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Abstract

Smart contracts are programs that manage interactions between many users. Recently,
SOLIDITY smart contract have become a popular way to enforce financial agreements be-
tween untrusting users. However, such agreements do not eliminate trust, but rather
redirects trust into the correctness of the smart contract. This means that each user must
verify that a smart contract behaves correctly, regardless of how other users interact with
it. Verifying a smart contract relative to all possible users is intractable due to state ex-
plosion. This thesis studies how local symmetry can be used to analyze smart contracts
from a few representative users.

This thesis builds on the novel notion of participation, that gives explicit semantics
to user interactions. From participation, a topology is obtained for how users interact
during each transaction of a smart contract. Local symmetry analysis shows that most
users are interchangeable within a topology, and therefore, most users are locally symmet-
ric. This motivates local bundle abstractions that reduce contracts with arbitrarily many
users to sequential programs with a few representative users. It is shown that local bun-
dle abstractions can be used to ameliorate state explosion in smart contract verification,
and to accelerate counterexample search in bounded analysis (e.g., fuzzing and bounded
model checking). We implement local bundle abstraction in SMARTACE, and show order-
of-magnitude improvements in time when compared to a state-of-the-art smart contract
verification tool.
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Chapter 1

Introduction

Smart contracts were proposed in 1996 [07] as reactive state machines that managed legal
assets. The first large-scale smart contract system was realized in 2008 through the Bitcoin
peer-to-peer blockchain protocol [71]. Bitcoin has inspired other financial smart contract
systems, such as Zilliqa [63], Algorand [21], Facebook Libra [11], and Ethereum. Ethereum
has seen widespread acceptance, resulting in a capitalization of 1 billion dollars (USD)
within the first 2 years following its creation [6]. Ethereum is an open, decentralized com-
pute framework which allows developers to deploy Turing-complete smart contracts [73],
often written in the SOLIDITY language.

SOLIDITY smart contracts are distributed programs that facilitate information flow
between users. Users alternate and execute predefined transactions, that each terminate
within a predetermined number of steps. Each user (and contract) is assigned a unique,
160-bit address, that is used by the smart contract to map the user to that user’s data. In
theory, smart contracts are finite-state systems with 260 users. However, in practice, the
state space of a smart contract is huge—with at least 22" states to accommodate all users
and their data (conservatively counting one bit per user).

Once a SOLIDITY smart contract is deployed to Ethereum, it is immutable [73]. For this
reason, smart contracts have become a popular way to enforce financial agreements between
untrusting users. However, such agreements do not eliminate trust, but rather redirects
trust into the correctness of the smart contract. Furthermore, since smart contracts are
immutable, a mistake in the design of a smart contract cannot be corrected. This means
that each user must verify that a smart contract behaves correctly, regardless of how other
users interact with it.

A direct solution to smart contract verification is to verify the finite-state system di-



rectly. The direct approach is used by tools such as VERX [58], and results in analysis
times of up to 11 hours. This is because verifying systems with at least 922 gtates is in-
tractable in general. Other tools, such as [32, 36, 75] use fuzzing to randomly test a smart
contract, often with a restricted number of users or a restricted number of transactions.
This is also insufficient, as testing can never ensure correctness.

In this thesis, we propose a solution to efficient smart contract analysis through the
theory of local symmetry (adopted from parameterized compositional model checking [51]).
Intuitively, correctness is inferred from a small number of representative users to ameliorate
state explosion. These representatives are locally symmetric, as explained below. To
restrict a contract to fewer users, we first generalize to a family of finite-state systems
parameterized by the number of users. In this way, smart contract verification is reduced
to parameterized verification.

Our key insight is that for many smart contracts, each transaction interacts with only a
fixed number of users. These users are called participants of a transaction. Our analysis is
performed locally to a transaction and its participants. We show that in most transactions,
most participants can be switched with a non-participating user without impacting the
outcome of the transaction. These users are said to be locally symmetric. From local
symmetry, proof rules are obtained for parameterized smart contract verification, and a
procedure is obtained to accelerate bounded analysis. We implement these techniques in
an open-source tool named SMARTACE.

1.1 Motivating Example

Local symmetry analysis is applicable to many smart contracts. For example, consider
SimpleAuction in Fig. 1.1. This SOLIDITY smart contract enforces the rules of an open-
bid auction (i.e., all bids are public). In SimpleAuction, each user starts with a bid of
zero. Users alternate, and submit increasing larger bids, until a designated manager stops
the auction. While the auction is not stopped, a non-leading user may withdraw their
bid. To ensure that the auction is fair, a manager is not allowed to place their own bid.
Furthermore, the role of manager is never assigned to the zero-account (i.e., the null user
at address 0).

An important property of any open-bid auction is that subsequent bids are increasing
in value. In SimpleAuction, this property is ensured by tracking the leading bid. This
example shows that SimpleAuction satisfies Prop. 0: “All bids are less than or equal to
the recorded leading bid”. In Section 6.2, this example is revisited to show that there is
always a user whose bid is equal to the leading bid.



1 /// @title A simple open-bid auction. 26 /// Processes a valid bid.

2 contract Auction { 27 /// A bid is valid if it:

3 mapping (address => uint) bids; 28 /// 1. The auction is not stopped.

4 address manager; 29 /// 2. The sender is not the manager.

5 uint leadingBid; 30 /// 3. The sender is not the leading bidder.
6 bool stopped; 31 /// 4. The bid exceeds the current leading bid.
7 32 function bid() public payable {

8 /// Initiates a new auction controlled by _manager. 33 require (!stopped); // (1)

9 constructor (address _manager) public { 34 require(msg.sender != manager); // (2)

10 require (manager != address(0)); 35

11 manager = _manager; 36 uint o0ldBid = bids[msg.sender];

12 ¥ 37 uint newBid = o0ldBid + msg.value;

13 38 require (0ldBid == 0 || o0ldBid < leadingBid); // (3)
14 /// Returns a non-leading bid. 39 require (newBid > leadingBid); // (4)

15 function withdraw() public { 40

16 require (! stopped); 41 bids [msg.sender] = newBid;

17 require(msg.sender != manager); 42 leadingBid = newBid;

18 43 b

19 uint bid = bids[msg.sender]; 44

20 require(bid < leadingBid); 45 /// Stops the auction.

21 bids [msg.sender] = 0; 46 function stop() public {

22 47 require (msg.sender == manager);

23 msg.sender.transfer (bid); 48 stopped = true;

24 ¥ 49

25 50 }

Figure 1.1: A simple open-bid auction smart contract intended to illustrate local smart
contract analysis.

manager stopped leading bids[0] e bids[5] manager stopped leading bids[0] ... bids[5]
) - )
0x4 false 0 0 0 0 0 0 o 0x5 false 0 0 0 0 0 0 0
bid() from msg.sender = 5 with msg.value = 20 bid() from msg.sender = 4 with msg.value = 20
0x4 false 20 0 0 0 0 0 |20 0x5 false 20 0 0 0 0 /20 O

(a) A bid of 20 from user 5 with manager 4. (b) A bid of 20 from user 4 with manager 5.

Figure 1.2: Illustration of a local transaction symmetry for SimpleAuction in .

To establish Prop. 0, it must be shown that Prop. 0 is initially true, and that Prop. 0
continues to be true after any sequence of transactions. A software model checker, such
as SEAHORN [28], can establish this property automatically by enumerating the reachable
states of SimpleAuction. However, the state space of SimpleAuction is intractable large.
For example, the mapping bids must store 2'% bids, each of size 256-bits. Our hypothesis
is that tools such as SEAHORN struggle to scale to properties such as Prop. 0 due to
the impact of users on the size of the state space. To overcome this challenge, we first
instead identify groups of communicating users, and then establish Prop. 0 relative to a
representative (i.e., abstract) group of communicating users.

In the case of SimpleAuction, all communication takes place between the zero-account,
the auction itself, the manager, and an arbitrary sender. The zero-account and auction
are unique, whereas any arbitrary user may be a manager or a sender. However, these



managers and senders are all interchangeable with respect to Prop. 0. That is to say, if
two arbitrary users have the same bid, then swapping their addresses and manager status
preserves Prop. 0. For example, assume that all users have a bid of zero, the manager is
the user with address 4, and the user with address 5 places a bid of 20. Then after this
transaction, the manager continues to have a bid of 0, the sender now has a bid of 20, and
the leading bid is set to 20. Since all other bids were initially zero, and were not affected
by this transaction, then Prop. 0 is satisfied. The same outcome is obtained if all users
have a bid of 0, the manager is the user with address 5, and the user with address 4 places
a bid of 20. In other words, the satisfiability of Prop. 0 is preserved after swapping user
4 and 5. This symmetry is illustrated in Fig. 1.2, and formalized in Section 5.2.

All users of SimpleAuction can then be classified as either the zero-account, the auc-
tion itself, the current manager, or an arbitrary sender. Users within the same class are
symmetric with respect to Prop. 0. Therefore, it is sufficient to verify Prop. 0 relative to
a representative user from each class. The key idea is that each representative summarizes
the concrete users in its class [74]. If a representative’s class contains a single concrete
user, then there is no difference between the concrete user and the representative user.
For example, the zero-account and the auction each correspond to single concrete users
(this generalizes to implicit participation in Section 4.1). Similarly, the manager refers to
a single concrete user, so long as the manager variable does not change (this generalizes to
transient participation in Section 4.1). Therefore, the addresses of these users, and in turn,
their bids, are known with absolute certainty. On the other hand, there are many arbitrary
senders. Since SimpleAuction only compares addresses by equality, the precise address of
the representative sender is unimportant. What matters is that the representative sender
does not share an address with the zero-account, the auction, nor the manager. However,
this means that at the start of each transaction the location of the representative sender is
not absolute, and, therefore, the sender has a range of possible bids. To account for this,
we introduce a predicate, called an interference invariant, that is true of all initial bids,
and holds inductively for bids across all transactions. We provide this invariant manually,
and use it to over-approximate all possible bids. An obvious interference invariant for
SimpleAuction is Prop. O.

Given an interference invariant, Prop. 0 can then be verified effectively by a software
model checker. To do this, the concrete users in SimpleAuction must be abstracted by rep-
resentative users. The abstract system (see Fig. 1.3), known as a local bundle abstraction,
assigns the zero-account to address 0, the auction to address 1, the manager to address
2, the representative sender to address 3, and then executes an unbounded sequence of
transactions. Before each transaction, the sender’s bid is set to a nondeterministic value
that satisfies its interference invariant. If the abstract system and Prop. 0 are provided



1 // Configures address space. 14 _a.bids[sndr_addr] = x*;

2 address zacc_addr = address (0); 15 require(_a.bids [sndr_addr] <= _a.leadingBid);
3 address auct_addr = address(1); 16

4 address mngr_addr = address(2); 17 // Selects a sender.

5 address sndr_addr = address(3); 18 msg.sender = *;

6 19 require (msg.sender >= mngr_addr);

7 // Constructs contract. 20 require (msg.sender <= sndr_addr);

8 SimpleAuction _a = new SimpleAuction(mngr_addr); 21

9 require(address(_a) == auct_addr); 22 // Selects a transaction.

10 23 if (%) { msg.value = *; _a.bid(); };

11 // Transaction loop. 24 else if (*) { msg.value = 0; _a.withdraw(); }
12 while (true) { 25 else if (*) { msg.value = 0; _a.stop(); }

13 // Applies an interference invariant. 26 )

Figure 1.3: A harness to establish Prop. 0 on SimpleAuction. Each * is nondeterministic
choice of value.

to a software model checker, then the software model checker will verify that all states
reachable in the abstract system satisfy Prop. 0. As a result, Prop. 0 is established for
SimpleAuction.

1.2 Scope of Thesis

Two unique challenges in SOLIDITY development are gas constraints and reentrancy. In
Ethereum, gas is a payment made to execute a smart contract. Gas is paid upfront,
but computed at runtime. This means that a smart contract may abort unexpectedly if
insufficient gas is paid. Reentrancy is what happens when one smart contract recursively
interacts with another smart contract. Overlooking gas constraints and reentrancy can
lead to subtle bugs that are hard to find manually.

Both gas and reentrancy are outside of the scope of this thesis. However, the techniques
described in this thesis do not preclude solutions to these problems. We have chosen to
place gas and reentrancy out of scope as there are many existing solutions to these prob-
lems. For example, [25] is a static technique that detects gas related vulnerabilities. For
reentrancy, [27] describes static and dynamic techniques to determine if a smart contract
is vulnerable to reentrancy. In [58], Effectively External Callback Free (EECF) contracts
are suggested as a design pattern to prevent reentrancy vulnerabilities.

1.3 Summary of Contributions

This thesis makes the following contributions:



e We propose a new approach to smart contract analysis. In this paradigm, smart
contracts are parameterized and all communication between users is explicit. Our
work is based on the local symmetry analysis of parameterized compositional model
checking. We use this analysis to obtain a local abstraction of a smart contract, with
applications to parameterized smart contract verification and bounded analysis.

e We extend parameterized compositional model checking in two ways. First, we in-
troduce aggregate properties, and show that they can verified using compositional
techniques. Second, we show that local symmetry analysis is applicable to problems
outside of parameterized verification.

e We implement local abstractions in an open-source tool named SMARTACE. The
tool is designed to target both parameterized verification and fuzzing. We evaluate
SMARTACE on real-world smart contracts, and show order-of-magnitude improve-
ments over a state-of-the-art verification tool.

1.4 Outline of Thesis

The rest of this thesis is structured as follows:

e Chapter 2 provides preliminary knowledge for this thesis;

e Chapter 3 defines MINISOL, a subset of SOLIDITY with network semantics and a
parameterized property language;

e Chapter 4 introduces explicit communication semantics for SOLIDITY smart con-
tracts, and defines syntactic over-approximations that can be computed automati-
cally for MINISOL smart contracts;

e Chapter 5 studies the local symmetries that exist in MINISOL communication, and
presents a local bundle abstraction that is inspired by these symmetries;

e Chapter 6 proves that local bundle abstractions can be used to automate parame-
terized verification of MINISOL smart contracts;

e Chapter 7 shows that local bundle abstractions are not limited to parameterized
verification, by demonstrating an application to bounded analysis;

e Chapter 8 describes the implementation SMARTACE;



e Chapter 9 evaluates SMARTACE on several real-world smart contracts;

e Chapter 10 provides concluding remarks, and suggests future work.



Chapter 2

Background

This chapter reviews key concepts used freely throughout the subsequent chapters. First,
notation is given for vector operations, and then relevant concepts are recalled from group
theory, order theory, graph theory, and model theory. Building on these concepts, relevant
models of computation are then defined. Key static analysis techniques are reviewed for
the aforementioned models.

The following notation is used in all chapters. For n € N, the set {0,1,...,n — 1} is
written [n]. For a Boolean expression e, and numeric expressions x and y, the piece-wise
function “If e is true, then return z, else return y,” is written ite(e, z, y).

2.1 Vectors and Vector Manipulations

We write u := (ug, u1, ..., u,—1) for a vecter of n elements. For the length of u, we write
|u|. For the i-th element of u, we write u;.

Let f: S — T. The point-wise application of f onto u is the vector u’ obtained by
applying f to each element of u. Formally, u’ := (f (o), f(w),..., f(u,—1)) and we
write that f(u) =u'.

Let © € S. The substitution of = for the i-th element of u is the vector u’ obtained by
replacing the i-th element of u with z. Formally, u’ := (ug,uy, ..., 01,2, Wiyq,. .., Up_1)
and we write that u[i < z] = u’.

Let f : [n] — [n] be a one-to-one function. The permutation of u induced by f is
the vector u’ obtained by reordering the elements of u according to i — f(i). Formally,

w = (Wp(0), Upa), - Upny)-



Let f: SxS — Sand z € S. The fold operation is a higher-order function that
recursively accumulates the elements of u using the operator f. In the base case, |u| =1
and fold returns f(z,ug). Formally:

N f (Z,U_o) if |11| =1
fold(f 2 w) = {f (fold(f, 2, 0), up 1) if [ul > T and u' = (ug, ..., U -2)

For example, if u = (1,3,5) and f(x,y) = x + y, then fold(f,0,u) = ((0+1)+3)+5=09.

2.2 Group Theory

This section briefly reviews permutation groups and Abelian groups. The presentation
follows [22], except for the discussion on permutation groups, which follows [13]. A group,
G = (5,0), is a possibly infinite set, S, equipped with a total function, o : S x S — S,
satisfying the following axioms:

1. (Associativity) Va,b,c € S-(aob)oc=ao(boc);

2. (Identity) de € S-Va € S-aoe=a = eoa, where e is the identity of G;

Lis the inverse of a.

3. (Inverse) Va € S-Ja~t € S-aoat=ec=a"'oa, where a~
The operator o is commutative if Va,b € S-aob = boa. If o is commutative, then G is an
Abelian group.

Many operations form groups, such as matrix multiplication and modular arithmetic.
An important group in later chapters is the group of permutations for a set [n|. A permuta-
tion is a one-to-one mapping f : [n] — [n]. If S is a set of permutations for [n] that is closed
under function composition, then .S equipped with function composition forms a permuta-
tion group. A surprising result is that every permutation group can be constructed using
adjacent transpositions. For i € [n — 1], the transposition is the permutation 7; : [n] — [n]
such that:

i+1 ifxr=1
Ti(x) =< i ifr=i+1
x otherwise
In a group of permutations, the identity function is the identity, and 7, * = 7;. Using

transpositions, it is easy to prove that permutation groups are non-Abelian in general.



> 2

0 1 2 3 0 1 2 3

Figure 2.1: An illustration that not all permutation groups are Abelian. In this example,
n = 4. It is shown that 7 o 7y # 73 o 75. This diagram follows the presentation of [13].
Note that the elements are propagated bottom to top.

For example, 75(71(1)) = 3 whereas 7(72(1)) = 2. As a result, not all 7; commute over
function composition. The key properties of transpositions are illustrated in Fig. 2.1 and
summarized in Proposition 1.

Proposition 1. Let n € N, and f : [n] — [n] be a permutation. For some k € N, there
exists {i1,...,ix} € [n — 1] such that f =7, 0---0o7;,.

A well-known example of an Abelian group is the set of integers equipped with addition.
Formally, G = (Z,+). It is not hard to see that VYa,b,c € Z-a+ (b+¢) = (a + b) + ¢ and
Va,b € Z-a+ b= b+ a. The identity is 0, since Va € Z-a+ 0 = a = 0+ a. The inverse of
a € Zis (—a) since (—a) € Z and a + (—a) = 0.

2.3 Order Theory and Lattices

This section briefly reviews the concept of lattices from order theory. The presentation
summarizes the first three chapters of [62]. A partially ordered set, (S, <), is a possibly
infinite set, S, equipped with a relation, (<) C S x S, satisfying the following axioms:

1. (Reflexivity) Va € S-a < q;

2. (Antisymmetry) Va,b € S-(a <bAb<a)= (a=0b);
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(a) A partially ordered set that is not a lattice.  (b) A partially ordered set that is a lattice.

Figure 2.2: A comparison between two partially ordered sets. An arrow from element x
to element y denotes that x < y. The order in Fig. 2.2b forms a join-semilattice as each
finite subset has a supremum.

3. (Transitivity) Va,b,c € S-(a <bAb<c)= (a <b).

For X C S and a € S, we write X < a to denote Vr € X - < a. The supremum of X,
denoted by sup{X}, is an element a € S, such that X < a and for every b € S, if X <b,
then a < b. For example, the supremum of {a,b,c} in Fig. 2.2b is d. If sup{X U Y} is
defined, then sup{X U Y} = sup{sup{X},sup{Y}}.

In general, the supremum of X might not exist. For example, there is no supremum
for {a,b,c} in Fig. 2.2a. If every finite subset of S has a supremum, then (5,<) is a
join-semilattice. An example of a join-semilattice is given in Fig. 2.2b. Throughout this
paper, all lattices are assumed to be join-semilattices. All results generalize naturally to
meet-semilattices (see [02]).

2.4 Graph Theory

This section briefly reviews key concepts from graph theory. The presentation follows [16],
unless stated otherwise. A graph is a tuple G = (V, E'), where V is a finite set of objects,
called vertices, and F is a set of two element subsets from V| called edges. A digraph is a
tuple D = (V, E), where V is a finite set of vertices, and £ C V x V. In either case, v1vs
is written to denote an edge from vy to vs.
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A path in a (di)graph (V, E) is a set of vertices {vg,..., v} C V, and a set of edges
{viviy1 | i € [k]} C E. A vertex u € V is reachable from a vertex u' € V if there exists a
path with vg = u and v, = o'.

A bipartite (di)graph is a (di)graph (V3 U Vs, E) such that for all vjve € E, both vy € V}
and vy, € V5.

A labelled (di)graph associates one or more labels with each vertex. Let L be the set of
labels. In this thesis, a labelled graph is a tuple (V| E,d) such that (V, E) is a (di)graph
and 6 C E x L. If (e,l) € §, then e € E is labelled by [ € L.

2.5 Labeled Transition Systems and Properties

A Labeled Transition System (LTS), M, is a tuple (S, P, T, sq¢), where S is a set of states, P
is a set of actions, T : S x P — 29 is a transition relation, and sy € S is an initial state. M
is deterministic if T is a function, T': S x P — S. A (finite) trace of M is an alternating
sequence of states and actions, (Sg, p1, S1, - - - , Pk, Sk ), such that Vi € [k]-s;11 € T(si, piv1). A
state s is reachable in M if s is in some trace (sg, p1, - . ., s;) of M; that is, 3i € [k+1]-s; = s.
A safety property for M is a subset of states (or a predicate!) o C S. M satisfies ¢, written
M = ¢, if every reachable state of M is in ¢.

Many transition systems are parameterized. For instance, a client-server application
is parameterized by the number of clients, and an array-manipulating program is param-
eterized by the number of array cells. In both cases, there is a single control process that
interacts with a number of user processes. Such systems are called Synchronized Control
User Network (SCUN) [51]. Let N be the number of processes, and [N] be the process iden-
tifiers. We consider SCUNs in which processes only synchronize with the control process
and do not execute code on their own.

An SCUN N is a tuple (S¢, Su, Pr, Ps, 11, Ts, co, ug), where S¢ is a set of control states,
Sy a set of user states, P; a set of internal actions, Ps a set of synchronized actions, 77 :
Sc X Pr — S¢ an internal transition function, T : S¢ X Sy X Ps — S¢ X Sy a synchronized
transition function, ¢y € S¢ is the initial control state, and ug € Sy is the initial user state.
The semantics of A are given by a parameterized LTS, M(N) := (S, P, T,sq), where
S =S¢ x (Sp)Y, P := P, U (Ps x [N]), so := (co,u0,...,u), and T : S x P — S such
that:

! Abusing notation, we refer to a subset of states ¢ as a predicate and do not distinguish between the
syntactic form of ¢ and the set of states that satisfy it.
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L. pr € PI> then T((Ca u)ap) = (TI(C,p),u);

2. If (p,i) € Ps x [N], then T'((c,u), (p,i)) = (¢, u’) where (¢,u}) = Ts(c,u;,p), and
Vi€ [IN\{i} - uf = u;.

Parameterized systems have parameterized properties [29, 54]. A k-universal safety
property [29] is a predicate ¢ C Sc x (Sy)¥. A state (c,u) satisfies predicate ¢ if
V{i1,...,ix} € [N]-@(c,u4,...,1;). A parameterized system M (-) satisfies predicate
e if VN e N- M(N) = .

So far, this section has been limited to safety properties. However, many interesting
smart contract properties deal with either the past or the future. These are called temporal
properties, and subsume safety properties [79]. Formally, a safety property is a temporal
formula of the form always(y), where ¢ is a property that must always be true of the
current state. In this thesis, we consider pure-past properties, such as “If a participant of
an auction has not placed a bid, then the participation has not withdrawn a bid.” Pure-past
properties are constructed from the temporal operators once(+), historically(-), since(, -), and
prev(-) where:

1. The expression once(yp) is true if ¢ was true in at least one prior state;
2. The expression historically(y) is true if ¢ was true in all prior states;

3. The expression since(p, 1) is true if either ¢ was false in all prior states, or ¢ has
been true since ¢ was first true;

4. The expression prev(y) is true if ¢ was true in the previous state.

Prior work has shown pure-past properties to be a convenient specification language for
controllers that interact with an environment [, 58]. Furthermore, it is known that the
verification of a pure-past property for one LTS can be reduced to the safety of a larger
LTS [31].

2.6 Simulations and Bisimulations

This section briefly reviews simulation and bisimulation, following the presentation of [(4].
Let M = (S,P,T,sp) and M* = (S*, P, T*,s}) be LTSs. A simulation of M by M* is a
relation o C S x S* satistying the following properties:

13



L. (s0,88) € o;

2. If (s,p,t) € T, then there exists an (s*,p,t*) € T* such that (¢,t*) € o.

If 07! is a simulation of M* by M, then o is a bisimulation.

Simulations and bisimulations are used to prove properties about M and M*. A simu-
lation o is said to preserve a safety property ¢ if V(s,5%) €o-sE ¢ <= s*E . Ifo
preserves ¢ and M* |= ¢, then M = . As a direct consequence, if o preserves ¢ and o is
a bisimulation, then (M | ¢) <= (M* = ¢).

2.7 Parameterized Compositional Model Checking

Model checking is an approach that automatically proves a transition system satisfies a
property (see [59]). In this section, the discussion is limited to LTSs. The inputs to a
model checker are a LTS and a property for the LTS. A model checker then enumerates
traces until a violation of the property is discovered, or all traces are shown to be free from
violations. The output of a model checker is either a trace of the LTS that violates the
property, or an inductive invariant of the LTS that entails the property.

Extending model checking to parameterized transition systems is non-trivial, as the
parameter space is infinite. Two solutions are bounded model checking and parameterized
model checking. In bounded model checking, the parameter space is restricted to a finite
subset, and then the transition system is verified for only these parameters (e.g., [60]). In
parameterized model checking, specialized techniques are use to generalize the results of

model checking to all possible parameters (see [2]). This thesis considers Parameterized
Compositional Model Checking (PCMC).

The results of PCMC rely on equivalence classes. An equivalence relation [62] on a set
S is a relation ~C S x S that satisfies the following axioms:

1. (Reflexivity) Va € S -a ~ a;
2. (Symmetry) Va,b€ S - (a ~b) <= (b~ a);
3. (Transitivity) Va,b,c € S (a ~bAb~c) = (a~ c).

An example of an equivalence relation is equality. For each a € S, the equivalence class [62]
of a is the set of elements in S that are equivalence to a, and is defined by {b € S -a ~ b}.
Given an equivalence class F, if a € E, the a is a representative of E.
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The rest of this section briefly reviews the presentation of PCMC in [51]. In PCMC,
a distinction is made between the processes executing within a parameterized transition
system, and the network topology? on which they are placed. At a high-level, PCMC de-
composes the network topology into smaller structures called neighbourhoods, and then
identifies equivalencies between processes in different neighbourhoods called local symme-
tries. These equivalencies are formulated as a balance relation, that generalizes bisimulation
relations to processes on a network topology.

Definition 2.7.1 (Balance Relation). A balance relation B is a set of local symmetries
satisfying the following properties. For any (m,,n) € B, where m and n are locally
symmetric processes and 3 is the witnessing bijection from m to n:

1. Tts inverse, (n, 371, m) is also in B;

2. For any j that points to n, there is a & which points to m, there exists a bijection ¢
from j to k such that d, (j, 0, k) € B and both § and ¢ agree on edges in the topology.

PCMC proceeds by discovering a compositional invariant for each equivalence class,
and then proving that these invariants entail a parameterized property ¢. As with a
bisimulation relation, a balance relation must preserve ¢ in order for PCMC to be appli-
cable. Often, compositional invariants are obtained by computing the strongest inductive
invariant for each process in a sufficiently large network. The size of this network is a
compositional cutoff.

For example, in a SCUN, there are user and control processes that are assigned to a
network topology which connects all user processes to a single control process. Each neigh-
bourhood consists of a single user interacting with a control process. The compositional
invariant is defined by two predicates, 0 C S and 6y C S¢ x Sy, satisfying:

Initialization ¢y € ¢ and (o, ug) € Oy;

Consecution 1 If ¢ € 0¢, (c,u) € Oy, p € Ps, and (¢, u') € Ts(c,u,p), then ¢ € 6 and
(d,u) € Oy;

Consecution 2 If ¢ € 0¢, (c,u) € Oy, p € P, and ¢ = Ti(c,p), then ¢ € O and
(d,u) € Oy;

2A network topology consists of vertices, and edges between vertices. Processes execute on vertices,
and share state across edges.
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Non-Interference If ¢ € 0¢, (c,u) € Oy, (c,v) € Oy, u # v, p € Ps, and (d,u') =
Ts(c,u,p), then (/;v) € O¢.

By PCMC [54], if Ve € Oc - V{(c,u1), ..., (c,ur)} C Oy - o(c,ug, ..., ug), then VN € N -
M(N) = . This is as an extension of Owicki-Gries [77], where o summarizes the acting
process and 0 summarizes the interfering process. For this reason, we call ¢ the inductive
invariant and Oy the interference invariant.
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Chapter 3

Smart Contracts as Parameterized
Networks

This chapter generalizes SOLIDITY smart contracts to networks of arbitrarily many users.
By generalizing a smart contract to any number of users, it is then possible to consider
smart contracts with a reduced number of users (Chapter 5). The generalization is pre-
sented for a subset of SOLIDITY called MINISOL. Like SOLIDITY, MINISOL is an impera-
tive, object-oriented language with built-in communication operations. However, MINISOL
does not include features such as inheritance, cryptographic operations, or mappings be-
tween addresses. The semantics of MINISOL programs are given by SCUNs.

A class of parameterized properties are then defined for MINISOL programs. The
property language is inspired by current work in smart contract analysis. Special attention
is given to aggregate properties such as sum(-), count(-), min(-), and max(-), due to their
importance in many smart contract specifications.

3.1 The MiniSol Language

MINISOL is an object-oriented language with built-in communication and monetary opera-
tions. Each class in MINISOL is called a smart contract, and consists of state variables, and
methods for users to call. In addition to state variables, each smart contract also has an
address and a balance. The address of a smart contract is a globally unique identifier that
distinguishes the smart contract from all other smart contracts and users. The balance of
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a smart contract is the amount of currency that the smart contract holds. In MINISOL,
all currency is measured in Ether.

A wuser in MINISOL is an external entity that interacts with a smart contract. Users
alternate, and invoke smart contract methods. Similar to a smart contract, each user also
has an address. The user’s address is used by a smart contract to map the user to said
user’s data. A null user is given by the address 0, and is called the zero-account.

A smart contract operates in a SCUN. The smart contract is the control process and the
smart contract users are the user processes. The network is updated through a sequences
of synchronized and internal actions, known as a transaction. A transaction begins when
a user process invokes a method through a synchronized action. The control process then
executes the method using one or more of internal actions. Throughout a transaction,
the control process may invoke additional methods from the context of another smart
contract. Furthermore, the control process may read from (or write to) a user’s data via
a synchronized action. For simplicity of presentation, each transaction is given as a global
transition.

The main features of MINISOL are illustrated by the smart contracts Auction and
TimedAuctionManager in Fig. 3.1. Auction implements an open-bid auction. Each user
starts with a bid of 0. Users alternate, and submit increasingly larger bids, until a des-
ignated manager stops the auction. While the auction is not stopped, a non-leading user
may withdraw their bid. At any point during the auction, a non-leading user may query
the minimal bid required to become the leading bidder. TimedAuctionManager implements
a simple protocol to manage Auction. Initially, TimedAuctionManager creates a new auction
and sets a timeout. Once the timeout has elapsed, any user may stop the auction through
a request to the manager. Throughout this chapter, Fig. 3.1 is used as a running example.

3.1.1 Syntax

This section presents the syntax for MINISOL. Program expressions are given by Fig. 3.2
and program statements are given by Fig. 3.3.

MINISOL has four basic types: address, numeric, mapping, and contract. The address-
type prevents arithmetic operations, and numeric values cannot be converted (i.e., cast)
to address values. The address-type corresponds to (AExpr) in Fig. 3.2. The numeric-
type includes both 256-bit integer and Boolean values, and corresponds to both (NExpr)
and (BExpr) in Fig. 3.2. The mapping-type contains multi-dimensional dictionaries, and
corresponds to (MapType) in Fig. 3.3. Finally, the contract-type contains object pointers,
and corresponds to (CExpr) in Fig. 3.2.
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1 /// @title An open-bid auction. 41 return leadingBid - bids[msg.sender];

2 contract Auction { 42 s

3 mapping (address => uint) bids; 43

4 address manager; 44 /// Returns a non-leading bid.

5 uint leadingBid; 45 function withdraw() public {

6 bool stopped; 46 require (! stopped) ;

7 47 require (msg.sender != manager);

8 /// Initiates a new auction controlled by _manager. 48

9 constructor (address _manager) public { 49 uint bid = bids[msg.sender];

10 require (manager != address(0)); 50 require(bid < leadingBid);

11 manager = _manager; 51 bids [msg.sender] = 0;

12 ¥ 52

13 53 msg.sender.transfer (bid) ;

14 /// Interprets each payment as a bid. 54 ¥

15 function () public payable { 55

16 bid () ; 56 /// Stops the auction.

17 } 57 function stop() public {

18 58 require(msg.sender == manager);
19 /// Processes a valid bid. 59 stopped = true;

20 /// A bid is valid if it: 60

21 /// 1. The auction is not stopped. 61 }

22 /// 2. The sender is not the manager. 62

23 /// 3. The sender is not the leading bidder. 63 /// @title An interface to create a timed auction.
24 /// 4. The bid exceeds the current leading bid. 64 contract TimedAuctionManager {

25 function bid() public payable { 65 Auction auction;

26 require (!stopped); // (1) 66 uint end;

27 require(msg.sender != manager); // (2) 67

28 68 constructor (uint duration) public {
29 uint o0ldBid = bids[msg.sender]; 69 auction = new Auction(address(this));
30 uint newBid = o0ldBid + msg.value; 70 end = block.number + duration;

31 require (0ldBid == 0 || o0ldBid < leadingBid); // (3) 71 X

32 require (newBid > leadingBid); // (4) 72

33 73 /// Stops the auction if its duration has elapsed.
34 bids [msg.sender] = newBid; 74 function tryStop() public {

35 leadingBid = newBid; 75 if (end < block.number) {

36 } 76 auction.stop.value (0) ();

37 7 }

38 /// Computes the minimum bid a user must place. 78 ¥

39 function computeMinBid () public returns (uint) { 79 ¥
40 require (!stopped);

Figure 3.1: An open-bid auction smart contract that demonstrates the main features of
MiNiSoL. This smart contract extends on Fig. 1.1.

Each variable is further classified as either state, input, or local. We use role and data to
refer to state variables of address and numeric types, respectively. Similarly, we use client
and argument to refer to inputs of address and numeric types, respectively. In Auction of
Fig. 3.1, there is 1 role (manager), 2 contract data (leadingBid and stopped), 1 mapping
(bids), 1 client common to all transactions (msg.sender), and 1 (used) argument common
to every transaction (msg.value). In TimedAuctionManager, there is 1 contract-typed value
(auction).

A smart contract definition ({Contract) in Fig. 3.3) consists of one or more variable
declarations ((Decl) in Fig. 3.3) and one or more function declarations ((Func) in Fig. 3.3).
As in most object-oriented languages, each function has a wisibility modifier ({(Vis) in
Fig. 3.3). Functions with public visibility can be called by users (e.g., Line 25), whereas
functions with internal visibility can only be executed as part of an ongoing transaction.
In either case, the inputs tx.origin and msg.sender expose the addresses of the first and
most recent caller during the current transaction.
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(CExpr) == x. | this

(AExpr) == x4 | a literal address |
msg.sender | tx.origin | address( (CExpr)) |
(Call) == (CExpr).f.value( (NExpr)) ( (ExprList) ) | f ( (ExprList) )
(Index) == m [ (AExpr)] ... [ (AExpr) ]
(NExpr) == x, | a 256-bit (un)signed integer literal | (Index) | (Call) |

block.number | block.timestamp | msg.value | (CExpr).balance |
(NExpr) + (NExpr) | (NExpr) - (NExpr) | (NExpr) * (NExpr) | (NExpr) / (NExpr)
(BExpr) == a3 | true | false | (Index) | (Call) |

(
(NExpr) < (NExpr) | (NExpr) > (NExpr) | (NExpr) == (NExpr) | (NExpr) = (NExpr) |
(AExpr) == (AExpr) | (AExpr) != (AExpr)
(Expr) == (AExpr) | (NExpr) | (BExpr)
(ExprList) == (Expr) (Expr)

Figure 3.2: The formal grammar for MINISOL expressions. In this grammar, z., z,, ©,,
and x;, are contract-, address-, integer-, and Boolean-typed variables, respectively. Also,
m and f are mappings and functions, respectively. For simplicity, mapping and function
types are elided.

A function can also be marked as payable (e.g. Line 25). A payable function can receive
Ether. The amount of Ether sent to a payable function is accessible through the msg.value
argument (e.g., Line 30). There are two ways that one smart contract can send Ether to
another smart contract. If a function is called by name, then the .value modifier is used
(e.g., Line 76). Otherwise, a built-in transfer function (e.g., Line 53) can be used to call
a special unnamed function, known as a fallback function (e.g., Line 15).

A constructor is a special function that is executed once after contract creation. Calls
to new (i.e., creating new smart contracts) are restricted to loop-free code segments within
constructors. TimedAuctionManager implements a constructor at Line 9 with a single call
to new.

MINISOL also exposes a built-in time primitive to each function. In MINISOL, time is
measured with respect to the number of blocks that have been executed. The block.number
argument exposes the number of blocks executed so far (e.g, Line 70). The block.timestamp
argument exposes the real-world time at which the last block was executed. MINISOL
enforces that block.timestamp is non-decreasing.
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(BasicType)

int | uint | bool

(MapType) = mapping( address => (MapType) ) | mapping( address => (BasicType) )
(ComplexType) = address | C' | (MapType)
(Decl) = Cuz. | address z, | int z, | uint z, | bool z, | (MapType) m
(Assign) = x4 =(AExpr) | xn = (NExpr) | zp = (BExpr) | z. =new C'( (ExprList) ) |
(Index) = (NExpr) | (Index) = (BExpr)
(Stmt) = (Decl)y | (Assign) | (Stmt); (Stmt) |
require( (BExpr) ) | assert( (BExpr)) | return | return (Expr) |
if ( (BExpr) ) { (Stmt) } else { (Stmt) } | while( (Expr) ) { (Stmt) } |
(AExpr) . transfer ( (NExpr) )
(Payable) ::= payable | €
(Vis) = public | internal
(RetVal) = returns ( (BasicType)) | €
(DeclList) = (Decl), ..., (Decl) | €
(Ctor) = constructor ( (DeclList) ) public (Payable) { (Stmt) }
(Func) == function f ( (DeclList) ) (Vis) (Payable) (RetVal) { (Stmt) }
(Contract) ::= contract C { (Decl); ... (Decl); (Ctor) (Func) ... (Func) }
(Program) := (Contract) ... (Contract)

Figure 3.3: The formal grammar for MINISOL statements, methods, and contracts. Fx-
pressions are defined as in Fig. 3.2. In this grammar, C' is the name of a contract.

3.1.2 Semantics

Let C be a MINISOL program with methods, F := {fny,...,fn,}. Assume that each
mapping in C is 1-dimensional (multi-dimensional mappings are discussed in Appendix A).
An N-user bundle is an N-user network of several (possibly identical) MINISOL smart
contracts. The semantics of a bundle is an LTS, global(C, N) := (S, P, f, so), such that:

1. S¢ := control(C, [N]) is the set of control states;

2. Sy = user(C,[N]), is the set of user states;

3. s is the error state;
4. S:=(ScU{s1}) x (Sp)V is the set of global states;
5. P :=inputs(C, [N]) is the set of actions;

6. f:S5 x P— S is the transition function;
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7.

sp € S is the initial state.

We assume, without loss of generality, that there is a single control process'.

Let D be the set of 256-bit integer values. The states are determined by the address
space, A, and the state variables of C. Assume that m, n, and k£ are the number of roles,
data, and mappings in C, respectively. State variables are stored by their numeric indices
(i.e., variable 0, 1, etc.). Then, control(C, A) C (A™ x D"*3)) and user(C, A) C (A x D*).
For ¢ = (x,y) € control(C, A):

1.
2.

role(c, 1) = x; is the i-th role;

data(c,0) =y is block.number;

data(c, 2) =y is the smart contract balance;

(

. data(c, 1) =y is block.timestamp;
(
(

. data(c,i 4 3) = y;3 is the i-th datum.

For u = (a,x) € user(C, A):

1.

2.

id(u) = a is the address of user u;

map(u); = X; is the i-th mapping value for user w.

The actions are determined by the address space, A, and the input variables for each

method in F. Assume that ¢ and r are the maximum number of clients and arguments of any
method in F. Then inputs(C, A) C (F x AT x D). For p = (fn, x,y) € inputs(C, A):

1.
2.
3.
4.
d.

fn is the first method invoked in the transaction;
client(p,0) = x¢ is tx.origin and the initial msg.sender;
client(p,i + 1) = x;,2 is the i-th client in fn;

arg(p,0) = yo is msg.value;

arg(p, 1) =y is the next value of block.number;

IThe number of users in a MINISOL bundle is a static fact. Therefore, all control states are synchronized,
and can be combined into a product machine.
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6. arg(p,2) =y is the next value of block.timestamp;

7. arg(p,i+ 3) = yirs is the i-th argument in fn.

For a fixed p, we write f,(s,u) to denote f((s,u),p).

The initial state of global(C, N) is sy := (¢,u) € S¢ x (Sy)Y, such that ¢ = (0,0),
Vi € [N]-map(u;) = 0, and Vi € [N] -id(u;) = i. That is, all variables are zero-initialized
and each user has a unique address.

An N-user transition function for fn € F is determined by the (usual) semantics of
fn (e.g. [4, 26, 38]), and a bijection from addresses to user indices, M : A — [|A|]. If
M(a) = i, then address a belongs to user u;. In the case of global(C, N), the i-th user
has address i, so M(i) = 7. We write f := [C]m, and given an action p = (fn,x,y), fp
updates the state variables according to the source code of fn with respect to M. If a call
originates from the zero-account or a smart contract, then the state is unchanged. If an
assert fails or an address is outside of A, then the error state s, is returned. If a require
fails, then the state is unchanged. At the end of each transaction, [C]rs may increment
block.number and block.timestamp in lockstep. The change in time is determinstic, and
determined by arg(p, 1) and arg(p,2). Note that [C] s preserves the address of each user.

A complete LTS for Fig. 3.1 is given in Appendix B.

Remark 3.1.1. In Sections 5.3 and 7.1, it is helpful to give semantics to a smart contract
with an arbitrary address space {0} € A C N. Let N = |A| and a; be the i-th largest
element in A. In these cases, S¢ = control(C,.A), Sy = user(C,.A), P = inputs(C, .A), and
S = (Sc U{s.})x(Sy)". Furthermore, in the initial state sy = (¢, u), Vi € [N]-id(w;) = a;,
and consequently, in the transition function, M(a;) = i. The LTS is denoted global®(C, .A)
and global(C, N) = global®°(C, [N]).

3.1.3 Limitations

MINISOL places three key restrictions on SOLIDITY. First, addresses are nominal and do
not permit arithmetic operations. This means that addresses may only be compared by
equality and disequality. We argue that this restriction is reasonable, as address manipula-
tion is a form of pointer manipulation. Second, MINISOL does not model gas. However, gas
is used in SOLIDITY to restrict the set of feasible transactions. Therefore, MINISOL strictly
over-approximates the executions of SOLIDITY. Third, new must only appear in loop-free
constructor code. In effect, this restriction states that smart contracts are never created nor
destroyed. This third assumption is common is smart contract analysis (e.g. [30, 37, 58]).
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MINISOL is also insufficient for modeling reentrancy attacks. This is because MINISOL
does not model calls from smart contracts outside of the bundle. However, reentrancy
attacks are a well studied problem and can be avoided by writing EECF smart contracts.
We follow with prior work (e.g. [58]), and assume that all smart contracts are EECF.

3.2 The MiniSol Specification Language

This section presents the MSL. First, a syntax is presented for aggregate functions, that
generalizes sum(-), count(+), min(-), and max(-). A parameterized, temporal specification
language, called MSL, is then defined using this class of aggregates. Finally, it is shown
that MSL can be used to express many interesting smart contract specifications.

3.2.1 Aggregate Functions

An aggregate function takes as input a list of values, and gives as output a single value.
For example, count(-) is applied to a list of Boolean values, and returns a single integer
value. If S; is the input domain, and S, is the output domain, then each aggregate is

characterized by some family of functions, { fn: (Sl)N — Sy | NeN }

However, most practical aggregates have far more structure. In the case of count(x),
the elements of x are mapped to either 0 or 1, and then the new elements are combined
using the + operator. Similarly, max(x) maps each element of x into N, and then combines
the new elements by taking their supremum. In either case, the aggregate first applies a
function g : S7 — S to each element of the list, and the folds the elements together using
a function f : Sy x Sy — S5. This intuition is formalized in Definition 3.2.1.

Definition 3.2.1 (Point-wise Aggregate). Let g : S; — Sy, h : Sy X So — Sy, and z € S,.
The point-wise aggregate of (g, h, z) is the function f(x) := fold(h, z, g(x)). As a shorthand,
agg(g, h, 2, x) == f(x).

An important property of many aggregate functions is that the function is order-
insensitive. That is, f(x) does not change if the elements of x are reordered. For ex-
ample, sum(x) is order-insensitive since addition is commutative. Similarly, max(x) is
order-insensitive since max(-) finds the supremum of the set of elements in x. These prop-
erties generalize to any aggregate constructed from an Abelian group (Theorem 1) or a
lattice (Theorem 2).
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Theorem 1. Let g : S; — Sy, h: Sy xSy — Ss, 2 € S5, and f be the point-wise aggregate
of (g, h,z). If (Sg,h) is an Abelian group, then f is order-insensitive.

Proof. Assume that (S, h) is an Abelian group. For simplicity of presentation, let z oy =
f(z,y). By Proposition 1, if f preserved under transpositions, then f is also preserved
under list permutations. Fix some N € N, u € (S5)", i € [N — 1], and let x = g(u).

f(ri(u)) = ((((zoxg) 0x1) 0+ - 0x;) 0X; 1) 0+ - 0 Xp)
f(ri(u)) = (((((zox0) 0x1) 0+ 0X; 1) 0X;) 0+ - 0 Xp)
f(mi(n)) = f(x)

Since (Ss,h) is Abelian, then o is commutative, and therefore, f(7;(u)) = f(u). Conse-
quently, f is order-insensitive. m

Theorem 2. Let g : S; — Sy, h: Sy xSy — Ss, 2z € S5, and f be the point-wise aggregate
of (g,h,z). If (53, <) is a lattice and h defines the supremum operator for Sy, then f is an
order-insensitive.

Proof. Assume that (S5, <) is a lattice, and that h defines the supremum of S,. For
simplicity of presentation, let sup{z,y} = h(z,y). Fix some N € N, u € (5,)", and let
x = g(u). It follows by induction that f(u) = sup{z,xo,...,xy_1}. In the base case,
N =1 and f(u) = {z,%0}. In the inductive case, assume that u’ is the length N — 1
prefix of u, and that f(u') = sup{z,xo,...,xy-2}. Then f(u) = sup{xy_1, f(X)} =
sup{z,Xo,...,Xy_1}. Therefore, the inductive case holds. As sets are unordered, then f
is order-insensitive. ]

An important property of sum(x) is that it can be updated in O(1) time. Specifically,
sum(x[i < n|) = sum(x) — x; +n. This relation is well known, and utilized by many static
analysis tools for SOLIDITY (e.g. [30, 58]). A similar, but weaker, relationship holds for
max(x) as well. For any choice of n, max(x[i < n]) < max{max(x),n}. When x; < n, the
equality is strict. As with order-insensitivity, these properties also generalize to aggregates
constructed from Abelian groups (Theorem 3), or lattices (Theorem 4).

Theorem 3. Let g : S; — S5, h: Sy xSy — S5, z € S, and f be the point-wise aggregate
of (g,h,z). If (Sa,h) is an Abelian group, then f(x[i < n]) = h (h~(f(x), 9(x;)), g(n)).

Proof. Assume that (S5, h) is an Abelian group. By Theorem 1, it can be assumed that
i = |x| — 1. Let x’ be the length |x| — 1 prefix of x. By definition, f(x') = h7'(f(x), g(x;))
and f(x[i < n]) = h(f(x'), g(n)). Therefore, f(x[i < n]) = h (h'(f(x),9(x;)),g(n)). O
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Aggregate g(u) h(z,y) z Structure of (Sy, f)
Sum of all bids map(u)o T+y 0 Abelian Group
Count of active bids ite(map(u)o = 0,0, 1) r+y 0 Abelian Group
Maximum bid map(u)o sup{z, y} 0 Complete Lattice
Minimum bid map(u)o inf{z, y} 0 Complete Lattice

Table 3.1: Example point-wise aggregates for bids in Fig. 3.1.

Theorem 4. Let g : S — Sy, h @ Sy x Sy — S5, z € Sy, and f be the point-wise
aggregate of (g, h,z). If (Sg, <) is a lattice and h defines the supremum operator for Ss,
then f(x[i < n]) < h(f(x),g(n)). Furthermore, if g(x;) < g(n), the the equality is strict.

Proof. Assume that (S, <) is lattice and that h defines the supremum of Sy. For simplicity
of presentation, let sup{z,y} = h(z,y). By Theorem 2, it can be assumed that i = |x| — 1.
Let v = sup{z, g(xq),...,9(x;)} and v = sup{z, g(x0), - ,9(xi—1),9(n)}. If g(x;) <
g(n), then v = sup{v,g(n)}. Otherwise, sup{g(x;),g9(n)} > g(n), and consequently,
o < sup{v, g(n)}. .

In MSL, aggregates are limited to user data. This means that for any user u, g maps
map(u) to some domain of scalars. Often, properties are concerned with the aggregates of
a single mapping, for example, bids in Fig. 3.1. The sum of all bids in Auction is computed
by setting g(u) = map(u)g and f(z,y) =  +y. More examples are given in Table 3.1.

3.2.2 Guarded k-Universal Safety Properties

Recall that users do not have addresses in a traditional SCUN. This means that k-universal
properties are oblivious to user addresses. Formally, a k-universal property for an N-user
MiNISoL bundle would have the form V{i,... iy} € [N]- ¢ (¢,map(w;,),...,map(u;,)).
In this section, a syntax is presented for k-universal safety properties in MSL. The syn-
tax is then extended to addresses through the introduction of guarded k-universal safety
properties. Finally, temporal operators are introduced to capture the temporal nature of
MINISOL programs.

A k-universal property is a Boolean combination of atomic predicates (see Fig. 3.4).
Each atomic predicate is either a Boolean variable in the smart contract, an (in)equality
between two numerically-typed expressions, or an application of called(-). The called(-)
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(Term) == agg(z,g,h,u) | map(u,,), | data(c,b) | n | (Term) o (Term)
(Atom) == (Term) | (Term) < (Term) | called(fn)
(Prop) == (Atom) | (Prop) * (Prop)

Figure 3.4: The syntax of k-universal properties in MSL. In this grammar a € [k], b € N,
n € D, o is an arithmetic operation, & is an (in)equality, and * is a Boolean operation.

operator is applied to the name of a method, and is true if the given method is the last
invoked method. For simplicity, variable names are used in place of semantic expressions
when the meaning is unambiguous (i.e., writing bids[i] for map(u;)o).

Next, k-universal properties are extended with guards. In MSL, there are two sorts of
guards: literal guards and role guards. A literal guard, written (i,a) € [k] x N, says that
the i-th user has address a (i.e., id(u); = a). A role guard, written (i, j) € [k] x N, says that
the i-th user is assigned to the j-th role (i.e., id(u); = role(c, 7)). The guarded k-universal
safety property is formalized in Definition 3.2.2, and illustrated in Example 3.2.1.

Definition 3.2.2 (Guarded Universal Safety). For k € N, a guarded k-universal safety
property is the parameterized property ¢, given by a tuple, (L, R, ), where L C [k] x N is
finite, R C [k] x N is finite, £ is a k-universal safety property, such that:

@ = N dw)=a| A | A idw)=role(c,j) | | =¢

(i,a)€L (4,9)ER

Example 3.2.1. Consider the claim that in Auction of Fig. 3.1, the zero-account and
manager have bids less than or equal to all other users. This claim is stated by Prop. 1:
For any three unique user processes, u, v, and w, if id(u) = 0 and id(v) = role(c,0), then
map(u)g < map(w)y and map(v)y < map(w)y. Then Prop. 1 is the guarded 3-universal
safety property ¢; defined to be:

(id(u;,) =0 A id(u;,) = role(c,0)) = (map(u;,)o < map(uy,)o A map(u;, )o < map(u;,)o)

Following Definition 3.2.2, ¢ is determined by the tuple (L, Ry,&;), where Ly = {(0,0)},
Ry = {(1,0)}, and & := (map(uy,)o < map(uy,)o A map(u;,)o < map(u;,)o). If a state
(c,u) satisfies o1, then (c,u) = V{iy,i2,43} € [|u|] - ¢1. O

The full syntax for MSL allows for pure-past expressions of the form always(y), where ¢
is a pure-past expression over guarded k-universal safety properties. Recall from Section 2.5
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that all pure-past properties are reducible to safety Therefore, it is assumed in later proofs
that all properties are guarded k-universal safety properties. In the style of [58], we abuse
notation and write prev(x) to denote the previous value of x.

3.2.3 Example Properties

Additional MSL properties for Auction of Fig. 3.1 include:

Prop. 2

Prop.

Prop. 5

Prop. 6 :

3
Prop. 4 :

. If two users have active bids, then their bids are not equal.

: Once stopped is called, all bids are immutable.

The sum of all bids is greater than or equal to the leading bid.

. If the auction has not stopped, then the leading bid is the maximum bid.

The manager cannot bid.

The properties are formalized by always(yy) through to always(yg), respectively:

@y = historically (V{i, j} € [N] - (bids[i] =0) V (bids[i] # bids[j]))
3 = historically (once(called(stopped)) = (V{i} € [N]- prev(bids[i]) = bids[i]))

5 := historically (—once(called(stopped)) = (max(bids) = leadingBid))

(
(
¢4 := historically (sum(bids) > leadingBid)
(
(

e = historically (V{i} € [N] - (role(c,0) = i) = (bids[i] = 0))
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Chapter 4

Communication and its Abstractions

The core functionality of any smart contract is communication between users. Usually,
user communicate indirectly by reading from, and writing, to designated mapping entries.
That is, the communication paradigm is shared memory. However, the indirection of shared
memory obfuscates the interactions between users. Instead, it is convenient to re-imagine
smart contracts as having rendezvous synchronization. That is, a group of one or more
users first meet at the start of a transaction (the barrier), and then participate in message
passing until the transaction has terminated.

In this chapter, MINISOL smart contracts are formally re-framed with explicit commu-
nication. First, influence is introduced to give explicit semantics to the shared memory
operations. A participation topology is defined from influence to uncover the users that
synchronize at each transaction. Finally, the participation topology graph is define to offer
finite abstractions for each participation topology.

4.1 Communication as a Participation Topology

A user u influences a transaction f, whenever the state of u affects an execution of f,.
For example, at Line 47 of Fig. 3.1, the sender influences withdraw by having its address
compared to manager. There are two ways that a user’s state can affect the execution of
fp- First, f, can compare the address of u to the address of some other user. Second,
fp can access the data of u, and then use this data to determine the outcome of the
transaction. Intuitively, user influence provides explicit semantics to each shared memory
read. User influence is formalized by Definition 4.1.1. It requires the existence of two
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network configurations that differ only in the state of u, and result in different network
configurations after applying f,.

Definition 4.1.1 (User Influence). Let C be a bundle, N € N, (S, P, f, s9) = global(C, N),
and p € P. The user with address a € N influences transaction f, if there exists an
c,r, v’ € control(C, [N]), u,u’,v,v' € user(C,[N]), and i € [N] such that:

1. id(w) = a;

2. Vj € [N]-(u;=v;) <= (1 #));

3. (ru') = fp(e,u) and (', V') = fi(c, v);
4. (r=r")= (35 € [N]\ {i} - v} £ V}).

The tuple (c,u,Vv) is a witness to the influence of user a over transaction f,.

A user u is influenced by a transaction f, whenever f, affects the state of w. For
example, at Line 51 of Fig. 3.1, withdraw influences the sender by overwriting the sender’s
bid. It is not hard to see that transaction influence provides explicit semantics to each
shared memory write.

Definition 4.1.2 (Transaction Influence). Let C be a bundle, N € N, (S, P, f,s0) =
global(C, N), and p € P. The user with address a € N is influenced by transaction f,
if there exists an ¢, € control(C,[N]), u,u’ € user(C,[N])¥, and i € [N] such that
(d,u') = f,(c,u), id(u;) = a, and u} # u;. The tuple (c,u) is a witness to the influence of
transaction f, over user a.

A user u participates in transaction f, if either u influences f, or w is influenced by
fp- In other words, f, reads from, or writes to, the shared memory of u, and after the
transaction terminates, these changes persist.

Definition 4.1.3 (Participation). The user with address a € N participates in the trans-
action f, if either, a influences f, with some witness (¢, u, v), or a is influenced by f, with
some witness state (¢, u). In either case, ¢ is a witness state.

In general, smart contracts facilitate communication between many users across many
transactions. Given any transaction, communication analysis requires knowledge of all
possible participants, and the root cause of their participation. Such a summary is called a
Participation Topology (PT). A PT associates each communication (sending or receiving)
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with one or more participation classes, called explicit, transient, and implicit. The partici-
pation is ezplicit if the participant is a client of the transaction; transient if the participant
has a role during the transaction; implicit if there is a state such that the participant is
neither a client nor holds any roles. Intuitively, explicit participation occurs when a user
enters into a transaction explicitly, by virtue of being a client. Conversely, implicit par-
ticipation occurs when a user enters into a transaction without its address appearing in
either the action, or the control state. An example of implicit participation occurs at line
Line 10 of Fig. 3.1, when Auction compares the manager’s address to the constant address
of the zero-account. Finally, transient participation starts out as either implicit or explicit
participation, but then persists across multiple transactions by assignment of a role to the
user.

Definition 4.1.4 (Participation Topology). Let C be a bundle with m roles, N € N,
(S, P, f,s0) = global(C,N), and p € P be an action with ¢ clients. The Participation
Topology of a transaction f, is the tuple pt(C, N, p) := (Explicit, Transient, Implicit), such
that:

1. Explicit C [g] x [N] such that (i,a) € Explicit if and only if a participates during f,
and client(p, i) = a;

2. Transient C [m] x [N] such that (i,a) € Transient if and only if a participates during
fp, as witnessed by some state ¢ € control(C, [N]) satisfying role(c, ) = a;

3. Implicit C [N] such that a € Implicit if and only if a participates during f,, as
witnessed by some state ¢ € control(C, [N]) satisfying Vi € [m] - role(c,i) # a and
Vi € [q] - client(p, i) # a.

To illustrate Definition 4.1.4, a PT is constructed for Fig. 3.1. Let C = (Auction), 4 be
the network size, and assume for simplicity that the address of Auction is 1. Consider the
action p = (bid, (3), (10)) € inputs(C, [4]), that states that the user at address 3 invokes
bid with a message value of 10. The first client, at address 3, is an explicit participant
since bid updates the balance of the sender. The users at addresses 0 and 1 are implicit
participant, since neither the the zero-account nor the Auction can invoke a transaction.
Consequently, remapping the sender to 0 or 1 would force the transaction to revert (this
is expanded on in the proof of Theorem 6). The manager is a transient participant,
since the sender’s is compared to the manager’s address. If the manager is not equal to
the sender, then remapping the manager to the address of the sender would force the
transaction to revert. Then the full PT is (Explicit, Transient, Implicit) = pt(C, 3, p), such
that: Explicit = {(0,3)}, Transient = {(0,0), (0, 1), (0,2), (0, 3)}, and Implicit = {0,1}. It
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is important to note that the user at address a € [4] appears in pt(C, 3,p) if and only if a
could participate in p. This generalizes to every PT, as stated by Theorem 5.

Theorem 5. Let C be a bundle, N € N, (S, P, f,s9) = global(C,N), p € P, and
pt(C, N,p) = (Explicit, Transient, Implicit). The user a € N participates in f, if and
only if (3i € N (¢,a) € Explicit) V (3i € N- (4,a) € Transient) V (a € Implicit).

Proof. The (<) direction follows directly from Definition 4.1.4. Consider the (=) direction.
Assume for the intent of contradiction that a participates in f, and a does not appear in
pt(C, N,p). If a participates in f,, then by Definition 4.1.3 there is at least one witness
state, ¢ € control(C,[N]). By assumption, a ¢ Implicit. Then Ji € N - role(c,i) = a
or 3i € N - client(p,i) = a. In the first case, (i,a) € Explicit, and in the second case,
(7,a) € Transient. By contradiction, a appears in pt(C, N, p). ]

4.2 Abstraction via Participation Topology Graphs

Definition 4.1.4 is semantic and depends on both the choice of action, and the size of the
network. The set of all network sizes is countably infinite, and therefore, the set of all PTs
is also infinite. However, communication analysis requires reasoning about all possible PT's.
This motivates the PTG that is a syntactic over-approximation of all PTs, independent of
network size. A PTG has a vertex for each user and each action. In general, a single vertex
can map to many user or many actions. An edge exists between a user and an action if the
user can participate in the corresponding transaction. Furthermore, each edge is labelled
by all corresponding participation classes. This intuition between a PTG is inspired by
“control-flow graphs” that map program locations to vertices, and then over-approximate
program reachability via graph reachability [3].

PTG edges are labelled by participation class. For any bundle C, there are at most
q explicit classes and m transient classes, where m is the number of roles, and ¢ is the
maximum number of clients taken by any function of C. On the other hand, the number
of implicit classes is determined by the PTG itself. In general, there is no bound on
the number of implicit participants, and it is up to a PTG to provide an appropriate
abstraction (i.e., L in Definition 4.1.4). Intuitively, the implicit participation class exploit
domain-specific knowledge to classify each implicit participant. The label set common to

all PTGs is PC(C) := {explicitQi | i € [¢]} U {transientQi | i € [m]}.

Definition 4.2.1 (Participation Topology Graph). Let C be a bundle, L be a finite set
of implicit classes, and Py = inputs(C,N). A Participation Topology Graph for C is a
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implicit@ implicit@1

explicit@0 explicit@0 implicit@0
transient@0 transient@0 implicit@1

p* implicit@2

implicit@2 .- explicit@0

explicit@0 ?r);%lé?gr%éo transient@0
transient@Q

2 3 0

(a) The PTG produced by PTGBuilder. (b) The weakest possible PTG.

Figure 4.1: Two PTGs for TimedAuctionManager in Fig. 3.1. In each diagram, p* is an
arbitrary action.

tuple ((NaU Np, E,0), p,n) where (Na,UNp, E,§) is a labelled bipartite graph, Ny C N,
Np C Py, CEX(PC(C)UL), u: Py — Np,n: Np x N— Ny, such that for all N € N,
and for all p € inputs(C, [N]), with pt(C, N, p) = (Explicit, Transient, Implicit):

1. If (7,a) € Explicit, then there exists a (u,v) € E such that u = u(p), v = n(u,a),
and ((u,v), explicitQi) € 0;

2. If (i,a) € Transient, then there exists a (u,v) € E such that u = u(p), v = n(u, a),
and ((u,v), transient@i) € §;

3. If a € Implicit then there exists a (u,v) € EF'and ! € L such that u = u(p), v = n(u, a),
and ((u,v),l) € 9.

In Definition 4.2.1, u and n map actions and users to vertices, respectively. An edge
between p(p) and n(u(p), a) indicates the potential for a to participate in f,. Each label on
the edge states a potential participation class for a in f,. As an example, Fig. 4.1ais a PTG
for Fig. 3.1, such that all actions map to a single representative action, the zero-account
maps to 0, the address of TimedAuctionManager maps to 1, the address of Auction maps to
2, and all other users map to the representative address 3. The three implicit classes have
the labels implicit@0, implicit@1, and implicit@Q2, respectively.
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It is not by coincidence that each smart contract appears as a participant of C. In fact,
nearly all MINISOL programs require that every smart contract appear as a participant®.
This is because the transition function rejects actions that originate from a smart contract.
This observation is made precise in Theorem 6.

Theorem 6. Let C be a bundle with at least one non-reverting transaction f,, and ((NaU
Na, E,0),1u,m) be a PTG of C. If a € N is the address of a smart contract or the zero-
account, then Vp € inputs(C,N) - I(u(p),l,n(p,a)) € 6.

Proof. Recall that [C]a reverts whenever tx.origin is the address of a smart contract
or the zero-account. Then client(p,0) = a* # a. By the assumption that f, is non-
reverting, there exists an N € N, s, s’ € control(C, [N]), and u,u’ € user(C, [N])" such that
(s',u') = fp(s,u). Construct v € user(C, [N]) such that map(v,«) = map(u,+), id(ve+) = a,
and Vi € [N]/{a*} - v; = u;. Since (client(p,0) = a*) A (M(a*) = a*) A (id(ve) = a),
then f,(s,v) must revert. As a direct result, (s,v) = f,(s,v). Then, (s,v) is a witness
to the participation of a. By Theorem 5, a must appear in pt(C, N,p). Therefore, by
Definition 4.2.1, I(u(p), !, n(p,a)) € 6. O

4.3 The PTGBuilder Abstraction

For every PT, there are many over-approximating PTGs. The weakest PTG (see Fig. 4.1b)
maps every action to one vertex, every user to another vertex, and then joins the two ver-
tices through a single edge. The single edge is labelled by every participation class, includ-
ing a single implicit class. Fig. 4.1a shows a simple, yet stronger, PTG for Fig. 3.1. First,
note that there are three implicit participants, represented by addresses 0 to 2, with labels
implicit@Q0 through to implicit@2. Next, observe that any arbitrary user can become the
manager. Finally, the distinctions between actions are ignored. Thus, there are four user
vertices, three which are mapped to the zero-account, Auction, and TimedAuctionManager,
and another that is mapped to all other users. Such a PTG is constructed automatically
using an algorithm named PTGBuilder.

Let lits(C) denote the literal addresses that appear in C, together with an address for
each contract and the zero-account. PTGBuilder takes a bundle C and returns a PTG
for C. The implicit classes are L := {implicitQa | a € lits(C)}, where implicitQa signifies

!The MINISOL programs that do not satisfy this property are those that revert on every action. A
simple example is a smart contract whose single method starts with require(false). Such programs
are excluded by the existence of f,, in Theorem 6
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implicit participation from the user at address a. The vertices, edges, and labelling function
are computed using taint analysis [39]. Tainted sources include input address variables
(i.e., clients), state address variables (i.e., roles), and literal address variables. Sinks include
memory writes, comparison expressions, and mapping accesses. PTGBuilder first performs
this taint analysis to compute (Input, State, Literal), where:

1. Input is a set that contains the index of each input address variable that propagates
to a sink;

2. State is a set that contains the index of each state variable that propagates to a sink;

3. Literal is a set that contains each literal address that propagates to a sink.

PTGBuilder then uses (Input, State, Literal) to construct a PTG, (N4 U Np, E,§), i, 1),
that is a least solution to the following rules:

1. Let a* = maxgeritera{a} + 1 and p* = (0,0) € inputs(C, [1]);
2. N4 = Literal U {a*}, Np = {p*}, and E = N4 x Np;

3. d ={(e, explicitQi) | e € E AN i € Input} U {(e, transient@Qi) | e € E A i € State} U
{((a,p), implicitQa) | (a,p) € E A a € Literal};

4. p=A{(p,p*) | p € inputs(C,N) };

5. n={(p*,a,a* | a € N\ Literal} U {(p*, a,a) | a € Literal}.

The correctness of PTGBuilder relies on the structure of MINISOL, and on the over-
approximate nature of taint analysis. Recall that in MINISOL, communication is limited to
address comparisons, map accesses, and storing addresses in state variables (i.e., assigning
roles). Therefore, the taint analysis employed by PTGBuilder strictly over-approximates all
communication in C. The seven rules then formalize the intuition behind Fig. 4.1a. Rule 1
selects a unique address a* ¢ Literal and a unique action. Rule 2 ensures that every literal
address has a unique vertex, and that all address vertices connect to p*. The first term of
rule 3 states that if an input address is never used, then the corresponding client is not an
explicit participant. The second term of rule 3 states that if a state address is never used,
then the corresponding user is not a transient participant. The third term of rule 3 states
that if an address is not literal, then the corresponding user is not an implicit participant.
Rules 4 and 5 define p and n as expected. Note that in MINISOL, implicit participation
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must result from literal addresses, since addresses do not support arithmetic operations,
and since numeric expressions cannot be cast to addresses. This discussion is summarized
by Theorem 7.

Theorem 7. Let C be a bundle. If (G, i, n) is returned by PTGBuilder when applied to C,
then (G, u,n) is a PTG for C.

4.4 Summary

By re-framing smart contracts with rendezvous synchronization, each transaction can be
interpreted as communication between several users. The communication patterns of these
users are captured by the corresponding PT. A PTG over-approximates PTs of all transac-
tions, and is automatically constructed using PTGBuilder. A PTG provides useful insight
into the behaviour of a smart contract, such that each smart contract belongs to its own
participation class (i.e., Theorem 6). In Chapter 5, it is shown that the PTG is crucial for
smart contract PCMC, as it provides an upper bound on the number of equivalence class,
and the users in each equivalence class.
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Chapter 5

Locality in Smart Contracts

This chapter applies local symmetry analysis to MINISOL bundles. First, Section 5.1
defines a notion of locality, and shows that every smart contract can be executed locally.
In this setting, locality is defined by the participants of a transaction. It is shown that
given a global state (¢, u), the transaction f, can be determined using the local state (¢, v),
where v is the projection of u onto the participants of f,. Second, Section 5.2 shows that
non-implicit participants are locally symmetric and can be readdressed without impacting
the outcome of a transaction. As a result, all local transactions can be executing using
an abstract address domain of finite size. Third, Section 5.3 shows that each implicit
participant can be permanently readdressed through source code manipulation, without
impacting local behaviour. In practice, this means that given a MINISOL bundle C, it is
possible to construct a new bundle C’, such that C’ simulates C, and lits(C’) = [[lits(C)| ].
An overview of each symmetry is illustrated in Fig. 5.1.

The chapter concludes by defining local bundles abstractions. Intuitively, a local bundle
is a non-deterministic, finite-state abstraction of a global smart contract bundle. The
address of each user is selected from an abstract domain, and the data of each user is
determined by a user-provided predicate. In Chapter 6, it is shown that smart contract
PCMC reduces to the safety of local bundles. In Chapter 7, it is shown that local bundles
can aid in bounded analysis.

5.1 Local Transaction Views

A MINISOL bundle C' can be instantiated with an arbitrary number of users. However,
the outcome of a transaction f, depends only on the participants of p. As shown in
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id(u) :
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Figure 5.1: An illustration of a local transaction. A transaction f,(c,u) of Auction in
Fig. 3.1 is depicted, such that in a 16-user network with owner at address 9 and auction
at address 15, the user with address 5 increases their bid from 0 to 5. Step 1 performs
a view projection as in Section 5.1. Step 2 constructs an abstract address domain as in
Section 5.2. Step 3 applies smart contract normalization as in Section 5.3. Step 4 executes
the transaction locally, and then the transformations are reversed to obtain u’.

Chapter 4, the number of participants in f, is bounded above by each PTG of C'. This
means that the outcome of f, can be determined by inspecting a finite set of users, called
the transactional view of p. The transactional view provides a natural notion of locality
for MINISOL bundles.

Definition 5.1.1 (Transactional View). Let C be a bundle, N € N, p € inputs(C, [N]),
¢ € control(C, [N]), and (E,T,1) = pt(C, N, p). The transactional view of p relative to c is
the set of addresses view(p, ¢) := {client(p, ?) | (¢,a) € E}U{role(c,i) | (¢,a) € THU(IN[N]).

Example 5.1.1. To illustrate Definition 5.1.1, a transactional view is constructed for
Fig. 3.1 using a network size of 16. Let C = (Auction) and assume for simplicity that the
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address of Auction is 15. Consider the action p = (bid, (5), (10)) € inputs(C, [16]), control
state ¢ = ((9), (42,42,20,7, 1)) € control(C, [N]), and user configuration u € user(C, [N]).
That is, the user at address 5 invokes bid with a message value of 10 while the auction
is not stopped and the manager has address 9. As demonstrated by the running example
in Section 4.1, this transaction has a single explicit participant (i.e., the sender), a single
transient participant (i.e., the manager), and two implicit participants (i.e., the Auction
contract and the zero-account). Relative to p and ¢ the sender has address 5 and the
manager has address 9. This gives a transactional view of view(p, ¢) = {5} U {9} U {0, 15}.
The outcome of p on (c,u) is therefore determined by ug, us, ug, u;s. These four users
form the projection of u onto view(p, ¢), as defined in Definition 5.1.2. O]

Definition 5.1.2 (User Projection). Let C be a bundle, N € N, A C [N], M = | A|, and
u € user(C,[N])N. A configuration v € user(C, A)M is the projection of u onto A, written
v = m4(u), if there exists a total, injective, order-preserving mapping, A : [M] — [N] such
that A = {id(v;) | i € [M]} and Vi € [M] - v; = uyg).

Example 5.1.2. Recall (p, c,u) from Example 5.1.1. Following Definition 5.1.2, the pro-
jection of u onto view(p, ¢) is v = (up, us, ug, uy5). In this example, A : [4] — [16] such that
A0) =0, A(1) =5, A(2) =9, and A\(3) = 15. Given (¢, V), p, and A, it is possible to com-
pute the outcome of action p on state (¢,u). The key insight is that A\™! defines a partial
function from the addresses in view(p, ¢) to the indices of v. For example, A™'(5) = 1 and
A71(15) = 3. This means that [C]x-1((c,v),p) can be used to determine the projection of
[CIm((c,u), p) onto view(p, c). For this reason, ((¢,v),p, A) is called the local transaction
of ((¢,u),p). In Theorem 8 it is proven that local transactions can be used to determine
the outcome of a (global) transaction. An illustration is given by Step I in Fig. 5.1. O

Lemma 1. Let C be a bundle, N € N, (S, P, f, s9) = global(C, N), p € P, (¢,u) € S, and
V = Tiew(cp) (1) With injection X. If f,(c,u) succeeds, then [C]\-1((c, v),p) succeeds.

Proof. Assume for the intent of contradiction that [C]x-1((c, V), p) reverts. Clearly, (c,u)
and (¢, v) agree on the control state. Since f, does not revert, then every address accessed
by f, must be in [N]. Then either, there exists an a € [N] accessed by [C]s-1 such that
a € dom(A™1), or there exists an a € dom(A™!) such that [C]x-1 and f, disagree on the
participant with address a. There are two cases to consider.

1. Assume for the intent of contradiction that a is accessed yet not in dom(A~1). By
construction of A\, dom(A™!) = view(c, p). Then there exists a & view(c, p) such that a
participates in f,. However, by Definition 5.1.1, view(c, p) must contain the address
of each participates in f,, relative to ¢. By contradiction, a € dom(A™!).
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2. Assume for the intent of contradiction that [C] -1 and f, disagree on the participant
with address a. By assumption, there exists an a € dom(A™!) such that u, # Va-1(a)-
However, vy-1(, is defined to be uy-1(4)) = u,. By contradiction, [C] -1 and f,
agree the address of every participant during the transaction.

By contradiction, [C]x-1((c, V), p) succeeds.

Theorem 8. Let C be a bundle, N € N, (S, P, f,s9) = global(C,N), p € P, (¢c,u) € S,
(d,u') € S, A = view(c,p), and (v,Vv') = (m4(u),m4(0')) with injection A. If (¢,u’) =
fp(e,u), then Vi € [N\A - v} = u; and (¢, V') = [C]r-1((¢, V), p).

Proof. The proof of Theorem 8 has two parts.

1. Assume for the intent of contradiction that Vi € [N]\A - u, # u;. Then 3 €
[NJ\A-u} # u;. Then by definition, u; is influenced by f,. By definition of view(c, p),
i € A. By contradiction, Vi € [N]\A - u; = u,.

2. By definition of the transition function, [C]y-1 is deterministic. Since f,(c,u) suc-
ceeds, then [C]y-1((¢, V), p) succeeds by Lemma 1. Assume for the intent of contra-
diction that (¢, v') # [C]x-1((¢, V), p). Since [C] -1 succeeds, only the users in v can
participate in f,. Since [C]\-1 is deterministic, f, must read a value that differs from
[C]»-1. However, the control states are the same, and v = m4(u). This contradicts
the determinism of [C]x-1. Therefore, (¢/,v') = [C]r-1.

Therefore, both claims of Theorem 8 must hold. O

5.2 User Symmetries and Abstract Address Domains

Theorem 8 reduces every MINISOL transaction to a bounded number of users. However,
the address of each user is still parameterized by the size of the network. Therefore,
the number of local transactions is also countably infinite. To enable reasoning about
local transactions, this section identifies a finite set of equivalence classes that are closed
under their transition relations. As a key result, it is shown that a representative for each
equivalence class can be obtained by fixing a finite set of abstract addresses.

First, an equivalence relation is given relative to the numeric-typed data of a local
transaction. For simplicity, I C lits(C) is used to denote that literal addresses in C that
appear as implicits participants.
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Definition 5.2.1 (Data Equivalence). Let C be a bundle with m roles, d data, ¢ clients,
and r arguments, and N € N. Two local transactions of global(C, N), ((cy, ), py, Ay) and
((cy, V), v, \y) are data equivalent, written ((cy,w), py, \u) ~p ((¢y, V), Dv, Ay), When the
following properties hold:

1. Both p, and p, invoke the same transaction;

2. Vi € [r] - arg(py, i) = arg(py, i);

3. Ya € (IN[N])-map(uy, () = map(Va,(a);

4. Vi € [m] - let j = role(cy, ) - let k = role(c,, %) - map(uy,)) = map(va,());

5. Vi € [q] - let j = client(p,, ) - let k = client(p,, ) - map(ux,(;)) = map(Vi,k));

6. Vi € [d] - data(cy, i) = data(c,, 7).

The rules of Definition 5.2.1 follow from the intuition of numeric data equivalence.
Rule 1 states that the local transactions invoke the same method. Rule 2 states that the
same arguments are passed to both invocations. Rules 3 through to 5 state that the local
transactions assign the same mapping entries to users that share participation classes. Rule
6 states that the control process in both local transactions stores the same data. Since
data equivalence is defined through equality, it follows naturally that data equivalence is
an equivalence relation.

Lemma 2. Data equivalence is an equivalence relation.
Proof. 1f ~p is reflexive, symmetric, and transitive, then ~p is an equivalence relation.

1. Let ((¢,u),p, A) be alocal transaction. By definition, the domain of X includes IN[NV],
{role(c,i) | i € [m]}, and {client(c,7) | i € [¢]}. Then all properties of ~p are well-
defined for ((c,u),p,A\) and ((c,u,),p, ). Since equality is reflexive, all properties
are also satisfied. Then ((c,u),p,A) ~p ((¢,u),p, \). Therefore, ~p is reflexive.

2. Assume that (s1,p1, A1) ~p (S2,p2, A2). Since equality is symmetric, then all prop-
erties of ~p are also symmetric. Then (s9,p2, A2) ~p (s1,p1,A1). Therefore, ~p is
symmetric.

3. Assume that (s1,p1, A1) ~p (82,02, X2) ~p (s3,p3,A3). Since equality is transitive,
then all properties of ~p are also transitive. Then ((s1,p1, A1) ~p (83, p3, A\3). There-
fore, ~p is transitive.
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Therefore, ~p is an equivalence relation. O]

Next, an equivalence relation is given relative to address-typed variables. This relation
is weaker than data equivalence, since the address-type is nominal whereas the numeric-
type is ordered. Intuitively, two local transactions are equivalent, relative to their address-
typed variables, if they preserve equality between roles, clients, and implicit addresses.
This ensures that the local transactions agree on the participation classes (i.e., names)
assigned to each user.

Definition 5.2.2 (Name Equivalence). Let C be a bundle with m roles and ¢ clients, and
N € N. Two local transaction of global(C, N), ((¢cy, w), pu, Ay) and ((¢y, V), pu, Ay ), are name
equivalent, written ((c,,w),pu, A\u) ~n ((¢y, V), Dy, Ay), When there exists a permutation
7 : [N] — [N] such that:

1. Yae (IN[N])-71(a) = qa;
2. Vi € [m] - 7(role(cy, 1)) = role(cy,);

3. Vi € [n] - 7(client(py, i)) = client(py, ©).

In Definition 5.2.2, 7 is used to map the participants of ((c,,u),py, A,) onto the par-
ticipants of ((c,, V), py, Ay). Rule 1 ensures that 7 does not rename implicit participants,
since implicit participants have fixed addresses. Rules 2 and 3 ensure that 7 renames each
role and client consistently. Since permutations preserve equality, 7 ensures that the lo-
cal transactions agree on participation classes. Furthermore, permutation properties of 7
ensure that name equivalence is an equivalence relations.

Lemma 3. Address equivalence is an equivalence relation.
Proof. If ~y is reflexive, symmetric, and transitive, then ~y is an equivalence relation.

1. Let (s,p,A) be a local transaction and 7 be the identity permutation for [N]. Then
Va € [N]-7(a) = a. By definition, (s,p,\) ~n (s,p, A) with corresponding permuta-
tion 7. Therefore, ~y is reflexive.

2. Let (s1,p1, A1) ~n (82, p2, A2) with corresponding permutation 7. Since permutations
form a group, there exists an inverse permutation 771, Since Va € (IN[N])-7(a) = a,
then Ya € (I N[N]) -7 '(a) = a. By definition, (sq,p2, A2) ~n (S1,p1, A1) with
corresponding permutation 7!, Therefore, ~y is symmetric.
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3. Let (s1,p1, A1) ~n (82, P2, Ag) with corresponding permutation 71, and (s2, p2, A2) ~n
(s3,p3, A\3) with corresponding permutation 75. Since permutations form a group,
there exists a permutation 7 = 7 o 7y. Since Va € (I N[N]) - 11(a) = 72(a) = a, then
Va € (IN[N])-7(a) = a. By definition, (s1,p1, A1) ~n (83, p3, A3) with corresponding
permutation 7. Therefore, ~ is transitive.

Therefore, ~y is an equivalence relation. O

Now that (~p) and (~y) are defined, their closure under local transitions is considered.
Theorem 9 shows that in general, (~p) is not closed under local transitions. A similar
result can be proven for (~y). Theorem 10 shows that (~p) N (~x) is closed under all
local transitions. Since equivalence relations are closed under intersection, the relation
(~p) N (~n) is also an equivalence relation.

Theorem 9. Let C be a bundle with local transactions (s, pu, Au) and (S,, py, Ay) such that
(Sus Puy M) ~D (Suy Doy Ao) and (Su, Dus Au) %N (Su, Doy Ay). There exists an implementation
of [[C]]M such that ([[C]])\u<SU7pu)7pua )‘u) 7AD ([[C]])\U(Svapv)apva )\U)

Proof. Write (¢,,u) = s, and (¢,,Vv) = s,. Assume that (Sy, Pu, \u) %~ (Su, Pv, Ap). Then
for some a,z,y € [N], there exists two propertles of ~x such that 7(a) = z and 7(a) =y
with x # y. There are five cases to consider.

1. Assume that property 1 contradicts property 2. Then a € (I N[N]), and there exists
an ¢ € [m| such that role(c,, i) = a and role(c,, i) # a. Construct [C]rq such that the
0-th state variable is incremented if the i-th role has the address a.

2. Assume that property 1 contradicts property 3. Then a € (I N [N]) and there exists
an i € [n| such that client(p,, i) = a and client(p,, i) # a. Construct [C]q such that
the 0-th state variable is incremented if the ¢-th client has the address a.

3. Assume that property 2 contradicts property 2. Then there exists i,j € [m] such
that role(c,, ) = role(c,, j) and role(c,, i) # role(c,, j). Construct [C] s such that the
0-th state variable is incremented if the ¢-th and j-th role are held by the same user.

4. Assume that property 2 contradicts property 3. Then there exists i € [m] and j € [n]
such that role(c,, i) = client(py, j) and role(c,, ) # client(py, 7). Construct [C]a such
that the 0-th state variable is incremented if the j-th client holds the ¢-th role.
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5. Assume that property 3 contradicts property 3. Then there exists ¢, j € [n] such that
client(p,, i) = client(py,j) and client(p,, i) # client(p,, j). Construct [C]a¢ such that
the 0-th state variable is incremented if the i-th and j-th clients are the same user.

In each case, [C]r compares literal addresses, roles and clients. Such comparisons are ex-
pressible within the MINISOL language. Furthermore, data (¢, 2) # data (¢, 2). Therefore,

([[C]]/\u (Suvpu)>pU7 )\u) 7Z’D ([[C]])\v (Svypv)apva >\v) L]

Theorem 10. Let C be a bundle with local transactions (S, py, Ay) and (s, py, Ay) and
(~) be defined as (~p) N (~n). If (Su,PusAu) ~ (Su, v, Ap) With permutation 7, then
(ICTx, (Sus Pu) s Pus Au) ~ ([C]x, (Sws Pv)s Duy Ap) With permutation 7.

Proof. Let s, = [C]a,(Su,Pu), S, = [Clx,(Sv,00), (cuyu) = s, and (s,,Vv) = s,. It
must be shown that (s, pu, A\) ~p (8,00, Av) and (s}, pu, Au) ~n (), Pv, Ay). How-
ever, the proof either case is symmetric, so assume for the intent of contradiction that
(8, Puy Au) #p (S, Du, Ay). Then s, # s/ . Since [C] o is deterministic, then [C] o must dif-
ferentiate between the transactions (s,,p,) and (s,,py). Since (Sy, Pu, Au) ~bD (Su, Do, M),
then (s,,p,) and (s,,p,) assign the same value to each numeric-typed variable. There-
fore, [C]am must differentiate between the value of an address-typed variable in (s, pu),
and the same address-typed variable in (s,,p,). However, (Sy,pu, M) ~n (Su,Dus Av), SO
(Su, pu) and (s,,p,) must also agree on the equality of all roles, clients, and implicit par-
ticipants. Therefore, there exists an ¢ € [m] and a € [N] such that [C]r can identify that
role(cy,?) = a and role(c,,i) # a (a symmetric argument holds for clients). By definition,
a is an implicit participant, and as a result, 7(a) = a. However, 7(role(c,,7)) = role(c,, ).
By contradiction, (s, pu, Au) ~p (S5, Pu,s Ay). In conclusion, (8., pu, Au) ~ (8), Py, Ay). O

Theorem 10 states that all local transactions can be analyzed by considering only
the representatives of (~p) N (~y). However, it is not yet clear whether the number
of equivalence classes induced by (~p) N (~y) is finite. Recall that the set of all local
transactions is countably infinite due to the countably infinite set of addresses. Therefore,
if all representatives of (~p) N (~y) can be defined using a fixed set of abstract addresses,
then (~p) N (~x) has finitely many equivalence classes. Intuitively, the set of abstract
addresses must be large enough to preserve equality between clients, roles, and literal
addresses. This intuition is made precise by Theorem 11, with A denoting the set of
abstract addresses.

Theorem 11. Let C be a bundle with m roles and ¢ clients, N € N, ((¢,u), p, A) be a local
transaction of global(C, N), and A C [N)\I. If |A| > max{m + ¢,|[IN]\I|}, then there
exists a permutation 7 : [N] — [N] such that:
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1. Vi € [m] - 7(role(c,i)) € (1 U A);
2. Vi € [q] - T(client(p,i)) € (I U A);
3. Vae IN[N]-7(a) = a.

Proof. Let (X,Y) be a partition of view(c, p) such that Y = I N [N]. Fix arbitrary orders
over the elements of A and X, such that A = {ao, ..., aj4-1} and X = {xo, ..., 7)x-1}. By
Definition 5.1.2, | X| < m + ¢ and |X| C [N]\/. Then |X| < max{m + ¢, |[[N]\I|} < |A|.
Since | X| < |A|, there exists a relation 7 C [N] x [N] such that:

1. Vie[|X]] 7(x;) = a;
2. YVae IN[N]-7(a) =
3. Vae [N\(XUY) 7(a) =a.

Since X NY =0 and Y = I N[N], 7 is a permutation. By Definition 5.1.2, if follows that
Vi € [m] - role(c,i) € (X UY) and Vi € [q] - client(p,i) € (X UY'). By construction of 7,
Va e (XUY)- 7(a) € (I UA). Therefore, T satisfies Theorem 11. O

Example 5.2.1. Recall ((¢,v),p, A) from Example 5.1.2. In Example 5.1.1, it was shown
that view(p,c) = {0,5,9,15}. This example constructs a local transaction ((¢/,v’),p’, \),
with abstract address domain A = {1,2}, such that ((¢/,v),p,A) ~n ((¢,V'),p',A). The
first step in this example is to find the permutation 7 corresponding to ~y. A method to
find 7 is given in the proof of Theorem 11. Following the proof, X = {5,9} and Y = {1, 15}.
Since the orderings placed on X and A are arbitrary, assume the standard ordering for
integers. Then xy =5, £1 =9, ap = 1 and a; = 2. Consequently, 7(5) = 1, 7(9) = 2, and
Va € [16]\{5,9} - 7(a) = a. Then ¢ = ((7(9)), (42,42,20,7, 1)), p' = (bid, (7(5)), (10)),
and v/ = ((0,map(vy)), (1, map(vs)), (2, map(vy)), (15, map(vys))). An illustration is given
by (2) in Fig. 5.1. O

In Example 5.2.1, the control state ¢ was transformed into ¢, the user configuration v
was transformed into v/, and the action p was transformed into p’. Each transformation
is referred to as a 7-renaming, and is written rename(C, 7,-). For ¢ and p, the 7-renaming
permutes address variables. In the case of v, the 7-renaming also permutes the vector to
preserve address ordering. This permutation is not necessary, but simplifies later proofs.
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5.3 Renaming Implicit Participants

In Section 5.2, it was shown that (~p) N (~x) induces a finite number of equivalence
classes among local transactions, and that representatives for these equivalence classes can
be found by enumerating an abstract address domain, (AU ). One limitation is that
the abstract address domain may be non-consecutive. For example, in Example 5.2.1,
(AUI) = [3] U {15}. If non-consecutive addresses matter, then they must be taken into
account during smart contract analysis. As a positive result, this section shows that for
every MINISOL smart contract, a set of correctness-preserving source code transformations
exist such that (AU I) is consecutive.

The key insight behind this result is that literal addresses are merely names for special
users. If all instances of a literal address are replaced in the source code, then the set
of implicit participants is changed accordingly. Usually, such an equivalence would be
proven through bisimulation. However, changing implicit participation also changes the
relation between states and actions, whereas standard simulations assume that actions are
unchanged. In this section, a new notion of simulation is introduced that allows for actions
to be similar relative to similar states. Such a simulation is called a simulation under input
relabelling. First, the impact of such simulations on guarded safety properties is considered.

Usually, simulations are used to prove simulation-invariant properties. Unfortunately,
guarded safety properties are not invariant to 7-renamings. For example, if 7(5) = 10 and
5 is a literal guard of ¢, then ¢ is not invariant to the renaming induced by 7. However,
if the literal guards in ¢ were updated according to 7, then this new property would be
preserved under simulation. This intuition is captured by simulation equivalent properties
in Definition 5.3.1. In Definition 5.3.2, the 7-renaming of a guarded property is defined,
and in Theorem 12 it is proven that a guarded safety property and its 7-renaming are
simulation equivalent with respect to the 7-renaming of states.

Definition 5.3.1 (Simulation Equivalent). Let (Si, L1, f, so) and (Sz, Lo, g,t9) be LTSs,
and 0 C S7 x Sy. Properties 1 and ¢y are simulation equivalent with respect to o if

V((s1,t1), -y (Skyti)) €0 (S1,...,8k) E 1 <= (t1,...,tk) E po.

Definition 5.3.2 (Guard Renaming). Let ¢ be the guarded k-safety property given by
(L, R,§), and T be a permutation. The 7-renaming of ¢ is the guarded k-safety property
given by (L', R, &), where L' = {(i,7(a)) | (i,a) € L}.

Theorem 12. Let C be a bundle, N € N, ¢ be the guarded k-safety property given by
(L,R,), and 7 : [N] — [N] be a permutation. If ¢y is the 7-renaming of ¢y, given by
(L2, R, €), then ¢; and ¢y are simulation equivalent with respect to o(s) = rename(C, 7, s).
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Proof. To prove that ¢; and ¢y are simulation equivalent, both directions of ( <= )
must be proven. Since L; = {(i,77'(a)) | (i,a) € Ly}, the (=) direction implies the (<)
direction. Assume for the intent of contradiction, that the (=) does not hold. Then
there exists (so, ..., Snm) € (S1)", such that (sg,...,sm) E @1 and (0(sg),...,0(sm)) ¥ @a.
Since @1 and @, are safety properties, there exists an i € [m + 1] such that s; E ¢; and
o(si) = p2. Then o(s;) satisfies the guards of ¢y and o(s;) = £. Let ¢ be the control state
of s;, u be the user configuration of s;, and {ji, ..., jx} be the indices of u that correspond
to the counterexample. There are three cases to consider.

1. Assume that s; satisfies the guards of ¢1. Then s; = £. Since & does not depend
on address variables, o(s;) = £ Consequently, o(s;) = v = £ for any choice of ~.
Therefore, po(o(c),o(uy,),...,o(u;,)) is valid. By contradiction, s; must violate at
least one guard of .

2. Assume that s; violates a literal guard (I,a) € L; and let b = j;. Then u, # a. Since
T is a permutation, then 7(u,) # 7(a). Consequently, o(s;) violates the literal guard
(i,7(a)) € Ly. Therefore, ps(o(c),o(uy,),...,o(u;,)) is valid. By contradiction, s;
must violate at least one role guard of ;.

3. Assume that s; violates a role guard (I,7) € R and let b = j. Then id(uy) =
role(c,r). Since 7 is a permutation, then 7(id(u)) = 7(role(c,r)). Consequently,
o(s;) violates the role guard (I,7) € R. Therefore, ps(o(c),o(uy),...,o(u;,)) is
valid. By contradiction, o(s;) | ¢a.

By contradiction, (o(sg),...,0(sm)) F @2 O

Next, the standard definitions of simulations and bisimulations (see Section 2.6) are
generalized to similar inputs. The key difference is that for every (s,t) € o, there exists a
function m(, ;) that relates actions of one LTS to actions of the other LTS. In the special case
where V(s,t) € 0 - m(s4)(p) = p, a standard simulation is obtained. In the case of MINISOL
smart contract, (s,t) € o if ¢ is a particular 7-renaming of s. Respectively, ¢ = 7 (p) if
q is also a T-renaming of p.

Definition 5.3.3 (Simulation Under Relabelling). Let (S, L1, f, so) and (S, Lo, g,t9) be
LTSs. A relation o C 57 X Sy is a simulation under input relabelling, with respect to the
family of total functions, {m(ss) : L1 — Lo | (s,t) € o}, if the following requirements hold:

L. (so,t0) € 03
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2. Vse€ S;-3t eSSy (s,t) €o;
3. Y(s,t) €c-Vpe L -Vs € f(s,p)- Tt € g(t,ms)(p)) - (,1) € 0.

Definition 5.3.4 (Bisimulation Under Relabelling). Let (S1, L1, f, so) and (Sa, Lo, g, to) be
LTSs. A relation o C 57 x S5 is a bisimulation under input relabelling, with respect to the
family of total functions, R = {74 : L1 = Lo | (s,1) € o}, if the following requirements
hold:

1. For each (s,t) € o, the relation 77, (q) := T(st) ' (g) defines a total function;
2. o is a simulation under input relabelling, with respect to R;
3. 07! is a simulation under input relabelling, with respect to {7s | (s,0) € 0}

Definition 5.3.5 (Normalized Bundle). Let C be a bundle and a; be the i-th largest
address in lits(C). The normalization of C, rewritten norm(C), is the bundle obtained by
the source code transformation that replaces each instance of a; with <.

The main result for the rest of this section is that global®(C,.A) is bisimulated by
global(norm(C), |A|) under input relabelling (Theorem 13) while preserving guarded uni-
versal safety properties (Theorem 14)!. In order words, all local analysis can be performed
using a consecutive abstract address domain [|.A4]]. An example in given in Example 5.3.1,
before proceeding with the corresponding proofs.

Example 5.3.1. Recall the Auction contract C with state (¢/, v'), action p/, and abstract
address domain A = [3] U {15} in Example 5.2.1. By definition, ¢’ = norm(C) is the
bundle obtained by taking Auction from Fig. 3.1, and then mapping the zero-account to
itself (as 0 is the smallest address in lits(C)), and the smart contract account to address 1
(as it has the only other literal address). Following from Theorem 11, all other addresses
can then be mapped onto {2,3} as desired. This corresponds to applying a renaming
7 : [16] — [16] such that 7(0) = 0, 7(15) = 1, 7(1) = 2, and 7(2) = 3. Then 7(A) = [4],
" = rename(C',7,c) = ((3),(42,42,20,7, 1)), p” = rename(C',1,p') = (bid, (2),(10)),
and u” = rename(C,7,v') = ((0,map(vy)), (1, map(vis)), (2, map(vs)), (3, map(vy))). An
illustration is given by (3) in Fig. 5.1. O

Lemma 4. Let C be a bundle, a; be the i-th smallest address in lits(C), A C N such
that lits(C) € A, and 7 : [max(A)] — [max(A)] be a permutation such that 7(a;) = i

1 Additional applications of simulations under input relabellings are discussed in Appendix C.
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and 7(A) = [|A|]. The relationship o(s) = rename(C,,s) is a simulation under input
relabelling with respect to the family R = {n(,)(p) = rename(C,7,p) | (s,t) € o}, for
global®(C, .A) and global(norm(C), | A]).

Proof. Let (S, P, f,so) = global®(C,.A) and (T, Q, g,ty) = global(norm(C), | A|). There are
three properties to consider.

1. Let (cy,u) = sp and (¢,, v) = to. Since 0 € lits(C), and since 0 is the minimum element
in N, then 7(0) = 0. Since all roles are zero-initialized, and since 7(0) = 0, it follows
that rename(C,7,¢c,) = ¢,. Since the T-renaming of a user configuration preserves
address ordering, it follows that Vi € [N]-id(u;) = id(v). Then rename(C, 7, o) = to.
Therefore, o satisfies the first property of simulation under input relabelling.

2. Let s € S. Since 7(A) = [|A]], then o(s) € T. Then Vs € S-3t € T - (s,t) € 0.
Therefore, o satisfies the second property of simulation under input relabelling.

3. Let (s,t) € 0 and p € P. By construction, there is a single ¢ € 74 (p). Since f
and g are deterministic, there is a single s’ € f(s,p) and a single ¢ € g(t,q). Since
norm(C) replaces all instances of a € lits(C) with 7(a), and since all other addresses
can be rearranged by Theorem 11, it follows that g(¢,q) = rename(C, T, f(s,p)).
Then, (s',t') € 0. Therefore, o satisfies the third property of simulation under input
relabelling with respect to R.

Therefore, o is a simulation under input relabelling with respect to R. O

Theorem 13. Let C be a bundle, a; be the i-th smallest address in lits(C), A C N such
that lits(C) C A, and 7 : [max(A)] — [max(A)] be a permutation such that 7(a;) = i
and 7(A) = [|A]]. The relationship o(s) = rename(C, 7, s) is a bisimulation under input
relabelling with respect to the family R = {m((p) = rename(C,7,p) | (s,t) € o}, for
global®(C, . A) and global(norm(C), | A]).

Proof. Property 1 holds, since ¢ is one-to-one. Property 2 holds by Lemma 4. For property
3, recall that permutations form a group. Therefore, there exists an inverse permutation
77! such that 77 o7 is the identity permutation. Consequently, o=1(s) = rename(C, 771, s)
Then a proof that ¢ is a simulation under input relabelling with respect to R is also a
proof that o~! is a simulation under input relabelling with respect to R. Therefore, o is a
bisimulation under input relabelling with respect to R. O
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It is now shown that simulations under input relabellings preserve simulation equivalent
properties. As a direct consequence, the 7-rewrite of a MINISOL bundle preserves the 7-
renaming of guarded safety property. The proof precedes as follows. In Lemma 5, it is
shown simulations under input relabellings preserve simulation-equivalent traces. This is
used in the proof of Theorem 14 to show that if there is a trace that violates Py = (o,
then there exists a simulation equivalent trace that violates P, |= ¢;. In the case of
bisimulations, traces are preserved in both directions, therefore P, = ¢; <= P = .

Lemma 5. Let P1 = (Sl,Ll,f, SO) and P2 = (SQ,L27g7t0) be LTSS, o C Sl X 527 and
R = {mey : L1 = Ly | (s,t) € o}. If 0 is a simulation under input relabelling and
(So,---,Pk_1,Sk) is a trace of P;, then there exists a trace (fo,...,qx_1,tx) of P, such that
Vie [k+1]-0(s;,t;) and Vi € [k] - ¢; = T(s, 1) (Di)-

Proof. Lemma 5 follows by induction on k. In the base case, (sg,%y) € 0. As an inductive
step, assume that Lemma 5 holds up to k. Consider a trace (So,...,Pk_1, Sk, Pk, Sk+1)
of P;. By the inductive hypothesis, there exists a trace (to,...,qr_1,tx) of P, such that
Vi € [k+1]-0(s;,t;) and Vi € [k] - ¢; = T, 000 (pi). Let g = T(s,t,)(Pr). By definition,
" € g(te,qr) - o(s',t'). Then, there exists a trace (o, ..., qk—1,tk, @&, t') of Py such that
Vie [k+2]-0(si,t;) and Vi € [k+ 1] - ¢; = 7(s,4,)(pi). Therefore, the inductive hypothesis
holds. ]

Theorem 14. Let P, = (S1, L1, f, s0) and Py = (Sy, Lo, g,t9) be LTSs, 0 C S x Sy, and
1 and (5 be simulation equivalent properties with respect to o. If ¢ is a simulation under
input relabelling, then P, |= ¢3 = Pi |= ¢1. If 0 is a bisimulation under input relabelling,
then P =1 <= Py = ¢o.

Proof. First, consider the case in which ¢ is a simulation. Assume for contradiction that
Py £ p1. Then there exists a trace (so, ..., Pk, Sk) of Py such that (so,...,pk, Sk) = ©1-
By Lemma 5, there exists a trace (to,...,pk, Sg) such that Vi € [k + 1] - (s;,t;) € o.
Since Py = 9, ¢1 and ¢y are not simulation equivalent properties with respect to . By
contradiction, P, = @9 = P = ¢1. Next, consider the case in which ¢ is a bisimulation.
From the first case, P» = ©2 = P |= ;. Since o is a bisimulation, then o~ is a simulation.
As a result, P ): ©Y1 = I ): 2. Therefore, P |: P11 — b ): ©2. ]

5.4 Local Smart Contract Bundles

A local bundle is a finite-state abstraction of a smart contract bundle. At a high level,
each local bundle is a non-deterministic LTS that abstracts away the state of certain
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users. Formally, a local bundle is constructed from four components: a normalized smart
contract, a network size, a concrete address region, and an abstract user domain?. The
concrete address region associates each control state with zero or more users that can
maintain their state. The abstract user domain assigns an abstract set of states to each
user outside of the concrete address region. A local bundle executes transactions according
to its normalized smart contract, and the corresponding network size.

Let C be a smart contract bundle and N € N. A concrete address region is a relation
v C control(C, [N]) x [N] and an abstract user domain is a relation 6§ C control(C, [N]) X
user(C, [N]). If (c,i) € ~, then in control state ¢, the user at index i is treated concretely
by a local bundle. If (¢,7) € =, then the state of user u at index i is abstracted by all
v € user(C,[N]) such that (¢,v) € 6 and id(u) = id(v). A concrete example is given in
Example 5.4.1, and a formal definition is given in Definition 5.4.1.

Example 5.4.1. Recall the normalized Auction bundle, C’; and user v} = (2, map(vs)),
from Example 5.3.1. This example illustrates two potential user abstractions for vj. Let
vt = control(C, [4]) x [4], v. = &, and O+ = control(C, [4]) x user(C, [4]). Since vt associates
all control states with all indices, 7 states that all users are concrete. Conversely, v, does
not associate indices with any control states, so 7, states that all users are abstract.
The abstraction defined by (vr,67) sends v} to itself, since all users are concrete. The
abstraction defined by (v, 601) sends vi to any (2, (v)) such that v € D, since all users are
abstract, and all possible mapping entries for user 2 are in the abstract domain 6. O

Definition 5.4.1 (User Abstraction®). Let C be a bundle, N € N, S = control(C, [N]),
Sy = user(C,[N]), v C S¢ x [N], and 8 C S¢ x Sy. The user abstraction defined by (v, 0)
is a relation g : (Syy) — 2(°v) such that:

gle,u) = {{U € Sy |id(u) =id(v) A (c,v) €0} if (c,id(u)) &

{u} otherwise

There are many choices of (7, 8), although not all combinations are interesting. Inter-
esting applications are provided in Chapter 6 and Chapter 7. To illustrate v and 6, several
useful examples are defined and their interpretations are given:

1. In 7 := control(C, [N]) x [N], all N users are concrete;

2This presentation diverges from [72]. In the [72], a non-consecutive neighbourhood A C N was used
in place of a network size. Due to Theorem 13, it is assumed, without loss of generality, that A4 = [N].
Furthermore, [72] does not include a concrete address region. The concrete address region is optional, and
is used to refine the balance relation in Chapter 6, and to extend local bundles to fuzzing in Chapter 7.
3An extension to k-dimensional maps is outlined in Appendix A.
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o

In v, := @, all N users are abstract;

w0

In Y := {(c,i) € y7 | i € lits(C) }, all implicit participants are concrete;

e~

In YRote := {(c,4) € v1 | 3j € N -role(c, j) = i}, all transient participants concrete;
5. The weakest abstraction is 1 := control(C, [N]) x user(C, [N]);

6. The strongest abstraction in 6+ := &.

The local bundle corresponding to (C, N, , 6) is defined using a special relation called an
N -user interference relation. Intuitively, the N-user interference relation for (v, #) sends an
N-user smart contract state to the set of all N-user smart contract states reachable under
the user abstraction of (7,6). A state is reachable under the user abstraction of (v, ) if
the control state is unchanged, each address is unchanged, and all user data satisfies the
user abstraction. A concrete example is given in Example 5.4.2, and a formal definition
is given in Definition 5.4.2. Note that if the interference relation for (v,0) fails to relate
(c,u) to itself, then (¢, u) violates (7, 0).

Example 5.4.2. Recall the normalized Auction bundle, C’, and user configuration v”, from
Example 5.3.1 In Example 5.4.1, the user abstractions (v, 61) and (v, 0+) were applied
to the user vJ. This example extends (v, #1) to all users of v” via an interference relation,
and then illustrates an interference violation with the user abstraction (v, 6, ). Recall that
(71, 07) treats all users abstractly, and allows for all possible mapping states. Therefore, the
interference of (v, ,67) maps v’ to Ay = {u € user(C’, [4]) | Vi € [4] -id(u;) = i}. Clearly,
v satisfies the interference of (v, ,67), since v’/ € A;. Next, consider the interference of
(71,01). Since §; = &, then the interference of (v,,0,) maps v” to Ay = &. Clearly, v”
violates the interference of (v, ,67), since v/ & A,. O

Definition 5.4.2 (Interference). Let C be a bundle, N € N, (S, P, f, s¢) = global(C, N),
and g be a user abstraction. The N -user interference relation for g is a relation h : S — 2°
such that h(c,u) = {(¢,v) € S |Vi € [N]-v; € g(c,u;)}.

Each state of the local bundle for (C,N,~,6) is a tuple (¢,u) where ¢ is the control
state and u is an N-user configuration. The transition relation of the local bundle is
defined in terms of the (global) transition function f for norm(C). First, the transition
relation applies f. If the application of f is closed under the user abstraction of (v, 6),
then the user abstraction is applied. Otherwise, the state remains unchanged. Intuitively,
the user abstraction defines a safe envelop under which the abstraction is compositional
(see Chapter 6). Note that since local bundles operate on normalized smart contracts, they
require normalized properties.
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Definition 5.4.3 (Local Bundle). Let C be a bundle, N € N, v be a concrete region for
(C, N), 6 be a user abstraction for (C, N), h be the N-user interference relation for the user
abstraction defined by (v, #), and (S, P, f, s9) = global(norm(C), N). A local bundle is an
LTS local(C, N, ~,6) := (S, P, f, so) such that f : S x P — 25 defined by:

A o .: h(fp(cu U—)) if fp(c> u) S h(fp(c7 u))
f((e;w).p) - {{fp(c,u)} otherwise

Definition 5.4.4 (Normalized Property). Let C be a bundle, ¢ be a guarded safety prop-
erty with literal guards L, a; be i-th largest address in lits(C), and b; be the j-th largest
address in L\lits(C). The C-normalization of ¢, written norm(C, ¢), is the guard renaming
of ¢ that maps a; to ¢ and b; to |lits(C)| + j.

Example 5.4.3. This example briefly illustrates the transition relation of Definition 5.4.3
using Auction of Fig. 3.1. For simplicity of presentation, the local bundle abstraction is
assumed to have a network size of 4. All users implicit and transient users are treated
concretely, and the abstract user domain is given by Prop. 7: “The zero-account never
has an active bid, while all other users can have active bids.” Formally, (S, P, f, S0) =
local (C, 4,71, 61) where 71 = (VRole U Vimp) and 6, is defined by:

01(s,1) = (id(wy) =0 = (map(uy))o = 0) A (id(ug) £0 = (map(ug))o > 0)

Let g be the 4-user interference relation defined by (v1,6;). Consider applying f to
(c,u) € S with action p € P, such that ¢ = ((2),(0,0,0,0,1)), ¥i € [4] - map(u;) = O,
and p = (bid, (3),(10)). That is, the abstract user at address 3 places a bid of 10 into
an ongoing auction with a manager at address 2 and leading bid of 0. By =1, the users
at addresses 0 through to 2 are concrete, as 0 is the zero-account, 1 is the smart contract
account, and 2 is the manager.

Action p must succeed, since the sender is not the manager, and the leading bid is less
than 10. It follows that if (s',v) = f,(s,u), then the leading bid is updated to 10, and
the bid of the sender is updated to 10. Furthermore, since the bid of the zero-account is
unchanged by f,, then (s',v) € g(s',v), and therefore, g(s',v) = f((s,u),p). A successor
state is selected from g(s’,v) as follows. By 7, the bids of user 0 through to user 3 are
unchanged. By 6, the single abstract user at address 3 must be assigned an arbitrary
value that satisfies #;. In this example, 100 is selected, since 100 > 0. This yields a user

configuration such that u’ = ((0,0), (1,0), (2,0), (3, 100)).

In conclusion, a successor state to (s,u) is (s',u) such that the leading bid is updated
to 10 and the bid of user at address 3 is set to 100. Note that (s',u’) is not reachable in
global(C,4), as the bid of user 3 exceeds the leading bid. ]
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5.5 Summary

This section has identified a set of local symmetries among MINISOL transactions. In The-
orem 8, a notion of locality was defined that reduces each transaction to its participating
users. This locality is useful, as it is sufficient to determine the outcome of the transaction.
In Theorem 11 and Theorem 13, it is show that all local transactions are symmetric to a set
of abstract transactions from a finite domain of consecutive addresses. In Section 5.4, these
insights were used to define the finite-state local bundle abstraction for a MINISOL smart
contract. The section concluded with an example (Example 5.4.3) that walked thought an
execution of a local bundle. In Chapter 6 and Chapter 7, results are proven about local
bundles, with applications to PCMC and bounded analysis.
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Chapter 6

Parameterized Composition
Reasoning for Local Smart Contracts

This chapter presents an application of local transaction analysis to the parameterized
verification of MINISOL smart contracts. At a high-level, this section reduces parameter-
ized smart contract verification to safety of a local bundle abstraction, through PCMC.
Section 6.1 proves that local transaction symmetries form a balance relation. This means
that MINISOL smart contracts are amenable to PCMC. Section 6.2 extends this result
by showing the balance relation preserve certain aggregate properties. As a main result,
Section 6.3 provides sound proof rules for compositionality and parameterized k-safety
through the verification of local bundles. This reduction is novel compared to prior work
in PCMC, as a compositional cutoff is never used explicitly.

6.1 A Smart Contract Balance Relation

This section relates local transaction symmetries to PCMC. First, it is proven that local
transaction symmetries form balance relations for MINISOL bundles. It is shown that these
balance relations respect guarded k-safety properties, even though guarded k-safety proper-
ties might induce new equivalence classes. The new equivalence classes are characterized,
and use to motivate a syntactic form for interference invariants called split interference
mvariants.

Recall from Section 5.2, the local transaction symmetry relation (~p) N (~y). In
Theorem 15 it is shown that local transaction symmetries provide a balance relation for
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MiniSoL bundles. It then follows by Theorem 11 that this balance relation has finitely
many equivalence classes.

Theorem 15. The relation (~p) N (~y) is a balance relation with witnessing bijection
defined by the corresponding bijection for (~y).

Proof. Assume that (Sy, pu, \u) ~b (Su, Pv, Av) and (Su, Pus M) ~N (Svs Pos Ay) With cor-
responding bijection 3. By Lemma 2 and Lemma 3, both ~p and ~y are equivalence
relations. In must be shown that ((Su,pu, A\u), 8, (Su, v, Ay)) satisfy the properties of a
balance relation.

1. Since ~p is an equivalence relation, then (s,, py, Ay) ~p (Su, Pu, Au). Since ~y is an
equivalence relation, then (s,, Py, Ay) ~n (Au; Pu, Su) With witnessing bijection 571
Therefore, ((Sy, Po; M), B, (Sus Pu, M) is also in the relation, as desired.

2. By definition of (~p) N (~xy), a pair of control states are locally symmetric if and
only if their users are locally symmetric. These symmetries preserve participation
classes by definition of ~y, and process state by ~p. Furthermore, by the network
semantics of MINISOL, a control process is adjacent to many user processes, and
a user process is adjacent to a single control process. This means that a bijection
between control processes (resp. user processes) ensures the existence of a bijection
between adjacent user processes (resp. control processes).

Therefore, (~p) N (~x) is a balance relation with witnessing bijection defined by the
corresponding bijection for (~y). O

It is proven in Theorem 16 that the balance relation in Theorem 15 respects guarded
k-universal safety properties. However, a guarded k-universal safety property might induce
new equivalence classes. For example, k-universal quantification requires at least k explicit
representatives to check that it is satisfied (else the property can be vacuously true).
Similarly, each role guard requires a transient participant, and each literal guard requires
a literal participant (if they are not already in the PTG of the bundle). Examples of
how each case can go wrong are given in Example 6.1.1. These problems are resolved
in Section 6.3 via saturating network sizes. To simplify presentation until Section 6.3,
Theorem 16 assumes a sufficiently large PTG.

Example 6.1.1. This example considers three properties for Auction of Fig. 3.1 that have
clear violation:
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Prop. 8 : For any pair of users, only one user has an active bid.
Prop. 9 : The manager always has a bid of 10.

Prop. 10 : The user with address 100 cannot bid.

If there is only one explicit participant, then all other participants may not bid, and
therefore, Prop. 8 is satisfied. To find a counterexample to Prop. 8, there must be
at least two explicit participants. If the manager is not a transient participant, then
the guard of Prop. 9 is never satisfied, and therefore, Prop. 9 is vacuously true. To
find a counterexample to Prop. 9, there must be a transient participant. If the user with
address 100 is not a participant, then Prop. 10 is vacuously true. To find a counterexample
to Prop. 10, address 100 must be treated as a literal address value. O]

Theorem 16. Let ¢ be a guarded k-universal safety property, and C be a bundle with an
implicit participant for each role guard of ¢. The relation (~p) N (~y) for C respects ¢.

Proof. Assume that ((¢,, ), pu, Au) ~p (Co, V), Do, Ao)s ((Cuy 1), Puy Ai) ~n ((Coy V), Pus M)
with corresponding permutation 7, and (¢,, u) = ¢. Let L be the literal guards of ¢. Since
there is an implicit participant in C for each role guard of ¢, then V(i,a) € L-7(a) = a by
definition of (~y). Then by Theorem 12, (¢,, V) = ¢. O

Similar to safety properties in PCMC, a valid interference invariant must also respect
the network topology of a bundle. This means that an interference invariant might depend
on user addresses, but only if these dependencies are respected by the balance relation. To
rule out interference invariants that violate the balance relation, a syntactic form called a
split interference invariant is introduced. A split interference invariant is built from a list
of 1-universal predicates (recall Section 3.2), each guarded by a single constraint. The final
predicate is guarded by the negation of all other constraints. Intuitively, each 1-universal
predicate summarizes the class of users that satisfy its guard. The split interference in-
variant is the conjunction of all (guarded predicate) clauses. A formal definition is given
in Definition 6.1.1 and a practical illustration is given in Example 6.1.2. Note that since
a split compositional invariant is syntactic, rather than semantic, the term candidate split
compositional invariant is used to describe a predicate that fits the syntactic definition in
Definition 6.1.1, regardless of whether is satisfies the semantic definition in Section 2.7.

Definition 6.1.1 (Split Interference Invariant). A split interference invariant is an inter-
ference invariant 0, given by a tuple (A, Ag,(, 1, &), where Ay = {lo, ..., lm-1} S N is
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finite, Ag = {ro,...,mn—1} € N is finite, ¢ is a list of m 1-universal properties, x is a list
of n 1-universal properties, and ¢ is a 1-universal property, such that:

m—1
ﬂ)LitS(S,u) = (/\ id(uo) = Zz> = Q(s,u)

1=0

n—1
YRoles(S, 1) 1= (/\ id(ug) = roIe(s,n)) = (s, u)

=0
m—1 n—1
VEise (s, 1) 1= (( /\ id(up) # zz) A (/\ id(ug) # role(s,ri)>> = &(s,u)
i=0 1=0

9(87 u) = wRoles(S) u) A wLits(sa u) A wElse(& u)
Note that A and Ag define literal and role guards of 6, and that |u| = 1.

Example 6.1.2. The abstract user domain, #;, defined in Example 5.4.3 is an example
of a split interference invariant. Recall that informally, 6, is defined by Prop. 7: “The
zero-account never has an active bid, while all other users can have active bids.” Formally,

0, is defined by:
01(s,u) := (id(ug) =0 = (map(ug))o=0) A (id(ug) #0 = (map(ug))o > 0)

Following Definition 6.1.1, #; is determined by Inv = (A, @, (&1), D, &), where A, = {0},
& = (map(ug)p = 0), and &(s,u) := (map(ug)p > 0). The two instances of @& in Inv
correspond to the lack of role constraints in ;. If Inv is related back to Definition 6.1.1,
then Yroes(s, 1) 1= T, Yris(s,u) = (id(ug) =0) = (map(ug)o =0), and Yge(s,u) :=
(id(ug) # 0) = (map(ug)o > 0). O

6.2 Local Symmetries for Aggregate Properties

This section extends smart contract PCMC to aggregate properties. The results in The-
orem 16 are limited to guarded k-universal properties. However, certain aggregate prop-
erties are also preserved by the balance relation in Theorem 15. This section prove that
reachable assignments for point-wise aggregates are over-approximated by smart contract
PCMC. Furthermore, it is shown that for many interesting aggregates, such as sums and
monotonic extrema, the analysis is exact.

The local analysis of point-wise aggregates proceeds in two steps. First, a source code
transformation is presented to maintain point-wise aggregate approximations. Second, it
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1 contract Auction {

1 contract Auction { 2 mapping (address => uint) bids;

2 mapping (address => uint) bids; 3 uint max = 0;

3 uint sum = 0; 4 bool monotonic = true;

4 /7 ... 5 /7.

5 function bid() payable { 6 function bid () payable {

6 uint pre = bids[msg.sender]; 7 uint pre = bids[msg.sender];

7 8

8 require (! stopped); 9 require (!stopped);

9 require(msg.sender != manager); 10 require(msg.sender != manager);

10 11

11 uint o0ldBid = bids[msg.sender]; 12 uint o0ldBid = bids[msg.sender];

12 uint newBid = o0ldBid + msg.sender; 13 uint newBid = o0ldBid + msg.sender;

13 require(0ldBid == 0 || oldBid < leadingBid); 14 require (0ldBid == 0 || o0ldBid < leadingBid);
14 15

15 bids [msg.sender] = newBid; 16 bids [msg.sender] = newBid;

16 leadingBid = newBid; 17 leadingBid = newBid;

17 18

18 uint post = bids[msg.sener]; 19 uint post = bids[msg.sener];

19 sum = sum - pre + post; 20 if (pre == max && post < max) { monotonic = false; }
20 ¥ 21 else if (post >= max) { max = post; }
21 /7 . 22 }
22 } 23 //

24 }

Inst ted code t t bids).
(a) Instrumented code to compute sum(bids) (b) Instrumented code to compute max(bids).

Figure 6.1: Local instrumentation of sum(bids) and max(bids) for bid() of Fig. 3.1. All
modifications are highlighted.

is shown that these approximations can be used to verify aggregate properties exclusively
through control data. Since local transactions preserve control data, all results extend to

smart contract PCMC. As in previous sections, examples are given with respect to Auction
of Fig. 3.1.

Let C be a bundle and f be the point-wise aggregate defined by (g, h, z). Recall from
Section 3.2, that g sends each mapping entry to an output domain D, h is a binary operator
for D used to aggregate the elements, and z € D is the base case for the aggregation.
Schemes were given in Section 3.2 to locally approximate point-wise aggregates based on
Abelian groups and lattices. These schemes motivate a way to instrument C with aggregate
approximations.

In the case of aggregates based on Abelian groups, a single variable is added to the
bundle to track the sum of the mapping (this variable must have the same domain as the
Abelian group, and may require an arithmetic integer, as opposed to a 256-bit integer).
The sum variable is initially set to z. For each write to a mapping, map[i] = x, the sum
is updated by first adding the inverse of map[i] to sum, and then adding x to sum. An
example is given for sum(bids) in Fig. 6.1a. In this example, sum is added to Auction to
track sum(bids). At line 3, sum is set to 0, since z = 0 in the case of sum(-). An update
to sum is shown at lines 18-19.

In the case of aggregates based on lattices, two variables are added to the bundle: the
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first variable tracks the supremum, and the second variable is true so long as all writes
are monotonically increasing, relative to the lattice. The supremum variable is initially set
to sup{z,¢(0)}, and the monotonic variable is initially set to true (a singleton sequence
is monotonically increasing). For each write to a mapping, map[i] = x, the supremum is
updated by taking its supremum with x. Furthermore, if the change from map[i] to x was
decreasing, then the monotonic variable is set to false. An example is given for max(bids)
in Fig. 6.1b. In this example, max and monotonic are added to Auction to track max(bids)
and monotonicity. At line 3, max is set to 0, since z = 0 in the case of max(-). Updates to
sum and monotonic for bid() are shown at lines 19-21.

By performing this instrumentation, an aggregate for C can be approximated without
inspecting an entire mapping. In particular, an aggregate can be extracted from a local
transaction without knowing the global state of the network. The local aggregate can then
appear within any guarded k-universal safety property, as already supported by smart
contract PCMC. Theorem 17 proves that a local aggregate based on an Abelian group
is equal to the global sum. Theorem 18 proves that a local aggregate based on a lattice
over-approximates the global supremum, and in the case that each update is monotonic,
equals the global supremum.

Theorem 17. Let C be a bundle instrumented with point-wise aggregate (g, h, z) at datum
i, such that g : D — D, (D, h) is an Abelian group with identity ¢(0). For any N € N, if
(c,u) is reachable in global(C, N), then data(c, ) = fold(h, z, g(map(u))).

Proof. For simplicity of presentation, let z oy = f(x,y). Fix an N € N. It follows by
induction on the length of a trace to (¢, u), that Theorem 17 holds.

1. In the base case, a trace has length 0. The only state reachable in 0 transitions
is (c,u) = so. By definition, data(c,i) = z and u is zero-initialized. Therefore,
fold(h, z, g(map(u))) = g(0) o --- 0 g(0) o z. Since g(0) is the identity of (D, o), then
fold(h, z,g(map(u))) = z. Therefore, data(c,i) = fold(h, z, g(map(u))) for all states
reachable in a length 0 trace.

2. Assume that (c,u) is reachable in a length k trace, and that (¢, u’) is a successor
to (¢,u). By the inductive hypothe51s data(c,i) = fold(h 2 g(map( ))) By instru-
mentation, data(c,i) = data(c,7) o g~ (map(ug)) o g((ug)) o -+ o g~ (map(uy_1)) o
g(map(uy_1)). By Theorem 3, data(c ,i) = fold(h, z, g(map(u )))

By induction, Theorem 17 is established. O
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Lemma 6. Let C be a bundle instrumented with point-wise aggregate (g, h, z) at datum
J (monotonic), such that g : D — D and (D, <) is a lattice with supremum h. For any
N e N, if ((co, u’), ..., (ck, uk)) is a trace of global(C, N) and data(cy, j) = T, then for all
i € [N], (9(map(u)),...,g(map (uf))) is monotonically increasing relative to <.

Proof. For simplicity of presentation, let z oy = f(x,y). Fix an N € N. It follows by
induction on the length of a trace, that Lemma 6 holds.

1. In the base case, a trace has length 0. The only length 0 trace is (s¢) where (¢, u) = so.
It is vacuously true that for any ¢ € [N], (g (map (u;))) is monotonically increasing
relative to <. As desired, data(c,j) = T in the initial state.

2. Assume that ((co,uo) e (c;wuk)) is a trace of global(C, N), data(cg,j) = T, and
the inductive hypothesis holds up to k. Assume that (¢, u’) is a successor state of
(ck,u*) such that for some i € [N], (g (map (u)),...,g (map (u})),g(map(u}))) is
not monotonically increasing relative to <. By hypothesis, the sequence is mono-
tonically increasing up to g (map (uf)), and therefore g (map (u})) < ¢ (map (uf))
Then by instrumentation of C, it follows that data(c’,j) = L. Through proof by
contrapositive, the inductive hypothesis holds.

By induction, Lemma 6 is established. [

Theorem 18. Let C be a bundle instrumented with point-wise aggregate (g, h, z) at data
i (max) and j (monotonic), such that g : D — D and (D, <) is a lattice with supremum h.
For any N € N, if (¢,u) is reachable in global(C, N), then data(c,i) < fold(h, z, map(u)).
Furthermore, if data(c, j) = T, then the equality is strict.

Proof. For simplicity of presentation, let sup{x,y} = h. Fix an N € N. It follows by
induction on the length of a trace to (¢, u), that Theorem 18 holds.

1. In the base case, a trace has length 0. The only state reachable in 0 transitions
is (c,u) = sg. By definition, data(c,i) = sup{z,¢(0)}, data(c,j) = T, and u is
zero-initialized. Then fold(h, z, g(map(u))) = max{z, g(0),...,¢(0)} = sup{z, g(0)}.
Therefore, fold(h, z, g(map(u))) = data(c, ) and data(c, j) = T, as desired.

2. Assume that (c,u) is reachable in a length k trace, and that (¢,u’) is a succes-
sor to (c,u). By the inductive hypothesis, data(c,i) < fold(h, z, g(map(u))), and
if data(c,7) = T, then the equality is strict. By instrumentation, data(c’,i) =
sup{data(c, i), g((ug)),...,g((uy))}. First, assume that data(c,j) = L. Then by

61



Theorem 4, data(c, i) < fold(h, z, g(map(u))). Next, assume that data(c’,j) = T. By
Lemma 6, data(c, j) = T and all updates from u to u’ were monotonically increasing
relative to <. Then by Theorem 4, data(c’,7) = fold(h, z, g(map(u))).

By induction, Theorem 18 is established. [

6.3 Reduction to Software Model Checking

Prior work on fully-automated PCMC (e.g., [52, 51]) discovers compositional invariants by
first finding a cutoff size for the network, and then analyzing all networks up to the given
cutofft. However, for MINISOL bundles, the notion of a cutoff is less clear. For example,
the maximal sum of all bids in Fig. 3.1 increases as the number of users in the network
increases, and therefore, there is no clear cutoff point. In this section, a new approach
to PCMC is given though local bundle abstraction. Intuitively, a local bundle is used to
simulate an arbitrary neighbourhood under the interference of all other users. This means
that the abstract user domain is the interference invariant. The concrete address region
is used to refine the abstraction, and can be selected anywhere from ~, (i.e., all users are
abstract) through to (Yimp U YRrole) (i-€., transient and implicit participants are concrete).
An inductive invariant for a local bundle, as obtained by any off-the-shelf model checker,
then provides an inductive invariant for the SCUN.

The first step in this reduction is to determine the number of users in the local bundle.
From Theorem 11 and Theorem 13, it can be assumed, without loss of generality, that
all addresses are consecutive. This means that only the size of the local transaction is
necessary. This is called a saturating network size, as it is large enough to fill all partic-
ipation classes within a transaction. For example, the network size in Example 5.4.3 was
saturating by design.

Rather than analyze a bundle manually, the saturating network size can be extracted
automatically from a PTG. Formally, a network size is saturating if its corresponding local
bundle contains a representative from each participation class of a PTG, and for all role
guards (Ag C N) and literal guards (Az C N) of interest. In the case of PTGBuilder, this
requires counting all explicit, transient, and implicit labels in the PTG.

Definition 6.3.1 (Saturating Network Size). Let Ag, A, C N be finite, C be a bundle,
(G, p,m) be the PTGBuilder PTG of C, and G = (V, E,d). A saturating network size for
(Agr, AL, (G, 1,m)) is a number (Ngyp. + Nrvans. + Nimpr.) such that:

1153] and [5] provide alternative solutions. However, [53] is manual and [5] requires an oracle.
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1. Npxp. =|{it € N|Je € E-6 (e, explicitQi) }|;
2. Nhyans. = [{i € N| Je € E -0 (e, transientQi) } U Agl;
3. Nimpl = [{z € N|3e € E -6 (e, implicitQx)} U Ay|.

The next step in this reduction is to select a concrete address region. A key observation
is at any point during execution, there is a single choice for each transient and implicit
participant. There is a single choice for each transient participant, as a smart contract
assigns each role to a single user at any one time. There is a single choice for each implicit
participant, as an implicit participant is identified by a fixed address. However, a purely
explicit participant can be exchanged with any other purely explicit participant, without
changing the control state (as proven in Theorem 10). This topological argument shows
that all transient and implicit participants can be treated as concrete, whereas all other
participants are abstract. In other words, the strongest possible concrete address region
for smart contract PCMC is (Yrole U Vimp), and the weakest possible region is v, .

The correct choice of concrete address region and network size reduces compositionality
and k-safety proofs to the safety of local bundles. As stated before, the concrete address
region must respect the network topology of a bundle C. The network size depends on
whether the proof is for compositionality or k-safety. For the compositionality of 6y, con-
sider a local bundle with (N + 1) users, where N is the saturating network size for C and
the guards of #y. Then the local bundle contains a representative for: each participa-
tion class of C; each role and literal guard distinguished by 6;; an arbitrary user under
interference. Intuitively, the local bundle computes the reachable control states (i.e., an
inductive invariant) relative to interference invariant 6;;. The details are given in the proof
of Theorem 19.

Theorem 19. Let C be a bundle, G be a PTG for C, 6y be a candidate split interference
invariant with role guards Ag and literal guards A, € lits(C), and N be a saturating
neighbourhood for (Ag, Az, G). Then, local (C, N + 1, (Yrole U Vimp) , ) |= Op if and only
if 0y is an interference invariant for C.

Proof. Recall Initialization, Consecution, and Interference from Section 2.7. Let
(S, P, f,s0) = local (C, N + 1, (Yrote U Yimp) , #r). The user configurations in S each have
a representative for each equivalence class in C, in addition to an arbitrary representative
under interference. Therefore, every transition of (S, P, f ,S0) captures both consecution
and interference. The proof of Theorem 19 proceeds in two cases:
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(= Case) Assume that 0y is compositional. Then 6y satisfies Initialization, Conse-
cution, and Interference. It follows by induction on the length of a trace, that
(S,P, f.s0) = Oy. In the base case, there is a single length 1 trace, given by
(so). By Inmitialization, sq | 6y. As an inductive step, assume that all length
i traces satisfy 6y. Let (c,u) be the i-th state of an arbitrary trace. By hy-
pothesis, (c,u) | Oy. As 0y is closed under Consecution and Interference,
and as (Yrole U Ymp) respects the network topology of C, it must be the case that
Vp e P-Y(d,W) € f,(c,u) - (¢,0) = 0y. Therefore, the inductive step holds, and
all traces of (S, P, f, s¢) satisfy 0. In conclusion, (5, P, f, S0) = Oy

(< Case) Assume that (S, P, f,sy) = 0. Then sy |= 6y, and Initialization holds. By
construction, (S, P, f , S0) computes the reachable states of the control process, rela-
tive to (YRole U Yimp) and fy. Since (Yrole U Yimp) respects the network topology of C,
then (S, P, f ,S0) computes an inductive invariant for the control processes relative
to fy. Assume that (¢, u) is reachable in (S, P, f, so). Then the control process, and
all concrete users satisfy the inductive invariant, whereas all abstract users satisfy
fy. By definition, Vp € P - [norm(C)]m((c,u),p) € fy(c,u). Then by assumption,
[norm(C)|m((c,u),p) = Oy. As a result, 0y satisfies Consecution (for the partici-
pating abstract users) and Interference (for the abstract users under interference).
Therefore, 0 is an interference invariant.

Therefore, both directions of Theorem 19 hold. O

Now assume that 6y is compositional, and that ¢ is a guarded k-safety property. As in
Theorem 19, Theorem 20 also uses a saturating network size that incorporates the guards
of ¢. Since this proof rule proves inductiveness, rather than compositionality, the local
bundle no longer requires an arbitrary user under interference. However, a k-universal
property can distinguish between k users at once, rather than one. Thus, the network size
must allow for k arbitrary representatives, rather than one?. Full details are given in the
proof of Theorem 20.

Theorem 20. Let ¢ be guarded k-universal safety property with role guard Agr and
literal guards A, C be a bundle, #; be an interference invariant for C, G be a PTG
for C, (Ngxp. + Ntvans. + Nmp1) be a saturating network size for (Ag, Ar,G). Define
N = (max (Ngxp., k) + Nrvans. + Nimpr ). If local (C, N, (7Role U Yimp) , 0) = norm(C, ¢),
then VM € N - global(C, M) |= ¢.

2Theorem 19 did not require an explicit max(Ngxp., 1) as the existence of a sender ensures Ngyp, > 1.
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Proof. Let LTS = local (C, N, (YRrole U Vimp) , 0r). By definition of a saturating network size,
the user configurations in LTS have representatives for each participation class in C. Since
(VRole U Ymp) Tespects the network topology of C, then LTS computes an inductive invari-
ant for the control processes relative to 6. Therefore, verifying LTS is an instantiation
of PCMC. It will now be shown that all additional equivalence classes, induced by ¢, are
represented by LTS. By including the guards of ¢ in the saturating network size, there
is an additional representative for the extra transient and implicit participation classes
induced by ¢. By taking max (Ngyp , k), rather than Ngy, , there are also enough explicit
participants to cover all existential quantifiers in . By Theorem 15 and Theorem 16, if
LTS = ¢, then VM € N - global(norm(C), M) |= norm(C,¢). By Theorem 12 and Theo-
rem 13, (VM € N - global(norm(C), M) = norm(C, ¢)) <= (VM € N-global(C, M) = ¢)
In conclusion, if LTS = norm(C, ¢), then VM € N - global(C, M) |= ¢. O

Theorem 20 enables proofs of ¢; through to g in Chapter 3. For ¢, and @5, the
sum(-) and max(-) aggregates are instrumented according to Section 6.2. Details follow
for a proof of p;. Recall local (C,4,v1,6,) from Example 5.4.3. Since ¢; is a l-universal
property, and since the PTGBuilder PTG for C has one explicit participant, it follows
that max (Ngyp., 1) = 1. Using a model checker, local (C,4,v1,61) |= 1 is certified by an
inductive strengthening 6. Then by Theorem 20, C is also safe for 260 users.

By definition, both the local and global bundles have state spaces that are exponential
in the number of users. However, the local bundle has 4 users (a constant fixed by C),
whereas the global bundle is defined for any number of users. This achieves an exponential
state reduction with respect to the network size parameter. Even more remarkably, 07 is
an inductive invariant from Section 2.7, as it summarizes the safe control states that are
closed under the interference of (7, 61). Therefore, this section has achieved an exponential
reduction in verification, and has automated the discovery of an inductive invariant (relative
to an interference invariant).
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Chapter 7

Bounded Analysis for Local Smart
Contracts

In prior work, local symmetry analysis has been used as a tool for parameterized verifica-
tion. However, local symmetry also provides insight into the structure of a smart contract.
This section addresses the question of whether local bundle abstractions can be applied
outside of parameterized smart contract verification. This section answers affirmatively, by
offering an application to bounded analysis techniques, such as bounded model checking
or fuzzing. A motivating example based on fuzzing is provided in Example 7.0.1.

Example 7.0.1. Let C = Auction from Fig. 3.1. Consider the property ¢ that states a
user with address 100 never calls withdraw. To observe a counterexample, there must be
a user with address 100 and a manager to stop the auction. Furthermore, the manager
must not have address 100, else the user with address 100 cannot call withdraw. Therefore,
(global(C, N) £~ ¢) = (N > 101). However, a local bundle can abstract this execution to
the zero-account, the smart contract account, a manager, and address 100. Therefore,
(local(C, N, v7,0.) = norm(C,¢)) = (N >4). In conclusion, local fuzzing can refute ¢
with only 4 users, whereas global fuzzing requires 101 users. O]

A few points should be noted from Example 7.0.1. First, the local bundle abstraction
is defined by v+ and #,. The choice of vt was necessary, as all users are concrete in the
context of fuzzing. The choice of 6, on the other hand, was arbitrary since all users are
concrete and are not subjected to interference. Second, it should be noted that global
fuzzing required 101 users, whereas local fuzzing required only 4 users. This gain was
achieved through implicit address relabelling, as the smallest counterexample to ¢ required
a user with literal address 100.
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The rest of this chapter generalizes Example 7.0.1 to all instances of local contract
fuzzing. Section 7.1 proves that counterexamples in MINISOL are monotonic (i.e., increas-
ing the network size preserves counterexamples) and uses this to show that fuzzing with
a normalized smart contract is meaningful. Section 7.2 analyzes the potential costs and
benefits of local smart contract fuzzing.

7.1 Monotonicity of Counterexamples

Local bundle abstractions change the order of users in smart contracts. For example, the
counterexample found through local fuzzing in Example 7.0.1 corresponds to an address
space A = {0,1,2,100}. Clearly, A is non-consecutive, and does not correspond to any
instance of global fuzzing. However, A is a superset of the address space [3] and a subset
of the address space [101]. Therefore, if counterexamples are preserved monotonically by
both consecutive and non-consecutive address spaces, then local fuzzing is sound.

The section proceeds as follows. Lemma 7 proves that if Ay C A, then global®(C, As)
is simulated by global®(C,.A;). The key insight in this simulation is that each state of
global®(C, A,) is a projection onto A, from multiple states in global®(C, .4;). The simulation
then follows directly from Theorem 8, which states that transactions can be executed locally
through view projections. In Theorem 21, it is shown that this simulation preserves guarded
universal safety properties. As a direct result, counterexamples to guarded universal safety
properties are preserved monotonically.

Lemma 7. Let C be a bundle, 4; C N, {0} C Ay, C Ay, (S, P, f,s0) = global°(C, A;),
and (T,Q, g,to) = global®(C, As). If 0 = {((¢t,u), (¢, v)) €T X S| et =cs Au=174,(v)},
then global®(C, As) is simulated by global®(C, .A;) under the relation o.

Proof. Since 0 € Ay and sg is zero-initialized, then ¢y = m4,(s9). Therefore, (so,tg) € o.
Next, assume that (¢,s) € o, p € P, and f,(t) does not revert. Let ¢ be the control
state of s and u be the user configuration for s. By definition of o, ¢ is the control
state of ¢ and 74,(u) is the user configuration of t. Since Ay C A; and f,(s) does not
revert, then Tyew(ep) (1) = Tview(ep) (T4, (1)). By Theorem 8, if (¢/,u’) = f((c,u),p), then
(d,ma,(0) = g((e, ma,(0')),p). As a consequence, (g(t,q), f(s,q)) € o. Therefore, o is a
simulation relation. O

Theorem 21. Let A; C N, {0} C Ay C Ay, and ¢ be a guarded universal safety property.
If global°(C, A1) | ¢, then global®(C, As) = .
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Figure 7.1: An illustration of Theorem 22. This figure highlights that a local bun-
dle abstraction over-approximates all global bundles below some cutoff N, and under-
approximates all global bundles above some cutoff M. Recall that in this example,

A = (lits(C) U [N]) and M = max(A).

Proof. Let ¢ be the guarded universal k-safety property given by (L, R,&). Assume for
the intent of contradiction that global®(C,.A;) = ¢ and global®(C,.As) = ¢. Let o be
the simulation relation defined in Lemma 7, and A be the order-preserving mapping that
corresponds to m4,. Then there exists traces (so, ..., Sy,) and (to, ..., ;) of global®(C, A;)
and global®(C, As) such that (so, ..., Sn) FE ¢, (to, ..., tm) & ¢, and Vi € [m+1]-(t;, s;) € 0.
Since ¢ is a safety property, there exists an i € [m+ 1] such that s; = ¢ and t; = ¢. Then
t; satisfies the guards of ¢ and t; = ¢. Consequently, |As| > k, else t; = ¢ would be
vacuously true. Let ¢ be the control state of both s; and ¢;, u be the user configuration of
s;, and {j1,...,Jx} be the indices of 74,(u) that violate ¢. Then u,(;,) through to u,;,)
satisfy the guards of ¢ and & (¢, uy(j,), - - ., Uxg,)). However, A (ji) through to A (ji) are in
[|A1]], and therefore, s; [~ ¢. By contradiction, t; = ¢. O

From Theorem 21, it follows that local(C, 4,vT,6,) in Example 7.0.1 over-approximates
global(C, 3) and under-approximates global(C, 101). This simultaneous over-approximation
and under-approximation is true of local fuzzing in general, as proven below in Theorem 22.
Note that in this theorem, if N > max(lits(C)), then M = N. In this case, local fuzzing is
equivalence to global fuzzing. An illustration of this theorem can be found in Fig. 7.1.

Theorem 22. Let C be a bundle, N € N, A = (lits(C) U [N]), M = max(A), and
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¢ be a guarded universal safety property. If local (C,|A|,v1,0.) [ norm(C,y), then
global(C, N) = ¢, else global(C, M) [~ ¢.

Proof. Let Its = local (C, |A|,y1,0.1). By Theorem 21, since [N] C A C [M], then:

(global(C, M) [= ¢) = (global®°(C, A) = ¢) = (global(C, N) = ¢)

By Theorem 12, Theorem 13, and Theorem 14, (Its = norm(C, ¢)) <= (global®(C, A) = ¢).
Therefore, if Its = norm(C, ¢), then global(C, N) = ¢, else global(C, M) £~ ¢. O

7.2 Impact on Counterexample Sizes

Section 7.1 proved that local bundle abstractions can be used in bounded analysis. This
section analyzes the effectiveness of using local bundle abstractions in bounded analysis.
To compare the cost of global fuzzing to local fuzzing, a notion of minimal counterexample
is required. For global fuzzing, this is simply the smallest network size such that a coun-
terexample appears. We call this a counterezample cutoff (see Definition 7.2.1). In the
case of local fuzzing, this is the smallest address space associated with a counterexample.
We call this a minimal refutation (see Definition 7.2.2). Whereas a counterexample cutoff
is unique, there are many minimal refutations due to local symmetry.

Definition 7.2.1 (Counterexample Cutoff). Let C be a bundle and ¢ be a guarded uni-
versal safety property. A counterexample cutoff of ¢ for C is a minimal N € N such that

global(C, N) F~ ¢.

Definition 7.2.2 (Minimal Refutation). Let C be a bundle and ¢ be a guarded universal
safety property. A minimal refutation of ¢ for C is a minimal set A C N such that

global®(C, A) - .

It follows from monotonicity that a counterexample cutoff is an upper bound on the
size of a minimal refutation. This is because, given any cutoff N, the address space [N]
must be a refutation (see Theorem 23). However, this does not prove that local fuzzing is
always more efficient than global fuzzing. Since local bundle abstractions are normalized,
they necessarily include all literal addresses, whereas a minimal refutation may require a
subset of literal addresses. Theorem 24 relates the number of literal addresses to the cost
of local fuzzing.

Theorem 23. Let C be a bundle and ¢ be a guarded universal safety property. If N is a
counterexample cutoff of ¢ for C and A is a minimal witness of ¢ for C, then |A] < N.
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Proof. Assume for the intent of contradiction that |A| > N. If N is a counterexample
cutoff of ¢, then global®(C, [N]) ~ ¢. Then [N] is a refutation of ¢ for C. Furthermore,
|[IV]] < |A]. Therefore, A is not minimal. By contradiction, |A| < N. O

Theorem 24. Let C be a bundle and ¢ be a guarded universal safety property. If A is
a minimal refutation of ¢ for C, then local fuzzing will find a counterexample within a
network size of | A U lits(C)].

Proof. Since A is a minimal refutation of ¢ for C, then global®(C, A) £~ ¢. By Theorem 21,
if global®(C,.A) }£~ ¢, then global®(C, AU lits(C)) |~ ¢. By Theorem 12, Theorem 13, and
Theorem 14:

(local (C, | A Ulits(C)|,yT,61) = norm(C, ¢)) <= (global®(C, AUlits(C)) = )

Therefore, local fuzzing will find a counterexample within a network size of | AUlits(C)|. O

Theorem 24 shows that the effectiveness of local fuzzing depends on both the smart
contract and the property. To illustrate this, let C be a bundle, ¢ be a guarded universal
safety property, N be a counterexample cutoff of ¢ for C, and A be a minimal witness of
¢ for C. In the worst case, local fuzzing requires a network size of | A| + [lits(C)|. As shown
in Theorem 23, this is at most N + |[lits(C)|. Therefore, the worst-case overhead of local
fuzzing is constant with respect to the property ¢. Often lits(C) is small for real-world
smart contracts. In the best case, local fuzzing requires a network size of | A|. As shown
in Theorem 23, | A| < N, and therefore, local fuzzing can also permit smaller network size.
This happens when a counterexample requires one or more implicit participants with large
addresses. It is concluded that local fuzzing can accelerate smart contract fuzzing, but in
the worst case, incurs an (often small) overhead determined by the source text of C.
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Chapter 8

Implementation

This chapter describes SMARTACE, an open-source tool' for SOLIDITY smart contract
analysis. SMARTACE supports an extended version of MINISOL with structures, inheri-
tance, libraries, enums, strings, and logging statements such as emit. An example program
is given in Fig. 8.1.

The goal of SMARTACE is to bring state-of-the art program analyzers from the LLVM-
community to SOLIDITY smart contracts. LLVM is a compiler development framework with
emphasis on program transformation and program analysis [15]. Over the past two decades,
many languages have adopted LLVM-based compilers, such as C++ [15], CUDA [71],
Haskell [68], and Rust. This has motivated the software engineering community to develop
many popular tools for the development, testing, and verification of LLVM programs. This
section focuses on model checkers such as SEAHORN [28] and SMACK [61], along with
greybox fuzzers (i.e., coverage-guided fuzzers [78]) such as LIBFUZZER [17] and AFL [70].

8.1 Architecture

SMARTACE is a smart contract analysis framework guided by local symmetry analysis.
As opposed to other smart contract tools, SMARTACE performs all analysis against a lo-
cal bundle abstraction for a provided smart contract. The abstraction is obtained through
source-to-source translation from SOLIDITY to an LLVM-based harness. To avoid reinvent-
ing the wheel, SMARTACE makes use of off-the-shelf analyzers from the LLVM-community.
The design of SMARTACE is guided by four key principles.

1https ://github.com/contract-ace

71


https://github.com/contract-ace

1 contract Auction { 26 contract Mgr {

2 mapping (address => uint) bids; 27 Auction auction;

3 address manager; 28 constructor () public {

4 uint leadingBid; 29 auction = new Auction(address(this));

5 bool stopped; 30 }

6 31 function stop() public { auction.stop(); }
7 modifier canParticipate() { 32}

8 require (msg.sender != manager); 33

9 require (! stopped) ; 34 contract TimedMgr is Mgr {

10 _ 35 event Stopped(address _by, uint _block);
11 } 36 uint start = block.number;

12 37 uint dur;

13 function bid() public payable canParticipate() { 38

14 require (msg.value > leadingBid); 39 constructor (uint _d) public { dur = _d; }
15 bids [msg.sender] = msg.value; 40 function stop() public {

16 leadingBid = msg.value; 41 require (start + dur < block.number);

17 } 42 emit Stopped(msg.sender, block.number);
18 function withdraw() public canParticipate() { 43 super.stop () ;

19 require(bids [msg.sender] != leadingBid); 44 3

20 bids [msg.sender] = 0; 45 function check() public returns (bool, uint) {
21 } 46 if (start + dur < block.number) {

22 47 return (false, block.number - dur - start);
23 // Fallback, constructor, computeMinBid (), and stop(). 48 } else { return (true, 0); }

24 } 49 }

25 50 }

Figure 8.1: An extension to Fig. 3.1 that exercises additional language support.

1. Reusability: The framework should support state-of-the-art and off-the-shelf ana-
lyzers to minimize the risk of incorrect analysis results.

2. Reciprocity: The framework should produce intermediate artifacts that can be used
as benchmarks for off-the-shelf analyzers.

3. Extensibility: The framework should extend to new analyzers without modifying
existing features.

4. Testability: The intermediate artifacts produced by the framework should be exe-
cutable, to support both validation and interpretation of results.

These principles are achieved through the architecture in Fig. 8.2. SMARTACE takes
as input a smart contract with assertions and optionally an interference invariant. The
inputs are passed to a source-to-source translator, to obtain an LLVM-based, sequential
model of the smart contract and its environment (see Section 8.2). This model is called a
harness. Harnesses use an interface called LIBVERIFY to integrate with arbitrary analyzers,
and are therefore analyzer-agnostic (see Section 8.3). When an analyzer is chosen, CMAKE
is used to automatically compile the harness, the analyzer, and its dependencies, into an
executable program. Analysis results for the program are returned by SMARTACE.

The SMARTACE architecture achieves its guiding principles as follows. To ensure
reusability, SMARTACE uses state-of-the-art tools for build automation (CMAKE) and
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Figure 8.2: The architecture of SMARTACE for integration with SEAHORN for model
checking and LIBFUZZER for greybox fuzzing.

program analysis (e.g., SEAHORN and LIBFUZZER). The source-to-source translation is im-
plemented within the SOLIDITY compiler to utilize existing source-code analysis (e.g., AST
construction, type resolution). To ensure reciprocity, the SMARTACE architecture inte-
grates third-party tools entirely through intermediate artifacts. To ensure extensibility,
the LIBVERIFY interface is used together with CMAKE build scripts to orchestrate smart
contract analysis. A new analyzer can be added to SMARTACE by first creating a new im-
plementation of LIBVERIFY, and then adding a build target to the CMAKE build scripts.
Finally, testability is achieved by ensuring all harnesses are executable. As shown in Sec-
tion 8.4, executable harnesses provide many benefits, such as validating counterexamples
from model checkers, and manually inspecting harness behaviour.

8.2 Contract Modelling

This section describes the translation from a smart contract with annotations, to an LLVM-
based harness. A high-level overview is provided by Fig. 8.3. First, static analysis is applied
to a smart contract, such as resolving inheritance and over-approximating user participa-
tion (see Section 8.2.1). Next, the analysis results are used to convert each contract
to LLVM structures and functions (see Section 8.2.2). Finally, these functions are com-
bined into a harness that schedules an unbounded sequence of smart contract transactions
(see Section 8.2.3).
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Figure 8.3: The analysis and transformations performed by SMARTACE.

8.2.1 Static Analysis

The static analysis in SMARTACE is illustrated by the top row of Fig. 8.3. At a high-
level, static analysis ensures that a bundle conforms to the restrictions of Chapter 3, and
extracts facts about the bundle required during the source-to-source translation. Bundle
facts include a flat inheritance hierarchy [9], the dynamic type of each contract-typed
variable, the devirtualization of each call (e.g., [7]), and the PTG of the bundle.

SMARTACE obtains a PTG through PTGBuilder, and over-approximates conformance
checks through syntactic rules. Therefore, it is possible for SMARTACE to reject valid
smart contracts due to imprecision. For this reason, SMARTACE uses incremental passes
to restrict the code surface that reaches the conformance checker. The first pass flattens
the inheritance hierarchy by duplicating member variables and specializing methods. The
second pass resolves the dynamic type of each contract-typed variable, by identifying its
allocation sites. For example, the dynamic type for state variable auction in TimedMgr
of Fig. 8.1 is Auction due to the allocation at line 29. The third pass uses the dynamic
type of each contract-typed variable, to resolve all virtual calls in the smart contract. For
example, super.stop at line 43 devirtualizes to method stop of contract Mgr. The fourth
pass constructs a call graph for the public and external methods of each smart contract.
Only methods in the call graph are subject to the conformance checker.

8.2.2 Source-to-Source Translation

Source-to-source translation relies on the call graph and PTG obtained through static
analysis. The translation is illustrated by the bottom row of Fig. 8.3. A translation for
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Fig. 8.1 is given in Fig. 8.4. Note that the C language is used in Fig. 8.4, rather than

struct Map_1 { sol_uint256_t data_0; /* ... */ sol_uint256_t data_4; };
struct Auction {
sol_address_t model_address; sol_uint256_t model_balance;
struct Map_1 user_bids;
sol_address_t user_manager; sol_uint256_t user_leadingBid;
sol_bool_t user_stopped; sol_uint256_t user___sum;
};

void TimedMgr_Method_stop (
struct TimedMgr *self, sol_address_t sndr, sol_uint256_t value,
sol_uint256_t bnum, sol_uint256_t time, sol_bool_t paid, sol_address_t orig)
sol_require(self—>user_start.v + self->user_dur.v < bnum.v, O0);
sol_emit ("Stopped(msg.sender, block.number)");
Mgr_Method_For_TimedMgr_stop(self, /*...*/ time, Init_sol_bool_t(0), orig);
}
sol_bool_t TimedMgr_Method_check(
struct TimedMgr *self, /*...globals...*/, sol_uint256_t *out_1) {

(xout_1) = Init_sol_uint256_t (0);
if (self->user_start.v + self->user_dur.v < bnum.v) {
out_1->v = bnum.v - self->user_dur.v - self->user_start.v;
return Init_sol_bool_t (0);
}
return Init_sol_bool_t(1);
}
void Auction_Method_1_bid(struct Auction *self, /*...globals...*/) {

sol_require(value.v > self->user_leadingBid.v, 0);
Write_Map_1(&self->user_bids, sndr, value);
self ->user_leadingBid = value;

}

void Auction_Method_bid(struct Auction *self, /#*...globals...*/) {
if (paid. == 1) self->model_balance.v += value.v;
sol_require(sndr.v != self->user_manager.v, 0);
sol_require (!self->user_stopped.v, 0);
Auction_Method_1_bid(self, /*...globals...*/);

}

Figure 8.4: Partial modelling of the types and methods in Fig. 8.1 as C code (LLVM).

LLVM, as C is more human-readable.

Abstract Data Types (ADTs).

example is given for Auction at line 3.
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An ADT is either a struct or a contract. Each struct
is translated directly to an LLVM structure. The name of the structure is prefixed by the
name of its containing contract to avoid name collisions. Each contract is translated to
an LLVM structure of the same name, with a field for its address (model_address), a field
for its balance (model_balance), and a field for each user-defined member variable. An



Primitive Types. Primitive types include all integer types, along with bool, address,
and enum (unbounded arrays are not yet supported in SMARTACE). Integer types are
mapped to singleton structures, according to their signedness and bit-width. For example,
the type of leadingBid is mapped to sol_uint256_t (see line 5). Each bool type is mapped
to the singleton structure sol_bool_t, which contains the same underlying type as uint8
(see line 6). Each address type is mapped to the singleton structure sol_address_t, which
contains the same underlying type as uint160 (see line 5). Each enum is treated as an
unsigned integer of the nearest containing bit-width. Benefits of singleton structures, and
their underlying types, are discussed in Section 8.3.

Functions. Methods and modifiers are translated to LLVM functions. Methods are
specialized according to the flattened inheritance hierarchy, and modifiers are special-
ized to each method. To avoid name collisions, each function is renamed according
to the contract that defines it, the contract that is calling it, and its position in the
chain of modifiers. For example, the specialization of method Mgr.stop for TimedMgr is
Mgr_Method_For_TimedMgr_stop. Likewise, the specializations of method Auction.bid and
its modifier canParticipate are Auction_Method_1_bid and Auction_Method_bid, respec-
tively. Extra arguments are added to each method to represent the current call state
(see self through to orig on line 9). Specifically, self is this, sndr is msg.sender, value
is msg.value, bnum is block.number, time is block.timestamp, and orig is msg.origin. A
special argument, paid, indicates if msg.value has been added to a contract’s balance
(see line 13, where paid is set to false). If paid is true, then the balance is updated be-
fore executing the body of the method (see line 30). Multiple return values are handed
through the standard practice of output variables. For example, the argument out_1 in
TimedMgr_Method_check represents the second return value of check.

Statements and Expressions. Most expressions map directly from SOLIDITY to LLVM
(as both are typed imperative languages). Special cases are outlined. Each assert maps
to sol_assert from LIBVERIFY, which causes a program failure given argument false.
Each require maps to sol_require from LIBVERIFY, which reverts a transaction given
argument false (see line 31). For each emit statement, the arguments of the event are
expanded out, and then a call is made to sol_emit (see line 12). For each method call,
the devirtualized call is obtained from the call graph, and the call state is propagated
(see line 13 for the devirtualized called to super.stop). For external method calls, paid
and msg.sender are reset.
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Figure 8.5: The control-flow of a test harness. Each x denotes an optional step.

Mappings. FEach mapping is translated to an LLVM structure. This structure represents
a bounded mapping with an entry for each participant in the PTG. For example, if a
PTG has N participants, then a one-dimensional mapping will have N entries, and a two-
dimensional mapping will have N? entries. Since mapping types are unnamed, the name of
each LLVM structure is generated according to declaration order. For example, bids of
Auction is the first mapping in Fig. 8.1, and translates to Map_1 accordingly (see line 1).
Accesses to Map_1 are encapsulated by Read_Map_1 and Write_Map_1 (see line 26).

Strings. Each string literal is translated to a unique integer value. This model supports
string equality, but disallows string manipulation. Note that string manipulation is avoided
by many smart contracts due to gas costs.

Addresses. Implicit participation is induced by literal addresses. This means that the
value of a literal address is unimportant, so long as it is unique and constant. For reasons
outlined in Section 8.2.3, it is important to set the value of each literal address program-
matically. Therefore, each literal address is translated to a unique global variable. For
example, address(0) translates to g_literal_address_0.

8.2.3 Harness Design

A harness provides an entry-point for LLVM analyzers. Currently, SMARTACE implements
a single harness that models a blockchain from an arbitrary state, and then schedules an
unbounded sequence of transactions for contracts in a bundle. A high-level overview of
this harness is given in Fig. 8.5. The harness for Auction in Fig. 8.1 is depicted in Fig. 8.6.
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1 sol_bool_t paid; paid.v = 1; 23 // Transaction Loop.

2 // Address space initialization. 24 while (sol_continue()) {

3 struct TimedMgr sc_1; 25 sol_on_transaction();

4 struct Auction *sc_2; 26 // Interference.

5 sc_2 = &sc_1.user_auction; 27 if (sol_can_interfere()) {/*...%/}
6 g_literal_address_0 = O0; 28 // Update blockchain state.

7 sc_1.model_address.v = 1; 29 if (ND_RANGE(5,0,2,"inc_time")) {
8 sc_2.model_address.v = 2; 30 bnum.v =

9 // Blockchain initialization. 31 ND_INCREASE(6,bnum.v,1,"bnum");
10 sol_uint256_t bnum; 32 time.v =

11 bnum.v = ND_UINT (1,256, "bnum"); 33 ND_INCREASE(7,time.v,1,"time");
12 sol_uint256_t time; 34 }

13 time.v = ND_UINT(2,256,"time"); 35 // Generate transaction.

14 // Contract construction. 36 switch (ND_RANGE(8,0,6,"call")) {
15 sol_address_t sndr; 37 case 0: {

16 sndr.v = ND_RANGE(3,3,5,"sndr"); 38 /*...generate arguments...x*/

17 sol_uint256_t value; value.v = 0; 39 TimedMgr_Method_stop (/*...%/);

18 sol_uint256_t arg___d; 40 break;

19 arg___d.v = ND_UINT(4,256,"_d"); 41 } /*...other public methods...x*/
20 Init_TimedMgr ( 42 3

21 &sc_1, sndr, value, bnum, time, 43 }

22 paid, sndr, arg___d);

Figure 8.6: The harness for Fig. 8.1. Logging is omitted to simplify the presentation.

Modelling Nondeterminism. All nondeterministic choices are resolved by interfaces
from LIBVERIFY. ND_INT(id,bits,msg) and ND_UINT(id,bits,msg) choose integers of a
desired signedness and bit-width. ND_RANGE(id,lo,hi,msg) chooses values between 1o (in-
clusively) and hi (exclusively). ND_INCREASE(id,old,msg) chooses values larger than old.
In all cases, id is an identifier for the callsite, and msg is used for logging purposes.

Address Space. An abstract address space restricts the number of addresses in a har-
ness. It assigns abstract address values to each contract and literal address global variable.
Assume that there are N contracts, M literal addresses, and K non-implicit participants.
The corresponding harness has abstract addresses 0 to N + M + K — 1. Constraints are
placed on address assignments to prevent impossible address spaces, such as two literal
addresses sharing the same value, two contracts sharing the same value, or a contract hav-
ing the same value as the zero-account. The number of constraints must be minimized, to
simplify symbolic analysis. In SMARTACE, the following partitioning is used. Address(0)
is always mapped to abstract address 0 (see line 6). Abstract addresses 1 to N are assigned
to contracts according to declaration order (see lines 7-8). Literal addresses are assigned
arbitrary values from 1 to N + M. This allows contracts to have literal addresses. Dis-
equality constraints ensure each assignment is unique. Senders are then chosen from the
range of non-contract addresses (see line 16).
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Blockchain Model. SMARTACE models block.number, block.timestamp, msg.value,
msg.sender, and msg.origin. The block number and timestamp are maintained across
transactions by bnum at line 10 and time at line 12. Before transaction generation, bnum
and time may be incremented in lockstep (see lines 29-33). Whenever a method is
called, msg.sender is chosen from the non-contract addresses (e.g., line 16). The value of
msg.sender is also used for msg.origin (e.g., the second argument on line 22). If a method
is payable, then msg.value is chosen by ND_UINT, else msg.value is set to 0 (e.g., line 17).

Transaction Loop. Transactions are scheduled by the loop at line 24. The loop ter-
minates if sol_continue from LIBVERIFY returns false (this does not happen for most
analyzers). Upon entry to the loop, sol_on_transaction from LIBVERIFY provides a hook
for analyzer specific bookkeeping. Interference is then checked and re-applied, provided
that sol_can_interfere returns true at line 27. A transaction is picked at line 36 by
assigning a consecutive number to each valid method, and then choosing a number from
this range. Arguments for the method are chosen using ND_INT and ND_UINT for integer
types, and ND_RANGE for bounded types such as address, bool and enum (see lines 15-19 for
an example).

Interference. A harness may be instrumented with interference invariants to enable
modular reasoning, such as PCMC. As illustrated in Fig. 8.5, interference is checked and
then re-applied before executing each transaction. Note that checking interference after a
transaction would be insufficient, as this would fail to check the initial state of each contract.
To apply interference, a harness chooses a new value for each mapping entry, and then
assumes that these new values satisfy their interference invariants. To check interference, a
harness chooses an arbitrary entry from a mapping, and asserts that the entry satisfies its
interference invariant. Note that asserting each entry explicitly would challenge symbolic
analyzers. For example, a two-dimensional mapping with 16 participants would require
256 assertions.

Limitations. The harness has three key limitations. First, as gas is unlimited, the
possible transactions are over-approximated. Second, there is no guarantee that time
must increase (i.e., a fairness constraint), so time-dependent actions may be indefinitely
postponed. Third, reentrancy is not modeled, though this is sufficient for EECF contracts.
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Interface Description

sol_continue() Returns true if the transaction execution loop should continue.

sol_can_interfere() Returns true if interference should be applied and validated.

sol_require(cond, msg) If cond is false, then msg is logged and the transaction aborts.

sol_assert(cond, msg) If cond is false, then msg is logged and the program fails.

sol_emit (expr) Performs analyzer-specific processing for a call to emit expr.

ND_INT(id, n, msg) Returns an n-bit signed integer. The choice is logged as “msg: value”.

ND_UINT(id, n, msg) Returns an n-bit unsigned integer. The choice is logged as “msg: value”.

ND_RANGE(id, lo, hi, msg) Returns an 8-bit unsigned integer between lo (inclusively) and hi
(exclusively). The choice is logged as “msg: value”.

ND_INCREASE(id, cur, strict, msg) Returns a 256-bit unsigned integer that is greater than or equal to cur.

If strict is true, then the integer is strictly larger than cur. The choice
is logged as “msg: value”.
smartace_log(msg) Logs msg.

Table 8.1: Summary of the LIBVERIFY interface.

1 int rv = *; 1 int rand = x*;
2 assume (lo <= rv && rv < hi); 2 int rv = lo + (rand % (hi - lo));
3 return rv; 3 return rv;
(a) An implementation for SEAHORN. (b) An implementation for LIBFUZZER.

Figure 8.7: Possible implementations of ND_RANGE(n,lo,hi,msg).

8.3 Integration with Analyzers

CMAKE and LIBVERIFY are used to integrate LLVM analyzers with SMARTACE. Func-
tions from LIBVERIFY, as described in Table 8.1, provide an interface between a harness
and an analyzer (usage of these functions is described in Section 8.2). Each implementa-
tion of LIBVERIFY codifies how a certain analyzer should interact with a harness. Build
details are resolved using CMAKE scripts. For example, CMAKE arguments are used to
switch the implementation of primitive singleton structures between native C integers and
Boost multiprecision integers. To promote extensibility, certain interfaces in LIBVERIFY
are designed with many analyzers in mind. Two key examples are bounded value selection
and the placement of non-determinism.

8.3.1 Challenge: Bounded Value Selection
In LIBVERIFY, the functions ND_INT and ND_UINT are used as sources of non-determinism.

In principle, all selections could be implemented using these interfaces. However, certain
operations, such as “increase the current block number,” or “select an address between 3
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and 5,” require specialized implementations, depending on the mode of analysis. For this
reason, LIBVERIFY provides multiple interfaces for non-determinism, such as ND_INCREASE
and ND_RANGE. To illustrate this design choice, the implementations of ND_RANGE for SEA-
HorN and LIBFUZZER are discussed.

The interface ND_RANGE(id,lo,hi,msg) returns a value between lo (inclusively) and
hi (exclusively). Efficient implementations are given for SEAHORN and LIBFUZZER in
Fig. 8.7a and Fig. 8.7b, respectively. The SEAHORN implementation is correct, since
failed assumptions in symbolic analysis simply restricts the domain of each symbolic vari-
able. Intuitively, assumptions made in the future can influence choices made in the past.
This design does not work for LIBFUZZER, as failed assumptions in LIBFUZZER simply
halt execution. This is because all values in LIBFUZZER are concrete. Instead, a value
is constructed between lo and hi through modular arithmetic. In contrast, many sym-
bolic analyzers struggle with non-linear constraints such as modulo. Therefore, neither
implementation is sufficient for both model checking and fuzzing.

8.3.2 Challenge: Placement of Non-determinism

Not all analyzers provide non-determinism in the same way. In SEAHORN, external func-
tions are used as sources of non-determinism. For counterexample generation, it is useful
to have a unique external function for each callsite. In LIBFUZZER, generated values are
passed to the harness through an input array. This presents a challenge, since the external
functions for SEAHORN should be exposed to the callsite, whereas the input array used
by LIBFUZZER should be hidden as an implementation detail. However, if the external
functions are called unconditionally, then the harness would not compile for LIBFUZZER.

This problem is solved in LIBVERIFY by adding a “hint” to each value selection in-
terface. For SEAHORN, the hint is used as a source of non-determinism, whereas for
LIBFUZZER, the hint is ignored. The call is wrapped by a preprocessor macro that auto-
matically generates a hint. For example, ND_RANGE(id,lo,hi,msg) is a macro wrapper to
nd_range. For SEAHORN, ND_RANGE passes the return value from external function nd_{id}
as a hint, whereas for LIBFUZZER, the hint defaults to 0. Alternatively, SMARTACE
could generate an implementation for each external function when SEAHORN is not in use,
thought this solution is specific to SEAHORN and counter to the principle of extensability.
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8.4 Modes of Analysis

SMARTACE has been instantiated for greybox fuzzing and PCMC. The current implemen-
tation of LIBVERIFY supports LIBFUZZER for fuzzing and SMARTACE for model checking.
Other analyzers, such as AFL and SMACK, can be supported by extending LIBVERIFY.

Interactive Test Harness. A default implementation of LIBVERIFY provides an inter-
active test harness. Non-determinism, and the return values for sol_continue, are resolved
through standard input. Events such are smartace_log and sol_emit are printed to stan-
dard output. The sol_on_transaction hook is used to collect test metrics, such as the
number of transactions. As mentioned in Section 8.1, providing an interactive harness
improves the testability of SMARTACE.

Greybox Fuzzing. In greybox fuzzing, the harness is instantiated with N participants,
and each participant is treated concretely. As opposed to other smart contract fuzzing
techniques, SMARTACE performs all fuzzing against a local bundle abstraction. This
ensures that all implicit participants are in the address space.

PCMC. PCMC for a provided interference invariant either proves a bundle is safe for any
number of users, or finds a counterexample to compositionality. The harness is instantiated
from the PTG, with three choices of concretization (V. , Yimp, OF YimpUVrole). Increasing the
number of concrete participants increases the precision of the analysis, but also increases
the size of the state space. As the harness is executable, SMARTACE is able to compile
and execute counterexamples found by a model checker. With SEAHORN, integers can
be bit-precise [12], or over-approximated by linear integer arithmetic [10]. The predicate
synthesis feature in SEAHORN can also be used to infer interference invariants. Synthesized
predicates may optionally depend on all control data, or no control data.
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Chapter 9

Evaluations

This chapter reports on the effectiveness of SMARTACE in analyzing real-world smart
contracts. The evaluation answers the following research questions:

RQ1: Compliance. Can MINISOL represent real-world smart contracts?
RQ2: Effectiveness. Is SMARTACE effective for MINISOL smart contracts?

RQ2a: Verification. Is smart contract PCMC able to verify real-world properties?
RQ2b: Fuzzing. Is local fuzzing able to find bugs in real-world smart contracts?
RQ2c: Synthesis. Can predicate synthesis automate smart contract PCMC?

RQ3: Performance. Is SMARTACE competitive with other verification techniques?

To answer the above research questions, we have curated a benchmark of 89 properties
across 15 smart contracts (see Table 9.1). Contracts Alchemist through to Mana are from
VERX [58]. The VERX benchmark set consists of real-world smart contracts that were
provided to ChainSecurity for auditing purposes. Contracts Fund and Auction were added
to offset the lack of parameterized properties in existing benchmarks. The QSPStaking
contract comprises the Quantstamp Assurance Protocol! for which we checked real-world
properties provided by Quantstamp. In Table 9.1, Time is the total analysis time, Inv.
Size is the number of clauses in an interference invariant, Users is the number of users
required by PTGBuilder, v is the number successful evaluations, and X is the number of
unsuccessful evaluations.

1https ://github.com/quantstamp/qsp-staking-protocol
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Contracts VERX PCMC Fuzzing Synthesis
Name Prop. LOC Time Time Inv. Size Users v X v X Time
Alchemist 3 401 29 7 0 7 0 1 3 0 208
ERC20 9 599 158 12 1 5 9 0 9 0 103
Melon 16 462 408 30 0 7 14 2 16 0 979
MRV 5 868 887 2 0 7 5 0 5 0 428
Overview 4 66 211 4 0 8 3 1 4 0 9
PolicyPal 4 815 20773 26 0 8 1 2 4 0 3118
Zebi 5 1209 r 8 0 7 5 0 5 0 487
Zilliga 5 377 94 8 0 7 4 0 5 0 501
Brickblock 6 549 191 13 0 10 4 2 6 0 1214
Crowdsale 9 1198 261 223 0 8 6 1 9 0 238
1CO 8 650 6817 371 0 16 5 3 0 8 —
VUToken 5 1120 715 19 0 10 2 3 1 4 17
Mana 4 885 41409 — — — - — — — —
Fund 2 38 — 1 0 6 1 1 — — —
Auction 1 42 — 1 1 5 1 0 1 0 1
QSPStaking 4 1550 — 3 7 8 - — — — —

Table 9.1: Summary of results for all SMARTACE case studies.

9.1 Case Studies

Five case studied were performed using the data in Table 9.1. All artifacts described in

these case studies are publicly available?.

VerX Verification Study. This study evaluates the Compliance, Verification Effective-
ness, and Performance of SMARTACE. The goal of this study is to compare SMARTACE
to benchmarks from a closely-related and state-of-the-art smart contract verifier.
VERX benchmarks were selected for this study, since VERX is also a semi-automated®
tool that verifies past-time LTL properties. We report on the number of compliant bench-
marks, the proportion of compliant benchmarks that could be verified by SMARTACE

using PCMC, and the time required for verification.

e Compliance: We found that 8 out of 13 benchmarks are compliant after removing
dead code. With manual abstraction, 12 out of 13 benchmarks are compliant. The
manual abstractions are as follows. In Brickblock, inline assembly is used to revert
transactions with smart contract senders. To comply with SMARTACE, we remove
the assembly as an over-approximation. To support Crowdsale, we manually resolve
dynamic calls not supported by SMARTACE. In IC0, calls can be made to arbitrary

2

3End-users must provide predicate abstractions [35] to VERX.

https://github.com/contract-ace
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contracts (by address). However, these calls adhere to EECF and can be omitted.
Also, 1C0 uses dynamic allocation, but the allocation is performed once. We inline
the first allocation, and assert that all other allocations are unreachable. To support
VUToken, we replace a dynamic array of bounded size with variables corresponding to
each element of the array. In VUToken, the function _calcTokenAmount iterates over
the array, so we specialize each call (i.e., _calcTokenAmount_{1,2,3,4}) to eliminate
recursion. Two other functions displayed unbounded behaviour (i.e., massTransfer
and addManyToWhitelist), but are used to sequence calls to other methods, and do
not impact reachability.

e Verification: All compliant VERX benchmarks were verified by SMARTACE. How-
ever, it was also discovered that most VERX properties are not parameterized. Specif-
ically, 40 properties lack parameterization in general, 19 properties are parameterized
but do not involve user data, and 23 properties involve user data but are not univer-
sally quantified.

e Performance: For each smart contract, the reported “average” time of VERX was
compared to the total time of SMARTACE. Note that it is unclear how the reported
times of VERX were obtained. The authors of VERX were contacted, but were
unable to provide the original data. A VERX client was obtained from the authors,
but it failed to connect to the VERX servers. Therefore, we conservatively assume
that all times reported by VERX are total. All VERX experiments were performed
using a faster a processor (4 cores at 2.8GHz versus 4 cores at 3.4GHz) and additional
RAM (16GB versus 64GB). In each case, SMARTACE significantly outperformed
VERX, achieving a speedup of at least 10x for all but 2 contracts.

Auction Study. This study evaluates the Verification Effectiveness of SMARTACE.
The goal of this study is to validate SMARTACE against universal properties. In this case
study, an Auction smart contract was designed (similar to Fig. 3.1), and SMARTACE was
used to verify that “Fach bid is at most the maximum bid.” Each artifact obtained from
SMARTACE was audited by hand, and validated, including the abstract address space.
The discovery of an interference invariant was semi-automated, and aided by counterex-
amples from SEAHORN. First, the interference invariant was assumed to be 6. SEAHORN
provided a counterexample in which a user spuriously obtained a bid of 1 before any bids
had been placed. The failed assertion stated bids[i] <= maxBid, so this was taken to be
the new interference invariant. A compositionality check proved that this new invariant was
compositional. Finally, a k-universal safety check proved that this interference invariant
was also adequate.
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Quantstamp Assurance Protocol Study. This study evaluates the Compliance and
Verification Effectiveness of SMARTACE. The goal of this study is to validate SMARTACE
in the context of large-scale smart contract development. In this study, we were provided
private access to a large specification for the QSPStaking contract by Quantstamp. From
this specification, 4 properties were selected at random and then verified. Verification
required a novel harness, for refinement checking (see [1]). It required 2 person-days to
model the environment, and 1 person-day to discover an interference invariant. The major
overhead in modeling the environment came from the manual abstraction of unbounded
arrays. In total, 10 clauses were required to abstract each array, such as:

e Clause 1: The length of array stakers is always the length of array powers0£100;
e Clause 2: Each element of stakers is at most the length of stakers;

e Clause 3: All elements of powers0£100 are greater than 0.

The abstraction of arrays and discovery of an interference invariant were semi-automated,
and aided by counterexamples from SEAHORN. For example, the discovery of Clause 3
was aided by a counterexample in which 0 appeared spuriously in powers0£100, resulting
in a division-by-zero error.

Fuzzing Study. This study evaluates the Fuzzing Effectiveness of SMARTACE. The
goal of this study is to determine if local fuzzing is capable of detecting bugs in smart
contracts. In this study, faults were injected into smart contracts from Table 9.1. For
each fault, 3000000 trials of local fuzzing were performed, using 5 users and a timeout of
15 seconds per trial. A benchmark was included in this study if a property-specific fault
could be injected without violating the static analysis of SMARTACE. It was found that
60 out of 76 faults were discovered by SMARTACE. For faults that were missed, a minimal
refutation required a sequence of multiple transactions with correlated arguments.

Synthesis Study. This study evaluates the Synthesis Effectiveness and Performance of
SMARTACE. The goal of this study is to determine if SEAHORN’s predicate synthesis is
an appropriate tool for PCMC automation. In this study, predicate synthesis was applied
to all compliant smart contracts in Table 9.1. Interference invariants were allowed to
depend on all control data. Table 9.1 reports the time required to solve each verification
problem. All benchmarks, except for IC0 and VUToken, were solved within 10x of the report
VERX time. For 3 benchmarks, predicate synthesis outperform VERX by a speedup of at
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least 1.5x. For all unsolved benchmarks, predicate synthesis failed to find either a solution
or a counterexample. It is hypothesized that predicate synthesize failed to solve VUToken
due to the number of control data (21 variables), and IC0 due to the total number of
mapping entries (1796 entries across 8 mappings). Note that Fund was excluded due to a
lack of user data, and QSPStaking was excluded due to its novel verification harness.

9.2 Results and Discussion

RQ1: Compliance. In the VerX Verification Study, SMARTACE was applied to 13
real-world smart contracts. With manual abstraction, all but one smart contract was
compliant. Most abstractions could be automated, such as identifying patterns in assembly
code, supporting dynamic calls, and generating interfaces for calls from EECF contracts. In
the Quantstamp Assurance Protocol Study, SMARTACE was applied to a large-scale, real-
world smart contract without prior auditing. The QSPStaking contract was compliant after
manual abstraction of unbounded arrays through PCMC. In future work, the abstraction of
unbounded arrays could be automated. We conclude that the restrictions of MINISOL are
reasonable, provided that key abstractions are automated. We suggest that a larger-scale
compliance study is required to identify meaningful abstractions.

RQ2a: Verification. In both the VerX Verification Study and Quantstamp Assurance
Protocol Study, SMARTACE was able to verify all provided specifications. In the Auc-
tion Study, SMARTACE was also able to verify universal properties. Experience from the
Quantstamp Assurance Protocol Study shows the overhead of applying SMARTACE to a
new contract is minimal (i.e., 3 person-days for a novel harness) and can be aided by coun-
terexamples from SEAHORN. We conclude that SMARTACE is suitable for high-assurance
contracts, and with proper automation, can be integrated into contract development.

RQ2b: Fuzzing. In the Fuzzing Study, local fuzzing was shown to perform moderately
well by achieving a true positive rate of 79%. The faults that were not detected involved
multiple transactions with correlated arguments. Prior work has shown that specialized

whitebox fuzzing is often required to find such faults in smart contracts [77, 32]. An
interesting question for future work is whether an off-the-shelf whitebox fuzzer from the
LLVM-community, such as KLEE [13], is capable of detecting these faults.
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RQ2c: Synthesis. In the Synthesis Study, predicate synthesis verified 85% of all prop-
erties. For 10% of unverified properties, the failure was attributed to the total number of
mapping entries. For 5% of unverified properties, the failure was attributed to the number
of control data. However, the number of mapping entries could be reduced by a more
precise PTGBuilder, whereas the impact of control data could be reduced by partitioning
the signature of an interference invariant. Alternatively, the underlying techniques used
to solve predicate synthesis in SEAHORN could be improved (see [29]). We conclude that
predicate synthesis is a promising approach to automated smart contract PCMC.

RQ3: Performance. Inthe VerX Verification Study, semi-automated SMARTACE out-
performed VERX on all compliant benchmarks. On all but two benchmarks, SMARTACE
achieved a speedup of at least 10x. Therefore, SMARTACE is competitive with state-
of-the-art techniques. In the Synthesis Study, fully-automated SMARTACE outperformed
VERX on 3 benchmarks. However, the comparison is not entirely fair, since VERX is semi-
automated. It is suspected that one bottleneck for SMARTACE is the number of users,
as each user extends the state space. A more precise PTGBuilder would help to reduce
the number of users. Upon manual inspect of Melon and Alchemist (in a single bundle),
it was noted that 28% of user state was due to over-approximation. Details on refining
PTGBuilder can be found in Appendix C. We conclude that SMARTACE can scale.
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Chapter 10

Conclusion

This thesis has presented an approach to local smart contract analysis. The analysis was
enabled in Chapter 3 by defining MINISOL, a subset of SOLIDITY with restricted user
interactions and parameterized network semantics. The locality studied in this thesis deals
with user interactions during a single smart contract transaction. To this end, Chap-
ter 4 introduced the PT to provide explicit semantics to user interactions, and PTGs to
over-approximate all PTs during automated analysis. A detailed study of local transac-
tion symmetries were presented in Chapter 5, resulting in an abstract address domain
for MINISOL transactions and the local bundle abstraction for MINISOL smart contracts.
In Chapter 6 and Chapter 7 it was shown that local bundle abstractions can be used to
ameliorate state explosion in parameterized smart contract verification, and to accelerate
counterexample search in bounded analysis. Special attention was given in Chapter 6 to
extend PCMC to point-wise aggregate properties through local approximation. To validate
this theory in practice, local bundle abstractions were implemented within the SOLIDITY
compiler. The experimental results obtained on the VERX and Quantstamp benchmarks
show that the SMARTACE approach to local smart contract analysis is effective for a
sample of real-world smart contracts.

10.1 Related Work

Synchronized Control-User Networks. The use of SCUNs in parameterized verifica-
tion was first proposed in [23]. The interference and inductive invariants used throughout

this paper follow from the application of PCMC to SCUNs in [51]. Both [23] and [51]
assume that transition relations are independent of addresses. In this thesis, addresses
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can be stored by control process state, and the addresses of participants can be compared,
leading to different equivalence classes than those obtained in prior work. The addresses
used in this paper, and their restrictions, are similar to the scalarsets of [34]. However, the
results of [34] are not directly applicable to SCUNs, and do not allow for addresses to be
stored by process state.

Parameterized Compositional Model Checking. PCMC is an abstraction technique
that allows for “local,” rather than “global” symmetry reductions. Early work on symmetry

reduction (e.g., [1D, 18]) was “global” in the sense that analysis considered the entire
topology of a network, and processes were permuted on this topology. In contrast, PCMC
performs all analysis against abstract topologies, known as neighbourhoods [51]. Local

symmetry reductions can be exponentially larger than global symmetry reductions [54],
and supports all of CTL* (a superset of LTL) [55]. PCMC requires both a network topology
and compositional cutoff. Recent work has considered inferring topologies from first-order
specifications [5]. In this thesis, topologies are inferred from source code, and compositional
cutoffs are avoided by analyzing abstract neighbourhoods directly.

Smart Contract Verification. Most research on smart contract analysis focuses on

verifying generic rules, such as freedom from overflow (e.g., [14, (9]), freedom from re-
entrancy (e.g., [21, 27, 19]), and correct access patterns (e.g., [12, 56, 70]). A small selection
of work has focused on user-provided properties (i.e., [30, 37, 40, 41, 58, 65, 50, 66]). Of
these works, only [10] considers smart contracts as parameterized systems. However, in [10],

verification is limited to networks of bounded size. In contrast, this thesis verifies networks
of arbitrary size through application of PCMC.

Aggregate Properties. Several authors have studied aggregate extensions to first-order
logic (e.g., [20, 33, 48]). However, this research is primarily disconnected from smart
contract research. For example, the smart contract verification techniques in [30, 58, 65]
are limited to ad-hoc solutions for the sum(-) aggregate. In [10], aggregate properties
are treated more rigorously, though the results are limited to optimizing runtime checks,
and are complementary to this thesis. At the time of writing this thesis, [1 7] instantiated
an aggregate logic for verifying smart contract properties with sum(-). It is currently
unclear how [17] relates to local aggregate approximations, and whether this would could
be extended to support lattice-based point-wise aggregates.
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10.2 Future Work

This section outlines potential directions for future work on local smart contract analysis.

Relaxing MiniSol. The restrictions placed on MINISOL induced the symmetries studied
throughout this thesis. However, not all SOLIDITY smart contracts conform to MINISOL.
An interesting direction for future work is to study extensions of MINISOL that still permits
a finite number of equivalence classes, while also supporting a wider set of SOLIDITY smart
contracts. Note that in Chapter 4, the definition of implicit labels was not bound to literal
addresses, in order to permit such extensions. One important extension for MINISOL is to
support the batch transfer pattern, in which a loop iterates over a list of clients, with only
a finite number of these clients participating at any one time (see Appendix D). Another
important extension for MINISOL is to support ERC721-like protocols, in which special
numeric-typed variables are used as mapping indices (see Appendix E).

Point-Wise Aggregates. This thesis studied the sum(-) and max(-) aggregates in smart
contract analysis. These aggregates inspired the notion of point-wise aggregates, and their
local approximations. It was shown that the relevant properties of sum(-) and max(-) gen-
eralize to point-wise aggregates defined from Abelian groups and lattices, respectively. An
interesting topic for future work is to identify other aggregates with point-wise definitions,
that are not defined from Abelian groups or lattice. Important questions are whether
these new aggregates permit local approximations, and whether these approximations can
be used to verify interesting properties.

Refining Local Bundle Abstractions. In Chapter 5, it was shown by Theorem 11 that
the users of a MINISOL smart contract can be partitioned into finitely many equivalence
classes. However, the analysis in this theorem is coarse-grained, and does not provide a
tight upper-bound on the number of equivalence classes. Consequently, the local bundle in
Definition 5.4.3 is also coarse-grained, and includes many executions that are not required
for the soundness of PCMC in Chapter 6. For example, all non-transient and non-implicit
users are symmetric, and the order of their addresses could be fixed a-priori, whereas Defi-
nition 5.4.3 considers all possible orderings (see Appendix C for an example). A promising
direction for future work is to refine the set of equivalence classes, and to find an encoding
of these equivalence classes that is efficient for model checking.
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Empirical Evaluations. The scope of evaluations in Chapter 9 was limited by the time
required to manually specify program-specific properties. An important future direction
for empirical research is to evaluate SMARTACE on a wider collection of real-world smart
contracts. It is suspected that such a evaluation would be possible by adapting techniques
from behavioural simulations to infer program-specific and user-sensitive smart contract
properties (e.g., [¢]). Note that this study would also require a full specification language
and automatic property instrumentation.
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Appendix A

Multidimensional Mappings

This section presents extensions of MINISOL for multidimensional maps. Results from
previous sections (i.e., Chapter 4 and Chapter 5) are generalized to this setting. Fig. A.1
is used as a running example. In Fig. A.1, the SimpleToken contract implements a simplified
version of the ERC-20 protocol [71].

The ERC-20 protocol is used to implement a token-based currency. In a token-based
currency, users have tokens (i.e., digital money) that can be transferred from one user
to another. A user may also approve another user to move tokens on their behalf. In
Fig. A.1, the one-dimensional mapping, balances, is used to record tokens and the two
dimensional mapping, allowances, is used to record approvals. For simplicity, only the
approval (approve) and delegate transfer (transferFrom) methods are implemented.

Impact on Semantics In a one-dimensional mapping, each user maintains a single value
from . For instance, each user of SimpleToken maintains a single token count in balances.
Therefore, the size of each user’s data in a one-dimensional mapping is independent of the
network size. This changes in the case of a multidimensional mapping. As an example,
each user of SimpleToken maintains an allowance for every other user of the smart contract.
Therefore, the size of each user’s data in a two-dimensional mapping is O(N), where N is
the network size. Consequently, user(C, A) := (.A x D x ID)|A|). In general, each user stores
O(N*=1) values in a k-dimensional mapping.

Impact on Concrete Regions Recall a concrete region v C control(C, [N]) x [N] from
Section 5.4. If (a, c) € =y, then the user with address a is abstract from control state c. Alter-
natively, the address a can represent arbitrarily many users from control state c. Therefore,
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1 /// @title A simplified ERC20 protocol. 13

2 /// @dev Ignores overflow for simplicity 14 /// I1f approved, moves v tokens from s(rc) to d(st).
3 contract SimpleToken { 15 function transferFrom(address s, address d, uint v)
4 mapping (address => uint) balances; 16 public returns (bool) {

5 mapping (address => mapping(address => uint)) 17 require(allowances[s] [msg.sender] >= v);

6 allowances; 18 require (balances[s] > v);

7 19

8 /// Allows spender to transfer v tokens from sender. 20 allowances [s] [msg.sender] -= v;

9 function approve(address spender, uint v) 21 balances[s] -= v;

10 public returns (bool) { 22 balances [d] += v;

11 allowances [msg.sender] [spender] = v; 23 3

12 ¥ 24 }

Figure A.1: A simplified implementation of the ERC-20 protocol [71].

N W~ OO0 N

0o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 7

Figure A.2: An illustration of two-dimensional concretization. The network size is 8, con-
trol state is ¢, and v = {(¢, 1), (¢, 3), (¢,7)}. The mappings are balances and allowances,
respectively. A cell is shaded if the corresponding mapping entry is concrete.

an entry in a k-dimensional mapping is concrete from control state ¢, if and only if all k&
indices appear in v with c¢. As a concrete example, assume that transferFrom is called with
msg.sender set to ag and s set to a; from control state ¢. Then allowance[s] [msg.sender]
is concrete if and only if (¢, aq) € v and (¢, a;) € v. An illustration is given in Fig. A.2.
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Appendix B

Auction LTS Example

This section provides the full LTS definition for Auction smart contract in Fig. 3.1. This
means that C = (Auction) and F = {constructor, bid, withdraw, stop}. To ensure
that the constructor is only called once, a Boolean constructed flag is added to C. As in
Section 3.1.2, let A be an address space.

The control states are control(C,.A) C (A x DP) such that if ¢ € control(C, .A), then:

1.
2.
3.

(¢,0)
(¢, 1)
. data(c,2) is constructed.
. data(c, 3)
(¢, 4)
(¢,5)

role(c, 0) is the address of manager,
data(c, 0) is block.number,
data(c, 1) is block.timestamp,

¢, 3) is the balance of the Auction contract,

. data(c,4) is leadingBid,

data(c, 5) is stopped.

The user states are user(C,.A) C (A x D) such that if u € user(C, .A), then map(u)g is
the bid of user w.

The inputs are inputs(C, A) C (F x A x D?) such that if p = (fn,x,y) € inputs(C, A):

1.

client(p, 0) is msg.sender;
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2. If fn = constructor, then client(p, 1) is manager, else client(p, 1) is unused,
3. arg(p,0) is msg.value;
4. arg(p,1) is the next value of block.number;

5. arg(p,2) is the next value of block.timestamp.

Fix N € N. For the rest of this section, the discussion is restrict to global(C, N'). This
means that A = [N], and that M is the identify function for [N]. The rest of this section
presents transaction semantics for f = [C]a. It is assumed that N > 2, so that the
zero-account and Auction account are defined and unique.

To simplify presentation, predicates are used to factor out common guards and expres-
sions. The predicate ValidSender(p, u) guards against invalid senders. It is true whenever
the sender is not the zero-account (i.e., client(p,0) # id(ug)) nor the Auction account
(i.e., client(p,0) # id(uy,0). An important observation is that the sender, client(p,0), is
compared to id(u;), rather than i. This is because M is used to map all literal addresses
to users. For the first case, M first maps 0 to ug, and then id(uy) maps ug back to 0'.

The predicate Constructed(s) is used to guard multiple constructor calls. It is true once
Auction has been constructed. That is, data(s,2) = 1.

The predicate TimeCheck(s, s', p) is used to enforce monotonic time and lockstep clocks.
The deterministic progress of time is enforced by data(s’,0) = arg(p, 1) and data(s’,1) =
arg(p, 2). The monotonicity of block.number is enforced by data(s’,0) > data(s,0). Simi-
larly, the monotonicity of block.timestamp is enforced by data(s’, 1) > data(s, 1). Lockstep
clocks are then enforced by data(s’,0) = data(s,0) <= data(s’,1) = data(s, 1).

Finally, KeepRole(s,s’,7) KeepData(s, s’,j) and are used to enforce that the i-th role
and j-th datum are unchanged. Formally, KeepRole(s,i) := role(s’,i) = role(s,i) and
KeepData(s, §', j) := data(s’, j) = data(s, 7).

(s,u) if —ValidSender(p, u)
go((s,u),p) if fn = constructor
f((s,u),p) = ¢ g:((s,u),p) if fn = stop
g2((s,u),p) if f = bid
L93((s,u),p) if fo = withdraw

I This indirection allows for users to be readdressed in Definition 4.1.3
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((s,u) if ~Constructed(s)

(s,u) if client(p, 1) = id(uy)

s,ua), = .
9ol(s, 1), ) (s',u) else, s.t. TimeCheck(s,s’,p), KeepData(s, s’,3), KeepData(s, ', 4),
L KeepData(s, §',5), role(s’,0) = client(p, 1), and data(s’,2) =1
(s,u) if Constructed(s)
s,u) if role(s,0) # client(p, 0
gl((svu)vp> = ( ’ ) ( >7£ ( )/ / /
(s’,u) else, s.t. TimeCheck(s, s, p), KeepRole(s, s',0), KeepData(s, s',2),
\ KeepData(s, s',3), KeepData(s, s’,4), and data(s’,5) = 1,
((s,u) if Constructed(s)
(s,u) if role(s,0) = client(p,0)
(s,u) if for i = client(p,0),data(s,4) < map(u;)o A map(u;)o # 0
(s,u) if for i = client(p,0), data(s,4) > arg(p,0) + map(u;)o
(s,u) ifdata(s,5) =1
g2((s,u),p) = < (s',u’) else, s.t. TimeCheck(s,s’,p), KeepRole(s, s',0), KeepData(s, s, 2),

KeepData(s, s’,4), KeepData(s, ¢/, 5),

data(s’, 3) = data(s, 3) + arg(p,0), and Vi € [N]-
id(u}) = id(u;)A
i # client(p,0) = map(u}) = map(u;)A

\ i = client(p,0) = map(u})o = arg(p,0) + map(u;)o
((s, u) if Constructed(s)
(s,u) if role(s,0) = client(p,0)
(s,u) if data(s,3) # map(uy, )o
(s', ') else, s.t. TimeCheck(s, s',p), KeepRole(s, s’,0), KeepData(s, s,2),

g3((s,u),p) = KeepData(s, s’,4), KeepData(s, s',5),

data(s’, 3) = data(s, 3) — data(u}), and Vi € [N]-
id(u}) = id(u;)A
i # x1 = data(u}) = data(u;)A
i =z = data(u}) =0

Recall from Section 3.1.2 that a reverted transaction (such as a failed require statement)
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is treated as a no-op. In f, these no-ops correspond to the cases that send (s,u) to (s,u).
Most of these cases, such as the second case of g9, are derived directly from the source
code (Line 27 for this case). Other cases correspond to more general guards, such as
ValidSender(p, u) and Constructed(s).

Note that Constructed(s) (or its negation) appears in every method. The negation in
go guards against calls to constructor after the constructor has already the called. Other
occurrences of Constructed(s) guard against calls to non-constructor functions before the
constructor has been called. Collective, these guards ensure that Auction is constructed
once and only once, during the first transaction.
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Appendix C

Address Order Reductions

This appendix outlines preliminary results on refining local bundle abstractions. Let
(S, P, f,s0) = local(C, N,v.,0), where 6 is an interference invariant for C.

C.1 Fixing the Order of Transient Participants

This section briefly shows that (S, P, f, sg) is bisimulated by a local bundle that fixes the
address of each non-implicit, transient participant. The proof sketch is given for one role.
First, it is shown that for any (c¢,u) € S, a permutation can be constructed on-the-fly that
ensures a non-implicit, transient participant has a predefined address. Second, it is shown
that due to the interference relation, on-the-fly relabelling permits a bisimulation relation.
This section does not provide an explicit construction of the permutation, and does not
consider impacts on the implementation of SMARTACE.

Let (c,u) € S and ¢ € [N]\lits(C). Assume that data(c,0) ¢ lits(C). Let 7 : [N] — [N]
be the permutation that swaps ¢ with data(c,0). Then Va € [N]\{i,data(c,0)} - 7(a) = a.
Since i ¢ lits(C) and data(c,0) ¢ lits(C), then Va € lits(C) - 7(a) = a. Furthermore,
data(rename(C, 7,¢),0) = i. Then 7 is a permutation that preserves implicit participation,
and fixes the address of the first non-implicit, transient participant.

The existence of a bisimulation under input relabelling is briefly justified. If 7 is an on-
the-fly permutation, then rename(C, 7, s) is the bisimulation relation, and rename(C, T, p)
is the input relabelling. The initial state satisfies sy = rename(C, 7, s¢) for any choice of 7,
since sg is zero-initialized and 7 preserves address 0. From the results of Section 5.2, each
transition satisfies the bisimulation under input relabelling, provided that the pre-states
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are data-equivalent. In this setting, there is always a data-equivalence state, due to the
interference of (7, ). This concludes the proof sketch.

C.2 Fixing the Order of Explicit Participants

It is hypothesized by the authors that analysis similar to Appendix C.1 can be applied to
non-implicit, non-transient, explicit participants. In this case, the permutations are applied
to the actions rather than the control states. Intuitively, the permutation would restrict
the addresses for each client. It is unclear to the authors how coarse these restrictions must
be to ensure that equivalence classes are not lost.
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Appendix D

Extending to Batch Transfers

Batch transfers are used in many smart contracts. A batch transfer allows an action, such as
transferring tokens, to be executed against a list of users. In general, batch transfers are not
necessary. However, they are commonly used, as grouping together multiple transactions
allows users to save on gas. An example of the batch transfer pattern is given in Fig. D.1.

The batch transfer pattern is not supported in MINISOL, as it requires passing an array
of users to a smart contract function. This restriction exists, as it ensures that the number
of explicit users is bounded. However, notice that in Fig. D.1, the array is only accessed
for within the batch transfer loop. On each iteration of the loop, a single client from the
array temporarily interacts with the transaction. This suggests a more general notion of
transaction locality than the ones studied within this thesis. It seems to the author that
batch transfers are a special case, and that this locality should generalize to k temporary
clients during a loop iteration.
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/// @title An example of the batch transfer pattern.
contract Example {
mapping (address => uint) balances;
// Single transfer.
function transferTo(address to, uint v) public {
require(balances [msg.sender] > v);
balances[msg.sender] -= v;
balances [to] += v;
}
// Batching pattern.
function batchTransfer (address[] as, uint[] vs) public {
// (1) Checks that input arrays are of the same length.
require (as.length == vs.length);
// (2) Iterates over input arrays, visiting a single element during each iteration.
for (uint i = 0; i < as.length; ++i) {
// (3) Invokes an action on the array element.
transferTo (as[i]l, vs[il);
¥
s
}

Figure D.1: An example of the batch transfer pattern.
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Appendix E

Extending to ERC-721

This section briefly outlines the ERC-721 protocol, and the extensions required to support
it in MINISOL. The ERC-721 protocol was first proposed in [19], and has gained recent
attention for decentralized property management. A simplified implementation of the
ERC-721 protocol is given in Fig. E.1.

In the ERC-721 protocol, each assert is represented by a token with a unique 256-bit
identifier. To management the ownership of tokens, and ERC-721 implementation, such
as in Fig. E.1, must map integer-type identifiers to address-typed owners.

This violates the syntax of MINISOL is two ways. First, the index-type of a mapping
must be of an address-type. Second, the value-type of a mapping must be of an integer-
type. The first restriction ensures that mapping indices are not modified. The second
restriction prevents a topology in which each user has a successor (an address-to-address
mapping is a successor relation). However, neither issue is true of Fig. E.1.

First, observe that if an integer-typed variable is used to index a mapping, then the
variable is never subjected arithmetic operations. This is because token identifiers and user
addresses are both nominal types. The MINISOL language could overcome this limitation
by introducing a full type-system with inference for nominal types. Then mappings could be
generalized to allow indices of any nominal type. Note that each nominal type would require
a parameter in the network semantics of MINISOL, and representation in participation
topologies.

Second, observe that each mapping with an address-typed value has an integer-typed
index. Clearly, these mappings cannot represent successor relations. However, they do
represent injections from assets with integer-typed identifiers to smart contract users. The
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1 /// @title A simplified ERC721 protocol. 12 // Transfers assert with ID uid to d.

2 /// @dev Ignores overflow for simplicity 13 function transfer(address d, uint uid) public {
3 contract SimpleERC721 { 14 require (owner0f (uid) == msg.sender);

4 mapping (address => uint) balances; 15

5 mapping (uint => address) owners; 16 balances [msg.sender] -= 1;

6 17 balances [d] += 1;

7 // Returns the owner of the asset with ID uid. 18

8 function ownerOf (uint uid) public returns (address) { 19 owners [uid] = d;

9 return owners[uid]; 20 }

10 21 ¥

11

Figure E.1: A simplified implementation of the ERC-20 protocol [19].

MinISoOL language could overcome this limitation by allowing mappings between distinct
nominal identifiers'. The injections would be reflected in the participation topology.

Tt is not clear to the author what the right notion of “distinct” should be here. Distinguishing nominal
identifiers from base types seems too coarse-grained in general.
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