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Abstract

This work improves on a standard method used to calibrate y, the Flory-Huggins
interaction parameter, in experimental systems. The common method is to fit the order-
disorder transition (ODT) of symmetric diblock copolymer melts to the mean-field predic-
tion (xN)opr = 10.495. This work improves the calibration by using the more accurate
prediction of (xN)opr from Morse and coworkers, correcting for the small degrees of poly-
dispersity and compositional asymmetry that exist in real diblock copolymers. To find the
correction, polydisperse lattice simulations are conducted over a wide range of invariant
polymerization indices. The correction for compositional asymmetry is extracted from sim-
ulations for asymmetric diblocks conducted by Ghasimakbari and Morse. This improved
calibration is demonstrated for 19 different chemistries, using previously published data
from experiments. This calibration provides a considerable increase in accuracy, while still
being simple to apply.

111



Acknowledgements

I want to thank my supervisor, Prof. Mark Matsen, for his support and guidance. Also,
[ am grateful to my graduate committee Prof. Robert Wickham and Prof. Jamie Forrest
for their support. Special thanks to Dr. Thomas Beardsley for his input and expertise in
this area. Computer resources were provided by Compute Canada.

v



Table of Contents

List of Figures

List of Tables

List of Abbreviations
List of symbols

1 Introduction

1.1 Polymer Melts . . . . . . . . . . .
1.2 Block Copolymers . . . . . . . .. ...
1.3 Gaussian chain . . . . . . ..o
1.4 Mean-Field Theory . . . . . . . . . .. . ..
1.5 Fluctuations . . . . . . . . ..
1.6 Universality . . . . . . . . .

2 Monte Carlo Simulations

2.1 Lattice Model . . . . . . . .
2.2 Statistical Mechanics . . . . . . ... oo
2.3 Monte Carlo Steps . . . . . . . .
2.4 Parallel Tempering . . . . . . . ..

vii

xii

xiii

O O =



3 Calibration of the Lattice Model

3.1 Calibration for Statistical Segment Length
3.2 Calibration of x . . . . . . .

4 Order-Disorder Transition

4.1 Monodisperse Order-Disorder Transition

4.2 Polydisperse Correction to the ODT

4.3 Compositional Asymmetry Correction to the ODT

5 Calibration of Experimental Systems

6 Conclusion

6.1 Conclusion . . . . . . . . .

6.2 Further Work . . . . . . . .

Bibliography
Appendices
A Calibration Data

B Random Phase Approximation

vi

30
30
32

41
41
43
49

53

63
63
64

65

73

74

95



List of Figures

1.1
1.2

1.3
1.4

1.5

1.6

1.7

1.8

2.1

2.2

2.3

24

Diagram of various polymer architectures. . . . . . .. ... .. ... ...
Diagram of a polymer showing the points 7(s;) and 7(s2). . . . . . . . . ..
Diagram of a polymer showing the end-to-end distance Roo oo oo i

Minority domains from the periodically ordered phases observed in diblock
copolymer melts. They are, lamellar (L), gyroid (G), cylindrical (C), and
spherical (S). . . . . . ..

Diblock copolymer phase diagram reproduced from Matsen and Bates [13].

Diblock copolymer phase diagram reproduced from Fredrickson-Helfand 1989
125

Comparison of the disorder state structure functions for the three different
theories |12, 15, 21]. . . . . ..o

Plot of the ODT of symmetric diblocks over a range of N. [18]. Different
symbols are from different models that where calibrated independently.

Example of the slithering snake move. For simplicity, the move is demon-
strated on a two-dimensional simple square lattice . . . . . . . .. ... ..

Example of the crankshaft move. For simplicity, the move is demonstrated
on a two-dimensional simple square lattice . . . . . ... ... ... ....

Example of the head-to-tail flip move. For simplicity, the move is demon-
strated on a two-dimensional simple square lattice . . . . . . ... ... ..

Example of the polymer rebridging move. For simplicity, the move is demon-
strated on a two-dimensional simple square lattice. The sites with two
monomers on them are marked with the number 2. . . . . . . .. ... ..

vii

14

15

16

17

24

25

26



3.1

3.2

3.3
3.4

3.5

3.6

3.7

4.1

4.2

4.3

Calibration of the statistical segment length for ¢ = 1, 2, 3, and 5. The
symbols are from the lattice simulations and the lines are the fits. . . . . .

Fits of the number of intermolecular contacts used to determine z, for ¢ =
1, 2, 3, and 5. The symbols are from the lattice simulations and the lines
are the fits. . . . . . .

Leibler function fits for N =30 withe=2and 5. . . . . . . . . .. . ...

Peaks in structure functions for ¢ = 1. Symbols are from the lattice simula-
tions and curves are ROL predictions. The fit to ROL predictions for N =
135, 180, 271, and 406 give values of Cy = 33.6 and C5 = —74. . . . . . ..

Peaks in structure functions for ¢ = 2. Symbols are from the lattice simula-
tions and curves are ROL predictions. The fit to ROL predictions for N =
372, 496 744, and 1240 give values of Cy = 208 and C3 = —63. . . . . . ..

Peaks in structure functions for ¢ = 3. Symbols are from the lattice simula-
tions and curves are ROL predictions. The fit to ROL predictions for N =
678, 968, 1452, and 2420 give values of Cy = 0.68 and C5 = —0.17. . . . . .

Peaks in structure functions for ¢ = 5. Symbols are from the lattice sim-
ulations and curves are ROL predictions. The fit to ROL predictions for

N = 5990, 3594, 2396, and 1797 give values of Cy = 4.15 and C3 = —8.5. . .

Average number of AB contacts, (n4p), from parallel-tempering simulations
of monodisperse diblock copolymers with N = 50 and with ¢ = 1,2, 3, and 5
monomers per site, respectively. Open symbols are started from a lamellar
configuration and closed symbols are started from disorder. the box size L
is picked so that there are approximately 3 periods in the box. . . . . . ..

Location of the ODT, (xNN)opr, as a function of the invariant polymeriza-
tion index, N. The curve is the universal curve, Equation 4.1, and the points
are the results from our lattice simulation with N = 50 and f = 0.5. The
uncertainty from the lattice model predictions are the error bars. . . . . . .

Metastability loops in the average number of intermolecular contacts per
monomer (nup)/M over a range of the universal interaction strengths, y V.
The melts are polydisperse with index D, average chain length (N) = 50
and ¢ = 1,2,3, and 5 monomers per site respectively. Open symbols are
started from a lamellar configuration and closed symbols are started from
disorder. . . . . . .

36

39

42



4.4

4.5

4.6

4.7

4.8

5.1

5.4

Fits of the polydispersity correction used to find k. Symbols are data from
the lattice simulations. The error bars are the widths of the metastability
loops and the lines are the fits to Equation 4.2. . . . . . . ... ... ...

Fitting Equation 4.2 to the prediction of (yN)opr from RPA gives the value
of kfor N=ooask=—0.77. . . . . . .. .. .

Dependence of the linear correction for polydispersity, x, on the invariant
polymerization index, N. Closed circles are from our simulation data, the
open circle is from mean-field theory, and the line is Equation 4.7 with
B=—-049and C=17.5. . . . . . . . . ...

ODTs for different values of compositional asymmetry. Points are from the
data in Table 4.3, and lines are fits to Equation 4.8. The parameter v is
given by the slope of the lines. . . . . . . .. ... .. ... .. .......

Dependence of the linear correction for polydispersity on the invariant poly-
merization index N. Closed symbols are from the Morse group data [31],
while the open symbol is a mean-field value from Matsen and Bates [11] . .

Plot of the calibration of xy for PCHE-PMMA using data from Kennemur,
Bates, and Hillmyer [59]. The calibration based on mean field ODT Equation
5.8 gives A = 138 and B = 0.151. The calibration based on Fredrickson
Helfand ODT Equation 5.6 gives A = 275 and B = 0.325. The calibration
based on Universal curve ODT Equation 5.7 gives A = 429 and B = 0.536.
The calibration based on this works correction ODT Equation 5.8 gives
A=543and B=0.707. . . . . . ..

Analogous plots to Figure 5.1 for 19 different experimental systems. Cali-
bration of y for 19 experimental systems. . . . . . . . .. .. ... ... ..

X

51



List of Tables

3.1

3.2
3.3
3.4

4.1

4.2

4.3

5.1

0.2

2.3

¢ is maximum the number of monomers per lattice site, a/b is the statistical
segment length relative to the bond length. po is the monomer density, and
N/N is the ratio of invariant polymerization index to contour length N. . .

Zs values for the four models with different numbers of monomers per site,
A list of all the parameters for the simulations used to calibrate y(a). . . .

Parameters for Equation 3.5 relating x and «, calculated by a fit of the
Monte Carlo simulation data to predictions from ROL theory. . . . .. ..

(xN)opr for melts with three different polydispersities of B = 1, 1.05, and
1.10 for our models with ¢ = 1,2, 3, and 5 monomers per site. . . . . . . . .

Linear polydispersity correction, , for the four models with different num-
bers of monomers per site, c. . . . .. ..o

ODTs for N = 480 and 1920 and various compositions f, with B = 1 from
Ghasimakbari, T.; Morse, [31]. . . . . ... ...

Molecular data used in calculating the number of segments and the segment
mass. RZ/M,, is the literature value of how radius of gyration scales with
chain length. p is the mass density from the literature and a is the statistical
segment length calculated from Equation 5.3. . . . ... .. ... ... ..

Tabulation of data for PCHE-PMMA for degree of polymerization N cal-
culated with Equation 5.1, polydispersity D, composition f, and the exper-
imental temperance of the order-disorder transition Tpopr from [59]. . . . .

Tabulation of calibrated x values for data from various experimental papers.
A and B are the fitting parameters from Equation 5.4. . . . .. . .. ...

32
c. 34
36

95



A.1 Molecular data at T = 140°C used in calculating the number of segments
and the segment mass. R2/My is how the radius of gyration scales with
chain length from the literature. p is the density from the literature. a is
the calculated statistical segment length. . . . . . . . ... ... ... ...

X1



List of Abbreviations

e ROL is renormalized one-loop.

RPA is the random phase approximation.

SCFT is self consistent field theory.

ODT is the order-disorder transition.

GCM is the Gaussian chain model.

xii



List of symbols

N: Degree of polymerization

S: Entropy

T Temperature

kp: Boltzmann’s constant

po: Polymer segment density

b: Fixed bond length

s: Chain contour parameter

x: Flory-Huggins polymer-polymer interaction parameter
F': Free energy

7 Partition function

@: Single-chain partition function

¢: Chain propagator

q': Reverse chain propagator

¢: Polymer concentration

¢ : Polymer concentration of A segments
¢p: Polymer concentration of B segments
Ry: Mean square end-to-end distance

R,: Radius of gyration

wy: Mean-field interactions from A segments
wp: Mean-field interactions from B segments

Up: The single bond energy

xlil



a: Statistical segment length

®: Single-chain correlation function

N,,: Number-averaged molecular weight

Npw: Weight-averaged molecular weight

D: Polydispersity index

f: The composition of A segments in the melt
vap: The ratio of statistical segment lengths

€aa: Interaction between A and A segments

eap: Interaction between A and B segments

egp: Interaction between B and B segments

s; j: The RPA tensor

N: Invariant polymerization index

V. Volume of the simulation box

L: Number of lattice points along the side of the lattice
M: Number of polymer segments on the lattice

¢: Maximum number of monomers per lattice point
e: Interaction energy per contact on the lattice

a: Dimensionless interaction parameter on the lattice
N 4p: Number of A-B contacts on the lattice

Rpp,1;: Random number on the range 0 to 1

z: The number of intermolecular contacts

Zso: The average number of intermolecular contacts of an athermal melt with infinity
long chains.

k: The linear correction factor for polydispersity

~: Correction for compositional asymmetry

X1v



Chapter 1

Introduction

1.1 Polymer Melts

A polymer is a high molecular weight molecule that is created by repeatedly joining together
a large number of small molecules, called monomers. Most polymers are flexible, despite
the fact that the carbon-carbon bond angle between monomers is fixed. Rotations around
the carbon-carbon bonds give the chain a large number of configurations [1]|. Therefore,
the chain is flexible because the number of allowed configurations of the monomers between
two points on the chain is large and this allows two monomers separated by a sufficient
number of bonds to have any relative angle between them.

There are a large number of different polymer architectures. The simplest architec-
ture is linear polymers, which are polymers where the monomers from chains without
any branches. Another type of polymer is star polymers. These polymers have a central
junction where a number of different arms leave from. There is a large number of differ-
ent architectures including ring, comb, brush, and dendritic polymers, some of which are
illustrated in Figure 1.1. However, this work will only involve linear polymers.



Linear polymer Star polymer Comb polymer

Figure 1.1: Diagram of various polymer architectures.

Polymers can be part of different types of systems. Polymer solutions are a mix of
polymers with a solvent. The interaction between the polymers and the solvent control the
configurations of the chains in the solution. If there is an attractive interaction between
the polymers and the solvent, then the polymer will take a extended configuration, so
that it contact more solvent molecules. If the interaction is repulsive, then the polymers
will take a more compact configuration. Another type of polymer system is a polymer
melt. Melts are a dense system that have only polymers and no solvent. Thus the only
important interaction are the interactions is between polymers. This work only involves
polymer melts.

With this we can coarse-grain the polymer into a chain of N independent segments,
each of volume p;'. These segments are defined such that they contain a large enough
number of monomers for the bond angles between the segments to have any relative angle.
As such, the polymer can be modelled, as a series of beads connected by springs that
represent the configurational entropy of the monomers between the beads.



Figure 1.2: Diagram of a polymer showing the points 7(s;) and 7(ss).

The strength of the entropic spring can be found by fixing two points on the chain,
s1 and sq, a distance of R = |7(s1) — 7(s2)| apart. The number of combinations of bonds
is called €, the logarithm of which gives the entropy S = kpIn(Q2). This gives a bond
potential Ug(R) = —T'S which has a minimum at R = 0, because the chain is minimally
stretched and so has the most possible configurations. With this knowledge, the potential
can be Taylor expanded around R = 0. Because the zeroth-order term is a constant, it
contributes only an energy proportional to the total number of bonds and thus it can be
ignored. The first-order term is odd and so must be zero for the stretching energy to be
symmetric around R = 0. Therefore, the first non-trival term is the quadratic R? term.
Therefore, the stretching energy of a segment is

3 o
=3 BaQR , (1.1)

Up(R)

where = kBLT is the thermodynamic parameter and a is the average length of the segment
called the statistical segment length. This can be shown by finding the thermodynamic
average of the bond length squared

R Ri2eBUs(BDBR  4x r2e5a2™ dr
<|R’2> — f| | _ _ — f —— — CL2. (12)
[ e-BUBIRN@ R 47 [ e2?" dr
Taking the square root of Equation 1.2 gives a root-mean-squared average segment length
of a, which is why a is referred to as the statistical segment length. Repeating this for the
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N bonds in the polymer, we get the root-mean-squared end-to-end distance of

N . N . N N . .
RE=(> Ry > Rul) =Y (IR, Rul). (1.3)
n=1 m=1 n=1 m=1

Since the bonds with n # m are uncorrelated by construction, it follows that (ﬁn . §m> =
Snm(|Rul?) = 6nma®. Putting this into the sum gives

Figure 1.3: Diagram of a polymer showing the end-to-end distance éo.

Another, more general measure of polymer size is the radius of gyration R, defined by

N N
1 — — 1 =y >y > D
By = 55 2B = Rew)’) = 55 D ((1Rul? = 2R - Renn + | Ren)) (1.5)
n=1 n=1

—

where R, = % Z _, I, is the center of mass of the polymer. Expanding and simplifying

gives
N N o
= 2 (P Ry

n=1 m=1 n=1 m=1

(1.6)

% _
NE
Mz
:Ui

l

Taking the average of the radius of gyration and substituting (|R, — RE,|2) = |n —m|a? for
the end-to-end length of a polymer with n — m monomers, simplifies Equation 1.6 to the
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following:

2

B T - A 2N
Rg:mzz<‘(Rn_Rm|>:m22|n_m|277 (1.7)

n=1 m=1 n=1 m=1

However, this analysis only works if the polymer segments are all independent of each
other. In real polymers there is an excluded-volume interaction between the segments
that acts to swell the size of the polymer. These interactions come from the inability
of the molecules that make up the monomers to occupy the same physical space. These
interactions prevent chains from crossing themselves, and thus the path of the chain follows
a self-avoiding random walk.

In dense polymer systems like polymer melts, there are a large number of polymers, n.
The same excluded-volume interactions that exists within a single polymer chain also exist
between different chains in the melts. These intermolecular interactions between different
polymers in the system affect the trajectories of the polymers in the melt such that they
no longer follow self-avoiding random walks. The averaged excluded-volume interactions
are dictated by the density of the monomers. In our single-chain example, the density
of monomers is higher near the center of mass of the polymer and so this force acts to
push the monomers in the chain away from the center. This is the force that expands the
polymer and makes it follow a self-avoiding random walk.

A dense polymer melt is incomprehensible, meaning that the monomer density is con-
stant. Because the individual monomers in a chain do not experience a difference between
forces from monomers on the same chain and forces from other polymers, the incompress-
ibility of the melt means there is no difference in the density to cause the force that makes
the polymer follow a self-avoiding random walk. This implies that the interactions between
polymers in the melt act to screen the polymer self interactions [1]. With this screening
of the excluded-volume interactions, the polymers no longer follow a self-avoiding random
walk but rather a simple random walk of size Ry = alN 2 Hence, the chains are, once
again, ideal.

So far, we have assumed that all the polymers in the melt have the same length, N.
This is referred to as a monodisperse melt. In real polymer melts, the synthesis processes
leads to a distribution of polymer lengths [3], N;, known as polydisperse melts. The number
of polymers that have that length NN, is called n;. This enables us to define a probability
distribution of molecular weights,

(1.8)



The average number of segments in a chain can be represented with two quantities: the
number-average chain length,

Si, Nim,
N, Nip( == 1.9
Z p(N) = S5 (19)

and the weight-average chain length

iy alVY
N,==—1 1.10
> e TilN; ( )
The width of the probability distribution can be represented by the polydispersity index.
This index is defined as the ratio of the weight-average chain length and the number-average
chain length

p=_v (1.11)

The polydispersity index is related to the breadth of the molecular weight distribution,

It is common in the polymer literature to use the Schultz-Zimm distribution [5, 6, 7]
defined as

KENK-1 gy
—e Nn,
N¥T(K) ’

where the polydispersity index is related to K by b = 1 + % However, in practice the
molecular weight distribution can have many different shapes depending on the particular
details of the chemical procedure used to synthesize the polymer melt. The overall shape
of the molecular weight distribution will affect the behavior of the polymer melt |2, 9], but
due to the low polydispersity of melts considered in this work, only the lowest moments of
the distribution have an effect on the behavior of the system [10]. Since any system that
has a low polydispersity index can be well approximated by any distribution with the same
polydispersity index, this work will use the Schultz-Zimm distribution.

p(N) = (1.12)

1.2 Block Copolymers

Polymers that are made of multiple types of monomers with different chemistries are called
copolymers. There are many different types of copolymers like random copolymers, where
the different monomers are placed randomly along the chain, and block copolymers, where

6



the polymer is made of distinct blocks with different chemical structure. The simplest
type of block copolymer is the diblock copolymer, where there are two different blocks of
monomers joined together at a junction, called A and B type blocks.

Doing the coarse-graining from the previous section on each side of the chain, one side
of the chain has N4 segments of length a4 and the other has Np segments of length ag. We
can define the total number of segments N = N4 + Np and the composition f = N4/N.
Another parameter that can affect the chain is y4p = a4/ag, the ratio of statistical segment
lengths. Hence, the chain can be described by the parameters (N, f,v45). Because the A
and B sides of the chain are chemically distinct, there are important interactions between
them. We can write the energy of the interactions in terms of three independent interaction
parameters, €44, €4p, and egp that control the strength of the interactions. This gives the
interaction energy as

Iorf
Uag = €a4 dsdtd (7o (s) — Ts(t)) +
0o Jo
!
2€4p dsdt5 (Ta(s) — 73(t)) +
0 Jf
1 1
eBB/ dsdté (T (s) — 75(t)). (1.13)
rJr

Now we need to simplify the above by substituting the definitions of monomer density:

O
:%E_I/O dsd (7 — To(s)) (1.14)
and

N [
B(F):%;/f dsS(F — 7a(s)) (1.15)

into the expression for u,3. Taking the sum over all & and 3 to get the total energy and
applying the delta function identity for (7, (s) — 73(¢)), we can simplify to get an energy
functional in terms of the density,

- 2N2 Z Z Uap = /3 dgf[EAA¢A(m¢A(ﬂ + 2e4504(T)Pp(T) + EBB¢B(F)¢B(F)]

a=1 B=1

(1.16)



Inserting the incompressibility condition, ¢ () + ¢(r) = 1, into the above Equation 1.26
to remove the dependency on ¢g(7) from Equation 1.26, we obtain

(€aa — 2€ap + €pB)

U= 5 /RS BT A(7) (1 — Pa(7)). (1.17)

Making the definition x = W simplifies Equation 1.27 to

U = ks Typo / (oA - 9a(7)]. (1.18)

From this, we can see all the independent interaction parameters have been put into a
single parameter y that affects the polymer melt.

With this, we now have a total of four parameters (x, N, f,v4p) that affect the diblock
copolymer melt. This model is called the standard Gaussian chain model. It is widely used
in theoretical work due to its strong track record of making predictions [2, 11, 3, 4] and its
relative simplicity.

Diblock copolymers form a variety of different phases, because the x parameter is
usually positive, giving a positive energy contribution to contacts of unlike blocks. That
means, when y is high, the A and B type segments form distinct regions in order to
minimize the number of unfavorable contacts and thus the energy of the system. If the
blocks of the copolymer were not joined together at the junction, they would fully phase
separate and form two distinct phases: an A-rich phase and a B-rich phase. However, in
diblocks this is impossible, so the segregation happens on scales comparable to the polymer
size, Ry. This forms microstructures with the junctions of the polymers on the interfaces
between the A and B regions. The simplest of these structures is the lamellar phase (L)
formed when f ~ 0.5. The lamellar phase consists of alternating sheets rich in A and
B monomers (see Figure 1.4). Other simple phases predicted by mean-field theory are
hexagonal-packed cylinders (C') and body-centered-cubic spheres (S), both composed of
the minority component of the melt. There is also a complex phase window with network
phases including gyroid (G) and the Fddd phase O™.



Equilibrium Diblock Copolymer Phases
0.0

Figure 1.4: Minority domains from the periodically ordered phases observed in diblock
copolymer melts. They are, lamellar (L), gyroid (G), cylindrical (C), and spherical (S).

1.3 Gaussian chain

To analyze this random walk, consider adding one bead to the end of the chain of length s
at point 7;. The probability that the bead is at a position 7,4 is given by the Boltzmann
weight

1 s -
B o) = et P70 (1.19)

The normalization constant Zg can be found by forcing fR3 (7, Tsp1)d®rs = 1. The total
probability of the chain can be found by adding a monomer to the end of the chain N
times. This grows the chain from length 1 to length N. The probability distribution of a
monomer being added to a chain of length s is given by

P,(7) = [ ®(r, PPy (r)d®r. (1.20)
R3
This gives a recurrence relationship that can be solved by a Fourier transform to give

~ a2k2 ~

P,(k) = [e= 5 |*Py(k). (1.21)
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For simplicity, we fix the starting end of the polymer at position 75 = 0. This corresponds
to the starting condition Py(k) = 1, which comes from the fact that the end is localized to
a delta function Py(7) = §(7). Inverting the Fourier transform gives the value of Py (7) as

3 _2
ez (1.22)

Py(r) =

2mwsa?
This shows that the probability distribution of the monomers in the chain is Gaussian.
We can see that as we move down the chain from s = 1 to s = N, the variance of the
probability distribution of the monomer increases. However, as the number of monomers
is increased, the distribution is still Gaussian. This leads to the idea of taking a limit as
the number of monomers in the chain goes to infinity. In this limit, the model is called the
continuous Gaussian chain model.

The continuous Gaussian chain model is commonly used for analytical calculations
[2, 4, 3]. In the limit as the number of segments N in the chain gets large, while keeping
the chain size, Ry, constant, the discrete segments of the chain can be replaced by a single
continuous parameter s in a range [0, N]. This model is called the continuous Gaussian
chain model because the two-point correlation function along the chain is Gaussian.

To calculate the partition function for the Gaussian chain model, the chain propagator
q(7, s) is used. It tells you the probability of finding the s'* segment of the chain at point
7. We simply replace N in the recurrence relationship with the continuous parameter s,
Py (7) by (7, s) and substitute in ' = 7+ A7 to get

a(F, s + As) = / B(F + AF, F)g(F + AF, )P AT (1.23)
R3

We can simplify the above Equation 1.12 by Taylor expanding around s and 7. This works
because as the number of segments gets large, the space between the segments Ar and As
gets small, making the Taylor expansion

q(7, s)—l—dq(r’s>As :/ O(T+AT, F)( (7, 8)+Vq(r, s)-Ar+— ZZ 4t s ATiATj)d3AF
d R3 =

s or;0r;
(1.24)
accurate. Expanding and substituting (f = Jos ®(F+ AF, P) f(F)d> AT gives
(m)+MAs: (7,s) + Vq(7, s) - (AP + = ZZ A A, (1.25)
ar ds ar ¢ — = 87“287"2 ! '

10



Simplifying the above by using the fact that, by symmetry of the bonds, we know that
(A7) = 0. Also, as was found earlier in this work (Ar;Ar;) = a0, ;As. Substituting these
two results into Equation 1.14 simplifies the expression to

dQ(ﬁ 5) _ CZQ 2 (=
P EV q(7, s). (1.26)

With this, the single-chain partition function @@ = fu@ q(7, N)d7 can be found from
the forward chain propagator ¢(7, s), which gives the probability of segments of the chain
being at a position 7. There is also a backward propagator ¢'(7, s') that starts at the s = N
side of the polymer and propagates down the chain towards the other end. The backwards
propagator is given by

dq' (7, s a® .
%) = _EV2QT(T’ s). (1.27)

Putting together the forward and backward propagators gives the partition function as,

Q= qT(F, s)q(7, s)d*F. (1.28)

R3

1.4 Mean-Field Theory

The standard Gaussian chain model can be solved by replacing the interactions between
the polymers in the melt with interactions of independent polymers with fields. This re-
places the instantaneous polymer-polymer interactions with their average interaction. For
diblocks, this average interaction is represented by the value of two fields w4 representing
the average interaction with A type monomers and wp representing the average interaction
with B type monomers. This simplifies the model from n interacting polymers in a melt
to a system of n non-interacting polymers that are coupled to a field by the energy

Ufiela = 1/V/ PFIXNGA(l — ¢pa) — waga — wp(l — da)]. (1.29)
R3

Adding this field energy to the single-chain partition function, Qwa, wg]|, for a diblock in
the fields w4 and wpg gives the free energy,
Flwa, wg, ¢ Qwa, wp] 1 / 3
U TE O (B By Nga(1—ba)— —wp(l— 1.30
—e n ( vty . FIXNGa(l—da)—wada—wp(l1—¢a)]), (1.30)
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which can be calculated by evaluating the propagators. The propagators can be found by
adding the fields to the propagator Equations 1.15 and 1.16. substituting in the

= _ w (_»’S) OSSSNf
W<T’8)_{w2(ﬁs) Nf<s<N

dq(7, s a’ . S S,
) _ © (i) — W a7 ) (1.31)
dqt (7, s a? - S S
% = —EVQqT(T, s) + W (7, s)q' (7, 5) (1.32)

However, to solve Equations 1.31 and 1.32, we require the fields w, and wp as well as ¢4
and ¢p. Finding the field requires solving the following mean-field conditions,

pa+odp =1, (1.33)
wa —wp = XN (¢ — da), (1.34)
B DIn@
ba= -V, (1.35)
and DInQ
n
¢p=-V Dury (1.36)

The first mean-field condition is local incompressibility. Remembering back to when
we first defined a polymer melt, we said that they where incompressible. However, local
incompressibility is a stronger condition as it constrains not just the average concentrations
to be constant, but forces the instantaneous concentrations everywhere in the melt to be
one. The second condition gives the relationship between the mean-fields, w4 and wg, and
the concentrations ¢4 and ¢g. The final two conditions are the definition for concentration
and how to obtain them from the single-chain partition function Q.

The mean-field theory is very powerful. Possibly one of its biggest triumphs is random
phase approximations calculations of the disordered state structure functions. The random
phase approximation was applied to diblocks by Ludwik Leibler in 1979 [12], He used a
fourth-order weak inhomogeneity expansion of the free energy of diblocks to calculate the
stable phases, as well as the structure functions. The structure function, also called the
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scattering function, is observed in small angle scattering experiments for the disordered
phase. The structure function is the spherically averaged reciprocal space representation
of the configuration of the melt. The random phase approximation structure function is

W
S0 = S 2k

Where W (k) = saa(k)spp(k) — sap(k)spa(k) and s(k) = saa(k) + spp(k) +sap(k)+
sp.a(k). These can both be derived from the tensor s; ;(k) defined as

(1.37)

saa(k) = Nagi(z, f), (1.38)
sp,p(k) = Ngi(z, 1 - f), (1.39)

and
sap(k) =spa(k,1—f) = g[gl(% 1) =gz, f) = ga(@, 1 = f)]. (1.40)

With # = k22N /6 and ¢, (f, x), the Debye function is defined as g, (r) = 2[fz +e /% —
1]/2%. Later, the process was generalized for polydisperse melts by Hong and Noolandi [7].
The result of this change is to replace g1(f, z) by the number-average Debye function

gi(f,7) =2[fz+ (1 + frK) " —1]/7° (1.41)
Equation 1.37 can then be simplified by substituting F'(k) = Ns(k)/W (k) to give

N

S(k) = F(k) —2xN’

(1.42)

The over bars represent number-averages of quantities, so 7 = k*a><N>, /6 and f =
<f>,. The polydispersity index D and K are related by K = (D — 1)~!. With this we
have a polydisperse scattering function for diblock copolymers.

Another important result from mean-field theory is the calculation of a phase diagram
for diblocks in Figure 1.5. The phases diagram has a number of interesting features. There
is a critical point at f = 0.5 and xy/N = 10.495 where all the phase boundaries coexist
and there is a direct transition between the disordered phase and ordered lamellar phase.
However, over the rest of the range in f, there are only order-disorder transitions (ODTs)
to the sphere phase. This is important because it contradicts the experimental evidence
where direct transitions are observed to the cylinder and complex phases. The reason for
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this contradiction is that the mean-field theory approximates the w, and wpg fields with
their averages, neglecting fluctuations in the fields.
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Figure 1.5: Diblock copolymer phase diagram reproduced from Matsen and Bates [13].

1.5 Fluctuations

The mean-field theory for diblock copolymers is a powerful tool. However, it makes some
assumptions that become inaccurate as the chains become shorter. Melts with shorter
chains have larger fluctuations in their fields [15], and so it becomes inaccurate to approx-
imate the polymer melt with its most likely configuration of there fields, as is done in
mean-field theory. The size of this deviation from mean-field theory are controlled by the
invariant polymerization index, N = (poa®)2N. To correct for this, a sum over all possible
field configurations according to their Boltzmann weights, would have to be done. This is
the approach taken by some computer simulation methods [3, 17]. However, there do exist
analytic theories capable of approximating the fluctuating fields using perturbation theory.

The first fluctuation correction to the phase diagram for diblocks was by Fredrickson and
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Helfand [15]. Their theory used the same fourth-order expansion as the Leibler random-
phase approximation for the single-chain partition function, but also include Gaussian-
order fluctuations by use of the Hartree approximation [10], allowing the model to make
better predictions for the disordered phase. It predicted the order-disorder transition for
symmetric diblocks as

(xN)opr = 10.495 4+ 41.0N /3, (1.43)

This theory also allowed for the prediction of a phase diagram for fluctuating diblock
copolymers. This phase diagram has a number of important features. The first is that
there is no longer a critical point at f = 0.5. There are also direct transitions between
the disordered phase and the non-spherical ordered phases. This is more in line with
experimental evidence, which finds the direct transitions between the disordered and non-
spherical ordered phases.

XN

10 I 1 1
0.30 035 0.40 0.43 .80

Figure 1.6: Diblock copolymer phase diagram reproduced from Fredrickson-Helfand 1989

[15]-
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The newer renormalized one-loop theory(ROL) has improved on the Fredrickson-Helfand
theory [18, 19, 20]. This new theory has provided more accurate predictions for the
disordered-state structure function of diblock copolymers. The renormalized one-loop
theory is also based on a perturbation approach. As well as the renormalization of the
parameters y and a, where x is the interaction parameter and a is the statistical segment
length. This improved method allows for more accurate structure function calculations in
the disordered state.
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Figure 1.7: Comparison of the disorder state structure functions for the three different
theories [12, 15, 21].

The above comparison of the structure functions for different methods show how they
differ at low N. However, there has not been a calculation of the phase diagram from the
renormalized one-loop theory. The phase diagram can not be calculated because of the
difficulty of treating the ordered diblock phases with the one-loop method. However, the
one-loop theory gives very accurate predictions for the structure function that can be used
to calibrate other systems, essentially renomalizing their x values [15].

1.6 Universality

It has been shown that all models of diblock copolymer melts behave identically to the
standard Gaussian chain model in the limit of large N [1&, 22, 23, 24]. This fact is called
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universality. It is an extremely useful result because it means there is a mapping between
the model specific parameters and a set of universal parameters (xN, f, N,vap) of the
standard Gaussian chain model. The fact that all systems, theoretical and experimental,
can be mapped onto the same set of universal parameters allows for quantitative predictions
for any experimental system using any theoretical model. The only caveat is that the degree
of polymerization needs to be sufficiently large for universality to hold.

The universality of polymer melts was used to find a more accurate value for the order-
disorder transition for symmetric diblocks, by calibrating a number of computer simulations
to the ROL theory [22]. This calibration involved fitting the statistical segment length to
predictions of the renormalized one-loop theory, as well as fitting the structure functions
to ROL to find the interaction parameter x . Subsequently, the calibrated simulations
were used to find the order-disorder transition in terms of the calibrated parameters. The
simulated order-disorder transitions were used to find a correction to the Fredrickson-
Helfand prediction of the form O} N~ as shown in Figure 1.8 by the dotted line.
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Figure 1.8: Plot of the ODT of symmetric diblocks over a range of N. [I8]. Different
symbols are from different models that where calibrated independently.

The correction shown in Figure 1.8 is of the form,

(XN)opr = 10.495 + 41.0N /3 + 123N 056 (1.44)
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This gives a more accurate prediction of the order-disorder transition of monodisperse
diblock copolymer melts. Once these models are calibrated, they can be used to make
predictions for any polymer system. This prediction can be applied not only to simula-
tions, but also to polymer systems studied in experiments. However, the calibrations of
experiments requires a determination of y, which has been a longstanding problem.

the universality lets experimental systems be mapped onto the standard Gaussian chain
model. This mapping requires a calibration of the Flory—Huggins parameter y. There are
numerous strategies used to calibrate the xy parameter, but this has lead to a discrepancy
between the values found using different methods [25, 26, 27, 28, 29, 30|. This has caused
many to propose that y depends not only on temperature, 7', but also on architecture,
composition, molecular weight, and polydispersity. This is problematic, because if it were
true, analytical theories and simulations would lose the ability to make quantitative pre-
dictions, since every comparison with theory would require a separate calibration. This
issue comes from the way y is determined in experiments.

The determination of y involves measuring some quantity by experiment and then
fitting to a prediction of the standard Gaussian chain model. Therefore, an accurate y
requires not only an accurate experimental measurement of the quantity, but also an accu-
rate prediction from the standard Gaussian chain model. As a result of using a prediction
from mean-field theory, the calibration hides the fluctuation corrections, which are ignored
in mean-field theory, in the value of x. This would, in effect, give xy a dependence on molec-
ular weight, architecture, composition, and polydispersity since the fluctuation correction
depend on all these parameters.

This work will correct this common inaccuracy in the calibration, by calibrating against
a prediction for the order-disorder transition that accounts for fluctuation, polydispersity,
and compositional asymmetry. To find this prediction, we will correct the universal curve,
Equation 1.44, for polydispersity and compositional asymmetry. The correction for poly-
dispersity is found using a lattice model to run simulations over the relevant range of
polydispersity indices. A similar correction for compositional asymmetry is found using
data from the literature [31].
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Chapter 2

Monte Carlo Simulations

In the Introduction, it was shown that a polymer melt of density py consists of n polymers.
A number of techniques exist to simulate polymer melts, however, probably the most direct
are particle-based simulations. Particle-based methods can model the polymer chains in a
variety of ways, one of which involves constraining the segments of the polymer to a lattice.
This has the advantage of speeding up the simulation by reducing the possible states of
the system, as well as the intrinsic speed advantage from integer computing.

2.1 Lattice Model

Throughout this work, we perform our simulations on a lattice, where the location of
the monomers can be tracked with a single integer number, [, the lattice site number.
The simulation lattice has a face-centered-cubic (FCC) symmetry, created by removing
every other site in a simple cubic lattice. This means that each monomer has coordinates
. = (i,7,k), where i + j + k is even. This FCC lattice has a bond length, b, between
lattice sites that is v/2 times what it would be on the simple cubic lattice. An FCC lattice
is used because it gives the polymers a large number of nearest-neighbour sites, allowing
more possible bond angles and a more flexible polymer. As a result, the molecules can
approximate the Gaussian chain model with fewer chain segments. This simulation is
carried out in a cubic simulation box with a finite side length, L, meaning that ¢, 7 and
k are integers in the range [0, L]. To approximate the bulk behavior of an infinite lattice,
periodic boundary conditions are used between opposite sides of the cube. The volume of
the cubic box is the product of the side lengths
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V-t

where M is the number of allowed sites on the lattice. The polymers in the system consist
of monomers connected between nearest-neighbour sites. There is a set monomer density
of pg, defined as the number of monomers divided by the volume of the lattice, py = ™=ene.
By allowing ¢ monomers per lattice site higher densities can be reached, since this gives
the box a total number of sub-sites of ¢cM. To allow room for the polymers to move, 20%
of the sites are left with one vacancy. This gives a total number of monomers of (¢ — %)M ,
and so a density of

(2.1)

Nmono (C % ) \/§
0y = = ) 2.2
0 %4 b3 ( )

The polymers on the lattice are diblocks, meaning that there is a contribution to the energy
from contacts between the A and B type monomers in the systems that can be expressed
as

E e
kT kT
where € is the energy per contact and « is the dimensionless energy per site, defined as

k;T = «. To find this energy, the number of A— B contacts must be calculated by summing
over all contacts,

NAB = QNARB, (2.3)

vV v
NAB = Z Z Az’,jnA,inB,j7 (24)

i=1 j=1

where 14, is the number of A monomers in site ¢ and np; is the number of B monomers
in site j. The range of the interactions is controlled by the tensor A, ;. To best match the
standard Gaussian chain model, the range of the interactions needs to be short relative to
the length of the polymers. When c is larger than two, we make the interactions point-
like so only monomers on the same lattice site interact. This point-like interaction makes
the tensor equal to A; ; = d;;, the Kronecker delta function. However, this is not possible
when the number of monomers on a lattice site is small. In this case, the nearest-neighbour
interactions between monomers are also needed, giving the tensor A; ; = 1 if |7; — ;| < b.
This work uses four different values of the number of monomers per site c¢. If ¢ = 3,5
then we use only the same site interaction. However, if ¢ = 1,2 then we included the
nearest-neighbour interactions.
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To model polydisperse melts, the simulated polymers in the lattice model will need
to have different chain lengths. The distribution of polymer chain weights can be set
by starting the simulation with the correct distribution in its initial configuration. One
complication is that the Schultz-Zimm distribution used in this work is continuous, whereas
the lattice model has polymers made of discrete sections. To approximate the desired
distribution, the continuous distribution can be divided into bins with length 1. This gives
the discretization of the distribution for i = A and B as

KK /Ni+0‘5 K1 KN
NN, = = N*""e Wn)dN. 2.5
(N)FT(E) Jy,os 2
Note that for /V; = 0 the bin is defined by half the width
KK 0.5 KN
= NE-Lem i dN. 2.
e f, VM 20

Where I'(K) is the gamma function and K = 1/(D — 1) is the relationship between K
and polydispersity index B = N,,/N,,. A correction is then added so the total number of
chains, n, and average chain length, N,,, are correct. Then to optimize the distribution
further, we minimize

2
E(ny,) =Y _[nn, — npi(Ni)]* + A [anfBi = nNiNf} : (2.7)
Nz‘ Nz‘
where the first term matches the discretized Schultz-Zimm distribution, ny;,, to its continu-
ous analog p;(N) and the second term matches the polydispersity index to the desired value
of D;. The coefficient A which dictates the relative importance of the two contributions, is

set to 1077 [32].

To generate the distributions for diblocks, this method for finding the distribution is
used separately on both the A and B type monomers to form two distributions ny, and
ny,. Polymers are then sampled from these distributions at random and joined together to
form diblocks, where each block separately has the discretized Schultz-Zimm distribution
and the blocks are completely uncorrelated.

2.2 Statistical Mechanics

Statistical mechanics show that systems in equilibrium are described by Boltzmann dis-
tributions. The lattice model has a large number of discrete states corresponding to all
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possible configurations of polymers on the lattice. Each state is labeled ¢ and has energy
E; proportional to the total number of A-B contacts. The simulations are performed at a
temperature T" and kg is Boltzmann’s constant. The probability of a system in equilibrium
being in the " state is given by the Boltzmann weight

pi = SerBT, (2.8)

where Z is the partition function, a central quantity in statistical mechanics defined as
—B;
Z = ZekBT_ (29)
i

The lattice model has an energy E; = en4p that is equal to the number of contacts between
A and B monomers, n,pg, times an energy per contact €. This can be simplified by intro-
ducing the dimensionless energy per contact. By rewriting Equation 2.8, the probability
of a state ¢ is

n 1
p; = EekBT AB _ EeanAB' (2‘10)

To find a macroscopic observable, we need the expectation value of some quantity O;,
1 —an
(0) = 7 > O™, (2.11)

where the sum is over all possible configuration of polymers on the lattice. However, the
configuration space of the lattice is high dimensional and so the sum can not be calculated
by direct methods. To give a good approximation to this sum, this study uses Monte Carlo
methods, which work by sampling a representative subset of the sums terms. In our case,
this is equivalent to sampling a subset of all possible configurations of polymers on the
lattice.

2.3 Monte Carlo Steps

The simulations in this work use the Metropolis algorithm to find the average of any desired
observable, (O). This algorithm approximates Equation 2.11 by randomly sampling O; ac-
cording to the Boltzmann distribution [33, 34]. It does this by constructing a Markov chain
that randomly moves through the possible configurations of the polymers on the lattice
by applying randomly selected Monte Carlo moves. To achieve this on the polymer lattice
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model, we need to pick a set of Monte Carlo moves that satisfy two important criteria. The
first criteria is ergodicity, the property that any possible configuration of polymers on the
lattice could be reached from any other configuration by repeatedly applying the Monte
Carlo moves. The second property is detailed balance, which is satisfied if the probability
of the system to transition into a state 7 from a state j is equal to the probability of it
transitioning back to j from 1.

The Metropolis algorithm achieves detailed balance by specifying the transition proba-
bility II;,; = A(j,7)h(j,4). Here I1;,; is the total probability of the move being performed.
h(j,1) is the probability of trying a move at the start of the Monte Carlo step and A(j, 1),
the acceptance criterion, is the probability that a given Monte Carlo move is performed
after we try it. The acceptance criterion compares the ratio of the Boltzmann weights to
a uniform random number in the range [0, 1]

—<(raB j—"ABi)
Rjp1) < min <e BT : 1), (2.12)

and is defined such that the probability of transitioning in and out of any state is the
same. Therefore, the simulation will respect detailed balance as long as the forward and
backwards moves are attempted with equal probability.

To start each Monte Carlo step, a random polymer is picked out of the melt. A move
is randomly picked out of a list of four moves. We us a standard set of Monte Carlo
moves [33, 32, 35], they are the slithering snake move attempted 40% of the time, the
crankshaft move attempted 40% of the time, the flip move attempted 10% of the time, and
the polymer rebridging move also attempted 10% of the time.

In the slithering snake move, either the head or tail of the polymer is picked at random.
Then one of the twelve nearest-neighbour sites are picked and the move is attempted. If
there is not a vacancy the move is rejected, unless the site contains the other end of the
polymer being moved. In the latter case, the move is accepted because the other end
monomer will move out of the site to make room. If the move is accepted, the end of the
polymer is moved into it and the rest of the monomers are shifted one place along the chain
contour towards the end that has moved. This move satisfies detailed balance because the
probability of moving the head into a new location is the same as the probability of undoing
this move by moving the tail back to the vacancy it left at its old location. This move
alone makes the set of Monte Carlo moves ergodic because by its repeated application
we can move any polymer from any location and configuration to any other location and
configuration. when applied to all polymers in the melt, any configuration can then be
reached.
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Snake move

C

Figure 2.1: Example of the slithering snake move. For simplicity, the move is demonstrated
on a two-dimensional simple square lattice

The second Monte Carlo move is the crankshaft. In this case, one of the non-end
monomers along the chain is picked at random. Then all of the sites which are common
nearest-neighbors to its two adjacent monomers on the chain are tested for vacancies. This
checks all possible bonds this monomer could make in the chain. There are five different
bond angles on an FCC lattice, 180°, 120°, 90°, 60° and 0° degrees, having 1,2,4,4 and 12
bonds with these five different angles respectively. So, if the randomly chosen monomer is
at a 90° or 60° angle, then we have to check 4 —1 = 3 possible sites for vacancies. However,
if the chosen monomer is at a 180° angle, then there is no possible move and the crankshaft
is rejected. If it is the case that there are vacant sites available, one of them is picked at
random and the move attempts to put the selected monomer in that site. The crankshaft
preserves detailed balance because the probability of attempting the reverse move is the
same as the original move, as the number of possible bonds has not changed.
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Figure 2.2: Example of the crankshaft move. For simplicity, the move is demonstrated on
a two-dimensional simple square lattice

The third Monte Carlo move is the flip move. The polymer is flipped head over tail so
that a monomer a distance ¢ from the head is swapped with the monomer a distance N —i
from the head. This move obeys detailed balance because the probability of performing
a flip on the polymer both before and after the move is simply the constant probability
of picking that polymer from the melt. The head-to-tail flip makes a larger change to the
system than the other moves, but also requires more computational time. Also, due to
the potential large changes in energy it can cause, it has a lower acceptance rate than the
other moves in the ordered phase.
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Figure 2.3: Example of the head-to-tail flip move. For simplicity, the move is demonstrated
on a two-dimensional simple square lattice

The last Monte Carlo move is the polymer rebridging move. A site is randomly selected,
and for each monomer on that site we calculate the distance from the head/tail of its parent
molecule. If the positions of two monomers along their respective chains are equal, then
the chain ends are exchanged between the two polymers so that the monomers closer to
the end being swapped are traded between chains. This move can not be performed on
simulations where the number of monomers per site is one. In this case, the probability
of attempting this move is split equally between the crankshaft and slithering snake move.
The rebridging move respects detailed balance because performing the exchange does not
change the number of polymer-polymer interactions, so the probability of undoing the
move after it is performed is the same as preforming the move.
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Rebridging move

Figure 2.4: Example of the polymer rebridging move. For simplicity, the move is demon-
strated on a two-dimensional simple square lattice. The sites with two monomers on them
are marked with the number 2.

The Monte Carlo Metropolis algorithm follows these general steps:

e The melt is in some configuration j with energy, £;.

e Pick one of the Monte Carlo moves by their associated probability and perform it on
the melt to get a new energy Fj.

e Calculate the difference in energy AE = E; — Ej, and if the energy has decreased or
stayed constant the move is accepted. If the energy has increased, generate a random
number, and if it is less then e 2#/#87T the move is accepted.

e Record relevant data to find averages.

e Repeat previous steps.

2.4 Parallel Tempering

One difficulty the lattice model simulations of ordered phases have is that the system can
form long-lived defects. Such defects have large energy barriers that the simulation needs
to overcome to reach the equilibrium state. One way to address this issue is to perform

27



an ensemble of simulations with different values of the interaction parameter, a,, known as
a parallel tempering simulation. These simulations consists of a set of W replicas of the
system, each spaced in a by the value da. Because the replicas are independent, the total
partition function of the joint system is the product of the independent partition functions

w
Ztotal = H Zj'
Jj=1

In order to reach equilibrium faster, we add a Monte Carlo move to swap configurations
with neighbouring values of . The swap acceptance probability is the same as the other
Monte Carlo moves, where the probability of swapping is proportional to the ratio of the

Boltzmann weights.
eanAB,j

p=— "
J elatda)nap,i

Detailed balance is maintained by the fact that the replicas to exchange are always selected
randomly with a probability of 1/(#replicas — 1). Therefore swapping back is just as
frequency to be attempted as the original swap is. These swaps are attempted every 1000
Monte Carlo step per monomer.

The implication of this move is that if one of the configurations at a higher interaction
parameter forms a defect, that configuration can swap to a lower value of interaction
parameter because it will have a higher number of contacts than an ordered phase at a
lower value of the interaction parameter. After the swap, the lower value of interaction
parameter will lower the energy barrier, so that the speed of removing the defect becomes
faster. This means that, with parallel tempering, the lattice model simulations will have
shorter lived defects and the simulation will come to equilibrium faster. This is the main
advantage of running parallel tempering simulations.

Another notable benefit is the fact that parallel tempering allows us to leverage the
ability of parallel computation. Each of the replicas can be run on a separate logical
thread and communication only needs to happen when the replica swap is being attempted,
resulting a minimal hit to performance and allowing near linear reduction in time with the
amount of CPU resources used. This means that a wide range of the interaction parameter
can be investigated simultaneously.

The next question to ask is how to take thermodynamic averages in a parallel tempering
simulation. We know that each replica independently has five Monte Carlo moves acting
on it: the snake move, crankshaft move, flip move, polymer rebridging move, and the one
side of the replica swap. This means each replica is undergoing an independent Monte
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Carlo simulation, so we can take averages over each replica independently to get the value
of the desired thermodynamic quantity.

We have created a simulation model well-equipped to simulate polymer melts in terms
of the model-specific parameters; the chain length, N, and the interaction parameter «.
The addition of parallel tempering also facilitates the investigation of wide ranges of the
interaction parameter to determine phase behaviors, and thus locate the order-disorder
transition. However, the predictions of the lattice model will necessarily be in terms of
the quantities N and «. To make predictions for the universal behavior, we now need the
relationship between these parameters and the universal set of parameters.
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Chapter 3

Calibration of the Lattice Model

To make general predictions for polymer melts with the lattice model, it is best to express
our results in terms of a set of universal parameters. The Morse calibration to the standard
Gaussian chain model makes this possible [18]|. It requires finding two parameters. The
first is the statistical segment length a, which is needed to evaluate the value of N = aSp2N
that controls the magnitude of fluctuations in the melt. The other parameter that must be
calibrated is y, the Flory—-Huggins parameter that characterizes the interaction between
unlike polymer segments.

3.1 Calibration for Statistical Segment Length

To find the segment length of polymers in the lattice model, a prediction for the standard
Gaussian chain model in terms of a must be fit to results from the lattice simulation. The
Morse calibration uses the relation between N and R, the radius of gyration [22]. Earlier
in this work it was shown that for a polymer in a melt, R; = %N . However, a more
accurate result from the ROL theory gives a correction to this for finite N [30]:

o

v = a®*(1 = 142N+ O(Nh)). (3.1)

With this we can calibrate the statistical segment length by running a set of lattice simu-
lations of polymers with different chain lengths of N = 16, 20, 30, 40, 60, 100, and 200 and
with the interaction parameter set to o = 0. This corresponds to the athermal case where
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there are no A — B interactions, and thus the simulation is actually of a homopolymer
melt. The procedure involves collecting data for the radius of gyration and fitting it to

2

61,

N

where v and a are fitting parameters. Doing this for four different values of ¢ = 1,2, 3, and
5, we obtain the results in Figure 3.1 below.

= a*(1 — 1.42(a®piN)%° + yN71), (3.2)

1.6 T T T T | T T T T | T T T T
i (a c=1] 1.24
= 1.20
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Figure 3.1: Calibration of the statistical segment length for ¢ = 1, 2, 3, and 5. The symbols
are from the lattice simulations and the lines are the fits.
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By plotting R? as a function of N~/2, we obtain the square of the statistical segment

length, a?/b?, from the y-intercept intersect of the Figure 3.1. At the y-intercept, the value
of N=1/2 is zero so it corresponds to the radius of gyration at infinite chain length. We
can see in Table 3.1 that the statistical segment length decreases with increasing c. This
is because allowing more monomers per site allows the polymer to cross itself more easily
thus acts more flexible and so it adopts a more compact configuration with a smaller R,.

Calculation of N = a®p2 N is required to gauge the size of the fluctuation corrections.
Because the simulations will be run at different chain lengths N, it is most convenient to
evaluate the ratio N/N = a®p3 for each value of ¢, as shown in Table 3.1. This then allows
for simple calculations of N for the rest of this work.

a/b  pb®/v/2 N/N
1.233 0.8 4.51
1.113 1.8 12.4
1.075 2.8 24.2
1.045 4.8 59.9

Y W DN~ O

Table 3.1: ¢ is maximum the number of monomers per lattice site, a/b is the statistical
segment length relative to the bond length. pg is the monomer density, and N /N is the
ratio of invariant polymerization index to contour length N.

3.2 Calibration of y

This section focuses on the calibration of the interaction parameter and is broken into two
parts. The first part finds a linear approximation y = z,.« that gives an accurate prediction
of the interaction parameter for small values of a. This is improved upon by finding a non-
linear relation for x that can approximate x over a wide range of o using a Taylor series of
the form x = zooar + Yo7, Cra. Truncating this at n = 3 gives x = 2o + Co0 + C3a®.

For small values of the interaction parameter, the non-linear y reduces to xy = 2z,
where z., i1s an effective coordination number that can be extracted from the number of
intermolecular contacts of an infinitely long chain in an athermal melt (i.e., « = 0) [30].
The average number of intermolecular contacts in an athermal melt should vary as [14]

T)3/2 B
2(N) = 2o0(1 + (%—1)/2 +O(N™)), (3.3)
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where using N = a®p2 N gives

(6/m)*? 8

SpANIE T N (3:4)
To find the value of z.,, the Morse calibration fits Equation 3.4 to data for the number of
intermolecular contacts, collected from simulations run at chain lengths of N = 20, 30, 40,
60, 100 and 200. The simulations are run athermally, setting the interaction parameter to
a = 0. Figure 3.2 shows the fit for ¢ = 1, 2, 3, and 5.

2(N) = 200 (1 +

19
7 T T T T | T T T T | T T T T
18
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= %, 17
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N—1/2 N-L/2

Figure 3.2: Fits of the number of intermolecular contacts used to determine z, for ¢ = 1,
2, 3, and 5. The symbols are from the lattice simulations and the lines are the fits.

Figure 3.2 (a) shows that with infinitely long chains there will be z,, = 4.90 inter-
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molecular contacts on average, for the model with ¢ = 1 monomer per site. Figure 3.2 (b)
show the fit for the model with ¢ = 2 monomers per site, from which we obtain z,, = 16.1
an increase of 11.2. This increase occurs because as we increase the number of nearest-
neighbour sites from 12 to 25, we would expect the number of intermolecular contacts to
increase by 25 — 12 = 13 minus some amount because of the collapsed chain crowding out
monomers from other polymers. Figure 3.2 (c¢) shows the calibration for the model with
¢ = 3 monomers per site, which gives z,, = 1.48. This model has a z,, that is much smaller
than the values from the previous ¢ = 1 and 2 models. This makes sense, because for the
models with more than two monomers per site, the nearest-neighbour interactions have
been turned off and only interactions between monomers on the same site remain. This
means that there are only two monomers in range to interact with each monomer. For the
model with ¢ = 5 monomers per site, we would expect that the number of intermolecular
contacts would increase from the ¢ = 3 model by slightly less than 5 —3 = 2. This is
exactly what we see with z,, = 3.34, giving an increase of 3.34 — 1.48 = 1.86 .

[c == |

1 4.90
2 16.1
3 148
5 3.34

Table 3.2: z,, values for the four models with different numbers of monomers per site, c.

A linear x can be defined as above, but to have an accurate x near the order-disorder
transition, we need a x that works for higher values of . The Morse calibration finds a
non-linear y by fitting to results for the diblock disordered-state structure function, S(k),
from ROL theory. The fit we use has parameters Cy and C3 and is of the form

x(a) = zeoa + Coa® + Csa. (3.5)

We use the Monte Carlo simulations to calculate the peaks in the structure function over
a range in «, and then fit the results to predictions of the peak heights from ROL over a
range in YN to estimate the coefficients Cy and C5. However, our simulations take place
on a finite size lattice so the structure functions are discrete. To find the peaks in the
structure function from the simulations, we need to smooth the discrete results. To find
the corresponding continuous structure functions for an infinite system, the simulation
results are fit to the Leibler structure functions derived from RPA calculations [12]:
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N

S(k) = F(k2a2N/6) — 2yN’

(3.6)

where

Flz) = 9(1,z)

g<f7x)f(1 - f,x) - 025[9(17‘13) —g(f,:L‘) - f(l - f,$)]2’
and g(f,z) is the Debye function from Appendix B. We fit Equation 3.7 to the structure
function data generated from the Monte Carlo simulations and extract the peak heights.
The simulations were performed with chains of length N = 30,40, 60, and 100 and with
¢ = 1,2,3, and 5 monomers per site. The only exceptions were for ¢ = 1, which had
N = 90 instead of N = 100, and ¢ = 3, which had N = 28 in place of N = 30. This was
done to allow the simulations to be run at the correct density, pg, for the given N and L.
For demonstration, the fits for chain lengths of N = 30 for the models with ¢ = 2 and 5
are shown in figure 3.3 (a) and (b), respectively.

(3.7)

a c= 2 T T T T T T T T T T T
100 | @ - (b) A ¢
C ] 1 7
o a =0.0222 C o =0125 ]
- @ =0.01671 E E
E i s @ =0.0111 | e 0075 |
~ Jé- /‘55"» = 0.0056 & '
~ /,vy ﬁ-\mu '/"«:—‘ B >
%/ 10 %Y Ty, — & 0.1 -
C ] n C
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1 1 3 5 7
anl/Q anl/Z

Figure 3.3: Leibler function fits for N = 30 with ¢ =2 and 5

This is repeated for the other chain lengths and the extracted peaks are fit to the
predictions from ROL by adjusting . For the simulations with ¢ = 1 monomer per site, the
simulations are run at four different chain lengths, N = 30, 40, 60, and 90, and a number of
different values of the interaction parameter, . The peak heights of the structure function
are extracted by fitting the Leibler function and subsequently fitted to the corresponding
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ROL prediction by adjusting x(«). because we do this with a number of different chain
lengths this fit works for a wide range of a. For the model with ¢ = 1 monomer per site,
the associated N values are 135, 180, 271, and 451. This is then repeated for the other
three models with ¢ = 2,3, and 5 using the parameters in Table 3.3.

H c N N alN H

1 30,40,60,90 135, 180, 271, 406 0.17,0.33,0.5,0.67,0.83,1,1.17,1.33,1.5, ..., 3.33
2 30,40, 60,100 372, 496 744, 1240 0.083,0.17,0.25,0.33,0.42,0.58,0.67,0.75,0.83
3 28,40,60,100 678, 968, 1452, 2420 1,2,3,4,5,6,7,8,9

5 30,40,60,100 1797, 2396, 3594, 5990 0.75,1.5,2.25,3,3.3,3.75,4.08, 4.208

Table 3.3: A list of all the parameters for the simulations used to calibrate y(«).

Figure 3.4: Peaks in structure functions for ¢ = 1. Symbols are from the lattice simulations
and curves are ROL predictions. The fit to ROL predictions for N = 135, 180, 271, and
406 give values of ', = 33.6 and (5 = —74.
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poN/S(k¥)

Figure 3.5: Peaks in structure functions for ¢ = 2. Symbols are from the lattice simulations
and curves are ROL predictions. The fit to ROL predictions for N = 372, 496 744, and
1240 give values of Cy = 208 and C3 = —63.
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poN/S(EY)

Figure 3.6: Peaks in structure functions for ¢ = 3. Symbols are from the lattice simulations
and curves are ROL predictions. The fit to ROL predictions for N = 678, 968, 1452, and
2420 give values of C5 = 0.68 and C5 = —0.17.
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Figure 3.7: Peaks in structure functions for ¢ = 5. Symbols are from the lattice simulations
and curves are ROL predictions. The fit to ROL predictions for N = 5990, 3594, 2396, and
1797 give values of 'y, = 4.15 and C5 = —8.5.

In the top corners of Figures 3.4, 3.5, 3.6, and 3.7, are comparisons between the linear
x and the non-linear y. The calibrated parameters for Equation 3.5 are summarized in
Table 3.4.

200 CQ Cg H

490 33.6 -74
16.1 208 -63
1.48 0.68 -0.17
3.34 415 -85

Y W DN O

Table 3.4: Parameters for Equation 3.5 relating x and «, calculated by a fit of the Monte
Carlo simulation data to predictions from ROL theory.
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With this, we have calibrated the lattice model. This will let use translate from the
lattice model parameters, o and N, to the universal parameters y and N. Thus, we are
now able to make predictions that are universal and that can be applied to any system.

These predictions of the ODT for symmetric diblocks are used to calibrate x for di-
blocks in experiments. Commonly in experiments, the mean-field prediction is used to do
this calibration. However, this neglects the fluctuations, polydispersity, and compositional
asymmetry present in all experimental systems. Including these factors in the calibration
increases the accuracy of the calibration and might help resolve previously noted contradic-
tions between different methods of determining y [28]. To include these factors this work
adds a multiplicative correction factor to the universal ODT curve, which will be discussed
in the next chapter.
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Chapter 4

Order-Disorder Transition

The order-disorder transition (ODT) is the point in the phase diagram where the stable
phase changes between the disordered phase and an ordered morphology. The specific
ordered morphology at the ODT is dependent on the composition, f, and invariant poly-
merization index, N. For this work, we will be focusing on f = 0.5, so all the polymer
melts will form an ordered lamellar phase. The mean-field theory prediction for the ODT
of symmetric diblocks is (xN)opr = 10.495. However, this prediction is not accurate for
melts with finite length polymers because the fluctuations in the melt act to push the
ODT to higher values of y/NV. A prediction that includes these fluctuation corrections is
the universal curve

(xN)opr = 10.495 + 41N ~2/3 4 123N 056, (4.1)

The first term is the standard mean-field theory prediction. Added to this is the correction
41N~2/3 from Fredrickson-Helfand theory [15]. The last term was determined by fitting
results from multiple simulation methods to ROL predictions [22]|. In order to test the ac-
curacy of our lattice model calibration, we can determine the ODTs of a series of symmetric
monodisperse diblock copolymer melts and compare them to the universal curve.

4.1 Monodisperse Order-Disorder Transition

The ODT is the point where the lamellar and disordered phases coexist and in our lattice
models it is signified by an abrupt change in the average number of A-B contacts (napg)
[32, 35, 37, 38]. Therefore, by running a series of parallel tempering replicas that span
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the lamellar and disordered phases, we can collect statistics for (nsp) and detect the
transition. However, the difference in free energy between the two phases becomes small
near the ODT, leading to a large time scale for the unfavorable phase to convert to the
global minimum. Therefore, simulations started in a disordered configuration and run just
above the ODT may not order over the length of our simulation run. As a result, this
metastability will lead to some inaccuracies in our determination of (xN)opr. To estimate
these errors, we can run two sets of simulations. In the first set, the melts start from a
lamellar configuration and will underestimate the ODT, while the second set starts from
disorder and will overestimate the ODT. By plotting the loop formed by overlaying the
two simulation runs as in Figure 4.1, the range bracketing the ODT can be determined.
The value of (xN)opr is taken to be the center of this range.

0.7 T T T T T T T T T T T
(@) c=1 5t (b) c=2
b=1 b=1
= o6 =
~ ~
— —
m m
< <
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04 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1
21 22 23 24 25 26 27 17 18 19 20
0.7 — —
(c) ¢c=3 291 (d) c=5
b=1 b=
= o6] = 27
~ ~
aa] m 25¢
< <
£ o5 £ 5l
21t
0.4 1 1 1 1 1 1 1 1 1 1 1 1 1
160 165 170 17.5 180 140 145 150 155 160
XN xN

Figure 4.1: Average number of AB contacts, (nap), from parallel-tempering simulations
of monodisperse diblock copolymers with N = 50 and with ¢ = 1,2,3, and 5 monomers
per site, respectively. Open symbols are started from a lamellar configuration and closed
symbols are started from disorder. the box size L is picked so that there are approximately
3 periods in the box.
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Figure 4.2 compares the order-disorder transitions from our calibrated simulations to the
universal curve given by Equation 4.1.

30 T —

(xN)opT

10 L e e
102 10° 10*

Figure 4.2: Location of the ODT, (xN)opr, as a function of the invariant polymerization
index, N. The curve is the universal curve, Equation 4.1, and the points are the results
from our lattice simulation with N = 50 and f = 0.5. The uncertainty from the lattice
model predictions are the error bars.

The excellent agreement between our data and universal curve confirms that the calibration
is working well. In the next section, we will use the lattice model to make predictions for
how the universal curve changes with polydispersity.

4.2 Polydisperse Correction to the ODT

One popular method for calibrating y in experiments is to match the ODT to some theoret-
ical prediction|19-39]. While experimentalists endeavor to keep the level of polydispersity
minimal, the reality of synthesizing diblocks means that B ~ 1.1 is typical. Although rel-
atively low, this level of polydispersity was still shown to have an important effect on the
calibration of PI-PLA diblocks [37]. Our aim in this section is to calculate a polydispersity
correction to the monodisperse universal curve displayed in figure 4.2 to facilitate accurate

calibration of experiments. We will limit our investigation to polydispersity indexes of
b =1.05and 1.1.
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In general the polydispersity index alone does not capture all the change in behavior due
to the polydispersity of the melts [, 9]. However, for the low range of D considered here,
the universal curve for polydispersity is well approximated by a correction proportional to
the polydispersity index, and, we may ignore the higher order-moments of the distribution
[39]. Hence, we expect the expression for the polydisperse ODT to take the form

(XN)Epr = (XN)SHE(L + w(D — 1)), (4.2)

where & is a coefficient that depends on N and is determined by plotting (xN)opr as a
function of B. As such, we must first determine (yN)opr at B = 1.05 and 1.10 for each of
our ¢ = 1,2,3, and 5 models. This is shown in figure 4.3, where we plot (nap) vs. (xV) and
determine (xN)opr from the centers of the metastability loops. The values are summarized
in Table 4.1, along with the monodisperse data. Note that because polydispersity increases
the periodicity of the lamellar phase [32, 39, 10|, we increase the size of the simulation box
to keep the number of periods the same.
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Figure 4.3: Metastability loops in the average number of intermolecular contacts per
monomer (nap)/M over a range of the universal interaction strengths, xyN. The melts
are polydisperse with index D, average chain length (N) = 50 and ¢ = 1,2,3, and 5
monomers per site respectively. Open symbols are started from a lamellar configuration
and closed symbols are started from disorder.



— (XN)opr (xN)opr (XN)opr
c N b=1 b=10 b=11
1 226 22.9 23.8 23.9
2 620 18.3 18.7 18.5
3 1210 17.0 16.9 16.6
5 2995 15.0 14.7 14.3

Table 4.1: (xN)opr for melts with three different polydispersities of B = 1, 1.05, and 1.10
for our models with ¢ =1, 2,3, and 5 monomers per site.

Each subplot in Figure 4.4 corresponds to a fit of the data in Table 4.1 to Equation 4.2,
for (a) c =1, (b) ¢ =2, (¢) ¢ = 3, and (d) ¢ = 5, where the slopes of the linear fits give
the values of x that are summarized in Table 4.2.
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Figure 4.4: Fits of the polydispersity correction used to find k. Symbols are data from the
lattice simulations. The error bars are the widths of the metastability loops and the lines
are the fits to Equation 4.2.
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Interestingly Figure 4.4 shows that as the value of N increases, the sign of the correction
changes from positive to negative between N = 620 and N = 1210.

[c N« ]
1 226 0.459
2620 0.080
3 1210 -0.213
5 2995 -0.479

Table 4.2: Linear polydispersity correction, x, for the four models with different numbers
of monomers per site, c.

To find an accurate value of the function x(N), we need to know its asymptotic behavior
for large N. In the limit of large N, mean-field theory is accurate and, so the RPA analysis
of a polydisperse melt provides the value of k. RPA gives the structure function as

N
k = - 4.
where the function F'(k) is simplified for f = 0.5 to
1
F(k) = 5:(0.5,2) = 76:1(1, ), (4.4)
and the number-average Debye function, g, is given by
a(f.7) =2[fz+ (1 + fek) " —1)/7%. (4.5)

Where K = 1/(D — 1) and = = k*a?N,,/6.The transition at the value of f = 0.5 is second-
order, and second-order transitions have their ODT at the spinodal. Therefore, by finding
the point where the structure function diverges, we will also find the ODT. Looking at
Equation 4.3, we can see that S(k) diverges if F'(k) = 2xN, giving the ODT for f = 0.5 as

(xN)opr = %F(kLam)y (4.6)

where the value of k., can be found by minimizing F'(k). Doing this over a range of D
gives the dependence of the ODT on polydispersity in the mean-field theory. We can then
extract x from a linear fit to (yN)opr vs D, as shown in Figure 4.5.
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Figure 4.5: Fitting Equation 4.2 to the prediction of (xN)opr from RPA gives the value
of k for N = 00 as k = —0.77.

With this we get the polydispersity correction kK = —0.77 for mean-field theory. Note that
(xN)opr is close to the linear approximation over the relevant range of b < 1.1.

To find the function x(NV), we fit a smooth curve of form

k(N) = —0.77+ CN?®, (4.7)
to the k values summarized in Table 4.2 constrained to the mean-field value, which ensures

the correct behavior in the limit of N = co. The fitting parameters were found to take the
values B = —0.49 and C' = 17.5, as shown in figure 4.6.
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Figure 4.6: Dependence of the linear correction for polydispersity, x, on the invariant
polymerization index, N. Closed circles are from our simulation data, the open circle is
from mean-field theory, and the line is Equation 4.7 with B = —0.49 and C' = 17.5.

Together with Equation 4.2, this expression for k gives a correction to the universal curve
for polydispersity, allowing for a more accurate calibration of x in experimental systems.
However, there is another correction to the universal curve that is also important in the
calibration.

4.3 Compositional Asymmetry Correction to the ODT

To improve the calibration of experimental systems, we need to correct for the small amount
compositional asymmetry that always exists in real systems. This can be achieved in the
same way as we did for polydisperse systems. The necessary data, summarized in Table
4.3, already exists in the literature from the Morse group [31]. We begin by adding an
asymmetry correction to Equation 4.2, of the form

(XN)opr = (V)55 (1+ 5D — 1) +9(f = )?). (48)
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This correction must be of quadratic order due to the symmetry of the phase diagram
around f = 0.5. The N dependence of 7 is determined by fitting to simulations of compo-
sitionally asymmetric diblocks for N = 480 and 1920 from the Morse group, summarized
in Table 4.3,and constraining the fit to the known mean-field value of v = 6.7 from Matsen

and Bates [11].

(xN)opr (XN)opr

f ON=480 N =1920
0.5 19.57 15.61
0.4688 19.76 15.63
0.4375 20.76 16.14
0.4062 22.41 17.16

Table 4.3: ODTs for N = 480 and 1920 and various compositions f, with B = 1 from
Ghasimakbari, T.; Morse, [31].

For a particular N, v is determined by plotting (YN)opr as a function of (f — 1/2)2
and extracting v from a fit of Equation 4.8 to the data. Figure 4.7 displays these fits using
the Morse group data summarized in Table 4.3.
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Figure 4.7: ODTs for different values of compositional asymmetry. Points are from the
data in Table 4.3, and lines are fits to Equation 4.8. The parameter v is given by the slope
of the lines.
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We can see in Figure 4.7 that much like %, v is a parameter that depends on N. This
dependence of v on N is fit to the functional form (N) = 6.7+ C; N2, as shown in figure
4.8 where the fitting parameters where determined to be C; = 500 and Cy = —0.63

v(N) = 6.7 + 500N %, (4.9)

This fit is has two parameters and it is fit to two data points this accounts for the large
degree of agreement between the fit and data in Figure 4.8.

20 T T T T T T
L D=1 4

0.00 0.01 0.02

Figure 4.8: Dependence of the linear correction for polydispersity on the invariant poly-
merization index N. Closed symbols are from the Morse group data [31], while the open
symbol is a mean-field value from Matsen and Bates [11]

We can now accurately predict the ODT of diblock copolymer melts with a small degree
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of polydispersity and compositional asymmetry. In the next section, calibrations of the
Flory-Huggins x parameter using the new ODT predictions will be calculated for a number
of different diblock chemistries using experimental data. These calibrations improve upon
ones done using the less accurate mean-field predictions for the ODT, (yN)opr = 10.495.
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Chapter 5

Calibration of Experimental Systems

In experimental systems, the parameters commonly reported are the molecular weight,
M, the composition, f, and the polydispersity index, P. In addition we also utilise,
the known literature values for the A and B blocks of segment density, ps and pg, and
end-to-end distance of the polymer, Ry. In order to proceed with the calibration we require
the invariant polymerization index, N = a®p3 N, where a is the segment length, p, is the
standard segment density and N is the degree of polymerisation. We start by determining
N. The size of a segment is defined by the standard segment volume, p,' = 118A3, and
the mass of a segment is the product of its density and volume, pa/po. By dividing the
molecular weight by the mass of a segment, we then have the number of chain segments,
N = %, which would be true if we where dealing with A-type homopolymer.

However, finding the number of segments is a little more complicated for diblocks as
the two blocks have different densities. As a result, the number of segments in the A and
B blocks must be calculated separately by N, = %, where the subscript, v = A or B,
labels quantities specific to the particular blocks, and N4, is Avogadro constant. This gives
a total diblock polymerization of N = N4 + Np, and composition f = % By combining

the equations for N and N.,, we can express the total polymerization as

anO
N = .
Na(foa+ 1~ f)ps)

The other necessary quantity is the statistical segment length, a, which can be derived
from the average end-to-end distance of the polymer, R,. Using Equation 1.5 and known
data for Ry [11, 42, 43|, we can find the independent statistical segment lengths for the

(5.1)
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two blocks via
a2 = Ny,—>"2. (5.2)

To find the average statistical segment length, we average the two blocks, giving
a® = faa’ + (1 — fa)a%. (5.3)

With Equations 5.1 and 5.3 we can now calculate the invariant polymerization index,
N = ap2N. Table 5.1 reports the calibrated quantities for a number of different chemical
species.

Chemistry R%/Mn(%) (%) G(A)

c7713
PE[ /] 1.250 0.784  8.35
PEE[ 1] 0.507 0.807  5.39
PEP[ /1] 0.834 0.790 6.84
PCHE[ 1] 0.323 0.920  4.60
PI[11] 0.625 0.830  6.07
PS[11] 0.434 0.969 5.47
PEO| /1] 0.805 1.064 7.80
PMMA[11] 0.425 1.130  5.84
PLA[12, 13] 0.605 1152 7.03
PDMS][ 1] 0.457 0.895 5.39

Table 5.1: Molecular data used in calculating the number of segments and the segment
mass. R2/M,, is the literature value of how radius of gyration scales with chain length. p
is the mass density from the literature and a is the statistical segment length calculated
from Equation 5.3.

With this data we can now find the relationship between x and the temperature in
the experiments. This is done by taking the locations of the order-disorder transition
from experiments in terms of temperature, T, and mapping them onto predictions from
theory expressed in terms of xy. To compare the importance of the relative corrections, in
the predictions of (xN)opr, the calibration of x will be performed using order-disorder
transitions calculated using four different theoretical results. The first and least accurate
prediction of the ODT is from mean-field theory,
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Secondly, there is an additional correction from Fredrickson-Helfand theory that accounts
for some of the concentration fluctuations [15], giving

(XN)opr = 10.495 + 41N ~Y/3, (5.5)

The third result is the universal curve that was fit to monodisperse symmetric simulations
calibrated to ROL theory [22],

(XN)opr = 10.495 + 41N~/ 4+ 123N 0%, (5.6)

The final prediction is Equation 4.8 from Chapter 4 (repeated here for clarity),
ideal 1 2
(XN)oor = (VBRI + KD — 1) +4(7 — 2)?), (5.7

which includes our corrections for polydispersity and compositional asymmetry. In order
to proceed with the calibration, we use the common functional form

X(T) = é + B, (5.8)
T
to express y in terms of temperature in the experiments. Adjusting the fitting parameters,
A and B, then allows us to map the experimental ODTs, Topr, onto the predictions
for (xN)opr. To demonstrate this calibration, we will use data for PCHE-PMMA from
Kennemur, Bates, and Hillmyer [59], presented in Table 5.2.

N D I Topr

137 1.10 0.45 605K
127 1.11 0.58 598K
76 1.12 0.54 477K
65 1.11 046 446K

Table 5.2: Tabulation of data for PCHE-PMMA for degree of polymerization N calculated
with Equation 5.1, polydispersity B, composition f, and the experimental temperance of
the order-disorder transition Tppr from [59].

Using the data from this Table 5.2, we can predict the theoretical order-disorder tran-
sition, starting with the mean-field prediction of Equation 5.4. This gives the value
Xopr = 10.495/N for the vertical axis of Figure 5.1. We then compare this to the ob-
served order-disorder transition in the experiments TpHpr by putting inverse temperature
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on the horizontal axis. Drawing a straight line through each of the data sets, we can find
A and B. The quality of the fit justifies our choice of functional form in Equation 5.8.
As a result, we are able to extract the fitting parameters, A and B, from the slope and
intercept, respectively, thereby calibrating x for the experiments.

To improve this calibration we can use a more accurate prediction for the theoretical
order-disorder transition from Fredrickson-Helfand theory, Equation 5.5. Dividing this
by N gives the value of xopr. This prediction includes a fluctuation correction to the
ODT that is dependent on N, which is responsible for the difference between the first two
calibrations. We can see in Figure 5.1 that improving the accuracy of the calibration has a
large effect on the value of x. This shows the importance of improving the accuracy of the
calculation of the ODT used in the calibration. We can next improve the calibration by
using a more accurate prediction of the ODT from the universal curve. Equation 5.6. We
can see in Figure 5.1 this calibration adds another important correction to the prediction
of y. Finally we can improve the calibration by not just including the dependence on N
but also the dependence on D and f. This is done by using the prediction of the ODT
from this work, Equation 5.7.
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PCHE-PMMA

Figure 5.1: Plot of the calibration of y for PCHE-PMMA using data from Kennemur,
Bates, and Hillmyer [59]. The calibration based on mean field ODT Equation 5.8 gives
A =138 and B = 0.151. The calibration based on Fredrickson Helfand ODT Equation 5.6
gives A = 275 and B = 0.325. The calibration based on Universal curve ODT Equation
5.7 gives A = 429 and B = 0.536. The calibration based on this works correction ODT
Equation 5.8 gives A = 543and B = 0.707.

Its important to compare the final calibration, based on the corrected universal curve,
in Figure 5.1 to the calibration based on the mean field theory prediction of (xN)opr =
10.495, as this is the typical calibration used in the literature. This demonstrates the size
of the correction to the calibrations over common methods and the importance of including
all the corrections to the ODT. Also do this calibration for 18 other diblock chemistries.
In Figure 5.4, this same calibration is carried out.
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Figure 5.4: Analogous plots to Figure 5.1 for 19 different experimental systems. Calibration
of x for 19 experimental systems.

In all cases, using a more accurate prediction of (xN)opr has greatly improved the
calibration of x compared to fitting to the mean-field value of (xN)opr = 10.495. The
fluctuation corrections for finite N make a large change to the ODT in the experimental
regime, thus affecting the calibration. In the calibrations of PLA-PEP, PLA-PI and PLA-
PS there is a large correction from including polydispersity and compositional asymmetry.
PLA-PEP has an increase of 100% over the mean-field result, 20% of which results from
the polydispersity and asymmetry corrections. This illustrates the importance of using
more accurate predictions for (xN)opr.

In some of the calibrations the corrections for polydispersity and compositional asym-
metry are small compared to the other corrections. For example, this can be seen in the
calibrations of PCHE-PEE and PCHE-PEP where the, polydispersity index is very low
(b =1.02), and the composition is almost symmetric (f = 0.5), leading to a correspond-
ingly small correction from these quantities.

Interestingly, in some of the calibrations where polydispersity is larger i.e.(b ~ 1.10)
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the correction for polydispersity is small compared to the other corrections. This is because
for N = 590, the correction factor for polydispersity, , is approximately zero, as seen in
Figure 4.6. This small value of k means that the polydispersity has a very weak effect on
the ODT and thus on the calibration. For example, in the calibration of PI-PEQO, despite
the data points having polydispersity indexes of D = 1.06 and B = 1.10, the calibration
was not changed significantly by including polydispersity. This effect is most pronounced

for values of N = 600.

All the newly calibrated x parameters accounting for polydispersity and compositional
asymmetry are tabulated in Table 5.3. However, a complete record of the different cali-
brations to all four predictions considered are presented in Appendix A.

chemical pair A B x 10°
PE-PEP [01] 10.60 -19.68
PEP-PEE [01] 5.40 0.72
PCHE-PEE [54] 21.6 -19.2
PE-PEE [(1] 10.5 6.0
PCHE-PEP [5/] 33.7 -22.2
PEE-PDMS [55] 86.0 -151.3
PCHE-PE [54] 62.1 -60.0
PS-PT [26, 30, 64]  79.3 -131.5
PLA-PS [57] 125 -163
PE-PDMS [57] 123 -97
PEP-PDMS [55] 68 -2
PI-PEO [30, 6] 255 -314
PCHE-PMMA [59] 543 =707
PLA-PEE [00] 647 -931
PE-PEO [55] 722 -1275
PLA-PEP [50] 875 -1393
PLA-PT [58] 669 -1227
PEO-PEP [55] 416 -540
PEO-PEE [55] 475 -649

Table 5.3: Tabulation of calibrated y values for data from various experimental papers. A
and B are the fitting parameters from Equation 5.4.

These improved estimates of y are easy to implement in place of standard calibrations
based on the mean-field prediction of (xV)opr = 10.495, because they do not require the
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addition of any information that is not provided as standard in the experimental literature,
like the polydispersity of the independent blocks. Also, they benefit from the fact that un-
like the Morse calibration, these calibrations do not require fitting of the peak heights of
the disordered-state structure functions to ROL. This simplifies the experiments as they
do not require intensity-calibrated scattering function data. Also, our method is able to
account for the polydispersity and compositional asymmetry in systems, whereas imple-
menting the Morse calibration would necessitate new ROL predictions for the structure
functions including these factors.

A direct comparison between calibrations based on ODTs and the Morse calibration has
been performed previously by Arora et al. |63, 30, 65]. This calibration used predictions
for symmetric and monodisperse melts, decreasing its accuracy compared to our method.
However, it showed that both a direct Morse calibration based on the structure functions
and a calibration based upon the ODTs provide similar results under the same assumptions.
As a result, the calibrations in this work, which include corrections for both polydispersity
and compositional asymmetry, should be capable of replicating the accuracy of a direct
Morse calibration of on experimental system without the need for new experiments and
more sophisticated ROL calculations.

All the newly calibrated y parameters accounting for polydispersity and compositional
asymmetry are tabulated in Table 5.3. However, a complete record of the different cali-
brations to all four predictions considered are presented in Appendix A.
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Chapter 6

Conclusion

6.1 Conclusion

We greatly improved the estimation of the Flory-Huggins y parameter from previous es-
timates |01, 57, 54| by accounting for fluctuations and adding corrections to the order-
disorder transition (ODT) for polydispersity and compositional asymmetry. Our ap-
proach was built upon the common technique of calibrating y, whereby experimental
ODTs of symmetric diblock copolymer melts are mapped onto the mean-field prediction,
(xN)opr = 10.495. This mean-field based approach neglects the fluctuations inherent in
all polymers of finite chain length, which can lead to huge inaccuracies in the calibration.
For example, a realistic experimental system could have an N = 1000, which would give
a prediction of (xN)opr = 17.0, from the universal curve, an increase of 60% from the
mean-field ODT. This initial inaccuracy carries through to the final calibration of y. Fur-
thermore, calibrating experimental ODTs to (xN)opr = 10.495 neglects the polydispersity
of the molecules as well as the fact that diblock copolymers are never perfectly symmetric.

The method used in this work corrects for deviations from the universal curve for the
ODT of ideal molecules by introducing a multiplicative correction factor. This factor is
obtained by expanding around b =1 and f = % to the lowest non-trivial order, resulting
in the expression

(XN)opr = (10.495 + 41N~ + 123N %%0) (1 + k(D — 1) +(f — 3)?). (6.1)

The two coefficients, s and 7, both depend on N. To extract the N dependence for the
polydispersity correction, simulations of symmetric diblocks were run for three different
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degrees of polydispersity, b = 1, 1.05, and 1.10, giving
k= —0.77+ 175N "%, (6.2)

The correction for compositional asymmetry was found in a similar way using existing
simulations by Ghasimakbari and Morse [31], giving

v = 6.7+ 500N 0%, (6.3)

Using our updated expression for the order-disorder transition, Equation 6.1, we recal-
ibrated the y parameter for 19 different chemically-distinct diblock copolymers that were
previously calibrated using (xN)opr = 10.495. This change from calibrations based on
mean-field theory to calibrations based on our more accurate prediction of the ODT pro-
vided a huge improvement in the estimated y values. Nevertheless, the accuracy of the
new calibrations will still be limited by the experimental uncertainties in measuring the
ODT as well as the molecular weights, densities, segment lengths, and polydispersities.
Given the analytical form of Equation 6.1, a direct error analysis of the calibration of x(7')
could be performed in an attempt to assess the effect of these errors on the calibrations.
However, this would require estimates for the various experimental uncertainties, which
were not quoted in the literature.

Although our approach for calibrating x assumes that it only depends on temperature,
T, there are some researchers that suggest y may also depend on the details of the system
such as polydispersity, composition, molecular weight, and the architecture of the polymers.
This concern was raised by Maurer et al. [28] when they found a significant discrepancy
in x values calibrated from diblock copolymer melts compared to binary homopolymer
blends. If this was actually true, then every experimental system would need to be cali-
brated independently and theory would no longer be able to make quantitative predictions.
However, previous experimental calibrations of y generally involve fits to mean-field theory
and they also ignore deviations from an ideal system (i.e., polydispersity and compositional
asymmetry). Therefore, it impossible to know the true cause of the discrepancy between
different calibrations of y. On the other hand, in simulations where these issues can be
well controlled, the universality between different systems has been well established [22].
We expect the same will be true of experiments once the details of their system are well
accounted for.

6.2 Further Work

Other possibilities for future work would be to extend the calibration method by consid-
ering the impact of higher-order effects on our prediction for the order-disorder transition.
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For example, we could allow for different polydispersities, B4 and Pp, in the A and B
blocks of the diblock copolymer; this work assumed B4 = Pp. Instead of just expanding
the correction factor in terms of the total polydispersity, D, we would expand in terms of
the individual polydispersities of the two blocks, D 4 and Pg. Naturally, this would require
additional simulations where the A block was polydisperse while the B block remained
monodisperse. Note that analogous simulations for a monodisperse A block and a polydis-
perse B block would not be necessary as they would be identical due to the compositional
symmetry (ie., f = 1).

Another improvement that could be incorporated into our calibration would be to
account for possible differences in statistical segment lengths of the two blocks, referred
to as conformational asymmetry. However, this extension to the method would not be
straightforward. Running simulations with different values of statistical segment length
could be acheived by adding a bending rigidity to one of the components in order to increase
its statistical segment length. However, calibrating the resulting simulations would be a
problem because there is currently no renormalized one-loop prediction for conformational
asymmetry diblocks. If ROL predictions for the disordered-state structure function were
produced for conformationally asymmetric diblocks, then this correction could be readily
incorporated into our approach. Nevertheless, the effect on the order-disorder transition
should be minor especially for diblocks with low conformational asymmetry [66].

Inaccuracies in the theoretical prediction for the ODT are only one source of uncertainty
in the final value of x. Other sources are the uncertainties in the experimental measurement
of the ODT as well as the experimental characterization of the molecules. With more
accurate experiments and theory, a better quantitative agreement between theory and
experiment could be achieved. This could resolve outstanding questions regarding the
universality of x [20, 28, 29] as well as an increase in overall precision, allowing researchers
to study less prominent effects in polymer melts like chain-end effects and the finite range
of interactions [67, 64].
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Appendix A

Calibration Data

The method we use for calibration of the 19 chemical pairs from Chapter 5 is presented
here in more detail. we start by finding the value of N = p2a®N associated with each
of the diblock copolymer melts from the experimental data. The next step is to find the
statistical segment length a. The mass density of the A-block, p4, is multiplied by a
standard segment volume, p, 1= 1183, to give the segment mass of the polymer’s A side,
pa/po. The total number-averaged mass of the A-block, M,, 4, is then divided by the mass
of a segment to give the number of segments in the chain,

M
NA _ n,APO' (Al)

PA
A similar process is also done for the B side of the diblock to give

M,
Ny = BP0 (A.2)
PB
This gives the total chain length as N = N4+ Ng. An equation that combines these results

is,

N — My po
Naw(fpa+ (1= flos)’
where the factor Ng4,, Avogadro’s number, exists to convert between units. Next, the
statistical segment length is found using its relation to the average end-to-end length
squared R? = a®N, as given in Equation, 1.4. To find thestatistical segment length of the
A-block, ay, we can rearrange Equation 1.4 to isolate for a, then substitute data from the
literature for (R3/M, 4) [11]. This results in the statistical segment lengths

a’, = Na(R*/M,) 4 (A.4)

(A.3)
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and
ap = Np(R*/M,)s, (A.5)

for the A and B blocks, respectively. Tabulations of the statistical segment length for
various chemistries are shown below.

Chemistry R2/My  p a

PE[/] 1250 0.784 8.35
PEE[!]] 0507 0.807 5.39
PEP[11]  0.834 0.790 6.84
PCHE[!]]  0.323 0.920 4.60
PI[11] 0.625 0.830 6.07
PS[11] 0434  0.969 5.47
PEO[/]]  0.805 1.064 7.80
PMMA[/1] 0425 1.130 5.84
PLA[12, 13]  0.605 1.152 7.03
PDMS[!1] 0457 0.895 5.39

Table A.1: Molecular data at T" = 140°C used in calculating the number of segments and
the segment mass. R2/My is how the radius of gyration scales with chain length from
the literature. p is the density from the literature. a is the calculated statistical segment
length.

Using the data in Table A.1, N can be calculated independently for each of the melts
used in the calibration,

N = ps(fai + (1= flap)’N. (A.6)

These calibrations for x are performed by calculating the value of (xN)opr for each of
the melts used in the calibration. With the four different theoretical predictions,

(xN)opr = 10.495, Mean-field
(xN)EH. = 10.495 + 41.0N /3, Fredrickson-Helfand
YN)9m = 10.495 + 41.0N Y3 4+ 123.0N 096, ROL universal curve
ODT
, 1
(xN)opr = (XN)GEr(1+ k(D —1) +y(f — 5)2), ROL -+ corrections

the experimental ODT temperature, Topr, of the melts it plotted on the x-axis and the
theoretical x is plotted on the y-axis. The relation between x and 7' is determined by
fitting to x(7') = A/T + B. These fits are shown in the following figures.
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Poly(ethylene)-Poly(ethylenepropylene)

PE-PEP diblock polymers

M, frE b Topt
(kg/mol) (°C)
88 0.50 1.06 119
107 0.49 1.07 139
117 0.50 1.09 139
128 0.49 1.06 159
0.008
0.006
X 0.004 |
A Mean-field
0.002 - . ;r(;(li‘rickson»Helfand
@® ROL + corrections
0.000 L L
0.0023 0.0024 0.0025 0.0026
Fits to x(T') = A/T + B for PE-PEP
Prediction A B x 103
(XN )ODT
Mean-field 8.91 —16.21
Fredrickson-Helfand 10.45 —19.26
ROL 10.99 —20.36

ROL + corrections

10.60 —19.68




Poly(ethylenepropylene)-Poly(ethylethylene)

PEP-PEE diblock polymers

M, frEpP b Topr
(kg/mol) (°C)
44.3 0.54 1.08 16
50.1 0.56 1.07 96
54.8 0.55 1.05 125
81.2 0.53 1.05 291
0.020 T
PEP-PEE ¢
0.015
X ootor 4 e
* A Mean-field
0.005 t Fredrickson-Helfand
¢ ROL
@® ROL + corrections
0.000 : : ‘
0.0015 0.0020 0.0025 0.0030 0.0035
-1
T

Fits to x(T') = A/T + B for PEP-PEE

Prediction for A B x 103
(xN)opr

Mean-field 3.65 1.35
Fredrickson-Helfand 4.81 0.99
ROL 5.43 0.62
ROL + corrections 5.40 0.72
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Poly(cyclohexylethylene)-Poly(ethylethylene)

PCHE-PEE diblock polymers

M, frcuE b Topr
(kg/mol) (°C)
37.9 0.48 1.02 184
39.0 0.50 1.03 177
40.6 0.50 1.02 180
46.9 0.51 1.03 236
53.1 0.50 1.02 273
62.3 0.50 1.02 335
0.03 : o
PCHE-PEE
0.02
X [
0.01 F o A Mean-field
Fredrickson-Helfand
¢ ROL
@® ROL + corrections
0.00 . . .
0.0015 0.0017 0.0019 0.0021 0.0023

T—l

Fits to x(T") = A/T + B for PCHE-PEE

Prediction for A B x 103
(xN)opr

Mean-field 11.0 7.8
Fredrickson-Helfand 16.9 —13.8
ROL 21.4 —18.9
ROL + corrections 21.6 —19.2
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Poly(ethylene)-Poly(ethylethylene)

PE-PEE diblock polymers

M, JrE b Topr
(kg/mol) (°C)
23.9 0.50 1.15 136
27.2 0.48 1.05 182
0.04
PE-PEE .
0.03 | R
X 002} T
A Mean-field
0.01 Fredrickson-Helfand
¢ ROL
@® ROL + corrections
0.00 ‘ : .
0.0021 0.0022 0.0023 0.0024 0.0025

T—l

Fits to x(T') = A/T + B for PE-PEE

Prediction for A B x 103
(xN)opT

Mean-field 12.2 —=5.0
Fredrickson-Helfand 15.9 7.8
ROL 17.8 —-9.5
ROL + corrections 10.5 6.0
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Poly(cyclohexylethylene)-Poly(ethylenepropylene)

PCHE-PEP diblock polymers

M, frcne b Topr
(kg/mol) (°C)

18.1 0.52 1.02 139
20.1 0.50 1.02 175
214 0.51 1.02 190
214 0.55 1.02 192
22.0 0.48 1.02 208
22.0 0.51 1.02 201
23.4 0.51 1.02 243
24.6 0.52 1.02 253

0.06

0.04

””,J
X ‘_L”,,A—r“‘”
0.02 A Mean-field
Fredrickson-Helfand
¢ ROL
@® ROL + corrections

0.00 : : :

0.0018 0.0020 0.0022 0.0024 0.0026
T-l

Fits to x(T') = A/T + B for PCHE-PEP

Prediction for A B x 103
(xN)opr

Mean-field 17.0 —6.3
Fredrickson-Helfand 26.1 —14.0
ROL 33.0 —21.1
ROL + corrections 33.7 —22.2
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Poly(ethylethylene)-Poly(dimethylsiloxane)

PEE-PDMS diblock polymers

M, JPEE b Topr
(kg/mol) (°C)
10.4 0.48 1.07 110
15.3 0.50 1.07 165
0.08
PEE-PDMS
0.06
X 004t
0.02 . Ilzli(e:Z:i-cf;l(csl(fln—Helfand
¢ ROL
@® ROL + corrections
0.00 : : :
0.0022 0.0023 0.0024 0.0025 0.0026 0.0027

T-l

Fits to x(T') = A/T + B for PEE-PDMS

Prediction for A B x 103
(xN)opT

Mean-field 33.5 —53.1
Fredrickson-Helfand 58.0 —97.0
ROL 80.3 —139.6
ROL -+ corrections 86.0 —151.3
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Poly(cyclohexylethylene)-Poly(ethylene)

PCHE-PE diblock polymers

M, frcng b Topr
(kg/mol) (°C)

12.8 0.54 1.02 168
13.2 0.55 1.02 172
13.6 0.54 1.02 180
15.6 0.52 1.02 227
16.2 0.53 1.02 234
16.4 0.52 1.02 250
16.9 0.53 1.03 263
17.0 0.52 1.03 266

0.09 ;

PCHE-PE
0.06 -
7 RISy o
0.03 A Mean-field
Fredrickson-Helfand
¢ ROL
@® ROL + corrections

0.00 : : : :

0.0018 0.0019 0.0020 0.0021 0.0022 0.0023

T—l

Fits to x(T') = A/T + B for PCHE-PE

Prediction for A B x 103
(xN)opr

Mean-field 29.5 —17.7
Fredrickson-Helfand 44.0 —32.7
ROL 54.1 —44.9
ROL + corrections 62.1 —60.0
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Poly (styrene)-Poly(isoprene)

PS-PI diblock polymers

M, fps b Topr
(kg/mol) (°C)
124 0.46 1.05 78
13.7 0.46 1.05 84
20.1 0.54 1.03 117
27.8 0.56 1.04 200
0.12
A Mean-field
Fredrickson-Helfand z
0.09 r : ﬁgl]:,‘FCOITECtiOHS
X 0.6t .
3 R
003 T -7 ‘4
PS-PI
0.00 . . . .
0.0020  0.0022  0.0024 00026  0.0028  0.0030
-1
T
Fits to x(T') = A/T + B for PS-PI
Prediction for A B x 10°
(XN)opr
Mean-field 38.5 —59.2
Fredrickson-Helfand 60.1 —-97.1
ROL 77.0 —128.2
ROL + corrections 79.3 —131.5
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Poly(DL-lactide)-Poly(styrene)

PLA-PS diblock polymers

M, fpLA b Topr
(kg/mol) (°C)
9.5 0.45 1.11 116
12 0.54 1.15 164
15 0.43 1.07 213
15 0.44 1.12 216
18 0.52 1.09 268
19 0.54 1.22 258

0.18

0.12 |

0.06
_— A A Mean-field
Aa— Fredrickson-Helfand
¢ ROL
® ROL + corrections
0.00 : . .
0.0018 0.0020 0.0022 0.0024 0.0026

T-l

Fits to x(T') = A/T + B for PLA-PS

Prediction for A B x 10?
(xV)opr

Mean-field 56 —62
Fredrickson-Helfand 87 —104
ROL 111 —139
ROL + corrections 125 —163
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Poly(ethylene)-Poly(dimethylsiloxane)

PE-PDMS diblock polymers

M, frE b Topr
(kg/mol) (°C)
6.8 0.49 1.09 225
6.0 0.50 1.14 185
0.20 r
PE-PDMS

0.15

Xowr, e —-
A Mean-field
0.05 Fredrickson-Helfand
¢ ROL
® ROL + corrections
0.00 s : :
0.00200 0.00205 0.00210 0.00215 0.00220
-1
T
Fits to x(T) = A/T + B for PE-PDMS
Prediction for A B x 10°
(XN)opT
Mean-field 69 —47
Fredrickson-Helfand 105 —81
ROL 131 —110
ROL + corrections 123 —97
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Poly(ethylenepropylene)-Poly(dimethylsiloxane)

PEP-PDMS diblock polymers

M, frEP b Topr
(kg/mol) (°C)

6.3 0.48 1.07 64

7.7 0.50 1.13 165

0.20 :
PEP-PDM
0.15 —
X oot

A Mean-field

0.05 | Fredrickson-Helfand
¢ ROL
® ROL + corrections

0.00 . L :

0.0022 0.0024 0.0026 0.0028 0.0030

T-l

Fits to x(T') = A/T + B for PEP-PDMS

Prediction for A B x 10?
(XN)opT

Mean-field 27 —20
Fredrickson-Helfand 46 —17
ROL 63 -8
ROL -+ corrections 68 -2
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Poly (isoprene)-Poly(ethyleneoxide)

PI-PEO diblock polymers

M, fp1 b Topr
(kg/mol) (°C)
4.15 0.5 1.06 132
6.73 0.49 1.10 247

0.32

0.24
X o6t
L i A Mean-field
0.08 |+ Fredrickson-Helfand
4 ROL
@® ROL + corrections
0.00 . : .
0.0018 0.0020 0.0022 0.0024 0.0026
-1
T
Fits for PI-PEO x parameter
A B x 10°
Mean-field 119 —123
Fredrickson- 191 —219
Helfand
ROL 250 —303
ROL + corrections 255 314
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Poly(cyclohexylethylene)-Poly(methylmethacrylate)

PCHE-PMMA diblock polymers

M, JpcHE b Topr
(kg/mol) (°C)

10.1 0.45 1.10 332

9.3 0.48 1.11 325

5.6 0.45 1.12 204

4.8 0.46 1.11 173
0.6

A Mean-field

Fredrickson-Helfand
¢ ROL
ROL + corrections

04 B - -
02r
___—a
———— ol
aa——TTT PCHE-PMMA
0.0 : : :
0.0016 0.0018 0.0020 0.0022 0.0024

T-l

Fits to x(T) = A/T + B for PCHE-PMMA

Prediction for A B x 10?
(XN)opT

Mean-field 138 —151
Fredrickson-Helfand 275 —325
ROL 429 —536
ROL -+ corrections 543 —707
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Poly(DL-lactide)-Poly(ethylethylene)

PLA-PEE diblock polymers

M, frra b Topt
(kg/mol) (°C)
3.3 0.52 1.06 165
3.4 0.53 1.06 169
3.8 0.48 1.05 195
0.6 :
PLA-PEE
04 T
02t h———————— T T T T -t
A Mean-field
Fredrickson-Helfand
¢ ROL
® ROL + corrections
0.0 L L L
0.00210 0.00215 0.00220 0.00225 0.00230
-1
T
Fits to x(T') = A/T + B for PLA-PEE
Prediction for A B x 103
(XN )opr
Mean-field 220 —275
Fredrickson-Helfand 389 —510
ROL 553 —751
ROL + corrections 647 —9031
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Poly(ethylene)-Poly(ethyleneoxide)

PE-PEO diblock polymers

M, fre b Topr
(kg/mol) (°C)
2.1 0.48 1.10 112
2.8 0.48 1.15 153

0.6

04 r

02 A Mean-field
Fredrickson-Helfand
¢ ROL
@® ROL + corrections
0.0 . : .
0.0023 0.0024 0.0025 0.0026 0.0027
-1
T

Fits to x(T') = A/T + B for PE-PEO

Prediction for A B x 103
(xN)opr

Mean-field 330 —527
Fredrickson-Helfand 522 —875
ROL 674 —1164
ROL + corrections 722 —1275
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Poly(DL-lactide)-Poly(ethylenepropylene)

PLA-PEP diblock polymers

M, fpLA b Topt
(kg/mol) (°C)
2.58 0.50 1.17 159
3.28 0.58 1.15 170
4.05 0.50 1.08 226
4.55 0.55 1.08 236
4.95 0.57 1.1 238

0.8
A Mean-field
Fredrickson-Helfand
0.6 - ¢ ROL :
@® ROL + corrections .
*
X o4t
g B __A
- ’.
0.2r :‘_ e
A
PLA-PEP
0.0 : : : ‘
0.0019 0.0020 0.0021 0.0022 0.0023 0.0024
T-l

Fits to x(T') = A/T + B for PLA-PEP

Prediction for A B x 10?
(xN)opT

Mean-field 302 —435
Fredrickson-Helfand 516 —T778
ROL 709 —1103
ROL + corrections 875 —1393
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Poly(DL-lactide)-Poly (isoprene)

PLA-PI diblock polymers

M, frra b Topt
(kg/mol) (°C)
2.75 0.51 1.12 93
3.55 0.54 1.09 110
4.53 0.54 1.09 153
3.69 0.56 1.11 111
4.08 0.50 1.11 146
0.8
A Mean-field
Fredrickson-Helfand
¢ ROL [ ]
0.6 ® ROL + corrections
X o4l
-
021 |, 4 —————m T =T
PLA-PI
0.0 : : : :
0.0023 0.0024 0.0025 0.0026 0.0027 0.0028
-1
T
Fits to x(T') = A/T + B for PLA-PI
Prediction for A B x 10°
(XN)opT
Mean-field 226 —368
Fredrickson-Helfand 404 —0697
ROL 577 —1034
ROL + corrections 669 —1227
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Poly(ethyleneoxide)-Poly(ethylenepropylene)

PEO-PEP diblock polymers

M, frEO b Topt
(kg/mol) (°C)
2.2 0.52 1.11 77
3.0 0.51 1.08 156
0.8 .
PEO-PEP
0.6 +
X o4t
0.2 o . Il;/i:fi?i-ciesl:)in—l—lelfand
¢ ROL
@® ROL + corrections
0.0 . L
0.0023 0.0025 0.0027 0.0029
-1
T
Fits to x(T) = A/T + B for PEO-PEP
Prediction for A B x 103
(XN)opr
Mean-field 162 —145
Fredrickson-Helfand 272 —289
ROL 369 —434
ROL -+ corrections 416 —540
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Poly(ethyleneoxide)-Poly(ethylethylene)

PEO-PEE diblock polymers

M, frEO b Topr
(kg/mol) (°C)

2.2 0.52 1.11 64

3.6 0.48 1.12 177

0.8
PEO-PEE
0.6
X oal
0.2 _‘r___,__——-—‘"'——’——'l——’i—_Mean—ﬁeld
Fredrickson-Helfand
¢ ROL
@® ROL + corrections
0.0 : . .
0.0022 0.0024 0.0026 0.0028 0.0030
-1
T
Fits to x(T') = A/T + B for PEO-PEE
Prediction for A B x 103
(XN)opr
Mean-field 169 —183
Fredrickson-Helfand 300 —366
ROL 426 —560
ROL + corrections 475 —649
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Appendix B

Random Phase Approximation

The random phase approximation was first applied to polymers by de Gennes [!]. It is an
approximation to the mean-field theory of polymers (SCFT) that involves expanding the
partition function in powers of fluctuations around a homogeneous state. This is called
the weak inhomogeneity expansion. This method was applied to monodisperses diblocks
by Leibler [12]. The fields wa and wpg, are expanded around the homogeneous fields W4
and Wpo, the rest of this section scales s so it runs between 0 and 1

Lo wag + EAwa(T) 0<s<f
W, s) = { wgz +§Aw2(7‘_’) f<s<1

where £ is a arbitrary, small number representing the strength of the fluctuations of the
field. By limiting the forward propagator to only the chain between 0 < s < N f, and the
backwards propagator between Nf < s < N, the propagators are only influenced by one
of the fields each. When ¢ is small, around zero, the field is constant and the forwards and
backwards polymer propagators can be solved for from the propagator equations,

(B.1)

dq(r, s a’N . o
Q(ds ): 5 V2q(r,s)—wA0q(r,s) (B.2)

dq' (7, s a’N ~ .
T2 NG )1+ g, s). (B3)
ds 6
The solution to this starting from a uniform initial conditions is simply to have the prop-
agators constant in space and vary in chain length. This gives ¢(7,s) = ¢(0,0)e"40°

and ¢'(7,s) = q'(0, 0)e*so5. Now, to solve for the propagators with the fields allowed to
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fluctuate, a multiplicative correction to the constant field propagators is added: ¢(7,s) =
e"w40s Aq(7, s) and ¢' (7, s) = e¥Bo*Aq' (7, s). This is subbed into the differential equation
for the propagators and simplified to get

dAq(7,s)  a*N

P V2Aq(7, 8) — EAwA(F) Aq(7, s) (B.4)
and AL )
1 dir’ s)__¢@ 6N V2AG (7, 5) + EAwg (A AG(F, s). (B.5)

Now, to solve the above equations for small &, perturbation methods can be used. This
works by expanding Aq(7, s) in terms of £ to get Aq(7, s) = 1+ o, ¢V (7, 5)¢. Similarly,
Aqd(7,s) =1+ 5202 (cf(7, 5)) D€ Subbing these in and isolating by powers of ¢ gives

2, D(F s a’N P im1) /o i
0= 3 [0 N G207 5) 4 A (6D (7 0] (B:6)

and

> (7 s a? . . ,
0= Z [d( )ds( ) ) + 6NV2(CT)(2)(,:" s) _ AUJB(?:’)(CT)(’*I)(F, 8)]51' (B.?)

For this equation to be true for all values of £, it must be true for each order of £&. This
gives

@ (7 2N , .
0o & d(“ s) _ a6 V20 (7, 5) + Awa(F)ci-D(F, 5) (B.8)
S
and a0 2
d i) (= N . i
0= >ds(r’5> + VO 5) = Auwp() () I ) (B.9)

By Fourier transformin_g these equations, we can solveqfor the trangformed quantities
(c)D(k,s) and (¢*")@D(k,s) in terms of the fields Aw,(k) and Awg(k). Doing this for
1 =1 gives

* 7 6 —a2k2 . .
() (k,5) = s (1= 75 ) Auwa(F) (B.10)
and 6
* 7 a?k? s -
(C T)(l)(kas) = m(l —e 6 N )AwB(k:) (Bll)

Solving for i = 2 we have
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. > 9 P
(C*)(Q)(E, S) _ Z 36AUJA(]{3/)A'UJA(]€ k/) [I—G_NNS— _ k _ (6_ 2\k6k I2N8_6_<1261c2Ns):|

= @l N2RP R - P K2 — |F— 2
(B.12)
and
(C*T)(Q)(];, 5) = Z 36Asz</;’2A1fB(€— k_;) {1_6(126]9]\78— _ /fi _ (ea2|Eg;9\2Ns_€a26k2 NS)},
AR R -
(B.13)

Then, simplifying (¢*)®(0, s) and (¢*1)®) (0, s) with the definition of the Deybe function,
gi(z, f) =2[fz + e /® — 1] /2%, we get the following form for the corrections,

ORUDEDS N;‘Szgl(N“Z,'k/P,S)AwAuE/)AwA(—/&) (B.14)
7
and 2.2 2|1.1]2
CUMCDEDS al - (M 6"”  8) Awp (F) Awp(— ). (B.15)
7
Subbing this into the definition of the partition function Q = [, d*7g' (7, N =N f)q ( HN 1)
inverting the Fourier transform and using the identity for Fourier transforms f*(0) =

Jas @*TF () to solve the integral for @ gives

Q= Q01+Z HOE, £ W (E,1— )+ (D0, 1- e+ ()P, e +0(e%)],

(B.16)
where @)y is the partition function in the constant fields. To write a simplified partition
function Q[Aw] we make the following definitions using vector notation:

21.2

saalk, f) = Nor (25 ), (B.17)
21.2

sk, f) = Ngl(ch;k 1= 1), (B.18)
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N Na?k? Na?k? Na?k?

SA,B(k:7f):SB7A<k71_f):§[gl( 6 71)_91( 6 af>_gl( 6 71_f)]7 (Blg)
e (k1) san(k.f)
_ [ 544k, SA,B(K,
Sk, f) = (SB,A(/faf) S&B(’%f)) '
This gives the simplified expression for the partition function,
Q[Aw] = Qo[1 + —ZAw S(IEI, £)Aw(k) + O(&?)]. (B.20)

Now we need to apply the mean—ﬁeld conditions to find ¢4 and ¢p. Starting with the
relationship between A¢ and Aw,

Apa(k) = —saalk, [)Awa(k) — sapk, f)Awp(k) (B.21)
and . . .

App(k) = —spalk, [)Awa(k) — spp(k, f)Awp(k). (B.22)
This gives Ap(k) = S(k, f)Ajw( ), so then we can find Aw(kz) Sk, f)~ 1A¢(E) Pluggmg
this result, and the mean-field equations for ¢ (k) + ¢p(k) = 1 and xN(¢g(k) — da(k)) =
wa(k) — wp(k), into the partition function to second-order in ¢ gives,

QAw] = ZS (1K) Apa (k) Apa(—F)]. (B.23)

where S(k) is the structure funtion for a disordered melt

W (k)

P C)

(B.24)

For simplicity, we define Det(S(k, f)) = W(k) and s(k) = spp(kl, ) + saalk, f) +
2sp a(k, ). Equation B.24 can be simplified by substituting F'(k) = NW (k)/s(k) to give
N

0=

(B.25)

This gives the scattering function for monodispers diblock copolymers. Later the pro-
cesses was generalized for polydisperse melts by Hong and Noolandi in 1984 [7]. This
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change results in replacing the Debye function ¢;(f,x) by the number-averaged Debye
function

ai(f,2) =2[fz+ (1+ fzK) ™" —1]/2%, (B.26)

for Equations B.17, B.18, and B.19. The over bars represent number averages so = =

k*a®?<N>y/6 and f = <f>y. The polydispersity index is related to K = z%;’; — 1 by

K = ﬁ With this, we have a polydisperse scattering function for diblock copolymers.

However it can be simplified significantly for f = 0.5. In this case, sa (k) = sp.p(k) so
the function F(k) can be written as

3?4,,4(]{7) - 3,24,B(k)
ZSA’A(]{?) —+ QSA,B(]{) )

Rewriting the numerator using difference of squares and canceling the s4 4(k) + sa,5(k)
factor gives

F(k)=N (B.27)

SA,A(k) — SA,B(k) '

F(k)=N 5 (B.28)
Now, subbing in s4 4(k) and sa g(k),
g1(0.5, ) — (g1 (1, z) — 24:(0.5
F(k) = 2050 2[91(2’96) 9205,2) (B.29)
Simplifying further gives the final simple form
_ 1_
F(k) = g:(0.5,7) — 191(17 ). (B.30)
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