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Abstract

Entanglement and nonlocality are two of the features demonstrated by quantum systems
which give rise to new possibilities in a variety of fields such as communication technology,
cryptography and the study of fundamental physics. In this thesis, we explore three such
applications of entanglement and nonlocality.

In the first problem, we show that currently available noisy intermediate-scale quantum
(NISQ) computers can be used for versatile quantum simulations of chaotic systems. We
introduce a novel classical-quantum hybrid approach for exploring the dynamics of the
chaotic quantum kicked top (QKT) on a universal quantum computer. The programma-
bility of this approach allows us to experimentally explore the complete range of QKT
chaoticity parameter regimes inaccessible to previous studies. Furthermore, the number of
gates in our simulation does not increase with the number of kicks, thus making it possible
to study the QKT evolution for an arbitrary number of kicks without fidelity loss. Using
a publicly accessible NISQ computer (IBMQ), we observe periodicities in the evolution of
the 2-qubit QKT, as well as signatures of chaos in the time-averaged 2-qubit entanglement.
We also demonstrate a connection between entanglement and delocalization in the 2-qubit
QKT, confirming theoretical predictions.

In the second problem, we perform a device independent study of controlled teleporta-
tion of a qubit with an untrusted receiver. We construct a device independently testable
scenario in a way that allows us to certify in the context of controlled teleportation, whether
quantum resources are being used by the device despite the receiver being untrusted. We
find in this case that the well known Svetlichny inequality must be violated to certify quan-
tum correlations. While a maximal violation of Mermin’s inequality guarantees maximum
control power in controlled teleportation with trusted parties, we find that the Svetlichny
inequality must be maximally violated to guarantee maximal control power with an un-
trusted receiver. This indicates that a stronger form of nonlocality is required to device
independently test the controlled quantum teleportation with an untrusted receiver. By
taking the example of the total depolarized and the qubit depolarized GHZ states, we
show that controller’s authority is a monotonically increasing function of the Svetlichny
inequality violation. We find a window of non-maximal Svetlichny inequality violation
where the controller’s authority is non-zero. This shows that the controlled teleportation
scheme with an untrusted receiver is robust to depolarizing noise present in the device.

In the third problem, we study the quantum circuit implementation of a cryptographic
object called quantum lightning. Quantum lightning is a strengthening of the public key
quantum money scheme. We review an existing construction of quantum lightning, build
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the quantum circuit implementing an important step of the scheme and identify the diffi-
culties in realizing others.
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Chapter 1

Introduction

Entanglement is a quantum phenomenon in which the description of a composite system of
two or more individual systems is not the same as the sum of its constituents. Nonlocality
is a more general notion according to which it is possible to observe correlations between
spatially separated systems that may have interacted in the past but their past interactions
do not account for the observed correlations. Though intimately related, nonlocality and
entanglement are not equivalent in quantum mechanics. The relation between the two is
still a topic of active research. Entanglement is widely useful in the field of quantum infor-
mation science. The most popular example is perhaps the teleportation of quantum states
between remote locations [9]. Quantum entanglement can in principle be used for sharing
unconditionally secure keys through which secret messages can be exchanged [18]. Direct
applications of nonlocality can be found in device independent quantum communication
[55] and random number generation [50]. The device independent framework is a power-
ful application of nonlocality in which an unknown state and measurement device can be
characterized [12]. In this thesis, we will explore three diverse applications of nonlocality
and entanglement in the fields of chaos, communication and quantum money. First, we
will review entanglement and nonlocality in some more detail.

1.1 Entanglement

Let the quantum state of a composite system of two systems A and B be ρAB. This state
is said to be entangled if it cannot be expressed as the separable form:

ρAB =
∑

i

piρ
A
i ⊗ ρBi
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where pi > 0,
∑

i pi = 1, ρAi ∈ HA, ρBi ∈ HB, ρAB ∈ HA ⊗ HB and HA,HB,HAB

denote the Hilbert spaces of the respective systems. Now, given any quantum state,
it is necessary to quantify how entangled it is for cryptographic applications and as we
will see in a later chapter, to study the quantum-classical correspondence in chaotic sys-
tems. A basic measure of entanglement is the entanglement of formation. Consider all
the pure state decompositions of the bipartite system comprising A and B such that
ρAB =

∑
i pi |ψi〉 〈ψi|. The measure of entanglement for a pure state ρ = |ψ〉 〈ψ| is

E(ρ) = −Tr(ρA log2 ρ
A) = −Tr(ρB log2 ρ

B) where ρA/B = TrB/A(ρAB). The entangle-
ment of formation is given by E(ρAB) = min

∑
i piE(|ψi〉 〈ψi|) where the minimization is

done over all pure state decompositions of ρAB. Wooters [80] showed that it is possible to
derive a precise expression (without the minimization) for the entanglement of formation
when ρAB is a 2-qubit state. This quantity is called concurrence and can be calculated as
follows:
Define ρ̃ = σy ⊗ σyρ∗σy ⊗ σy (where σy is Pauli matrix and ρ∗ is complex conjugate of ρ in
the standard basis) is computed. Then concurrence is defined as

C = max(0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4) (1.1)

where λi are eigenvalues of ρρ̃ such that λ4 ≤ λ3 ≤ λ2 ≤ λ1 and 0 ≤ C ≤ 1. It is 0 for
separable states and unity for the Bell states.

1.2 Nonlocality

Consider two systems A and B that may have interacted in the past but are now spatially
separated, i.e., cannot communicate using electromagnetic signals. Alice and Bob are
two distant observers who perform measurements on A and B respectively. We label
Alice’s measurement setting by x and Bob’s measurement setting by y. We denote Alice
and Bob’s measurement outcome by a and b respectively. We note that for a given pair
of measurement settings x and y, the outcomes a and b can be different for different
rounds. By performing several rounds of measurements, the observers can estimate the
probability distribution p(ab|xy). Generally, the distribution cannot be factorized, i.e.,
p(ab|xy) 6= p(a|x)p(b|y). It appears as if the outcome of each observer is not completely
determined by their measurement setting and that it depends on the setting and outcome
of the other observer. To explain this correlation between one observer’s measurement
outcome with that of the other observer’s measurement setting and outcome, one may
take into account the past interactions of their systems. Let us denote by λ, all factors
due to past interactions that may have some causal influence on the outcomes of both
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observers. Using λ, we should be able to account for the correlations, i.e., the probability
distribution can be written as p(ab|xy) = p(a|xλ)p(b|yλ). It is not necessary that the factor
λ will be same for every run of the experiment. Therefore we must consider a distribution
p(λ) associated with the variable, λ. Now, the joint distribution of the observations can
be expressed in the following factorizable form:

p(ab|xy) =
∑

λ

p(λ)p(a|xλ)p(b|yλ) (1.2)

Conditions on p(ab|xy), called Bell Inequalities, are linear inequalities of p(ab|xy) which
must be satisfied if it admits a factorizable form as given in 1.2. In quantum mechanics
there exist combinations of state, measurement settings and outcomes for which these Bell
inequalities are violated. This means in some scenarios there does not exist a variable
λ that explains the correlations between the observations of Alice and bob. In such a
case, the joint distribution p(ab|xy) characterizing their observations is called a nonlocal
distribution. One example of a Bell inequality in the two-party setting described here is
the famous CHSH inequality. The higher the violation of this inequality the higher the
nonlocality of that distribution.

It is important to note that while entanglement is a property of the quantum state,
nonlocality depends on both the state and measurement operators acting on the state [12].

1.3 Overview

In Chapter 2, we study the quantum simulation of the quantum kicked top (QKT) - a
periodically driven spin system that undergoes chaotic dynamics in the classical limit. We
review the QKT model which can be described as the collection of a fixed number of
spin-1/2 particles. We highlight the importance of entanglement in the study of quantum-
classical correspondence using the QKT. After a short review of laboratory experiments
implementing the QKT, we introduce a novel approach for simulating the QKT evolution
on a universal quantum computer with high accuracy. We adapt our procedure to the
requirements of IBM’s 5-qubit quantum computer. We demonstrate that using publicly
available quantum computing resources, we can simulate the evolution of QKT with higher
accuracy than in experiments previously conducted in the laboratory for a large number of
time periods and a wide range of its chaoticity parameter. We faithfully demonstrate previ-
ously studied periodicities in the evolution of the 2-qubit QKT. Furthermore, we report the
first observation of the correspondence between average entanglement and delocalization
in the 2-qubit QKT.

3



In Chapter 3, we study the controlled quantum teleportation of a qubit in the presence
of an adversary. First we review the standard teleportation protocol and then describe the
formalism of controlled teleportation protocol involving three parties. We discuss the role
of nonlocality in the certification of quantum resources used for the standard teleportation
protocol. Then we adapt the techniques using the notion of multipartite nonlocality to
construct a device independent certification for the controlled teleportation of a qubit with
an untrusted receiver. We discuss the role of Svetlichny inequality in the certification
process. We numerically obtain the controller’s authority for non-maximal violation of the
same inequality under a specific adversarial strategy on depolarized GHZ states.

In Chapter 4, we study the quantum circuit implementation of a cryptographic ob-
ject called quantum lightning. We review the concept of quantum money and discuss its
strengthening, namely, quantum lightning. We describe a specific construction by Mark
Zhandry, build the quantum circuit implementing an important step of the scheme involv-
ing extensive entangling operations and identify the difficulties in realizing others.
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Chapter 2

Quantum Simulation of the Quantum
Kicked Top

2.1 Introduction

The possibility of mapping one quantum system into another opens up new windows for
efficiently exploring the properties and dynamics of general quantum systems [46, 21].
Large-scale, programmable quantum computers could offer this possibility of mapping
and simulating complex quantum systems [26]. However, large-scale quantum computers
have not yet been realized. Nevertheless, it is worth exploring the potential for quantum
simulations using currently available noisy intermediate-scale quantum (NISQ) computers
[66]. One such potential area of NISQ application is the topic of quantum chaos - the study
of quantum systems that exhibit chaos in some classical limit. The question of how classical
chaos emerges from quantum dynamics remains one of the open fundamental questions in
quantum theory [87, 32]. On the experimental side as well, the quantum control and
precision needed to explore quantum chaotic dynamics over a wide range of parameters
and long time scales remains quite challenging. So far, relatively few experiments in limited
parameter regimes and for short times have been performed [48, 73, 15, 42, 59]. In this
chapter, we demonstrate the use of NISQ computers for flexible simulations of quantum
chaos.

In classical mechanics, the chaotic behaviour of a system is characterized by unpre-
dictability in evolution due to exponential sensitivity to initial conditions. Classical chaos
is quantified by the Lyapunov exponent that is a measure of the rate of divergence of neigh-
bouring trajectories [20, 62]. A corresponding quantum measure of chaos is challenging to

5



define due to the uncertainty principle and the linearity of quantum evolution. Entangle-
ment, on the other hand, is an entirely quantum phenomenon by which physical systems
are correlated in a ‘spooky’ way. The connection between the seemingly different notions
of chaos and entanglement has eluded physicists for decades. One way to relate classical
mechanical concepts to quantum mechanics is by invoking Bohr’s quantum-classical corre-
spondence principle which states that quantum mechanics reproduces classical mechanics
(including chaos) in the limit of large quantum numbers. However, the correspondence
principle breaks down for chaotic systems. The question of quantum-classical correspon-
dence in classically chaotic systems has been explored in the context of quantum informa-
tion processing and has gained relevance for quantum computing applications. It has been
shown that classical chaos can affect the implementation of quantum computing algorithms
[25, 24]. Chaos can also affect the generation of dynamical entanglement, an important
resource for quantum computing.

To understand chaos in the quantum context, it is important to explore signatures
of classical chaos in the deep quantum regime, where the standard Bohr correspondence
principle cannot be invoked. A frequently used model for studying quantum chaos is the
quantum kicked top [34], which is a finite-dimensional spin system that displays chaotic
dynamics in the classical limit. The quantum kicked top (QKT) has been extensively
studied theoretically [54, 29, 77, 11, 27, 70]. The system can be described as a collection of
indistinguishable qubits, which makes it attractive to explore in the framework of quantum
information processing and NISQ devices.

In the deep quantum regime, periodicities and symmetries in the two- and three-qubit
QKT model were studied theoretically [11, 70]. A few experimental studies of the QKT
have also been performed [42, 15, 59]. In [59], a 3-qubit model of the QKT was shown to
exhibit ergodic dynamics and a resemblance between entanglement entropy and classical
phase space dynamics was noted. Temporal periodicity and symmetries of the 2-qubit
QKT were explored using NMR techniques in [42]. These experiments are limited to a
small number of kicks and a small range of chaoticity parameter (κ), due to decoherence
in the physical qubits. To experimentally study the long term dynamics and dependence
on κ rigorously, one needs to explore longer time scales and a wider range of κ. In this
work, we show that mapping the QKT onto a programmable quantum circuit in a quantum
computer allows simulations of the QKT that overcome previous experimental limitations.
This opens new regimes of experimental exploration in both time and parameter space.

We construct and demonstrate for the first time, an exact simulation of the 2-qubit
quantum kicked top using a universal set of quantum logic gates. Our quantum circuit-
based simulation is programmable and enables flexible initial state preparation and evo-
lution. Using IBM’s 5-qubit chip Vigo, we can prepare initial states and implement the
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dynamics of the QKT for an arbitrary number of kicks and a wide range of κ. The number
of gates required for this simulation is independent of the number of kicks and value of
κ. Therefore, our model does not suffer any systematic loss of fidelity with an increasing
number of kicks or κ values. Finally, full quantum state tomography enables us to explore
signatures of chaos in 2-qubit entanglement.

The ability to vary κ and the number of kicks allows us to experimentally observe the
periodic nature of the dynamics with respect to κ as well as kick number. Additionally,
the temporal periodicity of the QKT can be used to obtain highly accurate time averages
of relevant physical quantities. In particular, we explore the time-averaged entanglement
for different initial spin coherent states (SCS). We find that a contour plot of the time
average entanglement shows clear signatures of the classical phase space structures of
regular islands in a chaotic sea, even in a deep quantum regime. We also show that the
states initialized in chaotic regions of the phase space show intermediate values of average
concurrence, whereas, the fixed points and the period-4 orbit correspond to the minimum
and maximum values respectively. This behaviour is related to the degree of delocalization
of the state and thus demonstrates a connection between delocalization and entanglement
[43].

Our work shows that current quantum computers are useful for flexibly exploring new
experimental regimes in quantum chaotic systems. Mapping the system onto a tunable
quantum circuit lets us probe different aspects of the QKT dynamics without the need for
building sophisticated customized hardware or being constrained by fixed system param-
eters. This method combines the ease of numerical simulation with the built-in quantum
evolution of a physical system.

2.2 Background

2.2.1 The Quantum Kicked Top Model

The Quantum kicked Top (QKT) model was first introduced by Haake, Kus and, Scharf in
1987 [34]. The quantum kicked top is a time-dependent periodic system governed by the
Hamiltonian.

H = ~
pJy
τ

+ ~
κJ2

z

2j

(
n=∞∑

n=−∞

δ(t− nτ)

)
(2.1)
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where Jx, Jy and Jz are angular momentum operators satisfying [Ji, Jj] = iεijkJk. The
Hamiltonian commutes with J2 , i.e., [H, J2] = 0. Thus the eigenvalue of J2, j(j + 1)~2 is
a constant of motion. The sum over delta functions means application of J2

z at intervals of
τ , which will be referred to as kicks. The Jy term can be interpreted as a rotation around
the y-axis.

The classical map for the kicked top can be obtained by writing the Heisenberg equa-
tions of motion for the angular momentum operators and then taking the limit j→∞.
By defining the normalized variables X = Jx/j, Y = Jy/j and Z = Jz/j, the classical
equations of motions for p=π/2 are

Xn+1(τ) = Zn(τ) cos(κXn(τ)) + Yn(τ) sin(κXn(τ)),

Yn+1(τ) = Yn(τ) cos(κXn(τ))− Zn(τ) sin(κXn(τ)),

Zn+1(τ) = −Xn(τ) (2.2)

Here the dynamical variables (X,Y,Z) satisfy the constraint X2 + Y 2 + Z2 = 1, i.e.,
they are restricted to be on the unit sphere S2. Thus, the variables can be parameterized
into spherical polar coordinates as (X, Y, Z) = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)).

As the chaoticity parameter κ is varied , the classical dynamics ranges from fully regular
motion (for κ ≤ 2.1) to a mixture of regular and chaotic behaviour for different initial con-
ditions (for 2.1 ≤ κ ≤ 4.4) to fully chaotic motion (for κ > 4.4). The classical stroboscopic
map (in polar co-ordinates) for a range of initial conditions with κ =2.5 is given in Fig. 2.1.
The regular regions of the phase space are composed of periodic orbits. Period-N orbits and
fixed points are obtained from solutions to the equation FN(X, Y, Z) = (X, Y, Z) where F
is the classical map for one period. the fixed points FP1 = (0,−1, 0), FP2 = (0, 1, 0) and
the period-4 orbit P4 = (1, 0, 0) → (0, 0,−1) → (−1, 0, 0) → (0, 0, 1) → (1, 0, 0) exist for
all values of κ.

The QKT model with total angular momentum j can be thought of as a collection of
2j qubits.

Jα =
1

2

2j∑

i=1

σiα, α ∈ {x, y, z}, (2.3)

where σiα means σα operation on ith qubit and I2 on the rest of the qubits. Substituting
Jα in equation 2.1, we get

H = ~
κ

8j


2j +

2j∑

i,k=1
i 6=k

σiz ⊗ σkz




∞∑

n=−∞

δ(t− nτ) + ~
p

2τ

2j∑

i=1

σiy (2.4)
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Figure 2.1: Stroboscopic phase space after 150 kicks for k=2.5 and 289 initial points in
phase space.

The periodic evolution of the QKT can be described by the evolution operator from
kick to kick, also called the Floquet operator U . It can be derived from the Hamiltonian
H by separating H into two distinct time segments. During the first time segment nτ <
t < (n+ 1)τ −∆τ only the rotation part ~ p

τ
Jy acts. During the second short time interval

of ∆τ , both the rotation part (~ p
τ
Jy) and the kick part (~ κ

2j∆τ
J2
z ) act.

H =

{
~ p
τ
Jy, nτ < t < (n+ 1)τ −∆τ

~ p
τ
Jy + ~ κ

2j∆τ
J2
z , (n+ 1)τ −∆τ < t < (n+ 1)τ

in the limit ∆τ → 0. The Floquet time evolution operator for one time period, τ , can be
calculated as follows [43]:
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U = lim
∆τ→0

U(τ, τ −∆τ)U(τ −∆τ, 0)

= lim
∆τ→0

exp

(
− i

~

∫ τ

τ−∆τ

(
~
p

τ
Jy + ~

κ

2j∆τ
J2
z

)
dt

)
exp

(
− i

~

∫ τ−∆τ

0

(
~
p

τ
Jy

)
dt

)

= lim
∆τ→0

exp

(
−i

(
p

τ
Jy∆τ +

κ

2j
J2
z

))
exp

(
−i
p

τ
Jy(τ −∆τ)

)

= exp

(
−i

κ

2j
J2
z

)
exp (−ipJy) (2.5)

The final state |ψ(N)〉 after N kicks is obtained by applying the Floquet operator N
times on the initial state |ψ(0)〉, i.e., |ψ(N)〉 = UN |ψ(0)〉.

For the 2-qubit QKT (j = 1), substituting Jα from Eq. 2.3 in Eq. 2.5 we obtain

U(j = 1) = exp

(
− iκ

4
(I + σz ⊗ σz)

)
exp

(
− ip

2
(σy ⊗ I + I⊗ σy)

)
. (2.6)

2.2.2 Initial States

Minimum uncertainty states in spin systems are called spin coherent states (SCS) [67].
They satisfy the uncertainty relation

∆Ji∆Jk =
~
2
|∆Jl| (2.7)

where i, k and l are permutations of x, y and z. The uncertainty for these states is
distributed symmetrically over the two operators. For larger j values the SCS becomes
highly localized around the point (θ, φ) in the phase space and hence in the classical limit
of j →∞ approximates the classical angular momentum state (θ, φ) [32].

Spin squeezed states, which have asymmetric distribution of uncertainty, can display
entanglement in the corresponding multi-qubit representation [52]. Since we are interested
in studying entanglement which arises from the dynamics of the system, we choose SCSs
as our initial states. Given any point (θ, φ) in the classical phase space, we construct the
corresponding SCS |j; θ, φ〉 as

|j; θ, φ〉 = exp[iθ(Jx sinφ− Jy cosφ)] |j, j〉 . (2.8)
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In the 2j-qubit space, we define our initial states as the SCSs

|j; θ, φ〉 = |θ, φ〉⊗2j (2.9)

where |θ, φ〉 are points on the Bloch sphere.

2.2.3 Husimi Distribution

To study quantum-classical correspondence in the quantum kicked top, its Husimi dis-
tribution is often compared with the classical phase space distribution [44]. The Husimi
distribution has also been used as a visual aid to study dynamical tunneling in the same
model [17]. The Husimi distribution Q(θ, φ) is given by the following equation.

Q(θ, φ) =
2j + 1

4π
〈θ, φ| ρ |θ, φ〉 (2.10)

which is equal to 2j+1
4π
| 〈θ, φ|ψ〉 |2 for pure states; the overlap of a pure angular momentum

state |ψ〉 and spin coherent state |θ, φ〉.

2.2.4 Concurrence as a Measure of Entanglement

Entanglement of formation is the most widely accepted measure of entanglement [19].
For a mixed state ρ, it is the minimum average von Neumann entropy over all pure-state
decompositions of ρ. Due to the practical difficulty of computing such an infimum, another
measure of entanglement - concurrence- is more popular for quantifying entanglement in
bipartite qubit systems. Concurrence is both easier to compute and is a monotonically
increasing function of entanglement of formation. Concurrence is computed as follows [81]:

For a two-qubit density matrix ρ, first the spin flipped state ρ̃ = σy⊗σyρ∗σy⊗σy (where
σy is Pauli matrix and ρ∗ is complex conjugate of ρ in the standard basis) is computed.
Then concurrence is defined as

C = max(0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4) (2.11)

where λi are eigenvalues of ρρ̃ such that λ4 ≤ λ3 ≤ λ2 ≤ λ1 and 0 ≤ C ≤ 1. It is 0 for
separable states and unity for the Bell states.

The connection between entanglement and chaos has been long debated in the litera-
ture. Several studies [51, 29, 15, 59] showed higher time-averaged entanglement in chaotic
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regions compared to regular regions in the deep quantum regime of the QKT (j = 3/2, 3, 4).
However, some studies provided instances where even regular regions led to high entan-
glement in the deep quantum regime. It remained unclear how entanglement and chaos
are related in the regular regions of the QKT evolution until Kumari and Ghose [45] re-
solved the seemingly conflicting studies. They presented the trace distance of the evolved
state from SCSs as an upper bound to the bipartite entanglement of the QKT with total
angular momentum j. The trace distance can be inferred from localized vs. delocalized
evolution in the Husimi distribution. Thus, the entanglement degeneration in the QKT
can be explained by considering whether it evolves in a localized or delocalized manner in
the Husimi phase space.

2.3 Experimental Implementations in Literature

The first experimental implementation of the QKT was reported in 2009 [15]. The j = 3
hyperfine ground state of the 133Cs atom was used to study quantum-classical correspon-
dence in the QKT. The nonlinear rotation was performed by interacting the atom with
monochromatic laser field. The kicks were realized by sequential short magnetic pulses.
The value of κ in the non-linear part depends on the atomic structure, the frequency of
laser field and the rate of photon scattering events. It is necessary to keep the photon
scattering events low enough to minimize decoherence. This required κ to be as small as
possible in the experiment.

The QKT as a collection of qubits was implemented in [15], [42]. In [59], a three-
qubit ring of planar transmons with tunable inter-qubit coupling was used as the physical
platform to study ergodic dynamics in the QKT. The linear rotation of each qubit was
performed using a resonant microwave pulse. The nonlinear rotation was performed by
turning the inter-qubit coupling circuit on/off using three square- shaped pulses. Thus, a
particular pulse sequence was repeated N times to obtain the N-kick evolution. The value of
κ is proportional to the interaction time of the three qubits. Higher interaction time leads
to faster decoherence, as demonstrated in figure S10 of the supplementary of [59]. Thus,
even this experiment is limited to low values of κ. In [42], a two-qubit implementation of
the QKT on NMR qubits was achieved. Quantum-classical correspondence, symmetries
and temporal periodicities of the 2-qubit kicked top were studied experimentally on the
NMR qubits. The nonlinear part of the QKT hamiltonian naturally occurs in a pair of
weakly coupled heteronuclear NMR qubits. The linear part is applied using short radio-
frequency pulses. κ is determined by the interval between successive radio pulses. Longer
time intervals correspond to larger κ and higher experimental errors.
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All the experiments described have two drawbacks in common. They are limited to
lower values of κ and a low number of kicks. The plots of fidelity between the experimen-
tally reconstructed state and the classically simulated state after the N th kick in [59], [42]
explicitly show a steady decline. The common approach of realizing the final state after
the N th kick has been to repeatedly apply a set of operations such as a pulse sequence N
times. This approach leads to the accumulation of experimental errors and subsequently
low fidelities. If one wishes to physically prepare the evolved QKT state after arbirtarily
many kicks and for an arbitrary value of κ, this approach is not suitable.

2.4 Implementation of Unitary as Quantum Gates

Any n-qubit unitary can be decomposed into at most 2n(2n − 1)/2 fully controlled single-
qubit gates [76]. An alternate decomposition scheme that uses fewer controls compared
to that in [76], was presented in [47]. Quantum gates with fewer controls are easier to
implement. Fully controlled quantum gates involve the highest number of inter-qubit
interactions which introduce errors. We choose the decomposition scheme given in [47]
with a reduced number of controlled gates to ensure high accuracy of the quantum circuit
implementation of the 2-qubit unitary, UN(j = 1).

Under this scheme, any 4 by 4 unitary matrix U can be expressed as

U = U1 × U2 × U3 × U4 × U5 × U6 (2.12)

where ‘×’ denotes matrix multiplication and Ui are two-level unitaries of the following
forms




1 0 0 0
0 1 0 0
0 0 v11 v12

0 0 v21 v22


 ≡ Vi

•
;




1 0 0 0
0 v11 0 v12

0 0 1 0
0 v21 0 v22


 ≡ •

Vi




v11 v12 0 0
v21 v22 0 0
0 0 v11 v12

0 0 v21 v22


 ≡ I⊗ Vi;




v11 0 v12 0
0 v11 0 v12

v21 0 v22 0
0 v21 0 v22


 ≡ Vi ⊗ I.
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A general 1-qubit unitary can be expressed as Vi = eiδW , where W∈ SU(2) is of the

form

(
z − w∗
w z∗

)
for w, z ∈ C and |w|2 + |z|2 = 1. The exact decomposition for a 2-qubit

gate in this scheme is given by the following circuit:

U = • V5 • V3 •

V6 • V4 V2 V1 .

(2.13)

Implementation of these gates on a quantum computer requires further decomposition
into rotations and CNOT gates. Given a 1-qubit unitary W∈ SU(2), a controlled gate of
the form (|0〉 〈0| ⊗ I + |1〉 〈1| ⊗W ) can be decomposed as

•
W

= • •
Rz(

β−α
2

) Rz(−α+β
2

) Ry(− θ
2
) Ry(

θ
2
) Rz(α)

(2.14)

where Rx, Ry and Rz describe rotations on the Bloch sphere and α, β and θ are such that
Rz(α)Ry(θ)Rz(β) = W .

A 2-qubit gate of the form (|0〉 〈0| ⊗ I + |1〉 〈1| ⊗ V ) can be written as

•
V

= • •
W Uδ

(2.15)

where Uδ = exp(−iδ)× I. This controlled phase gate can be further simplified by moving
the phase to the other qubit:

(|0〉 〈0| ⊗ I + |1〉 〈1| ⊗ Uδ) = (|0〉 〈0| ⊗ I + exp(iδ) |1〉 〈1| ⊗ I)
= (|0〉 〈0|+ exp(iδ) |1〉 〈1|)⊗ I
= Rz(δ)⊗ I. (2.16)

Here, we have dropped a global phase factor of exp(iδ/2) in the final step. Hence, we
get:

•

V

= • • Rz(δ)

Rz(
β−α

2
) Rz(−α+β

2
) Ry(− θ

2
) Ry(

θ
2
) Rz(α)

(2.17)
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A similar analysis follows when the control and target qubits are exchanged. For two-
level unitaries of the type I ⊗ V and V ⊗ I, the phase factors appearing on V are global
and can be ignored. These gates have a similar decomposition as the one shown in Eq.
(2.17) with the CNOT gates replaced by X gates. For example, a two-level unitary of the
form I⊗ V will be decomposed as:

V

=

Rz(
β−α

2
) X Rz(−α+β

2
) Ry(− θ

2
) X Ry(

θ
2
) Rz(α) .

(2.18)

At most 46 gates, with 8 2-qubit CNOT gates and 38 single qubit rotations are required
to implement a general 4 by 4 unitary under this scheme. Consecutive rotations have
been counted as separate single qubit gates. Depending on the universal gate set for the
particular quantum computer, the actual number of gates required may be fewer.

2.5 Implementation of Unitary on IBMQ

We implemented our quantum circuits on the quantum hardware and simulator backend
of the IBM Quantum Experience [74]. The interfacing with the quantum hardware was
done using Qiskit [1].

Qiskit allows us to implement 1-parameter and 3-parameter single-qubit unitary oper-
ators of the form

U3(θ, φ, λ) =

(
cos(θ/2) −eiλ sin(θ/2)
eiφ sin(θ/2) eiλ+iφ cos(θ/2)

)

U1(λ) =

(
1 0
0 eiλ

)
.

We decomposed the gates in Eq. (2.13) into a combination of U1 and U3 gates. Gates
of the form V ⊗ I and I⊗ V were implemented directly as U3 gates. For controlled gates,
the decomposition given in Eq. (2.15) was implemented, where W∈ SU(2) is a U3 gate and
Uδ is a U1(δ). Hence, we obtained the final circuit decomposition for our 2-qubit Floquet
operator on IBMQ as:
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U = • U1(δ6) W5 • U1(δ4) W3 • U1(δ2)

W6 • U1(δ5) W4 W2 W1

(2.19)

with Wi = U3(θi, φi, λi).

Time evolution after multiple kicks was calculated by applying the Floquet unitary
on the initial state repeatedly. This could be achieved by appending the set of gates
given in Eq. (2.19) consecutively N times to simulate evolution by N steps. However, to
mitigate the errors that may arise from the increasing number of gates, in our approach,
we decomposed the effective N-kick unitary UN using the same procedure as mentioned
above. This means that the state after any arbitrary number of steps can be obtained by
applying the same set of gates given in Eq. (2.19) with appropriate parameters. Similarly,
different values of κ were simulated by computing the relevant parameters for the set of
gates corresponding to the unitary UN(κ). This allows easier and precise control over this
parameter than other qubit-based realizations of this model, where the value of κ is set by
tuning the time duration of interactions between the physical qubits.

After applying the appropriate set of gates to the initial states, the final state’s density
matrix was constructed using state-tomography circuits built into Qiskit. Physical quan-
tities of interest can be calculated from this density matrix. There will be discrepancies
in these physical quantities between theoretical values and the experimentally obtained
values from the quantum computer. Higher the depth of the quantum circuit, higher the
experimental error. These errors can be due to both statistical fluctuations and systematic
errors in the hardware implementation [22]. Relaxation and decoherence of the qubits in a
noisy environment is a major source of systematic errors. The CNOT gate, which involves
two-qubit operations is ten times as noisy as the single qubit rotations. This is because
of higher errors introduced by unwanted qubit interactions during the implementation of
multiqubit operations. There are also read-out errors introduced by the final quantum
measurement process. These errors could be theoretically modeled and the experimental
data could be filtered to account for those errors. Quantum error correcting circuits could
also be used to mitigate the systematic errors. This could lead to better agreement between
theoretical and experimental values of the physical quantities like concurrence. However,
we do not investigate error mitigation in this thesis.

The error calibration of various gates that can be implemented on IBMQ devices is
done daily and is available on their website. Using thoretical error models and these gate-
error values, one could compare the suitability of different quantum computers around the
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world for implementing the evolution of the 2-qubit QKT. We have not undertaken such
an endeavour in this thesis.

2.6 Comparison with Previous Experiments

Starting with various initial points for two different values of κ, we have applied the quan-
tum circuit for implementing N-kicks. We reconstructed the experimental final state by
performing quantum state tomography. We use the fidelity of the reconstructed state as
a measure of experimental accuracy. For the theoretical density matrix ρth and the re-
constructed matrix ρexp, fidelity is given by F (ρexp, ρth) = (tr

(√√
ρthρexp

√
ρth

)
)2. We

observed that there is no systematic loss in fidelity with the number of kicks for different
initial states and values of κ [Fig. 2.3]. Starting with initial SCS states centred at fixed
points, periodic orbits and the chaotic sea of the phase space generated for κ in the range
[0.5, 6.5], we averaged the F (ρexp, ρth) corresponding to each kick. As seen in Fig. 2.2, the
average fidelities remain around 0.87.

To obtain a benchmark of how well our proposed circuit method can be implemented by
a publicly accessible quantum computer (IBM Vigo), we have compared the experimental
fidelities with that of [59], [42]. In [59], a monotonically decreasing fidelity with the lowest
of 0.6 for 10 kicks. In [42], a significant drop in fidelity from 6th to 8th kick with the lowest
of 0.8 was reported. In our study, the non-decreasing trend in fidelity can be attributed to
the fixed number of gates for an arbitrary number of kicks. By decomposing the unitary
into elementary quantum gates, we effectively remove any constraints on the parameters
of the physical system (QKT) that we can implement. In the IBM-Q systems, the error
varies only with the number of single-qubit physical rotations and CNOT gates acting on
each qubit. Since the number of gates in the circuit remains constant irrespective of the
value of κ, we see that the fidelity values do not depend on κ.
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Figure 2.2: Experimental Fidelity of UN(κ)
∣∣ψ(θ,φ)

〉
averaged over (θ, φ) ∈

{(2.25, 0), (π/2, π/2), (π/2, 0)} and κ ∈ {0.5, 2.5, 4.5, 6.5} for the 2-qubit quantum kicked
top implementation using the proposed circuit method on IBM Vigo. The error bars indi-
cate standard deviation.

Figure 2.3: Fidelity of the tomographically reconstructed 2-qubit state for different initial
states and different κ values on IBM Vigo
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Figure 2.4: Average concurrence plotted against κ show a periodicity of 2π. The initial
state was an SCS with θ = 2.25 and φ = 2.0.The average was taken over 200 steps for the
simulated plot and over 50 steps on IBM Vigo.

(a) (b)

Figure 2.5: a.A contour plot of concurrence for 50 kicks over different values of κ on IBMQ-
Vigo. b. A contour plot for concurrence over 50 kicks for different values of κ on IBMQ
simulator
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In 2018, Bhosale and Santhanam [11] had shown that for a fixed value of j and a
given initial state, quantum correlations quantified by concurrence are periodic in κ, with
a period of 2jπ. This implies that in the classical limit (j → ∞), the time period of
quantum correlations becomes infinite. Therefore, these correlations are no longer periodic
in the classical limit. The periodic nature of concurrence is an indicator that the kicked top
is either in the semi-classical or the quantum regime. In the same paper [11], it was shown
that the 2-qubit kicked top shows periodicity of concurrence not only in the parameter κ
but also in the number of kicks. The two-way periodic nature of the j = 1 QKT makes it
an interesting special case of the deep quantum regime.

To our knowledge, the periodicity of quantum correlations in the 2-qubit QKT model
was explored experimentally in only one previous study by Krithika et al. In [42], they
had considered four different values of κ and 8 kicks for each value of κ to argue that the
Husimi distribution resembles its counterpart after the expected period in κ corresponding
to every kick. In this chapter, we have taken 25 different values of κ ranging from 0 to
12, and for each value of κ, we averaged the concurrence of the QKT state for 50 kicks
on the quantum hardware. As shown in Fig. 2.4, the simulated and experimental results
show close agreement and the periodicity of average concurrence in κ is conspicuous in
the experimentally obtained plot. Thus, we have obtained a more accurate experimental
realization of quantum correlations’ periodicity with the chaoticity parameter, κ, in the
2-qubit kicked top. The value of concurrence has been plotted against the number of kicks
and κ in the form of contour plots in Fig. 2.5a, 2.5b. Periodic nature can be observed
in concurrence as we scan over either the number of kicks or κ, while holding the other
variable constant. We note from the figure that the concurrence values repeat after 25
kicks and κ = 2π. These plots capture the periodic nature of the dynamics of QKT with
respect to both time and κ, which have been shown both analytically and experimentally
in previous studies [42][70][11].

The time taken to obtain the experimental result from the quantum hardware runs was
close to 2000 hours. We limited our experimental runs to 50 kicks per value of κ because
of the following reason. In our experience the run time of the program scales linearly with
the number of kicks. IBM delegates jobs to its processors depending on availability. A
longer queue of the user’s run requests leads to a longer run-time of the program. Since
50 kicks already cover two time periods of concurrence with respect to κ, we stopped after
2000 hours. One could run the program for longer and expect to obtain a repetition of the
same pattern in concurrence.
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2.7 Experimental Demonstration Beyond the Scope

of Existing Experimental Techniques

The periodicity in concurrence, combined with our ability to simulate the dynamics for
a high number of kicks, can be exploited to generate highly detailed average concurrence
plots. By averaging over multiple periods of concurrence in the number of kicks, we reduced
the estimation error of average concurrence.

(a) (b) (c)

Figure 2.6: (a). Stroboscopic phase space, (b) average concurrence over 200 kicks on IBMQ
simulator and (c) average concurrence over 50 kicks on IBMQ-Vigo for 289 initial points
and κ = 2.5.

A contour plot of concurrence against θ and φ for κ = 2.5 after averaging over 200
kicks on the simulator (Fig. 2.6b) and 50 kicks on the quantum hardware (Fig. 2.6b)
bears a striking resemblance to the structure of stroboscopic phase space plot for the
classical dynamics of the system at κ = 2.5. We observe that the chaotic regions of the
classical phase space show intermediate concurrence values. The four prominently visible
islands of low concurrence correspond to fixed points of the classical dynamics. These
islands are clearly distinguishable even on the hardware plot and the left-right symmetry
is maintained. Points (Jx/j, Jy/j, Jz/j) = (1, 0, 0), (0, 0,−1), (−1, 0, 0) and (1, 0, 0), which
constitute a period-4 orbit present in the classical dynamics of the system, show the highest
values of average concurrence.

We note the correspondence between this trend in average concurrence and the degree
of delocalization of various initial states after evolution with the Floquet unitary. This
degree of delocalization [43] can be quantified by calculating the maximum overlap with
respect to the set of spin coherent states:
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OSCS(|ψ(t)〉) = max
SCS
|〈SCS | ψ(t)〉|. (2.20)

Large values of OSCS correspond to more localized states, as they indicate high overlap
with spin coherent states. Delocalized states show low OSCS values. The value of OSCS for
two different states, one in the low concurrence region ((θ, φ) = (2.25, 1)) and one in the
high concurrence region ((θ, φ) = (π/2, 0)) have been plotted against number of kicks in
Fig. 2.7.

Figure 2.7: Evolution of OSCS values for two different initial states. It is seen that the evolu-
tion of the initial point corresponding to more delocalized evolution ((θ, φ) = (π/2, 0)) has
higher concurrence, i.e., has lower average OSCS than that corresponding to less delocalized
evolution ((θ, φ) = (2.25, 1)).

The results obtained in Fig 2.6c were predicted theoretically in many studies [42],[70],[53].
In 2016, Neill et al.[59] had obtained a similar structure in the experimental study for a
three-qubit system using single-qubit entanglement entropy measures on a three-qubit ring
of planar transmons with tunable inter-qubit coupling. Most of these studies have been
done on systems with a large value of j, entering into the semi-classical regime. Here we
show the correspondence in the deepest quantum system possible, i.e., a 2-qubit system.
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To obtain this relationship between entanglement and chaos is remarkable, considering our
system is in a deep quantum regime.

2.8 Efficient Simulation of the Quantum Kicked Top

It has been shown [71] that the theoretical lower bound of the number of CNOT gates
required to simulate an arbitrary quantum gate acting on an n-qubit register is (4n −
3n − 1)/4. To simulate a QKT with total angular momentum j, we need 2j qubits.
Therefore, the minimum number of CNOT gates needed to simulate the QKT is given by
(42j − 6j − 1)/4. In other words, the number of CNOT gates scales exponentially as a
function of j. This makes the simulation of QKT unfeasible for high values of j. However,
by utilizing the symmetry in the QKT Hamiltonian by which total angular momentum j
is preserved, we propose an alternative approach to the quantum simulation of QKT.

For the QKT with total angular momentum operator J , [H, J2] = 0. This means
that J2 is conserved, as a consequence of which any QKT state can be mapped into a
state of 2j qubits with the constraint that it is permutation symmetric. The permutation
symmetry reduces the dimensions of the 2j qubit Hilbert space from 22j to 2j + 1. There
exists an isomorphism from the system with total angular momentum j to the permutation
symmetric subspace of 2j qubits.

Consider the Hilbert state of n qubits, (C2)⊗n. The computational basis states spanning
the space is given by |e1〉⊗|e2〉 . . . |en〉 where ei ∈ {0, 1}. A symmetric subspace Symn (C2)
of the n-qubit Hilber space is the set of all n-qubit states which are unchanged under the

permutation of its qubits. Symn (C2) =
{
|Φ〉 ∈ (C2)

⊗n
: Rπ|Φ〉 = |Φ〉

}
whereRπ represents

a permutation operation.

The Hilbert space of n qubits can be decomposed into the direct sum of symmetric
subspaces.

(
C2
)⊗n ∼= Symk1

(
C2
)
⊕ Symk2

(
C2
)
⊕ . . .⊕ Symkm

(
C2
)

k1, . . . , km ≥ 0 (2.21)

One of them should be ki = n, the symmetric subspace Symn (C2) ⊆ (C2)
⊗n

of dimen-
sion n + 1, in which every QKT state of total angular momentum j = n/2 lies. Then
the Floquet operator in the decomposed space may be expressed in the following block
diagonal form:

U2n
∼= I2n−(n+1) ⊕ Un+1 (2.22)
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where the subscripts represent dimension. This block diagonal form of the unitary Floquet
operator can be decomposed into O(poly(n)) CNOT gates in contrast to O(4n) before the
decomposition, since the nontrivial block has dimensions (n+ 1) by (n+ 1).

A unitary transformation on the computational basis states such that the resultant basis
reflects the symmetries of the composite system present in the Hilbert space decomposition
[Eq. (2.21)] can be done using the quantum Schur transform [4]. It is also efficient in the
number of qubits (n), with a circuit complexity of O(poly(n)). It may be possible to use
the quantum Schur transform to map the unitary Floquet operator (U2n) into the block
diagonal form of Eq. (2.22). Assuming that it is possible, the combined circuit with
the basis transformation using quantum Schur tansform and the application of Floquet
operator can be brought down to O(poly(n)). However, the exact formulation of this
procedure is still in progress and its success is yet to be determined.

To summarize, it may be possible to apply the quantum Schur transform to efficiently
transform the computational basis states to a new basis in which the Floquet unitary of
the n-qubit QKT can be efficiently decomposed into quantum gates for high n.

2.9 Summary and Outlook

In this chapter, we have proposed a quantum circuit-based approach to simulate and ex-
plore quantum chaos and demonstrated its advantages over existing methods. The pro-
posed method can be applied in general to any periodically driven finite-dimensional quan-
tum system. In our study, IBM’s 5-qubit open access quantum chip (Vigo) was used as
the experimental platform to implement the proposed approach for the 2-qubit quantum
kicked top (QKT). The Hamiltonian of the QKT can be exactly expressed in terms of
qubits since it is a finite-dimensional quantum system. Therefore, its evolution operator
can be decomposed into quantum gates. Traditionally, experimental studies of quantum
chaos have applied the same set of operations n times to explore time evolution. Here,
we decomposed the unitary evolution operator for n kicks, Un, into elementary quantum
gates. This results in a fixed number of operations implementing the QKT evolution for
any number of kicks. This hybrid combination of classical processing and quantum com-
puting opens up the ability to perform high-fidelity experimental studies of quantum chaos
in new parameter regimes.

Since the value of the chaoticity parameter κ only determines the parameters of unitary
rotations in the quantum circuit, and since the single-qubit rotation errors are independent
of the parameters, we were able to experimentally study chaotic dynamics over a wider
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range of κ and kick number compared to previous studies. By taking advantage of the high
fidelity obtained for both a large number of kicks and arbitrary κ values, we experimen-
tally demonstrated the periodicity of entanglement with time and κ with high accuracy.
Our studies also clearly showed signatures of chaos in the contour plot of average 2-qubit
concurrence despite being in the deep quantum regime. Furthermore, we reported the first
observation of the correspondence between average entanglement and delocalization in the
2-qubit QKT.

Our results demonstrate the advantages of circuit-based NISQ devices for exploring
fundamental questions in quantum information and quantum chaos despite their noise and
scale limitations. By applying error correction to the proposed circuit approach, our results
could be improved even further. However, we leave this as future work.

The scheme used in this paper for the decomposition of an arbitrary unitary into ele-
mentary quantum gate requires exponentially many classical operations for higher values
of j. This could make the realization of QKT consisting of several qubits computationally
expensive. However, physical effects such as bifurcation are more pronounced in the QKT
for higher j( ∼ 100 qubits) [11]. To effectively observe bifurcation, it is necessary to use
an efficient decomposition scheme. Indeed, there are certain symmetries in the floquet
operator of the QKT which could allow a more efficient decomposition scheme. Exploring
this possibility of efficient extension to a higher number of qubits is a natural next step of
this work.
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Chapter 3

Quantum Controlled Teleportation in
the Presence of an Adversary

3.1 Introduction to Quantum Controlled Teleporta-

tion

Quantum teleportation is arguably one of the most important applications of entanglement.
An arbitrary single-qubit state can be prepared at a remote location using an EPR state
(|φ±〉 = (|00〉 ± |11〉)/

√
2, |ψ±〉 = (|01〉 ± |10〉)/

√
2). Suppose Alice wants to teleport an

arbitrary qubit state in her possession to Bob’s location which is spatially separated. Alice
and Bob share an EPR state in the past before separating. Alice performs a two-qubit
measurement in the Bell basis on the state to be teleported and her share of the EPR state.
She sends the outcome of her two-qubit measurement to Bob. Depending on which EPR
state was shared between them and the outcome of Alice’s measurement, Bob performs a
unitary rotation on his share of the two-qubit EPR state to recover the arbitrary qubit
state that was earlier in Alice’s possession. In this process, the quantum information stored
by Alice in the arbitrary qubit is transferred to Bob.

First introduced in 1993 [9], quantum teleportation and its relationship with nonlocal-
ity and entanglement has been studied extensively [65][37][14],[39]. Experimental demon-
strations [64] including long distance and ground-satellite teleportation [83][68] have been
achieved.

Multipartite generalizations of quantum entanglement such as controlled quantum tele-
portation (CQT) play an important role in Quantum Teleportation Networks. In such a
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network, entanglement is shared between more than two parties. In the tripartite case,
teleportation can be performed between any two parties but only with the help of the
third party [84]. These networks are an integral part of the hypothetical quantum internet
[13]. CQT finds direct application in the well-known quantum secret sharing protocol [36]
where information is distributed among multiple parties and no single party is sufficient
to reconstruct the whole information. In the simplest CQT scenario, a GHZ state of the
form (|000〉+ |111〉)/

√
2 is shared between three parties: Alice, Bob and Charlie. Suppose

Alice wants to teleport a qubit to Bob. For faithful teleportation, Charlie needs to perform
a measurement in the σX basis such that Alice and Bob’s bipartite state is projected into
|φ±〉 = (|00〉± |11〉)/

√
2 depending on the measurement outcome. Charlie reveals his mea-

surement outcome to Alice and Bob. Then they perform the usual two-qubit teleportation
since they now know which EPR pair (i.e., |φ+〉 or |φ−〉) is being shared between them.
Without knowing Charlie’s measurement outcome, the maximum fidelity of teleportation
averaged over all possible arbitrary qubit states is 2/3. It has been shown that the max-
imum average fidelity of teleportation using only classical resources where a single input
state is measured at Alice’s site, and the result of the measurement is sent over a classical
channel to Bob (who reconstructs the state) is 2/3 [40]. In a valid CQT protocol, the
teleportation cannot be performed with an average fidelity > 2/3 without Charlie’s per-
mission. Thus, Charlie plays the role of a controller by which he decides whether Alice and
Bob should use quantum resources for teleportation. There have been several attempts
to experimentally implement the CQT protocol [84][60][83][82][7]. To my knowledge, the
most successful of them was Barasinski et al. (2019) [7] where discrete variable linear optics
was used. They achieved an experimental fidelity of 83.0 ± 0.7 with Charlie’s permission
and 51.8± 6.7 without Charlie’s permission.

Often, the devices used for performing quantum communication/ cryptographic proto-
cols such as quantum teleportation and CQT are manufactured and supplied by external
agents. The inner working of the devices could be hidden from the users. The black box or
device independent (used interchangeably in the rest of the chapter) approach is useful for
testing whether a given device functions according to its specifications. In 2013, Bancal et
al. [38] have studied in the black box scenario whether quantum resources are being used
for the standard teleportation of a qubit. To our knowledge, there is no device independent
study of the CQT scheme. In this thesis, we go one step further and study the device inde-
pendent scenario of a more practical version of the CQT involving three parties -controller,
sender and receiver- where the receiver is untrusted. We ask the following questions:

• How to device independently test whether quantum resources are being used for the
controlled teleportation of a qubit with an untrusted receiver?
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• Sometimes, the device will use quantum resources and still be far away from its ideal
functionality. What happens to the controller’s authority if the untrusted receiver
attempts to perform the teleportation by taking advantage of the non-ideal quantum
device even when the controller has not allowed?

• Can we predict the level of controller’s authority by device independently testing
a device which allegedly performs controlled quantum teleportation given that the
receiver is untrusted?

First we will introduce the standard quantum teleportation protocol [9] and the standard
CQT protocol [40] in Sections 3.2.1 and 3.2.2 respectively. Then we will review the device
independent teleportation of a qubit in Section 3.2.3, which will lead to our construction
of the device independent controlled teleportation of a qubit with an untrusted receiver in
Section 3.3. We will present our quantification of the controller’s authority in CQT with
a non-ideal device in Section 3.4. Finally, we will present two examples to demonstrate
the quantitative nature of the controller’s authority with respect to a device-independently
testable quantity in Section 3.4.2.

3.2 Background

3.2.1 Quantum Teleportation

We will review the standard quantum teleportation protocol in more detail in this section.
The objective of this protocol is to teleport an unknown pure qubit (ρa = I2+~a.~σ

2
) in the

possession of Alice to Bob.

• Alice and Bob share a maximally entangled state |Φ+〉 = |00〉+|11〉√
2

.

• Alice performs a Bell state measurement on her qubit of |Φ+〉 and the unknown qubit
ρa. The set of outcomes is given by c0c1 ∈ {00, 01, 10, 11}. After Alice’s measurement,

Bob’s qubit takes the form ρBc0c1 =
I2+(Rc0c1~a).~σ

2

• Alice communicates the outcome of her Bell measurement to Bob via a classical
channel.

• Bob performs the corrective rotation R−1
c0c1

to prepare the unknown state ρa in his
qubit.
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3.2.2 Control Power in CQT

The controlled quantum teleportation protocol is similar to the standard quantum telepor-
tation protocol with an added step. The objective is to teleport an unknown qubit in the
possession of Alice to Bob only with the participation of Charlie.

1. Let Alice, Bob and Charlie share a GHZ state of the form (|000〉ABC + |111〉ABC)/
√

2.
It can be equivalently expressed as (|φ+〉AB |+〉C+ |φ−〉AB |−〉C)/

√
2. Henceforth, the

subscripts A,B,C will be dropped.

2. Charlie performs a projective measurement in the σX basis and gets an outcome
γ ∈ {±1}. His measurement operators are given by:

Mγ
C =

(I2 + γσX)

2
; γ ∈ {±1} (3.1)

After Charlie’s measurement, Alice and Bob’s joint state is given by the following:

ρABγ = trC(ρGHZ .(I⊗ I⊗Mγ
C)) (3.2)

= |φγ〉 〈φγ| (3.3)

3. Let the arbitrary state to be teleported be given by:

ρa =
I2 + ~a.~σ

2
(3.4)

Alice performs a Bell state measurement on the first two qubits of the state ρa⊗ρABγ .
the Bell state measurement is given by the following measurement operators:

MA
c0c1

= |φc0c1〉 〈φc0c1| (3.5)

where

∣∣φ00
〉

=
|00〉+ |11〉√

2
;
∣∣φ01

〉
=
|00〉 − |11〉√

2
;
∣∣φ10

〉
=
|01〉+ |10〉√

2
;
∣∣φ11

〉
=
|01〉 − |10〉√

2

After Alice’s measurement, Bob’s state is projected into the following state:

ρBc0c1 =
I2 + (Rc0c1γ~a).~σ

2
(3.6)

where
R0,0,+1 = Rz(π);R0,1,+1 = I2;R1,0,+1 = Rz(π);R1,1,+1 = Rz(π)

R0,0,−1 = I2;R0,1,−1 = Rz(π);R1,0,−1 = Rx(π);R1,1,−1 = Ry(π)
(3.7)
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4. Now Bob performs an R−1
c0c1γ

rotation to retrieve ρa.

ρB =
I2 + (R−1

c0c1γ
.Rc0c1γ~a).~σ

2
=

I2 + ~a.~σ

2
= ρa (3.8)

The average fidelity of teleportation between the unknown pure state (ρa) and Bob’s final
state (ρB) is given by

F =

∫
d~a

4π
〈a| ρB |a〉 (3.9)

where the averaging has been performed over all pure qubit states. Henceforth, we will
refer to the average fidelity of teleportation performed with Charlie’s participation as FC
and that without Charlie’s participation as FNC . From Eq. (3.8) and Eq. (3.9),

FC =

∫
d~a

4π
〈a| I2 + ~a.~σ

2
|a〉 = 1 (3.10)

Suppose Charlie does not reveal γ. Bob will randomly perform either R−1
c0c1,+1 or R−1

c0c1,−1.
In that case, the average teleportation fidelity is given by:

FNC =

∫
d~a

4π

∑

γ,γ′∈{1,−1}

∑

c0,c1∈{0,1}

P (γ, γ′, c0, c1) 〈a| I2 + (R−1
c0c1γ

.Rc0c1γ~a).~σ

2
|a〉 (3.11)

where P (γ, γ′, c0, c1) = P (c0, c1|γ, γ′)P (γ, γ′); P (γ, γ′) = P (γ|γ′)P (γ′)

P (γ′) = tr(ρGHZ .(I⊗ I⊗Mγ′

C )) =
1

2
(3.12)

P (γ|γ′) = P (γ′) =
1

2
(3.13)

therefore,

P (γ, γ′) =
1

2
.
1

2
=

1

4
(3.14)

P (c0, c1|γ, γ′) = tr(ρABγ MA
c0c1

) =
1

4
(3.15)

Substituting the above conditional probabilities in Eq. (3.11), we get

FNC =

∫
d~a

4π

∑

γ,γ′∈{1,−1}

∑

c0,c1∈{0,1}

1

16
〈a| I2 + (R−1

c0c1γ
.Rc0c1γ~a).~σ

2
|a〉 =

2

3
(3.16)
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The control power of Charlie is given by the difference between FC and FNC . The intuition
is that without the controller’s participation, the average teleportation fidelity must be
minimized and that with the controller’s participation must be maximized. Thus, higher
the difference between the above fidelities, higher is the control [49]. The control power of
Charlie is expressed as follows:

CP = FC − FNC = 1− 2

3
=

1

3
(3.17)

3.2.3 Device Independent Certification of Quantum Resources
Used in Teleportation

In the usual two-party teleportation protocol using EPR states, Bancal et al. [38] suggested
a construction by which it is possible to certify whether a teleportation device is using
quantum resources. Alice and Bob have been given a pair of black boxes that supposedly
perform the quantum teleportation of a qubit state. The input of each box is a unit vector
of the Bloch sphere. Alice’s box takes the state to be teleported as the input given by the
vector ~a and outputs two bits (c0c1) ∈ {0, 1}2. Bob’s box takes a vector ~b as input and

gives one bit output β ∈ {+1,−1}. ~b represents a measurement of the teleported state in

the ~b.~σ direction. The vendor claims that their boxes contain EPR states, using which the
teleportation is performed on each run. Alice and Bob wish to verify the vendor’s claim.

In [38], it was shown that it is indeed possible to certify teleportation in this black
box scenario. In other words, it is possible to infer a posteriori that the black boxes used
quantum resources to perform the teleportation from the input/output statistics of the
boxes.

In a teleportation protocol, Alice is typically required to send (c0, c1) to Bob such that he
can perform the appropriate corrective rotation based on some pre-established agreement to
prepare the unknown qubit. However, it was shown [75] that 2 classical bits of information
are enough to simulate the statistical correlations of the maximally entangled singlet state.
Hence, a black box certification of quantum resources is not possible if Alice communicates
with Bob. Therefore, Alice and Bob do not reveal any of their measurement input/output
until several (ideally infinite) rounds have been completed. Each round consists of the pair

of boxes taking inputs (~a,~b) and giving outputs (c0c1, β). In the end, they can construct

the probability distributions P (c0c1, β|~a,~b). Alice and Bob have no knowledge of the inner
working of the composite black boxes except that they are not communicating. It is also
assumed that Alice and Bob have free will. At the end of the protocol, the only information
they have is the data table of inputs and outputs (c0c1, β|~a,~b) for each round. Using this,
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they must test whether the source of correlations is quantum. This scenario can be easily
mapped into a Bell scenario.

Let Alice choose from state settings {~a1, ~a2} and Bob choose from measurement setting

{~b1, ~b2}. Alice’s black box gives two bits (c0, c1) as the output, which must be mapped to
one bit. This can be done by choosing α = 2cj − 1 if Alice’s input is aj. Thus, one can

construct the distributions P (α, β|j, k) from P (c0c1, β|~a,~b). Finally, the Clauser-Horne-
Shimony-Holt (CHSH) Bell function can be calculated as:

CHSH =
∑

j,k∈{0,1}

P (α = β|j, k)− P (α 6= β|j, k) (3.18)

If CHSH > 2, it is guaranteed that the pair of black boxes generate statistical correlations
that are not possible to generate using only classical resources [8]. In other words, if
CHSH > 2, it is certified that quantum resources are being used for teleportation.

3.3 Device Independent Controlled Teleportation of

a Qubit to an Untrusted Receiver

Here we consider a controlled teleportation scenario where a qubit in the possession of
Alice (sender) is teleported to Bob (receiver) only when Charlie (controller) participates.
However, Bob is not a trusted party. Bob can collude with external agents henceforth
labelled Derek to extract extra information that can increase the fidelity of teleportation
even without Charlie’s participation. An untrusted receiver can therefore lead to a decrease
in the control power of Charlie. In this section, our goal is to certify the controller’s
authority of Charlie in such a scenario. The goal of a CQT protocol is to ensure that
Charlie can control whether quantum resources are being used for teleportation. Hence it
is necessary to first certify that the given device is capable of using quantum resources for
teleportation. We will present a construction using which it is possible to certify whether
quantum resources are being used for controlled teleportation to an untrusted receiver.

3.3.1 A Test of Quantum Resources in CQT with Untrusted Re-
ceiver

The idea of certification of quantum resources used in black box teleportation described in
Section 3.2.3 can be adapted for black box controlled teleportation.
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3.3.2 Scenario

Derek supplies three black boxes to Alice, Bob and Charlie which can allegedly perform
controlled quantum teleportation of a qubit such that Charlie is the controller, Alice is the
sender and Bob is the receiver. The ideal functions of the three black boxes are as follows:

1. Charlie’s black box: Accepts a measurement setting ~c ∈ S2 as input and upon
measurement gives an outcome γ ∈ {0, 1}.

2. Alice’s black box: Accepts the state to be teleported ~a ∈ S2 as input and upon
Bell-measurement [Eq. (3.5)] gives an outcome s0s1 ∈ {0, 1}2.

3. Bob’s black box: Performs a corrective rotation R−1
s0s1~cγ

which is specified in the

instruction manual of the device. Accepts a measurement setting ~b ∈ S2 as input
and upon measurement gives an outcome β ∈ {0, 1}.

In an ideal CQT scheme, the shared state of Alice, Bob and Charlie’s black boxes is
the GHZ state (|000〉 + |111〉)/

√
2. The analysis of this ideal scheme has been shown in

Section 3.2.2. The control power of Charlie for the ideal CQT scheme is CP = 1
3
.

However, we do not assume anything apriori regarding the inner working of the black
boxes - including the underlying composite state of Alice, bob and Charlie and their in-
dividual measurement basis. Additionally, we do not trust the receiver Bob. Therefore,
Alice and Charlie are trusted and Bob is untrusted.

3.3.3 The Adversary

In the above scenario 3.3.2, let Bob be the untrusted part and Derek be the eavesdropper.
Together, they play the role of an adversary.

Adversarial Goal

The goal of the adversary is to maximize the average teleportation fidelity when Charlie
has not allowed the teleportation i.e., not revealed the input setting ~c and the outcome γ
of his measurement.
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Adversarial Capabilities

1. The eavesdropper Derek is restricted to acting on individual signals separately.

2. Derek can generate the shared states of the black boxes i.e., hold the common source
of correlations but has no direct access to the input/output variables of the three
parties.

3. The untrusted party Bob can correlate his inputs with that of the common source of
correlations held by Derek.

4. Derek and Bob can jointly extract another outcome δ that can be potentially used
to increase the fidelity of teleportation. This means that the corrective rotation
performed by Bob can also depend on δ. This extra capability of the adversary
allows us to write Bob’s corrective rotations as R−1

s0s1~cγδ
in contrast to R−1

s0s1~cγ
in the

ideal scenario.

3.3.4 Device Independent Test of Quantum Resources

Consider a restriction to the ideal scenario described in Section 3.3.2:

Device Independent Test Scenario

1. Derek is the manufacturer and supplier of the black boxes of Alice, Bob and Charlie.

2. Alice, Bob and Charlie’s black boxes cannot communicate with each other.

3. Charlie’s black box: Accepts a measurement setting out of two distinct choices ~c ∈
{~c0, ~c1} as input and upon measurement gives an outcome γ ∈ {0, 1}.

4. Alice’s black box: Accepts the state to be teleported out of two distinct states ~a ∈
{~a0, ~a1} as input and upon Bell-measurement [Eq. (3.5)] gives an outcome s0s1 ∈
{0, 1}2.

5. Bob’s black box: Performs a corrective rotation R−1
δ given to him by Derek. Accepts

a measurement setting out of two distinct choices ~b′ ∈ {~b′0, ~b′1} as input and upon
measurement gives an outcome β ∈ {0, 1}. Equivalently, the corrective rotation can
be included in the measurement of Bob such that the new measurement choices are
~b = {~b0 = R−1

δ
~b′0,

~b1 = R−1
δ
~b′1}.
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6. Alice and Charlie independently choose their individual measurement setting i.e.,
their choice of measurement setting depends only on their free-will. However, Bob’s
choice of measurement setting can be influenced by Derek. Therefore, the untrusted
receiver does not have free-will.

7. We require that the announcement of inputs and measurement outcomes be made
simultaneously by all parties after several rounds of the experiment have been com-
pleted. This ensures that the inputs or outcomes of the trusted parties are not used
to the advantage of the untrusted part.

8. The announcements at the end of several rounds of sending in inputs and recording
outcomes from each black box will be a table of (s0s1, β, γ) given (i, j, k) for each
round where i, j, k denote the input setting (0 or 1) of Alice, Bob and Charlie re-
spectively. From this data, the joint probability distribution p(s0s1, β, γ|i, j, k) can
be computed.

For the purpose of device independent testing, we require that Alice’s output i.e, s0s1 be
mapped into a single bit α in the following way:

α = 2sj − 1 where Alice’s input is ~aj

Using this map, one can construct the distributions P (α, β, γ|j, k, l) from P (s0s1, β, γ|~a,~b,~c).

Remark 1. The choice of input merely indicates that each party can choose to press one
out of two buttons. It is assumed that the parties do not know which measurement basis
the buttons correspond to.

Causal Structure of the Device Independent Test Scenario

The causal structure of inputs, outcomes and common source of correlations of the different
parties involved can be represented in the following way using directed acyclic graphs
(DAG):
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Figure 3.1: DAG representation of the causal model where Λ is the common source of
correlations supplied by Derek. In a classical model, Λ is a shared random variable whereas
in a quantum model, Λ is a potentially entangled quantum state ρ. Here J, K, L denote
the inputs of Alice, Bob and Charlie respectively. A, B, C denote the outcomes of Alice,
Bob and Charlie respectively. Note that, since Bob is untrusted, he can correlate his inputs
with that of the common source of correlations.

In Fig. 3.1, each directed edge represents a causal relation between two nodes. The
start of each edge is called the parent node and the arrival of each edge is called the child
node. In a classical causal model, the source of correlations and all other nodes are random
variables such that the parent nodes completely characterize a child node.

The explanation of how to interpret the DAG in Fig. 3.1, is as follows:

• The node Λ represents the common source of correlations (the underlying state in
the black boxes) supplied by the eavesdropper Derek himself.

• J, K, L denote the inputs (measurement choices) of Alice, Bob and Charlie respec-
tively. A, B, C denote the outcomes α, β, γ of Alice, Bob and Charlie respectively.

• The arrows from Λ to A, B and C represent the fact that the outputs of Alice, Bob
and Charlie depend on the underlying state of their black boxes.

• The arrows from J, K, L to A, B, C respectively represent the dependence of the
outcomes of each party on the choice of their measurement setting.

• There are no arrows from the input or outcome of one party to another because their
black boxes are not allowed to communicate with each other (Section 3.3.4).
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• Since the inputs of the trusted parties Alice and Charlie can be independently chosen
(measurement setting choice independence/free-will), J and L have no parent nodes.

• Since Bob is untrusted, his input may be correlated with that of the common source
of correlations. Hence, Bob does not have measurement independence. The arrow
from Λ to K represents the fact that Bob’s choice of measurement setting depends
on the information he receives from Derek through the black box.

• Extra arrows from inputs/outcomes from one party to another could be avoided due
to the requirement that all announcements be made simultaneously at the end of
several rounds.

If {vi}ni=1 denote the nodes of the graph, p(vk|v1, v2, ..., vn) = p(vk|pa(vk)) where pa(vk)
denotes all parent nodes of vk. Thus, the joint probability distribution of all the nodes is
given by p(v1, v2, ..., vn) = Πvip(vi|pa(vi)).

Therefore, in the causal structure with an untrusted receiver (Fig. 3.1), if Λ is a classical
random variable then the joint probabilities must admit the following decomposition:

p(αβγδ|ijk) =
∑

λ

p(α|jλ)p(β|kλ)p(γ|lλ)p(δ|kλ)p(λ|k) (3.19)

Bell Inequality Characterizing the Device Independent Test Scenario

In [16] it was shown that the following DAGs are equivalent:

Figure 3.2: DAG Equivalence

This means that the DAG representing the device independent scenario of controlled
teleportation with an untrusted receiver (left-most DAG) is equivalent to the broadcasting
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scenario (right-most DAG). Broadcasting represents a scenario where one or more parties
can openly communicate their choice of input to other parties. Here, in the right-most
DAG it is seen that Bob communicates his choice of input to Alice and Charlie.

In [6], the Bell inequalities characterizing the broadcasting scenario were studied. In
the case of n parties out of which n−m parties broadcast their inputs to all other parties
and the remaining m parties do not communicate their input to any other party, the tight
bound to a specific Bell inequality called the Svetlichny inequality was found.

The Svetlichny function involves distributions of the form p(αβγ|ijk) which is obtained
from the device independent test rounds.

S =pA(+1 | 0)CHSH(+1)0 − pA(−1 | 0)CHSH(−1)0

+ pA(+1 | 1)CHSH′(+1)1 − pA(−1 | 1)CHSH′(−1)1

(3.20)

where pA(α | j) is the marginal probability of Alice, CHSHαj and CHSH′αj refer to sym-

metries of the Clauser-Horne-Shimony-Holt (CHSH) inequality given by CHSH= Eαj
(+1)0 +

Eαj
(+1)1 + Eαj

(−1)0 − Eαj
(−1)1 and CHSH′αj = Eαj

(+1)0 − Eαj
(+1)1 − Eaj

(−1)0− Eαj
(−1)1, and Eαj

yz =∑
β,γ=+1,−1 βγ p(β, γ | j, α, k, l) is the expectation value of the measurement outcome of

Bob and Charlie conditioned on a given outcome α and the input j of Alice.

The result from ref. [6] that we will use in this chapter is given by the following
statement:

For the broadcasting scenario where n−m is odd, |S| ≤ 2(n−m)/2+3/2.
Moreover, this bound is tight, i.e., there exists a classical strategy (Λ) such
that |S| = 2(n−m)+3/2.

In the broadcasting scenario of our interest (right-most DAG in Fig. 3.2), n = 3 and
m− n = 1. Therefore, in this case,

|S| ≤ 4 (3.21)

Using this result [Eq. (3.21)] and the equivalence of DAGs (Fig. 3.2), we can immediate
make the following claim:

Claim 1. Any probability distribution p(αβγ|ijk) admitted by the DAG representing the
device independent test scenario of controlled quantum teleportation with an untrusted re-
ceiver (as defined in Section 3.3.4) using classical strategies must satisfy the Svetlichny
inequality |S| ≤ 4. Moreover, this bound is tight.

Condition for certification of quantum resources: If the Svetlichny inequality
|S| ≤ 4 is violated, it is guaranteed that the observed probability distribution p(αβγ|ijk)
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was not generated entirely by classical means. Hence, the source of correlations (Λ) must
be quantum.

Comparison with the Device Independent Scenario of Fully Trusted Controlled
Quantum Teleportation

In controlled quantum teleportation where all parties are trusted, it is easy to see that the
device independent test scenario is represented by the following DAG:

Figure 3.3: DAG for the device independent test scenario of fully trusted controlled quan-
tum teleportation. Note that there are no arrows from Λ to K unlike that in the scenario
of untrusted receiver considered earlier. Here, all parties have measurement choice inde-
pendence and there is no communication between each other.

This device independent scenario is certified to be quantum if the obtained correlations
violate Mermin’s inequality [57]. A maximal violation of Mermin’s inequality implies that
the underlying state is the GHZ state, therefore guaranteeing maximum control power.
However, it was shown in Ref. [58] that there exists a local model in the broadcasting
scenario of Fig. 3.2, that violates Mermin’s inequality maximally. Since the device inde-
pendent scenario of controlled teleportation with an untrusted receiver is equivalent to the
broadcasting scenario (Fig. 3.2), Mermin’s inequality is not sufficient for its certification.

The presence of an untrusted part makes it necessary to use a stronger notion of non-
locality also known as genuine tripartite nonlocality/Svetlichny nonlocality for the certifi-
cation of controlled teleportation.
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When is the Controller’s Authority Maximum?

Claim 2. Controller’s authority is maximum with CP = 1
3

in the controlled quantum

teleportation scheme if S = 4
√

2 is obtained from the device independent test.

Proof. Because of the normalization of pA(a | x), to achieve the maximum quantum
violation S = 4

√
2 necessarily, we must have CHSH(−1)0 = CHSH′(−1)1 = −2

√
2 and

CHSH(+1)0 = CHSH′(+1)1 = 2
√

2. For any given α and j, Charlie and Bob’s joint state
must maximally violate the CHSH. Only maximally entangled two-qubit pure states can
generate such a correlation.

Thus, by the monogamy of entanglement, ρBCD = ρBC ⊗ ρD where ρBC is a maximally
entangled pure state of Bob and Charlie. This means that if S = 4

√
2, then Derek cannot

remain entangled to Bob and Charlie’s devices.

Now suppose the same device which yielded S = 4
√

2 during the device independent
test, is used for the standard controlled quantum teleportation scheme (Section 3.2.2). If
Charlie does not give permission to teleport i.e., does not reveal γl then p(δ = γl) = 1

4
. This

reflects the fact that Derek’s state is separate from Bob and Charlie’s composite state and
therefore cannot obtain information about their systems by performing local operations
on his system. Essentially, it means that Bob has no extra information about what the
corrective rotations R−1

s0s1γl
are beyond what the trusted parties Alice and Charlie choose

to reveal.

Alternatively, we note that only the maximally entangled GHZ state |000〉+|111〉
2

(upto

local unitary operations) violates the Svetlichny inequality maximally, i.e., gives S = 4
√

2.
It directly follows that Derek’s state must be separated from the tripartite state of Alice,
Bob and Charlie since the maximally entangled GHZ state is a pure quantum state. The
controller’s authority for the GHZ state was derived in Section 3.2.2 and CP was shown to
be 1/3.

3.4 Controller’s Authority from Non-maximal Viola-

tion of Svetlichny Inequality

In Section 3.2.3, we constructed an experiment by which the Svetlichny function can be
computed. We showed that a maximal violation of the Svetlichny Inequality [Eq. (3.21)]
implies that Bob can get no useful information from Derek to increase the average telepor-
tation fidelity without Charlie’s permission. This ensures that the controller’s authority is
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maximized. However, one can expect that controller’s authority will not be maximized in
case of non-maximal violation of the Svetlichny Inequality.

Having solved the general task of certifying whether the black box device which allegedly
performs controlled quantum teleportation, is actually using quantum resources, we will
take the example of two specific families of quantum states to study the quantitative
relationship of genuine 3-way nonlocality with controller’s authority. In this section, we
will consider two noise models of the tripartite GHZ state - the total depolarizing channel
and the qubit depolarizing channel - and compute the controller’s authority as a function
of Svetlichny Inequality [Eq. (3.21)] violation. We will consider a specific attack strategy
using which Bob will try to increase the average fidelity of teleportation without Charlie’s
permission. Charlie’s authority will be quantified by the Effective Control Power (ECP)
which we define as

ECP = FNE
C − FE

NC (3.22)

Here FNE
C indicates the average fidelity of teleportation with Charlie’s permission and

no eavesdropping. FE
NC indicates the average fidelity of teleportation without Charlie’s

permission but with eavesdropping (i.e., Derek’s participation). The general definition of
controller’s authority would be

CP = FE
C − FE

NC (3.23)

The superscripts (E) indicate that eavesdropping has been considered in both cases of
control i.e., with and without Charlie’s permission. We shall leave the more general quan-
tification of controller’s authority as future work and focus on Effective Control Power
(ECP ) of Charlie in this section. Note that FE

C ≥ FNE
C because eavesdropping will al-

ways increase fidelity. Therefore, ECP is a lower bound to the more general definition of
controller’s authority quantified by [Eq. (3.23)]. It is guaranteed that for the adversarial
strategy under consideration, Charlie has at least ECP amount of control.

3.4.1 Adversarial Strategy

The ideal CQT scheme (Section 3.2.2) using the tripartite GHZ state allows teleportation
with perfect average fidelity with Charlie’s permission. Alice and Bob’s composite state is
projected into one of the EPR states after Charlie performs a measurement on her system
and reveals the measurement setting and outcome to Bob. When Charlie does not make
his measurement information known to Bob i.e., does not give permission to teleport, Bob
does not know which EPR state the teleportation channel has been projected into. This
prevents Bob from achieving an average teleportation fidelity higher than 2/3 without
Charlie’s permission. Recall that the goal of the adversary (Section 3.3.3) is to maximize
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the average teleportation fidelity when Charlie has not allowed the teleportation. Bob’s
next best option is to ask Derek to perform a measurement in a suitable basis and reveal
its outcome (δ) to Bob such that Alice and Bob’s composite state is projected close to one
of the four EPR states. This gives Bob some relevant information regarding the corrective
rotations using which he can recover the state to be teleported with higher fidelity (see
point 4 of Adversarial Capabilities, Section 3.3.3). Our goal is to find the maximum
fidelity of teleportation that Bob can achieve without permission from Charlie using this
extra information (δ), which is required to evaluate the worst case Effective Control Power
(ECP) of Charlie.

Thus, the adversarial strategy can be formulated as the following problem:

Proposition 1. Adversarial strategy: Find the optimal POVM operators (Appendix A) of
Derek such that the fidelity between the post-measurement state of Alice and Bob conditioned
on Derek’s measurement outcome and one of the EPR states is maximized.

Execution of Adversarial Strategy

The adversarial strategy in Proposition 1 can be executed in the following way:

Let {Mi} denote Derek’s POVMs, and Pr(i) denote the probability of getting an out-
come i. ρABD is the joint state of Alice, Bob and Derek. Note that Charlie’s state is
irrelevant in this case since he is not participating.

Then the post measurement state of Alice and Bob is given by

ρABi =
TrD(ρABDI⊗ I⊗Mi)

Pr(i)
(3.24)

Let F (ρ1, ρ2) denote the fidelity between two density matrices ρ1 and ρ2. Then the problem
of finding the optimal POVMs can be formulated as follows:

Maximize
∑

i

Pr(i)F (ρABi , |φi〉 〈φi|)

Subject To Mi ≥ 0,
∑

i

Mi = I
(3.25)

Pr(i)F (ρABi , |φi〉 〈φi|) = Tr
(
TrD(ρABDI⊗ I⊗Mi) |φi〉 〈φi|

)

= Tr
(
(|φi〉 〈φi| ⊗ I)ρABD(I⊗ I⊗Mi)

)

= Tr
(
TrD((|φi〉 〈φi| ⊗ I)ρABD)Mi

) (3.26)
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Let ρ̃i= TrD((|φi〉 〈φi| ⊗ I)ρABD). After substituting ρ̃ in Eq. (3.25), we get:

Maximize
∑

i

Tr(ρ̃iMi)

Subject To Mi ≥ 0,
∑

i

Mi = I,Mi = M †
i

Variable Mi

(3.27)

The optimization problem in Eq. (3.27) can be cast into a semidefinite program (SDP)
using the procedure given in Appendix B. The SDP can be solved numerically using the
CVX module [31], [30] on MATLAB to obtain the optimal POVM measurements.

3.4.2 Examples of Controller’s Authority with Non-Maximal
Svetlichny Inequality Violation

Though the CQT scheme works ideally where the tripartite state of Alice, Bob and Charlie
is the GHZ state (|ψ〉 = (|000〉+ |111〉)/

√
2), in reality the underlying state is a noisy GHZ

state. Often errors are introduced while distributing the qubits which leads to decoherence.
The final state ρf after a decoherence process ε is given by ρf = ερi. The action of ε can
be described using Kraus operators {Ej}j in the following way [41]:

ερi =
M∑

j=1

EjρiE
†
j (3.28)

First, we will consider the case where the whole state is affected by the same decoherence
process described by the total depolarizing channel. It is a process in which the ideal GHZ
state is mixed with white noise with probability p. Thus,

ρtotalf = p
I
8

+ (1− p) |ψ〉 〈ψ| (3.29)

Next, we will consider the decoherence process in which each qubit of the tripartite GHZ
state undergoes a depolarizing channel. Note that the qubit depolarizing process is phys-
ically more appropriate than the total depolarizing process because the three qubits are
distributed to three different parties who are usually at different locations. Each qubit is
coupled to its local environment and undergoes depolarizing independently though they
were initially entangled at a single location. The qubit depolarizing channel is described
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by the Kraus operators E0 =
√

1− p′I; Ei =
√

p′

3
σi where p′ = 3p

2
. The final state after

the qubit depolarizing process assuming the same depolarizing parameter for each quibit,
is given by

ρqubitf =
∑

ijk

Ei ⊗ Ej ⊗ Ek |ψ〉 〈ψ| [Ei ⊗ Ej ⊗ Ek]† (3.30)

ρtotalf , ρqubitf are mixed states unless p = 0. One can think of these mixed states as a

part of a bigger pure quantum state
∣∣ψABCD

〉
comprising Alice, Bob, Charlie and Derek

such that TrD(
∣∣ψABCD

〉 〈
ψABCD

∣∣) = ρ
qubit/total
f . In the language of quantum cryptography,

one would say Derek ‘holds’ a purification of the mixed tripartite state. Since
∣∣ψABCD

〉

is a pure state, Derek is the most general eavesdropper. Any larger quantum system
ρABCD∆ with more eavesdroppers ∆1,∆2, . . . ,∆N will be of the separable form ρABCD∆ =∣∣ψABCD

〉 〈
ψABCD

∣∣ ⊗ ρ∆1,∆2,...,∆N , which means that ∆1,∆2, . . . ,∆N cannot be correlated
with

∣∣ψABCD
〉
.

In this thesis, we will use the spectral decomposition of a density matrix to obtain a
purification of

∣∣ψABCD
〉

[60] from ρ
total/qubit
f . Any density matrix ρ ∈ Herm(HA), where

HA ∼= CΣ can be expressed as ρ =
∑

k∈Σ λk |Λk〉 〈Λk|. One way to purify ρ is to simply
express |ζ〉 =

∑
k∈Σ

√
λk |Λk〉 |Λk〉.

The purification
∣∣∣ψtotal/qubitf

〉
of ρ

total/qubit
f is therefore given by

∣∣∣ψtotal/qubitf

〉
=

∑

k∈{1,2,...,8}

ρ
total/qubit
f ⊗ I8 |Λk〉 |Λk〉√
Tr |Λk〉 〈Λk| ρtotal/qubitf

(3.31)

Computing the Effective Control Power (ECP) for the Depolarized GHZ State

We have all the necessary ingredients to compute FNE
C and FE

NC (defined in Section 3.4)
for the total depolarized and qubit depolarized GHZ states.

Let ρBs0s1γl denote Bob’s state when Alice and Charlie’s boxes have revealed the outputs
s0s1 and γl after performing the measurements {MaA

s0s1
}s0s1 and {MC

γl}γl respectively.

ρBs0s1γl =
TraAC( I+~a.~σ

2
⊗ ρtotal/qubitf MaA

s0s1
⊗ I⊗MC

γl)

Tr
(

I+~a.~σ
2
⊗ ρtotal/qubitf MaA

s0s1
⊗ I⊗MC

γl

)
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Then the average fidelity of teleportation with Charlie’s permission is given by:

FNE
C =

∫
d~a

4π

∑

s0,s1,l ∈ {0,1}; γ∈ {±1}

P (s0s1γl) 〈a|R−1
s0s1γl

ρBs0s1γl(R
−1
s0s1γl

)† |a〉 (3.32)

Remark 2. Fixed rotation matrices R−1
s0s1γl

: The calculation of FNE
C has been done as-

suming that the corrective rotations (R−1
s0s1γl

) of Bob are those that are required to exactly

recover the qubit to be teleported, had the shared tripartite state (ρ
total/qubit
f ) been the perfect

GHZ state. In this chapter, the rotation matrices R−1
s0s1γl

have been assumed to be fixed.
We have not considered variable rotations conditioned on the underlying tripartite state.

To compute FE
NC , we first need to determine the optimal POVMs of Derek which will

execute the adversarial strategy (Section 3.4.1).

ρABD can be obtained from ρ
total/qubit
f by first purifying it into

∣∣∣ψtotal/qubitf

〉
[Eq. (3.31)]

and then tracing out Charlie’s system.

ρABD = TrC(
∣∣∣ψtotal/qubitf

〉〈
ψ
total/qubit
f

∣∣∣) (3.33)

By substituting ρABD in the expression ρ̃i = TrD(|φi〉 〈φi| ⊗ IρABD), one can set up the
optimization given in Eq. (3.27).

Derek can then use the optimal POVMs {Mi}i to measure his system and reveal δ = i ∈
{(+1)0, (+1)1, (−1)0, (−1)1} to Bob. Hence, Alice and Bob’s joint state (ρABi ) conditioned
on the result of Derek’s measurement is given by:

ρABi =
TrD(ρABD ⊗ I2 ⊗ I2 ⊗Mi)

Tr(ρABD ⊗ I2 ⊗ I2 ⊗Mi)
(3.34)

Now Alice performs the Bell measurement {MaA
s0s1
}s0s1 on the state to be teleported and

her share of the composite state ρABi . After Alice reveals her measurement outcome, Bob’s
qubit is prepared in the following state:

ρBs0s1i =
TraA( I+~a.~σ

2
⊗ ρABi MaA

s0s1
⊗ I)

Tr
( I+~a.~σ

2
⊗ ρABi MaA

s0s1
⊗ I
) (3.35)

Finally, the average fidelity of teleportation without Charlie’s permission but with Derek’s
assistance (FE

NC) can be computed.

FE
NC =

∫
d~a

4π

∑

s0,s1∈{0,1}; i∈{0,1}2
P (s0s1i) 〈a|R−1

s0s1i
ρBs0s1i(R

−1
s0s1i

)† |a〉 (3.36)
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Svetlichny Inequality Violation for Depolarized GHZ States

We use the physical interpretation of the total depolarized GHZ state (TDGHZ) and
the qubit depolarized GHZ state (QDGHZ) to derive the maximum Svetlichny inequality
violation that can be obtained for a given depolarizing channel parameter.

As mentioned earlier, the total depolarized GHZ state can be seen as a probabilistic
mixture of the perfect GHZ state ( |000〉+|111〉√

2
) and the completely mixed three qubit state

( I
8
).

The qubit depolarizing channel can be described by the process in which each qubit
can get replaced by the completely mixed single qubit state ( I

2
), with probability p. For

the GHZ state, it means that with probability (1 − p)3 the state is unaltered; with prob-
ability 3p(1− p)2, the GHZ state is transformed into a bipartite entangled state and with
probability 3p2(1− p) + p3, it is transformed into a separable state.

It was shown in Ref. [72] that tripartite entangled states are required for violating
the Svetlichny Inequality (S ≤ 4). Bipartite entangled states and separable states do not

violate this inequality while the tripartite entangled perfect GHZ state ( |000〉+|111〉√
2

) violates

it maximally (S = 4
√

2). Moreover, according to Claim 1 it is possible to achieve the
(S ≤ 4) bound using classical strategies. Therefore, the maximum Svetlichny inequality
violation is given by the following equations:

STDGHZ = (1− p)SGHZ + pSClassical (3.37)

= (1− p)4
√

2 + 4p (3.38)

SQDGHZ = (1− p)3SGHZ + (1− (1− p)3)SClassical (3.39)

= (1− p)34
√

2 + 4(1− (1− p)3) (3.40)
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3.4.3 Numerical Results Demonstrating the Trend Between Ef-
fective Control Power and Svetlichny Violation
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Figure 3.4: Effective Control Power (ECP), average fidelity of teleportation with con-
troller’s permission (FNE

C ) and average fidelity of teleportation without controller’s per-
mission but with eavesdropper’s participation (FE

NC) as a function of maximum Svetlichny
inequality violation (S) given by Eq. (3.37) for both the qubit depolarized and total depo-
larized GHZ states with parameter p ∈ (0, 1)

For a given depolarizing parameter p ∈ (0, 1), the maximum Svetlichny inequality violation
was computed using Eq. (3.37). The Effective Control Power (ECP) was computed using
the method described in Section 3.4.2 and plotted against the maximum Svetlichny viola-
tion corresponding to the given value of parameter p. It is interesting to note that ECP
is positive only when S > 4.84 for the total depolarized GHZ state and when S > 4.90
for the qubit depolarized GHZ. The plots clearly show that ECP is a monotonically in-
creasing function of S. The highest value of ECP is reached at the maximal violation of
Svetlichny’s inequality which confirms our Claim 2. It is important to note that the viola-
tion of the Svetlichny inequality [Eq. (3.21)] does not necessarily imply that Charlie has
positive control power. For non-maximal violation, there is a small window in the range
4.84 < S < 4

√
2 for the qubit depolarized GHZ states and 4.90 < S < 4

√
2 for the total

depolarized GHZ states, where ECP is positive.
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3.5 Summary and Outlook

In this chapter, we have performed a device independent study of controlled teleportation
of a qubit with an untrusted receiver. We constructed a device independently testable
scenario in a way that allowed us to certify in the context of controlled teleportation,
whether quantum resources were being used by the device despite the receiver being un-
trusted. We found in this case that the well-known Svetlichny inequality must be violated
to certify quantum correlations. A maximal violation of the Svetlichny inequality guaran-
tees maximum control power. This is in contrast to the controlled teleportation with all
trusted parties where the maximal violation of Mermin’s inequality was sufficient to certify
maximum control power. This indicates that a stronger form of nonlocality, also known
as ‘genuine tripartite nonlocality’, is required to device independently test the controlled
quantum teleportation with an untrusted receiver.

We proposed an adversarial strategy, not proven to be optimal, which can effectively
decrease the controller’s authority by taking advantage of a non-ideal device that non-
maximally violates the Svetlichny inequality. By taking the example of two families of
quantum states characterized by the total depolarized and the qubit depolarized GHZ
states, we showed that controller’s authority is a monotonically increasing function of the
maximal Svetlichny inequality violation. For the given family of depolarized GHZ states,
adversarial strategy and a Svetlichny inequality violation, one can infer the controller’s au-
thority from our numerically obtained plot. We found a window of non-maximal Svetlichny
inequality violation where the controller’s authority is non-zero. This shows that the con-
trolled teleportation scheme with an untrusted receiver is robust to depolarizing noise
present in the device.

A natural next step would be to investigate whether the eavesdropping strategy con-
sidered in Section 3.4.2 is optimal. It would be useful to find out whether there exists
any better eavesdropping strategy for the depolarized GHZ state that would reduce the
effective control power even further.

A practical way to extend this work would be to consider both the sender (Alice) and
the receiver (Bob) to be untrusted parties. In that case, the criteria for device -independent
certification will change. Svetlichny’s Inequality violation may no longer be sufficient to
confirm that the underlying source of correlations is quantum.
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Chapter 4

Implementation of Quantum
Lightning

4.1 Introduction

Quantum Money is a theoretical method of payment in which the role of bank notes is
played by quantum states. A quantum money scheme typically consists of a bank note
(which is a quantum state associated with a unique serial number) generating process and
a verification procedure of the bank notes. It is appealing because of two reasons: (i)
quantum no-cloning theorem implies that the bank notes generated by this process cannot
be copied. (ii) Fast transfer of bank notes can be done using quantum teleportation. In
the first quantum money scheme introduced by Weisner, the generation and verification
processes were both done by the bank. The major limitation of this scheme is that it is
required to send a note back to the mint for verification using a a secret classical description
held by the mint. In a Public Key Quantum Money (PKQM) [2] scheme, the verification
process is made public i.e., anyone with a bank note can verify it. Despite that, it is
impossible for anyone except the mint to generate new bank notes. Recently, Quantum
Lightning (https://arxiv.org/abs/1711.02276) was introduced, which is a strengthening
of the PKQM scheme. In Quantum Lightning, the generating procedure is also made
public along with the verfication procedure. Despite that, no computationally bounded
adversary can deviate from the generating procedure called ‘storm’ in such a way that it
can produce two bank notes also called ‘bolts’ with the same serial number, both of which
pass the verification procedure. The security notion of this scheme relies on the hardness
assumption of a classical computational problem. It has possible applications not only in
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quantum money but also in random number generation and cryptocurrency.

The interesting nomenclature of this scheme is rooted in the way bolts are generated. A
generating procedure should be such that a unique bolt is produced every time or the same
bolt is never produced twice, just like the claim of the old adage: “lightning never strikes
the same place twice”. Since a classical procedure can in principle be deterministically
reproduced given the correct initial conditions, it is not sufficient to use a classical procedure
for generating unique bolts. The generating procedure has to rely on the quantum property
of no-cloning. Hence, the name ‘quantum lightning’.

Zhandry proposed a quantum lightning construction in [85]. In this chapter, we examine
the implementation of this construction in the form of quantum circuits on qubits. In
Section 4.2, we present the quantum lightning scheme in more detail. In Section 4.3,
we review Zhandry’s construction of quantum lightning. We present our quantum circuit
implementation of an important part of the construction and lay out the difficulties of
implementing others in Section 4.4. We summarize and discuss future directions in Section
4.5.

4.2 Quantum Lightning Scheme

The quantum lightning scheme is based on the non-affine multi-collision resistance of
degree-2 polynomial hash functions. These hash functions are specified by n polynomi-
als P1, P2, . . . , Pn in m variables. If m ≈ rn, it has been conjectured that it is impossible
to devise 2(r+1) colliding inputs that have no affine relations.

Based on the above conjecture, the quantum lightning scheme was constructed. A
bolt can be generated by taking r + 1 copies of the superposition of the pre-images of the
hash function fA corresponding to a particular output. To generate a superposition, fA is
applied on a uniform superposition created over the domain of fA and the output is stored
on a second register. When the second register is measured, one obtains y as the serial
number and the first register is prepared in a uniform superposition of the pre-images of
y. The first register is the superposition state and the second register is the serial number.
A bolt comprises r + 1 copies of these superposition states all of which correspond to the
same serial number. Suppose it were possible to generate two bolts with the same serial
number y. On measurement of the bolts in computational basis, it is very likely that one
would obtain different pre-images for each copy of the superposed pre-image state - a total
of 2(r + 1) pre-images corresponding to a single image. This would violate the conjecture
that it is impossible to find 2(r+1) colliding inputs of fA . The quantum lightning scheme
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can be seen as an analog of collision resistance where an adversary tries to device two
inputs which hash to the same value. In quantum lightning, an adversary tries to devise
two bolts which hash to the same serial number.

There are three steps in this construction. The first step is called Setup in which the
public verification key is sampled. Gen is the bolt generation step, and Ver is the bolt ver-
ification step. Each of these steps will be described in detail. Before that, we will discuss
the computational hardness assumption that is crucial to this construction.

4.2.1 Background and Hardness Assumptions

Consider a sequence of upper triangular matrices A = (A1, A2, ..., An) with elements in F2.
Then, degree-2 polynomial functions in x can be expressed in general as follows:

fA(x) : {0, 1}m −→ {0, 1}n

fA(x) = (xTAix)i

Since x2 = x, the linear terms come from the diagonal and the cross terms give the
quadratic terms.

Suppose we want to find collisions for fA i.e., two inputs for which fA gives the same
output. Choose a ∆ randomly from the set {0, 1}m. The condition for collision precisely
means:

xTAix = (x−∆)TAi(x−∆)

Or,
∆TAi∆ = ∆T (Ai + ATi )x

This forms a set of n equations in m unknowns.

Now consider a matrix B whose rows are ∆T (Ai + ATi ). As long as B has rank n (full
rank), a solution for x is guaranteed (given n < m). Since ∆ is chosen randomly and Ai
are random upper triangular matrices, B can be row reduced with a constant probability
(constant w.r.t. choice of Ai’s and ∆.)

Now, suppose we want to find (k + 1) collisions instead of 2 in a k dimensional affine
space such that those k + 1 points do not lie in a k − 1 dimensional affine space. In other
words, we don’t want those k + 1 points to have affine relations (non-affine, analogous to
non linear). Choose randomly ∆1,∆2, ...,∆n. This time, The B matrix will be less fat as
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B = B∆1,∆2,...,∆k
. B will be a nk ×m matrix. As long as nk ≤ m and B has full rank, a

solution is guaranteed. Again, B will be full rank with constant probability since ∆′s and
A′is are chosen randomly and with overwhelming probability if nk + ωlog(λ) ≤ m. Here λ
is the security parameter and it can be chosen according to specific requirements.

Definition 1. A function f is called (k+1)-Non Affine Multi Collision Resistant (NAMCR)
if it is computationally hard to find (k+1) colliding inputs such that f gives the same output
for all of them.

Assumption 1. Let k = poly(n) and m < (k + 1/2)n. Choose random upper triangular
matrices Ai ∈ {0, 1}m×m and set A = (A1, A2, ..., An). Then fA is 2(k + 1) NAMCR. i.e.,

Pr[{x1, x2, ..., x2(k+2)} all of which collide in fA] is negligible

4.2.2 General Properties of a Quantum Lightning Scheme

The main component in a QL scheme is the ‘bolt’ which is a quantum state denoted by |E〉.
A Generating algorithm called Gen is a quantum polynomial time algorithm that takes as
input a security parameter λ and generates a new bolt (|E〉). Ver is a quantum polynomial
time algorithm that verifies a valid bolt and extracts its serial number; otherwise it outputs
⊥.

The requirements for correctness of a Quantum Lightning scheme are as follows:

• Ver always accepts |E〉 generated by Gen.

• Ver does not perturb the |E〉

• Ver outputs the same serial number for a given bolt every time. In other words, the
serial number is a deterministic function of |E〉.

The security notion of a Quantum Lightning scheme can be seen as the following
experiment between challenger and adversary:

• The challenger generates a (Gen,Ver) pair depending on security parameter λ and
sends (Gen,Ver) to adversary who possesses a malicious bolt generating storm GenMal.

• GenMal produces two potentially entangled bolts |E0〉, |E1〉 and sends them to the
challenger.
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• The challenger runs Ver on |E0〉, |E1〉 and produces two serial numbers s0 and s1.
The challenger accepts only if s0 = s1 6=⊥, i.e., the challenger accepts defeat by the
adversary.

A valid construction of Quantum Lightning scheme must satisfy the above security re-
quirements. A quantum lightning scheme can be converted into a quantum money scheme
by combining it with digital signatures [86, 2]. A valid bank note would be a bolt state
with an associated serial number and its digital signature. This prohibits an adversary
from generating new bank notes with new serial numbers. It is therefore required that the
adversary must break the quantum lightning scheme to break the corresponding quantum
money scheme, i.e., it must generate two valid bolt states, both of which are accepted by
the Ver algorithm.

4.3 Zhandry’s Construction of Quantum Lightning

Using the above assumption and mathematical setting, the following scheme was con-
structed by the author for Quantum Lightning.

• Setup: Choose n random upper-triangular matrices A ∈ {0, 1}m×m and define A =
{Ai}i. Make A public.

• Bolt generation (Gen): Make a superposition of (k + 1) colliding inputs. The result

is statistically close to (
∑

x:fA(x)=z |x〉)⊗(k+1) ∝
∣∣E′z
〉⊗(k+1)

.

• Verification (Ver): To verify a bolt, one needs to run a verification on each of the
(k+1) mini-bolts. If all of them give the same value y, only then it is accepted
otherwise it is rejected. Thus the algorithm outputs in the set {0, 1}n∪ ⊥. This
process involves two steps. Now the mini-verifications proceed as follows. First it
must be ensured that each mini-bolt to be verified (|φ〉) belongs to the span of {

∣∣E′z
〉
}z.

If |φ〉 fails this test then output ⊥ immediately. Otherwise proceed to the second step
where the function fA is evaluated in superposition to obtain y without changing the
original state of {

∣∣E′
〉
}. If the end result is (y, y, ..., y), a list of (k+1) elements, then

output y. Otherwise output ⊥. Clearly, any invalid bolt will be rejected because
by definition they will not yield the same serial number for all mini-bolts. Also,
each valid bolt will be accepted with certainty. Thus, this scheme is correct (Section
4.2.2). The mathematical details of these two steps involves multiple linear algebra
tricks as described in Zhandry’s paper [85].
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4.3.1 Security

Adversarial Goal: The adversary is a malicious bolt generation procedure (GenMal) that
tries to produce two bolts {|E0〉} and {|E1〉} such that both of them are accepted by Ver

and have the same serial number.
Adversarial Capabilities: The adversarial bolt generating procedure GenMal, has to be
computationally efficient in the number of qubits comprising each mini-bolt (n).

Theorem 1. If Assumption 1 holds true then the quantum lightning scheme (Section 4.3)
is secure.

Proof. Let the adversary produce with non-negligible probability, two bolts |E0〉 and |E0〉
using GenMal, both of which pass the verification procedure Ver such that Ver extracts the
same serial number s0 = s1 = s from both.

According to the scheme (Section 4.3), this means that the composite state of the two
bolt states is |E0〉 ⊗ |E1〉 = {

∣∣E′s
〉
}⊗(k+1) ⊗ {

∣∣E′s
〉
}⊗(k+1) = {

∣∣E′s
〉
}⊗2(k+1).

On measuring each mini-bolt of the composite state {
∣∣E′s
〉
}⊗2(k+1) one obtains 2(k + 1)

random inputs to the function fA, all of which correspond to the same output s.

But, the Assumption 1 states that it is computationally infeasible to find 2(k + 1)
colliding inputs to the function fA. Since GenMal is restricted to be computationally
efficient, it leads to a contradiction.

It follows that if Assumption 1 holds true then GenMal cannot produce two valid bolts
with the same serial number. Hence, the quantum lightning scheme is secure under As-
sumption 1.

4.4 Circuit Implementation of Quantum Lightning

An important operation for both the Gen and the Ver steps (Section 4.3) is to evaluate
the function fA(x) = (xTAix)i. In this section, we will present the circuit construc-
tion of the evaluation of the function. Let A ∈ {0, 1}m×m and x ∈ {0, 1}m. Using the
following command on matlab n times, one can generate n upper triangular matrices
Ai ∈ {A1, A2, ..., An} in a pseudorandom manner: A=triu(randi([0,1],m)). xTAx is
given by the following circuit model:
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|x1〉

|x2〉

...

|xm〉

|A11〉

|A12〉

...

|A1m〉

|A21〉

|A22〉

...

|A2m〉

...

|Am1〉

|Am2〉

...

|Amm〉

|0〉 |y1〉

|0〉 |y2〉

...

|0〉 |ym〉

|0〉
∣∣xTAx

〉

Figure 4.1: Circuit model of xTAx. Here x1x2 . . . xm = x. A = {Aij}i,j

This is represented by the following contracted circuit:
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m|x1⟩ ⊗ |x2⟩ ...⊗ |xm⟩
|(Ai)jk⟩

|0⟩m
UAi

|Aix⟩

|0⟩
∣∣xTAix

〉

Figure 4.2: Abstract circuit model of xTAix

Combining the above circuits, we get the final circuit model of
fA(x) = (xTA1x, x

TA2x, ..., x
TAnx).

· · ·

...

. . .

m|x1⟩ ⊗ |x2⟩ ...⊗ |xm⟩

|(A1)jk⟩

|(A2)pq⟩

|(An)jk⟩

|0⟩m
UA1

|A1x⟩

|0⟩
∣∣xTA1x

〉

|0⟩m
UA2

|A2x⟩

|0⟩
∣∣xTA2x

〉

|0⟩m
UAn

|Anx⟩

|0⟩
∣∣xTAnx

〉

Figure 4.3: Circuit model of fA(x) = (xTA1x, x
TA2x, ..., x

TAnx).
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4.4.1 Verification

Recap: A valid bolt is given by (
∑

x:fA(x)=z |x〉)⊗(k+1) ∝
∣∣E′z
〉⊗(k+1)

. Each
∣∣E′z
〉

is called a
minibolt. All the k + 1 minibolts together constitute the quantum lightning bolt. The
verification algorithm must run on each minibolt individually. The verification problem
can be expressed as the following statement:

Verification Problem: Find an efficient algorithm (involving a number of evaluations
that scales polynomially in m and n) that checks whether an arbitrary m qubit state, |φ〉,
is a valid minibolt such that at the end of the algorithm, a valid minibolt state is unaltered.

if |φ〉 ∈ {
∣∣E′y
〉
}y as y varies

then output(1, |φ〉)
else output(0, |φ′〉)

where |φ′〉 may not be the same as |φ〉.

Zhandry’s solution sketch:

1. Prove that
∣∣E′y
〉

and |φr〉 =
∑

r (−1)r.fA(x) |x〉 span the same linear space.

2. Express

∣∣E′y
〉

=
∑

r

αr |φr〉, r ∈ {0, 1}n (4.1)

=
∑

r,x

αr(−1)r.fA(x) |x〉 (4.2)

Thus, it is sufficient to check whether

|φ〉 ∈
∑

r

αr |φr〉

3. Perform the following algorithm steps:

57



Step 1:
Compute  in
superposition

Step 2: Perform
reverse

computation  of 
 given 

Step 3:Compute  
 given 

Step 4: discard 

Original bolt

Figure 4.4: Verification Algorithm

If |φ〉 /∈ ∑r αr |φr〉, the last qubit of the state obtained after step 2 will not be
|0〉. The verification procedure accepts a bolt only if the measurement outcome in
computational basis of the last register after Step 2 is 0.
Step 3 of the algorithm is easily performed by applying a Hadamard gate on |0〉,
followed by controlled phase gate (−1)r.fA(x).

Step 2 is the reverse computation of Step 3.

Step 4 is the trivial step where qubits containing |r〉 are discarded.

The only remaining step is step 1. The author claims that it is sufficient to estimate
r, given |αr〉. The method for estimation in the paper involves measurements in
the computational basis on multiple qubits of |αr〉. Since the bolt state will be in a
superposition of the form |φ〉 ∈ ∑r αr |φr〉, performing a measurement will collapse
the state, which can irreversibly alter the bolt state. It is not clear whether there is
a way to estimate r from |αr〉 in a non-destructive way. Thus, the following problem
remains to be solved in order to complete the verification algorithm:

transform
∑

r

αr |φr〉 −→
∑

r

αr |r〉 |φr〉 (4.3)
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Alternatively, one could use an entirely different approach for verification and that
would take us back to the original problem 4.4.1.

4.5 Summary and Outlook

In this chapter, we introduced the ideas of quantum money and its strengthening, namely,
quantum lightning. We reviewed the requirements of a valid quantum lightning scheme,
and also discussed a specific construction. We presented quantum circuits implementing
the degree 2 polynomial function that plays an important role in the scheme. Finally,
we clearly identified the step in its verification algorithm of which an implementation is
unclear.

Although the idea of quantum lightning is fascinating, a readily implementable quan-
tum lightning scheme does not exist. A future direction is to find an implementation of
the verification problem as stated in Section 4.4.1. One could attempt to use a suitable
modification of the Grover’s search algorithm for this purpose. Another future direction is
to investigate whether the quantum circuit implementing the degree-2 polynomial function
can be optimized further to reduce the number of gates. The hardness assumption was bro-
ken in a slightly different version of the construction than that presented in this thesis [69].
It remains an open question to device a similar attack on this version, eventually breaking
the security proof. One can also attempt to suitably modify the verification algorithm such
that this hardness assumption can still be used to construct quantum lightning.

59



Chapter 5

Summary

In Chapter 2, we studied the quantum simulation of the quantum kicked top (QKT) -
a periodically driven spin system that undergoes chaotic dynamics in the classical limit.
Our results demonstrate the advantages of circuit-based NISQ devices for exploring funda-
mental questions in quantum information and quantum chaos despite their noise and scale
limitations.

We reviewed the QKT model which can be described as a collection of a fixed num-
ber of spin-1/2 particles. We highlighted the importance of entanglement in the study
of quantum-classical correspondence using the QKT. After a short review of laboratory
experiments implementing the QKT, we have proposed a quantum circuit-based approach
to simulate and explore quantum chaos and demonstrated its advantages over existing
methods. The proposed method can be applied in general to any periodically driven finite-
dimensional quantum system.

In our study, IBM’s 5-qubit open access quantum chip (Vigo) was used as the experi-
mental platform to implement the proposed approach for the 2-qubit quantum kicked top
(QKT). The Hamiltonian of the QKT can be exactly expressed in terms of qubits since it is
a finite-dimensional quantum system. Therefore, its evolution operator can be decomposed
into quantum gates. Traditionally, experimental studies of quantum chaos have applied
the same set of operations n times to explore time evolution. Here, we decomposed the
unitary evolution operator for n kicks, Un, into elementary quantum gates. This results
in a fixed number of operations implementing the QKT evolution for any number of kicks.
This hybrid combination of classical processing and quantum computing opens up the
ability to perform high fidelity experimental studies of quantum chaos in new parameter
regimes. Since the value of the chaoticity parameter κ only determines the parameters of
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unitary rotations in the quantum circuit, and since the single qubit rotation errors are in-
dependent of the parameters, we were able to experimentally study chaotic dynamics over
a wider range of κ and kick number compared to previous studies. By taking advantage
of the high fidelity obtained for both a large number of kicks and arbitrary κ values, we
experimentally demonstrated the periodicity of entanglement with time and κ with high
accuracy. Our studies also clearly showed signatures of chaos in the contour plot of average
2-qubit concurrence despite being in the deeply quantum regime. We also reported the
first observation of the correspondence between average entanglement and delocalization
in the 2-qubit QKT.

There are a number of avenues for further exploration of this topic. By applying error
correction to the proposed circuit approach, our results could be improved even further.
The scheme used in this paper for the decomposition of an arbitrary unitary into elementary
quantum gate requires exponentially many classical operations for higher values of j. This
could make the realization of QKT consisting of several qubits computationally expensive.
However, physical effects such as bifurcation are more pronounced in the QKT for higher
j( ∼ 100 qubits) [11]. To effectively observe bifurcation, it is necessary to use an efficient
decomposition scheme. The symmetries in the floquet operator of the QKT could allow a
more efficient decomposition scheme. We have suggested a promising approach that uses
the Quantum Schur Transform.

In Chapter 3, we studied the controlled quantum teleportation of a qubit in the presence
of an adversary. First, we reviewed the standard teleportation protocol and then described
the formalism of controlled teleportation protocol involving three parties. We discussed
the role of nonlocality in the certification of quantum resources used for the standard
teleportation protocol. We constructed a device independently testable scenario in a way
that allowed us to certify in the context of controlled teleportation, whether quantum
resources were being used by the device despite the receiver being untrusted. We found in
this case that the well-known Svetlichny inequality must be violated to certify quantum
correlations. A maximal violation of the Svetlichny inequality guarantees maximum control
power. This is in contrast to the controlled teleportation with all trusted parties where the
maximal violation of Mermin’s inequality was sufficient to certify maximum control power.
This indicates that a stronger form of nonlocality is required to device independently test
the controlled quantum teleportation with an untrusted receiver.

We proposed an adversarial strategy, not proven to be optimal, which can effectively
decrease the controller’s authority in a non-ideal device that non-maximally violates the
Svetlichny inequality. By taking the example of the total depolarized and the qubit depo-
larized GHZ states, we showed that the controller’s authority is a monotonically increasing
function of the maximal Svetlichny inequality violation. For the given family of depolar-

61



ized GHZ states, adversarial strategy and a Svetlichny inequality violation, we numerically
quantified the controller’s authority. We found a window of non-maximal Svetlichny in-
equality violation where the controller’s authority is non-zero. This shows that the con-
trolled teleportation scheme with an untrusted receiver is robust to depolarizing noise
present in the device.

Multiple extensions to this work are possible. An interesting avenue would be to in-
vestigate whether the eavesdropping strategy considered in Section 3.4.2 is optimal. It
would be useful to find out whether there exists any better eavesdropping strategy for
the depolarized GHZ state that would reduce the effective control power even further. A
practical way to extend this work would be to consider both the sender (Alice) and the
receiver (Bob) to be untrusted parties. In that case, it would be necessary to explore
whether Svetlichny inequality violation is sufficient to confirm that the underlying source
of correlations is quantum.

In Chapter 4, we studied the quantum circuit implementation of a cryptographic object
called quantum lightning. We reviewed the concept of quantum money and discussed
its strengthening, namely, quantum lightning. We described an existing construction of
quantum lightning that relies on degree-2 polynomial functions. We built the quantum
circuit implementing degree-2 polynomials that involves extensive entangling operations.
We identified a step in the verification algorithm of which the implementation in terms of
quantum circuits is unclear. Finally, we noted that the computational hardness assumption
used in this construction was broken in a slightly different version. This could lead to a
possible attack on this construction of quantum lightning.
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Appendix A

POVM and Projective Measurements

Quantum measurements are described by a set of operators {Mm} acting on a quantum
state ρ where m refers to the complete set of classical outcomes that may occur in the
experiment. In every measurement one obtains only one of the possible outcomes m. The
probability of getting the outcome m is given by:

P (m) = Tr(ρMm) (A.1)

The operators {Mm} are called POVM(Positive Operator Valued Measurement). A POVM
is characterized by the following properties:

Mm = M †
m (A.2)

Mm ≥ 0 (A.3)
∑

m

Mm = I (A.4)

Projective measurements are a special case of POVM measurements and are given by

Πi = |φi〉 〈φi| (A.5)

where {|φi〉} are a set of orthonormal basis states. It can be easily seen that Πi satisfies
Eq. (A.2) since (|φi〉 〈φi|)† = |φi〉 〈φi|. By the resolution of Identity into orthonormal
basis,

∑
Πi = I thus satisfying Eq. (A.4). For any vector |v〉 in the space spanned by the

orthonormal states {|φi〉}, 〈v|φi〉 〈φi|v〉 = | 〈v|φi〉 |2 ≥ 0, satisfying Eq. (A.3).
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Appendix B

Semidefinite Programming

Given two Hilbert spaces X and Y , let Φ be a Hermitian preserving map T (X ,Y). Let
A ∈ Herm(X ) and B ∈ Herm(Y). A semidefinite program is a triple (Φ, A,B) with the
following associated optimization problems [79, 23]:

Primal problem Dual problem

maximize: 〈A,X〉 minimize: 〈B, Y 〉
subject to: Φ(X) = B subject to: Φ†(Y ) � A

X ∈ Pos(X ) Y ∈ Herm(Y)

(B.1)

Where Φ† is the adjoint of Φ specified by the unique map satisfying 〈Y,Φ(X)〉 = 〈Φ†(Y ), X〉
for every X ∈ L(X ) and Y ∈ L(Y). We define A = {X ∈ Pos(X ) | Φ(X) = B} and
B =

{
Y ∈ Herm(Y) | Φ†(Y ) � A

}
. A and B are feasible sets of the primal problem and

dual problem, respectively. The optimal values of the primal and dual problems are denoted
by α = sup{〈A,X〉 : X ∈ A} and β = inf{〈B, Y 〉 : Y ∈ B} respectively. By weak
duality α ≥ β. Strong duality holds when α = β. A sufficient condition of strong duality
is given by the Slater’s condition:

Theorem 2. For a semidefinite program (Φ, A,B), if A 6= ∅ and there exists a Y ∈
Herm(Y) which strictly satisfies the dual problem, i.e., Φ†(Y ) � A, then α = β and the
optimal value is obtained in the primal problem.

Now consider the optimization program given in Eq. (3.27). We can cast it into a
semidefinite program in the following way:
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Let X be a Hilbert space of dimension D, where D is also the dimension of Derek’s quantum
system. Φ ∈ T (X ,X ). Then the optimization problem is given by:

Primal problem Dual problem

maximize: 〈(ρ̃1, ρ̃2, ..., ρ̃n), (M1,M2, ...,Mn)〉 minimize: 〈ID, Y 〉

subject to: Φ(M1,M2, ...,Mn) ,
n∑

i=1

Mi = ID subject to: Φ†(Y ) � (ρ̃1, ρ̃2, ..., ρ̃n)

(M1,M2, ...,Mn) ∈ Pos(X )n Y ∈ Herm(X )
(B.2)
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