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Abstract

The structural integrity and system performance of large engineering systems are

adversely affected by various forms of degradation mechanisms. Modeling of such

mechanisms is accomplished by collecting degradation data from periodic in-service

inspections of structures and components. Subsequently, the degradation prediction is

transformed into system and component lifetimes that are necessary inputs into the

risk-based life-cycle management of critical structures. Stochastic degradation mod-

els are widely applicable for predicting degradation growths in structural components.

The statistical estimation of such models is often challenged by various uncertainties,

such as inherent randomness of a degradation process, parameter uncertainty due to

noise in measurements, coverage issues, probe signal loss, the limited resolution of the

inspection probe, and small sample size.

The Bayesian inference method can be used to quantify the uncertainties of the

model parameters. However, degradation data of engineering structures are often con-

taminated by a significant amount of inspection errors added by various inspection

tools. As a result, the likelihood function becomes analytically intractable and compu-

tationally expensive to a degree that any traditional likelihood-based Bayesian inference

scheme (e.g., Gibbs Sampler, Metropolis-Hastings sampler) turns difficult for practical

use.

This study proposes a practical likelihood-free approach for parameter estimation

based on the approximate Bayesian computation (ABC) method. ABC is a simulation-

based approach that does not require an explicit formulation of the likelihood function.

Three advanced computational algorithms, namely, ABC using Markov chain Monte

Carlo (ABC-MCMC), ABC using Hamiltonian Monte Carlo (ABC-HMC), and ABC

using subset simulation (ABC-SS), are developed and implemented for the parameter

estimation task. In the context of degradation modeling, various implementation issues
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of these algorithms are discussed in detail.

To improve the mixing properties of ABC-MCMC, a new ABC algorithm is de-

rived based on the HMC sampler that uses the Hamiltonian dynamics to simulate new

samples from its seed samples. Its non-random walk behavior helps to explore the tar-

get probability space more effectively and efficiently than the standard random-walk

MCMC method. The convergence of the proposed ABC-HMC algorithm is proved by

satisfying the detailed balance equation, and its efficacy is verified using a numerical ex-

ample. Furthermore, A new sequential ABC algorithm is proposed to deal with highly

diffused priors in a Bayesian inference problem. The proposed ABC algorithm is based

on the subset simulation method and a modified HMC algorithm. With faster conver-

gence, the new algorithm turns out to be a powerful method to sample from a complex

multi-modal target density as shown by a numerical example. The applicability of

the proposed algorithm is further extended by transforming it into a likelihood-free

Bayesian model selection tool.

The proposed likelihood-free approach for Bayesian inference is applied to analyze

practical data sets from the Canadian nuclear power plants. The practical data consist

of two types of degradation measurements: (1) wall thickness data of the feeder pipes

that are affected by the flow-accelerated corrosion (FAC) and (2) data from the steam

generator tubes affected by the pitting corrosion. Four popular stochastic degradation

models are considered, namely, the random rate model, the gamma process model, the

mixed-effects regression model, and the Poisson process model, for characterizing the

degradation processes under study. In the modeling process, various inspection uncer-

tainties, such as the sizing error, the coverage error, and the probability of detection

(POD) error are taken into account. The numerical results demonstrate that, in com-

parison to the likelihood-based approach, the proposed likelihood-free approach notably

reduces computational time while accurately estimating the model parameters. This
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study finds that these intuitive and easy-to-implement likelihood-free algorithms are

versatile tools for Bayesian inference of stochastic degradation models and a promising

alternative to the traditional Bayesian estimation methods.
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Chapter 1

Introduction

1.1 Background

To support risk-based life cycle management of engineering systems, there is a need for

periodic monitoring of the system and system components, data collection, data analy-

sis, component-lifetime prediction, repair/refurbishment works, replacement planning,

and finally, decommissioning of existing systems after their end of service life. The

goal, however, is to avoid frequent failures of engineering components and maintain

reliable operation during the service life of the system. In the light of risk-based life

cycle management, this study seeks to find answers to the challenging problems that

arise in the degradation model selection, calibration, and prediction – a subset of the

bigger problem that involves the implementation and execution of such management

strategies for large engineering systems.

Structural components are often subjected to various types of degradation pro-

cesses such as corrosion, crack, fatigue, and creep, depending on the condition of the

surrounding environment. For example, the Canadian deuterium uranium (CANDU®)

reactors (see Figure 1.1) contain numerous small diameter pipes called feeder pipes that
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carry heavy water coolant to the reactor core. The flow-accelerated corrosion (FAC)

is a major form of degradation seen in these pipes [60, 77]. These pipes are a part

of the primary heat transport system of the nuclear power plant, which also contains

steam generators made up of several thousand thin-walled tubes. These tubes help in

producing steam by transferring the heat carried by the heated coolant in feeder pipes.

Similar to the feeder pipes, the steam generator tubes mostly suffer from pitting cor-

rosion [148]. As another example, the reactor core has a large number of fuel channels,

also known as the pressure tubes, carrying the nuclear fuel, that suffer mostly from

the irradiation creep [105]. Although the basic mechanics of these degradation mecha-

nisms is well studied in the literature, high variability of these degradation mechanisms

is seen in practice due to a combination of factors such as the material and geometric

shape of a structural component and its surrounding environment.

Figure 1.1: Layout of a typical CANDU ® reactor and its primary heat transport system [47].
(Image reproduced with permission.)
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Periodic in-service inspections are carried out in nuclear power plants to measure

the extent of degradation in a component. Various non-destructive inspection tools

such as ultrasonic and eddy current probes are generally used for these inspections.

The inspection data are then used to identify the heavily degraded components, plan

component replacement, and set next inspection schedules. Due to variable operating

conditions, different components experience different rates of degradation. This vari-

ability related to the degradation in the component population can be modeled using

stochastic degradation models.

Given a degradation process X(t), an example of a cumulative model for degrada-

tion can be written as X(tn+1) = X(tn) + ∆X, where ∆X is the degradation incre-

ment within the time interval (tn, tn+1). The degradation process can be appropriately

modeled using a stochastic process (e.g., gamma process). Sample paths of a typical

degradation growth process are shown in Figure 1.2. Let us assume that each sample

path belongs to a specific component. It can be observed that a few sample paths have

Figure 1.2: Sample paths of a typical degradation growth process.
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crossed the threshold xc which indicates that the specific components have turned sub-

standard. On the other hand, those sample paths which have not crossed xc within

the given time frame indicate that the specific components can be continued to be

used until they become substandard. This is one type of degradation process; other

types include degradation/flaw generation (e.g., pitting corrosion [148]) and two-phase

degradation growth, i.e., a degradation process that involves a change point [106]).

In stochastic degradation modeling, the main goal is to estimate the parameters of

degradation models from inspection data. However, the estimation task often becomes

challenging due to the effect of inspection and sampling uncertainties on the model

parameters. Inspection uncertainties are introduced by imperfect inspection data, such

as imperfect flaw size measurements or non-detection of small defects in components.

On the other hand, limited inspection data is the main reason for sampling uncertainty,

which is caused due to inaccessibility of nuclear systems for high levels of radiation and

large costs associated with remote data collection methods.

1.2 Motivation

The inspection data could be influenced by two main inspection uncertainties. Firstly,

the electronic inspection tools, by their very nature, do not measure the actual or true

size of any defect in a component, but instead, give only imperfect or noisy measure-

ments. Moreover, these electronic tools fail to detect small defects in a component

under a certain detection-threshold. Sometimes, these imperfect or noisy measure-

ments become so significant that they make the whole process of degradation assess-

ment, modeling, and prediction very challenging and uncertain. Thus, the inspection

related uncertainties due to imperfect measurements or non-detection of small defects

can not be ignored. Secondly, nuclear facilities are generally inaccessible due to the
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presence of high levels of radiation. Thus, remote data collection methods are difficult

to employ and quite expensive. For these two reasons, often only a few components

are inspected and only a few component-wise measurements are generally taken. The

limited inspection data eventually introduces sampling uncertainty to the parameters

of the degradation model, which adds up to inspection uncertainty and makes the

degradation assessment more complicated and ambiguous.

There is certainly a need for a proper approach to assess the limited noisy degrada-

tion data and estimate the parameter uncertainties in stochastic degradation modeling.

The two most popular methods for parameter estimation are the maximum likelihood

estimation (MLE) method and the Bayesian inference method. MLE is based on the

frequentist approach to inference, which treats the unknown parameters of a model

as fixed quantities or constants. Frequentist inference is related to the frequentist

interpretation of probability, according to which probabilities are presumed as lim-

iting frequencies of outcomes after infinite hypothetical repetitions of an experiment

generating statistically independent results [140]. In this approach, the specific esti-

mators are assessed under repeated sampling of the available data, and the parameter

uncertainties are represented in terms of confidence intervals obtained from the nu-

merical estimates of the unknown model parameters. The Bayesian approach, on the

other hand, interprets probabilities as subjective, i.e., based on an individual’s per-

sonal judgment/experience, and dependent on the available data/information. Thus,

the Bayesian probabilities of a specific event can vary among individuals [140]. In this

inference approach, all unknown model parameters are assumed as random variables,

and the associated (posterior) probability distributions represent the uncertainties of

these parameters.

Although MLE is well suited for large amounts of available data, the Bayesian

approach can handle uncertainties more efficiently with only a small amount of available
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data [20]. The main reason behind this anomaly is that the likelihood function formed

using limited data is often unable to generate distinct peaks on its surface, leading to

problems related to the convergence of the maximum likelihood estimates. As a result,

the maximum likelihood estimates of the parameters show larger uncertainty in terms of

large confidence intervals. Besides, in Bayesian inference, prior beliefs (represented by

a prior distribution) about the model parameters are formally updated using the Bayes’

theorem. The updated posterior belief or posterior distribution accurately represents

the parameter uncertainty. The posterior distribution, in words, can be written as

Posterior = Likelihood× Prior
Normalizing constant (1.1)

where the likelihood function represents the probability density of the observed data

that depends on the underlying model and the normalizing constant represents an

integration over the entire range of the parameter space. Thus, the Bayesian inference

method emerges as a powerful tool for handling large uncertainties in the inspection

data.

A disadvantage of the Bayesian inference method is that it is difficult to use in en-

gineering practice due to its computational complexities. Although the computational

difficulty of computing the normalizing constant can be avoided by implementing the

Markov chain Monte Carlo (MCMC) methods, the evaluation of the likelihood func-

tion numerous times still remains as a computational burden for the Bayesian inference

approach. For a detailed description on the MCMC methods, the reader is referred

to Chapter 3. The primary reason behind this computational issue is that the sample

likelihoods of stochastic degradation models often involve large numbers of convolution

integrals or high-dimensional infinite sums or, sometimes, a combination of both. For

instance, see Chapter 2, where the likelihood functions of standard degradation mod-
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els are derived for noisy data. These types of complex likelihood functions impose a

severe computational burden on the traditional Bayesian computation schemes. The

computational complexity of the Bayesian inference method often compels one to dis-

card imperfect data and only perform the analysis based on healthy or less noisy data.

An analyst may choose to use simple models so that they can plug-in conjugate priors

and obtain posterior distributions analytically without any further effort. But these

simple models may not represent the degradation mechanism well.

After analyzing the computational issues related to the standard Bayesian inference

method, it can be stated that we need a likelihood-free treatment for the parameter es-

timation problem in degradation modeling. To overcome the drawbacks of computing

a likelihood function, and expand our domain of model selection, the novel approx-

imate Bayesian computation (ABC) technique [82, 124] can be implemented. ABC

is a likelihood-free Bayesian computation algorithm that completely avoids likelihood

computation by using the idea of forward simulation. The basic concepts of the ABC

method are presented in Chapter 4. If data simulation from a forward model is com-

putationally cheap, then ABC turns out to be an efficient alternative to the traditional

Bayesian inference method. Among the many advantages of ABC, this method is

intuitive, simple-to-understand, and easy-to-implement – making it a perfect choice

for the Bayesian inference of stochastic degradation models, particularly for practical

applications.

1.3 Research Gaps

Literature on stochastic degradation modeling is vast. However, if one concentrates on

a subset of this literature that includes degradation modeling using Bayesian methods,

the following research gaps can be noticed:
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1. Compared to the MLE approach, the literature on the Bayesian approach is

limited due to the numerical complexities involved in the implementation of this

method. Thus, a simple and easy-to-implement Bayesian computational method

is needed, which can handle the parameter inference problem efficiently in the

stochastic degradation modeling process.

2. An important problem in the degradation modeling procedure is the model selec-

tion process. Nguyen et al. [96] proposed a sound methodology for degradation

model selection using the MLE method. However, they did not consider mea-

surement noise in their analysis. The MLE approach can be a better option if

the data is noise-free and of large volume. But, for a small amount of data, the

Bayesian model selection approach is the most suitable approach. The Bayesian

model selection method has a greater advantage over other approaches because

this approach considers the parameter uncertainties more naturally through pos-

terior distributions and automatically accounts for the number of parameters in

a model (i.e., penalize a model if it has more parameters). There is again a need

for an efficient and easy-to-implement method that can avoid the complexity of

the traditional Bayesian model selection procedure.

3. There is a gap in the literature on how to integrate the uncertainties in degra-

dation model parameters for population lifetime prediction and estimation of

survival probability or reliability of a system of components.

The ABC method is a simulation approach for estimating parameters of a model.

ABC compares simulated data sets with the observed data set using a distance func-

tion, and obtains the posterior parameter samples by accepting or rejecting the corre-

sponding parameters based on a tolerance threshold on the distance values. To tailor

the ABC algorithm according to the needs of stochastic degradation modeling, the
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following investigations are necessary:

1. One major issue in the ABC method is that there is a lack of practical guideline

for the selection of the distance function. Moreover, different kinds of degra-

dation mechanism comes with different kinds of inspection data. For example,

flaw growth data contain multiple measurements of flaw growths from different

components, whereas flaw generation data will contain the number of flaws and

their measured depths. Thus, it is necessary to identify the special features of the

degradation data at hand, and develop distance functions accordingly to produce

the best results from ABC in stochastic degradation modeling.

2. Degradation data are often imperfect and limited in amount. In such a situation,

one needs a method that properly takes the measurement errors and detection

issues in data into account. Except for the ABC method proposed by Wilkin-

son [145], none of the existing ABC algorithms properly address the issue of

measurement errors and detection issues. However, Wilkinson’s ABC needs a

well-defined error distribution that may not be available when dealing with a

practical data set. Thus, the existing ABC algorithms need to be modified to

account for imperfect data which can be done at the model simulation stage.

3. One needs to select a tolerance threshold for the ABC to work. The tolerance

threshold determines whether the simulated data is close enough to the observed

data or not. A smaller tolerance threshold gives better accuracy, but the question

remains how small is small enough? Hence, there is a need to investigate on the

selection of the tolerance threshold for modeling degradation data using ABC.

4. The ABC method has a high rejection rate when a smaller tolerance threshold

is chosen. Thus, various sampling algorithms, such as MCMC and sequential
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Monte Carlo, can be used within the ABC framework to reduce the rejection rate.

However, these sampling schemes either have high repetitions of samples (e.g.,

ABC-MCMC) or high number of simulation levels (e.g., sequential ABC) when

many parameters are involved in the process. In fact, the sequential ABC method

may get stuck in a particular level for a very long period – making the parameter

estimation process sluggish. These issues need to be investigated particularly for

stochastic degradation modeling since it involves a varying number of parameters

depending on the underlying model.

1.4 Research Objectives

The principle objective of this thesis is two-fold:

1. To develop a unified framework for likelihood-free inference of parameters of

stochastic degradation models.

2. To integrate parameter uncertainties into model prediction, lifetime estimation,

and survival probability calculation of components.

To achieve this goal, the research objectives of this study are divided into many sub-

steps as follows:

• Algorithmic improvements:

1. To identify potential candidates for the ABC distance function and investi-

gate their efficacy with various kinds of degradation data.

2. To develop an ABC framework that effectively deals with measurement noise

and detection errors in degradation data.
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3. To develop an advanced ABC scheme for degradation modeling that reduces

the rejection rate in the basic ABC scheme, uses less model simulations, and

provides a proper guideline for the selection of the tolerance threshold.

• Application:

1. To explore and compare the computational difficulties posed by the imple-

mentation of both likelihood-based and likelihood-free Bayesian estimation

schemes for standard stochastic degradation models (e.g., random rate, re-

gression, gamma process, and Poisson process).

2. To develop and implement a Bayesian model selection framework for degra-

dation data using the likelihood-free approach.

3. To devise strategies for integrating parameter uncertainties into model pre-

diction, lifetime estimation, and estimation of survival probabilities for the

system and individual components.

1.5 Organization of the Thesis

The thesis is organized as follows:

• Chapter 1 presents the research goals of this study along with the background,

the motivation, and the research gaps present in the literature of degradation

modeling.

• Chapter 2 presents the basic properties of the standard degradation models under

consideration and the corresponding model likelihoods derived for degradation

data that are impacted by various types of inspection uncertainties.
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• Chapter 3 presents the popular MCMC methods and shows various MCMC al-

gorithms for Bayesian computation.

• Chapter 4 presents the basic idea of likelihood-free inference along with various

standard ABC algorithms. A number of algorithms are developed and the details

of their implementation are also presented in this chapter.

• Chapter 5 presents various case studies on corrosion growth modeling as prac-

tical applications of the proposed ABC framework using degradation data from

CANDU® nuclear power plants.

• Chapter 6 presents a case study on flaw generation modeling using pitting cor-

rosion data from the CANDU® steam generator tubes.

• Chapter 7, finally, presents the conclusions of the study and discusses the direc-

tions for future research.
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Chapter 2

Degradation Models

2.1 Introduction

Stochastic process models are useful for modeling degradation processes due to their

ability to imitate flaw generation and growth directly by using a collection of random

variables, where the corresponding distributions are functions of time. An example of

early application of stochastic process models in degradation can be found in reference

[17], where the authors have used the renewal process model to study the fatigue

damage of structures under dynamic loads. The popular Paris-Erdogan law of fatigue

crack growth is in fact a non-linear general path model [102]. Modeling bridge deck

deterioration [80, 81], rock rubble replacement [139], and water pipe degradation [93]

are a few examples of current applications of the stochastic process models. Moreover,

for modeling the degradation of nuclear power plant components, such as FAC in feeder

pipes [28, 59–61, 100, 147], fretting wear and pitting flaws in steam generator tubes

[26, 148], stochastic process models are widely accepted.

This study considers four popular probabilistic/stochastic degradation models: the

random variable model, the gamma process model, the linear mixed-effects regression
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(LMER) model, and the non-homogeneous Poisson process (NHPP) model. The first

three models, random variable, gamma process, and LMER, are used to model the

flaw growth phenomena (e.g., FAC-induced wall thickness loss of piping components),

whereas the NHPP model is used to characterize the flaw generation process in com-

ponents over time (e.g., pitting corrosion in steam generator tubes).

2.2 Flaw Growth Models

2.2.1 Random Variable Model

The basic idea of the random variable model is to capture the variability related to

the degradation growth rates of different components in a component population. This

model is generally applied to problems such as modeling corrosion and wear phenomena

[45, 65, 78, 98], where the temporal uncertainty related to the degradation process is

not significant [99].

Basic Properties

The random variable model, also known as the general path model, is defined by a

deterministic function that has random parameters. Suppose X(t) is the degradation

state of a structural component at time t. According to this model, X(t) can be

represented as

X(t) = g(t; Θ) (2.1)

where g(t; Θ) is a function of time t and Θ is a vector of random variables. The flaw

growths of individual components are represented by g(t; θk), where θk is a realization

of Θ. The most basic version of the random variable model is the linear random rate

model. Assuming X(0) = 0, the random rate model can be described by the equation
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X(t) = Rt, where the random variable R > 0 is used to model the degradation growth

rate in a system of components. Several flaw growth paths simulated from the random

rate model are shown in Figure 2.1. Once the distribution of the degradation rate R is

Figure 2.1: Simulated flaw growth paths of the random rate model.

known, one can determine the distribution of the degradation process at time t. The

mean and variance of X(t) can be computed as

E[X(t)] = tE[R], Var[X(t)] = t2Var[R] (2.2)

where E[ • ] and Var[ • ] are the expectation and variance operators, respectively. Some-

times, due to manufacturing (e.g., bending) or welding operations, initial conditions of

structural components (e.g., initial wall thicknesses of pipes) are not known precisely.

This leads to the inclusion of an additional random variable A to the model that rep-

resents the initial condition of a structural component. Thus, assuming X(0) = A, the
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random rate model can be written as

X(t) = A+Rt (2.3)

where A is assumed to follow a distribution whose parameters are unknown and needs

to be estimated.

Likelihood Function

Suppose inspection data from N number of components are available. The ith compo-

nent is inspected at times, ti1, ti2, · · · , timi , where mi is the total number of inspections

conducted on the same ith component. Let us assume that the true degradation mea-

surements are represented as xi1, xi2, · · · , ximi and the observed degradation measure-

ments as yi1, yi2, · · · , yimi . The observed degradation measurements are often masked

with measurement noise added by the inspection tools. For instance, ultrasonic probes

that are used for pipe inspections add random sizing error to the inspection data.

Consequently, using the basic model for degradation growth

Y (t) = X(t) + Z = A+Rt+ Z (2.4)

the measurement model for the ith component at the jth measurement time can be

written as

yij = ai + ritij + zij; ai ∼ fA( • | θ1), ri ∼ fR( • | θ2), zij iid∼ fZ(•) (2.5)

where ai is a realization of the random variable A with distribution fA( • | θ1), ri > 0 is

a realization of the degradation growth rate R with distribution fR( • | θ2), and finally,

the measurement errors zij are independent and identically distributed (iid) random
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variables with the distribution fZ(•). Both parameters A and R are independent to

each other and their PDFs are conditioned on the vector of distribution parameters θ1

and θ2, respectively.

All measurements of an ith flaw can be represented by a vector yi = {yi1, yi2, · · · , yimi}>,

where > denotes transposition. The initial degradation ai and the corrosion rate ri

are constant for the ith component. For given ai and ri, the true degradation growth

xij = ai + ritij is a constant. Thus, the distribution of the measurements yij, condi-

tioned on ai and ri, is solely dependent on the distribution of the measurement noise

fZ(•), and can be written as,

fYij(yij | ai, ri) = fZ(yij − ai − ri) (2.6)

Assuming independency between the degradation measurements, the joint density of

the measurements of ith component, conditioned on ai and ri, can written as

fYi
(yi | ai, ri) =

mi∏
j=1

fYij(yij | ai, ri) =
mi∏
j=1

fZ(yij − ai − ri) (2.7)

Thus, the sample likelihood for the ith component’s data can be written as

`i(Θ | yi) =
∫
ai

∫
ri
fYi

(yi | ai, ri)fA(ai | θ1)fR(ri | θ2)daidri

=
∫
ai

∫
ri

{ mi∏
j=1

fZ(yij − ai − ri)
}
fA(ai | θ1)fR(ri | θ2)daidri

(2.8)

where Θ = {θ>1 ,θ>2 }>. Assuming the component-wise measurements to be indepen-

dent, the sample likelihood using data from all components can be written as
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L(Θ | y1,y2, · · · ,yN) =
N∏
i=1

`i(Θ | yi)

=
N∏
i=1

∫
ai

∫
ri

{ mi∏
j=1

fZ(yij − ai − ri)
}
fA(ai | θ1)fR(ri | θ2)daidri

(2.9)

As it can be observed, the likelihood function of the random rate model is a product of

N two-dimensional integrals. For parameter estimation, this likelihood function needs

to be evaluated several times. The numerical integration can be performed using Monte

Carlo simulation methods [76].

2.2.2 Gamma Process Model

The stochastic gamma process is used to model a degradation process that shows tem-

poral uncertainties to a level which is significant for model prediction. During the last

four decades, the stochastic gamma process has been extensively used to model various

degradation processes in engineering structures and components. In a very interesting

paper by Abdel Hameed [1], gamma process was first proposed as a proper model for

modeling stochastic degradation. Examples of using gamma process in various degra-

dation processes such as corrosion, concrete creep, crack growth, fatigue, and chloride

attack in concrete structures can be found in references [8, 35, 46, 71, 74].

Basic Properties

The stochastic gamma process model can be used to characterize a monotonically non-

decreasing degradation process. The key assumption of the gamma process model

is that a degradation process X(t) is the result of accumulation of several small and

independent random degradation growths. To be more specific, the degradation process

X(t) will have the following properties [138]:
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1. At time t = 0, X(t) = 0.

2. For 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn, all increments of X(t), i.e., X(t1) − X(0), X(t2) −

X(t1), · · · , X(tn)−X(tn−1) are independent random variables.

3. An increment ∆X = X(t + ∆t)−X(t), for ∆t ≥ 0, follows gamma distribution

with the following probability density function (PDF):

f∆X(∆x) = (∆x/β)a(t+∆t)−a(t)−1

β Γ(a(t+ ∆t)− a(t)) exp(−∆x/β); ∆x ≥ 0

= G(a(t+ ∆t)− a(t), β)
(2.10)

where G(•, •) is the gamma PDF, a(t) > 0 is the shape parameter, β > 0 is the

scale parameter, and Γ(s) =
∫+∞

0 ts−1e−tdt is the complete gamma function.

The shape parameter a(t), for t ≥ 0, is a non-decreasing, right-continuous, real valued

function, and at t = 0; a(t) = 0. a(t) is assumed to be proportional to a power law,

a(t) ∝ tη ⇒ a(t) = αtη, where α > 0 and η > 0 are constants [138]. A gamma

process model with the parameter η = 1 is called stationary, whereas a gamma process

having η 6= 1 is called a non-stationary process. Figure 2.2 shows several simulated

flaw growth paths from stationary and non-stationary gamma process models with

α = 1.5 and β = 0.2. The gamma distribution has a special feature that makes

the sum of two gamma random variables also a gamma random variable. Following

the same argument, the cumulative degradation X(t) at time t can be considered a

gamma distributed random variable with PDF G(αtη, β) [79]. To calculate the mean

and variance of the process X(t), the following expressions can be directly used:

E[X(t)] = αtηβ, Var[X(t)] = αtηβ2 (2.11)
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(a) (b)

Figure 2.2: Simulated flaw growth paths of the gamma process model for (a) η = 1 and (b)
η = 1.5.

Likelihood Function

Under the assumption of an additive noise model, the measured degradation Y (t) is

represented as a sum of random initial degradation A, true degradation X(t), and

measurement noise Z as [78]:

Y (t) = A+X(t) + Z (2.12)

Thus, a noisy degradation measurement of component i at time j can be represented

as yij = ai + xij + zij, where ai (yi0 = ai) is the initial degradation, xij is the true

degradation growth at time tij, and zij (zi0 = 0) is the random sizing error. The

unknown initial degradation ai (constant for each component but variable over the

entire population) is a realization of A with distribution fA(•), the true degradation

xij is a realization of the gamma degradation process X(t), and the sizing error zij is

a realization of the iid random variable Z with distribution fZ(•).
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Suppose degradation monitoring data are collected from repeated inspections of a

group of N components at various time intervals. For an ith component, true values of

degradation at different inspection times ti0, ti1, · · · , timi are denoted as xi0, xi1, · · · , ximi ,

where xi0 = 0 at time ti0 = 0 and mi is the total number of inspections. The degra-

dation growth over a time interval ∆tij = tij − ti,j−1 is denoted as ∆xij = xij − xi,j−1,

where j = 1, 2, · · · ,mi. The increment ∆xij = xij − xi,j−1 is a realization of the ran-

dom variable ∆Xij which follows the gamma distribution G(α∆t(η)
ij , β), where ∆t(η)

ij =

tηij − t
η
i,j−1. All degradation increments for an ith component are denoted as a vector

∆xi = {∆xi1,∆xi2, · · · ,∆ximi}> with the probability distribution:

f∆Xi
(∆xi | Θ) =

mi∏
j=1
G(α∆t(η)

ij , β)

=
mi∏
j=1

(∆xij/β)α(tηij−t
η
i,j−1)−1

β Γ(α(tηij − t
η
i,j−1)) exp(−∆xij/β)

(2.13)

where Θ = {α, η, β}> is the vector of unknown model parameters.

Assuming yij to be a realization of the random variable Yij, the sample likelihood

for degradation measurement data collected from an ith component can be written

in terms of the joint distribution of Yi1, Yi2, · · · , Yimi , which are dependent variables.

Thus, it is more convenient to write the sample likelihood in terms of the joint dis-

tribution of degradation increments [77, 146]. Let us denote a measured degradation

increment for an ith component over a time interval ∆tij as ∆yij = yij − yi,j−1 and

the corresponding increment in the noise as ∆zij = zij − zi,j−1. Measured values of

incremental degradation and corresponding increment in noise are denoted in vector

forms as ∆yi = {∆yi1,∆yi2, · · · ,∆yimi}> and ∆zi = {∆zi1,∆zi2, · · · ,∆zimi}>. Note

that ∆yi1 = yi1 − yi0 is unknown because yi0 = ai is a latent variable. The quantities

∆yi and ∆zi are assumed to be realizations of the random vectors ∆Yi and ∆Zi,
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respectively. The joint PDF of ∆Yi can be written through a convolution integral as

f∆Yi
(∆yi) =

∫
ai

∫
∆zi

f∆Xi
(∆yi −∆zi | ai)fA(ai)f∆Zi(∆zi)daid(∆zi) (2.14)

This convolution integral consists of the joint PDFs f∆Xi
(∆xi) and f∆Zi(∆zi), where

f∆Zi(∆zi) is the joint PDF of the random vector ∆Zi. Generally, the sizing error is

assumed to follow a normal distribution with zero mean and σZ standard deviation,

i.e., fZ(•) = N (0, σ2
Z), where N (•, •) represents a normal density function. Thus, the

joint PDF of the random vector ∆Zi follows a multivariate normal distribution given

as (see Section A.1 for the derivation)

f∆Zi(∆zi) = 1
(2π)mi/2|Σ∆Zi |

exp

− 1
2∆ziΣ−1

∆Zi∆zTi

 (2.15)

where | • | represents the determinant operator and Σ∆Zi represents the variance-

covariance matrix. Assuming that the degradation process is independent across the

component population, the sample likelihood function for measured degradation data

collected from all N components can be written as

L(Θ | ∆y1,∆y2, · · · ,∆yN) =
N∏
i=1

f∆Yi
(∆yi)

=
N∏
i=1

∫
ai

∫
∆zi

f∆Xi
(∆yi −∆zi | ai)fA(ai)f∆Zi(∆zi)daid(∆zi)

(2.16)

It can be observed that the sample likelihood of the gamma process model is a product

ofN multi-dimensional integrals, which implies that it may be quite difficult to evaluate

the likelihood function numerically.
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2.2.3 Linear Mixed-Effects Regression Model

The random variable model, being a basic model, is only useful to estimate the charac-

teristics of a system of components. To obtain degradation characteristics of individual

components, one needs to analyze data from individual components which induces high

uncertainty due to small volume of component-specific repeated measurements. Alter-

natively, the LMER model resolves this by systematically processing the inspection

data by considering both the system-level fixed effects as well as component-level ran-

dom effects. The model is well suited for pooling unbalanced data (i.e. different number

of repeated measurements from components) from component-specific measurements

across the component population to obtain robust estimates of the model parameters

[94]. However, the LMER model has too many unknown parameters which make its

calibration process challenging in case the data in hand is noisy.

Basic Properties

According to the LMER model [140], any degradation measurement yij can be repre-

sented as

yij = β0 + β1tij + b0i + b1itij + zij (2.17)

where the true degradation growth xij is given by (β0+β1tij+b0i+b1itij). In the context

of degradation modeling, the fixed effects parameters β0 and β1 represent initial degra-

dation and degradation growth rate of the system of components, respectively; and the

random effects parameters b0i and b1i represent the variation (from the fixed effects

parameters) of initial degradation and degradation growth rate of the ith component,

respectively. While the simple linear regression model allows only the fixed effects pa-

rameters, an extension of it, the LMER model, allows both fixed and random effects

parameters to represent hierarchical data, meaning that the data contain information

23



at multiple levels (e.g., system-level, component-level). The fixed effects parameters

represent the properties of a system as a whole, thus called system-level parameters.

Whereas, the random effects parameters, when combined with the fixed effects param-

eters, represent the properties of individual components, thus called component-level

parameters. Figure 2.3 shows simulated sample paths from the LMER model.

Figure 2.3: Simulated flaw growth paths of the LMER model.

The key assumptions of the LMER degradation model are as follows. The regression

coefficients β0 and β1 are unknown constants. Through these two coefficients, the

LMER model given by Equation 2.17 assumes that the degradation of a particular

component is dependent not only on the component-specific parameters but also on

the system-level parameters. This implies that, unlike a simple linear regression model,

the resultant component-specific parameters are influenced by other component-specific

repeated measurements as well as by the number of components inspected over time.

On the other hand, (b0i, b1i) are assumed to be iid bivariate normal random vari-

ables, i.e., (b0i, b1i) iid∼ N (0,Σb), where 0 is the zero mean vector and Σb is the unknown
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covariance matrix. Assuming the standard deviations of b0i and b1i to be σ0 and σ1, re-

spectively, and the correlation coefficient to be ρ, the covariance matrix can be written

as

Σb =

 σ2
0 ρσ0σ1

ρσ0σ1 σ2
1

 (2.18)

The random effects parameters (b0i, b1i) and the noise term zij are independently dis-

tributed, which implies that the measurement error is independent of the true degra-

dation.

Degradation data generally contain multiple repeated measurements from each com-

ponent. Thus, any two observations from the same component are correlated, whereas

the correlation is assumed to be zero for different components. These assumptions are

automatically satisfied by the LMER model which gives the following covariance (Cov)

structure for any two observations:

Cov(yij, yhk) =


σ2

0 + ρσ0σ1(tij + thk) + σ2
1tijthk if i = h and j 6= k

0 if i 6= h

(2.19)

Note that, in some situations, any two observations from two different components

of the same system may exhibit some degree of correlation. However, the current

literature (e.g., [60, 61, 94, 98, 148]) plainly assumes that the degradation of different

components in nuclear power plants is independent. This assumption produces fairly

accurate results with the advantage of modeling and computational convenience.

Likelihood Function

Oftentimes, it is assumed that the measurement noise is generated only from inspection

tools (e.g., ultrasonic probes in nuclear power plants). In this scenario, a simple and
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plausible assumption can be made about the noise term, i.e., it follows the normal

distribution. This assumption also brings analytical convenience to the parameter

estimation process by making noisy likelihoods analytically tractable. For instance,

given zij
iid∼ N (0, σ2

z), the noisy likelihood can be easily derived to be a product of

multi-dimensional normal distributions [140], i.e.,

L(β,Σb, σ
2
z | y1, · · · ,yN) =

N∏
i=1

(2π)−mi/2|Σi|−1/2 exp
[
− 1

2(yi −Tiβ)>Σ−1
i (yi −Tiβ)

]

(2.20)

where β = {β0, β1}>, yi = {yi1, yi2, · · · , yimi}>, Σi = TiΣbT>i + σ2
zImi , and

T>i =

 1 1 · · · 1

ti1 ti2 · · · timi

 (2.21)

Here Imi is an mi-dimensional unit diagonal matrix. Using the noisy likelihood in

Equation 2.20, Bayesian inference of the regression parameters is quite easy since we

have the advantage of using the standard MCMC method – the Gibbs sampler [140].

In real-life problems, the noise may come from different sources, such as human

error (spatially unreferenced grids), coverage issues, and the probe signal loss [69]. In

this situation, the normal distribution may not represent the noise accurately. One

may wish to model the noise term using a non-normal mixture of distributions. This,

however, leads to a major problem: the regression model produces an intractable like-

lihood that is difficult to compute during the process of parameter estimation. For

instance, suppose the error terms {zij} are modeled as iid random variables with the

distribution f(z) = ∑n
i=1wifi(z), where wi > 0, i = 1, · · · , n, are weights, and {fi(z)},

i = 1, · · · , n, is a set of finite number of distributions. The model likelihood, in this
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case, can be written as

L =
N∏
i=1

∫
zi
f(yi −Tiβ − zi | Σ′i)f(zi)dzi (2.22)

where Σ′i = TiΣbT>i , zi = {zi1, zi2, · · · , zimi}>, and f(• | Σ′i) is normally distributed

with zero mean and covariance matrix Σ′i. The likelihood function in Equation 2.22

is a high-dimensional integration that is not only analytically intractable but also

computationally expensive to evaluate.

2.3 Flaw Generation Model

2.3.1 Non-Homogeneous Poisson Process Model

The previously mentioned random variable, gamma process, and LMER models are

defined on continuous sample spaces; thus, suitable to characterize the flaw growth

phenomena. However, characterizing flaw generation needs stochastic processes that

can model and predict the number of occurrences of flaws in a component. Thus, the

counting process models are suitable for modeling flaw generation. The Poisson process

is the most popular counting process model and its application in localized corrosion

modeling, such as pitting corrosion, can be found in several studies in the literature

[38, 63, 109, 137, 148]. For example, Hong [63] used the Poisson process to model pit

generation and a Markov process to model the pit depth. The authors derived the

distribution of corrosion pit depth and the probability of time-to-failure using their

proposed model. Similarly, Valor et al. [137] proposed a new model for simulating

pit generation and growth that is based on the NHPP and non-homogeneous Markov

process. The authors claimed that their proposed model can satisfactorily reproduce

experimental observations and works better than the models available in the literature.
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Datla et al. [38] proposed an NHPP model for modeling pit generation in steam

generator tubes, whereas for modeling the distribution of the peaks over threshold for

pit depths, the authors proposed a generalized Pareto distribution.

Basic properties

A continuous-time stochastic process N(t) is called a non-homogeneous Poisson process

with a power law intensity function ν(t) = λδtδ−1, if it has the following properties

[34]:

1. At time t = 0, N(t) = 0.

2. For 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn, all the increments of N(t), i.e., N(t1)−N(0), N(t2)−

N(t1), · · · , N(tn)−N(tn−1) are independent random variables.

3. All increments Ni = N(ti)−N(ti−1), i = 1, 2, · · · , k, follow the Poisson distribu-

tion as

P[Ni = n] = [Λ(ti, ti−1)]n

n! exp[−Λ(ti, ti−1)], n = 0, 1, 2, · · · (2.23)

where Λ(ti, ti−1) =
∫ ti
ti−1

ν(t)dt = λ(tδi − tδi−1) and P[ • ] represents the probability

of an event.

The intensity function becomes constant with time when δ is set to 1. The process is

then called a homogeneous Poisson process which has the following mean and variance

E[N(t)] = λt, Var[N(t)] = λt (2.24)

The parameter λ represents the average number of occurrences of flaws per unit time.

Computer simulation of the Poisson process is quite easy since one can simulate the
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inter-arrival times between each occurrences from an exponential distribution with rate

λ. Figure 2.4 shows several simulated sample paths of the Poisson process.

Figure 2.4: Simulated sample paths of the Poisson process model.

NHPP-Weibull Flaw Generation Model

Flaw numbers and flaw sizes, both are included in modeling the flaw generation process,

which considers that the flaw generation process is an NHPP and the flaw sizes are iid

Weibull random variables with the PDF

fH(h) = β

γ

(
h

γ

)β−1

exp
[
−
(
h

γ

)β]
, h > 0 (2.25)

where γ > 0 is the scale parameter and β > 0 is the shape parameter. This model

assumes that at each inspection campaign all the previously detected flaws are repaired

and only the newly generated flaws are detected; also at time zero, there are no flaws.

Another assumption of the model is that flaws grow rapidly to a certain extent and
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then they stop or grow at a very slow rate [148].

To characterize the uncertainty in detecting small defects or flaws, the probability

of detection (POD) function p(h) is generally used, where h denotes the flaw size. To

indicate flaw detection, a binary random variable D is used; where D = 1, if the flaw is

detected, and D = 0, otherwise. Hence, POD can be defined as a probability of having

D = 1 given the detected flaw size, i.e., p(h) = P[D = 1 | H = h] – a conditional

probability function. The POD function, considered by Yuan et al. [148], is adopted

in this study:

p(h) =


1− 1 + e−qw

1 + eq(h−w−th) , if h > th

0, otherwise
(2.26)

where, w, q and th are POD model parameters. Here, th is the detection threshold, i.e,

a flaw having size less than th will not be detected. To control the overall detection

quality of the POD function, the other two parameters are used [148].

Likelihood Function

Suppose, a total of k inspections are performed at times t1, t2, · · · , tk to detect the

number of flaws generated in a component. Because of the imperfect detectability,

the number of flaws detected at the ith inspection is denoted as ndi, i = 1, 2, · · · , k,

and the number of undetected flaws are represented using nui. Thus, the true number

of flaws generated between (i − 1)th and ith inspections are ni = ndi + nui. The

true flaw sizes of the detected flaws at ith inspection can be represented as hi =

{hi1, hi2, · · · , hi,ndi}>, whereas the measured flaw sizes are denoted as h(m)
i = hi + zi;

where zi = {zi1, zi2, · · · , zi,ndi}> is a vector of iid measurement errors.

The model parameters Θ = {λ, δ, γ, β}> are to be estimated. The sample likelihood

of the parameter vector Θ given the degradation measurements of ith inspection can
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be written as

`i(Θ | ndi,h(m)
i ) = fH(m)

i
(h(m)

i )P[Ndi = ndi] (2.27)

where h(m)
i is a realization of the random variable H(m)

i , fH(m)
i

(h(m)
i ) is the joint density

of H(m)
i , ndi is a realization of the random variable Ndi, and P[Ndi = ndi] is the prob-

ability of Ndi being equal to the number of detected flaws in ith inspection campaign.

Since the actual flaw sizes and measurement errors are independent, one can write (see

Section A.2 for the derivation)

fH(m)
i

(h(m)
i ) = fH(m)

i
(h(m)

i1 , h
(m)
i2 , · · · , h(m)

i,ndi
)

=
ndi∏
j=1

f
H

(m)
ij

(h(m)
ij )

=
ndi∏
j=1

{
1

E[p(h)]

∫ ∞
0

p(s)fH(s)fZ(h(m)
ij − s)ds

} (2.28)

where fZ(•) is the PDF of the iid measurement errors and

E[p(h)] =
∫ ∞

0
p(h)fH(h)dh (2.29)

On the other hand, the probability of the number of detected flaws can be calculated

as (see Section A.3 for the derivation)

P[Ndi = ndi] =
∞∑
ni=0

{Λ(ti, ti−1)}ni
(ni − ndi)!ndi!

exp{−Λ(ti, ti−1)}{E[p(h)]}ndi{1− E[p(h)]}ni−ndi

(2.30)

Substituting Equation 2.28 and Equation 2.30 into Equation 2.27, one can obtain

the sample likelihood of Θ from only the ith inspection data. Now, the sample likeli-

hood considering data from all i = 1 to k inspection campaigns can be calculated by

taking products of the sample likelihoods generated using degradation measurements
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from each inspection campaign, i.e.,

L(Θ | nd1,h(m)
1 , nd2,h(m)

2 , · · · , ndk,h(m)
k )

=
k∏
i=1

`i(Θ | ndi,h(m)
i )

=
k∏
i=1

[
ndi∏
j=1

{
1

E[p(h)]

∫ ∞
0

p(s)fH(s)fZ(h(m)
ij − s)ds

}
∞∑
ni=0

{Λ(ti, ti−1)}ni
(ni − ndi)!ndi!

exp{−Λ(ti, ti−1)}{E[p(h)]}ndi{1− E[p(h)]}ni−ndi
]

(2.31)

The likelihood function presented in Equation 2.31 is a very complicated function

as it not only contains high-dimensional integrals but also high-dimensional infinite

summations.

2.4 Concluding Remarks

This chapter introduced four most-commonly used stochastic models for characterizing

different kinds of degradation processes. The basic properties of these models are dis-

cussed and the sample likelihoods are derived for degradation data that are subjected

to various kinds of inspection errors. It can be observed that the sample likelihoods

of the flaw growth models are very high-dimensional integrals, whereas the sample

likelihood of the flaw generation model is the product of several one-dimensional inte-

grals and summation of infinite series. Thus, statistical estimation of such models is

quite challenging since numerical evaluations of such sample likelihoods are extremely

difficult and time-consuming.
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Chapter 3

Markov Chain Monte Carlo

Methods

3.1 Introduction

This chapter presents a brief introduction to the MCMC methods commonly used for

Bayesian inference of model parameters. Bayesian inference is a direct application of

the Bayes’ theorem. To understand the Bayes’ theorem, suppose A and B are two

propositions or events. In Bayesian statistics, the probabilities P(A) and P(B) are

our prior degree of beliefs that the events A and B are true respectively. Then, the

updated degree of belief about A being true given B is true can be represented by

the conditional probability P(A | B). According to Bayes’ theorem, this conditional

distribution can be written as,

P(A | B) = P(B | A)P(A)
P(B) (3.1)

where, P(A) is called the prior probability of A, and P(A | B) is called the posterior

probability of A given B. The Bayesian inference method works in a similar fash-
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ion. Suppose the PDF of the observation Dobs from a probabilistic model is given as

f(Dobs|Θ), where Θ is the unknown parameter vector. First a prior distribution of Θ,

denoted as f(Θ), is assigned based on the background information, and then, accord-

ing to the Bayes’ theorem, the posterior distribution of Θ, denoted as f(Θ | Dobs), is

derived using the following expression:

f(Θ | Dobs) = f(Dobs | Θ)f(Θ)∫
Θ f(Dobs | Θ)f(Θ)dΘ = CL(Θ | Dobs)f(Θ) (3.2)

where C = [
∫
Θ f(Dobs | Θ)f(Θ)dΘ]−1 is the normalizing constant and L(Θ | Dobs) =

f(Dobs | Θ) is the likelihood function.

The likelihood function L(Θ | Dobs) represents the chosen probabilistic model and

the information from observed data. The prior distribution f(Θ) represents all other

information that is known or assumed about the model parameter Θ other than the

observed data. The prior information can be any relevant information regarding the

model parameters, such as engineering design data, expert judgment, data from other

similar systems, or even lack of information. For more information about the prior

distribution, the reader is referred to references [16, 20, 57, 67, 73]. Compared to the

classical parameter inference, Bayesian inference is able to incorporate information from

sources other than the observed data in a formal way through the prior distribution.

Bayesian inference also provides a more natural way for expressing the parameter

uncertainty using the posterior distribution of the parameter.

Analytical solutions of the posterior exist only for some simple probabilistic models

and specially selected priors (conjugate priors). For most other models, the Bayesian

posterior has to be evaluated numerically. Direct numerical evaluation of the Bayesian

posterior using Equation 3.2, however, can be quite difficult. First, for some models,

such as the degradation models with inspection uncertainties (see Chapter 2), numerical
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evaluation of the likelihood function is extremely difficult, making direct calculation of

the posterior distribution impractical. In other cases, even if the likelihood function

itself is relatively easy to evaluate, calculation of the normalization constant C, which

is an integral over the entire admissible region of the model parameters, can still be

time-consuming, especially when the parameter vector Θ is of high dimension.

The computational difficulty of the Bayesian inference method can be overcome

using various advanced Monte Carlo methods. Instead of calculating the posterior

density numerically, Monte Carlo simulation aims to draw random samples from the

posterior distribution. These samples can then be used in subsequent posterior in-

ference or model prediction. In Chapter 3 and Chapter 4, two particular simulation

techniques, Markov chain Monte Carlo and approximate Bayesian computation, are

introduced. The proposed methods can be used for Bayesian inference of complicated

stochastic degradation models subject to inspection uncertainties.

To date, MCMC is the most powerful yet a simple method for generating samples

from a distribution using the theory of Markov chains [112]. When direct sampling

from a target distribution f(•) is not possible (e.g., f(•) is known only up to a constant

of proportionality), MCMC provides an alternate solution by generating Markov chains

with f(•) as a stationary distribution. The first MCMC algorithm was proposed by

Metropolis et al. [91] in a statistical physics context. Later, Hastings [58] generalized

the method as a tool for statistical sampling and proposed the Metropolis-Hastings

(MH) algorithm. Among the early applications of MCMC, works by Geman and Geman

[52] and Tanner and Wang [125] are notable. Finally, the method was popularized

in the Bayesian community by Gelfand and Smith [48]. Detailed discussions on the

theoretical and practical backgrounds of the MCMC method can be found in references

[6, 22, 41, 53, 55, 111, 113, 122, 127].
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Examples of the application of MCMC methods for Bayesian modeling of degrada-

tion processes can be found in several literature. For instance, Bousquet et al. [19] used

the Bayesian approach for inferring parameters of a gamma process. The authors used

the gamma process to model partially observed crack growths and successfully derived

estimators for the best maintenance time for industrial components. They performed

parameter inference using the MCMC method. Similarly, Zhang and Zhou [149] pro-

posed a new Bayesian dynamic linear model to characterize the growth of corrosion

defects on energy pipelines. They used the MCMC simulation method for parameter

inference using data from multiple high-resolution in-line inspections. Yuan et al. [148]

proposed a Bayesian approach for modeling and predicting the pitting flaws in steam

generator tubes to account for the inherent variability involved in the corrosion process

as well as in the detecting and sizing uncertainties associated with the inspection tool.

In their study, they confirmed that without considering the probability-of-detection

issues and measurement errors, the leakage risk resulting from pitting corrosion would

be under-estimated, despite the fact that the actual pit depth would usually be over-

estimated. The authors used a modified MCMC method for parameter inference that

runs data augmentation at each iteration of the algorithm. Similarly, using MCMC

with data augmentation, Qin et al. [109] proposed a Bayesian framework for param-

eter inference of the stochastic corrosion model used in their study to characterize

generation and growth of corrosion defects in energy pipelines.

3.2 Monte Carlo Methods in General

The basic idea of Monte Carlo simulation is to draw samples from a target probability

density f(x) defined on a multi-dimensional space. These samples are mainly used to
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numerically evaluate expectations of the form

E[g(X)] =
∫

X
g(x)f(x)dx (3.3)

An unbiased estimate of the above-mentioned integral can be computed as

E(n)[g(X)] = 1
n

n∑
i=1

g(x(i)) (3.4)

where {x(i)}ni=1 are the Monte Carlo samples drawn from f(x). According to the strong

law of large numbers, E(n)[g(X)] will almost surely (a.s.) converge to E[g(X)] as the

number of samples goes to infinity [54], i.e.,

E(n)[g(X)] a.s.−−−→ E[g(X)], n −→∞ (3.5)

Likewise, if Var[g(X)] = σ2
g is finite, i.e., σ2

g < ∞, then according to the central limit

theorem, the estimation error converges to a Gaussian distribution, i.e.,

√
n
{
E(n)[g(X)]− E[g(X)]

}
−→ N (0, σ2

g), n −→∞ (3.6)

In the context of probability and statistics, numerical integration using Monte Carlo

methods is a superior choice over deterministic schemes because Monte Carlo schemes

generate samples from high-probability regions, unlike the latter, which generates sam-

ples over the entire integration region, producing most of the function values equal to

zero. With the goal to draw samples from f(x), various Monte Carlo samplers can be

employed depending on the form of the density function. Suppose f(x) has a standard

univariate form of a PDF, say Gaussian or gamma. To generate samples from this

PDF, we can simply employ the inverse transform method [115] for a univariate case
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based on the computation of the inverse cumulative distribution function (CDF). How-

ever, if difficulty in drawing samples increases due to high dimension and non-standard

forms of density functions, then more advanced and sophisticated methods, such as

rejection sampling, importance sampling, and MCMC are implemented. While rejec-

tion sampling and importance sampling methods guarantee to simulate iid samples,

MCMC generates a Markov chain of correlated samples.

3.2.1 Rejection Sampling

Rejection sampling can be employed when the target density f(x) is only known up

to a constant of proportionality, making direct sampling from it impossible. The basic

idea of this algorithm is to draw samples from an alternative easy-to-sample proposal

distribution q(x) that satisfies the condition

f(x) ≤Mq(x), M <∞ (3.7)

and accept the proposed samples based on an accept-reject rule [6]. Here,Mq(x) works

as an envelope distribution to the target distribution. The implementation steps for

the Monte Carlo rejection sampler are presented in Algorithm 1.

Algorithm 1 Rejection sampler
1: for i = 1 to n do
2: repeat
3: Generate x∗ from the proposal density q(x).
4: Generate u from a uniform distribution U [0, 1].
5: Accept x∗ if u < f(x∗)

Mq(x∗)
6: until acceptance
7: set x(i) = x∗
8: end for
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Example

Let us take an example to understand how rejection sampling works. This example

is adopted from [6]. Suppose, one wants to draw samples from a univariate target

distribution f(x) which is known only up to a constant of proportionality:

f(x) ∝ 0.3 exp(−0.2x2) + 0.7 exp(−0.2(x− 10)2); −∞ < x <∞ (3.8)

One can assume that f(x) = cf ′(x), where c is the normalizing constant, and f ′(x) is

the unnormalized target distribution. In this particular case, one can analytically cal-

culate c = 1/
√

5π and compare the result of the rejection sampling with the analytical

solution. Let us select a normal proposal density q(x) = N (5, 102). Since c is assumed

to be unknown, it is impossible to directly calculate the value ofM . However, using the

inequality M/c ≥ f ′(x)/q(x) from Equation 3.7 and a trial and error method, one can

find that M/c = 24 gives a reasonable solution with a rejection rate of around 80.25%

(c = 1/
√

5π gives M = 6.06). Figure 3.1 shows the envelope distribution Mq(x), the

target distribution f(x), and the unnormalized target distribution f ′(x). It can be

noticed that the support of the proposal distribution covers the support of the target

distribution well. Note that, in problems with high dimensions, one may need to select

a very high value of M . which may result in a very high number of rejections. The

results from the Monte Carlo rejection algorithm are presented in Figure 3.2. The

figure shows that as the number of simulations n is increased, the histogram of the

accepted samples reaches closer and closer to the target distribution f(x). To get a

closer fit of the target distribution at n = 105, the algorithm used around 19.75% of

the total of 5.06× 105 samples.

The two major limitations of the rejection sampling method [6] are: (i) bounding

f(x)/q(x) with a reasonable constant M is not always possible; and (ii) a large M
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Figure 3.1: The target and envelope distributions used in Monte Carlo rejection sampling.

can produce very small acceptance probabilities (Equation 3.9), making the algorithm

computationally prohibitive:

P[x = acceptance] = P
[
u <

f(x)
Mq(x)

]
∝ 1
M

(3.9)

Thus, the rejection sampler is deemed impractical for high dimensional problems.

3.2.2 Importance Sampling

Importance sampling is a classical method that is used when direct sampling from

f(x) is infeasible. Instead, this method draw samples from an arbitrary importance

proposal density q(x) to calculate some numerical estimate and apply a correction to

the estimate by multiplying it with the importance weight w(x) = f(x)/q(x) [6]. The
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Figure 3.2: Target distribution (black line) and the histogram of samples (in gray) generated
using Monte Carlo rejection sampling for different numbers of iterations.

expectation in Equation 3.3 can be re-written as

Ef [g(X)] =
∫

X
g(x)f(x)dx

=⇒ Eq[g(X)w(X)] =
∫

X
g(x)w(x)q(x)dx

(3.10)

Consequently, the unbiased Monte Carlo estimator can be written as

E(n)
q [g(X)w(X)] = 1

n

n∑
i=1

g(x(i))w(x(i)) (3.11)

Once again, according to the strong law of large numbers, E(n)
q [g(X)w(X)] will almost

surely (a.s.) converge to Eq[g(X)w(X)] as the number of samples goes to infinity, i.e.,

E(n)
q [g(X)w(X)] a.s.−−−→ Eq[g(X)w(X)], n −→∞ (3.12)

41



One can derive the optimal proposal distribution q∗(x) by minimizing the variance of

the estimator [6]:

q∗(x) = |g(x)|f(x)∫
X |g(x)|f(x)dx ∝ |g(x)|f(x) (3.13)

However, usage of the optimal proposal density is not practical since sampling from

this density is not easy. The importance sampling name came from the fact that

one should target sampling from f(x) in the “important regions” where |g(x)|f(x) is

comparatively large – this is the reason behind the high efficiency of the method [6].

Example

Importance sampling is quite useful in estimating small failure probabilities in reli-

ability engineering. As an example, let us assume that g(x) = (x2/5 − 32) is the

performance function of a system, where x follows the probability distribution f(x)

presented in Equation 3.8. The failure condition can be defined as [g(x) > 10]; the

corresponding failure probability Pf is given as

Pf = P[g(x) > 10] =
∫
X
I[g(x) > 10]f(x)dx (3.14)

where I[ • ] is an indicator function:

I[g(x) > 10] =


1, if g(x) > 10

0, otherwise

The Monte Carlo estimate of the probability of failure can be written as

P
(n)
f = 1

n

n∑
i=1

I[g(x(i)) > 10], x(i) iid∼ f(x) (3.15)
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where x(i) can be simulated from f(x) using both rejection and importance sampling

methods. After selecting the proposal distribution q(x), Pf can be calculated as

P
(n′)
f = 1

n′

n′∑
i=1

I[g(x(i)) > 10]w(x(i)), x(i) iid∼ q(x) (3.16)

where w(x(i)) = f(x(i))/q(x(i)). To select the proposal distribution, one needs to iden-

tify the “important region”. Recall the failure condition:

g(x) > 10 =⇒ x2

5 − 32 > 10 =⇒ x > 14.4914 (3.17)

Clearly, a proposal distribution close to around x = 14.5 can make a suitable choice.

The proper selection of the variance of a proposal function is very important. It must

effectively capture the right tail of the target distribution f(x) since it is the most

important region for sampling in failure probability calculation. Let us select a normal

distribution as our proposal function, i.e., q(x) = N (15, 22). The target distribution

f(x), the failure region, and the proposal distribution q(x) are shown in Figure 3.3.

Figure 3.4 shows the convergence of the probability of failure Pf calculated using

both rejection and importance sampling methods. Both methods converged to a value

of around Pf = 1.5× 10−4. However, the figure shows that the iteration or sample size

needed to reach convergence for the Monte Carlo rejection sampler is around 4× 105,

whereas the importance sampler converged even before reaching 1 × 105 iterations.

This proves that the Monte Carlo importance sampler is far more efficient than the

rejection sampler. For importance sampling, it is necessary to choose a proposal density

that is easy to simulate and is a good approximation to the target failure region or

important region. However, finding this type of proposal density can be challenging in

a high-dimensional setting. Thus, more advanced sampling methods, such as Markov

chain-based methods, can be used.
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Figure 3.3: Target and proposal distributions along with the failure region.

(a) Rejection sampling (b) Importance sampling

Figure 3.4: Convergence of Pf with respect to the sample size using (a) rejection sampling
and (b) importance sampling methods.

44



3.3 MCMC Algorithms

To understand how MCMC works, one needs to know two of its basic components: the

Monte Carlo methods and the Markov chains. The Monte Carlo methods are discussed

in Section 3.2. For the basic concepts of Markov chains and related terminologies, the

reader is referred to Appendix B. Suppose one needs to draw samples using MCMC

from the univariate probability density f(x) as shown in Figure 3.5. The samples

Figure 3.5: A schematic of the target distribution and the finite states of a Markov chain.
(http://bjlkeng.github.io)

can be drawn using a finite state Markov chain in conjunction with the Monte Carlo

method. In total, there are 7 states, represented as {X−3, X−2, · · · , X3}, and their

transition probabilities are assumed to be pij, i, j = −3,−2, · · · , 3. MCMC tries to

spend more time near the high probability region, where f(x) is large, compared to the

low probability region, where f(x) is small, in fact, in the exact proportions of f(x).

To achieve that, one needs to design the transition probability matrix {pij} in such

a way that transitioning from X0 to other states will have relatively less probability

than transitioning from other states to the the central state X0. Thus, the basic steps
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of the MCMC algorithm are:

1. Choose an arbitrary point x.

2. Move to a new point x∗ with a transition probability p and stay at the same point

with a probability (1− p).

3. Repeat until n number of iterations are completed.

The histogram resulting from those n number of samples should give the target density.

However, in reality, each point in the X line is a potential state of the Markov chain,

which makes any Markov chain to have countably infinite states. Thus, instead of a

transition probability matrix used for a finite state Markov chain, one will have to use

a transition kernel to transit from one state to another in the Markov chain that has

countably infinite states.

3.3.1 Metropolis-Hastings Algorithm

The MH algorithm [58] is the most widely-known MCMC technique in the scientific

community. In fact, all the MCMC samplers can be broadly classified as MH samplers.

For instance, the Metropolis [91] and Gibbs samplers [52] can be proved to be special

cases of the MH sampler [75], which is a powerful technique to draw samples from

distributions known only up to a proportionality constant. For the same reason, the

MH algorithm is very popular among the Bayesian statisticians because it allows one

to completely avoid the computation of the normalizing constant and draw samples

directly from the posterior distribution.

Derivation

To derive the steps of the MH algorithm, one has to make sure that the MCMC

sampler generates a Markov chain that sets the target distribution f(x) as its stationary
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distribution. To achieve this goal, f(x) needs to satisfy the detailed balance equation

(reversibility condition) which can be written as

f(x)K(x∗ | x) = f(x∗)K(x | x∗) (3.18)

where K(x∗ | x) is the transition kernel for transitioning from state x to state x∗. The

transition kernel is the equivalent of the transition probability matrix in a continuous

state space. The detailed balance equation guarantees that, in a long run, a Markov

chain spends equal amounts of time to move from state x to x∗ and vice versa (for

more details, see Section B.4).

One has to calculate the transition kernel from Equation 3.18, which, if exists, will

prove that f(x) is indeed the stationary distribution of the Markov chain defined by

the same transition kernel. Equation 3.18 can be considered as a basis for constructing

any MCMC sampler. Note that, to construct a Markov chain, one has to guarantee

that it not only has a stationary distribution but also that is unique. The uniqueness is

guaranteed by the ergodicity (irreducibility and aperiodicity) property of the Markov

chain (refer to Section B.3 for more details). After re-arranging, Equation 3.18 can be

written as
K(x∗ | x)
K(x | x∗) = f(x∗)

f(x) (3.19)

Note that the ratio in Equation 3.19 guarantees that even if f(•) does not have a

standard form but is only known up to a constant of proportionality, it is possible to

draw samples from that particular distribution. We can break up the transition kernel

K(x∗ | x) into two independent steps: (i) the proposal distribution q(x∗ | x), and (ii)

the acceptance probability A(x,x∗). By independence, we can write

K(x∗ | x) = q(x∗ | x)A(x,x∗) (3.20)
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The rejection sampling works in a similar fashion, in that the proposal distribution

proposes a new sample which is accepted or rejected based on its acceptance probability.

One must appropriately choose the proposal distribution q(x∗ | x) and derive the

acceptance probability A(x,x∗). Since the proposal distribution proposes new points

for sampling, if one guarantees that q(x∗ | x) has the same support as the target

distribution f(x), then the ergodicity condition can be fulfilled [6]. Any standard

distribution can be selected as the proposal distribution, and once it is fixed, the

next step is to derive the acceptance probability. Substituting Equation 3.20 into

Equation 3.19, one can obtain

q(x∗ | x)A(x,x∗)
q(x | x∗)A(x∗,x) = f(x∗)

f(x) =⇒ A(x,x∗)
A(x∗,x) = f(x∗)q(x | x∗)

f(x)q(x∗ | x) (3.21)

Thus, one has to choose the acceptance probability in such a way so that it satisfies

Equation 3.21. Typically, one can choose

A(x,x∗) = min

1, f(x∗)q(x | x∗)
f(x)q(x∗ | x)

 (3.22)

Let us check whether Equation 3.22 satisfies Equation 3.21. Suppose f(x∗)q(x|x∗)
f(x)q(x∗|x) ≤ 1

(Case 1), which implies

A(x,x∗) = min

1, f(x∗)q(x | x∗)
f(x)q(x∗ | x)

 = f(x∗)q(x | x∗)
f(x)q(x∗ | x) , and

A(x∗,x) = min

1, f(x)q(x∗ | x)
f(x∗)q(x | x∗)

 = 1
(3.23)

From Equation 3.23, it is clear that the chosen acceptance probability satisfies Equa-

tion 3.21 for Case 1.
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Now, let us assume that f(x∗)q(x|x∗)
f(x)q(x∗|x) > 1 (Case 2). This implies

A(x,x∗) = min

1, f(x∗)q(x | x∗)
f(x)q(x∗ | x)

 = 1, and

A(x∗,x) = min

1, f(x)q(x∗ | x)
f(x∗)q(x | x∗)

 = f(x)q(x∗ | x)
f(x∗)q(x | x∗)

(3.24)

Equation 3.24 proves that, even for Case 2, the chosen acceptance probability satisfies

Equation 3.21.

By selecting a proper proposal density and using the acceptance probability given

in Equation 3.22, one can develop an algorithm which can construct a Markov chain

with the stationary distribution equal to the target distribution f(x). This scheme

is known as the popular MH algorithm. The basic implementation steps of the MH

sampler [56] are presented in Algorithm 2.

Algorithm 2 MH sampler
1: Initialize by randomly selecting an arbitrary point x(i), set i = 1.
2: for i = 1 to n− 1 do
3: Generate x∗ from the proposal distribution q(x∗ | x(i))
4: Calculate the acceptance probability

A(x(i),x∗) = min

1, f(x∗)q(x(i) | x∗)
f(x(i))q(x∗ | x(i))


5: Simulate u from the uniform distribution U [0, 1].
6: Set

x(i+1) =

x∗, if u ≤ A(x(i),x∗)
x(i), otherwise

7: end for

Example

Let us implement the MH algorithm to draw samples from the unnormalized target

density f(x) ∝ 0.3 exp(−0.2x2)+0.7 exp(−0.2(x−10)2), previously presented in Equa-
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tion 3.8. The proposal density is selected to be a normal distribution with mean equal

to the current sample and standard deviation equal to 3, i.e., q(x∗ | x) = N (x, 32). The

MH sampler generated a Monte Carlo Markov chain of the length of 12000 iterations

with an arbitrary initial point x = 30.73. The first 2000 samples in the chain are

rejected to allow for “burn-in”. Burn-in of a Markov chain is a process to discard a

few initial samples to allow for the chain to reach a high probability region (for more

details, see Section 3.4). The Markov chain and its burn-in region are shown in Fig-

ure 3.6. The estimated histograms for different numbers of iterations (i.e., the Markov

Figure 3.6: Sample iterations generated from the MH sampler.

chain lengths) are presented in Figure 3.7. It can be observed that as the chain length

increases, the histogram of the samples cover more and more of the target region, and

at n = 10000, the histogram shows a great fit with the target distribution.
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Figure 3.7: Target distribution (black line) and histograms of samples (in gray) for different
chain lengths (number of iterations).

3.3.2 Variants of Metropolis-Hastings Algorithm

Depending on the type of the proposal distribution, various simple instances of the

generalized MH algorithm (Algorithm 2) can be derived. A few such instances are

presented next.

Independent Metropolis-Hastings Algorithm

In the independent sampler, the proposal distribution is independent of the current

state, i.e., q(x∗ | x) = q(x∗). The acceptance probability can be written as [6]

A(x,x∗) = min

1, f(x∗)q(x | x∗)
f(x)q(x∗ | x)

 = min

1, f(x∗)/q(x∗)
f(x)/q(x)

 = min

1, w(x∗)
w(x)


(3.25)
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where w(x) = f(x)/q(x) (similar to the importance weight). Note the close similarity

between the independent MH algorithm and the importance sampling algorithm (see

Subsection 3.2.2).

Random-Walk Metropolis-Hastings Algorithm

The random walk chain can be constructed following the process x∗ = x+z, where z is

an iid noise term generated from a proposal density having the form q(x∗ | x) = q(x∗−

x) [113]. Note that if the proposal distribution is symmetric, i.e., q(x∗−x) = q(x−x∗),

then the acceptance probability simplifies to

A(x,x∗) = min

1, f(x∗)q(x | x∗)
f(x)q(x∗ | x)

 = min

1, f(x∗)
f(x)

 (3.26)

The Metropolis algorithm [91] belongs to the same family of symmetric random-walk

MH algorithms.

Single-Component Metropolis-Hastings Algorithm

Suppose a random vector x consists of k components (the components can be multi-

dimensional), i.e., x = {x1, x2, · · · , xk}>, with the distribution f(x) = f(x1, x2, · · · , xk).

The objective is to draw samples from the target distribution f(x), which can not be

used for direct sampling. Now, according to the single-component MH algorithm, in-

stead of proposing and accepting samples directly according to the basic MH sampler,

one can alternatively propose and accept samples component-wise. In other words,

instead of proposing a direct move using the proposal distribution q(x∗ | x) and ac-

cepting the new sample using A(x,x∗), one can propose a component-wise move using

qj(x∗j | xj) and accept it based on the component-wise acceptance probability [29]

Aj(xj, x∗j) = min

1,
fj(x∗j)qj(xj | x∗j)
fj(xj)qj(x∗j | xj)

 (3.27)
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where qj(x∗j | xj) is dependent on the current value xj but may or may not depend on

the other components x−j = {x1, x2, · · · , xj−1, xj+1, · · · , xk}, and fj(xj) = f(xj | x−j)

is the full conditional distribution. If accepted, then xj will be updated to x∗j ; otherwise,

xj will repeat itself. The process is repeated for j = 1, 2, · · · , k until the entire vector

is updated. The full conditional distributions can be presented as

fj(xj) = f(xj | x−j) = f(x)
f(x−j)

= f(x)∫
f(x)dxj

(3.28)

According to the product of kernels principle [31, 58], the transition kernel of this

algorithm can be written as

K(x∗ | x) =
k∏
j=1
Kj(x∗j | xj) =

k∏
j=1

qj(x∗j | xj)Aj(xj, x∗j) (3.29)

where Kj(x∗j | xj), j = 1, 2, · · · , k, are the conditional transition kernels (assuming

they exist). The steps of the algorithm are presented in Algorithm 3.

Algorithm 3 Single-component MH sampler

1: Initialize x(i) = {x(i)
1 , x

(i)
2 , · · · , x

(i)
k }, set i = 1.

2: for i = 1 to n− 1 do
3: for j = 1 to k do
4: Generate x∗j from the proposal distribution qj(x∗j | x

(i)
j )

5: Calculate the acceptance probability

Aj(x(i)
j , x

∗
j) = min

1,
fj(x∗j)qj(x

(i)
j | x∗j)

fj(x(i)
j )qj(x∗j | x

(i)
j )


6: Simulate u from the uniform distribution U [0, 1].
7: Set

x
(i+1)
j =

x∗j , if u ≤ Aj(x(i)
j , x

∗
j)

x
(i)
j , otherwise

8: end for
9: end for
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Langevin Algorithm

This algorithm is motivated by the idea of discrete approximation of the Langevin

diffusion process [113]. Here, the proposal density is given by

q(x∗ | x) = N (x + (δ/2)∇ log f(x), δ) (3.30)

where δ > 0 is some small quantity.

3.3.3 Gibbs Sampler

The Gibbs sampler is a special case of the single-component MH sampler, which was

developed by Geman and Geman [52] in the context of image processing problems. It is

the simplest algorithm to construct a Markov chain. This algorithm is particularly use-

ful when it is possible to draw samples from conditional distributions of a multivariate

random variable but difficult to draw samples directly from its joint distribution.

The Gibbs sampler can be described as follows. Suppose, a random vector x consists

of k random variables, i.e., x = {x1, x2, · · · , xk}>, with a target distribution f(x) =

f(x1, x2, · · · , xk). To derive the acceptance probability of the Gibbs sampler, let us

assume that the proposal distributions are equal to the full conditional distributions,

i.e.,

qj(x∗j | xj) = fj(x∗j) = f(x∗j | x−j), j = 1, 2, · · · , k (3.31)

where x−j = {x1, x2, · · · , xj−1, xj+1, · · · , xk}. Now, one can re-write Equation 3.27 as

Aj(xj, x∗j) = min

1,
fj(x∗j)qj(xj | x∗j)
fj(xj)qj(x∗j | xj)

 = min

1,
fj(x∗j)fj(xj)
fj(xj)fj(x∗j)

 = 1 (3.32)

which shows that the acceptance probability in the Gibbs sampler is 1; thus, the

proposed candidates are always accepted. The Gibbs sampler has two variants:
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1. The deterministic-scan Gibbs sampler: The univariate components are up-

dated sequentially. The transition kernel is given as [113]

K(x∗ | x) =
k∏
j=1
Kj(x∗j | xj) =

k∏
j=1

qj(x∗j | xj)Aj(xj, x∗j) =
k∏
j=1

fj(x∗j) (3.33)

2. The random-scan Gibbs sampler: The univariate components are updated

randomly. The transition kernel can be written as [75, 113]

K(x∗ | x) =
k∑
j=1

αjKj(x∗j | xj) =
k∑
j=1

αjqj(x∗j | xj)Aj(xj, x∗j) =
k∑
j=1

αjfj(x∗j) (3.34)

where 0 ≤ αj ≤ 1 is the selection probability and∑k
j=1 αj = 1. If the components

are selected with equal probabilities, then the above equation simplifies to

K(x∗ | x) = 1
k

k∑
j=1

fj(x∗j) (3.35)

The deterministic-scan and random-scan Gibbs algorithms are presented in Algorithm 4

and Algorithm 5, respectively.

Example

Let us understand the Gibbs sampling method through an example adopted from [77].

Suppose one needs to draw samples from a bivariate normal distribution f(x1, x2) that

has zero means, unit standard deviations, and a correlation coefficient of ρ = 0.5. The

joint distribution can be written as

f(x1, x2) = 1
2π
√

1− ρ2 exp
−x2

1 − 2ρx1x2 + x2
2

2(1− ρ2)

 (3.36)
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Algorithm 4 Deterministic-scan Gibbs sampler

1: Initialize x(i) = {x(i)
1 , x

(i)
2 , · · · , x

(i)
k }, set i = 1.

2: for i = 1 to n− 1 do
3: Generate x(i+1)

1 ∼ f(x1 | x(i)
2 , x

(i)
3 , · · · , x

(i)
k )

4: Generate x(i+1)
2 ∼ f(x2 | x(i+1)

1 , x
(i)
3 , · · · , x

(i)
k )

5:
...

6: Generate x(i+1)
k ∼ f(xk | x(i+1)

1 , x
(i+1)
2 , · · · , x(i+1)

k−1 )
7: end for

Algorithm 5 Random-scan Gibbs sampler

1: Initialize x(i) = {x(i)
1 , x

(i)
2 , · · · , x

(i)
k }, set i = 1.

2: Choose the selection probabilities {α1, α2, · · · , αk}.
3: for i = 1 to n− 1 do
4: Randomly choose j ∈ {1, 2, · · · , k} with probability αj.
5: Generate x(i+1)

j ∼ f(xj | x(i)
−j).

6: end for

To derive the full conditional f(x1 | x2), one needs to pick those terms which involve

only the variable x1, i.e.,

f(x1 | x2) ∝ exp
−x2

1 − 2ρx1x2

2(1− ρ2)

 ∝ exp
−(x1 − ρx2)2

2(1− ρ2)

 (3.37)

which is a kernel of the normal distribution [55]. Thus, the full conditional distribution

f(x1 | x2) is a normal distributionN (ρx2, 1−ρ2) with mean ρx2 and standard deviation
√

1− ρ2. Similarly, f(x2 | x1) can be derived to be N (ρx1, 1− ρ2).

Both the deterministic-scan and the random-scan (with equal selection probabili-

ties) Gibbs samplers are implemented for drawing samples from f(x1, x2). The Markov

chains are simulated for 10000 iterations, and the initial 1000 samples are rejected for

burn-in. The first 50 samples of two Markov chains generated with different initial

points from both algorithms are shown in Figure 3.8. It can be observed that samples

from both algorithms quickly converged to the high probability region and covered the

target distribution entirely.
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(a) Deterministic-scan Gibbs sampler (b) Random-scan Gibbs sampler

Figure 3.8: The first 50 steps of the (a) deterministic-scan and (b) random-scan Gibbs sam-
plers starting from different initial points.

3.4 Burn-In, Thinning, and Convergence

3.4.1 Burn-In

In the MCMC literature, the “burn-in” of MCMC chains is an important topic. To

understand what burn-in is, let us assume that we start our Markov chain from an

arbitrary point x(1). This initial point may belong to a high or low probability region

(e.g., tail ends of the target distribution). If the initial point belongs to the high

probability region, then the MCMC chain can be assumed to have reached its stationary

distribution right from the first iteration. However, if the initialization process starts

from a low probability region, then the chain will spend a disproportionate amount

of time wandering through the low probability zone giving a false sense of reaching

stationarity. The remedy is to throw away some initial samples to allow for the chain

to reach a high probability region or burn-in.
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The choice of the burn-in period is a complex problem. One can choose this burn-

in length by using convergence diagnostics (e.g., [50] or by analytically estimating the

appropriate burn-in length in some specific cases (e.g., [92]). However, both these

approaches are quite complicated for practical use. In practice, the burn-in length can

be chosen in an ad hoc manner [112] by visually inspecting each marginal MCMC chain

in case of low dimensional problems. However, in case of high dimensional problems

where visual inspection is not possible, a large proportion of the initial samples, say 1%

or 2% of the total run, are discarded [53]. If visual inspection is possible, one can also

run several chains in parallel, with different initial starting points, and verify whether

the chains converge to the same stationary distribution or not after the burn-in period.

This step will also help to determine whether or not a chain is trapped inside a high

probability region.

3.4.2 Thinning

A major problem with MCMC is the correlation between the two adjacent samples.

By definition, the future state of a Markov chain is dependent on the present state.

However, the Monte Carlo methods tend to use iid samples to estimate an expectation

(or any quantity of interest). Thus, although MCMC draws samples directly from the

target distribution, an important property of the Monte Carlo method is lost, i.e., the

independence between the generated samples. As a remedy, one can select only the

tth, 2tth, 3tth, · · · , samples and throw away the rest in between them [53]. If t is

large enough, it is possible to get almost independent samples. This process is called

thinning of a Markov chain.

One can calculate t approximately by using the sample autocorrelation function

(ACF). The sample ACF measures the correlation between x(i+h) and x(i), where h is

the lag between the states of a one-dimensional Markov chain. Suppose the burn-in
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length of a Markov chain is l. After throwing away l number of initial samples, the

remaining number of samples is nl = n − l. According to the reference [21], the most

satisfactory estimate of the sample ACF for lag h is given as r(h) = c(h)/c(0), where

c(h) = 1
nl

nl+l−h∑
i=l+1

(x(i+h) − x̄)(x(i) − x̄), 0 < h < nl (3.38)

and x̄ = (1/nl)
∑nl+l
i=l+1(x(i)). Note that in case of a high dimensional Markov chain,

one can calculate the sample ACF for all one-dimensional marginal chains and verify

the correlations between the samples.

3.4.3 Convergence

A very long Markov chain will eventually converge to its target distribution, but how

long will that be? Practically, to implement MCMC, one needs to specify a stopping

criterion. The stopping criterion not only depends on the problem but also on the

quantity that needs to be estimated. Suppose one wants to calculate an expectation, or

estimate the parameter uncertainties. In the first case, one can stop the chain when one

gets a reasonable value for the estimate of the corresponding expectation. In the latter

case, one might need to run the chain long enough to estimate the summary statistics

(e.g., mean and standard deviation) of the Markov chain samples. Thus, a stopping

criterion can be set by understanding the Monte Carlo uncertainties introduced by the

MCMC method and by how much of these uncertainties are acceptable in practice.

Monte Carlo Standard Errors

To calculate the Monte Carlo standard errors, the method of batch means can be

employed. This method divides an MCMC chain into equal segments and computes

the estimate of interest or the summary statistics of the samples for each segment.
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These results show the variability present in the estimates per segment. However, it is

important to make sure that the segments are approximately independent by choosing

a reasonable segment length. The steps [104] for the method of batch means are

presented next.

Suppose x(1),x(2), · · · ,x(n) are the samples from a target density f(x) generated

by an MCMC sampler. Now, recall the expectation in the beginning of the chap-

ter, E[g(X)] =
∫
X g(x)f(x)dx and its unbiased Monte Carlo estimate E(n)[g(X)] =

(1/n)∑n
i=1 g(x(i)). The goal is to calculate the Monte Carlo estimate using several

batches of samples. Let’s say, the batch size is nb, where n/nb = m is an integer. Thus,

the chain is divided into the following segments: x(1),x(2), · · · ,x(nb),x(nb+1),x(nb+2), · · · ,

x(2nb), · · · . The Monte Carlo estimate for the expectation per batch can be computed

as

b1 = 1
nb

nb∑
i=1

g(x(i)), b2 = 1
nb

2nb∑
i=nb+1

g(x(i)), · · · , bm = 1
nb

mnb∑
i=(m−1)nb+1

g(x(i)) (3.39)

and the batch mean of the estimate can be calculated as

b̄ = 1
m

m∑
j=1

bj = 1
mnb

mnb∑
i=1

g(x(i)) n→∞−−−−→ E[g(X)] (3.40)

The standard error (Equation 3.6) of the batch mean can be computed assuming that

n is very large, i.e.,

√
n
{
b̄− E[g(X)]

}
−→ N (0, s2), n −→∞ (3.41)

where s is the batch mean standard error that can be computed as s =
√

nb
m

∑m
j=1(bj − b̄)2.

Note that the Monte Carlo standard error is a quantity with a unit. Thus, it would

be difficult to say how small is small enough without understanding the context of the
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problem. Hence, a unit-free procedure is more acceptable in general situations. The

next subsection presents a different approach which is based on the popular Gelman-

Rubin statistic for convergence monitoring of MCMC chains.

Gelman-Rubin Statistic

A unit-free approach for monitoring MCMC convergence relies on the Gelman-Rubin

(GR) statistic [50]. Suppose multiple chains are running in parallel with different

starting values. Thus, all chains should simultaneously converge to a unique stationary

distribution, and after some time, those chains will be indistinguishable in terms of their

distribution. One can verify this property by comparing the “variation between chains”

to the “variation within chains”. However, the analysis is performed in each dimension

of the chain separately.

Let us assume that we have in total J number of equal-length one-dimensional

chains with different starting values, where x(1)
j , x

(2)
j , · · · , x(n)

j are the samples from the

jth chain. The steps [104] for calculating the GR statistic are as follows:

1. Discard l number of samples to allow for Burn-in. The remaining nl = n − l

number of samples, x(l+1)
j , x

(l+2)
j , · · · , x(l+nl)

j , will be used for the assessment.

2. Perform the following calculations:

2.1. Calculate the within-chain mean bj = (1/nl)
∑l+nl
i=l+1 x

(i)
j

2.2. Calculate the between-chain mean b̄ = (1/J)∑J
j=1 bj

2.3. Calculate the between-chain variance Vb = {nl/(J − 1)}∑J
j=1(bj − b̄)

2.4. Calculate the within-chain variance Vw = (1/J)∑J
j=1 s

2
j where s2

j =

{1/(nl − 1)}∑l+nl
i=l+1(x(i)

j − bj)2
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3. Finally, calculate the GR statistic

R̂ =

nl − 1
nl

Vw + 1
nl
Vb

Vw
(3.42)

Note that if nl →∞, R̂→ 1, which implies that if one runs the chain for very long, R̂

converges to 1. Thus, for practical purposes, one can choose a value of R̂ close to 1, say

1.1 or 1.2, for stopping the chain. As a stopping criterion in a multi-dimensional chain,

one can choose the largest Markov chain length given by the dimension-wise necessary

lengths from the analysis.

3.5 Bayesian Inference using MCMC

In Bayesian inference, the random vector x and the target distribution f(x) for the

MCMC samplers are replaced by the parameter vector Θ and the posterior distribution

f(Θ | Dobs), respectively. Thus, for generating samples from the target posterior dis-

tribution, the following acceptance probability, obtained by substituting Equation 3.2,

needs to be used instead of the one given in Algorithm 2:

A(Θ(i),Θ∗) = min

1, f(Θ∗ | Dobs)q(Θ(i) | Θ∗)
f(Θ(i) | Dobs)q(Θ∗ | Θ(i))


= min

1, f(Θ∗)L(Θ∗ | Dobs)q(Θ(i) | Θ∗)
f(Θ(i))L(Θ(i) | Dobs)q(Θ∗ | Θ(i))


(3.43)

It can be observed that the normalizing constant (see Equation 3.2) cancels out since

the acceptance probability in the MH sampler is essentially a ratio. Thus, there is

no need to explicitly evaluate the normalizing constant for sampling from a target

posterior distribution.
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Example

Let us apply of the MH algorithm for Bayesian inference using the same example

presented in Section 3.3.3. Suppose, the following is an observed data set:

Dobs =

x
(1)
1obs x

(2)
1obs · · · x

(N)
1obs

x
(1)
2obs x

(2)
2obs · · · x

(N)
2obs

 (3.44)

which is simulated from the the bivariate distribution f(x1, x2) (Equation 3.36) with

the correlation coefficient ρ = 0.3. The number of data points is N = 100. As-

suming ρ is unknown, the objective is to infer the posterior distribution of ρ, i.e.,

f(ρ | Dobs) ∝ L(ρ | Dobs)f(ρ). Since ρ varies between -1 and 1, let us select a uniform

prior f(ρ) = U [−1, 1], which makes every value between -1 and 1 to be equally likely

for the correlation coefficient. The likelihood function can be written as

L(ρ | Dobs) =
N∏
i=1

1
2π
√

1− ρ2 exp
−(x(i)

1obs)2 − 2ρ(x(i)
1obs)(x

(i)
2obs) + (x(i)

2obs)2

2(1− ρ2)


= (2π)−N(1− ρ2)−N/2 exp

−∑N
i=1(x(i)

1obs)2 − 2ρ∑N
i=1 x

(i)
1obsx

(i)
2obs +∑N

i=1(x(i)
2obs)2

2(1− ρ2)


(3.45)

where N is the number of data vectors. Thus, the posterior distribution can be calcu-

lated as

f(ρ | Dobs) ∝
N=2∏
i=1

1√
1− ρ2 exp

−(x(i)
1obs)2 − 2ρ(x(i)

1obs)(x
(i)
2obs) + (x(i)

2obs)2

2(1− ρ2)


∝ (1− ρ2)−N/2 exp

−∑N
i=1(x(i)

1obs)2 − 2ρ∑N
i=1 x

(i)
1obsx

(i)
2obs +∑N

i=1(x(i)
2obs)2

2(1− ρ2)


(3.46)

The posterior distribution in Equation 3.46 is not normalized and does not follow

any known form. Thus, one cannot draw samples from the posterior directly. However,
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the MH algorithm can be implemented to perform the sampling task. In this particular

case, one can numerically calculate the normalizing constant of the posterior distribu-

tion in Equation 3.46 and verify the results with the analytical posterior distribution.

Let us select a normal proposal density to simulate a symmetric random-walk within

the MH algorithm: q(ρ∗ | ρ) = N (ρ, 0.22)

Two Markov chains with different initial points, and chain lengths of 10000 itera-

tions are simulated. Figure 3.9 shows that both chains converged quickly to their sta-

tionary distributions. After discarding 1000 initial samples for burn-in, the histograms

of the posterior samples are generated and presented in Figure 3.9. For comparison,

(a) Markov chain 1

(b) Markov chain 2

Figure 3.9: Markov chains and corresponding histograms of posterior samples generated from
two independent runs of the MH sampler.
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the analytically derived target distributions are shown on top of the histograms. It can

be observed that both histograms match the target posterior distribution quite well.

3.6 Concluding Remarks

MCMC is a popular choice for Bayesian inference because MCMC samplers can draw

samples from complicated posterior distributions. This chapter started with a thorough

discussion on the Monte Carlo methods and presented popular MCMC samplers such

as the MH algorithm and the Gibbs sampler. To demonstrate how these algorithms

work, various numerical examples are included.

The most common Bayesian inference method for estimating parameters is the

Gibbs sampler. However, implementing the Gibbs sampler is not always feasible,

because: (1) derivations of the individual conditional posterior distributions are not

always possible; and (2) in some cases, sampling from the conditional posterior dis-

tributions is challenging. Thus, the Gibbs sampler can not be considered a practical

approach. On the other hand, a successful implementation of the popular MH sampler

depends on the efficiency of evaluating the likelihood function. If the likelihood function

is formed using noisy data, such as the noisy likelihoods of the stochastic degradation

models in Chapter 2, its numerical evaluation becomes challenging, and this makes the

MH algorithm computationally prohibitive. Thus, for Bayesian parameter inference of

stochastic degradation models, the evaluation of the likelihood function needs to be

circumvented. The next chapter presents various likelihood-free Monte Carlo methods

for Bayesian computation, and also discusses how these MCMC sampling algorithms

can be used to draw samples from a target posterior distribution without using the

likelihood function.
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Chapter 4

Approximate Bayesian

Computation Methods

4.1 Introduction

The approximate Bayesian computation method [82] is a popular likelihood-free Bayesian

inference scheme. Based on a predefined distance function, ABC directly generates

samples from the target posterior distribution by comparing the observed data set

with numerous simulated data sets. The algorithm employs an “accept-reject” mech-

anism through a tolerance threshold on the distance values, and retains the relevant

parameter samples that satisfy the acceptance criterion. ABC is particularly useful

when the model likelihood is intractable or computationally expensive to evaluate. In

addition, if data simulation from a forward model is computationally cheap, ABC can

achieve reasonable efficiency during the sampling procedure [61].

The idea of the likelihood-free inference was first described by Rubin [114] in 1984.

The author presented this method as an intuitive way to understand the Bayesian

posterior computation from a frequentist’s perspective [82]. Later on Tavaré et al.
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[126] used the ABC algorithm as an accept-reject method to infer the genealogy of

DNA sequence data in a discrete sample space [82, 124]. Pritchard et al. [108] then

extended the ABC method to a continuous sample space and applied it in population

genetics problems. Beaumont et al. [12] finally coined the term approximate Bayesian

computation in their work related to the Bayesian computation of population genetics.

During the last two decades, the development and application of more-sophisticated

ABC algorithms in the field of biological sciences (e.g., [10, 43, 83, 120, 128, 130,

134, 145]), engineering (e.g., [3, 4, 27, 30, 32, 59–61, 77, 85, 135]), astronomy (e.g.,

[5, 66, 68, 144]), archeology (e.g., [36]), psychology (e.g., [133]), geology (e.g., [97]),

and hydrology (e.g., [116]) has clearly demonstrated its efficiency and usefulness in

Bayesian computation. One can find plenty of review papers on ABC that are available

in the literature [11, 37, 82, 110, 124, 133].

The basic ABC method often struggles with complex models that have too many

parameters. To solve the parameter estimation problem in complex systems, several

well-known and efficient sampling algorithms such as MCMC [83], population Monte

Carlo [13], sequential Monte Carlo [130], subset simulation [30], and ellipsoidal nested

sampling [4], have been used within the ABC algorithm. A comprehensive list of basic

and advanced ABC algorithms available in the literature till date are presented in

Table 4.1. The list of abbreviations are provided as a note at the end of the table. The

table contains the application areas and the issues found in the existing algorithms.

This chapter provides a brief background of the ABC method and discusses the

working principles of various standard ABC algorithms. Moreover, a number of ABC

algorithms are developed and the efficacy of those algorithms are demonstrated by

comparing them with the standard algorithms in various numerical examples.
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Table 4.1: Approximate Bayesian computation algorithms.

Algorithm Proposed
by

Year Application Notes

ABC-RS
(discrete)

Tavaré
et al. [126]

1997 Population
genetics

Not useful for a continuous sample space.

ABC-RS
(continu-
ous)

Pritchard
et al. [108]

1999 Population
genetics

Very small acceptance probability causes very
high rejection rate, making the algorithm
highly inefficient

ABC-RS
(summary
statistics)

Beaumont
et al. [12]

2002 Population
genetics

(i) Regression adjustment and weighting is
proposed; (ii) improves accuracy by reducing
bias; (iii) inefficient in high-dimensions.

ABC-
MCMC

Marjoram
et al. [83]

2003 Population
genetics

(i) Efficient compared to ABC-RS; (ii) pro-
duce correlated samples; (iv) can get stuck in
low probability regions for a very long time.

ABC-PRC Sisson et al.
[120]

2007 Epidemiology (i) Based on sequential Monte Carlo; (ii) im-
proves efficiency; (iii) induces bias.

ABC-PRC
(improved)

Sisson et al.
[119]

2008 Population
genetics

(i) Improves the original algorithm [120] by
proposing a weight update.

ABC-SMC Toni et al.
[130]

2009 Biological
dynamical
modeling

(i) Based on sequential importance sampling;
(ii) improves efficiency; (iii) induces bias.

ABC-PMC Beaumont
et al. [13]

2009 Population
genetics

(i) Introduces bias correction to the ABC-
PRC algorithms [119, 120] based on genuine
importance sampling arguments; (ii) does not
require a backward kernel.

Adaptive
ABC-SMC

Drovandi
and Pettitt
[43]

2011 Macro-
parasite
Population
Evolution

(i) Outperforms ABC-SMC [130]; (ii) auto-
matically determines the tolerance sequence
and the proposal distribution.

Adaptive
ABC-SMC

Del Moral
et al. [39]

2012 Disease Epi-
demiology

(i) More efficient than both the ABC-SMC
samplers [43, 130]; (ii) automatically deter-
mines the tolerance sequence.

ABC-DE Turner and
Sederberg
[132]

2012 Standard toy
problems,
Psychology

(i) Based on genetic algorithm; (ii) improves
efficiency of ABC; (iii) performs extremely
well in high-dimensional problems.

ABC-PT Baragatti
et al. [9]

2013 Disease Epi-
demiology

(i) Based on advanced MCMC method with
exchange moves; (ii) does not get trapped lo-
cally; (iii) improves accuracy of ABC-MCMC
[83].
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ABC-
SubSim

Chiachio
et al. [30]

2014 Structural
dynamics

(i) Based on an advanced MCMC method,
subset simulation – a rare event simulator;
(ii) does not get trapped locally; (iii) more
efficient and accurate than ABC-MCMC and
ABC-PT.

Noisy ABC Wilkinson
[145]

2014 Population
genetics

(i) Properly addresses the problem of
model/measurement noise; (ii) produces exact
inference results; (iii) small error causes high
rejection rate.

Gibbs ABC Turner and
Zandt [134]

2014 Experimental
psychology

Suitable for hierarchical Bayesian modeling.

GPS-ABC Meeds and
Welling [86]

2014 Population
genetics,
Ecology

(i) Stores simulation information in a Gaus-
sian process that acts as a surrogate func-
tion for the simulated statistics; (ii) reduce the
number of simulations significantly.

HABC Meeds et al.
[87]

2015 Population
dynamics

(i) Based on Hamiltonian dynamics; (ii) suit-
able for high dimensional problems.

Lazy ABC Prangle
[107]

2016 Epidemiology (i) Based on importance sampling; (ii) Re-
duced number of model simulations are
needed; (iii) Applicable when model simula-
tions are expensive.

K2-ABC Park et al.
[103]

2016 Population
dynamics

(i) Utilizes maximum mean discrepancy
(MMD) to construct the distance function; (ii)
circumvents the need for manually selecting
summary statistics.

ABC-NS Abdessalem
et al. [2]

2017 Structural
dynamics

(i) Based on an ellipsoidal nested sampling
technique; (ii) maintains a relatively high ac-
ceptance rate than the traditional ABC algo-
rithms.

ABC-VB Tran et al.
[131]

2017 Standard
statistical
modeling
problems

(i) Based on variational Bayes method; (ii)
high accuracy can be achieved.

ABC-QMC Buchholz
and Chopin
[23]

2019 Population
dynamics,
Epidemiol-
ogy

(i) Based on the quasi Monte Carlo method;
(ii) reduces the variance of the posterior.

Note: RS: rejection sampler, MCMC: Markov chain Monte Carlo, PRC: partial rejection control,
SMC: sequential Monte Carlo, PMC: population Monte Carlo, DE: differential evolution, PT: paral-
lel tempering, SubSim: subset simulation, GPS: Gaussian process surrogate, HABC: Hamiltonian
ABC, K2: kernel embeddings NS: nested sampling, VB: variational Bayes, QMC: quasi Monte
Carlo.
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4.2 Background

The likelihood-free ABC algorithm directly draw samples from the posterior distribu-

tion f(Θ | Dobs) ∝ L(Θ | Dobs)f(Θ) using an accept-reject mechanism. The ABC

algorithm starts by generating a candidate parameter set {Θ(1),Θ(2), · · · } from the

prior density f(Θ). Then, with the help of Monte Carlo simulation, ABC simulates

the underlying forward modelM(D | Θ) multiple times using the candidate parame-

ters, and generates a complete set of corresponding data sets {D(1),D(2), · · · }. Finally,

the combinations {Θ(k),D(k)} are accepted based on a condition, ρ(D(k),Dobs) ≤ ε,

defined by a distance function ρ(D(k),Dobs) and a tolerance threshold ε ≥ 0. De-

pending on the problem, any suitable distance function can be chosen for the rejection

mechanism to work. However, to maintain high accuracy, a small tolerance threshold

is preferred, which is generally chosen in an ad hoc manner. In the case of large data

sets, the distance function can be defined using sufficient summary statistics of the

data sets. In this study, the forward modelM(D | Θ) could be any degradation model

from Chapter 2. A conceptual overview of the likelihood-free ABC method is presented

in Figure 4.1.

The ABC method generates samples of {Θ,D} from the joint distribution f(Θ,D |

ρ(D,Dobs) ≤ ε), which, if marginalized, gives the approximate posterior distribution

f(Θ | Dobs) ≈ fε(Θ | Dobs) =
∫

D
f(Θ,D | ρ(D,Dobs) ≤ ε)dD (4.1)

where fε(Θ | Dobs) is called the ABC posterior of Θ. However, there is no need to

explicitly evaluate the integration in Equation 4.1 since the samples of Θ are directly

obtained from the samples of the joint posterior f(Θ,D | ρ(D,Dobs) ≤ ε). The
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Figure 4.1: A conceptual overview of the ABC method [124].

Bayesian statement for the joint ABC posterior distribution can be written as

f(Θ,D | ρ(D,Dobs) ≤ ε) = f(ρ(D,Dobs) ≤ ε | Θ,D)M(D | Θ)f(Θ)∫
Θ

∫
D
f(ρ(D,Dobs) ≤ ε | Θ,D)M(D | Θ)f(Θ)dΘdD

(4.2)
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Now, using Equation 4.1, the marginal ABC posterior of Θ can be calculated as

fε(Θ | Dobs) =
∫

D
f(Θ,D | ρ(D,Dobs) ≤ ε)dD

=

{ ∫
D
f(ρ(D,Dobs) ≤ ε | Θ,D)M(D | Θ)dD

}
f(Θ)∫

Θ

∫
D
f(ρ(D,Dobs) ≤ ε | Θ,D)M(D | Θ)f(Θ)dΘdD

= Lε(Θ | Dobs)f(Θ)∫
Θ
Lε(Θ | Dobs)f(Θ)dΘ

(4.3)

where Lε(Θ | Dobs) is the approximate likelihood function of the ABC algorithm. The

ABC likelihood function can be further simplified as

Lε(Θ | Dobs) =
∫

D
f(ρ(D,Dobs) ≤ ε | Θ,D)M(D | Θ)dD

=
∫

D
f(ρ(D,Dobs) | Θ,D)1

[
ρ(D,Dobs) ≤ ε

]
M(D | Θ)dD

(4.4)

where 1[ • ] is an indicator function:

1
[
ρ(D,Dobs) ≤ ε

]
=


1, if ρ(D,Dobs) ≤ ε

0, otherwise
(4.5)

It can be noticed that if ε → ∞, the approximate posterior converges to the prior

distribution, i.e.,

fε(Θ | Dobs) ε→∞−−−−−→ f(Θ) (4.6)

By contrast, if the chosen tolerance threshold ε is sufficiently small, then the ABC

posterior converges to the exact posterior as

fε(Θ | Dobs) ε→0−−−−→ f(Θ | Dobs) (4.7)

However, the selection of a small tolerance threshold often comes with a higher com-

putational cost.
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4.3 Standard ABC Algorithms

4.3.1 ABC Rejection Sampler

Following the intuitive idea of ABC, Pritchard et al. [108] proposed the first basic

ABC algorithm, also known as the ABC rejection sampler (ABC-RS). The steps of the

algorithm are presented in Algorithm 6. The algorithm is based on a similar idea of

the Monte Carlo rejection sampler presented in Algorithm 1.

Algorithm 6 ABC rejection sampler
1: for i = 1 to n do
2: repeat
3: Generate Θ∗ from the prior f(Θ)
4: Simulate a data set D∗ from the modelM(D | Θ∗)
5: Accept Θ∗ if ρ(D∗,Dobs) ≤ ε
6: until acceptance
7: set Θ(i) = Θ∗
8: end for

Example

The basic ABC algorithm is applied to solve the example problem of inferring the

posterior of ρ presented in Section 3.5. To avoid confusion with the distance func-

tion ρ(•, •), the notation for the correlation coefficient ρ will be replaced by ρc. The

same uniform prior f(ρc) = U [−1, 1] is selected for numerical computation. The data

generation model is the bivariate distribution f(x1, x2) shown in Equation 3.36. For

the distance function, a suitable choice would be to compare the sample correlation

coefficients of the observed data with that of the simulated data. Thus, the distance

function can be calculated as ρ(D,Dobs) = |r(D)− r(Dobs)|, where r(D) is the sample

correlation coefficient [141],

73



r(D) =

N∑
i=1

(
x

(i)
1 − x̄1

)(
x

(i)
2 − x̄2

)
√√√√ N∑
i=1

(
x

(i)
1 − x̄1

)2
√√√√ N∑
i=1

(
x

(i)
2 − x̄2

)2
(4.8)

and x̄1 and x̄2 are the sample means. ABC-RS is implemented to draw n = 1000

samples using three different values of the tolerance threshold, i.e., ε = {0.2, 0.1, 0.005}.

Figure 4.2 shows the inference results for different values of the tolerance thresholds.

On the left, we have the distance function plotted against the simulated correlation

coefficients, whereas on the right, we have the target posterior distribution and the

corresponding histograms. It can be noticed that, for a smaller acceptance region,

resulting from a smaller tolerance threshold, higher accuracy can be achieved – with

correspondingly higher rejection rate. In fact, for the ε = 0.005 case, where the ABC

posterior almost resembles the true posterior, most of the samples were rejected – a

rejection rate of 99.52% is observed. The tolerance threshold can be reduced further to

achieve higher accuracy, but doing so will definitely need enormous number of model

simulations due to the very high rate of rejection. This tells us that we need a way to

reduce the rejection rate by sampling close to the high probability region. This can be

achieved by using an MCMC-based ABC method that quickly converges to the high

probability region and simulates samples only near the target region.

4.3.2 ABC-MCMC Algorithm

Marjoram et al. [83] proposed a new ABC algorithm that uses the MCMC method as

its sampling scheme. MCMC proposes new parameter samples from the high proba-

bility region and ABC applies its basic accept-reject criterion to obtain the posterior

parameter samples. In this way, ABC-MCMC greatly reduces the rejection rate in the

ABC algorithm. The steps to implement the ABC-MCMC algorithm are presented
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(a) ε = 0.2

(b) ε = 0.1

(c) ε = 0.005

Figure 4.2: Acceptance regions (left), and histograms of posterior samples (right) simulated
using ABC-RS for three different tolerance thresholds.
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in Algorithm 7. It can be observed that the MCMC scheme used within the ABC

algorithm is the popular MH sampler (Algorithm 2).

Algorithm 7 ABC-MCMC sampler
1: Initialize Θ(i) ∼ f(Θ), set i = 1.
2: for i = 1 to n− 1 do
3: Generate Θ∗ from the proposal distribution q(Θ | Θ(i)).
4: Simulate a data set D∗ from the forward modelM(D | Θ∗)
5: Calculate the distance function ρ(D∗,Dobs).
6: Calculate the acceptance probability

A(Θ(i),Θ∗) = min
{

1, f(Θ∗)q(Θ(i) | Θ∗)
f(Θ(i))q(Θ∗ | Θ(i))

}

7: Simulate u from the uniform distribution U [0, 1].
8: Set

Θ(i+1) =

Θ∗, if ρ(D∗,Dobs) ≤ ε and u ≤ A(Θ(i),Θ∗)
Θ(i), otherwise

9: end for

To understand how MCMC is integrated within ABC, one needs to establish the

connection between the two. The goal of the ABC-MCMC algorithm is to draw samples

from the approximate ABC posterior by generating a Markov chain. For the target

ABC posterior f(Θ,D | ρ(D,Dobs) ≤ ε), the acceptance probability can be written as

A({Θ,D}, {Θ∗,D∗}) = min

1, f(Θ∗,D∗ | ρ(D∗,Dobs) ≤ ε)qp(Θ,D | Θ∗,D∗)
f(Θ,D | ρ(D,Dobs) ≤ ε)qp(Θ∗,D∗ | Θ,D)


Substituting Equation 4.2, we get

= min

1, f(ρ(D∗,Dobs) ≤ ε | Θ∗,D∗)M(D∗ | Θ∗)f(Θ∗)qp(Θ,D | Θ∗,D∗)
f(ρ(D,Dobs) ≤ ε | Θ,D)M(D | Θ)f(Θ)qp(Θ∗,D∗ | Θ,D)


= min

1,
f(ρ(D∗,Dobs) | Θ∗,D∗)1

[
ρ(D∗,Dobs) ≤ ε

]
M(D∗ | Θ∗)f(Θ∗)qp(Θ,D | Θ∗,D∗)

f(ρ(D,Dobs) | Θ,D)1
[
ρ(D,Dobs) ≤ ε

]
M(D | Θ)f(Θ)qp(Θ∗,D∗ | Θ,D)


(4.9)

76



where qp(Θ∗,D∗ | Θ,D) is the proposal distribution. ABC-MCMC proposes a new

move by breaking up the proposal step into four conditionally independent steps, these

are:

1. Propose a move from Θ to Θ∗ using a proposal distribution q(Θ∗ | Θ).

2. Simulate a data set D∗ from the forward modelM(D | Θ∗).

3. Calculate the distance function ρ(D∗,Dobs).

4. Proceed if ρ(D∗,Dobs) ≤ ε; otherwise reject Θ∗, and stay at Θ.

These steps divide the proposal function qp(Θ∗,D∗ | Θ,D) into four independent

(conditionally) components, i.e.,

qp(Θ∗,D∗ | Θ,D) = q(Θ∗ | Θ)M(D∗ | Θ∗)f(ρ(D∗,Dobs) | Θ∗,D∗)1
[
ρ(D∗,Dobs) ≤ ε

]
(4.10)

Now, if we substitute Equation 4.10 into Equation 4.9, we get

A({Θ,D}, {Θ∗,D∗}) = min
{

1, f(Θ∗)q(Θ | Θ∗)
f(Θ)q(Θ∗ | Θ)

}
= A(Θ,Θ∗) (4.11)

This proves that ABC-MCMC is a special case of the MH sampler, where the target

distribution is the ABC posterior fε(Θ | Dobs). For a derivation of the ABC-MCMC

sampler using the detailed balance equation, the reader may refer to the reference

[83]. Note that if the proposal distribution is symmetric, i.e., q(Θ∗ | Θ) = q(Θ |

Θ∗), the acceptance probability depends only on the prior distribution as A(Θ,Θ∗) =

min
{

1, f(Θ∗)
f(Θ)

}
. Additionally, if the prior is uniform, the acceptance probability turns

into unity, which implies that all the proposed samples of Θ will be accepted if they

satisfy the accept-reject condition ρ(D,Dobs) ≤ ε.
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A possible demerit of the ABC-MCMC scheme is that a very small tolerance thresh-

old can cause the Markov chain to get stuck in low probability regions for a very long

time, resulting in longer burn-in, thus longer computational time. To avoid this, one

can initialize the algorithm by generating Θ(1) directly from fε(Θ | Dobs) using the

ABC-RS algorithm (Algorithm 6).

Example

The computational advantage of the ABC-MCMC algorithm can be verified by solving

the same problem that was solved using ABC-RS in the previous section. The same

objective of inferring the correlation coefficient ρc can be achieved by choosing the

following parameters of the algorithm:

1. Prior distribution: f(ρc) = U [−1, 1].

2. Forward model: M(D | ρc) = f(x1, x2) = 1
2π
√

1− ρ2
c

exp
−x2

1 − 2ρcx1x2 + x2
2

2(1− ρ2
c)


3. Proposal distribution: q(ρ∗c | ρc) = N (ρc, 0.22).

4. Distance function: ρ(D,Dobs) =
∣∣∣r(D)− r(Dobs)

∣∣∣.
5. Tolerance threshold: ε = 0.005.

Note that these are the same parameters used in previous examples in Section 3.5 and

Section 4.3.1. To initialize the algorithm, ABC-RS is used to draw the initial sample

directly from the ABC posterior fε(Θ | Dobs). The algorithm generated two Markov

chains of lengths equal to 1 × 105 samples. Since the algorithm is initialized with a

sample from the target ABC posterior itself, there is no need to discard the initial

samples for burn-in. The estimation results are plotted in Figure 4.3, which shows

that both Markov chains quickly converged to the high probability target region. Both
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ABC posteriors estimated through ABC-MCMC can be seen to match well with the

target posterior.

(a) Markov chain 1

(b) Markov chain 2

Figure 4.3: The Markov chains and the corresponding histograms of posterior samples gen-
erated from two independent runs of the ABC-MCMC sampler.

4.3.3 ABC using Subset Simulation

The likelihood-free MCMC method inherently suffers from the long burn-in issue in

cases where diffuse priors are used or the parameter space is very high-dimensional.

This issue is suitably handled by the sequential ABC samplers. These samplers propa-

gate a set of parameter samples through a sequence of intermediate tolerance thresholds

until they reach the target distribution. Several well-known sequential samplers, such

as partial rejection control [119, 120], sequential importance sampling [39, 43, 129],

population Monte Carlo [13], and subset simulation [30] have been combined within

79



the ABC framework. Using various benchmark examples, Chiachio et al. [30] showed

that the subset simulation based ABC algorithm outperforms other variants of sequen-

tial ABC in terms of computational efficiency.

To avoid complexities related to “curse-of-dimensionality” problems, Chiachio et

al. [30] proposed the efficient approximate Bayesian computation using subset simu-

lation (ABC-SS) scheme. ABC-SS integrates the efficient rare event simulator subset

simulation [7] with ABC as a sampling scheme. The subset simulation method was

originally proposed by Au and Beck [7] to calculate a small failure probability (a rare

event) by transforming it into a product of a sequence of larger conditional probabili-

ties. This target is fulfilled by partitioning a failure domain into a nested sequence of

failure subdomains. Similarly, by using subset simulation within the ABC framework,

ABC-SS generates conditional posterior samples from a nested sequence of subdomains

defined by the ABC distance function ρ(D,Dobs) and a set of tolerance thresholds:

ε(1) ≥ ε(2) ≥ · · · ≥ ε(S), where S is the total number of subdomains or simulation levels.

The advantage of the ABC-SS algorithm is that it is not necessary to choose these

tolerances in advance since the threshold levels can be chosen in an adaptive manner

within the algorithm. The steps to implement ABC-SS are as follows:

1. First, generate n0 number of samples of {Θ(k),D(k)} ∼ M(D | Θ)f(Θ), and for

each case, evaluate ρ(k) = ρ(D(k),Dobs); n0 is the number of model simulations at

each simulation level. Then, sort and renumber the samples {Θ(k), ρ(k)} according

to an ascending order of distance values: ρ(1) ≤ ρ(2) ≤ · · · ≤ ρ(n0).

2. Select an acceptance probability p0 such that n0p0 and 1/p0 are integers. Set the

first tolerance level ε(1) = ρ(n0p0). Keep the first n0p0 samples of {Θ(k), ρ(k)} and

discard the rest of the samples. These n0p0 samples of Θ(k) are assumed to be

drawn from the ABC posterior fε(1)(Θ | Dobs) with acceptance probability p0.
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3. To generate more samples from the target density fε(1)(Θ | Dobs), the MCMC

method is implemented. An MCMC sampler choose each {Θ(k), ρ(k)}, k =

1, 2, · · · , n0p0, as a seed sample and generate (1/p0 − 1) new samples, making

a total of {n0p0(1/p0 − 1) + n0p0} = n0 samples. Once again, sort and renumber

the samples {Θ(k), ρ(k)} according to an ascending order of new distance values:

ρ(1) ≤ ρ(2) ≤ · · · ≤ ρ(n0). Au and Beck [7] proposed an MCMC sampler called

modified Metropolis (MM) algorithm (see Appendix C) that can be used for

sampling while using subset simulation.

4. From the newly generated n0 samples of {Θ(k), ρ(k)} in the previous step, keep

the first n0p0 samples of {Θ(k), ρ(k)} and discard the rest of the samples. Set the

next tolerance level as ε(2) = ρ(n0p0). These n0p0 samples of Θ(k) are assumed to

follow the ABC posterior fε(2)(Θ | Dobs). Since the new posterior samples are a

result of conditional sampling, their acceptance probability will be p2
0.

5. Repeat steps (3) and (4) to sequentially generate conditional posterior samples

from fε(s)(Θ | Dobs), s = 3, 4, · · · , S. The final samples of Θ(k) are the posterior

samples drawn from the target ABC posterior fε(S)(Θ | Dobs) with an acceptance

probability of pS0 .

The pseudocode of the ABC-SS sampler is provided in Algorithm 8 and the pseudocode

of the MM sampler, which can be directly integrated within Algorithm 8, is provided

in Algorithm Algorithm 14. More detailed discussion on the properties and the com-

putational convenience of the ABC-SS algorithm is beyond the scope of this thesis;

interested readers may refer to reference [30].
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Algorithm 8 ABC-SS sampler
1: for s = 1 to S do
2: if s = 1 then
3: for k = 1 to n0 do
4: Generate Θ(s,k) ∼ f(Θ)
5: Simulate D∗ ∼M(D | Θ(s,k))
6: Evaluate ρ(s,k) = ρ(D∗,Dobs)
7: end for
8: Renumber k index of {Θ(s,k), ρ(s,k)} by sorting ρ(s,1) ≤ ρ(s,2) ≤ · · · ≤ ρ(s,n0)

9: Set ε(s) = ρ(s,n0p0)

10: else
11: for l = 1 to n0p0 do
12: Select a seed sample Θ(s,h+1) = Θ(s−1,l), where h = (1/p0)(l − 1)
13: for r = 2 to 1/p0 do
14: Use MM to generate {Θ(s,h+r), ρ(s,h+r)} from {Θ(s,h+r−1), ρ(s,h+r−1)}
15: end for
16: end for
17: Renumber k index of {Θ(s,k), ρ(s,k)} by sorting ρ(s,1) ≤ ρ(s,2) ≤ · · · ≤ ρ(s,n0)

18: Set ε(s) = ρ(s,n0p0)

19: end if
20: end for

4.4 Prior Selection for ABC

In Bayesian inference, the prior distribution works as a key element to represent the

prior belief about an uncertain model parameter. According to the Bayesian interpreta-

tion of probability, the prior belief is obtained from an individual’s past experience and

personal judgment. Then, based on the newly available information/data, the prior be-

lief/distribution is updated to the posterior belief/distribution of the model parameter

using the Bayes’ theorem. The main difference between the likelihood-based and the

likelihood-free approach is that the former uses the probability distribution of newly

available data for updating, whereas the latter uses the data to reject specific parameter

samples that generate data far away from the observed data (the closeness is measured
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using the ABC distance function). For both approaches, a prior distribution is always

available since it is selected by an individual; however, a reasonable prior choice and

large sample size will have minimum effects on the inferences made by the posterior

samples. In contrast, if the sample size is small or the available information is indirect

in nature (involves noisy measurements or hidden states), then the selection of a prior

distribution becomes crucial. In practice, the dependence of the posterior samples on

prior specification can be checked by a sensitivity analysis, i.e., by comparing the pos-

terior inferences or model predictions using different prior choices that are reasonable

[49]. Minimal effect on posterior inference can be also be obtained by selecting unin-

formative diffused priors when no prior information or expert judgment is available for

a set of model parameters. However, diffused priors may put computational burdens

on the basic rejection and MCMC-based ABC samplers due to their large variances

resulting in larger domains of parameter choices; the sequential ABC samplers in such

situations may stand out and perform better. Lastly, the prior selection for ABC must

be motivated by the fact that sampling from a prior is straightforward and easy, so

that the sampler does not get stuck or spend more time on generating prior samples

that might render ABC inefficient.

4.5 ABC Distance Function

The distance function in the likelihood-free Bayesian inference framework is equivalent

to the likelihood function in the likelihood-based framework. Although it plays a

key role in the process of parameter inference, there is no theoretical justification or

practical guideline available in the literature that describes what distance function

should be chosen for what type of data [142]. For instance, Chiachio et al. [30] applied

the ABC-SS algorithm for parameter inference of a moving average process of order two
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using the quadratic distance between the two first autocovariances of the simulated and

observed data; whereas, in an another example, the authors used the Euclidean (`2)

distance as a metric for parameter inference of a single degree of freedom (DOF) linear

oscillator that is subjected to white noise excitation. Vakilzadeh et al. [135] studied the

performance of ABC-SS on hierarchical state-space models. The authors considered

two DOF linear and nonlinear structures where they used the Chebyshev distance (or

infinity norm) as the ABC distance function. In an another study, Vakilzadeh et al.

[136] used the Euclidean norm to calculate the distance function between the simulated

and observed measurements, where they focused on dynamic state-space models such

as single DOF bilinear oscillator and three DOF nonlinear structure. Abdessalem

et al. [3, 4] studied nonlinear system identification problems using different ABC

distance functions such as normalized mean square error between the observed and

simulated displacements, Euclidean distance of summaries of displacement data, and

Euclidean distance between the simulated and observed PDFs of the acceleration. Chen

et al. [27] presented ABC as an efficient tool to analyze time-censored lifetime data

where the authors preferred to use the Manhattan (`1) distance between the observed

and simulated number of replacements. Hazra et al. [60, 61] implemented ABC to

analyze degradation measurements using the Euclidean distance between observed and

simulated degradation data. The Euclidean distance is clearly the most commonly

used distance function in the literature, although Chebyshev and Manhattan distances

have been used a number of times. In summary, it can be noted that the ABC distance

function does not follow any particular form, and it can be formulated according to

the problem at hand and the quantity of interest that needs to be estimated.
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4.6 ABC for Noisy Degradation Data

To avoid evaluating computationally expensive likelihoods that are the result of noise

and detection errors in the degradation data, one may choose to employ the likelihood-

free ABC schemes. However, the question remains, how do we handle imperfect data

in the ABC framework? Generally, ABC uses the underlying degradation model to

simulate true or perfect data. Then, in case of flaw growths, the data can be contam-

inated by adding noise simulated from its assumed model or probability distribution.

However, simulating imperfect data in case of flaw generation is slightly difficult since

one needs to mimic the process of flaw detection using a POD function along with the

fact that the measured flaw growths are then made noisy by adding simulated noise.

Finally, the simulated imperfect data can be compared with the observed imperfect

data to estimate the ABC posterior.

4.7 Performance Assessment of ABC Samplers

The performance of any ABC sampler is mainly dependent on the selection of the

tolerance threshold, and to achieve higher accuracy, a smaller tolerance threshold is

always preferred. However, if a very small tolerance is selected, the sampler may

keep rejecting the parameter samples for an indefinite period and may get trapped

into a low probability region. Thus, to maintain a balance between the accuracy

and the computational cost, the tolerance needs to be selected in a way so that the

parameter estimates are reasonably accurate for quantities that are inferred using the

posterior samples. To achieve that goal, first, the posterior density estimates (joint and

marginals) are compared with the results obtained using the likelihood-based MCMC

sampler; apparently, the results of the likelihood-based MCMC scheme are assumed

gold standard. Then, the model predictions from both samplers can be compared to
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assess the performance of the ABC samplers. Note that this process can only be applied

to problems (e.g., simulation problems) that can be solved using both likelihood-based

and likelihood-free approaches, to select a suitable tolerance threshold and other ABC

hyperparameters. Once the ABC hyperparameters are selected, the sampling process

can be performed for models that involve more complex likelihood functions.

4.8 Limitations of ABC

The ABC method comes with a few limitations due to the assumptions and approx-

imations made to achieve higher efficiency with reasonable accuracy. The primary

limitation of ABC is that it depends on the forward simulation of a model that is

assumed to best describe the data at hand. Thus, if any model with a complex like-

lihood can not be directly used as a data simulator, then ABC simply don’t turn out

to be a reasonable choice. An example of such a model is the Hougaard process model

[64]. Since there is no closed-form expression available for its density function, forward

simulation of such a model is not straightforward.

ABC may generate biased results due to the tolerance not being zero. Also, the

distance function plays a key role; different distance measures may generate different

results. The fact that ABC generates posterior samples from f(Θ | ρ(D,Dobs) ≤

ε) instead of the true posterior f(Θ | Dobs) makes it difficult for an individual to

choose the right tolerance value and a suitable distance function in practice. More

investigations are needed to understand, untangle, and quantify the errors introduced

by these approximations so that better selections can be made, which is an active area

of research in the current times.

In the case of a high dimensional data set, low dimensional summary statistics

are preferred. This helps ABC to achieve faster acceptance. However, finding suffi-
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cient statistics is not always feasible for the problems where ABC is applicable, and

poorly chosen summary statistics often lead to overestimation of the posterior param-

eter ranges. Moreover, as one increases the number of summary statistics, the perfor-

mance of ABC seems to decrease drastically. Thus, only relevant summary statistics

should be kept for formulating the ABC distance function so that the target quantity

of interest can be inferred with reasonable accuracy. For a practical guidance on the

selection of the summary statistics, the reader may refer to [18].

4.9 ABC using Hamiltonian Monte Carlo

This section presents a new ABC method that integrates the Hamiltonian Monte Carlo

(HMC) method as its sampling scheme. Governed by Hamiltonian dynamics, the HMC

method suppresses the random-walk behavior of the standard MCMC method and

explore the target probability space more effectively and consistently. As a result, the

proposed ABC-HMC method shows better mixing of samples in a Markov chain than

the MCMC based ABC method. Meeds et al. [87] were the first to propose an ABC

algorithm based on the HMC method where the authors considered a pseudo-marginal

approach that consists of an approximate likelihood model (Gaussian) for the simulator

M(D | Θ). On the other hand, this study proposes an approach based on a marginal

sampler, that means the proposed ABC-HMC method completely avoids the use of any

form of likelihood. To understand how HMC applies to ABC, one needs to know the

basic idea of the HMC algorithm which is presented in the following subsection.

4.9.1 Hamiltonian Monte Carlo Sampler

The Hamiltonian Monte Carlo is a sampling scheme that utilizes the Hamiltonian

dynamics to propose new moves and traverse through the probability space. Let us
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consider an auxiliary variable p that is independent of the parameter vector Θ. The

main goal of HMC is to draw samples from the target joint distribution f(Θ,p) =

f(Θ | Dobs)f(p), where f(p) is commonly chosen to be a zero mean multivariate

normal distribution N (0,M), where M is the covariance matrix.

In the context of Hamiltonian dynamics, Θ is the position variable, p is the mo-

mentum variable, and M is the mass matrix. The equations of motion (for conservative

systems) governing the time evolution of the variable pair (Θ,p) can be written as

dΘ
dt

= ∂H

∂p
,

dp
dt

= −∂H
∂Θ

(4.12)

where H(Θ,p) is the Hamiltonian that represents the total energy of a dynamical

system. H(Θ,p) is independent of time and can be represented as a sum of the

potential energy U(Θ) and the kinetic energy K(p), i.e., H(Θ,p) = U(Θ) +K(p). To

connect the Hamiltonian with Bayesian inference, the potential and kinetic energies

are typically defined as

U(Θ) = − logL(Θ | Dobs)− log f(Θ), K(p) = p>M−1p/2 (4.13)

By substituting the expression for the Hamiltonian H(Θ,p) into Equation 4.12, we get

dΘ
dt

= M−1p,
dp
dt

= −∂U
∂Θ

(4.14)

Accordingly, the joint distribution of (Θ,p) can be written as

f(Θ,p) = 1
Z

exp{−H(Θ,p)} = 1
Z

exp{−U(Θ)−K(p)}

= 1
Z
L(Θ | Dobs)f(Θ) exp

{
− p>M−1p

2

} (4.15)

where Z is a normalizing constant.
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Samples from the target posterior distribution can be obtained by generating a

Markov chain with the stationary distribution given in Equation 4.15, and marginaliz-

ing it afterwards. Thus, the HMC sampling method consists of two main steps: first,

assuming Θ′ to be the current position variable, draw a new momentum variable p′

from a normal distribution N (0,M); then, from the current state (Θ′,p′), propose a

new state (Θ∗,p∗) by integrating the equations of motion (Equation 4.14) at a specific

time. The integration is generally performed using a numerical integration scheme

such as the commonly used leapfrog method [95]. To solve Equation 4.14, the leapfrog

method works as follows:

p(t+ h/2) = p(t)− (h/2)∂U
∂Θ

(Θ(t)) (4.16a)

Θ(t+ h) = Θ(t) + hM−1p(t+ h/2) (4.16b)

p(t+ h) = p(t+ h/2)− (h/2)∂U
∂Θ

(Θ(t+ h)) (4.16c)

where h is an incremental time step; the process is repeated for L time steps. In

case there is no direct availability of the gradient ∂U/∂Θ, one may take help from

standard numerical differentiation schemes [143]. The numerical integration scheme

presented above may compromise the invariance property of the Hamiltonian that

subsequently guarantees the inavriance of the target posterior density. To preserve

this property, one needs to combine the Metropolis accept-reject rule, A(Θ′,Θ∗) =

min
{

1, exp
(
H(Θ′, p′) − H(Θ∗, p∗)

)}
, on a newly proposed state. A pseudocode im-

plementation of the HMC method is presented in Algorithm 9.

The mass matrix M should be symmetric and positive-definite; M is commonly

assumed to be a scalar multiple of the identity matrix [143]. The incremental time

step h should be sufficiently small so that the Hamiltonian is approximately preserved.

On the other hand, the number of leapfrog steps L should be chosen in a way so
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Algorithm 9 HMC sampler
1: Initialize Θ(i) ∼ f(Θ), set i = 1.
2: for i = 1 to n− 1 do
3: Select a seed sample Θ′ = Θ(i) and draw p′ ∼ N (0,M).
4: Propose a move from (Θ′,p′) to (Θ∗,p∗) using L leapfrog steps.
5: Calculate A(Θ′,Θ∗) = min

{
1, exp

(
H(Θ′,p′)−H(Θ∗,p∗)

)}
.

6: Set Θ(i+1) = Θ∗ with probability A(Θ′,Θ∗); else, set Θ(i+1) = Θ′.
7: end for

that the length of the trajectory hL is long enough to explore the points far from the

current point. Algorithm 9 is applicable when the likelihood function L(Θ | Dobs) is

analytically or computationally tractable. The likelihood-free version of the algorithm

is developed in the next subsection.

4.9.2 ABC-HMC Algorithm

The ABC-HMC method aims to draw samples from the ABC posterior fε(Θ | Dobs) =

f(Θ | ρ(D,Dobs) ≤ ε). To achieve this goal, the Hamiltonian needs to be modified

according to the requirement of the ABC framework. The modified Hamiltonian can

be formulated as

H(Θ,p) = − log f(Θ | ρ(D,Dobs) ≤ ε) + p>M−1p/2

= − log f(Θ) + p>M−1p/2− log 1[ρ(D,Dobs) ≤ ε] + const.
(4.17)

Equation 4.17 is obtained by substituting

f(Θ | ρ(D,Dobs) ≤ ε) = f(Θ)1[ρ(D,Dobs) ≤ ε]∫
Θ f(Θ)1[ρ(D,Dobs) ≤ ε]dΘ (4.18)

where the integral at the denominator results in a constant term in Equation 4.17.

This constant term can be ignored since it does not have any effect on the solution of

the Hamilton’s equations. Besides, the term (− log 1[ρ(D,Dobs) ≤ ε]) in Equation 4.17
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creates a potential barrier that guarantees that the Hamiltonian system does not reach

the region outside of [ρ(D,Dobs) ≤ ε] – a region with infinite potential energy [143].

The steps of the ABC-HMC algorithm are presented in Algorithm 10. It can be noticed

Algorithm 10 ABC-HMC sampler
1: Initialize Θ(i) ∼ f(Θ), set i = 1.
2: for i = 1 to n− 1 do
3: Select a seed sample Θ′ = Θ(i) and draw p′ ∼ N (0,M).
4: Propose a move from (Θ′,p′) to (Θ∗,p∗) using L leapfrog steps.
5: Simulate D∗ ∼M(D | Θ∗).
6: Calculate A(Θ′,Θ∗) = min

{
1, exp

(
H(Θ′,p′)−H(Θ∗,p∗)

)
1[ρ(D∗,Dobs) ≤ ε]

}
.

7: Set Θ(i+1) = Θ∗ with probability A(Θ′,Θ∗); else, set Θ(i) = Θ′.
8: end for

that the likelihood-free HMC sampler has a modified acceptance probability that turns

zero if the ABC distance function generates a value more than the tolerance threshold.

In order to prove the convergence of the proposed algorithm, the detailed balance

equations need to be satisfied. It is shown below that the stationary distribution of

the chain is f(Θ,p,D | ρ(D,Dobs) ≤ ε), which can be marginalized over p and D to

produce the ABC posterior fε(Θ | Dobs).

Theorem. f(Θ,p,D | ρ(D,Dobs) ≤ ε) is the stationary distribution of the Monte

Carlo Markov chain produced by ABC-HMC.

Proof. Let K(Θ∗,p∗ | Θ′,p′) be the transition mechanism and q(Θ∗,p∗ | Θ′,p′)

be the proposal mechanism of the chain for transitioning from (Θ′,p′) to (Θ∗,p∗).

Since transitioning from (Θ′,p′) to (Θ∗,p∗) is a deterministic event in Hamiltonian

dynamics, the proposal function can take either a value of 0 or 1, i.e.,

q(Θ∗,p∗ | Θ′,p′) =


1, if transition occurs

0, otherwise
(4.19)

Let us denote the acceptance probability as
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A
{

(Θ′,p′), (Θ∗,p∗)
}

= min
{

1, exp
(
H(Θ′,p′)−H(Θ∗,p∗)

)
1[ρ(D∗,Dobs) ≤ ε]

}
(4.20)

Now, assuming the transition has occurred, if we select Θ∗ such that

exp
(
H(Θ′,p′)−H(Θ∗,p∗)

)
≤ 1, Θ∗ 6= Θ′ (4.21)

Then, we can write

f(Θ′,p′,D′ | ρ(D′,Dobs) ≤ ε)K(Θ∗,p∗ | Θ′,p′)

= f(Θ′,p′,D′ | ρ(D′,Dobs) ≤ ε)q(Θ∗,p∗ | Θ′,p′)M(D∗ | Θ∗)A
{

(Θ′,p′), (Θ∗,p∗)
}

= f(Θ′,p′)M(D′ | Θ′)1[ρ(D′,Dobs) ≤ ε]∫
D
∫
p
∫
Θ f(Θ,p)M(D | Θ)1[ρ(D,Dobs) ≤ ε]dΘdpdD

{
q(Θ∗,p∗ | Θ′,p′)M(D∗ | Θ∗)

× exp
(
H(Θ′,p′)−H(Θ∗,p∗)

)
1[ρ(D∗,Dobs) ≤ ε]

}
(4.22)

Substituting (from Equation 4.15)

f(Θ′,p′) exp
(
H(Θ′,p′)−H(Θ∗,p∗)

)
= f(Θ∗,p∗), and (4.23)

q(Θ∗,p∗ | Θ′,p′) = 1 = q(Θ′,p′ | Θ∗,p∗) (4.24)

we get

= f(Θ∗,p∗)M(D∗ | Θ∗)1[ρ(D∗,Dobs) ≤ ε]∫
D
∫
p
∫
Θ f(Θ,p)M(D | Θ)1[ρ(D,Dobs) ≤ ε]dΘdpdD

{
q(Θ′,p′ | Θ∗,p∗)M(D′ | Θ′)

× 1[ρ(D′,Dobs) ≤ ε]
}

= f(Θ∗,p∗,D∗ | ρ(D∗,Dobs) ≤ ε)K(Θ′,p′ | Θ∗,p∗)

(4.25)

The arguments for q(Θ∗,p∗ | Θ′,p′) = 0 (i.e., non-transition) and for exp
(
H(Θ′,p′)−

H(Θ∗,p∗)
)
> 1 are analogous. Thus, the detailed balance equations are satisfied for

f(Θ,p,D | ρ(D,Dobs) ≤ ε). This proves that f(Θ,p,D | ρ(D,Dobs) ≤ ε) is the

stationary distribution of the Monte Carlo Markov chain produced by ABC-HMC.
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Example

This example compares the performances of the standard ABC-MCMC and the pro-

posed ABC-HMC algorithms, particularly at the distribution tails. The example in-

cludes sampling from a target posterior density that has a sharp mode along with a

very small mode next to it. A similar example can be found in reference [9]. Suppose

an observation Dobs = 0 is generated from a Gaussian mixture model, 0.45N (θ, 1) +

0.45N (θ, 1/102) + 0.1N (θ − 5, 1). Assuming a normal prior f(θ) = N (0, 52) for the

parameter θ, the posterior distribution can be written as

f(θ | Dobs = 0) ∝
(
0.45N (θ, 1) + 0.45N (θ, 1/102) + 0.1N (θ− 5, 1)

)
×N (0, 52) (4.26)

To implement the ABC algorithms, we select a distance function ρ(D,Dobs)= |D−Dobs|

and a tolerance threshold ε = 0.02. The algorithms are initialized from the sample θ = 0

and run for 5× 106 iterations.

One common problem in any MCMCmethod is that the sampler gets trapped either

in a high or a low probability region due to their inability to jump from one region to

another – resulting in a poor mixing of the chain. The issue can be resolved by tuning

the parameters of the proposal distribution. In ABC-MCMC, we select a Gaussian

proposal distribution q(θ | θ′) = N (θ′, σ2), where θ′ is the current sample and σ is the

proposal standard deviation – the parameter which needs tuning. In ABC-HMC, the

proposal is a deterministic function governed by the Hamiltonian dynamics, where the

time step parameter h and leapfrog step parameter L need tuning.

Figure 4.4 shows the ABC-MCMC posteriors that are estimated using different σ

values ranging from 0.25 to 1 in steps of 0.25. Compared to the true posterior distribu-

tion, the ABC-MCMC posteriors with σ < 0.75 can be seen struggling with exploring

the small mode around 5. However, it appears that the sampler can successfully visit
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the small mode when the parameter σ ≥ 0.75. Thus, for further analysis, a conservative

choice of σ = 1.0 is made for the proposal standard deviation.

Figure 4.4: Posterior distributions of θ obtained using ABC-MCMC with different σ values.
The black broken line represents the true posterior distribution, and the gray area represents
the ABC-MCMC posterior.

Similar numerical experiments can be performed to tune the parameters of the

ABC-HMC algorithm. Figure 4.5 shows the ABC-HMC posteriors estimated using a

fixed value of L = 20 and different values of h ranging from 0.025 to 0.1 in steps of

0.025. It can be seen that the performance of ABC-HMC with h < 0.075 is the worst at

the distribution tails. However, h ≥ 0.075 shows better performance, which means the

ABC-HMC sampler does not get trapped in the high probability region. For further

analysis, a suitable pair of the parameters can be chosen as h = 0.1 and L = 20.

Figure 4.5: Posterior distributions of θ obtained using ABC-HMC with different h values.
The black broken line represents the true posterior distribution, and the gray area represents
the ABC-HMC posterior.
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The algorithms are implemented with the selected parameters as discussed above.

The sample iterations of both algorithms are shown in Figure 4.6. Notice that ABC-

(a) (b)

Figure 4.6: Sample iterations of θ obtained using (a) ABC-MCMC and (b) ABC-HMC.

HMC shows better mixing of the chain by not getting trapped in either of the modes.

Whereas, ABC-MCMC struggles to jump between the two modes of the target pos-

terior distribution resulting in poor mixing of the chain. The performances of both

the algorithms in chain mixing can be quantitatively studied using the sample ACF

plot presented in Figure 4.7. The figure suggests that ABC-MCMC needs a thinning

Figure 4.7: Autocorrelations (normalized) within the θ samples obtained from ABC-MCMC
(light gray) and ABC-HMC (deep gray).
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interval of around 40,000 to effectively generate uncorrelated samples. As a result, a

large number of samples need to be discarded. On the contrary, for ABC-HMC, the

figure suggests a thinning interval of only around 5000 to generate similar uncorrelated

samples. This proves that the performance of the proposed ABC-HMC algorithm is

better than the standard ABC-MCMC method in providing good mixing of the samples

and exploring the tails of target posterior distributions.

4.9.3 ABC-HMC with Subset Simulation

Although the ABC-HMC algorithm shows better mixing properties than the con-

ventional ABC-MCMC method, it may struggle to converge when single or multi-

dimensional problems are dealt with uninformative or diffuse priors. To avoid this

problem, we propose to integrate ABC-HMC with subset simulation. As mentioned

before in Subsection 4.3.3, subset simulation enables ABC to perform in a similar way

by defining a decreasing sequence of tolerance thresholds, i.e., ε1 > ε2 > · · · > εS, where

S is the total number of simulation levels, and εS is the target tolerance threshold [30].

In fact, one can select the the sequence of tolerances adaptively as described below.

Recall that ABC-SS starts by generating n0 number of samples of {Θ,D}, i.e.,

{Θ(k),D(k)}n0
k=1 ∼ M(D | Θ)f(Θ). The distance function is then evaluated point-

wise, i.e., ρ(k) = ρ(D(k),Dobs), for all the simulated data sets, and the values are

sorted and renumbered according to the following order: ρ(1) < ρ(2) < · · · < ρ(n0).

Next, the samples {Θ(k)}n0
k=1 are renumbered according to the order of the distance

values. Finally, a probability p0 is selected (such that n0p0 and 1/p0 are integers), and

the first n0p0 samples of Θ are kept for further analysis; the rest of the samples are

discarded. This step makes (n0p0)th distance value equal to the tolerance threshold

of the first simulation level, i.e., ε1 = ρ(n0p0), and the samples {Θ(k)}n0p0
k=1 belong to

the ABC posterior fε1(Θ | Dobs). This completes the first simulation level. At the

96



second simulation level, {Θ(k)}n0p0
k=1 samples from the previous level are considered as

seed samples and from each seed sample, (1/p0 − 1) new samples are generated using

an MCMC scheme with a fixed tolerance ε1. Similar to the first simulation level, the

sorting and renumbering of the distance values and parameter samples are carried out

to find the tolerance of the second level ε2 and the seed samples for the next level. The

sampling process is repeated for each simulation level until the algorithm reaches the

very last stage that is the simulation level S (see Algorithm 8).

The MCMC sampling at the intermediate levels of ABC-SS are traditionally per-

formed using the MM algorithm in Algorithm 14. The MM algorithm identifies the

independent components of the parameter vector, i.e., Θ = {Θ1,Θ2, · · · ,ΘC}, and

update the components {Θi}Ci=1 individually using independent priors {fi(Θi)}Ci=1 and

independent proposals {qi(Θi | Θ′i)}Ci=1; where {Θ′i)}Ci=1 are the current positions of the

parameter components. The idea of component-wise update in MM sampler can also

be incorporated into ABC-HMC to improve its mixing further. Following the similar

idea, we propose a modified version of the HMC algorithm to be integrated with ABC-

SS. Similar to the MM sampler, the components of the parameter vector {Θi}Ci=1 are

individually updated using independent priors {fi(Θi)}Ci=1 and individual momentum

variables pi ∼ N (0,Mi), i = 1, 2, · · · , C. Furthermore, the individual Hamiltonian

Hi(Θi, pi) = − log fi(Θi) + pT
i M

−1
i pi/2 can be used to propose the independent param-

eter components. The modified HMC (MHMC) algorithm for ABC-SS is presented in

Algorithm 11. In this study, the conventional ABC-SS algorithm integrated with the

MM sampler is denoted as ABC-SS(MM), and similarly, ABC-SS integrated with the

proposed MHMC sampler is denoted as ABC-SS(MHMC). The performances of both

algorithms in terms of sample mixing and parameter space exploration are compared

in the following example.
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Algorithm 11 MHMC sampler for ABC-SS
1: for i = 1 to C do
2: Generate momentum variables p′i ∼ N (0,Mi).
3: Propose moves from (Θ′i, p′i) to (Θ†i , p†i ) using L leapfrog steps.
4: Calculate Ai(Θi

′,Θi
†) = min

{
1, exp

(
Hi(Θ′i, p′i)−Hi(Θ†i , p†i )

)}
.

5: Set Θ∗i = Θ†i with probability Ai(Θi
′,Θi

†), else set Θ∗i = Θ′i.
6: end for
7: Simulate D∗ ∼M(D | Θ∗), where Θ∗ = {Θ∗1,Θ∗2, · · · ,ΘC

∗}.
8: Accept Θ∗ if ρ(D∗,Dobs) ≤ εs, else stay at Θ′.

Example

This example aims to provide a performance comparison between the two ABC-SS

algorithms given a highly diffused prior. Let us assume that the observation Dobs = 0

is generated from the Gaussian mixture model 0.5N
(
µ1(θ1, θ2), 1

)
+0.5N

(
µ2(θ1, θ2), 1

)
,

where

µ1(θ1, θ2) = θ2
1
a2 + a2(θ2 − b

θ2
1
a2 − ba

2)2 − 2ρθ1(θ2 − b
θ2

1
a2 − ba

2)

µ2(θ1, θ2) = (θ1 + 1.1)2 + (θ2 − 5)2 − 3
(4.27)

Equation 4.27 with a = 1.15, b = 0.5, and c = 0.9 is adopted from [143]. Selecting

diffuse normal priors f(θ1) = f(θ2) = N (0, 1002) for the parameters, the posterior

distribution can be written as

f(θ | Dobs = 0) ∝
(
0.5N

(
µ1(θ1, θ2), 1

)
+0.5N

(
µ2(θ1, θ2), 1

))
×N (0, 1002)×N (0, 1002)

(4.28)

The target posterior distribution is basically a mixture of a banana-shaped distribution

and a ring-shaped distribution. The efficacy of each algorithm is determined by how

well the samples cover the entire target distribution; this, in fact, will also guarantee

a good mixing of the chain samples.

To implement the conventional ABC-SS(MM) algorithm, five simulation levels are
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selected with n0 = 50000 and p0 = 0.1. This implies that the accepted samples will

have an acceptance probability of 10−5. The proposal standard deviations are selected

based on coefficient of variations (COVs) ranging from 0.1 to 0.6. For all six cases

with different proposal COVs, the generated samples from the final simulation level are

shown on top of the target posterior distribution in Figure 4.8. Similarly, to implement

the proposed ABC-SS(MHMC) algorithm, five simulation levels are selected with the

same n0 and p0 values. A fixed value L = 10 for the leapfrog steps is selected along

with a varying time step h; where the time step varies between 0.01 and 0.06. The

samples obtained from the final simulation level are shown in Figure 4.9.

Figure 4.8: The samples (black dots) of the target posterior distribution obtained using the
conventional ABC-SS(MM) algorithm with different proposal COVs. The target posterior
distribution is shown in gray.

In Figure 4.8, it can be seen that the posterior samples obtained from the ABC-

SS(MM) sampler from all six cases do not cover the entire posterior distribution. The

samples generated using proposal COVs between 0.1 and 0.3 show high sample repeti-

tion and uneven distribution of the samples between the ring-shaped and the banana-
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Figure 4.9: The samples (black dots) of the target posterior distribution obtained using the
proposed ABC-SS(MHMC) algorithm with a fixed leapfrog step value and different time step
values. The target posterior distribution is shown in gray.

shaped distribution. The samples generated using proposal COVs 0.4, 0.5 and 0.6 show

less repetition but more concentration on the banana-shaped distribution – indicating

a difficulty of the ABC-SS(MM) algorithm in jumping between the two high probabil-

ity regions. On the other hand, Figure 4.9 shows that the samples obtained using the

ABC-SS(MHMC) sampler cover the entire posterior distribution given a higher value

for the time step parameter h is chosen. For a small h value such as 0.01, the samples

seem to be grouped at different locations of the posterior distribution without cover-

ing the entire region. Whereas, for h ≥ 0.03, the samples show much less repetition

and equal distribution between the two high probability regions. This proves that,

compared to the conventional ABC-SS(MM) sampler, the proposed ABC-SS(MHMC)

sampler has better mixing properties and improved ability to jump between the two

high probability regions given a higher time step value is chosen.
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4.10 Model Selection using ABC

Bayesian model selection is a model selection tool that uses the Bayes factor to compare

between any two given models [72]. To understand how it can be implemented in

practice, supposeM1 andM2 are two models with prior distributions (or probabilities)

f(M1) and f(M2), respectively. Once the observed data Dobs are available, the prior

distributions can be updated to the corresponding posterior distributions as

f(Mi | Dobs) ∝ f(Dobs | Mi)f(Mi), i = 1, 2 (4.29)

Using Equation 4.29, one can find the ratio between the two posteriors as

f(M1 | Dobs)
f(M2 | Dobs)

= f(Dobs | M1)f(M1)
f(Dobs | M2)f(M2) (4.30)

The Bayes factor B12 is given by the ratio between the two likelihoods, i.e.,

B12 = f(Dobs | M1)
f(Dobs | M2) = f(M1 | Dobs)/f(M2 | Dobs)

f(M1)/f(M2) (4.31)

Thus, the Bayes factor is essentially a ratio of the posterior odds of a particular model

to its prior odds [72], where odds can be defined as (probability/1 − probability).

In other words, it is a quantitative measure that provides the goodness-of-fit or the

evidence in support of a particular model over another. Kass and Raftery [72] provided

an interpretation of the Bayes factor, which can be described as follows. In support of

modelM1 and against modelM2, 3 ≥ B12 > 1 shows very weak evidence, 20 ≥ B12 > 3

shows positive evidence, 150 ≥ B12 > 20 shows strong evidence, and B12 > 150 shows

very strong evidence. This interpretation helps ABC methods to choose the model

that best represents the data from a collection of available models.
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The model selection algorithm using ABC-SS(MHMC) is a natural extension to its

parameter estimation version. Here, we present a Bayesian model selection framework

by adding an extra parameter, the model index m = 1, 2, · · · , nm, to the proposed

algorithm. Parameters of model Mm are denoted as Θm = {θm,1, θm,2, · · · , θm,dm},

where dm is the dimension of the parameter space of the respective model. The ABC-

SS(MHMC) algorithm for model selection proceeds as follows:

Algorithm 12 ABC-SS(MHMC) sampler for model selection

1: At simulation level s = 1, generate {M(k)
m ,Θ(k)

m ,D(k)}n0
k=1

iid∼M(D | Θ)f(Θ)f(M).
2: Calculate ρ(k) = ρ(D(k),Dobs), and renumber as ρ(1) < ρ(2) < · · · < ρ(n0).
3: Renumber {Θ(k)

m }
n0
k=1 accordingly and set εs = ρ(n0p0).

4: Use {Θ(k)
m }

n0p0
k=1 as seed samples to run Algorithm 11 with tolerance εs.

5: Repeat steps 2-4 until simulation level s reaches S.

At the first simulation level, models are first sampled from the prior f(M), then the

model-specific parameters are sampled from their respective prior distributions f(Θm |

M). The next step is to simulate the corresponding data sets as D ∼M(D | Θm) and

calculate the corresponding distances. Finally, the p0n0 smallest distance values and

their corresponding samples are identified. These samples are then kept for the next

level, and the rest of the samples are discarded. At other simulation levels, seed samples

from specific models are used in MHMC to generate new parameters independently.

Thus, multiple MHMC chains are created but different chains correspond to different

models depending on the seed sample. Similar to the parameter estimation process,

the distances ρ(D,Dobs) are calculated, and the n0p0 smallest distances are identified.

Finally, the parameter samples corresponding to the n0p0 identified distances are kept

as seed samples for the next simulation level, and the rest are discarded. During this

process, samples from specific models may completely vanish if the underlying model

provides poor fit to the data.

The output samples of the models belong to the marginal posterior distribution
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f(M | Dobs), whereas the output model-specific parameter samples belong to the

marginal posterior distribution f(Θ | M,Dobs). The model that has the largest num-

ber of parameter samples is considered the best fit for the given data. The posterior

probabilities of the models can be obtained using the number of parameter samples of

individual models divided by the total number of parameter samples available. The

posterior probabilities, then, can be used to calculate the Bayes factors using Equa-

tion 4.31, so that the models under consideration can be compared on how well they

fit with the data at hand.

Algorithm 12 proceeds simultaneously with the model selection and parameter esti-

mation in an intertwined fashion. The advantage of this is that the output will contain

samples from several models, and these samples can be used in Bayesian model av-

eraging which is build upon the idea that the average of the underlying models may

sometimes fit the data better than a single model [62]. A real-life example demonstrat-

ing the application of the proposed model selection algorithm is presented in Chapter 6.

4.11 Concluding Remarks

This chapter presented the basic idea behind the likelihood-free inference approach

and derivations of a variety of ABC algorithms with varying efficiency and complexity.

Two new algorithms are proposed – one is based on the HMC sampling scheme and

the other is based on the subset simulation scheme.

The HMC sampling scheme follows the Hamiltonian dynamics to propose new sam-

ples from seed samples. Its non-random walk behavior helps to explore the target prob-

ability space more effectively and efficiently than the standard random-walk MCMC

method. The standard ABC-MCMC scheme suffers from poor mixing of samples which

leads to a very high number of sample repetitions in a Monte Carlo Markov chain (for

103



example, see [61]). The HMC sampling scheme, on the contrary, provides better mixing

properties when integrated with ABC. The example provided in Section 4.9.2 proved

this fact by showing that the new ABC-HMC scheme captures the small mode of a

target posterior distribution more effectively than the standard ABC-MCMC sampling

scheme.

The proposed ABC-HMC scheme is further integrated with a rare event sampler,

subset simulation, which significantly increases its efficiency. Moreover, a modified

HMC sampler is introduced, which is essentially the component-wise version of the

likelihood-free HMC sampler. With faster convergence, the new ABC-SS(MHMC)

sampler turns out to be a powerful method to sample from a complex multi-modal

target density. The proposed algorithm showed promising performance in the example

in Section 4.9.3, where the algorithm successfully explored the target probability space

using a highly diffused prior. Whereas, the standard ABC-SS(MM) scheme struggled

to capture the entire high probability region under a similar setting.

The applicability of the proposed ABC-SS(MHMC) sampling scheme is further

extended by transforming it into a likelihood-free Bayesian model selection tool. The

proposed model selection algorithm selects the best model from a set of available models

using the Bayes factors. To demonstrate the applicability of the likelihood-free ABC

methods in degradation modeling, practical real-life examples are presented in the next

two chapters.
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Chapter 5

Parameter Estimation of Corrosion

Growth Models

5.1 Introduction

The application of the proposed likelihood-free methods is demonstrated in this chapter

by using FAC growth models. FAC is a life-limiting factor for the feeder piping network

of the primary heat transport system of CANDU® reactors [33, 121]. The feeder pipes

contain pressurized heavy-water coolant which carries the heat generated in the reactor

core to the steam generators. Figure 5.1 shows the typical layout of the feeder pipe

assembly on the reactor face. Each fuel channel in the reactor is connected to an inlet

and an outlet feeder pipe. The number of feeder pipes may vary between 380 and 480

depending on the reactor type. The diameters of outlet feeder pipes vary between 2

inches (51 mm) and 2.5 inches (64 mm) with nominal wall thicknesses varying between

5.5 mm and 7.0 mm, respectively [94].

FAC can be described as a process where the protective coating of oxide layer on

carbon steel gets dissolved in a stream of flowing water [42]. FAC is essentially an
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Figure 5.1: Feeder pipe assembly on the CANDU® reactor face [47]. (Image reproduced with
permission.)

electrochemical corrosion, which is governed by the process of mass transfer in flowing

water [147]. More discussions on the physical-chemical mechanisms of the FAC process

can be found in several references [14, 15, 24, 25, 44]. The FAC process is mainly

governed by high flow velocities (>15 m/s), high pH (>10), and high temperatures

(>300◦C) during plant operations [60]. The wall thickness losses are generally higher

at the tight radius bends and the welded joints compared to other sections of the

pipes. Since the FAC process is dependent on several factors such as the chemical

environment, temperature, flow turbulence, and the geometry of the pipes, different

feeder pipes of the primary heat transport system experience different rates of wall

thinning [100].

The wall thickness of a specific feeder pipe experiencing FAC at time t can be

represented as
W (t) = w0 −X(t) (5.1)

where w0 is the nominal pipe wall thickness and X(t) is the wall thickness loss due
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to FAC in the time interval 0 to t. To ensure the fitness-for-service of a pipe, a

minimum wall thickness limit Wmin is specified. A feeder pipe section is considered

substandard when W (t) ≤ Wmin. The time at which W (t) reaches Wmin indicates the

end of life of the pipe section. The wall thickness loss X(t) can be characterized using

a probabilistic/stochastic degradation model.

The next sections present three examples based on the FAC data collected from

the feeder pipes. Various advanced likelihood-free schemes are implemented for the

parameter inference task.

5.2 Example I: Estimation of the Distribution of

FAC Rate

For monitoring the extent of degradation and predicting the lifetime of the feeder

pipes, it is often needed to accurately estimate the wall thinning rate due to FAC in

the piping components. The simplest way to estimate the FAC rate is to model the

degradation data using the linear random rate model (for details, see Subsection 2.2.1).

In this model, the FAC rate is assumed to be a random variable that follows a specified

probability distribution with unknown parameters. This assumption is justified by

the fact that different pipes experience different rates of wall thinning due to variable

operating conditions. To estimate the parameters of the distribution of FAC rate, the

ABC-MCMC method (Algorithm 7) has been implemented. ABC-MCMC is compared

with the traditional MH algorithm (Algorithm 2), and the results from both MCMC

methods are further compared with the results from the linear regression analysis –

a common industrial approach for the FAC rate estimation. In this study, the term

likelihood-based MCMC (L-MCMC) is equivalently used to indicate the MH algorithm

unless otherwise stated.
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5.2.1 Degradation Data and Model

Data Set

The inspection data related to the minimum wall thicknesses of 37 feeder pipes are

considered in this study. These pipes have a common diameter of 2” and nominal

thickness of 5.5 mm. Figure 5.2 shows the degradation paths of the feeder pipes, i.e.,

each gray line represents the wall thickness losses over time of a different pipe derived

from the minimum wall thickness measurements. These feeder pipes were inspected

two to five times using an ultrasonic probe between 8.55 and 22.25 effective full power

years (EFPY).

Figure 5.2: Wall thickness measurements of the feeder pipes.

Model

The random rate model (Subsection 2.2.1) is used to characterize the wall thinning

data. The wall thinning rate R is assumed to be a gamma distributed random variable

with PDF
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RΓ(µ2
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2
R)

exp(−rµR/σ2
R) (5.2)

where µR > 0 and σR > 0 are the mean and standard deviation of the FAC rate

R, respectively. Without the loss of generality, Equation 5.2 represents the gamma

PDF with alternative parameters, mean µR, and standard deviation σR, instead of the

shape and scale parameters for ease of interpretation. It is assumed that µR is unknown,

whereas σR has a fixed value of 0.01 mm/EFPY. The initial wall thickness A is modeled

as a normally distributed random variable with the PDF fA(a) = N (µA, σ2
A). Again,

mean µA is assumed to be unknown and σA is assumed to have a fixed value of 0.1

mm. The inspection data, collected using an ultrasonic probe, are assumed to be

contaminated by a normally distributed sizing error Z with zero mean and 0.1 mm

standard deviation.

5.2.2 Implementation Details

The Bayesian inference schemes, ABC-MCMC and L-MCMC, and the linear regression

method are implemented in the MATLAB environment (version 9.3, 64-bit) with Intel®

CoreTM i5-6500 CPU @3.20 GHz processor and 8.00 GB RAM memory.

Prior and Proposal Distributions

For implementing the ABC-MCMC scheme, the first step is to select a prior distribu-

tion. Assuming independence, one can conveniently select f(Θ) = f1(µA)f2(µR), where

Θ = {µA, µR}>. The chosen prior parameter distributions are assumed to be uniform

as f1(µA) = U [3.5, 7.5] and f2(µR) = U [0, 2]. Note that an uninformative uniform prior

assigns equal probabilities to all the possible values in a specified range. Next, proposal

distributions are chosen to be normal and log-normal distributions with means equal to
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the current samples and standard deviations equal to 0.02 mm and 0.002 mm/EFPY

for µA and µR, respectively. The main reason to select a log-normal proposal density

for µR is that µR represents the mean of the gamma distribution, which is, by defini-

tion, a strictly positive quantity. Thus, it is required that the chosen proposal density

does not generate negative µR values. To implement the L-MCMC or MH algorithm,

the same prior distributions are chosen as used in ABC-MCMC. However, the proposal

distributions are chosen to be normal and log-normal distributions with means equal

to the current samples and standard deviations equal to 0.05mm and 0.005 mm/EFPY

for the parameters µA and µR, respectively. The likelihood function is numerically

integrated using the Monte Carlo simulation method with 1000 samples.

Distance Function and Tolerance Threshold

The Euclidean distance is generally considered to be a suitable distance measure for

data-vectors. Therefore, it is a good choice for a distance function for the ABC-MCMC

scheme (see Section 4.5). Accordingly, the selected distance function can be written as

ρ(D∗,Dobs) = 1
N

N∑
i=1
‖y∗i − yi‖ (5.3)

where ‖ • ‖ is the Euclidean norm (or `2 norm) operator and y∗i represents simulated

data. The distance function is an average of the Euclidean norm of the difference

between the observed data and the simulated data from each pipe component. On the

other hand, instead of choosing a single threshold level, a series of threshold values in

a descending order, i.e., ε = {0.5, 0.4, 0.3, 0.25}, are chosen to observe the convergence

of the approximate posteriors. The threshold value ε = 0.25 can be considered to

be sufficiently small given that further reduction of this value may cause a very high

rejection rate, making the algorithm computationally prohibitive.
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A New Initialization Scheme for ABC-MCMC

To reduce the initialization time of the MCMC chain, we bring an extra step to the

ABC-MCMC algorithm. The MCMC chain generally starts with a random value gen-

erated from the prior distribution and allowed to burn-in until it converges to its

stationary distribution. But, if ε is very small, then the burn-in period becomes very

long, making the algorithm computationally expensive. To avoid burn-in, the basic

ABC-RS can be used to initialize the MCMC chain. However, the same low accep-

tance problem due to small ε prevails in this case as well. But, the advantage of using

the ABC-RS to initialize the MCMC chain is very clear, because, as soon as the first

sample directly comes from the target distribution, the burn-in stage is not required

anymore. Thus, the proposed algorithm starts with the selection of a series of tolerance

thresholds ε1 > ε2 > · · · > εT (εT is the target tolerance threshold), and sequentially

generates the corresponding set of samples Θ(1),Θ(2), · · · ,Θ(T ). The initial samples

Θ(1), · · · ,Θ(T−1) are discarded, and the ABC-MCMC algorithm starts with Θ(T ) as its

initial sample. Algorithm 13 shows the steps to implement the proposed algorithm. A

Algorithm 13 Initialization scheme
1: Select a series of tolerance thresholds ε1 > ε2 > · · · > εT
2: Generate Θ(1) ∼ fε1(Θ | Dobs) using ABC-RS
3: for k = 1 to T − 1 do
4: repeat
5: Generate Θ∗ ∼ q′(Θ∗ | Θ(k)), such that f(Θ∗) 6= 0
6: Simulate D∗ ∼M(D | Θ∗)
7: Accept Θ∗, if ρ(D∗,Dobs) ≤ εk
8: until Acceptance
9: Set Θ(k+1) = Θ∗
10: end for
11: Discard Θ(1), · · · ,Θ(T−1) and start ABC-MCMC using Θ(T ).

suitable COV for the initialization proposal distribution q′(• | •) should be chosen so

that the algorithm does not get stuck, i.e., too narrow or too wide support for the pro-
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posal distribution should be avoided. To initialize ABC-MCMC, the chosen threshold

values are, εi = n∗× εT , i = 1, 2, · · · , 6, where n∗ = {1.5, 1.4, 1.3, 1.2, 1.1, 1}. Similarly,

the proposal density is considered to be the same normal and log-normal product den-

sities with means equal to the current samples and standard deviations equal to 0.04

mm and 0.004 mm/EFPY for µA and µR, respectively.

Linear Regression

The steps for linear regression analysis of the wall thickness measurement data are

described as follows. The wall thickness measurements can be modeled using a linear

regression model, yij = βi0 + βi1tij + zi, where βi0, βi1, and zi are the intercept,

slope, and random error of regression, respectively. The intercept βi0 denotes initial

wall thickness ai of the ith feeder pipe, whereas the absolute value of the slope or

the regression coefficient, i.e., |βi1|, represents the FAC rate or the wall thinning rate

ri of the same pipe. To obtain the parametric forms of the distributions of FAC

rates and initial wall thicknesses, the regression coefficients |β11|, |β21|, · · · , |βN1| and

the intercepts |β10|, |β20|, · · · , |βN0| are fitted to a gamma and a normal distribution,

respectively, using the MLE method.

5.2.3 Results and Discussion

Parameter Estimates

The ABC-MCMC method, for all four cases, i.e., ε = {0.5, 0.4, 0.3, 0.25}, took around

132 s, 124 s, 125 s, and 125 s, respectively, to generate Markov chains of lengths equal

to 2.5× 105 samples. The first five samples are discarded for the initialization process.

Figure 5.3 shows the probability density estimates of the distance function generated

from the ABC-MCMC algorithm for all four cases. It can be noticed that the value
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ε = 0.25 belongs to the left tail portion of its corresponding density estimate, implying

that ρ < ε = 0.25 is a rare event compared to the other three cases of ABC-MCMC. By

Figure 5.3: Probability density estimates of the distance function values for all four cases of
the ABC-MCMC algorithm.

comparison, the L-MCMC method took around 494 s on the same computer to generate

a Markov chain of length equal to 5000 samples; the initial 500 samples are rejected

to allow for burn-in. The Markov chains generated from both methods are plotted in

Figure 5.4. It is evident from the figure that the Markov chains of ABC- MCMC and

L-MCMC schemes quickly converged to their stationary distributions. The Markov

chain generated from the ABC-MCMC scheme with ε = 0.25 shows lowest variance

with respect to the other Markov chains generated from the same scheme.

Figure 5.5 presents the two-dimensional scatter plots of the accepted samples from

ABC-MCMC and L-MCMC algorithms. The figure illustrates clearly the convergence

of the joint posteriors of µA and µR with respect to the tolerance thresholds computed

using ABC-MCMC. It is clear that the joint posterior of {µA, µR}>, obtained from

113



(a) ABC-MCMC

RA

(b) L-MCMC

Figure 5.4: Markov chains of parameters (i) µR and (ii) µA generated from (a) ABC-MCMC
and (b) L-MCMC samplers. In subfigure (a), the light gray line corresponds to the Markov
chain produced by ABC-MCMC with ε = 0.5, the deep gray line corresponds to ε = 0.4, the
black line corresponds to ε = 0.3, and the red line corresponds to ε = 0.25.

ABC-MCMC with ε = 0.25, lies arbitrarily close to the joint posterior obtained from

the L-MCMC algorithm.

Figure 5.6 and Figure 5.7 show the marginal posteriors of the FACmodel parameters

µA and µR, respectively. Again, the convergence of the ABC posteriors with respect to

the threshold values are clearly visible. The marginal posteriors of µA and µR generated

from ABC-MCMC algorithm with ε = 0.25 and L-MCMC show great similarity. The

statistical properties, i.e., mean, COV, and 90% CI, of the marginal posteriors are

presented in Table 5.1.
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Figure 5.5: The accepted posterior samples of the ABC-MCMC and L-MCMC algorithms
as two-dimensional scatterplots. The light gray dots correspond to the posterior samples
obtained from ABC-MCMC with ε = 0.5, the deep gray dots correspond to ε = 0.4, the black
dots correspond to ε = 0.3, and the blue dots correspond to ε = 0.25. The red dots correspond
to the posterior samples obtained from L-MCMC.

Table 5.1: Statistical properties of the marginal posteriors.

Parameter ABC-MCMC (ε = 0.25) L-MCMC
Mean COV [5th, 95th] percentiles Mean COV [5th, 95th] percentiles

µA (mm) 5.10 0.011 [5.01, 5.19] 5.11 0.010 [5.02, 5.19]
µR (mm/EFPY) 0.073 0.074 [0.064, 0.082] 0.075 0.045 [0.069, 0.081]

Results from Linear Regression Analysis

Figure 5.8 and Figure 5.9 present the histogram plots of the initial wall thickness

A and the FAC rate R, respectively, obtained using the linear regression analysis.

The corresponding normal and gamma distribution fits are also plotted on top of the

histograms. The statistical properties of A and R are shown in Table 5.2. The 95th

percentile of R, i.e., R95, is calculated from the fitted gamma distribution and found

to be around 0.099 mm/EFPY. It is to be remarked that R95 represents the 95%
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Figure 5.6: Marginal posterior distribution of mean µA of the initial pipe wall thickness.

Figure 5.7: Marginal posterior distribution of mean µR of the FAC rate.

probability of non-exceedance of the FAC rate, and therefore its estimation plays a

decisive role in maintenance planning.
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Figure 5.8: Histogram of the initial wall thickness A along with a normal fit obtained from
the linear regression analysis.

Figure 5.9: Histogram of the FAC rate R along with a gamma fit obtained from the linear
regression analysis.
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Table 5.2: Results of linear regression analysis.

Parameter Mean COV [5th, 95th] percentiles
A (mm) 5.06 0.050 [4.64, 5.47]

R (mm/EFPY) 0.068 0.261 [0.041, 0.099]
T (EFPY) 45.41 0.296 [27.99, 70.32]

95th Percentile FAC rate and Lifetime Distribution

In the Bayesian framework, the R95 is treated as a random quantity that has a distri-

bution associated with it, and the ensuing quantity of interest is the 95th percentile of

R95, also known as R95/95, i.e., the 95/95 value of the FAC rate. The probability density

estimates of R95 (see Table 5.3 for statistical properties) obtained from ABC-MCMC

and L-MCMC are plotted in Figure 5.10. Both the algorithms produce similar density

estimates for the R95 value. The ABC-MCMC and L-MCMC algorithms give very

close estimates of the 95/95 value of the FAC rate, which are around 0.099 mm/EFPY

and 0.098 mm/EFPY, respectively. As shown in the figure, the R95 estimate obtained

from the linear regression analysis found to be very close to the R95/95 estimates of the

ABC-MCMC and L-MCMC algorithms.

Table 5.3: Statistical properties of the distributions of R95 and T05.

Quantity ABC-MCMC (ε = 0.25) L-MCMC
Mean COV [5th, 95th] percentiles Mean COV [5th, 95th] percentiles

R95 (mm/EFPY) 0.090 0.059 [0.081, 0.099] 0.092 0.036 [0.086, 0.098]
T05 (EFPY) 32.01 0.046 [29.55, 34.68] 31.38 0.023 [30.25, 32.60]

To determine the lifetime distribution of the feeder pipes, the minimum wall thick-

ness requirement Wmin is considered to be 40% of the nominal thickness, i.e., Wmin =

0.4 × w0. In Figure 5.11, the lifetime distribution of the feeder pipes obtained from

the linear regression analysis is plotted, and Table 5.2 lists its statistical properties.

Another pertinent quantity of interest in the context of feeder lifetime analysis is the

fifth percentile of lifetime T05, and in this analysis, it is estimated to be around 27.99

EFPY.
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Figure 5.10: Probability density estimate of the 95th percentile values of the FAC rate obtained
using ABC-MCMC and L-MCMC algorithms.

Figure 5.11: Probability density estimate of the lifetime of feeder population obtained from
linear regression analysis.
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Figure 5.12 presents the probability density estimates of T05 derived from ABC-

MCMC and L-MCMC. Again, it can be observed that both Bayesian computation

algorithms produce similar density estimates for T05. The distribution characteristics

of T05 can be found in Table 5.3. Similar to R95/95, the 05/05 value of the population

lifetime T05/05 (fifth percentile of T05), indicate the 95% probability of exceedance

in 95% of the feeder pipes. The estimated T05/05 values using ABC-MCMC and L-

MCMC are found to be around 29.55 EFPY and 30.25 EFPY, respectively. The T05/05

estimates are very close, showing strong competitiveness between both algorithms. The

T05 estimate of the linear regression analysis can be found to be lower than the T05/05

estimates of the ABC-MCMC and L-MCMC algorithms, displaying an underestimation

of the feeder lifetime by the regression approach.

Figure 5.12: Probability density estimate of the fifth percentile of the lifetime of feeder popu-
lation obtained using ABC-MCMC and L-MCMC algorithms.

However, it may be noticed in Figure 5.10 and Figure 5.12 that the density estimates

of R95 and T05 from ABC-MCMC show slightly higher variances when compared to
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the L-MCMC estimates (Table 5.3). This occurs due to the approximation in the

ABC posterior introduced by the selection of the tolerance threshold. As mentioned

before, the tolerance threshold ε acts as a trade-off between the computational efficiency

and accuracy, and therefore selecting a smaller value of ε can produce more accurate

posterior variances (closer to the posterior variances from L-MCMC) albeit this comes

at a higher computational cost.

5.3 Example II: Estimation of Gamma Process Pa-

rameters from Noisy Data

The gamma process is a popular stochastic process model for characterizing a wide

variety of degradation processes affecting engineering structures and components. Al-

though the conceptual approach to the parameter estimation of the gamma process

is straightforward, its practical implementation is quite challenging since degradation

data are often contaminated by measurement noise. As a result, the likelihood function

for sample data turns into a high-dimensional multivariate integral (refer to Subsec-

tion 2.2.2 to see the form of the noisy likelihood). This example presents the application

of the likelihood-free ABC-MCMC method (Algorithm 7) for the parameter estima-

tion task. To investigate and compare the efficacy of the method with the standard

likelihood-based approach, various simulation examples on the estimation of the gamma

process parameters are presented in Appendix D. The simulation examples show that

the results of ABC-MCMC are comparable with the results of L-MCMC, while offering

significant computational savings.
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5.3.1 Degradation Data and Model

Data Set

This example considers the same data set used in the first example in Section 5.2,

which is related to the minimum wall thicknesses of 37 feeder pipes.

Model

The wall thickness data are first converted to the wall thickness losses over time inter-

vals, and then the gamma process model is used to characterize the data. The basic

properties of the gamma process and details of the derivation of the likelihood function

under noisy data can be found in Subsection 2.2.2.

5.3.2 Implementation Details

The ABC-MCMC algorithm is implemented in the same MATLAB environment (ver-

sion 9.3, 64-bit) as before with Intel® CoreTM i5-6500 CPU @3.20 GHz processor and

8.00 GB RAM memory.

Prior and Proposal Distributions

To estimate all six gamma process parameters using ABC-MCMC, the following un-

informative prior distributions are chosen: f(α) = U [0, 50], f(η) = U [0, 5], f(β) =

U [0, 1], f(µA) = U [0, 5], f(σA) = U [0, 1], and f(σZ) = U [0, 1]. To reduce the burn-in

time in ABC-MCMC, the initialization scheme presented in Algorithm 13 is employed.

The COV of the initialization proposal distribution is considered twice the COV of the

proposal distribution used in the ABC-MCMC algorithm.
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Distance Function and Tolerance Threshold

For ABC-MCMC, the following distance function is used:

ρ(D∗,Dobs) = ‖(d1, d2, · · · , dN)‖ (5.4)

where di = ‖∆y∗i −∆yi‖. For the choice of the tolerance threshold, a similar method

suggested by Beaumont et al. [12] is adopted in this study. However, the authors

proposed the method in an ABC rejection sampler setting, whereas here we apply the

same idea in the ABC-MCMC environment. Accordingly, ε is set to be a percentile

Qε of the distribution of the proposed distance function values obtained from the

proposed moves (samples) of the corresponding MCMC runs. However, the distribution

of ρ(D,Dobs) is generally not available a priori; thus, the algorithm can be initialized

with a chosen ε and later a check can be performed by evaluating whether the chosen

ε follows the criterion P[ρ(D,Dobs) ≤ ε] ≤ Qε/100. In this study, a value of Qε = 0.01

is selected for the choice of tolerance threshold, which means that the chosen ε value

should be less than the 0.01th percentile of the distribution of ρ(D,Dobs) obtained

from the proposed moves by the proposal distribution.

Burn-In, Thinning, and Convergence

The “burn-in” and “thinning” of the Markov chains (for more details, see Section 3.4)

can be equivalently applied to the ABC-MCMC method. To monitor the convergence

of ABC-MCMC, the approach based on the GR statistic (Section 3.4.3) is employed. In

this study, we calculate the GR statistic R̂ using three MCMC runs for each parameter,

and the samples from all three chains are used to make further statistical inferences.

A cutoff criterion of R̂ ≤ 1.01 is used to determine the iteration length. A flowchart

describing the steps of the proposed scheme is presented in Figure 5.13.
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Select the number (≥ 2) of MCMC chains

Select the MCMC iterations length

Select a target tolerance threshold εT

Use Algorithm 13 to obtain Θ(T )

Set Θ(1) = Θ(T ) and use Algo-
rithm 7 to obtain Θ(k), k = 2, 3, · · · , n

Check if P[ρ(D,Dobs) ≤ εT ] ≤ Qε/100?

Check if the GR statistic R̂ ≤ 1.01?

Apply thinning to the MCMC chains

Stop

no

yes

no

yes

Figure 5.13: Flowchart of the proposed ABC-MCMC scheme.
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5.3.3 Results and Discussion

Parameter Estimates

In an attempt to improve the convergence and acceptance rate of the ABC-MCMC

scheme, the model parameters are updated one-by-one sequentially, which avoids very

long sample chains. The marginal posterior distributions of the model parameters are

shown in Figure 5.14. The means, COVs, and 95% CIs of the parameters are presented

in Table 5.4. The mean of the time parameter η is found to be around 1.6, which

proves that the underlying degradation process is mostly non-stationary. Except the

mean initial degradation parameter µA and the time parameter η, all other parameters

show very high uncertainties reflected by their COV values. It can be observed in the

figure that the standard deviation parameter of the measurement noise σZ is quite

small. This indicates that the estimation of such parameters are difficult, which is also

reported in the simulation example in Section D.3.

Figure 5.14: Marginal posterior distributions of the gamma process parameters.
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Table 5.4: Statistical properties of the estimated parameters.

Parameter Mean COV 95% CI
α 6.7161 0.9155 [0.1358, 19.012]
η 1.5985 0.2504 [1.0122, 2.1135]
β 0.0048 0.7678 [0.0007, 0.0118]
µA 0.7715 0.1841 [0.4375, 0.9902]
σA 0.0153 1.4075 [0.0001, 0.0642]
σZ 0.0007 1.7409 [0.0001, 0.0037]

Degradation Prediction and Lifetime Distribution

With the help of simulation, the posterior parameter sample sets are used for predicting

the mean degradation path along with the 95% CI as shown in Figure 5.15. It can

be observed that the degradation path increases over time and the uncertainty in

prediction also increases once it passes the observation data points, which is quite

obvious. The figure shows that the upper bound of the predicted degradation growth

crosses the nominal thickness at around 42 EFPY.

Figure 5.15: Predicted mean degradation growth with 95% credible interval (CI).
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Assuming a wall thickness loss of 60% of the nominal thickness to be a critical limit,

the distributions of mean and fifth percentile of the population lifetime (often a quan-

tity of interest for maintenance planning) are plotted in Figure 5.16. The statistical

properties of the lifetime quantiles are presented in Table 5.5. According to the table,

one can expect the feeder pipes to reach their end of life by around 37.39 EFPY. An-

other quantity of interest is the fifth percentile of fifth percentile lifetime T05/05, which

is found to be around 28.74 EFPY. The lifetime distributions show that both mean

and fifth percentile lifetimes have high uncertainties, which may result from limited

observations; this justifies the application of the Bayesian method. Overall, given only

a small data set, it is found that ABC-MCMC performed reasonably well in estimating

all six parameters of the gamma process.

(a) (b)

Figure 5.16: (a) Mean and (b) fifth percentile of the lifetime distribution.

Table 5.5: Statistical properties of the lifetime distribution.

Lifetime Mean (EFPY) COV 95% CI
Mean 37.39 0.1381 [31.36, 48.73]

Fifth percentile 33.57 0.1351 [27.61, 44.15]
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5.4 Example III: Mixed-Effects Regression Model

for Degradation Data

As an alternative to the random rate model, a better choice to model the FAC pro-

cess is the more advanced LMER model (Subsection 2.2.3). The reason behind this is

that the LMER model can be used to obtain degradation characteristics of individual

components since it considers both system-level fixed effects as well as component-level

random effects. The Bayesian inference method is used to estimate the regression pa-

rameters when the degradation data are limited, and at the same time, confounded

by measurement uncertainties. The Gibbs sampler, commonly used for this purpose,

works when the regression errors are assumed normally distributed which allows for the

analytical formulation of the likelihood function. In case of a more general regression er-

ror distribution (e.g., mixture models), the likelihood becomes analytically intractable

and computationally expensive to a degree that any likelihood-based Bayesian inference

scheme can no longer be used as a practical method.

In this example, the application of the ABC method is extended to the LMER

model which is essentially a two-stage hierarchical model. The sizing and coverage

error issues associated with degradation measurements have been taken into account.

The ABC-SS method (Algorithm 8) is implemented to estimate the parameters of the

LMER model. Since the LMER model has too many parameters to be estimated,

the sequential ABC-SS method is chosen over the ABC-MCMC method. Moreover,

numerical investigations are carried out to evaluate and compare the performance of

the ABC-SS algorithm under different distance settings.
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5.4.1 Degradation Data and Model

Data Set

Minimum wall thickness data from a total of 62 feeder pipes are recorded from a station.

These pipes have a nominal thickness of 5.5 mm and a common diameter of 2 inches.

These feeder pipes are inspected repeatedly, where the number of repeat measurements

ranges from one to five times. To be more specific, out of 62 feeder pipes, 19 pipes

are inspected once, 19 inspected twice, 12 inspected thrice, 3 inspected four times, and

the rest, 9, are inspected five times each. The inspection time varies between 8.55 and

22.25 EFPY.

Model

The degradation data is modeled using the LMER model. For its basic properties and

the derivation of the likelihood function, the reader is referred to Subsection 2.2.3. The

measurement error is modeled using a flexible mixture of distributions model; see the

next subsection for more details.

5.4.2 Implementation Details

The ABC-SS algorithm is implemented in the MATLAB environment (version 9.3,

64-bit) with Intel® CoreTM i5-6500 CPU @3.20 GHz Processor and 8.00 GB memory

(RAM). The convergence of the ABC-SS algorithm is assessed by running the algorithm

ten times. The posterior samples obtained from all ten runs of the algorithm are used

to make further statistical inferences.
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Distance Function

In this study, we introduced ten potential candidates for the ABC-SS distance function

that can be used for degradation modeling. Our choices of distance functions take into

consideration the absence of any specific rule to choose a particular distance function

as well as our interest in comparing how the other types of distances perform. The

selected distance functions are averaged over the number of components N to accom-

modate multiple repeated measurements. The distance functions are as follows (for

more details, see [40]):

• Manhattan (`1) distance:

ρ(D(k),Dobs) = 1
N

N∑
i=1

∥∥∥y(k)
i − yi

∥∥∥
1

= 1
N

N∑
i=1

mi∑
j=1

∣∣∣y(k)
ij − yij

∣∣∣ (5.5)

• Euclidean (`2) distance:

ρ(D(k),Dobs) = 1
N

N∑
i=1

∥∥∥y(k)
i − yi

∥∥∥
2

= 1
N

N∑
i=1

mi∑
j=1

∣∣∣y(k)
ij − yij

∣∣∣2
 1

2

(5.6)

• Normalized Manhattan (N-`1) distance:

ρ(D(k),Dobs) = 1
N

N∑
i=1

∥∥∥y(k)
i − yi

∥∥∥
1∥∥∥y(k)

i

∥∥∥
1

+ ‖yi‖1

(5.7)

• Normalized Euclidean (N-`2) distance:

ρ(D(k),Dobs) = 1
N

N∑
i=1

∥∥∥y(k)
i − yi

∥∥∥
2∥∥∥y(k)

i

∥∥∥
2

+ ‖yi‖2

(5.8)
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• Chebyshev (`∞) distance:

ρ(D(k),Dobs) = 1
N

N∑
i=1

∥∥∥y(k)
i − yi

∥∥∥
∞

= 1
N

N∑
i=1

max
j

(∣∣∣y(k)
ij − yij

∣∣∣) (5.9)

• Soergel (Soer) distance:

ρ(D(k),Dobs) = 1
N

N∑
i=1

∑mi
j=1

∣∣∣y(k)
ij − yij

∣∣∣∑mi
j=1 max

{
y

(k)
ij , yij

} (5.10)

• Symmetric χ2 (S-χ2) measure:

ρ(D(k),Dobs) = 1
N

N∑
i=1

mi∑
j=1

2
y

(k)
i · yi

·

(
y

(k)
ij yi − yijy

(k)
i

)2

y
(k)
ij + yij

(5.11)

• Sørensen (Sør) distance:

ρ(D(k),Dobs) = 1
N

N∑
i=1

∑mi
j=1

∣∣∣y(k)
ij − yij

∣∣∣∑mi
j=1

(
y

(k)
ij + yij

) (5.12)

• Canberra (Can) distance:

ρ(D(k),Dobs) = 1
N

N∑
i=1

mi∑
j=1

∣∣∣y(k)
ij − yij

∣∣∣∣∣∣y(k)
ij

∣∣∣+ |yij| (5.13)

• Kulczynski (Kul) distance:

ρ(D(k),Dobs) = 1
N

N∑
i=1

∑mi
j=1

∣∣∣y(k)
ij − yij

∣∣∣∑mi
j=1 min

{
y

(k)
ij , yij

} (5.14)

Along with Manhattan and Euclidean distances, we selected their normalized versions

to investigate the impact of normalization. Among these ten distances, four of them,
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Soergel, Symmetric χ2, Sørensen, and Kulczynski, may produce negative distance val-

ues, although that would be rare since the degradation measurements are generally

non-negative. However, in such a situation, the absolute value of the distance function

is considered.

Choice of Acceptance Probability and other Algorithmic Hyperparameters

The accuracy of the proposed ABC-SS algorithm is controlled by the final tolerance

threshold ε(S) which needs to be very small. The tolerance threshold ε(s) of each

simulation level is chosen adaptively with the help of the acceptance probability p0.

A too small p0 value may produce unsatisfactory results due to a high number of

sample repetitions. In contrast, a too high p0 value may end up generating substandard

posterior samples that belong to high tolerance values. The final tolerance threshold

ε(S) is directly dependent on the acceptance probability of the ABC posterior samples

at the Sth simulation level, i.e., the final acceptance probability pS0 . Thus, to attain a

very small ε(S) value, careful selection of the hyperparameters p0 and S is of paramount

importance. In practice, one may select the values of p0 and S by monitoring the

tolerance threshold ε(s) of each simulation level. The algorithm can be stopped when

the change in the final tolerance ε(S) is minimal compared to the tolerance ε(S−1) of

the previous simulation level. To guarantee the convergence of the tolerance level, we

chose to stop the algorithm when only 5% change is observed in the final tolerance

threshold. Our investigation revealed that a tolerance change of less than 5% induces

high sample repetition thus should be avoided. On the other hand, the maximum

number of simulation levels allowed per run are set at 30 irrespective of the tolerance

criterion. Note that the value of p0 determines the number of simulation levels required.

A large p0 value will need large number of simulation levels to get satisfactory results,

whereas a small p0 value will help to quickly converge to a small final tolerance requiring
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less number of simulation levels. Although, Chiachio et al. [30] suggested a value of

0.2 for p0, in this study, we selected three values for p0, 0.1, 0.2, and 0.25, to find the

best performing one (in terms of quick convergence and sample repetitions) under the

current settings of the degradation model and different distance measures.

The number of model simulations n0 at each simulation level determines the com-

putational cost of the algorithm. The total number of model simulations n0S should be

optimized to achieve high computational efficiency. Chiachio et al. [30] used different

n0 values, 1000 and 2000, in the examples that consist of a moving average process of

order two and a single DOF linear oscillator subjected to white noise excitation. How-

ever, since the degradation model has a high-dimensional parameter space, we selected

a higher value of 10000 for the parameter n0. The advantage of setting a high value

for n0 is that it helps to reduce sample repetitions generating better posterior samples,

and sometimes quick convergence to a much smaller threshold value which otherwise

can not be achieved.

Inspection Error

The wall thickness data give information about the extent of degradation due to FAC

on the inner walls of the feeder pipes. In nuclear power plants, these wall thicknesses

are measured manually using bracelet type ultrasonic tools by mounting them on the

feeder pipes [94]. Figure 5.17 shows such a typical bracelet type ultrasonic tool (known

as “14-probe” scanner). These electronic tools often contaminate the data by adding

random noise or sizing error to the measurements [60]. The sizing error is generally

modeled as a normally distributed random variable with zero mean and unknown

standard deviation [60, 61, 79]. Jyrkama and Pandey [70] reported that, in addition

to the sizing error, the wall thickness data are contaminated by coverage error. The

coverage error appears when wall thickness measurements are taken at certain points
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instead of measuring the entire surface of the piping components. Intrinsic to the feeder

inspection tools, coverage error occurs for two main reasons: (1) manual placement

and operation of the probes, and (2) fixed spacing between individual transducers of

the tool. As a result, the minimum thickness of a pipe reported from the inspection is

either equal to or more than the true minimum thickness of a piping component. Thus,

the coverage error can be modeled as a random variable that has a positive support.

Investigations by Jyrkama and Pandey [70] reveal that the coverage error distribution

is slightly skewed to the right.

Figure 5.17: A typical bracelet type ultrasonic tool used for feeder pipe inspections. (Image
courtesy of ZETEC®, reproduced with permission.)

In this paper, we select a mixture of distributions to model the error term zij in

Equation 2.17. The mixture model f(z) consists of the normal distribution N (0, σ2
z)

and the gamma distribution G(αz, βz) each having equal weights; σz is the standard

deviation of the sizing error, and αz and βz are the shape and scale parameters of the
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coverage error, respectively. Thus, the distribution of the error can be written as

f(z) = 0.5N (0, σ2
z) + 0.5G(αz, βz) (5.15)

The parameters of the mixture model are assumed to be unknown. Details about the

specification of the prior distributions for these parameters are presented in the next

subsection.

Prior Distributions

Let us denote the model parameters as Θ = {β,β1,β2, · · · ,βN ,Σb, τ}, where βi = β+

bi, and τ = {σz, αz, βz} is the set of distribution parameters of the error term. Let us

assume that β0 represents the system-level initial pipe wall thickness, and β1 represents

the system-level wall thinning rate due to FAC (or simply FAC rate), whereas b0i and

b1i represent the corresponding variations. The prior distributions of the individual

parameters are assumed to be independent.

Sometimes, the initial wall thicknesses of feeder pipes are not known precisely be-

cause they vary from their nominal value due to bending or welding operations. Re-

cent investigations [60, 61] show that the variations are significant, in fact, the initial

wall thicknesses get reduced to as low as around 80% of the nominal thickness of the

pipes. With that information at hand, the prior distribution for β0 is selected to be

a normal distribution with a mean equal to the nominal thickness of 5.5 mm, and a

standard deviation of 1 mm, i.e., f(β0) = N (5.5, 1). On the other hand, a prior of

f(β1) = N (0, 0.12) is chosen for the FAC rate based on the fact that FAC rates in the

feeder pipes generally turn out to be of the order of 10−2 mm/EFPY [60, 94, 98].

The covariance matrix Σb consists of three parameters: σ0, σ1, and ρ. To specify

the prior distributions for these three parameters, knowledge about the variation of the

initial wall thickness and FAC rate is needed. Investigations by Hazra et al. [60, 61]
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reveal that the variation in initial wall thickness of feeder pipes may reach up to 20%

of the nominal thickness, whereas the variation of the FAC rate is well within around

10% of the system-level rate. Based on this information, we select the following priors

for the above-mentioned parameters: f(σ0) = f(σ1) = G(4, 0.1) and f(ρ) = N (0, 0.22).

According to the LMER model assumptions, we can write f(βi | β,Σb) = N (β,Σb)

which is a bivariate normal density function. After generating β and Σb from their

respective priors, one can simply sample from this bivariate normal density to generate

prior samples of βi for all i = 1, 2, · · · , N .

The standard deviation of the sizing error is generally found to be quite small

(within the order of 10−1 mm) compared to the wall thickness measurements of feeder

pipes [60, 79]. Therefore, we select a gamma prior f(σz) = G(4, 0.1) for the standard

deviation parameter σz. On the other hand, the study by Jyrkama and Pandey [70]

shows that the properties of the coverage error change depending on the type of inspec-

tion tool. However, the mean and standard deviation of the coverage error are found

to be in the order of 10−2 mm. Using this information, we selected the following prior

distributions for the coverage error parameters: f(αz) = U [0, 10] and f(βz) = U [0, 0.1],

where U [•, •] represents the uniform density.

Data Simulation

An important step in the ABC-SS algorithm is forward simulation of the underlying

model that generates a pseudo aggregate data set D. The simulated data D are used

to calculate the distance ρ(D,Dobs) between D and the observed data Dobs. However,

to get the best results, the process of data simulation should mimic exactly the data

generation process of the observed data Dobs [27]. Once the prior distributions are

selected, samples of the set of model parameters Θ are generated from the respective

priors. Using each sample of {β,Σb}, one can generate the pipe-specific parameters
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{β1,β2, · · · ,βN}, where N = 62, from the bivariate normal density function N (β,Σb).

These pipe-specific parameters can be used to generate true degradation growths Tiβi

for each of the ith pipe components. Next, the error terms are simulated from the

density function f(z), the expression of which is given in Equation 5.15. Each error

term is simulated from N (0, σ2
z) with 50% probability and from G(αz, βz) with 50%

probability. Afterwards, the error vectors zi, i = 1, 2, · · · , N , are generated and added

to the true degradation growths as yi = Tiβi + zi, for i = 1, 2, · · · , N , to simulate a

complete pseudo aggregate data set D.

5.4.3 Results and Discussion

Parameter Estimates

The posterior estimates of the model parameters in terms of their means and 95% CIs

are shown in Figure 5.18. As shown by Figure 5.18a and Figure 5.18b, the system-

level parameters β0 and β1 are successfully inferred by ABC-SS under all the distance

functions except the Symmetric-χ2 measure which completely fails to capture the un-

certainty of the parameter β0. Although p0 = 0.1 can be seen producing tighter pa-

rameter estimates, the Canberra distance appears to have less effect on the selection

of the acceptance probability. Figure 5.18c, Figure 5.18d, and Figure 5.18e show the

estimates of the covariance matrix parameters. The symmetric-χ2 measure produces

an unusual estimate for the parameter σ0. The effect of p0 is visible in all the esti-

mates of the covariance parameters, which implies that a smaller p0 is a better choice.

Performances of other distance functions except the symmetric-χ2 measure are very

similar. The estimates of the noise parameters σz, az, and bz are shown in Figure 5.18f,

Figure 5.18g, and Figure 5.18h, respectively. Once again, the symmetric-χ2 measure

failed to capture the uncertainty of the parameter σz accurately. While the effects of
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distance functions and p0 values are evident on the estimates of σz, they seem to show

no significant effect on the estimates of the other noise parameters, namely az and bz.

The posteriors produced in Figure 5.18 using different distance functions and different

values of p0 show large differences between the parameter ranges. If we focus only on

the effect of the p0 values, it is clear from the figure that p0 = 0.1 produces the best

parameter estimates since it produces tighter intervals of the model parameters. The

acceptance probabilities p0 = 0.2 and 0.25 do not seem to produce noticeable differ-

ence among the parameter estimates. Comparing the distance functions, Figure 5.18a,

Figure 5.18c, and Figure 5.18f clearly show that the performance of the symmetric-χ2

measure is the worst particularly for estimating the parameters β0, σ0, and σz.

Table 5.6 presents the numerical values of means and COVs of the parameters along

with the number of simulation levels reached after convergence, the final tolerances,

and computation times. As seen, in all cases, the numbers of simulation levels reached

after satisfying the stopping criterion of 5% tolerance difference are well below 30 which

is the maximum allowable number of simulation levels. Notice that the numbers of sim-

ulation levels reached after convergence are far less for p0 = 0.1 than the other values

of p0. Moreover, for p0 = 0.1, the final tolerances achieved smaller values compared to

p0 = 0.2 and 0.25. This confirms that a smaller acceptance probability p0 in ABC-SS

generates posterior samples with higher accuracy (since it quickly achieves smaller fi-

nal tolerance) and less computation time in general (since it requires fewer simulation

levels). For almost all cases, with n0 = 10000 samples, the computation time for 10

runs of the ABC-SS algorithm is found to be around half an hour. The means of the

system-level parameters β0 and β1 are found to be around 5.1 mm and -0.07 mm/EFPY,

respectively. The uncertainties of the parameters are captured through the COVs. The

smallest COVs of these two parameters are given by Manhattan (`1), Euclidean (`2),

normalized-Euclidean (N-`2), and Chebyshev (`∞) distance functions for p0 = 0.1 case,
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.18: Mean values (filled circles) and 95% credible bounds (error bars) of the posterior
samples of model parameters. Results generated using p0 = 0.1 are in black, p0 = 0.2 in dark
gray, and p0 = 0.25 in light gray.
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although the other distance functions, except the symmetric χ2, produce reasonably

accurate estimates. The COV values for β0 and β1 obtained using p0 = 0.1 are found

to be around 1.5% and 8.5%, respectively, meaning that the system-level FAC rate β1

has more uncertainty than the system-level initial wall thickness parameter β0. The

symmetric χ2 measure performs poorly compared to other distances, hence, its use

should be avoided in the ABC-SS algorithm. The means of the standard deviation

parameters σ0 and σ1 are found to be in the order of 10−2 and 10−3, respectively. This

implies that the variations of the individual pipe-specific parameters are quite small.

Nevertheless, these two parameters seem to have very high uncertainties as depicted

by their respective COVs that are around 30%. The mean of the correlation coefficient

parameter ρ is found to be around -0.2, although the high COV values obtained using

different distance functions indicate very high uncertainty in the parameter. Surpris-

ingly, the Soergel, Sørensen, and Kulczynski distance functions performed quite well

in estimating the parameters of the covariance matrix Σb. The noise parameter σz is

found to be in the order of 10−2. Soergel and Sørensen distance functions performed

quite well in estimating the COV of σz, which is found to be around 30%. The other

two noise parameters az and bz seem to have very high uncertainties, and less effect

on the selection of the distance function. A plausible reason could be that, compared

to other model parameters, these two noise parameters suffer from unidentifiability

problems. It can be noted that Manhattan (`1), Euclidean (`1), normalized-Euclidean

(N-`2), and Chebyshev (`∞) distance functions worked quite well in estimating the fixed

effects parameters, whereas the Soergel, Sørensen, and Kulczynski distance functions

are found to be well suited for estimating the standard deviation parameters.
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Table 5.6: Means and COVs (in brackets) of the posterior distributions, the number of simulation levels, final tolerances, and
computation times of different runs of the ABC-SS algorithm.

Distance
p0 β0 β1 σ0 σ1 ρ σz az bz S ε(S) Computation

function time

`1

0.1 5.049(0.015) −0.067(0.086) 0.055 ( 0.415) 0.005 (0.396) −0.182(1.043) 0.057 (0.429) 0.468 (0.826) 0.043 (0.617) 14 ∼ 19 0.212 ∼ 0.263 29 min 44 sec
0.2 5.103 (0.027) −0.072(0.150) 0.068 (0.405) 0.006 (0.416) −0.141(1.708) 0.083 (0.362) 0.401 (0.687) 0.041 (0.666) 15 ∼ 20 0.269 ∼ 0.364 31 min 10 sec
0.25 5.078 (0.029) −0.070(0.165) 0.079 (0.420) 0.008 (0.390) −0.138(1.603) 0.098 (0.375) 0.469 (0.607) 0.042 (0.669) 16 ∼ 22 0.288 ∼ 0.445 31 min 38 sec

`2

0.1 5.074(0.015) −0.069(0.088) 0.055(0.358) 0.005(0.379) −0.132(1.576) 0.052 (0.467) 0.373 (0.753) 0.031 (0.687) 14 ∼ 17 0.146 ∼ 0.184 28 min 47 sec
0.2 5.064 (0.021) −0.068(0.127) 0.067 (0.394) 0.006(0.367) −0.140(1.426) 0.071 (0.392) 0.487 (0.621) 0.034 (0.682) 15 ∼ 21 0.178 ∼ 0.252 31 min 40 sec
0.25 5.093 (0.029) −0.070(0.165) 0.089 (0.401) 0.007 (0.387) −0.141(1.425) 0.089 (0.452) 0.449 (0.622) 0.046 (0.602) 14 ∼ 21 0.198 ∼ 0.324 30 min 30 sec

N-`1
0.1 5.071 (0.021) −0.068(0.134) 0.047(0.364) 0.004 (0.413) −0.083(2.517) 0.061 (0.380) 0.345 (0.718) 0.039 (0.770) 14 ∼ 17 0.012 ∼ 0.014 30 min 24 sec
0.2 5.078 (0.034) −0.068(0.201) 0.084 (0.409) 0.008 (0.394) −0.197(1.240) 0.098 (0.488) 0.418 (0.709) 0.044 (0.678) 14 ∼ 20 0.014 ∼ 0.021 29 min 32 sec
0.25 5.097 (0.039) −0.070(0.242) 0.083 (0.458) 0.008 (0.404) −0.162(1.769) 0.093 (0.428) 0.453 (0.598) 0.044 (0.643) 17 ∼ 21 0.015 ∼ 0.020 31 min 46 sec

N-`2
0.1 5.099(0.014) −0.070(0.082) 0.054 (0.412) 0.005 (0.487) −0.123(1.867) 0.048 (0.440) 0.371 (0.845) 0.029 (0.837) 15 ∼ 16 0.013 ∼ 0.014 36 min 08 sec
0.2 5.119 (0.027) −0.072(0.154) 0.079 (0.387) 0.007 (0.495) −0.150(1.417) 0.079 (0.401) 0.443 (0.642) 0.036 (0.701) 16 ∼ 21 0.014 ∼ 0.018 36 min 43 sec
0.25 5.104 (0.025) −0.070(0.149) 0.075(0.366) 0.007(0.333) −0.133(1.318) 0.081 (0.400) 0.425 (0.716) 0.047 (0.594) 17 ∼ 22 0.016 ∼ 0.021 39 min 25 sec

`∞

0.1 5.086(0.015) −0.069(0.087) 0.053 (0.390) 0.005(0.339) −0.162(1.406) 0.041 (0.351) 0.358 (0.707) 0.033 (0.666) 15 ∼ 18 0.121 ∼ 0.140 35 min 16 sec
0.2 5.093 (0.019) −0.069(0.112) 0.073 (0.383) 0.006 (0.389) −0.184(1.179) 0.061 (0.418) 0.370 (0.734) 0.036 (0.730) 16 ∼ 20 0.151 ∼ 0.182 36 min 32 sec
0.25 5.083 (0.024) −0.069(0.143) 0.079 (0.494) 0.007 (0.475) −0.129(1.547) 0.069 (0.491) 0.426 (0.657) 0.034 (0.731) 13 ∼ 24 0.141 ∼ 0.295 39 min 25 sec

Soer
0.1 5.032 (0.021) −0.064(0.136) 0.063 (0.488) 0.006(0.307) −0.249(1.063) 0.072(0.338) 0.438 (0.636) 0.031 (0.850) 13 ∼ 17 0.024 ∼ 0.030 33 min 33 sec
0.2 5.102 (0.035) −0.069(0.204) 0.075 (0.426) 0.007 (0.401) −0.166(1.344) 0.096 (0.326) 0.451 (0.689) 0.044 (0.641) 16 ∼ 22 0.025 ∼ 0.035 36 min 01 sec
0.25 5.079 (0.035) −0.068(0.221) 0.090 (0.573) 0.009 (0.493) −0.156(1.511) 0.101 (0.402) 0.483 (0.562) 0.051 (0.550) 16 ∼ 21 0.028 ∼ 0.039 35 min 29 sec

S-χ2
0.1 5.150 (0.138) −0.071(0.143) 0.339 (0.426) 0.007 (0.460) −0.144(1.241) 0.024(0.293) 0.429 (0.598) 0.014 (0.904) 13 ∼ 17 0.0008 ∼ 0.0011 40 min 02 sec
0.2 5.846 (0.130) −0.080(0.135) 0.387 (0.390) 0.008 (0.380) −0.153(1.216) 0.030 (0.375) 0.305 (0.945) 0.029 (0.893) 17 ∼ 20 0.0009 ∼ 0.0012 44 min 41 sec
0.25 5.743 (0.129) −0.078(0.136) 0.298 (0.469) 0.008 (0.475) −0.060(3.471) 0.037 (0.367) 0.352 (0.872) 0.027 (0.822) 17 ∼ 22 0.0010 ∼ 0.0015 47 min 09 sec

Sør
0.1 5.086 (0.020) −0.069(0.121) 0.058(0.339) 0.005(0.267) −0.139(1.525) 0.062(0.305) 0.449 (0.669) 0.032 (0.760) 14 ∼ 17 0.012 ∼ 0.014 34 min 44 sec
0.2 5.082 (0.030) −0.068(0.184) 0.078 (0.374) 0.006 (0.414) −0.131(1.476) 0.084 (0.428) 0.477 (0.582) 0.036 (0.732) 16 ∼ 19 0.014 ∼ 0.018 37 min 26 sec
0.25 5.089 (0.034) −0.069(0.211) 0.081 (0.430) 0.007 (0.425) −0.139(1.570) 0.099 (0.445) 0.434 (0.702) 0.039 (0.725) 14 ∼ 22 0.014 ∼ 0.026 38 min 52 sec

Can
0.1 5.115 (0.019) −0.073(0.103) 0.060 (0.384) 0.004 (0.532) −0.106(2.647) 0.065 (0.444) 0.417 (0.752) 0.038 (0.632) 13 ∼ 17 0.027 ∼ 0.036 34 min 36 sec
0.2 5.093 (0.022) −0.071(0.117) 0.064 (0.419) 0.006 (0.431) −0.179(1.171) 0.073 (0.367) 0.422 (0.605) 0.040 (0.713) 17 ∼ 21 0.030 ∼ 0.038 38 min 28 sec
0.25 5.097 (0.032) −0.071(0.176) 0.082 (0.404) 0.008 (0.410) −0.136(1.452) 0.094 (0.414) 0.393 (0.731) 0.044 (0.641) 16 ∼ 23 0.031 ∼ 0.049 37 min 35 sec

Kul
0.1 5.058 (0.020) −0.067(0.122) 0.057(0.367) 0.006 (0.444) −0.182(1.014) 0.064 (0.352) 0.487(0.506) 0.030 (0.824) 14 ∼ 17 0.024 ∼ 0.028 35 min 09 sec
0.2 5.099 (0.030) −0.070(0.179) 0.071 (0.508) 0.007 (0.431) −0.137(1.795) 0.085 (0.415) 0.443 (0.682) 0.039 (0.667) 13 ∼ 22 0.027 ∼ 0.047 38 min 12 sec
0.25 5.098 (0.034) −0.070(0.207) 0.079 (0.421) 0.007 (0.342) −0.228(1.022) 0.091 (0.412) 0.457 (0.627) 0.042 (0.689) 17 ∼ 22 0.029 ∼ 0.038 38 min 30 sec



The posterior estimates of the corrosion parameters are presented in Table 5.7. The

uncertainties of the parameters are represented using the respective COV values and

95% credible bounds. As seen, the mean of the initial wall thickness is found to be

around 5.1 mm – a loss of around 7.3% of the nominal thickness, which indicates that

the wall thickness losses are likely to occur at thinner sections such as extrados of the

pipe bends. However, the variability of the initial pipe wall thickness seems to be much

smaller compared to the FAC rate. The COV of the initial wall thickness is obtained

to be around 2% – given by the best performing distance functions, Manhattan (`1),

Euclidean (`1), normalized-Euclidean (N-`2), and Chebyshev (`∞), for the p0 = 0.1

case. On the other hand, a mean of around 0.069 mm/EFPY and a COV of around

11% put the FAC rate in a position of high importance. Once again, the uncertainty

of the FAC rate is best captured by the same four distance functions as above with

the acceptance probability p0 = 0.1. The upper bound FAC rate is found to be around

0.084 mm/EFPY. While the mean corrosion rate does not seem to be high, the upper

bound rate of its 95% CI indicates a higher risk of pipe failure – eventually reducing

the system lifetime. Better representations of the posterior samples and its variability

obtained using p0 = 0.1 are given by the estimates of the PDFs shown in Figure 5.19.

Lifetime Distribution and Survival Function

To calculate the system lifetime, 60% of the nominal thickness (2.2 mm) is chosen as a

critical limit. The mean, COV, and 95% credible bounds of the lifetime distribution are

presented in Table 5.8. Once again, the best lifetime estimates (given by smallest COVs

and tighter intervals) are given by the following four distance functions: Manhattan

(`1), Euclidean (`1), normalized-Euclidean (N-`2), and Chebyshev (`∞), for the p0 = 0.1

case. The mean lifetime of the feeder pipe system is found to be around 42 EFPY,

whereas its COV is found to be around 10% – a result of high uncertainty in the FAC
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Table 5.7: Posterior estimates of the initial wall thickness and FAC rate of feeder pipes.

Distance fn. p0
Initial wall thickness (mm) FAC rate (mm/EFPY)

Mean COV 95% CI Mean COV 95% CI

`1

0.1 5.049 0.019 [4.854, 5.248] −0.067 0.119 [−0.082,−0.050]
0.2 5.104 0.030 [4.769, 5.383] −0.072 0.178 [−0.096,−0.045]
0.25 5.077 0.033 [4.742, 5.411] −0.070 0.202 [−0.098,−0.042]

`2

0.1 5.074 0.019 [4.874, 5.268] −0.069 0.115 [−0.084,−0.052]
0.2 5.064 0.025 [4.807, 5.314] −0.068 0.161 [−0.089,−0.046]
0.25 5.092 0.035 [4.758, 5.465] −0.070 0.196 [−0.098,−0.044]

N-`1
0.1 5.071 0.023 [4.871, 5.320] −0.068 0.149 [−0.088,−0.051]
0.2 5.078 0.038 [4.697, 5.447] −0.068 0.234 [−0.098,−0.036]
0.25 5.098 0.043 [4.668, 5.538] −0.070 0.274 [−0.107,−0.031]

N-`2
0.1 5.099 0.018 [4.901, 5.263] −0.070 0.113 [−0.084,−0.053]
0.2 5.119 0.032 [4.817, 5.441] −0.072 0.189 [−0.100,−0.047]
0.25 5.104 0.030 [4.783, 5.388] −0.070 0.181 [−0.095,−0.044]

`∞

0.1 5.086 0.019 [4.915, 5.271] −0.069 0.114 [−0.085,−0.054]
0.2 5.093 0.025 [4.841, 5.335] −0.069 0.149 [−0.090,−0.049]
0.25 5.083 0.030 [4.781, 5.364] −0.069 0.181 [−0.092,−0.044]

Soer
0.1 5.032 0.025 [4.794, 5.296] −0.064 0.169 [−0.086,−0.043]
0.2 5.102 0.039 [4.714, 5.531] −0.069 0.233 [−0.104,−0.038]
0.25 5.079 0.041 [4.656, 5.471] −0.068 0.261 [−0.102,−0.032]

S-χ2
0.1 5.152 0.155 [3.690, 6.689] −0.071 0.177 [−0.095,−0.046]
0.2 5.845 0.148 [4.135, 7.652] −0.079 0.171 [−0.108,−0.055]
0.25 5.743 0.141 [4.269, 7.685] −0.078 0.178 [−0.111,−0.054]

Sør
0.1 5.086 0.023 [4.873, 5.342] −0.069 0.144 [−0.089,−0.050]
0.2 5.082 0.034 [4.718, 5.410] −0.068 0.211 [−0.095,−0.039]
0.25 5.089 0.038 [4.697, 5.471] −0.069 0.240 [−0.099,−0.036]

Can
0.1 5.115 0.023 [4.897, 5.337] −0.073 0.123 [−0.089,−0.056]
0.2 5.093 0.026 [4.832, 5.343] −0.071 0.145 [−0.091,−0.051]
0.25 5.097 0.037 [4.744, 5.463] −0.071 0.212 [−0.099,−0.040]

Kul
0.1 5.057 0.023 [4.831, 5.299] −0.067 0.152 [−0.085,−0.046]
0.2 5.100 0.034 [4.743, 5.457] −0.070 0.206 [−0.099,−0.039]
0.25 5.098 0.038 [4.718, 5.468] −0.070 0.234 [−0.100,−0.037]
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(a) (b)

Figure 5.19: Marginal posterior distributions of the (a) initial wall thickness and (b) FAC
rate obtained using p0 = 0.1 under different distance settings.

rate. An important quantity in industrial maintenance planning is the lower bound of

the system lifetime, which is found to be approximately 35 EFPY. This indicates that

around 35 EFPY, the feeder pipes need to be replaced to continue safe operation of the

nuclear power generation unit. The distributions of the system lifetimes obtained using

the selected distance functions are shown in Figure 5.20a. The figure also confirms that

the distance functions mentioned above provide best results from ABC-SS. It is often

convenient and of more interest to practitioners to study the survival function of a

system of components. Thus, the corresponding survival functions of the feeder pipes

are shown in Figure 5.20b.

Component-Specific Characteristics

The advantage of using a mixed-effects regression model over a simple regression model

is that one can easily estimate the component-specific degradation characteristics using

the entire data set. In simple linear regression, component-specific degradation charac-

teristics are calculated independently based only on the component-specific data, the
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Table 5.8: Summary statistics of the lifetime distribution of feeder pipes.

Distance fn. p0 Mean (EFPY) COV 95% CI (EFPY)

`1

0.1 43.00 0.108 [35.70, 54.64]
0.2 41.58 0.187 [31.91, 59.03]
0.25 42.56 0.207 [31.25, 62.43]

`2

0.1 42.37 0.104 [35.49, 52.56]
0.2 43.03 0.153 [33.38, 58.19]
0.25 42.55 0.173 [31.61, 60.29]

N-`1
0.1 42.91 0.122 [34.40, 54.10]
0.2 44.60 0.240 [31.56, 71.26]
0.25 44.82 0.294 [30.37, 80.19]

N-`2
0.1 41.86 0.104 [35.19, 52.51]
0.2 41.89 0.173 [31.21, 58.90]
0.25 42.56 0.175 [32.33, 60.83]

`∞

0.1 42.19 0.102 [35.21, 52.09]
0.2 42.62 0.137 [33.59, 56.15]
0.25 43.02 0.187 [32.82, 60.96]

Soer
0.1 45.27 0.158 [35.01, 62.25]
0.2 43.83 0.226 [31.19, 68.66]
0.25 44.78 0.278 [30.99, 77.50]

S-χ2
0.1 41.45 0.193 [25.66, 56.76]
0.2 45.80 0.172 [30.23, 61.56]
0.25 45.54 0.214 [31.62, 63.48]

Sør
0.1 42.55 0.124 [34.32, 54.66]
0.2 44.03 0.211 [32.49, 66.06]
0.25 43.68 0.232 [31.15, 67.43]

Can
0.1 42.55 0.124 [34.32, 54.66]
0.2 41.58 0.126 [33.46, 53.41]
0.25 42.70 0.213 [31.50, 65.24]

Kul
0.1 43.77 0.142 [35.04, 58.62]
0.2 42.89 0.223 [32.10, 64.66]
0.25 43.48 0.245 [31.49, 68.01]

(a) (b)

Figure 5.20: (a) Lifetime distribution and (b) survival function of the system of feeder pipes
obtained using p0 = 0.1 under different distance settings.
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amount of which is comparatively quite small (1 to 5 data points in case of feeder

pipes). As a result, the component-specific degradation parameters suffer from high

uncertainties which creates difficulty in making maintenance decisions [94]. Figure 5.21

illustrates the variation in feeder-specific corrosion model parameters. The posterior

Figure 5.21: Box plots of the posterior distributions of component-specific initial wall thick-
nesses and FAC rates obtained using p0 = 0.1. Box plots of samples using Manhattan (`1)
distance are in black and Euclidean (`2) distance in gray.

distributions of feeder-specific initial wall thicknesses and FAC rates obtained from

ABC-SS using the Manhattan (`1) and Euclidean (`2) distance functions are repre-

sented using box plots. Small circles with a dot inside them indicate the median val-

ues, and the top and bottom ends of the boxes indicate the 25th and 75th percentiles.

The whiskers extend to the maximum and minimum data points considered after dis-

carding the outliers (if any). The pipe numbers of 62 Type M feeders are indicated

at the horizontal axis. The medians of the individual initial wall thicknesses fluctuate

around 5.1 mm pipe thickness, whereas the medians of the individual corrosion rates

are close to 0.07 mm/EFPY value. To further extend the feeder-specific analysis, the
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feeder-specific corrosion parameters can be used to predict the survival probabilities of

the individual feeders. For illustration, the survival functions of the individual feeders

obtained using p0 = 0.1 and Manhattan (`1) and Euclidean (`2) distance functions are

presented in Figure 5.22. For comparison, the survival function of the system of feeder

(a) (b)

Figure 5.22: Survival functions of the feeder pipes obtained using (a) Manhattan (`1) and (b)
Euclidean (`2) distance functions.

pipes are shown on top of the feeder-specific survival functions. It can be noticed that

the `1 distance produces higher variability of individual component lifetimes compared

to the results produced by the `2 distance.

Comparison with Simple Linear Regression

To illustrate the impact of using a simple linear regression model (i.e., using only the

fixed effects parameters in the LMER model and ignoring the random effects param-

eters), Figure 5.23a and Figure 5.23b present the lifetime distributions and survival

functions of the system of feeder pipes, respectively, obtained using both the models.

The posterior samples are generated using `1 and `2 distance functions and by fixing

p0 = 0.1 in the ABC-SS algorithm. The figures show that the simple linear regression
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(a) (b)

Figure 5.23: (a) Lifetime distributions and (b) survival functions of the system of feeder
pipes obtained using LMER and simple linear regression models. The results are generated
by setting p0 = 0.1 and using `1 and `2 distance functions.

model captured less uncertainty of the feeder lifetime compared to the LMER model.

From the simple linear regression model, the mean lifetime is found to be around 41

EFPY and COV around 4% – a reduction of approximately 60% from the COV of

the LMER lifetime. Moreover, the simple linear regression model gives a lower bound

of approximately 38 EFPY and an upper bound of 44 EFPY for the 95% CI of sys-

tem lifetime. By comparison, the LMER model produces a lower bound of 35 EFPY

and an upper bound of 53 EFPY. The reduction in credible bounds of the feeder life-

time clearly shows that the simple linear regression model is ineffective in accurately

capturing the uncertainty of the system lifetime.

5.5 Concluding Remarks

Degradation data from nuclear power plants are generally limited and masked with

measurement errors. As a result, stochastic modeling of degradation data becomes
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computationally challenging. The reason is that large sampling and inspection uncer-

tainties in degradation measurements require uncertainty quantification of the degra-

dation model parameters. The most popular approach in this case is the Bayesian

approach. Parameter inference of the model parameters in a Bayesian setting requires

evaluation of the model likelihood several times. However, in real-life situations, the

sample likelihoods of the model parameters derived from noisy data are complicated

high-dimensional integrals – making the traditional likelihood-based Bayesian inference

schemes computationally prohibitive.

Among the three examples presented in this chapter, the first two considered the

data to be contaminated by only the sizing error, whereas the third example considered

both the sizing and coverage error issues in degradation modeling. All three examples

using real data sets proves that the proposed ABC approach can be implemented with

confidence to completely bypass the likelihood evaluation step in the Bayesian infer-

ence procedure. The likelihood-free ABC methods offer high efficiency with minimal

analytical and computational complexities. Thus, ABC promises to be a better and

practical approach for solving real-life modeling problems that particularly involve var-

ious inspection uncertainties.

The first two examples highlighted the potential of ABC-MCMC to handle multiple

parameter estimation problems in corrosion modeling. This approach generated results

which match closely to that from the L-MCMC method. In the first example, the esti-

mates of the FAC rate parameters obtained from the Bayesian approach are compared

with the industry-standard linear regression approach. The results show that the linear

regression approach may underestimate the lifetime of the feeder pipes, thereby rein-

forcing the need to adopt a Bayesian framework for the estimation of corrosion model

parameters. The third example used the LMER model to characterize the FAC data,

where the ABC-SS algorithm is used to estimate the model parameters. The study
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shows that the proposed ABC-SS method efficiently handles the model calibration and

prediction provided the algorithmic hyperparameters are selected properly.
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Chapter 6

Parameter Estimation of a

Localized Corrosion Model

6.1 Introduction

Nuclear power plants consist of several large and small structural components that

work as a system to generate electricity. The reactor core contains numerous fuel

channels that contain the nuclear fuel, whereas several hundred feeder pipes and the

steam generators comprise of the primary heat transport system (see Figure 1.1). The

heat generated in the reactor core is transported to the steam generators with the help

of the heavy water coolant running through the feeder pipes that are connected to the

fuel channels. The steam generators contain numerous thin-walled tubes that help in

producing steam which is used by the steam turbines to generate electricity [77]. The

steam generator tubes experience a high degree of pitting corrosion due to extreme

conditions of the surrounding environment [148]. As a result, the outside surfaces of

these tubes are susceptible to pipe leakage if the pit depths are left uninspected for a

long period of time.
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Pitting corrosion is a type of localized corrosion that starts by cavity formation

on the metal surfaces [123]. These cavities can penetrate surfaces leading to failures.

The process of pit generation and their growth is considered to be stochastic in nature

[148]. In fact, due to this uncertainty, the new pit locations and growth rates of the

existing pits are difficult to predict. To understand the process of pitting corrosion,

many mechanistic (e.g., [88–90]) and stochastic models (e.g., [84, 117, 118, 148]) have

been developed.

This chapter presents an example of modeling the pitting corrosion data obtained

from in-service inspections of the steam generator tubes of a nuclear power plant. The

main objective is to estimate the distribution of the maximum pit depth – a quantity

of interest for life-cycle management of steam generators. The stochastic model for

the pitting corrosion process proposed by Yuan et al. [148] is used in this example.

The model deals with pit generation and growth in a systematic way, and it is fairly

realistic since it considers both the measurement and detection errors in the pitting

corrosion data.

Yuan et al. [148] showed that the likelihood function under the measurement and

POD errors involves high-dimensional integrals and infinite summations (see Equa-

tion 2.31). Moreover, because of the POD function, the parameters of the pit gener-

ation process and the pit growth process become intertwined to a point that it is not

possible to separately estimate them even though both processes are assumed inde-

pendent. As a result, the standard MCMC-based Bayesian inference schemes fail to

provide an efficient and accurate framework for parameter estimation. To circumvent

the numerical difficulties with likelihood evaluation, Yuan et al. [148] considered using

an approach based on the data augmentation technique – an iterative method that sim-

ulates missing data from updated model parameters [51]. Lu [77], on the other hand,

tried to solve a similar problem using an approximate version of the likelihood function
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which helps in reducing numerical difficulties. However, this chapter shows that the

proposed ABC-based approach not only eliminates the need to evaluate the likelihood

function but also provides an intuitive and efficient way for Bayesian inference. The

subsequent section presents an application of the newly developed ABC-SS(MHMC)

algorithm (see Subsection 4.9.3) for modeling pitting flaws in the steam generator

tubes.

6.2 Example: Parameter Estimation and Predic-

tion of Maximum Pit Depth

6.2.1 Degradation Data and Model

Data Set

The data set is prepared using information from a total of six inspection campaigns. It

contains information only about the newly detected pitting flaws since majority of the

pits do not show significant growths after detection [148]. The depths of the pitting

corrosion flaws are measured using an eddy current probe. Table 6.1 summarizes the

inspection data which show the number of newly detected pits along with the means

and the standard deviations of measured pit depths from each inspection campaign.

The pit depths are expressed in terms of the percentages of through-wall depth (TWD)

of steam generator tubes. The maximum of the mean pit depths can be seen to be

around 30% TWD, whereas the maximum of the standard deviation of pit depths is

around 20%. The number of newly detected pits show an increasing trend over the

years until the fifth inspection. Thereafter, at the sixth inspection campaign, it sud-

denly drops to a significantly small number of 18 from 238, which is the number of

newly detected pits at the fifth inspection campaign. The reason is a major mainte-
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nance campaign that is carried out just after the fifth inspection campaign. A major

maintenance campaign generally includes water lancing (WL) and chemical cleaning

(CC) of the steam generator tubes [148]. This example utilizes data from the first five

inspection campaigns for calibrating the pitting corrosion model. The data from the

sixth inspection campaign are utilized for model validation.

Table 6.1: Summary of pitting corrosion data from all six inspection campaigns.

Inspection Time No. of newly Mean pit depth Standard deviation of
campaign no. (years) detected pits (% TWD) pit depths (% TWD)

1 1.5 87 20.8 10.7
2 2.5 26 19.7 5.1
3 6.4 49 30.3 1.9
4 7.5 123 18.9 2.7
5 8.3 238 13.2 2.9
6 12.3 18 23.8 20.3

Model

For convenience, the NHPP-Weibull model, presented in Section 2.2.3, is briefly de-

scribed here. Assuming the inspections are carried out at times t1, t2, · · · , tk, the

data Di = {ndi,h(m)
i } from ith inspection contain the number of newly detected pits

ndi and their measured depths h(m)
i = {h(m)

i1 , h
(m)
i2 , · · · , h(m)

i,ndi
}>. The actual num-

ber of pits can be written as ni = ndi + nui, where nui is the number of unde-

tected pits. The measured pit depths can be written as h(m)
i = hi + zi, where

hi = {hi1, hi2, · · · , hi,ndi}> are the actual pit depths and zi = {zi1, zi2, · · · , zi,ndi}>

are the measurement errors. The actual number of pits ni is modeled using NHPP,

thus follows the Poisson distribution: P [Ni = n] = [Λ(ti−1,ti)]n
n! e−Λ(ti−1,ti), n = 0, 1, 2, · · · ,

where Λ(ti−1, ti) =
∫ ti
ti−1

ν(t)dt = λ(tδi − tδi−1), ν(t) = λδtδ−1 is a power law intensity

function, and λ > 0 and δ > 0 are the parameters of the NHPP model. To char-

acterize the detection error, the POD function p(h) = 1 − 1+e−qw
1+eq(h−w−th) is considered,

which is valid if the pit depth h > th; otherwise, it is zero. In this example, the fol-
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lowing parameter values are chosen: q = 20, w = 0.1, and th = 0, which are taken

from reference [148]. The actual pit depths are assumed to be Weibull distributed as

fH(h) = (β/γ)(h/γ)β−1e−(h/γ)β , h > 0, where γ > 0 and β > 0 are scale and shape

parameters, respectively. The measurement errors are assumed to follow the normal

distribution with a zero mean and a fixed standard deviation of 0.05 mm. For the

derivation of the distribution of maximum pit depth, the reader is referred to Ap-

pendix E.

6.2.2 Implementation Details

The proposed ABC-SS(MHMC) algorithm (Subsection 4.9.3) is implemented in the

MATLAB environment (version 9.9, 64-bit) with Intel® CoreTM i5-1035G7 CPU @

1.20 GHz processor, and 8.00 GB memory (RAM). To demonstrate the application of

the model selection procedure (for details, see Section 4.10), the pit generation model is

extended to four different models, m = 1, 2, · · · , 4, by specifying δ = {0.5, 1.0, 1.5, 2.0}.

Let us limit ourselves to these four models although there could be many ways to extend

the basic model. The three other parameters {λ, γ, β} are estimated for each individual

model.

Prior Distribution

Since all of the parameters of the pit generation and growth processes have positive

supports, a computationally convenient choice is to consider the logarithmic versions of

the parameters for parameter estimation, i.e., Θ = {ln λ, ln γ, ln β}. For selecting the

joint prior distribution, note that the gradient of a multi-variate Gaussian log-likelihood

can be analytically derived, hence can be used in our advantage. Thus, a multi-variate

Gaussian distribution N (0,Σ) is selected as the joint prior distribution. To select a

non-informative diffused prior, the mean vector is assumed to be zero, whereas the
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covariance matrix Σ is assumed to have diagonal terms equal to 10 (variances) and

non-diagonal terms equal to zero.

Distance Function

In this example, the following distance function is chosen:

ρ(D∗,D) =
∑
i

w1|n∗di − ndi|
|n∗di|+ |ndi|

+ w2|m∗i −mi|
|m∗i |+ |mi|

+ w3|s∗i − si|
|s∗i |+ |si|

+ w4|sk∗i − ski|
|sk∗i |+ |ski|

(6.1)

where m∗i and mi are the sample means of the simulated and actual measured pit

depths at the ith inspection campaign, respectively; s∗i and si are the sample standard

deviations; sk∗i and ski are the sample skewnesses; and {w1, w2, w3, w4} are the weights.

The selection of this distance function can be justified as follows. The observed

data contain two main information: the number of newly detected pits and their re-

spective measured depths. Thus, the proposed ABC method needs a distance function

that involves information from both types of data. Although the distance function

in Equation 6.1 is selected in an ad hoc manner (since there is no practical guide-

line available in the literature [142]), this example proves that the proposed distance

function is quite effective in capturing the target quantity of interest. While the dis-

crepancy between number of pits are directly used in the selected distance function, the

discrepancy between the measured and simulated pit depths is calculated using three

summary statistics: mean, standard deviation, and skewness. To give equal weights to

the number of pits and pit depth data, the following values are chosen for the weights:

w1 = 0.5 and w2 = w3 = w4 = 0.5/3.
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Selection of the Algorithmic Hyperparameters

To implement the algorithm, n0 is fixed at 100,000 samples and p0 is fixed at 0.1. The

number of simulation levels is determined using an approach proposed by Hazra et

al. [59], which states that the algorithm should be stopped after a certain number of

simulation levels when less than a certain p% change is observed between the tolerance

thresholds of the current simulation level and the previous simulation level. Here, the

percent value is selected to be 3%. The number of leapfrog steps is selected to be

L = 10, and the time step parameter is selected to be h = 0.05. The algorithmic

hyperparameters are selected based on a few trial runs of the algorithm to achieve

higher accuracy with less sample repetitions.

Data Simulation

The data simulation is performed by mimicking the process of pit generation and

growth according to the underlying stochastic model. Using the updated model pa-

rameters, a simulated data set D∗i = {n∗di,h
∗(m)
i }, i = 1, 2, · · · , k (the total number

of inspections k = 5) is generated for each inspection campaign. The number of new

pits n∗i are simulated from the NHPP model defined in Equation 2.23, whereas the pit

depths h∗i are simulated from the Weibull distribution fH(h) defined in Equation 2.25.

The actual pit depths h∗i are made noisy by adding the noise terms z∗i simulated from

the Gaussian distribution N (0, 0.052). Thus, the measured pit depths are obtained as

h∗(m)
i = h∗i +z∗i . Next, a pit detection process is created so that different pits with their

respective depths are either detected or not detected according to the POD function

defined in Equation 2.26. The number of newly detected pits n∗di and their measured

depths {h∗(m)
i1 , h

∗(m)
i2 , · · · , h∗(m)

i,n∗
di
} represent the simulated data set D∗i for ith inspec-

tion campaign. The same data simulation process is repeated for all five inspection

campaigns.
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6.2.3 Results and Discussion

Parameter Estimates

The proposed model selection algorithm (Section 4.10) is run for seven simulation levels

and then it stopped once the stopping criterion is fulfilled. The algorithm took around

15 minutes to run. Figure 6.1 shows the histograms of models at different simulation

levels starting from level 1 and ending at level 7. The simulation level 7 is the final

Figure 6.1: Histograms of models at different simulation levels.

level which represents the posterior estimates of the models. At each simulation level,

10000 sets of parameter samples are selected as seed samples for the next simulation
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level. In Figure 6.1, slight variations of the frequencies of four different models can be

observed at the first two levels; however, from level 3, the frequencies of the models

start to change rapidly. It can be observed that models 1 and 2 almost vanished after

level 4, whereas the frequency of model 3 gradually increases to a maximum at the

final simulation level. At the final simulation level, out of 10000 sets of parameter

samples, models 1 ∼ 4 were selected 600, 0, 6677, and 2723 times, respectively. Thus,

the model selection scheme selects model 3 as the best model to represent the observed

data among all four models. The Bayes factors B31 = 11.13, and B34 = 2.45 imply that

model 3 shows positive evidence against model 1 and weak evidence against model 4.

Although the scheme finds model 3 as the most suitable model for the data, it can be

observed that model 3 is only marginally better than model 4.

The marginal posterior distributions of the model 3 parameters are shown in Fig-

ure 6.2. It shows that the model 3 parameters have fair amounts of variability that

Figure 6.2: Marginal posterior distributions of the model parameters.

may lead to higher uncertainties in the model predictions. The means, COVs, and 95%

credible intervals of the parameters are calculated and listed in Table 6.2. It can be

observed that the parameters have similar COV values of around 15%. This implies

that the uncertainties in the model predictions are contributed approximately equally

by all three parameters of the model.
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Table 6.2: Summary statistics of the posterior parameter samples.

Parameter Mean COV [2.5th, 97.5th] percentiles
λ 28.27 0.15 [21.85, 38.25]
γ 19.03 0.13 [13.66, 23.05]
β 1.81 0.14 [1.29, 2.28]

Distribution of Pit Depth

A major maintenance of the steam generator tubes through the the WL/CC process

is carried out at the end of the fifth inspection campaign. Thus, the sixth inspection

campaign can be considered to be the first inspection of the steam generator tubes

after a major maintenance campaign. Table 6.1 shows that the time interval between

the fifth and sixth inspection campaigns is four years. In Figure 6.3, the distributions

of the measured and predicted pit depths are compared. The histogram represents the

measured pit depths. The solid gray lines represent the predicted pit depth distribu-

Figure 6.3: Comparison between measured and predicted pit depth distributions (obtained
at an interval of four years) at the sixth inspection campaign. The histogram represents
the measured/observed pit depths. The solid and broken gray lines represent the predicted
distributions of pit depths and maximum depths for different sets of parameter samples. The
solid and broken black lines represent the corresponding mean predicted distributions.
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tions obtained using all sets of the posterior parameter samples from model 3; whereas

the solid black line represents the predicted mean distribution. The predicted mean

pit depth distribution can be seen to fit well with the observed distribution, which

also includes the smaller pits that were otherwise missed due to the POD error. The

same can be noticed in Figure 6.4, where the predicted mean pit depth distribution is

compared with various other probability distributions, such as Weibull, gamma, and

lognormal, fitted to the measured pit depths using the MLE method. The predicted

distribution takes care of the POD and measurement errors compared to the fitted

distributions that are based on the noisy data.

Figure 6.4: Comparison between the predicted pit depth distribution and various other prob-
ability distributions fitted to the measured/observed pit depth data.

Distribution of Maximum Pit Depth

It is often of great interest to a practitioner to determine the distribution of the maxi-

mum pit depth. The probability distribution of the maximum pit depth is plotted in

the same Figure 6.3. The broken gray lines represent the predicted maximum pit depth
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distributions generated using all instances of the posterior parameter samples, and the

solid black line represents the predicted mean maximum pit depth distribution. From

the figure, it can be visually verified that the observed maximum pit depth is covered

by the predicted mean distribution. This proves that the proposed methodology can

be used to accurately predict the distributions of the pit depth and its maximum value

in the steam generator tubes.

The variability of the 95th percentile of maximum pit depth with the operating time

of the steam generators is another important input to the risk-based life cycle man-

agement of nuclear power plant components. Thus, the posterior parameter samples

are utilized in predicting the 95th percentile of maximum pit depth in Figure 6.5. The

solid line represents the mean path and the shaded region represents the 95% credible

interval. The figure shows that the 95th percentile of maximum pit depth increases

rapidly in the first few years of operation and thereafter, it grows slowly along time.

Figure 6.5: Prediction of the 95th percentile of maximum pit depth. The solid line represents
the mean and the shaded region represents the 95% credible interval.
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Comparison with the results of a previous study

As mentioned earlier, Yuan et al. [148] proposed an approach based on MCMC and

the data augmentation technique, and here we compare Yuan’s results with the results

obtained using the likelihood-free approach. The parameter estimates from the study

by Yuan et al. [148] are presented in Table 6.3. It can be observed from Table 6.2

Table 6.3: Posterior parameter estimates reported in [148].

Parameter Mean COV
λ 23.8 0.20
γ 18.1 0.10
β 1.47 0.05
δ 1.79 0.09

that the means and COVs of the posterior parameter samples from both methods are

almost similar, and the slight variations are the results of selecting different priors for

the Bayesian inference. While the prior selection in the study by Yuan et al. [148] was

motivated by prior conjugacy, in this study, the prior selection is mainly motivated by

analytical and numerical convenience. However, if one compares the model predictions,

it can be observed that both methods produce similar results (see Figure 7 in [148]).

6.3 Concluding Remarks

Modeling pitting corrosion data and predicting the maximum pit depth distribution is

a challenging task since the data are generally limited and mostly affected by sizing and

detection errors. Although the parameter uncertainties can be suitably quantified in a

Bayesian framework, the conventional likelihood-based schemes simply do not qualify

as practical methods due to difficulty in evaluating the model likelihood. On the

other hand, the proposed ABC approach proves to handle the modeling and prediction

process quite efficiently.
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The proposed ABC-SS(MHMC) scheme is applied to model selection and param-

eter estimation of the pitting corrosion model defined in Section 2.2.3. The scheme

successfully identified the most suitable model that best describes the observed data,

and in addition to that, it estimated the corresponding model parameters. The poste-

rior parameter samples are then used to predict the distribution of maximum pit depth

and the 95th percentile of maximum pit depth along time, which are important inputs

to the life cycle management of steam generators.

164



Chapter 7

Conclusions and Recommendations

7.1 Significance of the Study

The reliability of an infrastructure system is adversely affected by various degradation

processes over time. As a result, the reliability of these kinds of systems reduces over

time, and if not maintained properly, they can fail even before reaching their end of

life. This study presents a likelihood-free approach for Bayesian degradation modeling

using degradation measurements that mainly suffer from various uncertainties related

to measurement noise and detection errors. The significance of the proposed research

mainly lies in the fact that it tried to explore the effects of parameter uncertainty in

model predictions in a simple and efficient way. To this end, this study has provided

an easy-to-implement method for Bayesian model selection and parameter inference of

stochastic degradation models. A benefit of the proposed method is that it expands

the domain of model choice, thereby allowing practitioners to develop more realistic

models without being constrained by the analytical complexities.
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7.2 Summary of Results

Four popular stochastic degradation models for flaw growth and flaw generation are

introduced in Chapter 2, these are the random rate model, the gamma process model,

the LMER model, and the Poisson process model. The basic properties of these models

and the corresponding model likelihoods for noisy data are presented in this chapter.

The common sizing error is considered in the formulation of the random rate and

gamma process models. In the formulation of the LMER model, besides sizing er-

ror, the coverage error is considered, which mainly impacts inspection data of nuclear

power plants. Lastly, the Poisson process flaw generation model is formulated for data

contaminated by the sizing and POD errors.

For Bayesian inference, the MCMC methods are popular since they can efficiently

generate samples from a posterior distribution without having to calculate the entire

posterior density function. These methods use only a ratio of the posterior density

functions for sampling. The derivation of MCMC methods using the Markov chain

theory in conjunction with the Monte Carlo Methods is discussed in Chapter 3. The

basic implementation steps of various popular MCMC algorithms are presented along

with a few toy examples to demonstrate the working principles of these schemes.

The study finds that MCMC methods become computationally prohibitive when

degradation measurements are noisy. This happens because noisy data often turns

model likelihoods into various complicated functions, such as high-dimensional inte-

grals, high-dimensional infinite summations, or a combination of both. Numerical

evaluation of these functions is challenging since most methods suffer from convergence

issues. As a remedy to this problem, the likelihood-free ABC schemes for Bayesian in-

ference are introduced in Chapter 4. The fundamental idea behind the likelihood-free

inference and various implementation issues of the advanced ABC algorithms are dis-
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cussed in this chapter. An advanced ABC algorithm is proposed in this chapter, which

is derived using the HMC method as its sampling scheme. It is shown using a toy ex-

ample that the proposed ABC-HMC provides better mixing and exploration of small

modes than the standard ABC-MCMC scheme. A new modified ABC-HMC algo-

rithm is also proposed to accommodate highly diffused priors, which uses the subset

simulation as a sequential sampling scheme within it.

To demonstrate the capabilities of the proposed methodology, various examples

of flaw growth and flaw generation modeling using real data sets are presented in

Chapter 5 and Chapter 6. The examples show that the proposed ABC-based approach

generates accurate posterior estimates, and it is computationally efficient compared to

the traditional likelihood-based approach.

The main contributions of this thesis are summarized as follows:

1. For estimating the parameters of the popular random rate model from noisy data,

a likelihood-free approach based on the ABC-MCMC scheme is presented. To

initialize the ABC-MCMC algorithm, a new scheme Algorithm 13 is proposed. It

is shown that the ABC-MCMC method combined with the proposed initialization

scheme is computationally faster than the traditional likelihood-based MCMC

approach. The estimates from the Bayesian approach are compared with the

standard linear regression approach. The results show that the linear regression

approach underestimates the lifetime of the feeder pipes.

2. Bayesian inference of the gamma process parameters from noisy degradation mea-

surements is performed through a novel application of the ABC-MCMC method.

A new tolerance selection criterion is proposed, which provides a better way to

perform quality checks on the accepted samples generated by the ABC-MCMC

scheme. This guarantees that the accepted samples belong to a distribution very
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close to the true posterior distribution. Although ABC-MCMC offers signifi-

cant computational savings, it is found that the samples from the Markov chain

of the proposed method show very high repetition. To reduce its effects, it is

recommended to select large thinning intervals for the ABC-MCMC samples.

3. An application of the mixed-effects regression model for characterizing the feeder

pipe data is presented. This study considered both sizing and coverage error

issues during the inspection and proposed a sequential ABC method, ABC-SS,

for estimating the parameters of the regression model. The proposed method is

found to be very useful to deal with flexible regression models, i.e., a regression

model with different types of error distributions such as normal, non-normal,

and mixture distributions. Various implementation issues are discussed in de-

tail – particularly, the selection of the distance functions and other algorithmic

hyperparameters in the context of degradation modeling. Furthermore, a new

stopping criterion is proposed for the algorithm which is based on the toler-

ance thresholds obtained from each simulation level. The proposed methodology

can be implemented to accurately infer estimates of the system and individual

component-specific lifetimes and survival probabilities.

4. Although the ABC-MCMC sampler works faster than any likelihood-based ap-

proach, it comes with poor mixing properties that result in high sample repe-

tition and subsequent removal of a large number of samples through thinning.

To improve the mixing properties, a new ABC algorithm is derived based on

the HMC sampler. The HMC sampling scheme is an MCMC method that fol-

lows the Hamiltonian dynamics to propose new samples from seed samples. Its

non-random walk behavior help to explore the target probability space more ef-

fectively and efficiently than the standard random-walk MCMC method. The
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convergence of the proposed ABC-HMC algorithm is proved by satisfying the

detailed balance equation, and its efficacy is verified using a numerical example

in Section 4.9.2. The example shows that the new ABC-HMC scheme can effec-

tively capture small modes of a target posterior distribution with better mixing

properties than the standard ABC-MCMC sampling scheme.

5. A new sequential ABC algorithm is proposed to deal with highly diffused priors in

a Bayesian inference problem. The proposed ABC algorithm is based on the sub-

set simulation method and a modified HMC algorithm. With faster convergence,

the new ABC-SS(MHMC) sampler turned out to be a powerful method to sam-

ple from a complex multi-modal target density (see, for example, Section 4.9.3).

The applicability of the proposed ABC-SS(MHMC) algorithm is further extended

by transforming it into a likelihood-free Bayesian model selection tool in Algo-

rithm 12. The application of the proposed algorithm is demonstrated using a

practical data set from the steam generator tubes affected by pitting corrosion.

The data are assumed to be contaminated by measurement and detection er-

rors. The proposed scheme successfully identified the most suitable model that

best describes the observed data, and in addition to that, it estimated the cor-

responding model parameters that are used to predict the maximum pit depth

distribution with time – a quantity of interest for the life cycle management of

the steam generator tubes.

7.3 Recommendations for Future Research

The degradation models considered in this study only tried to characterize the variation

of a particular degradation process with respect to the operating time. However, the

component degradation may vary with respect to other parameters of the surrounding

169



environment as well. Thus, other stochastic models that consider variables such as

temperature, pressure, flow velocity, and pH value must be investigated in order to not

only have a better understanding of degradation processes but also verify the efficacy

of the likelihood-free schemes for model selection and parameter estimation. More-

over, this study focused only on flaw growth and flaw generation modeling problems.

However, other types of degradation processes such as two-phase degradation modeling

problems (e.g., [106]) must be investigated as well.

The motivation behind using the ABC algorithms for stochastic degradation mod-

eling is that these algorithms are likelihood-free; thus, one can avoid computation of

the complicated likelihood functions resulting from noisy degradation measurements.

This also makes these algorithms quite practical to use. However, the main drawback

of these algorithms is that there are no theoretical justification or practical guidelines

available in the literature on how to select the distance function and other different algo-

rithmic hyperparameters for modeling different types of degradation processes. Thus,

in the context of stochastic degradation modeling, further theoretical and numerical

investigations are needed to remedy these drawbacks found in the novel likelihood-free

ABC schemes.
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Appendix A

Derivations of Joint Distributions

A.1 Joint Distribution of the Inspection Error

To formulate the joint PDF f∆Zi(∆zi), an important step is the following linear trans-

formation: ∆Zi = JZi. Here, Zi = {Zi0, Zi1, · · · , Zimi}, ∆Zi = {Zi1 − Zi0, Zi2 −

Zi1, · · · , Zi,mi−1−Zimi}T and J is the transformation matrix. The expression of J can

be written as [79]

J =



−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
... ... ... . . . ... ...

0 0 0 · · · −1 1


mi×(mi+1)

(A.1)

Here, Zi is a multivariate normal random vector with zero mean vector and covariance

matrix ΣZi = σZImi+1, where Imi+1 is an identity matrix of dimension (mi+1). Hence,

the transformed random vector ∆Zi will have a zero mean vector and a covariance

matrix Σ∆Zi = σ2
ZJImi+1JT = σ2

ZJJT . Thus, the joint PDF f∆Zi(∆zi) can be written

as

f∆Zi(∆zi) = 1
(2π)mi/2|Σ∆Zi |

exp

− 1
2∆ziΣ−1

∆Zi∆zTi

 (A.2)
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where | • | represents the determinant operator.

A.2 Joint Distribution of Flaw Sizes

The PDF of the measured flaw size H(m)
ij is the convolution of the PDF of the depth

of detected flaws H(d)
ij and the measurement error Z as they are related by H

(m)
ij =

H
(d)
ij + Z. Therefore,

f
H

(m)
ij

(h(m)
ij ) =

∫ ∞
0

f
H

(d)
ij

(y)fZ(h(m)
ij − y)dy (A.3)

where fZ(•) is the distribution of the measurement noise. The PDF of the detected

flaw size H(d)
ij is a conditional probability, which is expressed as

f
H

(d)
ij

(h) = fH(h | D = 1) = f(D = 1 | H = h)fH(h)
P[D = 1] (A.4)

The first term of the numerator is just the POD function, as defined in Equation 2.26,

and the second term of the numerator is the Weibull distribution assumed for the actual

pit depth in Equation 2.25. The denominator is the unconditional flaw size detection

probability, which can be expressed as

P[D = 1] = E[p(h)] =
∫ ∞

0
p(h)fH(h)dh (A.5)

Substituting Equation A.5 and Equation A.4 back into Equation A.3, we obtain

f
H

(m)
ij

(h(m)
ij ) = 1

E[p(h)]

∫ ∞
0

p(h)fH(h)fZ(h(m)
ij − h)dh (A.6)
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The joint distribution of the flaw sizes now can be written as

fH(m)
i

(h(m)
i ) =

ndi∏
j=1

f
H

(m)
ij

(h(m)
ij ) =

ndi∏
j=1

{
1

E[p(h)]

∫ ∞
0

p(h)fH(h)fZ(h(m)
ij − h)dh

}
(A.7)

Equation A.7 is same as Equation 2.28.

A.3 Probability of the Number of Detected Flaws

The probability of the number of detected flaws given the number of newly generated

flaws, i.e., P[Ndi = ndi | Ni = ni], can be calculated from a binomial distribution with

the success probability equal to E[p(h)]. Therefore,

P[Ndi = ndi | Ni = ni] = ni!
(ni − ndi)!ndi!

{E[p(h)]}ndi{1− E[p(h)]}ni−ndi (A.8)

Finally, the probability of the number of detected flaws, i.e., P[Ndi = ndi], can be

calculated as,

P[Ndi = ndi] =
∞∑
ni=0

P[Ndi = ndi | Ni = ni]P[Ni = ni]

=
∞∑
ni=0

{Λ(ti, ti−1)}ni
(ni − ndi)!ndi!

exp{−Λ(ti, ti−1)}{E[p(h)]}ndi{1− E[p(h)]}ni−ndi

(A.9)

Equation A.9 is same as Equation 2.30.
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Appendix B

Markov Chain: Basic Concepts

A Markov process X(t) follows the Markov property, according to which the outcome

of a stochastic process at any instant of time is dependent only on its immediately

preceding outcome [101]. In other words, the process X(t) is not influenced by the

past, but only by the present, i.e.,

P[X(tn) ≤ xn | X(t), t ≤ tn−1 < tn] = P[X(tn) ≤ xn | X(tn−1)] (B.1)

In the case of a discrete-time Markov process, if t1 < t2 < · · · < tn−1 < tn < · · · , then

P[X(tn) ≤ xn | X(tn−1),X(tn−2), · · · ,X(t1)] = P[X(tn) ≤ xn | X(tn−1)] (B.2)

Markov chains are a special kind of Markov process where X(t) undergoes transi-

tions from one state to another between a set of finite or countably infinite states

s1, s2, · · · , sj, · · · , on a state space S. Markov chains can be discrete-time or continuous-

time; however, in the context of MCMC, Markov chains are considered to be discrete-

time processes. A. A. Markov first introduced the Markov chain theory for a finite

state space, although Kolmogorov was the one who proposed the theory of Markov
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chains on a countably infinite state space [101].

Let us assume that Xn = X(tn) is the state of the system at t = tn and n ≥ m ≥ 0.

Now, the probability that the process X(t) occupies the state sj at time t = tn, given

that it was in state si at time t = tm, is represented by the transition probability

pij(m,n), which can be written as

pij(m,n) = P[Xn = sj | Xm = si] (B.3)

The transition probabilities can be arranged in a matrix form as

P (m,n) =



p11(m,n) p12(m,n) · · · p1j(m,n) · · ·

p21(m,n) p22(m,n) · · · · · · · · ·
... ... . . . ... ...

pi1(m,n) · · · · · · pij(m,n) · · ·

· · · · · · · · · · · · · · ·


(B.4)

where P (m,n) is called the transition probability matrix. The matrix elements are

non-negative, and the elements of each row sum to unity, i.e., ∑j pij(m,n) = 1. A

Markov chain is completely defined by its transition probability matrix P (m,n) and

its initial probability, pr(1) = P[X1 = sr].

B.1 Time-Homogeneous Markov Chain

In the context of MCMC, the transition probabilities need to be stationary [101] – a

property of the time-homogeneous Markov chain. In other words, a Markov chain is

time-homogeneous if the transition probability is only dependent on the time-difference,
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i.e.,

P[Xn = sj | Xm = si] = pij(n−m) = p
(k)
ij (B.5)

where p(k)
ij is the probability that a Markov chain undergoes transition from state si

to state sj in k steps. Thus, P (k) = {p(k)
ij } is the k step transition probability matrix.

For k = 1, p(1)
ij can be simply denoted as pij. Thus, the one-step transition probability

matrix for a time-homogeneous Markov chain can be written as

P (1) = P =



p11 p12 · · · p1j · · ·

p21 p22 · · · · · · · · ·
... ... . . . ... ...

pi1 · · · · · · pij · · ·

· · · · · · · · · · · · · · ·


(B.6)

B.2 Chapman-Kolmogorov Equation

The transition probability function follows the Chapman-Kolmogorov equation [101],

i.e., for any n > r > m, we have

pij(m,n) =
∑
k

pik(m, r)pkj(r, n) (B.7)

Accordingly, the probability transition matrices are related by the following expression

P (m,n) = P (m, r)P (r, n) (B.8)

For a homogeneous Markov chain, the relation can be written as

p
(m+n)
ij =

∑
k

p
(m)
ik p

(n)
kj =

∑
k

p
(n)
ik p

(m)
kj (B.9)
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In matrix form, the same relation is expressed as

P (m+n) = P (m)P (n) = P (n)P (m) (B.10)

From Equation B.10, the one-step recursion relation can be derived as

P (n+1) = P (n)P (1) = P (1)P (n), n = 1, 2, 3, · · · (B.11)

Thus, an n step transition probability matrix can be easily derived by multiplying the

one-step transition probability matrix n times.

Example: Random Walk

As an example of a Markov chain, a general one-dimensional random walk can be con-

sidered [101]. It is a Markov chain with possible states, s1, s2, · · · , where the probability

of transitioning from state sj to sj+1 is pj, to sj−1 is qj, and the probability of remaining

at the same state is rj. For state s1, the process can stay there with probability r1 or

go to the next state s2 with probability p1. A schematic of the general one-dimensional

random walk is presented in Figure B.1. Accordingly,

r1 + p1 = 1

qj + rj + pj = 1, j = 2, 3, · · ·
(B.12)

Consequently, the transition probability matrix P can be written as

P =



r1 p1 0 0 0 · · ·

q2 r2 p2 0 0 · · ·

0 q3 r3 p3 0 · · ·
... ... ... ... ... · · ·


(B.13)
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Figure B.1: One-dimensional random walk [101].

Depending on the element properties of the transition probability matrix, different

kinds of random walks can be derived. Table B.1 contains some variants of random

walks along with their properties. Note that the variants of random walks contain a

finite number of states, s1, s2, · · · , sN .

B.3 Stationary Distributions

Suppose a homogeneous Markov chain has a finite number of states, s1, s2, · · · , sN .

Let us say, at t = tn, the probability vector for the chain location {Xn = sj} is

given by Π(n) = {π(n)
1 , π

(n)
2 , · · · , π(n)

N }, n = 1, 2, , · · · , where ∑N
i=1 π

(n)
i = 1. Now, the

probability vector for the next chain location Xn+1 can be easily derived using the

recursion equation

Π(n+1) = Π(n)P (1) = Π(1)P (n), n = 1, 2, 3, · · · (B.14)

Now, a Markov chain is said to be stationary if,

Π(n) −→ Π∗, n −→∞ (B.15)
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Table B.1: Variants of one-dimensional random walks [101] .

Random Walk Description Transition Probability Matrix

Random walk From an interior state,

P =



1 0 0 0 0 · · 0

q 0 p 0 0 · · 0

0 q 0 p 0 · · 0
...

...
...

...
...

...
...

...

0 0 · · · q 0 p

0 0 · · · 0 0 1



with absorbing transitioning to left and

barriers right is possible with

probabilities q and p,

respectively (p+ q = 1).

However, no transition is

possible from end states.

Random walk If the process reaches a

P =



q p 0 0 0 · · 0

q 0 p 0 0 · · 0

0 q 0 p 0 · · 0
...

...
...

...
...

...
...

...

0 0 · · · q 0 p

0 0 · · · 0 q p



with reflecting boundary, it reflects the

barriers process back to the

adjacent state.

Cyclic The two end-boundary

P =



0 p 0 0 0 · · 0 q

q 0 p 0 0 · · 0 0

0 q 0 p 0 · · 0 0
...

...
...

...
...

...
...

...
...

0 0 · · · · q 0 p

p 0 · · · · 0 q 0



random walk states, s1 and sN , connect

together to form a circle.

The random walk continues

endlessly in this circular

path.

irrespective of the initial distribution. In another way, regardless of the initial starting

state, the transition probabilities converge to a limiting probability, i.e.,

p
(n)
ij −→ p∗j , n −→∞ (B.16)

196



Since Π∗ is an invariant distribution, multiplying it with P (1) will essentially give back

the same distribution:

Π∗P (1) = Π∗

=⇒ Π∗(P (1) − I) = 0
(B.17)

where I is an identity matrix. To numerically calculate the steady state vector, we can

either solve this system of linear equations or keep on multiplying P (1) with Π(1) until

n reaches a reasonable value and Π(n) converges to the steady state.

However, a Markov chain may not have a stationary distribution, or even if the

chain does own one, it may not be unique. To guarantee the existence of a unique

stationary distribution, the Markov chain has to follow two constraints:

1. Irreducibility: A Markov chain is said to be irreducible (a communicating chain)

if any state sj can be reached from any other state si with a non-zero probability,

i.e.,

p
(n)
ij > 0, n = 1, 2, 3, · · · (B.18)

2. Aperiodicity: A Markov chain is said to be aperiodic if the process never returns

to the same state with a fixed period. Mathematically, the process has a zero

transition probability for returning to the same state in kT steps, where T is the

fixed return period:

p
(n)
jj = 0, n = kT, k = 1, 2, · · · (B.19)

Any Markov chain that follows these two properties is said to be ergodic. An ergodic

Markov chain is guaranteed to have a unique steady state probability vector Π∗ [101].
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B.4 Reversible Markov Chain

To ensure that any probability vector Π∗ = {π∗1, π∗2, · · · , π∗N} is in fact the desired

steady state vector, the Markov chain has to follow the sufficient (but not necessary)

reversibility condition [6]:

π∗i pij = π∗jpji

=⇒ π∗i P[Xn+1 = sj | Xn = si] = π∗jP[Xn+1 = si | Xn = sj]
(B.20)

where π∗i and π∗j are the equilibrium probabilities of being in states si and sj, re-

spectively. This expression is also known as the detailed balance equation. Generally

speaking, the detailed balance equation guarantees that in a long run, a time-reversible

Markov chain spends equal amounts of time to move from state si to sj and vice versa.

For a time-reversible Markov chain, we can show that

∑
i

π∗i p
(1)
ij =

∑
i

π∗jp
(1)
ji = π∗j

∑
i

p
(1)
ji = π∗j (B.21)

This states that for a time-reversible Markov chain, the amount of time spent at state

sj is equal to the total amount of time spent by the chain transitioning from other

states, i.e., s1, s2, · · · , sj, · · · , sN to sj. In other words, a time reversible Markov chain

does not have a net flow of probability through its closed cycle of states. For example,

pijpjkpki = pikpkjpji, ∀i, j, k (B.22)

This is known as the Kolmogorov’s criterion – a necessary and sufficient condition for

the reversibility condition of Markov chains. If we design a Markov chain such that it

follows the detailed balance equation, then it will have Π∗ as its stationary distribution.

Thus, the detailed balance equation is often used to derive various MCMC samplers.
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In the case of a continuous state-space, the reversibility condition or detailed balance

equation can be easily extended as

π(s)K(s′ | s) = π(s′)K(s | s′) (B.23)

where the steady state vector Π∗ becomes a stationary probability density π(•) and the

one-step transition matrix P (1) = P becomes the transition kernel probability density

K(s′ | s) which represents a transition of the chain from state s to s′.

Example

Suppose a construction company needs to buy building materials for a construction

project. The company has two choices: (i) materials supplier A, and (ii) materials

supplier B. The probability of choosing a materials supplier, given the choice of the

previous construction project, can be represented by a transition probability matrix:

P =

0.7 0.3

0.4 0.6

 (B.24)

The matrix P represents that the company is 70% likely to give a contract to supplier A

and 30% likely to give the same contract to supplier B, given that it hired supplier A in

a previous construction project. Similarly, there is 60% probability that the company

will select supplier B, and 40% for supplier A if it had chosen B in the previous project.

Figure B.2 shows a graphical representation of the transition probabilities.

Suppose the company hired supplier A in its previous project. This can be represented

as

Π(1)
(

1 0
)

(B.25)

which says supplier A has 100% probability of selection and supplier B has 0%. Using
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Figure B.2: A graphical representation of the transition probability matrix.

Equation B.14, the choice can be predicted for the next project as

Π(2) = Π(1)P =
(

1 0
)0.7 0.3

0.4 0.6

 =
(

0.7 0.3
)

(B.26)

Similarly, predictions can also be made for the 3rd, 4th, 5th, · · · projects as

Π(3) = Π(2)P =
(

0.61 0.39
)

Π(9) = Π(8)P =
(

0.5715 0.4285
)

Π(4) = Π(3)P =
(

0.583 0.417
)

Π(10) = Π(9)P =
(

0.5714 0.4286
)

Π(5) = Π(4)P =
(

0.5749 0.4251
)

Π(11) = Π(10)P =
(

0.5714 0.4286
)

Π(6) = Π(5)P =
(

0.5725 0.4275
)

Π(12) = Π(11)P =
(

0.5714 0.4286
)

Π(7) = Π(6)P =
(

0.5717 0.4283
)

Π(13) = Π(12)P =
(

0.5714 0.4286
)

Π(8) = Π(7)P =
(

0.5715 0.4285
)

Π(14) = Π(12)P =
(

0.5714 0.4286
)

It can be observed that the probability vector reached a steady state condition after

the 10th update. This implies that the probabilities of selecting different materials

suppliers converge to limiting values. To prove that the steady state distribution is the

same or invariant irrespective of the initial distribution, let us start with an arbitrary
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initial probability vector:

Π(1) =
(

0.45 0.55
)

Π(6) = Π(5)P =
(

0.5711 0.4289
)

Π(2) = Π(1)P =
(

0.535 0.465
)

Π(7) = Π(6)P =
(

0.5713 0.4287
)

Π(3) = Π(2)P =
(

0.5605 0.4395
)

Π(8) = Π(7)P =
(

0.5714 0.4286
)

Π(4) = Π(3)P =
(

0.5681 0.4318
)

Π(9) = Π(8)P =
(

0.5714 0.4286
)

Π(5) = Π(4)P =
(

0.5704 0.4296
)

Π(10) = Π(9)P =
(

0.5714 0.4286
)

Notice that the steady state vector Π∗ =
(
0.5714 0.4286

)
is invariant irrespective of

the initial conditions. These limiting probabilities can also be calculated by multiplying

the transition probability matrix by itself several times until it converges to a steady

state condition:

P =

0.7 0.3

0.4 0.6

 P 6 =

0.5717 0.4283

0.5710 0.4290


P 2 =

0.61 0.39

0.52 0.48

 P 7 =

0.5715 0.4285

0.5713 0.4287


P 3 =

0.583 0.417

0.556 0.444

 P 8 =

0.5715 0.4285

0.5714 0.4286


P 4 =

0.5749 0.4251

0.5668 0.4332

 P 9 =

0.5714 0.4286

0.5714 0.4286


P 5 =

0.5725 0.4275

0.5700 0.4300

 P 10 =

0.5714 0.4286

0.5714 0.4286


However, the easiest approach for calculating the stationary distribution is by using

Equation B.17:
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Π∗(P − I) = 0

=⇒
(
π∗1 π∗2

)
0.7 0.3

0.4 0.6

−
1 0

0 1


 =

(
0 0

)

=⇒
(
π∗1 π∗2

)−0.3 0.3

0.4 −0.4

 =
(

0 0
)

=⇒ 0.3π∗1 − 0.4π∗2 = 0

(B.27)

Since Π∗ is a probability distribution, we know that

π∗1 + π∗2 = 1 (B.28)

Solving this pair of simultaneous equations (Equation B.27 and Equation B.28) gives

the steady state distribution as

Π∗ =
(
π∗1 π∗2

)
=
(

4/7 3/7
)

=
(

0.5714 0.4286
)

(B.29)

Hence, in the long run, there is a 57.14% chance that suppler A will get hired by the

construction company, whereas, for suppler B, the probability is only 42.86%.
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Appendix C

Modified Metropolis Algorithm

The steps for implementing the MM algorithm is described in this appendix. At any

simulation level s, s = 1, 2, · · · , S, the MM algorithm starts by identifying the inde-

pendent components of the model parameters such as Θ(k) = {Θ(k)
1 ,Θ(k)

2 , · · · ,Θ(k)
c0 },

where Θ(k)
c , c = 1, 2, · · · , c0, can be a scalar or a vector of parameters. Transform-

ing the joint prior distribution into a product of independent prior distributions:

f(Θ) = f1(Θ1)f2(Θ2) · · · fc0(Θc0), the MM acceptance probabilities for each compo-

nent can be calculated as

Ac = min

1, fc(Θ̃c)qc(Θ(k)
c | Θ̃c)

fc(Θ(k)
c )qc(Θ̃c | Θ(k)

c )

 (C.1)

where Θ̃c ∼ qc(Θ | Θ(k)
c ) and qc(Θ | Θ(k)

c ) is the cth component’s proposal distribution

conditioned on the current sample Θ(k)
c . To propose a new parameter sample Θ∗ =

{Θ∗1,Θ∗2, · · · ,Θ∗c0}, each component of it is updated based on their respective MM

acceptance probabilities Ac, i.e., Θ∗c = Θ̃c is set with probability Ac and Θ∗c = Θ(k)
c

is set with probability 1 − Ac. Once the proposed parameter Θ∗ is obtained, a data

set D∗ is simulated from the forward model M(D | Θ∗) and the distance function
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ρ∗ = ρ(D∗,Dobs) is evaluated. Finally, the model parameter is updated based on the

tolerance threshold ε(s−1), i.e., Θ(k+1) = Θ∗, if ρ∗ ≤ ε(s−1); otherwise Θ(k+1) = Θ(k).

The pseudocode of the MM sampler is presented in Algorithm 14. The component-

specific proposal distribution qc(Θ | Θ(k)
c ) is assumed to be a normal density function

with a mean of Θ(k)
c and standard deviation σc (or covariance matrix Σc) so that

qc(Θ | Θ(k)
c ) = qc(Θ(k)

c | Θ). The parameter σc (or covariance matrix Σc) can be

adaptively obtained at each simulation level by equating it to the sample standard

deviation (or covariance matrix) of the n0p0 number of selected parameter samples.

Algorithm 14 MM sampler for ABC-SS
1: for c = 1 to c0 do
2: Generate Θ̃c ∼ qc(Θ | Θ(s,h+r−1)

c ), where Θ(s,k) = {Θ(s,k)
1 , · · · ,Θ(s,k)

c0 }
3: Assuming f(Θ) = f1(Θ1)f2(Θ2) · · · fc0(Θc0), calculate

Ac = min

1, fc(Θ̃c)qc(Θ(s,h+r−1)
c | Θ̃c)

fc(Θ(s,h+r−1)
c )qc(Θ̃c | Θ(s,h+r−1)

c )


4: Generate u ∼ U [0, 1]
5: Set

Θ∗c =

Θ̃c, if u ≤ Ac
Θ(s,h+r−1)
c , otherwise

6: end for
7: Simulate D∗ ∼M(D | Θ∗)
8: Evaluate ρ∗ = ρ(D∗,Dobs)
9: Set

{Θ(s,h+r), ρ(s,h+r)} =

{Θ∗, ρ∗}, if ρ∗ ≤ ε(s−1)

{Θ(s,h+r−1), ρ(s,h+r−1)}, otherwise
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Appendix D

Simulation Examples using Gamma

Process

Three examples are presented to illustrate the application of the proposed ABC-MCMC

method. The first illustrates the convergence behavior of the ABC posterior, whereas

the second demonstrates the effectiveness of the method in capturing the initial degra-

dation and the non-stationary trend of the degradation process. The third example

shows the applicability of the method in estimating the lifetime distribution of a compo-

nent population. In all three examples, the Bayesian inference schemes are implemented

in MATLAB® 2017b on a desktop computer with Intel i5-6500 processor.

D.1 Example 1: A One-Parameter Stationary Model

Assuming zero initial degradation, synthetic data consisting measurements related to

degradation of five fictitious components from three repeated inspections, taken at 5,

10, and 15 years, are simulated from a stationary gamma process with parameters

α = 4, η = 1, and β = 0.015. The normally distributed sizing error has zero mean
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and standard deviation σZ = 0.1 mm. Assuming α to be the only unknown parameter,

both ABC-MCMC and L-MCMC methods are implemented to estimate it. The prior

distribution of α is selected to be a uniform distribution, i.e., f(α) = U [0, 10]. The

proposal distribution is chosen to be a normal distribution with mean equal to the

current sample and COV equal to 0.1 for both methods. In the L-MCMC method, the

likelihood function is numerically integrated using Monte Carlo simulation [76] with

500 samples.

For implementing the ABC-MCMC scheme, four values of the tolerance thresh-

old are considered, i.e., ε = {0.6, 0.5, 0.4, 0.27}. These gradually decreasing tolerance

thresholds help to observe the convergence of the ABC posterior. For initializing the

ABC-MCMC run, Algorithm 13 is employed. The target threshold ε is reached through

the following sequence of threshold values: 2ε > 1.75ε > 1.5ε > 1.25ε > ε. Selection of

a thinning interval is performed by plotting sample ACF plots of the marginal Markov

chains [22].

ABC-MCMC generated three chains for each case as required by the criterion of GR

statistic. For the purpose of representation, Figure D.1 shows the three MCMC runs

and the corresponding sample ACF and GR statistic plots for the ε = 0.27 case. Ac-

cordingly, the chosen chain lengths and thinning intervals along with the computation

times are presented in Table D.1; the computation times are given for single MCMC

runs. The sample ACF plots of ε = 0.27 case (Figure D.1) show very high correlation

among the samples, and that is why a larger thinning interval of 30000 is chosen. Al-

though the required length of the MCMC run given by the GR statistic is only around

2.5 × 106, given the high amount of thinning, a length of 107 is selected. The corre-

sponding 0.01th percentile values of the distributions of the proposed distance function

values (calculated using the proposed samples from all three runs of the algorithm) are

0.282 (ε = 0.6), 0.278 (ε = 0.5), 0.276 (ε = 0.4) and 0.274 (ε = 0.27), respectively. It
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can be noticed that the first three tolerance thresholds, ε = {0.6, 0.5, 0.4}, are far above

the threshold choice criterion Qε ≤ 0.01, whereas ε = 0.27 < 0.274 meets the criterion

proposed for tolerance selection. Figure D.2 shows the distributions of the proposed

distance values and the regions of the corresponding chosen tolerance thresholds.
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Figure D.1: (a) Three MCMC runs of the parameter α generated by ABC-MCMC with ε =
0.27, and the corresponding (b) sample ACF plots, and (c) the convergence of the GR statistic.

Table D.1: Selected attributes of the MCMC chains and computation times.

Method Tolerance (ε) Chain length Burn-in length Thinning interval Computation time

ABC-MCMC

0.6 1× 105 – 100 3.3 s
0.5 2× 105 – 200 6.4 s
0.4 2× 105 – 500 6.4 s
0.27 1× 107 – 30000 320 s

L-MCMC – 1× 103 100 3 860 s

Similarly, the L-MCMC chain attributes and its computation time are presented

in Table D.1. Figure D.3 shows three MCMC runs and the corresponding plots for

sample ACFs and GR statistic. As it can be observed that the sample autocorrelation
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Figure D.2: Distributions of the proposed distance values for (a) ε = 0.6, (b) ε = 0.5, (c)
ε = 0.4, and (d) ε = 0.27 cases. Tolerance threshold ε = 0.27 satisfies the tolerance selection
criterion.

of the L-MCMC output is much less compared to the likelihood-free approach. The GR

statistic indicates a convergence at around 750 iteration length after burn-in; hence,

an MCMC run of 1000 iterations is selected, and the initial 100 samples are discarded

to allow for burn-in.

Figure D.4 shows the posterior distributions of α produced by both methods using

samples from three MCMC runs after burn-in and thinning. The convergence of the

ABC posterior is clearly visible as the tolerance threshold gradually decreases. The

ABC posterior with ε = 0.27 shows a very good match to the posterior generated using

the likelihood-based method. The mean and COV of the ABC posterior with ε = 0.27

are 3.65 and 0.096, respectively; whereas the posterior estimated by the likelihood-

based method has a mean of 3.66 and COV of 0.078. This proves that ABC-MCMC
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Figure D.3: (a) Three MCMC runs of the parameter α generated by L-MCMC, and the
corresponding (b) sample ACF plots, and (c) the convergence of the GR statistic.

can accurately estimate the model parameters and it is computationally more efficient

than the standard L-MCMC method. In fact, we were able to get around 170% more

efficiency using the proposed approach than the traditional likelihood-based approach.

D.2 Example 2: A Two-Parameter Non-Stationary

Model

Degradation paths of ten fictitious components are simulated, and a synthetic mea-

surement data set is generated based on the following parameters: α = 2, η = 2.5,

β = 0.01, µA = 0.5 mm, σA = 0.1 mm, and σZ = 0.1 mm. The observations are

simulated for three repeated measurements at 2nd, 4th and 6th years of operation. Let

us assume that the parameters η and µA are unknown, and the goal is to compute the
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Figure D.4: Posterior distributions of α produced by ABC-MCMC and L-MCMC.

joint and marginal posteriors of these two parameters using the synthetic data set. The

prior distributions are considered diffused uniform priors, i.e., f(η, µA) = f(η)f(µA),

where f(η) = U [0, 5] and f(µA) = U [0, 1]. For η and µA, the proposal distribution can

be conveniently selected as independent normal distributions centered at the current

samples with COVs equal to 0.01 and 0.1, respectively.

The ABC-MCMC is employed using ε = 0.61 as the tolerance threshold. The

initialization of the ABC-MCMC run using Algorithm 13 is conducted through the

same sequence of threshold values as used in Simulation example 1. For the L-MCMC

method, 5000 Monte Carlo samples are considered for likelihood evaluation. Both

Bayesian inference schemes generated three chains. The chosen chain lengths, burn-

in lengths and thinning intervals along with the computation times are presented in

Table D.2. The computation times are given for single MCMC runs. These chain

attributes are selected based on the MCMC traceplots, and their corresponding ACF

and GR statistic plots as shown in Figure D.5 and Figure D.6. The 0.01th percentile
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value estimated from the distribution of the proposed distance values is 0.622, which

proves that the chosen threshold ε = 0.61 < 0.622 satisfies the tolerance selection

criterion.

Table D.2: Selected attributes of the MCMC chains and computation times.

Method Tolerance (ε) Chain length Burn-in length Thinning interval Computation time
ABC-MCMC 0.61 2× 107 – 50000 1790 s
L-MCMC – 1× 103 100 4 9125 s

Figure D.7 depicts the marginal posteriors and scatter plot of the joint posterior of

η and µA obtained from both Bayesian computation schemes. The means, COVs and

95% CIs of the marginal posterior distributions are presented in Table D.3. The results

produced by the likelihood-free method show great similarity to the results obtained

from the likelihood-based method. But ABC-MCMC turns out to be extremely efficient

in this problem with an overall 400% more efficiency than the likelihood-based method.

Table D.3: Summary statistics of the posterior parameter distributions.

Parameter True value ABC-MCMC L-MCMC
Mean COV 95% CI Mean COV 95% CI

η 2.5 2.5052 0.0101 [2.4540, 2.5513] 2.5085 0.0081 [2.4652, 2.5472]
µA 0.5 0.4448 0.1312 [0.3296, 0.5559] 0.4485 0.0995 [0.3625, 0.5332]

D.3 Example 3: The Six-Parameter Model

This example attempts to estimate all six parameters of the proposed gamma process

model of degradation. The same synthetic data set used in Example 2 is considered once

again. The chosen independent prior distributions are: f(α) = U [0, 5], f(η) = U [0, 5],

f(β) = U [0, 1], f(µA) = U [0, 1], f(σA) = U [0, 1], and f(σZ) = U [0, 1]. Independent

normal distributions with means equal to current samples and COVs equal to 0.1 are

chosen as proposal distributions. For ABC-MCMC, the initial proposal distributions
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Figure D.5: Three MCMC runs of the parameters (a) η and (d) µA generated by ABC-MCMC
with ε = 0.61, and the corresponding (b,e) sample ACF plots, and (c,f) the convergence of
the GR statistics.

212



0 500 1000
2.4

2.6

2.8

0 5 10 15 20
-1

0

1

0 500 1000
2

2.5

3

0 5 10 15 20
-1

0

1

0 500 1000
2.4

2.6

2.8

0 5 10 15 20
-1

0

1

0 500 1000
0.8

1

1.2

1.4

1.6

1.8

2

0 500 1000
0

0.5

1

0 5 10 15 20
-1

0

1

0 500 1000
0

0.5

1

0 5 10 15 20
0

0.5

1

0 500 1000
0

0.5

1

0 5 10 15 20
0

0.5

1

0 500 1000
0.8

1

1.2

1.4

1.6

1.8

2

Figure D.6: Three MCMC runs of the parameters (a) η and (d) µA generated by L-MCMC,
and the corresponding (b,e) sample ACF plots, and (c,f) the convergence of the GR statistics.
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Figure D.7: Marginal posterior distributions of (a) η and (b) µA and (c) the joint posterior
distributions as two-dimensional scatter plots produced by ABC-MCMC and L-MCMC.

are chosen to have twice the COVs of the proposals used in the main algorithm. A

tolerance threshold of ε = 0.52 is selected for ABC-MCMC. Due to the high dimension

of the parameter space, the acceptance rate of both methods is found to be very low,

thus resulting in very long MCMC chains. To remedy this, the model parameters are

updated one-by-one sequentially; this reduces the rejection rate in both methods.

The likelihood function in L-MCMC is integrated using 5000 Monte Carlo samples.

L-MCMC spent around 7 hours to generate a single chain of 3000 iterations length.

A total of three MCMC chains are generated, and all of them converged at around

1700 iterations; hence a burn-in length of the same amount was chosen. Similarly,

ABC-MCMC generated a single chain of 5 × 107 iterations length in around 2 hours

and 40 minutes.

The marginal posterior distributions of the model parameters are shown in Fig-

ure D.8 and their summary statistics are presented in Table D.4. It can be observed

that ABC-MCMC and L-MCMC produced comparable results. Marginal posteriors of

α produced by both methods seem to be very close; however, a noticeable difference
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in posterior locations can be spotted for parameters η, β, and µA. The reason behind

this anomaly is the selected threshold value not being zero, resulting in an approxi-

mation of the joint posterior. Moreover, it can be noticed that the standard deviation

parameters, σA and σZ , are difficult to estimate using both methods.

Figure D.8: Marginal posterior distributions of the model parameters produced by ABC-
MCMC and L-MCMC.

Table D.4: Summary statistics of the posterior parameter distributions.

Parameter True value ABC-MCMC L-MCMC
Mean COV 95% CI Mean COV 95% CI

α 2 1.2171 0.1144 [0.9583, 1.4901] 1.2352 0.1462 [0.9172, 1.5842]
η 2.5 2.4693 0.0614 [2.1595, 2.6560] 2.1603 0.0357 [2.0046, 2.2922]
β 0.01 0.0187 0.3217 [0.0109, 0.0335] 0.0364 0.2401 [0.0227, 0.0566]
µA 0.5 0.4366 0.1056 [0.3268, 0.5118] 0.3831 0.0780 [0.3218, 0.4370]
σA 0.1 0.0032 1.6477 [0.0010, 0.0200] 0.0376 0.9049 [0.0035, 0.1168]
σZ 0.1 0.0139 1.4748 [0.0012, 0.0880] 0.0160 0.6996 [0.0025, 0.0403]

To estimate the lifetime distribution of the component population, a critical limit

of 4 mm degradation is selected. With the help of simulation, the mean and fifth

215



percentile of population lifetime are estimated and presented in Figure D.9. The sta-

tistical properties of the lifetime distribution are shown in Table D.5. The true values

of the lifetime quantiles are estimated using the true model parameter values. Both the

likelihood-based and likelihood-free approaches produced almost similar distributions

for the mean and fifth percentile of lifetime estimates. Moreover, both methods show

excellent accuracy in comparison to the estimates obtained using the true values of the

model parameters. Once again, ABC-MCMC proves to be highly efficient compared

to L-MCMC.

Figure D.9: (a) Mean and (b) fifth percentile of the lifetime distribution produced by ABC-
MCMC and L-MCMC.

Table D.5: Statistical properties of the lifetime distribution.

Lifetime True value ABC-MCMC L-MCMC
(year) Mean (year) COV 95% CI Mean (year) COV 95% CI

Mean 7.87 7.91 0.0219 [7.62, 8.28] 8.01 0.0208 [7.71, 8.40]
Fifth percentile 7.55 7.49 0.0195 [7.25, 7.80] 7.55 0.0221 [7.23, 7.89]
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Appendix E

Distribution of Maximum Pit

Depth

The probability distribution of the maximum pit depth can be derived analytically as

follows. Let us assume that the true number of pits generated between time 0 and t

is N(t) = n. Given the number of pits at time t, assuming independence of the pit

depths, the conditional CDF of the maximum pit depth can be written as

Fmax(h | n; t) = P [H1 ≤ h,H2 ≤ h, · · · , Hn ≤ h] = [FH(h)]n (E.1)

where H1, H2, · · · , Hn are the depths of the n pits, and FH(h) is the CDF of the pit

depth which can be written as

FH(h) = 1− exp[−(h/γ)β] (E.2)
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Since the number of pits N(t) is a Poisson random variable and can vary between 0

and ∞, the CDF of the maximum pit depth can be written as

Fmax(h; t) =
∞∑
n=0

Fmax(h | n; t)P [N(t) = n] (E.3)

Substituting Equation E.1 and the Poisson distribution from Equation 2.23 with a

mean value of Λ(t) into Equation E.3, we get

Fmax(h; t) =
∞∑
n=0

[Λ(t)FH(h)]n
n! exp[−Λ(t)]

= exp[−Λ(t){1− FH(h)}]

= exp[−λtδ exp{−(h/γ)β}]

(E.4)

Differentiating the CDF in Equation E.4 with respect to h, one can obtain the PDF of

maximum pit depth as

fmax(h; t) = −λtδ(−β/γ)(h/γ)β−1 exp[−(h/γ)β] exp[−λtδ exp{−(h/γ)β}]

= Λ(t)fH(h) exp[−Λ(t){1− FH(h)}]
(E.5)

Equation E.5 shows that the PDF of maximum pit depth has four parameters {λ, δ, γ, β},

and it is a function of time. The equation can be used for predicting the maximum

pit depth distribution once the posterior samples of the model parameters are avail-

able. Since the maximum pit depth has a non-negative support, one can calculate its

expected value using the expression
∫∞

0 [1−Fmax(h; t)]dh. Equation E.4 can be used to

calculate the 95th percentile of the maximum pit depth.
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