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Abstract 

Capacitive Deionization (CDI) is an electro-driven water desalination technology that has been researched 

extensively over the last two decades.  A CDI cell consists of a pair of charged porous electrodes separated 

by a dielectric spacer.  The electrodes are typically a pair of porous electrodes where ions are stored within 

the electrical double layers (EDLs) of micropores.  Accurate modelling of capacitive electrodes depends 

heavily on EDL models.  There have been many attempts at modelling CDI but most studies treat the 

electrode as a continuum with effective properties.  Pore structure has been shown to have a significant 

effect on CDI cell performance and a Pore Network Model (PNM) is one such tool for modeling the effects 

of pore structure.  To the best of the author's knowledge, there is no prior PNM of CDI or any PNM, in 

general, that incorporates EDL theory at all.  Therefore, this work is the first attempt at applying electrical 

double layer models to a pore network for simulating the storage of ions into micropores.  The most common 

EDL models used in studying CDI are: Helmholtz, Gouy-Chapman-Stern, and modified Donnan.   In this 

work, each of these EDL theories are applied to a network of pores for modelling the storage of ions into 

micropores.  For computational efficiency, only the macropore space was resolved in the pore network and 

neighbouring micropore regions where ions are electrosorbed was treated with a sub-model.  A test 2D 

network of 294 pores consisting of anode, spacer, and cathode subregions was used to demonstrate the use 

of developed numerical method equations for modelling charging in a stop flow CDI cell.  Other simplifying 

assumptions made were electroneutrality in the macropores, equal anion and cation diffusivities, and 

monovalent salt solution.  These assumptions reduced our problem to a transient fickian diffusion problem 

coupled with an ionic transport algorithm.  The open-source pore network modelling package 

called OpenPNM was used for pore network modelling and solving our coupled transport equations.  Results 

from OpenPNM were validated by comparing to COMSOL and the relative error for concentration and 
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potential was always less than 10% and 15% respectively at all times of the simulation. Charging dynamics 

of the pore network was demonstrated along with a demonstration on how to obtain discharge curves during 

the flow stage.  Lastly, a pore network model was applied to a stop flow CDI cell found in literature.  A 3D 

network of pores was developed and calibrated to have the same pore size distribution, porosity, and 

permeability as the electrode-spacer assembly in literature.  Discharge curves from the calibrated pore 

network model and literature were found to have good agreement, but it was difficult to model correctly 

due to likely turbulence in the outlet and the conductivity sensor being downstream of the outflow port.  This 

is the beginning of using pore networks to model EDL based ion storage.   
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Chapter 1 

Introduction 

At least one third of the world’s population suffers from water scarcity [1].  Growing population and 

finite fresh water supply further aggravates concerns of meeting global water demand. Water 

desalination is the leading solution to fight water scarcity with installed global capacity of 97.2 million 

m3 per day.  As well, it has received increasing interest in the last couple of decades with desalination 

capacity growing at a rate of 7% per annum since 2010  [2].   

There are several different desalination technologies available.  Desalination technologies can be 

categorized based on their driving force for separation: pressure-, thermal-, and electro-driven devices 

[3].  Electro-driven devices use an applied voltage field to remove ions from water. Capacitive 

deionization is an example of such device [4], [5].  It consists of two charged porous electrodes placed 

on either side of a spacer channel.  The electrodes may be either capacitive or pseudocapacitive 

electrodes.  A voltage field is applied between either type of electrode but the storage mechanism for 

ion removal is different.  For capacitive electrodes, ions are stored in electrical double layers (EDLs) 

within the microstructure of the electrode while pseudocapacitive electrodes primarily store ions via 

intercalation.  Capacitive electrodes that store ions in EDLs are the focus of this work.  Electrodialysis 

(ED) is an example of another water treatment technology that stores ions in electrical double layers 

[6].  

To model the storage of ions into EDLs, transport equations are coupled with an appropriate EDL model 

that accounts for the uptake amount and rate of ions within the micropores.  Continuum models have 

been developed and presented in the literature which couple transport algorithms to EDL theory for 
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modelling CDI systems.  However, to the best of our knowledge, there does not exist a pore network 

model (PNM) which couples EDL models with transport equations.  There is only one pore scale study 

on capacitive deionization that uses the Lattice Boltzmann method [7].  Pore network modelling, a 

subcategory of pore scale modelling, uses a resistor in series like network to model transport in porous 

media.  Therefore, it considers the effect of pore microstructure directly without need of experiment for 

determination of effective transport properties.  Pore network modelling has already been applied to 

electrochemical devices such as fuel cells and therefore, it shows promise for applications such as 

electro-driven water desalination technologies or any other process which stores ions in electrical 

double layers.  Traditionally, researchers develop different electrode materials using essentially a trial-

and-error approach.  This time-consuming approach can be aided by the use of pore network modelling.  

It is proposed that pore network modelling be used for determining the optimal pore microstructure 

first and then developing the electrode that has that optimal pore microstructure second.  Research has 

shown that pore microstructure has significant effect on CDI cell performance [8].  However, we 

caution the reader to think that optimizing pore microstructure means it will make significant progress 

on thermodynamic efficiency because of a recent study by Patel et al. [3].  

However, before PNM can be used for an optimization study on capacitive deionization, EDL models 

must be incorporated into a pore network modeling framework, which is the main outcome of the 

present work.  For simplicity, a two-dimensional cubic network of 294 pores was generated and used 

for validations and verification of the new framework.  The network is subdivided into cathode, spacer, 

and anode regions.  Simulations were run on this network coupling a transient fickian diffusion 

algorithm with ionic transport algorithm and different EDL models.  The EDL models applied in this 

paper were: Helmholtz, Gouy-Chapman-Stern, and modified Donnan.  The open-source pore network 
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modelling package OpenPNM was used.  Results were compared with COMSOL to check that EDL 

models were implemented in the pore network model correctly.  Charging dynamics were demonstrated 

on the same 294 pore network for a stop flow CDI cell.  In a stop flow CDI cell, there is no flow during 

charging.  Other simplifying assumptions were electroneutrality in macropores, equal anion and cation 

diffusivities, and monovalent salt solution.  Lastly, the modified Donnan model was used to match a 

stop flow CDI cell discharge curve from literature [9].  The pore network was calibrated to match pore 

size distribution, permeability, and porosity of actual electrode and electrode-spacer assembly.  This 

thesis begins with a background that includes a review of electrical double layer models followed by a 

model development section where continuum and numerical method equations are derived.   
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Chapter 2 

Background 

2.1 Water Scarcity 

Satellite images of the earth show that over 70% of the earth is covered with water.  However, it is well 

known that most of the water on earth’s surface is saline or brackish sea water.  In fact, less than 3% of 

the water on earth’s surface is potable.  On a global scale, there is enough fresh water available to meet 

water demand on an annual basis [1].  However, spatial and temporal variations in the demand and 

supply of water is the fundamental reason for water scarcity [1], [10].  For one, there is a geographic 

mismatch between freshwater sources and human settlements.  Secondly, there may be insufficient 

supply caused by failed infrastructure or institutions to treat and distribute water properly.  The United 

Nations describes water scarcity as being due to a physical shortage (i.e. geographical shortage) or 

barriers to access due to failed institutions or improper infrastructure [11].  Other stresses such as 

growing population, climate change, and economic growth further aggravate concerns of water scarcity 

[12]. 

There have been several attempts made to quantify the number of people effected by water scarcity in 

the world [13]–[22].  These reports range from predicting 1.7 to 4 billion people as affected by severe 

water scarcity.  Precisely determining the effect of water scarcity on the human population is a difficult 

task.  For example, different authors have different thresholds for determining what constitutes as water 

scarcity.  Kummu et al. used less than 1000 m3 of water per capita per year as a benchmark for severe 

water scarcity while Hoekstra et al. used water consumption to water availability ratio greater than 2 

[19], [21].  In essence, water scarcity is a battle between supply and demand of water.   
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Another important consideration is how the selection of temporal and spatial resolution effects the 

calculated effect of water scarcity.  Mekonnen et al. suggested that other works underestimate the 

number of people effected by water scarcity by mistakenly averaging out the wet parts of the year with 

the dry parts.  By using a monthly temporal resolution, the authors were able to suggest that almost four 

billion people in the world suffer from water scarcity at least 1 month a year [1].  All other works 

investigated range from 1.7 to 3.2 billion people effected by water scarcity which fits the general notion 

that one third of people experience water scarcity.  

Figure 2.1 is a map that shows the annual average of monthly potable or “blue water” scarcity taken 

[1].  Dark red represents water scarcity greater than 5 while dark green indicates water scarcity from 0 

to 0.2.  The term blue water is used in these studies to indicate fresh surface or ground water sources.  

Blue water scarcity is calculated here as the ratio of blue water footprint (or consumption) to blue water 

availability.  This map helps identify where there is water stressed regions in the world. 

 

Figure 2.1 Colour map of world showing spatial distribution of annual average of monthly blue water 

scarcity. Blue water scarcity is determined from the ratio of blue water footprint (or consumption) to blue 

water availability. Dark red indicates blue water scarcity greater than 5 while dark green indicates blue water 

scarcity between 0 and 0.2. Reprinted from [1].  © Mekonnen et al., some rights reserved; exclusive licensee 

AAAS. Distributed under a CC BY-NC 4.0 License (http://creativecommons.org/licenses/by-nc/4.0/) 

http://creativecommons.org/licenses/by-nc/4.0/
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2.2 Water Desalination 

Water desalination is one of the leading solutions to overcoming water scarcity.  As of February 2020, 

there was 97.2 million m3 of water desalination capacity installed globally.  The number of installed 

plants at that time was 16,876 worldwide.  Global desalination capacity has been growing at a rate of 

7% per annum since 2010 [2]. Figure 2.2 shows the increasing cumulative capacity of water 

desalination projects globally since 1970. Here, cumulative desalination capacity considers only 

installed plants and not contracted projects. Ihsanullah et al. forecasts cumulative desalination capacity 

will reach 200 million m3 by the year 2030 [23].  

 

Figure 2.2 The cumulative installed capacity of water desalination projects globally.  This figure was 

adapted from reference [2]. 

The type of water treated varies among desalination plants.  Waters were categorized into six types 

according to DesalData (2018): seawater: 20,000-50,000 ppm TDS, brackish water: 3,000-20,000 ppm 

TDS, River water: 500-3,000 ppm TDS, Pure Water: < 500 ppm TDS, Brine: > 50,000 ppm TDS, and 

wastewater [24].  Pure water is typically used for industrial applications where a very pure water is 
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required [25].  Figure 2.3 shows the breakdown of water desalination plants by the type of water treated. 

Seawater is treated most often taking 61% of produced water.  It is followed by brackish water (21%) 

and river water (8%). These feedwater types make up 90% of the produced water.  The remaining 10% 

is made up of wastewater (6%), pure water (4%), and brine (<1%).  That is the percentage of produced 

water with certain feedwater.  On the left-hand side is the breakdown of water but by number of plants. 

There are fewer sweater desalination plants then brackish water plants, but seawater plants have a 

capacity that is three times more than brackish water. 

 

Figure 2.3 Break down of water desalination plants based on feed water type. The bar chart breaks down the 

number of operational facilities by type of feed water while the pie chart shows percent of water production 

by type of feed water. This figure was adapted from reference [25]. 

The most prevalent commercially available desalination technologies can be subdivided into two 

categories: membrane and thermal desalination.  Membrane technologies, mainly reverse osmosis (RO) 

apply a pressure difference across a semi-permeable membrane to separate salt from water [26]. 

Meanwhile, thermal driven technologies that include Multi-effect distillation (MED) and multi-stage 

flash (MSF) work by boiling and condensing water [27], [28].  More novel desalination technologies 

include: nanofiltration (pressure-driven), electrodialysis, and capacitive deionization.  Patel et al. more 
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broadly defines desalination technologies by way of pressure-driven, thermal-driven, and electro-

driven in order to include more novel desalination technologies such as electrodialysis and capacitive 

deionization which are both electro-driven technologies [3].  

 

Figure 2.4 Break down of water desalination plants by technology. The bar chart compares the number of 

operational desalination facilities across technology type while the pie chart breaks down the percent of 

water production by type. This figure was adapted from reference [25]. 

Figure 2.4 shows the breakdown of water desalination plants based on technology [25].  The bar on the 

left counts the number of operating facilities for each technology type while the pie chart breaks down 

produced water.  Reverse Osmosis clearly dominates the water desalination technologies used with 

69% of production and 13,446 operating facilities.  Reverse Osmosis is followed by the thermal-driven 

category: MSF (18%) and MED (7%) for water produced.  A total of 3% of produced water uses 

nanofiltration and 2% of water produced uses electrodialysis.  There are roughly 1000 electrodialysis 

water desalination plants in the world.  While capacitive deionization is a more novel desalination 

technology, a few working plants exist such as a municipal wastewater reuse desalination plant with 

capacity of 60,000 m3 per day uses CDI desalination modules produced by EST, China.  Meanwhile, 
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there is a coal mine wastewater remediation plant with capacity of 5,000 m3 per day also using CDI 

modules produced by EST [4].   

2.3 Capacitive Deionization 

In the previous section, different desalination technologies were discussed and among those were 

electro-driven devices that included capacitive deionization.  Capacitive Deionization works by storing 

ions in the electrical double layers (EDLs) of micropores in porous carbon electrodes.  Therefore, the 

modelling of EDL theory in this work focuses on its application to studying CDI.  A CDI cell consists 

primarily of a pair of oppositely charged electrodes on either side of a spacer.  The spacer prevents 

electrical contact between the adjacent electrodes while allowing space for water to flow.  The spacer 

is sometimes referred to as the separator.  Capacitive Deionization is a dynamic adsorption/desorption 

process that consists of charging and discharging steps under normal operating conditions.  During 

charging, ions are adsorbed into the electrical double layer structure creating a treated freshwater 

stream.  After the EDLs are saturated with ions, the CDI cell is discharged allowing ions to flow back 

into solution creating a concentrated brine stream.  

 CDI is mostly under research and development as there are few attempts at commercialization.  Blair 

and Murphy were the first to publish a paper on a CDI-type of device in 1960 [4], [29].  Over the next 

40 years, however, there was very little research interest in CDI and in fact the term CDI was not used 

until Farmer et al. used it in 1995 [4], [30], [31].  One of the early developments, however, was in the 

1970s when Johnson and Newman published a paper on desalting which identified the actual 

mechanism for ion removal which is now well known today as electrical double layer theory [5], [32].  

The slow early development of CDI was due to the limited performance of electrode materials and CDI 

theory [33].  Research interest re-emerged at the dawn of the 21st century.  Figure 2.5 shows the number 



 

 10 

of publications on Capacitive Deionization since the year 2000.  The number of publications has 

increased exponentially and reached over 400 in the year 2020.  As of the end of June 2021, there has 

been 199 publications on the topic of Capacitive Deionization.  

 

Figure 2.5 Number of publications on the topic of Capacitive Deionization using Web of Science as the 

source. There has been an exponential increase in the number of publications reaching over 400 in the year 

2020. At the time this figure was made it was June 2021 and so the year 2021 is incomplete. 

In this section, capacitive deionization is reviewed starting with a description of the architecture of a 

CDI cell.  This includes a discussion of the two most common architecture types (flow-by and flow 

through) along with their potential drawbacks/limitations of each type while briefly mentioning other 

less common types of architecture.  Second, different operating modes during charging and discharging 

will be explored along with their drawbacks and limitations.  This includes a description of the stop 

flow CDI cell operation which will be used more in this work.  Following this, electrode materials will 

be reviewed that includes the difference between intercalation and capacitive electrodes.  Lastly, a 

review will be carried out on the performance metrics used to judge CDI performance.  What these 
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performance metrics are, how they are calculated, and what values are considered acceptable will be 

discussed.   

2.3.1 Architecture 

Here, the architecture of a CDI cell is reviewed. There are two common types of cell architectures: 

flow-by and flow-through.  Figure 2.6 shows a schematic of a) flow-through and b) flow-by cell 

designs.  In the flow-through design, water flows parallel to the applied electric field while in the flow-

by case water flows perpendicular to the applied electric field. The flow-through case requires 

electrodes with a bi-modal pores size distribution consisting of large macropores for water flow and 

small micropores for high salt sorption.  This means higher pressure is needed to drive flow in the flow 

through case although potentially proper material selection/design could significantly reduce pressure 

requirements. The flow-by cell introduces much longer diffusion lengths for the ions to reach into the 

electrode to find a site at which it can absorb, so incurs ohmic resistances.  Cell architectures are made 

up of a pair of electrodes, anode and cathode.  The anode and cathode are defined for the charging step 

which is opposite in the study of electrodes in batteries.  The anode is defined as where the anions go 

during charging while the cathode is where the cations go during charging.  Separating anode and 

cathode is the spacer or otherwise referred to as the separator.  In flow-by cell designs, the spacer is 

typically larger than in flow-through cell designs in order to allow more water to flow between 

electrodes. Flow through cell designs can have a very thin spacer as the spacer needs to only act as an 

insulating layer to prevent an electrical short between electrodes.  In one flow through CDI cell study, 

the spacer was only 1% of the thickness of the entire electrode-spacer-electrode assembly.  The benefit 

of this cell design was reported to be more compact and potentially faster desalination due to shorter 

diffusion timescales in the spacer [9], [34].  The flow-by cell design was most popular among early 
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studies.  It was the first CDI cell design used in Blair and Murphy’s work [29].  Oren and Sofer used it 

in their 1978 and 1983 works.  The flow through CDI design was first used by Johnson and Newman 

in their 1971 paper [32]. 

 

Figure 2.6 Schematic showing two CDI cell architecture types: a) flow-through and b) flow-by CDI 

architecture. The CDI cells are drawn in charging configuration with ions being adsorbed into the EDL 

structure.  Feed water is darker than then effluent water to distinguish salt water from the treated fresh water. 

Besides flow-by and flow-through architecture designs, there have been various other architectures 

studied.  These include membrane capacitive deionization or MCDI where anion and cation exchange 

membranes (AEM and CEM) are fitted in front of anode and cathode respectively.  This helps prevent 

co-ion expulsion which improves charge efficiency and can even increase storage in electrode 

macropores [4], [35].  This design was taken after the electrodialysis cell design where feedwater is 

bounded by both anion and cation exchange membranes [36].  Lee et al. was the first to demonstrate a 

MCDI cell [37].  
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Other CDI architectures include: inverted (i-CDI), hybrid, and flow CDI (FCDI) cell designs.  The 

inverted CDI cell design chemically treats a surface charge onto one electrode.  This causes inverted 

behaviour where charging of the CDI cell results in desorption of ions and discharging results in 

Electrosorption of ions.  This architecture has been shown to have long operating times holding 

performance for 600 hours [4], [38].  Hybrid CDI consists of one faradaic electrode and one non-

faradaic (i.e. capacitive) electrode. Lee et al. shows that a hybrid CDI architecture can drastically 

increase salt adsorption capacity to 31.2 mg g-1 where a normal CDI system has a capacity of 13.5 mg 

g-1 [39].  Lastly, flow CDI systems use a slurry-based flow electrode instead of a static electrode and 

was first utilized in 2013 [40].  Flow electrodes have been developed already for electrochemical energy 

storage systems.  The benefits of FCDI is the continuous operation resulting from continuously 

pumping new porous electrode particles.  There is no need for a desorption step and this effectively 

increases the capacitance of the cell [4].  

2.3.2 Operating Modes 

Capacitive deionization is a dynamic adsorption/desorption process consisting of charging and 

discharging steps.  As part of CDI system design, there are different operating conditions that can be 

used for both charging and discharging steps.  During charging, there is constant current and constant 

voltage operations. One of the benefits of constant current is that you get a constant effluent 

concentration as first demonstrated on a MCDI cell [41].  Constant voltage experiments on CDI are the 

most traditional and have been used for a long time however, this does not mean by any means that CV 

charging is better than CC.  Over the years, different comparisons have been made between CC and 

CV charging to find which one is better [42].  Several reports have concluded that CC is more energy 

efficient than CV charging  [40], [43]–[45].  One report concluded that CV has greater salt adsorption 
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then CC charging [43].  However, it is difficult to say that one charging mode is better than the other 

because it is application dependent.  Wang and Lin defined better as consuming less energy at the same 

rate of ion removal [42].  But yet, those researchers could not conclusively say one operating mode was 

better than the other.  Therefore, it is best for engineers to consider what is best for their design based 

on system requirements and review the necessary literature to guide them.  During discharging, either 

constant current or constant voltage modes can also be used.  It is more of a question by researchers, 

however, whether or not reversed-voltage desorption (RVD) or zero-voltage desorption (ZVD) is used. 

Reversed-voltage desorption is when the polarity is reversed while zero-voltage desorption is when the 

voltage is removed.  Porada et al. discusses these two operating modes for desorption in more detail for 

CDI and MCDI cells [5]. 

 

Figure 2.7 Schematic of a stop flow CDI cell showing a) charging and b) flow steps. During charging a 

constant voltage is applied. Once the cell is charged, the flow step begins pushing treated freshwater out of 

the cell for collection. During the flow step the voltage is maintained to prevent ions from leaving 

micropores. Not shown is when the voltage is removed and desorption of ions occurs. 

Lastly, stop flow CDI is a special case of CDI cell operation.  The modelling work carried out in this 

paper will be done for a stop flow CDI cell design.  This operating mode is called stop flow because 
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during charging the flow is stopped but afterwards, once charging is finished, flow proceeds.  Figure 

2.7 shows a schematic of a stop flow CDI cell in a) charging and b) flow steps.  During the flow step, 

the voltage is maintained as to avoid allowing ions stored in micropores to enter macropores and leave 

the cell.  After the effluent treated water has been collected from a stop flow CDI cell, the cell can be 

shorted, and ions desorb releasing a salty brine solution.  Examples of a stop flow CDI cell can be found 

in literature [9], [46]. 

2.3.3 Performance metrics 

In studying capacitive deionization, a class of performance metrics have been developed to better 

quantify and compare the performance of CDI systems.  In this section, a brief review is provided on 

the common performance metrics used to study capacitive deionization. The metrics that will be 

discussed are salt adsorption capacity (SAC), salt adsorption rate (SAR), and charge efficiency.  Suss 

et al. defines some best practices for measuring and recording these parameters [4]. 

The salt adsorption capacity (SAC) is a measurement that has been reported a lot as a judge for CDI 

cell performance.  Soffer and Folman were the first to publish the idea of a salt adsorption capacity 

[47].  The salt adsorption capacity is the measure of the amount of salt adsorbed during a charging step. 

If the charging step is long enough that the system reaches saturation, then this is often recorded as the 

maximum salt adsorption capacity (mSAC).  Calculating the salt adsorption in batch mode operation is 

simply the change in concentration multiplied by the total solution volume.  Meanwhile, continuous 

mode requires the integral with respect to time be taken of the concentration difference multiplied by 

the flow rate.  After determining the amount of salt that was adsorbed, it is typically normalized by the 

electrode mass or volume and therefore reported as either mg g-1 or mg mL-1.  Figure 2.8 shows a plot 

of measured salt adsorption capacities from various papers using a variety of different 
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electrodes/architectures.  Capacitive electrodes had a salt adsorption capacity of around 10 mg g-1 but 

using battery electrodes the salt adsorption capacity recently reached over 30 mg g-1.  This gives an idea 

of the historic range of salt adsorption capacities. 

 

Figure 2.8 Plot showing the increasing salt adsorption capacities from 1995 to 2015 based on type of CDI 

architecture. The introduction of battery electrodes in a hybrid CDI cell saw SAC reach over 30 mg g-1. This 

figure was taken from reference [4]. 

The average salt adsorption rate (ASAR) is another metric for communicating CDI cell performance. 

Salt adsorption capacity tells us how much salt the CDI system can hold while the salt adsorption rate 

gives information about the rate at which salt is taken up.  Zhao et al. explains how to optimize the salt 

adsorption rate in a MCDI cell [48].  The salt adsorption rate is calculated by taking the amount of salt 

adsorbed and dividing by both the electrode mass and time to normalize the data.  The time can be the 

charging time or total cycle time.  Suss et al. proposed a convention that the time be the entire cycle 

time [4].  Unlike the salt capacity which can be considered an electrode property, the salt adsorption 

rate is a property of the entire CDI cell system as it is dependent on the electrode, material 

thicknesses/spacing, charging time, and architecture.  In fact, the electrode microporosity can play a 

significant effect on the average salt adsorption rate. Porada et al. calculated the effect of electrode 
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macroporosity on the time it takes to reach 50% SAC and it was found that intermediate values of 

electrode microporosity were fastest [4], [49]. 

The final metric of interest is the charge efficiency, 𝛬.  The charge efficiency is calculated by taking 

the amount of salt adsorbed and dividing by the amount of charge transferred for one cycle.  The ratio 

of salt adsorbed to charge transferred was first mentioned in the work by Johnson and Newman in their 

early attempts to consider charge efficiency [32]. The term charge efficiency was not used until 

Avraham et al. in 2009 [50], [51].  Theoretically, the charge efficiency must be less than unity but may 

approach unity.  The reason why we cannot achieve, or it is very difficult to achieve unit charge 

efficiency is because of the phenomena co-ion expulsion.  In order to neutralize a charge on an electrode 

surface, counter-ions can either enter the micropore or co-ions can be expelled from the micropore.  It 

is the latter case that refers to co-ion expulsion and this phenomenon is what limits the charge 

efficiency.  As mentioned previously AEM and CEM fixed to anode and cathode respectively as in 

MCDI can help reduce co-ion expulsion improving the charge efficiency.  The charge efficiency is a 

key parameter in determining the energy consumption.  Figure 2.9 shows how the energy consumption 

decreases with charge efficiency including differences in MCDI and CDI designs [34].  Generally, 

higher charge efficiency means smaller electrical energy consumption.   
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Figure 2.9 Effect of charge efficiency on the energy consumption comparing CDI and MCDI.  Improving 

charge efficiency decreases the energy consumption. The cation and anion exchange membranes in MCDI 

reduce co-ion expulsion effectively improving charge efficiency. Hence, MCDI has lower energy 

consumption than traditional CDI architectures. Reproduced from Ref. [4] with permission from the Royal 

Society of Chemistry. 

As a final note, these performance metrics have been used on many studies for assessing CDI.  

However, theses performance metrics are mostly limited to evaluating CDI and not other water 

desalination technologies.  Patel et al. made this observation and suggested that the thermodynamic 

energy efficiency should be calculated when comparing CDI to other water desalination devices [3].  A 

method for calculating the thermodynamic energy efficiency has been developed [52].  Calculating the 

thermodynamic minimum energy consumption of a desalination process depends on the feed salinity, 

product water salinity, and water recovery ratio. The thermodynamic energy efficiency has been used 

to compare CDI to RO [53].   

2.3.4 Electrode Materials 

Most of the research effort in the field of CDI has focused on developing novel electrode materials with 

improved energy efficiency, salt capacity, and removal rates. The electrode materials used in capacitive 
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deionization are highly porous materials ever since the early work of Blair and Murphy [29].  Electrode 

microstructure effects CDI performance [8], [49], [54], [55].  Porada et al. suggests the direct prediction 

of CDI performance based on pore size distribution and knowledge of geometrical properties of 

electrode [49]. Figure 2.10 shows SEM images of a commercial carbon-based electrode used in CDI 

type of application. Notice the hierarchical pore structure of the carbon electrode. Image d) zooms into 

the big carbon particle revealing it’s microporosity. 

 

Figure 2.10 SEM images of typical carbon-based electrode used in commercial applications. The images 

show different sizes or widths a) 228.7 um b) 22.87 um c) 2.287 and d) 1.143. The images help to show the 

hierarchical pore structure of carbon-based electrodes. Image d) shows a zoomed in image of a big particle 

containing micropores. 
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The field of CDI has seen two broad types of electrodes used: capacitive and pseudocapacitive 

electrodes. Capacitive electrodes store ions in the electrical double layers of micropores. Examples of 

these electrodes are active carbon, carbon aerogel, and mesoporous carbon as well as more advance 

carbon materials that rely on carbon-based nanomaterials. Liu et al. writes a review of carbon-based 

composite materials used in capacitive deionization which includes a table of carbon-based electrode 

materials and their salt adsorption capacity. Activated carbon, carbon aerogels, and carbon nanotubes 

typically have a salt adsorption capacity of less than 10 mg g-1 [56]. In this work, capacitive electrodes 

are focused on because EDL storage is the primary mechanism for ion removal.  Pseudocapacitive 

electrodes rely on ion intercalation as the primary mechanism for ion-removal but may also involve 

some EDL storage of ions.  These electrodes are also known as battery electrodes.  The developments 

of these types of electrodes has led to a sharp increase in salt adsorption capacity.  For example, Cao et 

al. achieved a salt adsorption capacity of 137.2 mg g-1 from their work using a hybrid CDI cell of  

composite Na3V2(PO4)3/C as the one electrode and activated carbon as the second achieved [57].  The 

review paper by Jiang et al. on battery electrodes has an excellent summary of battery electrodes tried 

and their salt adsorption capacity recorded [58].  Many of these recorded have a salt capacity greater 

than 100 mg g-1. Patel et al. on the other hand, calculated and compared the thermodynamic efficiency 

for activated carbon, advanced carbon, and pseudocapacitive electrodes and found that the activated 

carbon materials generally performed better than the others with regards to thermodynamics [3].  

2.4 Electrical Double Layer Theories 

An electrical double layer model describes a separation of charge across an interface where excess 

charge in one phase is equally compensated by local charge in an adjacent phase [5].  For the case of 

capacitive deionization, the interface is the electrolyte/electrode surface, and the excess charge is the 
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electronic charge in the electrode equally compensated by ionic charge in the adjacent electrolyte.  

Several different EDL models have been proposed to describe this phenomenon.  Three different EDL 

models have been used in studying capacitive deionization for modelling the storage of ions in 

micropores.  These EDL models are: Helmholtz, Gouy-Chapman-Stern (GCS), and modified Donnan 

(mD).  It is in this section that a brief review is presented on these electrical double layer models.  A 

description of the assumptions and model equations is provided for each of these EDL theories along 

with a summary of their historical use pertinent to studying capacitive deionization. 

2.4.1 Helmholtz 

The term ‘double layer’ was first used to describe two layers of opposite charge in 1883 by H. 

Helmholtz [59], [60].  The earliest description of the electrical double layer dates back even earlier, to 

1853 when Helmholtz published a paper proposing a capacitor-like EDL structure where all surface 

charge (either electronic charge or chemically bound surface charge) is equally compensated by 

counterions in a condensed layer near the charged surface [5], [59].  Important for the discussion is the 

difference between counter- and co-ions. Counter-ions are ions with the opposite charge as the electrode 

surface and will be attracted by the surface charge while co-ions are ions with the same charge as the 

electrode surface and will be repelled by the surface charge.  For the case of the Helmholtz EDL model, 

the condensed layer is made up only of counterions. That is, each surface (or electronic) charge is 

directly and equally compensated by counterion charge. This leads to the ideal case of unit charge 

efficiency where each electronic charge transferred removes one salt molecule (for the case of electro-

driven water desalination devices). It is important to note that the Helmholtz model is not sufficient to 

describe the uptake rate of ions into electrical double layers for electro-driven desalination technologies 

such as capacitive deionization [5].  Johnson et al. in 1971 is the earliest attempt of applying Helmholtz 
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EDL theory to study capacitive deionization [32].  In that paper, Johnson et al. attempts a correction 

for unit charge efficiency.  There exists a more recent study that used helmholtz EDL theory for 

modelling capacitive deionization but they too warned against applicability of Helmholtz for studying 

EDL based on it’s unit charge efficiency and linear EDL capacitance [9].   

 

Figure 2.11 A schematic of Helmholtz EDL model for a) anode and b) cathode at steady state. Counter-ions 

form a fixed plan of charge adjacent to solid electrode at some finite distance.  The electronic surface charge 

is equally compensated by the ionic charge in the electrolyte. The potential drop occurs entirely across the 

Stern layer. 

Figure 2.11 shows the electrode/electrolyte interface assuming Helmholtz EDL structure for a) anode 

and b) cathode where the condensed layer of ionic charge consists only of counterions. Note that the 

CDI definition of anode and cathode is based on the charging step. The anode is where anions go while 

the cathode is where cations go during charging [5].  This definition is the opposite to cathode and 

anode in battery and supercapacitor applications [5].  Notice that a dielectric layer exists between 

surface and counterion charge (called the Stern layer in Figure 2.11) reflecting the idea that ionic charge 

cannot come infinitely close to electronic charge.  Their separation could be due to ion size, atomic 

roughness, or because electronic charge may not be located directly at the edge of the carbon surface 

[61]. In the Helmholtz EDL structure, the potential drop occurs entirely across the dielectric or Stern 
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layer as shown by the red line in Figure 2.11. This results in a “capacitor-like” structure and can be 

treated mathematically as such. To understand how Helmholtz is applied mathematically it is important 

to recall simple capacitor theory from electrical engineering.  Figure 2.12 is a schematic of a simple 

electrical circuit of a capacitor in series with a voltage source. The electrode/electrolyte interface can 

be thought of as a capacitor in series with a voltage source.  

 

Figure 2.12 Simple electrical circuit of capacitor in series with a voltage source. Upon charging, electrons 

collect on the surface of the capacitor. Once the capacitor has reached it’s capacity to hold charge, the 

voltage remains steady and electronic charge stops moving. 

During charging, current flows from the voltage source and collects onto the surface of the capacitor. 

How much charge collects on the surface of the capacitor depends on the voltage (𝜙) and the 

capacitance (𝐶).  The capacitance is an intrinsic physical property of a capacitor giving the amount of 

charge stored per voltage.  It is calculated by the amount of charge stored at steady state (zero current 

flow) per unit surface area.  The units of capacitance are F m-2.  The amount of current flowing (𝑖) can 

be calculated from equation 2.1.  This is the basis of the source term for the uptake rate of ions in a 

Helmholtz EDL model as will be described in section 3.1. To determine the amount of ions 

accumulating on the condensed Helmholtz layer, equation 2.1 is used along with Faraday’s number to 

convert charge to moles. 

 𝑖 = 𝐶 
𝑑𝜙

𝑑𝑡
 2.1 
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2.4.2 Gouy-Chapman-Stern 

As described previously, the Helmholtz EDL model is insufficient at describing the EDL structure in 

porous CDI electrodes because a condensed layer of counter-ions leads to unit charge efficiency. 

Experiments have shown that CDI cells do not achieve unit charge efficiency due to co-ion expulsion 

[51]. The Gouy-Chapman-Stern EDL model does not result in unit charge efficiency because it does 

not assume a condensed layer of counter charge but rather that charges remain diffusively distributed 

near the electrode surface in a diffuse layer. After, Helmholtz published his electrical double layer 

model, a new EDL model was developed from the combinations of works by Gouy, Chapman, and 

Stern. Gouy-Chapman assumed ions remain diffusively distributed in electrolyte [62], [63]. Stern 

expanded on the Gouy-Chapman model by adding a dielectric layer between electrode and diffuse layer 

that does not contain charge. Combination of a diffuse layer with a Stern layer dates back to Stern in 

1924 [64]. This dielectric layer was coined the term “Stern Layer” (or Helmholtz layer). The 

representation of the EDL structure overcomes the limitation of the Helmholtz model which resulted in 

unit charge efficiency.  Figure 2.13 is a representation of the GCS electrical double layer model. It 

consists of a Stern and diffuse layer. Across the Stern layer the potential drops linearly but then, in the 

diffuse layer, the counterion concentration progressively decays with increasing distance from 

electrode.  There have been several example of GCS used to model capacitive deionization [65], [66]. 
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Figure 2.13 A schematic of Gouy-Chapman-Stern EDL model for a) anode and b) cathode. In this EDL 

model, charge remains diffusively distributed in a diffuse layer adjacent to electrode surface. A think 

dielectric region called the Stern layer separates charged surface and diffuse layer. The potential drops 

linearly across the Stern layer while it progressively decays (i.e. anode) in the diffuse layer. 

The Debye length, 𝜆𝐷, is characteristic length of the Diffuse layer. The diffuse layer ends 2 to 3 times 

the Debye length. To calculate the Debye length, equation  2.2  is used which is an expression for the 

inverse Debye length, 𝜆𝐷 =
1
κ⁄ . It uses the macropore (or bulk) concentration 𝐶𝑚𝐴, Avogadro’s 

number 𝑁𝑎𝑣, and the Bjerrum length, 𝜆𝐵.  

 κ2 = 8𝜋𝜆𝐵𝑐𝑚𝐴𝑁𝑎𝑣 2.2 

The Bjerrum length, 𝜆𝐵, is given by equation 2.3 where 𝑅 is the ideal gas constant, 𝑇 the temperature, 

𝐹 is faraday’s number, and 𝜀𝑟𝜀𝑜 is the dielectric permittivity of water (78·8.854×10-12 C V-1 m-1).  At 

room temperature, the Bjerrum length is 0.72 nm [5]. 

 𝜆𝐵 = 𝐹2/(4𝜋𝜀𝑟𝜀𝑜𝑅𝑇𝑁𝑎𝑣) 2.3 

Now, for example, the Debye length of an equimolar NaCl salt solution of strength 10mM at 20 ℃ is 

approximately 𝜆𝐷~3.1 𝑛𝑚.  Comparing this length to the size of a micropore (< 2nm), the diffuse layer 

is likely to overlap with that of an adjacent diffuse layer. Since uptake of ions occurs primarily in the 
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micropores of porous electrodes, the GCS model is still not sufficient to model electrosorption of ions 

in the micropores of porous carbons. One study argues that the pore size distribution has a large effect 

on measured maximum salt adsorption capacity and that micropores below 2 nm contribute most 

significantly to mSAC [4], [49]. 

Now to compute the amount of charge stored in the EDLs assumed to have the GCS structure, the 

Poisson-Boltzmann relationship is used to describe the distribution of ions in the diffuse layer.   

 𝑐𝑚𝑖,𝑗 = 𝑐𝑚𝐴exp (−𝑧𝑗 ∙ 𝜙(𝑥)) 2.4 

The micropore concentration of species j is denoted 𝑐𝑚𝑖,𝑗, 𝑧𝑗 is the valence of species j, 𝑐𝑚𝐴 is the 

concentration of the macropore, and 𝜙(𝑥) is the potential profile as a function of distance from the 

electrode, x.  The diffuse-charge dynamics are explained in great detail in Bazant et al. [67]. The 

potential distribution as a function of distance from the electrode is calculated using equation 2.5 as 

provided in reference [65].   

 
𝜙(𝑥) = 4 ∙ 𝑎𝑟𝑐𝑡𝑎𝑛ℎ (𝑒𝑥𝑝(𝑘𝑥) ∙ tanh (

𝐹

4𝑅𝑇
∆𝜙𝑑)) 2.5 

Equation 2.4 is integrated across the diffuse layer using equation 2.5 yielding expression for the surface 

charge density, 𝜎 and the excess salt concentration, 𝑤. The surface charge density describes the amount 

of charge stored in the diffuse layer. Meanwhile, the excess salt concentration describes the amount of 

salt (not ions) captured by the micropores assuming symmetric electrodes are used. Equation 2.6 and 

2.7 describe these.   

 
𝜎 = 4𝜆𝑑𝑐𝑚𝐴 sinh (

𝐹

2𝑅𝑇
∆𝜙𝑑) 2.6 
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𝑤 = 8𝜆𝑑𝑐𝑚𝐴 sinh

2 (
𝐹

4𝑅𝑇
∆𝜙𝑑) 2.7 

To determine the Donnan potential, a potential balance across the EDL is written such that equation 

2.8 is formed.  Here, 𝜙𝑒 is the potential of the solid electrode which is assumed to be constant and 𝜙 is 

the potential of the bulk.  It is assumed that electrons transfer instantaneously to the electrode compared 

to the movement of ions in the electrolyte solution. 

 ∆𝜙𝑑 + ∆𝜙𝑠𝑡 = 𝜙𝑒 − 𝜙 2.8 

The Stern potential is calculated form the charge density as demonstrated by equation 2.9. Faraday’s 

number is used to convert the number of moles of charge into coulombs of charge. The capacitance, 𝐶, 

of the Stern layer is used to calculate the voltage drop across the Stern layer. 

 
∆𝜙𝑠𝑡 =

𝜎𝐹

𝐶
 2.9 

2.4.3 modified Donnan 

The modified Donnan electrical double layer model was developed as an attempt to model overlapping 

electrical double layers. The classical Donnan model is modified by adding a Stern layer and including 

an extra attraction term, 𝜇𝑎𝑡𝑡 which accounts for non-electrostatic forces of attraction. It is well known 

that non-electrostatic forces exist in porous carbons which cause ions to be stored in uncharged 

micropores [68].  Equation 2.10 describes the micropore concentration using the Donnan potential and 

extra attraction term.  In this work, it was assumed that 𝜇𝑎𝑡𝑡 equals zero and therefore,  non-electrostatic 

forces of attraction were neglected. 

 𝑐𝑚𝑖,𝑗 = 𝑐𝑚𝐴exp (−𝑧𝑗 ∙ ∆𝜙𝑑 + 𝜇𝑎𝑡𝑡) 2.10 
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Figure 2.14 shows the structure of a modified Donnan electrical double layer model. Notice that the 

potential drop occurs only across the Stern layer and that the overlapping diffuse layer results in 

constant properties independent of distance from electrode surface.  The Stern potential drop, ∆𝜙𝑠𝑡 

occurs across the Stern layer and the Donnan potential drop, ∆𝜙𝑑, is the difference in potential between 

the micropore and macropore. The mD model is actually mathematically simpler than the GCS model.  

In fact, the mD model overcame numerical difficulties in using classical GCS EDL models in case of 

strong salt concentration gradients [4].  Several studies have used the mD EDL model for CDI research 

but only in continuum models [69], [70].  

 

Figure 2.14 Schematic of modified Donnan EDL model for a) anode and b) cathode. The EDLs of two 

neighbouring electrode surfaces overlap each other resulting in constant properties within the overlapping 

region. The potential drops linearly across the Stern layer while there is a step change in potential, known as 

Donnan potential, between micro and macro pore space. 

Equation 2.10 was used to obtain expressions for cation and anion micropore concentration in the 

modified Donnan EDL structure.  The difference of cation and anion micropore concentration led to 

the determination of the charge concentration, 𝑐𝑐ℎ𝑎𝑟𝑔𝑒,𝑚𝑖. This quantity represents the moles of charge 

(positive or negative) per micropore volume.  Meanwhile, the summation of cation and anion micropore 

concentration led to an expression for the micropore concentration, 𝑐𝑚𝑖. Here, the micropore 
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concentration is the total number of moles of ions (anion and cation) per micropore volume.  This 

quantity is intrinsically important for determining the rate of uptake of ions into the modified Donnan 

EDL structure as discussed more in section 3.3. The micropore charge concentration and micropore 

concentration are expressed below as equations 2.11 and 2.12 respectively.   

 
𝑐𝑐ℎ𝑎𝑟𝑔𝑒,𝑚𝑖 = −2𝑐𝑚𝐴 sinh (

𝐹

𝑅𝑇
∆𝜙𝑑) 2.11 

 
𝑐𝑚𝑖 = 2𝑐𝑚𝐴 cosh (

𝐹

𝑅𝑇
∆𝜙𝑑) 2.12 

To calculate the Donnan potential, the same potential balance across the EDL is used as in equation 2.8 

for the Gouy-Chapman-Stern model.  The Stern potential drop is calculated using the charge micropore 

charge concentration and equation 2.13 where 𝑎 is the specific surface area of the electrode in units of 

m2 m-3. 

 ∆𝜙𝑠𝑡 = −
𝑐𝑐ℎ𝑎𝑟𝑔𝑒,𝑚𝑖𝐹

𝐶𝑎
 2.13 
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Chapter 3 

Model Development 

In this chapter, numerical method equations (NMEs) are developed that incorporate electrical double 

layer theory to model the storage of ions in a pore network. The electrical double layer theories for 

which NMEs are developed are Helmholtz, Gouy-Chapman-Stern, and modified Donnan.  Continuum 

model equations or partial differential equations (PDEs) are described first as the basis of developing 

appropriate numerical method equations (NMEs). The PDEs are used by a finite element methods 

(FEMs) solver (i.e. COMSOL) for comparison with results from the developed NMEs used on a 

synthesized 2D network of pores.  This chapter starts with a description of the 2D pore network used 

for demonstrating the application of our derived NMEs and for comparison to a FEM solver.  

3.1 Description of Artificial 2D Pore Network 

An artificial representation of a porous material was generated to demonstrate and validate the use of 

the developed NMEs on a pore network.  This artificial network was designed to be two dimensional 

so that an FEM solution of the PDEs directly on a meshed geometry equivalent to the artificial network 

could provide a reference solution to validate the results produced from NMEs.  Figure 3.1 is the 2D 

pore network generated for demonstrating the use of developed NMEs and is the network that most of 

the simulations in this work were performed on.  The FEM solver used this geometry and the sub pore 

scale mesh used by the FEM solver is shown in Figure 3.1.  The artificial network was subdivided into 

three regions consisting of anode, cathode, and spacer pores in order to represent the three characteristic 

regions of a CDI cell. The 2D network is a square lattice of spacing 100 𝜇𝑚 with dimensions of 21 by 

14 pores for a total of 294 pores. The anode and cathode regions consist of 112 pores each while the 
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spacer consists of 70 pores. One third of throats in anode and cathode regions were randomly selected 

and removed to attempt a more realistic pore connectivity.  The diameter of spacer pores was set to half 

of the average diameter and no spacer throats were removed.  This is the geometry that was used to 

demonstrate the use of EDL theory in a pore network.   

 

Figure 3.1 A 2D porous network made up of 294 pores on a square lattice subdivided into anode, cathode, 

and spacer subregions. One third of the throats in anode and cathode regions were randomly selected and 

removed. Pores in the spacer were assigned a uniform diameter equal to half of the average pore diameter. 

The sub pore scale mesh used by the FEM solver is shown. 

3.2 Continuum Model Description 

In this section, continuum model equations or PDEs are developed for modelling charging and flow 

steps of a stop flow CDI cell.  These PDEs are derived by performing mass and charge balances over a 
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differential control pore volume.  Full derivation can be found in Appendix A.  The Nernst-Planck 

relationship as described by equation 3.1 was used to calculate the molar flux of species 𝑗, 𝑵𝑗, entering 

and leaving the control volume.  It should be mentioned here that some simplifying assumptions (as 

described later on) reduce our Nernst-Planck expression to a simple Fickian diffusion problem.  The 

reason why the Nernst-Planck expression is written and used in our development of model equations is 

to demonstrate the adaptability of our model approach to more complex systems.  

 𝑵𝑗 = −𝐷𝑗𝛁𝑐𝑚𝐴,𝑗 + 𝒖𝑐𝑚𝐴,𝑗 −
𝐷𝑗𝑧𝑗𝐹

𝑅𝑇
𝑐𝑚𝐴,𝑗𝛁𝜙 3.1 

The first term of the Nernst-Planck expression represents the diffusive flux due to a concentration 

gradient and depends on the diffusion coefficient of species j, Dj (𝑚
2 𝑠⁄ ).  The second term is the 

advection term where 𝒖 is the velocity vector.  In this work, all vector quantities (i.e. N, 𝛁, and 𝒖) are 

written in bold font.  The third term calculates the migrative flux contributions due to the presence of a 

potential field. The potential is denoted by 𝜙 whereas 𝑧𝑗, 𝐹, 𝑅, and 𝑇 are the valence of species j, 

faraday’s constant, ideal gas constant, and temperature.  The Nernst-Planck expression for molar flux 

depends on the macropore concentration of species j denoted by 𝑐𝑚𝐴,𝑗.  The macropore concentration 

is used because only transport in the macropore is solved because the pore network in Figure 3.1 does 

not resolve micropores.  Resolving micropores would significantly increase computational cost by 100 

or even 1000 times.   

3.2.1 Generic Mass Transport Derivation 

The Nernst-Planck expression for molar flux is substituted into a transient mass conservation equation 

for species 𝑗 (see Appendix A).  For a stop flow CDI cell there is no flow during charging, therefore no 

flow (𝒖 = 0) is assumed resulting in the advection term disappearing.  In the case of a monovalent salt 
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solution such as 𝑁𝑎𝐶𝑙, two mass balances are written, one for each of the dissolved salt species.  

Electroneutrality is assumed in the macropores (cmA = cmA, Na = cmA, Cl) and so therefore the 

individual balances for Na and Cl can be summed together to arrive at a single balance for salt.  In the 

case that we have equal anion and cation diffusivities (D = DNa = DCl)  and monovalent salt solution 

(𝑧𝐶𝑙 = −1, 𝑧𝑁𝑎 = +1), the migration term disappears.  The uptake rate of ions into the electrical double 

layers of micropores is modelled using a reaction term, 𝑅, with units of 𝑚𝑜𝑙 (𝑚3 ∙ 𝑠)⁄ .  This effectively 

reduces our problem to a transient Fickian diffusion with reaction problem as shown by equation 3.2.   

 
𝜕𝑐𝑚𝐴

𝜕𝑡
= 𝛁 ∙ (𝐷𝛁𝑐𝑚𝐴) − 𝑅 3.2 

The reaction term of equation 3.2 was carefully considered.  In the spacer of a stop flow CDI cell, there 

is no reaction or electrosorption of ions, therefore, the reaction term is zero, 𝑅 = 0, and equation 3.2 

reduces to equation  3.3.  The reaction tern is applied to anode and cathode electrodes. The exact form 

of the reaction term depends on the EDL theory applied.  The reaction term is described for each of the 

EDL theories in section 3.2.3. 

 
𝜕𝑐𝑚𝐴

𝜕𝑡
= 𝛁 ∙ (𝐷𝛁𝑐𝑚𝐴) 3.3 

3.2.2 Generic Ionic Transport Derivation 

In the following sections, it will be shown that the reaction term of equation 3.2 depends on the 

macropore potential.  Therefore, our mass transport algorithm needs to be coupled with an ionic 

transport algorithm that determines the macropore potential.  Hence, a charge balance is performed 

across a differential control pore volume.  Charge conservation is imposed in a similar way as that 

employed by Agnaou et al. [71].  The major difference here is that, in the electrode, there is 

accumulation of charge in the electrical double layers.  To account for the accumulation of charge, the 
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Stern layer in the electrical double layer is treated as a capacitor-like structure.  Recall from section 

2.4.1 how the current of a charging capacitor can be calculated from the rate of change of voltage.  It 

is this relationship that is used to calculate the accumulation of charge in each macropore but with the 

potential drop across the Stern layer, ∆𝜙𝑠𝑡, used for the applied voltage.  The specific surface area, 𝑎, 

term gives the available surface area per macropore volume.  While some charge accumulates, there is 

current flowing in and out of the control macropore volume.  Equation 3.4 is the complete charge 

balance with the accumulation term on the left-hand side and where 𝒊 is the current density with units 

A m2⁄ .  Important to recall is that current is the net rate of positive charge transferred across an interface 

and so this is a balance on positive charge.  

 𝐶𝑎
𝜕∆𝜙𝑠𝑡
𝜕𝑡

= −𝛁 ∙ 𝒊 3.4 

To calculate the current density, an expression for the ionic current density in the electrolyte was used.  

The ionic current density is calculated using equation 3.5 where 𝑵𝑗 is the flux of species 𝑗 calculated 

using the Nernst-Planck relationship in equation 3.1. 

 𝒊 = 𝐹∑(𝑧𝑗𝑵𝑗)

𝑛

 3.5 

The expression for current density can be substituted into equation 3.4 along with the Nernst-Planck 

expression for mass flux.  Again, the advection term is removed from the Nernst-Planck expression by 

assuming no flow (𝒖 = 0).  The migration term is removed by assuming a monovalent salt solution, 

electroneutrality, and equal anion and cation diffusivities.  By way of these assumptions, the derivation 

for ionic transport arrives at equation 3.6.  For a full derivation refer to appendix A.   



 

 35 

 𝐶𝑎
𝜕∆𝜙𝑠𝑡
𝜕𝑡

= −𝛁 ∙ (𝐾𝛁𝜙) 3.6 

Equation 3.6 is used for modelling ionic transport in the anode and cathode electrodes where there is 

accumulation of charge. However, in the spacer there is no electrosorption of ions. Hence, no 

accumulation of charge resulting in equations 3.7 where the accumulation term is removed for 

modelling ionic transport within the spacer pores. 

 
0 = 𝛁 ∙ (𝐾𝛁𝜙) 

3.7 

The ionic conductivity of the solution is denoted by 𝐾 with units of F m-1 s-1 and calculated using 

equation 3.8. 

 𝐾 =
2𝐹2𝐷𝑐𝑚𝐴

𝑅𝑇
 3.8 

3.2.3 Specifying the Reaction Term, R 

Up to this point, generic mass and ionic transport equations have been described.  This includes 

equations 3.3 and 3.7 which are the model equations used for the spacer pores in the pore network 

where there is no storage of ions into the EDLs of the micropores associated with each macropore.  In 

general terms, the uptake rate of ions was described using a reaction term, 𝑅, in the mass transport of 

equation 3.2.  The exact reaction term depends on the EDL theory applied.  It is in this section that the 

reaction term is specified for each of the electrical double layer theories: Helmholtz, Gouy-Chapman-

Stern, and modified Donnan.  In addition, the Stern potential is given special treatment for each of the 

EDL theories resulting in redefinitions of equation 3.6 for ionic charge transport. 
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In the case of Helmholtz, a capacitor-like EDL structure is assumed where the rate of uptake into the 

EDL can be calculated based on equation 2.1.  Faraday’s number, 𝐹, is used to convert current which 

is the flow of charge to flow of moles of an ion for incorporating equation 2.1 into the mass balance. 

The counterion valence, 𝑧𝑐𝑜𝑢𝑛𝑡, within the cathode is +1 while the counterion valence in anode pores 

is −1.  In the anode, the potential will decrease with time while, in the cathode, the potential will 

increase with time until the system reaches steady state at approximately zero volts. Therefore, using 

the counterion valence, it was assured that the Helmholtz source term acts as a consumption term in 

both cathode and anode pores.  The Helmholtz source term is divided by two as a result of assuming 

electroneutrality in the macropores.  Therefore, the source term is 𝑅 =
𝐶𝑎

2𝑧𝑐𝑜𝑢𝑛𝑡𝐹

𝜕𝜙

𝜕𝑡
 for the Helmholtz 

case. For a full derivation of this source term refer to appendix A.  As for the treatment of the potential 

drop across the Stern layer, Helmholtz assumed that the potential drop occurs entirely across the Stern 

layer and therefore ∆𝜙𝑠𝑡 = 𝜙1 − 𝜙 where 𝜙1 is constant due to constant voltage assumption. Equations 

3.9 and 3.10 are the equations for modelling storage of ions using a Helmholtz EDL structure. 

 𝜕𝑐𝑚𝐴

𝜕𝑡
= 𝛁 ∙ (𝐷𝛁𝑐𝑚𝐴)  − 

𝐶𝑎

2𝑧𝑐𝑜𝑢𝑛𝑡𝐹

𝜕𝜙

𝜕𝑡
 3.9 

 𝐶𝑎
𝜕𝜙

𝜕𝑡
= 𝛁 ∙ (𝐾𝛁𝜙) 3.10 

Next the reaction term for the Gouy-Chapman-Stern EDL structure is considered.  In this EDL model, 

the rate of change of the surface charge density, 𝑤, with time is used for the reaction term, 𝑅.  The GCS 

model uses the surface charge density because the concentration varies within the diffuse layer. 

Equation 2.7 is used to calculate the surface charge density as a function of the Donnan potential.  The 

reaction term for the GCS model contains the specific surface area, 𝑎, as a prefactor.  This prefactor 
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converts salt density which is per surface area to concentration on the basis of macropore volume.  

Equation 3.11 shows the mass transport equation with the GCS reaction term applied.   

 
𝜕𝑐𝑚𝐴

𝜕𝑡
= 𝛁 ∙ (𝐷𝛁𝑐𝑚𝐴)  −  𝑎

𝜕𝑤

𝜕𝑡
 3.11 

 𝐶𝑎
𝜕𝜙

𝜕𝑡
= 𝛁 ∙ (𝐾𝛁𝜙) − 𝐶𝑎

𝜕∆𝜙𝑑
𝜕𝑡

 3.12 

Coupled with the mass conservation equation for the GCS model is equation 3.12, the ionic transport 

equation.  The Stern potential is treated differently from the Helmholtz case because GCS accounts for 

co-ion expulsion.  The additional source term arises from the fact that a potential drop occurs across 

the diffuse layer and does not drop entirely across the Stern layer as in the Helmholtz EDL model.  The 

additional source term suggests that an increasing Donnan potential causes either positive charge to be 

consumed or negative charge to be expelled from the micropore and into the macropore.  

Mathematically, equation 3.12 can be obtained by substituting equation 2.8 for the Stern potential into 

equation 3.6. 

Lastly, the reaction term for the modified Donnan EDL model is described.  The reaction term used for 

the mD model is determined from the rate of change of micropore concentration with time.  The 

micropore concentration is the concentration of total ions in the electrical double layer and is calculated 

using equation 2.12 which depends on the Donnan potential.  Equation 3.13 describes the mass transport 

equation with a modified Donnan source term.  The prefactor, 𝑉
𝑚𝑖

𝑉⁄  is used for converting the source 

term from units of per micropore volume to per macropore volume.  For a continuum model, this 

prefactor can be determined based on the micro and macro porosities.  The 1/2 factor is necessary to 

convert total ion concentration to salt concentration assuming electrode symmetry.   
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𝜕𝑐𝑚𝐴

𝜕𝑡
= 𝛁 ∙ (𝐷𝛁𝑐𝑚𝐴)  − 

1

2

𝑉𝑚𝑖

𝑉

𝜕𝑐𝑚𝑖

𝜕𝑡
 3.13 

Finally, the mD model uses the same ionic transport equation, that is equation 3.12, as the GCS model. 

Both GCS and mD models account for co-ion expulsion in the same way. Therefore, the modified 

Donnan model equations couple equation 3.13 for mass transport with equation 3.12 for ionic transport. 

3.2.4 Advection and Diffusion Transport  

In the previous sections, mass and ionic transport equations are provided for modelling the charging 

dynamics of a stop flow CDI cell.  Special attention was given to the reaction term responsible for 

modelling the storage of ions into the micropore EDLs.  During the flow stage, the EDLs are filled with 

ions and the voltage is maintained to prevent ions from leaving the micropores as treated water is 

collected.  Therefore, the flow stage can be modelled in such a way that ignores the reaction term that 

accounts for the electrosorption of ions.  This means that the flow stage can be modelled as a simple 

dispersion or advection-diffusion problem.  In this section, the PDEs for an advection-diffusion 

problem are presented.  This is already a well-defined problem, so we did not include a derivation in 

the appendix.  However, like previous derivations it is recommended to start with the Nernst-Planck 

relationship for molar flux (equation 3.1).  The migration term on the right-hand side can be neglected 

because it is assumed that potential gradients have subsided from the charging step.  A transient mass 

balance is then carried out on a control volume using this expression for advection-diffusion molar flux. 

This treatment of the Nernst-Planck expression leads to the PDE for advective-diffusive transport 

shown in equation 3.14.   

 𝜕𝑐𝑚𝐴

𝜕𝑡
= 𝛁 ∙ (𝐷𝛁𝑐𝑚𝐴) − 𝛁 ∙ (𝒖𝑐𝑚𝐴) 3.14 
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In this work, the PDE for advective-dispersion transport is not used directly by a FEM solver because 

NMEs for the dispersion have been previously validated by Sadeghi et al. [72].  However, the PDE is 

presented here to be complete and to provide the starting point from which the NME for advection-

dispersion in a pore network is derived. 

3.3 Pore Network Model Description 

In the previous section, PDEs were derived for modelling charging dynamics and flow stage in a stop 

flow CDI cell.  These PDEs are used as the basis for deriving our NMEs used in our pore network 

model.  The derived NMEs used in our pore network model are described in the following section.  A 

pore network model uses a resistor in series like network to calculate well mixed pore properties.  The 

resistances or conductance models are fundamental to calculating transport in a pore network model. 

Therefore, the conductance models used for modelling charging and flow stages are described first 

followed by a description of the NMEs used.  The NMEs for the charging step are described first for 

each of the three EDL models and finished with a description of the NMEs for the flow stage. 

3.3.1 Conductance Model Formulations 

The conductance models used for calculating transport in a stop flow CDI cell are described first.  A 

conductance is calculated for each pore-throat-pore conduit.  Figure 3.2 is a drawing of a pore-throat-

pore conduit for two spherical pores connected via a cylindrical throat. In this assembly there are three 

resistances: resistance of 𝑝𝑜𝑟𝑒 𝑖, 𝑡ℎ𝑟𝑜𝑎𝑡 𝑖𝑗, and 𝑝𝑜𝑟𝑒 𝑗.  The conductance is the inverse of the 

resistance.  Here, 𝑔𝑖
𝑡𝑟 denotes the conductance of 𝑝𝑜𝑟𝑒 𝑖 for some transport mechanism 𝑡𝑟.  For 

example, in the case of diffusion 𝑡𝑟 = 𝑑.  The diameters and lengths of the pores and throat in a pore-

throat-pore conduit are defined in Figure 3.2.  The conductance for the entire pore-throat-pore conduit 
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is denoted as 𝐺𝑖𝑗
𝑡𝑟 and is calculated using equation 3.17 for resistors in series.  This is how the 

conductance of a conduit is calculated for any generic transport mechanism.  

 

Figure 3.2 A drawing of a pore-throat-pore conduit of which conductance values are based on. Conductance 

values are calculated assuming a resistor in series like network where there are three resistors in series: pore 

i, throat ij, and pore j resistances. 

During the charging step, there are two transport conductance models that need to be calculated: 

diffusive conductance and ionic conductance.  The diffusive conductance is denoted using 𝑔𝑖
𝑑, while 

the ionic conductance is denoted using, 𝑘𝑖, for a single pore 𝑖.  The diffusive and ionic conductance are 

calculated using equations 3.16 and 3.17 respectively.  𝐴𝑖 is the cross-sectional area of pore 𝑖.  In a 2D 

pore network, the cross-sectional area of pore 𝑖, is the diameter, 𝑑𝑖, of the pore. The diffusive 

conductance is based on fickian diffusion while the ionic conductance was derived based on equation 

3.8 which assumes electroneutrality, equal cation and anion diffusivities, and monovalent salt solution. 

 𝐺𝑖𝑗
𝑡𝑟 = (

1

𝑔𝑖
𝑡𝑟 +

1

𝑔𝑖𝑗
𝑡𝑟 +

1

𝑔𝑗
𝑡𝑟)

−1

 3.15 
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 𝑔𝑖
𝑑 =

𝐴𝑖𝐷

𝑙𝑖
 3.16 

 𝑘𝑖 =
2𝐹2𝐷𝑐𝑚𝐴,𝑖𝐴𝑖

𝑅𝑇𝑙𝑖
 3.17 

As previously mentioned, the conductance for the entire pore-throat-pore conduit is calculated 

assuming resistors in series. Based on the generic formulation of conduit conductance for any transport 

mechanism in equation 3.17, diffusive and ionic conduit conductance formulations are written as 

equations 3.18 and 3.19 respectively.  

 𝐺𝑖𝑗
𝑑 = (

1

𝑔𝑖
𝑑 +

1

𝑔𝑖𝑗
𝑑 +

1

𝑔𝑗
𝑑)

−1

 3.18 

 𝐾𝑖𝑗 = (
1

𝑘𝑖
+

1

𝑘𝑖𝑗
+
1

𝑘𝑗
)

−1

 3.19 

During the flow stage of a stop flow CDI cell, the transport mechanisms change from diffusive and 

ionic transport to advection-diffusion transport.  For advection-diffusion, there are two conductance 

models: hydraulic conductance and diffusive conductance. The calculations for diffusive conductance 

were already given for diffusive transport by equations 3.16 and 3.18.  The hydraulic conductance, 

however, is calculated using equation 3.20 and is based on the Hagen-Poiseuille for laminar flow 

through a tube.  

 𝑔𝑖
ℎ =

𝜋

128𝜇
(
𝑑𝑖
4

𝑙𝑖
) 3.20 

Equation 3.20 is valid only for flow in a tube.  The exact formulation of the hydraulic conductance 

depends on the geometry.  For a 2D network, where throats are rectangles, the hydraulic conductance 

is calculated using equation 3.20. 
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 𝑔𝑖
ℎ =

𝜋

12𝜇
(
𝑑𝑖
3

𝑙𝑖
) 3.21 

Lastly, the hydraulic conductance for a conduit is calculated using equation 3.22 assuming a resistor in 

series like network. 

 𝐺𝑖𝑗
ℎ = (

1

𝑔𝑖
ℎ +

1

𝑔𝑖𝑗
ℎ +

1

𝑔𝑗
ℎ)

−1

 3.22 

3.3.2 Numerical Method Equations for Charging Dynamics 

Thus far, conductance formulations have been defined for diffusive, ionic, and hydraulic transport.  It 

is these conductance formulations that are the backbone of the NMEs in a pore network model.  In this 

section, the NMEs are presented for the charging stage of a stop flow CDI cell. The NMEs take the 

form of a mass balance around pore 𝑖.  For the sake of brevity, semi-discrete forms of our model 

equations are presented starting with a discretized space term followed by discretized transient terms. 

Therefore, accumulation and reaction terms are discretized second as they are both transient terms.  A 

space discretization is performed on equations 3.3 and 3.7 to arrive at the NMEs for spacer pores where 

there is no electrosorption of ions.  Equations 3.23 and 3.24 are the numerical model equations for 

where there is no reaction term or uptake of ions into EDLs. 

 
𝑉𝑖
𝜕𝑐𝑚𝐴,𝑖

𝜕𝑡
= −∑𝐺𝑖𝑗

𝑑(𝑐𝑚𝐴,𝑖 − 𝑐𝑚𝐴,𝑗)

𝑛

𝑗=1

 3.23 

 
0 = −∑𝐾𝑖𝑗(𝜙𝑖 − 𝜙𝑗)

𝑛

𝑗=1

 3.24 
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Next, the reaction term is considered for electrode pores where there is uptake of ions into the EDL 

structure.  The NMEs are written first for the Helmholtz model which gives equations 3.25 and 3.26 

for mass and charge algorithms respectively. 

 
𝑉𝑖
𝜕𝑐𝑚𝐴,𝑖

𝜕𝑡
= −∑𝐺𝑖𝑗

𝑑(𝑐𝑚𝐴,𝑖 − 𝑐𝑚𝐴,𝑗)

𝑛

𝑗=1

−
𝐶𝑎𝑉𝑖

2𝑧𝑐𝑜𝑢𝑛𝑡𝐹

𝜕𝜙𝑖
𝜕𝑡

 3.25 

 
𝐶𝑎𝑉𝑖

𝜕𝜙𝑖
𝜕𝑡

= −∑𝐾𝑖𝑗(𝜙𝑖 − 𝜙𝑗)

𝑛

𝑗=1

 3.26 

The NMEs were written for the Gouy-Chapman-Stern EDL model.  Recall that co-ion expulsion is 

considered and so therefore, the additional source term in the ionic transport equation. Equations 3.27 

and 3.28 are the NMEs for mass and ionic transport for the GCS case, respectively.  

 
𝑉𝑖
𝜕𝑐𝑚𝐴,𝑖

𝜕𝑡
= −∑𝐺𝑖𝑗

𝑑(𝑐𝑚𝐴,𝑖 − 𝑐𝑚𝐴,𝑗)

𝑛

𝑗=1

− 𝑎𝑉𝑖
𝜕𝑤𝑖
𝜕𝑡

 3.27 

 
𝐶𝑎𝑉𝑖

𝜕𝜙𝑖
𝜕𝑡

= −∑𝐾𝑖𝑗(𝜙𝑖 − 𝜙𝑗)

𝑛

𝑗=1

− 𝐶𝑎𝑉𝑖
𝜕∆𝜙𝑑,𝑖
𝜕𝑡

 3.28 

The mass transport NME for the modified Donnan model is equation 3.29.  The modified Donnan 

model uses the same ionic transport equation as the Gouy-Chapman-Stern model and therefore is 

coupled with equation 3.28. 

 
𝑉𝑖
𝜕𝑐𝑚𝐴,𝑖

𝜕𝑡
= −∑𝐺𝑖𝑗

𝑑(𝑐𝑚𝐴,𝑖 − 𝑐𝑚𝐴,𝑗)

𝑛

𝑗=1

−
𝑉𝑖
𝑚𝑖

2

𝜕𝑐𝑚𝑖,𝑖

𝜕𝑡
 3.29 

Thus far, the space terms have been discretized, but the source and accumulation terms are both 

transient.  Therefore, it is of special interest to discretize transient terms in order to handle the reaction 
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term.  In this work, an implicit scheme is used to discretize transient terms for all EDL models.  The 

time discretization, according to the implicit scheme, of equations 3.25 and 3.26 is given by equations 

3.30 and 3.31 respectively. 

 [
𝑐𝑚𝐴

∆𝑡
+

𝐶𝑎

2𝑧𝑐𝑜𝑢𝑛𝑡𝐹

𝜙

∆𝑡
− 𝛁 ∙ (𝐷𝛁𝑐𝑚𝐴)]

𝑡1

= [
𝑐𝑚𝐴

∆𝑡
+

𝐶𝑎

2𝑧𝑐𝑜𝑢𝑛𝑡𝐹

𝜙

∆𝑡
]
𝑡0

 3.30 

 [𝐶𝑎
𝜙

∆𝑡
− 𝛁 ∙ (𝐾𝛁𝜙)]

𝑡1

= [𝐶𝑎
𝜙

∆𝑡
]
𝑡0

 3.31 

Similarly, the transient terms of the Gouy-Chapman-Stern model equations were discretized according 

to the implicit scheme.  Equations 3.32 and 3.33 are the resulting NMEs discretized in the time domain.  

 [
𝑐𝑚𝐴
∆𝑡

+ 𝑎𝑉𝑖
𝑤𝑖
∆𝑡
− 𝛁 ∙ (𝐷𝛁𝑐𝑚𝐴)]

𝑡1
= [

𝑐𝑚𝐴

∆𝑡
+ 𝑎𝑉𝑖

𝑤𝑖
∆𝑡
]
𝑡0

 3.32 

 [𝐶𝑎
𝜙

∆𝑡
+ 𝐶𝑎𝑉𝑖

∆𝜙𝑑,𝑖
∆𝑡

− 𝛁 ∙ (𝐾𝛁𝜙)]
𝑡1

= [𝐶𝑎
𝜙

∆𝑡
+ 𝐶𝑎𝑉𝑖

∆𝜙𝑑,𝑖
∆𝑡

]
𝑡0

 3.33 

Lastly, the mass transport equation for the modified Donnan EDL model is discretized in the time 

domain.  The result is equation 3.34. As before, this equation is coupled with equation 3.33. 

 
[
𝑐𝑚𝐴

∆𝑡
+
𝑉𝑖
𝑚𝑖

2

𝑐𝑚𝑖,𝑖

∆𝑡
− 𝛁 ∙ (𝐷𝛁𝑐𝑚𝐴)]

𝑡1

= [
𝑐𝑚𝐴

∆𝑡
+
𝑉𝑖
𝑚𝑖

2

𝑐𝑚𝑖,𝑖

∆𝑡
]

𝑡0

 3.34 

3.3.3 Advection-Diffusion in a Pore Network Model 

During the flow stage, there is no ionic transport because it is assumed that sufficient charging has 

taken place such that EDLs are saturated with ions.  Therefore, only advection-diffusion transport 

occurs during the flow stage.  A steady state stokes flow algorithm is solved to obtain the pressure of 

each pore in the network. 
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∑𝐺𝑖𝑗

ℎ(𝑝𝑖 − 𝑝𝑗) = 0

𝑛

𝑗=1

 3.35 

In the dispersion modelling paper of reference [72], there were several different approaches to 

discretizing our dispersion PDE (equation 3.14).  These were: upwind, hybrid, power-law, and 

exponential schemes. In this work, the power-law discretization scheme was used because it had one 

of the lowest relative errors in comparison to finite element solvers used as the ground truth.  Equation 

3.36 shows the power-law discretization of the advection-dispersion PDE.  The transient term was 

discretized using the implicit scheme similar to mass and ionic transport equations. 

 
∑(𝐺𝑖𝑗

𝑑𝑚𝑎𝑥 [(1 −
|𝑃𝑒𝑖𝑗|

5

10
) , 0] + max (𝑞𝑖𝑗 , 0)) 𝑐𝑚𝐴,𝑖

𝑛

𝑗=1

−∑(𝐺𝑖𝑗
𝑑𝑚𝑎𝑥 [(1 −

|𝑃𝑒𝑖𝑗|
5

10
) , 0] + max (−𝑞𝑖𝑗 , 0))

𝑛

𝑗=1

𝑐𝑚𝐴,𝑗 = 𝑉𝑖
𝜕𝑐𝑚𝐴,𝑖
𝜕𝑡

 

3.36 

3.4 Initial and Boundary Conditions 

The generated network in Figure 3.1 will be used to simulate stop flow operating conditions of a CDI 

cell as demonstrated in reference [9].  Stop flow operating conditions consist of a charging step and a 

flow step.  In order to simulate both charging and flow steps, different initial and boundary conditions 

are defined for each step.  The initial and boundary conditions are defined first for the charging step 

followed by the flow step.    

3.4.1 Initial and Boundary Conditions of the Charging Step 

During the charging step, electrosorption of ions occurs in the anode and cathode pores via a reaction 

term while diffusive effects transport ions from spacer pores.  There are no boundary conditions during 

the charging step because the charging step of a stop flow CDI cell has no flow, and it is assumed that 
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there is no exchange of fluid between the cell and surrounding environment.  Initial conditions, on the 

other hand, must be applied to determine the concentration of salt solution to undergo desalination and 

the applied cell voltage of the charging step.  Concentration and potential initial conditions for the 

charging step are shown in Figure 3.3 on the artificial 2D network. 

 

Figure 3.3 The initial conditions of the charging step for anode, spacer, and cathode subregions of artificial 

network. The initial condition of potential is 
1

2
Vcell in the anode, -

1

2
Vcell in the cathode, and ϕo in the spacer.  

The initial potential of spacer pores, ϕo, is determined by running an ionic conductance algorithm with initial 

conditions of anode and cathode as boundary conditions.  The initial concentration is co and is the same for 

all pores in anode, cathode, and spacer subregions. 

The initial concentration of the charging step is 𝑐𝑜 for all pores.  In this work, an initial salt 

concentration of 100 mM was used.  This concentration is equivalent to that of 5,844 mg L-1 and so 

representative of brackish water according to the US geological survey which says brackish water is 

between 1,000 to 10,000 mg L-1 [73].  Meanwhile, for initial potential, it is assumed that electric current 
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instantaneously collects on the surface of the electrode compared to ionic current in the adjacent 

electrolyte.  Therefore, the potential of the electrode surface must be half of the cell voltage, 𝑉𝑐𝑒𝑙𝑙, at 

time zero.  Furthermore, since there is not yet any capture of ions in the electrical double layers there 

is no potential drop across Stern layer or between micro- and macropores.  Hence, for the sake of 

modelling, we can say that the potential in the macropores of the electrodes at time zero is the same as 

the potential on the adjacent electrode surface as explained in reference [74].  The initial potential of 

anode pores is therefore  
1

2
𝑉𝑐𝑒𝑙𝑙 while the initial potential of the cathode pores is −

1

2
𝑉𝑐𝑒𝑙𝑙.  The potential 

drops entirely across the spacer pores and so the initial potential of these spacer pores is determined by 

running an ionic conductance algorithm (equation 3.7) with the initial potential of anode and cathode 

as boundary conditions.  It is the initial potential drop between anode and cathode that is responsible 

for catalyzing the reaction or uptake of ions into electrical double layers of micropores. 

3.4.2 Initial and Boundary Conditions of the Flow Step 

The flow step occurs immediately after the charging step in order to collect the treated or desalinated 

water.  A pressure difference is applied across the CDI cell driving the treated water out of the cell and 

forcing new 100 mM salt solution into the cell.  Therefore, pressure boundary conditions are essential 

for simulating flow through the cell.  At the left face, a pressure of Pleft is applied and at the right face, 

a pressure of Pright is applied.  Concentration boundary conditions are applied to the pores on the left 

face of the network to realize the surrounding fluid concentration (co) being forced into the CDI cell.  

Outflow boundary conditions are added to the pores on the right face of the network to simulate fluid 

leaving the right side.  The initial concentration of the cell is the final concentration, cf, from the 

charging step simulation.  These initial and boundary conditions are summarized in Figure 3.4. 
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Figure 3.4 Initial conditions of the flow step shown on the artificial 2D pore network. The concentration is 

initially the concentration at the end of charging. Pressure boundary conditions are applied to left and right 

pores to induce flow. The pores on the left face are given the boundary concentration of co which is the 

concentration of the surrounding salt solution. 
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Chapter 4 

Results and Discussion 

In the following, the main results and findings of the research is presented.  In this work, there were 

two main studies, each conducted on a distinct network, to investigate the application of EDL theory 

within a pore network model.  The first study demonstrated and validated the applicability of EDL 

theory to a pore network model for simulating ion storage in a CDI type of device.  This study used the 

2D network of pores shown in Figure 3.1.  Each of the EDL theories: Helmholtz, Gouy-Chapman-

Stern, and modified Donnan were tested and demonstrated on this network of pores.  The dynamic 

charging effects of a stop flow CDI cell were simulated using each of these EDL theories and results 

compared to finite element method (FEM) solver.  Finally, this study demonstrated how to obtain 

discharge curves of a stop flow CDI cell using an advection-diffusion simulation.  The second study 

attempted to model the stop flow CDI cell found in reference [9].  To model this CDI cell, an artificial 

network of pores on a cubic lattice was synthesized and calibrated to match the properties of the 

electrode-separator assembly found in the aforementioned paper.  Charging on this artificial network 

was simulated using the modified Donnan EDL model for a duration similar to the experiment done by 

Suss et al. [9].  A flow stage was simulated using previously demonstrated advection-diffusion 

simulation to obtain a discharge curve.  The modelled discharge curve was then compared to the 

discharge curve in literature.   

4.1 Demonstration & Validation of EDL Theories Applied to Pore Network 

Each EDL theory as described in section 2.4 was applied to the network of pores shown in Figure 3.1. 

Charging dynamics of a stop flow CDI cell was simulated for Helmholtz, Gouy-Chapman-Stern, and 
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modified Donnan models.  The numerical method equations (NMEs) described in section 3.3.2 were 

used for the pore network model.  These equations depend on certain key parameters such as 

capacitance, specific surface area, and diffusion coefficients.  Table 1 lists the important parameters 

used to solve these equations in a pore network.  By default, a cell voltage of 1.0 V was used, typical 

of CDI operation which is held below 1.2 V to avoid water splitting.  It was assumed that sodium and 

chloride ions have equal diffusivity of 2 × 10−9 m2 s-1 which is roughly between the actual diffusivities 

of each ion. The modified Donnan model requires knowing the micropore volume.  To determine the 

micropore volume, the ratio of microporosity to macroporosity was used to estimate the micropore 

volume adjacent to each macropore.  Therefore, micro and macro porosities of 0.3 and 0.4 were used 

respectively.  The summation of these gives an overall porosity of 0.7 which is similar to many other 

porous carbon electrodes with bimodal pore size distribution.  A moderate specific capacitance of 0.05 

F m-2 was used along with a specific surface area of 500 m2 cm-3.  Here, the specific surface area was 

regarded as the available surface area per macropore volume.  The available surface area accounted for 

the surface area of adjacent micropores not resolved in the pore network. The surface area used is a 

fraction of the surface area made by BET measurements by Baumann et al. on carbon aerogels [75].  It 

is difficult to know precisely the total surface area involved in EDL storage of ions but it is likely less 

than the total available BET surface area.  Therefore, the specific surface area may be treated as a fitting 

parameter. 
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Table 1 List of important parameters used in demonstration of EDL theory in a pore network. A cell voltage 

of 1.0 V was used with a capacitance of 0.05 F m-2 and specific surface area of 500 m2 cm-3. Equal anion and 

cation diffusivities of 2e-9 m2 s-1 was used for sodium and chlorine ions. Macro and micro porosities were 

defined for the modified Donnan model as 0.4 and 0.3 respectively. 

 

To model charging dynamics, a solution procedure was developed for solving coupled mass and ionic 

transport algorithms.  Figure 4.1 shows a flow chart of a procedure for solving mass and ionic transport 

equations simultaneously with select EDL models.  This procedure was adapted from the work by 

Agnaou et al. who developed a Multiphysics solver for coupling multiple Nernst Planck algorithms 

(one for each ionic species) with charge conservation [71].  In this work, the Multiphysics solver 

developed by Agnaou et al. was adapted for coupling a transient fickian diffusion algorithm with a 

transient ionic transport algorithm.  The procedure starts by defining mass and ionic transport 

algorithms.  Then, it proceeds by applying initial conditions.  Not shown in the procedure is how the 

initial condition for potential in the spacer was determined by running a steady state ionic transport 

algorithm with fixed potential boundary conditions in anode and cathode pores.  After defining initial 

conditions and setting up the algorithms, source terms are applied to the algorithms.  These source terms 

depend on the EDL model selected.  After setting source terms, a Multiphysics solver was set up and 

run to solve the algorithms in a coupled manner.  Time marching occurs to solve the transient solver 

based on initial, final, output, and time step.  The time step used for this work was 1𝑠.  Time marching 

continues until either the system reached steady state according to a specified tolerance, in this case 1e-
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6, or the final time step was reached.  The solver returns the concentration and potential at each output 

time specified.  

Figure 4.1 describes how the Multiphysics solver works in more detail. The multiphysics solver is made 

up of Gummel and Picard iterations following the solution scheme by Agnaou et al. [71].  Picard 

iterations refers to the iterative process of solving a single transport algorithm.  A gummel iteration is 

the successive solving of each transport algorithm.  In the case of charging dynamics of a CDI cell, 

there are two transport algorithms: ionic and mass. The Multiphysics solver starts by solving the mass 

transport algorithms until some picard convergence criteria is reached.  Following picard convergence, 

physics models are regenerated based on the recently solved for concentration.  This includes updating 

the ionic conductance model which depends on salt concentration (see equation 3.8).  The ionic 

conductance is relied on heavily to solve the ionic transport system to calculate potential.  A custom 

ionic conductance algorithm was written that assumes electroneutrality, equal cation and anion 

diffusivities, and monovalent salt solution.  It is important that system matrices 𝐴 and 𝑏 are not cached 

but recalculated on each gummel iteration to ensure ionic conductance values are updated based on 

changing concentration.  Following convergence of the Picard loop, model value are recalculated 

including source term models which depend on the potential.  The Donnan potential is calculated using 

scipy’s fsolve on a potential balance.  The code was written with the option to use scipy’s 

newton_krylov for larger systems.  This process of solving mass transport followed by ionic transport 

is one gummel iteration and is repeated until the gummel convergence criteria is met and time step 

reached.  Following gummel convergence, concentration and potential values are stored for calculating 

transient source term in the following time step.  
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Table 2 Comparison of solver settings used for all three EDL models. The solver settings used across all 

three EDL models were kept mostly consistent. Each model used the pypardiso solver and implicit 

transient scheme. Criteria for picard convergence were consistent with maximum iterations of 5 and 1e-8 

tolerance across all models. Gummel convergence criteria, however, varied across each of the EDL models 

with mD having the highest tolerance for improved computational efficiency. In all cases, matrices A and b 

were not cached so that they could be updated upon each gummel iteration. 

 

There are certain solver settings that must be defined for solving our coupled system of ionic and mass 

transport equations.  Table 2 compares solver settings used across all three EDL models.  This includes 

the solver family, solver type, transient scheme, and convergence criteria.  The pypardiso solver was 

used for mass and ionic transport algorithms.  The implicit scheme was used for solving these transient 

algorithms.  In general, it was easier and computationally more efficient for the Helmholtz model to 

reach convergence.  This is represented in how the maximum number of gummel iterations used for 

GCS and mD was 50 but only 10 for Helmholtz.  As well, gummel convergence criteria for GCS and 

mD were increased from 1e-8 to 1e-5 and 1e-4 respectively to help improve computational efficiency.  

The modified Donnan model was the slowest.  That is why the convergence criteria was set highest.  

Picard convergence criteria was consistent for each of the models with 1e-8 convergence and 5 

maximum number of iterations.  The code used for each EDL model is available in appendix B. 
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Figure 4.1 Procedure for solving charging dynamics in a pore network model. Ionic and mass transport 

equations are defined, initial conditions set, and source terms applied based on selected EDL model. Time 

marching begins around a multi-physics solver that couples ionic and mass transport equations. The 

procedure the multi-physics solver uses is described in more detail showing how the mass algorithm is solved 

followed by the charge conservation equation and repeated until gummel convergence is reached. 
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4.1.1 Charging Dynamics Using Electrical Double Layer Model 

In this section, the charging dynamics that can be modeled using electrical double layer theory are 

demonstrated on a pore network.  Figure 4.2 shows the charging dynamics for concentration (a) and 

potential (b) at times: 0s, 10s, 50s, and 250s using the Gouy-Chapman-Stern EDL model.  Time zero 

shows the initial conditions for concentration and potential as described in section 3.4.1. The difference 

in potential at time zero between anode and cathode pores drives the storage of ions into electrical 

double layers and ions stop electrosorbing when the potential everywhere has reached 0𝑉.  After the 

potential gradient has subsided, diffusive effects persist moving ions from the spacer pores into the 

electrode until steady state is reached and the concentration is uniform (~ 250s).  The capacitance of 

the spacer pores was set to zero and hence no electrosorption of ions or accumulation of charge occurs 

within spacer pores.  The volumetric capacitance of electrode pores was multiplied by the sum of the 

pore volume and half of neighbouring throat volumes in order to consider the electrosorption of ions in 

the electrode throats.  Interconnecting throats, that is those throats connecting electrode to spacer pores, 

however, were not considered to electrosorb ions and therefore did not have volumes added to 

neighboring electrode pores.  Here, only the charging dynamics that use the GCS EDL model are 

presented but the charging dynamics from all EDL models were studied. Results from all models could 

have been shown but for the sake of brevity only results from one of the models was presented.  The 

charging dynamics are strikingly similar for each of the EDL models applied.  The main difference is 

the final salt concentration and the time scale.  Given the parameters used in Table 1, the average final 

salt concentrations for Helmholtz, GCS, and modified Donnan in all pores were 46.8 mM, 66.5 mM, 

and 92.7 mM respectively.  
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Figure 4.2 Charging dynamics of concentration (a) and potential (b) using the Gouy-Chapman-Stern EDL 

model at times 0s, 10s, 50s, and 250s. The potential gradient drives the uptake of ions into electrical double 

layers followed by diffusive effects moving ions from spacer to electrode pores. 
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4.1.2 Error Analysis of EDL Models 

In this section, the error was calculated by comparing the PNM solution to FEM results.  COMSOL was 

used as the finite element method solver and it was treated as the true solution.  The pore network model 

relied on the NMEs derived in section 3.3 while the FEM solution was based on the continuum model 

equations derived in section 3.2.  Equations 4.1 and 4.2 show how to calculate the absolute relative 

error for concentration and potential.  These error calculations are similar to those calculated by Agnaou 

et al. except that the errors are relative to the initial condition,  𝑐𝑜 and 𝜙𝑜, and not the FEM solution 

[71].  The reason why is that, for this problem, the potential approaches zero.  Hence, dividing by values 

approaching zero can result in poor error characterization.  Therefore, this approach of dividing by the 

initial conditions was developed.  Recall that the initial conditions were 100 mM for the concentration 

and 0.5 V for the potential.  In the numerator, the PNM quantity is compared to the FEM solution.  Pore 

network modelling returns a pore volume averaged quantity.  For improved accuracy, half of the 

neighbouring throat volumes were added to each pore volume and this was referred to as the effective 

volume.  Therefore, the FEM solver quantities (i.e. concentration and potential) were averaged over 

each pore and half of its neighbouring throat volumes for comparison to the PNM quantity for every 

pore.  

 
𝜀𝑐 = |

𝑐𝑚𝐴,𝑖
𝑃𝑁𝑀 − 𝑐𝑚𝐴,𝑖

𝐹𝐸𝑀

𝑐𝑜
| × 100% 4.1 

 
𝜀𝜙 = |

𝜙𝑖
𝑃𝑁𝑀 − 𝜙𝑖

𝐹𝐸𝑀

𝜙𝑜
| × 100% 4.2 
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Figure 4.3 and Figure 4.4 shows a colour map of relative error calculations for concentration and 

potential, respectively.  This was done for each of the three models: Helmholtz (a), Gouy-Chapman-

Stern (b), and modified Donnan (c).  The concentration errors were calculated at times 10s, 50s, 250s, 

and 500s while potential errors were calculated at times 10s, 20s, 50s, and 250s.  A larger time span 

was considered for concentration due to its larger time scale caused by diffusive effects that precede 

potential driven reactions.  Notice that the concentration errors in Figure 4.3 do not exceed 10%.  In 

fact, the maximum concentration error observed was 7.6%, 7.9%, and 1.6% for Helmholts, GCS, and 

mD models respectively.  As for potential errors, Figure 4.4 shows that the relative error does not 

exceed 15%.  The maximum potential error observed was 13.4%, 12.2%, and 11.5% for Helmholtz, 

GCS, and mD models respectively.  For both potential and concentration errors, the relative error 

decreases as time increases.  This is likely caused by a smoothing of initial conditions done in COMSOL 

to obtain better convergence.  It is therefore possible that errors could be even less than what is recorded 

here but the actual effect of smoothing initial conditions done in COMSOL on the error was not 

investigated in this work.  Another observation is the relatively lower errors in the modified Donnan 

case.  In Figure 4.3, it appears that that the modified Donnan model has exceptionally low errors.  This 

result was shocking because the gummel tolerance for the mD case was the largest of any of the other 

EDL models.  It is therefore possible, but was not investigated, that a small tolerance causes the solver 

to converge away from the FEM solution.  More work should be done to study the effect of tolerance 

on observed errors.  In no way, as of yet, does it suggest that the mD model is more accurate when 

applied to a pore network.  The only firm conclusion that can be made so far is that each EDL model 

was applied to a pore network correctly and compares reasonably well to a traditional FEM solution.  
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Figure 4.3 The relative error of concentration comparing the FEM solution to results from PNM model 

equations for the Helmholtz (a), Gouy-Chapman-Stern (b), and modifed Donnan (c) EDL models.  The 

relative error is less than 10% for each of the models determination of concentration. 
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Figure 4.4 The relative error of potential comparing the FEM solution to results from PNM model equations 

for the Helmholtz (a), Gouy-Chapman-Stern (b), and modifed Donnan (c) EDL models.  The relative error is 

less than 15% for each of the models determination of potential. 
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4.1.3 Discharge Curve Demonstration of a Pore Network 

Following charging of a stop flow CDI cell there is a flow stage to collect the treated water.  In the flow 

stage, the applied voltage is maintained to ensure stored ions are not released from electrical double 

layers and back into the bulk solution.  A pressure gradient is applied across the cell to displace the 

treated water with new feed water.  The pressure gradient used was only 0.001 Pa because the same 

2D network was used as charging in sections 4.1.1 and 4.1.2 (to demonstrate only).  The permeability 

of this network is unrealistically high at 95,268 darcy due to the 2D geometry explaining why such a 

small pressure drop is required.  Discharge curves on a more realistic network are performed in section 

4.2.  During this flow stage a discharge curve can be obtained by measuring the outflow concentration 

with time.  A discharge curve was simulated using an advection-diffusion algorithm described in 

section 3.3.3 and initial/boundary conditions in section 3.4.  Figure 4.5 shows discharge curves for four 

different applied voltages: 0.6 V (a), 0.8 V (b), 1.0 V (c), and 1.2 V (d).  The three different EDL models 

used for the storage of ions into the micropores are compared.  The blue, yellow, and green curves 

represent the modified Donnan, Gouy-Chapman-Stern, and Helmholtz model respectively.  These 

discharge curves perfectly measure the treated effluent leaving the CDI cell as opposed to most 

experiments where a conductivity sensor is placed some distance downstream from the outflow port of 

the CDI cell resulting in mixing with untreated water [9].  Modelling the experimental situation of a 

conductivity sensor downstream is considered in section 4.2 and proved to be tedious.  The modified 

Donnan model exhibits the smallest amount of salt adsorption by having the highest trough in the 

discharge curves.  This is due to the models assumption of overlapping electrical double layers.  

Overlapping electrical double layers decrease the amount of salt adsorption in the micropores.  The 

Helmholtz model assumes unit charge efficiency and is therefore the ideal case for a given applied 

voltage, capacitance, and specific surface area.  It was however possible for the GCS model to store 
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more ions than theoretically possible and therefore careful consideration must be made when choosing 

parameters for the GCS model.  In the figure shown, it appears that the GCS model electrosorbs less 

salt than the Helmholtz model.  This is expected behaviour due to the consideration of co-ion expulsion 

by GCS theory.  Adjusting the parameters caused the GCS model to deviate from expected behaviour.  

In fact, for a cell voltage of 1.0 V, capacitance of 0.1 F m-2, and specific surface area of 300 m2 cm-3, 

the GCS model had a charge efficiency of 1.05 after 250s of charging.  This demonstrates how the GCS 

model can be impractical depending on the range of parameters.  However, a full parametric study was 

not conducted and so it is recommended that the effect of parameters on performance metrics such as 

charge efficiency, salt adsorption, and salt adsorption rate be completed for each of these EDL theories 

applied to pore networks before any major conclusions are drawn.  The purpose here is to simply 

demonstrate the usefulness of pore networks for determining a discharge curve. 
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Figure 4.5 Discharge curves of flow stage in a stop flow CDI cell obtained from pore network modelling. 

The three EDL models are represented as different line colours: modified Donnan (blue), Gouy-Chapman-

Stern (GCS), and Helmholtz (Green). The voltage is varied from 0.6 V (a), 0.8 V (b), 1.0 V (c), and 1.2 V (d) 

4.2 Comparison to Experiment 

In this section, an attempt was made to fit our model to experimental data obtained from a literature 

report on stop-flow cells [9].  In that work, a flow through architecture was used with an electrode-

separator-electrode assembly.  The stop flow CDI cell was constructed of two hierarchical carbon 

aerogel monoliths (HCAM) electrodes of thickness 1mm each and a porous polypropylene separator 

material of thickness 25µm.  The thin separator demonstrated the benefits of using the flow through 

CDI cell design.  On this CDI cell, a stop flow experiment was conducted where the cell was charged 

for 5τRC (see equation 4.4)  with no flow.  Following charging, a pressure difference, ∆𝑃, of 10 kPa 
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was applied to cause flow through the CDI cell.  At this pressure, a flow rate, Q, of 0.5 mL min-1 was 

achieved.  Based on this information, the permeability was calculated based on equation 4.3 where L is 

the length of the domain and 𝜇 is the viscosity of the fluid.  The viscosity used was that of water which 

is 0.893 mPa s.  The cross-sectional area, A, of the CDI cell by Suss et al. was 2 × 2 cm.  The resulting 

permeability was therefore, 3.768 mD. 

 𝐾 = 
𝑄𝜇𝐿

𝐴∆𝑃
 4.3 

4.2.1 Calibration of the Artificial Network 

An artificial network of pores was synthesized and calibrated to match the pore size distribution, 

permeability, tortuosity, and porosity of the electrode and electrode-separator assembly in Suss et al. 

[9]. First, the synthesized electrode network was made on a cubic lattice with average coordination 

number of 5.  The average coordination number was chosen to achieve a tortuosity between 3 and 4 

which is typical of porous carbons including aerogels [76], [77].  The tortuosity of the artificial network 

was 3.96 which is in the range for porous carbon electrodes.  Next, the pore size distribution was 

calibrated by matching the simulated intrusion curve of the artificial electrode network to the actual 

intrusion curve of the HCAM electrodes recorded in reference [9].  Figure 4.6 shows the mercury 

intrusion curve for the HCAM electrode in black.  The intrusion curve shows a bimodal distribution of 

micro and macro sized pores.  The first hump represents pores of approximately 1μm. These pores 

contribute to 70% of the pore volume.  The second hump represents nano sized pores and it’s these 

micropores that contribute to 98% of the surface area [9].  The synthesized pore network attempts only 

to resolve the macro sized pores.  Therefore, only the first hump of the intrusion curve is matched.  The 

blue curve in Figure 4.6 is the simulated intrusion curve for the artificial network. Scipy’s 

weibull_min percent point function was used to simulate a weibull pore size distribution and 
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parameters manually adjusted until satisfied with the fit of the intrusion curve.  The smallest pore 

diameters were set to be above 1.4 µm and the scale of the distribution (i.e. what controls the width) 

was set to 2.6 µm.  A shape of 0.4 was set meaning that most of the values are clustered at the low end 

of the distribution with a long tail.  

 

Figure 4.6 The pore size distribution of the artificial electrode network was calibrated to the actual 

hierarchical carbon aerogel monoliths used in experiment by comparing mercury intrusion curves. The 

mercury intrusion curve from experiment (black) was matched with the intrusion curve simulated on the 

artificial pore network (blue).  

After matching the experimental intrusion curve (at least the macropore region), the pore size 

distribution was found.  Figure 4.7 shows the resulting Weibull distribution with pore diameters ranging 

from 1.4 to 6 µm and throat diameters from 0.7 to 2 µm.  The precise range of pore sizes recorded in 

Suss et al. for HCAM electrodes used in their study were 0.7 to 2 µm.  However, it is important to note 

that the authors arrived at those pore sizes from mercury intrusion data.  Although, results from 

intrusion data are often recorded as pore sizes, these are indeed throat sizes.  That is, therefore, why our 

range of throat diameters perfectly match the pore size range recorded by Suss et al. [9]. 
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Figure 4.7 The pore and throat size distribution of the calibrated electrode network on a cubic lattice.  We 

show a) histogram of pore diameter and b) histogram of throat diameter.  The pore diameter ranges from 

about 1.4 to 6 µm.  Meanwhile, the throat diameters range from 0.7 to 3 µm.  The pore size distribution is 

skewed to smaller pores.  This agrees with HCAM electrodes in reference [9] which recorded throat sizes 

primarily between 0.7 and 2 µm.  

The porosity was adjusted by changing the spacing of the network.  The porosity of the synthetic 

electrode network was 53.3% which is similar to the macroporosity of the HCAM electrodes in 

reference [9].  The porosity of the HCAM electrodes was about 75% but only 70% of that is macropore 

volume.  Therefore, the macroporosity of HCAM electrodes was about 52.5% which is close to the 

synthesized networks porosity. 

Table 3 Dimensions and spacing of electrode and spacer networks calibrated to match electrode-spacer 

assembly in Suss et al. [9].  The domain length was matched with experiment but only a fraction of the total 2 

by 2 cm cross sectional area was modeled for computational efficiency. 

 

Finally, the full electrode-spacer-electrode assembly was generated.  Figure 4.8 is a visualization of the 

calibrated 3D network. The visualization focuses on the 25 µm spacer and only a fraction of the 

electrodes on either side are visualized. The electrodes used had the previous pore size distribution, 
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porosity, and tortuosity.  Table 3 lists the shape and spacing used for the electrode and spacer networks.  

The two electrode networks are identical in shape and spacing. While the average coordination number 

is the same for each electrode, throats were randomly selected from each to be removed and therefore, 

the electrodes are not perfect matches but good enough to call the system symmetric.  The electrode 

and spacer had shape and domain selected in order to preserve the domain length (i.e. in the direction 

of flow).  Only a small cross-sectional area of 10 by 10 pores was modelled in order to save on 

computational effort.  The spacer network was stitched between the two electrode networks. The spacer 

pore diameter was adjusted until the permeability of the electrode-spacer-electrode assembly was close 

to the value recorded by Suss et al. [9].  The measured permeability of the synthetic network was 3.767 

mD using a uniform spacer pore diameter of 0.67 µm.  Note that the actual polypropylene spacer had 

60 nm pores [9]. 

 

Figure 4.8 3D pore network calibrated to match pore size distribution,  permeability, and porosity of actual 

electrode-spacer assembly in Suss et al. [9].  The visualization shows the entire 25 μm spacer but only a 

small part of the the 1mm length electrodes on either side.  Only a 10 pore by 10 pore cross-section was 

modelled for sake of computational efficiency. 

4.2.2 Simulated Discharge Curve 

Once the synthetic network was calibrated, charging and flow stimulations were performed on the 

network according to initial and boundary conditions in section 3.4.  The initial concentration was 100 

mM and the cell voltage was 1.0 V to match charging conditions in Suss et al. [9].  In the paper by Suss 

et al., it was decided that charging proceeds based on a resistive-capacitive (RC) timescale and the RC 
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time was derived.  Using this approach, a RC timescale for electrode-spacer-electrode assembly with 

symmetric electrodes was derived.  Equation 4.4 is the derived RC timescale where 𝜀𝑒 and 𝜀𝑠 is the 

porosity of the electrode and spacer respectively while 𝜏𝑒 and 𝜏𝑠 are the electrode and spacer tortuosity, 

respectively.  The tortuosity of the synthetic spacer network was 4.53 and the porosity was 0.05.  The 

ionic conductivity of the solution, K, was calculated using equation 3.8.  The cross-sectional area of the 

domain is denoted by A while the electrode and spacer domain length are denoted by le and ls 

respectively.  In the experiment, charging was completed for 5𝜏𝑅𝐶.  The RC timescale was calculated 

for our synthetic network using equation 4.4 and got 74.5s.  Therefore, the synthesized CDI cell was 

charged for 199s to match the charging time of the stop flow CDI cell in experiment [9].  

 𝜏𝑅𝐶 = (
2𝐾𝜀𝑒𝐴

𝑙𝑒𝜏𝑒
+
𝐾𝜀𝑠𝐴

𝑙𝑠𝜏𝑠
)
−1

𝐶𝑐𝑒𝑙𝑙 4.4 

The cell capacitance is 𝐶𝑐𝑒𝑙𝑙 which is in terms of faraday’s only and determined from the specific 

capacitance.  The specific capacitance used here was 0.2 F m-2 which was multiplied by the active 

specific surface area.  Recall that the specific surface area, a, gives the active surface area per macropore 

volume.  Therefore, to determine the number of farads, the volumetric capacitance was multiplied by 

the volume of the electrode times the electrode macroporosity.  The specific surface area was used as a 

fitting parameter to help match the experimental discharge curve to the modelled discharge curve. 

The modified Donnan EDL model was used to model the charging in the synthesized cell because it 

was assumed that there will be overlapping electrical double layers.  In HCAM electrodes, the 

micropores are in the nano-scale while the Debye length for a 100 mM solution was calculated to be 

about 1 nm using equations 2.2 and 2.3 while the diffuse layer extends about 2 to 3 times the Debye 

length [5].  Therefore, the modified Donnan model is most appropriate here for micropores less than 3 
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nm.  In the HCAM electrodes, however, the sub-10nm pores were responsible for most of the 

electrosorption of ions and so, in this work, the liberty was taken to assume that overlapping EDLs 

occur in all micropores less than 10 nm and hence the modified Donnan model applies.  

After charging the stop flow CDI cell, the flow stage was simulated by applying 10 kPa of pressure 

across the electrode-spacer-electrode assembly.  Figure 4.9 shows the resulting discharge curve 

compared to experiment in reference [9].  One of the main difficulties was accounting for the pipe in 

between the outlet port of the sop flow CDI cell and the conductivity sensor.  This pipe length is 

expected to cause mixing with untreated water and effect the time scale.  Accounting for this pipe 

proved to be tedious.  In order to account for the extra pipe length, an additional two pores were added 

to the outlet of the network to simulate a pipe.  The diameter of these pores was scaled according to the 

scaled cross-sectional area of the synthetic network.  It was unknown exactly what the length or distance 

was of the conductivity sensor from the pipe.  Therefore, different pipe lengths were tried until satisfied.  

Eventually, a spacing of 20 cm was used between pore centers.  The specific surface area used to get a 

satisfying match was 400 m2 cm-3.  BET measurement for specific surface area of HCAM electrodes 

achieve specific surface area of 495 m2 cm-3.  It is expected that not all of that surface area is accessible 

and participating in the charging dynamics.  In fact, one paper concluded in their study that only 16% 

of the BET surface area participated in electrosorption [78].  Another paper by Zhao et al. concluded 

that much more of the BET area, 55% of it, was used for electrosorption [66]. 
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Figure 4.9 Discharge curve of flow stage of stop flow CDI cell following charging.  Pore network model 

results using the modified Donnan model were compared to experiment and results show good agreement.  A 

capacitance of 0.2 F m-2 and specific surface area of 400 m2 cm-3 was used.  Modelling the effect of the pipe 

length between the sensor and outlet port of the CDI cell was difficult. 

In conclusion, attempting to match experimental observations is difficult yet.  Selecting the right EDL 

model and the correct capacitance and specific surface area heavily influence results.  It is difficult to 

know exactly the surface area available for electrosorption.  In addition, there may be turbulence or 

other phenomena not being captured in modelling the discharge curve. Modelling the extra pipe length 

between outlet port and conductivity sensor was tedious and should have been avoided by proper 

experimental design.  Overall, however, this was a good first attempt at using a pore network model to 

match real experiment results.  
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Chapter 5  

Conclusions and Future Works 

In summary, electrical double layer models were applied to a pore network for modelling the storage 

of ions during charging of a stop flow CDI cell.  Continuum and numerical method equations were 

derived and compared using COMSOL and OpenPNM as FEM and PNM solvers respectively.  Model 

equations were written for three of the most common EDL models: Helmholtz, Gouy-Chapman-Stern, 

and modified Donnan.  Each of these EDL models have already been used in studying CDI but most 

often applied in a continuum model.  This work was the first to apply EDL theory to a pore network 

model.  A test 2D geometry of 294 pores on an irregular cubic lattice was used to demonstrate the use 

of EDL models in a pore network.  The test geometry consisted of anode, cathode, and spacer 

subdomains.  In the spacer, there was no electrosorption of ions and therefore, EDL theories were not 

applied here.  Charging and flow stage of a stop flow CDI cell was modelled using the test network.  A 

stop flow CDI cell was modelled because there is no flow during charging. This allowed attention to 

be given to the source terms of our model equations that depend on appropriate EDL theory.  In 

addition, electroneutrality in the macropores, equal anion and cation diffusivities, and monovalent salt 

solution were assumed in derived PDEs and NMEs.   

Results from applying EDL theory to a pore network showed good agreement with FEM solution and 

experimental observations. First, the charging dynamics of each EDL model were demonstrated on a 

pore network. Next, the errors of each were investigated and it was found that the error in concentration 

and potential was always less than 10% and 15% respectively showing good agreement with ground 

truth FEM solution.  The errors progressively decayed with charging time for all EDL models likely 
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due to smoothing of initial conditions in COMSOL for faster convergence.  The error was the least for 

the modified Donnan model.  However, it is important to clarify that this work means by no way to 

suggest that the modified Donnan model is more accurate.  Discharge curve obtained from the pore 

network model showed how Helmholtz is the ideal case of unit charge efficiency while modified 

Donnan case had the smallest charge efficiency due to assumption of overlapping EDLs. Careful 

consideration for parameters was necessary to ensure that the GCS model did not show theoretically 

impossible charge efficiency greater than unity.  Lastly, a network was synthesized and calibrated to 

match electrode-spacer assembly by Suss et al. [9].  The synthetic network was calibrated based on 

pore size distribution, permeability, and porosity.  Charging and flow simulations were performed on 

synthetic network and discharge curve compared to that found in literature for a charging time of 199s, 

capacitance of 0.2 F m-2, and specific surface area of 400 m2 cm-3.  Results found good agreement with 

experiment, but it was challenging to model effect of extra pipe length between conductivity sensor and 

outflow port.  

There are several future works that could be done to expand on this work.  These future works have 

been summarized as follows: 

• Revisions to the assumptions of derived model equations including incorporating flow during 

charging, applying unequal diffusivities, or considering more complex contaminates other than 

simple monovalent salt solution.   

• Simulate entire charge-discharge cycle of a CDI cell by expanding upon derived NMEs.  Only 

the charging stage of a CDI cycle was modelled in this work where ions are stored in EDLs. 

The next step would be to model the discharge where stored ions are released from EDLs and 

back into macropores.  
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• Conduct a full parametric study on the EDL models applied to a pore network to determine the 

effect of parameters on performance metrics such as charge efficiency, salt adsorption, and salt 

adsorption rate.  This may include the effect of pore structure on performance metrics. 

• Complete more rigorous comparison of PNM result to experiment observations. The 

experiment that was compared had a conductivity sensor placed downstream of the outlet port. 

This introduced other phenomena difficult to model precisely. Therefore, it is recommended to 

conduct experiment where the effluent concentration is more precisely determined.  One idea 

would be to evacuate the downstream pipe leading to sensor before the flow stage. 

• Investigate the effects of gummel tolerance on the error between FEM and PNM solvers.  The 

modified Donnan model used a tolerance greater than the other methods.  It is unsure whether 

the low error observed in the modified Donnan case was due to the nature of this EDL theory 

or the different solver parameters used.  

• Errors diminished during charging of the CDI cell in all EDL models.  It was thought that this 

occurs because of smoothing initial conditions done in COMSOL.  However, more work needs 

to be done to investigate the effect of smoothing initial conditions on the error. 
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Appendix A Derivation of Model Equations 

Derivations for the model equations used in this study are presented here. Generic mass and charge 

conservation equations are derived and then applied to each of the three electrical double layer (EDL) 

models: Helmholtz, Gouy-Chapman-Stern, and modified Donnan.  The derived models assume 

electroneutrality in the macropores, no flow, and equal anion and cation diffusivities.  For simplicity 

and conciseness, we consider one dimension only and then after extend to three dimensions. 

Mass Conservation  

Figure A.1 shows a control volume of dimensions ∆𝑥, ∆𝑦, and ∆𝑧 with mass flux in the x-direction and 

reaction occurring inside the control volume. 

 

Figure A.1 Side view of control volume showing mass flux in x-direction 

Equation A.1 is the mass balance for the above system where 𝑁𝑗,𝑥 is the mass flux of species j going 

into the differential volume element at 𝑥 and 𝑁𝑗,𝑥+Δx is the mass flux of species j leaving the differential 

volume element at 𝑥 + 𝛥𝑥.  The concentration for species j is denoted as cmA,j. 

 
∆𝑥∆𝑦∆𝑧

𝜕𝑐𝑚𝐴,𝑗

𝜕𝑡
=  ∆𝑦∆𝑧𝑁𝑗,𝑥 − ∆𝑦∆𝑧𝑁𝑗,𝑥+∆𝑥 − ∆𝑥∆𝑦∆𝑧 𝑅𝑗 A.1 

Ni, x Nj, x +  x j
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Electrosorption of species j is considered using a volumetric reaction term 𝑅𝑗 with units of 𝑚𝑜𝑙/(𝑚3𝑠). 

This term is defined later when we specify the EDL model. Equation A.1 is divided by ∆x∆y∆z followed 

by taking the limit as ∆𝑥 → 0 to obtain equation A.2. 

 𝜕𝑐𝑚𝐴,𝑗

𝜕𝑡
=  −

𝜕𝑁𝑗

𝜕𝑥
− 𝑅𝑗 A.2 

Equation A.3 is the Nernst Planck expression for mass flux which considers diffusive, advective, and 

migrative forces. We apply Nernst Planck to determine the molar flux, 𝑁𝑗. 𝐷𝑗 is the diffusion coefficient 

and 𝑧𝑗 is the valence for species 𝑗.  The variables 𝑅, 𝐹, and 𝑇 are the ideal gas constant, faraday number 

and temperature, respectively. The macropore potential is given by 𝜙 and the velocity is given by 𝑢. 

For simplicity and conciseness, only the x-direction is considered for this derivation. 

 
𝑁𝑗 = −𝐷𝑗

𝜕𝑐𝑚𝐴,𝑗

𝜕𝑥
+ 𝑢𝑐𝑚𝐴,𝑗 −

𝐷𝑗𝑧𝑗𝐹

𝑅𝑇
𝑐𝑚𝐴,𝑗

𝜕𝜙

𝜕𝑥
 A.3 

Equation A.3 is substituted into equation A.2 to give us equation A.4. 

 𝜕𝑐𝑚𝐴,𝑗

𝜕𝑡
=  𝐷𝑗

𝜕2𝑐𝑚𝐴,𝑗

𝜕𝑥2
− 𝑢

𝜕𝑐𝑚𝐴,𝑗

𝜕𝑥
+
𝐷𝑗𝑧𝑗𝐹𝑐𝑚𝐴,𝑗

𝑅𝑇

𝜕2𝜙

𝜕𝑥2
− 𝑅𝑗 A.4 

For the case of a monovalent salt solution such as NaCl, we can apply equation A.4 to come up with 

two equations, one for each of the dissolved species’ sodium and chlorine, as shown in equation A.5. 

In deriving these two equations we assume equal anion and cation diffusivities (𝐷 = 𝐷𝑁𝑎 = 𝐷𝐶𝑙) as 

well as set 𝑧𝐶𝑙 = −1 and 𝑧𝑁𝑎 = +1. 
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 𝜕𝑐𝑚𝐴,𝑁𝑎

𝜕𝑡
=  𝐷𝑁𝑎

𝜕2𝑐𝑚𝐴,𝑁𝑎

𝜕𝑥2
− 𝑢

𝜕𝑐𝑚𝐴,𝑁𝑎

𝜕𝑥
+
𝐷𝑁𝑎𝐹𝑐𝑚𝐴,𝑁𝑎

𝑅𝑇

𝜕2𝜙

𝜕𝑥2
− 𝑅𝑁𝑎 

𝜕𝑐𝑚𝐴,𝐶𝑙

𝜕𝑡
=  𝐷𝐶𝑙

𝜕2𝑐𝑚𝐴,𝐶𝑙
𝜕𝑥2

− 𝑢
𝜕𝑐𝑚𝐴,𝐶𝑙

𝜕𝑥
−
𝐷𝐶𝑙𝐹𝑐𝑚𝐴,𝐶𝑙

𝑅𝑇

𝜕2𝜙

𝜕𝑥2
− 𝑅𝐶𝑙 

A.5 

Adding these two equations together we get equation A.6. In doing so electroneutrality was assumed 

such that 𝑐𝑚𝐴 = 𝑐𝑚𝐴,𝑁𝑎 = 𝑐𝑚𝐴,𝐶𝑙. Note that this assumption as well as assuming equal anion and cation 

diffusivities leads to the elimination of the migration term. No flow was also assumed resulting in 𝑢 =

0 and the subsequent removal of the advection term. This reduces our system to a transient fickian 

diffusion with reaction problem. Note that the reaction term 𝑅 in equation A.6 is the sum of individual 

species reaction terms such that 𝑅 = ∑ 𝑅𝑗𝑗 . 

 𝜕𝑐𝑚𝐴

𝜕𝑡
=  

𝜕

𝜕𝑥
(𝐷

𝜕𝑐𝑚𝐴

𝜕𝑥
) −  𝑅 A.6 

Lastly, we extend equation A.6 from one dimension to three dimensions using the Laplacian operator 

giving equation A.7. 

 𝜕𝑐𝑚𝐴

𝜕𝑡
=  𝛁 ∙ (𝐷𝛁𝑐𝑚𝐴) −  𝑅 A.7 
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Charge Conservation 

Figure A.2 shows a side view of a control volume of dimensions ∆𝑥, ∆𝑦, and ∆𝑧 with current flowing 

in the x-direction only. 

 

Figure A.2 Side view of control volume showing current flow in x-direction 

Equation A.8 is a charge balance on the above system where 𝐼𝑥 is the current going into the differential 

volume element at 𝑥 and 𝐼𝑥+Δx is the current leaving the differential volume element at 𝑥 + Δx. The 

accumulation of charge is determined by the voltage drop across the capacitor-like Stern layer denoted 

by ∆𝜙𝑠𝑡. The exact determination of ∆𝜙𝑠𝑡 depends on the EDL model applied but in general it is defined 

such that decreasing Stern potential represents increasing storage of positive charge.  

 
−∆𝑥∆𝑦∆𝑧𝐶𝑎

𝜕∆𝜙𝑠𝑡
𝜕𝑡

= ∆𝑦∆𝑧𝐼𝑥 − ∆𝑦∆𝑧𝐼𝑥+∆𝑥 A.8 

The volumetric capacitance, 𝐶𝑎, is used to relate the voltage drop across the Stern layer to the amount 

of charge stored in the electrical double layer.  Equation A.8 is divided by ∆𝑥∆𝑦∆𝑧 and the limit as 

∆𝑥 → 0 is taken to arrive at equation A.9. 

 
𝐶𝑎

𝜕∆𝜙𝑠𝑡
𝜕𝑡

= −
𝜕𝐼

𝜕𝑥
 A.9 

 x  x +  x
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Now we determine an expression for the ionic current. The ionic current can be determined from 𝐼 =

𝐹 ∑ (𝑧𝑗𝑁𝑗)𝑗  where 𝑁𝑗 is the mass flux of ionic species 𝑗 and can be determined from using the Nernst 

Planck expression in equation A.3. Combining these expressions yield equation A.10 for determining 

the ionic current. 

 
𝐼 = −𝐹∑𝑧𝑗𝐷𝑗

𝜕𝑐𝑚𝐴,𝑗

𝜕𝑥
𝑗

+ 𝐹𝑢∑𝑧𝑗𝑐𝑚𝐴,𝑗

𝑗

−
𝐹2

𝑅𝑇

𝜕𝜙

𝜕𝑥
∑𝑧𝑗

2𝐷𝑗𝑐𝑚𝐴,𝑗

𝑗

 A.10 

For a monovalent salt solution (𝑧𝐶𝑙 = −1, 𝑧𝑁𝑎 = +1) and assuming electroneutrality in the macropores 

(𝑐𝑚𝐴 = 𝑐𝑚𝐴,𝑁𝑎 = 𝑐𝑚𝐴,𝐶𝑙) as well as assuming equal cation and anion diffusivities (𝐷 = 𝐷𝑁𝑎 = 𝐷𝐶𝑙) 

equation A.10 reduces to equation A.11. 

 
𝐼 = −

2𝐹2𝐷𝑐𝑚𝐴

𝑅𝑇

𝜕𝜙

𝜕𝑥
 A.11 

Equation A.11 is substituted into equation A.9 for the ionic current to give equation A.12. 

 
𝐶𝑎

𝜕∆𝜙𝑠𝑡
𝜕𝑡

= −
𝜕

𝜕𝑥
(
2𝐹2𝐷𝑐

𝑅𝑇

𝜕𝜙

𝜕𝑥
) A.12 

From equation A.12 an ionic conductance, 𝐾,  is derived such that 𝐾 =
2𝐹2𝐷𝑐𝑚𝐴

𝑅𝑇
. After applying this 

ionic conductance and extending to three dimensions using the Laplacian operator we get equation 

A.13. 

 
𝐶𝑎

𝜕∆𝜙𝑠𝑡
𝜕𝑡

= −𝛁 ∙ (𝐾𝛁𝜙) A.13 
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Lastly, if we assume that there is no accumulation of charge, then the left hand side of equation A.13 

disappears resulting in equation A.14.  

 0 = 𝛁 ∙ (𝐾𝛁𝜙) A.14 
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Reaction Term, R 

Here the mass and ionic transport equations previously derived are applied to each of the electrical 

double layer models.  Each model used relies on a specific reaction term, R. The explanation for the 

reaction term used for each model is recorded here along with treatment of the Stern layer potential for 

each EDL theory.  The electrical double layer models being considered are: Helmholtz, Gouy-

Chapman-Stern, and modified Donnan.  

a) Helmholtz 

The Helmholtz model assumes a capacitor like EDL structure where every electrode surface charge is 

equally compensated by counter charge in the electrolyte. This model consists of a Helmholtz or Stern 

layers separating the charges in water and solid electrode phases. The potential drop occurs entirely 

across the Stern layer. The solid electrode and liquid brine solution acts as two sides to a capacitor. The 

rate of Electrosorption of ions into the electrical double layer is therefore modeled using simple 

electrical engineering capacitor theory.  Equation A.15 shows how to calculate current flow in a 

charging or discharging simple capacitor circuit.  

 
𝑖 = 𝐶

𝑑𝜙

𝑑𝑡
 A.15 

Recalling that current is just the flow of charge and so this simple expression for current can be extended 

to the rate of flow of ions into the electrical double layer. Equation A.16 gives an expression for the 

rate of flow of counterions into the electrical double layer using Faraday’s constant, 𝐹, to relate moles 

of charge to moles of ions.  
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 𝑅 =
𝑎

2𝑧𝑐𝑜𝑢𝑛𝑡𝐹
𝑖 A.16 

Substituting equation A.15 into equation A.16 gives an expression for the rate of ions into an electrical 

double layer in terms of potential yielding equation A.17. 

 
𝑅 =

𝐶𝑎

2𝑧𝑐𝑜𝑢𝑛𝑡𝐹

𝑑𝜙

𝑑𝑡
 A.17 

Substituting equation A.17 into equation A.7 for the rate of Electrosorption of ions into the electrical 

double layer gives equation A.18. This is our mass conservation equation for the Helmholtz model. 

 𝜕𝑐𝑚𝐴

𝜕𝑡
= 𝛁 ∙ (𝐷𝛁𝑐𝑚𝐴)  − 

𝐶𝑎

2𝑧𝑐𝑜𝑢𝑛𝑡𝐹

𝜕𝜙

𝜕𝑡
 A.18 

Next, the accumulation term of the ionic transport equation is considered. This term contains the Stern 

layer potential drop. Treatment of the Stern layer potential drop depends on the EDL model. For 

Helmholtz, the Stern layer potential drop is equal to 𝜙1 − 𝜙 as described by equation A.19 where 𝜙1 

is the potential of the solid electrode. 

 ∆𝜙𝑠𝑡 = 𝜙1 − 𝜙 A.19 

Equation A.19 is substituted into equation A.13 to get equation A.20.  In the case of constant voltage, 

𝜙1 does not change with respect to time. Therefore, equation A. 20 leads to equation A.21 as 𝜙1 is 

removed and negative signs cancel. 
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𝐶𝑎

𝜕(𝜙1 − 𝜙)

𝜕𝑡
= −𝛁 ∙ (𝐾𝛁𝜙) A.20 

 
𝐶𝑎

𝜕𝜙

𝜕𝑡
= 𝛁 ∙ (𝐾𝛁𝜙) A.21 

That concludes the derivation of the Helmholtz model equations. The mass transport equation (A.18) 

is coupled with the ionic transport equation (A.21). 

b) Gouy-Chapman-Stern 

Next we derive the reaction term for the Gouy-Chapman-Stern model. Since the diffuse layer is 

characteristically defined as a region of varying concentration, a surface charge density is calculated 

representing the amount of charge in the EDL per electrode surface area. The surface charge density is 

calculated using equation A.22 

 
𝑤 = 8𝜆𝑑𝐶𝑚𝐴 sinh

2 (
𝐹

4𝑅𝑇
∆𝜙𝑑) A.22 

To incorporate the surface charge density into the reaction term, R, the rate of change of surface charge 

density is used.  A prefactor of the specific surface area is used to convert units from per electrode area 

to per macropore volume.  Equation A.23 is therefore the reaction term used for the GCS model. 

 
𝑅 = 𝑎

𝑑𝑤

𝑑𝑡
 A.23 

This reaction term is substituted into the generic mass transport expression to arrive at equation A.24. 

This is the mas transport equation for the GCS model.  
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 𝜕𝑐𝑚𝐴

𝜕𝑡
= 𝛁 ∙ (𝐷𝛁𝑐𝑚𝐴)  −  𝑎

𝑑𝑤

𝑑𝑡
 A.24 

Next, the ionic transport equation to be used with the GCS model is derived. To do this, we start with 

the generic ionic transport expression in equation A.13. Special treatment of the Stern layer potential 

is considered.  Here the Stern layer potential is calculated using equation A.25. This expression was 

derived from a potential balance across the EDL structure. 

 ∆𝜙𝑠𝑡 = 𝜙1 − 𝜙 − ∆𝜙𝑑 
A.25 

Equation A.25 was substituted into equation A.13 to arrive at equation A.26. Assuming constant voltage 

operation again, 𝜙1 does not change with time. Expanding and moving the Donnan potential term to 

the right-hand side equation A.27 is formed. Note that the second term on the right-hand side accounts 

for co-ion expulsion of ions and can be thought of as a reaction term. 

 
𝐶𝑎

𝜕(𝜙1 − 𝜙 − ∆𝜙𝑑)

𝜕𝑡
= −𝛁 ∙ (𝐾𝛁𝜙) A.26 

 
𝐶𝑎

𝜕𝜙

𝜕𝑡
= 𝛁 ∙ (𝐾𝛁𝜙) − 𝐶𝑎

𝜕∆𝜙𝑑
𝜕𝑡

 A.27 

That concludes the derivation of the GCS model equations. The mass transport equation (A.24) is 

coupled with the ionic transport equation (A.27). 

c) modified Donnan 

Lastly, we derive the reaction term and model equations for the modified Donnan EDL model. The 

reaction term for the modified Donnan model depends on the micropore concentration. The micropore 
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concentration can be calculated using equation A.28. The micropore concentration is the total 

concentration of ions in the micropore. 

 
𝑐𝑚𝑖 = 2𝑐𝑚𝐴 cosh(

𝐹

𝑅𝑇
∆𝜙𝑑) 

A.28 

The micropore concentration is used to derive a reaction term for the modified Donnan model. The 

reaction term, 𝑅, will be defined as the rate of change of micropore concentration. Equation A.29 

calculates the reaction term.  The prefactor 
𝑉𝑚𝑖

𝑉
 is used to convert units from per micropore volume to 

per macropore volume where  𝑉𝑚𝑖 is micropore volume and 𝑉 is macropore volume. 

 
𝑅 =

1

2

𝑉𝑚𝑖

𝑉

𝜕𝑐𝑚𝑖

𝜕𝑡
 A.29 

The 1 2⁄  term is used to reflect that the number of salt molecules electrosorbed is half of the total ion 

concentration in the micropore. It is important to note that, in doing so, electrode symmetry is assumed 

such that the number of counter-ions in the anode plus the number of co-ions in the cathode equals the 

number of co-ions in the anode plus the number of counter-ions in the cathode. The expression for 

reaction term, 𝑅, is substituted into equation A.7 to arrive at equation A.30  

 𝜕𝑐𝑚𝐴

𝜕𝑡
= 𝛁 ∙ (𝐷𝛁𝑐𝑚𝐴)  − 

1

2

𝑉𝑚𝑖

𝑉

𝜕𝑐𝑚𝑖

𝜕𝑡
 A.30 

Next, the ionic transport algorithm is defined for the modified Donnan model. In fact, the ionic transport 

algorithm for modified Donnan is identical to the ionic transport algorithm for GCS. The potential 

balance across the EDL is the same. The difference is how the Stern and Donnan potentials are 

calculated. Equation A.31 is the ionic transport equation coupled with equation A.30. 
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𝐶𝑎

𝜕𝜙

𝜕𝑡
= 𝛁 ∙ (𝐾𝛁𝜙) − 𝐶𝑎

𝜕∆𝜙𝑑
𝜕𝑡

 A.31 
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Appendix B Python Code 

The following code was written as a demonstration of applying EDL theories to a pore network.  Code 

was written for: Helmholtz, Gouy-Chapman-Stern, and modified Donnan EDL models. The code 

includes importing FEM solver data from excel file for comparison with pore network model results 

and error calculations.  

Helmholtz 

import pandas as pd 
import openpnm as op 
import helmholtz_models as cdi 
import numpy as np 
 
np.random.seed(0) 
 
# network 
spacer = 5 # pore width 
[Npx, Npy, Npz] = [21, 14, 1] 
spacing = 1e-4 
net = op.network.Cubic(shape=[Npx, Npy, Npz], spacing=spacing) 
 
net['pore.anode'] = net['pore.coords'][:, 0] < (Npx - spacer)*spacing/2 
net['pore.cathode'] = net['pore.coords'][:, 0] > (Npx + spacer)*spacing/2 
net['pore.spacer'] = np.logical_and(~net['pore.anode'], ~net['pore.cathode']) 
Ps_a = net.pores(labels='anode') 
Ps_c = net.pores(labels='cathode') 
Ps_s = net.pores(labels='spacer') 
Ts_a = net.find_neighbor_throats(pores=Ps_a, mode='xnor') 
Ts_c = net.find_neighbor_throats(pores=Ps_c, mode='xnor') 
inter_thrt = net.find_neighbor_throats(net.pores(labels='spacer'), mode='xor') 
 
# remove throats 
remove = np.random.choice(np.concatenate((Ts_a, Ts_c)), size=int(Ts_a.size/3)) 
op.topotools.trim(net, throats=remove) 
op.topotools.plot_connections(net, throats=net.throats('all')) 
 
# geometry 
Ps = net.pores(labels='all') 
Ts = net.throats(labels='all') 
geo = op.geometry.StickAndBall2D(network=net, pores=Ps, throats=Ts) 
geo['pore.diameter'][Ps_s] = geo['pore.diameter'].mean() * 0.5 
geo.regenerate_models(exclude=['pore.diameter']) 
# add effective volume model 
geo['throat.volume'][inter_thrt] = 0  # don't add volume of inter throats 
eff_vol = op.models.geometry.pore_volume.effective 
geo.add_model(propname='pore.effective_volume', model=eff_vol) 
# add pore.capacitance prop without interconnecting throat volume 
C = 0.05 # F/m^2 
a = 500000000 # m^2/m^3 
V = geo['pore.effective_volume'] 
geo['pore.capacitance'] = C * a * V 
geo['pore.capacitance'][Ps_s] = 0 
# add back interconecting throat volume 
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geo.regenerate_models(exclude=['pore.diameter']) 
 
# phase 
salt = op.phases.Water(network=net) 
salt['pore.diffusivity'] = 2e-9 
salt['pore.valence'] = 1 
salt['pore.valence'][Ps_a] = -1 
salt['pore.concentration'] = 100 
 
# physics 
phys = op.physics.GenericPhysics(network=net, phase=salt, geometry=geo) 
phys['pore.capacitance'] = geo['pore.capacitance'] 
 
current = op.models.physics.ionic_conductance.myelectroneutrality_2D 
phys.add_model(propname='throat.ionic_conductance', model=current, 
               regen_mode='normal') 
 
diffusion = op.models.physics.diffusive_conductance.ordinary_diffusion_2d 
phys.add_model(propname='throat.diffusive_conductance', 
               model=diffusion, 
               regen_mode='normal') 
 
# settings for algorithms 
settings = {'solver_max_iter': 5, 'solver_tol': 1e-08, 'solver_rtol': 1e-08, 
            'nlin_max_iter': 10, 'cache_A': False, 'cache_b': False} 
 
# algorithms 
ic = op.algorithms.IonicConduction(network=net, phase=salt, settings=settings) 
tfd = op.algorithms.TransientFickianDiffusion(network=net, phase=salt, 
                                              settings=settings) 
p = op.algorithms.TransientIonicConduction(network=net, phase=salt, 
                                           settings=settings) 
pnp = op.algorithms.TransientMultiphysicsSolver(network=net, phase=salt) 
pnp.setup(algorithms=[tfd.name, p.name]) 
 
# update tfd settings 
tfd.settings['pore_volume'] = 'pore.effective_volume' 
 
# update charge settings 
p.settings['charge_conservation'] = 'laplace' 
p.settings['pore_volume'] = 'pore.capacitance' 
p.settings['old_prop'] = 'pore.potential' 
 
# run ic algorithm to get initial conditions for potential 
ic.set_value_BC(pores=Ps_a, values=0.5) 
ic.set_value_BC(pores=Ps_c, values=-0.5) 
ic.run() 
 
# initial conditions 
tfd.set_IC(values=100) 
P_IC = ic['pore.potential'] 
p.set_IC(values=P_IC) 
 
# time step 
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dt = 1 
tmax = 2 
 
# Fix time step problem 
p.settings['t_step'] = dt 
tfd.settings['t_step'] = dt 
 
# multiphysics solver settings 
pnp.settings['t_initial'] = 0 
pnp.settings['t_final'] = tmax 
pnp.settings['t_step'] = dt 
pnp.settings['t_output'] = 1 
pnp.settings['t_scheme'] = 'implicit' 
 
# add model which fetches 'pore.potential' from potential algorithm 
p['pore.potential'] = P_IC 
phys.add_model(propname='pore.potential_new', 
               model=cdi.fetch_property, 
               quantity='pore.potential', 
               algorithm=p.name) 
# add helmholtz source term model 
helmholtz = cdi.helmholtz 
phys['pore.potential_old'] = P_IC 
phys.add_model(propname='pore.helmholtz', 
               model=helmholtz, 
               capacitance='pore.capacitance', 
               valence='pore.valence', 
               potential='pore.potential', 
               algorithm=pnp.name) 
tfd.set_source(propname='pore.helmholtz', pores=[Ps_a, Ps_c]) 
 
# run 
pnp.run() 
 
# update results 
salt.update(tfd.results()) 
salt.update(p.results()) 
 
# update C and P 
# mask = net['pore.coords'][:, 1] == 1.5*spacing  # only want certain pores 
mask = net.pores('all') 
C = tfd['pore.concentration'][mask] 
P = p['pore.potential'][mask] 
 
# Charge Efficiency 
V = geo['pore.effective_volume'] 
c = geo['pore.capacitance'] 
F = 96485.3321233100184 
gamma_salt = np.dot(100-C, V.T) 
sigma_charge = np.sum((c*(0.5-P)/F)[net.pores('anode')]) 
lamda = gamma_salt/sigma_charge 
print('salt adsorption (mol):', gamma_salt) 
print('charge efficiency:', lamda) 
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# get comsol data for comparison, these are the times I am exporting 
df_c = pd.read_excel('COMSOL-data-updated.xlsx',  
                     sheet_name='Concentration') 
df_p = pd.read_excel('COMSOL-data-updated.xlsx',  
                     sheet_name='Potential') 
columns = [1, 2, 6, 11, 21, 51, 101, 251, 501, 751, 1001] 
times = np.arange(0, 1001, 1) 
for c in columns: 
    salt['pore.COMSOL_potential@'+str(times[c-1])] = df_p.values[:, c] 
    salt['pore.COMSOL_concentration@'+str(times[c-1])] = df_c.values[:, c] 
    Cfem = salt['pore.COMSOL_concentration@'+str(times[c-1])]  
    Pfem = salt['pore.COMSOL_potential@'+str(times[c-1])]  
    Cpnm = salt['pore.concentration@'+str(times[c-1])] 
    Ppnm = salt['pore.potential@'+str(times[c-1])] 
    # Error 
    salt['pore.concentration_error@'+str(times[c-1])] = np.abs((Cpnm - Cfem)/100)*100 
    salt['pore.potential_error@'+str(times[c-1])] = np.abs((Ppnm - Pfem)/0.5)*100 
 
# Export to XDMF for paraview 
net['throat.radius'] = net['throat.diameter'] / 2 
op.io.XDMF.save(network=net, phases=[salt], filename="interpore-conference-1") 
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Gouy-Chapman-Stern 

import pandas as pd 
import openpnm as op 
import gcs_models as cdi 
import numpy as np 
 
np.random.seed(0) 
 
# network 
spacer = 5 # pore width 
[Npx, Npy, Npz] = [21, 14, 1] 
spacing = 1e-4 
net = op.network.Cubic(shape=[Npx, Npy, Npz], spacing=spacing) 
 
net['pore.anode'] = net['pore.coords'][:, 0] < (Npx - spacer)*spacing/2 
net['pore.cathode'] = net['pore.coords'][:, 0] > (Npx + spacer)*spacing/2 
net['pore.spacer'] = np.logical_and(~net['pore.anode'], ~net['pore.cathode']) 
Ps_a = net.pores(labels='anode') 
Ps_c = net.pores(labels='cathode') 
Ps_s = net.pores(labels='spacer') 
Ts_a = net.find_neighbor_throats(pores=Ps_a, mode='xnor') 
Ts_c = net.find_neighbor_throats(pores=Ps_c, mode='xnor') 
inter_thrt = net.find_neighbor_throats(net.pores(labels='spacer'), mode='xor') 
 
# remove throats 
remove = np.random.choice(np.concatenate((Ts_a, Ts_c)), size=int(Ts_a.size/3)) 
op.topotools.trim(net, throats=remove) 
op.topotools.plot_connections(net, throats=net.throats('all')) 
 
# geometry 
Ps = net.pores(labels='all') 
Ts = net.throats(labels='all') 
geo = op.geometry.StickAndBall2D(network=net, pores=Ps, throats=Ts) 
geo['pore.diameter'][Ps_s] = geo['pore.diameter'].mean() * 0.5 
geo.regenerate_models(exclude=['pore.diameter']) 
# add effective volume model 
geo['throat.volume'][inter_thrt] = 0  # don't add volume of inter throats 
eff_vol = op.models.geometry.pore_volume.effective 
geo.add_model(propname='pore.effective_volume', model=eff_vol) 
# add pore.capacitance prop without interconnecting throat volume 
C = 0.05 # F/m^2 
a = 500000000 # m^2/m^3 
V = geo['pore.effective_volume'] 
geo['pore.capacitance'] = C * a * V 
geo['pore.capacitance'][Ps_s] = 0 
# Surface area 
geo['pore.surface_area'] = a * V 
# add back interconecting throat volume 
geo.regenerate_models(exclude=['pore.diameter']) 
 
# phase 
salt = op.phases.Water(network=net) 
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salt['pore.diffusivity'] = 2e-9 
salt['pore.valence'] = 1 
salt['pore.valence'][Ps_a] = -1 
salt['pore.concentration'] = 100 
 
# physics 
phys = op.physics.GenericPhysics(network=net, phase=salt, geometry=geo) 
phys['pore.capacitance'] = geo['pore.capacitance'] 
phys['pore.surface_area'] = geo['pore.surface_area'] 
phys['pore.capacitance_specific'] = C 
 
current = op.models.physics.ionic_conductance.myelectroneutrality_2D 
phys.add_model(propname='throat.ionic_conductance', model=current, 
               regen_mode='normal') 
 
diffusion = op.models.physics.diffusive_conductance.ordinary_diffusion_2d 
phys.add_model(propname='throat.diffusive_conductance', 
               model=diffusion, 
               regen_mode='normal') 
 
# settings for algorithms 
settings = {'solver_max_iter': 5, 'solver_tol': 1e-08, 'solver_rtol': 1e-08, 
            'nlin_max_iter': 10, 'cache_A': False, 'cache_b': False} 
 
# algorithms 
ic = op.algorithms.IonicConduction(network=net, phase=salt, settings=settings) 
tfd = op.algorithms.TransientFickianDiffusion(network=net, phase=salt, 
                                              settings=settings) 
p = op.algorithms.TransientIonicConduction(network=net, phase=salt, 
                                           settings=settings) 
pnp = op.algorithms.TransientMultiphysicsSolver(network=net, phase=salt) 
pnp.settings['g_max_iter'] = 50 
pnp.settings['g_tol'] = 1e-5 
pnp.setup(algorithms=[tfd.name, p.name]) 
 
# update tfd settings 
tfd.settings['pore_volume'] = 'pore.effective_volume' 
tfd.settings['old_prop'] = 'pore.salt_surface_density' 
 
# update charge settings 
p.settings['charge_conservation'] = 'laplace' 
p.settings['pore_volume'] = 'pore.capacitance' 
p.settings['old_prop'] = 'pore.donnan_potential' 
 
# run ic algorithm to get initial conditions for potential 
ic.set_value_BC(pores=Ps_a, values=0.5) 
ic.set_value_BC(pores=Ps_c, values=-0.5) 
ic.run() 
 
# initial conditions 
tfd.set_IC(values=100) 
P_IC = ic['pore.potential'] 
p.set_IC(values=P_IC) 
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# time step 
dt = 1 
tmax = 2 
 
# Fix time step problem 
p.settings['t_step'] = dt 
tfd.settings['t_step'] = dt 
 
# multiphysics solver settings 
pnp.settings['t_initial'] = 0 
pnp.settings['t_final'] = tmax 
pnp.settings['t_step'] = dt 
pnp.settings['t_output'] = 1 
pnp.settings['t_scheme'] = 'implicit' 
 
# add debye length model 
phys['pore.bjerrum_length'] = 7.189145219266839e-10 # at room temperature 
 
phys.add_model(propname='pore.debye_length', 
               model=cdi.debye_length, 
               pore_bjerrum_length='pore.bjerrum_length', 
               pore_concentration='pore.concentration') 
 
# add donnan potential model 
salt['pore.potential'] = P_IC 
salt['pore.potential_electrode'] = P_IC 
phys.add_model(propname='pore.donnan_potential', 
               model=cdi.donnan_potential, 
               pore_capacitance='pore.capacitance_specific', 
               pore_concentration='pore.concentration', 
               pore_debye_length='pore.debye_length', 
               pore_potential='pore.potential', 
               pore_potential_electrode='pore.potential_electrode', 
               pore_temperature='pore.temperature') 
 
# add micropore concentration model 
phys.add_model(propname='pore.salt_surface_density', 
               model=cdi.salt_surface_density, 
               pore_concentration='pore.concentration', 
               pore_debye_length='pore.debye_length', 
               pore_donnan_potential='pore.donnan_potential', 
               pore_temperature='pore.temperature') 
 
# add mass source term 
phys['pore.salt_surface_density_old'] = np.zeros(net.Np) 
phys.add_model(propname='pore.gcs_source_mass', 
               model=cdi.gcs_source_mass, 
               pore_surface_area='pore.surface_area', 
               pore_salt_surface_density='pore.salt_surface_density', 
               algorithm=pnp.name) 
tfd.set_source(propname='pore.gcs_source_mass', pores=[Ps_a, Ps_c]) 
 
# add potential source term (really same as donnan) 
phys['pore.donnan_potential_old'] = np.zeros(net.Np) 
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phys.add_model(propname='pore.gcs_source_potential', 
               model=cdi.gcs_source_potential, 
               pore_capacitance='pore.capacitance', 
               pore_donnan_potential='pore.donnan_potential', 
               algorithm=pnp.name) 
p.set_source(propname='pore.gcs_source_potential', pores=[Ps_a, Ps_c]) 
 
# run 
pnp.run() 
 
# update results 
salt.update(tfd.results()) 
salt.update(p.results()) 
 
# update C and P 
# mask = net['pore.coords'][:, 1] == 1.5*spacing  # only want certain pores 
mask = net.pores('all') 
C = tfd['pore.concentration'][mask] 
P = p['pore.potential'][mask] 
 
# Charge Efficiency 
V = geo['pore.effective_volume'] 
c = geo['pore.capacitance'] 
F = 96485.3321233100184 
gamma_salt = np.dot(100-C, V.T) 
sigma_charge = np.sum((c*(0.5-P)/F)[net.pores('anode')]) 
lamda = gamma_salt/sigma_charge 
print('salt adsorption (mol):', gamma_salt) 
print('charge efficiency:', lamda) 
 
# get comsol data for comparison, these are the times I am exporting 
df_c = pd.read_excel('COMSOL-data-updated.xlsx',  
                     sheet_name='Concentration') 
df_p = pd.read_excel('COMSOL-data-updated.xlsx',  
                     sheet_name='Potential') 
columns = [1, 2, 3, 6, 11, 21, 26, 51, 76, 101] 
times = np.arange(0, 1001, 10) 
for c in columns: 
    salt['pore.COMSOL_potential@'+str(times[c-1])] = df_p.values[:, c] 
    salt['pore.COMSOL_concentration@'+str(times[c-1])] = df_c.values[:, c] 
    Cfem = salt['pore.COMSOL_concentration@'+str(times[c-1])]  
    Pfem = salt['pore.COMSOL_potential@'+str(times[c-1])]  
    Cpnm = salt['pore.concentration@'+str(times[c-1])] 
    Ppnm = salt['pore.potential@'+str(times[c-1])] 
    # Error 
    salt['pore.concentration_error@'+str(times[c-1])] = np.abs((Cpnm - Cfem)/100)*100 
    salt['pore.potential_error@'+str(times[c-1])] = np.abs((Ppnm - Pfem)/0.5)*100 
 
# Export to XDMF for paraview 
net['throat.radius'] = net['throat.diameter'] / 2 
op.io.XDMF.save(network=net, phases=[salt], filename="capacitive_deionization_gcs")  
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modified Donnan 

import pandas as pd 
import openpnm as op 
import donnan_models as cdi 
import numpy as np 
 
np.random.seed(0) 
 
# network 
spacer = 5 # pore width 
[Npx, Npy, Npz] = [21, 14, 1] 
spacing = 1e-4 
net = op.network.Cubic(shape=[Npx, Npy, Npz], spacing=spacing) 
 
net['pore.anode'] = net['pore.coords'][:, 0] < (Npx - spacer)*spacing/2 
net['pore.cathode'] = net['pore.coords'][:, 0] > (Npx + spacer)*spacing/2 
net['pore.spacer'] = np.logical_and(~net['pore.anode'], ~net['pore.cathode']) 
Ps_a = net.pores(labels='anode') 
Ps_c = net.pores(labels='cathode') 
Ps_s = net.pores(labels='spacer') 
Ts_a = net.find_neighbor_throats(pores=Ps_a, mode='xnor') 
Ts_c = net.find_neighbor_throats(pores=Ps_c, mode='xnor') 
inter_thrt = net.find_neighbor_throats(net.pores(labels='spacer'), mode='xor') 
 
# remove throats 
remove = np.random.choice(np.concatenate((Ts_a, Ts_c)), size=int(Ts_a.size/3)) 
op.topotools.trim(net, throats=remove) 
op.topotools.plot_connections(net, throats=net.throats('all')) 
 
# geometry 
Ps = net.pores(labels='all') 
Ts = net.throats(labels='all') 
geo = op.geometry.StickAndBall2D(network=net, pores=Ps, throats=Ts) 
geo['pore.diameter'][Ps_s] = geo['pore.diameter'].mean() * 0.5 
geo.regenerate_models(exclude=['pore.diameter']) 
# add effective volume model 
geo['throat.volume'][inter_thrt] = 0  # don't add volume of inter throats 
eff_vol = op.models.geometry.pore_volume.effective 
geo.add_model(propname='pore.effective_volume', model=eff_vol) 
# add pore.capacitance prop without interconnecting throat volume 
C = 0.05 # F/m^2 
a = 500000000 # m^2/m^3 
V = geo['pore.effective_volume'] 
geo['pore.capacitance'] = C * a * V 
geo['pore.capacitance'][Ps_s] = 0 
# calculate micropore volume 
rho_mi = 0.3 
rho_ma = 0.4 
geo['pore.micropore_volume'] = rho_mi / rho_ma * V 
# add back interconecting throat volume 
geo.regenerate_models(exclude=['pore.diameter']) 
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# phase 
salt = op.phases.Water(network=net) 
salt['pore.diffusivity'] = 2e-9 
salt['pore.valence'] = 1 
salt['pore.valence'][Ps_a] = -1 
salt['pore.concentration'] = 100 
 
# physics 
phys = op.physics.GenericPhysics(network=net, phase=salt, geometry=geo) 
phys['pore.capacitance'] = geo['pore.capacitance'] 
phys['pore.micropore_volume'] = geo['pore.micropore_volume'] 
 
current = op.models.physics.ionic_conductance.myelectroneutrality_2D 
phys.add_model(propname='throat.ionic_conductance', model=current, 
               regen_mode='normal') 
 
diffusion = op.models.physics.diffusive_conductance.ordinary_diffusion_2d 
phys.add_model(propname='throat.diffusive_conductance', 
               model=diffusion, 
               regen_mode='normal') 
 
# settings for algorithms 
settings = {'solver_max_iter': 5, 'solver_tol': 1e-08, 'solver_rtol': 1e-08, 
            'nlin_max_iter': 10, 'cache_A': False, 'cache_b': False} 
 
# algorithms 
ic = op.algorithms.IonicConduction(network=net, phase=salt, settings=settings) 
tfd = op.algorithms.TransientFickianDiffusion(network=net, phase=salt, 
                                              settings=settings) 
p = op.algorithms.TransientIonicConduction(network=net, phase=salt, 
                                           settings=settings) 
pnp = op.algorithms.TransientMultiphysicsSolver(network=net, phase=salt) 
pnp.settings['g_max_iter'] = 50 
pnp.settings['g_tol'] = 1e-4 
pnp.setup(algorithms=[tfd.name, p.name]) 
 
# update tfd settings 
tfd.settings['pore_volume'] = 'pore.effective_volume' 
tfd.settings['old_prop'] = 'pore.concentration_micropore' 
 
# update charge settings 
p.settings['charge_conservation'] = 'laplace' 
p.settings['pore_volume'] = 'pore.capacitance' 
p.settings['old_prop'] = 'pore.donnan_potential' 
 
# run ic algorithm to get initial conditions for potential 
ic.set_value_BC(pores=Ps_a, values=0.5) 
ic.set_value_BC(pores=Ps_c, values=-0.5) 
ic.run() 
 
# initial conditions 
tfd.set_IC(values=100) 
P_IC = ic['pore.potential'] 
p.set_IC(values=P_IC) 
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# time step 
dt = 1 
tmax = 2 
 
# Fix time step problem 
p.settings['t_step'] = dt 
tfd.settings['t_step'] = dt 
 
pnp.settings['t_final'] = tmax 
pnp.settings['t_step'] = dt# multiphysics solver settings 
pnp.settings['t_initial'] = 0 
 
pnp.settings['t_output'] = 1 
pnp.settings['t_scheme'] = 'implicit' 
 
# add donnan potential model 
salt['pore.potential'] = P_IC 
salt['pore.potential_electrode'] = P_IC 
salt['pore.capacitance_vol'] = C * a 
phys.add_model(propname='pore.donnan_potential', 
               model=cdi.donnan_potential, 
               pore_capacitance='pore.capacitance_vol', 
               pore_concentration='pore.concentration', 
               pore_potential='pore.potential', 
               pore_potential_electrode='pore.potential_electrode', 
               pore_temperature='pore.temperature') 
 
# add micropore concentration model 
phys.add_model(propname='pore.concentration_micropore', 
               model=cdi.micropore_concentration, 
               pore_concentration='pore.concentration', 
               pore_donnan_potential='pore.donnan_potential', 
               pore_temperature='pore.temperature') 
 
# add mass source term 
phys['pore.concentration_micropore_old'] = np.ones(net.Np)*200 
phys.add_model(propname='pore.donnan_source_mass', 
               model=cdi.donnan_source_mass, 
               micropore_volume='pore.micropore_volume', 
               micropore_concentration='pore.concentration_micropore', 
               algorithm=pnp.name) 
tfd.set_source(propname='pore.donnan_source_mass', pores=[Ps_a, Ps_c]) 
 
# add potential source term 
phys['pore.donnan_potential_old'] = np.zeros(net.Np) 
phys.add_model(propname='pore.donnan_source_potential', 
               model=cdi.donnan_source_potential, 
               pore_capacitance='pore.capacitance', 
               pore_donnan_potential='pore.donnan_potential', 
               algorithm=pnp.name) 
p.set_source(propname='pore.donnan_source_potential', pores=[Ps_a, Ps_c]) 
 
# run 
pnp.run() 
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# update results 
salt.update(tfd.results()) 
salt.update(p.results()) 
 
# update C and P 
# mask = net['pore.coords'][:, 1] == 1.5*spacing  # only want certain pores 
mask = net.pores('all') 
C = tfd['pore.concentration'][mask] 
P = p['pore.potential'][mask] 
 
# Charge Efficiency 
V = geo['pore.effective_volume'] 
c = geo['pore.capacitance'] 
F = 96485.3321233100184 
gamma_salt = np.dot(100-C, V.T) 
sigma_charge = np.sum((c*(0.5-P)/F)[net.pores('anode')]) 
lamda = gamma_salt/sigma_charge 
print('salt adsorption (mol):', gamma_salt) 
print('charge efficiency:', lamda) 
 
# get comsol data for comparison, these are the times I am exporting 
df_c = pd.read_excel('COMSOL-data.xlsx',  
                     sheet_name='Concentration') 
df_p = pd.read_excel('COMSOL-data.xlsx',  
                     sheet_name='Potential') 
columns = [1, 2, 3, 6, 11, 21, 26, 51, 76, 101] 
times = np.arange(0, 1001, 10) 
for c in columns: 
    salt['pore.COMSOL_potential@'+str(times[c-1])] = df_p.values[:, c] 
    salt['pore.COMSOL_concentration@'+str(times[c-1])] = df_c.values[:, c] 
    Cfem = salt['pore.COMSOL_concentration@'+str(times[c-1])]  
    Pfem = salt['pore.COMSOL_potential@'+str(times[c-1])]  
    Cpnm = salt['pore.concentration@'+str(times[c-1])] 
    Ppnm = salt['pore.potential@'+str(times[c-1])] 
    # Error 
    salt['pore.concentration_error@'+str(times[c-1])] = np.abs((Cpnm - Cfem)/100)*100 
    salt['pore.potential_error@'+str(times[c-1])] = np.abs((Ppnm - Pfem)/0.5)*100 
 
# Export to XDMF for paraview 
net['throat.radius'] = net['throat.diameter'] / 2 
op.io.XDMF.save(network=net, phases=[salt], filename="capacitive_deionization_donnan") 
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Models were written in separate .py files and imported for use in the previous demonstration of 

applying EDL theory to a pore network. Those models are recorded as follows for each of the EDL 

theories: Helmholtz, Gouy-Chaoman-Stern, and modified Donnan. 

Helmholtz 

def helmholtz(target, capacitance='', valence='', potential='', algorithm=''): 
    r""" 
    Calculates the rate of electrosorption using the Helmholtz capacitor-like 
    model for electrical double layers. This model assumes electroneutrality 
    in the macropores and electrode symmetry. Therefore, the rate calculated 
    is the rate of salt adsorbed not the rate of an individual ion. 
 
        .. math:: 
            r = - C / z_{counter} / 2 / F * dphi/dt 
 
    Parameters 
    ---------- 
    capacitance : string 
        The dictionary key on the target object containing coefficient C, the 
        capacitance with units C/V or F 
 
    valence : string 
        The dictionary key on the target object containing coefficient 
        z_{counter}, the counterion valence 
 
    potential : string 
        The dictionary key on the target object containing the potential (phi) 
 
    algorithm : string 
        The algorithm name of which the time step is stored 
 
    Returns 
    ------- 
    A dictionary containing the following three items: 
 
        **'rate'** - The value of the source term function at the given X. 
 
        **'S1'** - The slope of the source term function at the given X. 
 
        **'S2'** - The intercept of the source term function at the given X. 
 
    The slope and intercept provide a linearized source term equation about the 
    current value of X as follow: 
 
        .. math:: 
            rate = S_{1}   X  +  S_{2} 
 
    """ 
 
    project = target.project 
    algorithm = project.algorithms()[algorithm] 
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    phase = project.find_phase(target) 
 
    F = 96485.3321233100184 
 
    Ca = target[capacitance] 
    phi_new = target[potential + '_new'] 
    phi_old = target[potential + '_old'] 
    z = phase[valence] 
    dt = algorithm.settings['t_step'] 
 
    r = - Ca / z / 2 / F / dt * (phi_new - phi_old) 
    S1 = 0 
    S2 = - Ca / z / 2 / F / dt * (phi_new - phi_old) 
 
    values = {'S1': S1, 'S2': S2, 'rate': r} 
 
    return values 
 
 
def fetch_property(target, quantity='', algorithm=''): 
    r""" 
    The purpose of this method is to update a hard coded property on the 
    target object by fetching the property from the algorithm object where 
    it's most recent value is stored 
 
    Parameters 
    ---------- 
    quantity : string, required 
        The dictionary key on the target object containing the quantity to be 
        fetched 
    algorithm : string, required 
        The name of the algorithm by which the quantity will be fetched 
 
    Returns 
    ------- 
    values : data 
        The values of the property fetched from the algorithm object 
 
    """ 
    project = target.project 
    algorithm = project.algorithms()[algorithm] 
 
    target[quantity + '_new'] = algorithm[quantity] 
    values = target[quantity + '_new'] 
 
    return values 
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Gouy-Chapman-Stern 

import numpy as np 
from scipy.optimize import fsolve 
from scipy.optimize import newton_krylov 
 
 
def gcs_source_mass(target, 
                    pore_surface_area='', 
                    pore_salt_surface_density='', 
                    algorithm=''): 
    r""" 
    Calculates the rate of electrosorption using the gouy-chapman-stern model 
    for electrical double layers. This model assumes electroneutrality 
    in the macropores and electrode symmetry. Therefore, the rate calculated 
    is the rate of salt adsorbed not the rate of an individual ion. 
 
        .. math:: 
            r = - A * dw/dt 
 
    Parameters 
    ---------- 
    pore_surface_area : string 
        The dictionary key on the target object containing the specific 
        surface area, A in units m^{2} 
 
    pore_salt_surface_density : string 
        The dictionary key on the target object containing the salt surface 
        density. We automatically append '_old' to find the old value. 
 
    algorithm : string 
        The algorithm name of which the time step is stored 
 
    Returns 
    ------- 
    A dictionary containing the following three items: 
 
        **'rate'** - The value of the source term function at the given X. 
 
        **'S1'** - The slope of the source term function at the given X. 
 
        **'S2'** - The intercept of the source term function at the given X. 
 
    The slope and intercept provide a linearized source term equation about the 
    current value of X as follow: 
 
        .. math:: 
            rate = S_{1}   X  +  S_{2} 
 
    """ 
    project = target.project 
    algorithm = project.algorithms()[algorithm] 
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    A = target[pore_surface_area] 
    w_new = target[pore_salt_surface_density] 
    w_old = target[pore_salt_surface_density + '_old'] 
    dt = algorithm.settings['t_step'] 
 
    r = - A / dt * (w_new - w_old) 
    S1 = 0 
    S2 = - A / dt * (w_new - w_old) 
    values = {'S1': S1, 'S2': S2, 'rate': r} 
 
    return values 
 
 
def gcs_source_potential(target, 
                         pore_capacitance='', 
                         pore_donnan_potential='', 
                         algorithm=''): 
    r""" 
    Source term for considering the effects of co-ion expulsion from micropores 
    into macropores. For example, a decrease in the donnan potential in the 
    anode signifies positive ions (co-ion) leaving the micropore and entering 
    macropore resulting in a gernation of positive ions in the ionic transport 
    algorithm. This source term is to be applied to an ionic transport 
    algorithm. 
 
        .. math:: 
            r = - C * d{\Delta\phi}_{d}/dt 
 
    Parameters 
    ---------- 
    pore_capacitance : string 
        The dictionary key on the target object containing coefficient C, the 
        capacitance with units C/V or F 
 
    pore_donnan_potential : string 
        The dictionary key on the target object containing the donnan 
        potential denoted as {\Delta\phi}_{d}. We automatically append '_old' 
        to find the old value. 
 
    algorithm : string 
        The algorithm name of which the time step is stored 
 
    Returns 
    ------- 
    A dictionary containing the following three items: 
 
        **'rate'** - The value of the source term function at the given X. 
 
        **'S1'** - The slope of the source term function at the given X. 
 
        **'S2'** - The intercept of the source term function at the given X. 
 
    The slope and intercept provide a linearized source term equation about the 
    current value of X as follow: 
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        .. math:: 
            rate = S_{1}   X  +  S_{2} 
 
    """ 
    project = target.project 
    algorithm = project.algorithms()[algorithm] 
 
    C = target[pore_capacitance] 
    phi_d = target[pore_donnan_potential] 
    phi_d_old = target[pore_donnan_potential + '_old'] 
    dt = algorithm.settings['t_step'] 
 
    r = - C / dt * (phi_d - phi_d_old) 
    S1 = 0 
    S2 = - C / dt * (phi_d - phi_d_old) 
    values = {'S1': S1, 'S2': S2, 'rate': r} 
 
    return values 
 
 
def debye_length(target, 
                 pore_bjerrum_length='', 
                 pore_concentration=''): 
    r""" 
    A method for calculating the debye length. The debye length is a function 
    of concentration and bjerrum length. The debye length gives us information 
    about the size of the electrical double layer. 
 
        .. math:: 
            {lambda}_{d} = 1 / {kappa} 
            {kappa}^{2} = 8{pi}{lambda}_{b}c_{mA}N_{av} 
 
    Parameters 
    ---------- 
    pore_bjerrum_length : string 
        The dictionary key on the target object containing the bjerrum length, 
        {lambda}_{b} 
 
    pore_concentration : string 
        The dictionary key on the target object containing the macropore 
        concentration, c_{mA} 
 
    """ 
 
    Nav = 6.02214076e23 
 
    lamda_B = target[pore_bjerrum_length] 
    C = target[pore_concentration] 
 
    k = np.sqrt(8 * np.pi * lamda_B * C * Nav) 
    lamda_D = 1/k 
 
    return lamda_D 
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def salt_surface_density(target, 
                         pore_concentration='', 
                         pore_debye_length='', 
                         pore_donnan_potential='', 
                         pore_temperature=''): 
    r""" 
    A method for calculating the salt surface density. The rate of change of 
    the salt surface desnity is used to determine the uptake rate of salt into 
    the electrical double layers of micropores. 
 
        .. math:: 
            w = 8{lambda}_{d}c_{mA}sinh^{2}(F/4/R/T{\Delta\phi}_{d}) 
 
    Parameters 
    ---------- 
    pore_concentration : string 
        The dictionary key on the target object containing the macropore 
        concentration, c_{mA} 
 
    pore_debye_length : string 
        The dictionary key on the target object containing the debye length, 
        {lambda}_{d} 
 
    pore_donnan_potential : string 
        The dictionary key on the target object containing the donnan 
        poential, {\Delta\phi}_{d} 
 
    pore_temperature : string 
        The dictionary key on the target object containing the temperature, T 
 
    """ 
 
    F = 96485.3321233100184 
    R = 8.31446261815324 
 
    CmA = target[pore_concentration] 
    phi_d = target[pore_donnan_potential] 
    T = target[pore_temperature] 
    lamda_D = target[pore_debye_length] 
 
    w = 8 * lamda_D * CmA * np.sinh(1/4 * phi_d * F / R / T) ** 2 
 
    return w 
 
 
def charge_surface_density(target, 
                           pore_donnan_potential, 
                           pore_concentration='', 
                           pore_debye_length='', 
                           pore_temperature=''): 
    r""" 
    A method for calculating the concentration of charge stored in the 
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    micropore. The amount of charge stored in the micropore is used for 
    determining the stern potential. 
 
        .. math:: 
            {sigma} = 4{lambda}_{d}c_{mA}sinh(F/2/R/T{\Delta\phi}_{d}) 
 
    Parameters 
    ---------- 
    pore_donnan_potential : array-like 
        The pore length array of donnan potential values 
     
    pore_concentration : string 
        The dictionary key on the target object containing the macropore 
        concentration 
 
    pore_debye_length : string 
        The dicionary key on the target object containing the debye length 
         
    pore_temperature : string 
        The dicionary key on the target object containing the temperature 
 
    """ 
    F = 96485.3321233100184 
    R = 8.31446261815324 
     
    phi_d = pore_donnan_potential 
    CmA = target[pore_concentration] 
    T = target[pore_temperature] 
    lamda_D = target[pore_debye_length] 
     
    sigma = 4 * lamda_D * CmA * np.sinh(1/2 * phi_d * F / R / T) 
     
    return sigma 
 
 
def stern_potential(target, 
                    pore_charge_density, 
                    pore_capacitance=''): 
    r""" 
    A method for calculating the micropore concentration. The change in 
    micropore concentration is used as the source term of our mass algorithm. 
 
        .. math:: 
            {\Delta\phi}_{st} = c_{charge,mi} * F / Ca 
 
    Parameters 
    ---------- 
    pore_charge_density : array-like 
        The pore length array of micropore charge values 
     
    pore_capacitance : string 
        The dictionary key on the target object containing the volumetric 
        capacitance, Ca 
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    """ 
    F = 96485.3321233100184 
     
    sigma = pore_charge_density 
    C = target[pore_capacitance] 
     
    phi_st = sigma * F / C 
     
    return phi_st 
 
 
def _potential_balance_gcs(phi_d, 
                           target, 
                           pore_capacitance='', 
                           pore_concentration='', 
                           pore_debye_length='', 
                           pore_potential='', 
                           pore_potential_electrode='', 
                           pore_temperature=''): 
    r""" 
    Hidden method used for calculating donnan potential. Fsolve is used to 
    find the root of this potential balance. The root is the donnan potential. 
    The potential balance across the EDL must be zero. 
    """ 
 
    phi = target[pore_potential] 
    phi_1 = target[pore_potential_electrode] 
     
    sigma = charge_surface_density(target, 
                                   phi_d, 
                                   pore_concentration, 
                                   pore_debye_length, 
                                   pore_temperature) 
 
    phi_st = stern_potential(target, 
                             sigma, 
                             pore_capacitance) 
 
    fun = phi_d + phi_st + phi - phi_1 
 
    return fun 
 
 
def donnan_potential(target, 
                     pore_capacitance='', 
                     pore_concentration='', 
                     pore_debye_length='', 
                     pore_potential='', 
                     pore_potential_electrode='', 
                     pore_temperature='', 
                     solver='fsolve'): 
    r""" 
    A method for calculating the donnan potential. To calculate the donnan 
    potential, we use scipy's fsolve on a charge balance around the electrical 
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    double layer. Here is a look at the charge balance: 
 
        .. math:: 
            0 = {\Delta\phi}_{d} + {\Delta\phi}_{st} + {phi} - {phi}_1 
 
    Parameters 
    ---------- 
    pore_capacitance : string 
        The dictionary key on the target object containing the volumetric 
        capacitance, Ca in units F/m3 
 
    pore_concentration : string 
        The dictionary key on the target object containing the macropore 
        concentration, c_{mA} 
 
    pore_potential : string 
        The dictionary key on the target object containing the macropore 
        potential, {phi} 
 
    pore_potential_electrode : string 
        The dictionary key on the target object containing the electrode 
        potential, {phi}_{1} We assume that electrode is fixed and that the 
        electronic conductance is much greater than the ionic conductance. 
 
    pore_temperature : string 
        The dictionary key on the target object containing the temperature, T 
         
    solver : string 
        The name of scipy's solver. Either fsolve or newton_krylov. The default 
        solver is fsolve. Use newton_krylov for large systems. 
 
    """ 
    n = target.project.network.Np 
     
    if solver == 'newton_krylov': 
         
        f = _potential_balance_gcs 
        phi_d = newton_krylov(lambda phi_d: f(phi_d,  
                                              target,  
                                              pore_capacitance,  
                                              pore_concentration, 
                                              pore_debye_length, 
                                              pore_potential,  
                                              pore_potential_electrode,  
                                              pore_temperature),  
                              np.zeros(n)) 
     
    elif solver == 'fsolve' : 
     
        phi_d = fsolve(_potential_balance_gcs, np.zeros(n), 
                   args=(target, 
                         pore_capacitance, 
                         pore_concentration, 
                         pore_debye_length, 
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                         pore_potential, 
                         pore_potential_electrode, 
                         pore_temperature)) 
 
    return phi_d 
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modified Donnan 

import numpy as np 
from scipy.optimize import fsolve 
from scipy.optimize import newton_krylov 
 
 
def donnan_source_mass(target, 
                       micropore_volume='', 
                       micropore_concentration='', 
                       algorithm=''): 
    r""" 
    Calculates the rate of electrosorption using the modified Donnan model 
    for electrical double layers. This model assumes electroneutrality 
    in the macropores and electrode symmetry. Therefore, the rate calculated 
    is the rate of salt adsorbed not the rate of an individual ion. 
 
        .. math:: 
            r = - V_{mi} / 2 * dc_{mi}/dt 
 
    Parameters 
    ---------- 
    micropore_volume : string 
        The dictionary key on the target object containing the micropore 
        volume, V_{mi} 
 
    micropore_concentration : string 
        The dictionary key on the target object containing the micropore 
        concentration. We automatically append '_old' to find the old value. 
 
    algorithm : string 
        The algorithm name of which the time step is stored 
 
    Returns 
    ------- 
    A dictionary containing the following three items: 
 
        **'rate'** - The value of the source term function at the given X. 
 
        **'S1'** - The slope of the source term function at the given X. 
 
        **'S2'** - The intercept of the source term function at the given X. 
 
    The slope and intercept provide a linearized source term equation about the 
    current value of X as follow: 
 
        .. math:: 
            rate = S_{1}   X  +  S_{2} 
 
    """ 
 
    project = target.project 
    algorithm = project.algorithms()[algorithm] 
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    V_mi = target[micropore_volume] 
    C_new = target[micropore_concentration] 
    C_old = target[micropore_concentration + '_old'] 
    dt = algorithm.settings['t_step'] 
 
    r = - V_mi / 2 / dt * (C_new - C_old) 
    S1 = 0 
    S2 = - V_mi / 2 / dt * (C_new - C_old) 
 
    values = {'S1': S1, 'S2': S2, 'rate': r} 
 
    return values 
 
 
def donnan_source_potential(target, 
                            pore_capacitance='', 
                            pore_donnan_potential='', 
                            algorithm=''): 
    r""" 
    Source term for considering the effects of co-ion expulsion from micropores 
    into macropores. For example, a decrease in the donnan potential in the 
    anode signifies positive ions (co-ion) leaving the micropore and entering 
    macropore resulting in a gernation of positive ions in the ionic transport 
    algorithm. This source term is to be applied to an ionic transport 
    algorithm. 
 
        .. math:: 
            r = - C * d{\Delta\phi}_{d}/dt 
 
    Parameters 
    ---------- 
    pore_capacitance : string 
        The dictionary key on the target object containing coefficient C, the 
        capacitance with units C/V or F 
 
    pore_donnan_potential : string 
        The dictionary key on the target object containing the donnan 
        potential denoted as {\Delta\phi}_{d}. We automatically append '_old' 
        to find the old value. 
 
    algorithm : string 
        The algorithm name of which the time step is stored 
 
    Returns 
    ------- 
    A dictionary containing the following three items: 
 
        **'rate'** - The value of the source term function at the given X. 
 
        **'S1'** - The slope of the source term function at the given X. 
 
        **'S2'** - The intercept of the source term function at the given X. 
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    The slope and intercept provide a linearized source term equation about the 
    current value of X as follow: 
 
        .. math:: 
            rate = S_{1}   X  +  S_{2} 
 
    """ 
 
    project = target.project 
    algorithm = project.algorithms()[algorithm] 
 
    C = target[pore_capacitance] 
    phi_d_new = target[pore_donnan_potential] 
    phi_d_old = target[pore_donnan_potential + '_old'] 
    dt = algorithm.settings['t_step'] 
 
    r = - C / dt * (phi_d_new - phi_d_old) 
    S1 = 0 
    S2 = - C / dt * (phi_d_new - phi_d_old) 
    values = {'S1': S1, 'S2': S2, 'rate': r} 
 
    return values 
 
 
def micropore_concentration(target, 
                            pore_concentration='', 
                            pore_donnan_potential='', 
                            pore_temperature=''): 
    r""" 
    A method for calculating the micropore concentration. The change in 
    micropore concentration is used as the source term of our mass algorithm. 
 
        .. math:: 
            c_{mi} = 2c_{mA}cosh(F/R/T{\Delta\phi}_{d}) 
 
    Parameters 
    ---------- 
    pore_concentration : string 
        The dictionary key on the target object containing the macropore 
        concentration 
 
    pore_donnan_potential : string 
        The dictionary key on the target object containing the donnan 
        potential 
 
    pore_temperature : string 
        The dicionary key on the target object containing the temperature 
 
    """ 
    F = 96485.3321233100184 
    R = 8.31446261815324 
 
    CmA = target[pore_concentration] 
    phi_d = target[pore_donnan_potential] 
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    T = target[pore_temperature] 
 
    Cmi = 2 * CmA * np.cosh(phi_d * F / R / T) 
 
    return Cmi 
 
 
def micropore_charge(target, 
                     pore_donnan_potential, 
                     pore_concentration='', 
                     pore_temperature=''): 
    r""" 
    A method for calculating the concentration of charge stored in the 
    micropore. The amount of charge stored in the micropore is used for 
    determining the stern potential. 
 
        .. math:: 
            c_{charge,mi} = 2c_{mA}sinh(F/R/T{\Delta\phi}_{d}) 
 
    Parameters 
    ---------- 
    pore_donnan_potential : array-like 
        The pore length array of donnan potential values 
     
    pore_concentration : string 
        The dictionary key on the target object containing the macropore 
        concentration 
 
    pore_temperature : string 
        The dicionary key on the target object containing the temperature 
 
    """ 
 
    F = 96485.3321233100184 
    R = 8.31446261815324 
 
    CmA = target[pore_concentration] 
    T = target[pore_temperature] 
    phi_d = pore_donnan_potential 
 
    C_charge_mi = 2 * CmA * np.sinh(phi_d * F / R / T) 
 
    return C_charge_mi 
 
 
def stern_potential(target, 
                    micropore_charge, 
                    pore_capacitance=''): 
    r""" 
    A method for calculating the micropore concentration. The change in 
    micropore concentration is used as the source term of our mass algorithm. 
 
        .. math:: 
            {\Delta\phi}_{st} = c_{charge,mi} * F / Ca 
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    Parameters 
    ---------- 
    micropore_charge : array-like 
        The pore length array of micropore charge values 
     
    pore_capacitance : string 
        The dictionary key on the target object containing the volumetric 
        capacitance, Ca 
         
    """ 
 
    F = 96485.3321233100184 
 
    C_charge_mi = micropore_charge 
    Ca = target[pore_capacitance] 
 
    phi_st = C_charge_mi * F / Ca 
 
    return phi_st 
 
 
def _potential_balance(phi_d, 
                       target, 
                       pore_capacitance='', 
                       pore_concentration='', 
                       pore_potential='', 
                       pore_potential_electrode='', 
                       pore_temperature=''): 
    r""" 
    Hidden method used for calculating donnan potential. Fsolve is used to 
    find the root of this potential balance. The root is the donnan potential. 
    The potential balance across the EDL must be zero. 
         
    """ 
    phi = target[pore_potential] 
    phi_1 = target[pore_potential_electrode] 
     
    C_charge_mi = micropore_charge(target, 
                                   phi_d, 
                                   pore_concentration, 
                                   pore_temperature) 
     
    phi_st = stern_potential(target, 
                             C_charge_mi, 
                             pore_capacitance) 
 
    fun = phi_d + phi_st + phi - phi_1 
 
    return fun 
 
 
def donnan_potential(target, 
                     pore_capacitance='', 
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                     pore_concentration='', 
                     pore_potential='', 
                     pore_potential_electrode='', 
                     pore_temperature='', 
                     solver='fsolve'): 
    r""" 
    A method for calculating the donnan potential. To calculate the donnan 
    potential, we use scipy's fsolve on a charge balance around the electrical 
    double layer. Here is a look at the charge balance: 
 
        .. math:: 
            0 = {\Delta\phi}_{d} + {\Delta\phi}_{st} + {phi} - {phi}_1 
 
    Parameters 
    ---------- 
    pore_capacitance : string 
        The dictionary key on the target object containing the volumetric 
        capacitance, Ca in units F/m3 
 
    pore_concentration : string 
        The dictionary key on the target object containing the macropore 
        concentration, c_{mA} 
 
    pore_potential : string 
        The dictionary key on the target object containing the macropore 
        potential, {phi} 
 
    pore_potential_electrode : string 
        The dictionary key on the target object containing the electrode 
        potential, {phi}_{1} We assume that electrode is fixed and that the 
        electronic conductance is much greater than the ionic conductance. 
 
    pore_temperature : string 
        The dictionary key on the target object containing the temperature, T 
         
    solver : string 
        The name of scipy's solver. Either fsolve or newton_krylov. The default 
        solver is fsolve. Use newton_krylov for large systems. 
 
    """ 
    n = target.project.network.Np 
     
    if solver == 'newton_krylov': 
         
        f = _potential_balance 
        phi_d = newton_krylov(lambda phi_d: f(phi_d,  
                                              target,  
                                              pore_capacitance,  
                                              pore_concentration,  
                                              pore_potential,  
                                              pore_potential_electrode,  
                                              pore_temperature),  
                              np.zeros(n)) 
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    elif solver == 'fsolve' : 
     
        phi_d = fsolve(_potential_balance, np.zeros(n), 
                   args=(target, 
                         pore_capacitance, 
                         pore_concentration, 
                         pore_potential, 
                         pore_potential_electrode, 
                         pore_temperature)) 
 
    return phi_d 

 


