df ∧ ϕ+ τ0fψ + d ∗ (X ∧ ϕ) + dα0, Z ∧ ϕ〉
= 4〈df, Z〉+ 〈d ∗ (X ∧ ϕ), Z ∧ ϕ〉+ 〈dα0, Z ∧ ϕ〉. (4.2.25)

We first use Lemma 4.2.7 (6) to calculate the second term on the right hand side of (4.2.25).
We have

〈d ∗ (X ∧ ϕ), Z ∧ ϕ〉 =

〈
(−1

2
curlX +

τ0

4
X) ∧ ϕ,Z ∧ ϕ

〉
= 〈−2 curlX + τ0X,Z〉

So in (4.2.25), we have

4〈Y, Z〉 = 〈4df + τ0X − 2 curlX,Z〉+ 〈dα0, Z ∧ ϕ〉. (4.2.26)

We compute in local coordinates

〈dα0, Z ∧ ϕ〉 =
1

24
(dα0)ijkl(Z ∧ ϕ)ijkl

=
1

24
(∇iα0jkl −∇jα0ikl +∇kα0ijl −∇lα0ijk)(Z ∧ ϕ)ijkl

=
1

6
(∇iα0jkl)(Ziϕjkl − Zjϕikl − Zkϕjil − Zlϕjki)

=
1

6
(Zi∇iα0jklϕjkl − 3Zj∇iα0jklϕikl)

=
1

6
(Zi∇i(α0jklϕjkl)−

τ0

4
Ziα0jklψijkl − 3Zj∇i(α0jklϕikl) +

3τ0

4
Zjα0jklψiikl).

We now use (4.2.23), (4.2.24) and the fact that h is traceless to get

〈dα0, Z ∧ ϕ〉 =
1

6
(Zi∇i(4 trh)− 0− 3Zj∇i(4hji))
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= −2〈div h, Z〉.

Thus from (4.2.26) we get

〈Y, Z〉 =
〈
df +

τ0

4
X − 1

2
curlX − 1

2
div h, Z

〉
and since Z is arbitrary, we get

Y = df +
τ0

4
X − 1

2
curlX − 1

2
div h

which establishes (4.2.18).

Next, we see from (4.2.21) and (2.2.1) that

d∗α = − ∗ (df ∧ ψ)− ∗(dX ∧ ϕ) + ∗τ0(X ∧ ψ) + d∗α0

= − ∗ (df − τ0X ∧ ψ) + 2π7(dX)− π14(dX) + d∗α0

which on using (4.2.3) becomes

d∗α = − ∗
((
df − τ0X −

2

3
curlX

)
∧ ψ
)
− π14(dX) + d∗α0. (4.2.27)

Suppose π7(d∗α) = ∗(W ∧ ψ) for some 1-form W . For any 1-form Z we note that

〈∗(W ∧ ψ), ∗(Z ∧ ψ)〉 vol = ∗(W ∧ ψ) ∧ Z ∧ ψ
= ∗(W ∧ ψ) ∧ ψ ∧ Z = 3 ∗W ∧ Z = 3〈W,Z〉 vol .

Thus using (4.2.27) and the orthogonality of the spaces Ω2
7 and Ω2

14, we have

3〈W,Z〉 = 〈∗(W ∧ ψ), ∗(Z ∧ ψ)〉 = 〈π7(d∗α), ∗(Z ∧ ψ)〉 = 〈d∗α, ∗(Z ∧ ψ)〉

= 〈− ∗ ((df − τ0X −
2

3
curlX) ∧ ψ)− π14(dX) + d∗α0, ∗(Z ∧ ψ)〉

= 〈−3df + 3τ0X + 2 curlX,Z〉+ 〈d∗α0, ∗(Z ∧ ψ)〉. (4.2.28)

Using (4.2.23) and (4.2.24), we compute the last term on the right hand side of (4.2.28),
in local coordinates. We have

〈d∗α0, ∗(Z ∧ ψ)〉 = 〈d∗α0, Zyϕ〉 =
1

2
(d∗α0)ijZmϕmij = −1

2
∇p(α0pij)Zmϕmij

= −1

2
Zm(∇p(α0pijϕmij)−

τ0

4
α0pijψpmij)
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= −1

2
Zm(4∇phpm − 0) = −2〈div h, Z〉

and hence we get

〈W,Z〉 =
〈
− df + τ0X +

2

3
curlX − 2

3
div h, Z

〉
.

Since Z is arbitrary we get

W = −df + τ0X +
2

3
curlX − 2

3
div h

which gives (4.2.19).

Remark 4.2.9. The main point of the previous lemma is to exhibit a relation between
π7(dα0) and π7(d∗α0). Such a relation is expected because of the form of the lineariza-
tion of the map Θ. More precisely, from (2.3.20), applying the linearization of Θ to Lie
derivatives, we have π27(LXψ) = − ∗ π27(LXϕ), 〈dα0, Z ∧ ϕ〉L2 = −〈α0, ∗LXψ〉L2 and
〈d∗α0, Zyϕ〉L2 = 〈α0,LXϕ〉L2 . The computations in local coordinates were done to relate
π7(dα0) and π7(d∗α0) to the divergence of the symmetric 2-tensor h.

Remark 4.2.10. The previous lemma generalizes Proposition 2.17 from [KL20] where the
G2-structure was assumed to be torsion-free (τ0 = 0).

We have the following corollary of Lemma 4.2.8.

Corollary 4.2.11. Let ϕ be a nearly G2-structure and let η ∈ Ω3
27. Then

(1) If η is closed then d∗η ∈ Ω2
14.

(2) If η is co-closed then dη ∈ Ω4
27.

Proof. In the notation of Lemma 4.2.8 we get that f = X = 0 and σ = η. Thus we get
that

π7(dη) = 0 ⇐⇒ π7(d∗η) = 0

as from Lemma 4.2.8, both conditions are equivalent to div h = 0. Now if dη = 0 then
π7(d∗η) = 0 and hence d∗η ∈ Ω2

14. If d∗η = 0 then π7(dη) = 0. Also, since f = X = 0, we
know from (4.2.17) that π1(dη) = 0. So dη ∈ Ω4

27.
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We also have a result similar to Lemma 4.2.8 for 4-forms which we state below. The proof
follows from the proof of Lemma 4.2.8 by taking ζ = ∗σ and noting that ∗iϕ(h) = −iϕ(h).
We expect that both Lemma 4.2.8 and Lemma 4.2.12 are useful in other contexts as well.

Lemma 4.2.12. Let ϕ be a nearly G2-structure on M and ζ be a 4-form on M so that

ζ = fψ +X ∧ ϕ+ ζ0

where X ∈ Ω1(M) and ζ0 ∈ Ω4
27 with ζ0 = ∗iϕ(h) where h is a symmetric traceless 2-tensor.

Then

π7(dζ) = W ∧ ψ where W = df − τ0X −
2

3
curlX − 2

3
div h, (4.2.29)

π1(d∗ζ) =
(
τ0f +

4

7
d∗X

)
ϕ, (4.2.30)

π7(d∗ζ) = Y yψ where Y = −df +
1

2
curlX − τ0

4
X − 1

2
div h. (4.2.31)

We get the following corollary.

Corollary 4.2.13. Let ϕ be a nearly G2-structure on M and let ζ0 ∈ Ω4
27. Then

1. If dζ0 = 0 then d∗ζ0 ∈ Ω3
27.

2. If d∗ζ0 = 0 then dζ0 ∈ Ω5
14.

4.3 Hodge theory of nearly G2 manifolds

4.3.1 Dirac operators on nearly G2 manifolds

We begin this section by defining the Dirac operator on (M,ϕ) with a nearly G2-structure.
We then define a modified Dirac operator which is more suitable for our purposes. In
Chapter 6, we study deformations of nearly G2-structures through nearly G2-structures
ϕt. Since the underlying metric of any nearly G2-structure is positive Einstein, the family
of metrics gt corresponding to ϕt is positive Einstein and so by [Bes87, Corollary 2.12],
the scalar curvature Rt is constant in t. Thus, by (4.1.4), τ0 is constant through the
deformation. Henceforth, we assume that τ0 = 4. The results presented here do not depend
on the value of τ0 chosen.
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A unit spinor η on a nearly G2 manifoldM satisfies (4.1.7). Thus, given that ei·ei = −1,
we have

/D(fη) =
7∑
i=1

ei · ∇ei(fη) = ∇f · η +
7

2
fη.

Also by Proposition 3.1.1,

/D(X · η) =
7∑
i=1

ei · ∇ei(X · η) =
7∑
i=1

(ei · ∇eiX · η + ei ·X · ∇eiη)

= (dX) · η + (d∗X)η +
7∑
i=1

ei ·X · ∇eiη

which, on using X · ei + ei ·X = −2〈X, ei〉 and (4.1.7), becomes

/D(X · η) = (dX) · η + (d∗X)η −
7∑
i=1

(X · ei · ∇eiη + 2〈X, ei〉∇eiη)

= (dX) · η + (d∗X)η − 7

2
X · η +X · η = (dX) · η + (d∗X)η − 5

2
X · η.

Thus we get

/D(fη +X · η) =
(7

2
f + d∗X

)
η +

(
∇f + dX − 5

2
X
)
· η. (4.3.1)

Now dX is a 2-form, hence dX = π7(dX) + π14(dX). Since the Lie group G2 preserves
the nearly G2-structure ϕ, it preserves the real Killing spinor η induced by ϕ. Thus,
since Λ2

14(M) ∼= g2, we have π14(dX) · η = 0. Also, we know from (4.2.2) that π7(dX) =
1

3
(curlX)yϕ and it follows from the definition of the Clifford multiplication, for instance

as in [Kar10, §4.2], that (Y yϕ) · η = 3Y · η for any Y ∈ Γ(TM). Thus we get that

/D(fη +X · η) =
(7

2
f + d∗X

)
η +

(
∇f + curlX − 5

2
X
)
· η

which we write as

/D(f,X) =
(7

2
f + d∗X,∇f + curlX − 5

2
X
)
. (4.3.2)

47



Proposition 4.3.1. The Dirac operator /D is a first-order differential operator on /S(M)
defined as follows. Let s = (f,X) ∈ Γ(/S(M)). Then

/D(f,X) =
(7

2
f + d∗X,∇f + curlX − 5

2
X
)
. (4.3.3)

The Dirac operator is formally self-adjoint, that is, /D∗ = /D and is also an elliptic operator.

Consider the Dirac Laplacian /D
2. We relate it to the Hodge Laplacian in the following.

Proposition 4.3.2. Let s = (f,X) be a section of the spinor bundle /S(M). Then

/D
2
(f,X) =

(
∆df +

49

4
f + d∗X, ∆dX + curlX +

25

4
X +∇f

)
. (4.3.4)

Thus /D
2 is equal to the Hodge Laplacian up to lower order terms.

Proof. Using Corollary 4.2.4, we calculate

/D
2
(f,X) =

(7

2

(7

2
f + d∗X

)
+ d∗

(
∇f + curlX − 5

2
X
)
,

d
(7

2
f + d∗X

)
+ curl

(
∇f + curlX − 5

2
X
)
− 5

2

(
∇f + curlX − 5

2
X
))

=
(

∆df +
49

4
f + d∗X, ∆dX + curlX +

25

4
X +∇f

)
which proves (4.3.4).

We need a modification of the Dirac operator defined above. The spinor bundle /S(M) is
isomorphic to Λ0

1 ⊕ Λ1
7 and hence, via a G2-equivariant isomorphism, it is also isomorphic

to Λ3
1 ⊕ Λ3

7. We define the modified Dirac operator, which we denote by D, as follows.
Consider the map

D : Ω0
1 ⊕ Ω1

7 −→ Ω3
1 ⊕ Ω3

7

(f,X) 7→ 1

2
∗ d(fϕ) + π1⊕7(d(Xyϕ)).

Using Lemma 4.2.7 (4) with τ0 = 4, we get

D(f,X) =
(

2f − 3

7
d∗X,

1

2
df + 6X + curlX

)
. (4.3.5)

48



Remark 4.3.3. This operator D was defined in [KL20] and denoted in that earlier work
by /̌D.

We find the kernel of D. Let (f,X) ∈ Ω0 ⊕ Ω1 be in the kernel of D. Then

2f − 3

7
d∗X = 0,

1

2
df + 6X + curlX = 0.

Taking d∗ of the second equation and using the first equation and equation (4.2.9), we get

∆f = d∗df = −2d∗ curlX − 12d∗X = −56f.

Since ∆ is a non-negative operator, f = 0. For X, we have

d∗X = 0 and curlX = −6X.

We want to prove that X is a Killing vector field. Let dX = Y yϕ+ π14(dX). Then

dX ∧ ψ = (Y yϕ) ∧ ψ
= 3 ∗ Y.

Therefore π7(dX) =
1

3
∗ (dX ∧ψ)yϕ =

1

3
(curlX)yϕ = −2Xyϕ. From Lemma 4.2.5 (2), we

have∫
M

dX ∧ dX ∧ ϕ = −2‖2Xyϕ‖2 + ‖π14(dX)‖2 = −8〈Xyϕ,Xyϕ〉+ ‖π14(dX)‖2

= −8〈X, ∗((Xyϕ) ∧ ψ)〉+ ‖π14(dX)‖2 = −24‖X‖2 + ‖π14(dX)‖2.

On the other hand, since M is compact, using integration by parts we have∫
M

dX ∧ dX ∧ ϕ =

∫
M

X ∧ dX ∧ dϕ = 4

∫
M

X ∧ dX ∧ ψ = 4

∫
M

X ∧ (−6 ∗X) = −24‖X‖2.

Therefore, π14(dX) = 0 and dX = π7(dX) = −2Xyϕ. Now using Lemma 4.2.7 (4), along
with the fact that X ∈ kerD, i.e., d∗X = 0 and curlX = −6X, we get

0 = d(dX) = d(−2Xyϕ) = −iϕ(LXg),

and hence X is a Killing vector field. Therefore kerD is isomorphic to the set of Killing
vector fields X such that curlX = −6X. We denote kerD by K, that is,

kerD = K = {X ∈ Γ(TM) | LXg = 0 and curlX = −6X}. (4.3.6)
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Remark 4.3.4. Note that since Ricg = 6g for τ0 = 4 the above can also be proved using
the identity ∆X = d∗dX = −2d∗(Xyϕ) = 12X and ∆X = 2Ric(X) if and only if X is a
Killing vector field.

Remark 4.3.5. If we also want the vector field X ∈ K to preserve the G2-structure, then

LXϕ = d(Xyϕ) +Xy dϕ = 4Xyψ = 0,

but since Ω1 ∼= Ω4
7, we get X = 0. Hence the only vector fields in K that preserve the

G2-structure are trivial. Note that when ϕ is a nearly G2-structure of type-1, that is
dim(K/S) = 1, every Killing vector field preserves the G2-structure and hence K = {0}.

The motivation for defining the modified Dirac operator can be understood from the fol-
lowing.

Consider the following operator

D+ : Ω3
1 ⊕ Ω5

7 → Ω4
1⊕7

(fϕ,X ∧ ψ) 7→ π1⊕7(d(fϕ) + d∗(X ∧ ψ)).

From previous calculations and Lemma 4.2.7 we know that

d(fϕ) = df ∧ ϕ+ 4fψ ∈ Ω4
1⊕7,

π1⊕7(d∗(X ∧ ψ)) =
3

7
(d∗X)ψ − 1

2

(
curlX + 6X

)
∧ ϕ.

Thus using the isomorphism Ω0 ⊕ Ω1 ∼= Ω4
1⊕7 we have

D+(fϕ,X ∧ ψ) =
(

4f +
3

7
(d∗X), df − 1

2

(
curlX + 6X

))
.

Doing a similar calculation as we did for kerD, we observe that if (f,X) ∈ kerD+, then

∆f = −28f, curlX = −6X =⇒ f = 0 = d∗X hence X ∈ K

and so kerD+ = kerD. Since Ω3
1 ⊕ Ω5

7
∼= Ω4

1⊕7 and D,D+ are self-adjoint operators, we
have the following identification

Ω4
1⊕7 = ImD+ ⊕ kerD+ = ImD+ ⊕ kerD

= dΩ3
1 ⊕ π1⊕7(d∗Ω5

7)⊕ {X ∧ ϕ|X ∈ K}.
(4.3.7)

This is used in the following important result.

50



Proposition 4.3.6. Let (M,ϕ, ψ) be a nearly G2 manifold. Then

1. Ω4 = {X ∧ ϕ|X ∈ K} ⊕ dΩ3
1 ⊕ d∗Ω5

7 ⊕ Ω4
27, and

2. we have an L2-orthogonal decomposition Ω4
exact = {X ∧ϕ | X ∈ K}⊕ dΩ3

1⊕Ω4
27,exact.

Proof. The first part of the proposition follows from the decomposition of Ω4
1⊕7 in equation

(4.3.7).

For the second part we note that the space d∗Ω5
7 is L2-orthogonal to exact 4-forms. To

prove the L2-orthogonality of the remaining summands we proceed term by term. Let
X ∈ K, d(fϕ) ∈ dΩ3

1 and γ ∈ Ω4
27, such that dα = X ∧ ϕ + d(fϕ) + β for some exact

4-form dα. Using the pointwise orthogonality of Ω4
1 and Ω4

7, we have

〈X ∧ ϕ, d(fϕ)〉L2 = 〈X ∧ ϕ, df ∧ ϕ+ 4fψ〉L2

= 〈X ∧ ϕ, df ∧ ϕ〉L2

= 4〈X, df〉L2 = 4〈d∗X, f〉L2 = 0.

Note that since X ∈ K, Lemma 4.2.7 (6) implies that X ∧ ϕ = d
(
−1

4
Xyψ

)
, and hence is

exact. Thus, β ∈ Ω4
27,exact. Let β = dα0. The L2-orthogonality of Ω4

27 and Ω4
1, along with

the identity ϕ ∧ ∗dα = 0 implies

〈dα0, d(fϕ)〉L2 = 〈dα0, df ∧ ϕ+ 4fψ〉L2

= 〈dα0, df ∧ ϕ〉L2 + 〈dα0, 4fψ〉L2 = 0.

The orthogonality of X ∧ ϕ and dα0 follows from the L2-orthogonality of Ω4
7 and Ω4

27.

Thus, from the previous proposition, we know that any 4-form α on a nearly G2 manifold
can be written as α = X ∧ϕ+ d(fϕ) + d∗(Y ∧ψ) +α0, for some X ∈ K, f ∈ C∞(M), Y ∈
Γ(TM) and α0 ∈ Ω4

27.

Remark 4.3.1. Since for Y ∈ K, d∗(Y ∧ψ) = 0, one can choose Y ∈ K⊥L2 in the previous
proposition.

Thus for every 4-form α there exists unique X ∈ K, Y ∈ K⊥L2 , f ∈ C∞(M) and
α0 ∈ Ω4

27 such that
α = X ∧ ϕ+ d(fϕ) + d∗(Y ∧ ψ) + α0.
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4.3.2 Harmonic 2-forms and 3-forms on nearly G2 manifolds

The above decomposition of 4-forms has a very useful application in determining the coho-
mology of nearly G2 manifolds. We first note that since nearly G2 manifolds are positive
Einstein, it follows from the Bochner formula and Myers’s theorem that any harmonic
1-form is 0 and hence H1(M) = H6(M) = 0. The next two theorems describe the degree
3, 4 and degree 2 and 5 cohomology of a nearly G2 manifold.

Theorem 4.3.7. Let (M,ϕ, ψ) be a compact nearly G2 manifold. Then every harmonic
4-form lies in Ω4

27. Equivalently, every harmonic 3-form lies in Ω3
27.

Proof. Let α be a harmonic 4-form that is dα = d∗α = 0. From Lemma 4.2.12 there exists
X ∈ K, f ∈ C∞(M), Y ∈ K⊥L2 and α0 ∈ Ω4

27 such that

α = X ∧ ϕ+ d(fϕ) + d∗(Y ∧ ψ) + α0.

Since X ∈ K and hence 6X = curlX, by Lemma 4.2.7 (6), d∗(X ∧ ϕ) = 4Xyψ ∈ Ω3
7 and

since d(fϕ) = df ∧ ϕ+ 4fψ ∈ Ω4
1⊕7, we have

0 = 〈α, d(fϕ)〉L2 = 〈X ∧ ϕ, d(fϕ)〉L2 + ‖d(fϕ)‖2
L2 + 〈d∗(Y ∧ ψ), d(fϕ)〉L2 + 〈α0, d(fϕ)〉L2

= 〈d∗(X ∧ ϕ), fϕ〉L2 + ‖d(fϕ)‖2
L2

= ‖d(fϕ)‖2
L2 .

Thus d(fϕ) = 0 and hence f = 0.

Now, 0 = d∗α = d∗(X ∧ϕ) + d∗α0 = 4Xyψ+ d∗α0. Using the identity, (Xyψ)∧ϕ = 4 ∗X
we have

‖d∗α0‖2
L2 = 16〈Xyψ,Xyψ〉L2

= 16〈X, ∗((Xyψ) ∧ ϕ)〉L2 = 64‖X‖2
L2 .

On the other hand, again by Lemma 4.2.7 (6)

‖d∗α0‖2
L2 = 〈d∗α0, d

∗α0〉L2

= −4〈d∗α0, Xyψ〉L2

= −4〈α0, d(Xyψ)〉L2 = 16〈α0, X ∧ ϕ〉L2 = 0,

which implies X = 0. So α = d∗(Y ∧ ψ) + α0.
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Since d∗α0 = 0, applying Corollary 4.2.13 on α0 implies dα0 ∈ Ω5
14. This identity together

with the closedness of α gives us

0 = 〈α, d∗(Y ∧ ψ)〉L2 = ‖d∗(Y ∧ ψ)‖2
L2 + 〈α0, d

∗(Y ∧ ψ)〉L2

= ‖d∗(Y ∧ ψ)‖2
L2 + 〈dα0, Y ∧ ψ〉L2 = ‖d∗(Y ∧ ψ)‖2

L2 .

as Y ∧ ψ ∈ Ω5
7. Hence d∗(Y ∧ ψ) = 0 or equivalently Y ∈ K, thus Y = 0 which implies

that α = α0 which completes the proof of the theorem.

We also describe the degree 2 (and hence degree 5) cohomology on nearly G2 manifolds
below. In combination with Theorem 4.3.7, this completely describes the cohomology of a
nearly G2 manifold.

Theorem 4.3.8. Let (M,ϕ, ψ) be a compact nearly G2 manifold with τ0 = 4. Let β be a
2-form with

β = β7 + β14 = (Xyϕ) + β14 for some X ∈ Γ(TM).

If β is harmonic then β ∈ Ω2
14.

Proof. Suppose β ∈ Ω2(M) is harmonic. Then dβ = d∗β = 0 and since d and d∗ are linear,
we have

dβ7 + dβ14 = 0, d∗β7 + d∗β14 = 0

which on using Lemma 4.2.7 (3), (4) and (5) imply

− 3

7
(d∗X)ϕ+

1

2
∗ ((6X + curlX) ∧ ϕ) + iϕ

(1

2
(LXg) +

1

7
(d∗X)g

)
+

1

4
∗ (d∗β14 ∧ ϕ) + π27(dβ14) = 0

and

d∗β14 = curlX.

Thus we get

− 3

7
(d∗X)ϕ+

1

2
∗ ((6X + curlX +

1

2
curlX) ∧ ϕ)
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+ iϕ

(1

2
(LXg) +

1

7
(d∗X)g

)
+ π27(dβ14) = 0

and so

d∗X = 0, curlX = −4X and
1

2
(LXg) + π27(dβ14) = 0. (4.3.8)

Now curlX = −4X, so taking curl of both sides and using (4.2.11) with d∗X = 0, we get

∆dX − 4 curlX = −4 curlX =⇒ ∆dX = 0.

Thus X is harmonic. Since nearly G2 manifolds are positive Einstein, it follows from
Bochner formula and Myers’s theorem that X = 0. Hence β = β14 ∈ Ω2

14.

Remark 4.3.9. Theorem 4.3.8 was also proved in a very different way in [BO19, Remark
15]. The theorem has the following interesting interpretation in the context of G2 instantons
on a nearly G2 manifold, as already described in [BO19, Corollary 14]. For any α ∈
H2(M,Z), by Theorem 4.3.8, there is a unique G2-instanton on a complex line bundle L
with c1(L) = α.

Remark 4.3.10. Theorem 4.3.7 also follows from the description of nearly G2 manifolds
using Killing spinors which is based on an old result of Hijazi saying that the Clifford
product of a harmonic form and a Killing spinor vanishes. The methods can be used to
investigate the cohomology class for any degree and on manifolds with any G2-structure
(not necessarily nearly G2) with suitable modifications.

4.4 Classification of homogeneous nearly G2 manifolds

In [FKMS97] Friedrich–Kath–Moroianu–Semmelmann classify all the compact, simply con-
nected homogeneous nearly G2 manifolds. Any homogeneous nearly G2 manifold is one of
the six manifolds listed in Table 4.1. We describe the homogeneous structure on each of
these spaces.

(S7, ground) = Spin(7)/G2, (S7, gsquashed) = Sp(2)×Sp(1)
Sp(1)×Sp(1)

, SO(5)/SO(3),

M(3, 2) = SU(3)×SU(2)
U(1)×SU(2)

, N(k, l) = SU(3)/S1
k,l, Q(1, 1, 1) = SU(2)3/U(1)2.

Table 4.1: Homogeneous nearly G2 manifolds
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- In the round S7 the embedding of G2 in Spin(7) is obtained by lifting the standard
embedding of G2 into SO(7).

- For the squashed metric on S7, the two copies of Sp(1) in Sp(2)× Sp(1) denoted by
Sp(1)u and Sp(1)d [AS12] are

Sp(1)u :=

{((
a 0
0 1

)
, 1

)
: a ∈ Sp(1)

}
, Sp(1)d :=

{((
1 0
0 a

)
, a

)
: a ∈ Sp(1)

}
.

- For the Berger space SO(5)
SO(3)

, the Lie group SO(3) is embedded into SO(5) via the 5

dimensional irreducible representation of SO(3) on Sym2
0(R3).

- For SU(3)×SU(2)
U(1)×SU(2)

the embedding of SU(2) (denoted by SU(2)d) and U(1) in SU(2) ×
SU(2) is defined as [AS12]

SU(2)d :=

{((
a 0
0 1

)
, a

)
: a ∈ SU(2)

}
, U(1) :=


eiθ 0 0

0 eiθ 0
0 0 e−2iθ

 , 1

 : θ ∈ R


- For the Aloff–Wallach spaces Nk,l the labels k, l are coprime positive integers and the
embedding of S1

k,l = U(1)k,l in SU(3) is described by

S1
k,l :=


eikθ 0 0

0 eilθ 0
0 0 e−i(k+l)θ

 , θ ∈ R

 .

- For Q(1, 1, 1), we denote the two copies of U(1) inside SU(2)3 as U(1)u,U(1)d with
respective embeddings given by

U(1)u = Span
{((

eiθ 0
0 e−iθ

)
,

(
e−iθ 0

0 eiθ

)
, I2
)
, θ ∈ R

}
,

U(1)d = Span
{(

I2,
(
eiθ 0
0 e−iθ

)
,

(
e−iθ 0

0 eiθ

))
, θ ∈ R

}
.

The first four homogeneous spaces are normal that is, for those the nearly G2 metric
g on G/H is related to the Killing form B of G by g = − 3

40
B. The choice of the scalar

constant 3
40

is based on our convention τ0 = 4. The general formula for the constant was
derived in [AS12, Lemma 7.1]. For the remaining two homogeneous spaces the nearly G2

metric is not a scalar multiple of the Killing form of G (see [Wil99]).
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(S7, ground) ∼= Spin(7)/G2, (S7, gsquashed) ∼= Sp(2)×Sp(1)
Sp(1)×Sp(1)

,

SO(5)/SO(3), M(3, 2) ∼= SU(3)×SU(2)
U(1)×SU(2)

.

Table 4.2: Normal homogeneous nearly G2 manifolds

Let m be the orthogonal complement of the Lie algebra h of H in g with respect to
g. Then m is invariant under the adjoint action of h. That is, [h,m] ⊂ m, and thus
all the homogeneous spaces listed in Table 4.1 are naturally reductive. The reductive
decomposition g = h ⊕ m equips the principal H-bundle G → G/H with a G-invariant
connection whose horizontal spaces are the left translates of m. This connection is known
as the characteristic homogeneous connection. On homogeneous nearly G2 manifolds the
characteristic homogeneous connection has holonomy contained in G2. If we denote by Zm

the projection of Z ∈ g on m, the torsion tensor T for any X, Y ∈ m is given by

T (X, Y ) = −[X, Y ]m,

and is totally skew-symmetric. Thus by the uniqueness result in [CS04] it is the canonical
connection with respect to the nearly G2-structure on G/H [HN12].
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Chapter 5

Gauge theory on manifolds with
G2-structure

5.1 Background on gauge theory

Gauge theory is the study of bundles (vector and principal) and objects on them. It has
led to some remarkable results in both mathematics and physics over the last four decades.
However, most of the effort has concentrated on gauge theory in dimensions d = 2, 3, 4.
Moreover, in the past few years a great deal of work in this area evolved around intricate
interactions between such theories.

In four dimensions, since ∗2 = id on 2-forms, one can decompose FA into the ±1
eigenspaces of the Hodge star operator denoted by F+

A and F−A respectively. The component
F+
A is self-dual (SD) whereas F−A is anti-self-dual (ASD). A connection A is called an

instanton if FA is self-dual or anti-self-dual. In higher dimensions, the instanton equation
on Mn can be introduced as follows. Assuming there is a closed (n − 4)-form Ω on M , a
connection A is an instanton if the curvature FA satisfies the equation

FA = ∗(FA ∧ Ω).

In this chapter we review the framework for studying gauge theory on the 7 dimensional
manifolds with a G2-structure. On a G2 manifold (M,ϕ) the instanton equation becomes

FA = ∗(FA ∧ ϕ).
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There are many equivalent ways to define a G2 instanton which we describe in Section
5.2. More specifically we see that the canonical connection we defined in (4.1.11) on
homogeneous nearly G2 manifolds satisfies the G2 instanton condition. With our convention
the G2 instantons are analogues of the SD connections in 4 dimensions.

Gauge theories in lower dimensions have been hugely successful in producing the well-
known theories of Casson in dimension 2, Floer in dimension 3, and Donaldson theory in 4
dimensions. In 4-dimensional geometry the moduli space of anti-self-dual (ASD) instantons
was used to assign numerical invariants to smooth 4-manifolds. In 1983, Donaldson [Don83]
gave strong restrictions on the intersection form of a differentiable 4-manifold using gauge
theory. It is conjectured that one may employ similar methods to construct numerical
invariants of manifolds with special holonomy such as G2 and Spin(7), a hope that was
expressed in [DT98], [DS11].

Although the quest for producing invariants has deeply motivated the study of gauge
theory in dimension greater then 4, gauge theory in higher dimensions has long been a
subject of interest for both mathematicians and physicists. One of motivations to consider
higher dimensional instantons comes from recent developments in string dualities and M-
theory, where one can obtain low energy effective (supersymmetric) gauge theories in vari-
ous dimensions. The main motivation for studying ASD connections in 4 dimensions came
from the fact that they are minimizers for the Yang–Mills functional, YM(A) = ‖FA‖2.
The Yang–Mills connections which locally minimize the functional are known as stable
Yang–Mills connection. In higher dimensions significant results regarding the instability of
Yang–Mills connections came from Bourguignon–Lawson–Simons for spheres of dimension
greater than four in 1971 [BLS79] and by Bourguignon–Lawson on quotients of Sn and
more general homogeneous spaces in 1981 [BL81]. In [Ste10] these results were extended
and generalized significantly to several situations. Huang in [Hua17] showed that energy
minimizing Yang–Mills connections on a compact torsion-free G2 manifold are G2 instan-
tons under certain assumptions. The G2 and Spin(7) instanton equations on R7 and R8

respectively were introduced by Corrigan, Devchand, Fairlie and Nuyts in [CDFN83] and
for a general Riemannian manifold by Carrion in [Rey98]. Since then much research has
been done on gauge theory in higher dimensions and many examples of instantons in higher
dimensions have been generated.

- Spin(7) instantons on R8 were first constructed by Fubini–Nicolai [FN85], and Fairlie–
Nuyts [FN84] around the same time derived spherically symmetric solutions of the
SO(7) and SO(8) Yang–Mills equations in an eight-dimensional Euclidean space.

- In [Wal13] Walpuski introduced a method to construct G2 instantons on G2 manifolds
arising from Joyce’s generalised Kummer construction.
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- In [SW15] Sá Earp–Walpuski developed a method to construct G2 instantons on
special types of G2 manifolds known as the twisted connected sums constructed by
Kovalev in [Kov03]. Later in [Wal16] Walpuski used the algorithm to construct an
example of a G2 instanton on a special type of twisted connected sum G2 manifold.

- Clarke in [Cla14] gave a construction of G2 and Spin(7) instantons on exceptional
holonomy manifolds constructed by Bryant and Salamon.

- On a G2 manifold (M,ϕ, ψ) a G2 monopole is defined by a pair (A,Φ) of a connection
A and Higgs field Φ ∈ Ω0(M) which satisfies the gauge theoretic equation

FA ∧ ψ = ∗∇AΦ.

When Φ = 0 the monopole equation reduces to the G2 instanton equation. Oliveira in
[Oli14b] studied monopoles on torsion-free G2 manifolds and as a special case found
explicit irreducible G2 instantons on Λ−2 (S4) and on Λ−2 (CP2).

- Lotay–Oliveira in [LO18] constructed, and in some cases classified, symmetric instan-
tons with gauge groups U(1) and SU(2) on various complete and non-compact G2

manifolds admitting actions of SU(2)2.

- In [MNE21] Ménet–Sá Earp–Nordström constructed examples of G2 instantons on
twisted connected sum G2 manifolds.

- In [BO19] Ball–Oliveira proved the existence of nearly G2 instantons on certain Aloff–
Wallach spaces and classified invariant G2 instantons on these spaces with gauge
group U(1) and SO(3).

- Waldron [Wal20] proved that the pullback of the standard instanton on S7 obtained
from ASD instantons on the 4-sphere via the quaternionic Hopf fibration lies in a
smooth, complete, 15-dimensional family of G2 instantons.

In [DT98] Donaldson and Thomas suggested that invariants of manifolds with special
holonomy may be defined using instanton equations in higher dimensions. Later in [DS11]
some of the technicalities of defining such invariants were studied. They also observed that
the naive count of G2 instantons on a compact G2 manifold cannot produce a deformation-
invariant number but rather this number jumps in a finite number of points as one changes
the G2 metric in a one parameter family. A partial result in overcoming this difficulty
was presented in [Hay12] and [HW15] where it was suggested that a suitable combination

59



of counts of G2 instantons and solutions of some gauge theoretic equations on associative
submanifolds yield an invariant of G2–manifolds.

Due to these suggestions of potentially defining an invariant, progress in gauge theory on
7 dimensional manifolds with a G2-structure is important in both mathematics and physics.
For a possible counting invariant the study of the moduli space of G2 instantons is of
utmost importance. In this thesis we are mostly concerned with gauge theory on complete
nearly G2 manifolds. Such manifolds are compact by Myers’s theorem. In Chapter 7 we
discuss the infinitesimal deformations of the canonical connection on homogeneous nearly
G2 manifolds. The result gives us an idea of when one can possibly deform the canonical
connection to get a family of G2 instantons. Since the cone over nearly G2 manifolds has
holonomy Spin(7), the deformation theory of instantons on nearly G2 manifolds is directly
related to Spin(7) instantons.

We begin with a brief description of gauge theory in general and more specifically in the
G2 setting. Let (Mn, g) be a Riemannian manifold, let P → M be a principal G-bundle,
and let A be a connection on P . We denote by AdP the adjoint bundle associated to P ,
that is AdP = P ×Ad g. Since the difference of two connections is a Lie algebra g-valued
1-form the space of connections A on P is an affine space isomorphic to Γ(T ∗M ⊗ AdP).
For decomposable g-valued forms α⊗ a, β ⊗ b ∈ Λ∗ ⊗ g, let

[(α⊗ a) ∧ (β ⊗ b)] = α ∧ β ⊗ [a, b]

.

Let A be a connection 1-form on P and ∇A = d + A be the covariant derivative in a
local trivialization. Then the curvature FA associated to A is given by

FA = dA+
1

2
[A ∧ A]. (5.1.1)

Thus FA ∈ Γ(Λ2T ∗M ⊗AdP) is a AdP-valued 2-form known as the curvature 2-form. The
gauge group G of P is the group of vertical bundle automorphisms of P . It acts on the
space of connections A via the action

g · A = gAg−1 − (dg)g−1.

One can easily check that Fg·A = gFAg
−1. For a connection A on P , the flatness condition

FA = 0

is clearly gauge-invariant. In gauge theory we deal with connections satisfying some gauge-
invariant condition on the curvature. Thus for a systematic study of gauge invariant
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equations it is more appropriate to work with the moduli space of connections modulo the
gauge groupM = A/G.

When the structure group G is compact and semisimple the Killing form on G defines
an inner product 〈·, ·〉 on g. Using this inner product one can define the wedge product
between a g-valued p-form α and q-form β by wedging the differential forms part and
taking the inner product of the Lie algebra part thus 〈α ∧ β〉 ∈ Ωp+q(M). Using this we
can define the Yang–Mills energy functional on A as

YM(A) =

∫
M

|FA|2 vol =

∫
M

〈FA ∧ ∗FA〉. (5.1.2)

Since YM is clearly gauge invariant it descends to a functional onM. The Euler-Lagrange
equation of the Yang–Mills functional is the Yang–Mills equation

d∗AFA = 0. (5.1.3)

The connections that solve the Yang–Mills equation are known as Yang–Mills connections.
Flat connections are trivially Yang–Mills connections.

In dimensions n > 4 Tian, in [Tia00] showed that the presence of a closed (n − 4)-
form Ω on M gives a criterion for finding classes of solutions to (5.1.3), which suggests a
generalisation to the concept of instanton. Tian introduces a very general type of anti-self-
duality equation to be studied for connections A on an n-manifold M . Tian’s equation is
a first order equation (algebraic in the curvature FA), dependent on a closed (n− 4)-form
Ω on M , which implies the second order Yang–Mills equations. For suitable choices of Ω
these Ω-ASD equations include the standard ASD equations, the Hermitian–Yang–Mills
(HYM) equations, and the higher-dimensional equations of [DT98].

One can also define the analogue of the Chern–Simons theory originally introduced in
3-dimensions. On a bundle P over a compact 3-manifold Y the Chern–Simons functional
is a circle-valued real function on the moduli space M. It has the remarkable property
that its critical points are precisely the flat connections on P modulo gauge. Recall that
A is an affine space modelled on Ω1(Y,AdP). So, if we fix a reference connection A0 ∈ A,
we can write

A = A0 + Ω1(Y,AdP).

In particular the total space of the tangent bundle TA = A×Ω1(Y,AdP) and thus vectors
in TA can be locally thought of as g-valued 1-forms onM . Thus associated to a connection
A we can define a 1-form ρA on A by

ρA(a) :=

∫
Y

tr(FA ∧ a).
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Since for b ∈ Ω1(Y, g), FA+b = FA + dAb+ b ∧ b we have the first order difference

ρA+b(a)− ρA(a) =

∫
Y

tr(dAb ∧ a) +O(|a| · |b|2).

Moreover it is easy to verify that the above difference is symmetric in a, b thus one can
prove that ρ is closed. See [Sá 09, Section 1.3.2] for a complete proof. Since A is affine
and hence contractible the closedness of ρ implies the existence of a functional ν such that
ρ = dν. One can find ν explicitly by integrating ρ over paths A(t) = A0 + ta, from A0 to
any A = A0 + a. On [A] = [A0 + a] ∈M

ν([A(t)]) =
1

2

∫
Y

tr

(
dA(t) ∧ A(t) +

2

3
A(t) ∧ A(t) ∧ A(t)

)
. (5.1.4)

The ν defined above is the Chern–Simons functional. Since ∂T = ∅ the derivative of ν at
t = 0 is given by,

d

dt

∣∣∣
t=0
ν([A(t)]) =

∫
Y

tr(a ∧ FA0).

Thus the critical points of the Chern–Simons functional in dimension 3 are the flat
connections on P → Y .

In the rest of the chapter we review some standard material on G2 gauge theory. Since
G2 manifolds are spinnable the theory can be formulated in terms of spin geometry as well.

5.2 G2 Gauge theory

Let (M7, ϕ, σ) be a manifold with a G2-structure where ϕ is the positive 3 form and σ is
a unit real spinor associated to ϕ. As before we denote by g the induced metric, ∗ the
induced Hodge star and ψ = ∗ϕ the dual 4 form. Let P → M be a principal K-bundle.
We denote by AdP the adjoint bundle associated to P . Let A be a connection 1-form on P
and FA ∈ Γ(Λ2T ∗M ⊗AdP) be the curvature 2-form associated to A as defined in (5.1.1).

Definition 5.2.1. A connection A on P is a G2 instanton if it satisfies

FA ∧ ϕ = ∗FA. (5.2.1)
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The G2 instanton condition (5.2.1) can be thought of as a 7–dimensional version of the
self-duality (or anti-self-duality) condition familiar from dimension four. When the G2-
structure is torsion-free and A is a G2 instanton, we can use the Bianchi identity dAFA = 0
and the condition dϕ = 0 to get d∗AFA = ∗dA∗FA = ∗dA(FA∧ϕ) = ∗(dAFA∧ϕ+FA∧dϕ) =
0. Thus on a torsion-free G2 manifold G2 instantons are Yang–Mills.

For a manifold with a G2-structure, using the 2-form decomposition (2.2.1), (2.2.2) and
their L2 orthogonality the values of YM(A) can be related to a functional κP(A) as follows:

κP(A) =

∫
M

tr(F 2
A) ∧ ϕ

=

∫
M

〈FA ∧ FA ∧ ϕ〉

= 〈FA,−2 ∗ π7(FA) + ∗π14(FA)〉L2

= −2‖π7(FA)‖2 + ‖π14(FA)‖2.

Thus we have

YM(A) = ‖π7(FA)‖2 + ‖π14(FA)‖2 = 3‖π7(FA)‖2 + κP(A) =
1

2
(3‖π14(FA)‖2 − κP(A)).

Remark 5.2.1. If we denote by p1(P) the first Pontryagin class of P then for ϕ closed
8π2κP(A) = 〈p1(P) ∪ [ϕ], [M ]〉 is a topological invariant independent of A depending only
on the principal bundle. It is then clear that YM attains its minimum at a connection
whose curvature is either in Λ2

7 or Λ2
14. Moreover, since YM ≥ 0, the sign of κP obstructs

the existence of one type or the other. Fixing κP ≥ 0 we can say that G2 instantons
minimize the Yang–Mills energy. These facts motivate our interest in the G2 instanton
equation.

There are many ways to define the general instanton condition on A. If (M, g) is
equipped with a G-structure such that G ⊂ O(n), there is a subbundle g(T ∗M) ⊂ Λ2T ∗M
whose fibre is isomorphic to g = Lie(G). The connection A is an instanton if the 2-form
part of FA belongs to g(T ∗M). In global terms, A is an instanton if

FA ∈ Γ(g(T ∗M)⊗ AdP) ⊂ Γ(Λ2T ∗M ⊗ AdP).

Note that in dimension 7 if M is equipped with a G2-structure then this condition implies
that A is an instanton if the 2-form part of FA ∈ g2(T ∗M) = Γ(Λ2

14).

The second definition of an instanton is a special case of the first when the Lie algebra
g is simple. Its quadratic Casimir is a G-invariant element of g⊗g which may be identified
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with a section of Λ2 ⊗ Λ2 and thus with a 4-form Q by taking a wedge product. Since
this Q is G-invariant the operator u → ∗(∗Q ∧ u) acting on 2-forms commutes with the
action of G and hence by Schur’s Lemma the irreducible representations of G in Λ2 are
eigenspaces of the operator. Then FA is an instanton if

∗(∗Q ∧ FA) = νFA. (5.2.2)

for some ν ∈ R. In dimension 7 it turns out that Q = ψ (see [HN12]) and the above
condition is equivalent to FA ∈ Γ(Λ2

14) when ν = 1.

Finally ifM is a spin manifold, and the spinor bundle admits one or more non-vanishing
spinors σ, then A is an instanton if

FA · σ = 0.

When M has a G2-structure and σ is the corresponding spinor then σ is preserved by the
action of the Lie group G2. Thus FA ·σ = 0 if and only if A is a G2 instanton. An interested
reader can read further on these definitions and their relations in [HN12].

We remark that for an instanton A on a manifold with a G2-structure ϕ all the above
definitions are equivalent. They all imply that the curvature FA associated to A lies in
Γ(Λ2

14) and thus satisfies all of these equivalent conditions:

FA · η = 0,

FA ∧ ϕ = ∗F,
FA ∧ ψ = 0,

FA ⌟ ϕ = 0.

(5.2.3)

From now on in this thesis we use these instanton conditions interchangeably according
to the context without further specification. Note that the above definitions are valid for
any general G2-structure and not only for nearly parallel ones.

On a manifold with real Killing spinors it was shown in [HN12] that instantons solve
the Yang–Mills equation. In the case of a nearly G2 instanton we can prove this fact by
direct computation. For an instanton A, (5.2.3) and the Bianchi identity implies

(dA)∗FA = ∗dA ∗ FA
= ∗dA(ϕ ∧ FA)

= 4 ∗ (ψ ∧ FA) = 0.
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Thus on closed and nearly G2 manifolds, G2 instantons are Yang–Mills. It is then a natural
question to ask if they are local minimizers (maximizers) of the Yang–Mills functional.
However the G2 instantons corresponding to a nearly G2-structure are not the minimizers
of the Yang–Mills functional. In [BO19] Ball–Oliveira answered the question in the negative
by providing an example of a nearly parallel G2-structure, together with a G2 instanton
which is unstable as a Yang–Mills connection.

Moreover, when the G2-structure ϕ is closed (not necessarily co-closed), it follows from
Remark 5.2.1 that G2 instantons are in fact absolute minima of the Yang–Mills functional.

Example 5.2.2. A flat connection is trivially a G2 instanton.

Example 5.2.3. If ϕ is torsion-free then the Levi-Civita connection associated to ϕ is a
G2 instanton. To see that, observe that at each point since Hol(g) ⊂ G2 we can think of
the Riemannian curvature tensor R as an element of S2g2 ⊂ Λ2⊗gl(7). But then it follows
from (2.2.2) that ∗(R ∧ ϕ) = R.

Example 5.2.4. As proved by [HN12] the canonical connection on nearly G2 manifolds
defined in Chapter 4 is a G2 instanton. In Chapter 7 we describe the infinitesimal defor-
mation space of this G2 instanton for the four normal homogeneous nearly G2 metrics.

In the presence of a suitable closed (n− 3)-form a theory similar to the Chern–Simons
theory in 3-dimensions can be formulated in higher dimensions [DT98], [Tho97]. Our case
of interest is n = 7. When the G2-structure is co-closed that is the 4-form ψ is closed one
can define a Chern–Simons type functional on the space of connection similar to (5.1.4).
If we choose A = A0 + a for a g-valued 1-form a and fixed connection A0 for which
FA0 ∈ Ω2

14(M, g) we have

ν(A) =
1

2

∫
Y

tr

(
dA0a ∧ a+

2

3
a ∧ a ∧ a

)
∧ ψ.

On a manifold with a co-closed G2-structure the Chern–Simons functional ν arises analo-
gously to the 3 dimensional case. Here the 1-form ρ on the space of connection A is defined
by

ρA(a) :=

∫
Y

tr(FA ∧ a) ∧ ψ.

When the G2-structure is co-closed it follows that ρ is closed and the arguments of the
3-dimensional Chern–Simons theory holds true here as well. In particular the functional ν
descends to the moduli spaceM.
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The possibility of using Chern-Simons theory on co-closed G2-structures which includes
the nearly G2 case amplifies our hope of being able to define invariants for G2 manifolds
similar to the Jones polynomial on knots by Witten [Wit89] and the Casson invariant on
Calabi–Yau 3-folds by Thomas [Tho97]. Recently, Ball–Oliveira in [BO19] have constructed
homogeneous G2 instantons on a special class of nearly G2 manifolds known as the Aloff–
Wallach spaces. They were able to distinguish between nearly parallel G2-structures on
the same Aloff–Wallach space using gauge theoretic methods.

One can study the higher order deformations of instantons on nearly Kähler 6-manifolds
and nearly G2 manifolds to check whether the infinitesimal deformations found in [Sin21]
are genuine. The cones over many known manifolds with real Killing spinors admit smooth
resolutions, so an obvious next step is to consider instantons on these resolutions. The
instantons on the cone over a Sasaki–Einstein manifold were studied in [Pac11]. The
information about a smooth family of instantons on the link can be used to construct new
examples of instantons on these resolutions.

In [Wan18] Wang showed that with respect to any G2-structure defined near the origin
in R7 and for any Hermitian Yang–Mills connection AO on S6 there exists a locally defined
G2 monopole asymptotic to AO at the origin. This result is particularly interesting as
it produces concrete local examples of singular G2 monopoles tangent to the canonical
connection on S6. As of now no such result is known in the case of the canonical connection
on S7 and it would be interesting to see if one could construct local examples of singular
Spin(7) instantons on the cone over S7 that would be asymptotic to it.
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Chapter 6

Deformation theory of nearly G2
manifolds

Let (M,ϕ, ψ) be a nearly G2 manifold with a nearly G2-structure (ϕ, ψ). We are interested
in studying the deformation problem of (ϕ, ψ) in the space of nearly G2-structures. The
infinitesimal version of this problem was settled by Alexandrov and Semmelmann in [AS12].
We obtain new proofs of some of their results using the results proved in the previous
sections.

Remark 6.0.1. This chapter is based on the article [DS20] co-authored by the author.
However to be coherent with the rest of the thesis we use the eigenvalue convention (−2,+1)
for Ω2

7,Ω
2
14 in this chapter as opposed to the (+2,−1) convention in the article. This does

not effect the results.

Let P be the space of G2-structures on M , that is, the set of all (ϕ, ψ) ∈ Ω3
+ × Ω4

+ with
Θ(ϕ) = ψ. Given a point p = (ϕ, ψ) ∈ P we define the tangent space TpP .

Lemma 6.0.1. The tangent space TpP is the set of all (ξ, η) ∈ Ω3(M)×Ω4(M) such that

ξ = 3fϕ−Xyψ + γ

η = 4fψ +X ∧ ϕ− ∗γ

for some f ∈ Ω0(M), X ∈ Γ(TM) and γ ∈ Ω3
27.

Proof. The proof immediately follows from equations (2.3.20) and (2.3.21) from Proposition
2.3.2.
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6.1 Infinitesimal deformations

We want to study deformations of a given nearly G2-structure ϕ on a compact manifold
M by nearly G2-structures ϕt. We are only interested in deformations of the nearly G2-
structures modulo the action of the group Diff0(M) where Diff0(M) denotes the space of
diffeomorphisms of M which are isotopic to the identity. We first use Lemma 4.2.12 to
find a slice for the action of diffeomorphism group on P which is used to find the space
of infinitesimal nearly G2 deformations, a result originally due Alexandrov–Semmelmann
[AS12].

For the purposes of doing analysis, we consider the Hölder space Pk,α of G2-structures on
M such that ϕ and ψ are of class Ck,α, k ≥ 1, α ∈ (0, 1). Let p = (ϕ, ψ) ∈ Pk,α be a
nearly G2-structure such that the induced metric is not isometric to round S7. According
to a result of Friedrich [Fri06], all nearly parallel G2-structures on S7 which induce the
standard metric are conjugated under the action of the isometry group. Thus neither S7

nor its quotients admit G2 deformations. Therefore from now on we shall exclude from our
considerations the case of nearly parallel G2 manifolds with constant curvature. Denote the
orbit of p under the action of Diffk+1,α

0 (M) – Ck+1,α diffeomorphisms isotopic to the identity,
by Op. The tangent space TpOp is the space of Lie derivatives LX(ϕ, ψ) for X ∈ Γ(TM).
We are interested in finding a complement C of TpOp in TpP .

If (ξ, η) ∈ TpP then for a unique X ∈ K, f ∈ Ω0(M), Y ∈ K⊥L2 , and η0 ∈ Ω4
27 using

Remark 4.3.1 and Proposition 4.3.6 (1), we can write

η = X ∧ ϕ+ df ∧ ϕ+ 4fψ + d∗(Y ∧ ψ) + η0.

From Lemma 4.2.7 (4), (6) we know that

d∗(Y ∧ ψ) = − ∗ d ∗ (Y ∧ ψ) = − ∗ d(Y yϕ)

=
3

7
(d∗Y )ψ − (3Y +

1

2
curlY ) ∧ ϕ− ∗iϕ

(1

2
(∇iYj +∇jYi) +

1

7
(d∗Y )gij

)
and

LY ψ = d(Y yψ)

= −4

7
d∗Y ψ −

(
− 1

2
curlY + Y

)
∧ ϕ− ∗iϕ

(1

2
(∇iYj +∇jYj) +

1

7
(d∗Y )gij

)
.

Thus, we get that

d∗(Y ∧ ψ) = (d∗Y )ψ − (curlY + 2Y ) ∧ ϕ+ LY ψ.
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Thus up to an element in TpOp we get that

η =
(

4f + d∗Y
)
ψ + (X + df − curlY − 2Y ) ∧ ϕ+ η0 (6.1.1)

and hence from Lemma 6.0.1

ξ = (3f +
3

4
d∗Y )ϕ− (X + df − curlY − 2Y )yψ − ∗η0. (6.1.2)

Now, given that X ∈ K, from Lemma 4.2.7 (6) and curlX = −6X we see that

L−X
4
ψ = d

(
−X

4
yψ

)
= X ∧ ϕ (6.1.3)

and hence
η = L−X

4
ψ + d(fϕ) + d∗(Y ∧ ψ) + η0

which implies that up to an element in TpOp combined with the above observation, we can
write

η =
(

4f + d∗Y
)
ψ + (df − curlY − 2Y ) ∧ ϕ+ η0 (6.1.4)

which implies that

ξ = (3f +
3

4
d∗Y )ϕ− (df − curlY − 2Y )yψ − ∗η0 (6.1.5)

and hence we get a splitting TpP = TpOp⊕C where C ∼= Ω0(M)×K⊥L2×Ω4
27 which consists

of (ξ, η) ∈ TpP of the form (6.1.5) and (6.1.4) respectively. This gives a choice of slice. In
fact, as discussed in [Nor08, pg. 49 & Theorem 3.1.4] we have the following.

Proposition 6.1.1. There exists an open neighbourhood U of C of the origin such that
the “exponentiation” of U is a slice for the action of Diffk+1,α

0 (M) on a sufficiently small
neighbourhood of p ∈ Pk,α.

With this choice of slice we determine the infinitesimal deformations of the nearly G2-
structure p which gives a new proof of a result of Alexandrov–Semmelmann [AS12, Theorem
3.5].
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Theorem 6.1.2. Let (M,ϕ, ψ) be a complete nearly G2 manifold, not isometric to the
round S7. Then the infinitesimal deformations of the nearly G2-structure are in one-to-
one correspondence with (X, ξ0) ∈ K × Ω3

27 with

∗dξ0 = −4ξ0 and ∆X = 12X. (6.1.6)

Hence ξ0 is co-closed as well. Moreover, ∆dξ0 = 16ξ0.

Proof. Let (ξ, η) ∈ TpP be an infinitesimal nearly G2 deformation of a G2-structure p ∈ P .
So η must be exact and hence from Lemma 4.2.12 (2), we can remove the d∗(Y ∧ψ) term,
in which case (6.1.1) and (6.1.2) become

η = 4fψ + (X + df) ∧ ϕ+ η0 and ξ = 3fϕ− (X + df)yψ − ∗η0. (6.1.7)

Moreover, for infinitesimal nearly G2 deformations we must have

dξ = 4η

and hence (6.1.7) along with the fact that π1(d ∗ η0) = 0 imply

4fψ + (4X + df) ∧ ϕ+ 4η0 + d((X + df)yψ) + d ∗ η0 = 0.

Using Lemma 4.2.7 (6) for the fourth term above and taking inner product with ψ gives

28f − 4d∗(X + df) = 0.

But since X ∈ K =⇒ d∗X = 0 and hence we get ∆f = 7f . Since M is not isometric to
round S7, Obata’s theorem then implies that f = 0, and with ξ0 = ∗η0,

η = X ∧ ϕ+ η0 and ξ = −Xyψ − ∗η0 (6.1.8)

which proves the one-to-one correspondence between the infinitesimal nearly G2 deforma-
tions and K × Ω3

27. Since Ric = 6g and X is a Killing vector field, we have ∆X = 12X
which is the second part of (6.1.6). Since η0 is exact, dη0 = 0. From (6.1.8), (6.1.3), and
the fact that dξ = 4η, we get

d ∗ η0 = −4η0

and hence

∗dξ0 = −4ξ0.

Taking d∗ of both sides give d∗ξ0 = 0. Moreover,

∆dξ0 = d∗dξ0 = −4d∗ ∗ ξ0 = −4 ∗ (dξ0) = 16ξ0

which completes the proof of the theorem.
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Remark 6.1.3. From (6.1.3) and Theorem 6.1.2 we see that the infinitesimal deformations
of a nearly G2-structure modulo diffeomorphisms are in one-to-one correspondence with
ξ0 ∈ Ω3

27 such that ∗dξ0 = −4ξ0.

Motivated from the study of deformations of nearly Kähler 6-manifolds by Foscolo [Fos17,
§4] where he used observations of Hitchin [Hit01], we also want to interpret the nearly G2

condition (4.1.1) as the vanishing of a smooth map on the space of exact positive 4-forms.
Moreover, in order to study the second order deformations, it will be convenient to enlarge
the space by introducing a vector field as an additional parameter which is natural when
one considers the action of the diffeomorphism group. We elaborate on this below.

Let ψ = dα be an exact positive 4-form, not necessarily satisfying the nearly G2 condition.
Let η ∈ Ω4

exact be a first order deformation of ψ. Given an orientation on M , Hitchin in
[Hit01] defined a volume functional for the exact 4-form ρ = dγ given by

V (ρ) =

∫
M

∗ρ ∧ ρ,

and a quadratic form

W (ρ, ρ′) =

∫
M

γ ∧ ρ′ =
∫
M

ρ ∧ γ′,

where ρ = dγ and ρ′ = dγ′ are exact 4-forms. We denote W (ρ, ρ) by W (ρ). When M is
compact, Hitchin proves [Hit01, Theorem 5] that a stable 4-form (which is the same as a
positive 4-form in our case) η ∈ Ω4

exact(M) is a critical point of the volume functional V
subject to the constraint W (η) = constant if and only if η defines a nearly G2-structure.
The linearization of the volume functional at ψ is given by

dV (η) =
d

dt

∣∣∣∣
t=0

V (ψ + tη) =

∫
M

ϕ ∧ η +

∫
M

∗η ∧ ψ

= 2

∫
M

ϕ ∧ η.

For the linearization of the quadratic form, suppose ψ is exact with ψ = dα. We use
integration by parts to get

dW (η) =
d

dt

∣∣∣∣
t=0

W (ψ + tη) =

∫
M

α ∧ η +

∫
M

γ ∧ ψ
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= 2

∫
M

α ∧ η.

Let us define an energy functional E on exact 4-forms by

E(ρ) :=
1

2
(V (ρ)− 4W (ρ)).

Then from above calculations

dE(η) =

∫
M

(ϕ− 4α) ∧ η =

∫
M

d(ϕ− 4α) ∧ γ.

Therefore ψ = dα is a critical point of E if and only if dE(η) = 0 for every η ∈ Ω4
exact.

That is if and only if

dϕ− 4dα = dϕ− 4ψ = 0.

Hence the critical points of the functional E on Ω4
+,exact are nearly G2-structures. Since the

energy functional E is diffeomorphism invariant, we can introduce an extra vector field, as
dE vanishes in the direction of Lie derivatives. Thus ψ being a stable exact 4-form can be
given by the formula

ψ =
1

4
d(ϕ− ∗d(Zyψ))

for some Z ∈ Γ(TM). We use these observations to write the nearly G2 condition (4.1.1)
as the vanishing of a smooth map. Let us denote by P̂ the space of stable 3-forms and
stable exact 4-forms, i.e., (ϕ, ψ) ∈ Ω3

+ × Ω4
+,exact. We have the following

Proposition 6.1.4. Suppose for some vector field Z and for the Hodge star ∗ with respect
to a fixed background metric if (ϕ, ψ) ∈ P̂ satisfies

dϕ− 4ψ = d ∗ d(Zyψ). (6.1.9)

Then (ϕ, ψ) is a nearly G2-structure.

Proof. We prove that d(Zyψ) = 0. We note from (2.3.13) that

(Zyψ) ∧ ψ = 0

So from (6.1.9) we get that

‖d(Zyψ)‖2
L2 = 〈d(Zyψ), d(Zyψ)〉L2
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= 〈(Zyψ), ∗d ∗ d(Zyψ)〉L2

= 〈(Zyψ), ∗(dϕ− 4ψ)〉L2

=

∫
M

(Zyψ) ∧ (dϕ− 4ψ) =

∫
M

(Zyψ) ∧ dϕ.

Since ϕ is a G2-structure and dψ = 0 from (6.1.9), we know from (2.3.3) that τ1 = 0 and
hence dϕ has no component in Ω4

7. Thus

〈(Zyψ), ∗dϕ〉 = 0

which implies that

‖d(Zyψ)‖2
L2 =

∫
M

(Zyψ) ∧ dϕ = 0

which proves the proposition.

Suppose we want to describe the local moduli space of nearly G2-structures on a manifold
M . If NP denotes the space of nearly G2-structures on M then the local moduli space
is M = NP/Diff0(M). A natural way to study this problem is to view the nearly G2-
structures on M as the zero locus of an appropriate function, find the linearization of
the function and prove its surjectivity, so that an Implicit Function Theorem argument
describesM.

Now let (ϕ, ψ) be a nearly G2-structure on M . Let U ⊂ Ω4
+,exact be a small neighborhood

of the 4-form ψ. Since the condition of being stable is open we can assume the existence
of such a neighborhood. Thus for η ∈ Ω4

exact with sufficiently small norm with respect to
the metric induced by ϕ, ψ̃ = ψ + η is also a stable exact 4-form. Let ∗̃ be the Hodge star
operator induced from ϕ̃. From Proposition 6.1.4 the pair of stable forms (ϕ̃, ψ̃) defines a
nearly G2-structure if there exists a Z ∈ Γ(TM) such that

dϕ̃− 4ψ̃ = d∗̃d(Zyψ̃).

This condition is equivalent to the vanishing of the map

Φ : U × Γ(TM)→ Ω4
exact

(ψ̃, Z) 7→ d∗̃ψ̃ − 4ψ̃ − d∗̃d(Zyψ̃). (6.1.10)

Thus, the nearly G2-structures are the zero locus of the map Φ modulo diffeomorphisms.
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Let ξ be the dual of η under Hitchin’s duality map Θ as in Proposition 2.3.2. The kernel
of the linearization of the map Φ at the point (ψ, 0) is given by those (η, Z) satisfying

dξ − 4η = d ∗ d(Zyψ).

Thus the obstructions on the first order deformations of the nearly G2-structure (ϕ, ψ)
are given by Im(DΦ) which is characterized in the following proposition, whose proof is
inspired from a similar theorem in the nearly Kähler case by Foscolo [Fos17, Proposition
4.5].

Proposition 6.1.5. Let (ϕ, ψ) be a nearly G2-structure and (ξ, η) ∈ Ω3 × Ω4
exact be a first

order deformation in P. Then α ∈ Ω4
exact lies in the image of DΦ if and only if

〈d∗α− 4 ∗ α, χ〉L2 = 0

for all co-closed χ ∈ Ω3
27 such that ∆χ = 16χ.

Proof. From Proposition 4.3.6 (2), there exists X ∈ K, f ∈ C∞(M), and η0 ∈ Ω4
27,exact such

that

η = X ∧ ϕ+ d(fϕ) + η0

= d

(
−1

4
Xyψ + fϕ

)
+ η0

and from Lemma 6.0.1, the 3-form

ξ = 3fϕ− (df +X)yψ − ∗η0.

By Proposition 4.3.6, α = Y ∧ϕ+ d(hϕ) + α0 for some Y ∈ K, h ∈ C∞(M), α0 ∈ Ω4
27,exact.

Such an α lies in the image of DΦ if

dξ − 4η − d ∗ d(Zyψ) = α = d
(
− 1

4
Y yψ + hϕ

)
+ α0.

From Lemma 4.2.7 (5)

d∗(Z ∧ ψ) = − ∗ d(Zyϕ)

=
3

7
(d∗Z)ψ − 1

2

(
6Z + curlZ

)
∧ ϕ− ∗iϕ

(1

2
(∇iZj +∇jZi) +

1

7
(d∗Z)gij

)
.
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Comparing the last term in the above expression with that of d(Zyψ) in Lemma 4.2.7 we
get

d(Zyψ) =
1

7
(d∗Z)ψ + (2Z + curlZ) ∧ ϕ+ d∗(Z ∧ ψ).

Using these expressions for ξ, η and d(Zyψ) we get

dξ − 4η − d ∗ d(Zyψ) = d((−f − 1

7
d∗Z)ϕ− (df − 2Z − curlZ)yψ)− d ∗ η0 − 4η0.

By Corollary 4.2.13 since η0 ∈ Ω4
exact, d∗η0 ∈ Ω3

27. Thus, for finding Im(DΦ), we need to
solve the equations

f +
1

7
d∗Z = −h,

df − 2Z − curlZ =
1

4
Y,

−d ∗ η0 − 4η0 = α0.

(6.1.11)

Let α0 = 0. Then by Implicit Function Theorem, a solution of the first pair of equations
always exists if the operator

D̃ : Ω0 × Ω1 → Ω0 × Ω1

(f, Z) 7→
(
f +

1

7
d∗Z, df − 2Z − curlZ

)
is invertible in a small neighborhood of its zero locus. Since D̃ differs from the modified
Dirac operator D in (4.3.5) only by self-adjoint zeroth-order term, it is self-adjoint and
hence ker(D̃) = coker(D̃). A pair (f, Z) is in the kernel of the operator D if and only if

f +
1

7
d∗Z = 0

df − 2Z − curlZ = 0.

Applying the operator d∗ on the second equation and using the fact that d∗(curlZ) = 0
gives

0 = d∗df − 2d∗Z = d∗df + 14f.

Thus f = 0 as ∆ is a non-negative operator. The second equation then becomes

curlZ = d∗(Zyϕ) = ∗(dZ ∧ ψ) = −2Z
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and Proposition 4.2.1 implies that dZ = −2

3
Zyϕ+π14(dZ). Using Lemma 4.2.5 (2) we get

that ∫
M

dZ ∧ dZ ∧ ϕ = −8

9
‖Zyϕ‖2 + ‖π14(dZ)‖2

= −8

3
‖Z‖2 + ‖π14(dZ)‖2.

On the other hand ∫
M

dZ ∧ dZ ∧ ϕ = 4

∫
M

Z ∧ dZ ∧ ψ = −8‖Z‖2.

Combining these two equations we get
16

3
‖Z‖2 = −‖π14(dZ)‖2 and hence Z = 0 as well.

Thus ker(D̃) = coker(D̃) = 0 and D̃ is invertible, so we can always solve the first pair of
equations in (6.1.11). Thus there are no restrictions on Y , h to be in the image of DΦ.
Moreover if α0 6= 0 satisfies the third equation in (6.1.11) then

∗α0 = −d∗η0 − 4 ∗ η0,

d∗α0 = −d∗d ∗ η0 − 4d∗η0,

which on using the fact that ∗η0 is co-closed implies

d∗α0 − 4 ∗ α0 = 16 ∗ η0 − d∗d ∗ η0 = 16 ∗ η0 −∆d ∗ η0.

Setting η̂0 = − ∗ η0 in the above equation we get

(∆− 16)η̂0 = d∗α0 − 4 ∗ α0.

Let us denote by ∆̄ the restriction of the operator (∆ − 16 id) to the space of co-closed
3-forms in Ω3

27,exact. Since ∆̄ is a self adjoint elliptic linear operator, d∗α− 4 ∗α0 will be in
the image of ∆̄ if and only if d∗α− 4 ∗ α0 is L2 orthogonal to ker(∆̄∗) = ker(∆̄).

Thus α0 ∈ Ω4
27,exact is a solution to the equation (6.1.11) (3) if and only if

〈d∗α0 − 4 ∗ α0, ξ0〉L2 = 0

for all co-closed ξ0 ∈ Ω3
27 such that ∆ξ = 16ξ. To complete the proof of the proposition

we now only need to prove the L2-orthogonality condition for α. But observe that since
Y ∈ K, LXg = d∗Y = 0 and curlY = −6Y thus from Lemma 4.2.7 (6) we have

d∗α = d∗(Y ∧ ϕ) + d∗d(hϕ) + d∗α0 = −4Y yψ + d∗d(hϕ) + d∗α0,
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and so d∗α−4∗α = d∗d(hϕ)−4∗d(hϕ)+d∗α0−4∗α0. Since ξ is co-closed, from Corollary
4.2.11 we have dξ ∈ Ω4

27 and thus

〈d∗d(hϕ), ξ〉L2 = 〈d(hϕ), dξ〉L2 = 0.

Similarly

〈∗d(hϕ), ξ〉L2 = 〈d∗(hψ), ξ〉L2 = 〈hψ, dξ〉L2 = 0

which completes the proof of the proposition.

Remark 6.1.6. Proposition 6.1.5 puts a very strong restriction on the first order defor-
mations of a nearly G2-structure to be unobstructed.

6.2 Second order deformations

Following the work of Koiso [Koi82] on deformations of Einstein metrics and the work
of Foscolo [Fos17] on the second order deformations of nearly Kähler structures on 6-
manifolds, we define the notion of second order deformations of nearly G2-structures.

Definition 6.2.1. Given a nearly G2-structure (ϕ0, ψ0) and an infinitesimal deformation
(ξ1, η1), a second order deformation of (ϕ0, ψ0) in the direction of (ξ1, η1) is a pair (ξ2, η2) ∈
Ω3 × Ω4 such that

ϕ = ϕ0 + εξ1 +
ε2

2
ξ2, ψ = ψ0 + εη1 +

ε2

2
η2

is a nearly G2-structure up to terms of order O(ε2). An infinitesimal deformation (ξ1, η1)
is said to be obstructed to second order if there exists no second order deformation in its
direction.

Remark 6.2.2. Second order deformations are the same as the second derivative of a
curve of nearly G2-structures on a manifold M .

Remark 6.2.3. In a similar way, we can define higher order deformations of a nearly
G2-structure.
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Following the discussion in the previous section and in particular Proposition 6.1.4, in
order to find second order deformations of a given nearly G2-structure (ϕ0, ψ0), we look for
formal power series defining a positive exact 4-form

ψε = ψ0 + εη1 +
ε2

2
η2 + · · ·

where ηi ∈ Ω4
exact, and a vector field

Zε = εZ1 +
ε2

2
Z2 + · · ·

which satisfy (6.1.9). That is

dϕε − 4ψε = d ∗ d(Zεyψε) (6.2.1)

where ϕε is the dual of ψε. Note that the Hodge star ∗ is taken with respect to ϕε.

Since we are interested in second order deformations, given an infinitesimal nearly G2

deformation (ξ1, η1), we set Z1 = 0 and look for η2 ∈ Ω4
exact such that (6.2.1) is satisfied up

to terms of O(ε3). Explicitly, we write

ϕε = ϕ0 + εξ1 +
ε2

2
(η̂2 −Q3(η1))

where η̂2 denotes the linearization of Hitchin’s duality map Θ for stable forms in Proposition
2.3.2 and Q3(η1) is the quadratic term of Hitchin’s duality map. Since we want solutions
to (6.2.1) up to second order, we look for η2 such that

dη̂2 − 4η2 = d(Q3(η1)) + d ∗ d(Z2yψ0) (6.2.2)

as Z1 = 0 and Z2yψ0 is the only second order term in Zεyψε. We know from Proposition
6.1.5 that there are obstructions to finding second order deformations and hence in solving
the above equation. We want to establish a one-to-one correspondence between second
order deformations of a nearly G2-structure and solutions to (6.2.2). We do this in the
following lemma.

Lemma 6.2.4. Suppose η2 is a solution of (6.2.2). Then d(Z2yψ0) = 0 and (η̂2−Q3(η1), η2)
defines a second order deformation of (ϕ0, ψ0) in the direction of (ξ1, η1) in the sense of
Definition 6.2.1. Conversely, every second order deformation (ξ2, η2) in the direction of
(ξ1, η1) is a solution to (6.2.2).
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Proof. We start with

‖d(Z2yψ0)‖2
L2 = 〈Z2yψ0, d

∗d(Z2yψ0)〉L2

= 〈Z2yψ0, ∗d ∗ d(Z2yψ0)〉L2

= 〈Z2yψ0, ∗(dη̂2 − 4η2 − dQ3(η1))〉L2 .

Since dψε = O(ε3), from (2.3.2) and (2.3.3) we see that for any vector field Y ,
∫
dϕε ∧

(Y yψε) = O(ε3). Thus the terms which are O(ε2) in
∫
dϕε ∧ (Y yψε) vanish, that is∫

dϕ0 ∧ (Y yη2) + dξ1 ∧ (Y yη1) + d(η̂2 −Q3(η1) ∧ (Y yψ0) = 0.

Now since dϕ0 = 4ψ0 and (Y yη2) ∧ ψ0 = −(Y yψ0) ∧ η2 we get that dϕ0 ∧ (Y yη2) =
−4η2∧(Y yψ0). Also using the fact that dξ1 = 4η1 we get that dξ1∧(Y yη1) = 4η1∧(Y yη1) =
2Y y(η1∧η1) = 0 since η1∧η1 = 0, being an 8-form on a seven dimensional manifold. Thus,
we get the following equation,∫

d(η̂2 −Q3(η1)) ∧ (Y yψ0)− 4η2 ∧ (Y yψ0) = 0

Taking Y = Z2 proves that d(Z2yψ0) = 0. From (6.2.2) we get that

d(η̂2 −Q3(η1)) = 4η2

which proves that ((η̂2 − Q3(η1), η2)) is a second order deformation of (ϕ0, ψ0) in the
direction of (ξ1, η1) in the sense of Definition 6.2.1. Conversely, suppose that (ξ2, η2) =
(η̂2 −Q3(η1), η2) is a second order deformation of (ϕ0, ψ0). Then dξ2 = 4η2.

From the previous proposition and Proposition 6.1.5 we have that if (ξ2, η2) is a second
order deformation of the nearly G2-structure (ϕ0, ψ0) in the sense of Definition 6.2.1 then
for all χ ∈ Ω3

27 such that d∗χ = 0 and ∆χ = 16χ, we have

〈d∗dQ3(η1)− 4 ∗ dQ3(η1), χ〉L2 = 0. (6.2.3)

Lemma 6.2.5. The infinitesimal deformation (ξ1, η1) of (ϕ, ψ) is unobstructed to second
order if and only if for all co-closed χ ∈ Ω3

27 such that dχ = −4 ∗ χ

〈Q3(η1), χ〉L2 = 0.
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Proof. Equation (6.2.3) can be further simplified as follows:

0 = 〈d∗dQ3(η1)− 4 ∗ dQ3(η1), χ〉L2

= 〈Q3(η1), d∗dχ〉L2 − 4〈Q3(η1), d∗ ∗ χ〉L2

= 〈Q3(η1),∆χ〉L2 − 4〈Q3(η1), ∗dχ〉L2

= −4〈∗Q3(η1), dχ− 4 ∗ χ〉L2 .

Thus (6.2.3) is equivalent to

〈∗Q3(η1), dχ− 4 ∗ χ〉L2 = 0. (6.2.4)

Since {χ ∈ Ω3
27 | d∗χ = 0,∆χ = 16ξ} = {χ ∈ Ω3

27 | dχ = 4∗χ}⊕{χ ∈ Ω3
27 | dχ = −4∗χ}

and the inner product in (6.2.4) vanishes if dχ = 4∗χ, we only need to consider the subspace
where dχ = −4 ∗ χ. Substituting dχ = 4 ∗ χ in (6.2.4) we get the desired result.

By Theorem 6.1.2 the space {χ ∈ Ω3
27 | dχ = −4 ∗ χ} is isomorphic to the space

of infinitesimal deformation of (ϕ0, ψ0). Hence we can conclude that (η̂2 − Q3(η1), η2) is
a second order deformation of (ϕ0, ψ0) in the direction of (ξ1, η1) if and only if for any
infinitesimal deformation χ of (ϕ0, ψ0)

〈Q3(η1), χ〉L2 = 0.

6.3 Deformations on the Aloff-Wallach space

In [AS12, Prop. 8.3] Alexandrov–Semmelmann established that the space of infinitesimal
deformations of the nearly G2-structure on the Aloff–Wallach space X1,1

∼= SU(3)×SU(2)
SU(2)×U(1)

is
an eight dimensional space isomorphic to su(3), the Lie algebra of SU(3). The rest of
the chapter is devoted to prove that these deformations are obstructed to second order.
We skip some details in the proof of Theorem 6.3.1 but provide enough details that an
interested reader can reproduce them on their own.

The embedding of su(2) and u(1) in su(3) ⊕ su(2), which we denote by su(2)d and u(1),
following [AS12], is given by

su(2)d =

{((a 0
0 0

)
, a
)
| a ∈ su(2)

}
,
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u(1) = span{C} = span

(

i 0 0
0 i 0
0 0 −2i

 , 0)

 .

The Lie algebra su(3)⊕ su(2) splits as

su(3)⊕ su(2) = su(2)⊕ u(1)⊕m

where m is the 7-dimensional orthogonal complement of su(2) ⊕ u(1) with respect to B,
the Killing form of su(3) ⊕ su(2). The normal nearly G2 metric on X1,1 is then given
by − 3

40
B where the constant − 3

40
comes from our choice of τ0 = 4. If we denote by W

the standard 2-dimensional complex irreducible representation of SU(2) and by F (k) the
1-dimensional complex irreducible representation of U(1) with highest weight k, then as
an SU(2)× U(1)-representation

su(3)C ∼= S2W ⊕WF (3)⊕WF (−3)⊕ C.

Let {ei}7
i=1 be an orthonormal basis of m with respect to the nearly G2 metric. If we define

I =

(
i 0
0 −i

)
, J =

(
0 −1
1 0

)
and K =

(
0 i
i 0

)
, we can take

e1 :=
1

3

((
2I 0
0 0

)
,−3I

)
, e2 :=

1

3

((
2J 0
0 0

)
,−3J

)
, e3 :=

1

3

((
2K 0
0 0

)
,−3K

)
,

e4 :=

√
5

3

 0 0
√

2
0 0 0

−
√

2 0 0

 , 0

 , e5 :=

√
5

3

 0 0
√

2i
0 0 0√
2i 0 0

 , 0

 ,

e6 :=

√
5

3

0 0 0

0 0
√

2

0 −
√

2 0

 , 0

 , e7 :=

√
5

3

0 0 0

0 0
√

2i

0
√

2i 0

 , 0

 .

This basis is orthonormal with respect to the metric g = − 3
40
B. We use the shorthand

ei1i2...in to denote the n-form ei1 ∧ ei2 ∧ · · · ∧ ein . The nearly G2-structure ϕ is given by

ϕ = e123 + e145 − e167 + e246 + e257 + e347 − e356.

As an SU(2)× U(1) representation, mC ∼= S2W ⊕WF (3)⊕WF (−3) where

S2W = Span{e1, e2, e3},
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WF (3) = Span{e4 − ie5, e6 − ie7},
WF (−3) = Span{e4 + ie5, e6 + ie7}.

By Theorem 6.1.2, the space of first order deformations is given by {ξ ∈ Ω3
27 | dξ =

−4 ∗ ξ}. In this example, it was found to be isomorphic to su(3). As an SU(2) × U(1)
representation, su(3) is isomorphic to the span of {C, e1, . . . , e7}. The SU(2) × U(1)-
invariant homomorphism from su(3) to Ω3

27(X1,1) is given by Span{A} where

A(C) = ϕ− 7e123, A(e1) =
5

3
(e145 + e167),

A(e2) =
5

3
(e245 + e267), A(e3) =

5

3
(e345 + e367),

A(e4) =
5

9
(3e467 + e137 + e126 + e234), A(e5) =

5

9
(3e567 + e235 − e136 + e127),

A(e6) =
5

9
(3e456 − e236 − e135 + e124), A(e7) =

5

9
(3e457 − e237 + e125 + e134).

Let us fix an α ∈ su(3). The adjoint action of h = (h1, h2) ∈ SU(3)× SU(2) is given by

h−1αh = h−1
1 αh1 =

 iv1 x1 + ix2 x3 + ix4

−x1 + ix2 iv2 x5 + ix6

−x3 + ix4 −x5 + ix6 −i(v1 + v2)


where v1, v2, x1, x2, x3, x4, x5, x6 are functions on X1,1.

The infinitesimal deformation ξα associated to α such that dξα = −4 ∗ ξα is given by

ξα =
v1 + v2

2
A(C) +

v1 − v2

2
A(e1) +

6∑
i=1

xiA(ei+1).

We can now compute the 4-form ηα by using the relation dξα = 4ηα = −4 ∗ ξα. In order
to show that the infinitesimal deformation (ξα, ηα) associated to α is obstructed to second
order, we need to compute the quadratic term Q3(ηα) as discussed in equation (6.2.3) and
find an element β ∈ su(3) for which the L2-inner product is non-zero.

To compute Q3(ηα), one can use the algorithm for stable 4-forms on manifolds with G2-
structures as discussed in [Hit01]. Using the fact that ξα = − ∗ ηα, one can easily show
that for some non-zero constant c1, Q3(ηα) = c1 ∗ Q4(ξα) where Q4(ξα) is the quadratic
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term associated to ξα. Thus, we instead compute Q4(ξα) and show that the inner product
〈∗Q4(ξα), ξα〉L2 6= 0 to prove obstructedness.

Consider ϕt = ϕ + tξα to be a positive 3-form for small t. We denote the metric and
the volume form induced by ϕt by gt and

√
det gt respectively. We have a Taylor series

expansion

gt = g0 + tg1 + t2g2 +O(t3)).

Then one can define the symmetric bi-linear form Bt by

(Bt)ij = ((eiyϕt) ∧ (ejyϕt) ∧ ϕt)(e1, . . . , e7).

The zero order term of Bt, denoted by B0 is given by

(B0)ij = ((eiyϕ) ∧ (ejyϕ) ∧ ϕ)(e1, . . . , e7) = −6δij.

Similarly, one can compute the linear term (B1)ij = 3((eiyϕ)∧ (ejyϕ)∧ ξα)(e1, . . . , e7) and
the quadratic term (B2)ij = 3((eiyξα)∧ (ejyξα)∧ϕ)(e1, . . . , e7). The metric is then defined
using the relation (see for example, [Kar09])

(Bt)ij = −6(gt)ij
√

det gt.

The linear term in
√

det gt is proportional to ϕ ∧ ηα + ψ ∧ ξα and thus vanishes since
(ξα, ηα) ∈ Ω3

27 × Ω4
27. Using the above formula we get that√

det gt = 1 + At2 +O(t3),

where A is a quadratic polynomial in v1, v2 and xi, i = 1 . . . 6. Using the Taylor series
expansion of gt and

√
det gt, we can compute the Taylor series expansion of the Hodge star

associated to ϕt, ∗t = ∗0 + t∗1 +t2 ∗2 +O(t3). The Hodge star operator ∗t can be computed
using the formula

∗t(ei1i2...ik) =

√
det gt

(7− k)!
gi1j1t . . . gikjkt εj1...j7e

jk+1...j7 .

The quadratic term Q4(ξα) is then given by

Q4(ξα) = ∗2ϕ+ ∗1ξα.
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In the present case, for a general element α ∈ su(3), the quadratic term turns out to be
very complicated and is not very enlightening. We define a cubic polynomial on X1,1 by

fα([h]) = 〈∗Q4(ξα), ξα〉L2 .

Note that fα is cubic in α since Q4(ξα) and ξα are quadratic and linear in α respectively.
This cubic polynomial can be lifted to a polynomial P on the Lie group SU(3)× SU(2) by

fα([h]) = P (h−1αh).

This lift enables us to calculate the average of P on SU(3) × SU(2) by using the Peter–
Weyl theorem. To express the polynomial P in a compact form, we set z1 = x2 + ix1, z2 =
x4 − ix3, z3 = x6 + ix5. Then the cubic polynomial P is given by

P (h−1αh) =− 97

6
(v2

1v2 + v2
2v1) +

25

9
Re(z1z2z3)− 29

6
(v3

1 + v3
2) +

5

3
(v1 + v2)|z1|2

+
37

18
(v1|z3|3 + v2|z2|2) +

31

9
(v1|z2|3 + v2|z3|2).

(6.3.1)

The next step in proving obstructedness is to show that the average value of P on SU(3)×
SU(2) is non-zero. For this, we appeal to the Peter–Weyl theorem. The Peter–Weyl
theorem states that for any compact Lie group G, we have

L2(G) =
⊕

Vγ∈Girr

Hom(Vγ, G)⊗ Vγ

where Girr denotes the set of all non-isomorphic irreducible representations of G.

The cubic polynomial P lies in the SU(3)× SU(2) representation Sym3su(3). The average
value of the function P (g−1ξg) on SU(3) × SU(2) is the same as the average value of
R(h−1αh) where R is the projection of P to the invariant polynomials. This is because
(P − R)(h−1αh) lies in the non-trivial part of the Peter–Weyl decomposition and has an
average value of zero. The unique trivial sub-representation of Sym3su(3) is generated by
the determinant polynomial i det on su(3) which is given by

i det(g−1αg) =− (v1v
2
2 + v2v

2
1) + (v1 + v2)|z1|2 − (v1|z3|2 + v2|z2|2) + 2Re(z1z2z3).

The average value of the polynomial P can be computed by computing the inner product
of P with i det. On su(3), since the Killing form B is non-degenarate, g = − 1

12
B defines
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an inner product on su(3). The inner product g induces an inner product on Sym3su(3) in
the natural way. All the computations that follow are done using g.

If Eij denotes the matrix with 1 as the (i, j)-th entry and zero elsewhere, then the subspace
of su(3) generated by {Eij − Eji + i(Eij + Eji) | i, j = 1, 2, 3, i 6= j} is orthogonal to
Span{E11− iE33, E22− iE33}. Moreover Eij−Eji+ i(Eij +Eji), i, j = 1, 2, 3, i 6= j are also
orthogonal to each other. Thus the only non-trivial terms occurring in the inner product
of P and i det are,

‖v2
1v2 + v2

2v1‖2 =
1

3
, ‖Re(z1z2z3)‖2 =

2

3
, 〈v3

1 + v3
2, v

2
1v2 + v2

2v1〉 = −1

4
,

‖(v1 + v2)|z1|2‖2 = 1, ‖v1|z3|2 + v2|z2|2‖2 =
4

3
, 〈v1|z2|2 + v2|z3|2, v1|z3|2 + v2|z2|2〉 = −1

3
.

From (6.3.1) and the above computations we have that

〈P, i det〉 =
97

6

(
1

3

)
+

50

9

(
2

3

)
+

29

6

(
−1

4

)
+

5

3
(1)− 37

18

(
4

3

)
− 31

9

(
−1

3

)
=

191

24
6= 0.

Thus we get the following theorem.

Theorem 6.3.1. The infinitesimal deformations of the homogeneous nearly G2-structure
on the Aloff–Wallach space X1,1

∼= SU(3)×SU(2)
SU(2)×U(1)

are all obstructed.
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Chapter 7

Deformations of G2 instantons on nearly
G2 manifolds

7.1 Infinitesimal deformation of instantons

Let M7 be a nearly G2 manifold. We denote by ϕ and η the G2-structure 3-form on M
and the corresponding unit Killing spinor respectively. We are interested in studying the
infinitesimal deformations of nearly G2 instantons on M . We define a G2 instanton as
a connection on M satisfying any of the equivalent conditions in (5.2.3). For defining
the infinitesimal deformation of an instanton we will use the spinorial definition of a G2

instanton, that is FA · η = 0.

Since an infinitesimal deformation of a connection A represents an infinitesimal change
in A it is a section of T ∗M ⊗ AdP . If ε ∈ Γ(T ∗M ⊗ AdP) is an infinitesimal deformation
of A, the corresponding change in the curvature FA up to first order is given by dAε. A
standard gauge fixing condition on this perturbation is given by (dA)∗ε = 0. So in total
the pair of equations whose solutions define an infinitesimal deformation of an instanton
A is given by

(dAε) · η = 0, (dA)∗ε = 0. (7.1.1)

The 1-parameter family of connections on the spinor bundle /S defined in (4.1.10) and
the connection A on P can be used to construct a 1-parameter family of connections on
the associated vector bundle /S ⊗ AdP . We denote by ∇t,A, the connection induced by ∇t
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and A for all t ∈ R respectively. We denote by Dt,A the Dirac operator associated to ∇t,A

denoted by

Dt,A = DA +
t

2
ϕ · .

The following proposition associates the solutions to (7.1.1) to a particular eigenspace of
Dt,A for each t. The proposition was proved in [Fri12] for t = 0.

Proposition 7.1.1. Let ε be a section of T ∗M ⊗AdP , and let Dt,A be the Dirac operator
constructed from the connections ∇t,A for t ∈ R. Then ε solves (7.1.1) if and only if

Dt,A(ε · η) = −t+ 5

2
ε · η. (7.1.2)

Proof. Let {ea, a = 1 . . . 7} be a local orthonormal frame for T ∗M . Then

D0,A(ε · η) = ea · ∇0
a(ε · η)

= (ea · ∇0
aε) · η + ea · ε · ∇0

aη

= (dAε+ (dA)∗ε) · η + ea · ε · ∇0
aη.

Applying Proposition 3.2.1 to the 1-form part of ε we get ea · ε · ea · η = 5ε · η. So if η is a
real Killing spinor then (4.1.7) together with the above identity imply

D0,A(ε · η) = (dAε+ (dA)∗ε) · η − 1

2
ea · ε · ea · η

= (dAε+ (dA)∗ε− 5

2
ε) · η.

It follows from (4.1.10) and the identity
∑

a ea · iaϕ = 3ϕ that

Dt,A = D0,A +
t

2
ϕ·

Since ε · η ∈ Λ1 · η, by Lemma 3.2.3 we have

Dt,A(ε · η) =
(

dAε+ (dA)∗ε+
−t− 5

2
ε
)
· η.

The equation Dt,A(ε · η) = − t+5
2
ε · η is thus equivalent to (dAε+ (dA)∗ε) · η = 0, which

in turn is equivalent to the pair of equations (dAε) · η = 0, (dA)∗ε = 0 since these two
components live in complementary subspaces.
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Since η is parallel with respect to ∇−1 we can view D−1,A as an operator on Λ1 ⊗ AdP
defined by D−1,A(ε · η) = (D−1,Aε) · η. The following theorem is an immediate consequence
of the above proposition.

Theorem 7.1.2. The space of infinitesimal deformations of a G2 instanton A on a principal
bundle P over a nearly G2 manifold M is isomorphic to the kernel of the operator(

D−1,A + 2 Id
)

: Γ(Λ1 ⊗ AdP)→ Γ(Λ1 ⊗ AdP). (7.1.3)

Remark 7.1.3. By Proposition 7.1.1, the − t+5
2

eigenspace of the operator Dt,A on Λ1 ·η⊗
AdP is isomorphic to the infinitesimal deformation space of the instanton A for all t ∈ R
and all these eigenspaces are thus isomorphic to each other. In particular

ker(D−1/3,A +
7

3
id) ∼= ker(D−1,A + 2id). (7.1.4)

We can obtain an expression for the square of the Dirac operators constructed above
using the Schrödinger–Lichnerowicz formula in the case of skew-symmetric torsion obtained
by Agricola–Friedrich in [AF04]. The proof adapted to our setting is presented to keep the
discussion self contained.

Proposition 7.1.4. Let EM be a vector bundle associated to P and µ ∈ Γ(/S ⊗ EM).
Let A be any connection on P . Then for all t ∈ R,

(Dt/3,A)2µ = (∇t,A)∗∇t,Aµ+
1

4
Scalgµ+

t

6
dϕ · µ− t2

18
‖ϕ‖2µ+ F · µ. (7.1.5)

Proof. Let {e1, . . . , e7} be an orthonormal frame for the tangent bundle. As before we
obtain

Dt,Aµ = (D0,A +
t

2
ϕ·)µ.

Squaring both sides we obtain,

(Dt/3,A)2µ =
(
D0,A +

t

6
ϕ ·
)2

µ

= (D0,A)2µ+
t

6
(D0,A(ϕ · µ) + ϕ ·D0,Aµ) +

t2

36
ϕ · ϕ · µ.
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The first term of the above expression is given by the Schrödinger–Lichnerowicz formula

(D0,A)2µ = (∇0,A)∗∇0,Aµ+
1

4
Scalgµ+ F · µ. (E1)

The anti-commutator in the second term is given by

D0,A(ϕ · µ) + ϕ ·D0,Aµ = ea · ∇0,A
a (ϕ · µ) + ϕ · ea · ∇0,A

a µ

= (ea · ∇0,A
a ϕ) · µ+ (ea · ϕ+ ϕ · ea) · ∇0,A

a µ

= dϕ · µ+ d∗ϕ · µ− 2(ea ⌟ ϕ) · ∇0,A
a µ (E2)

but since M is nearly G2, ϕ is coclosed, therefore

D0,A(ϕ · µ) + ϕ ·D0,Aµ = dϕ · µ− 2(ea ⌟ ϕ) · ∇0,A
a µ

For the 3-form ϕ, ϕ · ϕ = ‖ϕ‖2 − (ea ⌟ ϕ) ∧ (ea ⌟ ϕ) and (ea ⌟ ϕ) · (ea ⌟ ϕ) = −3‖ϕ‖2 +
(ea ⌟ ϕ) ∧ (ea ⌟ ϕ) which imply

ϕ · ϕ · µ = ‖ϕ‖2µ− (ea ⌟ ϕ) ∧ (ea ⌟ ϕ) · µ,
= ‖ϕ‖2µ− ((ea ⌟ ϕ) · (ea ⌟ ϕ) + 3‖ϕ‖2) · µ
= −2‖ϕ‖2µ− (ea ⌟ ϕ) · (ea ⌟ ϕ) · µ. (E3)

At the center of a normal frame,

(∇t,A)∗∇t,Aµ = −(∇0,A
a +

t

6
(ea ⌟ ϕ))(∇0,A

a +
t

6
(ea ⌟ ϕ))µ

= −∇0,A
a ∇0,A

a µ− t

6
(ea ⌟ ϕ) · ∇0,A

a µ− t

6
∇0,A
a ((ea ⌟ ϕ) · µ)

− t2

36
(ea ⌟ ϕ) · (ea ⌟ ϕ) · µ

= (∇0,A
a )∗∇0,A

a µ− t

6
(ea ⌟ ϕ) · ∇0,A

a µ− t

6
(−d∗ϕ · µ+ (ea ⌟ ϕ) · ∇0,A

a µ)

− t2

36
((ea ⌟ ϕ) · (ea ⌟ ϕ)) · µ.

Again using the fact that d∗ϕ = 0 we get

(∇0,A
a )∗∇0,A

a µ = (∇t,A)∗∇t,Aµ+
t

3
(ea ⌟ ϕ) · ∇0,A

a µ+
t2

36
((ea ⌟ ϕ) · (ea ⌟ ϕ)) · µ. (E4)

Substituting the three terms in the expression of (Dt/3,A)2µ using (E1), (E2), (E3),
(E4) we get the result.
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When the connection A is an instanton on a nearly G2 manifold the expression for
(Dt/3,A)2 can be simplified further. For the G2-structure ϕ, ‖ϕ‖2 = 7 and under our choice
of convention dϕ = 4ψ and Scalg = 42. Thus we can calculate the action of (Dt/3,A)2 on
spinors in Λ0η and Λ1 · η as follows.

Let η be a real Killing spinor then Lemma 3.2.3 implies ψ · η = 7η and FA · η = 0 by
(5.2.3). Thus by above proposition we obtain,

(Dt/3,A)2η = (∇t,A)∗∇t,Aη − 7

18
(t2 − 12t− 27)η. (7.1.6)

Now suppose ε is an infinitesimal deformation of A. Then ε · η ∈ Γ(Λ1M ⊗EM). From
Lemma 3.2.3 we know that ψ · ε · η = −ε · η and since F · η = 0, F · ε · η = (F · ε+ ε ·F ) · η =
−2(εyF ) · η. Thus by above proposition

(Dt/3,A)2(ε · η) = (∇t,A)∗∇t,A(ε · η)− 1

18
(7t2 + 12t− 189)ε · η − 2(εyF ) · η. (7.1.7)

In the special case when the bundle EM is equal to AdP , the holonomy group H ⊂ G of
the connection A acts on the Lie algebra g of G. Let us denote by g0 ⊂ g the subspace on
which H acts trivially. Let g1 be the orthogonal subspace of g0 with respect to the Killing
form of G. The corresponding splitting of the adjoint bundle is given by AdP = L0 ⊕ L1.
By Proposition 7.1.4 (D−1/3,A)2 is self adjoint and hence respects the decomposition

/S ⊗ AdP = (Λ1M ⊗ L0)⊕ (Λ1M ⊗ L1)⊕ (Λ0M ⊗ L0)⊕ (Λ0M ⊗ L1).

We use the shorthand ΛiLj for ΛiM ⊗ Lj where i, j = 0, 1. For compact M we have the
following proposition.

Proposition 7.1.5. Let A be a G2 instanton on a principal G-bundle P with holonomy
group H and suppose AdP splits as above. Then

(i) ker((D−1/3,A)2 − 49
9
id) = ker((D−1/3,A)2 − 49

9
id) ∩ (Λ1L1 ⊕ Λ0L0).

(ii) ker((D−1/3,A)2 − 49
9
id) ∩ Λ1L1 =

(
ker(D−1/3,A + 7

3
id)⊕ ker(D−1/3,A − 7

3
id)
)
∩ Λ1L1.

Proof. To prove (i) we need to show that ker((D−1/3,A)2−(7
3
)2id)∩(Λ0L1⊕Λ1L0) is trivial.
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1. Let µ ∈ ker((D−1/3,A)2 − (7
3
)2id) ∩ Λ0L1. Thus we have by (7.1.6) ,

0 =

∫
M

(µ, (D−1/3,A)2 −
(

7

3

)2

)µ)

=

∫
M

(µ, (∇−1,A)∗∇−1,Aµ+ (
49

9
−
(7

3

)2

)µ)

=

∫
M

‖∇−1,Aµ‖2.

But since the action of the holonomy group of A fixes no non-trivial elements in g1

and the holonomy group of ∇−1 acts trivially on Λ0 we get µ = 0.

2. Let ε · η ∈ ker((D−1/3,A)2−
(

7
3

)2 id)∩Λ1L0. By the definition of L0 the curvature FA
acts trivially on ε · η in (7.1.7) and we get,

0 =

∫
M

(ε · η, (D−1/3,A)2 −
(

7

3

)2

)ε · η)

=

∫
M

(ε · η, (∇−1)∗∇−1(ε · η) + (
97

9
−
(7

3

)2

)ε · η)

=

∫
M

‖∇−1(ε · η)‖2 +
48

9

∫
M

‖ε · η‖2

hence ε · η = 0.

For proving (ii) we already know that
(
ker((D−1/3,A) + 7

3
} ⊕ ker((D−1/3,A) + 7

3
}
)
∩

Λ1L1 ⊂ ker((D−1/3,A)2− 49
9
id)∩Λ1L1. The reverse inclusion can be seen using the fact that

since D−1/3,A and (D−1/3,A)2 commute they have the same eigenvectors. Moreover since
D−1/3,A is self adjoint, ε ·µ ∈ ker((D−1/3,A)2− 49

9
id)∩Λ1L1 implies ‖D−1/3,Aε ·µ‖ = 7

3
‖ε ·µ‖

thus the corresponding eigenvalues of D−1/3,A can only be ±7
3
.

Remark 7.1.6. Note that part (i) for the above proposition holds only for D−1/3,A and
not for any other Dt,A where t 6= −1/3 since the proof explicitly uses the fact that η is
parallel with respect to ∇−1. But since Dt,A is self adjoint for all t ∈ R, for any λ ∈ R we
have the following decomposition

ker
{

(Dt,A)2 − λ2id
}
∩ Λ1AdP =

(
ker
{
Dt,A − λid

}
⊕ ker

{
Dt,A + λid

})
∩ Λ1AdP .

The above proposition has the following important consequence. If the structure group
G is abelian, H acts as identity on the whole of g which means g1 = 0 and L1 is trivial.
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Thus by Remark 7.1.3 the space of infinitesimal deformations of the G2 instanton A which
is isomorphic to ker(D−1/3,A + 7

3
) ∩ Λ1AdP = ker(D−1/3,A + 7

3
) ∩ Λ1L1 is zero dimensional.

For ω = α⊗ a ∈ Λ1 ⊗ AdP and FA = β ⊗ b ∈ Λ2 ⊗ AdP , the AdP valued 1-form ωyFA
is defined by

ωyFA = αyβ ⊗ [a, b].

In [BO19, Proposition 24] it was proved that the G2 instanton A is rigid if all the eigenvalues
of the operator

LA : Λ1 ⊗ AdP → Λ1 ⊗ AdP
w 7→ −2wyFA

are smaller than 6. We prove a lower bound for the eigenvalue as follows. Let λ be the
smallest eigenvalue of LA. If ε ∈ Γ(T ∗M ⊗AdP) is an infinitesimal deformation of A then
from (7.1.7) and Theorem 7.1.2 we know that

(∇t,A)∗∇t,Aε · η =
(5t2

12
+

3t

2
− 17

4

)
ε · η − LA(ε) · η.

Taking the inner product with ε·η on both sides we get that if λ > min
{

5t2+18t−51
12

| t ∈ R
}

=

−28
5
then ε = 0 is the only solution. Thus we get the following result.

Theorem 7.1.7. Any G2 instanton A on a principal G-bundle over a compact nearly G2

manifold M is rigid if

(i) the structure group G is abelian, or

(ii) the eigenvalues of the operator LA are either all greater than −28
5
or all smaller than

6.

Some immediate consequences of Theorem 7.1.7 are that the flat instantons are rigid.

7.1.1 Infinitesimal deformations of the canonical connection

Let M = G/H be a homogeneous manifold. Consider the principal H-bundle G→ M . If
(V, ρ) is an H-representation then the space of smooth sections Γ(G×ρV ) of the associated
vector bundle G ×ρ V is isomorphic to the space C∞(G, V )H of H-equivariant smooth
functions G→ V . We denote by lk the left multiplication by k ∈ G. The space C∞(G, V )H
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carries the left regular G-representation ρL defined by ρL(g)(f) = g.f = f ◦ lg−1 which is
also known as the induced G-representation IndGHV .

For any connection A on G the covariant derivative associated to A on any bundle asso-
ciated to A is denoted by ∇A. Let s ∈ Γ(G ×ρ V ) and fs : G → V be the G-equivariant
function given by s(gH) = [g, fs(g)]. If we denote by Xh the horizontal lift of X ∈ Γ(TM)
via A, then ∇A acts on s as

(∇A
Xs)(gH) = (g,Xh(fs)(g)).

For the canonical connection on G→M , Xh = X for every vector field. Thus the covariant
derivative ∇can is given by

(∇can
X s)(gH) = (g,X(fs)(g)).

By the Peter–Weyl Theorem [Kna86, Theorem 1.12] the space of sections can also be
formulated as follows. If we denote by Girr the set of equivalence classes of irreducible
H-representations then

Γ(G×ρ V ) =
⊕

W∈Girr

Hom(W,V )H ⊗W.

The embedding Hom(W,V )H ⊗ W into C∞(G, V )H = Γ(G ×ρ V ) is given by sending
(φ,w) to the function f(φ,w) which for an irreducible G-representation (W, τ) is defined by
f(φ,w)(g) = φ(τ(g−1)w). Thus (φ,w) defines a section s(φ,w)(gH) = [g, f(φ,w)(g)] which we
denote by (φ,w) as well.

Claim: The left G-action is given by g.f(φ,w) = f(φ,τ(g)w).

Proof. Let k ∈ G. Then since g.f = f ◦ lg−1 and f(φ,w)(g) = φ(τ(g−1)w) we have

(g.f(φ,w))(k) = f(φ,w)(g
−1k) = φ(τ((g−1k)−1)w)

= φ(τ(k−1)τ(g)w) = f(φ,τ(g)w)(k).

The proof of the claim is now complete.

We can compute the covariant derivative on s(φ,w) ∈ Hom(W,V )H ⊗W ⊂ Γ(G ×ρ V )
by

∇can
X s(φ,w)(gH) = X(f(φ,w))(g) =

d

dt

∣∣∣
t=0
f(etXg)
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=
d

dt

∣∣∣
t=0

(f(φ,w) ◦ letX )(g) =
d

dt

∣∣∣
t=0

(e−tX .f)(g)

=
d

dt

∣∣∣
t=0
f(φ,τ(e−tX)w) = −f(φ,τ∗(X)w)(gH).

The above can be written as

∇can
X (φ,w) = −(φ, τ∗(X)w). (7.1.8)

Thus we get that for the canonical connection the covariant derivative of a section s ∈
Γ(G ×ρ V ) with respect to some X ∈ m translates into the derivative X(fs), which is
minus the differential of the left-regular representation (ρL)∗(X)(fs), see [MS10].

Let {ai, i = 1 . . . n} be an orthonormal basis of g with respect to g = − 3
40
B where B is

the Killing form on g then the Casimir element Casg ∈ Sym2(g) is defined by
∑dimG

i=1 ai⊗ai.
On any g representation (V, µ) we can define the Casimir invariant µ(Casg) ∈ gl(V ) by

µ(Casg) =
n∑
i=1

µ(ai)
2.

For the reductive homogeneous spacesG/H let {ai, i = 1 . . . dim(H)} and {ai, i = dim(H)+

1 . . . dim(G)} be the basis of h and m respectively. If we define Cash =
∑dim(H)

i=1 ai⊗ ai and
Casm =

∑dim(G)
dim(H) ai ⊗ ai we can decompose Casg as

Casg = Cash + Casm.

Note that Casm is just used for notational convenience as m may not be a Lie algebra
apriori. Also in Cash the trace is taken over H.

Remark 7.1.8. If one uses the metric −cB instead of −B then the Casimir operator is
divided by the scalar c.

The adjoint representation ad: H → GL(m) gives rise to the associated vector bundle
G×adm on G/H. Similarly since G/H has a nearly G2-structure we have the adjoint action
of G2 on m which we again denote by ad and the isotropy homomorphism λ : H → G2

which we can use to construct the associated vector bundle G ×ad ◦λ m. The canonical
connection is a connection on both G ×ad m and G ×ad ◦λ m with structure group H and
G2 respectively. Therefore it is natural to study the infinitesimal deformation space of the
canonical connection in both these situations. Since H ⊂ G2, the deformation space as an
H-connection is a subset of the deformation space as a G2-connection.
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We can completely describe the deformation space when the structure group isH but for
structure group G2 we can only find the deformation space for the normal homogeneous
nearly G2 manifolds listed in Table 4.2 since our methods do not work for non-normal
homogeneous metrics. However sinceH is abelian in both of the non-normal cases Theorem
7.1.7 tells us that the canonical connection is rigid as an H-connection. But we cannot say
anything about the deformation space for the structure group G2 in those two cases.

Thus the only cases left to consider are listed in Table 4.2. The remainder of this chapter
is devoted to computing the infinitesimal deformation space of the canonical connection
with the structure group H and G2 for the homogeneous spaces listed in Table 4.2.

To study the deformation space of the canonical connection ∇can on these homogeneous
spaces we rewrite the Schrödinger–Lichnerowicz formula (7.1.7) in terms of the Casimir
operator of h and g and then use the Frobenius reciprocity formula to compute the defor-
mation space of the canonical connection in each case. Let F be the curvature associated
to ∇can then the operator −2εyF can be reformulated in terms of Cash by doing similar
calculations as in [CH16, Lemma 4] which gives

− 2εyF = (ρm∗(Cash)⊗ 1E + 1m∗ ⊗ ρE(Cash)− ρm∗⊗E(Cash))ε. (7.1.9)

Let (E, ρE) be an H-representation. We denote the tensor product of reprentations on
m∗ and E by ρm∗⊗E. For every t ∈ R, Dt,A denotes the Dirac operator on G×ρm∗⊗E (m∗ ⊗
E)⊗ /S associated to the connection ∇A and ∇t on G×ρm∗⊗E (m∗⊗E) and /S respectively.
For D−1/3,can we record the following proposition. From now on we use the same symbol to
denote the Lie group representation and the associated Lie algebra representation wherever
there is no confusion.

Proposition 7.1.9. Let ∇can be the canonical connection on a homogeneous nearly G2

manifold M = G/H. Let (E, ρE) be an H-representation and ε be a smooth section of
G×ρm∗⊗E (m∗ ⊗ E). Then

(D−1/3,can)2ε · η = (−ρL(Casg) + ρE(Cash))ε+
49

9
ε) · η. (7.1.10)

Proof. We begin by analyzing the rough Laplacian term in the Schrödinger– Lichnerowicz
formula for (D−1/3,can)2ε · η from (7.1.7) and then substitute the F -dependent term from
(7.1.9) in the same. We denote by ρL the left regular representation of G. From above
calculations we know that at the center of a normal orthonormal frame {ei, i = 1 . . . 7} of
m with respect to g = − 3

40
B,

(∇−1,can)∗∇−1,can = −∇−1,can
ei

∇−1,can
ei

= −ρL(ei)
2 = −ρL(Casm).
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Since ResHG ρL = ResHG IndGH(m∗ ⊗ E) ∼= m∗ ⊗ E we have that ρm∗⊗E(Cash) = ρL(Cash).
Also ρm∗(ei)2 = ρm∗(Cash) acts as −Ric of the canonical connection on 1-forms which is
equal to −16

3
id from Proposition 4.1.3. Substituting all the terms in (7.1.7) for t = −1 we

get

(D−1/3,can)2ε · η = (−ρL(Casm)ε+
97

9
ε+ (ρm∗(Cash)⊗ 1E + 1m∗ ⊗ ρE(Cash)− ρm∗⊗E(Cash))ε) · η

= (−(ρL(Casm) + ρL(Cash))ε+ (
97

9
− 16

3
)ε+ ρE(Cash)ε) · η

= ((−ρL(Casg)ε+ ρE(Cash)ε+
49

9
ε) · η

which completes the proof.

Since all the homogeneous spaces considered in Table 4.2 are naturally reductive and
H ⊂ G2, there is an adjoint action of H on m, h and g2 and thus H-representations on
m∗ ⊗ h and m∗ ⊗ g which we denote by ρm∗⊗h, ρm∗⊗g2 . The corresponding Lie algebra
representations are denoted similarly. The infinitesimal deformation space of the instanton
∇can is a subspace of Γ(m∗ ⊗ E) where E can be either h or g2.

Lemma 7.1.1. If ε is an infinitesimal deformation of ∇can on the bundle m∗ ⊗ E over
G/H then

ρE(Cash)ε = ρL(Casg)ε

where the trace in both the Casimirs is taken over G.

Proof. The proof follows from Propositions 7.1.1 and 7.1.9.

Using Lemma 7.1.1 we can reformulate the infinitesimal deformation space of the
canonical connection. Since the Casimir operator acts as scalar multiple of the identity
on irreducible representations we can solve Lemma 7.1.1 for irreducible subrepresenta-
tions of L. From Theorem 7.1.2 the deformations of the canonical connection are the
−2 eigenfunctions ε · η of D−1,can. To explicitly compute the deformation space first we
need to find the solutions for Lemma 7.1.1 which by above proposition is identical to
the space of 49

9
eigenfunctions ε · η of (D−1/3,can)2. For α ∈ Λ1AdP by Lemma 3.2.3

Dt,Aα ·η = D0,Aα ·η+ t
2
ϕ ·α ·η = D0,Aα ·η− t

2
α ·η. Therefore the ±7

3
eigenfunctions ε ·η of
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D−1/3,can correspond to the −2 and 8
3
eigenfunction of D−1,A respectively. By Proposition

7.1.5 we have the following decomposition

ker

(
(D−1/3,can)2 − 49

9
id
)
∩ Γ(m∗ ⊗ E) = ker(D−1,can + 2id) ∩ Γ(m∗ ⊗ E)

ker(D−1,can − 8

3
id) ∩ Γ(m∗ ⊗ E).

(7.1.11)

The first summand on the right hand side is isomorphic to the space of infinitesimal defor-
mations of ∇can by Theorem 7.1.2. So in the second step we check which of the subspaces
in ker((D−1/3,can)2 − 49

9
id) ∩ (Γ(m∗ ⊗ E) · η) lie in the −2 eigenspace of D−1,can.

The Killing spinor η is parallel with respect to ∇−1 therefore by the definition of the
Dirac operator and Proposition 7.1.5 we can restrict D−1,can and (D−1/3,can)2 to operators
from Γ(m∗ ⊗ E) → Γ(m∗ ⊗ E). On a homogeneous space we can explicitly compute the
canonical connection as we describe below.

Step 1: Calculating ker((D−1/3,can)2 − 49
9
id) ∩ Γ(m∗ ⊗ E) :

Let EC = ⊕ni=1Vi be the decomposition of EC into complex irreducibleH-representations.
For each Vi we find all the complex irreducible G-representations Wi,j, j = 1 . . . ni, that
satisfy the equation

ρVi(Cash) = ρWi,j
(Casg).

In order to see whether Wi,j ⊂ IndGH(m∗ ⊗ E)C we find the multiplicity mi,j of Wi,j in
IndGH(m∗C⊗Vi). Because of Schur’s Lemma this multiplicity is given by dim(Hom(Wi,j,m

∗
C⊗

Vi)H). Repeating this process for all the i, j’s and summing over all irreducibleG-representations
Wi,j along with their multiplicity we get,

ker((D−1/3,can)2 − 49

9
id) ∩ Γ(m∗ ⊗ E)C ∼=

n⊕
i=1

( ni⊕
j=1

mi,jWi,j

)
. (7.1.12)

Step 2: Calculating ker(D−1,can + 2id) ∩ Γ(m∗ ⊗ E) :

To figure out which of the Wi,j’s found in Step 1 are in the ker(D−1,can + 2id) we need
to calculate the covariant derivative ∇can on Hom(Wi,j,m

∗
C ⊗ Vi)H ⊗Wi,j ⊆ Γ(m∗ ⊗ E)C.

If (W, τ) is an irreducible G-subrepresentation of IndGH(m∗⊗E) then Hom(W,m∗⊗E)H
is non-trivial. By Schur’s Lemma the dimension of Hom(W,m∗ ⊗ E)H is the number of
common irreducible H-subrepresentations in ResHGW and m∗ ⊗ E. Let Wα be such a
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common irreducible H-representation. We denote by V |U the subspace of V isomoprohic
to U then Hom(W |Wα , (m

∗⊗E)|Wα = Span{φα}. Let τ∗ be the Lie algebra g representation
associated to the G-representation (W, τ) then for X ∈ Γ(TM) and (φ =

∑
cαφα, w) ∈

Hom(W,m∗ ⊗ E)H ⊗W , (7.1.8)

∇can
X (φ,w)(eH) = −φ(τ∗(X)w) ∈ m∗ ⊗ E.

Using this we can calculate the Dirac operator at eH by

D−1,can(φα, w)(eH) = −
7∑
i=1

ei · ∇−1,can
ei

(φα, w)(eH) = −
7∑
i=1

ei · φα(τ∗(ei)w). (7.1.13)

The above method can be extended by linearity to compute the Dirac operator on Γ(m∗⊗
E). Note that we have omitted the Killing spinor η since it is parallel with respect to ∇−1

so does not effect the eigenspace.

In the following sections we implement the above procedure on each of the four homo-
geneous spaces.

Remark 7.1.10. In a nearly Kähler 6-manifold whose structure is defined by a real Killing
spinor η, the spinor vol · η is another independent real Killing spinor. Any Dirac operator
/D anti-commutes with the Clifford multiplication by vol that is /Dvol = −vol · /D, hence for
all λ ∈ R we have ker( /D−λid) ∼= ker( /D+λid). Therefore ker( /D

2−λ2id) ∼= 2 ker( /D±λid)

and one can compute the λ eigenspace of /D by computing the λ2 eigenspace of /D2 as done
in [CH16, Proposition 4]. In the case of nearly G2 manifolds /D and the 7-dimensional vol
commute and thus we do not have such an isomorphism between the ±λ eigenspaces of
the Dirac operator. In fact there is no such automatic relation between ker( /D

2−λ2id) and
ker( /D + λid) as §7.3 reveals.

Remark 7.1.11. The Dirac operator is always self-adjoint therefore the above method of
finding a particular eigenspace of a Dirac operator D can be used more generally in any
bundle associated to the spinor bundle over a homogeneous spin manifold. Often times it
is easier to find the eigenspaces of the square of the Dirac operator D2 similar to the case
in hand. Once we know the λ2-eigenspace of D2 we can apply D on them to see which of
them lie in the λ or −λ-eigenspace of D.

7.2 Eigenspaces of the square of the Dirac operator

In this section we follow Step 1 of the above procedure. To see which of the irreducible
representations of G satisfy Lemma 7.1.1, we need to compute the Casimir operator on
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complex irreducible representations. Given any irreducible representation ρλ with highest
weight λ we use the Freudenthal formula to compute ρλ(Casg). We drop the constant 40

3
in

our definition of Casimir operator for this section as it does not play any role in comparing
the Casimir operators. Let µ = 1

2
(sum of the positive roots of g) then the Freudenthal

formula states that

ρλ(Casg) = B(λ, λ) + 2B(µ, λ). (7.2.1)

We compute the deformation space of the canonical connection for E = h and E = g2

as described earlier. In all the examples listed below, Case 1 is for E = h and Case 2 is for
E = g2.

Spin(7)/G2

For this space, H = G2 so there is only one case to consider.

The adjoint representation g2 is the unique 14-dimensional irreducible representation
of G2. The complex irreducible representations of G2 are identified with respect to their
highest weights of the form (p, q) ∈ Z2

≥0 and are denoted by V(p,q). Here V(1,0) is the
7-dimensional standard G2-representation and V(0,1) is the 14-dimensional adjoint repre-
sentation. The reductive splitting of the Lie algebra is given by

spin(7) = g2 ⊕m.

We have the following isomorphisms of G2 representations,

hC = (g2)C ∼= V(0,1),

mC ∼= V(1,0).

The isomorphism spin(7) ∼= so(7) implies that the eigenvalues of their Casimir operators
on irreducible representations are equal. For so(7), let Eij be the 7 × 7 skew-symmetric
matrix with 1 at the (i, j)th entry and 0 elsewhere. We define H1 = E45 − E23, H2 =
E67 − E45 and H3 = E45. A Cartan subalgebra for so(7) is given by Span{Hi, i = 1, 2, 3}.
A set of simple roots {αi, i = 1, 2, 3} is given by

α1 =

 i
−2i
i

 , α2 =

 0
i
−i

 , α3 =

0
i
0

 .
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The Cartan matrix C of so(7) which is given by

C =

 2 −1 −1
−1 2 0
−2 0 2

 .
Then one can compute the simple co-roots Fis by αi(Fj) = Cij which give F1 = iH2, F2 =
−iH1 + 2iH3 and F3 = −2iH2 − 2iH3. The set of fundamental weights is dual to the set
of the simple co-roots. We denote the fundamental weights in decreasing order by λ1, λ2

and λ3 which are dual to F3, F1, F2 respectively. We can compute easily thatB(H1, H1) B(H1, H2) B(H1, H2)
B(H2, H1) B(H2, H2) B(H2, H3)
B(H3, H1) B(H3, H2) B(H3, H3)

 =

−20 10 −10
10 −20 10
−10 10 −10


which implies B(λ1, λ1) B(λ1, λ2) B(λ1, λ2)

B(λ2, λ1) B(λ2, λ2) B(λ2, λ3)
B(λ3, λ1) B(λ3, λ2) B(λ3, λ3)

 =

3/40 1/10 1/20
1/10 1/5 1/10
1/20 1/10 1/10

 .
Since half the sum of positive roots is given by λ1 + λ2 + λ3 in [Hum78, Section 13.3]
therefore by (7.2.1) on an irreducible SO(7)-representation V(m1,m2,m3) with highest weight
m1λ1 +m2λ2 +m3λ3, m1,m2,m3 ≥ 0 we have

ρλ(Casso(7)) =
1

40
(3m2

1 + 8m2
2 + 4m2

3 + 8m1m2 + 4m1m3 + 8m2m3 + 18m1 + 32m2 + 20m3).

Now we compute the eigenvalues of the Casimir operator for the irreducible represen-
tations of g2 ⊂ so(7). A Cartan subalgebra of g2 is given by Span{H1, H2}. Here a pair of
simple roots β1, β2 is given by

β1 =

[
i
−2i

]
, β2 =

[
0
i

]
and the Cartan matrix C̃ for g2 is given by

C̃ =

[
2 −1
−3 2

]
.
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Let µ1, µ2 be the fundamental weights in decreasing order then their duals with respect to
B are −iH1 − 2iH2, iH2 respectively and one can compute[

B(µ1, µ1) B(µ1, µ2)
B(µ2, µ1) B(µ2, µ2)

]
=

[
1/15 1/10
1/10 1/5

]
.

Again half the sum of the positive roots is given by µ1 + µ2. Using these values in the
Freudenthal formula for an irreducible G2-representation V(p,q) with highest weight pµ1+qµ2

we have

ρ(p,q)(Casg2) =
1

15
(p2 + 3q2 + 3pq + 5p+ 9q).

Case 1: E = g2

The adjoint representation (g2)C ∼= V(0,1). From above

ρ(0,1)(Casg2) =
4

5
.

Substituting the above found values into Lemma 7.1.1 we get that V(m1,m2,m3) can be an
infinitesimal deformation space for the canonical connection if

1

40
(3m2

1 + 8m2
2 + 4m2

3 + 8m1m2 + 4m1m3 + 8m2m3 + 18m1 + 32m2 + 20m3) =
4

5
.

But since there are no positive integral solutions of this equation there are no deformations
of the canonical connection on Spin(7)/G2.

SO(5)/SO(3)

The complex irreducible SO(5)-representations are characterized by highest weights (m1,m2) ∈
Z≥0. The complex irreducible representations of SO(3) are given by SkC2 which is a(

2+k−1
k

)
= k + 1 dimensional space. The 3-dimensional adjoint representation so(3)C and

the 7-dimensional representation mC are irreducible SO(3)-representations therefore

mC ∼= S6C2,

so(3)C ∼= S2C2.

A Cartan subalgebra of so(5) is given by Span{H1, H2} where H1 = E12, H2 = E34

where Eij is the 5×5 skew-symmetric matrix with 1 at the (i, j)th position and 0 elsewhere.
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With respect to the Killing form B on so(5), H1 is orthogonal to H2 with B(Hi, Hi) = −6
for i = 1, 2. Let λ1, λ2 be the fundamental weights whose duals are i(H1−H2), 2iH2 respec-
tively then half the sum of positive roots is given by λ1 + λ2. Doing similar computations
as above we get [

B(λ1, λ1) B(λ1, λ2)
B(λ2, λ1) B(λ2, λ2)

]
=

[
1/6 1/12
1/12 1/12

]
.

Using (7.2.1) for the eigenvalues of the Casimir operator for irreducible representation
V(m1,m2) of SO(5) with highest weight m1λ1 +m2λ2 for m1,m2 ≥ 0 we get,

ρ(m1,m2)(Casso(5)) =
1

12
(2m2

1 +m2
2 + 2m1m2 + 6m1 + 4m2).

Under the embedding of so(3) in so(5) the Cartan subalgebra of so(3) is given by
Span{2H1+H2}. Here the Cartan subalgebra is 1-dimensional and the fundamental weight
µ1 is dual to 4iH1+2iH2. Using B(Hi, Hi) = −6 one can compute that B(4H1+2H2, 4H1+
2H2) = −120 the eigenvalue of the Casimir operator on the irreducible representation SqC2

of so(3) is given by

ρq(Casso(3)) =
1

120
(q2 + 2q).

Case 1: E = so(3)

The adjoint representation of so(3)C is an irreducible so(3) representation with highest
weight 2. Thus

ρE(Casso(3)) = ρ2(Casso(3)) =
1

15
.

We need to find irreducible representations V(m1,m2) of so(5) that satisfy Lemma 7.1.1 which
requires

1

12
(2m2

1 +m2
2 + 2m1m2 + 6m1 + 4m2) =

1

15
.

But since there are no integral solutions for the equation the deformation space is trivial
in this case.

Case 2: E = g2
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The adjoint representation of (g2)C splits as an so(3) representation into S2C2 ⊕ S10C2.
The first component in the splitting has already been studied in case 1 and hence has no
contribution to the deformation space. For the second component

ρ10(Casso(3)) = 1.

Thus we need to find so(5) representations V(m1,m2) such that

1

12
(2m2

1 +m2
2 + 2m1m2 + 6m1 + 4m2) = 1,

which has one integral solution namely m1 = 0,m2 = 2. Thus V(0,2)
∼= so(5)C is the only

SO(5)-representation for which Casg has eigenvalue 1. As so(3) representations

V(0,2)
∼= S2C2 ⊕ S6C2,

m∗C ⊗ S10C2 ∼=
8⊕

k=2

S2kC2.

Thus V(0,2) and m∗C⊗S10C2 have 1 common irreducible so(3) representation namely S6C2.
Thus V(0,2) occurs in IndGH(m∗C ⊗ S10C2) with multiplicity 1. Therefore in this case

(ker((D−1/3,can)2 − 49

9
id) ∩ Γ(m∗ ⊗ g2))C ∼= V(0,2).

Sp(2)× Sp(1)

Sp(1)× Sp(1)

The Lie algebra sp(2)⊕ sp(1) decomposes as

sp(2)⊕ sp(1) = sp(1)u ⊕ sp(1)d ⊕m

and the embeddings sp(1)u, sp(1)d are given by

sp(1)u =
{((a 0

0 0

)
, 0
)

: a ∈ sp(1)
}
, sp(1)d =

{((0 0
0 a

)
, a
)

: a ∈ sp(1)
}

where we follow the notations used in [AS12]. Let H1 = (E1, 0), H2 = (E2, 0) and H3 =
(0, E3) then a Cartan subalgebra of sp(2)⊕ sp(1) is given by Span{H1, H2, H3} where

E1 =


i 0 0 0
0 0 0 0
0 0 −i 0
0 0 0 0

 , E2 =


0 0 0 0
0 i 0 0
0 0 0 0
0 0 0 −i

 , E3 =

(
i 0
0 −i

)
.
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If B denote the Killing form of Sp(2)×Sp(1) we can compute that His are orthogonal with
respect to B and B(Hi, Hi) = −12 for i = 1, 2 and B(H3, H3) = −8. The fundamental
weights λ1, λ2, λ3 are dual to i(H1−H2), iH1, iH3 respectively and half the sum of positive
roots is given by λ1 + λ2 + λ3. By identical calculations as in other cases we getB(λ1, λ1) B(λ1, λ2) B(λ1, λ3)

B(λ2, λ1) B(λ2, λ2) B(λ2, λ3)
B(λ3, λ1) B(λ3, λ2) B(λ3, λ3)

 =

1/12 1/12 0
1/12 1/6 0

0 0 1/8

 .
Applying the Freudenthal formula (7.2.1) we get that the Casimir operator of sp(2) ⊕
sp(1) acts on the irreducible representations V(m1,m2,l) with highest weight m1λ1 +m2λ2 +
lλ3,m1,m2, l ≥ 0 with the eigenvalue

ρ(m1,m2,l)(Cassp(2)⊕sp(1)) =
1

12
(m2

1 + 2m2
2 + 2m1m2 + 4m1 + 6m2) +

1

8
(l2 + 2l).

Under the embedding given above a Cartan subalgebra of sp(1)u, sp(1)d is given by
Span{H1} and Span{(E2, E3)} respectively. Let P,Q be the standard 2-dimensional repre-
sentation of sp(1)u, sp(1)d respectively. Then the unique (n + 1)−dimensional irreducible
sp(1)u (respectively sp(1)d) representation is given by SnP (respectively SnQ). From pre-
vious calculations we have B(H1, H1) = −12 thus the eigenvalue of Cassp(1)u on SnP is
given by

ρn(Cassp(1)u) =
1

12
(n2 + 2n).

Similarly with the help of previous work one can calculate B((E2, E3), (E2, E3)) = −20.
Thus Cassp(1)d acts on SnQ as the scalar multiple of

ρn(Cassp(1)d) =
1

20
(n2 + 2n).

The adjoint representation sp(1) is an irreducible 3-dimensional sp(1) representation
and hence we have the following decompositions into Sp(1)u × Sp(1)d representations

(sp(1)u)C ∼= S2P, (sp(1)d)C ∼= S2Q, mC ∼= S2Q⊕ PQ

where PQ denotes the tensor product of P and Q and we omitted the tensor product sign
for clarity and continue to do so.

Case 1: E = sp(1)u ⊕ sp(1)d
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We need to find the irreducible sp(2)⊕ sp(1) representations V(m1,m2,l) that satisfy Lemma
7.1.1 for each irreducible component of hC that is (sp(1)u)C and (sp(1)d)C . For sp(1)u this
equation takes the form

1

12
(m2

1 + 2m2
2 + 2m1m2 + 4m1 + 6m2) +

1

8
(l2 + 2l) =

8

12
.

The integral solution (m1,m2, l) for this equation is (0, 1, 0). Thus the only irreducible
sp(2)⊕ sp(1) representations for which Casg has eigenvalue 2

3
is V(0,1,0). As sp(1)u⊕ sp(1)d-

representations we have the following decomposition

V(0,1,0)
∼= PQ⊕ C,

(sp(1)u ⊗m)C ∼= S2PS2Q⊕ S3PQ⊕ PQ.

The irreducible Sp(1) × Sp(1) representation in (sp(1)u ⊗ m)C common with V(0,1,0) is
PQ with multiplicity 1. Thus V(0,1,0) occurs in IndGH(m∗ ⊗ sp(1)u)C with multiplicity 1.
Therefore the solutions to Lemma 7.1.1 in Γ(m∗ ⊗ sp(1)u)C is the 5-dimensional complex
Sp(2)× Sp(1) representation V(0,1,0).

For the next irreducible hC component (sp(1)d)C Lemma 7.1.1 for V(m1,m2,l) becomes

1

12
(m2

1 + 2m2
2 + 2m1m2 + 4m1 + 6m2) +

1

8
(l2 + 2l) =

8

20
,

which has no integral solutions and thus it has no contribution to the deformation space.

Thus from Proposition 7.1.9 we conclude that when the structure group is Sp(1)u ×
Sp(1)d we have

(ker((D−1/3.can)2 − 49

9
id) ∩ Γ(m∗ ⊗ sp(1)u ⊕ sp(1)d)C ∼= (V(0,1,0)).

Case 2: E = (g2)C

The adjoint representation of g2 decomposes into irreducible sp(1)u ⊕ sp(1)d as follows:

(g2)C = S2P ⊕ S2Q⊕ PS3Q.

We have already seen the contribution of the first two irreducible components in the sum-
mation. For the third component

ρ1,3(Cassp(1)u⊕sp(1)d) = 1,
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so here we need to find the sp(2)⊕ sp(1) representations V(m1,m2,l) such that

1

12
(m2

1 + 2m2
2 + 2m1m2 + 4m1 + 6m2) +

1

8
(l2 + 2l) = 1.

The sp(2) ⊕ sp(1)-representations that satisfy Lemma 7.1.1 are V(2,0,0) and V(0,0,2), which
decompose into sp(1)u ⊕ sp(1)d representations as

V(2,0,0)
∼= sp(2)C ∼= S2P ⊕ S2Q⊕ PQ, V(0,0,2)

∼= (sp(1)d)C ∼= S2Q.

Moreover

PS3Q⊗m∗C
∼= S2PS4Q⊕ S2PS2Q⊕ P (S5Q⊕ S3Q⊕Q)⊕ S4Q⊕ S2Q.

Thus V(2,0,0) and PS3Q ⊗ m∗C have two common irreducible representations PQ, S2Q and
V(0,0,2) and PS3Q⊗m∗C have one common irreducible representation S2Q. So by Frobenius
reciprocity V(2,0,0) and V(0,0,2) lie in IndGH(m∗C ⊗ PS3Q) with multiplicity 2, 1 respectively.
Thus the solution of Lemma 7.1.1 in Γ(m∗⊗g2)C is the 28 dimensional Sp(2)×Sp(1) complex
representation 2V(2,0,0) ⊕ V(0,1,0) ⊕ V(0,0,2). So again by Proposition 7.1.9 we conclude that
when the structure group is G2 we have

ker((D−1/3.can)2 − 49

9
id) ∩ Γ(m∗ ⊗ g2)C ∼= 2V(2,0,0) ⊕ V(0,1,0) ⊕ V(0,0,2).

SU(3)× SU(2)

SU(2)× U(1)

The embeddings of su(2) and u(1) in su(3) × su(2) which we denote by su(2)d and u(1)
following [AS12] in su(3)⊕ su(2) are given by

su(2)d =
{((a 0

0 0

)
, a
)

: a ∈ su(2)
}
, u(1) = span

{(i 0 0
0 i 0
0 0 −2i

 , 0
)}
.

A Cartan subalgebra of su(3) ⊕ su(2) is given by span{H1 = (E1, 0), H2 = (E2, 0), H3 =
(0, E3)} where

E1 =

 0 1 0
−1 0 0
0 0 0

 , E2 =

i 0 0
0 i 0
0 0 −2i

 , E3 =

(
0 1
−1 0

)
.
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We can check that the His are orthogonal with respect to the Killing form B on SU(3)×
SU(2). As earlier we denote by λ1, λ2, λ3 the fundamental weights which are dual to
i
2
(H1 −H2), i

2
(H1 +H2), iH3 respectively. By direct computations we getB(H1, H1) B(H1, H2) B(H1, H3)
B(H2, H1) B(H2, H2) B(H2, H3)
B(H3, H1) B(H3, H2) B(H3, H3)

 =

−12 0 0
0 −36 0
0 0 −8

 ,
therefore B(λ1, λ1) B(λ1, λ2) B(λ1, λ3)

B(λ2, λ1) B(λ2, λ2) B(λ2, λ3)
B(λ3, λ1) B(λ3, λ2) B(λ3, λ3)

 =

 1/9 1/18 0
1/18 1/9 0

0 0 1/8

 .
Half the sum of the positive roots is λ1 + λ2 + λ3 and thus by Freudenthal formula (7.2.1)
for a su(3)⊕ su(2) representation V(m1,m2,l) with highest weight m1λ1 +m2λ2 + lλ3 where
m1,m2, l ≥ 0

ρm1,m2,l(Cassu(3)⊕su(2)) =
1

9
(m2

1 +m2
2 +m1m2 + 3m1 + 3m2) +

1

8
(l2 + 2l).

Using the embeddings of su(2) and u(1) given above we see that Cartan subalgebras of
su(2) and u(1) in su(3)⊕su(2) are given by span{(E1, E3)} and span{H2} respectively. By
calculations completely analogous to the previous case we then get that if we represent the
irreducible (n + 1)-dimensional su(2)d representations by SnW where W is the standard
su(2)d representation and the 1-dimensional u(1) representation with highest weight k by
F (k) we get by the Freudenthal formula (7.2.1)

ρn(Cassu(2)d) =
1

20
(n2 + 2n),

ρk(Casu(1)) =
1

36
k2.

As su(2)d ⊕ u(1) representations the 7-dimensional space mC decomposes as

mC ∼= S2W ⊕WF (3)⊕WF (−3),

whereas the 3-dimensional adjoint representation of (su(2)d)C is irreducible and hence is
isomorphic to S2W .

Case 1: E = su(2)d ⊕ u(1)
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The adjoint representation su(2)d⊕ u(1) splits as irreducible su(2)d⊕ u(1) representations
as follows:

(su(2)d ⊕ u(1))C ∼= S2W ⊕ C.

Since U(1) is abelian we know by Theorem 7.1.7 that the component u(1) is abelian and
thus gives rise to no deformations of the canonical connection. Therefore we only need to
check for deformations corresponding to S2W . For that we need to look for representations
V(m1,m2,l) such that

1

9
(m2

1 +m2
2 +m1m2 + 3m1 + 3m2) +

1

8
(l2 + 2l) =

8

20
,

which as seen before has no integral solutions.

Hence the canonical connection admits no deformations in this case.

Case 2: E = g2

The adjoint representation (g2)C splits as su(2)d ⊕ u(1) representation as follows:

(g2)C = S3WF (3)⊕ S3WF (−3)⊕ S2W ⊕ F (6)⊕ F (−6)⊕ C.

We need to follow the same procedure as above for each of the components. For each
component we need to find the su(3)⊕ su(2) representation V(m1,m2,l) that satisfies Lemma
7.1.1. We have already solved this for S2W ⊕C so we just need to compute it for the rest.

From above calculations ρS3WF (3)(Cash) = 1 therefore V(m1,m2,l) should satisfy

1

9
(m2

1 +m2
2 +m1m2 + 3m1 + 3m2) +

1

8
(l2 + 2l) = 1.

The only possible solutions are V(0,0,2), V(1,1,0). As su(2) ⊗ u(1) representations V(0,0,2)
∼=

S2W and V(1,1,0)
∼= su(3)C. Further one can compute

V(0,0,2)
∼= su(2)C ∼= S2W,

V(1,1,0)
∼= su(3)C ∼= S2W ⊕WF (3)⊕WF (−3)⊕ C,

S3WF (3)⊗m∗C
∼= (S5W ⊕ S3W ⊕W )F (3)⊕ (S4W ⊕ S2W )F (6)⊕ S4W ⊕ S2W.

Thus V(0,0,2) and S3WF (3) ⊗ m∗C has one common component S2W with multiplicity 1
and V(1,1,0) and S3WF (3) ⊗ m∗C has two common components S2W,WF (3) both with
multiplicity 1 each. So by Frobenius reciprocity IndGH(m∗C ⊗ S3WF (3)) contains a copy of
V(0,0,2) ⊕ 2V(1,1,0).
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The representation S3WF (−3) is the dual of the representation S3WF (3) and since
SU(2)⊗U(1) representations are isomorphic to their duals the result for this case is same
as the above and IndGH(m∗C ⊗ S3WF (−3)) also contains a copy of V(0,0,2) ⊕ 2V(1,1,0).

For the u(1) representation F (6), ρ6(Casu(1)) = 1. Thus again the only solutions are
V(0,0,2), V(1,1,0) by the previous case. The su(2) ⊕ u(1) representation F (6) ⊗ m∗C has the
following decompostion

F (6)⊗m∗C
∼= S2WF (6)⊕WF (9)⊕WF (3),

thus V(0,0,2) is not contained in IndGH(m∗C ⊗ F (6)) but V(1,1,0) is with multiplicity 1. Since
F (−6) ∼= F (6)∗ this case is similar to the above case.

Summing up all the parts together we get that when the structure group is G2 we have

ker((D−1/3,can)2 − 49

9
) ∩ Γ(m∗ ⊗ g2)C ∼= 2(V(0,0,2) ⊕ 3V(1,1,0)).

Table 7.1 lists the ker((D−1/3,can)2 − 49
9
id) ∩ Γ(m∗ ⊗ E) when E = h and E = g2 for

all the homogeneous spaces listed in Table 4.2. Note that for the remaining two homo-
geneous spaces Nk,l, k 6= l and SU(2)3/U(1)2 our methods does not apply when E = g2
although since H is abelian for both of them there are no deformations for the E = h case.
The space V (0,1) listed in Table 7.1 denotes the unique irreducible 5-dimensional complex
representation of sp(2).

G/H Structure group
H G2

Spin(7)/G2 0 0

SO(5)/SO(3) 0 so(5)

Sp(2)×Sp(1)
Sp(1)×Sp(1)

V
(0,1)
R 2sp(2)⊕ sp(1)⊕ V (0,1)

R

SU(3)×SU(2)
SU(2)× U(1) 0 2su(2)⊕ 6su(3)

Nk,l 0 unknown

SU(2)3/U(1)2 0 unknown

Table 7.1: ker((D−1/3,can)2 − 49
9
id) ∩ Γ(m∗ ⊗ E)
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7.3 Eigenspaces of the Dirac operator

All the G-representations listed in Table 7.1 lie in ker((D−1/3,can)2 − 49
9
id) ∩ Γ(m∗ ⊗ E)

which by (7.1.11) is equal to (ker(D−1,can + 2id)⊕ ker(D−1,can− 8
3
id))∩∩Γ(m∗⊗E). Since

the canonical connection is translation invariant it takes an irreducible G-representation
to itself. Hence the irreducible subspaces found in Table 7.1 lie in either ker(D−1,can− 8

3
id)

or ker(D−1,can + 2id) where the subspaces in the latter space constitute the infinitesimal
deformations of the canonical connection by Theorem 7.1.2. Thus now it remains to identify
which of the subspaces in Table 7.1 lies in ker(D−1,can + 2id) for each of the homogeneous
spaces. for all the homogeneous spaces G/H in Table 4.2 the metric corresponding to the
nearly G2-structure ϕ is given by − 3

40
B where B is the Killing form of G. For 1-forms

X, Y the Clifford product between X and Y · η is given by

X · Y · η = 〈X, Y 〉η − ϕ(X, Y, .) · η. (7.3.1)

Thus we have all the ingredients in (7.1.13) to calculate the action of the Dirac operator
D−1,can on each irreducible subspace in Table 7.1.

SO(5)/SO(3)

From the previous section we know that there are no deformation of the canonical connec-
tion when the structure group is SO(3). For the structure group G2 we calculated that the
smooth sections of G×ρm∗⊗g2

(m∗ ⊗ g2) in ker((D−1/3.can)2 − 49
9
id) ∼= V(0,2)

∼= so(5)C. If we
denote by Eij the skew-symmetric matrix with 1 at (i, j), −1 at (j, i) and 0 elsewhere and
define

e1 :=
2

3
(E12 − 2E34), e2 :=

2

3
(
√

2E45 −
√

3√
2

(E23 − E14)),

e3 :=
2
√

5

3
E25, e4 :=

2

3
(
√

2E35 −
√

3√
2

(E13 + E24)),

e5 :=

√
10

3
(E24 − E13), e6 := −

√
10

3
(E23 + E14), e7 :=

2
√

5

3
E15,

then {ei, i = 1 . . . 7} defines a basis of m∗ which is orthonormal with respect to the metric
− 3

40
B. With respect to this basis the nearly G2 structure ϕ is given by

ϕ = e124 + e137 + e156 + e235 + e267 + e346 + e457.
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We have seen that for SO(5)/SO(3) the canonical connection has no deformation as an
SO(3) connection. Now we need to check whether the SO(5)-representation V(0,2) lies in
the ker(D−1,can − 8

3
id) ∩ Γ(m∗ ⊗ g2)C or ker(D−1,can + 2id) ∩ Γ(m∗ ⊗ g2)C. As seen before

the common irreducible so(3) representation in V(0,2)|so(3) and (m∗ ⊗ g2)C is S6C2 ∼= m∗C.
We denote the 1-dimensional space Hom(V(0,2), (m

∗ ⊗ g2)C) = Span(α). Let µi, i = 1 . . . 11
be a basis of the 11-dimensional subspace of (g2)C isomorphic to the so(3) representation
S10C2. Then the subspace of m∗C ⊗ S10C2 ⊂ (m∗ ⊗ g2)C isomorphic to S6C2 is given by
Span{vi, i = 1 . . . 7} where

v1 =− e2

14
⊗ (5(µ1 − µ7) + 3

√
15µ9) + e3 ⊗ (µ5 + µ11)− e4

14
⊗ (5µ2 + 3

√
15(µ3 + µ4))

+ e5 ⊗ (µ3 − µ4) + e6 ⊗ µ9 + e7 ⊗ (µ6 − µ10),

v2 =e1 ⊗ µ9 + e2 ⊗ (−2µ5 + µ4)− e3

28
⊗ (47µ1 + 37µ7 + 3

√
5µ9)− e4 ⊗ (µ6 + 2µ10)

− e5

14
⊗ µ8 +

e7

28
⊗ (−37µ2 + 3

√
15(µ3 + µ4)),

v3 =− e1

2
⊗ (µ3 − µ4) +

e2

2
⊗ (2µ6 + µ10) +

e3

56
⊗ (47µ2 + 3

√
5(µ3 + µ4))− e4

2
⊗ (µ5 − 2µ11)

− e6

28
⊗ µ8 +

e7

56
(−37µ1 + 6

√
15µ9),

v4 =− e1

28
⊗ (5µ2 + 3

√
15(µ3 + µ4)) +

5e2

28
⊗ µ8 −

e3

56
⊗ (3
√

15µ2 + 41µ3 + 13µ4)

− e5

2
⊗ (µ5 − 2µ11) +

e6

2
⊗ (µ6 + 2µ10) +

e7

56
⊗ (3
√

15(µ1 − µ7) + 41µ9),

v5 =e1 ⊗ (µ5 + µ11)− e2

28
⊗ (3
√

15(µ1 − µ7) + 13µ9) +
e4

28
⊗ (3
√

15µ2 + 41µ3 + 13µ4)

+
e5

28
⊗ (47µ2 + 3

√
15(µ3 + µ4)) +

e6

28
⊗ (47µ1 + 37µ7 + 3

√
15µ9) +

2e7

28
⊗ µ8,

v6 =e1 ⊗ (−µ6 + µ10) +
e2

28
⊗ (3
√

15µ2 + 13µ3 + 41µ4) +
2e3

7
⊗ µ8 +

e4

28
⊗ (3
√

15(µ1 − µ7)

+ 41µ9) +
e5

28
⊗ (37µ1 + 47µ7 − 3

√
15µ9) +

e6

28
⊗ (−37µ2 + 3

√
15(µ3 + µ4)),

v7 =
e1

14
⊗ (5(µ1 − µ7) + 3

√
15µ9)− e3

28
⊗ (3
√

15(µ1 − µ7) + 13µ9) +
5e4

14
⊗ µ8

− 2e5 ⊗ (µ6 + µ10) + e6 ⊗ (−2µ5 + µ11)− e7

28
⊗ (3
√

15µ2 + 13µ3 + 41µ4).

The subspace of V(0,2) isomorphic to S6C2 is SpanC{ei, i = 1 . . . 7} and the SO(3) equivari-
ant homomorphism α between V(0,2) and (m∗ ⊗ g2)C is given by

α(e1) = v1, α(e2) = v7, α(e3) = −v5,
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α(e4) = −2v4, α(e5) = 2v3, α(e6) = −v2, α(e7) = v6.

Any section of the bundle associated to m∗⊗g2 in ker((D−1/3.can)2− 49
9
id) can be represented

by (α, v) for some v ∈ V(0,2)|S6C2
∼= m∗C. The action of the canonical connection on such a

section is then given by ∇−1,can
X (α, v)(eH) = −α([X, v]) where the Lie bracket is in so(5).

We can now calculate the action of the Dirac operator, D−1,can on (α, e1) · η at the point
eH as follows. We omit the ·η from the computations to reduce notational clutter and
continue to do so in every case.

D−1,can(α, e1)(eH) =
7∑
i=1

ei · ∇−1,can
ei

(α, e1)(eH)

= −2

3
(e2 · α(e4) + e3 · α(e7) + e4 · α(−e2) + e5 · α(e6)

+ e6 · α(−e5) + e7 · α(−e3))

=
2

3
(2e2 · v4 − e3 · v6 + e4 · v7 + e5 · v2 + 2e6 · v3 − e7 · v5)

=
2

3
(−3v1) · η = −2α(e1).

Thus by the translation invariance of the canonical connection

V(0,2) ⊆ ker(D−1,can + 2id) ∩ Γ(m∗ ⊗ g2)C.

Sp(2)× Sp(1)

Sp(1)× Sp(1)

From the previous section we know that for E = sp(1)⊕ sp(1) we have

ker((D−1/3.can)2 − 49

9
id) ∩ Γ(m∗ ⊗ E)C ∼= V(0,1,0).

Let {ei, i = 1 . . . 7} be an orthonormal basis of m∗ with respect to the metric − 3
40
B given

by

e1 :=
1

3

((
0 0
0 2i

)
,−3i

)
, e2 :=

1

3

((
0 0
0 2j

)
,−3j

)
, e3 :=

1

3

((
0 0
0 2k

)
,−3k

)
,

e4 :=

√
5

3

((
0 1
−1 0

)
, 0

)
, e5 :=

√
5

3

((
0 i
i 0

)
, 0

)
, e6 :=

√
5

3

((
0 j
j 0

)
, 0

)
,
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e7 :=

√
5

3

((
0 k
k 0

)
, 0

)
.

With respect to this basis the nearly G2 form is given by

ϕ = e123 − e145 − e167 − e246 + e257 − e347 − e356,

From Table 7.1 we know that as an Sp(1)× Sp(1) connection the deformation space of
the canonical connection is an irreducible subrepresentation of V(0,1,0) and is thus trivial or
(V(0,1,0))R . We need to check whether this space lies in the −2 eigenspace of D−1,A

The Sp(2) × Sp(1)-representation V(0,1,0) is 5 dimensional. We need to find the space
Hom(V(0,1,0), (m

∗ ⊗ (sp(1)u ⊕ sp(1)d))C)Sp(1)×Sp(1). The common irreducible Sp(1) × Sp(1)
representations in V(0,1,0) and (m∗ ⊗ sp(1)u)C is PQ. Let S2P = Span{I, J,K} then the
subspace of (m∗ ⊗ sp(1)u)C isomorphic to the space PQ is given by SpanC{v1, v2, v3, v4}
where

v1 = e5 ⊗ I + e6 ⊗ J + e7 ⊗K, v2 = −e4 ⊗ I + e7 ⊗ J − e6 ⊗K,
v3 = −e7 ⊗ I − e4 ⊗ J + e5 ⊗K, v4 = e6 ⊗ I − e5 ⊗ J − e4 ⊗K.

Let the subspace of V(0,1,0) isomorphic to PQ be given by Span{w1, w2, w3, w4} and the
homomorphism space Hom(V(0,1,0), (m

∗ ⊗ sp(1)u)C) = Span(β) where β is defined by

w1 7→ v3 + iv4, w2 7→ v1 − iv2,

w3 7→ v1 + iv2, w4 7→ v3 − iv4.

Using this isomprhism one can compute that the only non-trivial gl(V(0,1,0)|PQ) elements
with respect to the basis {w1, w2, w3, w4} are

τ∗(e1) =
2

3


i 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 −i

 , τ∗(e2) =
2

3


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 , τ∗(e3) =
2

3


0 i 0 0
i 0 0 0
0 0 0 −i
0 0 −i 0

 .
Also by the definition of the canonical connection, ∇−1,can

X (β, w)(eH) = −β(τ∗(X)w). Thus
we can calculate

(D−1,can(β, w1))(eH) =
7∑
i=1

ei · ∇−1,can
ei

(β, w1)(eH) = −
7∑
i=1

ei · β((τ∗(ei)w1)|PQ)
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= −(e1 · β(
2

3
iw1) + e2 · β(

2

3
w2) + e3 · β(

2

3
iw2))

= −2

3
(ie1 · (v3 + iv4) + e2 · (v1 − iv2) + ie3 · (v1 − iv2))

= −2

3
(3(v3 + iv4)) = −2β(w1).

Thus we have shown that V(0,1,0) lies in the ker(D−1,can + 2id).

For E = g2 the subspace of Γ(m∗ ⊗ g2) in ker((D−1/3.can)2 − 49
9
id) is isomorphic to the

Sp(1) × Sp(1) representation 2V(2,0,0) ⊕ V(0,1,0) ⊕ V(0,0,2). We have already dealt with the
space V(0,1,0). The remaining spaces are 2V(2,0,0)

∼= 2sp(2) and V(0,0,2)
∼= sp(1). The two

copies of V(2,0,0) arise from Hom(V(2,0,0),m
∗
C ⊗ PS3Q)Sp(1)×Sp(1) and the one copy of V(0,0,2)

arises from Hom(V(0,0,2),m
∗
C ⊗ PS3Q)Sp(1)×Sp(1). Thus we have two cases:

Case: 1-Hom(V(0,0,2),m
∗
C ⊗ PS3Q)Sp(1)×Sp(1) ⊗ V(0,0,2)

Let {w1, w2, w3} be the standard basis of V(0,0,2)
∼= sp(1)C then the non-trivial actions of m

on sp(1)C are given by

[e1, .] =

0 0 0
0 0 −2
0 2 0

 , [e2, .] =

 0 0 2
0 0 0
−2 0 0

 , [e3, .] =

0 2 0
2 0 0
0 0 0

 .
Let {µi, i = 1 . . . 8} be a basis of the Sp(1)u×Sp(1)d subrepresentation of (g2)C isomorphic
to PS3Q. The 1-dimensional space Hom(V(0,0,2), (m

∗ ⊗ g2)C) = Span{φ} where φ maps

w1 7→ e4 ⊗ (µ5 − µ2) + e5 ⊗ (µ1 + µ6) + e6 ⊗ (µ4 − µ7)− e7 ⊗ (µ3 + µ8),

w2 7→ e4 ⊗ (µ3 − 2µ8)− e5 ⊗ (µ4 + 2µ7) + e6 ⊗ (µ1 − 2µ6)− e7 ⊗ (µ2 + 2µ5),

w3 7→ −e4 ⊗ (2µ4 + µ7) + e5 ⊗ (µ8 − 2µ3)− e6 ⊗ (2µ2 + µ5) + e7 ⊗ (µ6 − 2µ1).

The connection ∇−1,can
X (φ,w) = −φ([X,w]) for w ∈ sp(1) where the Lie bracket is in the

Lie algebra sp(2)⊕ sp(1). Thus we can calculate

D−1,can(φ,w1)(eH) =
7∑
i=1

ei · ∇−1,can
ei

(φ,w1)(eH) = −
7∑
i=1

ei · φ([ei, w1])

= −(e2 · φ(−2w3) + e3 · φ(2w2))

= −2(e4 ⊗ (µ5 − µ2) + e5 ⊗ (µ1 + µ6) + e6 ⊗ (µ4 − µ7)− e7 ⊗ (µ3 + µ8))

= −2φ(w1).
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Hence again by translation invariance of ∇−1,can, we have

V(0,0,2) ⊆ ker(D−1,can + 2id) ∩ Γ(m∗ ⊗ g2)C.

Case: 2-Hom(V(2,0,0),m
∗
C ⊗ PS3Q)Sp(1)×Sp(1) ⊗ V(2,0,0)

The Sp(2) × Sp(1)-representation V(2,0,0)
∼= sp(2)C ∼= S2P ⊕ S2Q ⊕ PQ. The subspace of

(sp(2))C isomorphic to S2Q,PQ is given by SpanC{e1, e2, e3}, SpanC{e4, e5, e6, e7} respec-
tively. As before the basis of PS3Q ⊂ (g2)C is denoted by {µ1, µ2, . . . , µ8} and the subspace
of (m∗⊗g2)C isomorphic to S2Q is given by Span{φ(w1), φ(w2), φ(w3)} defined above. The
subspace of (m∗ ⊗ g2)C isomorphic to PQ is given by Span{v1, v2, v3, v4} where

v1 = e1 ⊗ (µ1 + µ6)− e2 ⊗ (µ4 + 2µ7)− e3 ⊗ (2µ3 − µ8),

v2 = e1 ⊗ (µ2 − µ5)− e2 ⊗ (µ3 − 2µ8) + e3 ⊗ (2µ4 + µ7),

v3 = −e1 ⊗ (µ3 + µ8)− e2 ⊗ (µ2 + 2µ5)− e3 ⊗ (2µ1 − µ6),

v4 = −e1 ⊗ (µ4 − µ7)− e2 ⊗ (µ1 − 2µ6) + e3 ⊗ (2µ2 + µ5).

Let {A1, A2} be a basis of the 2-dimensional space Hom(V(2,0,0), (m
∗⊗g2)C)Sp(1)u×Sp(1)d and

let A = c1A1 + c2A2 for some real constants c1, c2. We denote φ(wi) by wi for clarity then
we have that

A(e1) = c1w1, A(e2) = c1w2, A(e3) = c1w3

A(e4) = −c2v2, A(e5) = c2v1, A(e6) = −c2v4, A(e7) = c2v3

and A1, A2 acts trivially on S2P .

Let s(A,w) ∈ Γ(m∗ ⊗ g2)C be the section corresponding to (A,w) ∈ Hom(V(2,0,0), (m
∗ ⊗

g2)C)Sp(1)×Sp(1) ⊗ sp(2) then ∇−1,can
X (A,w) = −A(ad(X)w) = A([X,w]|) where the Lie

bracket is in the Lie algebra sp(2). Using this action of ∇−1,can we can calculate

(D−1,can(A, e1))(eH) =
7∑
i=1

ei · ∇−1,can
ei

(A, e1)(eH) = −
7∑
i=1

ei · A([ei, e1]|)

=− 2

3
(−e2 · A(e3) + e3 · A(e2) + e4 · A(e5)− e5 · A(e4)

+ e6 · A(e7)− e7 · A(6))

=− 2

3
(c1(−e2 · w3 + e3 · w2) + c2(e4 · v1 − e5 · (−v2) + e6 · v3

− e7 · (−v4)))
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=
4c1 − 6c2

3
w1 =

4c1 − 6c2

3
A1(e1).

By doing similar computations we get that

(D−1,can(A, fi))(eH) = 0, i = 1, 2, 3,

(D−1,can(A, ei))(eH) =
4c1 − 6c2

3
A1(ei), i = 1, 2, 3,

(D−1,can(A, ei))(eH) = −20c1 + 6c2

9
A2(ei), i = 4, 5, 6, 7.

Therefore the subspace of Hom(V(2,0,0), (m
∗ ⊗ g2)C)Sp(1)×Sp(1) in the ker(D−1,can + 2id)

is given by the condition c2 = 5
3
c1 and is thus 1-dimensional. Therefore V(2,0,0) occurs in

the ker(D−1,can + 2id) ∩ Γ(m∗ ⊗ g2)C with multiplicity 1.

Remark 7.3.1. We can immediately see from above that the only other possible eigenvalue
for which sp(2) is an eigenspace of D−1,can is −8

3
for c2 = −2

3
c1. This shows that not all

spaces in ker((D−1/3,can)2 − 49
9
id) are in ker(D−1,can + 2id).

SU(3)× SU(2)

SU(2)× U(1)

As before let {ei, i = 1 . . . 7} be an orthonormal basis of m∗ with respect to g. If we define

I =

(
i 0
0 −i

)
, J =

(
0 −1
1 0

)
, K =

(
0 i
i 0

)
we have

e1 :=
1

3

((
2I 0
0 0

)
,−3I

)
, e2 :=

1

3

((
2J 0
0 0

)
,−3J

)
, e3 :=

1

3

((
2K 0
0 0

)
,−3K

)
,

e4 :=

√
5

3

 0 0
√

2
0 0 0

−
√

2 0 0

 , 0

 , e5 :=

√
5

3

 0 0
√

2i
0 0 0√
2i 0 0

 , 0

 ,

e6 :=

√
5

3

0 0 0

0 0
√

2

0 −
√

2 0

 , 0

 , e7 :=

√
5

3

0 0 0

0 0
√

2i

0
√

2i 0

 , 0

 .

With respect to this basis the nearly G2-structure ϕ is given by

ϕ = e123 + e145 − e167 + e246 + e257 + e347 − e356.
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As an SU(2)× U(1) representation, m∗C ∼= S2W ⊕WF (3)⊕WF (−3) where

S2W = Span{e1, e2, e3},
WF (3) = Span{e4 − ie5, e6 − ie7}, WF (−3) = Span{e4 + ie5, e6 + ie7}.

From our previous work we know that the canonical connection has no deformations as an
SU(2)× U(1) connection so we only have to consider the case E = g2.

As an SU(2)×U(1) representation, (g2)C ∼= S3W (F (3)⊕F (−3))⊕S2W⊕F (6)⊕F (−6).
We have already seen that S2W gives rise to no deformations. From previous calculations
we know that

ker((D−1/3,can)2 − 49

9
id) ∩ Γ(m∗C ⊗ S3WF (±3)) ∼= V(0,0,2) ⊕ 2V(1,1,0)

∼= (su(2))C ⊕ 2(su(3))C

and
Γ(m∗C ⊗ F (±6)) ∩ ker((D−1/3,can)2 − 49

9
id) ∼= V(1,1,0).

Therefore there are 6 subspaces of Γ(m∗ ⊗ g2) to consider here.

Case: 1-Hom(V(0,0,2),m
∗
C ⊗ S3WF (3))SU(2)×U(1) ⊗ V(0,0,2)

We denote by {µi, i = 1 . . . 4} a basis of S3WF (3). Let fi, i = 1 . . . 3 be the standard
basis of su(2) such that [f1, f2] = −2f3, [f1, f3] = 2f2, [f2, f3] = −2f1. Then the subspace
of WF (−3) ⊗ S3WF (3) ⊂ (m∗ ⊗ g2)C isomorphic to (su(2))C is given by Span{v1, v2, v3}
where

v1 =
3i

4
(e4 + ie5)⊗ µ1 + (e6 + ie7)⊗ (

5i

4
µ2 + µ4),

v2 = (e4 + ie5)⊗ (−iµ2 + µ4) + (e6 + ie7)⊗ (−iµ1 − µ3),

v3 = (e4 + ie5)⊗ (−5i

4
µ1 + µ3)− 3i

4
(e6 + ie7)⊗ µ2

and the space Hom(V(0,0,2), (m
∗ ⊗ g2)C) = Span{γA} where γA is defined by

γA(f1) = v2, γA(f2) = i(v1 − v3), γA(f3) = −2(v1 + v3).

For i = 1, 2, 3, since ei = (2
3
fi,−fi) we have [ei, v] = −[fi, v] for all v ∈ su(2). The action

is trivial for i = 4 . . . 7 since [ei, fj] /∈ Span{f1, f2, f3}. We can thus calculate

D−1,can(γA, f1)(eH) =
7∑
i=1

ei · ∇−1,can
ei

(γA, f1)(eH)
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= e2 · γA(2f3)− e3 · γA(2f2)

= −(4e2 · (v1 + v3) + 2ie3 · (v1 − v3))

= −2v2 = −2 γA(f1).

Hence

Hom(V(0,0,2),m
∗
C ⊗ S3WF (3))|Sp(1)×Sp(1) ⊗ V(0,0,2) ⊆ ker(D−1,can + 2id).

Case: 2-Hom(V(1,1,0),m
∗
C ⊗ S3WF (3))SU(2)×U(1) ⊗ V(1,1,0)

Let a basis of the subspace of V(1,1,0)
∼= (su(3))C isomorphic to S2W ∼= (su(2))C be given

by

p1 :=

(
I 0
0 0

)
, p2 :=

(
J 0
0 0

)
, p3 :=

(
K 0
0 0

)
.

where I, J,K are defined previously. Then [p1, p2] = −2p3, [p1, p3] = 2p2, [p2, p3] = −2p1.
The basis of m∗C ⊗ S3WF (3) ⊂ m∗C ⊗ g2 isomorphic to S2W is given by Span{w1, w2, w3}
where

w1 = (e4 + ie5)⊗ µ2 + iµ3

2
+ (e6 + ie7)⊗ µ1 − iµ4

2
,

w2 = (e4 + ie5)⊗ µ4 − 2iµ1

2
+ (e6 + ie7)⊗ µ3 − 2iµ2

2
,

w3 = −(e4 + ie5)⊗ µ1 + 2iµ4

2
+ (e6 + ie7)⊗ µ2 − 2iµ3

2
.

Since (su(3))C = mC ⊕ C, the subspace of (su(3))C isomorphic to WF (3) is given by
SpanC{e4 − ie5, e6 − ie7}. The subspace of S2W ⊗ S3WF (3) ⊂ (m∗ ⊗ g2)C isomorphic to
WF (3) is given by Span{u1, u2} where

u1 = ie1 ⊗
µ2 + iµ3

2
+ e2 ⊗

2µ1 + iµ4

2
− ie3 ⊗

µ1 + 2iµ4

2
,

u2 = ie1 ⊗
µ1 − iµ4

2
+ e2 ⊗

2µ2 − iµ3

2
+ ie3 ⊗

µ2 − 2iµ3

2

If we denote the space Hom(V (1,1,0),m∗C⊗S3WF (3)) and Hom(V (1,1,0),m∗C⊗S3WF (3)) by
Span{A1}, Span{A2} respectively then

A1(pi) = wi, i = 1, 2, 3,
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A2(e4 − ie5) = u1, A2(e6 − ie7) = u2.

Define A = c1A1 + c2A2 for some constants c1, c2. We need to find the conditions on
c1, c2 such that (A,w) ∈ Γ(m∗ ⊗ S3WF (3)) ∩ ker(D−1,can + 2id) for all w ∈ su(3).

Let s(A,w) be the section corresponding to (A,w). Then for any vector fieldX,∇−1,can
X (A,w) =

−A(ad(X)w) = A([X,w]|) where the Lie bracket is in the Lie algebra su(3). Using this
action of ∇−1,can we can calculate

D−1,can(A, p1)(eH) =
7∑
i=1

ei · ∇−1,can
ei

(A, p1)(eH)

= −(
2

3
(−e2 · A(2p3) + e3 · A(2p2))e4 · A(−e5) + e5 · A(e4)

+ e6 · A(e7) + e7 · A(e6))

= −2c1

3
(−e2 · w1 + e3 · w2)− c2(−e4 · i

u1

2
+ e5 ·

u1

2
+ e6 · i

u2

2
− e7 ·

u2

2
)

=
4c1 + 3ic2

3
w1 =

4c1 + 3ic2

3
A1(e1).

The operator D−1,can acts trivially on the subspaces of (su(3))C isomorphic to C and
WF (−3). On the remaining subspaces we can compute the action of the Dirac operator
as

D−1,can(A, p1)(eH) =
4c1 + 3ic2

3
A1(ei), i = 1, 2, 3,

D−1,can(A, e4 − ie5)(eH) =
20c1 − 3ic2

9
A2(e4 − ie5),

D−1,can(A, e6 − ie7)(eH) =
20c1 − 3ic2

9
A2(e6 − ie7).

Thus for any w ∈ (su(3))C, (A,w) ∈ ker(D−1,can + 2id) if and only if c2 = 10i
3
c1. Thus only

one copy of su(3) lies in ker(D−1,can + 2id).

Note that similarly to Remark 7.3.1 here also for c2 = −4i
3
c1, (A,w) ∈ ker(D−1,can− 8

3
id).

Case: 3-Hom(V(0,0,2),m
∗
C ⊗ S3WF (−3))Sp(1)×Sp(1) ⊗ V(0,0,2)

Let fi, i = 1 . . . 3 be as before and denote by {νi, i = 1 . . . 4} a basis of S3WF (−3). Then
the subspace of WF (3) ⊗ S3WF (−3) isomorphic to S2W is given by Span{w1, w2, w3}
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where

w1 = (e4 − ie5)⊗ (
−3i

4
ν1) + (e6 − ie7)⊗ (

−5i

4
ν2 + ν4),

w2 = (e4 − ie5)⊗ (iν2 + ν4) + (e6 − ie7)⊗ (iν1 − ν3),

w3 = (e4 − ie5)⊗ (
5i

4
ν1 + ν3) + (e6 − ie7)⊗ (

3i

4
ν2)

and the space Hom(V(0,0,2), (m
∗
C ⊗ S3WF (−3))) = Span{γB} where γB is defined by

γB(f1) =
i

2
w2, γB(f2) =

1

2
(w1 − w3), γB(f3) = −i(w1 + w3).

The action of ei, i = 1 . . . 7 on fj, j = 1 . . . 3 is the same as Case 1 and thus we can calculate
D−1,can(γB, f1) as

D−1,can(γB, f1)(eH) =
7∑
i=1

ei · ∇−1,can
ei

(γB, f1)(eH)

= e2 · γB(2f3)− e3 · γB(2f2)

= −2ie2 · (w1 + w3)− e3 · (w1 − w3)

= −iw2 = −2 γB(f1).

Thus V(0,0,2) ⊆ ker(D−1,can + 2id) ∩ Γ(m∗ ⊗ g2)C.

Case: 4-Hom(V(1,1,0),m
∗
C ⊗ S3WF (−3))SU(2)×U(1) ⊗ V(1,1,0)

As above in Case 2, let a basis of the subspace of (su(3))C isomorphic to S2W ∼= su(2) be
given by Span{p1, p2, p3}. The basis of m∗C⊗S3WF (−3) ⊂ (m∗⊗ g2)C isomorphic to S2W
is given by Span{w1, w2, w3} where

w1 = (e4 − ie5)⊗ ν2 − iν3

2
+ (e6 − ie7)⊗ ν1 + iν4

2
,

w2 = (e4 − ie5)⊗ ν4 + 2iν1

2
+ (e6 − ie7)⊗ ν3 + 2iν2

2
,

w3 = −(e4 − ie5)⊗ ν1 − 2iν4

2
+ (e6 − ie7)⊗ ν2 + 2iν3

2
.

The subspace of (su(3))C isomorphic to WF (−3) is given by Span{e4 + ie5, e6 + ie7}.
The subspace of S2W ⊗ S3WF (−3) ⊂ (m∗ ⊗ g2)C isomorphic to WF (−3) is given by
SpanC{u1, u2} where
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u1 = −ie1 ⊗
ν2 − iν3

2
+ e2 ⊗

2ν1 − iν4

2
+ ie3 ⊗

ν1 − 2iν4

2
,

u2 = −ie1 ⊗
ν1 + iν4

2
+ e2 ⊗

2ν2 + iν3

2
− ie3 ⊗

ν2 + 2iν3

2
.

Again if we denote the spaces Hom(V (1, 1, 0),m∗C ⊗ S3WF (−3)) and Hom(V (1,1,0),m∗C ⊗
S3WF (−3)) by Span{B1}, Span{B2} respectively then

B1(pi) = wi, i = 1, 2, 3,

B2(e4 + ie5) = u1, B2(e6 + ie7) = u2.

Again as before we need to find the conditions on c1, c2 such that (B = c1B1 + c2B2, w) ∈
ker(D−1,can+2id) for all w ∈ (su(3))C. By similar computations as Case 2, we can calculate,

D−1,can(B, p1)(eH) =
7∑
i=1

ei · ∇−1,can
ei

(B, p1)(eH)

= −(
2

3
(−e2 ·B(2p3) + e3 ·B(2p2)) + e4 ·B(−e5) + e5 ·B(e4)

+ e6 ·B(e7) + e7 ·B(e6))

= −2c1

3
(−e2 · w1 + e3 · w2)− c2(−e4 · i

u1

2
+ e5 ·

u1

2
+ e6 · i

u2

2
− e7 ·

u2

2
)

=
4c1 − 3ic2

3
w1 =

4c1 − 3ic2

3
B1(e1).

Once can check that D−1,can acts trivially on the subspaces of (su(3))C isomorphic to
C,WF (3) and

D−1,can(A, p1)(eH) =
4c1 − 3ic2

3
B1(ei), i = 1, 2, 3,

D−1,can(A, e4 + ie5)(eH) =
20c1 + 3ic2

9
B2(e4 + ie5),

D−1,can(A, e6 + ie7)(eH) =
20c1 + 3ic2

9
B2(e6 + ie7).

Thus for all w ∈ (su(3))C, (B,w) ∈ ker(D−1,can+2id) if and only if c2 = −10i
3
c1 which proves

that only one copy of su(3) lies in ker(D−1,can + 2id) in this case as well. It immediately
follows from the given action that for c2 = 4i

3
c1, (B,w) ∈ ker(D−1,can − 8

3
id).

Case: 5-Hom(V(1,1,0),m
∗
C ⊗ F (6))SU(2)×U(1) ⊗ V(1,1,0)
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From before we know that the subspace of (su(3))C isomorphic to WF (3) is given by
Span{e4−ie5, e6−ie7}. if we denote by µ a basis vector for the 1-dimensional representation
F (6), the subspace of m∗C⊗F (6) isomorphic toWF (3) is given by SpanC{(e4+ie5)⊗µ, (e6+
ie7)⊗ µ}. Let Hom(V(1,1,0),m

∗
C ⊗ F (6)) = Span{α}. We can define α as follows,

α(e4 − ie5) = (e6 + ie7)⊗ µ, α(e6 − ie7) = −(e4 + ie5)⊗ µ.

Since V(1,1,0) is isomorphic to the adjoint representation (su(3))C, ∇−1,can
X (α, v)(eH) =

−α([X, v]) where X ∈ m, v ∈ WF (3) ⊂ su(3). Thus we can compute

D−1,can(α, e4 − ie5)(eH) =
7∑
i=1

ei · ∇−1,can
ei

(α, e4 − ie5)(eH)

= −(e1 · α(
2i

3
(e4 − ie5)) + e2 · α(

2

3
(e6 − ie7)) + e3 · α(

2i

3
(e6 − ie7)))

= −2

3
(ie1 · (e6 + ie7)⊗ µ− e2 · (e4 + ie5)⊗ µ− ie3 · (e4 + ie5)⊗ µ)

= −2(e6 + ie7)⊗ µ = −2α(e4 − ie5).

Therefore

Hom(V(1,1,0),m
∗
C ⊗ F (6))SU(2)×U(1) ⊗ V(1,1,0) ⊂ ker(D−1,can + 2id)

and thus lies in the deformation space.

Case: 6-Hom(V(1,1,0),m
∗
C ⊗ F (−6))SU(2)×U(1) ⊗ V(1,1,0)

The subspace of (su(3))C isomorphic to WF (−3) is given by SpanC{e4 + ie5, e6 + ie7}.
We denote F (−6) = Span{ν}. Then m∗C ⊗ F (−6) isomorphic to WF (−3) is given by
Span{(e4 − ie5)⊗ ν, (e6 − ie7)⊗ ν}. Let Hom(V(1,1,0),m

∗
C ⊗ F (−6)) = Span{β} then

β(e4 + ie5) = −(e6 − ie7)⊗ ν, β(e6 + ie7) = (e4 − ie5)⊗ ν.

Since V(1,1,0)
∼= (su(3))C, ∇−1,can

X (β, v)(eH) = −β([X, v]) where X ∈ m, v ∈ WF (−3) ⊂
(su(3))C. Thus we can compute

D−1,can(β, e4 + ie5)(eH) =
7∑
i=1

ei · ∇−1,can
ei

(β, e4 + ie5)(eH)

= −(e1 · β(
−2i

3
(e4 + ie5)) + e2 · β(

2

3
(e6 + ie7))
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+ e3 · β(
−2i

3
(e6 + ie7)))

= −2

3
(ie1 · (e6 − ie7)⊗ ν + e2 · (e4 − ie5)⊗ ν − ie3 · (e4 − ie5)⊗ ν)

= 2(e6 − ie7)⊗ ν = −2β(e4 + ie5),

which by translation invariance of D−1,can shows that

Hom(V(1,1,0),m
∗
C ⊗ F (−6))SU(2)×U(1) ⊗ V(1,1,0) ⊂ ker(D−1,can + 2id).

7.4 Describing the deformation space

The above computations describe the infinitesimal deformation space of the canonical
connection for the four normal homogeneous spaces considered in Table 4.2. We studied
the deformation space of the canonical connection on G/H as a connection on G×adm and
G ×ad◦λ m where λ is the isotropy homomorphism. The structure group of the canonical
connection is H on G×adm and G2 on G×ad◦λm. Thus pointwise the spaces of infinitesimal
deformations are isomorphic to subspaces of m∗ ⊗ h and m∗ ⊗ g2 respectively.

As an H-connection we were able to obtain the deformation space for the canonical
connection for all the homogeneous spaces listed in Table 4.1. We infer that the squashed
7-sphere given by Sp(2)×Sp(1)

Sp(1)×Sp(1)
is the only case where the canonical connection is not rigid as

an H-connection.

As a G2-connection we can only compute the deformation space for the four normal
homogeneous spaces. The canonical connection has a non-trivial infinitesimal deformation
space except for the case of round S7.

Summing up all the results found above we get the following theorem.

Theorem 7.4.1. The infinitesimal deformation space for the canonical connection on the
four normal homogeneous nearly G2 spaces G/H when the structure group is H or G2 is
isomorphic to the G-representations given in Table 7.2. The space V (0,1) in Table 7.2 is
the unique 5-dimensional complex irreducible Sp(2)-representation.
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G/H Structure group
H G2

Spin(7)/G2 0 0

SO(5)/SO(3) 0 so(5)

Sp(2)× Sp(1)

Sp(1)× Sp(1)
V

(0,1)
R sp(2)⊕ sp(1)⊕ V (0,1)

R

SU(3)× SU(2)

SU(2)× U(1)
0 2su(2)⊕ 4su(3)

Table 7.2: Deformation space of the canonical connection

We now describe some of the deformation spaces obtained in Theorem 7.4.1.

Let M be a nearly G2 manifold. We first observe that for the structure group G2 the
space of non-trivial deformations in Theorem 7.4.1 are either isomorphic to or contains as
a subrepresentation one or multiple copies of the Lie algebra g of the automorphism group
G. A vector field X on M preserves the G2-structure ϕ if LXϕ = 0. We denote by X the
space of vector fields on M preserving the G2-structure. Since the G2-structure on G/H
is G invariant, the space g is contained in X . Note that if X ∈ X then LXψ = LXg = 0.

Given a parallel section in Γ(g2(T
∗M) ⊗ AdP) ⊂ Γ(Λ2T ∗M ⊗ AdP), one can define

an operator that associates to each vector field in X an infinitesimal deformation of a G2

instanton on M . Such an operator was defined in [CH16] where a similar situation arises
when one computes the deformation space of the canonical connection on the homogeneous
6-dimensional nearly Kähler manifolds.

The next proposition asserts that if we fix a section ξ ∈ Γ(g2(T
∗M)⊗AdP) ⊂ Γ(Λ2T ∗M⊗

AdP), then for any vector field X ∈ X on M the AdP valued 1-form εX = iXξ ∈
Γ(T ∗M ⊗ AdP) defines an infinitesimal deformation of the nearly G2 instanton A in the
sense of (7.1.1). The proof of the proposition follows verbatim from the proof of [CH16,
Proposition 9] and is hence omitted.

Proposition 7.4.2. Let A be an instanton on a principal G-bundle P over a nearly G2

manifold M . Let ξ ∈ Γ(g2(T
∗M)⊗AdP) ⊂ Γ(Λ2T ∗M ⊗AdP) such that ∇−1,Aξ = 0. Then

for any X ∈ X , εX = iXξ ∈ Γ(T ∗M ⊗ AdP) satisfies the linearised instanton condition

dAεX · η = 0.
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The above proposition implies that for each ξ ∈ Γ(g2(T ∗M)⊗AdP) such that ∇−1,Aξ =
0, there is a copy of g in the deformation space of A. Thus the multiplicity of g in the
deformation space can be found by identifying the parallel sections of g2(T ∗M)⊗AdP . On
G/H, when we see P as a G2-bundle, every parallel section of g2(T ∗M)⊗AdP corresponds
to an H-invariant element of the H-representation g2 ⊗ g2 (since AdP ∼= g2) and vice-
versa. The number of linearly independent H-invariant elements of g2 ⊗ g2 is equal to the
multiplicity of the trivial H-representation in g2 ⊗ g2.

Observe that since A is a G2 instanton, the curvature FA ∈ Γ(g2(T ∗M)⊗AdP). When
A = ∇can is the canonical connection on G/H and F is the curvature, ∇−1,canF = 0 since
Hol(∇can) ⊆ G2. Hence by Proposition 7.4.2 for every X ∈ X , εX = iXF defines an
infinitesimal deformation of A = ∇can. Using the Bianchi identity and the definition of εX
we have that

dAεX = dεX + [A, εX ]

= LXF − iXdF + [A, εX ]

= LXF + iX [A,F ] + [A, εX ]

= LXF + [iXA,F ].

Since under the action of a gauge transformation φ, the curvature F transforms by
φFφ−1, for all X ∈ X there exists an infinitesimal gauge transformation φX such that

LXF = [φX , F ].

Also iXA defines an infinitesimal gauge transformation, hence [φX + iXA,F ] is an action
of an infinitesimal gauge transformation on F . Thus for all X ∈ X the deformations iXF
arise from gauge transformations and hence do not descend to the moduli space.

Thus for finding the multiplicity of g in the deformation space (modulo gauge trans-
formations) of the canonical connection on G/H, we need to find the number of trivial
sub-representations of H in g2 ⊗ g2 apart from the one that corresponds to F . In all the
cases we consider, the trivial H-representation occurs with multiplicity one in the subrep-
resentation h⊗ h of g2 ⊗ g2. The trivial representation coming from h⊗ h corresponds to
the H-invariant element F . We deal with the four normal homogeneous spaces one by one.
The notation for the irreducible H-representations in all the cases is the same as used in
§7.2.

– Spin(7)/G2
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Since H = G2, in this case g2 is the irreducible adjoint representation. There is only
one trivial g2-subrepresentation of g2⊗g2 which corresponds to F . Hence g = spin(7)
does not occur in the deformation space as proved in Theorem 7.4.1.

– SO(5)/SO(3)

In this case, as an so(3) representation, g2 decomposes into two irreducible so(3)-
representations, the adjoint representation S2C2, and the 11-dimensional representa-
tion S10C2. Thus as so(3)-representation

g2 ⊗ g2 = (S2C2 ⊗ S2C2)⊕ 2(S2C2 ⊗ S10C2)⊕ (S10C2 ⊗ S10C2).

There are two trivial components occurring in the above decomposition from S2C2⊗
S2C2 and S10C2 ⊗ S10C2 respectively but since the component coming from S2C2 ⊗
S2C2 corresponds to F , up to gauge transformations the deformation space of the
canonical connection on SO(5)/SO(3) contains only one copy of g = so(5) as shown
in Theorem 7.4.1.

– Sp(2)× Sp(1)/Sp(1)× Sp(1)

As an sp(1)⊕ sp(1)-representation,

g2 = S2P ⊕ S2Q⊕ PS3Q.

The trivial sp(1)⊕ sp(1) components of g2⊗ g2 coming from S2P ⊗ S2P and S2Q⊗
S2Q correspond to F and thus can be ignored. The only trivial component that
corresponds to an infinitesimal deformation modulo gauge transformations comes
from PS3Q ⊗ PS3Q, hence again g = sp(2) ⊕ sp(1) appears with multiplicity 1 in
the deformation space which is consistent with our findings in Theorem 7.4.1.

– SU(3)× SU(2)/SU(2)× U(1)

The decomposition of g2 as an su(2)⊕ u(1)-representation is given by

g2 = S2W ⊕ C⊕ S3WF (3)⊕ S3WF (−3)⊕ F (6)⊕ F (−6).

The first two components in the above decomposition correspond to h hence the
only trivial su(2)⊕ u(1)-subrepresentations of g2 ⊗ g2 that correspond to non-trivial
deformations come from the spaces S2WF (3)⊗S2WF (−3) and F (6)⊗F (−6). Hence
as proved in Theorem 7.4.1 the space g = su(3) ⊕ su(2) occurs in the deformation
space with multiplicity 2.
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The only deformation spaces left to be considered in Table 7.2 are the Sp(2)-representation
V R

(0,1) for the squashed 7-sphere and 2 copies of the SU(3)-representation su(3) on the
Aloff–Wallach space SU(3)× SU(2)/SU(2)× U(1).

On the squashed 7-sphere the canonical connection splits into two connections with
Hol = Sp(1)u and Sp(1)d respectively. From §7.2 the deformations only come from
the Sp(1)u part which we suspect is the pullback of the standard instanton on S4

via the quaternionic Hopf fibration. The standard instanton on S4 is the unique
Sp(2)-invariant ASD connection on S4 with charge 1. LetM be the moduli space of
charge-1 instantons on S4 with structure group SU(2). Then, there is a diffeomor-
phism fromM to B5 ⊂ R5 which to an instanton associates its center. The standard
instanton on S4 is the charge-1 instanton that corresponds to the center of the ball,
that is to 0 ∈ B5, and is the unique homogeneous charge-1 instanton. As the name
suggests, the homogeneous charge-1 instanton is invariant with respect to the Sp(2)-
action. The pullback of the homogeneous charge-1 instanton to the squashed S7 is
a G2-instanton (see [BO19], [Cla14]). As shown in [AHS78] the moduli space of the
standard instanton on S4 can be identified as a topological space and as a differen-
tiable manifold with R+×H (see [DK90, sec 4.1]). If the Sp(1) part of the canonical
connection is the pullback of the standard instanton, then the deformation space
of the canonical connection on the squashed 7-sphere must contain the deformation
space of the standard ASD instanton on S4 and hence be at least 5-dimensional.
From Table 7.2 we know that the moduli space of the deformations of the canoni-
cal connection on the squashed 7-sphere is exactly 5-dimensional and hence all the
deformations of the canonical connection would come from the deformations of the
standard ASD connection and would thus be integrable.

As of the deformation subspace 2su(3) of the canonical connection on SU(3) ×
SU(2)/SU(2) × U(1) with structure group G2, the author is unaware of any such
explicit description. It would be interesting to see whether these deformations are
genuine.
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Chapter 8

Deformations of SU(3) instantons on
Sasaki–Einstein 7-folds

Let (M2m+1, g) be an odd-dimensional Riemannian manifold. Let r be a coordinate on
R>0. The cone metric on M × R>0 is given by

dr2 + r2g.

The manifold M equipped with a 1-form θ is contact if and only if the 2-form

ω := t2dθ + 2tdt ∧ θ

on its cone is symplectic. A contact Riemannian manifold is Sasakian if its Riemannian
cone with the cone metric is a Kähler manifold with the Kähler form given by ω.

If the manifold is also an Einstein manifold, is it called a Sasaki–Einstein manifold.
Sasakian geometry is the odd-dimensional analogue of Kähler geometry. Indeed, just as
Kähler geometry is the natural intersection of complex, symplectic and Riemannian geom-
etry, so Sasakian geometry is the natural intersection of contact and Riemannian geometry.

In this chapter we describe the infinitesimal deformations of instantons on Sasaki–
Einstein 7-dimensional manifolds. These manifolds are nearly G2 manifolds of type 2
as discussed in Chapter 4. They are spin manifolds with two linearly independent unit
real Killing spinors. Thus we can employ the spinorial techniques used to describe the
deformation space of G2 instantons on nearly G2 manifolds to describe the deformation
space of Sasakian instantons on Sasaki–Einstein 7-dimensional manifolds. We begin by
describing these manifolds in some detail. We also see how the Sasaki–Einstein structure
is equivalent to a 1-parameter family of nearly G2-structures.
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8.1 Preliminaries on Sasaki–Einstein structure

We begin with an introduction to Sasakian geometry. Many of the results here are well
known in the literature and are just included to make the discussion self contained. The
reader is referred to [BFGK91] for a complete description of these manifolds from a spinoral
point of view.

Let (M2m+1, g) be a Riemannian manifold with a Sasakian structure. A Sasakian
structure on M is defined by a reduction of the frame bundle to the structure group
SU(m) ⊂ SO(2m+ 1). We say that the Sasakian structure on M is normal if the almost
complex structure induced by the Sasakian structure on the cone over M is integrable.
Notice that the Sasakian manifold (M, g) is naturally isometrically embedded into the cone
via the inclusion M = {r = 1} = {1} ×M ⊂ C(M). There is also a canonical projection
p : C(M) → M which forgets the r coordinate. Being Kähler, the cone (C(M), ḡ) is
equipped with an integrable complex structure J and a Kähler 2-form ω, both of which
are parallel with respect to the Levi-Civita connection ∇̄ of ḡ. The Kähler structure
of (C(M), ḡ), combined with its cone structure, induces the Sasakian structure on M =
{1} ×M ⊂ C(M).

For vector fields X, Y on M appropriately interpreted also as vector fields on C(M),
and ∇, the Levi-Civita connection of g we have the following relations,

∇̄r∂r(r∂r) = r∂r, ∇̄X(r∂r) = ∇̄r∂rX = X,

∇̄XY = ∇XY − g(X, Y )r∂r.
(8.1.1)

The canonical vector field r∂r is known as the homothetic or Euler vector field. Using the
relations (8.1.1), together with the fact that J is parallel, ∇̄J = 0, it follows that r∂r is
real holomorphic, Lr∂rJ = 0. It is then natural to define the characteristic or Reeb vector
field

ξ = J(r∂r). (8.1.2)

From the definition one can show that ξ is real holomorphic and Killing, Lξḡ = 0. Moreover,
ξ is clearly tangent to surfaces of constant r and has square length ḡ(ξ, ξ) = r2. Let
dc = −J ◦ d denote the composition of exterior derivative with the action of J on 1-forms,
and ∂, ∂̄ be the usual Dolbeault operators, with d = ∂+ ∂̄. We may express the dual 1-form
to ξ by

θ = dc log r = i(∂̄ − ∂) log r. (8.1.3)
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It follows straightforwardly from the definition that

θ(ξ) = 1, iξdθ = 0.

Since θ is the dual form of ξ, for any vector field X on C(M) it follows from (8.1.2) that

θ(X) =
1

r2
ḡ(ξ,X) =

1

r2
ḡ(J(r∂r), X).

The Kähler 2-form ω on C(M) is then given by

ω =
1

2
d(r2θ) =

1

2
i∂∂̄r2. (8.1.4)

The 1-form θ restricts to a 1-form θ|M on M . Since Lr∂rθ = 0 we have that θ = p∗(θ|M).
We denote both θ and θ|M by θ when there is no confusion. The same holds for ξ as it is
the dual of θ.

Since the Kähler 2-form ω is symplectic, it follows from (8.1.4) that the top degree form
θ ∧ (dθ)m on M is nowhere zero and hence is a volume form on M . By definition, this
makes θ a contact 1-form on M .

Define a section Φ of End(TM) such that

Φ|ker θ = J |ker θ, Φ|(ker θ)⊥ = 0

Using J2 = −id one shows that
Φ2 = −id + θ ⊗ ξ (8.1.5)

and the fact that the cone metric ḡ is Hermitian implies for any vector fields X, Y on M

g(Φ(X),Φ(Y )) = g(X, Y )− θ(X)θ(Y ). (8.1.6)

The triple (θ, ξ,Φ), with θ a contact 1-form with Reeb vector field ξ and Φ a section
of End(TM) satisfying (8.1.5), is known as an almost contact structure. An almost
contact structure (θ, ξ,Φ) together with a metric g satisfying (8.1.6) is known as a metric
contact structure. Sasakian manifolds are thus special types of metric contact structures,
as introduced by Sasaki in [Sas60].

To summarize, one can define a contact structure on M2m+1 by the tuple (ξ, θ,Φ) such
that
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• ξ ∈ Γ(TM) is a non-vanishing smooth unit vector field on M known as the charac-
teristic or Reeb vector field,

• θ ∈ Λ1(M) is the dual 1-form of ξ,

• Φ is a section of End(TM) such that Φ2 = −1 + θ ⊗ ξ,

• θ ∧ (dθ)m is a nowhere vanishing top form and is a volume form,

• θ ⌟ dθ = 0,

• C(M), the cone over M , is a Calabi–Yau (m+ 1) manifold.

Given a contact structure (ξ, θ,Φ) onM we define a section J of the endomorphism bundle
of the tangent bundle TC(M) of the cone by

JY = Φ(Y ) + θ(Y )r∂r, J(r∂r) = ξ.

Definition 8.1.1. A contact Riemannian manifold (Mn, g) is Sasakian if and only if
C(M) = R>0 × M along with the cone metric ḡ = dr2 + r2g and the almost complex
structure J defined above is Kähler, that is Hol(ḡ) ⊆ U(m).

The above definition implies that dimC(M) = n + 1 must be even and M has to be odd
dimensional.

Such a manifold is orientable and spin and its spinor bundle has two linearly indepen-
dent Killing spinors η1, η2 = ξ · η1. The subgroup SU(m) ⊂ Spin(2m + 1) fixes ν1 and ν2

thus M admits an SU(m) structure.

As proved in [HN12] there are special 3, 4-forms onM defined using the Killing spinors.
In terms of the Sasakian structure as defined above with θ the contact 1-form and ω as
defined in (8.1.4), we have

P = θ ∧ ω,

Q =
1

2
ω ∧ ω.

In a local orthonormal frame e1, . . . , e2m+1, we can choose

θ = e1, (8.1.7)
ω = e23 − e45 − · · · − e2m2m+1, (8.1.8)
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and it can be seen using (8.1.4) that

dP = 4Q, d ∗Q = (2m− 2) ∗ P. (8.1.9)

We now discuss the case of interest, that is when dim(M) = 7. In this case we have
a relation between Sasaki–Einstein and nearly parallel G2-structures which allows us to
use techniques from Chapter 7 to define the infinitesimal deformation space of Sasaki-
instantons on M7.

8.1.1 Sasaki–Einstein 7-folds

When the dimension of the Sasaki–Einstein manifold M2m+1 is 7 (or m = 3), one can
relate (8.1.9) to the nearly G2 equations (4.1.1) with P = ϕ and Q = ∗ϕϕ = ψ. Let K/S
be the space of Killing spinors on M . Recall from §4.1 that when M7 has a nearly parallel
G2-structure, K/S is non-trivial with 1 ≤ dim(K/S) ≤ 3 unless M = S7. In fact we have
the following proposition, the proof of which can be found in [AS12, Proposition 4.1].

Proposition 8.1.1. Let (M, g) be a compact nearly parallel G2 manifold. Then:

(1) If dimK/S ≥ 2, then every choice of a two-dimensional subspace of K/S gives a
Sasaki–Einstein structure compatible on M with g.

(2) If dimK/S ≥ 3, then (M, g) then every choice of a three-dimensional subspace of K/S
gives three compatible orthogonal Sasakian structures or equivalently a 3-Sasakian
structure on M compatible with g.

Thus a 7-dimensional Sasaki–Einstein manifoldM admits a nearly parallel G2-structure
of type 2 that is the space of real Killing spinors is 2-dimensional at each point. Then the
given metric and orientation are induced by a Sasaki–Einstein structure but not by a 3-
Sasakian structure, that is the holonomy group of C(M) is contained in SU(4) but not in
Sp(2).

Remark 8.1.2. For simplicity, we write everything as if dim(K/S) = 2. When dim(K/S) ≥
3, any choice of 2-dimensional subspace of K/S gives a Sasaki–Einstein structure. In the
rest of this chapter, K/S should be thought as this chosen 2-dimensional subspace although
all the results hold for any 2-dimensional subspace of K/S.
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Suppose that the holonomy group of the cone C(M) is equal to SU(4) (which means
that M is Sasaki–Einstein but not 3-Sasakian). Then on M7 there is a one-to-one corre-
spondence between Sasaki–Einstein structures and 1-parameter families of nearly parallel
G2-structures. Let ω ∈ Ω2(C(M)) be the Kähler form and Ω ∈ Ω4(C(M)) be the complex
volume form on the cone. Then the space of parallel 4-forms on C(M) is spanned by
ω ∧ ω,Re(Ω), and Im(Ω). For any c0, c1, c2 ∈ R, we define the 3-form ϕ on M by

ϕ := ∂ry

(
1

2
c0ω ∧ ω + c1Re(Ω) + c2Im(Ω)

)
.

Using (8.1.4) we can rewrite the above equation in terms of θ, ω, and the horizontal volume
form Ψ = ∂ryΩ,

ϕ = c0θ ∧ ω + c1Re(Ψ) + c2Im(Ψ). (8.1.10)

The Sasakian structure on M is induced from the metric gϕ and cross product ×ϕ by

Φ(X) = ξ ×ϕ X, θ(X) = gϕ(ξ,X). (8.1.11)

There are many G2-structures inducing the above metric and cross product. We can find
these G2-structures using the Kähler structure on the cone. The G2-structure defined in
(8.1.10) induces the metric and cross product in (8.1.11) if and only if

c0 = −1, c2
1 + c2

2 = 1.

Thus we get a 1-parameter family of nearly parallel G2-structures on M associated to the
Sasakian structure given by

ϕt = −θ ∧ ω + cos(t)Re(Ψ) + sin(t)Im(Ψ). (8.1.12)

Since there are two independent Killing spinors on M there are 2 nearly parallel G2-
structures ϕ1, ϕ2 associated to η1, η2 respectively. These two G2-structures are related by
the equation (see [AF10])

ϕ2 = −ϕ1 + 2(ξ ⌟ ϕ1) ∧ θ. (8.1.13)

Thus, in this case the 3-forms inducing the given metric, orientation, and spin structure
are parametrized by RP1 (see [FKMS97]).

Let η1, η2 be the Killing spinors corresponding to the nearly G2-structures ϕ1, ϕ2 re-
spectively.
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We choose e1, . . . , e7 to be an orthonormal frame at p ∈ M with respect to ϕ1 and
choose ξ = e1.

With respect to the decomposition /S ∼= (Λ0η1) ⊕ (Λ1 · η1) with respect to ϕ1 we can
identify η1 = (1, 0) and η2 = e1 · η1 = (0,−e1). Note that if we chose to work with the
decomposition with respect to η2 instead we get η2 = (1, 0) and η1 = −e1 ·η2 = (0, e1). Thus
under the isomorphism /S ∼= Λ0(M)⊕ Λ1(M) the choice of the Killing spinor is irrelevant.

At the point p we have

(ϕ1)p = e123 − e145 − e167 − e246 + e257 − e347 − e356.

By (8.1.13) we get

(ϕ2)p = −(e123 − e145 − e167 − e246 + e257 − e347 − e356) + 2(e23 − e45 − e67) ∧ e1

= e123 − e145 − e167 + e246 − e257 + e347 + e356.

Following the convention in (8.1.7), (8.1.8) we can see that

P = e123 − e145 − e167, (8.1.14)
Q = −e2345 − e2367 + e4567. (8.1.15)

Each fibre of the bundle /S for the Sasaki–Einstein 7-fold is an SU(3)-representation. As
before we denote by K/S the 2-dimensional subspace of Killing spinors. Let {η1, η2 = ξ ·η1}
be a basis of K/S ⊂ Γ(/S). Since η2 = ξ · η1 at each point p ∈M we have

〈η1(p), η2(p)〉 = 〈η1(p), (ξ · η1)(p)〉 = 〈−(ξ · η1)(p), η1(p)〉 = 0.

Thus for all p ∈M , Span{η1(p), η2(p)} ⊂ /Sp is 2-dimensional. We denote by K/S the rank
2 vector subbundle of /S with fibre Span{η1(p), η2(p)} for all p ∈M and by K⊥/S the rank 6
subbundle of /S whose fibre at each p ∈ M is Span{(v · η1)(p), v ∈ ξ⊥}. Since the fibres of
K/S and K⊥/S are orthogonal at each point we have the decompostion

/S = K/S ⊕K⊥/S .

We define
K/S⊥ := Γ(K⊥/S ).

Observe that the Sasakian structure on M preserves the subspaces K/S and K/S⊥ thus by
Schur’s lemma there exist real constants λ0, λ1, ν0, ν1 such that for η ∈ K/S and α ∈ K/S⊥,

P · η = λ0η, P · α = λ1α,
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Q · η = ν0η, Q · α = ν1α.

We can compute λ0, λ1, ν0, ν1 by explicit computation using the Clifford product in
(3.2.2) analogous to Lemma 3.2.3. A more elegant way to compute these eigenvalues is
using Lemma 3.2.3 and (8.1.13) which we present below.

Lemma 8.1.2. The subspaces K/S and K/S⊥ of Γ(/S) are eigenspaces for the operations of
Clifford multiplication by P and Q. The associated eigenvalues are

K/S K/S⊥

P 3 −1
Q 3 −1.

Proof. From (8.1.13) and (8.1.9) we know that

P =
1

2
(ϕ1 + ϕ2).

Since η2 = ξ · η1, using Lemma 3.2.3 we have

P · η2 =
1

2
(ϕ1 · η2 + ϕ2 · η2)

=
1

2
(ϕ1 · η2 + ϕ2 · ξ · η1)

=
1

2
(7η2 − ξ · η1) = 3η1.

Similarly one can use η1 = −ξ · η2 to show that P · η1 = 3η1. For α ∈ K/S⊥, α = X · η for
some X ∈ Span{ξ}⊥ and η ∈ K/S thus again by Lemma 3.2.3

P ·X · η =
1

2
(ϕ1 ·X · η + ϕ2 ·X · η)

=
1

2
(−X · η −X · η) = −X · η.

For the 4-form Q we can compute the eigenvalues similarly. Recall that we denote by
ψi = ∗iϕi. Taking the Hodge star of (8.1.13) we get

Q =
1

2
(ψ1 + ψ2).

Now the result follows from the fact that ϕi and ψi acts on the space of spinors with the
same eigenvalues as shown in Lemma 3.2.3.
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Let t ∈ R. We define the 1-parameter family of connections on TM given by

∇t
XY =


∇LC
X Y +

t

3
P (X, Y, ·), if X ∈ Span{ξ},

∇LC
X Y + tP (X, Y, ·), if X ∈ Span{ξ}⊥.

(8.1.16)

It lifts to the following 1-parameter family of connections on /S. Let µ ∈ Γ(/S). Then

∇t
Xµ =


∇LC
X µ+

t

6
iXP · µ, if X ∈ Span{ξ},

∇LC
X µ+

t

2
iXP · µ, if X ∈ Span{ξ}⊥.

(8.1.17)

The torsion of ∇t for each t is proportional to P and hence totally skew symmetric. By
the above definition if η ∈ K/S and X ∈ Span{ξ} then by Lemma 8.1.2 we have

∇t
Xη = −

1

2
X · η −

t

12
(X · P + P ·X) · η

= −
1

2
X · η −

t

12
(6X · η)

= −
(t+ 1)

2
X · η,

and if X ∈ Span{ξ}⊥ we have

∇t
Xη = −

1

2
X · η −

t

4
(X · P + P ·X) · η

= −
1

2
X · η −

t

4
(2X · η)

= −
(t+ 1)

2
X · η.

Therefore for all X ∈ Γ(TM), we have

∇t
Xη = −

(t+ 1)

2
X · η. (8.1.18)

Thus the Killing spinors are parallel with respect to ∇−1 and Hol(∇−1) ⊂ SU(3). Hence
∇−1 is the canonical connection as defined in [HN12].
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8.2 Sasaki-instantons and deformations

Let M2m+1 be a Sasaki–Einstein manifold. Let P be a principal G-bundle over M and A
be a connection with curvature FA. Using (5.2.2) and (8.1.9) for Sasaki manifolds we can
say that A is a Sasaki instanton if and only if

θ ∧ ω ∧ F = ∗F. (8.2.1)

From the discussion in §5.2 we can obtain equivalent definitions of Sasaki instantons.

• For a Sasaki–Einstein 7-foldM the space of Killing spinorsK/S is at least 2-dimensional.
The connection A is a Sasaki instanton if and only if for all η ∈ K/S, we have

FA · η = 0.

• Since a Sasaki–Einstein 7-fold has an SU(3) structure, the connection A is an instan-
ton if the 2-form part of FA lies in su(3)(T ∗M) which is the subbundle of Λ2(T ∗M)
whose fibre at each point is isomorphic to su(3), that is

FA ∈ Γ(su(3)(T ∗M)⊗ AdP) ⊂ Γ(Λ2T ∗M ⊗ AdP).

The condition FA ∈ Γ(su(3)(T ∗M)) implies

θyFA = ωyFA = 0.

To summarize, a connection A on a principal G bundle P over a Sasaki–Einstein man-
ifold M7 is an SU(3) or Sasaki instanton if any of the following equivalent conditions hold:

θ ∧ ω ∧ F = ∗F,
FA · η = 0, for all η ∈ K/S :

θyFA = 0,

ωyFA = 0.

(8.2.2)

From the above equivalent definitions we can observe a relationship between the Sasaki
instantons and the G2 instantons on M .

Lemma 8.2.1. A connection A on P → M is a Sasaki instanton with respect to the
SU(3) structure (θ, ω) on M if and only if it is a G2 instanton with respect to the nearly
G2-structures ϕ1 and ϕ2 on M .
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Proof. Let FA be the curvature associated to A. From the spinorial description of the
instanton condition we know that A is a Sasaki instanton if and only if FA · η = 0 for all
η ∈ K/S. But since K/S = Span{η1, η2} FA · η = 0 if and only if FA · η1 = FA · η2 = 0 which
by (5.2.3) FA implies that A is a G2 instanton with respect to both ϕ1 and ϕ2.

8.2.1 Infinitesimal deformations of SU(3) instantons

Let M7 be a Sasaki–Einstein 7-manifold. We are interested in studying the infinitesimal
deformation of Sasaki instantons on M . An infinitesimal deformation of a connection
A represents a minuscule change in A and thus, is a section of AdP ⊗ T ∗M . If ε ∈
Γ(AdP ⊗ T ∗M) is an infinitesimal deformation of A, the corresponding change in the
curvature FA up to first order is given by dAε. Linearizing the instanton condition FA ·η = 0
as in (8.2.1) we get dAε · η = 0 for all η ∈ K/S. A standard gauge fixing condition on this
perturbation is given by (dA)∗ε = 0. So in total ε ∈ AdP ⊗ T ∗M is an infinitesimal
deformation of a Sasaki instanton A if and only if for all η ∈ K/S

dAε · η = 0, (dA)∗ε = 0. (8.2.3)

The 1-parameter family of connections on the spinor bundle /S defined in (8.1.16) and
the connection A on P can be used to construct a 1-parameter family of connections on
the associated vector bundle /S ⊗ AdP . We denote by ∇t,A the connection associated to
∇t and A. The solutions to (8.2.3) can also be seen as eigenspaces of the Dirac operators
associated to connections ∇t,A as shown in the following proposition.

Proposition 8.2.1. Let ε be a section of AdP ⊗ T ∗M , and let Dt,A be the Dirac operator
constructed from the connections ∇t,A for t ∈ R. Then ε solves (8.2.3) if and only if for all
t ∈ R and η ∈ K/S,

Dt,A(ε · η) =


7t− 5

2
ε · η, if ε ∈ Γ(Span{ξ} ⊗ AdP),

−
7t+ 15

6
ε · η, if ε ∈ Γ(Span{ξ}⊥ ⊗ AdP).

Proof. Let ea be a local orthonormal frame for T ∗M . We assume e1 to be the Reeb vector
field ξ. Then

D0,A(ε · η) = ea · ∇0
a(ε · η)
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= (dAε+ (dA)∗ε) · η + ea · ε · ∇0
aη.

Applying Proposition 3.2.1 to the 1-form part of ε we get, ea · ε · ea · η = 5ε · η. So if η is a
real Killing spinor then (4.1.7) together with the above identity imply

D0,A(ε · η) = (dAε+ (dA)∗ε) · η − 1

2
ea · ε · ea · η

= (dAε+ (dA)∗ε− 5

2
ε) · η.

It follows from (8.1.16) and (8.1.14) that the operator Dt,A is given by

Dt,A(ε · η) =

(
D0,A +

t

6
e1 · ie1P ·+

t

2

7∑
a=2

ea · ieaP ·

)
ε · η

=

(
D0,A +

t

6
P ·+ t

2
(2P ·

)
ε · η

=

(
D0,A +

7t

6
P ·
)
ε · η.

From Lemma 8.1.2 we have

Dt,A(ε · η) =


(

dAε+ (dA)∗ε+ 7t−5
2
ε
)
· η, if ε ∈ Γ(Span{ξ} ⊗ AdP ),

(
dAε+ (dA)∗ε− 7t+15

6
ε
)
· η, if ε ∈ Γ(Span{ξ}⊥ ⊗ AdP).

The result now follows because (dAε+(dA)∗ε)·η = 0 is equivalent to the pair of equations
dAε · η = 0, (dA)∗η = 0 since these two components live in complementary subspaces.

The above proposition for t = 0 proves the following result.

Theorem 8.2.2. The space of infinitesimal deformations of a Sasaki instanton A on a
principal bundle P over a 7-dimensional Sasakian manifold M is isomorphic to the kernel
of the operator (

D0,A +
5

2
Id
)

: Γ(Λ1 ·K/S ⊗ AdP)→ Γ(Λ1 ·K/S ⊗ AdP).

Remark 8.2.3. The above theorem is analogous to Theorem 7.1.2 proved for G2 instantons
on nearly G2 manifolds.
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Theorem 8.2.2 implies that the infinitesimal space of deformations of Sasaki instantons
on a 7-dimensional manifold is isomorphic to an eigenspace of a twisted Dirac operator.
This result can be used to further analyze the deformation space in specific examples as
done by Charbonneau–Harland in [CH16] for nearly Kähler 6-manifolds and by the author
in [Sin21] for G2 instantons on nearly G2 manifolds.
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Appendix A

Connections on homogeneous spaces

In this appendix we briefly discuss the well known theory of connections on homogeneous
spaces. We present some insight on the characteristic homogeneous connection we encoun-
tered in Chapters 4 and 7. The main references for this discussion are [Bes87, Chapter 7],
[KN96, Chapter 10]. Short notes can also be found in [Oli14a, Appendix B] and [Dri20,
Section 3.3].

We begin by defining a homogeneous manifold.

Definition A.0.1. A Riemannian manifold (M, g) is homogeneous under the Lie group G
(or G-homogeneous) if G is a closed subgroup of the isometry group I(M, g) which acts
transitively on M .

One should note that G need not be all of I(M, g). For example when M = Rn and
g is the Euclidean metric, I(Rn, g) is the group of orientation preserving and reversing
motions but the proper subgroup of translations also acts transitively on the Euclidean
space. We also assume that G is closed for simplicity. Although this restriction is not
necessary as if G is not closed then there exists a unique subgroup G̃ of Diff(M) such that
for any G-invariant Riemannian metric g on M , G̃ is the closure of G in I(M, g).

For an arbitrary fixed point x0 ∈M , the closed subgroup

H := {a ∈ G|ax0 = x0}

is called the isotropy subgroup of G at x0. Then M is diffeomorphic to the coset space
G/H where the diffeomorphism from M → G/H is given by

x = ax0 7→ aH
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for a ∈ G. Note that the existence of such an a is guaranteed since the action is transitive.

Conversely, if H is a closed subgroup of a Lie group G, then the coset space G/H
becomes a C∞ manifold, and G acts on M by

G×G/H → G/H

(g, aH) 7→ (ga)H.

The map

lg : G/H → G/H

aH 7→ (ga)H

is called a left translation by g. If π : G → G/H is the quotient map and Lg is the left
multiplication by g on G then

lg ◦ π = π ◦ Lg.

Remark A.0.1. Since G is a closed subgroup of I(M, g) the isotropy subgroup H at
x ∈M is a compact subgroup of Ix(M, g). Also M is compact if and only if G is compact.

Examples. The canonical sphere Sn may be viewed as a homogeneous manifold
SO(n + 1)/SO(n). But in some dimensions there are other Lie groups acting transitively
on some spheres classified by D. Montgomery and H.Samelson in [MS43], for example
S6 = G2/SU(3) and S7 = Spin(7)/G2. Other examples include projective spaces

RPn = SO(n+ 1)/O(n),

CPn = SU(n+ 1)/S(U(1)× U(n)),

HPn = Sp(n+ 1)/Sp(n)Sp(1).

A Riemannian metric h on a homogeneous manifold M = G/H is said to be G-
invariant if for all X, Y ∈ Γ(TM) and k ∈ G, we have

h((lg)∗X, (lg)∗Y ) = h(X, Y ).

Thus we see that if h is G-invariant then lg ∈ I(M, g) for all g ∈ G.

Since H ⊂ G, the Lie algebra of H, denoted by h, is a subspace of Lie(G) = g. We
denote by [ , ] the Lie bracket on g and we denote by [ , ]V the restriction of [ , ] on a
subspace V of g.
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Furthermore if g has an Ad(H)-invariant inner product B then with respect to B we
have the direct sum

g = h⊕m. (A.0.1)

Here m is the orthogonal complement of h with respect to B.

Definition A.0.2. The homogeneous space M = G/H is reductive if

[h,m] ⊂ m.

Ad(H)-invariant metrics on m. Geometrically one can describe m as

TeHM ∼= TeG/ ker(π∗)e ∼= g/h ∼= m.

Thus for any left-invariant inner product 〈 , 〉 on g we can define an inner product ( , )
on m. For X, Y ∈ TgHM we have

〈X, Y 〉gH = 〈(lg−1)∗gHX, (lg−1)∗gHY 〉eH
= ((lg−1)∗gHX, (lg−1)∗gHY ).

If M is reductive the decomposition in (A.0.1) is Ad(H)-invariant thus for all X ∈ m and
h ∈ H,

π∗e(Ad(h)X) = (lh)∗eX

which proves that the inner product ( , ) is Ad(H)-invariant if and only if 〈 , 〉 is G-
invariant. Hence, we have the one-to-one correspondence between:

〈 , 〉 : G-invariant Riemannian metric on G/H, and
( , ) : Ad(H)-invariant inner product on m.

Definition A.0.3. A reductive homogeneous space G/H with a G-invariant metric 〈 , 〉
is naturally reductive if

〈[X, Y ]m, Z〉+ 〈Y, [X,Z]m〉 = 0

for any X, Y, Z ∈ m where [X, Y ]m denotes the m-component of [X, Y ].

Remark A.0.2. According to the direct sum decomposition g = h⊕m, we have

[X, Y ] = [X, Y ]h + [X, Y ] + m.

152



Definition A.0.4. A homogeneous space M = G/H with a Riemannian metric 〈 , 〉 is
normal homogeneous if there exists a bi-invariant Riemannian metric ( , ) on G such that,
if we identify m = h⊥ with respect to ( , ), then

〈 , 〉 = (, )|m×m.

Remark A.0.3. If M = G/H is normal homogeneous, M is naturally reductive.

The examples of nearly G2 manifolds in Table 4.2 are all normal homogeneous manifolds.

If the Lie group G is semi-simple the Killing form B on g given by

B(X, Y ) = tr(ad(X), ad(Y ))

is negative-definite. Thus there is a canonical choice for a bi-invariant metric on g, given
by −B. The induced metric on G/H, denoted by g, is called the standard homogeneous
metric on G/H.

Definition A.0.5. Let Q → G/H be a principal K-bundle. We say that Q is G-
homogeneous if there is a lift of the natural left action of G on G/H to the total space Q
which commutes with the right action of K.

Let Q be a homogeneous K-bundle over G/H. Choose a point q0 ∈ π−1(eH), then for
all h ∈ H, we see that h · q0 ∈ π−1(eH). Thus, for each h ∈ H there exists a unique k ∈ K
such that h · q0 = q0 · k. This defines a map λ : H → K. We see that this is in fact a
homomorphism since q0 · λ(h1h2) = h1h2 · q0 = q0 · λ(h1) · λ(h2). We call λ the isotropy
homomorphism. This allows one to reconstruct the bundle Q as follows.

Consider the associated bundle Q ×(H,λ) K = (G × K)/ ∼ where ∼ is the equivalence
relation (gh, k) ∼ (g, λ(h)k) for all g ∈ G, h ∈ H and k ∈ K. Suppose now we have a
homogeneous K-bundle Q = G×(H,λ) K and a representation (V, ρ) of K. Then the lift of
the G-action to Q endows the associated bundle E = Q ×(K,ρ) V with an an action of G.
Furthermore there is an isomorphism of homogeneous bundles E ∼= G×(H,ρ◦λ) V .

One turns now to the definition of invariant connections on the principal bundle Q =
G ×(H,λ) K. These are given by a left invariant connection 1-form A ∈ Ω1(K, k) and
classified by Wang’s theorem.

Theorem A.0.6 (Wang [Wan58]). Let Q = G ×(H,λ) K be a principal homogeneous K-
bundle. Then G-invariant connections on P are in one-to-one correspondence with mor-
phisms Φ of H representations

Φ: (m,Ad)→ (k,Ad ◦ λ).
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The canonical connection: In this section we assume G/H is a reductive homogenous
space, with the following decomposition

g = h⊕m.

We define and describe the basic properties of the canonical connection of a reductive
homogenous space. We consider G as a fiber bundle over the space G/H with structure
group H. The action of H on G is right multiplication. The group G itself acts on the
fiber bundle. This action clearly commutes with the projection map and the action of H.

Definition A.0.7. The canonical connection is a G-invariant connection on the principal
bundle G for which the horizontal space at the identity is m.

Clearly this defines a horizontal distribution. To show that this distribution is a con-
nection we have to show compatibility with right action:

(Rh)∗(Lg)∗m = (Lg)∗(Rh)∗m

= (Lg)∗(Lh)∗(Lh−1)∗(Rh)∗m

= (Lgh)∗(AdG/H(h))∗m

= (Lgh)∗m.

Proposition A.0.4. The torsion T and the curvature F associated to the canonical con-
nection are given by

1. T (X, Y ) = −[X, Y ]m,

2. F (X, Y )Z = −[[X, Y ]k, Z]m.

Proof. 1. It suffices to prove it at the identity as T and [ , ]m are left-invariant tensors.
For a vector field X on G/H we define the map fX : G→ m by

fX(g) = L−1
g (X(π(g))).

The torsion tensor T is then given by

T (X, Y ) = (Lg)∗(X
∗(fY )− Y ∗(fX))− [X, Y ]
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For X, Y ∈ m let X̃, Ỹ be right-invariant vector fields generated by X, Y in G. We
have that [X̃, Ỹ ] = − ˜[X, Y ]. The right invariance implies π∗X̃, π∗Ỹ are extensions of
X, Y in G/H. We have that

[π∗X̃, π∗Ỹ ] = π∗[X̃, Ỹ ]

= π∗(− ˜[X, Y ])

= −[X, Y ]m.

Now

fπ∗X̃(g) = L−1
g (π∗X̃(π(g)))

= L−1
g (π∗(Rg)∗(X))

= π∗(ad(g−1)∗X).

At the identity,

Y ∗(e)(fπ∗X̃(g)) = Y (π∗(ad(g−1)∗X))

=
d

dt
(π∗(ad(exp(−tY ))∗X))

= π∗[−Y,X] = [X, Y ]m.

Similarly we have X∗(e)(fπ∗Ỹ (g)) = [Y,X]m. Combining the previous equations we
get

T (X, Y ) = [Y,X]m − [X, Y ]m − (−[X, Y ]m) = −[X, Y ]m.

2. The curvature tensor F associated to a connection for which h denotes the horizontal
projection is given by

F (X, Y )Z = (Lg)∗(X
∗(Y ∗(fZ))− Y ∗(X∗(fZ)))− h([X∗, Y ∗])(fZ)

= ((Lg)∗ − h)([X∗, Y ∗])(fZ).

For the canonical connection h = id thus we have

F (X, Y )Z = ([X, Y ]− [X, Y ]m)(fZ)

= [X, Y ]h(π∗(ad(g−1)∗Z))

=
d

dt
(π∗(ad(exp(−t[X, Y ]h) ∗ Z)))

= π∗[−[X, Y ]h, Z] = [−[X, Y ]h, Z]m.
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From the above proposition it is obvious that the torsion tensor T is totally skew-
symmetric. Moreover the torsion tensor T and curvature F associated to the canonical
connection ∇can are both parallel with respect to the canonical connection, that is

∇canT = 0, ∇canF = 0.

In fact any G-invariant tensor is parallel with respect to ∇can. By first extending ∇can

trivially to G×K one obtains a connection ∇can,Λ on G×λ K. We have

∇can,λ = λ∗∇can,

Fcan,λ = λ∗Fcan.

On a manifold with a nearly G2-structure the canonical connection defines a nearly G2

instanton on the associated bundle with Hol(∇can,λ) = H ⊂ G2.
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Appendix B

Maple code for Lie algebra
computations

In this chapter we briefly present the Maple code we used to determine the deformation
space of the canonical instanton in Chapter 7. The part of the computation done in Maple
involve computing the space Hom(V,m∗⊗E)H where V is an irreducible G-representation
satisfying ρE(Cash) = ρL(Casg). Once we have a non-trivial homomorphism from V →
m∗ ⊗ E we can compute the action of the Dirac operator on V and check which of the
irreducible representations of G are in the −2 eigenspace of the Dirac operator D−1,can

where E = h or g2. See §7.3 for a complete discussion on why these are the spaces that
describe deformations of the canonical connection ∇can.

We only present the Maple code for Sp(2)×Sp(1)
Sp(1)×Sp(1)

as all the other cases are similar. The
reason for choosing this space is the mere complexity of the case that allows us to present
all the details that are missing in the other cases. The computation for E = h were done
by hand so Maple was used only to handle the case E = g2. In order to compute the
action of the Dirac operator D−1,A on ker{(D−1/3,can)2 − (49/9)id} =

∑2
i=1 Hom(Vi,m

∗ ⊗
g2)sp(1)u⊕sp(1)d ⊗ Vi where V1 = V(2,0,0)

∼= sp(2) and V2 = V(0,0,2)
∼= sp(1) we compute the

spaces Hom(V(2,0,0),m
∗ ⊗ g2)sp(1)u⊕sp(1)d ,Hom(V(0,0,2),m

∗ ⊗ g2)sp(1)u⊕sp(1)d . On elements of
the form Hom(Vi,m

∗⊗g2)sp(1)u⊕sp(1)d⊗Vi we can compute the action of the Dirac operator
D−1,can using (7.1.13).

Remark B.0.1. The Maple code presented below is not complete and is presented just to
deliver the idea how such computations could be done in Maple. It however can be easily
used to perform similar calculations in Maple with minor additions.
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To make the code easy to read we present it in a tabular form where the first column
describes the code and the second column represents the description of the command.

Packages used:

1 LinearAlgebra

2 DifferentialGeometry (See [AT12] and [AT16] for its applications and usage)

The following sub-packages of DifferentialGeometry package have also been used:

• LieAlgebras: for the symbolic analysis of Lie algebras.

• Tensor: provides an extensive suite of commands for computations with sections of
any vector bundle.

• Tools: a small utility package

Setting up the Lie Algebra sp(2)⊕ sp(1):

We write {ei, i = 1, . . . , 13} for a basis of sp(2) ⊕ sp(1) = sp(1)u ⊕ sp(1)d ⊕ m. The basis
is orthogonal with respect to the nearly G2 metric − 3

40
B where B is the Killing form of

sp(2) ⊕ sp(1). The elements {e1, . . . , e6} and {e7, . . . , e13} forms a basis of sp(1) ⊕ sp(1)
and m respectively.

Setting up the Lie algebras

sp2sp1 := LieAlgebraData(basis_sp2sp1, Liesp2sp1):
DGsetup(basis_sp2sp1):

define and set up sp(2) ⊕
sp(1)

sp21vector := [e1, e2, e3, evalDG(3/5*(e4 + e7)),
evalDG(3/5*(e5 + e8)),
evalDG(3/5*(e6 + e9)), e10, e11, e12, e13];

basis of sp(2) inside sp(2)⊕
sp(1)

sp11vector := [evalDG(-3/5*(e7 - 2/3*e4)),
evalDG(3/5*(e8 - 2/3*e5)),
evalDG(-3/5*(e9 - 2/3*e6))];

basis of sp(1) inside sp(2)⊕
sp(1)

Constructing the nearly G2 structure
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m := [e7, e8, e9, e10, e11, e12, e13] the basis of m

g := table([seq(seq(seq((i, j, k)
simplify(Killing(m[k], LieBracket(m[i],
m[j]))/Killing(m[k], m[k])), i = 1 .. 7), j =
1 .. 7), k = 1 .. 7)])

Lie algebra coeffi-
cients for m, [ei, ej] =∑7

k=1 g(i, j, k)ek

basis1form := [seq(cat(F, i), i = 1 .. 7)];
DGsetup([basis1form], [seq(d(basis1form[i])
= add(add(-1/2*g[j, k, i]*(basis1form[j] &w
basis1form[k]), j = 1 .. 7), k = 1 .. 7), i =
1 .. 7)], Q);

defining the space m which
is the tangent space at iden-
tity; the exterior derivative
is defined using the Maurer–
Cartan equations as m ⊂
g = sp(2)⊕ sp(1)

phi := evalDG(add(add(add(1/4*g[i, j,
k]*((basis1form[i] &w basis1form[j]) &w
basis1form[k]), i = 1 .. 7), j = 1 .. 7), k =
1 .. 7))

this defines the 3-form ϕ
for the nearly G2 structure;
since torsion of the canon-
ical connection T (X, Y ) =
−[X, Y ]m = −2

3
ϕ(X, Y, ·)

(4.1.9)

psi := ExteriorDerivative(1/4*phi) the 4-form ψ satisfies dϕ =
4ψ (4.1.1)

The Lie algebra g2 that annihilates the above G2 structure

A := Matrix(7, 7, (i, j) -> a[i, j], shape =
antisymmetric);
alpha := evalDG(evalDG(add(add(A(i,
j)*(basis1form[i] &w basis1form[j]), i = 1 .. 7),
j = 1 .. 7) &w psi));

since Λ2
14 = {α ∈ Λ2, α ∧

ψ = 0} ∼= g2 solve for α = 0
to get a basis of g2 ⊂ so(7)
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g1:=sk(1, 7) + sk(2, 4);
g2 := sk(1, 6) + sk(2, 5);
g3 := -sk(2, 6) - sk(1, 5);
g4 := -sk(2, 7) - sk(1, 4);
g5 := -sk(3, 4) - sk(1, 6);
g6 := sk(3, 5) + sk(1, 7);
g7 := sk(3, 6) + sk(1, 4);
g8 := -sk(3, 7) - sk(1, 5);
g9 := sk(4, 5) + sk(2, 3);
g10 := -sk(4, 6) - sk(1, 3);
g11 := sk(4, 7) - sk(2, 1);
g12 := sk(5, 6) + sk(1, 2);
g13 := sk(5, 7) + sk(1, 3);
g14 := sk(6, 7) + sk(2, 3);
basisg2 := [g1, g2, g3, g4, g5, g6, g7, g8, g9,
g10, g11, g12, g13, g14];
G2 := LieAlgebraData(basisg2, Lieg2);
DGsetup(G2);

this is the basis of g2 we ob-
tain and use to set up the
Lie aglebra g2

basis_sp1sp1g2 := evalDG([e14 - e9, -e10 - e13,
e12 - e11, e9 + e14, e10 - e13, e11 + e12])

obtain a basis of sp(1)u ⊕
sp(1)d inside g2 by com-
puting ad(h)m for each ele-
ment h ∈ sp(1)u ⊕ sp(1)d;
since the adjoint action of
H preserves the G2 struc-
ture ad(h)m ∈ g2 for all h ∈
sp(1)u ⊕ sp(1)d

Representation of sp(1)⊕ sp(1) on m

adm := [seq(Matrix(7, 7, (j, i) ->
Killing(LieBracket(sp1sp1[k], m[i]),
m[j])/Killing(m[j], m[j])), k = 1 .. 6)]:
DGsetup([seq(cat(x, i), i = 1 .. 7)], M):
repm := Representation(Liesp1, M, adm):

the 7 dimensional adjoint
representation on m since
[h,m] ⊂ m
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casm := Eigenvectors(add(ScalarMultiply(1/8,
ApplyRepresentation(repm, sp1sp1[i])ˆ2), i = 1
.. 6), output =’list’ ):
for i to 2 do
if casm[i][2] = 3 then
invs2q_m :=[seq(evalDG((Transpose(casm[i][3][k]))
. basis1vector_m), k = 1 .. 3)];
elif casm[i][2] = 4 then
invpq_m := [seq(evalDG((Transpose(casm[i][3][k]))
. basis1vector_m), k = 1 .. 4)];
end if; end do;

DGsetup([v1, v2, v3], M1):
s2q_m := SubRepresentation(repm, invs2q_m, M1);

DGsetup([u1, u2, u3, u4], M2);
pq_m := SubRepresentation(repm, invpq_m, M2);

splitting the adjoint rep-
resentation on m into
irreducible representations
of sp(1) ⊕ sp(1) using the
Casimir eigenvalue; each
irreducible representation
acts on the Casimir element
as a scalar identity of an
eigenvalue which along with
the dimension can be used
to find the highest weight
of the representation

m = PQ ⊕ S2Q where
P,Q are standard repre-
sentations of sp(1)u, sp(1)d
respectively; so we just
separated them using the
dimensions

Adjoint sp(1)⊕ sp(1) representation on g2

adg2 := [seq(Adjoint(basis_sp1sp1g2[i]), i = 1 ..
6)];
DGsetup([seq(cat(y, i), i = 1 .. 14)], G);
repG2 := Representation(Liesp1, G, adg2);

since sp(1) ⊕ sp(1) ⊂ g2 we
define the 14 dimensional
adjoint representation on g2

casg2 := Eigenvectors(add(ScalarMultiply(1/8,
ApplyRepresentation(repG2, sp1sp1[i])ˆ2), i = 1 ..
6), output = ’list’);
for i to 2 do
if casg2[i][2] = 8 then invps3q_g2 :=
[seq(evalDG((Transpose(casg2[i][3][k])) .
basis1vector_g2), k = 1 .. 8)];
end if;
end do;

we again use the Casimir el-
ement to decompose g2 in ir-
reducible representation
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DGsetup([seq(cat(z, i), i = 1 .. 8)], Z); PS3Q :=
SubRepresentation(repG2, invps3q_g2, Z);

we only need the 8-
dimensional represen-
tation PS3Q since
g2 = S2Q ⊕ S2P ⊕ PS3Q
where S2P ⊕ S2Q is
the E = h case already
considered; see §7.3

Product representation m⊗ g2

tensor_rep := TensorProductOfRepresentations([repm,
PS3Q], T);

castensor := Eigenvectors(add(ScalarMultiply(1/8,
ApplyRepresentation(tensor_rep, sp1sp1[i])ˆ2), i =
1 .. 6), output = ’list’);

define the 7 × 14 = 56
dimensional representation
m⊗ g2.

decompose m ⊗ g2 into
irreducible representations

for i to nops(castensor) do
if castensor[i][2] = 3 then invs2q_tensor :=
[seq(evalDG((Transpose(castensor[i][3][k])) .
basis1vector_T), k = 1 .. 3)];
elif castensor[i][2] = 4 then invpq_tensor :=
[seq(evalDG((Transpose(castensor[i][3][k])) .
basis1vector_T), k = 1 .. 4)];
end if; end do;

separate the subspaces iso-
morphic to S2Q and PQ

DGsetup([seq(cat(alpha, i), i = 1 .. 3)], T1);
s2q_T := SubRepresentation(tensor_rep,
invs2q_tensor, T1);

DGsetup([seq(cat(beta, i), i = 1 .. 4)],
T2); pq_T := SubRepresentation(tensor_rep,
invpq_tensor, T2);

define S2Q ⊂ m⊗ g2

define PQ ⊂ m⊗ g2

Adjoint sp(1)u ⊕ sp(1)d representation on sp(2), sp(1)d ⊂ sp(2)⊕ sp(1)
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adsp2 := [seq(Matrix(10, 10, (j, i) ->
Killing(LieBracket(sp1sp1[k], sp21vector[i]),
sp21vector[j])/Killing(sp21vector[j],
sp21vector[j])), k = 1 .. 6)];

DGsetup([seq(cat(r, i), i = 1 .. 10)], S);
repsp2 := Representation(Liesp1, S, adsp2);

defining the representation
matrix for the action on
sp(2) as a subspace of
sp(2)⊕ sp(1)

defining the representation
sp(2)

s2q_sp2 := SubRepresentation(repsp2,
[seq(basis1vector_sp2[i], i = 4 .. 6)], SZ)

pq_sp2 := SubRepresentation(repsp2,
[seq(basis1vector_sp2[i], i = 7 .. 10)], SW)

define the irreducible sub
representation PQ and S2Q
of sp(2)

adsp1 := [seq(Matrix(3, 3, (j, i) ->
Killing(LieBracket(sp1sp1[k], sp11vector[i]),
sp11vector[j])/Killing(sp11vector[j],
sp11vector[j])), k = 1 .. 6)]

the irreducible adjoint sp(1)
representation

Constructing the Lie algebra homomorphisms
From §7.3 the deformation space is a subset of(
Hom(sp(2),m∗ ⊗ g2)sp(1)u⊕sp(1)d ⊗ sp(2)

)
⊕
(
Hom(sp(1),m∗ ⊗ g2)sp(1)u⊕sp(1)d ⊕ sp(1)

)
. We

compute Hom(sp(2),m∗ ⊗ g2)sp(1)u⊕sp(1)d and Hom(sp(1),m∗ ⊗ g2)sp(1)u⊕sp(1)d .

Ahom1 := Matrix(3, 3, (i, j) -> aa[i, j]);
changebasis1 := [seq((ApplyRepresentation(s2q_T,
sp1sp1[i])) . Ahom1, i = 1 .. 6)];
changebasis2 := [seq(Ahom1 . (adsp1[i]), i = 1 ..
6)];
sol0 := solve(seq(seq(seq(changebasis1[k](i, j) =
changebasis2[k](i, j), i = 1 .. 3), j = 1 .. 3),
k = 4 .. 6));
hom0 := evalDG((subs(seq(seq(aa[i, j] = d[1], i
= 1 .. 3), j = 1 .. 3), Transpose(subs(sol0,
Ahom1)))) . (Vector(s2q_mg2)));

defining the homomorphism
of sp(1)u ⊕ sp(1)d repre-
sentation between the irre-
ducible sub-representation
ofm∗⊗g2 isomorphic to S2Q
and sp(1) ∼= S2Q
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Ahom := Matrix(3, 3, (i, j) -> a[i, j]);
basischange1 := [seq((ApplyRepresentation(s2q_T,
sp1sp1[i])) . Ahom, i = 1 .. 6)];
basischange2 := [seq(Ahom .
(ApplyRepresentation(s2q_sp2, sp1sp1[i])), i =
1 .. 6)];
soln1 := solve(seq(seq(seq(basischange1[k](i, j) =
basischange2[k](i, j), i = 1 .. 3), j = 1 .. 3),
k = 4 .. 6));
hom1 := evalDG((subs(seq(seq(a[i, j] = c[1], i
= 1 .. 3), j = 1 .. 3), Transpose(subs(soln1,
Ahom)))) . (Vector(s2q_mg2)))

defining the homomorphism
of sp(1)u ⊕ sp(1)d repre-
sentation between the irre-
ducible sub-representations
of m∗⊗g2 and sp(2) isomor-
phic to S2Q

Bhom := Matrix(4, 4, (i, j) -> b[i, j]);
basischange3 := [seq((ApplyRepresentation(pq_T,
sp1sp1[i])) . Bhom, i = 1 .. 6)];
basischange4 := [seq(Bhom .
(ApplyRepresentation(pq_sp2, sp1sp1[i])), i = 1
.. 6)];
soln2 := solve(seq(seq(seq(basischange3[k](i, j) =
basischange4[k](i, j), i = 1 .. 4), j = 1 .. 4),
k = 1 .. 6));
hom2 := evalDG((subs(seq(seq(b[i, j] = c[2], i
= 1 .. 4), j = 1 .. 4), Transpose(subs(soln2,
Bhom)))) . (Vector(pq_mg2)));

defining the homomorphism
of sp(1)u ⊕ sp(1)d repre-
sentation between the irre-
ducible sub-representations
of m∗⊗g2 and sp(2) isomor-
phic to PQ
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