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Abstract

Servers are typically sized to accommodate peak loads, but in practice, they remain
under-utilized for much of the time. During periods of low load, there is an opportunity to
save power by quickly adjusting processor performance to match the load. Many systems
do this by using Dynamic Voltage and Frequency Scaling (DVFS) to adjust the proces-
sor’s execution frequency. In transactional database systems, workload-aware approaches
running in the DBMS have proved to be able to manage DVFS more effectively than the
underlying operating system, as they have more information about the workload and more
control over the workload. In this thesis, we ask whether databases can learn to manage
DVFS effectively by observing the effects of DVFS on their workload. We present an ap-
proach that uses reinforcement learning (RL) to learn in-DBMS frequency governors. Our
results show that governors learned using our technique are competitive with state-of-the-
art methods, and are able to adapt to a variety of workload conditions. We also show that
our method has an added advantage - it allows flexibility in tuning frequency governance
to balance a power-performance trade-off. Finally, we discuss the challenges associated
with using RL in this setting due to the overheads of using a learned frequency governor.
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Chapter 1

Introduction

Dynamic CPU voltage and frequency scaling (DVFS) is an effective and widely available
tool for reducing server energy consumption. DVFS allows the execution frequency of
a CPU, or of an individual CPU core, to be varied over time. This enables a tradeoff
between performance and power consumption. During periods of lower load, the processor’s
frequency, and hence its performance and power consumption, can be reduced. Conversely,
frequency (and power consumption) can be increased to make the full capacity of the
processor available when loads are high.

DVFS must be managed. The Advanced Configuration and Power Interface (ACPI)
standard defines so-called P-states, which represent distinct DVFS operating points [36].
By switching the processor between different P-States, software can control the power-
performance tradeoff offered by DVFS. Often, this control is provided by power governors
in the server’s operating system, which monitor operating metrics like system utilization
and use them to choose P-States for the system’s CPU cores. For example, Linux offers
a variety of governors which differ, for instance, in how quickly they react to changes in
system load. Server administrators can choose from available governors depending on their
performance and power objectives.

For database management systems (DBMS), it is possible to simply allow the operating
system’s power governor to manage P-States (or CPU frequencies) in the underlying server.
However, operating system governors have no visibility into DBMS-level abstractions and
requirements. In particular, operating system governors do not understand DBMS-level
units of work, such as queries or transactions. Thus, recent work [40, 41, 21, 30, 15, 17, 16]
has focused on managing DVFS above the operating system, e.g, in the DBMS, where
units of work and their performance requirements are understood.
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In this thesis, we ask whether database systems can learn to govern DVFS effectively.
Our focus is on latency-critical transaction processing systems. Each arriving transaction
request has an associated latency target, and the system’s job is to complete each transac-
tion ahead of its target, while minimizing the amount of power it consumes. Using DVFS,
the system can reduce its execution frequency, slowing transactions down and saving power.
However, it should not slow them so much that they fail to meet their latency targets.

One advantage of this learning approach is its flexibility. It can be applied in a variety
of different types of systems, and algorithmic objectives are easily parameterized. Our
on-line setting is also very conducive to reinforcement learning, since it offers a steady
stream of transaction executions which can be used for training. Our primary question is
whether a frequency governor learned with RL will be competitive with state-of-the-art in-
DBMS frequency governors. In particular, we focus on a recent energy-aware transaction
scheduler called POLARIS [16] as our baseline. POLARIS has been shown to manage
DVFS much more effectively than operating system governors. However, it hard codes a
specific optimization objective and specifics about the DBMS, e.g, that transactions are
executed non-preemptively.

This thesis offers three research contributions. First, we show how to formulate the
DVFS frequency governance problem for transaction workloads as a reinforcement learning
problem. Second, we evaluate the effectiveness of learned DVFS governors with respect
to POLARIS and other baselines, and show that learned frequency governors are indeed
competitive. Finally, we describe the power and performance overheads of using a learning
approach for frequency governance.
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Chapter 2

Background

In this chapter, we provide an overview of the energy-aware scheduling problem that we
will be considering in this thesis. We discuss the problem setting in Section 2.1, followed
by a description of the scheduling objective in Section 2.2.

2.1 Online Transaction Processing

We consider a database server running a DBMS. Short On-Line Transaction Processing
(OLTP) style requests arrive at the DBMS from clients. There is a fixed number of trans-
action types, and clients submit requests to execute transactions of different types. Each
transaction request arrives with a client-specified quality-of-service requirement, in the
form of a soft execution deadline.

Internally, the DBMS routes requests to a set of workers, each with an associated
transaction request queue. The worker’s assigned requests are queued up in its request
queue, from where they are picked up for execution in some order. There is one worker for
each of the server’s CPU cores, and each worker can control the execution frequency of its
core. Each core offers a fixed set of possible execution frequencies (P-states) for the worker
to choose from. An example OLTP system with four workers is illustrated in Figure 2.1.

2.2 DVFS and Energy Aware Scheduling

There exists a power/performance tradeoff in the CPU, which can be controlled using
DVFS. The DBMS workers can use DVFS to adjust CPU frequencies quickly - these ad-
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Figure 2.1: OLTP system

justments can be made at the time scale of individual transaction requests without intro-
ducing significant overheads. As expected, request latencies are lower at higher execution
frequencies, and vice versa.

Dynamic power consumption in CPUs is typically modelled as proportional to fα,
where f is the execution frequency of the CPU, and 1 < α ≤ 3 [4, 9, 38]. Since α > 1,
CPU power-performance relationship is convex. This means that higher the frequency of
execution, higher the power consumed by the processor per unit of work that it completes.

Energy-aware scheduling aims to leverage the transaction latency budget to fulfil a
two-fold objective - maximizing power savings while ensuring that the transaction latency
targets are met. The DBMS has several tools at its disposal for meeting this objective.
It can control how transaction requests are routed to workers, it can control the order in
which requests are executed, and it can use DVFS to dynamically adjust the execution
frequencies of the server’s CPU cores.

In this thesis, we focus on the problem of determining how each worker chooses the
execution frequency for its core, which we call the frequency governance problem. We
assume that the DBMS uses round-robin routing to distribute transaction requests to
workers, and we assume that each worker executes its assigned transactions in earliest-
deadline-first (EDF) order. POLARIS, the primary baseline algorithm we compare against,
makes similar assumptions.
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Frequency Governance Problem We define the frequency governance problem as fol-
lows: Given a sequence of transaction requests arriving online, each with an associated
transaction type and an execution deadline, the objective is to adjust the processor fre-
quency over time in order to reduce energy consumption while avoiding missed transaction
deadlines.
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Chapter 3

Related Work

3.1 Energy-Aware Scheduling

Energy-aware scheduling is a well-studied problem. A variety of on-line and off-line algo-
rithms have been targeted at single and multiple processor settings. Theoretical algorithms
often assume that the amount of work per transaction is known exactly, and that proces-
sors can be set to arbitrary speeds, with no upper or lower bounds. Perhaps best-known of
these is Yao-Demers-Schenker (YDS) [42], which is an optimal off-line algorithm for energy
aware scheduling on uniprocessors. OA (Online Available) [3] is an on-line algorithm based
on YDS.

POLARIS [16] is a recent algorithm that takes inspiration from YDS, but is designed
to operate in a more realistic setting. It assumes that transaction execution times are not
known in advance, and that the processor has only a limited range of frequencies available.
POLARIS runs at each worker, where it controls the order of transaction execution and
governs speed of the worker’s core. Like OA and YDS, POLARIS runs transactions in
EDF order. POLARIS considers frequency adjustments when transactions finish execution
and when new transactions arrive. It uses dynamically adjusted estimates of transaction
execution times at different frequencies to estimate lowest frequency at which it can ensure
that all currently assigned transactions will meet their deadlines.

Rubik [15] and PEGASUS [21] are two other approaches to power governance for la-
tency sensitive workloads. Rubik is similar to POLARIS in that it can adjust frequency on
the time scale of individual transactions. It assumes a single-class workload, which means
that all requests represent comparable units of work and thus have similar execution times.
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Rubik predicts the execution time distributions of the queued transactions, and uses these
estimates to set the execution frequency so that transaction latency targets are met. PE-
GASUS is intended to manage a cluster of servers running a single-class workload. It uses
a control-theoretic approach to adjust CPU execution speeds across the cluster as the of-
fered load fluctuates. Both Rubik and PEGASUS use a single transaction response time as
reference, and therefore depend on the assumption that all requests are of the same type.
As with POLARIS, our proposed method can accommodate any number of request types.

3.2 Learning to Schedule

In recent years, reinforcement learning (RL) has been used to tackle a variety of prob-
lems in computer systems, such as database configuration tuning [43, 19, 10], join query
optimization [25, 18, 24], and datacenter congestion control [13, 34]. RL has also been ex-
tensively applied to resource management on distributed compute clusters. DeepRM [22]
uses RL for resource scheduling in an on-line non-preemptive setting. It considers jobs
with multi-dimensional resource profiles, and assumes that the resource demand of each
job is known upon arrival. The scheduling objective in DeepRM is to minimize the average
job slowdown. Decima [23] uses a similar approach to learn workload-specific scheduling
policies for DAG-structured jobs to minimize completion latencies. A number of other
methods address the resource allocation inside jobs’ computation graphs [27, 26, 8, 1, 28].
Liu et al [20] propose an RL-based hierarchical framework to address the overall resource
allocation and power management problem in cloud computing systems.

RL-based approaches have also been proposed for on-line energy efficiency optimization
through DVFS management. Some key differentiators of our proposed approach compared
to these methods are summarized in Table 3.1. Some methods use RL to learn mechanisms
that can choose the most appropriate DVFS management scheme from a set of existing
techniques and switch between them in various situations [37, 12]. For instance, Islam
et al [37] present an approach that manages CPU frequencies by switching between three
real-time DVFS techniques: cycle-conserving (CC), look-ahead (LA) [2], and dynamic
reclaiming algorithm (DRA) [29]. These techniques differ in the strategies they employ to
save power. For example, the CC algorithm initially starts with a high CPU frequency and
gradually decreases it when tasks complete their execution. In contrast, the LA algorithm
starts with a lower frequency and tries to defer as much work as possible until the deadline.
Another body of work targets learning to govern frequency directly, rather than choosing
among existing techniques. Learned frequency governors have been proposed for both single
core [32], and multi-core settings [31, 5, 39, 35]. These governors operate at the os-level and
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consider workloads consisting of either a single application, or a series of applications with
different performance requirements. For example, Shafik et al [31] consider applications
consisting of a series of periodic tasks, such as the MiBench benchmark [11].

Some approaches make their decisions without taking advantage of application-level
workload information. They use low-level metrics for workload characterization, such as
memory accesses, the number of CPU cycles executed, or cache misses suffered. Others
characterize the workload using units of work in the application. Tian et al [35] consider
a workload consisting of single-class application tasks with a user-defined performance
requirement per instance. Islam et al [37] assume a periodic real-time task model, in which
a task is repeatedly executed at regular intervals, and is assigned a deadline equal to its
period. In this work, we characterize the workload based on transactions in an OLTP
system. We assume that tasks belong to different classes (types), and each task has an
associated soft deadline. The tasks are not periodic and can randomly arrive at any point
in time.

The various studies formalize the objective of energy-efficiency optimization in different
ways. Wang et al [39] define the objective as maximizing throughput per energy consump-
tion, where throughput is measured in terms of the number of busy CPU cycles per unit
time. Shen et al [32] measure performance by the deviation from the maximum frequency,
and energy consumption by the deviation from the energy-optimal frequency. In some
cases, the objective is defined as minimizing power consumption for a given performance
constraint. Performance constraints are often specified using quality-of-service require-
ments of the running application. Tian et al [35], for example, measure performance in
terms of the average execution time per application iteration. With the hard real-time
periodic task model [37, 12], the objective is to save power without missing any deadlines.
In our case, it is possible for the system to be overwhelmed with arrivals, due to which
tasks may fail to meet their deadlines. Accordingly, our objective is to balance the trade-off
between energy consumption and task failures.

The various studies also differ in their choice of interval between DVFS control decisions.
Some scale CPU frequencies at fixed intervals, with manually configured period lengths,
generally in the order of several milliseconds [32, 5]. Others trigger the DVFS controller
after finishing a specific unit input data-block [31, 39, 35]. Islam et al [37] invoke DVFS
on multiple events: a task’s release, completion, preemption, or dispatch. In this work,
DVFS decisions are made up to twice for every application task.
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Method Workload Characterization Objective DVFS trigger
period

Shen et al [32] clock frequency, tempera-
ture, instructions per sec-
ond (IPS), CPU intensive-
ness

minimize performance devi-
ation from maximum fre-
quency, minimize energy de-
viation from energy-optimal
frequency

every 20 ms

Shafik et al [31] CPU cycles’ count minimize energy consump-
tion, minimize deviation
from average performance
requirement per task

after each (pe-
riodic) appli-
cation task

Chen et al [5] Instruction Per Cycle
(IPC), Million L2-cache-
misses Per Kilo-Instructions
(MPKI), current power,
current frequency level

minimize energy bud-
get overshoot, maximize
throughput per over-the-
budget energy

every 500µs to
10ms

Islam et al [37] periodic real-time task
model

minimize energy, meet hard
deadlines

after every
task release,
completion,
preemption,
or dispatch

Wang et al [39] core throughput (busy-
cycle-count per unit time),
CPU intensiveness

maximize throughput per
energy consumption

after each
application
task/iteration

Huang et
al [12]

periodic real-time task
model

minimize energy, meet hard
deadlines

least common
multiple of
task periods

Tian et al [35] single-class workload model minimize energy consump-
tion, minimize deviation
from average performance
requirement per application
task

after each
application
task/iteration

Proposed multi-class workload model
with probability distribu-
tion over classes

minimize energy consump-
tion, minimize transaction
failures

after each task
arrival or com-
pletion

Table 3.1: Related work summary - Learning to Schedule
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Chapter 4

Design

In this chapter, we describe our design for an energy-aware scheduling approach using
reinforcement learning (RL). We outline the general RL framework in Section 4.1 and
describe how to fit the frequency governance problem into this framework in Section 4.2.
We then describe our training mechanism in Section 4.3. Table 4.1 summarizes some of
the notation we use in this chapter to describe our design.

4.1 Reinforcement Learning

In reinforcement learning, an agent learns to behave in an environment by performing
actions and observing the results, in order to maximize some notion of a cumulative reward.
At each timestep t, the agent observes a state St and on that basis takes an action At.
Following the action, the environment transitions to a new state St+1 and the agent receives
feedback in the form of a numerical reward Rt+1. The agent-environment interaction in
RL is illustrated in Figure 4.1.

The agent uses a policy π to pick its actions. Through its interaction with the environ-
ment, the agent alters the policy with the goal of maximizing the (expected) cumulative
discounted reward that it will receive from the environment over the long run:

E

[∑
t

γRt

]
where 0 ≤ γ < 1 is the discount rate, a parameter that determines the present value of
future rewards.

10



Notation Description

π agent’s policy
θ policy parameters
M transactions in state
N number of frequencies supported by processor
T set of transaction types
γ reward discount
δ failure reward weight
T timesteps/episode
η REINFORCE step size
ft processor frequency in timestep t
Lt length of timestep t
F maximum frequency from available processor frequencies
Eavg average energy consumed per transaction when executing at F

Table 4.1: Summary of notation

4.2 RL Formulation - Frequency Governance

We formulate frequency governance as an RL problem. The various elements of our RL
formulation are illustrated in Figure 4.2 and formalized as follows.

4.2.1 Environment

In our problem setting, the environment consists of a database system and a set of clients.
For simplicity, we assume that the database system runs a single worker using a single
processor that supports multiple execution frequencies. The clients generate transaction
execution requests, submit them to the database system, and await responses. Each trans-
action has a type (from among a set of possible transaction types T ) and a latency target.
The submitted transactions are queued in a transaction queue. The database system’s
worker picks transactions for execution in EDF (Earliest Deadline First) order. It runs a
single transaction at a time in a non-preemptive fashion.

We define environmental state transitions to occur as a result of either of two events -
arrival of a new transaction request in the queue, or completion of the currently running
transaction. These events divide time into a series of steps, which may differ in length. In

11



Figure 4.1: Agent-environment interaction in reinforcement learning

Figure 4.3, for example, transaction arrivals and completions define a total of eight time
steps. During each step, either a single transaction will be executing or the processor will
be idle. If a transaction is executing, other transaction(s) may be queued and awaiting
execution. For example, in Figure 4.3, the processor is idle during the fourth time step,
transaction T3 is executing during the fifth and sixth time steps, and transaction T4 is
queued and awaiting execution during the sixth time step.

4.2.2 Agent

The agent is responsible for observing the state of the system and making a decision on the
processor’s execution frequency. It uses a policy to make these decisions. In this work, we
consider so-called deep reinforcement learning. We represent the agent’s policy π as a deep
neural network, with parameters θ, that, given a state, defines a probability distribution
over the space of possible actions. That is, πθ(s, a) → [0, 1], where s is the system state
and a is one of the possible actions. The agent picks an action by randomly selecting one
according to the probability distribution defined by the policy.

4.2.3 State Space

We define the state of the environment to include information about the currently running
transaction as well as any transactions that are queued for execution. Since the agent
requires a fixed-size state representation as input for its policy network, it captures only
the M transactions with the earliest deadlines from the current transaction queue.

12



Figure 4.2: RL Formulation of frequency governance problem

Specifically, for each of these M transactions, the state includes the following:

• the transaction type

• the remaining time until the transaction’s deadline

The agent captures the earliest-deadline transactions because transactions are executed by
the database system in EDF order. Thus, the transactions captured in the state represent
the queued transactions that will be executed soonest.

In addition to information about the M earliest deadline transactions, the state includes
a backlog count, which represents the number of excess transactions in the queue. If the
queue length is M or less, the backlog count is zero. Otherwise, the backlog count is the
actual queue length minus M . The state representation does not include any information
about the types and deadlines of the excess transactions represented by the backlog count.

13



Figure 4.3: Time divided into variable length timesteps

4.2.4 Action Space

At any point in time, the agent chooses an execution frequency from amongst the frequen-
cies at which the processor can run. In this setting, the action space is defined by a set
of N possible target CPU frequency levels. It is given by {1, 2, ..., N} where A = i means
“run the CPU at frequency level i”.

4.2.5 Rewards

The reward is crafted to signal the agent to realize the two-fold objective of minimizing
energy consumption while ensuring that the transactions meet their specified deadlines.
Accordingly, the reward consists of two components, Renergy and Rfailure, which capture
these two goals respectively.

The total reward assigned to the agent for an interval t, Rt, depends on whether the
currently running transaction fails (finishes after its deadline) during t:

Rt =

{
−Rt

failure if a deadline is missed in t

−Rt
energy otherwise

In the first case, −Rt
failure represents a penalty for missing a transaction deadline. In

the second case, −Rt
energy represents a penalty for the energy consumed by the processor

during time step t. The learning process seeks to maximize the total discounted reward,
which corresponds to minimizing the penalties.

Next, we describe how Rt
energy and Rt

failure are determined. The Renergy component of
the reward function represents the energy consumed by the processor during timestep t.

14



We set
Rt
energy = fαt Lt

where ft is the CPU frequency chosen by the agent for timestep t, and Lt is the length of
the timestep t and α is a constant. As discussed in Section 2.1, fαt models the frequency-
dependent dynamic power consumption of CPUs, with 1 < α ≤ 3 (In our formulation, we
set α = 2). Multiplying by the length of the interval then models the energy consumed
during the interval. The agent is assigned a higher energy penalty for picking a higher CPU
frequency since it leads to greater energy consumption as compared to lower frequencies.

The Rfailure component of the reward function promotes the completion of transactions
before their deadlines. Rfailure for a timestep t is defined as follows:

Rt
failure = δEavg

F

ft

Here, ft is the CPU frequency chosen by the agent for timestep t, F is the maximum
frequency from among the supported frequencies in the action space, Eavg is the average
energy consumed per transaction when executing at F , and δ is a tunable parameter which
controls the importance of avoiding deadline misses, relative to the importance of saving
energy.

The formulation of Rfailure has two parts, each serving a distinct purpose:

1. δEavg expresses the penalty for failure as the average energy consumption of a transac-
tion at F multiplied by a scaling factor (δ). As the value of δ increases, the magnitude
of Rfailure increases, and transaction failures become more expensive, which makes
it less appealing for the agent to miss deadlines in favour of saving energy. δ can be
interpreted as the percentage power savings the agent should achieve as a trade-off
for an additive 1% increase in the failure rate. This is explained as follows: Suppose
that the failure rate (percentage of transactions that miss their deadlines) when the
processor runs at F all the time is λ. An X% additive increase in failure rate (i.e.,
changing failure rate from λ to λ + X), would require at least an X ∗ δ percent de-
crease in the energy reward, in order to reduce the overall penalty. For example, if
λ=0.02 (2% failure rate) and δ=5, then a failure rate of 5% (a 3% additive increase,
so X=0.03) will demand a 15% decrease in energy consumption as compensation.

2. F
ft

ensures that the failure penalty is inversely proportional to the CPU frequency
in the timestep where the transaction failure occurs. The effect of this term is to
make transaction failure more expensive the slower the processor is running when
the transaction fails. This encourages the agent to shift towards higher frequencies
when faced with greater loads and failure rates.
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Figure 4.4: Training Loop

4.3 Training

We train the agent’s policy using the training loop illustrated in Figure 4.4. In each
iteration of the loop, we apply some training workload to the database system and use
the current policy π to choose the CPU frequency at each step. We record the state (st),
chosen action (at), and reward (rt) at each time step t. This continues until the system
has run for a fixed number of (non-idle) time steps. At the end of an iteration, we use the
collected information and a training algorithm to adjust the policy parameters (θ). Then
we repeat, using the adjusted model π′ in the next iteration. Each iteration is called an
episode.

For training, we use a policy gradient method, a type of RL technique in which the
policy is optimized directly with respect to the expected long term discounted cumulative
reward. This is done by performing gradient ascent on the policy parameters. According to
the policy gradient theorem [33], for any differentiable policy πθ(s, a), the policy gradient
is given by:

∇θJ(θ) = E[∇θ log πθ(s, a)Qπθ(s, a)]
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Here, Qπθ(s, a) is the expected discounted cumulative reward which will result from
picking action a in state s, and subsequently following policy πθ. We use a Monte Carlo
method, in which each training episode is treated as a random sample that is used to
produce the return vt, an unbiased estimate of Qπθ(st, at):

vt = rt+1 + γrt+2 + γ2rt+3 + ...

We then use vt to update the policy parameters using the REINFORCE policy gradient
algorithm [33]:

θ ← θ + η
T∑
t=1

vt∇θ log πθ(st, at)

where T is the number of timesteps in an episode, and η is a meta-parameter called the step
size. Intuitively, ∇θ log πθ(st, at) provides a direction in the parameter space to increase
the probability of choosing action at at state st, while vt estimates how good (or bad) it
is to move in this direction. The net effect of these updates over all of the episode’s time
steps is to increase the probability of picking actions that lead to better returns.
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Chapter 5

Transaction Simulation

Our method is intended to control the speed of transaction execution in a real OLTP sys-
tem. However, to make it possible to quickly explore a variety of RL problem formulations
and generate ample data for training, we use a simple discrete event simulation of the
transaction execution system, rather than running actual transactions against a database.

Our simulator simulates transaction execution with a single processor and a transaction
request queue. It consists of three main components - a workload generator, a worker, and
a scheduler. It is illustrated in Figure 5.1.

5.1 Generator

The generator is responsible for generating a transaction workload in the simulation. It
simulates clients that submit requests to the database for processing. The generator loop
wakes up, generates a transaction, pushes it to the request queue, and sleeps for some time
interval think time. This loop continues to run for the entire duration of the simulation.
The generated transactions await execution in the request queue, from where they are
picked up one at a time by the worker.

The think time between two requests is exponentially distributed around a mean value,
determined by the generator’s utilization parameter. The utilization can be configured to
control the rate of transaction generation, and thus the average load on the system. For
example, setting utilization = 0.4 would result in a transaction arrival rate of 40% of the
maximum arrival rate that the simulated processor can sustain at maximum frequency.
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Figure 5.1: Transaction Execution Simulator

Each generated transaction has a type and a latency target associated with it. The
type of a transaction describes its “size”, and so is an indication of its expected execution
time at a given CPU frequency. The latency target for a transaction is determined using
its type and the notion of slack, a measure of the tightness of transaction deadlines. We
define slack as the ratio of a transaction’s latency target to its mean execution time at
maximum frequency. Each transaction is assigned a deadline by adding its latency target
to its generation timestamp. The generator generates a mix of transaction types, using a
probability distribution over the types. This probability distribution is given by a workload
model.

Workload Model The workload model serves two purposes - first, it specifies the likeli-
hood of each type of transaction (used by the generator), and second, it gives the execution
time of each type of transaction at each CPU frequency (used by the worker). For example,
a simple workload model may specify two transaction types, each with a generation prob-
ability of 50%, and with associated execution times at the various frequencies supported
by the CPU.
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5.2 Worker

The worker simulates a DBMS worker and “executes” the transaction requests generated by
the generator. If the request queue is not empty, it picks the transaction with the earliest
deadline, and runs it to completion in a sequence of bursts. Each burst corresponds to
one timestep as described in Section 4.2.1. A burst begins when the chosen transaction
is initiated and ends with either its completion, or when a new request arrives in the
queue. If execution of the running transaction is interrupted by an arrival, it is resumed in
the following burst. If the burst ends with completion of the running transaction, a new
transaction is chosen from the queue in EDF order, which then begins execution in a new
sequence of bursts. However, if the queue is empty, there is nothing for the worker to run
and so it waits idly until a new request arrives in the queue.

The worker contacts the scheduler at the beginning of each burst to determine the
processor frequency to be used during the burst. For this purpose, it passes a representation
of the current state of the system to the scheduler. It uses the transaction queue to
construct this state representation as described in Section 4.2.3. This construction also
involves some preprocessing steps: the transaction type, which is a categorical feature, is
encoded as a one-hot numeric array, the remaining time until deadline is scaled by a fixed
constant, and the backlog is scaled and clipped at a maximum value.

On receiving the scheduler’s choice of execution frequency, the worker determines the ex-
ecution time for the chosen transaction using the workload model described in Section 5.1.
If a previously interrupted transaction is being resumed, the output of the workload model
is scaled to compute the remaining execution time.

As the worker runs, it produces output after every burst. The output indicates whether
a transaction completed in the burst, and if so whether the completed transaction fin-
ished within its deadline. The worker also reports the energy consumed by the simulated
processor during the burst using the energy model in Section 2.1, with α = 2. Energy
consumption is proportional to Ltf

2
t , where Lt is the length of the burst, and ft is the

processor’s frequency during the burst. For simplicity, we consider the energy consumed
by the simulated processor to be 0 when the worker is idle.

5.3 Scheduler

The scheduler is a framework which can be used to plug in various algorithms for frequency
governance. The frequency governors used in our experiments are described in Chapter 6.
The scheduler supports both baseline governors and governors learned using our method.
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When using a learned governor, the scheduler infers the execution frequency using the
queue representation provided by the worker. It makes these inferences using a policy
neural network as discussed in Section 4.2.2. While training a learned governor, the pa-
rameters of the policy model are updated at the end of each epoch. These parameters are
saved as “checkpoints” at regular intervals of training iterations. During evaluation, the
scheduler loads weights from a saved checkpoint and uses them for inference.
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Chapter 6

Evaluation

We conduct an evaluation of our reinforcement learning method in order to address the
following questions:

• Can our method learn policies that can manage the power/performance trade-off
effectively?

• Can our method achieve power savings comparable to those achieved by state-of-the-
art POLARIS?

• Can the learned policies perform well under a variety of load conditions, as would be
expected in a real database system?

• How quickly can the policies be learned?

• Are there any advantages of using learned frequency governors?

• What are the performance and power overheads of using deep RL for scheduling?

6.1 Methodology

In each experiment, we pick a specific frequency governor to test at a specific workload.
We allow the generator to generate a series of transactions at at a specified utilization,
which determines the request arrival rate. The transactions are executed by the worker
at CPU frequencies chosen by the frequency governor under test. The governor chooses
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Transaction Type Execution Time (µs) Latency Target (µs)
1.2 GHz 1.6 GHz 2.0 GHz 2.4 GHz 2.8 GHz

New Order (45%) 4772 4094 3415 2737 2059 20590
Payment(47%) 733 625 517 409 301 3010

Order Status (4%) 809 669 529 390 250 3900
Stock Level (4%) 8062 6905 5748 4592 3435 34350

Table 6.1: Transaction execution times at various CPU frequencies and assigned latency
targets. Percentages indicate the transaction mix in the workload.

from among the five execution frequencies supported by the simulated processor: 1.2 GHz,
1.6 GHz, 2.0 GHz, 2.4 GHz, and 2.8 GHz. The worker consults the frequency governor
and adjusts the processor speed each time a new transaction request is generated and each
time a new transaction starts execution. An experiment ends when the system has run for
a fixed number of (non-idle) time steps. Each experiment is repeated 100 times and the
metrics of interest are recorded for each run. For each of these metrics, we report the mean
value across all runs, along with a 95% confidence interval (shown in the form of error bars
on the result plots).

Workloads The simulated workloads comprise of a mix of four transaction types from
the TPC-C OLTP benchmark [6], with an associated probability distribution: New Order
(45%), Payment (47%), Order Status (4%), and Stock Level (4%). In our initial exper-
iments, we assume that transaction execution times are fixed and depend only on the
transaction type and processor frequency. That is, there is no variability in execution time
among transactions of the same type unless execution frequency changes. Table 6.1 shows
the runtimes used by our transaction simulator for each of the four TPC-C transaction
types at each of the five available processor frequencies. These correspond to the mean
TPC-C transaction execution times measured by Korkmaz et al [16] against an in-memory
database in Shore-MT [14]. We assign each transaction with a type-dependent latency
target, which is determined using a slack of 10 relative to its execution time at maximum
frequency (see Latency Target column in Table 6.1). For example, for a Stock Level trans-
action, which has an average execution time of 3435 µs at the highest frequency level, the
latency target is set to 34350 µs (Note that the parameters shown in Table 6.1 are known
to the simulator, but are are not part of the state representation used for learning).

We conduct our evaluation using both static and dynamic workloads. Static workloads
maintain a fixed transaction arrival rate during the entire experimental run. We consider
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four different static workloads at 20%, 40%, 60% and 80% utilization. Dynamic workloads
include fluctuations in the arrival rate during the course of each experimental run. To
generate a dynamic workload, we varied the arrival rate through eight phases of equal
length during each experimental run. In each phase, the arrival rate is fixed at one of the
four static utilizations, but successive phases use different utilizations. We used a “ramp
up, ramp down” pattern, with successive phases at 20%, 40%, 60%, 80%, 80%, 60%, 40%,
20% utilization.

Frequency Governors We experiment with a variety of frequency governors that use
policies learned using our RL methodology. We also experiment with several non-learned
baseline governors. All of the governors execute transactions in EDF order.

1. Non-learned baseline governors

(a) fixed-frequency governors

i. fmin: runs all transactions at the lowest processor frequency (1.2 GHz)

ii. fmax: runs all transactions at the highest processor frequency (2.8 GHz)

(b) POLARIS (implemented in our simulator)

2. Learned governors

(a) m20, m40, m60, m80: use policy models trained with static workloads at 20%,
40%, 60% and 80% utilization respectively.

(b) mcross: uses a policy model trained with the dynamic workload.

Metrics We evaluate the frequency governors on two key metrics - energy consumption
per transaction (total energy consumed per number of completed transactions) and failure
rate (number of transactions that missed their deadlines per number of completed transac-
tions). The two metrics respectively capture the performance of our model in minimizing
power consumption and achieving transaction latency targets. The reported energy values
are calibrated to match the power measurements for TPC-C workloads in Shore-MT as
reported by Korkmaz et al [16].
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Parameter Value Description

M 10 transactions in state
N 5 number of frequencies supported by processor
γ 0.99 reward discount
δ 3 failure reward weight
T 5000 timesteps/episode
η 0.0001 REINFORCE step size

8000 number of training epochs
10 scheduling slack

Table 6.2: Simulation and Learning Parameters

Training of Learned Frequency Governors Each of the learned frequency governors
need to be trained before they can be used for evaluation. We built the policy neural
network used in the learned governors using 5 fully connected hidden layers with 256,
128, 128, 64, and 64 neurons respectively. We trained the governors using the mechanism
described in Section 4.3. The values of other simulation and learning parameters are as
shown in Table 6.2 unless stated otherwise.

6.2 Results

6.2.1 Fixed execution times and Fixed Load

To evaluate whether our method can learn policies that can manage the processor fre-
quency effectively, we begin by considering the frequency governance problem in a simple
setting. Specifically, we make two simplifying assumptions, both of which will be relaxed
in subsequent experiments:

1. We assume that there is no variability in execution time, i.e., all transactions of a
given type and running at the same frequency will finish in the same amount of
time. Specifically, we use a workload model that determines the execution time of a
transaction of a given type at a given frequency using the values shown in Table 6.1.

2. We test our learned policy models at the same load intensity at which they are trained.
For example, when testing at 40% utilization, we use the m40 learned model, which
is trained at 40% utilization.
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We compare the performance of the learned policies with POLARIS. We also run each
test workload with the fmin and fmax static governors to determine upper and lower bounds
on energy consumption and transaction failure rates.

Figure 6.1 shows the top-level results from this experiment. Using fmax for scheduling
in this setting causes the simulated processor to consume about 9 millijoules of energy per
completed transaction. fmax achieves the lowest failure rates compared to other governors,
with less than 4% transactions missing their latency targets at high utilization. In compar-
ison, fmin saves approximately 5 millijoules of energy per transaction, but at the expense
of substantially higher failure rates, approaching almost 100% at higher utilization levels.

The policies learned using our method appear to behave in accordance with the uti-
lization at which they are trained. At low utilization, the learned policy offers energy
savings of about 4 millijoules per transaction compared to fmax, but these savings do not
come at the expense of a considerable increase in failure rate. At high utilization, the
learned policy consumes much more energy and offers savings of only about 1 millijoule
per transaction compared to fmax, and suffers a 5% additive increase in failures as a trade-
off. Comparing our method to POLARIS, we find that in this simple setting, the learned
policies offer failure rates and energy consumption similar to what POLARIS achieves, at
all utilizations.

6.2.2 Randomized execution times and Fixed Load

In practice, transactions of the same type and running at the same frequency may not
necessarily execute in the same amount of time. Execution times could vary due to factors
such as transaction parameter values and contention with other transactions for access
to the underlying database. To evaluate whether our learned policies can accommodate
this variability, we relax one of the two assumptions made in the previous experiment
by introducing randomness in transaction runtimes. Specifically, we switch to a different
workload model, which determines the simulated execution time of a transaction of a given
type at a given frequency randomly, using an exponential distribution with a mean given by
the measured values in Table 6.1. For example, the execution time of Payment transactions
at 2.0 GHz is determined using an exponential distribution with a mean of 517 µs.

Figure 6.2 shows the results for this experiment. While the energy measurements for
the tested governors are similar to those of the experiment with fixed execution times,
the failure rates are noticeably higher, likely due to the introduced variability in transac-
tion execution times. Compared to fmax, the learned policies offer energy savings of 1-3
millijoules per transaction with comparable or slightly higher failure rates, depending on
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(a) Energy per transaction

(b) Transaction failure rate. The failure rate for fmin approaches
1.0 at higher utilizations. The y-axis has been truncated at 0.15 to
more clearly distinguish the other governors.

Figure 6.1: Energy per transaction and transaction failure rates, with fixed (non-variable)
transaction execution times. The learned policy tested at utilization u is trained at uti-
lization u.
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the test utilization. Overall, we observe that the learned policies are still able to achieve
results comparable to POLARIS at all utilizations, indicating that our method is able to
accommodate for the added randomization in transaction runtimes.

6.2.3 Training and Testing at Different Utilizations

Through the experiments described in Sections 6.2.1 and 6.2.2, we found that the learned
governors show promise in their scheduling ability at the utilization where they are trained.
This is the best case for the learned policies, since training and testing workloads are of
comparable intensity. In practice, it would be best to have a single learned policy that
would perform well at all load levels. Otherwise, some additional control mechanism would
be needed to switch among learned governors as the load fluctuates. But, how should we
train such a “load-universal” policy? In our next experiment, we evaluate how well models
trained at one utilization perform when tested using a different utilization. We also consider
a model trained using the dynamic workload described in Section 6.1.

Figure 6.3 shows the results of this experiment. We find that the m80 model tends
to result in lower failure rates and higher energy consumption than the models trained at
other utilizations. However, the differences are not that large - we expected that a model
trained at low load would perform poorly when tested at high load, and vice versa. Overall,
the model trained with the dynamic workload, labeled “mcross” in Figure 6.3 seems to be
a consistent middle-of-the-road performer.

6.2.4 Time-Varying Loads

So far, we evaluated the learned frequency governors on static workloads, which have
a steady transaction arrival rate with small fluctuations around a mean value. In this
experiment, we assess the ability of our method in scheduling workloads in which the mean
arrival rate varies significantly between low and high utilizations. We use the dynamic
workload described in Section 6.1 for this purpose.

Figure 6.4 compares the average energy and failure rates offered by some of the learned
policies and POLARIS on the dynamic workload. The policies deliver results which are
competitive with POLARIS, indicating that they learn to handle not just workloads at
various utilizations, but also “transition periods” of increasing or decreasing load.

To dig deeper into how a learned frequency governor responds to varying load, we
monitor its behaviour during a test run on the dynamic workload. Figure 6.5a illustrates
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(a) Energy per transaction

(b) Transaction failure rate. The failure rate for fmin approaches
1.0 at higher utilizations. The y-axis has been truncated at 0.4 to
more clearly distinguish the other governors.

Figure 6.2: Energy per transaction and transaction failure rates, with randomized trans-
action execution times. The learned policy tested at utilization u is trained at utilization
u.
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(a) Energy per transaction

(b) Transaction failure rate

Figure 6.3: Energy per transaction and transaction failure rates, with randomized trans-
action execution times. Learned policies are tested at all utilizations.
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(a) Energy per transaction

(b) Transaction failure rate

Figure 6.4: Energy per transaction and transaction failure rates with time-varying load
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the variations in arrival rate during a dynamic workload run (with T=50000). Figures 6.5b
and 6.5c respectively show the energy and failure rate offered by mcross as a function of
time while scheduling the dynamic workload. We observe that as the request arrival rate
increases or decreases, the energy consumed by the simulated processor follows the varying
load. The policy uses periods of low utilization as opportunities to save energy, while
burning more energy at high utilization in favour of meeting transaction latency targets.
The figure also shows results for POLARIS, which exhibits similar behaviour in this setting.
We notice that during periods of high utilization, both POLARIS and mcross observe a
spike in transaction failure rate (with mcross suffering slightly higher number of failures
than POLARIS). While this is non-ideal, we argue that some transaction failures are
unavoidable even if the CPU is run at maximum frequency all the time. As load increases,
the unavoidable failures become more probable, and hence the spike. We illustrate this
effect by showing that a similar spike in failures is seen while using fmax for scheduling in
this setting (see Figure 6.5c).

6.2.5 Scheduling Behaviour

We found that while POLARIS and the learned governors have similar performance, they
do differ in their scheduling behaviour. For each static workload utilization, we compared
the frequency residency distribution of POLARIS with that of the learned policy trained
at the same utilization (see Figure 6.6). The frequency residency distributions show how
much time the processor spends at each frequency level during the test run. As the figure
shows, under the learned policies the processor spends almost all of its non-idle time at
either the maximum frequency or the minimum frequency. In contrast, POLARIS makes
some use of the intermediate frequency levels.

6.2.6 Training Efficiency

Length of a training episode

Learning to govern processor frequency in an online setting requires training the agent with
a continuously running system. However, due to the bounded nature of training episodes,
the system begins with a cold start in each episode. Due to this, the environment may
behave differently during a short initial period in the episode.

Initially, the transaction queue is empty and the CPU is idle. As transaction requests
begin arriving, the environment observes a transient state, during which the queue starts
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(a) Transaction arrival rate

(b) Energy per transaction

(c) Transaction failure rate

Figure 6.5: Variations in energy per transaction and transaction failure rate while schedul-
ing a workload with time-varying transaction arrival rate. The dashed vertical lines illus-
trate points in time when system utilization ramps up/down. Reported values are averaged
over a 10 second sliding window.
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Figure 6.6: Processor frequency residency distribution during evaluation

building up, and the CPU starts picking and running transactions. As the episode pro-
gresses, eventually the queue stabilizes, and the system reaches a stable state. For effective
training, it is important that the agent experiences more of the stable state and less of
the transient state. That is, the episode length should be long enough that the system
stabilizes early during the episode. This would be harder to attain in a real system, which
may take longer to stabilize due to factors such as warming up of a large cache.

We ran a simple experiment to determine an appropriate episode length in our simulated
system. We used m80 to schedule a workload at 80% utilization, and monitored the length
of the transaction queue during an episode with 5000 timesteps (see Figure 6.7). The figure
shows that the queue length varies between 1 and 9 and the behaviour of the system remains
roughly consistent throughout the episode. It appears that the initial transient phase in
our simulator is quite short and the system reaches a stable state relatively quickly. We
conclude that any reasonably long episode (with more than 1000 timesteps, for instance)
would suffice for the agent to be able to observe the dynamics of the simulated system and
to not be biased towards any temporary behaviour at the beginning of the episode.

Convergence behaviour

The number of training iterations required for our method to converge to a good scheduling
policy was empirically determined. To understand the convergence behaviour of a learning
policy, we consider the training process for the m60 model (illustrated in Figure 6.8).

Figures 6.8a and 6.8b respectively show the total reward assigned to the agent and
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Figure 6.7: Length of transaction queue while scheduling with m80 at 80% utilization.
Reported values are averaged over a sliding window of 100 timesteps.

the frequency residency distribution of the processor during successive training episodes.
Training starts with an initial model that assigns similar probabilities to each possible
frequency. As training progresses, the model quickly learns to favour higher frequencies.
This provides a substantial reward payoff by driving down costly penalties due to failed
transactions, and causes a sharp spike in the total reward. Once avoidable failures have
been eliminated, the model gradually “relaxes”, choosing lower frequencies more often in a
quest to improve rewards by reducing energy consumption, without re-introducing failures.
This leads to small improvements in the total reward as training progresses.

We also found that the convergence of a policy model is load-dependent. Higher the
intensity of the training workload, longer the model takes to converge to an optimal policy.
Figure 6.9 illustrates this effect, by comparing the frequency residency distributions of the
processor while training models m20 and m80. While the frequency residencies for m20 do
not show significant change after 1000 epochs, those for m80 appear to be adjusting even
after 8000 epochs.
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(a) Total Reward

(b) Processor frequency residency distribution

Figure 6.8: Convergence behaviour during training at 60% utilization
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(a) Processor frequency residency distribution during training at
20% utilization

(b) Processor frequency residency distribution during training at
80% utilization

Figure 6.9: Convergence behaviour at different workload intensities
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6.2.7 Flexible Objective

One advantage of learned frequency governors is that it is easy to train them to different
objectives. In contrast, POLARIS is hard-coded to try to avoid missing deadlines, regard-
less of the energy cost of doing so. In our RL formulation, the parameter δ acts as a knob
which balances failure and energy penalties in the reward function.

We ran a simple experiment to illustrate the effect of δ. Using training workloads with
60% utilization, we trained models using δ values ranging from 1 to 7 (the default is 3).
We then tested each model using a workload at 60% utilization.

Figure 6.10 shows the energy consumption and failure rates that resulted from these
models. The figure also shows the POLARIS baseline, for comparison. Low δ values reduce
the penalty for failed transactions. Thus, we see higher failure rates than POLARIS, but
also lower energy consumption. The situation is reversed at the δ = 7. Setting δ = 5
results in performance that closely matches POLARIS.

6.2.8 Overhead

A problem with use of deep RL for frequency governance is the overhead of using the
learned model. Our technique trains a model that maps from the state of the transaction
processing system to a probability distribution over the possible processor frequencies. To
use the model, the transaction processing system must encode the current state, run the
model to determine the probability distribution, and then choose a frequency according
to the distribution. The model is used frequently: every time a new transaction requests
arrives, and every time a transaction finishes execution.

We ran a simple experiment to measure the overhead of choosing a processor frequency.
We used the agent to make 50000 frequency recommendations, and measured the total wall
clock time required. We ran two variants of the experiment, one in which model inference
occurs on our server’s Intel(R) Xeon(R) Silver 4114 CPU, and a second in which inference
is performed on an NVIDIA Tesla P40 24GB GPU. In each case, we report the time per
recommendation, which is the total measured wall clock time divided by the number of
recommendations generated.

Since model inference time depends on the size of the neural network, we repeated
our experiment using several different networks. Each evaluated network has an input
layer of 51 neurons (determined by our state representation), an output layer of 5 neurons
(corresponding to our five actions), and some fully connected hidden layers. The networks
vary in the number of hidden layers and number of neurons in each hidden layer.
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(a) Energy per transaction

(b) Transaction failure rate

Figure 6.10: Effect of varying reward function
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Model Time on CPU (µs) Time on GPU (µs)

256-128-128-64-64 6472.12 710.20
256-128-64 881.08 593.99

128-64 581.98 511.68
64 381.24 460.40

Table 6.3: Time per frequency recommendation

Table 6.3 summarizes the results of these experiments. In the table, the various net-
works we tested are denoted by the number and size of their hidden layers. For example,
the model “256-128-64” has three hidden layers with 256, 128, and 64 neurons respectively.

Although this experiment measures the total time required to generate a frequency
recommendation, including state encoding, model inference, and sampling an action from
the resulting probability distribution, almost all of the time is attributable to model infer-
ence. To put the times reported in Table 6.3 into perspective, they can be compared to the
overhead introduced by POLARIS per recommendation, which is about 10 µs [16]. They
can also be compared to the TPC-C transaction execution times reported in Table 6.1,
which are mostly in a range from about 0.5ms to 5ms, depending on the transaction type
and frequency. A single forward pass through the 256-128-64-64 network, which is what
we used in all of the performance experiments reported earlier in the thesis, takes longer
on the CPU than most TPC-C transactions, and our RL formulation adjusts frequency up
to twice for every transaction - once when it arrives, and again when it begins execution.
The GPU can reduce the model time considerably (except in the case of smaller models,
in which the overhead of launching GPU kernels and data transfer to and from the GPU
likely overshadows any improvements). But despite using a GPU, the model inference time
is still high. Worse, the goal of energy-aware scheduling is to reduce energy consumption,
but given that frequency recommendations take at least as much time as the transactions
themselves, we expect that they would also consume as much power as those transactions -
even more so if the recommendations are made using the GPU. Thus, although the learned
frequency governors are effective, the cost of using them must be reduced significantly
before this approach is practical.

Our models are implemented with PyTorch, and they are large, so it is possible that
we can obtain some improvement with a more efficient implementation of a smaller model.
However, Table 6.3 shows that even very small models are still relatively expensive, so it
is unlikely that this will be enough to achieve the order-of-magnitude overhead reductions
needed to make this approach practical.
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There are other strategies that can be explored as ways of reducing this cost. One
is memoization. We can cache model output and reuse it when we observe a similar
input state, rather then rerunning the model. However, since the model input includes
the remaining time to deadline for each of the M transactions tracked by the model, it is
unlikely that we’ll find exact state matches in a reasonably sized cache. Thus, the challenge
is to determine when input states are similar enough that a cached value can be used to
choose a frequency.

A second strategy is to replace the learned model with an approximation that is much
cheaper to evaluate, at the cost of some loss of fidelity. For example, instead of using the
learned network directly, we learn a decision tree from model input/output pairs, and then
use the decision tree instead of the model to make on-line frequency decisions. A similar
approach has been proposed as way to make deep network models more explainable [7].
Here, though, the motivation is to reduce the cost of using the model.
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Chapter 7

Conclusion

Task scheduling and frequency governance are good settings for reinforcement learning,
as these systems make frequent decisions for which reward feedback can be collected. In
this thesis, we demonstrate that RL-based governors can learn to manage CPU frequency
for a transaction processing system as effectively as a state-of-the-art algorithm, and can
adapt to both stable and time-varying workloads. The RL approach has the advantage
that the resulting governor can be tuned to balance request latencies and power savings.
We also show that there is significant power and performance overhead of using learned
deep models when scheduling decisions need to be made quickly and frequently.

7.1 Future Work

In this thesis, we addressed the frequency governance problem, which is a sub-problem of
energy-aware scheduling in transaction processing systems. While defining our problem
setting, we assumed that the transaction execution priority is determined by EDF order.
Extending the scheduling problem to also pick the transaction execution order could po-
tentially further improve energy efficiency. Another future extension is generalizing the
uniprocessor problem and designing RL-based energy-efficient scheduling algorithms for
multi-processor CPUs.

The results presented in this thesis are based on experiments with a simulator, where
the environment is a lot more controlled than a real system. This work can be extended
to learn policies for scheduling workloads in a real database system. This would present
additional challenges such as higher variability in transaction loads and execution times.
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We also identified that the overheads of using learned frequency governors would likely
outweigh their advantages when used in practice. As a future direction, strategies to
reduce these overheads can be explored to make this approach practical for energy-aware
scheduling.
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