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Abstract

The current paradigm of universe, Λ��" model with an early phase of inflation, has
been quite successful in describing our universe in a simple manner, yet matching well with the
observational evidence. Thismodel is a parameterization of the Big Bang theorywith the universe
composed of the three major components: the Cold Dark Matter (CDM) and the cosmological
constant Λ accounting for the dark energy, and ordinary radiation and matter (relativistic and
non-relativistic particles from standard model). However, there are some questions and puzzles
yet to be solved or addressed. In the aspect of the early universe, the cosmic inflation has been
successful in resolving problems such as the horizon problem, flatness problem, yet it fails to
answer some other remaining puzzles such as the singularity problem and fitting in standard
theory of particle physics. In part I, I explain two different approaches to tackle these issues.
First, I will show how singularity can be avoided in a bouncing universe realized through a
Cuscuton modification of gravity, without any instabilities. Second, I will demonstrate how the
effective field theory of inflation can be extended to include :6 terms in the dispersion relations.
I will also show that there exists regions of parameter space that are allowed by the observational
evidence.

In the context of the late universe, one of the challenges Λ��" model faces is the detection
of, or lack thereof, dark matter. Without the existence of cold dark matter, Einstein’s theory of
gravity fails to explain some of the observed gravitational effects in large scale structures such
as rotation curves for galaxies. Furthermore, the measured upper bound to the cosmological
constant is much smaller than the theoretical value of zero-point energy suggested by quantum
field theory. To resolve such questions, other theories and models of universe such as theories
of modified gravity and other dark energy models have been proposed. In the part II, a model-
independent approach to constrain cosmological parameters and different expansion histories will
be demonstrated. Interestingly, with the precision of current data it seems that the observation
favor Λ��" model.
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Chapter 1

Introduction and Background

1.1 Introduction

Cosmology, the study of cosmos, has always been a great interest to mankind. It is a field
that involves the origin and the evolution of the universe we live in. It is a field that looks
into fundamental questions ‘where do we come from’ and ‘how will everything end?’ It is a
field that has been brought up in mythologies, religions, and philosophy. In ancient times, the
universe has been described using mankind’s imaginations and by ideas of supernatural forces.
However, with the development of scientific methods, mathematical tools, and technology, came
more mathematical models and scientific theories of the universe such as Copernicus’ suggestion
of a heliocentric universe, Kepler’s laws, and Newton’s theory of gravity. Modern cosmology
is considered to begin with Einstein’s development of the general theory of relativity (General
Relativity or GR) in the early 1900s. Not too long after Einstein’s theoretical breakthrough, a
major observation of expanding universe set the modern cosmology afoot [141].

The confirmation of the expanding universe and the development of GR lead to the realization
that as we go far back into the past, the universe was very hot, dense and compact[81]. This era, the
beginning of the universe is called the Big Bang era. The early cosmological models of Big Bang
era could not address some puzzles. For example, the size of the observable universe that may be
inferred from the cosmic microwave background (CMB) observations with the assumption of the
Big Bang model is multiple order of magnitude larger than the particle horizon, yet the causally
disconnected regions of space were homogeneous and isotropic at the scale of the observable
universe. The proposal of cosmic inflation, a phase of accelerated expansion during the very early
universe, managed to answer few puzzles of the early Big Bang theory, including the problem
mentioned above. However, as we discuss in this thesis, there are still unanswered questions and
puzzles in the context of the early universe.

There also remain cosmological puzzles in the context of late universe. Current astrophysical
observations indicate that the composition of the visible matter in universe can not account for all
of the observed gravitational effects in large scale structures such as galaxy rotation curves [147].
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Cosmologists have postulated the existence of cold dark matter (CDM), which are non-relativistic
particles that do not interact with electromagnetic waves, but have gravitational effects similar to
Baryonic matter can resolve this puzzle. The detection of dark matter particles has become one of
the highest priorities of experimental particle physics. Furthermore, the supernovae observation
followed by CMB observation have independently show that our universe is currently expanding
at an accelerated rate[123, 90]. Since the ordinary energy and matter components of the universe,
including dark matter could not account for this acceleration, there must either exist another
energy component that causes accelerated expansion, dark energy or Einstein’s theory of gravity
most be modified at very large scales. The most simple proposal for the identity of dark energy
is the cosmological constant, Λ. This set of ideas to explain the dynamics and initial condition of
our universe is referred to as the ΛCDM model, and is now the most widely accepted paradigm
of modelling our cosmos.

In the first part of this thesis, I will attempt to describe some new approaches in addressing
some of the puzzles of the physics of the early universe. In the second part, I will describe a
technique in applying observations to constrain different models of dark energy. However, in this
chapter, I will briefly review the fundamentals of the theory of GR, basics of cosmology and the
inflationary models, which will allow the readers to understand the work done in the following
chapters. In chapter 2, our proposal to address the Big Bang singularity, Cuscuton bounce, will
be explained. In chapter 3, we switch gear and review a particular strategy to study inflation as an
effective field theory. In this approach, the action of cosmological perturbations around inflating
Friedmann-Lemaître-Robertson-Walker (FLRW) backgrounds can be obtained by writing the
most generic diffeomorphism invariant effective field theory, where time diffeomorphism is
spontaneously broken. In chapter 4 we show this theory can be further extended to include
dispersion relation F(:) up to F2 ∝ :6. Furthermore, we study the interaction terms for the
extended effective field theory of inflation and study the constraints on the theory from the size
of non-Gaussianities. In Chapter 5, we shift our focus to late universe. I describe a framework
to reconstruct the expansion history of universe from growth rate measurements, and put model-
independent constrains on some important cosmological parameters including the matter density
parameter, Ω<.

1.2 Brief Review of Theory of General Relativity

In the early 1900s, Albert Einstein published the Theory of General Relativity (GR) which set a
milestone in physics and later cosmology. In this chapter, we review some of the main definitions
and tools fromGeneral relativity that will be used throughout this thesis. GR posits that the matter
and energy curve space time, and the acceleration of particles due to the gravity is enforced by
the curvature of space-time. Based on these idea, Einstein’s theory of gravity also provides a
solid framework to understand the evolution of our cosmos.

In GR, the concept of distance is not only about the spatial distance between two points in
space, but also about the time interval between two events. Thus, it introduces the notion of

2



spacetime infinitesimal interval in the most general form

3B2 = 6`a3G`3Ga . (1.1)

In its simplest form for flat and static spacetime known asMinkowski Space the line element is
written as:

3B2 = −(23C)2 + 3G2 + 3H2 + 3I2. (1.2)

where 2 is a fixed constant that represent a local speed of light and 3C,3G,3H,I denote the interval
in time and three spatial dimensions respectively1. We also take 2 = 1 for the rest of this thesis.
We can see that the above line element can be written in a matrix form as

3B2 =
(
3C 3G 3H 3I

)
·
©­­­«
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

ª®®®¬ ·
©­­­«
3C

3G

3H

3I

ª®®®¬ = −3C2 + 3G2 + 3H2 + 3I2. (1.3)

The 4 by 4 matrix ©­­­«
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

ª®®®¬ (1.4)

is the matrix representation of the metric of Minkowski space. Clearly, for different type of
spacetime, the metric takes a different form. The metric itself has following properties:

• There exists an inverse

• A metric is symmetric

Before I proceed further, I would like to point out that I will use the Latin letters 8, 9 , :, ... to
denote the spatial indices ranging from 1 to 3, and the Greek letters U, V, `, a, ... to denote the
time and spatial indices ranging from 0 to 3. In this notation, we denote the matrix representation
of the metric as 6`a and the inverse of the metric as 6`a and the coordinate vectors as G`, such
that C = G0 and ®G = G8.

General relativity makes use of tensor algebra in differential geometry. For example, vectors
and covectors are rank (1, 0) and (0, 1) tensors respectively, and scalar functions are rank (0, 0)
tensors. In general rank (=, <) tensors are multilinear operators that take = number of covectors
and < number of vectors to R. Throughout the thesis, a tensor of rank (=, <) will be denoted
using = number of lower indices and < number of upper indices. The metric 6`a and its inverse
6`a can be used to lower and raise indices of a tensor. For example, contracting metric as 6`a
with a vector + ` will result into a covector

+ `6`a = +a . (1.5)

1The sign of the components of the spacetime interval has two different conventions (−, +, +, +) or (+,−,−,−).
Throughout the paper, we will use the (−, +, +, +) convention

3



Note that here we have introduced a convenient convention known as the Einstein Summation
Convention commonly used in physics and GR literature such that when an index is repeated
it implies summing over that index. It is important to note that not all objects that can be
represented as matrices are tensors. Let us consider coordinate transformation G` = (C, G, H, I)→
G`
′ = (C′, G′, H′, I′). Then under these transformations, a tensor ) `a must transform as

) `
′a′ =

mG`
′

mG`
mGa

′

mGa
) `a . (1.6)

Now consider an infinitesimal transformation of a vector �` from a point GU to GU + 3GU:

3�` = �`(GU + 3GU) − �`(GU) =
m�`

mGU
3GU . (1.7)

Then under a coordinate transformation GU → GU
′ the quantity m�`/mGU does not act like a tensor

even though the vector �` transforms like a tensor:

m�`
′

mGU
′ =

m

mGU
′
mG`

′

mG`
�` =

m2G`
′

mGU
′
mG`

�` +
mG`

′

mG`
m�`

mGU
′ (1.8)

=
m2G`

′

mGUmG`
mGU

mGU
′ �

` +
mG`

′

mG`
mGU

mGU
′
m�`

mGU
. (1.9)

As can be seen by the first term in the equation, the partial derivative acting on a vector (or in
general any tensors) is not a tensor. A covariant derivative is a derivative that acts as a tensor
and is defined as

∇U�` =
m�`

mGU
+ Γ

`

UV
�V, (1.10)

where Γ
`

UV
is called a connection coefficient or the Christoffel symbol. Since the connection

coefficient determines how a vector changes along the spacetime, the connection contains all
the information about the curvature of the spacetime. It happens that there exists an unique
connection in our spacetime such that

Γ
`

UV
= Γ

`

VU
∇`6UV = 0. (1.11)

Although the connection coefficient contains all the information about the curvature of the
spacetime, it is not a tensor. A Riemann Curvature Tensor, 'U

Vdf
is the tensor containing every

information about the curvature of the spacetime, and can be written in terms of the connection

'UVdf = mdΓUVf − mfΓ
U
dV + ΓUd`Γ

`

Vf
− ΓUf`Γ

`

Vd
. (1.12)

From the Riemann curvature tensor, we can also obtain the Ricci tensor and the Ricci scalar by
contracting indices

'`a = 'U`Ua ' = 6`a'`a = '``). (1.13)

It is also convenient and useful to define the extrinsic curvature of a three dimensional hypersurface
embedded in the four dimensional spacetime. An extrinsic curvature,  `a of the hypersurface is

4



related to the change of a vector normal to the hypersurface. For the normal vector =U satisfying
=U=U = ±12, we can obtain the induced metric ℎ`a on the hypersurface as

ℎ`a = 6`a ∓ =`=a . (1.14)

Then the extrinsic curvature is defined3

 `a = ℎU`ℎ
V
a∇U=V. (1.15)

This is particularly useful later on in chapter 4 especially when we choose a specific slicing of
the four dimensional spacetime, such as the unitary gauge. This will be further explained in the
later chapters.

Now, we relate matter content of the universe and the curvature on the spacetime. This can
be done by Einstein’s Field Equation:

�`a + Λ6`a =
1
"2

pl
)`a, (1.16)

where �`a is the Einstein tensor defined by

�`a = '`a −
1
2
6`a', (1.17)

and )`a is the stress-energy tensor which conveys information about the density and flux of
energy and momentum of energy component in the spacetime. Λ is a constant called the
cosmological constant. "pl is the reduced Plank mass related to Newton’s gravitational constant
� by "2

?;
= 1/
√

8c�. In the context of cosmology and the ΛCDM model, the cosmological
constant is associated with the present day acceleration of the expansion of the universe and dark
energy. With the understanding of how the curvature in spacetime and matter are related, we can
proceed to apply this framework in the context of cosmology and the evolution of universe.

1.3 Background Cosmology and the Early Big Bang Era

One of the principles that the modern cosmology is built around is the cosmological principle.
It stems from Copernicus’ idea that the observers on Earth are not special observers within our
universe. In the context of cosmology, this principle is often stated as: our universe on large
scales should look the same from any position (homogeneity) and in all direction (isotropy). This
principle also agrees well with different observations, including those of the cosmic microwave

2The sign of =2 depends on the nature of the hypersurface.
3In most GR textbooks, the extrinisic curvature is defined as a three tensor with Latin indices on the hypersurface.

In this thesis we use the tangential four tensor field associated with extrinsic curvature. One can go back and forth
between the two using the appropriate projections.
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background. This allows us to describe the geometry of the spacetime on cosmological scales
with the metric which is isotropic and homogeneous to leading order:

3B2 = −3C2 + 02(C)( 3A2

1 − ^A2 + A2(3\2 + sin2(\)3q2)). (1.18)

Here, the parameter ^ is related to the curvature of the spatial hypersurface4. For ^ = −1, the
spatial hypersurface is hyperboloid and commonly referred to as open by cosmologists5. For
^ = 1, the space is elliptic or closed and for ^ = 0, the space is flat. The function 0(C) is the scale
factor, and it describes how the three dimensional space changes as a function of time C is6. The
above metric is also known as the Friedmann-Lemaître-Robertson-Walker (FLRW) Metric.
Using this metric, we can proceed to find different components of the Ricci tensor and then the
Einstein tensor. The non-zero components of the Ricci tensor are

'00 = −3
¥0
0

(1.19)

'11 =
0 ¥0 + 2 ¤0 + 2^

1 − ^A2 (1.20)

'22 = A2(0 ¥0 + 2 ¤02 + 2^) (1.21)
'33 = A2(0 ¥0 + 2 ¤02 + 2^) sin2(\). (1.22)

Here, the dot above functions denote derivative with respect to time C. The Ricci scalar is then

' =
6
02 (0 ¥0 + 02 + ^). (1.23)

Next to obtain the right side of the Einstein equation (1.16), we take perfect fluid approximation7.
Then the stress-energy tensor for different sources of energy and matter can be approximated as

) `
(8)
a = diag(−d(8), %(8), %(8), %(8)), (1.24)

where d(8) and %(8) are the energy density and pressure corresponding to components labeled with
indices 8. Similarly we can also define dΛ = "2

?;
Λ and %Λ = −dΛ. Substituting Ricci scalar and

tensor from (1.23) (1.19) and ) `a in (1.24) into (1.16) will lead to two equations known as the
Friedmann equations (

¤0
0

)2
=

1
3"2

pl
dC>C − ^

02 (1.25)

¥0
0

= − 1
6"2

pl
(dC>C + 3%C>C), (1.26)

4^ is related to the three dimensional Ricci tensor, but re-scaled with the scale factor 0
5Note that in the context of cosmology, when cosmologists speak of the universe as open or closed, they often

are referring to whether the curvature is negative or positive. These meaning do not have the same definitions as
open and closed used in the sense of topology.

6The scale factor 0(C) is dimensionless, so it cannot tell us the size of the universe by itself. However, if we set
0 = 0 today, then we can say the comoving box at 0 = 2 is twice as big as compared today

7This approximation has been tested to be valid to leading order for all the known matter sources

6



where dC>C and %C>C are the total density and pressure

dC>C =
∑
8

d(8) %C>C =
∑
8

%(8). (1.27)

We now introduce a very important parameter in cosmology and astrophysics,

� ≡ ¤0
0
. (1.28)

This parameter is called the Hubble constant and it characterizes the expansion rate of the uni-
verse. Themeasurement for� for the current epoch, denoted�0, is approximately 70 km/sec/Mpc
(Mpc stands for mega parsec)8. While the local conservation of energy and momentum is auto-
matically satisfied in Einstein’s equation, if different matter fields are not strongly interacting with
each other, then we can impose the energy-momentum conservation on individual components
(∇`) `a = 0) to derive the following relations known as the continuity equation:

¤d(8) + 3�(d(8) + %(8)) = 0. (1.29)

The Friedmann equations and the continuity equation describes the evolution of the universe on
large scales from the very early time to the present.

Essentially, dominant energy components of the universe relevant to cosmology obey a simple
equation of state relating the density and the pressure given by

%(8) = F(8)d(8), (1.30)

where F(8) is a parameter characterizing the relations between the density and pressure. We can
solve the conservation equation (1.29) using this relation and get

d(8) ∝ 0−3(1+F(8)). (1.31)

Now, for relativistic particle, F = 1/3, and for non-relativistic particles, since they are effectively
pressureless, F = 0, which gives

d(<0CC4A) ∝ 0−3 (1.32)
d(A4;) ∝ 0−4. (1.33)

The different dependence on scale factor tells us that as the universe expands, different periods
or phases during the evolution of the universe were dominated by different components of the
universe. From observations, the current measurement of the energy density of radiation is very
negligible compare to the matter density. Going back in time, without assuming other physics
intervening, the scale factor 0 can approach zero which is referred to as the Big Bang singularity.
however, before reaching 0 = 0, the energy density and curvature become too large and go above
Planck scales. In this regime the classical description of gravity breaks down.

8The precision measurement of �0 is a very important topic in the field of observational cosmology [121]
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From Einstein’s equation (1.16), in the absence of matter or radiation, we can take −Λ6`a =
1
"2

pl
)

(E02)
`a . Then we have

?(Λ) = −d(Λ) → F(Λ) = −1. (1.34)

The energy density from the cosmological constant is independent of the scale factor. But as the
density from matter and radiation decreases the universe will be vacuum dominated.

In cosmology it is convenient to write the contribution of each energy content to expansion
rate in terms of the density parameter and the critical density

Ω(8) ≡ 1
3�2"2

pl
d(8) (1.35)

d(2A8C) ≡ 3�2"2
pl, (1.36)

and
Ω(^) = − ^

02�2 . (1.37)

The critical density is chosen such that from (1.25)∑
8

Ω(8) = 1 −Ω(^), (1.38)

With this parameterization, Friedman equation (1.25) can be written as

�2(0) = �2
0

[∑
8

Ω
(8)
0 0
−3(1+F(8)) + Ω

(^)
0 0−2

]
, (1.39)

where the subscript 0 denote the measurement of the corresponding parameters in the present
day.

Then the precision observational measurement of density parameters can tell us whether we
live in flat, close, or open universe. The current observation indicate our universe is flat and dark
energy dominated with [7]

Ω(<0CC4A) = 0.311 ± 0.0056
Ω(A4;) = 4.2 ± 0.1 × 10−5

Ω(Λ) = 0.6889 ± 0.0056
Ω(^) = 0.0007 ± 0.0019

The old theory of cosmology, containing only pressureless matter energy density and radiation
was successful in predicting the existence of the cosmic background radiation, or the number of
light elements such as helium. However, there were still some unanswered puzzles that physicists
had to answer such as the flatness problem and the horizon problem that lead cosmologists to
develop new scenarios to describe early universe in late 1970s [80, 104, 146].
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The flatness problem :
The universe in the current state does not seem to have any apparent curvature with Ω0 '

1.02 ± 0.02[7]. However, given that Ω(^) ∝ 0−2, which dilutes much slower than both the matter
term and the radiation term. Furthermore, ∑Ω(8) + Ω(^) = 1 at earlier times means that it should
have been extremely smaller than the other two contributions. For example, with the present
day constraint of Ω(^)

0 . 1, at the electroweak phase transition, of 0ew ∼ 10−13, the value of
the curvature density parameter must be Ω

(^)
ew . 10−26. In fact, the actual calculation of the

curvature density parameter shows that Ω(^) . 10−60 within a Planck time after the beginning of
the universe. Thus, according to the old cosmological model, our universe requires a very fine
tuned value of Ω(^), and to many cosmologists, this was an unsettling puzzle.

The horizon problem :
The principle of causality states that particles could only have been in causal contact if light

could have traveled from one to the other. In this case, these particles are within the particle
horizon. The particle horizon in an FLRW universe from some initial time C8 can be calculated in
the following way

3p.hor(C) = 0(C)
∫ C
C8

3C′ 0−1(C′) =
∫0(C)

0(C8)
30

1
02�

. (1.40)

Using the equation (1.39) with the current observation of Ω(<0CC4A) ∼ 0.3, Ω(A4;) ∼ 10−4, and
�0 ∼ 70km/s/Mpc, and taking C8 to be the Planck time where in that limit 0 = 0, we can compute
that only patches of space within approximately 2 deg of the sky are in causal contact. However,
the measurement of the temperature of CMB is isotropic and homogeneous at 10−5 level in all
directions of the sky which indicates causality on the scale of ∼ 10 Gpc. This means that more
than about 104 different patches of universe had same initial conditions even though they were
causally disconnected according to the hot Big Bang theory.

Trying to address these puzzles and a few more, in the late 1970s, a phase of accelerated
expansion known as inflation was proposed by some cosmologiests [104, 80, 146]. In the
inflationary scenarios, the universe is described to be in quasi de Sitter where 0(C) ≈ 4�C . During
this phase, the particle horizon is given as

3p.hor ≈
4#

�
, (1.41)

where # is the number of e-folds defined as

# ≡ ln
04=3

08=8C80;
. (1.42)

Without inflation, the particle horizon will be order of 1/�, however, with inflation, since energy
density and curvature are almost constant while the universe expands, the particle horizon can
become much larger than 1/� for sufficiently large number of # . Furthermore, the evolution of
the curvature density parameter from the onset of inflation to the end of inflation is given by the
relations

Ω(^)(04=3) ' Ω(^)(08=8C80;)
04=3

08=8C80;
' 4−2# . (1.43)
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This means that even if the curvature density parameter initially was not small, the inflation will
‘flatten’ the curvature, solving the flatness problem. As it soon turned out that inflation not only
answered some of the questions of the early Big Bang model, but also provided a framework to
generate the seeds of large scale structure from vacuum quantum fluctuations.

1.4 Inflation

As I mentioned before, inflation is referred to an early phase of accelerated expansion. From the
Friedmann equation (1.26), a criteria for the accelerated expansion requires

% < −1
3
d. (1.44)

We pointed out earlier that the equation of state for the cosmological constant satisfies the above
condition with

% = −d. (1.45)

However, assuming the cosmological constant as the source of onset of inflation leads to the never
ending acceleration phase, which does not transition into the radiation dominated era. Also, it is
not consistent with observation of anistropies either.

Instead, consider a scalar field q with a potential +(q). The action for this field is given by

(q =
∫
34G
√−6

(
−1

2
m`qm

`q −+(q)
)
. (1.46)

We can get the stress-energy tensor for this field by varying the action with respect to the metric

)
q
`a = m`qmaq − 6`a

(
1
2
mfqm

fq ++(q)
)
. (1.47)

The energy density and the pressure for this field is then

d = −)0
0 =

1
2
¤q2 ++(q), % =

1
2
¤q2 −+(q). (1.48)

We can see that under the condition +(q) � 1
2
¤q2, we can obtain the equation of state

% ' −d. (1.49)

The Friedmann equations (1.25, 1.26) then lead to 9

�2 ≈ 1
3"2

pl
+(q), ¤� ≈ − 1

2"2
pl

¤q2. (1.50)

9Here we neglect the curvature term ^ for simplicity here, but it is easy to include as well. Throughout this thesis
the curvature parameter will be taken to be zero.
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It can be shown that the condition that the potential be much bigger than the kinetic energy can
be written as the first slow-roll parameter

n ≡ −
¤�
�2 � 1. (1.51)

The name slow-roll comes from the fact that the scalar field is ‘slowly rolling’ down the potential
during inflation. There needs to be one more condition so that inflation lasts for sufficiently long
enough period. In another words, the change in the kinetic energy needs to be much smaller than
the change in the potential energy:���� 33C ¤q2

���� � ���� 33C+(q)
����→ �� ¥q�� � ���� mmq+(q)

���� . (1.52)

From this condition and the Friedmann equations we can define the second slow-roll parameter

[ ≡ −
¥�

2� ¤�
� 1. (1.53)

For simple single field inflationarymodel that we have described above, it is oftenmore convenient
to write the slow roll parameters in terms of the potential rather than the Hubble constant:

n+ ≡
"2

pl

2

(
+ ′

+

)2
� 1, [+ ≡ "2

pl
+ ′′

+
� 1. (1.54)

Here n+ = n and [+ = [ + n .

1.5 Quantum Fluctuations in Expanding Universe

The universe is clearly not perfectly isotropic and homogeneous. There are large scale structures
(LSS) such as galaxies and cluster of galaxies. Inflationary scenarios can provide the mechanisms
and framework in which these LSS are generated from the perturbations at early times. In this
section we study how the quantum fluctuations undergoing inflation can seed the generation
of the large scale structures and provide connections to present observables via cosmological
perturbation theory.

It is more convenient to carry out the analysis of the metric perturbations using the conformal
time 3g = 3C/0(C), where the line element for FLRW metric can be written as

3B2 = 0(g)2 [
−3g2 + 3®G2] . (1.55)

To add perturbatiosn to FLRW metric, we start by introducing ADM formalism. Under the
ADM formalism we can break down the spacetime into a foliation of 3-dimensional space-like
manifold and a time direction, and then write a general line element as

3B2 = −#23g2 + ℎ8 9 (3G8 + # 83g)(3G 9 + # 93g). (1.56)
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Here we have introduced three new quantities: # a lapse function, # 8 a shift vector, and ℎ8 9 a
3 dimensional metric [17]. We now write ADM variables in terms of perturbation around the
FLRW metric

# = 0(g)(1 + #1) (1.57)
# 8 = m8k + # 8) (1.58)
ℎ8 9 = 0(g)2[(1 + 2Z)X8 9 + ∇8∇ 9� + ∇8�9 + ∇ 9�8 + W8 9 ], (1.59)

where X8 9 is the Kronecker delta function, and ∇8 is the 3-dimensional covariant derivative
associated with the metric ℎ8 9 . Note that the perturbations can be decomposed into scalar parts,
vector parts, and tensor parts by requiring

m8�8 = 0, ∇8# 8) = 0 (1.60)
∇8W8 9 = 0, W8 9 = 0. (1.61)

Not all of these perturbation variables correspond to actual degrees of freedom. Since GR
is diffeomorphism invariant (the change in coordinate should not affect the laws of physics),
we can use the coordinate transformation to identify actual degrees of freedom. Consider the
transformation

G` → G` + b` . (1.62)

The translation b` can be decomposed into b0 and b8. The spatial part can be further decomposed
to

b8 = b8⊥ + m8b, (1.63)

where b8⊥ is the transverse part such that m8b8⊥ = 0.10 For the scalar perturbations, we can choose
specific values of b0 and b removing up to two scalar functions for perturbations. This procedure
is called fixing the gauge. For the vector perturbations we can fix b8⊥ such that �8 = 0.

Now, consider a canonical scalar field minimally coupled to gravity. The action is given by

( =
1
2

∫
34G
√−6

(
1
"2

pl
' − 6`am`qm`q − 2+(q)

)
.11 (1.64)

Taking into account the fluctuation of the scalar field around the homogeneous background, the
scalar field can be decomposed as

q(g, ®G) = q0(g) + Xq(g, ®G). (1.65)

We can fix the gauge by choosing specific values of b such that Xq in eq. 1.65 and � in eq.
1.57 are set to zero. In this gauge we are taking q constant 3-dimensional hypersurface as space

10Every vector E8 can be decomposed into the sum of the transverse part and the gradient of a scalar.
11Note that the first term in the action is the Einstein-Hilbert action. Varying this term with respect to the metric,

we can obtain the left hand side of the Einstein equation discussed earlier.
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foliation. This choice of gauge is known as the unitary gauge or the comoving gauge. Under this
choice, we have

Xq = 0, ℎ8 9 = 0(g)2[(1 + 2Z)X8 9 + W8 9 ]. (1.66)

The advantage of using ADM formalism is that the equations of motion for # and # 8 do not have
any time derivatives. So these equations are not dynamical in terms of # and # 8 and this leads
to two constraints on scalar functions representing perturbations. In the end we are left with only
one independent degree of freedom for the scalar perturbation. Solving two constraint equations
for the lapse and shift, we can first expand the action 1.64 up to second order in perturbation and
then after substituting for lapse and shift we get:

((2) =
1

2"2
pl

∫
33G3g 0(g)2 q

′2
0
H2

(
Z ′2 − m8Zm8Z

)
, (1.67)

and
((2) =

1
2"2

pl

∫
33G3g 0(g)2

(
W′8 9

2 − (mW8 9 )2
)
, (1.68)

where the prime denote the derivative with respect to the conformal time g andH ≡ 0′(g)/0(g).
With these equations, the study of perturbations reduces down to a field theory of a single
variable. The scalar perturbation Z is also known as the comoving curvature perturbation and
plays a critical role in connecting observable quantities with scalar perturbations.

We can rewrite the second order action for the scalar perturbations in canonical form by
introducing an Mukhanov-Sasaki variable, E, given by

E = 0
q′0
H"pl

Z . (1.69)

Then the action looks like that of a canonical single field with a time-dependent mass:

(E(2) =
1
2

∫
33G3g [E′2 − m8Em8E +

I′′

I
E2], (1.70)

where we have defined
I = 0

q′0
H"pl

. (1.71)

To understand this equation in terms of quantum field theory, we first quantize E. The
canonical momentum conjugate, ?E, is given by varying the action with respect to E′

?E =
X(E(2)

XE′
, (1.72)

which satisfies the commutation relations

[Ê(g, ®G), ?̂E(g, ®G′)] = 8X(®G − ®G′), (1.73)
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and
[Ê(g, ®G), Ê(g, ®G′)] = [?̂E(g, ®G), ?̂E(g, ®G′)] = 0, (1.74)

where the ˆ denote the quantization of fields as operators. In Fourier mode, we can write

Ê(g, ®G) =
1√

(2c)3

∫
33:

{
0̂®:E: (g)48®: ®G + 0̂†

−®:
E−: (g)4−8®: ®G

}
. (1.75)

The operators, 0̂ and 0̂† are the usual creation and annihilation operators. Time dependent
functions E: satisfy the classical equation of motion

E′′: + :2E: −
I′′

I
E: = 0. (1.76)

In the slow-roll inflationary scenario, we have

I′′

I
≈ 0

′′

0
, (1.77)

due to the slow-roll condition, and
0′′

0
≈ 2
g2 (1.78)

due to the space being almost de Sitter with 0 ∼ 4�C ∼ 1
�g

. Requiring the Wronskian normaliza-
tion condition

E:E
∗
: ′ − E

∗
:E
′
: = 28, (1.79)

makes the creation and annihilation operator 0̂†, 0̂ satisfy the continuous limit of commutation
relations for each Fourier modes as harmonic oscillator. In the curved spacetime, the typical
definition of vacuum state as the lowest energy state is not unique or time independent. However,
in the limit that frequencies are varying adiabatically, we can define adiabatic vacuum which
remains close to the lowest energy state. In de Sitter background, this leads to the Bunch-Davis
Vacuum

E: =
1
√

2:
4−8:g

(
1 − 8

:g

)
. (1.80)

and in the limit :2 � I′′/I it becomes the Minkowski vacuum

lim
g→−∞

E: (g) =
1
√

2:
4−8:g . (1.81)

This vacuum corresponds to the zero particle state in the asymptotic past infinity.

Note that there are three possible regimes for the equation of motion for E: : i)mode functions
that stay inside the Hubble radius (1/(0:) � �−1) from early times all the way to late times, ii)
the ones that were originally outside (or exit and stay outside) the Hubble radius and iii) the ones
that exit the Hubble radius during the inflation and re-enter at a later time. The most interesting
for understanding the evolution and formation of the LSS are the ones that exit and re-enter the
Hubble horizon and generate initial conditions that generate the seeds for the LSS.
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1.6 Observational Constraints

Currently, the CMB observation offers the strongest constraints for initial condition of cosmolog-
ical perturbations. These observational constraints include

• Amplitude of Scalar the Power Spectrum Δ Z : The size of the fluctuation is characterized
by the amplitude of the power spectrum of Z . The power spectrum %Z is given by the two
point function for Z which is the Fourier transform of the power-spectrum〈

0| Ẑ(®G1)Ẑ(®G2)|0
〉

=
∫
33:48

®:(®G1−®G2) %Z

4c:3 . (1.82)

It is conventional to define a dimensionless power spectrum as

Δ Z =
:3

2c2%Z (:), (1.83)

and in slow-roll inflationary models, one can show that

%Z (:) ' �2

4:3n
⇒ Δ Z =

�2

8c2n"2
pl
. (1.84)

Planck observations on CMB temperature anistropy gives us the amplitude onΔ Z ' 2.099±
0.029 × 10−9[7].

• Near Scale Invariance, =B: Since the Hubble parameter is not exactly constant, but slowly
decreasing during the inflation, not all modes exit and re-enter at the same Hubble scale.
This means that there is more power on the large scales. Defining

=B − 1 =
3 lnΔ Z

3 ln :
= −2n − [, (1.85)

we expect the value of =B to be close to 1. The CMB data gives us an nearly invariant tilt
on the power spectrum with =B = 0.9649 ± 0.0042[51].

• The size of non-Gaussianity 5#!: Although CMB observations imply the primordial
curvature fluctuations to be almost Gaussian, if there are any primordial non-Gaussianity,
and if it is observed, it can give us more information to test different scenarios of the early
universe. For Gaussian fields with zero expectation values, n-point functions with odd n
should vanish. So to measure deviations from Gaussianity for Z , we calculate the three
point function or its Fourier transformation called the bispectrum �(®:1, ®:2, ®:3) defined by〈

Z(®:1)Z(®:2)Z(®:3)
〉

= (2c)3X3(®:1 + ®:2 + ®:3)�(®:1, ®:2, ®:3). (1.86)
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For the local type non-Gaussianities (NG), you can write Z as12

Z(®G) = Z!(®G) − 3
5
5#!Z

2
!(®G), (1.87)

where 5#! is the size of non-Gaussianity, and Z! is the linear part of the perturbation. In
momentum space we can separate the perturbation into the linear part and the non linear
part,

Z(:) = Z!(®:) + Z#!(®:). (1.88)

For this type of NG, the non-vanishing component of the three point function is〈
Z!(®:1)Z!(®:2)Z#!(®:3)

〉
= −6

5
(2c)3X3(®:1 + ®:2 + ®:3) 5#!

[
%Z (:1)%Z (:2) + perm.

]
, (1.89)

which is maximized for squeezed limits (:1 ∼ :2 � :3).
In general, the non-Gaussianities do not have to be local. In such cases, the equation (1.89)
does not hold. However, one can still write different contributions to the bispectrum as[140]

〈Z(k1)Z(k2)Z(k3)〉 = (2c)7X3(k1 + k2 + k3)
[Δ(:1)]2

:3
1:

3
2:

3
3
× A(:1, :2, :3),

and then define 5#! through

A(:1, :2, :3) = − 3
10
5#!

(
:3

1 + :3
2 + :3

3

)
.

We can easily check that in the particular case of the local non-Gaussianities, the above
agrees with the equation (1.89). The equations (1.86) and (1.90) provide the relation
between the three point function, 5#! and the power spectrum13. Observational constraints
on the size of the local-type non-Gaussianity is 5#! ∼ −0.9 ± 5.1[51]. For different types
of 5#! , we have equilateral (where 5#! is maximized for :1 ∼ :2 ∼ :3), orthogonal (a
special template which receives contributions from a wide range of shapes). The Planck
constraints on these types of NG are −26 ± 47, −38 ± 2414.
Tensor to Scalar Ratio: From the equation 1.68, we can also derive the power spectrum
of the tensor modes ΔW. The ratio of the tensor to scalar power spectrum is given by

A ≡
2Δ2

W

Δ Z

= 16n . (1.90)

The CMB data from the Planck measurement gives a constraint of A < 0.11 [51].
12Some literature such as [96] write this in terms of a different metric variableΦ = Φ! + 5#!Φ

2
!
. The discrepancy

comes from the difference of a gauge choice, specifically between the unitary gauge and the longitudinal gauge
13The value of 5#! is dependent on the shapes of the triangles formed by ®:1, ®:2 and ®:3
14Another widely used shape is enfolded (or flattened where 5#! is maximized for :1 ∼ :2 ∼ :3/2).
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1.7 Shortcomings of Inflation

Inflation, despite being successful in explaining observations, it is also hard to experimentally
prove the since it includes infinite space of models that can fit different observational data.
Meanwhile the theory of inflation still has some other shortcomings that need to be addressed.
Here, we discuss some of widely known debate of the theory

• Validity of the Semi-classicalGravity, Effective Theory andTrans-PlanckianProblem:
Inflaton, the field responsible for deriving inflation does not fit into the standard model of
particle Physics. It can potentially come from the theory of quantum gravity such as string
theory once it is established. Until then one can view it as an effective field theory and
in the context of semi-classical gravity and as we discuss in chapter 4 the validity and
consistency of the effective theory needs to checked. This is also related to trans-Planckian
problem. In some models of inflation, some of the scalar modes that seed the large scale
structures that we observe today requires physics beyond the Planckian limit. Since the
physics beyond the Planckian regimes are unknown, questions such as ’is the framework,
such as the quantum field theory in curved spacetime, valid in studying inflation?’ need to
be addressed.

• Singularity Problem : Depending on themodels of inflation, itmay seem some inflationary
models can be past eternal may not require the universe to be arbitrarily dense and hot at
the beginning. However, even in such cases, as pointed out by [39], geodesics can still be
past incomplete. Therefore the singularity problem is not necessarily resolved in inflation
and needs to be addressed separately. This is the motivation behind to topic in chapter 2.

1.8 Summary

In this chapter, I briefly reviewed fundamental physics concepts that are the basic building blocks
in understanding the topics of this thesis. General relativity, quantum fields in an expanding
spacetime, and inflation are all very successful in describing the physics of the early universe
in accordance with current observational data. However, even with their successes, the current
paradigm of the early universe seems to have some unanswered questions. Questions such as the
singularity problem, initial conditions and developing consistent effective field theory of Inflation
ask whether the physics and the frameworks that we use to study the beginning of the universe is
valid or not. In part I, I will discuss a bouncing scenario where the singularity problem is avoided
in chapter 2, and then in chapters 3 and 4, I will discuss an effective field theory of inflation and its
extension to arrive at a better understanding of the inflationary models. In second part I will move
to a topic of dark energy and late time acceleration. I will introduce a bottom-up approach where
we initially assume minimal framework for dark energy, and then constrain possible frameworks
from the observation in the present era.
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Part I

Addressing the Puzzles in the Early
Universe
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Chapter 2

Cuscuton Bounce

2.1 Introduction

The last decade or two has been called the age of precision cosmology. Precise observations
of the Cosmic Microwave Background (CMB) radiation and Large Scale Structures (LSS) have
provided tight constraints on our cosmological models. Cosmology on theoretical front has also
been very successful in building models of early universe that can match these observations.
The inflationary paradigm is arguably the most popular among the current models. However,
inflationary models do not address all the fundamental questions about the beginning of universe.
For instance, it has been argued that inflationary space-times are not past-complete[38]. In other
words, inflation doesn’t provide a resolution to singularity problem. It is generally posited that
quantum gravity effects might lead to the resolution of this problem. However, invoking the
unknown powers of quantum gravity to address any initial condition problem that we can not
resolve, can be a double-edged sword. For instance, if quantum gravity effects are important,
the framework of quantum field theory on curved space-time, which is used to make predictions
for inflation becomes invalid at the scales of interest and leads to the so-called trans-Planckian
problem [109, 42]. One would hope that if quantum gravity is relevant in the early universe, its
effects can be formulated in systematic ways, that can also be tested.

One way in which singularity problem can be evaded is by considering regular bouncing
cosmologies, where an initially contracting universe, ‘bounces’ and starts expanding. Many
models of regular bouncing cosmologies have been proposed in the literature [91, 87, 72, 45,
46, 68, 122, 54, 48, 47, 66, 56, 65, 86, 57]. Many of these models share a common feature
of possessing scalar field components since scalars provide the simplest framework to describe
dynamics. However, the actions for scalar fields differ from each other, depending on which
fundamental conjectures they are inspired from. These conjectures can be motivated from
phenomenological theories of modified gravity, string theory, loop quantum gravity, etc. One of
the obstacles that these scenarios face is that in general relativity, a regular bounce requires the
violation of Null Energy Condition (NEC). This generically leads to instabilities or superluminal
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speed of sound1. There are few proposals in the literature regarding stable ways to violate the
NEC. Ghost condensate[54] is one of the early models that was suggested to produce a healthy
regular bounce. Later, it was noticed that in the context of late universe cosmology [63], a sub-
class of Horndeski actions, ‘Kinetic Gravity Braiding’, can have an healthy null energy condition
violation���NEC. This led to the development of more improved versions of the regular bouncing
scenarios [68, 122] within Horndeski theories. The stability and superluminal nature of these
models has been a subject of interesting debates in literature. Authors in [53, 86, 87] have argued
that it is possible to obtain a healthy bounce using Galilean action while [69, 65] argue that
when coupling to matter or other regions of phase-space are included, Galilean models have
superluminal speed of sound2.

It is also worth noting that interest in healthy���NEC also extends to other areas of gravitational
physics, such as traversable wormhole solutions, or models which require universe to be initially
static[56]. In the case of traversable wormhole, it has been shown that there are some no-go
theorems that apply[128, 127].

In this chapter, we present a new resolution for instabilities associatedwith���NEC scenarios. We
show that cuscuton modification of gravity[6, 5] allows for an effective violation of NEC in FRW
backgrounds while the actual matter sources satisfy NEC. Note that cuscuton field, mimics the
appearance of adding a non-canonical scalar field (cuscuton field) to general relativity. However,
the kinetic term of this field is such that it has no dynamical degree of freedom3 but it modifies
gravity in Infrared (IR) regime. Due to its non-dynamical nature, cuscuton models still need other
fields to produce dynamics. In other words, cuscuton is instrumental to make the background
bounce but the actual dynamical degree of freedom does not violate NEC. Therefore, our model
does not fall under the single field %(-, q) models that violate NEC and the problems discussed
in [148, 70, 61] do not apply to our model.

We would like to also point out that cuscuton terms have previously been shown to be
important in having consistent background condition for generating a bounce solution within
k-essence models [125] 4 as well as a stable matter bounce scenario in massive gravity models
[102].

This chapter is structured in the following way. In Section 2.2, we present a toy model
for a cuscuton bounce scenario. In Section 2.3, we analyze the existence of ghosts and other

1We refer readers to [66, 133] for further reading and to [126] for a good review on how NEC violation can lead
to instabilities, superluminality or possibly unbounded Hamiltonians from below.

2Since the literature on this topic is very extensive and still developing, we refer readers to references and citations
of the mentioned papers for further details.

3“No dynamical degree of freedom" can be interpreted as, equation of motion for cuscuton field does not have any
time derivatives. This can be shown explicitly at linear order in flat space-time or around FRW backgrounds. Since
action is covariant, that implies there are no local degrees of freedom. For more details, we refer readers to [40].
In [76], authors argue that in Hamiltonian formalism Cuscuton acts as a dynamical field when its inhomogeneities
are considered. We suspect that the corresponding equations are not well-posed and the duality of Hamiltonian
formalism to Lagrangian formalism is breaking down for Cuscuton. That is an interesting topic that requires further
investigation.

4There, cuscuton term is part of the single field non-canonical kinetic terms and instabilities discussed in
[148, 70, 61] can be applicable.
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instabilities in this model. We end with our concluding remarks in Section 2.4.

2.2 A toy model for cuscuton bounce

Consider the following action for a scalar field with a noncanonical kinetic term,

( =
∫
34G
√−6!(i, -) , (2.1)

where ! is an arbitrary function of the scalar i and - ≡ 1
2m`im

`i 5.
This action is compatible with a perfect fluid description

)`a = (d + %)D`Da − %6`a (2.2)

assuming

D` ≡
m`i√

2-
(2.3)

is time-like. The energy density and the pressure in the comoving fame of D` are

d = )`aD
`Da = 2-!,- − ! (2.4)

% = !. (2.5)

We use ,- to denote the partial derivative with respect to the variable - .
In a flat FRW background

3B2 = 3C2 − 02(C)X8 93G83G 9 , (2.6)

the homogeneous field equation (2.1) reduces to,

(!,- + 2-!,--) ¥i0 + 3�!,- ¤i0 + !,-i ¤i2
0 − !,i = 0 , (2.7)

where � represents Hubble constant and we denote the time derivative with an overdot. Cuscuton
modification of gravity is achieved by taking the in-compressible limit of the above perfect fluid
such that everywhere on (i, -) plane

!,- + 2-!,-- = 0. (2.8)

As we see in that limit, the equation of motion is no longer second order since the second time
derivative of i vanishes (see [6, 5] for more details). A Lagrangian that satisfies the above
requirement everywhere in phase space corresponds to

!(i, -) = ±`2√2- −+(i), (2.9)

5We will use units with "2
? = 1/8c� and the metric signature is (+,−,−,−).
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which is called Cuscuton Lagrangian 6. What is more interesting about this Lagrangian is that
when we substitute it in 2.7, not only ¥i dependence vanishes but that ¤i dependence cancels as
well, leading to the following constraint equation,

±sign( ¤i)3`2� ++ ′(i) = 0 . (2.10)

` can in principle depend on i but that dependence can be absorbed into a field redefinition such
that a new cuscuton action with constant ` and a new potential is obtained.

Since the cuscuton equation is not dynamical, contributions of dynamical matter sources in
the universe are necessary to obtain any cosmological evolution. Here, we consider a toy bounce
model where the universe consist of a barotropic component ?< = Fd< in addition to cuscuton
field. A desirable model would initially be a contracting universe where in very early times
the cuscuton modifications of gravity are negligible. However, as it gets smaller the cuscuton
modification becomes important, causing the universe to bounce into an expanding phase. For
simplicity we assume F = 1 so d< ∝ 0−6, making cuscuton contributions grow even faster close
to the bounce and be dominant over anisotropies. However, this assumption is not fundamental
for our result. A simple way to produce such an equation of state from action is to include a
minimally canonical scalar field, c, with no potential. That will later allow us to consistently
study the behaviour of perturbations during the bounce.

A main feature of a regular bounce (� 6= ±∞) is that universe goes from a contracting
phase (� < 0) into an expanding one (� > 0) at finite value of scalar factor, 01. This criteria
automatically implies

�1 = 0 (2.11)
¤�1 > 0, (2.12)

where 1 denotes the bounce. In general relativity, the second condition necessitates the violation
of NEC for a perfect fluid source.

We now investigate the possibility of a bounce solution in a framework, consisting of cuscuton
and a barotropic matter source d<.

The Friedmann and continuity equations can be obtained from action or Einstein’s equations

�2 =
1

3"2
?

[+(i) + d<] (2.13)

¤� = − 1
2"2

?

[±`2√2- + (1 + F)d<]. (2.14)

Therefore, requiring the energy condition d< > 0 and (2.11) be satisfied at the bounce leads to

+(i1) < 0. (2.15)

6It had been already noted in [111] that this Lagrangian corresponds to the 2B →∞ limit in a %(-, q) theory.
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On the other hand, condition (2.12) implies that only the choice of the negative sign for cuscuton
kinetic term could lead to a bounce solution. So from here on we only consider

!(i, -) = −`2√2- −+(i). (2.16)

This in turns, yields Eq. (2.17) becomes

−sign( ¤i)3`2� ++ ′(i) = 0 , (2.17)

which leads to
3`2 ¤� = + ′′(i)| ¤i |. (2.18)

Therefore, in the regimes that #�� is valid ( ¤� < 0), cuscuton potential must satisfy

+ ′′ < 0, for NEC, (2.19)

but close to the bounce,
+ ′′ > 0, for���NEC. (2.20)

In addition, substituting � from Eq. (2.10) back into Eq. (2.13), we arrive at

"2
?

3`4+
′2(i) = +(i) + d< . (2.21)

This equation demonstrates how for a particular potential+(q), the evolution of cuscuton depends
on other matter sources in the universe. We can also use this relation to derive further constraints
on cuscuton potential. Taking a time derivative of Eq. (2.21), combining it with continuity
equation for matter source, ¤d< = −3�(d< + ?<), and Eq. (2.10) we get7

2"2
?

3`4 +
′′(i) − 1 = −(1 + F)

d<

`2 | ¤i |
< 0, (2.22)

for F > −1 or that

+ ′′(i) <
3`4

2"2
?

. (2.23)

This enables us to conclude that while the shape of the potential in the ���NEC era (around the
bounce) is convex (2.20), its convexity is in this range:

0 < + ′′(i1) <
3`4

2"2
?

. (2.24)

However, as we argued before, potential has to become concave, + ′′(i) < 0, in regions where
NEC is restored. Setting additional assumptions, such as when far from the bounce, cuscuton

7This equation together with (2.21) also demonstrates, how ¤i is uniquely determined as a function of i.
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modifications of gravity are negligible, can also be used to obtain additional restriction about the
shape of the potential. This assumption can be applied by requiring

lim
C→±∞

�2 = lim
C→±∞

1
3"2

?

d< → 0, (2.25)

lim
C→±∞

¤� = lim
C→±∞

−1 + F
2"2

?

d< → 0, (2.26)

where C = 0 corresponds to the bounce. Using the above conditions in combination with Eq.
(2.22), Eq. (2.10) and Eq. (2.21), one can show

lim
C→±∞

+ ′(i∞) = 0 (2.27)

lim
C→±∞

3`4

"2
?

|+(i∞)|
+ ′2(i∞)

� 1 (2.28)

lim
C→±∞

+ ′′(i∞) � − 3`4
√

2"2
?

(2.29)

Note that Eq. (2.24) and Eq. (2.29) imply

|+ ′′(±i∞)|/+ ′′(i1) � 1. (2.30)

We now introduce a toy model, where the potential contains a quadratic, an exponential and a
constant term, such that it meets all the above conditions:

+(i) ≡ <2(i2 − i2
∞) − <4[4(i2−i2

∞)/<2 − 1], (2.31)

with

i2
∞
<2 � 1. (2.32)

The constant term is set to a value that ensures +(i) = 0 at i = ±i∞ and the large value
of i2

∞/<
2, guarantees that |+ ′′(±i∞)|/+ ′′(i1) � 1. The viable range for ` consistent with Eq.

(2.24) and Eq. (2.29) is then
<2

"2
?

� `4

"4
?

� i2
∞
"2
?

. (2.33)

Figure (2.1) displays a schematic shape of a potential where parameters, < and i∞ are set
to < = 0.05"? and i∞ = 0.25"? so i2

∞/<
2 = 25. For these choice of parameters the allowed

range of ` is 0.22 < `

"?
< 0.5. For the rest of the discussion we keep the values of the parameters

in our model to be fixed at < = 0.05"?, i2
∞/<

2 = 25 and ` = 0.3"?. Substituting the potential
described by Eq. (2.31) into Eq. (2.21), one can derive the evolution of d< and � as functions
of i. Figure (2.2) demonstrates the i dependence of these quantities, including d2DB ≡ +(i) and
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Figure 2.1: +(i) as a function of i for < = 0.05"?, i2
∞/<

2 = 25 .

Figure 2.2: Densities and Hubble as functions of i for< = 0.05"?, i2
∞/<

2 = 25 and ` = 0.3"?.
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figure (2.3) shows the ratio of d</d2DB. As expected the magnitude of d2DB is negligible far from
the bounce and it is always less than d<, except at the bounce where they cancels off in order to
yield ¤�1 = 0.

Assuming l = 1 (d<(i) = d1(0/01)−6), one can obtain the evolution of background parame-
ters numerically in terms of cosmic time or conformal time. Figures (2.4) and (2.5) illustrate that
the cosmological evolution of Scale factor, 0(C), and Hubble constant, �(C), are consistent with
our picture for a regular bounce cosmology. Note that for simplicity we have chosen B86=( ¤i) > 0
so i < 0 coincides with Hubble parameter being negative and universe contracting. Therefore,
when i evolves into the positive region, the universe undergoes a smooth bounce and enters an
expanding phase.

Figure 2.3: Ratio of densities as functions of i for < = 0.05"?, i2
∞/<

2 = 25 and ` = 0.3"?.
For this choice for the values of the parameters in the model, d2DB becomes more than twenty
times smaller than d< far away from the bounce.

Having developed a consistent picture of the background bounce, next we study the behaviour
of cosmological perturbations around this background.
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Figure 2.4: The evolution of scale factor, 0(C) in time is consistent with universe contracting,
undergoing a regular bounce and then expanding.
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Figure 2.5: The evolution of Hubble constant, �, as a function of time. Hubble constant vanishes
at the bounce and far from the bounce and there exists a NEC violating region around the bounce
where ¤� > 0.
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2.3 Perturbations in cuscuton bounce

2.3.1 Absence of ghosts in cuscuton bounce

One of the generic instabilities that occurs in���NEC models is ghost instability. This instability is
by definition, a UV instability which can be identified though a wrong sign of kinetic term for
excitations around flat space-time. In order to investigate the existence of such an instability in
our cuscuton model, we have to study the corresponding action for quantum fluctuations. As we
mentioned before, adding a canonical scalar field, c, that doesn’t have a potential to cuscuton
action, can automatically produce a dynamical source with l = 1. This allows us to study
fluctuation in a framework consistent with the background evolution described in section 2.2.

The full action after including the canonical scalar field is given by,

( =
∫
34G
√−6

[
"2
?

2
' − 1

2
�`c�

`c − `2√−�`i�
`i −+(i)

]
, (2.34)

where �` denotes Covariant derivatives, i represents the cuscuton field and c stands for the
canonical scalar field.

This action is in fact a subclass of actions that we have studied in [40]. There, we probed the
existence of ghosts in cuscuton gravity with a generic canonical scalar field content. We found
that in general such models do not contain ghosts. We provide a brief summary of our derivation
here as well.

The framework involves the standard way of perturbing action around a flat FRW spacetime.
We then used the Unitary gauge fixing8, where time slices are taken such that c field is the
clock and the off-diagonal components of the spatial metric is set to zero. Naively, one would
expect two independent scalar degrees of freedom arising from the canonical scalar field and
the cuscuton field. However, owing to the non-dynamical nature of cuscuton, we are left with
only one independent degree of freedom. We expressed this degree of freedom in terms of Z ,
corresponding to curvature perturbations in this gauge. In other words, when expressing the
metric in the ADM variables,

3B2 = #23C2 − ℎ8 9 (3G8 + # 83C)(3G 9 + # 93C), (2.35)

and setting the off-diagonal components of the spatial metric to zero, Z is defined through
ℎ8 9 = 02X8 9 (1 + 2Z).

Using the Hamiltonian and themomentum constraints, the lapse and the shift can be expressed
in terms of Z and its time derivative. In this gauge, the cuscuton equation turns out to be a constraint

8The definition of the Unitary Gauge is not unique when we have more than one field. Here we call the gauge
where Xc = 0 as the ‘unitary’ gauge, as c field is the only dynamical field in our theory. Using this point of view,
cuscuton can be considered as a non-trivial modification of gravity rather than as an additional field.
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equation. That equation can be inverted into the Fourier space to obtain a closed form for Xi: in
terms of Z: and its time derivative as,

Xi: = ¤i0
(:/0)2�Z: + % ¤Z:

[(:/0)2�2 + (3�2 + % + ¤�)%]
, (2.36)

where, % = 1
2"2

?
¤c2

0. Substituting for all the variables in terms of Z , back in the action, we obtain
the quadratics action to be,

((2) =
"2
?

2

∫
33: 3C 0I2

[
¤Z2
: −

22
B :

2

02 Z2
:

]
. (2.37)

I(:, C) and 2B(:, C) are functions that depend on both time and scale and are given by

22
B ≡

(:/0)4�2 + (:/0)2B1 + B2

(:/0)4�2 + (:/0)2A1 +A2
(2.38)

I2 ≡ 2 02%

(
(:/0)2 + 3%

(:/0)2�2 + (%)(3�2 + % + ¤�)

)
. (2.39)

Here, we have introduced the following notation to simplify the relations

A1 = %(6�2 + ¤� + %) (2.40)
A2 = 3%2(3�2 + ¤� + %) (2.41)

B1 = %(12�2 + 3 ¤� + %) + ¤�(2 ¤� +
� ¥�
¤�

) (2.42)

B2 = %2(15�2 − % + ¤�) − % ¤�(12�2 − 2 ¤� +
3� ¥�
¤�

) (2.43)

As is seen from the quadratic action, (2.37), Cuscuton gravity is free from ghost if the
coefficient of the kinetics term, I2 is positive. The terms, (:/0)2 and %, appearing in the
numerator of I2 are both positive. Hence, positivity of I2 depends on the sign of the denominator.
The denominator can be simplified using the background equation to,

(:/0)2�2 + %(3�2 +
`2

2"2
?

| ¤i0 |) (2.44)

Written in this form, it is apparent that the denominator is always positive. Hence, this class
of Cuscuton Gravity, including our bounce model is ghost-free9. Furthermore, positivity of
denominator and non-vanishing contribution from cuscuton modification, guarantees the absence
of any poles in this coefficient regardless of wavelength and at the bounce (� = 0).

9As discussed in [40] the other class with +`2 in the Lagrangian, also turns out to be ghost free.
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2.3.2 Absence of dynamical instabilities in cuscuton bounce

We next investigate the dynamical stability of the perturbations in different regimes.

Figure 2.6: The quantities, %, and ¤� plotted as a function of time. It can be seen that both
quantities are of the same order at the bounce(C = 0)

As mentioned earlier, the dynamics of the perturbations can be described through the pertur-
bation quantity, Z . The equations of motion determining the evolution of Z was derived in [40].
Similar to action, it is convenient to express this equation in the Fourier space

¥Z: + (� + 2
¤I
I

) ¤Z: +
(
22
B :

2

02

)
Z: = 0, (2.45)

where the quantities 2B and I are given in equations (2.38) and (2.39) and we find

2
¤I
I

= −6� − 2�
(
((:/0)2 + 9%)
(:/0)2 + 3%

)
+
(
(:/0)2(2� ¤� − 2�3) + %( ¥� − 12�% − 18�3)

(:/0)2�2 + %(3�2 + % + ¤�)

)
. (2.46)
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We would like first to point out, that equation (2.45) does not become singular for any value
of : at any time. That’s because % > 0, % + ¤� = `2

2"2
?
| ¤i |> 0 and 22

B is always finite 10.

We now proceed to numerically explore the dynamics of the perturbations for different scales
and as they pass through the bounce. Since at the bounce �1 = 0 and ¥�1 = 0, there are two
relevant mass scales in equation (2.45), corresponding to quantities

√
¤�1 and

√
%1. Figure 2.6,

demonstrates the time dependence of ¤� and % for our model. As we see, both
√
¤�1 and

√
%1 are

comparable and around ∼ 10−2"? at the bounce. Therefore, we can associate a bounce length
scale, ;� ∼ 1/

√
¤�1 to this scale and classify our modes with respect to that. We refer to modes as

Ultra-Violet (UV)/Infra-Red (IR), if they are shorter/longer with respect to this length scale.

The equation governing the evolution of the perturbations, (2.45) is a second order differential
equation, which implies the existence of two independent solutions for each : . We have to check
the stability for both of these modes to ensure that perturbations are stable on this bouncing
background. To do that, we chose two solutions such that one is non-zero at the bounce but has
zero derivative there, while the other is zero at the bounce but has non-zero derivative. Since the
Wronskian for these solutions is non-zero at the bounce, they are independent.

To examine the evolution in different regimes, we evolved three wavelength modes, with
_ = 0.1;�, ;�, 10;� numerically. The results of the numerical evolution for the two independent
solutions, is shown in Figures 2.7. Our result confirms that there are no instabilities associated
with the evolution of modes in different wavelengths scales. As we mentioned before, the value of√
¤�1 is 0.01"%; . Therefore, the wavelengths we are investigating are of the order of 10ℓ%, 100ℓ%

and 1000ℓ%.

Figure 2.7: Evolution of perturbations at three different length scales, :/
√
¤�1 = 0.1, 1.0, 10.0.

The two panels correspond to different initial conditions which leads to linearly independent
solutions. The left panel has Z1 = 0, ¤Z1 6= 0. The right panel has Z1 6= 0, ¤Z1 = 0

We conclude that there is no pathology associated with the perturbations at the bounce or at

10The denominator of 22
B is always positive since the quantitiesA1 andA2 simplify toA1 = %(6�2 + `2

2 | ¤i|) and
A2 = 3%2(3�2 + `2

2 | ¤i |).
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the transition into���NEC region (|C |∼ 60 C?), neither for UV or IR or intermediate scales.

2.4 Conclusions

In this work, we found a cuscuton bounce solution that has no pathologies associated with���NEC.
Our solution corresponded to a toy model consisting of a cuscuton field, i, in addition to a
dynamical matter source, c. At the background level, we required that away from the bounce
(in the contracting or expanding phase) cuscuton density be sub-dominant to matter density.
However, we looked for a cuscuton potential such that it would grow faster than matter density
as universe contracted and would make the background bounce into expansion. After finding an
appropriate potential, we used the cosmological perturbation theory to scrutinize the existence
of ghosts and other instabilities in the model. We found that the theory is healthy. We think the
underlying reason for absence of instabilities in our model, is that unlike GR, the field which
governs the background, i.e. cuscuton, does not have its own dynamical degree of freedom.
Therefore, we expect our result can be extended beyond bounce models to more generic classes
of solutions with���NEC, which otherwise suffer from instabilities.
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Chapter 3

Review of Effective Field Theory of
Inflation (EFToI)

In the previous chapter, I have proposed a model where the universe goes through a bouncing
phase, where we do not face the singularity problem. In its formulation, we have deviated away
from general relativity by introducing an auxiliary field named Cuscuton. We now return our
focus to single field inflationary models and study how we can apply techniques of effective field
theories to study inflationary models in one unifying framework [50, 27]. In this chapter, I will
briefly review a systemic method to build a general effective action for perturbations in single
field inflationary models.

The basic idea is that the background solution for inflation driven by a single scalar q(C, ®G)
has a preferred spatial slicing, where q can be take to be a physical clock. In the unitary gauge,
we can realize this slicing by taking

q(C, ®G) ≡ q0(C) + Xq(C, ®G),→ Xq(C, ®G) = 0. (3.1)

In this gauge, all degrees of freedom for scalar perturbation is absorbed into metric fluctuations.
Furthermore, the time diffeomorphism is spontaneously broken and is no longer a linearly realized
symmetry. Due to the reduced symmetry in this gauge, there can be more terms in the action
than only four dimensional diffeomorphism invariant terms as all the 3D spatial diffeomorphism
invariant terms can also be included.

The terms that can be included are:

• Terms that are invariant under all diffeomorphisms (4-diffs): These are polynomials scalars
obtained by contracting polynomials of the Riemann tensor '`adf and its covariant deriva-
tives.

• Any functions that are purely a function of time and its covariant derivatives.

• Any tensors with free upper indices 0. These include operators such as 600 or '00.
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• The polynomials of the extrinsic curvature tensor  `a and its covariant derivatives.

It is convenient and useful to define a unit vector perpendicular to the hypersurface of constant
time, C̃:

=` =
m` C̃√

−6`am` C̃ma C̃
. (3.2)

Then we can also define the induced spatial metric:

ℎ`a ≡ 6`a + =a=` . (3.3)

The covariant derivatives of =` projected on to the constant time surface gives the extrinsic
curvature

 `a = ℎf`∇f=a . (3.4)

Thus, all polynomials of the covariant derivative of the normal unit vector do not give rise to new
terms. Furthermore, the projection of tensors in the action onto the constant time surfaces do not
give new terms. For example, the induced 3d Riemann tensor '(3)

`adf can be written in terms of
the original 4d Riemann tensor, the induced metric ℎ`a and the extrinsic curvatures.

According to the above rules, the most general action for a single field theory in curved
spacetime can be written as a function L of allowed operators

( =
∫
3C 3G3√−6L('`adf, 600,  `a,∇`, C). (3.5)

While in this gauge, the action (3.5) is only spatial diffeomorphism (3-diff) invariant. To restore
the time diffeomorphism invariance, we can apply the Stueckelberg trick. Let us see through a
simple example how this process works. Consider the following operators∫

3C 33G
√−6

(
�(C) + �(C)600(G)

)
. (3.6)

Now, to ‘free’ the unitary gauge and time from being fixed to constant hypersurfaces, we can
C → C̃ = C + b0(G`), ®G → ®̃G = ®G Under the time diffeomorphism, the metric transform as

6UV → 6̃UV =
mG̃U

mG`
mG̃V

mGa
6`a, (3.7)

and the integral in terms of G̃ becomes∫
3C̃33G̃

√
−6̃

(
�(C̃ − b0(G̃)) + �(C̃ − b0(G̃))

m(C̃ − b0(G̃))
mG`

m(C̃ − b0(G̃))
mGa

6̃`a
)
. (3.8)

We can now see that by promoting b0(G̃) in the action above to a field −c̃(G̃), and requiring that it
transform as

c(G)→ c̃(G̃) = c(G) − b0(G), (3.9)
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the integral becomes invariant under all diffeomorphisms. Note that since under C → C + b0 we
get Xq → Xq + ¤qb0, after time transformation, we no longer expect Xq = 0, but rather we have
c = Xq/ ¤q0.

Now we are interested in this approach in context of slow-roll inflationary models. It can be
shown that expanding around FLRW background and using Friedmann equations, the Lagrangian
density in (3.5) can be written as[50, 27]

L = "2
Pl

[
1
2
' + ¤� 600 −

(
3�2 + ¤�

)]
+

∑
<≥2
L<(600 + 1, X `a, X'`adf,∇`; C) , (3.10)

withL< representing functions of order< in 600 +1, X `a and X'`adf.1 The perturbed quantities
are given by

X `a =  `a −  FLRW
`a , X'`adf = '`adf − 'FLRW

`adf . (3.11)

This action is very complicated in general. However, the advantage of using this approach
is that, when the generalised slow roll approximation is valid, one can ignore contribution of
all the other metric perturbations to scalar perturbations at high energy scales. Basically, if the
typical scale of the time dependence of the coefficients in the unitary gauge is much longer than
the Hubble time, the theory effectively decouples from gravity and it is possible to compute the
scalar power spectrum neglecting metric perturbations in the action.

For instance, under the transformation C → C + c the "2
pl
¤�600 term transform as

"2
pl
¤�600 → "2

pl
¤�600(1 + ¤c)2 + . . . . (3.12)

Under canonical normalization c2 = "pl ¤�1/2c and 600
2 = "pl6

00, we get

"2
pl
¤�600(1 + ¤c)2 = ¤c2

2 + 2 ¤�1/2 ¤c2600
2 + ¤�600

2 . (3.13)

The second term in (3.13) mixes gravity with the scalar. However, at energies higher than ¤�1/2,
the term ¤c2

2 dominates the dynamics, so the scalar and gravity decouple.
Now as a simple test we can check what would the action of a simple inflationary model

translate to in the unitary gauge:

(q =
∫
34G
√−6

(
−1

2
(mq)2 −+(q)

)
→

∫
34G
√−6

(
−
¤q0(C)2

2
600 −+(q(C))

)
. (3.14)

Now, substituting from the Friedmann equations for the FLRW background gives us the following
action at the unperturbed level

(q = "2
pl

∫
34G
√−6

(
¤�600 − (3�2 + ¤�)

)
. (3.15)

1In the original EFToI formalism [50], only the quadratic operators built out of X `a =  `a −  FRW
`a were

studied. As we will see, dropping higher order operators is not always necessary and one can extend the EFToI
correspondingly.
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If we implement the procedure described above for the action (3.15), we obtain

Lslow−roll = −"2
Pl
¤�
(
¤c2 − (mc)2

02

)
, (3.16)

which matches action (3.10) assuming L< = 0, < ≥ 2.

Furthermore, one can show, using proper gauge transformations, that c is related to the
commonly used conserved quantity for curvature perturbation in literature Z by Z = −�c.
Substituting Z in the above action reduces it to the standard slow-roll inflationary action for Z .2

Since in many single field inflationary models especially inspired from quantum gravity, we
are interested in deviations from the standard canonical scalar field models, one can turn on the
coefficients of the operators in L< to describe them all.

In the original EFToI study, they investigated inflationary models that can have different speed
of sounds as well as dispersion relations up to quartic order. Examples of such corrections had
previously been noticed in the community through other approaches. However, the EFToI provide
a framework to explore them all generically. The unitary gauge action in this case includes

LEFToI = Lslow−roll + L2 , (3.17)

with:

L2 =
"4

2
2!

(600 + 1)2 +
"̄3

1
2

(600 + 1)X `
` −

"̄2
2

2
(X ``)2 −

"̄2
3

2
X 

`
a X 

a
` . (3.18)

The first term, (600 + 1)2, is the operator that modifies the speed of sound for scalar perturbations
from the speed of light. Noting that (600 + 1) has zero mass dimension, powers of (600 + 1)=
with = ≥ 3 could also be included which result to more general K-inflationary models. The mass
dimension 1 term, (600 + 1) X `

`, is not symmetric under time reversal, and was already analysed

in [50, 28]. Finally "̄2
2

2 (X ``)2 and "̄2
3

2 X 
`
a X 

a
` are the operators that lead to Inflationary models

with a quartic correction to the dispersion such as those that had been noticed in Ghost Inflation
[12, 50].

2The correspondence is up to a mass correction in higher orders of slow roll parameters. In quasi de Sitter
space, c gets a small mass due to time-dependent background, which has to be taken into account to get the exact
correspondence
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Chapter 4

Extended Effective Field Theory of
Inflation

4.1 Introduction

As we discussed in last chapter, the Effective Field Theory of Inflation (EFToI) [50] provides
an alternative picture to understand perturbations in single field driven inflationary models. In
this picture, one first fixes the gauge by taking constant time hypersurfaces to coincide with
inflaton constant surfaces. In other words, the perturbations of the inflaton field are absorbed into
the fluctuations of the metric. The inflaton fluctuations transform non-linearly under the time
diffeomorphism but the non-linear sigma model describing it can always be UV completed into
the theory of inflation with a linear representation of time diffeomorphism. The Goldstone mode,
c, corresponding to breaking time diffeomorphism symmetry, describes the scalar perturbations
around the FRW background. Therefore, the most generic action for inflation can be constructed
out of the quantities that respect the remaining symmetries, i.e. the spatial diffeomorphisms. The
coefficients of these terms can be time-dependent in principle.

This means including more terms such as the metric component 600 and the extrinsic curva-
ture of constant time hypersurfaces,  `a, which are only spatially diffeomorphism invariant, in
addition to standard 4-diffeomorphism invariant terms. It was shown in [50] that, around a FRW
background, this reduces to including functions of time, 600 + 1, X `a, X'`adf, and covariant
derivative.

One can then make the Goldstone mode explicit by applying the Stückelberg technique and
study the physics of the Goldstone mode at energies where the mixing with gravity can be
neglected. In this framework, the standard slow-roll inflationary model corresponds to adding
only operators with time dependence and at most linear in terms of 600 (mass dimension zero),
before performing the Stückelberg trick. Higher dimensional operators quantify deviations from
the standard canonical single field slow-roll inflation. In terms of c and in the decoupling limit,
the standard slow-roll Lagrangian is obtained from dimension 4 operators from the kinetic terms
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of the canonically normalised c. Including higher order derivatives andmass dimensions can lead
to higher order dispersion relations. Due to the non-linear nature of the time diffeomorphism,
once it is restored, the spatially diffeomorphism invariant operators will lead to a non-linear
dependence on the Goldstone mode. This in turn leads to non-vanishing higher point correlation
functions. Therefore, the coefficients of these operators can be constrained by measuring the
corresponding correlation functions.

The above approach is borrowed from particle physics since also the Standard Model is
described through the lowest dimension operators that are compatible with the symmetries of
the system. Then higher dimensional operators describe deviations from the vanilla case and
quantify the emergence of new physics. Similarly, in the EFToI, higher dimensional operators
can reproduce various interesting inflationary models, such as DBI inflation [11, 140, 139], with
speed of sound different from one, or Ghost Inflation [12], with leading spatial gradient term
proportional to (∇2c)2[50]. In particular, as shown in [50], reducing the speed of sound naturally
strengthens the cubic interaction, which in turn enhances the non-gaussianity.

In the EFToI, these higher dimensional operators can also change the dispersion relation. For
example, the inclusion of X 2

`a operators modifies the dispersion relation to l2 ∼ :4 (similar to
Ghost Inflation). Including additional higher dimensional operators of the form (∇(B−2) `a)2 with
B ≥ 3, when they are dominant, would modify the dispersion relation even further to l2 ∼ :2B.

However, the authors of [50] did not include operators beyond mass dimension 2, since they
claimed that these new terms would not be compatible with a sensible EFT description. The
reason is the fact that in such theories, when � → Σ � , the energy scaling dimension for c
would be c → Σ−1/2+3/2B c and so the scaling behaviour of cubic operators like ¤c(∇c)2 would
be (7 − 3B)/(2B). This would imply that for B ≥ 3 this operator would become relevant, whereas
for B < 3 it is irrelevant at low energies. Hence a theory with a dispersion relation of the form
l2 ∼ :6 would have an IR strong coupling cut-off Λ�'6 which would in general make this theory
not a controllable EFT.

However, we argue here that this may not always be the case. Our reason is that a dispersion
relation of the form l2 ∼ :6 would not hold up all the way to low energy scales. It is true that the
scaling power of ¤c(∇c)2 is −1/3, but the scaling power of (∇2c)2 and (∇c)2 are respectively −2/3
and −4/3. This implies that the dispersion relation would also change from l2 ∼ :6 to l2 ∼ :4

at some energy scale Λ4−6
dis . Hence, if the coefficients of the higher dimensional operators are

tuned such that ΛIR
6 � Λ4−6

dis , the l2 ∼ :6 theory remains weakly coupled throughout its evolution
down to low energies. On top of this, one has to require that the scale Λ4, where the l2 ∼ :4

theory becomes strongly coupled, is not below Λ4−6
dis . This is guaranteed if ΛIR

6 � Λ4−6
dis � Λ4.

Similarly, one has to require that the standard l2 ∼ :2 theory does not become strongly coupled
at a scale Λ2 which is below the scale Λ2−4

dis where the dispersion relation becomes dominated by
the quartic term: Λ2−4

dis � Λ2 [30].

Under these conditions, the EFT for the perturbations remains weakly coupled all the way
from low energy to the l2 ∼ :6 regime. Note that in addition, this framework is only valid on
energy scales below Λ1, where time diffeomorphisms get spontaneously broken by the inflaton
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background. Thus, we also need to require Λ4−6
dis � Λ1. This is because at Λ1 the scalar

perturbations become of the same order of magnitude of the background which, therefore, cannot
be integrated out to leave an EFT for the fluctuations only. The cut-off of the EFT for the
fluctuations Λcutoff is therefore the minimum between Λ1 and the UV strong coupling scale of the
l2 ∼ :6 theory, ΛUV

6 , associated with some higher derivative operators which remain irrelevant.

Strictly speaking, the cosmological experiment is done at energies of order the Hubble scale
� where horizon exit takes place. Hence, in order for the EFT approach to be under control,
one would need just to require � � Λcutoff and a horizon crossing that occurs in the region
where the dispersion relation takes the standard quadratic form. However, the goal of this
chapter is to provide a consistent theoretical framework to motivate the emergence of modified
dispersion relations which, as previously shown, can lead to (super-excited) non-Bunch-Davis
initial conditions with interesting implications for CMB observations [21]. Thus we need to
control the EFT also in the high energy l2 ∼ :6 regime which describes the behavior of the
perturbations deep inside the horizon. These perturbations are born in the vacuum of :6 theory
but then become excited states due to the transitions to the quartic and finally to the standard
quadratic regime for the dispersion relation which happen before horizon crossing. Therefore, in
order to be able to describe consistently the whole evolution of these modes from deep inside the
horizon to super-horizon scales, we need to be able to trust the EFT for the fluctuations up to the
l2 ∼ :6 regime.

In this chapter we shall therefore include higher order corrections which in the unitary
gauge correspond to operators with mass dimension 3 and 4 that were so far neglected in the
literature. Hence, we shall call this framework Extended Effective Field Theory of Inflation
(EEFToI). As explained above, these higher dimensional terms modify the dispersion relation
and, depending on the sign and magnitude of their coefficients, can have important implications
for scalar perturbations. We shall focus only on modifications of the equation of motion that lead
to interesting dispersion relations for c by higher order terms, and so we shall consider operators
which include at least one factor of X `a in their expression. One can write down other operators
with the same mass dimensions as the one we focus on below, which would not affect the two
point function for scalar perturbations. We also drop operators of the form (1 + 600)= with = ≥ 3
since, contrary to (1 + 600)2, they do not change the speed of sound for c.

The outline of this chapter is as follows. In Sec. 4.2, we present the EEFToI by writing down
all operators with mass dimension three and four that can add a correction proportional to :6 in the
dispersion relation. In Sec. 4.3, we discuss the implications of these higher dimensional operators
for tensor and scalar perturbations. In particular, after identifying the allowed operators, we focus
on the healthy region of parameter space for c and explore various scenarios that can arise. We
study the scalar power spectrum in these scenarios, depending on the sign of the coefficients of
the quartic and sextic corrections to the dispersion relation. We also analyse the implications for
the tensor-to-scalar ratio. In Sec. 4.4, we comment on the cut-off of the EEFToI and the size
of non-Gaussianity. In Sec. 4.5 and 4.6 we will study the bispectrum and the non-Gaussianity
of the theory and compute the constraints on EEFToI parameter space including the size of the
non-Gaussianity. In Sec. 4.7, we conclude and give directions for future research.
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4.2 Extended EFT of inflation

4.2.1 Lagrangian of the Extended EFT of inflation

We know proceed to introduce the Lagrangian of the EEFToI. We supplement the unitary gauge
action of the EFToI with operators of mass dimension 3 and 4 constructed out of X a`, ∇` and
600 so that the Lagrangian of the EEFToI (again keeping only terms which contribute to quadratic
action for c ) becomes

LEEFToI = LEFToI + L2,33 + L2,34 , (4.1)
with:

L2,33 + L2,34 =
"̄4
2
∇`600∇aX `a −

X1
2

(∇`X aW)(∇`X aW) − X2
2

(∇`X aa)2

−X3
2

(∇`X `
a)(∇WX Wa) −

X4
2
∇`X a`∇aX ff , (4.2)

where "8, "̄8 and X8’s are free (time dependent) coefficients and the sign of each term is also a
priori free. We remark that the mass dimension 3 operator ∇`600∇aX `a is not symmetric under
time reversal and X8’s are the coefficients of dimension 4 operators.

Our motivation for adding such operators is that they lead to sixth order corrections to the
dispersion relation. The reason advocated in [50] for discarding these operators is that sixth order
corrections to the dispersion relation would make higher derivative operators relevant, signaling
the presence of an IR strong coupling regime. However, as explained in Sec. 4.1 and as we
will discuss in more depth in Sec. 4.4, one can still have a sensible EFT description if the IR
strong coupling scale of the l2 ∼ :6 theory is below the scale Λ4−6

dis where the dispersion relation
becomes dominated by the quartic term.

We emphasise here that in this EFT approach to inflation, the Lorentz symmetry is not
preserved. In particular, the mass dimension and energy scaling dimension of the operators
depending on X do not match. We should also add that we have only kept terms that can modify
the action for scalar perturbations at second order. There are other operators, e.g. proportional
to "̄ X 3, that do not contribute to the linear equation of motion of the Goldstone boson c.
For reasons that will become clear momentarily, we first focus on the implications of the mass
dimension 3 and 4 operators on the action for tensor perturbations. Then we will get back to the
action for the Goldstone mode c derived from the unitary gauge action in the EEFToI.

4.3 Perturbations in the extended EFT of inflation

4.3.1 Tensor perturbations

To study the tensor perturbations, we perturb the spatial part of the metric as follows

68 9 = 02(X8 9 + W8 9 ) , (4.3)
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where W8 9 is transverse and traceless (summation over the repeated index 8 is assumed),

W88 = 0 , m8W8 9 = 0 , (4.4)

and we will expand the action (4.1) up to second order in W8 9 . As pointed out in the original EFToI
paper [50], from the mass dimension zero up to mass squared operators, only − "̄

2
3

2 X 
`
a X 

a
`

affects the equation of motion for W8 9 , and adds the following contribution to the action for tensor
perturbations

("̄
2
3 = −

"̄2
3

8

∫
033C 33G m0W8 9m0W8 9 . (4.5)

The action (4.5), together with the terms describing the usual massless scalar field contribution
for tensor perturbations,

(EH =
"2

Pl
8

∫
3C 33G 03

(
m0W8 9m0W8 9 − 0−2m;W8 9m;W8 9

)
, (4.6)

produces the following modified equation of motion for tensor perturbations,

?′′: +
(
22

T:
2 − 0

′′

0

)
?: = 0 , (4.7)

where ?: ≡ 0 W: , the subscript : refers to the Fourier transform of the two helicities of the
gravitons, and

22
T =

(
1 −

"̄2
3

"2
Pl

)−1

. (4.8)

In order to avoid superluminal propagation for tensor perturbations, one must then have "̄2
3 ≤ 0.

Larger values of |"̄3 | correspond to smaller speed of sound and, for |"̄3 |→ "Pl, the speed of
gravitational waves 2T → 1/

√
2.

For "̄2
3 > 0, the speed of gravitation waves is superluminal. Lorentz invariant EFTs with

this property have been argued to be non-local and not embeddable in a local quantum field
theory or string theory [1]. However, [26] argues that such models, despite having superluminal
propagation, do not lead to any violation of causality. If "̄2

3 > 0 is taken as a legitimate choice,
larger values of "̄2

3 increase the value of speed of sound and in fact this value diverges for
"̄2

3 → "2
Pl.

Now let us focus on the newoperatorswithmass dimension 3 and 4. The term X1
2 (∇`X aW)(∇`X aW),

up to second order in W8 9 , yields

X1
2

[
−�

2

2
(
m0W8 9

)2 +
1

402

(
m2

0<W8 9

)2
− 1

4

(
m2

0W8 9

)2
]
, (4.9)

where 8, 9 and < are spatial indices and summation over < is assumed. Other operators do not
contribute to the Lagrangian of tensor perturbations once the transverse traceless condition on
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W8 9 is imposed. The appearance of m2
0W8 9 in the Lagrangian density (4.9) leads to ghost instability

for the tensor perturbations. Thus the requirement of having no ghosts in the tensor sector of the
theory translates into

X1 = 0 . (4.10)

Therefore, dispersion relation of the primordial tensor fluctuations remains resilient to changes
in the scalar and gravitational sector in the EEFToI, like it was shown originally in [52].

4.3.2 Scalar perturbations

The Goldstone boson can explicitly appear in the action via the Stückelberg trick. In this
procedure, the variation of the metric with broken time diffeomorphism, C → C̃ = C + b0(G),
G → ®̃G = ®G, is obtained and b0(G(G̃)) is everywhere replaced by −c̃(G̃) in the transformed action.
Then c(G) is assumed to transform non-linearly to c̃(G̃) = c(G) − b0(G), which guarantees that the
action remains invariant under diffs to all orders [50]. Evaluating the action explicitly for c in
Fourier space, Ref. [28] found out that, in the decoupling limit corresponding to ¤� → 0 while
"2
?
¤� is fixed, the EFToI Lagrangian (3.17) in the unitary gauge leads to the following second

order Lagrangian in the c-gauge:

L(c)
EFToI = "2

?
¤�(m`c)2 + 2"4

2 ¤c
2 − "̄3

1�

(
3 ¤c2 − (m8c)2

202

)
−
"̄2

2
2

(
9�2 ¤c2 − 3�2 (m8c)2

02

+
(m2
8
c)2

04

)
−
"̄2

3
2

(
3�2 ¤c2 − �2 (m8c)2

02 +
(m2
9
c)2

04

)
, (4.11)

whereas, following the same procedure, the mass dimension 3 parity-violating operator in (4.2)
in the same limit ¤� → 0 yields

L(c)
2, 33

=
"̄4
2

(
:4�c2

04 +
:2�3c2

02 − 9�3 ¤c2
)
. (4.12)

This operator only yields a quartic correction to the dispersion relation. On the other hand, the
mass dimension 4 operators in the EEFToI action (4.1) written in Fourier space 1

1In [21], in the definition for X `a ≡  `a −  (0)
`a , we had mistakenly subtracted the FRW result  (0)

`a =
−02�X8 9X

8
`X

9
a from the extrinsic curvature of constant C spatial surfaces. However, this would not produce a tensorial

structure for X `a . Following [50], one has to instead subtract  (0)
`a = −�ℎ`a , which reduces to the FRW result

when the perturbations vanish and guarantees that X `a is covariant. The difference in the obtained results for the
action of Goldstone boson is due to this. We thank P. Creminelli for clarification of this issue to us. We take the
opportunity to correct the mistake/typo in [50] in defining  (0)

`a as 02�ℎ`a . There seems to be an extra factor of −02

in their expression.
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L(c)
2, 34

= −1
2
X1

(
:6c2

06 −
3�2:4c2

04 − :
4 ¤c2

04 +
4�4:2c2

02 − 6�4 ¤c2 − 3�2 ¥c2
)

−1
2
X2

(
:6c2

06 +
�2:4c2

04 − :
4 ¤c2

04 +
6�4:2c2

02 − 9�2 ¥c2
)

−1
2
X3

(
:6c2

06 +
3�2:4c2

04 +
�2:2 ¤c2

02 − 9�4 ¤c2
)

−1
2
X4

(
:6c2

06 +
�2:4c2

204 +
9�4:2c2

202 +
3�2:2 ¤c2

02 +
27
2
�4 ¤c2

)
.

(4.13)

The terms − X1
2 (∇`X aW)(∇`X aW) and − X2

2 (∇`X aa)2 produce ¥c2. According to Ostrogradski’s
theorem [117], higher time derivatives usually lead to ghost instabilities. In principle such a ghost
term could be avoided if X1 = −3 X2. Furthermore, note that in the context of an effective field
theory, ghosts are not necessarily a pathology if they are small corrections and under control. This
is because ghosts maybe an artifact of the truncations and the effective theory is only meant to
capture the relevant features of the full theory [44]. However, as noticed in the previous section,
one has to set X1 = 0 in order to avoid superluminal propagation in the tensor sector, which
enforces

X1 = X2 = 0 . (4.14)

Therefore, for simplicity on thisworkweonly keep the terms X3
2 ∇`X 

`
a∇WX Wa and X4

2 ∇
`X a`∇aX ff .

We shall now derive the equation of motion for c using the total EEFToI Lagrangian in the c
language and in the decoupling limit, which is the sum of (4.11), (4.12) and (4.13),

L(c)
EEFToI = L(c)

EFToI + L(c)
2, 33

+ L(c)
2, 34

(4.15)

Before that, we briefly discuss the equation of motion corresponding to the EFToI Lagrangian.
Variation of L(c)

EFToI, yields the same equation of motion previously derived in [28],

�0 ¥c: + (�0 + 3��0) ¤c: +
(
�0
:4

04 + �0
:2

02

)
c: = 0 (4.16)

with

�0 = −2"2
Pl
¤� + 4"4

2 − 6"̄3
1� − 9�2"̄2

2 − 3�2"̄2
3

�0 = −6"̄3
1
¤� − 18 ¤��"̄2

2 − 6 ¤��"̄2
3

�0 = −2"2
Pl
¤� + 4"4

2 − 6"̄3
1� − 9�2"̄2

2 − 3�2"̄2
3

�0 = −2"2
Pl
¤� − "̄3

1� − 3�2"̄2
2 − "̄

2
3�

2

�0 = "̄2
2 + "̄2

3 , (4.17)
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where the mixing with gravity has been neglected. Noting that the canonical c2 ∼
√
�0 c and

X600
2 ∼ "Pl X6

00, the mixing energy between gravity and the Goldstone mode c can be neglected
at energies

� > �mix ∼
√
�0
"Pl

, (4.18)

which is known as the equivalence theorem. Namely, the perturbations of the longitudinal mode
decouple from the perturbations of the metric at energies higher than �mix. Being able to compute
the correlation functions at horizon crossing corresponds to assuming � > �mix. In the regime
where "2

Pl
¤� is bigger than the other contributions to �0, �mix ∼ n1/2�, and so the decoupling

limit is guaranteed by the slow-roll condition n � 1. On the other hand if "4
2 is bigger than

the other parameters in �0, �mix ∼ "2
2/"Pl, and decoupling happens if "2

2 < "Pl �. These
conditions were obtained in [50] too. Other limiting cases suggest "̄3/2

1 < "Pl �
1/2, "̄2 < "Pl

and "̄3 < "Pl.
In terms of the conformal time, 3g ≡ 3C/0 and through a change of variable D: = 0c: , the

equation of motion (4.16) takes the following form

D′′: +
�0 + 3��0 − 3�0�

�0
0D′: +

(
�0
�0
:2 +

�0
�0
:402 − 0

′′

0

)
D: = 0 .

(4.19)

Noting that �0 + 3��0 − 3�0� = −6 ¤�("̄3
1 + 3�2"̄2 + �"̄2

3 ), in the limit ¤� → 0, this equation
is reduced to

D′′: +
(
�0
�0
:2 +

�0
�0
:402 − 0

′′

0

)
D: = 0 . (4.20)

which has the same form derived in [28].
If we now include the higher dimensional corrections L(c)

4, 33
and L(c)

4, 34
to the total Lagrangian

(4.15), the equation of motion for c becomes

�1 ¥c: + �1 ¤c: +
(
�1
:6

06 + �1
:4

04 + �1
:2

02

)
c: = 0 . (4.21)

Defining

�0(:, g) =
9
2
X3 −

27
4
X4 −

:2

202�2 (X3 + 3X4) − 9
2�

"̄4 , (4.22)

the coefficients of the equation of motion (4.21) read

�1 = �0 + 2�4�0(:, g) ,

�1 = �0 + 3��0 + �5
[
6�0(:, g) +

2:2

02�2 (X3 + 3X4)
]
,

�1 = X3 + X4 ,

�1 = �0 + �2 X4
2

+ 3�2X3 − "̄4� ,

�1 = �0 + 3�4
(
X3 +

3
2
X4

)
− "̄4�

3 , (4.23)
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where we have assumed that the time-dependence of the coefficients is slow compared to the
Hubble time. This means that the terms coming from the Taylor expansion of the coefficients are
small.

Expressing the equation of motion for D: = 0 c: , in conformal time and again in the limit
¤� → 0, we obtain

D′′: +
2:2�3(X3 + 3X4)

0�1
D′: + D:

(
�1
�1

:6

04 +
�1
�1

:4

02 +
�1
�1
:2 − 0

′′

0

)
= 0 . (4.24)

In a de Sitter space, where 0 = −1/(�g), the above equation reads

D′′: +
�3g:

2X4

�1 + �2g2:2 D
′
: + D:

(
�2

�1 + �2g2:2 :
2 +

�2:
2

�1 + �2:2g2 :
2g2

+
�2:

2

�1 + �2g2:2 :
4g4 − 2

g2

)
= 0 (4.25)

where

�1 ≡ �0 + 9�4
(
X3 −

3
2
X4

)
− 9"̄4�

3

�2 ≡ −�4 (X3 + 3X4)
�3 ≡ −2�4 (X3 + 3X4) = 2�2

�2 ≡ �1

�2 ≡ �1�
2

�2 ≡ �1�
4 (4.26)

and
�1(:, g) = �1 + �2:

2g2 . (4.27)

The speed of propagation of the perturbations in the intermediate IR, i.e. for 1 < ^g <
√
�1/�2,

can now be read out from eq. (4.25) to be

22
B =

�2
�1

. (4.28)

In terms of a dimension less variable, G ≡ :g, the equation of motion (4.25) takes the form

32D:

3G2 +
�3G

�1 + �2G2
3D:

3G
+

(
�2

�1 + �2G2 +
�2G

2

�1 + �2G2 +
�2G

4

�1 + �2G2 −
2
G2

)
D: = 0 . (4.29)

In general, due to non-polynomial scale dependence of the dispersion relation, the sound wave
analogy does not necessarily apply. A variety of scenarios can in principle arise, depending on
the size and sign of various coefficients. For example, if �1 and �2 are positive, the modes start
with 22

B ∼ 0 in infinite past and gradually, achieve a constant 22
B given by �2/�1 as they finally

exit the horizon for |:g |� 1. If one of �1 or �2 (but not both) is negative, there could be a
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singular time in the evolution of each mode from inside the horizon when the speed of sound
becomes infinite. It is also possible that both the speed of sound and the coefficient of the quartic
correction to the dispersion relation are negative. These instabilities can in principle be avoided
in the UV by a positive sextic correction to the dispersion relation. Even though such scenarios
are all interesting, we will not focus on them in this paper.

In the following, we set X3 = −3 X4, so that the equation of motion (4.29) simplifies to 2

32D:

3G2 +
(
�2
�1

+
�2
�1
G2 +

�2
�1
G4 − 2

G2

)
D: = 0 . (4.30)

If �2/�1 > 0, as assumed here, our definition of the speed of sound for scalar perturbations (4.28)
is real and well-defined:

22
B =

�2
�1

. (4.31)

If �2/�1 < 0, one deals with the sort of dispersion relation that comes up in Ghost Inflation-like
scenarios [12, 135]. This will not be something that we focus on in this investigation. Moreover,
in order to avoid potential issues related to superluminal propagation in the IR and a unitary UV
completion, we assume that [1]

0 ≤ 22
B ≤ 1 . (4.32)

The first inequality could be satisfied if �2 and�1 have the same sign. Note that it is also possible
to have 22

B = 1 if

4"4
2 − 5"̄3

1� − 6�2"̄2
2 − 2�2"̄2

3 − 9�4X4 − 8"̄4�
3 = 0 (4.33)

eventhough, higher-point interactions will not be zero. This shows that, although in the EFToI one
tries to quantify the deviations from the standard slow-roll model with the operators L< in (3.10),
there is still the possibility that one flows back close to the regime of slow-roll inflation with
2B = 1 via appropriate tuning of the coefficients of the various higher dimensional operators. This
result was also true in the EFToI with X 2 terms in the unitary gauge Lagrangian. Although one
expects to see an enhancement in the non-gaussianity amplitudes due to the modified dispersion
relation.

Defining G′ ≡ 2B G, the equation of motion (4.30) reduces further to

32D:

3G′2
+

(
1 + U0G

′2 + V0G
′4 − 2

G′2

)
D: = 0 , (4.34)

where

U0 ≡
�2

�12
4
B

=
�2�1

�2
2

V0 ≡
�2

�12
6
B

=
�2�

2
1

�3
2

. (4.35)

2With X3 6= −3 X4, the mixing between gravity and the Goldstone boson becomes time-dependent for each mode.
Even though at horizon crossing, one can tune the parameters to make � > �mix, when the physical momentum
of the mode :/0 > "Pl(X3 + 3X4)−1/2, the mixing with gravity cannot be neglected. At such momenta the theory
of General Relativity also breaks down and in absence of a quantum theory of gravity the predictions of the theory
becomes unreliable.
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In order to have a stable vacuum in the deep UV, where the dispersion relation is dominated by
the :6, we consider V0 > 03. If Hubble crossing takes place when l2 ∼ :2, transitions between
regions with a different dispersion relation can lead to excited initial states [21]. In this case, if
U0 < 0, one can have relatively large corrections, much bigger than one, compared to the standard
inflationary predictions for the two point function. This can happen even if the dispersion relation
has a single turning point, i.e. a single horizon crossing is assumed to occur.4 The latter scenario
is possible if �2/�1 < 0 and �2/�1 > 0 5.

One should note that the coefficients "̄8’s, with 8 = 1, 2, 3, in (3.18) can appear with either
sign. In fact, as noticed in the previous section about tensor perturbations, one has to assume
"̄2

3 < 0 in order to avoid superluminal tensor perturbations. Noting that

�2 = ("̄2
2 + "̄2

3 + �2 X4
2
− "̄4�)�2 , (4.36)

using the definition (4.35), the condition X3 = −3X4 and the expressions (4.26) for �2 and �1, it
is not difficult to show that

�2 = − 2U0

V02
2
B

X4�
4 . (4.37)

As stated before, to achieve the stability in the UV, one has to assume that V0 > 0, and hence,
�2 and U0X4 must have opposite signs. If X4 > 0, noting that �2 = −2X4�

4 will be negative, one
has to assume �1 < 0 to obtain a positive V0. Assuming ¤� < 0, that puts an upper bound on
how large the first slow-roll parameter n can be in this scenario. Then in order to achieve U0 < 0,
one has to assume that �2 > 0. This combined with that "̄2

3 < 0 for tensor perturbations to be
subluminal, means

|"̄3 |2< "̄2
2 +

X4
2
�2 − "̄4� . (4.38)

On the other hand, if X4 < 0, one has to assume �2 < 0 and the reverse of the above equality
should hold and, conversely, a lower bound on n is found under the assumption that ¤� < 0.
One should emphasize that the value of U0 and V0 are not solely determined by 2B. There are
other variables involved in these parameters and even for the choice 2B ≈ 1, U0 and V0 can
be substantial. Of course, with 2B � 1, the values of these parameters will get larger, but a
reduced sound speed is not necessary to have large corrections to the dispersion relation. For
2B ≈ 1, since non-gaussianities are usually determined by factors 1/22

B , one expects at least not
to get an enhancement from speed of sound. Nonetheless the non-linear evolution of the mode
inside the horizon due to the non-linear dispersion relations, may enhance the value of the non-
gaussianity and bring it potentially to a value that can be observed. In fact, if, as in [21], the
evolution of the modes inside the horizon can be mapped into excited states with large occupation

3Dispersion relations dominated by the :6 term can also be motivated from studies in the context of condensed
matter physics applied to black holes [89].

4We are referring to 1 + U0G
′2 + V0G

′4 ∼ 2
G′2

as horizon crossing.
5In solid state physics, the perturbations that appear close to the minimum of the dispersion relations at large :’s

are known as rotons, the ones that are close to the maximum of the dispersion relation are called maxons and the
ones that are in the linear regime of the dispersion relation are phonons. In the cosmological setup, starting from
deep inside the horizon, each mode in principle can undergo all three phases until it exits the horizon.
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numbers at horizon crossing, it is expected that, even for 2B = 1, equilateral [8, 24] and flattened
non-gaussianity configurations [82, 25] will get enhanced. Whether such an equivalence holds
and how higher dimensional operators in the EEFToI contribute to the bispectrum shapes and
amplitude is something that we plan to investigate in near future.

4.3.3 Scalar power spectrum

In this section we investigate the effect of the modified mode equation (4.34) on the scalar
power spectrum for different scenarios, corresponding to different signs and magnitudes of the
coefficients of the quartic and sextic corrections to the dispersion relation. In general, overall
correction to standard the Bunch-Davies power spectrum can be expressed as a multiplicative
factor

Δ B = WB ΔB.D.
B = WB

�2

8c22Bn
. (4.39)

If both U0 > 0 and V0 > 0, the mode evolution inside the Hubble patch remains oscillatory
throughout, and unless the parameters U0 and V0 are of order one, one does not expect to see a
significant modification to the Bunch-Davies power spectrum. We solve the mode equation (4.34)
numerically, from the positive frequency WKB mode in the infinite past,

D: (G′→ −∞) ' 1
2

(
−c

3
G′

)1/2
�

(1)
1
6

(
−
√
V0
3

G′3
)
, (4.40)

and then read off the power spectrum when the mode exits the horizon, G′ → 0. We have
computed the factor WB for several values of U0 and V0. For example, for U0 = V0 = 0.2, one has
WB ' 0.717, for U0 = V0 = 0.5, WB ' 0.53 and for U0 = V0 = 1, WB = 0.4. It seems that in this
case, WB < 1 in most of the parameter space. In fact, solving and plotting the power spectrum for
different values of U0 and 0.01 < V0 < 2 confirms this conjecture. The larger the values of U0
and V0, the more suppressed the power spectrum. However, this suppression is at most of order a
few tenths. For U0 = V0 ∼ 2, the modulation factor WB ≈ 0.3 (see Figs. 4.1 and 4.2). Noting that,
in the case of positive quartic correction to the dispersion relation, enhancement of the coefficient
of the quartic term suppresses the power spectrum too [22], one is tempted to deduce that positive
higher order corrections to the dispersion relation will in general reduce the amplitude of the
power spectrum.

On the other hand, if U0 < 0, there could be large modulation factors on the power spectrum.
In [21], we focused on the range of parameters for U0 and V0 such that

I ≡ V0

U2
0
≥ 1

4
. (4.41)

This requirement was coming from the fact that the dispersion relation should not become
tachyonic for any physical momentum in flat spacetime. If we allow for I < 1/4, the quantum
modes will get amplified while they are still inside the horizon, which will increase the resulting
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power spectrum exponentially. However, such a large enhancement for the scalar power spectrum
will probably come about at the price of enhancing the size of non-gaussianity, and may thus clash
with experimental bounds on them. The issue of non-gaussianity with such modified dispersion
relations is something that we plan to return to in the next work. As for the power spectrum
itself, we examined this regime numerically. We have plotted in Figs. 4.3 and 4.4 the factor WB,
with V0 in the range U2

0
5 < V0 <

U2
0

4 , for several values of U0. As can be readily seen, when V0
goes below U2

0/4, the power spectrum grows substantially. With the decrease of the parameter
U0, the interval of time the mode spends under the influence of negative quartic contribution and
possibly becomes tachyonic while still inside the horizon, increases and one sees a larger amount
of enhancement for WB. In fact, for U0 = 0.01, and V0 = U2

0/5, WB can reach values as large as
1000 (see Fig. 4.4). One other point that may be worth highlighting is that for large values of V0
for each U0, the maximum enhancement in this case seem to occur at U0 ∼ 0.2. As we will see,
in the interval 1/4 < I < 1/3, the same pattern repeats itself.

In [21], we had also assumed that the mode never becomes lighter than the Hubble parameter
up until the last horizon crossing. That would mean that the equation l2 = 2�2 has only one
solution. For

I >
1
3
, (4.42)

this equation automatically has only one solution. For values of U0 and V0 such that

1
4
≤ I ≤ 1

3
, (4.43)

having only one solution imposes one of the following conditions

U0 ≤
9I − 2 − 2(1 − 3I)3/2

54I2

or U0 ≥
9I − 2 + 2(1 − 3I)3/2

54I2 . (4.44)

The requirement of having one solution was to show that the gluing technique becomes ineffective
in capturing the modification to the power spectrum from the sextic dispersion relation. In that
case, since l2 = 2�2 had only one solution, calculating the power spectrum analytically required
the gluing procedure only once. In this paper, we do not distinguish between multiple and
single horizon crossings. What matters to us is the amplitude of the power spectrum when the
wavelength of the mode is much larger than the Hubble length or, more quantitatively, when
G′ � 1. Therefore, when investigating the I > 1/4 region, we allow for I > 1/3 as well. Plots
of WB for different values of U0 and V0 for I > 1/4 are presented in Figs. 4.5, 4.6 and 4.7. In all
cases, the factor WB is bigger than one. As one moves away from U0 = 0.2 in both directions, the
amount of enhancement in the power spectrum decreases.

Finally, in the case I = 1/4, as noted in [21], for U0 ∼ 0.2 and V0 = U2
0/4, one can achieve

WB ' 14.774.
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4.3.4 Tensor-to-scalar ratio and consistency relation

Having modified spectra for both tensor and scalar fluctuations, it is expected that the tensor-to-
scalar ratio be modified as well. For general modified equations of motion for scalar and tensor
perturbations, the tensor-to-scalar ratio is given by

A = 16n
2B

2T

1
WB
. (4.45)

Therefore, a departure of any of the parameters, 2B, 2T and WB from one, will bring about changes
in the tensor-to-scalar ratio in comparison with the slow-roll counterpart. It is well known that
the majority of kinetic term dominated inflationary models, known as K-inflation [13], would
lower A . However, the possibility of enhancing A by allowing for 2B to be bigger than one has also
been entertained in [112]. As mentioned before, whether superluminal propagation in EFTs is
necessarily an indication of any pathology is still a topic of debate in the community [78].

Depending on the sign of the operator − "̄
2
3

2 X 
`
aX 

a
`, which contributes to the speed of

sound for gravity waves, one encounters two branches. In the superluminal branch, with "̄2
3 > 0,

gravitons propagate faster than light during inflation, 2T > 1. In the subluminal branch, with "̄2
3 <

0, the speed of gravity waves is less than the speed of light. Were one to drop the superluminal
branch because of superluminality and causality considerations, the effect of departure from the
speed of light is always to enhance A. As "̄3 cannot be pushed beyond "Pl in an EFT treatment,
the gravity wave speed during inflation, is bounded from below by 1/

√
2, and thus one at most

would get an enhancement of
√

2 in A in the subluminal branch. Otherwise, in the superluminal
branch, A can be significantly suppressed as "̄2

3 gets larger.

To summarize, in this section we showed that the effect of the EEFToI on scalar perturbations
is to change their dispersion relation, not only by modifying the speed of sound but also by
including higher order corrections. If the coefficients of the dispersion relation are all positive,
the amplitude of the scalar power spectrum gets suppressed by a factor WB . 1. This would
enhance A by a factor of order one. However, if the quartic term of the dispersion relation is
negative, the evolution of the modes involves an intermediate phase with negative group velocity,
or tachyonic phase, which can in fact enhance the amplitude of scalar perturbations considerably
with respect to the Bunch-Davies result, picking up a factor of WB � 1. If one allows for the
tachyonic evolution of the mode inside the horizon, A can get suppressed by a large factor. On
the other hand, if only one allows for having a negative group velocity without a tachyonic phase,
the maximum one can achieve is WB ≈ 14.7, which suppresses A by a factor of ∼ 0.06. This
is achieved by U0 ∼ 0.2 and V0 = U2

0/4 which was studied in [21] as a dispersion relation that
realises super-excited states with large occupation numbers. The mode equation has one turning
point for such values of parameters, corresponding to a single horizon crossing.

One can also easily verify that the consistency relation [145, 101]

=T = −A
8

(4.46)
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is modified to
=T = −2TWB

2B

A

8
. (4.47)

This implies that for a given A, we will have a much redder tensor spectrum for WB � 1.

4.4 Cut-off and non-gaussianity

As explained in the introduction, the EEFToI can provide a controlled description of the per-
turbations around a quasi de Sitter background from low energy up to the UV regime where
the dispersion relation becomes l2 ∼ :6, provided the coefficients of the higher dimensional
operators are tuned such that the theory remains always weakly coupled in this energy range.
This means that the scattering of Goldstone bosons does not violate perturbative unitarity at any
scale below the point where the dispersion relation becomes dominated by the sextic term.

The strong coupling scale can be easily estimated in the c language from the size of the
coupling of the interactions described by higher dimensional operators [50]. In order to perform
this estimate, let us first note that the canonically normalised Goldstone boson c2 has a time
kinetic term of the form ∫

3C 33G
1
2
¤c22 ,

and so the dimension of c2, denoted as [c2], is

[c2] = :3/2 l−1/2 . (4.48)

The energy dimension of the coefficient 2 of a generic operator O,∫
3C 33G 2 O ,

can be inferred by imposing
2 [O]
l:3 = 1 , (4.49)

where [O] = : Bl<[c2]? is the dimension of O. Combining (4.48) and (4.49), we end up with

[2] = l0:1 where 0 = 1 − < +
?

2
and 1 = 3 − B − 3?

2
.

If we now use the dispersion relation l2 ∼ :2= we find

[2] = l@ with @ = 1 − < +
1
=
(3 − B) +

?

2

(
1 − 3

=

)
. (4.50)

Let us now consider, as illustrative examples, three different operators: O1 = ¤c2 (m8c2)2, O2 =
(m8c2)4 and O3 = ¤c2

2 (m8c2)2 whose coefficients 28 have energy dimensions [28] = l@8 with
8 = 1, 2, 3. Different forms of the dispersion relation then give different energy scalings of these
coefficients:
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• = = 1 ⇒ @1 = −2 @2 = −4 @3 = −3

• = = 2 ⇒ @1 = −1
4 @2 = −1

2 @3 = −5
4

• = = 3 ⇒ @1 = 1
3 @2 = 2

3 @3 = −2
3

Interestingly, for = < 3 we get @8 < 0∀ 8 = 1, 2, 3, while @1 and @2 become positive for = = 3. This
implies that all three operators are irrelevant when the dispersion relation is at most dominated by
the quartic term. This behaviour can be shown to hold for all higher derivative operators. Hence
the l2 ∼ :2 and l2 ∼ :4 theories have only UV strong coupling scales which we will denote
respectively Λ2 and Λ4. On the other hand, for l2 ∼ :6, O1 and O2 become relevant, while O3
remains irrelevant. This implies that the l2 ∼ :6 theory features both a UV and an IR strong
coupling scale which we will indicate respectively with ΛUV

6 and ΛIR
6 . The scale Λ

UV
6 is associated

with operators like O3 whose coupling grows when the energy increases, whereas ΛIR
6 is related

to operators like O1 and O2 whose strength grows when the energy decreases. In general, this
behaviour is a signal of an inconsistent EFT description.

However, one can still have a sensible EFT for the fluctuations if ΛIR
6 is below the transition

from the l2 ∼ :4 to the l2 ∼ :6 regime that happens at the scale Λ4−6
dis , provided the l2 ∼ :4

theory is always weakly coupled in its regime of validity. Thus we need to tune the coefficients
of the higher dimensional operators such that ΛIR

6 � Λ4−6
dis � Λ4. On top of this, the theory

should not become strongly coupled at lower energies when the dispersion relation still takes the
standard quadratic form. Hence we need also to require that Λ2 is above the scale Λ2−4

dis which
denotes the transition from the l2 ∼ :2 to the l2 ∼ :4 regime: Λ2−4

dis � Λ2.
The strong coupling scale Λ2 can be estimated from the coefficient of the four-leg interaction

term O2. Given that @2 = −4 in the deep IR where the dispersion relation is l2 = 22
B :

2, the
coefficient 22 scales as 22 ∼ 1/Λ4

2, where it can be shown that [50]

Λ4
2 = 27

BΛ
4 with Λ4 =

2"2
?
¤�

22
B

(
1 − 22

B

) . (4.51)

This strong coupling scale goes to infinity for 2B → 1 but for 2B � 1, which is for example
a regime interesting for large non-gaussianities, it can become very small. However, as noted
in [30], similarly to particle physics, new physics is expected to appear before reaching the
strong coupling regime. In turn, this new physics pushes the strong coupling region to higher
energies. As explained above, in our case, new physics corresponds to a change in the dispersion
relation from linear, l2 = 22

B :
2, to non-linear, l2 = :4/d2, at the energy scale Λ2−4

dis = 22
Bd.

This happens before the l2 = 22
B :

2 theory becomes strongly coupled if 2B d4 � Λ4. Moreover,
in the region where the dispersion relation is quartic, the new strong coupling scale becomes
Λ4

4 = Λ4(Λ/d)28 [30]. Hence the condition 2B d4 � Λ4 guarantees also that this strong coupling
scale is indeed larger than the one in the case with a linear dispersion relation.

As noted in [50], the strong coupling scale can also be quantified in terms of the size of
non-gaussianities, since

L3
L2
≡ 5NLZ . (4.52)
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Thus perturbation theory breaks downwhen this ratio becomes of order one. Given that Z ∼ 10−4,
this happens when 5NL ∼ 104. Notice however that CMB observations set a stronger upper bound
on equilateral non-gaussianities of the order 5NL = −42 ± 75 [2]. The relation between non-
gaussianities and strong couplings becomes even more manifest by noting that (4.52) can also be
rewritten as [30]

L3
L2
∼

(
�

Λ2

)2
, (4.53)

and so 5NL ∼ 104 when horizon exit takes place in the strong coupling region, i.e. � ∼ Λ2. Given
that 5NL ∼ 2−2

B , large non-gaussianities emerge when 2B � 1. From (4.51) it is clear that small
values of the speed of sound imply also a low strong coupling scale Λ2. However if horizon
exit occurs in a region where the dispersion relation is dominated by the quartic term, i.e. when
Λ2−4

dis � � ∼ Λ2 � Λ4, the theory should be weakly coupled. In fact, the ratio (4.52) takes an
expression different from (4.53) when evaluated in the l2 = :4/d2 region

L3
L2
∼

(
�

Λ4

)3/4
. (4.54)

Given that � ∼ Λ2 � Λ4, the theory is still weakly coupled even if 2B � 1. This implies also
that 5NL should be smaller. In fact, the expression for 5NL in the quartic regime gets modified to
5NL ∼

(
Λ2−4

dis /�
)
2−2
B which is suppressed with respect to its expression in the quadratic regime

since Λ2−4
dis � �. Hence we conclude that even a theory with small speed of sound and large

non-gaussianities close to the edge of detectability can remain weakly coupled if the dispersion
relation changes before hitting its strong coupling regime.

Notice also that, as explained in Sec. 4.3.3, large non-gaussianities might arise also in the
case where the coefficients of the higher dimensional operators are chosen such that 2B ' 1.
In fact, in this case the transitions inside the horizon between regions with modified dispersion
relations would give 5NL ∼ W=/22

B with W= which could potentially be large. This case might also
be interesting to keep the EEFToI weakly coupled since bothΛ2 andΛ4 tend to infinity for 2B → 1
(one would however still need to ensure that ΛIR

6 � Λ4−6
dis ).

One can insist on pushing the strong coupling scale to even higher energies via the appearance
of new physics again before reaching Λ4. In this case, the new physics would correspond to a
change in the dispersion relation from quartic to sextic at the scale Λ4−6

dis but we argued above that
the l2 ∼ :6 regime features both an UV and IR strong coupling scale. Hence a sensible EFT
description all the way up to the the sextic region requires to have also ΛIR

6 below Λ4−6
dis .

In addition to the scale where perturbative unitarity is lost, another fundamental scale for
the EFT of the perturbations around a quasi de Sitter background is the scale Λ1 where time
diffeomorphisms are spontaneously broken by the background. Ref. [30] showed that, for the
standard slow-roll case with 2B = 1, Λ1 = ¤q1/2 � Λ2, while for 2B � 1, Λ2 ∼ 2BΛ1 � Λ1.
Moreover Λ1 controls the size of the perturbations with respect to the background since

:3%Z (:) =
1
4

�2

"2
Pl n 2B

∼
(
�

Λ1

)4
, (4.55)
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and so at energies around the symmetry breaking scale the background cannot be integrated out
anymore to leave a theory for the fluctuations only. Hence we conclude that the cut-off of the
EEFToI should be identified as the minimum between ΛUV

6 and Λ1. As an illustrative example, a
possible hierarchy of scales which would make the EEFToI valid for the entire energy range up
to the l2 ∼ :6 region would be

Λ2−4
dis � Λ2 � ΛIR

6 � Λ4−6
dis � Λ4 � ΛUV

6 � Λ1 . (4.56)

We finally stress that cosmological observations are performed only at horizon crossing which
occurs at energies of order � where the dispersion relation might take the standard linear ex-
pression. Hence, strictly speaking, the only requirement to have a sensible EFT is � � Λcutoff.
However, we are demanding more since we want to provide a consistent theoretical framework
for the picture described in [21]. In fact, we want to be able to trust our EEFToI also in the
high energy region which determines the behaviour of modes deep inside the horizon. We want
these modes to be originally in the adiabatic vacuum of the l2 ∼ :6 theory, so that the standard
l2 ∼ :2 theory features non-Bunch-Davis initial conditions due to the transitions between regions
characterised by a different dispersion relation. In turn, these excited initial states can have very
interesting implications for cosmological observables.

4.5 Three Point Function Estimation and Calculation

In the previous section, we explored some interesting regions of the parameter space that start
with modified dispersion relation through their impact on primordial power spectrum. The
computation of three point functions, and thus the computation of non-Gaussianity of EEFToI
can help us further explore or constrain these corners of the theory. A rigorous calculation of the
non-Gaussianity can be obtained by computing the vacuum expectation value of the three point
function of Z . The three point function in the interaction picture is given by

〈Zk1(C)Zk2(C)Zk3(C)〉 = −8
∫ C
C0

3C′ 〈[Zk1(C)Zk2(C)Zk3(C), �8=C(C′)]〉, (4.57)

where Z = −�c. The interaction Hamiltonian is given by �8=C = −!8=C which includes terms
beyond quadratic order in action[50].6

Before we do a robust computation of the three point functions, let us perform a simple
analysis to see how the interaction terms in the action act under the energy scaling when the
dispersion relation is governed by l2 ∝ :6. Re-scaling energy by a factor of Σ, � → Σ� , means
that C → Σ−1C and from the dispersion relation G → Σ−1/3G. The kinetic term in the action for c
after taking the simplification of X3 = −X4 has the following form

( =
∫
3C 33G[

1
2
�1 ¤c2], (4.58)

6The details of the calculations can be found in the appendix
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where �1 is now simplified to �1 = −2"2
Pl
¤�+4"4

2−6"̄3
1�−9�2"̄2

2−3�2"̄2
3 + 27

2 �
4X3−9�3"̄4.

In the slow-roll limit �1 variation in time variables is negligible so the dimension scaling implies
for the kinetic term to remain invariant, c must scale as c → c.

We now check the scaling of a generic term in action,
∫
3C33G M<,B,? where < denotes the

number of time derivatives, B number of spatial derivatives and ? the overall powers of c. Since
G → Σ−1/3G, the spatial derivative goes as m8 → Σ1/3m8 so the contribution to action scales as

M<,B,? 3C 3G
3 → Σ−2+<+B/3M<,B,? 3C 3G

3. (4.59)

When < + B/3 < 2, this term diverges in the low energy limit of Σ → 0 and becomes relevant.
Note the powers of c cannot be more that the number of derivatives, as the time diffeomorphism
invariance of the action does not allow Goldstone boson to be produced without derivatives. This
gives us the relations ? ≤ B + <. Also, ? = 1 corresponds to linear terms, which cancel out
for on-shell solutions. Therefore, we only need to examine the relevance of these operators for
2 ≤ ? ≤ B + <, while < + B/3 < 2.

Furthermore, the spatial diffeomorphism invariance enforces B to be even. So with all these
constraints taken into account, the only possible combinations of (<, B, ?) that remain are (0, 4, 2),
(0, 4, 3), (0, 4, 4), (1, 2, 2), and (1, 2, 3)7. However, note thatM1,2,2 ∝ m ¤cmc = 1

2
m
mC

(mc)2 term
becomes M0,2,2 ∝ (mc)2 after integrating by parts, which can be absorbed into the canonical
kinetic term. Finally, if we set the restriction ? = 3 for the purpose of studying the size of
non-Gaussianity, we are left with (0, 4, 3), and (1, 2, 3), which are

(mc)2 ¤c (4.60)

m2c(mc)2. (4.61)

These terms are also produced from the terms included in the EFToI as well [28]:

O1 =
1
2
"4

2 (600 + 1)2 {>(c3)}
−−−−−→ −2"4

2 ¤c(m8c)2/02 (4.62)

and

O3 = −1
2 "̄

3
1 (600 + 1)X `

` − 1
2 "̄

2
2X 

`2
` − 1

2 "̄
2
3X 

`
aX 

a
`

{>(c3)}
−−−−−→ −1

2

(
"̄3

1 + "̄2
2� + 2"̄2

3�
)
m2
8
c(m9c)2/04. (4.63)

Under scaling � → Σ� these two terms go as

O {>(c3)}
1 → Σ−1/3O {>(c3)}

1 (4.64)

O {>(c3)}
2 → Σ−2/3O {>(c3)}

2 (4.65)

7This exercise can be done for any l2 ∝ :2= and there are always finite number of relevant operators.
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These cubic terms get additional contributions in the extended theory. The detailed calculation
can be found in the appendix A and the new contributions when we set X1 = X2 = 0 and X3 = −3X4
are the following (

X3∇`X a`∇aX ff + X4∇`X `
a∇WX Wa

) {>(c3)}

→
X3m

2
8
c(m9c)2�3

304 − ¤c(m8c)2X3�
4

02 (4.66)

and

(4.67)"̄4∇`X600∇aX `a{>(c3)} → 9"̄4�
3 ¤c(mc)2

02 .

One way of avoiding any potential strong coupling or even large non-Gaussianities, is to fine
tune the parameters of EFToI and EEFToI such that

− X3�
4 + 9"̄4�

3 − 2"4
2 = 0, (4.68)

and
1
3
X3�

3 − 1
2

(
"̄3

1 + "̄2
2� + 2"̄2

3�
)

= 0. (4.69)

Then we will not need to worry about these terms.

We can also perform a preliminary approximation to check the strenght of non-Gaussianity of
the concerned terms. Around freezing we have l ∼ � and : ∼ �/2B and approximating ¤c ∼ lc,
the ratio of contributions of these cubic terms to the second order Lagrangian can be estimated as

L ¤c(mc)2

L2
∼ (−X3�

4 + 9"̄4�
3 − 2"4

2 )
¤c(mc)2

�1 ¤c2 ∼ (−X3�
4 + 9"̄4�

3 − 2"4
2 )
l:2c3

�1l2c2

∼ (−X3�
4 + 9"̄4�

3 − 2"4
2 )
�c(�2

22
B
c2)

�1�2c2 ∼ (−X3�
4 + 9"̄4�

3 − 2"4
2 )

�

�12
2
B

c,

∼
(−X3�

4 + 9"̄4�
3 − 2"4

2 )
�12

2
B

Z ∼
(
9
"̄4
�

+ −X3 − 2
"4

2
�4

)
Δ Z

2B
Z (4.70)
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L(mc)2m2c

L2
∼

(
1
3
X3�

3 − 1
2

(
"̄3

1 + "̄2
2� + 2"̄2

3�
)) (

�
2B
c

)2 (
�
2B

)2
c

�1�2c2

∼
(
1
3
X3�

3 − 1
2

(
"̄3

1 + "̄2
2� + 2"̄2

3�
)) �2

�12
4
B

c

∼
(
1
3
X3�

3 − 1
2

(
"̄3

1 + "̄2
2� + 2"̄2

3�
)) �

�12
4
B

Z

∼

(
1
3X3�

3 − 1
2

(
"̄3

1 + "̄2
2� + 2"̄2

3�
))
�

�12
4
B

Z

∼
©­­«

1
3
X3 −

1
2

(
"̄3

1 + "̄2
2� + 2"̄2

3�
)

�3

ª®®¬
Δ Z

23
B

Z

(4.71)
The perturbation theory breaks downwhen the ratio L3

L2
becomes of order one, while as we discuss

later CMB observations set a much stronger constraints on this ratio due to contribution to the
non-Gaussianity. However, as we see given that amplitude of curvature perturbation are of order
10−5 implying ZΔ Z ∼ 10−15, then it is reasonable to expect that there is a viable window of
parameter space where strong coupling is avoided.

To see the restrictions on the size of non-Gaussianity from the CMB observations, we go back
to more rigorous calculation of non-Gaussianity. As we can see from the equation (4.57), we will
first need to expand the original action and obtain the cubic term in perturbations to compute the
three point functions, and the size of non-Gaussianity 8. Using the standard technique of quantum
field theory we promote Z: to an operator in terms of the creation and annihilation modes, 0†k, 0−k
and the mode function 5 (k, C)

Z(k, C) = 0−k 5 (−k, C) + 0†k 5
∗(k, C). (4.72)

The annihilation and the creation operators satisfy the canonical commutation relations [0k, 0†k] =
(2c)3X3(k − k′). The mode function 5 (k, C) satisfies the Wronskian condition ¤5 (k, C) 5 ∗(k, C) −
¤5 ∗(k, C) 5 (k, C) = 28. Note that the Lagrangian and the action are writtin in terms of c, and we are
interested in the comoving curvature perturbation, Z = −�c, and its bispectrum

< Z3 > . (4.73)
We first transform the terms �8=C(c) → �8=C(Z) and also for convenience switch to conformal
time g instead of C. As we pointed out earlier, the most dangerous contributions from �8=C or !8=C
are coming from terms ¤c(m8c)2 and m2

8
c(m9c)2. In terms of Z , these terms become

¤c(mc)2 → − 1
�3 Z

′(mZ)2 (4.74)

m2c(mc)2 → − 1
�3 m

2Z(mZ)2. (4.75)

8Refer to the Appendix (A) for the full list of terms

58



Now, to numerically compute the bispectrum, we need to carry out the computation in terms of
the variable D: = −

√
�1

0
�
Z: (g) as a function of the dimensionless variable G = 2B:g. Under

these changes of variables, contributions from these terms to three point function are obtained as
following,

1. contributions from the ¤c(mc)2 term to 〈Z(k1)Z(k2)Z(k3)〉:

= −8(2c)3X3(k3 + k2 + k1)
1

�3
1

√
26
B_

2\2

�8G3
5

(2B\)5
1
:6

1

(
−X3�

4 + 9"̄4�
3 − 2"4

2

) ∫ G 5
−∞

(G′3)23G′3

(4.76)

D:3(G 5 )D∗:3
′(G′3)D:2(

_

\
G 5 )D∗:2

(
_

\
G′3)D:1(\−1G 5 )D∗:1

(\−1G′3)(\2 − 12 − _2) · 2 + 2.2 (4.77)

− 8(2c)3X3(k3 + k2 + k1)
1

�3
1

√
26
B_

2\2

�8G3
5

(2B\)5
1
:6

1

(
−X3�

4 + 9"̄4�
3 − 2"4

2

) ∫ G 5
−∞

(G′3)3G′3 (4.78)

D:3(G 5 )D∗:3
(G′3)D:2(

_

\
G 5 )D∗:2

(
_

\
G′3)D:1(\−1G 5 )D∗:1

(\−1G′3)(\2 − 12 − _2) · 2 + BH<. (4.79)

2. contributions from the m2c(mc)2 term to 〈Z(k1)Z(k2)Z(k3)〉:

= −8(2c)3X3(k3 + k2 + k1)
1

�3
1

√
26
B_

2\2

�8G3
5

27
B_\

5
1
:6

1

(
1
3
X3�

4 − 1
2

(
"̄3

1� + "̄2
2�

2 + 2"̄2
3�

2
)) ∫ G 5

G0

(G′3)33G′3

(4.80)
D:3(G 5 =)D∗:3

(G′3)D:2(qG 5 =)D∗:2
(qG′3)D:1(\−1G 5 =)D∗:1

(\−1G′3)(3\2 − 1 − _2) + 2.2 + BH<, (4.81)

where we have defined parameters _ ≡ :2
:1

and \ ≡ :3
:1

and q ≡ _/\ which determine the shape of
the triangles formed by k1, k2 and k3.

In early analysis of CMB data the local non-Gaussinaity corrections for curvature perturbation
were expressed in terms of the quantity 5#! , as [96]

Z = Z! −
3
5
5#!Z

2
! , (4.82)

where Z! is the linear approximation of the perturbation. For =B − 1 � 1, this assumption,
which only considers local contributions to non-Gaussianities, leads to the following relationship
between the three point function and the dimensionless power spectrum of Z ,

〈Z(k1)Z(k2)Z(k3)〉 = (2c)7X3(k1 + k2 + k3)
Δ2
Z

:3
1:

3
2:

3
3
×

{
− 3

10
5#!

(
:3

1 + :3
2 + :3

3

)}
. (4.83)

As we saw earlier, the calculation of the three point function for different interactions, in a top
down approach does not necessarily lead to the local form above. However, one can still define
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a quantity which is similar and reduces to this definition above for local form. In general writing
contributions to bispectrum as

〈Z(k1)Z(k2)Z(k3)〉 = (2c)7X3(k1 + k2 + k3)
Δ2
Z

:3
1:

3
2:

3
3
× A(:1, :2, :3), (4.84)

we can then define 5#! through this relation

A(:1, :2, :3) = − 3
10
5#!

(
:3

1 + :3
2 + :3

3

)
Therefore the relationship between 5#! and bispectrum can be derived from following rela-

tions:
〈Zk1(C)Zk2(C)Zk3(C)〉 = (2c)3X3(k1 + k2 + k3)��(:1, :2, :3), (4.85)

which leads to

5#! = −10
3
��(:1, :2, :3)

1
(2c)4Δ2

Z

∏
:3
8∑
:3
8

. (4.86)

Now, to connect to our numerical calculations, we further define

@̃m2c(mc)2 ≡ �8

�3
1(2B)6

(
1
3
X3�

4 − 1
2

(
"̄3

1� + "̄2
2�

2 + 2"̄2
3�

2
))

(4.87)

@̃ ¤c(mc)2 ≡ �8

�3
1(2B)6

(
−X3�

4 + 9"̄4�
3 − 2"4

2

)
(4.88)

@̃8 �(:1, :2, :3) ≡
4c2�2

1

�822
B

��(:1, :2, :3) (4.89)

we obtain the equation for 5#! in terms of �:

5
(8)
#!

= −10
3

∏
8 :

3
8∑

8 :
3
8

1
W2
B

@̃8 �(:1, :2, :3), (4.90)

where we used the relation Δ Z = WB 1
4c2

�4

�12B
to write in terms of WB, which we discussed in section

(??). Now we can numerically compute

5
(8)
#!

@̃8
= −10

3

∏
8 :

3
8∑

8 :
3
8

1
WB
�(:1, :2, :3). (4.91)

For convenience, we take the ratio of the wavenumber : such that :2 → :2/:1 = _ and
:3 → :3/:1 = \. Then the above equation becomes

5
(8)
#!

@̃8
= −10

3
:6

1_
3\3

1 + _3 + \3
1
WB

3�(:1, _, \), (4.92)
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or

5
(8)
#!

= @̃8 ×
{
−10

3
:6

1_
3\3

1 + _3 + \3
1
WB
�(:1, _, \)

}
. (4.93)

To make the connection with observations, the most recent CMB observation by Planck collabo-
ration gives a bound on the size of the equilateral non-Gaussianity of the order 5#! ' −26 ± 47
[51]. I calculated the left hand side of the equation (4.92) can be computed numerically, setting
the bound on @̃.

4.6 Results

In section 4.3.3, we had numerically computed the value of canonical mode function D(G), G =
2B:g. The computation depends on values of U0 and V0 which themselves are compositions of
other parameters in EEFToI action. We found empirically that the amplification to the power
spectrum WB was the largest within the region

− 0.5 ≤ U0 ≤ −0.1 and 0 ≤
U2

0
4
≤ V0 ≤

U2
0

3
. (4.94)

In fact, when setting U0 = −0.18 and V0 = U2
0/4 we obtained the largest values ( WB ≥ 14.6)

compared to other values of U0 and V0 within that region. Next, substituting our numerically com-
puted D: (G) in equations 4.76 and 4.80, we proceeded to numerically calculate the contributions
to bispectrum from these terms.

From physics point of view, a more interesting applications of the EEFToI and EFToI is when
they result in larger values of WB or significant deviations from the Bunch Davis initial conditions.

In order to numerically set the initial conditions in our calculations in the regime where
:6 term dominates, we chose the value of G8=8C80; to be where V0G

4 is far greater than U0G
2

(G8=8C80; ∼ −50|U0/V0 |1/2). For the upper limit of the integration, we choose G 5 8=0; = −0.000019.

Without loss of generality, we set the value of :1 = 110. We explored the triangle shapes in
the region of 0.2 ≤ _ ≤ 1 and 0.2 ≤ \ ≤ 1. The choice of the lower bound of 0.2 for _ and \
were due to the limitation of our numerical method. For all the values of D:8 to be far enough
into the past such that G8=8C80; ∼ −50|U0/V0 |1/2, we took the values of _ and \ such that their ratios
varied within 0.2 and 5. However, since the power of _ in the numerator and the denominator of
(4.92) are both 3, we don’t expect the right hand side to diverge as _ → 0. Due to the symmetry
similar argument applies to when \ → 0.

The figure (4.8) displays the contributions to non-Gaussianity from the two potentially dan-
gerous operators that we have discussed before with fixed :1 and varying _ and \. As it can

9This corresponds to choosing different values of g 5 for different : , but such that they have exited the horizon.
Also, the result of the computation by changing G8=8C80; further into the past and G 5 8=0; into the present resulted in
negligible difference for the value of WB .

10Since �(:1, :2, :3) has :−3
1 and the coefficients in (4.92) has :6

1, the final result is independent of the value of :1.
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seen that the value of 5#!/@̃8 ∼ ±104 for both operators and it is not diverging. Interestingly the
values with larger magnitudes correspond to what is known in literature as flattened triangles.
This is in agreement with some earlier results that point out excited states at initial conditions can
result to enhancement of non-Gaussianities for these shapes [21]. With setting the conservative
observational bound of 5#! <∼ 10 we get a bound of |@̃8 | ∼ 10−3.

Finally, we can ask what do all these constraint mean in terms of the original couplings
and coefficients in EEFToI action, and whether there are corners of the parameter space that
lead to scenarios we have explored. The table 4.6 shows the list of conditions and constraints
we have considered within the EEFToI. The primary parameters we included in EEFToI were
"2, "̄1, "̄2, "̄3, "̄4, X3, �, "

2
pl
¤�.

Constraints Note
U0 < 0 Regions where the power spectrum is enhanced. Note that for U0 > 0 the

power spectrum is suppressed (not interesting)
V0 > 0 To avoid tachyonic instabilities (Note X3 :> 0)
Δ�.(
Z
∼ 10−9 The constraint from power spectrum of the CMB observation. Note that

W ∼ 10 at most.
� >

√
�1

"?;
Decoupling limit

0 ≤ 22
B,ℎ
≤ 1 Speed of sound for the tensor modes (Note: "̄2

3 < 0)
0 ≤ 22

B = �1
�1
≤ 1 To avoid superluminality in the regime l2 ∼ :6

�1 ≥ 0 To avoid ghosts at leading order
¤� < 0 To satisfy the null energy condition
@̃8 ≤ 10−3 Constraints on 5#! from the observations

The figure 4.9 displays the result of a search algorithm we performed to find valid values of
parameters of EEFToI imposing conditions 4.6. I also have imposed an additional cutoff on
all the mass dimension parameters to be below the Planck scale, since we do not expect semi-
classical gravity to be valid above that scale. As one can see in the figure 4.9, the result of
the search algorithm indicates that there exists values of parameters that are allowed under the
above constraints. In these regions, we have a sensible description of the extended effective field
theory of inflation, which can rise from different initial conditions with a dispersion relations
:6 ∼ l2[21].

4.7 Conclusions

In this work we extended the formalism of the Effective Field Theory of Inflation, proposed earlier
in [50], by including in the unitary gauge Lagrangian operators with mass dimensions three and
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four. There is a healthy combination of operators in this extended theory that allows sixth order
correction to the dispersion relation for scalar perturbations. Modified dispersion relations are
known to give rise to interesting effects on CMB observables due to non-Bunch-Davies initial
conditions [21].

In this chapter we provided a theoretical framework to motivate the emergence of modified
dispersion relations. In particular, we discussed the conditions underwhich theExtendedEffective
Field Theory of Inflation is weakly coupled all the way from low energy to the UV region where
the dispersion relation becomes dominated by the sextic term. In this situation, the evolution of
the modes can be consistently followed from deep inside the horizon to super-horizon scales.

We also analysed the phenomenological implications of our EEFToI for the fluctuations
around a quasi de Sitter background. We found that the tensor perturbations are untouched.
On the other hand, various scenarios for the scalar perturbations can occur, depending on the
parameters of the dispersion relation. If the coefficients of the quartic and the sextic dispersion
relation are positive, the scalar power spectrum is suppressed. However, if the quartic coefficient
is negative, even for the case where the mode does not become tachyonic before crossing the only
turning point, the scalar power spectrum can be enhanced. This in turn leads to a suppression of
A with respect to models with Lorentzian dispersion relation.

We proceeded to compute the bispectrum and the size of the non-Gaussianity to constrain
the parameters of EEFToI. With the computed power spectrum, we set some constraints on the
parameters by computing the non-Gaussianity of the theory. Since the observations have set very
small bound on non-Gaussianity with 5#! ∼ −26 ± 47, and the computed value of 5#!/@̃8 were
up to orders of 104, we set a constraint on values of @̃ ≤ 10−3. We found that there is an allowed
region of parameters in the action where we do have a sensible description of the EEFToI, with
initial conditions set with dispersion relations :6 ∼ l2. In future, it would be interesting to
see if we can have parameters and operators that will allow for orders higher than :6 within the
framework of EEFToI.
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Figure 4.1: Plot of WB as a function of V0 when U0 and V0 are both positive and 0.01 ≤ U0 < 1
with 0 ≤ V0 ≤ 2.
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Figure 4.2: Plot of WB as a function of V0 when U0 and V0 are both positive and 1 ≤ U0 ≤ 2 with
0 ≤ V0 ≤ 2.
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Figure 4.8: Calculation of the quantity 5=;/@̃8 for the terms ¤Z(mZ)2 (above) and m2Z(mZ)2 (below)
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Figure 4.9: Parameters search of EEFToI model under the constraints listed in table 4.6. We
searched for allowed values of "2, "̄1, "̄2, "̄

2
3 , "̄4, X3, �, ¤�. Furthermore, we set an additional

cutoff at 1"pl, except for X3 which is dimensionless. Although the points in the plots are scattered,
this is due to the method I carried out for searching through parameters. Instead of searching the
entire grid, which would take enormous computation time, I took a random search method. Note
that the histogram does not represent the probability of each parameter. It just means that the
algorithm searched in those respective regions more frequently.
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Part II

Reconstructing the Expansion History of
the Universe from Observations
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Chapter 5

Model Independent Approach to Λ��"

5.1 Introduction

The discovery of the acceleration of the expansion of the Universe [124, 119] led to the emergence
of the ΛCDM paradigm, further supported by the study of the cosmological microwave back-
ground [33, 120] and the large-scale structures of the Universe [71, 10]. In this paradigm, gravity
is described by general relativity (GR), and the energy budget is dominated by the cosmological
constant as dark energy (DE), responsible for the acceleration of the expansion, and a smooth,
cold dark matter component. However, the nature of DE is one of the biggest mysteries of mod-
ern physics, and the simplest candidate, the cosmological constant, poses theoretical problems
[149, 118]. Alternatively, general relativity may not be the correct theory to describe gravity, and
the acceleration may reflect departure from GR.

At the background level, for a flat universe, the expansion of the smooth Universe ℎ(I) =
�(I)/�0 follows

ℎ2(I) = Ωm(1 + I)3 + ΩDE(I), (5.1)

where �0 is the Hubble constant today, Ωm the matter energy density today,

ΩDE(I) = (1 −Ωm) exp
(
3
∫ I

0

1 + F(I′)
1 + I′

dI′
)
, (5.2)

the DE contribution to the energy density, and F(I) = %DE/dDE is the DE equation of state. For
a cosmological constant Λ, F ≡ −1 and ΩDE(I) = ΩΛ ≡ 1 −Ωm, but current data do not rule out
models such as quintessence or dynamical DE models [116, 150].

Meanwhile, at the perturbation level, the growth rate 5 is defined as

5 (I) =
dln X
dln 0

' Ω
W
m(I), (5.3)
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where W is the growth index [105, 107, 106], and

Ωm(I) =
Ωm(1 + I)3

ℎ2(I)
(5.4)

is the matter contribution to the energy density at a given redshift.
Observationally, redshift-space distortion measures

5 f8(I) ' f8(0)ΩW
m(I) exp

(
−

∫ I

0
Ω
W
m(I′)

dI′

1 + I′

)
, (5.5)

wheref2
8 (I) is the mass variance in a 8 ℎ−1 Mpc sphere. For simplicity, we will denotef8 = f8(0)

when there is no ambiguity.
From eq. (5.4) and (5.5), it is clear that 5 f8 depends on (Ωm, W, f8) as well as the expansion

history ℎ(I). In general relativity (GR), W ' 0.55, while modified theories of gravity such as
5 (') [59] or DGP [67] predict different (possibly scale-dependent) values of W [107]. Therefore,
5 f8 is a powerful probe of gravity. Moreover, joined measurements of ℎ(I) and 5 f8 can help
break degeneracies between modified gravity theories and dark energy [105, 106]. Therefore, it
has been used to test the ΛCDMmodel or alternative gravitys theories [113, 32, 29, 138, 77, 129,
110, 114, 142].

In this chapter, we aim to constrain some key cosmological parameters, namely, Ωm, f8, and
W, by fitting the growth data using model-independent expansion histories that do not assume any
DE model.

§ 5.2 describes the data and method, our results are shown in § 5.3. § 5.4 explores the effects
of restricting the DE density to be positive at all redshift, and our conclusions are drawn in § 5.5.

5.2 Method

We used reconstructed expansion histories from the Joint Lightcurve Analysis [34] and combined
them with growth measurements.

5.2.1 Model-independent reconstructions of the expansion history

We reconstructed the expansion history from the joint light-curve analysis (JLA) compilation
(unbinned data with full covariance matrix) using the iterative model-independent smoothing
method [137, 136, 99]. Starting from some initial guess ˆ̀0(I), we calculate the smooth distance
modulus at any redshift I at iteration = + 1 as

ˆ̀=+1(I) = ˆ̀=(I) + #(I)
∑
8

`(I8) − ˆ̀=(I8)
f2
8

exp
©­­«−

ln2
(

1+I8
1+I

)
2Δ2

ª®®¬, (5.6)
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where

#−1(I) =
∑
8

1
f2
8

exp
©­­«−

ln2
(

1+I8
1+I

)
2Δ2

ª®®¬ (5.7)

is a normalization factor, `(I8) and f8 are the measured distance modulus and its associated error
at redshift I8, and Δ = 0.3 is the smoothing length.

We then obtain the smooth luminosity distances

3L(I) = 10`/5−5Mpc. (5.8)

Assuming a flat universe, we can calculate

ℎ(I) =
2

�0

[
d
dI

(
3L(I)
1 + I

)]−1
. (5.9)

Varying the initial guess ˆ̀0, we end up with few thousands reconstructions and calculate their
j2 as

j2
SN,= = %-T

=C−1%-=, (5.10)

where

%-= = -̂= − -8 (5.11)

is the residual vector for a given reconstruction = and C is the covariance matrix provided by [34].
We then only keep reconstructions such that j2

SN < j2
SN,ΛCDM. These reconstructions represent

a non-exhaustive sample of plausible expansion histories.

We should note that the method of smoothing we used in this work is in fact insensitive to the
initial conditions and choice of the smoothing scale [137, 136]: whatever the initial conditions,
the method converges to the solution preferred by the data. However, they will approach this
final solution via different paths. The central idea of using the iterative smoothing in this work is
to come with a non-exhaustive sample of plausible expansion histories of the Universe directly
reconstructed from the data, therefore we start the procedure with several initial conditions and
combine the results at the end.

5.2.2 Combining the likelihoods

For each reconstructed ℎ=(I), we can calculate 5 f8 for some (Ωm, W, f8) by computing the integral
in eq. (5.5). We can thus explore the parameter space, and compare to growth measurements
to obtain a j2 for the growth data. We used a compilation of growth data points from 2dFGRS
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Figure 5.1: exp(−Δj2/2) (with respect to the best-fit ΛCDM model) versus Ωm for each recon-
struction, fixing (W, f8) = (0.55, 0.80). The red line shows the ΛCDM case.
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Figure 5.2: Superposition of the Δj2 < 0 (with respect to the best-fit ΛCDMmodel) regions for
W = 0.55 (left) and f8 = 0.80 (right) in the model-independent case in blue. We also show in red
the 1f and 2f regions of the ΛCDM model.

[143], WiggleZ [37], 6dFGRS [35], the VIPERS [60], the SDSSMain galaxy sample [84], 2MTF
[85], and BOSS DR12 [75]. We did not include the FastSound data [115] at I = 1.4, since our
smooth reconstructions do not reach that redshift.

Since both datasets are independent, we can multiply the likelihood, or equivalently sum the
j2. Since the growth data are mutually independent, their j2 is simply defined as

j2
5 f8

=
∑
8

(
ˆ5 f8(I8 |W,Ωm, f8) − 5 f8,8

f 5 f8,8

)2

. (5.12)

The total j2
= for reconstruction = is thus j2

= = j2
SN,= + j2

5 f8,=
. We can then find the parameters

that minimize the j2, and their associated confidence intervals.

5.3 Results

Using the reconstructed expansion histories ℎ(I), we calculate the j2 as defined in § 5.2.2.
First, we fixed (W, f8) = (0.55, 0.80), and allow Ωm to vary. Since the reconstructed ℎ(I) were
obtained assuming a flat universe, Ωm is allowed to vary between 0 and 1. For reference, we
calculate the j2 of the ΛCDM model, and find its minimum j2

min,ΛCDM. We are interested in
Δj2 = j2 − j2

min,ΛCDM, the difference with respect to the best-fit ΛCDM case. Fig. 5.1 shows
L = exp(−Δj2/2) as a function ofΩm for each reconstruction (in blue). Therefore, combinations
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of ℎ and Ωm with a better j2 than the best-fit ΛCDM model (Δj2 < 0), have a likelihood larger
than one. For comparison, we also show in red LΛCDM = exp(−Δj2/2) for the ΛCDM case. The
model-independent reconstructions seem to favour slightly lower Ωm with respect to the ΛCDM
case. However, they are fully consistent with the ΛCDM case.

We then allow W or f8 to vary together with Ωm, while fixing the third parameter to its
fiducial value (f8 = 0.80 or W = 0.55). In both cases, we calculate j2 for the ΛCDM case,
and find the regions where Δj2 < 2.3 and Δj2 < 6.18, corresponding to 1f and 2f for two
degrees of freedom. Fig. 5.2 shows in red the 1f and 2f regions of the ΛCDM case. For each
model-independent reconstruction, we then calculate the j2 of the model-independent case, and
find the regions in the (f8,Ωm) and (W,Ωm) planes where the reconstruction give a better j2 than
the best-fit ΛCDM, namely, Δj2 < 0. Fig. 5.2 shows in blue the superposition of these regions
over all reconstructions in the (Ωm, f8) (left) and (Ωm, W) (right) planes. Therefore, if a point
(f8,Ωm) (or (W,Ωm)) is located in the blue region, there exists at least one reconstruction that,
combined with (f8,Ωm) (or (W,Ωm)), yields a better j2 than the best-fit ΛCDM model.

Fixing W = 0.55 yields higher preferred values for Ωm, while fixing f8 = 0.80 yields lower
preferred values. However, the model-independent approach is fully consistent with ΛCDM.
Moreover, it can be seen that, when ℎ(I) is not restricted toΛCDM, there is a stronger degeneracy
in the parameters. Namely, it is possible to find expansions histories that, coupled with low
values of Ωm and W, or with high values of Ωm and f8, give a better fit to the combined data.
The degeneracy in the parameters can be understood from eq. 5.5: for fixed f8, ΩW

m should stay
roughly constant, , therefore lower Ωm are compensated by lower W. Similarly, for fixed W, Ωmf8
should stay constant, therefore lower Ωm demand higher higher f8. This is consistent with the
results of [138], with slightly tighter constraints.

Finally, we vary all three parameters (Ωm, W, f8) simultaneously. Fig. 5.3 shows in red the
projections of the Δj2 < 3.53 and 8.02 regions of the ΛCDM case, corresponding to 1f and
2f for three degrees of freedom, onto the (f8, W) (top-left), (f8,Ωm) (bottom-left), and (W,Ωm)
(bottom-right). For the model-independent case, we proceed as in Fig. 5.2, and find the Δj2 < 0
regions for each reconstruction. We then show in blue the projection onto the three planes of the
superposition of the Δj2 < 0 regions over all reconstruction. Again, the blue region shows the
region of the parameter-space where there is at least one model-independent reconstruction that
yields a better j2 than the best-fit ΛCDM model.

The model-independent joint constraints on (Ωm, W, f8) are now very broad. They are fully
consistent with the ΛCDM model. The Δj2 < 0 region is consistent with both Ωm = 0 and
Ωm = 1, while it allows W between about 0.1 and 1, and f8 between 0.25 and 1.25.

5.4 Dark energy constraints

In the previous section, we considered all combinations of (Ωm, ℎ(I)), with the only restriction
Ωm < 1, since the ℎ(I) were obtained assuming a flat universe. Rewriting equation (5.2) as

Ωde(I) = ℎ2(I) −Ωm(1 + I)3, (5.13)
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Figure 5.3: Superposition of the Δj2 < 0 (with respect to the best-fit ΛCDM model) regions for
(Ωm, W, f8) for the model-independent case (blue). In red we show the 1f and 2f regions for the
ΛCDM case.
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Figure 5.6: Blue: Truncation of the Δj2 < 0 (with respect to the best-fit ΛCDMmodel) regions
for W = 0.55 (left) and f8 = 0.80 (right) in the model-independent case using eq. (5.14) as a hard
prior. Red: 1f and 2f regions of the ΛCDM model.

another constraint arises. Namely, the equation of state F is well defined, i.e., does not have a
singularity, if ΩDE(I) > 0 at all redshift.

Therefore, even though some models can have negative DE density [132, 130], in this section,
we only consider combinations of ℎ(I) and Ωm respecting the positivity condition

ℎ2(I) −Ωm (1 + I)3 ≥ 0 (5.14)

for all I.
We can then use this to reconstruct the dark energy equation of state

Fde(I) =
2
3 (1 + I) ℎ

′(I)
ℎ(I) − 1

1 −Ωm(1 + I)3ℎ−2

=
1
3

2@ − 1
1 −Ωm(I)

,

(5.15)

where

@(I) = (1 + I)
ℎ′(I)
ℎ(I)

− 1 (5.16)

is the deceleration parameter.
The top-, middle-, and bottom panels of Fig. 5.4 show the expansion history ℎ(I), the $<

parameter [131]

$<(I) =
ℎ2(I) − 1

(1 + I)3 − 1
, (5.17)
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Figure 5.7: Blue: Truncation of the Δj2 < 0 (with respect to the best-fit ΛCDMmodel) regions
for (Ωm, W, f8) for the model-independent case using eq. (5.14) as a hard prior. Red: 1f and 2f
regions of the ΛCDM case.

and the deceleration parameter @(I) for a random choice of about 5% of the reconstructions. For
a flat ΛCDM Universe, $<(I) ≡ Ωm, thus $< is a litmus test for flat ΛCDM.

The top and bottom panels of Fig. 5.5 respectively show the matter density Ωm(I) and the
equation of state of DE for some combination of (Ωm, ℎ(I)) verifying the positivity condition
(5.14), colour-coded by the index of the reconstruction. The expansion histories that are closer
from ΛCDM have a $< parameter close to constant, and their @(I) can cross 0, while some
reconstructions further from ΛCDM do not cross 0. When Ωm(I) crosses 1, eq. (5.14) ceases to
be valid, therefore none of the lines shown here crosses 1.

We can now add the positivity condition (5.14) as a hard prior onΩm in the previous analysis.
Indeed, large values of Ωm combined with some reconstructions can lead to negative DE density,
and these combinations should thus be rejected. Figs. 5.6 and 5.7 show in blue the superposition
over all reconstructions verifying equation (5.14) of the projected Δj2 < 0 regions of the
parameter space. The red contours are unchanged with respect to Figs 5.2 and 5.3.
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In Fig. 5.6, while the f8 = 0.8 case (right-hand panel) is not affected much, since it preferred
lower values of Ωm, the allowed region for the W = 0.55 case is drastically reduced, and only a
small space of the original Δj2 < 0 regions (that is, before applying eq. (5.14)) is allowed. This
region is located in the 2f region of the ΛCDM case.

In Fig. 5.7, the Δj2 < 0 regions in each projection are also truncated with respect to Fig. 5.3,
restricting the lower range of f8 and the higher range of W and Ωm.

The positivity condition (5.14) is thus a very strong constraint on the cosmological parameters,
since it forbids large values of Ωm & 0.4. Indeed, for these values, the DE density crosses zero
within our data range, therefore these values are not allowed here. On the other hand, for low
enough values, ΩDE(I) never crosses zero.

5.5 Discussion and conclusion

Using model-independent reconstructions of the expansion history from type Ia supernovae data,
we fit the growth data and obtain constraints on (Ωm, W, f8). Thesemodel-independent constraints
on the cosmological parameters are broader than the ΛCDM ones, but fully consistent. When all
three cosmological parameter are let free, they are not well constrained, and it is possible to find
expansion histories with cosmological parameters that are far from the ΛCDM constraints that
give a reasonable fit to the data.

However, when restricting the combinations of Ωm and the reconstructed expansion histories
ℎ(I) that yield a positive dark energy density parameter (ℎ2(I) −Ωm(1 + I)3 > 0), the constraints
on the cosmological parameters become stronger. Moreover, when imposing GR, i.e., fixing
W = 0.55, the model-independent contours are truncated and fully contained within the ΛCDM
ones, showing strong evidence in favour of ΛCDM. That is, combinations of large Ωm with
expansion histories that are too different from ΛCDM are excluded. It should be noted that in
[105], W depends on F following W(F) = 0.55 + 0.05F(I = 1), therefore fixing W = 0.55 is
not completely model-independent. However, we expect it to have little influence on the results
presented here.

Our constraints are more stringent than [138] thanks to the better quality of the data and
the introduction of the DE density positivity condition. The results are consistent with a flat-
ΛCDMUniverse and gravity described by general relativity, althoughmodified theories of gravity
predicting different growth index cannot be ruled out at this stage. The combined j2 being
currently dominated by the supernovae data, better growth measurements are needed to further
constrain gravity theory.

Future surveys such as the Dark Energy Spectroscopic Instrument [64] will bring down
the errors on the growth measurements, while surveys such as the Wide Field Infrared Survey
Telescope [144] and the Large Synoptic Survey Telescope [88] are expected to observe thousands
of supernovae, increasing the quality of the data and covering a larger redshift range.
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5.6 Data visualization

For visualization purpose, Fig. 5.8 shows some reconstructed 5 f8 verifying eq. (5.14) and with
j2 < j2

ΛCDM.
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Chapter 6

Summary

In this thesis, we have explored different theories and approaches to addressing some of the
puzzles in cosmology. Specifically, in part I, we focused on the aspect of the early universe.
We introduced two different approaches to understanding very early era of the expansion history
of universe. In chapter 2, we introduced Cuscuton gravity, a form of modified gravity via an
auxiliary field without its own dynamics. By studying the evolution of perturbations given a toy
model of Cuscuton gravity, we showed that a non-singular bouncing universe can be realized
without having any catastrophic instabilities. There are other important steps for the theory such
as matching with the observational values of the amplitude and scale invariance of the power
spectrum. In fact, recently the analysis of power spectrum for both scalar modes and the tensor
modes have been studied in [93].

In chapters 3, I briefly reviewed the effective field theory approach to inflation (EFToI). We
first write down the most generic action that satisfies 3-diff invariance, and then restore the time
symmetry. Different models of single field inflationary scenarios, including the canonical slow-
roll inflation, can be realized through this approach. In chapter 4 we extended the formalism
of the EFToI to include the terms that produce :6 ∼ l2 dispersion relations. These terms were
previously excluded in the original studies of the EFToI since :6 dispersion relations would be
strongly coupled at low energy scales. However, it has been shown that in certain regions of
parameter space, the theory remains weakly coupled throughout the history of its evolution. We
compute the power spectrum and the non-Gaussianity of the theory to constrain these possible
regions of parameter space, and show that there exists some domain where the theory is valid.

In part II, we switch our focus to the observables of the late universe. From the supernova
type Ia data, we reconstruct the expansion history of the universe and then fit the growth rate
measurements to the reconstructed history. We then put a model independent cosmological
constraints on some of the key observable parameters of Λ��" , including the mass density
parameter Ω<. The constraints generally agree with the concordance model, but the precision of
the data is not yet sufficient to rule out some theories of modified gravity. Furthermore, when
we require that the dark energy density be positive at all redshift, the constraints seems to be
in favor of Λ��" model over other theories of gravity and universe. Stronger equipment and
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more precise observation will provide us with a stronger restrictions and constraints on possible
models of the universe. For example, surveys such as the Wide Field Infrared Survey and the
Large Synoptic Survey Telescope are expected to give us the improved quality of the data from
the supernovae observations.

Overall, with more novel ideas being conjectured every day and advancing technologies to
back up the theories with data, we one day hope to have more complete understanding of the
history of the universe from the very early era to the present.
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Appendix A

The Interaction Lagrangian for the EEFToI

From the terms in (4.2), we have set X1 = X2 = 0. In this Appendix I give the full expansion of
the "̄4, X3 and X4 terms of order c3

The contributions from the "̄4 term to the c3 Lagrangian: 03∇`X600∇aX `a

=
6�m8cm9m9cm8 ¤c

0
−

2�2m8c
2m2

9
c

0
+ 180�3 ¤cm8c2 − 140�2 ¤cm8cm8 ¤c − 80� ¤c ¥cm2

8 c + 1803�2 ¤c2 ¥c

+
m9cm8m9cm8m

2
:
c

03 +
m8cm8m9cm

2
:
m9c

03 +
2 ¥cm8m9c2

0
+
m9cm8 ¤cm8m9 ¤c

0
+

5m8 ¤cm8m9cm9 ¤c
0

+
m8cm8 ¤cm9m9 ¤c

0
(A.1)
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The contributions from the X3 term to the c3 Lagrangian: 03∇`X a`∇aX ff

= 30(C) ¤c (m8(c)) 2�(C)4 + 180(C)3 ( ¤c)2 ¥c�(C)3 − 210(C) ¤cm8(c)m8 ( ¤c)�(C)3 + 60(C) ( ¤c)2 m2
8 (c)�(C)3

−
(m8(c)) 2m2

9
(c)�(C)3

0(C)
+ 30(C) ¤cm8(c)m8 ( ¥c)�(C)2 +

4 ¤cm8(c)m8
(
m2
9
(c)

)
�(C)2

0(C)

− 60(C) ¤c ¥cm2
8 (c)�(C)2 − 30(C) ( ¤c)2 m2

8 ( ¤c)�(C)2 +
2m8 ( ¤c) m8

(
m9 (c)

)
m9 (c)�(C)2

0(C)

+
9m2

8
(c)m9 (c)m9 ( ¤c)�(C)2

0(C)
−

4 ¤cm2
8

(c)m2
9
(c)�(C)2

0(C)
+ 180(C)3 ( ¤c)3 ¤�(C)�(C)2

− 3
2
0(C) ¤c (m8(c)) 2 ¤�(C)�(C)2 +

3 ¥c
(
m8

(
m9 (c)

) ) 2�(C)
0(C)

+
3m2

8
(c)

(
m9 ( ¤c)

) 2�(C)
20(C)

+
5 ¤cm8 ( ¤c) m8

(
m2
9
(c)

)
�(C)

0(C)
+

5m8 ( ¤c) m8
(
m9 ( ¤c)

)
m9 (c)�(C)

20(C)
+

17m8 ( ¤c) m8
(
m9 (c)

)
m9 ( ¤c)�(C)

20(C)

+
3m2

8
( ¤c) m9 (c)m9 ( ¤c)�(C)

20(C)
−

4m2
8

(c)m9 (c)m9
(
m2
:
(c)

)
�(C)

0(C)3 −
m8(c)m8 ( ¥c) m2

9
(c)�(C)

0(C)

−
¥cm2
8

(c)m2
9
(c)�(C)

0(C)
+

2 ¤cm2
8

(c)m2
9

( ¤c)�(C)
0(C)

+
4m2

8
(c)m9 (m: (c)) m:

(
m9 (c)

)
�(C)

0(C)3

+
2
(
m8

(
m9 (c)

) ) 2m2
:
(c)�(C)

0(C)3 −
2m8(c)m8

(
m2
9
(c)

)
m2
:
(c)�(C)

0(C)3 − 270(C) ( ¤c)2 m2
8 (c) ¤�(C)�(C)

+
3 (m8(c)) 2m2

9
(c) ¤�(C)�(C)

20(C)
−

4 ¤cm8
(
m2
9
(c)

)
m8

(
m2
:
(c)

)
0(C)3 −

7m8
(
m9 (c)

)
m8

(
m2
:
(c)

)
m9 ( ¤c)

20(C)3

−
3m8(c)m8 (m: ( ¤c)) m2

9
(m: (c))

20(C)3 −
m2
8

( ¤c) m2
9

(m: (c)) m: (c)
0(C)3 −

2m2
8

( ¤c) m9 (m: (c)) m:
(
m9 (c)

)
0(C)3

−
3m2

8

(
m9 (c)

)
m9 ( ¤c) m2

:
(c)

20(C)3 −
(
m8

(
m9 (c)

) ) 2m2
:

( ¤c)
0(C)3 −

m2
8

(
m9 (c)

)
m9 (c)m2

:
( ¤c)

20(C)3

−
2 ¤cm2

8

(
m9 (c)

)
m2
:

(
m9 (c)

)
0(C)3 +

6 ¤c
(
m8

(
m9 (c)

) ) 2 ¤�(C)
0(C)

+
9 ¤cm8

(
m9 (c)

)
m9 (m8(c)) ¤�(C)
0(C)
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The contributions from the X4 term to the c3 Lagrangian: : 03∇`X `
a∇WX Wa

=
2�(C)m2

9
(c) (m8 (m: (c))) 2

0(C)3 −
2�(C)m8(c)m2

9
(c)m8

(
m2
:
(c)

)
0(C)3 −

6 ¤c�(C)2 (
m8

(
m9 (c)

) ) 2

0(C)

+
4�(C)2m8(c)m2

9
(c)m8 ( ¤c)

0(C)
−

2 ¤c�(C)2m2
8

(c)m2
9
(c)

0(C)
+

4 ¤c�(C)m8
(
m2
9
(c)

)
m8 ( ¤c)
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+
�(C)m9 (c)m8 ( ¤c) m8
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+
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0(C)

+
�(C)m8(c)m8 ( ¤c) m2

9
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9
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(
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9
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)
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(
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)
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(
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)
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(
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)
m8

(
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)
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9
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)
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(A.2)
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Appendix B

5#! Calculations for the local-type
non-Gaussianity

For the local-type NG, we can paremetrize the size of the non-Gaussianty ( 5#!) as

Z(G) = Z!(G) − 3
5
5#!Z

2
!(G), (B.1)

with
〈Z!(G)〉 = 0. (B.2)

The Fourier transform of Z! is

Z!(G) =
1

(2c)3/2

∫
33: 48:GZ!(k) (B.3)

Z(k) =
1

(2c)3/2

∫
33G 4−8:GZ(G) =

∫
33G 4−8:G

(
Z!(G) − 3

5
5#!Z

2
!(G)

)
(B.4)

=
∫
33G 4−8:G

(∫
33 :̃ 48 :̃GZ!(k̃) − 3

5
5#!

1
(2c)3

∫
33 :̃ 48 :̃GZ!(k̃)

∫
33:′ 48:

′GZ!(k′)
)

(B.5)

=
(∫
33 :̃ X3(k − k̃)Z!(k̃) − 3

5
5#!

1
(2c)3

∫
33 :̃33:′ X3(k − k′ − k̃)Z!(k̃) Z!(k′)

)
(B.6)

Z(k) =
(
Z!(k) − 3

5
5#!

1
(2c)3

∫
33:′ Z!(k − k′) Z!(k′)

)
(B.7)

〈Z(k1)Z(k2)Z(k3)〉 = 〈Z!(k1)Z!(k2)Z!(k3)〉−3
5
5#!

1
(2c)3

〈
Z!(k1)Z!(k2)

∫
33:′ Z!(k3 − k′) Z!(k′)

〉
. . .

(B.8)
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Using Isserlis’ theorem, the first term becomes

〈Z!(k1)Z!(k2)Z!(k3)〉 = 〈Z!(k1)〉 〈Z!(k2)Z!(k3)〉 ... = 0 (B.9)

The second term can also be calculated using Wick’s theorem〈
Z!(k1)Z!(k2)

∫
33:′ Z!(k3 − k′) Z!(k′)

〉
=

∫
33:′ 〈Z!(k1)Z!(k2)Z!(k3 − k′) Z!(k′)〉

=
∫
33:′ 〈Z!(k1)Z!(k2)〉 〈Z!(k3 − k′) Z!(k′)〉 (B.10)

+
∫
33:′ 〈Z!(k1)Z!(k′)〉 〈Z!(k2)Z!(k3 − k′)〉 (B.11)

+
∫
33:′ 〈Z!(k2)Z!(k′)〉 〈Z!(k1)Z!(k3 − k′)〉 (B.12)

We have
〈Z!(k1)Z!(k2)〉 = (2c)3X3(k1 + k2)%Z (:1)

and
〈Z!(k3 − k′) Z!(k′)〉 = (2c)3X3(k3)%Z (:′).

This means that the first term∫
33:′ 〈Z!(k1)Z!(k2)〉 〈Z!(k3 − k′) Z!(k′)〉 =

∫
33:′ (2c)6X3(k1 + k2)X3(k3)%(:1)%(:′)

(B.13)
does not contribute to three point function for :3 6= 0. The second and the third terms

∫
33:′ 〈Z!(k1)Z!(k′)〉 〈Z!(k2)Z!(k3 − k′)〉 =

∫
33:′ (2c)6X3(k1 + k′)%(:1)X3(k2 + k3 − k′)%(:2)

= (2c)6%(:1)X3(k2 + k3 + k1)%(:2)

∫
33:′ 〈Z!(k2)Z!(k′)〉 〈Z!(k1)Z!(k3 − k′)〉 =

∫
33:′ (2c)6X3(k2 + k′)%(:2)X3(k1 + k3 − k′)%(:1)

= (2c)6%(:1)X3(k2 + k3 + k1)%(:2)

Finally adding everything we have

〈Z(k1)Z(k2)Z(k3)〉 = −3
5
5#!

1
(2c)3

〈
Z!(k1)Z!(k2)

∫
33:′ Z!(k3 − k′) Z!(k′)

〉
+ sym (B.14)

= −6
5

(2c)3X3(k1 + k2 + k3) 5#!
(
%(:1)%(:2) + %(:3)%(:2) + %(:1)%(:3)

)
(B.15)
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Now dimensionless power spectrum is defined as Δ(:) = %(:) :3

2c2 so substituting above we get:

〈Z(k1)Z(k2)Z(k3)〉 = −6
5

(2c)3X3(k1+k2+k3) 5#!
(
Δ(:1)Δ(:2)

4c4

:3
1:

3
2

+Δ(:3)Δ(:2)
4c4

:3
3:

3
2

+Δ(:1)Δ(:3)
4c4

:3
3:

3
1

)
.

Since 4c4 = (2c)4/4 then we get

〈Z(k1)Z(k2)Z(k3)〉 = − 3
10

(2c)7X3(k1+k2+k3) 5#!
(
Δ(:1)Δ(:2)

1
:3

1:
3
2

+Δ(:3)Δ(:2)
1

:3
3:

3
2

+Δ(:1)Δ(:3)
1

:3
3:

3
1

)
If scale dependence of Δ(:) is negligible then we get:

〈Z(k1)Z(k2)Z(k3)〉 = − 3
10

(2c)7X3(k1 + k2 + k3) 5#! [Δ(:1)]2
(

1
:3

1:
3
2

+
1

:3
3:

3
2

+
1

:3
3:

3
1

)
〈Z(k1)Z(k2)Z(k3)〉 = − 3

10
(2c)7X3(k1 + k2 + k3) 5#! [Δ(:1)]2

(
:3

1 + :3
2 + :3

3

:3
1:

3
2:

3
3

)
So after reordering

〈Z(k1)Z(k2)Z(k3)〉 = (2c)7X3(k1 + k2 + k3)
[Δ(:1)]2

:3
1:

3
2:

3
3
×

{
− 3

10
5#!

(
:3

1 + :3
2 + :3

3

)}
in general we can write different contributions as

〈Z(k1)Z(k2)Z(k3)〉 = (2c)7X3(k1 + k2 + k3)
[Δ(:1)]2

:3
1:

3
2:

3
3
× A(:1, :2, :3)

Which means for the particular case of assuming

Z(G) = Z!(G) − 3
5
5#!Z

2
!(G)

we get

A(:1, :2, :3) = − 3
10
5#!

(
:3

1 + :3
2 + :3

3

)
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Appendix C

Detailed Calculations of the Three Point
Functions and Preparing for the Numerical
Calculations for JULIA

C.1 Transforming Coefficients

The Z ′(mZ)2 term in the original Lagrangian is written in terms of c:

L = · · · + � ¤c(mc)2 ¤c(mc)2 + . . . . (C.1)

Now we take c → Z = −�c
⇒ − 1

�3� ¤c(mc)2 ¤Z(mZ)2 (C.2)

Then we transform from the cosmic time to the conformal time 3C → 0 3g

⇒ − 1
0�3� ¤c(mc)2Z ′(mZ)2. (C.3)

We now define,
�Z ′(mZ)2 = − 1

0�3� ¤c(mc)2 (C.4)

Then the three point contribution for the ¤c(mc)2 can be written as

〈Z(k1)Z(k2)Z(k3)〉 ¤c(mc)2 = −8
∫0

−∞
0(g′)3g′�Z ′(mZ)2 2(2c)3X3(k3 + k2 + k1)×

5:1(C) 5 ∗:1
′(C′) 5:2(C) 5 ∗:2

(C′) 5:3(C) 5 ∗:3
(C′)k2 · k3 + BH< + 2.2, (C.5)

where 5 is the mode function for Z . The above procedure also applies for writing the contributions
from the m2c(mc)2 term.
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C.1.1 Transforming the Integration Variables for Numerical Calculations

We have numerical values for D: (G), so the integration has to be written in terms of D: (G) with
the variable G. Again, for the contributions from the ¤c(mc)2 term, we use the relations

G8 = 2B:8g
0 = −2B:8/�G8√

�1 5 = −�
0
D√

�1 5
′ = −�

0

3D

3g
+ �2D = −2B:8

�

0

3D

3G8
+ �2D = G8�2 3D

3G8
+ �2D

to obtain

〈Z(k1)Z(k2)Z(k3)〉 ¤c(mc)2 = 8
∫ g 5

−∞

(
�7G′1

0(g 5 )30(g′)2�3
1

)
3g′ �Z ′(mZ)2 4(2c)3X3(k3 + k2 + k1)

D:1(g 5 )D∗:1
′(g′)D:2(g 5 )D∗:2

(g′)D:3(g 5 )D∗:3
(g′)k2 · k3 + BH< + 2.2

− 8
∫ g 5

−∞

(
�7

0(g 5 )30(g′)2�3
1

)
3g′�Z ′(mZ)2 4(2c)3X3(k3 + k2 + k1)

D:1(g 5 )D∗:1
(g′)D:2(g 5 )D∗:2

(g′)D:3(g 5 )D∗:3
(g′)k2 · k3 + BH< + 2.2. (C.6)

Changing the integration variable to G=, and substituting 0, we have

⇒ −84(2c)3X3(k3 + k2 + k1)
1√

26
B :

2
0:

2
2:

2
3

�12G3
5

(2B:1)5�3
1

∫ G 5
−∞

(G′1)23G′1 �Z ′(mZ)2

D:1(
:3
:1
G 5 )D∗:1

′(
:3
:1
G′1)D:2(

:2
:1
G 5 )D∗:2

(
:2
:1
G′1)D:3(G 5 )D∗:3

(G′1)k2 · k3 + BH< + 2.2

− 84(2c)3X3(k3 + k2 + k3)
1√

26
B :

2
0:

2
2:

2
3

�12G3
5

(2B:1)5�3
1

∫ G 5
−∞
G′13G

′
1 �Z ′(mZ)2

D:1(
:3
:1
G 5 )D∗:1

(
:3
:1
G′1)D:2(

:2
:1
G 5 )D∗:2

(
:2
:1
G′1)D:3(G 5 )D∗:3

(G′1)k2 · k3 + BH< + 2.2. (C.7)

Using the Cosine Law

:2
3 = :2

1 + :2
2 − 2:1:2 cos(\)⇒ k1k2 = :1:2 cos(\) =

:2
3 − :

2
1 − :

2
2

2
, (C.8)
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we obtain

⇒ 〈Z(k1)Z(k2)Z(k3)〉 ¤c(mc)2 = −82(2c)3X3(k3 + k2 + k1)
1√

26
B :

2
0:

2
2:

2
3

�12G3
5

(2B:1)5�3
1

∫ G 5
−∞

(G′1)23G′1 �Z ′(mZ)2

D:1(
:3
:1
G 5 )D∗:1

′(
:3
:1
G′1)D:2(

:2
:1
G 5 )D∗:2

(
:2
:1
G′1)D:3(G 5 )D∗:3

(G′1)(:2
1 − :

2
3 − :

2
2) + BH< + 2.2

− 82(2c)3X3(k3 + k2 + k3)
1√

26
B :

2
0:

2
2:

2
3

�12G3
5

(2B:1)5�3
1

∫ G 5
−∞
G′13G

′
1 �Z ′(mZ)2

D:1(
:3
:1
G 5 )D∗:1

(
:3
:1
G′1)D:2(

:2
:1
G 5 )D∗:2

(
:2
:1
G′1)D:3(G 5 )D∗:3

(G′1)(:2
1 − :

2
3 − :

2
2) + BH< + 2.2. (C.9)
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