
Set Representation Learning:
A Framework for Learning Gigapixel

Images

by

Mohammed Adnan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Masters of Applied Science
in

Systems Design Engineering

Waterloo, Ontario, Canada, 2021

© Mohammed Adnan 2021

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

The thesis is based on the following publications:

[1] Shivam Kalra*, Mohammed Adnan*, Graham Taylor, and Hamid R Tizhoosh.
Learning Permutation Invariant Representations using Memory Networks. In Euro-
pean Conference on Computer Vision, pages 677–693. Springer, 2020.

[2] Mohammed Adnan*, Shivam Kalra*, and Hamid R Tizhoosh. Representation
Learning of Histopathology Images using Graph Neural Networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,
pages 988–989, 2020.

[3] Shivam Kalra, Mohammed Adnan, Sobhan Hemati, Taher Dehkharghanian,Shahryar
Rahnamayan, and Hamid Tizhoosh. Pay Attention with Focus: A novel learning
scheme for classification of whole slide images. To appear in MICCAI 2021.

I have contributed to ideation, implementation, experimentation, and writing of all the
above mentioned papers. I am corresponding author for Paper [1] with equal contributions
as the first author. My contribution in Paper [3] is to lesser extent.

* denotes equal contribution

iii

Abstract

In Machine Learning, we often encounter data as a set of instances such Point Clouds (set of
x,y, and z coordinates), patches from gigapixel images (Digital Pathology, Satellite Imagery,
Astronomical Images, etc.), Weakly Supervised Learning, Multiple Instance Learning, and
so on. It is then convenient to have Machine Learning or AI algorithms that can learn
set representation. However, most of the progress made in the last two decades has been
limited to single instance-based algorithms and smaller image datasets such as MNIST,
CIFAR10, and CIFAR100. In this work, I present novel algorithms for Set Representation
Learning. The contribution of this work is two-fold:

1. This work introduces three novel methods for learning Set Representations; Memory
based Exchangeable model (MEM), Graph Neural Network based Set Representation
Learning method, and a Hierarchical Set Representation Learning method.

2. This work demonstrates that learning gigapixel images can be formulated as a set
representation problem and provides a framework for efficiently learning gigapixel
image representations.

Different themes are explored for Set Representation Learning. This work investigates
Permutation Invariant Representations for Set Learning and introduces a new Permutation
Invariant method - ‘MEM’. Memory-based Exchangeable (MEM) model uses a Permutation
Invariant architecture and memory networks to learn inter-dependencies/relation between
different elements of the set. Subsequently, Graph Neural Networks (GNNs) are studied for
Set Representation Learning, and a new GNN based Set Representation Learning method
is proposed. Motivated by learning inter-dependencies among different elements in MEM,
the proposed method learns an equivalent graphical representation to model interaction
and interdependencies among different elements of the set. Lastly, this work introduces a
new learning scheme for learning Hierarchical Set Representations.

To demonstrate the efficacy of the proposed algorithms, they are validated and bench-
marked on a variety of synthetic and real-world datasets such as MNIST, Point Clouds,
and Gaussian Distributions. Histopathology Images are used to demonstrate the applica-
tion of Set Representation Learning for learning gigapixel images. State-of-the-art results
on all datasets are achieved, thus demonstrating efficacy.

iv

Acknowledgements

Writing this thesis has been fascinating and extremely rewarding. My journey at the
University of Waterloo began in 2018 as a Research Intern during the final year of my
undergrad studies in India. The last two years of graduate studies at the University of
Waterloo amidst the pandemic taught me many life lessons. This thesis couldn’t have
been possible in the pandemic without the help and support of many people.

Looking back at the past three years, I’m immensely thankful to my supervisor Prof.
Hamid Tizhoosh who molded me from an undergraduate student to a graduate student
with an improving scientific acumen, work ethics, independent scientific thoughts and
understanding. His encouragement and guidance throughout the MASc. program helped
me in all times of research and during the writing of this thesis.

I would also like to express my gratitude to Prof. Graham Taylor for his unwavering
support and valuable inputs. I would also like to gratefully acknowledge the computing
resources provided by Prof. Taylor.

I owe special thanks to Prof. Oleg Michailovich and Prof. Apurva Narayan for taking
out their time to review my thesis and provide valuable suggestions.

I’d like to thank my co-author Shivam Kalra for his help in writing papers and con-
ducting the research. I appreciate the research discussions I had with my colleague Sobhan
Hemati during the last two years.

I would like to acknowledge the Vector Scholarship in AI offered by Vector Institute and
the Ontario Research Fund grant for providing much-needed financial support throughout
my degree.

I’d like to thank my parents for raising me to value education. I sincerely appreciate
their support and encouragement throughout my academic life.

At last, I would like to thanks my friends for being supportive; their encouragement and
laughs kept me going. Finally, I pay my obeisance to god, the almighty, to have bestowed
upon me good health, courage, inspiration, and the light.

v

Dedication

To family and friends.

vi

Table of Contents

List of Figures x

List of Tables xiii

1 Introduction 1

1.1 Background . 1

1.2 Problem Definition . 3

1.3 Contributions . 4

I Background Literature 7

2 Permutation Invariant Models 8

2.1 Background . 8

2.2 Exchangeablilty . 10

2.3 Deep Sets: Universal Approximation of Sets 11

3 Graph Neural Networks 12

3.1 Introduction . 12

3.2 Spectral and Spatial GNNs . 13

3.3 Graph Convolution Neural Networks (GCNNs) 14

3.4 Set Representation Learning using Graphs 15

vii

4 Gigapixel Histopathology Images 17

4.1 Background . 17

4.2 Multiple Instance Learning for WSIs . 19

II Proposed Methods 20

5 Memory-Based Exchangeable Model 21

5.1 Motivation . 21

5.2 Proposed Model . 23

5.3 Model Architecture . 25

5.4 Analysis . 26

5.5 Experiments . 26

5.5.1 Toy Datasets . 27

5.5.2 Real World Datasets . 30

5.6 Summary . 33

6 Set Representation Learning using Graph Neural Networks 34

6.1 Proposed Method . 35

6.2 Experiments . 38

6.2.1 MUSK1 Dataset . 38

6.2.2 LUAD vs LUSC Classification. 39

6.2.3 Inference . 40

6.3 Summary . 43

7 Pay Attention with Focus: Hierarchical Set Learning 44

7.1 Proposed Method . 44

7.2 Results . 47

7.3 Summary . 51

viii

8 Summary and Conclusions 53

8.1 Future Work . 54

References 55

ix

List of Figures

1.1 Caption for LOF . 4

4.1 Example of Histopathology Images: The patches extracted from two WSIs
of patients with (a) LUAD and (b) LUSC. Each slide roughly contains 500
patches. 18

5.1 An exemplar application of learning permutation invariant representation
for disease classification of Whole-Slide Images (WSIs). (a) A set of patches
are extracted from each WSI of patients with lung cancer. (b) The sets of
patches are fed to the proposed model for classification of the subtype of
lung cancer—LUAD versus LUSC. The model classifies on a per set basis.
This form of learning is known as Multi Instance Learning (MIL). 22

5.2 X is an input sequence containing n number of f -dimensional vectors. (a)
The memory block is a sequence-to-sequence model that takes X and re-
turns another sequence X̂. The output X̂ is a permutation-invariant repre-
sentation of X. A bijective transformation model (an autoencoder) converts
the input X to a permutation-equivariant sequence C. The weighted sum
of C is computed over different probability distributions pi from memory
units. The hyper-parameters of a memory block are i) dimensions of the
bijective transformation h, and ii) number of memory units m. (b) The
memory unit has Ai, an embedding matrix (trainable parameters) that
transforms elements of X to a d-dimensional space (memories). The output
pi is a probability distribution over the input X, also known as attention.
The memory unit has a single hyper-parameter d, i.e. the dimension of the
embedding space. (* represents learnable parameters.) 23

x

5.3 The overall architecture of the proposed Memory-based Exchangeable Model
(MEM). The input to the model is a sequence, for e.g., a sequence of images
or vectors. Each element of the input sequence X is passed through (a) fea-
ture extractor (CNN or MLP) to extract a sequence of feature vectors F ,
which is passed to (c) sequentially connected memory blocks. A memory
block outputs another sequence which is a permutation-invariant represen-
tation of the input sequence. The output from the last memory block is
vectorized and given to (c) MLP layers for classification/regression. 25

5.4 Comparison of MEM and feature pooling on a regression problem involving
finding the sum of even digits within a set of MNIST images. Each point
corresponds to the best configurations for the two models. 28

5.5 The patches extracted from two WSIs of patients with (a) LUAD and (b)
LUSC. Each slide roughly contains 500 patches. 31

6.1 Transforming a WSI to a fully-connected graph. A WSI is repre-
sented as a graph with its nodes corresponding to distinct patches from the
WSI. A node feature (a blue block beside each node) is extracted by feeding
the associated patch through a deep network. A single context vector, sum-
marizing the entire graph is computed by pooling all the node features. The
context vector is concatenated with each node feature, subsequently fed into
adjacent learning block. The adjacent learning block uses a series of dense
layers and cross-correlation to calculate the adjacency matrix. The com-
puted adjacency matrix is used to produce the final fully-connected graph.
In the figure, the thickness of the edge connecting two nodes corresponds to
the value in the adjacency matrix. 36

6.2 Classification of a graph representing a WSI. A fully connected graph
representing a WSI is fed through a graph convolution layer to transform
it into another fully-connected graph. After a series of transformations, the
nodes of the final fully-connected graph are aggregated to a single condensed
vector, which is fed to an MLP for classification purposes. 37

6.3 Six patches from two WSIs diagnosed with LUSC and LUAD, respectively.
The six patches are selected, such that the first three (top row) are highly
“attended” by the network, whereas the last three (bottom row) least at-
tended. The first patch in the upper row is the most attended patch (more
important) and the first patch in the lower row in the least attended patch
(less important). 40

xi

6.4 t-SNE visualization of feature vectors extracted after the Graph Pooling
layer from different WSIs. The two distinct clusters for LUAD and LUSC
demonstrate the efficacy of the proposed model for disease characterization
in WSIs. The overlap of two clusters contain WSIs that are morphologically
and visually similar. 41

6.5 The ROC curve of prediction. 42

7.1 Training a Feature Extractor. A feature extractor is trained with hi-
erarchical target labels of a WSI. (a) A set of representative WSI patches
(called mosaic) is extracted [43]. (b) The patches are used to fine-tune a
deep network; each patch is assigned the parent WSI’s labels, i.e., anatomic
site and primary diagnosis. 45

7.2 Classification of WSIs with FocAtt-MIL. The two-stage method for
the classification of WSI. (a) The mosaic of a WSI is converted to a bag
X containing a set of feature vectors {x1, . . . , xn}. (b) The feature vectors
in a bag X are transformed to the primary diagnosis probability through
FocAtt-MIL. The prediction probability pi is computed for an individual
feature vector xi. A WSI context gX is computed for the entire bag X using
(7.1). The WSI context gX is used to compute the attention value ai and
the focal factor γ. The final prediction is computed using (7.2). 46

7.3 Attention Visualization. The attention values are augmented on the
two exemplars WSIs. Left Image (LUAD): Regions of high importance
come from the cancerous regions while sparing normal lung tissue, fibrosis,
and mucin deposition. Additionally, by inspecting important regions at a
higher magnification, it is noticeable that the malignant glandular forma-
tions border with non-malignant areas. Right Image (LUSC): Regions
that are considered to be important for classification are composed of ma-
lignant squamous cells. However, unlike LUAD, the attention model seems
to be responsive to regions with solid malignant structures. 49

7.4 FocAtt-MIL Training. The loss and accuracy on validation dataset dur-
ing the training of three different configurations of FocAtt-MIL, i.e FocAtt-
MIL-DN, FocAtt-MIL-KimiaNet, and FocAtt-MIL-FDN. 50

xii

List of Tables

5.1 Results on the toy datasets for different configurations of MEM and feature
pooling. It must be noted that for Maximum of Set, the configuration
FF + Max (DS) achieves the best accuracy but it may predict the output
perfectly by learning the identity function therefore we highlighted second
best configuration FF + Dotprod (DS) as well. 27

5.2 Test accuracy for the point cloud classification on different instance sizes us-
ing various methods. MEM with configuration FF + MEM + MB1 achieves
85.21% accuracy for the instance size of 100 which is best compared to
others. 30

5.3 Accuracy for LUAD vs LUSC classification for various methods. For our
experiments, we conducted comprehensive 5-fold cross validation accuracy
whereas other methods have used non-standardized test set. 32

6.1 Evaluation on MUSK1. 39

6.2 Performance of various methods for LUAD/LUSC predictions using transfer
learning. Our results report the average of 5-fold accuracy values. 40

6.3 Comparison of different network architecture and pooling method (atten-
tion, mean, max and sum pooling). BN stands for BatchNormalization [37],
Cheb stands for Chebnet with corresponding filter size and SAGE stands
for SAGE Convolution. The best performing configuration is Cheb-7 with
mean pooling. 42

7.1 Performance comparison for LUAD/LUSC classification via transfer learning. 47

7.2 Pan-cancer vertical classification accuracy of FocAtt-MIL for features from
regular DenseNet (FocAtt-MIL-DN), KimiaNet (FocAtt-MIL-KimiaNet), and
DenseNet fine-tuned with hierarchical labels (FocAtt-MIL-FDN). 52

xiii

Chapter 1

Introduction

The performance of a Machine Intelligence model depends on the data representation.
Before Deep Neural Networks (DNNs), hand-crafted kernels were most commonly used
to extract features as a representation method. Although hand-crafted kernels can in-
corporate human and domain knowledge, they are labor-intensive and not scalable to
high-dimensional datasets. Hand-crafted feature usage limits applications to only simple
datasets such as MNIST [54] which contains only 784-dimensional feature vectors for a
grayscale image. Most of the real-world images are much more complex than MNIST. It
is thus crucial to make representation learning algorithms less dependent on hand-crafted
features such that machines can learn efficient and better representations for real-world
high dimensional data. The success of DNNs is due to their ability to learn efficient
data representations without any expert/domain knowledge. This is achieved by using the
backpropagation algorithm to minimize the loss. In this chapter, a brief background about
Representation Learning is presented, which follows by problem definition.

1.1 Background

Before discussing the current state-of-the-art representation learning methods, it is impor-
tant to understand what constitutes a good representation or feature. Bengio et al. [7]
studied the problem of representation learning for various tasks such as vision and NLP.
Bengio et al. in [7] postulated few characteristics important for a ‘good ’representation:

1. Smoothness: For two inputs x, y such that x ≈ y, smoothness requires that the
corresponding representation of x and y are also similar i.e., f(x) ≈ f(y). Smoothness

1

is the most basic prior in most machine learning algorithms but is insufficient to get
around the curse of dimensionality.

2. Natural Clustering: A good representation should be easily separable into clusters
of different labels and classes using simple clustering algorithms such as K-means.

3. Manifolds: Probability mass concentrates near regions that have a much smaller
dimensionality than the original space where the data lives. Any Machine Learning
method should learn the manifold of the data for better generalization.

4. Sparsity: For any observation x, it is possible to represent it with only a fraction
of total features or dimensions, i.e., most of the features are zero. Generally, sparse
representations are associated with better generalization [65].

5. Reconstruction: For any input signal x and its representation f(x), it should be
possible to recover the input signal from the representation f(x). This principle is
used in Auto-encoders proposed in [31].

6. Disentanglement: Disentanglement refers to breaking down or disentangling each
feature into narrowly defined variables and encoding them as separate dimensions
in an unsupervised way. The objective is to mimic a human brain’s function, which
disentangles the underlying generative process from the data. For example, the
human brain disentangles a visual image into shape, color, size, and orientation.
Most of the time, explanatory factors of the data vary independently of each other
in the input distribution, and only a few changes when one considers a sequence of
consecutive real-world inputs.

With their success for various machine intelligence tasks, DNNs has become the de facto
standard for extracting features from high dimensional data such as images. Many methods
have been proposed to learn better data representation using DNNs. In contrast to hand-
crafted kernels, DNNs use backpropagation [56] to minimize the loss functions. Various
architectures are used for learning representation for different types of information/data.
Multiple Layer Perceptrons (MLPs) are feed-forward networks where each neuron in a
layer is connected to all neurons in the previous layer through weights and biases. MLPs
can efficiently learn representation for simple vectorized data which don’t contain spatial
information. Convolution Neural Networks (CNNs) were proposed by LeCun et al. in [55]
to learn representation from visual information (images). CNNs are similar to conventional
feed-forward neural networks, but they make the implicit assumption that inputs are images
and thus use filters to learn feature maps. Weights are incorporated in kernel/filters,

2

which are learned during the training via backpropagation. CNNs, through application
of many filters/kernels, can capture spatial information in images more efficiently and
thus are used for learning image representation. Large scale CNNs such as AlexNet [53],
ResNet [30], and DenseNet [33] have achieved state of the art results on many visuals
tasks. Recurrent Neural Networks (RNNs) were proposed by Hochreiter et al. [32] to learn
representation for ordered serial information such as texts and have become the standard
framework for Natural Language Processing (NLP). RNNs consist of Long Short Term
Memory (LSTM) units, composed of a cell, an input gate, an output gate, and a forget
gate. The cell remembers values over arbitrary time intervals, and the three gates regulate
the flow of information into and out of the cell. RNNs use past information along with
current information to learn representation. This is important for NLP as words are often
connected and context-dependent. Another type of architecture is autoencoder, often used
for denoising and representation learning [5]. Autoencoders are based on the principle
that a ‘good’ representation can recover the original input signal. It consists of two sub-
networks; an encoder and a decoder. Encoder learns the latent representation e(x) of the
input signal x, and the decoder’s objective is to reconstruct the original signal from the
latent representation e(x) by minimizing the Least Square error between the original signal
x and recovered signal x̃. There has also been significant progress in generative modeling
in the last decade. Generative Adversarial Networks (GAN) was proposed by Goodfellow
et al. [22] uses adversarial loss to learn the manifold of the data for generating realistic-
looking images. Another popular class of generative models are Variational Auto-Encoders
(VAE) [48]. VAE uses Evidence Lower Bound Loss instead of Adversarial loss to learn the
data distribution. Generative Models also find applications in unsupervised representation
learning.

Despite significant progress, all the above-mentioned representation learning methods,
except RNNs, take a single instance as an input. RNNs take a ordered set, e.g., language
sentences, as an input. However, not much work has been done for learning representation
for unordered or exchangeable sets.

1.2 Problem Definition

Recurrent Neural Networks (RNNs) are a popular approach to learn representations from
sequentially ordered sets. However, the lack of permutation invariance renders RNNs inef-
fective for learning set representation. Sets can be mathematically described as exchange-
able or unordered sequences, i.e., sequences in which order (permutation) of instances do
not matter. For learning representations for such sequences, the model needs to be permu-

3

Figure 1.1: An example of a CNN. Each neuron in the convolutional layer is connected
only to a local region in the input volume spatially, but to the full depth (i.e., all color
channels). Source: Stanford CS231n

tation invariant. Set Representation Learning finds application in various scenarios, from
gigapixel histopathology images to nano-scale quantum chemistry.

Any set representation learning algorithm must satisfy the following properties:

1. Permutation Invariance: This property implies that the order of elements in the set
doesn’t matter, i.e., permuting elements should not change the output.

2. Learning Inter-Dependencies: This refers to learning relations between different ele-
ments of the sets. It may be possible only a few elements are relevant for a specific
task. For example, in digital pathology, non-cancerous patches don’t provide any
relevant information for diagnosis.

3. Universal Approximation: This implies that the algorithm should be capable of learn-
ing any set function or any mapping RNxd 7→ Rm, where N is the number of elements
in the set.

1.3 Contributions

In this work, three novel frameworks are proposed for Set Representation Learning [2, 42,
41]. A new Permutation Invariant Model using Memory Networks was developed [42]

4

called ‘MEM ’. The thesis other main contribution is to explore the use of Graph Neural
Networks for Set Representation Learning [2]. The thesis also introduces a hierarchical set
representation learning framework in [41]. This is the first work that has combined both
Hierarchical and Set Representation Learning to the best of our knowledge. The methods
have been evaluated on various synthetic and real-world datasets achieving state-of-the-art
accuracy in many tasks. Brief descriptions of proposed methods are given below.

Memory based Exchangeable Model (MEM): Many real-world tasks such as the clas-
sification of digital histopathology images and 3D object detection involve learning from
a set of instances. In these cases, only a group of instances or a set collectively contains
meaningful information, and therefore only the sets have labels, not individual data in-
stances. A new permutation invariant neural network called Memory-based Exchangeable
Model (MEM) is proposed for learning universal set functions. The MEM model consists of
memory units that embed an input sequence to high-level features enabling it to learn inter-
dependencies among instances through a self-attention mechanism. The learning ability
of MEM is evaluated on various toy datasets, point cloud classification, and classification
of whole slide images (WSIs) into two subtypes of lung cancer—Lung Adenocarcinoma,
and Lung Squamous Cell Carcinoma. Patches were systematically extracted from WSIs of
the lung, downloaded from The Cancer Genome Atlas (TCGA) dataset, the largest pub-
lic repository of WSIs, achieving a competitive accuracy of 84.84% for the classification
of two subtypes of lung cancer. The results on other datasets are promising as well and
demonstrate the efficacy of the model [42].

Set Representation Learning using Graph Neural Networks : Representation
learning for Whole Slide Images (WSIs) is pivotal in developing image-based systems to
achieve higher precision in diagnostic pathology. The thesis proposes a two-stage frame-
work for WSI representation learning. The algorithm first sample relevant patches using
a color-based method and use graph neural networks to learn relations among sampled
patches to aggregate the image information into a single vector representation. The thesis
introduces attention via graph pooling to automatically infer patches with higher rele-
vance. Proposed approach is validated for cancer subtype classification, Lung Adenocarci-
noma (LUAD) Lung Squamous Cell Carcinoma (LUSC). 1,026 lung cancer WSIs with the
40× magnification were collected from The Cancer Genome Atlas (TCGA) dataset, the
largest public repository of histopathology images, and achieved state-of-the-art accuracy
of 88.8% and AUC of 0.89 on lung cancer subtype classification by extracting features from
a pre-trained DenseNet model [2].

Pay Attention with Focus: A Novel Hierarchical Set Learning Framework: A
novel two-stage hierarchical framework for Set Representation learning of Histopathology
Images is proposed. First, set of representative patches (called mosaic) are extracted from

5

a WSI. Each patch of a mosaic is encoded to a feature vector using a deep network. The
feature extractor model is fine-tuned using hierarchical target labels of WSIs, i.e., anatomic
site and primary diagnosis. In the second stage, a set of encoded patch-level features from
a WSI is used to compute the primary diagnosis probability through the proposed Pay
Attention with Focus scheme, an attention-weighted averaging of predicted probabilities
for all patches of a mosaic modulated by a trainable focal factor. Experimental results
show that the proposed model is robust, and effective for the classification of WSIs [41].

The thesis is divided into multiple parts. The necessary background about Permutation
Invariant Model is discussed in chapter 2, Graph Neural Networks in chapter chapter 3.
chapter 5 discusses the proposed Memory based Exchangeable Model in detail. The Graph
Neural Network framework is discussed in chapter 6 and hierarchical set learning framework
in chapter 7. It is followed by chapter 8, summarizing key contributions and future works.

6

Part I

Background Literature

7

Chapter 2

Permutation Invariant Models

Deep artificial neural networks have achieved impressive performance for representation
learning tasks. The majority of these deep architectures take a single instance as an input.
Recurrent Neural Networks (RNNs) are a popular approach to learn representations from
sequentially ordered instances. However, the lack of permutation invariance renders RNNs
ineffective for exchangeable or unordered sequences. We often need to learn representations
of unordered sequential data or exchangeable sequences in many practical scenarios such
as Multiple Instance Learning (MIL), 3D Computer Vision. In these cases, only a group
or a set of instances or a set, collectively, contains meaningful information, not individual
data instances. Representations for such data can be learned using Permutation Invariant
Models.

In this chapter, the mathematical definition for Permutation Invariant Models and
Exchangeability, its application, and recent works will be discussed.

2.1 Background

In statistics, exchangeability has been long studied. de Finetti studied exchangeable ran-
dom variables and showed that a sequence of infinite exchangeable random variables can
be factorized to independent and identically distributed mixtures conditioned on some pa-
rameter θ. Bayesian sets [21] introduced a method to model exchangeable sequences of
binary random variables by analytically computing the integrals in de Finetti’s theorem.
Orbanz et al. [67] used de Finetti’s theorem for Bayesian modeling of graphs, matrices,
and other data that can be modeled by random structures. Considerable work has also
been done on partially exchangeable random variables [3].

8

Symmetry in neural networks was first proposed by Shawe et al. [72] under the name
Symmetry Network. They proposed that invariance can be achieved by weight-preserving
automorphisms of a neural network. Ravanbaksh et al. proposed a similar method for
equivariance network through parameter sharing [69]. Bloem Reddy et al. [9] studied the
concept of symmetry and exchangeability for neural networks in detail and established
similarity between functional and probabilistic symmetry, and obtained generative func-
tional representations of joint and conditional probability distributions that are invariant
or equivariant under the action of a compact group. Zhou et. al. [99] proposed treating
instances in a set as non-identical and independent samples for multi-instance problems.

Most of the work published in recent years has focused on ordered sets. Vinyals et
al. [84] introduced Order Matter: Sequence to Sequence for Sets to learn a sequence to
sequence mapping. Many related models and key contributions have been proposed that
uses the idea of external memories like RNNSearch [4], Memory Networks [87, 83] and
Neural Turing Machines [24]. Recent interest in exchangeable models was developed due
to their application in MIL. Deep Symmetry Networks [20] used kernel-based interpolation
to tractably tie parameters and pool over symmetry spaces of any dimension. Deep Sets [94]
by Zaheer et al. proposed a permutation invariant model. They proved that any pooling
operation (mean, sum, max or similar) on individual features is a universal approximator
for any set function. They also showed that any permutation invariant model follows
de Finetti’s theorem. Work has also been done on learning point cloud classification,
which is an example of MIL problem. Deep Learning with Sets and Point Cloud [68]
used parameter sharing to get an equivariant layer. Another important paper on the
exchangeable model is Set Transformer. Set Transformer [57] by Lee et al. used results
from Zaheer et al. [94] and proposed a Transformer [83] inspired permutation invariant
neural network. The Set Transformer uses attention mechanisms to attend to inputs in
order to invoke activation. Instead of using averaging over instances like in Deep Sets,
the Set Transformer uses a parametric aggregating function pool that can adapt to the
problem at hand. Another way to handle exchangeable data is to modify RNNs to operate
on exchangeable data. BRUNO [51] is a model for exchangeable data and makes use of
deep features learned from observations so as to model complex data types such as images.
To achieve this, they constructed a bijective mapping between random variables xi ∈ X
in the observation space and features zi ∈ Z, and explicitly define an exchangeable model
for the sequences z1, z2, z3, . . . , zn. Deep Amortized Clustering [58] proposed using Set
Transformers to cluster sets of points with only a few forward passes. Deep Set Prediction
Networks [98] introduced an interesting approach to predict sets from a feature vector
which is in contrast to predicting an output using sets.

9

2.2 Exchangeablilty

This section explains the general concepts of exchangeability, its relation to de Finetti’s
theorem.

Exchangeable Sequence. A sequence of random variables x1, . . . , xn is exchangeable if
the joint probability distribution does not change on permutation of the elements in a set.
Mathematically, if P (x1, . . . , xn) = P (xπ(1), . . . , xπ(n)) for a permutation function π, then
the sequence x1, . . . , xn is exchangeable.

Exchangeable Models. A model is said to be Exchangeable or Permutation Invariant
if the output of the model is invariant to the permutation of its inputs. Exchangeability
implies that the information provided by each instance xi is independent of the order in
which they are presented. Exchangeable models can be of two types depending on the
application: i) permutation invariant, and ii) permutation equivariant.

A model represented by a function f : X → Y whereX is a set, is said to be permutation
equivariant if permutation of input instances permutes the output labels with the same
permutation π. Mathematically, a permutation-equivariant model is represented as,

f(xπ(1), xπ(2), . . . , xπ(n)) = [yπ(1), yπ(2), . . . , yπ(n)]. (2.1)

Similarly, a function is permutation invariant if permutation of input instances does not
change the output of the model. Mathematically,

f(x1, x2, . . . , xn) = f(xπ(1), xπ(2), . . . , xπ(n)). (2.2)

de Finetti’s Theorem. In statistics, exchangeability has been long studied. de Finetti
studied exchangeable random variables and showed that sequence of infinite exchangeable
random variables can be factorized to independent and identically distributed mixtures
conditioned on some parameter θ:

P (x1, x2 . . . xn) =

∫
p(θ)

n∏
i=1

p(xi | θ)dθ, (2.3)

where θ is some latent feature.

10

2.3 Deep Sets: Universal Approximation of Sets

Deep Sets [93] incorporate a permutation-invariant model to learn arbitrary set functions
by pooling in a latent space. Any pooling operation such as averaging and max on in-
dividual instances of a set can be used as a universal approximator for any arbitrary set
function. The authors proved the following two results about permutation invariant models.

Theorem 1. A function f(x) operating on a set X = {x1,. . . ,xn} having elements from
a countable universe, is a valid set function, i.e., invariant to the permutation of instances
in X, if it can be decomposed to ρ (

∑
φ(x)), for any function φ and ρ.

Theorem 2. Assume the elements are from a compact set in Rd, i.e., possibly uncountable,
and the set size is fixed to M . Then any continuous function operating on a set X, i.e.,
f : Rd×M → R which is permutation invariant to the elements in X can be approximated
arbitrarily close in the form of ρ

∑
(φ(x)).

The Theorem 1 is linked to de Finetti’s theorem, which states that a random infinitely
exchangeable sequence can be factorized into mixture densities conditioned on some pa-
rameter θ which captures the underlying generative process in Equation 2.3.

11

Chapter 3

Graph Neural Networks

This chapter briefly discusses Graph Neural Networks, various types of Graph Convolution
Neural Networks, Pooling Layers, and Graph Spectral Theory.

3.1 Introduction

Data in graphical representation occurs in many real-world applications such as social
networks, knowledge graphs, protein-interaction networks, the World Wide Web, etc. Such
datasets cannot be learned using conventional Deep Learning methods such as Convolution
Neural Networks, Recurrent Neural Networks, etc. In recent years, much work has been
done to generalize Deep Learning to such structured datasets. The central problem in
machine learning on graphs is finding a way to incorporate graph structure into a machine
learning model. For example, in the case of link prediction in a social network, one might
want to encode pairwise properties between nodes, such as relationship strength or the
number of common friends. Similarly, for node classification, one might want to include
information about the global position of a node in the graph or the structure of the node’s
local graph neighborhood [28].

Graph Representation. A graph can be fully represented by its node list V and ad-
jacency matrix A. Graphs can model many types of relations and processes in physical,
biological, social, and information systems. A connection between two nodes Vi and Vj is
represented using an edge weighted by aij.

12

Graph Neural Networks (GNNs) is an effective framework for representation learning of
graphs. Hamilton et al. in [28] discussed the emerging methods and applications of Graph
Neural Networks. The objective is to learn a mapping from the graph or subgraphs to low
dimensional vector space such that geometric relationships in the embedding space reflect
the structure of the original graph. The learned vector transformations can then be used
as inputs for machine learning tasks. The key difference between conventional approaches
for learning graphs and GNN is that prior to GNN, hand-crafted statistics were used
to extract features. GNN, in contrast to traditional approaches, treat this problem as a
machine learning task itself, using a data-driven approach to learn embeddings that encode
graph structure.

Depending on how the aggregation functions are learned, GNNs can be broadly classi-
fied as Spectral and Spatial based GNNs. Spectral and Spatial Graphs are briefly discussed
in section 3.2.

3.2 Spectral and Spatial GNNs

GCNNs generalize the operation of convolution from grid data to graph data. A GCNN
takes a graph as an input and transforms it into another graph as the output. Each
feature node in the output graph is computed by aggregating features of the corresponding
nodes and their neighboring nodes in the input graph. Like CNNs, GCNNs can stack
multiple layers to extract high-level node representations. Depending upon the method for
aggregating features, GCNNs can be divided into two categories, namely spectral-based
and spatial-based.

Spectral GCNNs. Spectral-based approaches define graph convolutions by introducing
filters from the perspective of graph signal processing. Spectral convolutions are defined
as the multiplication of a node signal by a kernel. This is similar to the way convolutions
operate on an image, where a pixel value is multiplied by a kernel value. Bruna et al. first
combined the Spectral Analysis and Convolution Neural Networks giving rise to spectral
graph convolutional networks that can be trained in a supervised way, for example, for the
graph classification task. [11]. Spectral analysis of graph refers to the eigen-decomposition
of the graph Laplacian matrix L. Normalized Laplacian matrix for a graph G(V,E) can
be mathematically defined as

Lsym := D−
1
2LD−

1
2 = I −D−

1
2AD−

1
2

where L is the normalized Laplacian, A is the adjacency matrix, and D is the degree matrix.
The Laplacian allows a natural link between discrete representations, such as graphs and

13

continuous representations, such as vector spaces and manifolds. Intuitively, the Laplacian
of graph can be interpreted as ‘Divergence of Gradient’, which shows in what directions and
how smoothly the energy will diffuse over a graph if we put some potential in node i. L can
be factored as L = UΛUT like the one below where U contains the eigenvectors of L, and Λ
is a diagonal matrix containing the corresponding eigenvalues. These eigenvectors are also
known as the graph Fourier modes, and the corresponded eigenvalues are the frequencies
of the graph. Thus spectral graph convolution can be described as

x ∗G gθ = UgθU
Tx

where filter gθ is a diagonal matrix with learnable parameters θ.

One disadvantage of using spectral GCNNs is the cost of computing eigenvectors of the
Laplacian matrix L and the non-localized spectral filters. Spectral filters are not local-
ized and may not scale well to large graphs. Various approximations such as ChebNets
(section 3.3) have been proposed to approximate spectral convolution.

Spatial GCNNs. Spatial-based approaches formulate graph convolutions as aggregat-
ing feature information from neighbors. Spatial graph convolution learns the aggregation
function, which is permutation invariant to the ordering of the node. Spatial GCNNs learn
different aggregation functions which combine information from each node’s neighbors.
Spatial GCNN can be viewed as message passing.

3.3 Graph Convolution Neural Networks (GCNNs)

Both spectral and spatial GCNNs are used to learn graph representation in chapter 6.
ChebNet (Spectral GCNN) and GraphSAGE (Spatial GCNN) are implemented to compare
the performance of our proposed algorithm. Ablation study for various hyper-parameters
of GCNN is shown in Table 6.3.

ChebNet. It was introduced by Defferrard et al. [14]. Spectral convolutions on graphs
are defined as the multiplication of a signal x ∈ RN (a scalar for every node) with a filter
g(θ) = diag(θ) parameterized by θ ∈ RN in the Fourier domain, i.e.,

gθ ~ x = UgθU
Tx,

where U is the matrix of eigenvectors of the normalized graph Laplacian L = IN −
D−

1
2AD−

1
2 . This equation is computationally expensive to calculate as multiplication

14

with the eigenvector matrix U is O(N2). Hammond et al. [29] suggested that gθ can be
well-approximated by a truncated expansion in terms of Chebyshev polynomials Tk(x), i.e.,

gθ′(Λ) ≈
K∑
k=0

θ′Tk(Λ).

The kernels used in ChebNet are made of Chebyshev polynomials of the diagonal matrix
of Laplacian eigenvalues. ChebNet uses kernel made of Chebyshev polynomials. Cheby-
shev polynomials are a type of orthogonal polynomials with properties that make them
very good at tasks like approximating functions.

GraphSAGE. Hamilton et al. in 2017 introduced a new graph learning framework called
GraphSAGE [27]. GraphSAGE learns inductive node embedding based on matrix fac-
torization and uses node features (e.g., text attributes, node profile information, node
degrees) to learn an embedding function. Learned embedding function can generalize to
unseen nodes by learning aggregation functions that can induce the embedding of a new
node given its features and neighborhood. This method is known as inductive learning.
GraphSAGE is a framework for inductive representation learning on large graphs that
can generate low-dimensional vector representations for nodes and is especially useful for
graphs with rich node attribute information. It is much faster to create embeddings for
new nodes with GraphSAGE.

Graph Pooling Layers. Similar to CNNs, pooling layers in GNNs downsample node
features by pooling operation. Evaluation is done with Global Attention Pooling, Mean
Pooling, Max Pooling, and Sum Pooling. Global Attention Pooling [59] was introduced by
Li et al. and uses a soft attention mechanism to decide which nodes are relevant to the
current graph-level task and gives the pooled feature vector from all the nodes.

3.4 Set Representation Learning using Graphs

Set Representation Learning can be viewed as a graph learning problem where each element
in the set can be considered a node in the graph. The main challenge of set representation
learning is to learn inter-dependencies among elements of the set via adjacency matrix.
Different methods have been proposed to learn the connectivity or the adjacency matrix.
A new method is proposed which uses a fully connected graph with weighted edges in

15

chapter 6. The weights of edges are learned in an end-to-end fashion as described in
section 6.1. To the best of knowledge, this is an entirely new approach to learn gigapixel
image representation.

16

Chapter 4

Gigapixel Histopathology Images

The success of deep learning has opened promising horizons for digital pathology. AI ex-
perts and pathologists are now working together to design novel image analysis algorithms.
The last decade has witnessed the widespread adoption of digital pathology, leading to the
emergence of machine learning (ML) models for analyzing Whole Slide Images (WSIs).
Applications of ML in digital pathology include (i) reducing the workload on pathologists,
and (ii) improving cancer treatment procedures [62]. The computational analysis of WSIs
offers various challenges in terms of image size and complexity. These challenges necessi-
tate the inquiry into more effective ways of analyzing WSIs. CNNs are at the forefront of
computer vision, showcasing significant improvements over conventional methodologies for
visual understanding [45]. However, CNNs can not be directly utilized for processing WSIs
due to their large image dimensions. The majority of the recent work analyzes WSIs at
the patch level that requires manual delineations from experts. These manual delineations
reduce the feasibility of such approaches for real-world scenarios. Moreover, most of the
time, labels are available for an entire WSI and not for individual patches [2]. Therefore,
it is necessary to leverage the information present in all patches to learn a WSI represen-
tation. Representing WSI as a set of patches can be considered as a set representation
learning problem. Hence, Set Representation Learning (MIL) is a promising venue for
vision-related tasks for WSIs.

4.1 Background

CNN based methods for analyzing histopathological images is well represented in the lit-
erature [15, 13, 63, 19]. Deep learning methods generalize well across patients, disease

17

(a) Lung Adenocarcinoma (b) Lung Squamous Cell Carcinoma

Figure 4.1: Example of Histopathology Images: The patches extracted from two WSIs of
patients with (a) LUAD and (b) LUSC. Each slide roughly contains 500 patches.

conditions, and are robust to the vendor or human-induced variations, especially when a
large amount of training data is available [15]. A WSI usually contains at least two target
labels, anatomic site, and primary diagnosis that are arranged in a hierarchy. The simplest
way to deal with multi-label classification with k labels is to treat this as k independent
binary classification. Although this approach may be helpful, it does not capture label
dependencies. This limitation can degrade the performance in many applications where
there is strong dependency among labels, for example, in WSI classification. To address this
limitation, two different approaches, i.e., transformation and algorithm adaption methods,
have been proposed [96]. In transformation-based methods, multi-label data is converted
to new single label data to apply regular single-label classification. On the other hand, in
the adaptation-based category, this is attempted to modify the basic single-label algorithm
to handle multi-label data [77].

There are two main methods for characterizing WSIs [6]. The first method is called
subsetting, which considers a small section of a large WSI as an essential region for anal-
ysis. On the other hand, the tiling method segments a WSI into smaller and controllable
patches (i.e., tiles) [26]. The tiling or patch-based methods can benefit from Multiple
Instance Learning (MIL). MIL is a weakly supervised algorithm where the label is avail-
able for a group or set of instances (patches for histopathology). MIL can be considered
as a set representation learning problem and are well-suited for learning gigapixel image
representation.

18

4.2 Multiple Instance Learning for WSIs

Multiple Instance Learning (MIL) algorithms assign a class label to a set of instances rather
than to individual instances. The individual instance labels are not necessarily important,
depending on the type of algorithm and its underlying assumptions [12]. Learning rep-
resentation for histopathology images can be formulated as a MIL problem. Due to the
intrinsic ambiguity and difficulty in obtaining human labeling, MIL approaches have their
particular advantages in automatically exploiting the fine-grained information and reducing
the efforts of human annotations. Exchangeable models or Permutation Invariant Models
are useful for histopathological images analysis as ground-truth labeling is expensive, and
labels are available at WSI instead of at the pixel level. A small pathology lab may process
≈10,000 WSIs/year, producing a vast amount of data, presenting a unique opportunity for
MIL methods. Dismantling a WSI into smaller patches is a common practice; these patches
can be used for MIL. The authors in [34] used attention-based pooling to infer important
patches for cancer classification. A large amount of partially labeled data in histopathol-
ogy can be used to discover hidden patterns of clinical importance [49]. Authors in [75]
used MIL for breast cancer classification. A permutation invariant operator introduced
by [80, 79] was applied to pathology images. Recently, graph CNNs have been successfully
used for representation learning of WSIs [2]. These compact and robust representations of
WSIs can be further used for various clinical applications such as image-based search to
make well-informed diagnostic decisions [44, 43].

19

Part II

Proposed Methods

20

Chapter 5

Memory-Based Exchangeable Model

In this chapter, a novel architecture for exchangeable sequences is proposed incorporating
attention over the instances to learn inter-dependencies. Resultsfrom Deep Sets [94] are
used to construct a permutation invariant model for learning set representations. The main
contribution is a sequence-to-sequence permutation invariant layer called Memory Block.
The proposed model uses a series of connected memory block layers to model complex
dependencies within an input set using a self-attention mechanism. Model is validated
using toy datasets and two real-world applications. The real-world applications include i)
point cloud classification and ii) classification of WSI into two subtype of lung cancers—
Lung Adenocarcinoma (LUAD)/ Lung Squamous Cell Carcinoma (LUSC) (see Figure 5.1).

The chapter is structured as follows: section 5.1 discusses the motivation for developing
an attention-based permutation invariant model. Approach and experimental results are
explained in section 5.2 and section 5.5. Mathematical concepts for exchangeable models
are covered in the previous chapter section 2.2.

5.1 Motivation

In order to learn an efficient representation for a set of instances, it is important to focus on
instances that are “important” for a given task at hand, i.e., we need to attend to specific
instances more than other instances. Therefore, memory network can be used to learn an
attention mapping for each instance. Memory networks are conventionally used for NLP
for mapping questions posted in natural language to an answer [87, 76]. The proposed
method exploit the idea of having memories which can learn key features shared by one or

21

Lung Adenocarcinoma (LUAD) Lung Squamous Cell Carcinoma (LUSC)

(a) Patch Extraction

Input Batch

Proposed

Model

Classification

(b) Set Classification

Figure 5.1: An exemplar application of learning permutation invariant representation for
disease classification of Whole-Slide Images (WSIs). (a) A set of patches are extracted from
each WSI of patients with lung cancer. (b) The sets of patches are fed to the proposed
model for classification of the subtype of lung cancer—LUAD versus LUSC. The model
classifies on a per set basis. This form of learning is known as Multi Instance Learning
(MIL).

more instances. Through these key features, the model can learn inter-dependencies using
transformer style self-attention mechanism. As inter-dependencies are learned, a set can
be condensed into a compact vector such that an MLP can be used for classification or
regression learning.

Memory Networks. The idea of using an external memory for relational learning tasks
was introduced by Weston et al. [87]. Later, an end-to-end trainable model was proposed
by Sukhbaatar et al. [76]. Memory networks enable the learning of dependencies among
instances of a set by providing an explicit memory representation for each instance in
the sequence. The idea of self-attention is popularized by [83]; these models are known
as transformers, widely used in NLP applications. The proposed MEM model uses the
self-attention (similar to transformers) within memory vectors, aggregated using a pooling
operation (weighted averaging) to form a permutation-invariant representation. The next
section explains it in detail.

22

...

M
e

m
o

ry

U
n

it
s

...

1 2 m

* * *

(a) memory block

MatMul

Non Linearity

Transpose

MatMul

Average

Softmax

*

E
m

b
e

d
A

u
to

c
o

rr
e

la
ti
o

n
S

o
ft

m
a

x

(b) memory unit

Figure 5.2: X is an input sequence containing n number of f -dimensional vectors. (a)
The memory block is a sequence-to-sequence model that takes X and returns another
sequence X̂. The output X̂ is a permutation-invariant representation of X. A bijective
transformation model (an autoencoder) converts the input X to a permutation-equivariant
sequence C. The weighted sum of C is computed over different probability distributions
pi from memory units. The hyper-parameters of a memory block are i) dimensions of the
bijective transformation h, and ii) number of memory units m. (b) The memory unit
has Ai, an embedding matrix (trainable parameters) that transforms elements of X to a
d-dimensional space (memories). The output pi is a probability distribution over the input
X, also known as attention. The memory unit has a single hyper-parameter d, i.e. the
dimension of the embedding space. (* represents learnable parameters.)

5.2 Proposed Model

MEM is composed of four sequentially connected units: i) a feature extraction model, ii)
memory units, iii) memory blocks, and iv) fully connected layers to predict the output.

A memory block is the main component of MEM and learns a permutation invariant
representation of a given input sequence. Multiple memory blocks can be stacked together
for modeling complex relationships and dependencies in exchangeable data. The memory
block is made of memory units and a bijective transformation unit shown in Figure 5.2

Memory Unit. A memory unit transforms a given input sequence to an attention vector.

23

The higher attention value represents higher “importance” of the corresponding element
of the input sequence. Essentially, it captures the relationships among different elements
of the input. Multiple memory units enable the memory block to capture many complex
dependencies and relationships among the elements. Each memory unit consists of an
embedding matrix Ai that transforms a f -dimensional input vector xj to a d-dimensional
memory vector uij, as follows:

uij = ρ(xjAi),

where ρ is some non-linearity. The memory vectors are stacked to form a matrix Ui =
[ui0, . . . , uin] of the shape (n × d). The relative degree of correlations among the memory
vectors are computed using cross-correlation followed by a column-wise softmax and then
taking a row-wise average, as follows:

Si = column-wise-softmax(UiU
T
i),

pi = row-wise-average(Si),
(5.1)

The pi is the final output vector (1×n) from the ith memory unit Ui, as shown in Figure 5.2.
The purpose of memory unit is to embed feature vectors into another space that could cor-
respond to a distinct “attribute” or “characteristic” of instances. The cross correlation or
the calculated attention vector represents the instances which are highly suggestive of those
“attributes” or “characteristic”. The proposed method do not normalize memory vectors
as magnitude of these vectors may play an important role during the cross correlation.

Memory Block. A memory block is a sequence-to-sequence model, i.e., it transforms a
given input sequence X = x1, . . . , xn to another representative sequence X̂ = x̂1, . . . , x̂m.
The output sequence is invariant to the element-wise permutations of the input sequence.
A memory block contains m number of memory units. In a memory block, each memory
unit takes a sequential data as an input and generates an attention vector. These atten-
tion vectors are subsequently used to compute the final output sequence. The schematic
diagram of a memory block is shown in Figure 5.2a.

The final output sequence X̂ of a memory block is computed as a weighted sum of C
with the probability distributions p1, . . . , pm from all the m memory units where C is a
bijective transformation of X learned using an autoencoder. Each memory block has its
own autoencoder model to learn the bijective mapping. The ith element x̂i of the output
sequence X̂ is computed as matrix multiplication of pi and C, as follows:

x̂i = piC,

24

Input

...

(b) Memory Blocks

...

(a) Feature Extraction (c) MLP

Sequence

Figure 5.3: The overall architecture of the proposed Memory-based Exchangeable Model
(MEM). The input to the model is a sequence, for e.g., a sequence of images or vectors.
Each element of the input sequence X is passed through (a) feature extractor (CNN or
MLP) to extract a sequence of feature vectors F , which is passed to (c) sequentially con-
nected memory blocks. A memory block outputs another sequence which is a permutation-
invariant representation of the input sequence. The output from the last memory block is
vectorized and given to (c) MLP layers for classification/regression.

where, pi is the output of ith memory unit given by (5.1).

The bijective transformation from X 7→ C enables equivariant correspondence between
the elements of the two sequences X & X̂, and maps two different elements in the input
sequence to different elements in the output sequence. It must be noted that bijective
transformation is permutation equivariant, not invariant. The reconstruction maintains a
one-to-one mapping between X and C. The final output sequence from a memory block
is permutation invariant as it uses matrix multiplication between pi (attention) and C.

5.3 Model Architecture

The overall architecture is shown in Figure 5.3.

1. Each element of a given input sequence X = x1, . . . , xn is passed through a feature
extraction model to produce a sequence of feature vectors F = f1, . . . , fn.

2. The feature sequence F is then passed through a memory block to obtain another
sequence X̂ which is a permutation-invariant representation of the input sequence.
The number of elements in the sequence X̂ depends on the number of memory units
in the memory block layer.

25

3. Multiple memory blocks can be stacked in series. The output from the last memory
block is either vectorized or pooled, which is subsequently passed to a MLP layer for
classification or regression.

5.4 Analysis

This section discusses the mathematical properties of our model and uses theorems from
Deep Sets [93] to prove that the model is a permutation invariant and universal approxi-
mator for arbitrary set functions.

Property 1. Memory units are permutation equivariant.

Consider an input sequence X = x1 . . . xn. Since, for each memory unit,

Ui = [ρ(xoAi), ρ(x1Ai), . . . , ρ(xnAi)]

By Equation (2.1), Ui is permutation equivariant and thus Si in (5.1) is permutation equiv-
ariant. Finally, the attention vector pi is calculated by averaging all rows, therefore the
final output of memory unit pi is permutation equivariant.

Property 2. Memory Blocks are permutation invariant.

A memory block layer consisting of m memory units generates a sequence X̂ = x̂1, . . . , x̂m
where x̂i can be written as

x̂i = piC

Since both C and pi are permutation equivariant, therefore, x̂i, which is calculated by
matrix multiplication of pi and C, is permutation invariant.

5.5 Experiments

Two series of experiments are performed comparing MEM against the simple pooling op-
erations proposed by Deep Sets [94]. The first series of experiments establish the learning
ability of the proposed model using toy datasets. For the second series, two real-world
dataset are used, i) classification of subtypes of lung cancer against the largest public

26

1.5 Sum of Even Prime Counting Unique Maximum of Gaussian
Methods Digits Sum Images Set Clustering

Accuracy MAE Accuracy Accuracy MAE Accuracy MAE NLL
FF + MEM + MB1 (ours) 0.9367 ± 0.0016 0.2516 ± 0.0105 0.9438 ± 0.0043 0.7108 ± 0.0084 0.3931 ± 0.0080 0.9326 ± 0.0036 0.1449 ± 0.0068 1.348
FF + MEM + Mean (ours) 0.9355 ± 0.0015 0.2437 ± 0.0087 0.7208 ± 0.0217 0.4264 ± 0.0062 0.9525 ± 0.0109 0.9445 ± 0.0035 0.1073 ± 0.0067 1.523
FF + MEM + Max (ours) 0.9431 ± 0.0020 0.2295 ± 0.0098 0.9361 ± 0.0060 0.6888 ± 0.0066 0.4140 ± 0.0079 0.9498 ± 0.0022 0.1086 ± 0.0060 1.388
FF + MEM + Dotprod (ours) 0.8411 ± 0.0045 0.3932 ± 0.0065 0.9450 ± 0.0086 0.7284 ± 0.0055 0.3664 ± 0.0037 0.9517 ± 0.0041 0.0999 ± 0.0097 1.363
FF + MEM + Sum (ours) 0.9353 ± 0.0022 0.2739 ± 0.0081 0.6652 ± 0.0389 0.3138 ± 0.0094 1.3696 ± 0.0151 0.9430 ± 0.0031 0.1318 ± 0.0058 1.611
FF + Mean (DS) 0.9159 ± 0.0019 0.2958 ± 0.0049 0.5280 ± 0.0078 0.3140 ± 0.0071 1.2169 ± 0.0136 0.3223 ± 0.0075 1.0029 ± 0.0155 2.182
FF + Max (DS) 0.6291 ± 0.0047 1.3292 ± 0.0211 0.9257 ± 0.0033 0.7088 ± 0.0060 0.3933 ± 0.0059 0.9585 ± 0.0012 0.0742 ± 0.0032 1.608
FF + Dotprod (DS) 0.1503 ± 0.0015 1.8015 ± 0.0016 0.9224 ± 0.0028 0.7254 ± 0.0063 0.3726 ± 0.0054 0.9548 ± 0.0017 0.1355 ± 0.0027 8.538
FF + Sum (DS) 0.6333 ± 0.0043 0.5763 ± 0.0069 0.5264 ± 0.0050 0.2982 ± 0.0042 1.3415 ± 0.0169 0.3344 ± 0.0038 0.9645 ± 0.0111 12.05
1.5

Table 5.1: Results on the toy datasets for different configurations of MEM and feature
pooling. It must be noted that for Maximum of Set, the configuration FF + Max (DS)
achieves the best accuracy but it may predict the output perfectly by learning the identity
function therefore we highlighted second best configuration FF + Dotprod (DS) as well.

dataset of histopathology whole slide images (WSIs) [86], and ii) 3-D object classification
using Point Cloud Dataset [89].

Model Comparison. The performance of MEM is compared against Deep Sets [94].
Same feature extractor is used for both Deep Sets and MEM, and experimented with
different choices of pooling operations—max, mean, dot product, and sum. MEM also
has a special pooling “mb1”, which is a memory block with a single memory unit in
the last hidden layer. Therefore, nine different models are tested for each experiment—
five configurations of our model, and four configurations of Deep Sets. Hyper-parameters
tuning is done to achieve the best performance for each configurations of both MEM and
Deep Sets. MEM is found to have a higher learning capacity, therefore, higher number of
parameters resulted in better accuracy for MEM but not necessarily for Deep Set. Common
feature extractor is denoted as FF and Deep Sets as DS in the discussion below. The other
approaches that are compared have been appropriately cited.

5.5.1 Toy Datasets

To demonstrate the advantage of MEM over simple pooling operations, the work considers
four toy problems involving regression and classification over sets. The toy datasets are
constructed using the MNIST dataset.

Sum of Even Digits. Sum of even digits is a regression problem over the set of images
containing handwritten digits from MNIST. For a given set of images X = {x1, . . . , xn},
the goal is to find the sum of all even digits. Loss used is Mean Absolute Error (MAE).

27

2 4 6 8 10

n

0.7

0.8

0.9

1.0

A
c
c
u
ra
c
y

MEM

Pooling

Figure 5.4: Comparison of MEM and feature pooling on a regression problem involving
finding the sum of even digits within a set of MNIST images. Each point corresponds to
the best configurations for the two models.

MNIST dataset is splitted into 70-30% training, and testing dataset, respectively. Sam-
pling is done to get 100,000 sets of 2 to 10 images from the training data. For testing,
sampled 10,000 sets of images containing m number of images per set where m ∈ [2, 10].
Figure 5.4 shows the performance of MEM against simple pooling operations with respect
to the number of images in the set.

Prime Sum. Prime Sum is a classification problem over a set of MNIST images. A set is
labeled positive if it contains any two digits such that their sum is a prime number. Dataset
is constructed by randomly sampling five images from the MNIST dataset. Training data is
constructed using 20,000 sets randomly sampled from the training data of MNIST. For test-
ing, randomly sampled 5,000 sets from the testing data of MNIST are used. The results are
reported in the second column of Table 5.1 that shows the robustness of the memory block.

Maximum of a Set. Maximum of a set is a regression problem to predict the highest digit
present in a set of images from MNIST. A set of five images is constructed by randomly
selecting samples from MNIST dataset. The label for each set is the largest number present
in the set. For example, images of {2, 5, 3, 3, 6} is labeled as 6. 20,000 training sets are
used, and for testing, randomly sampled 5,000 sets are used. The detailed comparison of
accuracy and MAE between different models is given in the second last column of Table 5.1.
It is found that FF+Max learns the identity mapping and thus results in very high accu-

28

racy. In all the training sessions, experiments consistently obtained the training accuracy of
100% for the FF+Max configuration, whereas MEM generalizes better than the Deep Sets.

Counting Unique Images. Counting unique images is a regression problem over a
set. This task involves counting unique objects in a set of images from fashion MNIST
dataset [90]. We constructed the training data by selecting a set, as follows:

1. Let n be the number of total images and u be the number of unique images.

2. Randomly select an integer n between 2 and 10.

3. Randomly select another integer u between 1 and n.

4. Select u number of unique objects from fashion-MNIST training data.

5. Then add n-u number of randomly selected objects from the previous step.

The task is to count unique objects u in a given set. The results are shown in the third
column of Table 5.1.

Amortized Gaussian Clustering. Amortized Gaussian clustering is a regression
problem that involves estimating the parameters of a population of Mixture of Gaussian
(MoG). Similar to Set Transformer [57], we test our model’s ability to learn parameters of
a Gaussian Mixture with k components such that the likelihood of the observed samples
is maximum. This is in contrast to the EM algorithm, which updates parameters of
the mixture recursively until the stopping criterion is satisfied. Instead, we use MEM to
directly predict parameters of a MoG, i.e., f(x; θ) = {π(x), (µ(x), σ(x))kj=1}. For simplicity,
we sample from MoG with only four components. The Generative process for each training
dataset is as follows:

1. Mean of each Gaussian is selected from a uniform distribution i.e. µkj=1 ∼ Unif(0, 8).

2. Select a cluster for each instance in the set, i.e.,

π ∼ Dir([1, 1]T); zi ∼ Categorical(π)

3. Generate data from an univariate Gaussian ∼ N (µzi , 0.3).

We created a dataset of 20,000 sets, each consisting of 500 points sampled from different
MoGs. Results in Table 5.1 show that MEM is significantly better than Deep Sets.

29

5.5.2 Real World Datasets

To show the robustness and scalability of the model for real-world problems, we have vali-
dated MEM on two larger datasets. Firstly, we tested our model on a point cloud dataset
for predicting the object type from the set of 3D coordinates. Secondly, we used the largest
public repository of histopathology images (TCGA) [86] to differentiate between two main
subtypes of lung cancer. Without any significant effort in extracting histologically relevant
features and fine-tuning, we achieved a remarkable accuracy of 84.84% on 5-fold validation.

Point Cloud Classification. We evaluated MEM on a more complex classification task
using ModelNet40 [89] point cloud dataset. The dataset consists of 40 different objects or
classes embedded in a three-dimensional space as points. We produce point-clouds with
100 points (x, y, z-coordinates) each from the mesh representation of objects using the
point-cloud library’s sampling routine [71]1. We compare the performance against various
other models reported in Table 5.2. We experimented with different configurations of our
model and found that FF+MB1 works best for 100 points cloud classification. We achieve
the classification accuracy of 85.21% using 100 points. Our model performs better than
Deep Sets and Set Transformer for the same number of instances, showing the effectiveness
of having attention from memories.

1.5 Configuration Instance Size Accuracy
3DShapeNet [89] 303 0.77
Deep set [94] 100 0.8200
VoxNet [64] 322 0.8310
3D GAN [88] 643 0.833
Set Transformer [57] 100 0.8454
Set Transformer [57] 1000 0.8915
Deep set [94] 5000 0.9
MVCNN [74] 164 × 164 × 12 0.901
Set Transformer [57] 5000 0.9040
VRN Ensemble [10] 323 0.9554
FF + MEM + MB1 (Ours) 100 0.8521

Table 5.2: Test accuracy for the point cloud classification on different instance sizes using
various methods. MEM with configuration FF + MEM + MB1 achieves 85.21% accuracy
for the instance size of 100 which is best compared to others.

1We obtained the training and test datasets from Zaheer et al. [94]

30

(a) Lung Adenocarcinoma (b) Lung Squamous Cell Carcinoma

Figure 5.5: The patches extracted from two WSIs of patients with (a) LUAD and (b)
LUSC. Each slide roughly contains 500 patches.

Lung Cancer Subtype Classification. Lung Adenocarcinoma (LUAD) and Lung
Squamous Cell Carcinoma (LUSC) are two main types of non-small cell lung cancer
(NSCLC) that account for 65-70% of all lung cancers [23]. Classifying patients accu-
rately is important for prognosis and therapy decisions. Automated classification of these
two main subtypes of NSCLC is a crucial step to build computerized decision support
and triage systems. We present a two-staged method to differentiate LUAD and LUSC
for whole slide images, short WSIs, that are very large images. Firstly, we implement a
method to systematically sample patches/tiles from WSIs. Next, we extract image features
from these patches using DenseNet [33]. We then use MEM to learn the representation of
a set of patches for each WSI.

To the best of our knowledge, this is the first-ever study conducted on all the lung cancer
slides in TCGA dataset (comprising of 2 TB of data consisting of 2.5 million patches of
size 1000×1000 pixels). All research works in literature use a subset of the WSIs with
their own test-train split instead of cross-validation, making it difficult to compare against
them. However, we have achieved greater than or similar to all existing research works
without utilizing any expert’s opinions (pathologists) or domain-specific techniques. We
used 2,580 WSIs from TCGA public repository [86] with 1,249, and 1,331 slides for LUAD
and LUSC, respectively. We process each WSI as follows.

1. Tissue Extraction. Every WSI contains a bright background that generally
contains irrelevant (non-tissue) pixel information. We removed non-tissue regions
using color thresholds.

31

2. Selecting Representative Patches. Segmented tissue is then divided into
patches. All the patches are then grouped into a pre-set number of categories (classes)
via a clustering method. A 10% of all clustered patches are uniformly randomly se-
lected distributed within each class to assemble representative patches. Six of these
representative patches for each class (LUAD and LUSC) is shown in Figure 5.5.

3. Feature Set. A set of features for each WSI is created by converting its represen-
tative patches into image features. We use DenseNet [33] as the feature extraction
model. There are a different number of feature vectors for each WSI.

1.5 Methods Accuracy
Coudray et al. [13] 0.85
Jabber et al. [38] 0.8333
Khosravi et al. [46] 0.83
Yu et al. [92] 0.75
FF + MEM + Sum (ours) 0.8484 ± 0.0210
FF + MEM + Mean (ours) 0.8465 ± 0.0225
FF + MEM + MB1 (ours) 0.8457 ± 0.0219
FF + MEM + Dotprod (ours) 0.6345 ± 0.0739
FF + sum (DS) 0.5159 ± 0.0120
FF + mean (DS) 0.7777 ± 0.0273
FF + dotprod (DS) 0.4112 ± 0.0121
1.5

Table 5.3: Accuracy for LUAD vs LUSC classification for various methods. For our ex-
periments, we conducted comprehensive 5-fold cross validation accuracy whereas other
methods have used non-standardized test set.

The results are shown in Table 5.3. We achieved the maximum accuracy of 84.84%
with FF + MEM + Sum configuration. It is difficult to compare our approach against
other approaches in literature due to non-standardization of the dataset. Coudray et
al. [13] used the TCGA dataset with around 1,634 slides to classify LUAD and LUSC.
They achieved AUC of 0.947 using patches at 20×. We achieved a similar AUC of 0.94
for one of the folds and average AUC of 0.91. In fact, without any training, they achieved
the similar accuracy as our model (around 85%). It is important to note that we did not
do any fine-tuning or utilize any form of input from an expert/pathologist. Instead, we
extracted diverse patches and let the model learn to differentiate between two subtypes
by “attending” relevant ones. Another study by Jaber et al. [38] uses cell density maps,
achieving an accuracy of 83.33% and AUC of 0.9068. However, they used much smaller

32

portion of the TCGA, i.e., 338 TCGA diagnostic WSIs (164 LUAD and 174 LUSC) were
used to train, and 150 (71 LUAD and 79 LUSC).

5.6 Summary

In this chapter, we introduced a Memory-based Exchangeable Model (MEM) for learning
permutation invariant representations. The proposed method uses attention mechanisms
over “memories” (higher order features) for modelling complicated interactions among
elements of a set. Typically for MIL, instances are treated as independently and identically
distributed. However, instances are rarely independent in real tasks, and we overcome
this limitation using an “attention” mechanism in memory units, that exploits relations
among instances. We also prove that the MEM is permutation invariant. We achieved
good performance on all problems that require exploiting instance relationships. Our
model scales well on real-world problems as well, achieving an accuracy score of 84.84% on
classifying lung cancer subtypes on the largest public repository of histopathology images.

33

Chapter 6

Set Representation Learning using
Graph Neural Networks

In this chapter, the thesis explore the application of graph neural networks for Set Repre-
sentation Learning. A new framework is proposed that models a WSI as a fully connected
graph to extract its representation. The proposed method processes the entire WSI at the
highest magnification level; it requires a single label of the WSI without any patch-level
annotations. Furthermore, modeling WSIs as fully connected graphs enhance the inter-
pretability of the final representation. The proposed method treats each instance as a node
of the graph to learn relations among nodes in an end-to-end fashion. Thus, the proposed
method not only learns the representation for a given WSI but also models relationship
among different patches. Method is evaluated for classifying of two subtypes of lung cancer,
Lung Adenocarcinoma (LUAD) and Lung Squamous Cell Carcinoma (LUSC). LUAD and
LUSC are the most prevalent subtypes of lung cancer, and their distinction requires visual
inspection by an experienced pathologist. WSIs are obtained from the largest publicly
available dataset, The Cancer Genome Atlas (TCGA) [86], to train the model for lung
cancer subtype classification. The proposed method achieved an accuracy of 89% and 0.93
AUC.

The contributions of the paper are 3-folds, i) a graph-based method for representation
learning of WSIs, and ii) a novel adjacency learning layer for learning connections within
nodes in an end-to-end manner and iii) visualizing patches that are given higher importance
by the network for the prediction.

The chapter is structured as follows: section 6.1 explains the approach, and experiments
& results are reported in Section section 6.2.

34

6.1 Proposed Method

The proposed method for representing a WSI has two stages, i) sampling important patches
and modeling them into a fully-connected graph, and ii) converting the fully-connected
graph into a vector representation for classification or regression purposes. These two
stages can be learned end-to-end in a single training loop. The major novelty of the
method is the learning of the adjacency matrix that defines the connections within nodes.
The overall proposed method is shown in Figure 6.1 and Figure 6.2. The method can be
summarized as follows.

1. The important patches are sampled from a WSI using a color-based method described
in [40]. A pre-trained CNN is used to extract features from all the sampled patches.

2. The given WSI is then modeled as a fully-connected graph. Each node is connected
to every other node based on the adjacency matrix. The adjacency matrix is learned
end-to-end using Adjacency Learning Layer.

3. The graph is then passed through a Graph Convolution Network followed by a graph
pooling layer to produce the final vector representation for the given WSI.

The main advantage of the method is that it processes entire WSIs. The final vector
representation of a WSI can be used for various tasks—classification (prediction cancer
type), search (KNN search), or regression (tumor grading, survival prediction) and others.

Patch Selection and Feature Extraction. We used the method for patch selection
proposed in [40]. Every WSI contains a bright background that generally contains irrele-
vant (non-tissue) pixel information. Non-tissue regions are removed using color thresholds.
Segmented tissue is then divided into patches. All patches are grouped into a pre-set num-
ber of categories (classes) via a clustering method. A portion of all clustered patches (e.g.,
10%) are randomly selected within each class. Each patch obtained after patch selection
is fed into a pre-trained DenseNet [33] for feature extraction. These features are further
feed to trainable fully connected layers and obtain final feature vectors each of dimension
1024 representing patches.

Graph Representation of WSI. A novel method is proposed for learning WSI repre-
sentation using GCNNs. Each WSI is converted to a fully-connected graph, which has the
following two components.

35

Figure 6.1: Transforming a WSI to a fully-connected graph. A WSI is represented
as a graph with its nodes corresponding to distinct patches from the WSI. A node feature
(a blue block beside each node) is extracted by feeding the associated patch through a deep
network. A single context vector, summarizing the entire graph is computed by pooling all
the node features. The context vector is concatenated with each node feature, subsequently
fed into adjacent learning block. The adjacent learning block uses a series of dense layers
and cross-correlation to calculate the adjacency matrix. The computed adjacency matrix
is used to produce the final fully-connected graph. In the figure, the thickness of the edge
connecting two nodes corresponds to the value in the adjacency matrix.

1. Nodes V : Each patch feature vector represents a node in the graph. The feature for
each node is the same as the feature extracted for the corresponding patch.

2. Adjacency Matrix A: Patch features are used to learn the A via adjacency learning
layer.

Adjacency Learning Layer. Connections between nodes V are expressed in the form of
the adjacency matrix A. The proposed algorithm learns the adjacency matrix in an end-
to-end fashion in contrast to the method proposed in [82] that thresholds the `2 distance on
pre-computed features.The proposed method also uses global information about the patches
while calculating the adjacency matrix. The idea behind using the global context is that
the connection between two same nodes/patches can differ for different WSIs; therefore,
elements in the adjacency matrix should depend not only on the relation between two
patches but also on the global context of all the patches.

1. Let W be a WSI and w1, w2, . . . wn be its patches. Each patch wi is passed through
a feature extraction layer to obtain corresponding feature representation xi.

36

Figure 6.2: Classification of a graph representing a WSI. A fully connected graph rep-
resenting a WSI is fed through a graph convolution layer to transform it into another fully-
connected graph. After a series of transformations, the nodes of the final fully-connected
graph are aggregated to a single condensed vector, which is fed to an MLP for classification
purposes.

2. We use the theorem by Zaheer et al. [94] to obtain the global context from the
features xi. Feature vectors from all patches in the given WSI are pooled using a
pooling function φ to get the global context vector c. Mathematically,

c = φ(x1, x2, . . . , xn). (6.1)

Zaheer et al. showed that such a function can be used as an universal set approxi-
mator.

3. The global context vector c is then concatenated to each feature vector xi to obtain
concatenated feature vector x′i which is passed through MLP layers to obtain new
feature vector x∗i · x∗i are the new features that contain information about the patch
as well as the global context.

4. Features x∗i are stacked together to form a feature matrix X∗ and passed through a
cross-correlation layer to obtain adjacency matrix denoted by A

n×n
where each element

aij in A shows the degree of correlation between the patches wi and wj. We use aij
to represent the edge weights between different nodes in the fully connected graph
representation of a given WSI.

Graph Convolution Layers. Once the graph representation of the WSI is implemented,
two types of GCNN are experimented: ChebNets and GraphSAGE Convolution, which
are spectral and spatial methods, respectively. Each hidden layer in GCNN models the
interaction between nodes and transforms the feature into another feature space. Finally,

37

a graph pooling layer transforms node features into a single vector representation. Thus, a
WSI can now be represented by a condensed vector, which can be further used to do other
tasks such as classification, image retrieval, etc.

General MIL Framework. The proposed method can be used in any MIL framework.
The general algorithm for solving MIL problems is as follows:

1. Consider each instance as a node and its corresponding feature as the node features.

2. The global context of the bag of instances is learned to calculate the adjacency matrix
A.

3. A fully connected graph is constructed with each instance as a node and aij in A
representing the edge weight between Vi and Vj.

4. Graph convolution network is used to learn the representation of the graph, which is
passed through a graph pooling layer to get a single feature vector representing the
bag of instances.

5. The single feature vector from the graph can be used for classification or other learn-
ing tasks.

6.2 Experiments

We evaluated the performance of our model on two datasets i) a popular benchmark dataset
for MIL called MUSK1 [17], and ii) 1026 lung slides from TCGA dataset [26]. Our pro-
posed method achieved a state-of-the-art accuracy of 92.6% on the MUSK1 dataset. We
further used our model to discriminate between two subtypes of lung cancer—Lung Ade-
nocarcinoma (LUAD) and Lung Squamous Cell Carcinoma (LUSC).

6.2.1 MUSK1 Dataset

It has 47 positive bags and 45 negative bags. Instances within a bag are different con-
formations of a molecule. The task is to predict whether new molecules will be musks
or non-musks. We performed 10 fold cross-validation five times with different random

38

seeds. We compared our approach with various other works in literature, as reported
in Table 6.1. The miGraph [99] is based on kernel learning on graphs converted from
the bag of instances. The latter two algorithms, MI-Net [85], and Attention-MIL [35], are
based on DNN and use either pooling or attention mechanism to derive the bag embedding.

Algorithm Accuracy
mi-Graph [99] 0.889
MI-Net [85] 0.887
MI-Net with DS [85] 0.894
Attention-MIL [35] 0.892
Attention-MIL with gating [35] 0.900
Ming Tu et al. [82] 0.917
Proposed Method 0.926

Table 6.1: Evaluation on MUSK1.

6.2.2 LUAD vs LUSC Classification.

Lung Adenocarcinoma (LUAD) and Lung Squamous Cell Carcinoma (LUSC) are two
main subtypes of non-small cell lung cancer (NSCLC) that account for 65-70% of all lung
cancers [23]. Automated classification of these two main subtypes of NSCLC is a crucial
step to build computerized decision support and triage systems.

We obtained 1,026 hematoxylin and eosin (H&E) stained permanent diagnostic WSIs
from TCGA repository [26] encompassing LUAD and LUSC. We selected relevant patches
from each WSI using a color-based patch selection algorithm described in [40]. Further-
more, we extracted image features from these patches using DenseNet [33]. Now, each
bag in this scenario is a set of features labeled as either LUAD or LUSC. We trained
our model to classify bags as two cancer subtypes. The highest 5-fold classification AUC
score achieved was 0.92, and the average AUC across all folds was 0.89. We performed
cross-validation across different patients, i.e., training was performed using WSIs from a
totally different set of patients than the testing. The results are reported in Table 6.2. We
achieved state-of-the-art accuracy using the transfer learning scheme. In other words, we
extracted patch features from an existing pre-trained network, and the feature extractor
was not re-trained or fine-tuned during the training process. The Figure 6.5 shows the
receiver operating curve (ROC) for one of the folds.

39

Figure 6.3: Six patches from two WSIs diagnosed with LUSC and LUAD, respectively.
The six patches are selected, such that the first three (top row) are highly “attended” by
the network, whereas the last three (bottom row) least attended. The first patch in the
upper row is the most attended patch (more important) and the first patch in the lower
row in the least attended patch (less important).

6.2.3 Inference

One of the primary obstacles for real-world application of deep learning models in computer-
aided diagnosis is the black-box nature of the deep neural networks. Since the proposed
architecture uses Global Attention Pooling [59], it can visualize the importance that the
network gives to each patch for making the final prediction. Such visualization can provide
more insight to pathologists regarding the model’s internal decision making. The global
attention pooling layer learns to map patches to “attention” values. The higher attention

Algorithm AUC
Coudray et al. [13] 0.85
Khosravi et al. [46] 0.83
Yu et al. [92] 0.75
Proposed method 0.89

Table 6.2: Performance of various methods for LUAD/LUSC predictions using transfer
learning. Our results report the average of 5-fold accuracy values.

40

Figure 6.4: t-SNE visualization of feature vectors extracted after the Graph Pooling layer
from different WSIs. The two distinct clusters for LUAD and LUSC demonstrate the
efficacy of the proposed model for disease characterization in WSIs. The overlap of two
clusters contain WSIs that are morphologically and visually similar.

values signify that the model focuses more on those patches. We visualize the patches
with high and low attention values in Figure 6.3. One of the practical applications of our
approach would be for triaging. As new cases are queued for an expert’s analysis, the CAD
system could highlight the regions of interest and sort the cases based on the diagnostic
urgency. We observe that patches with higher attention values generally contain more nu-
clei. As morphological features of nuclei are vitals for making diagnostic decisions [66], it
is interesting to note this property is learned on its own by the network. Figure 6.4 shows
the t-SNE plot of features vectors for some of the WSIs. It shows the clear distinction
between the two cancer subtypes, further favoring the robustness of our method.

Implementation Details. We used PyTorch Geometric library to implement graph
convolution networks [18]. We used pre-trained DenseNet [33] to extract features from
histopathology patches. We further feed DenseNet features through three dense layers
with dropout (p = 0.5).

Ablation Study. We tested our method with various different configurations for the
TCGA dataset. We used two layers in Graph Convolution Network—ChebNet and SAGE
Convolution. We found that ChebNet outperforms SAGE Convolution and also results
in better generalization. Furthermore, we experimented with different numbers of filters
in ChebNet, and also different pooling layers—global attention, mean, max, and sum
pooling. We feed the pooled representation to two fully connected Dense layers to get the

41

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at
e

ROC curve (Area = 0.89)

Figure 6.5: The ROC curve of prediction.

final classification between LUAD and LUSC. All the different permutations of various
parameters result in 32 different configurations, the results for all these configurations are
provided in Table 6.3. It should be noted that the results reported in the previous sections
are based on Cheb-7 with mean pooling.

configuration mean attention max add

Cheb-7 0.8889 0.8853 0.7891 0.4929
Cheb 3 BN 0.8771 0.8635 0.8471 0.5018
Cheb 5 0.8762 0.8830 0.8750 0.5082
Cheb 3 0.8752 0.8735 0.8702 0.5090
Cheb 5 BN 0.8596 0.8542 0.7179 0.4707
Cheb 7 BN 0.7239 0.6306 0.5618 0.4930
SAGE CONV BN 0.6866 0.5848 0.6281 0.5787
SAGE CONV 0.5784 0.6489 0.5389 0.5690

Table 6.3: Comparison of different network architecture and pooling method (attention,
mean, max and sum pooling). BN stands for BatchNormalization [37], Cheb stands for
Chebnet with corresponding filter size and SAGE stands for SAGE Convolution. The
best performing configuration is Cheb-7 with mean pooling.

42

6.3 Summary

The accelerated adoption of digital pathology is coinciding with and probably partly at-
tributed to recent progress in AI applications in the field of pathology. This disruption in
the field of pathology offers a historic chance to find novel solutions for major challenges
in diagnostic histopathology and adjacent fields, including biodiscovery. In this chapter,
we proposed a technique for representing an entire WSI as a fully-connected graph. We
used the graph convolution networks to extract the features for classifying the lung WSIs
into LUAD or LUSC. The results show the good performance of the proposed approach.
Furthermore, the proposed method is explainable and transparent as we can use attention
values and the adjacency matrix to visualize relevant patches.

43

Chapter 7

Pay Attention with Focus:
Hierarchical Set Learning

Deep learning methods such as convolutional neural networks (CNNs) are difficult to di-
rectly utilize for analyzing whole slide images (WSIs) due to the large image dimensions. A
new two-staged method is proposed to overcome this limitation. First, a set of representa-
tive patches (called mosaic) are extracted from a WSI. Each patch of a mosaic is encoded
to a feature vector using a deep network. The feature extractor model is fine-tuned using
hierarchical target labels of WSIs, i.e., anatomic site and primary diagnosis. In the second
stage, a set of encoded patch-level features from a WSI is used to compute the primary
diagnosis probability through the proposed Pay Attention with Focus scheme, an attention-
weighted averaging of predicted probabilities for all patches of a mosaic modulated by a
trainable focal factor. Experimental results show that the proposed model can be robust
and effective for the classification of WSIs.

Contributions: The contribution is three-fold (i) proposed a novel attention-based MIL
approach for the classification of WSIs, (ii) fine-tuned a feature extractor model using mul-
tiple and hierarchically arranged target labels of WSIs, and (iii) insights into the model’s
decision making by visualizing attention values. The method is tested on two large-scale
datasets derived from The Cancer Genomic Atlas (TCGA) repository provided by NIH [81].

7.1 Proposed Method

There are two stages in the proposed method (i) bag preparation and (ii) multi-instance
learning with FocAtt-MIL. In the first stage, representative patches (called mosaic) are

44

Deep Network

LUAD

LUSC

GBM

LGG

LUNG

Brain

Input WSI
(Lung, LUAD)

Mosaic Hierarchical Labels

(a) Mosaic Preparation (b) Fine-tune using Heirarchical Labels

Figure 7.1: Training a Feature Extractor. A feature extractor is trained with hierar-
chical target labels of a WSI. (a) A set of representative WSI patches (called mosaic) is
extracted [43]. (b) The patches are used to fine-tune a deep network; each patch is assigned
the parent WSI’s labels, i.e., anatomic site and primary diagnosis.

extracted from a WSI. The mosaic’s patches are encoded to a set of feature vectors (called
bag) using a deep network. The feature extraction model can be a pre-trained network
or can be fine-tuned to increase its effectiveness, as shown in Figure 7.1. In the second
stage, the proposed MIL technique (called FocAtt-MIL) is trained to predict the primary
diagnosis for a given bag (a WSI). The schematic for the second stage is shown in Figure 7.2.

Bag Preparation. A patch selection method proposed by Kalra et al. [43] is used to
extract the representative patches from a WSI. The method removes non-tissue regions
using a color threshold. The remaining tissue-containing patches are grouped into a pre-
set number of categories through a clustering algorithm. A portion of all clustered patches
(e.g., 10%) are randomly selected within each cluster, yielding a mosaic. The mosaic is
transformed into a bag X = {x1, . . . , xn}, where xi is the feature vector of ith patch,
obtained through a deep network (a feature extractor). The Figure 7.2 shows the bag
preparation stage, the frozen network f(x) represents a non-trainable deep network used
as a feature extractor.

Fine-tune a Feature Extractor using Hierarchical Labels. In MIL, robust features
enable weak learners to make better predictions, thus improving the final aggregated pre-
diction. A WSI is generally associated with the following two labels—anatomic site and
primary diagnosis. These two labels are arranged in a hierarchy as shown in Figure 7.1.
Consider, yas and ypd represent anatomic site and primary diagnosis respectively. Then,
instead of predicting these labels independently, the model predict P (yas), and P (ypd|yas).

45

Frozen Network

Mosaic

(b) FocAtt-MIL

Prediction MLP

Attention
Network

Focal
Network

X --
-

Final
Prediction

(a) Bag Preparation
--

-

Feature Vectors WSI
Context

+

Figure 7.2: Classification of WSIs with FocAtt-MIL. The two-stage method for the
classification of WSI. (a) The mosaic of a WSI is converted to a bag X containing a set
of feature vectors {x1, . . . , xn}. (b) The feature vectors in a bag X are transformed to
the primary diagnosis probability through FocAtt-MIL. The prediction probability pi is
computed for an individual feature vector xi. A WSI context gX is computed for the entire
bag X using (7.1). The WSI context gX is used to compute the attention value ai and the
focal factor γ. The final prediction is computed using (7.2).

The conditional probability P (ypd|yas) helps in modelling the dependent relationship. Us-
ing Bayes theorem, we get, P (yas|ypd) = P (ypd|yas)P (yas)/P (ypd), where P (yas|ypd) = 1,
because of the dependence. It can be simplified further, P (ypd) = P (ypd|yas)P (yas), and
compute cross entropy losses for the predictions of both yas and ypd. The model equally
weight both the losses towards the final loss of the network.

WSI Context Learning. A single vector representation of a WSI (or a bag X) is
computed as,

gX = φ(θ(x1), . . . , θ(xn)), (7.1)

where, θ is a neural network and φ is a pooling function, such as sum, mean, and max. It
has been proven in [94] that (7.1) can approximate any set function. The vector gX is used
by the attention module and the focal network.

The FocAtt-MIL Approach. The FocAtt-MIL is a permutation-invariant model that
learns to predict a target label (primary diagnosis) ypd from a bag X (a WSI). The approach
is composed of four major components (Figure 7.2):

1. Prediction MLP. A prediction pi is computed for each item xi in the bag X, using a
trainable deep network called Prediction MLP.

46

2. WSI Context. It’s a deep network that computes a single vector representing an
entire bag X using (7.1).

3. Attention Module. The attention module is composed of two networks, a transfor-
mation network T , and the Attention Network. The attention module takes the ith

patch xi ∈ X, and the WSI context gX to compute an attention value ai ∈ [0, 1] for
that patch.

4. Focal Network. Another deep network that uses WSI context gX to compute a focal
factor γ (a vector) that modulates the final prediction. The length of γ is same as
the number of discrete values in the target label, thus allowing the per dimension
modulation.

The Final Prediction. The final output from the FocAtt-MIL is computed by aggre-
gating individual attention-weighted predictions modulated by the learned focal factor, as
follows

y(j) =
n∑
i=1

pi(j)
γ(j)ai. (7.2)

The pi, and γ in (7.2) are both vectors. The y is converted to a probability distribution
by dividing with sum(y).

7.2 Results

The proposed approach is evaluated for two different WSI classification tasks. All experi-
ments are conducted with 4 Nvidia V100 GPUs (32 GB vRAM each). The code has been
written using the Tensorflow library [1].

Algorithm Accuracy

Coudray et al. [13] 0.85
Kalra & Adnan et al. [42] 0.85
Khosravi et al. [46] 0.83
Yu et al. [92] 0.75
FocAtt-MIL (proposed method) 0.88

Table 7.1: Performance comparison for LUAD/LUSC classification via transfer learning.

47

LUAD vs LUSC Classification – Lung Adenocarcinoma (LUAD) and Lung Squamous
Cell Carcinoma (LUSC) are two main subtypes of non-small cell lung cancer (NSCLC)
that account for 65-70% of all lung cancers [95]. Automated classification of these two
main subtypes of NSCLC is a crucial step to assist pathologists [23, 95]. For this task,
we establish the efficacy of FocAtt-MIL to differentiate between LUAD and LUSC. We
obtained 2,580 hematoxylin and eosin (H&E) stained WSIs of lung cancer from TCGA
repository [81]. The data is split into 1,806 training, and 774 testing WSIs [42]. The
dataset is approximately 2 TB. We obtained mosaic for each WSI using the approach
in [43], and subsequently converted the mosaic to a bag X of features using a pre-trained
DenseNet [33]. We did not fine-tune the feature extraction model for this task to have
a fair comparison against other transfer-learning based approaches in the literature. We
trained the FocAtt-MIL to classify bags between the two subtypes of lung cancer. We
achieved an accuracy of 88% on test WSIs (AUC of 0.92). The accuracy has been reported
in Table 7.1.

We conducted an ablation study to understand the effect of different model parame-
ters. Removing the WSI context gX from the attention module resulted in a 4% reduction
of the accuracy. Excluding the focal factor γ and the global context gX from the final pre-
diction resulted in 6% reduction in the accuracy. The ablation suggests that the model’s
performance is the most optimal by (i) incorporating the WSI context gX in the attention
computation, and (ii) allowing the focal factor to modulate the final aggregated prediction.
We used the attention module of the trained model to visualize the attention heat-map
on the unseen WSIs (Figure 7.3). The visual inspection of these two WSIs reveals that
the model decided based on regions containing malignant tissue and ignored non-cancerous
regions. In the LUSC WSI (right), regions with squamous formations are deemed the most
important ones. For the LUAD WSI (left), the salient regions solely come from the malig-
nant area, implying that the model differentiates between normal lung alveolar tissue and
LUAD. Therefore, one could say that attention heatmaps are histopathologically meaning-
ful. For LUAD samples, regions, where cancerous tissue meets non-cancerous structures
are deemed the most important. Such contrast makes cancerous glandular structures easier
to recognize. However, this phenomenon cannot be seen in LUSC samples, as the model
is responsive to regions that are completely composed of malignant squamous carcinoma.

Pan-cancer Analysis – In the second experiment series, we evaluated the approach
against a large-scale pan-cancer classification of WSIs. The dataset used for this task has
been proposed by Riasatian et al. [70]. It comprises more than 7 TB data, consisting of
7,097 training and 744 test WSIs, distributed across 24 different anatomic sites and 30
different primary diagnoses. All WSIs in the dataset are taken from a public repository of

48

Figure 7.3: Attention Visualization. The attention values are augmented on the two ex-
emplars WSIs. Left Image (LUAD): Regions of high importance come from the cancer-
ous regions while sparing normal lung tissue, fibrosis, and mucin deposition. Additionally,
by inspecting important regions at a higher magnification, it is noticeable that the malig-
nant glandular formations border with non-malignant areas. Right Image (LUSC): Re-
gions that are considered to be important for classification are composed of malignant
squamous cells. However, unlike LUAD, the attention model seems to be responsive to
regions with solid malignant structures.

WSIs, TCGA [81]. We obtained a mosaic for each WSI and then applied a cellularity fil-
ter [70] to further reduce the number of patches in each mosaic. Subsequently, we obtained
242,202 patches for training WSIs and 116,088 patches for testing WSIs. Each patch is of
the size 1000×1000, but we resized them to 256×256 pixels.

We used three different feature extractors to validate the FocAtt-MIL. We prepared a
separate “bag” for each feature extractor. These three feature extractors are: DenseNet
(DN) [33], KimiaNet [70], and the fine-tuned DenseNet (FDN). We fine-tuned the DenseNet
on training patches using weak labels obtained from their respective WSIs. The weakly
labeled fine-tuning has shown to be effective [70]. In our case, the weak labels are anatomic
site and primary diagnosis, arranged in a hierarchy. This hierarchical arrangement of labels
is incorporated during the training using the approach outlined earlier in section 7.1.

We trained the FocAtt-MIL model with the same architecture for all the three differ-
ent bags. We tested three different configurations of FocAtt-MIL, i.e., FocAtt-MIL-DN,
FocAtt-MIL-KimiaNet, and FocAtt-MIL-FDN. For all three configurations, we used the

49

SGD optimizer with a learning rate of 0.01, weight decay of 10−6, and momentum of 0.9.
We applied gradient clipping of 0.01 and dropout between layers to prevent the explod-
ing gradients. We trained models for 45 epochs. Figure 7.4 shows the validation loss
and accuracy while training three different configurations. It is evident that FocAtt-MIL-
FDN is outperforming from the very early epochs. Interestingly, both FocAtt-MIL-FDN
and FocAtt-MIL-KimiaNet (feature extractors specialized for histopathology) seem to have
converged to an optimal validation accuracy around 20-25 epochs. For the fine-tuning, we
used Adam optimizer [47] and a learning rate of 10−5 were used for 20 epochs.

1 6 11 16 21 26 31 36 41 45
Epochs

1.5

2.0

2.5

Lo
ss

FocAtt-MIL-DN

FocAtt-MIL-KimiaNet

FocAtt-MIL-FDN

1 6 11 16 21 26 31 36 41 45
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

A
cc
u
ra
cy

FocAtt-MIL-DN

FocAtt-MIL-KimiaNet

FocAtt-MIL-FDN

Figure 7.4: FocAtt-MIL Training. The loss and accuracy on validation dataset during
the training of three different configurations of FocAtt-MIL, i.e FocAtt-MIL-DN, FocAtt-
MIL-KimiaNet, and FocAtt-MIL-FDN.

The 30 unique primary diagnoses in the dataset can be further grouped into 13 tumor types.
The type of tumor is generally known at the inference time, and the objective is to predict
the cancer subtype. To validate the efficacy of our model, we computed the cancer
subtype classification (i.e., primary diagnosis) accuracy for the given tumor type. This
type of classification is called vertical classification. The vertical classification results are
reported in Table 7.2. The results1 show that FocAtt-MIL can elevate the accuracy of pre-
trained features; DenseNet features have shown to underperform compared to KimiaNet
features [70, 44]. However, within the proposed FocAtt-MIL scheme, DenseNet features
become quite competitive. This applies to the fine-tuned DenseNet (FocAtt-MIL-FDN) as
well, whose results are on par with the highly customized KimiaNet features when used
within the FocAtt-MIL framework.

1For abbreviations GBM, LGG, ACC,..., see wiki.cancerimagingarchive.net

50

7.3 Summary

The accelerated adoption of digital pathology offers a historic opportunity to find novel
solutions for major challenges in diagnostic histopathology. In this study, we proposed
a novel attention-based MIL technique for the classification of WSIs. We introduced a
focal factor, computed using a global representation of WSI for modulating the individual
patch-level prediction, thus promoting a more accurate aggregated final prediction. We
also proposed a novel fine-tuning approach to extract more robust features from WSI
patches. We fine-tune a feature extraction model using patches and weak hierarchical
labels from their respective WSIs. We validated the proposed framework on two large
datasets derived from TCGA repository [81]. The results suggest competitive performance
on both datasets. Furthermore, the proposed method is explainable and transparent as we
utilized the attention values to visualize important regions.

51

Tumor Type Primary Di-
agnosis

FocatAtt-MIL-DN FocAtt-MIL-KimiaNet FocAtt-MIL-FDN

Brain
GBM 0.9714 0.9429 0.8571
LGG 0.6410 0.7692 0.8205

Endocrine
ACC 0.6667 0.6667 0.6667
PCPG 1.0000 1.0000 1.0000
THCA 0.9608 1.0000 1.0000

Gastrointestinal tract

COAD 0.6875 0.4375 0.5000
ESCA 0.5000 0.8571 0.5714
READ 0.0833 0.5000 0.6667
STAD 0.8333 0.7333 0.8333

Gynaecological
CESC 0.8824 0.9412 0.7647
OV 0.5000 0.8000 1.0000
UCS 0.6667 1.0000 0.3333

Liver, pancreaticobiliary
CHOL 0.2500 0.0000 0.5000
LIHC 0.8857 0.9143 0.8571
PAAD 1.0000 0.7500 0.8333

Melanocytic malignancies
SKCM 0.9167 0.8750 0.9167
UVM 1.0000 0.2500 1.0000

Prostate/testis
PRAD 1.0000 0.9500 1.0000
TGCT 1.0000 1.0000 1.0000

Pulmonary
LUAD 0.5789 0.8158 0.8947
LUSC 0.9302 0.6977 0.7442
MESO 0.6000 1.0000 1.0000

Urinary tract

BLCA 0.9118 1.0000 0.8529
KICH 0.5455 0.6364 0.7273
KIRC 0.9200 0.9000 0.9600
KIRP 0.5714 0.6786 0.7143

Table 7.2: Pan-cancer vertical classification accuracy of FocAtt-MIL for features from
regular DenseNet (FocAtt-MIL-DN), KimiaNet (FocAtt-MIL-KimiaNet), and DenseNet
fine-tuned with hierarchical labels (FocAtt-MIL-FDN).

52

Chapter 8

Summary and Conclusions

Gigapixel Images are involved in many interesting real-world applications such as Digital
Pathology, Astronomy, Satellite Imagery, etc. and pose unique challenges for Artificial
Intelligence. However, there has not been much work done on learning such gigantic
images efficiently. Most of the advancements made in the computer vision domain are
limited to smaller image datasets such as CIFAR100, CIFAR10 [52], MNIST [54], etc. This
work studied the problem of learning gigapixel Images as a Set Representation Learning
problem and subsequently, proposed three novel algorithms for learning gigapixel images.
Such massive images can easily be converted into a set of patches, and thus learning
gigapixel images can be viewed as a set representation learning problem. However, learning
representation for sets is not trivial. Any set representation learning algorithm must satisfy
the following properties:

1. Permutation Invariance: This property implies that the order of elements in the set
doesn’t matter, i.e., permuting elements should not change the output.

2. Learning Inter-Dependencies: This refers to learning relations between different ele-
ments of the sets. It may be possible only a few elements are relevant for a specific
task. For example, in digital pathology, non-cancerous patches don’t provide any
information.

3. Universal Approximation: This implies that the algorithm should be capable of learn-
ing any set function or any mapping RNxd 7→ Rm, where N is the number of elements
in the set.

53

Three new set representation learning algorithms are presented which satisfy above
mentioned properties. A new Permutation Invariant Model called ‘MEM’ is introduced in
chapter 5. Memory networks are used to learn the attention or inter-dependency among
different elements of the set and showed mathematically that MEM satisfies all three
properties listed above. The second significant contribution of this work is the application
of Graph Neural Networks for set representation learning. In chapter 6, it is demonstrated
that any set could be converted to an equivalent graph structure where each element of the
set represents a node in the graph and corresponding edges can be learned in an end-to-end
fashion. Lastly, this thesis proposes a hierarchical learning scheme for sets in chapter 7.
Hierarchical labels provide more information than single labels; thus, helps in learning
better representations in a progressive (hierarchical) manner.

8.1 Future Work

In subsequent work, it would be interesting to expand the idea of set representation learning
to set generation. Generating a set or exchangeable sequences can find applications in Few-
Shot Learning, anomaly detection, transfer learning, and multi-task situations. Another
exciting line of research would be to explore the use of Transformer networks [16] to learn
the relationship between different elements of the set. The ultimate goal would be to make
highly optimized neural networks such that it’s scalable to gigapixel images directly.

54

References

[1] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:
A system for large-scale machine learning. In 12th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16), pages 265–283, 2016.

[2] Mohammed Adnan, Shivam Kalra, and Hamid R Tizhoosh. Representation Learning
of Histopathology Images Using Graph Neural Networks. page 8, 2020.

[3] David J Aldous. Representations for partially exchangeable arrays of random variables.
Journal of Multivariate Analysis, 11(4):581–598, 1981.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[5] Pierre Baldi. Autoencoders, unsupervised learning, and deep architectures. In Pro-
ceedings of ICML workshop on unsupervised and transfer learning, pages 37–49. JMLR
Workshop and Conference Proceedings, 2012.

[6] Jocelyn Barker, Assaf Hoogi, Adrien Depeursinge, and Daniel L Rubin. Automated
classification of brain tumor type in whole-slide digital pathology images using local
representative tiles. Medical image analysis, 30:60–71, 2016.

[7] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A
review and new perspectives. IEEE transactions on pattern analysis and machine
intelligence, 35(8):1798–1828, 2013.

[8] José M Bernardo. The concept of exchangeability and its applications.

[9] Benjamin Bloem-Reddy and Yee Whye Teh. Probabilistic symmetry and invariant
neural networks. arXiv preprint arXiv:1901.06082, 2019.

55

[10] Andrew Brock, Theodore Lim, J. M. Ritchie, and Nick Weston. Generative and
Discriminative Voxel Modeling with Convolutional Neural Networks.

[11] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks
and locally connected networks on graphs, 2014.

[12] Marc-André Carbonneau, Veronika Cheplygina, Eric Granger, and Ghyslain Gagnon.
Multiple instance learning: A survey of problem characteristics and applications. Pat-
tern Recognition, 77:329–353, 2018.

[13] Nicolas Coudray, Paolo Santiago Ocampo, Theodore Sakellaropoulos, Navneet Narula,
Matija Snuderl, David Fenyö, Andre L Moreira, Narges Razavian, and Aristotelis
Tsirigos. Classification and mutation prediction from non–small cell lung cancer
histopathology images using deep learning. Nature medicine, 24(10):1559, 2018.

[14] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neu-
ral networks on graphs with fast localized spectral filtering. In Advances in neural
information processing systems, pages 3844–3852, 2016.

[15] Neofytos Dimitriou, Ognjen Arandjelović, and Peter D Caie. Deep learning for whole
slide image analysis: An overview. Frontiers in Medicine, 6:264, 2019.

[16] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale, 2021.

[17] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[18] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch
Geometric. In ICLR Workshop on Representation Learning on Graphs and Manifolds,
2019.

[19] Fei Gao, Teresa Wu, Jing Li, Bin Zheng, Lingxiang Ruan, Desheng Shang, and Bhavika
Patel. Sd-cnn: A shallow-deep cnn for improved breast cancer diagnosis. Computerized
Medical Imaging and Graphics, 70:53–62, 2018.

[20] Robert Gens and Pedro M Domingos. Deep symmetry networks. In Advances in
neural information processing systems, pages 2537–2545, 2014.

[21] Zoubin Ghahramani and Katherine A Heller. Bayesian sets. In Advances in neural
information processing systems, pages 435–442, 2006.

56

[22] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks.
arXiv preprint arXiv:1406.2661, 2014.

[23] Simon Graham, Muhammad Shaban, Talha Qaiser, Navid Alemi Koohbanani,
Syed Ali Khurram, and Nasir Rajpoot. Classification of lung cancer histology images
using patch-level summary statistics. In Medical Imaging 2018: Digital Pathology,
volume 10581, page 1058119. International Society for Optics and Photonics, 2018.

[24] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

[25] Metin N. Gurcan, Laura Boucheron, Ali Can, Anant Madabhushi, Nasir Rajpoot,
and Bulent Yener. Histopathological Image Analysis: A Review. IEEE reviews in
biomedical engineering, 2:147–171, 2009.

[26] David A Gutman, Jake Cobb, Dhananjaya Somanna, Yuna Park, Fusheng Wang,
Tahsin Kurc, Joel H Saltz, Daniel J Brat, Lee AD Cooper, and Jun Kong. Cancer
digital slide archive: an informatics resource to support integrated in silico analysis
of tcga pathology data. Journal of the American Medical Informatics Association,
20(6):1091–1098, 2013.

[27] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on
large graphs. In Advances in neural information processing systems, pages 1024–1034,
2017.

[28] William L. Hamilton, Rex Ying, and Jure Leskovec. Representation learning on
graphs: Methods and applications, 2018.

[29] David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on graphs
via spectral graph theory. Applied and Computational Harmonic Analysis, 30(2):129–
150, 2011.

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[31] Geoffrey E Hinton, Alex Krizhevsky, and Sida D Wang. Transforming auto-encoders.
In International conference on artificial neural networks, pages 44–51. Springer, 2011.

57

[32] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

[33] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017.

[34] Maximilian Ilse, Jakub M. Tomczak, and Max Welling. Chapter 22 - Deep multi-
ple instance learning for digital histopathology. In S. Kevin Zhou, Daniel Rueckert,
and Gabor Fichtinger, editors, Handbook of Medical Image Computing and Computer
Assisted Intervention, pages 521–546. Academic Press.

[35] Maximilian Ilse, Jakub M Tomczak, and Max Welling. Attention-based deep multiple
instance learning. arXiv preprint arXiv:1802.04712, pages 2127–2136, 2018.

[36] Maximilian Ilse, Jakub M Tomczak, and Max Welling. Deep multiple instance learning
for digital histopathology. In Handbook of Medical Image Computing and Computer
Assisted Intervention, pages 521–546. Elsevier, 2020.

[37] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[38] Mustafa I Jaber, Liudmila Beziaeva, Christopher W Szeto, John Elshimali, Shahrooz
Rabizadeh, and Bing Song. Automated adeno/squamous-cell nsclc classification from
diagnostic slide images: A deep-learning framework utilizing cell-density maps, 2019.

[39] Olav Kallenberg. Probabilistic symmetries and invariance principles. Springer Science
& Business Media, 2006.

[40] S Kalra, C Choi, S Shah, L Pantanowitz, and HR Tizhoosh. Yottixel–an image
search engine for large archives of histopathology whole slide images. arXiv preprint
arXiv:1911.08748, 65:101757, 2019.

[41] Shivam Kalra, Mohammed Adnan, Sobhan Hemati, Taher Dehkharghanian, Shahryar
Rahnamayan, and Hamid Tizhoosh. Pay attention with focus: A novel learning scheme
for classification of whole slide images. arXiv preprint arXiv:2106.06623, 2021.

[42] Shivam Kalra, Mohammed Adnan, Graham Taylor, and Hamid R Tizhoosh. Learning
permutation invariant representations using memory networks. In European Confer-
ence on Computer Vision, pages 677–693. Springer, 2020.

58

[43] Shivam Kalra, H. R. Tizhoosh, Charles Choi, Sultaan Shah, Phedias Diamandis, Clin-
ton J. V. Campbell, and Liron Pantanowitz. Yottixel – An Image Search Engine for
Large Archives of Histopathology Whole Slide Images. 65:101757.

[44] Shivam Kalra, H. R. Tizhoosh, Sultaan Shah, Charles Choi, Savvas Damaskinos,
Amir Safarpoor, Sobhan Shafiei, Morteza Babaie, Phedias Diamandis, Clinton J. V.
Campbell, and Liron Pantanowitz. Pan-cancer diagnostic consensus through search-
ing archival histopathology images using artificial intelligence. NPJ digital medicine,
3(1):1–15, 2020.

[45] Asifullah Khan, Anabia Sohail, Umme Zahoora, and Aqsa Saeed Qureshi. A survey of
the recent architectures of deep convolutional neural networks. Artificial Intelligence
Review, 53(8):5455–5516, 2020.

[46] Pegah Khosravi, Ehsan Kazemi, Marcin Imielinski, Olivier Elemento, and Iman Haji-
rasouliha. Deep convolutional neural networks enable discrimination of heterogeneous
digital pathology images. EBioMedicine, 27:317–328, 2018.

[47] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[48] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[49] Daisuke Komura and Shumpei Ishikawa. Machine Learning Methods for Histopatho-
logical Image Analysis. 16:34–42.

[50] Daisuke Komura and Shumpei Ishikawa. Machine learning methods for histopatho-
logical image analysis. Computational and Structural Biotechnology Journal, 2018.

[51] Iryna Korshunova, Jonas Degrave, Ferenc Huszár, Yarin Gal, Arthur Gretton, and
Joni Dambre. Bruno: A deep recurrent model for exchangeable data. In Advances in
Neural Information Processing Systems, pages 7190–7198, 2018.

[52] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

[53] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. Advances in neural information processing sys-
tems, 25:1097–1105, 2012.

59

[54] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/.

[55] Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Bengio. Object recognition
with gradient-based learning. In Shape, contour and grouping in computer vision,
pages 319–345. Springer, 1999.

[56] Yann LeCun, D Touresky, G Hinton, and T Sejnowski. A theoretical framework for
back-propagation. In Proceedings of the 1988 connectionist models summer school,
volume 1, pages 21–28, 1988.

[57] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam R. Kosiorek, Seungjin Choi, and
Yee Whye Teh. Set transformer. CoRR, abs/1810.00825, 2018.

[58] Juho Lee, Yoonho Lee, and Yee Whye Teh. Deep amortized clustering. arXiv preprint
arXiv:1909.13433, 2019.

[59] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph se-
quence neural networks. arXiv preprint arXiv:1511.05493, 2015.

[60] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss
for dense object detection. In Proceedings of the IEEE international conference on
computer vision, pages 2980–2988, 2017.

[61] Anant Madabhushi, Shannon Agner, Ajay Basavanhally, Scott Doyle, and George Lee.
Computer-aided prognosis: Predicting patient and disease outcome via quantitative
fusion of multi-scale, multi-modal data. 35(7):506–514, 2011.

[62] Anant Madabhushi and George Lee. Image analysis and machine learning in digital
pathology: Challenges and opportunities. Medical Image Analysis, 33:170–175, oct
2016.

[63] Tahir Mahmood, Muhammad Arsalan, Muhammad Owais, Min Beom Lee, and
Kang Ryoung Park. Artificial intelligence-based mitosis detection in breast cancer
histopathology images using faster r-cnn and deep cnns. Journal of clinical medicine,
9(3):749, 2020.

[64] Daniel Maturana and Sebastian Scherer. VoxNet: A 3D Convolutional Neural Network
for real-time object recognition. In 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 922–928.

60

[65] Andreas Maurer, Massimiliano Pontil, and Gabor Lugosi. Structured sparsity and
generalization. Journal of Machine Learning Research, 13(3), 2012.

[66] Shivang Naik, Scott Doyle, Shannon Agner, Anant Madabhushi, Michael Feldman,
and John Tomaszewski. Automated gland and nuclei segmentation for grading of
prostate and breast cancer histopathology. In 2008 5th IEEE International Symposium
on Biomedical Imaging: From Nano to Macro, pages 284–287. IEEE, 2008.

[67] Peter Orbanz and Daniel M Roy. Bayesian models of graphs, arrays and other ex-
changeable random structures. IEEE transactions on pattern analysis and machine
intelligence, 37(2):437–461, 2014.

[68] Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos. Deep learning with sets
and point clouds. arXiv preprint arXiv:1611.04500, 2016.

[69] Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos. Equivariance through
parameter-sharing. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 2892–2901. JMLR. org, 2017.

[70] Abtin Riasatian, Morteza Babaie, Danial Maleki, Shivam Kalra, Mojtaba Valipour,
Sobhan Hemati, Manit Zaveri, Amir Safarpoor, Sobhan Shafiei, Mehdi Afshari, et al.
Fine-tuning and training of densenet for histopathology image representation using
tcga diagnostic slides. arXiv preprint arXiv:2101.07903, 2021.

[71] R.B. Rusu and S. Cousins. 3d is here: Point cloud library (pcl). In Robotics and
Automation (ICRA), 2011 IEEE International Conference on, pages 1–4, May 2011.

[72] John Shawe-Taylor. Symmetries and discriminability in feedforward network archi-
tectures. IEEE Transactions on Neural Networks, 4(5):816–826, 1993.

[73] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–1958, 2014.

[74] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik G. Learned-Miller. Multi-
view convolutional neural networks for 3d shape recognition. In Proc. ICCV, 2015.

[75] P. J. Sudharshan, Caroline Petitjean, Fabio Spanhol, Luiz Eduardo Oliveira, Laurent
Heutte, and Paul Honeine. Multiple instance learning for histopathological breast
cancer image classification. Expert Systems with Applications, 117:103–111, 2019.

61

[76] Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory net-
works. In Advances in neural information processing systems, pages 2440–2448, 2015.

[77] Vaishali S Tidake and Shirish S Sane. Multi-label classification: a survey. International
Journal of Engineering and Technology, 7(1045), 2018.

[78] Hamid Reza Tizhoosh and Liron Pantanowitz. Artificial intelligence and digital
pathology: challenges and opportunities. Journal of pathology informatics, 9, 2018.

[79] Jakub M. Tomczak, Maximilian Ilse, and Max Welling. Deep Learning with
Permutation-invariant Operator for Multi-instance Histopathology Classification.
arXiv preprint arXiv:1712.00310, 2017.

[80] Jakub M. Tomczak, Maximilian Ilse, Max Welling, Marnix Jansen, Helen G. Coleman,
Marit Lucas, Kikki de Laat, Martijn de Bruin, Henk A. Marquering, Myrtle J. van der
Wel, Onno J. de Boer, C. Dilara Savci Heijink, and Sybren L. Meijer. Histopathological
classification of precursor lesions of esophageal adenocarcinoma: A Deep Multiple
Instance Learning Approach.

[81] Katarzyna Tomczak, Patrycja Czerwińska, and Maciej Wiznerowicz. The cancer
genome atlas (tcga): an immeasurable source of knowledge. Contemporary oncology,
19(1A):A68, 2015.

[82] Ming Tu, Jing Huang, Xiaodong He, and Bowen Zhou. Multiple instance learning
with graph neural networks. arXiv preprint arXiv:1906.04881, 2019.

[83] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in neural information processing systems, pages 5998–6008, 2017.

[84] Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to
sequence for sets, 2016.

[85] Xinggang Wang, Yongluan Yan, Peng Tang, Xiang Bai, and Wenyu Liu. Revisiting
multiple instance neural networks. Pattern Recognition, 74:15–24, 2018.

[86] John N Weinstein, Eric A Collisson, Gordon B Mills, Kenna R Mills Shaw, Brad A
Ozenberger, Kyle Ellrott, Ilya Shmulevich, Chris Sander, Joshua M Stuart, Cancer
Genome Atlas Research Network, et al. The cancer genome atlas pan-cancer analysis
project. Nature genetics, 45(10):1113, 2013.

62

[87] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. arXiv preprint
arXiv:1410.3916, 2014.

[88] Jiajun Wu, Chengkai Zhang, Tianfan Xue, William T. Freeman, and Joshua B. Tenen-
baum. Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-
Adversarial Modeling.

[89] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
and Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1912–1920, 2015.

[90] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[91] Yang Yang, Meng Wang, and Bao Liu. Exploring and comparing of the gene ex-
pression and methylation differences between lung adenocarcinoma and squamous cell
carcinoma. Journal of cellular physiology, 234(4):4454–4459, 2019.

[92] Kun-Hsing Yu, Ce Zhang, Gerald J Berry, Russ B Altman, Christopher Ré, Daniel L
Rubin, and Michael Snyder. Predicting non-small cell lung cancer prognosis by fully
automated microscopic pathology image features. Nature communications, 7:12474,
2016.

[93] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan
Salakhutdinov, and Alexander Smola. Deep sets, 2018.

[94] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R
Salakhutdinov, and Alexander J Smola. Deep sets. In Advances in neural information
processing systems, pages 3391–3401, 2017.

[95] Cecilia Zappa and Shaker A Mousa. Non-small cell lung cancer: current treatment
and future advances. Translational lung cancer research, 5(3):288, 2016.

[96] Min-Ling Zhang and Zhi-Hua Zhou. A review on multi-label learning algorithms.
IEEE transactions on knowledge and data engineering, 26(8):1819–1837, 2013.

[97] Qi Zhang, Sally A Goldman, Wei Yu, and Jason E Fritts. Content-based image
retrieval using multiple-instance learning. Citeseer.

[98] Yan Zhang, Jonathon Hare, and Adam Prügel-Bennett. Deep set prediction networks.
arXiv preprint arXiv:1906.06565, 2019.

63

[99] Zhi-Hua Zhou, Yu-Yin Sun, and Yu-Feng Li. Multi-instance learning by treating in-
stances as non-iid samples. In Proceedings of the 26th annual international conference
on machine learning, pages 1249–1256. ACM, 2009.

64

	List of Figures
	List of Tables
	Introduction
	Background
	Problem Definition
	Contributions

	I Background Literature
	Permutation Invariant Models
	Background
	Exchangeablilty
	Deep Sets: Universal Approximation of Sets

	Graph Neural Networks
	Introduction
	Spectral and Spatial GNNs
	Graph Convolution Neural Networks (GCNNs)
	Set Representation Learning using Graphs

	Gigapixel Histopathology Images
	Background
	Multiple Instance Learning for WSIs

	II Proposed Methods
	Memory-Based Exchangeable Model
	Motivation
	Proposed Model
	Model Architecture
	Analysis
	Experiments
	Toy Datasets
	Real World Datasets

	Summary

	Set Representation Learning using Graph Neural Networks
	Proposed Method
	Experiments
	MUSK1 Dataset
	LUAD vs LUSC Classification.
	Inference

	Summary

	Pay Attention with Focus: Hierarchical Set Learning
	Proposed Method
	Results
	Summary

	Summary and Conclusions
	Future Work

	References

