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Abstract

This thesis studies fence complexity of concurrent sets in a non-volatile shared memory
model. I consider the case where CPU registers and cache memory remain volatile while
main memory is non-volatile. Flush instructions are required to force shared state to be
written back to non-volatile memory. These flush instructions must be accompanied by
the use of expensive fence instructions to enforce ordering among such flushes. Collectively
I refer to a flush and a fence as a psync. In this model the system can crash at any time.
When the system crashes the contents of volatile memory are lost. I consider lock-free
implementations of the set abstract data type and the safety properties of strict lineariz-
ability and durable linearizability. Strict linearizability forces crashed operations to take
effect before the crash or not take effect at all; the weaker property of durable linearizabil-
ity enforces this requirement only for operations that have completed prior to the crash
event. In this thesis, I consider classes of strict linearizable implementations that guarantee
operations take effect at or before the point when the operation is persisted. I prove two
lower bounds for lock-free implementations of the set abstract data type. First, I prove
that it is impossible to implement strict linearizable lock-free sets in which read-only (or
search) operations do not flush or fence. Second, I prove that for any durable-linearizable
lock-free set there must exist an execution in which some process must perform at least one
redundant psync as part of an update operation. I also present several implementations
of persistent concurrent lock-free sets. I evaluate these implementations against existing
persistent sets. This evaluation exposes the impact of algorithmic design and safety prop-
erties on psync complexity in practice as well as the cost of recovering the data structure
following a system crash.
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Chapter 1

Introduction

Within recent years, byte-addressable non-volatile memory (NVM) has become commer-
cially available. In particular, I focus on Intel’s Optane persistent memory [20]. This
byte-addressable NVM can be leveraged to allow applications to persist even if the system
loses power. This offers a promising avenue for increasing application uptime by giving
developers a clear path to adding an increased level of fault tolerance to their data struc-
tures.

In the past, only data stored in block addressable persistent storage devices would per-
sist through power failures or system reboots. These persistent storage devices include
magnetic disk drives or flash solid-state drives (SSDs). While they offer very large capac-
ities, they suffer from the fact that they have latency that is orders of magnitude higher
than DRAM and they are not byte-addressable.

The recently available NVM hardware offers a faster alternative to compared to mag-
netic disk drives or SSDs. NVM has characteristics that place it between DRAM and SSDs.
The persistent memory offers latency that is comparable to, but still higher, than DRAM
and much lower than SSDs. The capacity of NVM is much larger than DRAM and the
bandwidth is lower than DRAM. NVM also has asymmetric read and write latency and
asymmetric read and write bandwidth [42]. NVM has been also been shown to be more
sensitive to data locality compared to DRAM [42, 51].

This thesis considers persistent data structures. Note that in this thesis persistent data
structures refers to data structures that persist through system crashes (power failures).
This differs from the data structure community where persistent data structures refer to
data structures that support multiple versions [27, 49].
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The characteristics of NVM make it a compelling option for achieving efficient im-
plementations of persistent data structures compared to SSDs, however, it is clear that
achieving performance comparable to transient data structures stored in DRAM will be a
challenge. If it were possible to replace all volatile memory with persistent memory then
the task of implementing persistent data structures would be trivial. Most systems feature
a small number of CPU registers, a limited amount of cache memory and a larger capacity
of DRAM. Registers, cache memory and DRAM are all volatile. This means that the con-
tents these forms of memory are lost if the system loses power. Unfortunately, the newly
available persistent memory will not entirely replace these volatile memory technologies.
Intel Optane persistent memory exists alongside these other forms of volatile memory. Op-
tane persistent memory utilizes Intel’s 3D XPoint memory technology [21]. It is expected
that CPU registers and cache memory will remain volatile and NVM will eventually replace
DRAM [44, 58]. Currently, NVM coexists with DRAM where both are directly attached
to the memory bus.1

This exposes the key challenge in designing efficient persistent data structures. Since
the CPU registers and cache memory remain volatile, writes first occur in volatile memory.
Without extra intervention by the programmer there is no guarantee that data in the
volatile cache will be written to persistent memory before a crash occurs. Moreover, cache
coherency protocols might flush data from the cache to persistent memory in a different
order than the writes occurred. Forcing shared state to be written back to NVM sometimes
requires the programmer to explicitly flush shared objects to NVM by using explicit flush
and persistence fence primitives, the combination of which is referred to as a psync [41, 58].
Chapter 2 discusses these primitives and other aspects of computation model in greater
detail. Informally, an explicit flush is used to write data to persistent memory but it is
asynchronous. A persistence fence is used to block until all flushes preceding the persistence
fence have completed.

Concurrent data structures are at the heart of scalable concurrent software applications.
There has been a vast amount of research regarding volatile concurrent data structures
e.g. [3, 4, 10, 11, 12, 35, 38, 40, 47]. Concurrent key-value store are one of the most
commonly used types of concurrent data structures. Key-value stores are often the basis for
implementing database indexes as well as components of other applications e.g. [26, 52, 48].
This thesis focuses specifically on persistent concurrent sets. In particular, this thesis
presents a detailed study of the psync complexity of concurrent sets in theory and practice.
Concurrent sets are implementations of the set abstract data type that allow multiple

1When used in Memory Mode, Intel Optane NVM requires a minimum of a 1:4 ratio of DRAM to
NVM. In any other configuration mode the NVM is exposed through a filesystem - see Chapter 7 for
further details.
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concurrent processes to execute data structure operations. A more formal definition of
sets is described in Chapter 2. I choose to study sets as a proxy for key-value stores. While
sets export only a limited number of operations, they can be easily extended to create
more robust key-value stores. The simplicity of sets allows us to focus specifically on issues
related to achieving persistence.

While concurrent sets have been studied extensively for volatile shared memory [39],
they are still relatively nascent in non-volatile shared memory. Concurrent data structures
in volatile shared memory typically satisfy the linearizability safety property, data struc-
tures that utilize for non-volatile shared memory must consider the state of the persistent
object following a full system crash. The safety property of durable linearizability satis-
fies linearizability and following a crash, requires that the object state reflect a consistent
operation subhistory that includes all completed operations before the crash [41]. The
stronger strict linearizability forces crashed operations to take effect before the crash or
not take effect at all unlike durable linearizability which enforces this requirement only
for operations that have completed prior to the crash event [1]. I describe these safety
properties in more detail in Chapter 2.

I choose to study durable linearizability and strict linearizability because both of these
safety proprieties provide locality and preserve program order which are known to be desir-
able qualities [39]. Informally, if a safety property provides locality (or compositionality)
then whenever each object in some system satisfies the safety property, the system as a
whole also satisfies the safety property [55]. Informally program order refers to the order
in which any single process completes data structure operations. Another reason that I
choose to focus on durable linearizability and strict linearizability is that both of these
safety properties are defined using models in which processes can crash which makes them
applicable to defining correctness of persistent sets.

Following a system crash a recovery procedure is used to return the object back to a
consistent state. New data structure operations cannot begin until the recovery procedure
completes. Strict linearizability was originally defined without the concept of recovery. I
observe that there is a problem in the way that strict linearizability has been generalized for
the case when the system can recover from crashes. In order to understand the intentions of
Aguilera and Frølund consider this motivating example quoted from section 1 of [1] which
describes why it is important to restrict when an operation can take effect: “suppose that
a military officer presses a button to launch a missile during war, but the missile does not
come out. It might be catastrophic if the missile is suddenly launched years later after
the war is over.” If the system can launch the missile during the execution of the recovery
procedure, from the perspective of the system the launch operation might still appear to
complete before the crash, however, this behaviour is clearly problematic and appears to
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contradict the intentions of Aguilera and Frølund. In practice if a system crash occurs
due to a power failure it is likely that the system will only reboot and recover at some
later time. Moreover, it is unrealistic to bound the time between a crash and the following
recovery. In chapter 2 I describe how strict linearizability does not exactly capture the
intuition provided by the missile launch example. In this thesis I consider only classes of
strict linearizable implementations that guarantee operations take effect at or before the
point when the operation is persisted. This is discussed in greater detail in § 2.2.5. These
restricted classes of strict linearizable implementations successfully capture the intuition
of strict linearizability provided by Aguilera and Frølund.

Existing literature related to persistent sets has trended towards persisting less data
structure state to minimize the cost of writing to NVM. For example, the Link-Free and
SOFT [58] persistent list-based sets do not persist any pointers in the data structure. In-
stead they persist the keys along with some other metadata used after a crash to determine
if the key is in the data structure. This approach requires at most a single psync for update
operations; however, not persisting the structure results in a more complicated recovery
procedure with slower worst case performance.

A manuscript by Israelevitz and nine other authors presented a seminal in depth study
of the performance characteristics of real NVM hardware [42]. Their results may have
played a role in motivating the trend to persist as little as possible and reduce the number
of fences. In particular, they found (Figure 8 of [42]) that the latency to write 256 bytes
and then perform a psync is at least 3.5x the latency to write 256 bytes and perform a
flush but no persistence fence. Moreover, they found that the write bandwidth of NVM
could be a severe bottleneck, as a write-only benchmark (Figure 9 of [42]) showed that
NVM write bandwidth scaled negatively as the number of threads increased past four, and
was approximately 9x lower than volatile write bandwidth with 24 threads.

Although these results are compelling, it is unclear whether these latencies and band-
width limitations are a problem for concurrent sets in practice. As it turns out, the push
for synchronization mechanisms that minimize the amount of data persisted, and/or the
number of psyncs, has many consequences, and the balance may favour incurring increased
psyncs in some cases.

This thesis is structured as follows: In Chapter 2 I describe volatile memory and non-
volatile memory models of computation. Next, in Chapter 3 I provide some preliminary
information regarding metrics to evaluate persistent sets and I review existing persistent
sets.

In Chapter 4 I prove the following lower bound: it is impossible to implement strict
linearizable lock-free sets in which read-only operations do not flush and perform a persis-
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tence fence for the classes of strict linearizable implementations considered in this thesis.
This establishes a clear theoretical separation between strict linearizable sets and durable
linearizable sets. Based on current trends this lower bound would suggest that there would
be practical performance issues for any strict linearizable set.

I provide a different theoretical bound in Chapter 5 where I prove that for any imple-
mentation of a durable linearizable concurrent lock-free set there must exist an execution
in which some process performs a redundant psync as part of an update operation. Infor-
mally, a redundant psync is one that does not change the contents of persistent memory.
In practice redundant psyncs could have a significant impact on performance since persis-
tence fences introduce latency and flushes consume write bandwidth. This lower bound
holds when the recovery procedure is constrained and when the recovery procedure is
unconstrained.

In order to analyze the actual practical implications of the lower bounds I present
a family of persistent concurrent set algorithms in Chapter 6. To implement these sets
I extended a technique used by David et al [24]. I implement both strict linearizable
and durable linearizable variants where the durable linearizable versions offer read-only
operations that never perform a psync.

The culmination of these insights is described in Chapter 7 where I undertake a sys-
tematic empirical study of persistent sets. Specifically, I evaluate my persistent concurrent
set algorithms against existing persistent sets to expose the impact of algorithmic design
and safety properties on persistence fence complexity in practice as well as the cost of
recovering the data structure following a system crash.

I find that, perhaps surprisingly, strict linearizable sets that do not offer persistence-
free read-only operations sometimes perform as well as the durable linearizable sets that
do. I note that the strict linearizable sets have significantly stronger bounds on the cost of
recovering the data structure after a system crash (and that faster crash recovery is a critical
use case for NVM hardware). The results of this thesis suggests that psync complexity is
not a good predictor of performance in practice, thus motivating need for better metrics
to compare persistent objects. These results suggest that, in contrast to existing work,
minimizing psync complexity might not be the best approach for designing persistent
sets. I recommend that researchers should not immediately sacrifice strict linearizability
by prioritizing persistence-free searches and instead should begin with strict linearizable
implementations.
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Chapter 2

Model

In this chapter I introduce the shared memory model used in this thesis. I describe a
typical volatile shared memory model and the non-volatile shared memory model.

2.1 Volatile Memory Computational Model

We present preliminaries for the standard volatile shared memory model and then explain
how we extend the model to non-volatile (or persistent) shared memory.

Processes and shared memory. We consider an asynchronous shared memory system
in which a set of n ∈ N processes communicate by applying operations on shared objects.
Each process pi; i ∈ n has an unique identifier and an initial state. Each process can run at
arbitrarily different speeds and the speed of any process can change at any arbitrary time.
Processes can experience crashes. A crashed process is indistinguishable from a process
that is extremely slow.

Objects and Implementations. An object is an instance of an abstract data type which
specifies a set of operations that provide the only means to manipulate the object. An
abstract data type defines a set of operations, a set of responses, a set of states, an initial
state and a transition relation δ that determines, for each state and each operation, the set
of possible resulting states and produced responses [2]. Here, (q, π, q′, r) ∈ δ implies that
when an operation π is applied on an object of type τ in state q, the object may move to
state q′ and return a response r.

An implementation of an object type τ (sometimes we just say object) provides a
specific data-representation of τ by applying primitives on a set of shared base objects each
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of which is assigned an initial value. Throughout this thesis b is typically used to denote
a base object.

Primitives. I assume that the primitives applied on base objects are deterministic. The
main primitive that this thesis relies on is a generic read-modify-write (RMW ) procedure
applied to a base object [28, 37]. A read-modify-write primitive applied by a process to
a base object b atomically updates the value of the b with a new value. The new value is
a function g(v, w) of the old value v and the input parameters w. The read-modify-write
primitive returns a response to the process. The response is based on the function h(v, w).
The functions g and h are defined differently for specific read-modify-write primitives. This
thesis relies on two examples of the RMW primitive, specifically Compare-and-swap (CAS )
and double-wide-compare-and-swap (DWCAS ).

Compare-and-swap (CAS ) is an example of a RMW primitive. The CAS primitive
accepts two input parameters, the desired new value of the base object new and the
expected old value of the base object exp. The CAS primitive will atomically update the
value of the base object b to the new value new if and only if the old value of b is equal to
exp.1 The CAS primitive always returns the old value of the object v. If the value of the
object was updated to new meaning the response returned by the CAS primitive is equal
to exp then we say that the CAS succeeded (otherwise we say that the CAS failed).

There is also the double-wide-compare-and-swap (DWCAS ) primitive. DWCAS is es-
sentially an extension of CAS allowing two objects to be updated simultaneously. DWCAS
accepts four input parameters the expected and new values for the first object, exp1 and
new1 and the expected and new values for the second object exp2 and new2. DWCAS
will atomically update the value of to the first obejct to new1 and the value of the second
object to new2 if and only if the value of the first object is equal to exp1 and the value of
the second object is equal to exp2.

2

In order to more clearly distinguish between CAS and DWCAS, throughout the re-
mainder of the thesis I refer to CAS as SWCAS, (single-word compare-and-swap).

Set Abstract Data Type. This work focuses specifically on the set type. Without loss of
generality I focus on sets that store integer values. I often refer to the values stored in the
set as keys. Throughout the thesis k is used to denote some key. A set is initially empty,
meaning it contains no keys. The set type exports the operations insert(k), remove(k),
contains(k) where k ∈ Z. Each of these operations returns a boolean response. insert(k)

1In the AMD x86-64 ISA, the CAS primitive is equivalent to the cmpxchg8b instruction and applies to
single word (8-byte) registers.

2In the AMD x86-64 ISA, DWCAS is equivalent to the cmpxchg16b. The cmpxchg16b instruction
atomically updates two adjacent 8-byte words.
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returns true if and only if k was not in the set and returns false otherwise. remove(k)
returns true if and only if k was in the set and returns false otherwise. After insert(k)
is complete, k is present in the set, and after remove(k) is complete, k is absent from the
set. The contains(k) operation returns true if and only if k is present in the set and
false otherwise. The contains(k) operation does not change the state of the set thus
throughout the thesis I often refer to contains(k) operations as searches.

Executions and configurations. An event of a process pi in the volatile shared memory
model is an invocation or response of an operation performed by pi or a primitive applied
by pi to a base object along with its response. An event of a process pi is sometimes referred
to as an admissible step of pi. A configuration specifies the value of each base object and
the state of each process. The initial configuration is the configuration in which all base
objects have their initial values and all processes are in their initial states.

An execution fragment is a (finite or infinite) sequence of events. An execution of an
implementation I is an execution fragment where, starting from the initial configuration,
each event is issued according to I and each response of a rmw event on the base object b
matches the state of b resulting from all preceding events on b.

An execution E ·E ′, denoting the concatenation of E and E ′, is an extension of E and
we say that E ′ extends E. Let E be an execution fragment. For every process identifier k,
E|k denotes the subsequence of E restricted to events of process pk. If E|k is non-empty
we say that pk participates in E, otherwise we say E is pk-free.

An operation π precedes another operation π′ in an execution E, denoted π →E π′, if
the response of π occurs before the invocation of π′ in E. Two operations are concurrent
if neither precedes the other. An execution is sequential if it has no concurrent operations.
Two executions E and E ′ are indistinguishable to a set P of processes, if for each process
pk ∈ P , E|k = E ′|k. An operation πk ∈ ops(E) is complete in E if it returns a matching
response in E. Otherwise we say that it is incomplete or pending in E. We say that an
execution E is complete if every invoked operation is complete in E.

Well-formed executions. In the volatile shared memory model, I assume that execu-
tions are well-formed. An execution is well formed if an only if no process invokes a new
operation before the previously operation returns. Specifically, I assume that for all pk that
participate in E, E|k begins with the invocation of an operation, is sequential and there
is no event between a matching response event and the subsequent following invocation.
Intuitively an execution is well-formed if there is no concurrency within any single process.

Histories. A history H of an execution E is the subsequence of E consisting of all invo-
cations and responses of operations. Histories H and H ′ are equivalent if for every process
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pi, H|i = H ′|i. All of the other terminology defined for executions applies analogously to
histories as well.

Lock-free Progress. We say that an implementation I is lock-free if it guarantees that in
every execution E of I some process will always make progress by completing its operation
within a finite number of its own steps. Note that lock-free progress is sometimes referred
to as non-blocking progress.

Definition 1 (Linearizability). A complete history H is linearizable with respect to an ob-
ject type τ if there exists a sequential history S equivalent to H such that (1) →H⊆→S and
(2) S is consistent with the sequential specification of type τ . A history H is linearizable
if it can be completed (by adding matching responses to a subset of incomplete operations
in H and removing the rest) to a linearizable history [40, 5].

2.2 Non-volatile Memory Computation Model

Non-volatile memory introduces various complexities that are not defined (or are ignored
for the purpose of simplicity) in the volatile memory computation model. In this section
I review the non-volatile memory computation model. The model that I review here is
a slightly simplified version of the explicit epoch persistency model from Izraelivitz et al.
[41] which itself is adapted from the epoch persistency model presented by Pelly et al and
Condit et al. [50, 18].

Memory Hierarchy. In practice system memory is organized hierarchically. In the
volatile memory computation model there is no need to distinguish between any of the
different levels of the memory hierarchy. For the non-volatile computation model we need
to distinguish between which levels of the hierarchy are volatile and which are persistent.

At the top of the memory hierarchy we have CPU registers followed by cache memory.
Most systems have several levels of cache memory (usually between two and four). For
the purpose of the computation model we are not concerned with practical differences
(speed and capacity) between registers and cache memory. What is relevant is the fact
that both registers and all levels of cache memory are volatile. In practice some systems
might define a persistence domain or power-fail protected domains that includes some or
all of cache memory (such as the idea of whole-system persistence presented by Narayanan
and Hodson [46]). In the event of a power failure, the persistence domain represents the
regions of memory that can be safely persisted using residual power in the power supply or
other capacitors [23]. Following cache memory, we have main memory. This thesis assumes
that the main memory of the system is exclusively non-volatile memory (while this is not
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accurate in practice, it is trivial to map the entire address space of an application such
that it is exclusively in persistent memory).

2.2.1 Persistence Model

I consider a shared memory system that can crash at any. Events in the non-volatile
computation model include system crash events (sometimes we just say crash event or
crash). Histories in the non-volatile computation model can include crash events along
with invocations and responses. In practice a system crash can occur as a result of a power
failure.

In the event of a system crash all processes crash simultaneously. If this occurs then
the contents of the volatile shared memory and all individual process states are returned
to their initial values but the contents of non-volatile shared memory remains persistent.

A history H containing c crash events can be partitioned into c subhistories and crashes
such that H = X0 · ⊥0 · X1 · ⊥1 · ... · Xc · ⊥c where ⊥i is the i-th crash event and Xi is
the i-th crash free subhistory of H (we slightly abuse the notation here by extending the
history with an event, however since histories contain crash events we can think of ⊥i as
a subhistory that contains only the single crash event). As in [41] we call a crash free
subhistory of H an era of H.

We say that an operation π was concurrent with a crash ci if the operation was invoked
in the era Xi but has no matching response in Xi. Informally we would call π a crashed
operation. Note that crash events do not break the well-formedness of an execution. The
events of any single process are restricted to a single era. A crash effectively destroys the
processes in the era that preceded it. When a system reboots new processes are spawned.
I assume that at most n processes participate in any single era of a history H. In practice
the unique identifier of the processes could be the same as a processes from the previous
era. If this is undesirable one might consider including the era in the unique identifier
of the process. This thesis does not require the extra detail that would be provided by
including the era in the process identifier so I choose not to change the process identifiers.

After a crash a recovery procedure is invoked in order to return the objects in non-
volatile memory back to a consistent state. I extend the definition of well-formed executions
to include the required execution of the recovery procedure.

Well-formed executions extended. In the non-volatile shared memory model, an ex-
ecution E is well formed if an only if 1) for all pk that participate in E, E|k begins with
the invocation of an operation, is sequential and there is no event between a matching
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response event and the subsequent following invocation and 2) after a system crash some
process invokes the recovery procedure and no other operation is invoked until the recovery
procedure completes.

Note that the recovery procedure does not return a value. In some cases the recovery
procedure does not need to take any steps. In this case we say that the recovery procedure is
empty. For most objects, including sets, the semantics of recovery are not well defined and
it would be difficult to specify a general definition. I assume that the details of the recovery
procedure are specified by the implementation of the object. I refer to all operations other
than the recovery procedure as regular data structure operations (in the case of sets these
are insert, remove and contains).

Modifications to base objects first take effect in the volatile shared memory. These
modifications become persistent only once they are written to non-volatile memory. We
can think about every base object having a volatile value and a non-volatile value (which
can differ). In the initial configuration the volatile value of every base object is the same
as the non-volatile value.

Base objects in volatile memory are flushed asynchronously by the process (without the
programmer’s knowledge) to non-volatile memory arbitrarily. I refer to this as a background
flush. The programmer can also explicitly flush base objects to non-volatile memory by in-
voking flush primitives, typically accompanied by persistence fence primitives. An explicit
flush is a primitive that is applied on a base object. The explicit flush is non-blocking
meaning it can return before the base object has been written to persistent memory. An
explicit flush by process p is guaranteed to written back to persistent memory only after a
subsequent persistence fence by p. An explicit flush combined with a persistence fence is
referred to as a psync. It is convenient for a psync by the processor to be a single event.
For this reason I assume that background flushes are atomic. This assumption captures
the idea that the processor can arbitrarily write any object to non-volatile memory at any
arbitrary time without adding the need for the processor to perform persistence fences. 3

Definition 2 (Persistence Event). Let E be an execution of a persistent set, we refer to
any background flush, explicit flush or persistence fence as a persistence event in E.

Persistence events are the only events that change the configuration of non-volatile
shared memory. Writes and rmw events only change the value of some object in volatile
memory. They do not directly modify non-volatile memory. After a crash, the first read of

3In Intel’s 3DXPoint implementation of non-volatile memory, the flush primitive corresponds to the
clflushopt instruction or the clwb instruction, and the persistence fence primitive corresponds to the sfence
instruction. There is also a clflush instruction which performs a psync.
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a shared base object will return the value of the object when it was last persisted. Thus the
result of the first read on a base object b performed by some operation will always return
either 1) the value of b that was last persisted by a psync before the previous crash event
(this corresponds to the value of b immediately prior to the latest of either an explicit
flush on b and persistence fence or a background flush on b) or 2) the initial value of b
if there was never an explicit flush or background flush on b prior to the previous crash.
If the recovery procedure always reads the values of all shared objects then the recovery
procedure will be the only operation that directly observes the contents persistent memory.
As a result, operations cannot force a read to view persistent memory which means that if
an operation needs to ensure that some base object has been written to persistent memory
then the operation would need to explicitly flush the base object and perform persistence
fence to guarantee that the object is persistent.4 In practice implementations of an object
might store information in volatile memory to track the state of persistent memory in order
to avoid the need to perform a psync. After a crash it is the responsibility of the recovery
procedure restore the contents of persistent memory back to a consistent state which will
involve loading data in persistent memory back into volatile memory.

I assume that psync events happen independently of RMW events and that psyncs
do not change the contents of volatile shared memory (other than updating the program
counter of a process). Since we cannot force an arbitrary read to return the value of the
object when it was last persisted, this means that a psync has no visible side effects. These
assumptions are consistent with the implementation of current hardware.

2.2.2 Durable Linearizability

Definition 3 (Durable Linearizability). A history H is durable linearizable, if it is well-
formed and if ops(H) is linearizable where ops(H) is the subhistory of H containing no
crash events [41].

Intuitively durable linearizability requires that any operation that completed before a
crash event will be reflected in the state of the object after recovery. Durable linearizability
makes no guarantees on operations that were concurrent with a crash event. In some cases,
it might be possible to complete one or more of the operations that were concurrent with

4In practice, performing a read on an object that is not present in the volatile cache memory would
load the object from main memory (persistent memory) and one could force this effect typically with
some kind of contrived behaviour. This would also involve disabling features such as prefetching. Intel’s
Memory Latency Checker [19] provides an example of this type of behaviour. It is unlikely that this would
be desirable or common for data structures in general.
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Insert(k1)

returns true

returns true

Contains(k1)

Insert(k2)

Time

Process 1

Process 2

Crash Event

Figure 2.1: Durable Linearizability Example Execution 1. The vertical lines on the com-
pleted operations indicate the linearization point of the operation. In this example the
operation Insert(k2) by process 1 is concurrent with the crash event. The other two op-
erations complete before the crash thus after recovery, the set must contain at least k1. It
might also contain k2 if the second insert progressed far enough before the crash and the
recovery procedure does not undo the insert.

a crash during or after recovery. Moreover, if an operation progressed far enough but did
not complete it could still be reflected in the state of the object after recovery. There can
also exist executions of durable linearizable objects in which operations that are concurrent
with a crash event must be completed. An example of this for the set type is shown in
Figure 2.2. This intuitive definition is more easily derived from the rephrased definition of
durable linearizability from [32].

Definition 4 (Happens Before Order). Consider a history H containing the events e1 and
e2. We say that e1 happens before e2 which is denoted as e1 ≺ e2 if e1 precedes e2 in H
and one of the following 4 conditions is true: (1) e1 is a crash, (2) e2 is a crash, (3) e1 is
a response and e2 is an invocation, or (4) there exists an event e3 such that e1 ≺ e3 ≺ e2.
This definition is the same as in [41].

Definition 5 (≺-Consistent Cut). A ≺-consistent cut of a history H is a subhistory W of
H where if e ∈ W and e′ ≺ e ∈ H then e′ ∈ W and e′ ≺ e ∈ W .

Definition 6 (Buffered Durable Linearizability). A history H containing c crash events is
buffered durable linearizable if it is well formed and there exist subhistories H1, H2, ..., Hc−1
such that for all 0 ≤ i ≤ c, (1) Hi is a ≺-consistent cut of Xi (the ith era of H), and (2)
the history H0 ·H1 · ... ·Hi−1 ·Xi is linearizable.
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Insert(k1)

returns true

returns true

Contains(k1)

returns false

Contains(k1)

Remove(k1)

Time

Process 1

Process 2

Crash Event

Figure 2.2: Durable Linearizability Example Execution 2. The vertical lines on the com-
pleted operations indicate the linearization point of the operation. In this example the
operation remove(k1) by process 1 is concurrent with the crash event. The other three
operations complete before the crash. In this case, the response of the contains(k1) by
process 2 reflects the fact that the remove concurrent with the crash has been linearized.
This means that the effects of the remove must be reflected in the state of the set after the
crash. Thus, after recovery the set must not contain k1.

Buffered durable linearizability is a weaker correctness condition compared to durable
linearizability. Intuitively, buffered durable linearizability allows for any number of opera-
tions to be lost after crash. This work does not focus on buffered durable linearizability.

2.2.3 Recovering After a Crash

It is important to understand what the expected state of an object should be after recov-
ering from a system crash. From the previous section, we know that an operation must
be persisted before it returns. However, not all operations need to be persisted. Opera-
tions that cannot affect the response of other operations do not need to be persisted. For
this reason it is reasonable to focus on operations that do affect the responses of other
operations. I refer to such operations as update operations.

Definition 7 (Update Operation). Consider an execution E of a durable linearizable object
wherein the operation π was invoked. I refer to π as an update operation if and only if
there exists some extension E ′ of E such that removing the invocation of π (and response if
π completed in E) from the history H ′ of E ′ to construct the history H ′′ results in ops(H ′′)
being non-linearizable.
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The definition of an update operation describes that π is an update because there exists
an extension of the execution where another operation that depends on π is invoked and
the response of that operation reflects the fact that π takes effect first.

Since the recovery procedure is always invoked following a crash event it is helpful to
define the extension of an execution with a crash event and recovery procedure. I refer to
this as the crash-recovery extension.

Definition 8 (Crash-Recovery Extension). Consider an execution E of a durable lineariz-
able object. Let ⊥ denote a system crash event. Let E ′ be E · ⊥ · ER where ER is the
sequential execution of the recovery procedure. We refer to E ′ as a crash-recovery ex-
tension of E.

The crash-recovery extension is used to define the state of the object after recovery. It
is important that the crash-recovery extension is defined in terms of a recovery procedure.
There are a variety of ways that one could implement a recovery procedure for a persistent
set. The implementation of the recovery procedure defines if and how operations would be
undone or completed after a crash. In terms of the set abstract data type, the recovery
procedure determines which keys are still in the set. To discuss how operations in a previous
era can affect operations invoked in future eras it is helpful to discuss the values returned
by completed operations. The return value of an operation is contained in the response of
the operation.

Using a similar convention as in [1] we represent the invocation of an operation π as
inv(π, w)p where p is the process that invoked the op and w represents the parameters of
the operation. Similarly, the response of an operation is represented as ret(π, r)p where r
is the value contained in the response. Without loss of generality we say that the response
of π is r.

Definition 9 (Critical Persistence Event (CPE)). Consider an execution E of a durable
linearizable object and an update operation π that was invoked in E. Let E ′ be the crash-
recovery extension of E. Consider a solo extension of E ′ wherein some process invokes and
completes a new operation π′ where the response of π′ will be r if π was linearized before
π′ or r′ if π was not linearized before π′ and r 6= r′.

For an update operation π, the persistence event f in E is the critical persistence event
(CPE) of π if immediately before applying f , the response of π′ is r′ and immediately after
applying f the response of π′ is r.

Intuitively, the CPE represents the first event after which it is guaranteed that the
effects of the update operation will be recovered. Figure 2.3 depicts an example execution
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Insert(k1)

returns false

Contains(k2)

Time

Process 1

Process 2

Crash Event

CPE

Insert(k2)

returns true

Contains(k1)Process 3
Recovery
Procedure

No CPE

Figure 2.3: Critical Persistence Event Example. This diagram shows an example execu-
tion of a set. In this execution processes 1 and 2 both invoke insert operations with the
parameters of k1 and k2 respectively. A crash event occurs before either of the inserts
completes. The CPE of insert invoked by process 1 occurred at the point indicated by the
green line. The insert invoked by process 2 has no CPE in this execution (alternatively we
might say that the CPE of the insert invoked by process 2 never occurs before the crash
event). This is reflected after the crash by the responses of the two contains operations.

of a set where two insert operations are invoked before a crash event occurs but only one
of the inserts completes its critical persistence event. As a result the effects of the other
insert invoked by process 2 are not recovered.

Note that the CPE of an operation cannot be an explicit flush on a base object b since
an explicit flush requires a persistence fence to guarantee that that b is written to persistent
memory. This means the CPE of an operation is either a background flush or a persistence
fence. If the CPE of operation π is a persistence fence by process p, then p must have
previously performed an explicit flush in π. We say that the base object b is involved in
the CPE of π if the CPE is a background flush on b or if the CPE is a persistence fence
where the corresponding previous explicit flush is on b.

The CPE represents the point at which the operation becomes persistent. Izraelivitz
et al. briefly discuss the idea of what they refer to as a persist point [41]. A persist point
represents the point at which an operation becomes persistent. The key difference is that
Izraelevitz et al. defines the persist point to be some point after the linearization point of
the operation. The CPE is not defined in terms of a linearization point. An operation might
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be linearized at some point before the CPE for example at some point which corresponds
to the point at which the operation would be linearized in a volatile implementation of
the same object type. Operations could also be linearized at or after the CPE of the
operation. The choice of linearization point relative to the CPE can directly effect whether
the implementation guarantees strict linearizability or only durable linearizability.

The CPE is also similar to the notion of a durability point defined by Friedman et al
[32]. Friedman et al define durability the point of an operation as the first point in the
execution when the operation becomes durable. The definition of a durability point is
not specific to sets and lacks detail. With the definition of the CPE I attempted to be
more explicit about some of the subtleties related to what it means for an operation to be
durable. Specifically, the CPE is defined in terms of a recovery procedure and is explicit
about the fact that the CPE always belongs to a successful update operation.

2.2.4 Strict Linearizability

Definition 10 (Strict Linearizability). A history H is strict linearizable5 with respect to
an object type τ if there exists a sequential history S such that H → S where → is defined
by the 12 rules presented by Aguilera and Frølund in section 3.5 of [1].

Note that the 12 rules were described for a model in which individual processes can
crash. Models in which individual processes can crash subsume models in which all pro-
cesses crash simultaneously (when individual processes can crash a system crash is equiva-
lent to an individual crash event for every process where once one process crashes no other
events follow except crash events by other processes). Informally, the 12 rules specify how
to transform some history H into a history H ′ that has fewer concurrent operations and
fewer crash events. I direct the reader to [1] for the formal definition of the 12 rules. Of
particular interest in this thesis are the rules 6-8 which specify how to deal with crash
events. Roughly speaking when we only have system crashes, given a subhistory H ending
with a crash event we can construct H ′ such that H → H ′ following rules 6-8. Rule 6
states that H ′ can be constructed by removing the crash event from H if every operation
in H completed before the crash. Rule 7 and 8 describe the fact that an operation that
was concurrent with a crash may or may not take effect. Rule 7 states that H ′ can be
constructed by removing both the crash event and the invocation of an operation that was

5Note that Wen and Song later presented a different correctness condition that they also called strict
linearizability [56]. In this work when I refer to strict linearizability I am referring to the definition from
Aguilera and Frølund [1].
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concurrent with a crash event from H. Rule 8 states that H ′ can be constructed by insert-
ing a matching response for an operation that was concurrent with a crash event at the
crash event and removing the crash event from H. Rules 1-2 describe that the → relation
is reflexive and transitive. Rules 3-5 describe how operations can be reordered. Rules 9-10
describe how to deal with operations that execute forever. Finally rules 11-12 describe how
to deal with operations that abort. Informally an operation that aborts returns a special
response. This thesis does not utilize the concept of aborting.

Strict linearizability is a stronger or more restrictive correctness condition compared to
durable linearizability. Strict linearizability was defined for a model in which individual
processes can crash. For models that only allow system crashes (as is the case in this
thesis) any strict linearizable implementation is also durable linearizable.

Intuitively, strict linearizability requires that any operation that is concurrent with a
crash event either takes effect before the crash event or does not take effect at all. This
means that unlike durable linearizable objects, an operation that is concurrent with a crash
should not be completed after the crash.

Figure 2.4 shows an execution of a set that violates strict linearizability. In this example
the insert by process 1 takes effect after the crash. To show that this execution is not
strict linearizable I will describe how we can use the rules defined in [1]. Call the insert

by process 1 π1, the contains by process 2 π2, and the contains by process 3 π3 and π4.
Assuming individual processes can crash, the event of process p crashing is represented as
crashp. The history H of this execution is as follows:

inv(π2, k1)2 · inv(π1, k1)2 · ret(π2, false)2 · crash1 · inv(π3, k1)3 · ret(π3, false)2 ·
inv(π4, k1)3 · ret(π4, true)3.

To construct the sequential history such that H → S we begin by applying rule 8 and
insert a response for π1 this results in the following history:

inv(π2, k1)2 · inv(π1, k1)2 · ret(π2, false)2 · ret(π1, true)2 · inv(π3, k1)3 · ret(π3, false)2
· inv(π4, k1)3 · ret(π4, true)3.

Next we apply rule 4 to reorder the invocation of π2 and π1 which results in the following
history:

inv(π2, k1)2 · ret(π2, false)2 · inv(π1, k1)2 · ret(π1, true)2 · inv(π3, k1)3 · ret(π3, false)2
· inv(π4, k1)3 · ret(π4, true)3.
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At this point we cannot apply any other rules and we have a sequential history S
however S is not consistent with the sequential specification of a set since the contains
operations π3 and π4 have different responses but the only update operation in the history
completes before either is invoked.

2.2.5 Strict Linearizability Intuition Versus Definition

In chapter 1 I mentioned a motivating example for strict linearizability utilized by Aguilera
and Frølund. The example described a scenario in which a missile launch is initiated but
the missile fails to launch and it is emphasized that the missile should not launch at some
later time. The missile launch represents some critical, irrevocable event that we want to
guarantee happens before the launching system crashes or never happens at all. However, it
is not clear that this intuition is actually captured by the definition of strict linearizability.
Strict linearizability is defined in terms of histories. The notion of an irrevocable event
like the missile launch cannot be captured by histories. Continuing with the missile launch
example, consider the case where the process that invoked the missile launch crashes but
progressed far enough to allow other processes to help complete the launch. If some other
process does help complete the launch then the missile would be launched after the crash.
When this is expressed as a history where the crash is removed via the → relation, it
would appear that the missile launched prior to the crash. The second process that helps
launch the missile after the first process crashed could be invoked at a much later time.
Since histories do not capture the concept of time, the definition of strict linearizability
cannot restrict implementations such that behaviour like launching the missile years later
is forbidden.

This issue is especially important for the model used in this thesis where the system
invokes a recovery procedure following a system crash and the recovery procedure must
complete before other operations can be invoked. The recovery procedure does not return
a value. Thus, the response of the recovery procedure does not reflect whether or not some
operation was completed prior to the crash. If the recovery procedure helps linearize an
operation that did not complete before the crash then that operation will still appear to
take effect effect prior to the crash in an equivalent history where the crash event is removed
(via the → relation). This allows for the same problem of launching the missile after the
crash which could lead to the “catastrophic” behaviour that Aguilera and Frølund wanted
to avoid with strict linearizability. Moreover, the recovery procedure could be invoked at
a much later time compared to when the system crash occurred. Thus, if the recovery
procedure helps linearize operations then operations are not really limited to take effect
by the time of the crash (if the operation does crash).
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In the model used in this thesis a critical, irrevocable event is represented by the CPE
of an operation. The CPE represents the point after which the effect of the operation will
be recovered. The behaviour where the missile can be launched after the crash is only
possible if an implementation allows operations that have a CPE to be linearized after
their CPE. As a result, if we want to satisfy the intuition behind strict linearizability, we
need to refer to the CPE of an operation which is not captured in a history. Modifying the
definition of strict linearizability to include the notion of a CPE would require persistence
events to be part of histories. This would introduce unwanted complexity. Rather than
modifying the definition of strict linearizability, I instead choose to restrict the classes of
strict linearizable implementations that I consider in this thesis as follows: for all classes of
strict linearizable implementations considered in this thesis, operations that have a CPE
will always take effect at or before their CPE.

2.2.6 Durable versus Strict Linearizabile Sets

When the system recovers from crash events by invoking a recovery procedure that must
complete before other operations can be invoked, there is no meaningful difference between
strict linearizability and durable linearizability when the classes of strict linearizable im-
plementations allow operations that have a CPE to take effect after their CPE. Durable
linearizability captures the idea that the effects of an operation can be visible after a crash
even when the operation has no response if the operation progressed far enough. With
durable linearizability processes in later eras could help complete crashed operations from
a previous era. This conflicts with strict linearizability. If the effects of an operation are
visible after a crash then by definition the effects of the operation are also visible during
the execution of the recovery procedure. Neither strict linearizability nor durable lineariz-
ability prevents the recovery procedure from helping to complete crashed operations in a
previous era. As mentioned in the previous section, this is behaviour does not satisfy the
intuition provided by Aguilera and Frølund and provides further justification for the choice
of restricting the classes of strict linearizable implementations considered in this thesis.

2.2.7 Other Related Correctness Conditions

There are some related correctness conditions for persistent data structures that I do not
consider in this thesis. Guerraoui and Levy presented the safety condition of persistent
atomicity which ensures that the state of an object will be consistent after a crash [34].
Persistent atomicity does not guarantee locality. Berryhill et al. presented an alterna-
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Figure 2.4: Strict Linearizability Illegal Execution Example. The vertical lines on the
completed operations indicate the linearization point of the operation. In this example
I assume the model used in [1] where individual processes can crash. Process 1 crashes
before completing the operation Insert(k2) but the insert it is linearized after the crash
meaning this execution does not satisfy strict linearizability.

tive to persistent atomicity which does guarantee locality which they called recoverable-
linearizability [8]. Recoverable-linearizability does not always preserve the program order
after a crash. Both durable linearizability and strict linearizability guarantee locality and
preserve program order after a crash. Izraelevitz et al. noted that the issues of persis-
tent atomicity and recoverable-linearizability are related to the fact that the models used
by Guerraoui and Levy as well as Berrhill et al. allow individual processes to crash, re-
cover and continue execution. This differs from the model used in this thesis in which all
processes crash together.

2.2.8 Relation to Existing Models

The non-volatile shared memory model used in this thesis is very similar to the model
used by Izrealevitz et al. in [41] with some minor changes that make discussing persistence
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more convenient. Models in which individual processes can crash also subsume models in
which all processes crash simultaneously. Models in which individual processes are allowed
to crash and independently recover introduce added complexity that I do not explore in
this thesis.
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Chapter 3

Background

In this chapter I will provide some necessary background information regarding metrics
used to compare persistent objects. We will also present some relevant existing work.
Specifically I discuss existing persistent sets as well as universal constructions for creating
durable linearizable implementations of volatile objects.

3.1 Complexity Measures

We would like a way to compare different implementations of persistent concurrent objects.
Traditional metrics used to compare implementations of volatile concurrent objects are not
very useful we want to examine the overhead related to utilizing persistent memory. This
is because an implementation of a persistent concurrent object is likely to share many
similarities to an implementation of a volatile object of the same abstract data type. In
particular, it is important to note that an implementation of a persistent concurrent object
will still require a mechanism for synchronization in volatile memory.

The need for performing psyncs is unique to persistent objects. A psync is required to
ensure that data is written to persistent memory. Psyncs represent the usage of expensive
fence operations. Recent work has referred to the required number of psyncs per operation
when comparing persistent objects [58].

Another unique aspect of persistent objects is the need for a recovery procedure. The
recovery procedure represents a period of downtime for the persistent object. If we consider
the fact that a system can crash multiple times, it is desirable to have an efficient recovery
procedure that can complete quickly. Along with psync complexity, I also consider the
recovery complexity as measures for comparing persistent objects.
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Psync Complexity. Programmers write data to persistent memory through the use of
psyncs. A psync is an expensive operation because it requires the use of fences. Cohen
et al. [17] prove that update operations in a durable linearizable lock-free algorithm must
perform at least 1 psync. This means that update operations in durable linearizable al-
gorithms cannot avoid performing a psync without sacrificing lock-free progress. In some
implementations of persistent objects, read-only operations might perform psyncs. There
is a clear focus in existing literature on minimizing the number of pysncs per data struc-
ture operation [24, 58]. These factors suggest that psync complexity is a useful metric for
comparing implementations of persistent objects.

Recovery Complexity. After a crash, a recovery procedure is invoked to return the
objects in persistent memory back to a consistent state. No new data structure operations
can be invoked until the recovery procedure has completed. Ideally I would like to minimize
this period of downtime represented by the execution of recovery procedure. Moreover, the
recovery procedure is usually assumed to be performed by only a single process [24, 58].
A recovery procedure could spawn new processes, however, I am not aware of any existing
persistent objects that feature a concurrent recovery procedure. The system can crash
during the execution of the recovery procedure. We use the asymptotic time complexity
of the recovery procedure as another metric for comparing durable linearizable algorithms.
The recovery procedure can be empty, meaning it performs no instructions.

3.2 Related Persistent Sets

In this section I will describe some existing hand-crafted implementations of persistent sets.
Specifically, I examine the Link-and-Persist technique of David et al. [24] and the Link-
Free and SOFT algorithms from Zuriel et al. [58]. Table 3.1 summarizes some important
aspects of these techniques.

3.2.1 Link-and-Persist Technique

David et al. describe a technique for implementing durably-linearizable link-based data
structures called the Link-and-Persist technique [24]. Using the Link-and-Persist technique,
whenever a link in the data structure is updated, a single bit mark is applied to the link
which denotes that it has not been written to persistent memory. The mark is removed after
the link is written to persistent memory. We refer to this mark as the persistence mark or
persistence bit. Updating the persistence mark requires the use of atomic synchronization
primitives. Both DWCAS and CAS can be used to update the persistence mark. The
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Technique
Correctness
Condition

Maximum
Psyncs Per
Update

Maximum
Psyncs Per
Contains

Recovery
Step
Complexity

Link & Persist Strict Unbounded 2†
Bounded by size of
data structure

Link-Free Strict 1* 1 Allocator Dependant
SOFT Durable 1* 0 Allocator Dependant

Table 3.1: Existing Techniques for Implementing Persistent Sets. *Each process will per-
form at most one psync per update however every process can perform a psync to persist
the same update. †This assumes that the successor links in a node can be persisted with
a single psync.

Link-and-Persist technique requires a helping mechanism to ensure persistence. If the
result of an operation depends on a marked link then that operation must persist the link
and remove the mark. Data structure links are never intentionally explicitly flushed once
the persistence mark is removed. However, since a link cannot be flushed and unmarked
simultaneously, lock-free implementations allow for the possibility of explicitly flushing an
unmarked link. Unmarked links can also be written to persistent memory as a result of
background flushes. This means that persistent memory can contain both (persistence)
marked and unmarked data structure links. Figure 3.1 shows an example of an insert

operation on a persistent linked list using the Link-and-Persist technique. The Link-and-
Persist technique requires a psync after any data structure link is updated. If multiple
links need to be updated as part of a data structure operation then each one would require
a psync.

Note that the Link-and-Persist technique is specifically designed for lock-free implemen-
tations of persistent objects. While there is nothing preventing the usage of the Link-and-
Persist technique in a lock based implementation, there would be no need for a persistence
mark since operations can simply hold a lock until the updated links are persisted.

The Link-and-Persist technique has two main benefits. First, the algorithm is quite
simple and can be easily integrated into many implementations of existing volatile objects.
Persistent objects implemented using the Link-and-Persist technique have very simple re-
covery procedures and allow for empty recovery procedures. David et al. also presents
the link-cache algorithm which I do not consider due to the fact that it produces buffered
durable linearizable implementations without adding an uncommon constraint on clients
of the data structure (specifically the constraint requires that clients of the data structure
cannot consider an update as completed when it returns, which is not very intuitive). Note
that this technique of marking to indicate whether some data has been written to persistent
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Volatile Memory Persistent Memory

a) State of the list before inserting

b) New node B is created and
flushed to persistent memory

c) B is linked into the list and
the persistence mark in A is set

0A 0C 0A 0C

0A 0C

0B

0A 0C

0B

1A 0C0B

d) A.next is flushed to persistent memory
and the persistence mark in A is removed

0A 0C0B

0A 0C

0B

1A 0C0B

Figure 3.1: Sequential update of a linked list using the Link-and-Persist technique. The
left column shows the state of the list in volatile memory. The right column shows the
state of the list in persistent memory.
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memory was also used by Wang et al. to implement a persistent multi-word CAS [54].

3.2.2 Link-Free Sets

Zuriel et al. take a very different approach in their Link-Free sets algorithm [58]. The
Link-Free algorithm is a durably-linearizable implementation of a persistent set. More
specifically, it is an implementation of a persistent linked list. As the name suggests, the
Link-Free algorithm does not persist data structure links. Instead, the Link-Free algorithm
persists metadata added to every node. Every node contains extra metadata in the form
of two validity bits. In practice, these validity bits are stored in a byte sized field. A node
is considered in the list if and only if both validity bits match and the node is not marked
as logically deleted. During an insert, when a node is first created one of the validity bits
is flipped to invalidate the node while it is in a transient state before being inserted into
the list. After linking the new node into the list, the other validity bit is flipped indicating
that the node is valid. Remove operations will only modify the validity bits when helping
concurrent insert operations. Zuriel et al. employ a technique similar to the persistence
bit in the Link-and-Persist technique. The Link-Free algorithm uses two separate flags to
indicate when a psync was performed after inserting a node and after logically deleting a
node. In practice these flags are stored in separate byte sized fields. During an insert, the
Link-Free algorithm requires a psync after the second validity bit is flipped marking the
node as valid. During a remove a psync is required after the node is marked as logically
deleted.

This algorithm is effective in reducing the number of required psyncs per operation.
However, recovery procedure required by the Link-Free algorithm is non-trivial. Since
the Link-Free algorithm does not explicitly persist data structure links, the list must be
completely rebuilt during recovery. Moreover, the recovery procedure must traverse non-
empty memory pages in order to find all of the valid nodes that belong in the list. If the
data structure is very large or crashes are frequent this could be problematic.

3.2.3 Sets with an Optimal Flushing Technique

Along with the Link-Free algorithm, [58] also presents the Sets with an Optimal Flushing
Technique (SOFT). This algorithm is very similar to the Link-Free algorithm with the
added benefit of supporting persistence-free searches.

As in the Link-Free algorithm, the SOFT algorithm does not persist data structure
links and instead persists metadata added to each node. The primary difference between
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Volatile Memory Persistent Memory

a) State of the list before inserting

b) New node B is created and
its first validity bit is set

c) B is linked into the list
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d) B’s second validity bit is set
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Figure 3.2: Sequential Update of a Linked List Using the Link-Free algorithm. The left
column shows the state of the list in volatile memory. The right column shows the state of
the list in persistent memory. Green cells represent the insert flag and red cells represent
the delete flag. The two validity bits are shown under every node.
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the Link-Free algorithm and SOFT is that SOFT uses two different representations for
every key in the data structure. Each key is stored in a volatile node and in a persistent
node. Persistent nodes are explicitly flushed to persistent memory whereas volatile nodes
are not. Every volatile node contains a pointer to the corresponding persistent node. The
volatile node also contains pointers to its (volatile node) descendants. Two bits are stolen
from these volatile descendant pointers in order to mark the volatile node in one of four
states. The state of a volatile node is either inserted, intend to insert, deleted or intend
to delete. Operations can read the state of the node in order to minimize the number of
psyncs required. The persistent nodes also contain three validity bits. Two of these validity
bits function similarly to the validity bits of the Link-Free algorithm. If these two bits are
set then the persistent node is in a consistent state, otherwise the node is in a transient
state while it is being inserted. The other validity bit is used to mark the persistent node
as deleted. Initially all three validity bits are zero. The first validity bit is set after the
persistent node is created by before the key is stored in the persistent node. After the key
is stored in the persistent node the second validity bit is set. Figure 3.3 shows an example
of the SOFT algorithm used to update a linked list.

Compared to the other related algorithms, the SOFT algorithm achieves the best
bounds on the number of required psyncs per operation. It is also the only algorithm
that requires zero psyncs for searches. Unfortunately, the recovery procedure required by
SOFT has the same issues as the Link-Free algorithm.

3.3 Related Transforms and Universal Constructions

Algorithms that automatically convert linearizable objects into durably-linearizable objects
generally perform worse in practice compared to hand-crafted alternatives. This thesis
focuses on hand-crafted persistent sets. I will also describe some examples of algorithms
capable of producing durable linearizable objects from (transient) linearizable objects.

Transform from Izraelevitz et al. [41]

Izraelevitz et al. presented a universal construction to transform a concurrent multi-object
program written for release consistency and transient memory, into an equivalent program
for explicit epoch persistency. This universal construction can produce both durable and
buffered durable linearizable objects. The transform relies on a concrete memory model.
We refer the reader to [41] for the model. The model used in this work could be used to
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c) The new volatile node is linked into the list
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Figure 3.3: Sequential update of a linked list using the SOFT algorithm. This figure shows
only the state of volatile memory. Initially persistent memory contains only the persistent
nodes Ap and Cp. Bp is written to persistent memory in step f. Keys with the subscript v
indicate volatile nodes and the subscript p indicate persistent nodes. The red cells represent
the validity bit used for marking the persistent node deleted. The state of volatile nodes
is represented as an integer 0-4.
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produce a similar concrete memory model. It is still relevant to understand this univer-
sal construction to see why the resulting objects would perform worse than hand-crafted
alternatives.

The universal construction follows six rules. (1) Immediately after every store, flush
the written value. (2) Immediately before every store-release Sr perform a persistence
fence then immediately after Sr flush the object that Sr was applied on. (3) Immediately
after every load-acquire flush the written value then perform a persistence fence. (4)
Immediately before any CAS perform a persistence fence and immediately after any CAS
flush the written value then perform a persistence fence. (5) Do not flush or fence on
loads. (6) Immediately before the returning from an operation perform a psync. Extra
rules are required to achieve buffered durable linearizability. The general idea with this
universal construction is to ensure that every write is persistent before the value is read
and operations are persisted before returning.

In most cases it is not necessary to persist every write. As a result, objects produced
by this universal construction might perform unnecessary psyncs.

Order Now, Linearize Later

The Order Now, Linearize Later (ONLL) universal construction from Cohen et al. [17]
transforms a deterministic object and produces a lock-free durably-linearizable implemen-
tation of the object.

This universal construction is especially interesting because it produces an implementa-
tion in which read-only operations do not perform psyncs. ONLL breaks an operation into
three stages, the order stage in which the linearization order of operations is established,
the persist stage in which a psync is performed and the linearization stage in which the
operation is linearized. ONLL relies on a shared volatile lock-free queue as well as per-
process persistent logs originally described in [16]. The state of the object is captured by
the volatile queue representing the execution trace. Update operations are first added to
the volatile queue. The update operation and any of its dependencies that have not been
written to persistent memory are added to the persistent log of the process that invoked
the update. Finally the update sets a flag indicating that it has been linearized. If a
system crash occurs the volatile queue must be reconstructed from the persistent logs of
every process.

ONLL has two clear drawbacks. First, it relies on a shared global queue, which repre-
sents an obvious point of contention. Second, recovery is non-trivial. The persistent logs
from every process need to be examined to reconstruct the queue.
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NVTraverse

Friedman et al. presented a transform for converting a class of data structures which they
call traversal data structures to durable linearizable data structures [31]. Traversal data
structures are node-based tree data structures where operations on the data structure first
perform a traversal followed by a critical path where updates are performed. The main
benefit of NVTraverse is that no flushes are ever performed during the traversal of the data
structure. During a traversal NVTraverse keeps track of all of the fields that were read and
then flushes them after the traversal using only one persistence fence. During the critical
path NVTraverse requires a flush for every shared variable that is read and every write or
RMW. A fence is required for every write or RMW on a shared variable and before every
return. This approach is actually quite similar to the Link-and-Persist technique, however
while NVTraverse successfully avoids excess persistence fences, it requires a significant
amount of flushes. In general, the results presented by Friedman et al. support the
notion that hand-crafted persistent data structures generally perform better compared to
implementations produced by transforms (including NVTraverse).

3.3.1 Mirror

Recently Friedman et al. have presented Mirror [33]. Mirror is an automatic transform
that converts a linearizable lock-free data structure to a durable linearizable lock-free data
structure. Mirror relies on maintaining two copies of the data structure, one which remains
transient and one that is persisted. Reads are executed on the transient data structure
which is stored in DRAM. Their results showed that Mirror often performed better than
the work of Zuriel et al. when the transient copy of the data structure is stored on DRAM.
However, the experiments used only up to 16 threads across two NUMA nodes and many
of the results use only 8 threads. I do not evaluate Mirror in this thesis but it would
be interesting to examine how it performs on a system with more NUMA nodes. Mirror
requires that data structures supply a tracing operation which can traces all the reachable
data from a set of roots which are provided as a parameter. After tracing reachable data,
Mirror must reallocate both the volatile and non-volatile copies of the data structure which
can result in longer recovery time. Note that if a volatile memory allocator allows specifying
the address of the allocated object then Mirror can reallocate only the volatile copy of the
data structure however this is not realistic in practice.
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3.4 Transactional Approaches

While this thesis does not explore the use of transactions I will note some examples of other
works that have proposed using transactional-memory (TM) with NVM to achieve persis-
tent data structures. Avni and Brown presented the first hybrid transactional-memory
(TM) for systems with NVM which they called PHyTM [6]. PHyTM uses redo logging to
facilitate recovery after a crash. PHyTM was inspired by the work of Avni et al. which
presented an algorithm called PHTM [7]. PHTM relied on a proposed change to Intel’s
hardware-transactional-memory (HTM) that would allow a single bit to be flushed to NVM
as part of a transaction commit.

Kolli et al, Volos et al. and Coburn et al. each presented methods for using transac-
tions to interface with NVM. Kolli et al. presented a transaction system for NVM that
relies on deferring commits to minimize constraints on the order of writes to NVM (which
they refer to as persist dependencies) [43]. Volos et al. presented a system for exposing
persistent memory to user-mode programs which they call Mnemosyne. Mnemosyne relies
on the use of a transaction system to facilitate in-place updates of a data structure [53].
Coburn et al. presented Non-volatile Memory Heaps (NV-heaps) which is a system used
to implement persistent objects [15]. NV-heaps utilizes memory-mapped structures and
relies on transactions to ensure changes to these structures a persisted in a well-defined
manner.

3.5 Logging vs. Log-free

The existing hand-crafted persistent sets that I have discussed do not utilize logging. The
ONLL universal construction utilizes per-process persistent logs. While logging provides a
simple approach to achieving durable linearizability, it has some undesirable overhead. In
the case of ONLL the use of logging makes recovery more complicated since the persistent
logs of all processes must be searched to reconstruct the execution trace. The use of a shared
log would represent a single point of contention which would be a bottleneck for update
operations. Moreover, logs are typically finite which means other data along with the log
must be persisted in order to recover the object. These factors motivate implementations
of persistent objects that do not utilize logging.
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3.6 How Much Data to Persist?

The existing literature reveals an interesting question related to persistent sets - how much
data should we persist? We must at least persist the keys that were in the set. More
specifically, to guarantee durable linearizability we must be able to recover any key that
was inserted and not removed by operations that completed before the crash and we must
not recover keys that were removed by operations that completed before the crash. In an
unrealistic setting, we could achieve this if every possible key has a one-to-one mapping
with a unique address in persistent memory and we reserve a single value to represent that
a specific key is not in the set. In practice, it is likely that we would want to also persist
some metadata along with the keys such that we do not require this type of mapping. This
is essentially the approach taken by both the Link-Free and SOFT algorithms. Both of
these algorithms persist a small amount of metadata as well as the keys stored in the set.
Notably these algorithms do not persist any of the structure (links) of the data structure.
Algorithms that do not persist the links of a data structure must reconstruct the data
structure after a crash. During recovery, these algorithms will need to determine all of the
keys that still belong in the data structure. In the worst case this involves traversing the
entire persistent memory space. It is possible that some memory management mechanisms
could be added to condense valid keys to a smaller portion of persistent memory but this
would require extra psyncs. To the best of my knowledge, this approach has not been
explored, however, I believe that it is unlikely that this approach would be beneficial since
the added overhead would likely severely reduce performance.

In contrast, algorithms that persist the links of the data structure can avoid the need
to fully rebuild after a crash. This is the case with the Link-and-Persist technique. There
is a drawback to persisting the links of a data structure. To the best of my knowledge
there is no existing algorithm that persists data structure links and has an upper bound
of 1 psync per update operation. There is also no existing algorithm that persists links
and has persistence-free searches. While the former is likely intrinsic to persisting data
structure links, the latter is possible. In chapter 6 I present a persistent set that persists
data structure links and allows for persistence-free searches.

These examples reveal a possible trade-off between recovery complexity and runtime
performance. Persisting more data requires performing more psyncs but allows for less
complex recovery procedures leading to better worst case recovery complexity. On the
other hand, persisting less data can reduce the number of required psyncs but requires
recovery procedures with very poor worst case recovery complexity.

34



Chapter 4

Strict Linearizable Sets and
Persistence-free Reads

Informally, strict linearizability requires that an operation takes effect before a crash or not
at all. This is problematic if we want the set to support read-only operations operations
that do not require flushes or persistence fences. Cohen et al. pointed out that for a lock-
free object persistence free reads would require linearizing update operations at some point
after the update is persisted [17]. Intuitively this makes sense since linearizing an update
operation prior to or at the point where the update is persisted would be problematic if
the response of a concurrent search depends on an update being persisted. In this chapter,
I provide a proof showing that it is impossible to implement a strict linearizable lock-
free set for which read-only operations do no perform any explicit flushes or persistence
fences. Note that this impossibility result holds only for the classes of strict linearizable
implementations considered in this thesis where operations that have a CPE are guaranteed
to take effect at or before their CPE.

Definition 11 (Decided Operation). Consider an execution E of a durable linearizable
set. The response of a pending operation π is decided in E if for every possible crash-free
extension of E the response of π is the same value v. We say its decided response is v.

In an implementation of a volatile set an operation is decided when it is linearized. For
implementations of persistent sets, it is sometimes helpful to think of an operation as having
both a linearization point chosen to guarantee durable (or strict) linearizability as well as
what we might call a volatile linearization point. The intuition being that the volatile
linearization point is the point at which the operation takes effect in volatile memory. This
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would correspond to the linearization point of an operation in an implementation of a
volatile set. An operation would be decided at its volatile linearization point.

Within the context of sets, insert and remove operations that return true are considered
update operations. Typically, one might refer to these as successful update operations
where insert and remove operations that return false are considered unsuccessful update
operations.

For every successful update operation π, we can identify the CPE e of π. Intuitively,
if a crash event happens before e, then the update π will not be recovered. This means
if we perform an identical update after recovery, it will succeed. On the other hand, if a
crash happens after e, then π will be recovered. So, if we perform an identical update after
recovery, it will fail. Since the CPE is defined for successful update operations if in some
execution, the CPE exists for an update π then the CPE of π exists at some point after π
is decided and the first of either the response of π or a crash event.

One might think that since the CPE is defined only for successful update operations
that this would be problematic for preserving the history of unsuccessful update operations
or search operations. The CPE is defined for successful update operations because only
successful update operations will be reflected in the state of the object after recovery.
Unsuccessful update operations and searches do not really have a CPE however, they
can help perform the CPE of a concurrent update. If we wanted to assign a CPE to
every operation then the CPE of a search or an unsuccessful update operation or would
correspond to the CPE of some successful update operation.

If a search for the key k returns true then k must have been inserted into the data
structure (and not removed) before the search was linearized. We can construct a similar
case where the search returns false because k was removed by an update operation that
was linearized before the search is linearized. In both cases, the response of the search is
determined by the update operation that inserted/removed k and it reflects the fact that
the CPE of the update has occurred. Similar to searches, unsuccessful update operations
do not modify the data structure so we can construct the same examples for unsuccessful
update operations. Searches that return false and unsuccessful remove operations where
the key to remove has never been inserted are edge cases. In these cases we can think
of the initialization of the data structure as the corresponding successful update. (This
is obviously an abuse of the definition of an update. Alternatively we could say that
the unsuccessful remove has no corresponding CPE but this would be inaccurate for data
structures that use mechanisms like sentinel nodes).

The corresponding CPE for searches or unsuccessful update operations can be prior to
the invocation of the operation. This is easiest to see in the sequential case where the CPE
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of every successful operation will always occur before the invocation of another operation.

For a more concrete example, consider an insert operation of persistent linked-list where
we want to persist data structure links. Suppose that the list is initially empty and process
p runs under no contention and invokes the insert operation π. p will allocate a new node
and perform a psync to write the contents of the node to persistent memory. It will then
link the new node into the list and perform another psync to write the updated link to
persistent memory. This psync is the CPE of π and in this example the CPE of π was a
event performed by process p. However, the CPE of π does not need to be a event by p.
Suppose p sleeps immediately after it links the new node into the list. Another process p′

could help persist the link updated by p by performing a psync. In that case, the CPE of
π is an event by p′.

Definition 12 (Persistence-Free Searches). We say that an implementation of the set
abstract data type offers persistence-free searches if there is no execution of the set in
which a process that invoked a search, π, performs an explicit flush or persistence fence
between the invocation and response of π.

Definition 13 (Persistence-Help-Freedom). An execution of a set is persistence-help-free
if the following conditions hold. If process p performs an explicit flush on base object b in
an operation π, then p must have previously written to b in π. If p performs a persistence
fence in an operation π, then p must have previously performed an explicit flush on some
base object in π. A set is persistence-help-free if all executions of the set are persistence-
help-free.

Theorem 14. There exists no strict linearizable lock-free set with persistence-free searches.

Proof. Consider a strict linearizable lock-free set implementation I. Assume for the purpose
of showing a contradiction that every search is persistence-free in every execution of I.
Starting from an empty set, construct an execution E of I as follows: Let process pu
invoke an insert operation to insert the key k then let pu progress until immediately prior
to the CPE of πu then sleep. Consider a search operation πc looking for the key k. This
means that πc does not commute with πu. The response of πc depends on whether or not
πu was linearized. Consider the following cases for possible linearization points of πu.

Case 1: Suppose πu is linearized at some configuration or explicit event prior to its
CPE. Suppose process pc invokes the search operation πc. Since the next event of πu
would be its CPE and it was linearized prior to its CPE this means that the linearization
point of πu occurred before the invocation of πc. Let pc complete πc in E. Since πu was
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linearized the response of πc must return true. Now suppose that a crash event occurs.
Let E ′ be the crash-recovery extension of E and let π′c be a search operation identical to
πc. Let E ′′ be a solo extension of E ′ by any process in which π′c is invoked and completes.
Since the CPE of πu never occurred in E (or E ′) this means that π′c will return false

in E ′′. Let H1 be the history of E ′′ and let H ′ be constructed such that H1 → H ′1. If
we follow rule 7 of [1] and remove both the invocation of πu and the crash event then H ′1
will contain the invocation of πc and corresponding response followed by the invocation
and response of π′c (I omit the recovery procedure for simplicity since it does not return
a value). There is no equivalent sequential history for this construction of H ′1 since in
a sequential history any two consecutive search operations must return the same value.
Alternatively if we instead construct H ′1 by inserting a response for πu then H ′1 would
include all three operations. Since πc returned true the response inserted for πu must
indicate that it returned true, otherwise the response of πc would not be consistent with
the sequential specification of a set for any possible sequential history equivalent to H ′1.
If the response inserted for πu indicates that it returned true then it must be linearized
prior to πc. Thus a sequential history would be πu followed by πc followed by π′c. Once
again there is no possible equivalent sequential history for this construction of H ′1 since
two consecutive search operations returned different values. Since for all constructions of
H ′1 there is no equivalent sequential history strict linearizability is violated.

Case 2: Suppose πu is linearized at its CPE. Since the CPE of an operation is a
persistence event and persistence events have no effect on volatile shared memory pc cannot
distinguish between the execution E in which the last event was immediately priot to the
CPE of πu and an extension of E in which one more event occurs where that event is the
CPE of πu. Thus this case is equivalent to case 1.

In case 1 and 2 strict linearizability would not be violated if πc completed the CPE
of πu and returned a value reflecting that the update was linearized. However, if πc does
complete the CPE of πu this requires performing at least one persistence event which would
contradict our assumption. Alternatively pc could wait for some other process to complete
the CPE of πc and somehow signal the fact that the CPE has completed however this
contradicts lock-freedom.

Note that It is trivial to construct equivalent executions for these cases where the update
operation is a remove and the search is looking for the key removed by the update. Thus
there exists no strict linearizable lock-free set with persistence-free search operations.

Figure 4.1 shows a visualization of the execution described in theorem 14. The proof
exposes the fact that persistence-free searches rely on linearizing update operations after
the operation is persisted. I have already mentioned two examples of algorithms that
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achieve persistence-free read-only operations by linearizing update operations after they
are persisted in the ONLL universal construction and the SOFT algorithm. Linearizing
operations after persisting clashes with the guarantees provided by strict linearizability.
The main problem with linearizing after persisting is that there will exist an execution in
which an operation that was persisted but never linearized needs to be linearized after a
crash. One might think that a recovery procedure in a strict linearizable implementation
could simply undo every operation that was persisted but not linearized in order to allow
for persistence-free searches while preserving strict linearizability. This approach is flawed
because it is not always possible for a recovery procedure to distinguish between an oper-
ation that was persisted but not linearized and an operation that was both persisted and
linearized. If an update operation is linearized after its CPE then at least one other event
would be present in the execution and the linearization point of the update would be at or
after that event. Typically this would correspond to the response of some RMW primitive.
The update might not be linearized until after several events occur. Either way, the state of
the object in volatile shared memory will have changed. Since the CPE of the update has
already occurred, there is no requirement for the implementation of the object to perform
any persistence events after the linearization point. As a result, the state of the object in
persistent memory could reflect that the operation has not been linearized while the state
of the object in volatile memory would reflect that the operation has been linearized. Obvi-
ously the recovery procedure could not undo operations that have been linearized without
violating strict linearizability. Note that if the implementation required persistence events
after the linearization point to complete the update then the CPE would correspond with
those persistence events and we would arrive at the same conclusion. Fundamentally, the
problem here is that volatile memory and persistent memory cannot be updated simultane-
ously. If this were possible then we could avoid the problems that prevent persistence-free
searches in implementations of strict linearizable objects.
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Insert(k)pu CPE Never Occurs

Crash

Contains(k) Contains(k)
Recoverypc

LP

returns true returns false

Figure 4.1: Theorem 14 example execution. In this example the search by process p2
cannot determine if the CPE of the concurrent Insert has occurred and the response
of the search depends on whether or not the Insert is linearized. The Insert by pu is
linearized at some at or before its CPE. pu sleeps immediately before the CPE of the
Insert. However, the search will observe the effects of the Insert in volatile memory.
The response of a concurrent search by pc reflects that the Insert has linearized but after
the crash an identical search has a different response. This violates strict linearizability.
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Chapter 5

Redundant Psync Lower Bound for
Durably Linearizable Sets

Cohen et al. show that every update must perform at least one psync in any lock-free
durable linearizable object [17]. Understanding when a psync is required is valuable since
we know that psyncs are expensive due to the need to perform a persistence fence. More-
over, we have seen that existing persistent sets have focused on reducing the number of
required psyncs. This motivates the question of whether or not every psync required by
a durably linearizable set is actually useful. What if an implementation is forced to flush
the same base object multiple times? If the value of the base object never changes then
the flush accomplishes nothing. Any persistence fence that guarantees that the flush has
completed is also useless. Informally, this would represent a redundant psync. In this
chapter, I show that for any durably linearizable lock-free set there must exist an execu-
tion in which n concurrent processes are invoking n concurrent update operations and n-1
processes each perform at least one redundant psync. Note that this lower bound holds
also for all classes strict linearizable sets.

Definition 15 (Destructive Write). A write (or RMW) to the base object b is destructive
if it changes the value of b.

A destructive write represents an event after which the state of volatile shared memory
does not match the state of persistent shared memory. If the implementation wants to
persist the base object b then a psync is required after a destructive write in which the
flush of the psync is on b. Writes that do not change the value of any base object have no
effect on volatile and persistent shared memory. These writes will never require a flush or
persistence fence.
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π1: Insert(k)p1
CPE

π2: Insert(k)p2

π3: Insert(k)p3

p3 confirms

p2 confirms

CPE of π1

CPE of π1

Figure 5.1: A simplified version of the execution described in theorem 17. In this example
three processes are concurrently executing identical insert operations and two processes
perform a redundant psync.

Definition 16 (Redundant-psync). Consider an execution E of a durably linearizable set.

An explicit flush f applied to the base object b, is redundant if b was previously flushed
by another explicit flush f ′, and there does not exist a destructive write to b between f ′ and
f in E.

A persistence fence fp is redundant if there exists another persistence fence f ′p prior to
fp and there does not exist any non-redundant flush between f ′p and fp in E. A psync which
is a flush and a persistence fence, is redundant if the persistence fence redundant.

The concept of a redundant pysnc captures the idea that a destructive write requires
exactly one flush and one persistence fence in order to persist the base object modified by
the write. Any extra flushes or fences are not necessary.

Theorem 17. In an n-process system, for every durably linearizable lock-free set imple-
mentation I, there exists at least one execution of I in which n processes are concurrently
performing update operations and n-1 processes performs a redundant psync.

Proof. Consider a durably linearizable lock-free set implementation I. Assume for the
purpose of showing a contradiction that no operation performs a redundant psync in every
execution of I. Starting from an empty set, construct an execution E of I as follows:

Let n processes each invoke identical insert operations such that process pi is per-
forming the insert operation πi (1 ≤ i ≤ n). As long as one of the processes continues to
make progress, the decided response will be true for only one of the operations. Call this
operation πs. Let ps run under no contention until immediately after the response of πs is
decided. Consider every other operation πi, ∀i 6= s. Since πi has the same arguments as
πs, if pi continues to make progress the decided response of πi will be false. Let every pi,
∀i 6= s, progress until immediately after πi is decided.
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Consider the consequences of letting every pi, ∀i 6= s return from πi with a response
value of false without confirming that the CPE of πs has occurred. Suppose a crash
event occurs immediately after the response of the operation that completed last. Let E ′

be the crash-recovery extension of E and let π′ be identical to πs. Let E ′′ be E ′ ·Eπ′ where
Eπ′ is the sequential execution beginning with the invocation of π′ and ending with the
corresponding response. Since the CPE of πs did not occur in E and all πi, i 6= s failed
in E, the response of π′ in E ′′ will be true. Let H ′′ be the history of the crash-recovery
extension of E ′′. In this scenario all πi, i 6= s would have completed in E. This means that
ops(H ′′) is not linearizable because the response of all πi reflects being linearized after π′

but π′ was invoked after the response of the πi that completed last. This violates durable
linearizability. To avoid this problem, every process must confirm that the CPE of πs has
occurred.

Let b be the base object involved in the CPE of πs. Only process ps performed a
destructive write on b. This means that only one flush applied to b will be non-redundant
and therefore only one persistence fence following the flush will be redundant. Suppose
one process continues until immediately after the CPE of πs then sleeps indefinitely. If
any other process flushes b and performs a persistence fence then that process will have
performed a redundant psync. The CPE of πs does not change the volatile shared memory
configuration. This means that if the first process to progress past the CPE of πs sleeps
indefinitely, no process will be able to determine if the CPE of πs has occurred. Let ps
continue until immediately after the CPE of πs then sleep indefinitely. Every other process
cannot complete until confirming that the CPE of πs has occurred. However, since ps
already explicitly flushed b and performed a persistence fence any other process explicitly
flushing b and performing a persistence fence would violate the initial assumption but no
process can make progress without flushing b and performing a persistence fence. This
contradicts lock-freedom. In this case n-1 processes pi, i 6= s must perform a redundant
psync demonstrating that the initial assumption leads to a contradiction.

Izraelevitz et al. briefly mention that a helping mechanism for a non-blocking persistent
object would include helping to persist operations [41]. Intuitively, durable linearizability
requires that all operations that complete before a crash event are written to persistent
memory. If the response of update operation π1 relies on the durability of a different
operation π2 then π1 must ensure that the CPE of π2 has occurred. This is primarily a
consequence of lock-free progress since π1 cannot wait for other operations to ensure that
the CPE of π2 has occurred. Theorem 17 describes just one execution in which all but
one process is forced to perform a redundant psync. The execution describes the case n
processes all need to explicitly flush the same base object b and perform a persistence fence
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but only one processes performs a destructive write on b. Since only one destructive write
was applied on b, only one explicit flush (and persistence fence) is necessary to guarantee
that b is written to persistent memory. Since all n processes explicitly flush b then all but
one of the psyncs are redundant. Figure 5.1 provides a simplified version of this example
for n = 3.

When n is large, the execution in which n − 1 processes are forced to perform a re-
dundant psync is obviously an extreme case and in practice it is unlikely that any real
scheduler would result in this execution. Regardless, it is still important to note that re-
dundant psyncs cannot be completely avoided without sacrificing either lock-freedom or
durable linearizability. It is likely that one would not want to sacrifice durable lineariz-
ability since the alternative would be that the implementation guarantees buffered durable
linearizability (or the implementation makes no guarantees with respect to crashes) and it
is not clear whether or not a lock-free buffered durable linearizable set could completely
avoid redundant psyncs. For this reason, to completely avoid redundant psyncs we would
sacrifice lock-freedom. It is not difficult to see how we could use locks to avoid redundant
psyncs. Consider the same example used in theorem 17 but with locks. In this case ps
could simply claim and hold a lock on b until some point after the CPE of πs. All of
the other processes would then spin until the lock on b is released. Each of these other
processes would then claim the lock on b themselves guaranteeing that the value of b will
not change therefore requiring no additional psyncs.

It is possible for an operation in sequential execution of a durably linearizable set to
perform a redundant psync. This would be the case if the configuration of volatile shared
memory does not contain any state information that can be used to identify whether or
not a specific base object has been written to persistent memory. In practice, it is likely
that most implementations would somehow announce the fact that a base object has been
written to persistent memory. All of the existing persistent sets presented in chapter 3
have some mechanism that performs this task (an obvious example is the persistence mark
of [24]).
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Chapter 6

Upper Bounds

The lower bounds presented in the previous chapters offer insights into the theoretical limits
of persistent sets for both durable linearizability and strict linearizability. While these
lower bounds demonstrate a clear separation between durable and strict linearizability,
it is unclear whether or not we can observe any meaningful separation in practice. In
this chapter I present several implementations of durable linearizable sets which I later
compare against the existing work. More specifically, I implement several persistent linked-
lists. I choose to study linked-lists because they generally do not require complicated
volatile synchronization mechanisms. This makes them an ideal candidate for studying the
principles of durable linearizable sets without adding unnecessary complexity.

6.1 Design Decisions

The implementations of my persistent lists are based on several important design decisions
One of the first considerations is the choice of logging versus log-free. Existing literature
favours log-free approaches. Logging would also introduce unnecessary overhead. For these
reasons I choose to focus on log-free implementations of persistent sets. Likewise, I need
to determine how much data I want to persist. We have seen that there are two general
approaches, persisting data structure links or persisting only keys and minimal metadata.
I choose to take the approach of persisting data structure links because this approach does
not sacrifice recovery complexity. Finally, I choose to implement both strict linearizable
and durable linearizable versions of the persistent list. The durable linearizable versions
support a persistence-free search operation whereas the strict linearizable versions do not.
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6.2 Extended Link-and-Persist

The Link-and-Persist technique from [24] represents the state of the art for hand-crafted
algorithms that persist the links of a data structure. Unlike the algorithms in [58], the
Link-and-Persist technique can be used to implement persistent sets without compromising
recovery complexity. I build on the Link-and-Persist technique by extending it to allow for
for persistence-free searches and improved practical performance.

One of the main reasons why the Link-and-Persist technique cannot be used to imple-
ment persistence-free searches is the fact that the Link-and-Persist technique offers no way
to determine what type of update operation (Insert or Remove) caused a link to become
marked as not persistent. To understand the challenges consider an execution with two
processes, p1 and p2 where p1 is performing a contains operation π1 concurrently with
p2 which is performing a remove operation π2. Assume that π1 is persistence-free. Let
k be the key that π1 is searching for and let k also be the key that π2 wants to remove.
Suppose that k is already in the set and is contained in the node n. Let p2 progress until
it unlinks n then let p2 sleep indefinitely at some point before the CPE of π2. p1 will
eventually traverse the link updated as part of π2 which will lead to the successor of n.
The persistence bit of the link will indicate that it is has not been written to persistent
memory. The persistence bit cannot alone be used to determine the correct response for
π1. If a system crash occurs the contents of persistent memory will reflect that k is still the
data structure. π1 is persistence-free so it will not complete the CPE of π2 and we cannot
assume that the CPE of π2 will occur as a result of a background flush. This means that
π1 must either perform a persistence event or it must be linearized prior to π2. The former
violates the initial assumption. The latter requires that π2 is linearized after its CPE.
Since we are not concerned with guaranteeing strict linearizability, we can assume that π2
is linearized after its CPE. This means that p1 must be able to determine the key contained
in the node that π2 unlinked. However, in volatile shared memory, n is not reachable via
a traversal from the root. Since p1 has no way to determine the key contained in n, if π1
returns false the execution is not durable linearizable. For the case where π1 returns true
simply reconstruct the example starting from a configuration wherein the node unlinked
by π1 does not contain k and k is not contained in any node in the list. This means that
there is no safe way to linearize π1 without performing a persistence event.

Implementing persistence-free searches relies on the ability to linearize successful update
operations at some point after the CPE of the operation. This idea was pointed out by
Cohen et al [17]. When persisting structure, this means that searches must be able to
determine if the pointer is not persistent because of an Insert operation or a Remove

operation. My extension addresses these issues with two changes to the original technique.
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First, we require that a successful update operation, πu, is linearized after its CPE.
More specifically, if a volatile data structure would linearize πu at the success of a rmw
on a pointer v then we require that πu is linearized at the success of the rmw that sets
the persistence mark in v. This means that if a search traverses a pointer, v, marked as
not persistent the search can always be linearized prior to the concurrent update which
modified v. This means that if a persistence-free search traverses v while it is marked as
not persistent the search can always be linearized prior to the concurrent update which
modified v.

Secondly, since successful updates are linearized after their CPE if the response of search
operation depends on data that is linked into the data structure by a pointer marked as
not persistent then the search must be able to access the last persistent value of that
pointer. To achieve this, we a pointer field to every node which we call the old field or old
pointer. A node will have both an old pointer and a pointer to its successor (next pointer)
which effectively doubles the size of every data structure link. The old field will point to
the last persistent value of the successor pointer while the successor pointer is marked as
not persistent. In practice, the old field must be initialized to null then updated to a
non-null value when the corresponding successor pointer is modified to a new value that
needs to be persisted. Note that modifications like flagging or marking do not always need
to be persisted; this depends on the whether or not the update can complete while the
flagged or marked pointers are still reachable via a traversal from the root of the data
structure. The easiest way to correctly update the old field is to update the successor
pointer and the old field atomically using a DWCAS. Alternatively, a SWCAS can be used
but this requires adding extra volatile memory synchronization to ensure correctness. For
some data structures such as linked-lists using only SWCAS might also require adding
an extra psync to updates. In order to allow search operations to distinguish between
pointers that are marked as not persistent because of a remove operation versus those that
are not persistent because of an insert operation we require that the old field is always
updated to a non-null value whenever a remove operation unlinks nodes from the data
structure. Insert operations that modify the data structure must flag either the old field
or the corresponding successor to indicate that the pointer marked as not persistent was
last updated by an insert. When using SWCAS to update the old field this flag must be
on the successor pointer.

With our extension if the response of a search operation depends on data linked into
the data structure to by a pointer marked as not persistent it can be linearized prior to
the concurrent update operation that modified the pointer and it can use the information
in the old field to determine the correct response which does not require performing any
psyncs. If the search finds that the update was an insert it simply returns false. If the
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update was a remove but the search was able to find the value that it was looking for then
it can return true since that key will be in persistent memory. If the update was a remove
but the search was not able to find the value that it was looking for then it can check the
if the node pointed to by the old field contains the value.

6.3 Persistent List Implementations

In order to compare my extension to existing work I provide several different implementa-
tions of my persistent list all of which utilize my extended-link-and-persist approach. I use
two different methods for achieving synchronization in volatile memory. Specifically I use
one based on the Harris list [35] and another based on the work of Fomitchev and Rup-
pert [30]. The former takes a lazy approach to deletion that relies on marking for logical
deletion and helping. As a result, marked pointers must be written to persistent memory
which requires an extra psync. The latter does not take a lazy approach to deletions but
still relies on helping and requires extra volatile memory synchronization through the use
of marking and flagging. Fortunately, I do not need to persist marked or flagged point-
ers with this approach. I also utilize 2 different synchronization primitives, DWCAS and
SWCAS.1 The names of the different implementations of the persistent list describe the
synchronization approach and the synchronization primitive. The Physical-Del list uses the
synchronization approach inspired by the work of Fomitchev and Ruppert. The Logical-
Del list uses the synchronization approach inspired by the Harris list. When the algorithm
name contains no suffix this refers to implementations that use DWCAS. If the name has
the suffix -S then the implementation uses SWCAS. In total, I provide four implemen-
tations, Physical-Del, Physical-Del-S, Logical-Deland Logical-Del-S. Table 6.1 summarizes
some details about these different implementations. A detailed description of my persistent
list and pseudocode is presented in § 6.3.2. Note that I assume that data structure nodes
fit on a single cache line. If data structure nodes do no fit on a single cache line I could
augment the implementations to take an approach similar to Cohen et al. [16].

6.3.1 Search Variants

As part of the persistent list, I implement 4 variants of the contains operation. I refer to
these variants as persist-all, asynchronous-persist-all, persist-last and persistence-free.

1I use a hardware implementation of DWCAS, namely the cmpxchg16b instruction. Software based
implementations such as those from the C++ std::atomic library (which utilizes locks) are a significant
performance bottleneck.
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Algorithm
Name

Synch.
Approach

Synch.
Primitive

Minimum
Psyncs Per
Insert

Minimum
Psyncs Per
Remove

Recovery
Step
Complexity

Physical-Del Fomitchev DWCAS 1 1 O(N + n)
Physical-Del-S Fomitchev SWCAS 2 1 O(N)
Logical-Del Harris DWCAS 1 2 O(N + n)
Logical-Del-S Harris SWCAS 2 2 O(N)

Table 6.1: Persistent List Details, Recovery is expressed in terms of N nodes and a maxi-
mum of n concurrent processes.

Persist All (PA). While traversing the list write any pointer marked as not persistent
to persistent memory then attempt to set its persistence bit via a CAS. The maximum
psyncs per search with this variant is unbounded.

Asynchronous Persist All (APA). While traversing the list, flush any pointer marked
as not persistent to persistent memory but perform only a single persistence fence after the
traversal then attempt to set the persistence bit for any flushed pointer that did not change
since the flush. This requires the use of asynchronous flush instructions (clflushopt). The
maximum psyncs per search with this variant is one.

Persist Last (PL). If the pointer into the terminal node of the traversal performed by
the search is marked as not persistent then write it to persistent memory and set its
persistence bit via a CAS. This variant is the most similar to the searches in the linked list
implementation from [24]. The maximum psyncs per search with this variant is one.

Persistence Free (PF). If the pointer into the terminal node of the traversal performed
by the search is marked as not persistent then use the information in the old field of the
node’s predecessor to determine the correct return value without performing any persis-
tence events. Since it does not need to set the durability bit of any link, this variant does
not perform any writes and never performs any persistence events.

Theorem 18. The Physical-Del list is durable linearizable and lock-free.

I provide a proof of theorem 18 in § 6.4. All of the variants of the persistent list
are durable linearizable and lock-free. The proof for the other implementations can be
derived from the proof for the Physical-Del list. If I restrict the persistent list such that
it never invokes a persistence-free contains operation then I can prove that it is strict
linearizable and lock-free. However, imposing this restrict effectively eliminates the need for
the mechanisms added by the extension to the Link-and-Persist technique. This provides
some insight for why researchers may prefer to implement strict linearizable data structures.
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6.3.2 Pseudocode Overview

In the following sections I will provide a more in depth description of the different imple-
mentations of my persistent list by examining the pseudo code. I will focus primarily on
the DWCAS implementation of the Physical-Del list since this is version performed best
in the experimental tests. I will also briefly describe the DWCAS version of the Logical-
Del list and the corresponding SWCAS version. Throughout the pseudo code I utilize the
functions UnmarkPtr, IsDurable, MarkDurable and others of the form IsX or MarkX.
These functions represent simple bitwise operations used to remove marks/flags, check if a
node is marked/flagged and apply marks/flags. I omit their full function bodies. I also use
the function Psync. On Intel systems Psync can be a single clflush instruction, a clflushopt
and an sfence or a clwb and an sfence.

Every version of the persistent list uses the same Node data type. A Node contains four
fields: key, value, next and old. Next and old are word sized pointers. I assume that the
size of the key and value fields allow a single Node to fit on one cache line meaning only
a single flush is required in order to write the contents of the node to persistent memory.2

Nodes represent the critical data that I want to persist. The assumption that the critical
data fits on a single cache line is common. The Link-and-Persist list, Link-Free list and
SOFT list require similar assumptions. It is possible that the persistent list could be
modified to allow for the case where nodes do not fit onto a single cache line by adopting
a strategy similar to [16].

Every version of the persistent list utilizes a dummy head and tail node where the
root of the list is always head, head has no predecessor and contains the key equivalent
to negative infinity. Tail contains the key equivalent to infinity and has no successor. An
empty list consists of only the head and tail nodes where head.next points to tail.

6.3.3 Physical-Del List

Figures 6.1-6.3 show the pseudo code for the Physical-Del list which uses DWCAS. This
implementation is based on the volatile list of Fomitchev and Ruppert [30].

With this approach, I utilize the bottom three bits of a node’s next pointer for flagging
and marking. A link in the data structure can be represented as the tuple 〈next, dflag,
marked, persistence-bit〉. The bottom bit is the persistence bit which as in Link-and-
Persist-technique indicates if the link is persistent. However, in my implementations if the

2On Intel systems a typical cache line size is 64 bytes which is usually more than enough to store a
single node.
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persistence bit is set then the node is persistent meaning the persistence mark is applied
to a link after it is written to persistent memory. The marked bit is used to mark a node
as logically deleted. The dflag bit indicates that a remove operation is going to remove the
successor of the node. Each of these marks are initialized to 0.

This implementation uses DWCAS. Whenever a node is updated both its next and old
fields are updated atomically via a single DWCAS. Any update that sets the persistence
bit in the next pointer of a node will also revert the old field to null.

I will now give an overview of the main functions utilized by the Physical-Del list. Many
of these functions will be very similar to the volatile list in [30] with the main differences
being related to achieving a persistence-free search.

Find. The Find function is shown in figure 6.1. Find has a single argument, key and
returns the tuple 〈gp, p, curr〉 where gp, p and curr are nodes such that curr.key ≥ key
and there was a time during the execution of the function where gp.next pointed to p and
(a possibly later time where) p.next pointed to curr. As in the Link-and-Persist-technique,
Find will also confirm that gp.next and p.next are persistent.

Insert. The Insert function has two arguments key and val representing the key to insert
and its corresponding value. Any execution of Insert begins by invoking Find yielding
the tuple 〈gp, p, curr〉. If the key contained curr is the same as the key to be inserted then
we return false. In this case there is no need to perform any persistence events because
the Find function confirms that curr was persistent meaning there was a time during the
execution of the insert where curr was in persistent memory. If curr does not contain the
key then the insert checks that the p is not marked or dflagged using the function IsClean.
This check ensures that the insert can fail early if the DWCAS on line 19 is guaranteed
to fail. If p is dirty then the insert will attempt to help the concurrent update then retry.
If p is not dirty then a new node n is created. The CreateNode function sets the next
pointer of n to curr, explicitly flushes n to persistent memory and sets the persistence bit
in n.next. Next, on line 16, we create if lagCurr which is a pointer to curr with the iflag
bit set. The insert then attempts a DWCAS to update p.next to n and p.old to if lagCurr.
If the DWCAS is successful the insert explicitly flushes p.next, performs a persistence fence
and sets the persistence bit via the Persist function on line 20. If the DWACS fails then
the insert will retry.

Remove. The Remove function has a single argument key representing the key to be
removed. The initial steps of Remove are similar to Insert. A remove begins by invoking
Find which again returns the tuple 〈gp, p, curr〉 and ensures the same guarantees as in
Insert. If curr.key is not key then the remove returns false. If the key was found then
the remove must confirm that both p and curr are clean. If either is found to be dirty the
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1 Persist(node, expNext, old)
2 Flush(&node.next)
3 durNext = MarkDurable(expNext)
4 i f old == null then
5 old = node.old
6 des = 〈node.next, node.old〉
7 exp = 〈expNext, old〉
8 new = 〈durNext, null〉
9 DWCAS(des, exp, new)

13 Find(key)
14 gp = null
15 p = head
16 pNext = p.next
17 curr = UnmarkPtr(pNext)

19 while true
20 i f curr.key ≥ key then
21 break
22 gp = p
23 p = curr
24 pNext = p.next
25 curr = UnmarkPtr(pNext)

27 i f gp 6= null then
28 gpNext = gp.next
29 i f not IsDurable(gpNext) then
30 Persist(gp, gpNext, null)

32 i f not IsDurable(pNext) then
33 Persist(p, pNext, null)

35 return 〈gp, p, curr〉

1 ContainsPersistFree(key)
2 p = head
3 pNext = p.next
4 curr = UnmarkPtr(pNext)

6 while true
7 i f curr.key ≤ key then break
8 p = curr
9 pNext = p.next

10 curr = UnmarkPtr(pNext)

12 i f IsDurable(pNext) then
13 return curr.key == key
14 else
15 old1 = p.old
16 pNext2 = p.next
17 old2 = p.old
18 pDiff = pNext 6= pNext2
19 oldDiff = old1 6= old2
20 oldNull = old1 == null

22 wasDur = pDiff or oldDiff
23 wasDur = wasDur or oldNull

25 i f wasDur then
26 return curr.key == key
27 else
28 i f IsIflagged(old1) then
29 return fa l se
30 else
31 i f curr.key == key then
32 return true
33 else
34 old1 = UnmarkPtr(old1)
35 return old1.key == key

Figure 6.1: Persist, Find and Persistence Free Contains Functions for Physical-Del (DW-
CAS)
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remove will attempt to help the concurrent update then retry. If p and curr are clean then
dflagCurr is created. dflagCurr is a pointer to curr with the dflag bit set. The remove
then attempts a DWCAS on line 40 to update p.next to dflagCurr and p.old to null.
(When we say that the DWCAS updates p.old to null it is more accurate to say that the
DWCAS confirms that p.old is null since the expected value for p.old is also null). If the
DWCAS succeeds then the HelpRemove function is invoked to complete the remove. After
the HelpRemove function returns the remove the returns true. If the DWCAS fails then
the remove retries.

1 Insert(key, val)
2 while true
3 〈gp, p, curr〉 = Find(key)
4 pNext = p.next

6 i f curr.key == key then
7 return fa l se
8 i f not IsClean(pNext) then
9 HelpUpdate(gp, p)

10 else
11 newNode = CreateNode(key, val, curr)
12 durCurr = MarkDurable(curr)

14 des = 〈p.next, p.old〉
15 exp = 〈durCurr, null〉
16 if lagCurr = MarkIflag(curr)
17 new = 〈newNode, iflagCurr〉

19 i f DWCAS(des, exp, new) then
20 Persist(p, newNode, iflagCurr)
21 return true

22 Remove(key)
23 while true
24 〈gp, p, curr〉 = Find(key)
25 cNext = curr.next
26 pNext = p.next

28 i f curr.key 6= key then
29 return fa l se
30 i f not IsClean(cNext) then
31 HelpUpdate(p, curr)
32 else i f not IsClean(pNext)then
33 HelpUpdate(gp, p)
34 else
35 dflagCurr = MarkDflag(curr)

37 des = 〈p.next, p.old〉
38 exp = 〈curr, null〉
39 new = 〈dflagCurr, null〉
40 i f DWCAS(des, exp, new) then
41 HelpRemove(p, dflagCurr)
42 return true

Figure 6.2: Update Functions for Physical-Del (DWCAS)

Helper Functions. Update operations rely on a helping mechanism to ensure lock-
free progress. This mechanism relies on the functions HelpUpdate, HelpRemove and
HelpMarked.

HelpUpdate is invoked when an update operation finds the node it needs to modify
is dirty. The HelpUpdate function has two arguments parent and dirtyNode and exam-
ines these values to determine the appropriate helper function to invoke. If dirtyNode is
dflagged then HelpRemove is invoked. If dirtyNode is marked then HelpMarked is invoked.
If dirtyNode is clean HelpUpdate returns.

53



1 HelpUpdate(parent, dirtyNode)
2 dirtyNext = dirtyNode.next
3 dirtySucc = UnmarkPtr(dirtyNext)
4 i f IsDflagged(dirtyNext) then
5 HelpRemove(dirtyNode, dirtySucc)
6 else i f IsMarked(dirtyNext)
7 HelpMarked(parent, dirtyNode)

11 HelpMarked(parent, nodeToDel)
12 succ = UnmarkPtr(nodeToDel.next)
13 expNext = Markdflag(nodeToDel)
14 expNext = MarkDurable(expNext)

16 des = 〈parent.next, parent.old〉
17 exp = 〈expNext, null〉
18 new = 〈succ, expNext〉

20 i f DWCAS(des, exp, new) then
21 Persist(parent, succ, expNext)

22 HelpRemove(parent, nodeToDel)
23 while parent.next == nodeToDel
24 succ = nodeToDel.next
25 des = 〈nodeToDel.next, nodeToDel.old〉
26 i f not IsDurable(succ) then
27 Persist(nodeToDel, succ, null)
28 durSucc = UnmarkPtr(succ)
29 durSucc = MarkDurable(durSucc)
30 markedSucc = MarkDel(durSucc)
31 exp = 〈durSucc, null〉
32 new = 〈markedSucc, null〉

34 last = V alDWCAS(des, exp, new)
35 lastMarked = IsMarkedForDel(last.next)

37 i f last == exp or lastMarked then
38 HelpMarked(parent, nodeToDel)
39 return
40 else i f IsDflagged(last.next) then
41 next = UnmarkPtr(last.next)
42 HelpRemove(nodeToDel, next)

Figure 6.3: Helper Functions for Physical-Del (DWCAS)

The HelpRemove function is responsible for marking the successor of a dflagged node.
It takes two arguments parent and nodeToDel. HelpRemove begins by ensuring that
nodeToDel.next is persistent. If nodeToDel.next does not have its persistence bit set then
the Persist function is invoked to write nodeToDel.next to persistent memory and set the
persistence bit. Next, we createmarkedSucc which is a marked pointer to nodeToDel.next.
On line 34 we perform ValDWCAS (a DWCAS that returns the last value at the destina-
tion) to update nodeToDel.next to markedSucc and confirm that nodeToDel.old is null.
If the value returned by the ValDWCAS matches the expected value exp or if it is marked
then we invoke the HelpMarked function then return otherwise we will need to retry. Before
retrying we check if the value returned by the ValDWCAS is dflagged. If it was dflagged
then we invoke the HelpRemove function with the arguments nodeTodel and the unmarked
nodeToDel.next.

The HelpMarked function is responsible for physically deleting a node. HelpMarked

takes two arguments parent and nodeToDel This requires performing a single DWCAS on
line 20 which attempts to atomically update parent.next to the unmarked nodeToDel.next
and parent.old to nodeTodel. If the DWCAS succeeds the Persist function is invoked to
write parent.next to persistent memory, set the persistence bit in parent.next and revert
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parent.old to null. There is no need to retry this DWCAS since the only way that it can
fail is if another process physically deleted nodeToDel.

Contains. We offer four different variants of the Contains function. The pseudo code for
these variants are show in figure 6.1 and figure 6.4. Each of these functions has a single
argument key.

The simplest of these variants is the ContainsPersistAll. In this version we traverse
the list until we reach a node containing a key greater than or equal to key. During the
traversal, if we find a pointer that does not have its persistence bit set then the Persist

function is invoked to write the pointer to persistent memory and set its persistence bit.
Finally, we return true if the terminal node of the traversal contains key and false

otherwise. Unsurprisingly this variant performs poorly in practice.

The ContainsAsynchPersistAll function exploits asynchronous flush instructions to
require only a single persistence fence. In this case, during the traversal any pointer that
does not have its persistence bit set is asynchronously flushed to persistent memory. A
statically allocated array is used to keep track of the nodes that were asynchronously
flushed.3 For simplicity the pseudo code expresses this with append on line 39. After the
traversal a single persistence fence is performed on line 46. Next we iterate the collection
of asynchronously flushed nodes. If the next pointer of the node has not changed since the
flush then we set the persistence bit and revert the old field to null on line 55. Finally,
we return true if the terminal node of the traversal contains key and false otherwise.

The ContainsPersistLast function is similar to the search function in [24]. In this
version, we do not flush anything during the traversal. Instead, we check that link that led
to the the terminal node reached by the traversal has its persistence bit set on line 9. If
this is not the case then we invoke the Persist function to write the pointer to persistent
memory and set the persistence bit. Again we return true if the terminal node of the
traversal contains key and false otherwise.

Finally we have the ContainsPersistFree function. The traversal performed by this
function is the same as in the ContainsPersistLast function. Similar to the persist last
variant, we are only concerned with the last pointer traversed by the contains. If pointer
that led to the the terminal node, curr, found during the traversal has its persistence bit
set to then we simply return true if curr contains key and false otherwise on line 26. If
this link does not have its persistence bit set we must read the value stored in the old field
of the predecessor of curr, namely p.old. Unfortunately, there is no way to perform an

3The size of this array should be proportional to the maximum number of concurrent processes and the
maximum key. We do not put great emphasis on this since this variant does not perform well in practice.
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1 ContainsPersistLast(key)
2 p = head
3 pNext = p.next
4 curr = UnmarkPtr(pNext)
5 while curr.key ≤ key
6 p = head
7 pNext = p.next
8 curr = UnmarkPtr(pNext)
9 i f not IsDurable(pNext) then

10 Persist(p, curr, null)
11 i f curr.key == key then return true
12 else return fa l se

16 ContainsPersistAll(key)
17 p = head
18 pNext = p.next
19 curr = UnmarkPtr(pNext)
20 while true
21 i f not IsDurable(pNext) then
22 Persist(p, pNext, null)
23 i f curr.key ≥ key then
24 break
25 p = curr
26 pNext = p.next
27 curr = UnmarkPtr(pNext)
28 i f curr.key == key then return true
29 else return fa l se

30 ContainsAsynchPersistAll(key)
31 p = head
32 pNext = p.next
33 curr = UnmarkPtr(pNext)
34 flushList = []
35 while true
36 i f not IsDurable(pNext) then
37 AsynchFlush(&p.next)
38 old = p.old
39 flushList.append(〈parent, curr, old〉)
40 i f curr.key ≥ key then break
41 p = curr
42 pNext = p.next
43 curr = UnmarkPtr(pNext)

45 i f not IsEmpty(flushList) then
46 SFence()

48 for each 〈n, next, old〉 in flushList
49 nonDur = n.next == next and

n.old == old
50 i f nonDur then
51 durNext = MarkDurable(next)
52 des = 〈node.next, node.old〉
53 exp = 〈next, old〉
54 new = 〈durNext, null〉
55 DWCAS(des, exp, new)
56 i f curr.key == key then return true
57 else return fa l se

Figure 6.4: Persist Last and Persist All Contains for Physical-Del (DWCAS)
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atomic read of p.next and p.old without using locking or performing a DWCAS. Both of
these options would be expensive. Fortunately we can avoid this by exploiting the fact that
p.old and p.next are atomically updated together. We must ensure that the value we read
for p.old corresponds to the value that we last read for p.next. Recall that in this scenario,
the contains last read that p.next points to curr and does not have its persistence bit
set. Since we can only atomically read one of p.old and p.next we must reread these fields
to ensure that neither field has changed. This requires reading both p.old and p.next
twice then comparing the values. Lines 15 through 23 show these reads and the associated
comparisons. If the first read does not match the second read or if p.old is null then there
was a time during the execution of the contains that the value we read for p.next was
persistent so we return true if curr contains key and false otherwise on line 26. If the
values for both reads of p.old and p.next match and p.old is not null then we know that
the value we read for p.old corresponds to the value we read for p.next and that p.next is
not persistent. In this case, we check if p.old was iflagged. If p.old was iflagged then p.old
was updated to a non-null value by a concurrent Insert so we can return false. If p.old
was not iflagged we know that p.next is not persistent because of a concurrent remove
operation and we know that p.old points to the last persistent value stored in p.next. This
also means that there was a time during the execution of the contains where curr was
pointed to by a persistent link so if curr contains key then we can return true. If curr
does not contain key then we return true if the node pointed to by p.old old contains key
and false otherwise.

6.3.4 Logical-Del List

The pseudo code for the Logical-Del list is shown in Figures 6.5- 6.6. This version of
the persistent list is based on the volatile Harris list [35]. The volatile synchronization
approach is the primary difference compared to the Physical-Del list. The Logical-Del list
does not utilize any flagging. Nodes can still be marked indicating that the node is logically
deleted. This means that a link in the data structure can be represented as the tuple
〈next,marked, persistence − bit〉. The persistence-bit is used in the same manner as in
the Physical-Del list. Since remove operations can complete before a logically deleted node
is physically deleted, the logical deletion mark must be written to persistent memory before
physically unlinking the node. We will now give an overview of the main functions utilized
by the Logical-Del list.

Trim. The Trim function has two arguments, parent and curr. Trim performs a DWCAS
that attempts to unlink the logically deleted node curr by updating parent.next to the
successor of curr and p.old to null.
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1 Insert(key, val)
2 while true
3 〈p, curr〉 = Find(key)
4 pNext = p.next

6 i f curr.key == key then
7 return fa l se

9 newNode = CreateNode(key, val, curr)
10 durCurr = MarkDurable(curr)
11 if lagOld = MarkIflag(curr)

13 des = 〈p.next, p.old〉
14 exp = 〈durCurr, null〉
15 new = 〈newNode, iflagOld〉

17 i f DWCAS(des, exp, new) then
18 Persist(p, newNode, iflagOld)
19 return true

1 Remove(key)
2 while true
3 〈p, curr〉 = Find(key)
4 currNext = curr.next
5 pNext = p.next
6 i f curr.key != key then
7 return fa l se
8 i f not IsDurable(currNext) then
9 Persist(curr, currNext, null)

11 markedNext = MarkDel(curr)
12 des = 〈curr.next, curr.old〉
13 exp = 〈currNext, null〉
14 new = 〈markedNext, 〉

16 i f DWCAS(des, exp, new) then
17 Persist(curr,markedNext, null)
18 Trim(p, curr)
19 return true

Figure 6.5: Update Operations for Logical-Del (DWCAS)

Find. The Find function in the Logical-Del list is very similar the Find in the Physical-
Del. Find has a single argument, key and returns the tuple 〈p, curr〉 where p and curr are
nodes such that curr.key ≥ key and there was a time during the execution of the function
where p.next pointed to curr. Unlike the Physical-Del list we do not return gp however,
Find will still confirm that gp.next and p.next are persistent. The traversal performed by
Find will help cleanup any nodes that are marked as logically deleted. Before physically
deleting any logically deleted nodes, Find will ensure that the logical deletion mark is
persistent by invoking the Persist function on line 28. The Find will invoke the Trim

function on line 29 to physically delete the logically deleted node.

Insert. The Insert function of the Logical-Del list is almost identical to the Insert of
the Physical-Del list. Unlike the Physical-Del list this version does not check if nodes are
dirty since nodes are never flagged and logically deleted nodes are trimmed during Find.

Remove. The Remove function also does not check if nodes are dirty. After invoking
Find and confirming that curr contains the key, the Remove will ensure that curr.next
is persistent on line 8. If curr.next is not persistent the Remove will invoke Persist on
line 9. The Remove will attempt to mark curr as logically deleted with the DWCAS on
line 16. If this DWCAS succeeds, Persist is invoked to write the logical deletion mark to
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1 Trim(parent, curr)
2 succ = curr.next
3 durCurr = MarkDurable(curr)
4 des = 〈parent.next, parent.old〉
5 exp = 〈durCurr, null〉
6 new = 〈succ,markedCurr〉
7 i f DWCAS(des, exp, new) then
8 Persist(p, succ,markedCurr)

11 GetMark(node)
12 nodeNext = node.next
13 marked = IsMarked(nodeNext)
14 markDur = IsDurable(nodeNext)
15 return marked and markDur

19 Find(key)
20 gp = null
21 p = head
22 pNext = p.next
23 curr = UnmarkPtr(pNext)
24 while true
25 currNext = curr.next
26 i f IsMarked(currNext)
27 i f not IsDurable(currNext) then
28 Persist(curr, currNext, null)
29 Trim(p, curr)
30 else
31 i f curr.key ≥ key then break
32 gp = p
33 p = curr
34 pNext = curr.next
35 curr = UnmarkPtr(pNext)
36 i f gp! = null then
37 gpNext = gp.next
38 i f not IsDurable(gpNextP tr) then
39 Persist(gp, gpNext, null)
40 i f not IsDurable(pNext) then
41 Persist(p, pNext, null)
42 return 〈p, curr〉

43 PersistenceFreeContains(key)
44 p = head
45 pNext = p.next
46 curr = UnmarkPtr(pNext)
47 while true
48 i f curr.key ≥ key then break
49 p = head
50 pNext = p.next
51 curr = UnmarkPtr(pNext)

53 marked = GetMark(curr)
54 i f IsDurable(pNext) then
55 i f curr.key == key then
56 return not marked
57 else
58 return fa l se
59 else
60 old1 = parent.old
61 pNext2 = parent.next
62 old2 = parent.old
63 pDiff = pNext 6= pNext2
64 oldDiff = old1 6= old2
65 oldNull = old1 == null
66 wasDur = pDiff or oldDiff
67 wasDur = wasDur or oldNull

69 i f wasDur then
70 i f curr.key == key then
71 marked = GetMark(curr)
72 return not marked
73 else
74 return fa l se
75 else
76 i f IsIflagged(old1) then
77 return fa l se
78 else
79 i f curr.key == key then
80 marked = GetMark(curr)
81 return not marked
82 else
83 old1 = UnmarkPtr(old1)
84 return old1.key == key

Figure 6.6: Helper functions, Find and Flush-Free Contains for (DWCAS) Logical-Del
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persistent memory then invoke Trim to physically delete curr.

Contains. Due to the large amount of overlap with the Physical-Del list, I omit pseudo
code for all of the contains functions in the Logical-Del list except ContainsPersistFree.
The ContainsPersistFree function of the Logical-Del list is also quite similar to the
ContainsPersistFree function of the Physical-Del list. The main difference is that the
terminal node found by the traversal, curr, can be marked as logically deleted. For this
reason, anywhere that we check if curr contains key we must also confirm that curr is not
marked as logically deleted and if curr is marked as logically deleted we must confirm that
the mark is persistent. This is accomplished by the GetMark function on lines 53, 71, and
80.

The GetMark function has one arguments, node and returns false if the node is not
marked as logically deleted or it is marked as logically deleted by the mark is not persistent.
Otherwise, GetMark returns true.

6.3.5 Logical-Del-S List

The pseudo code for the Logical-Del-S list is shown in Figures 6.7-6.8. 6.7-6.8. Without
DWCAS we cannot atomically update both the next pointer and old pointer in a node.
This eliminates the possibility of using the old pointer to allow insert operations to require
a minimum of one psync. Insert operations flag the next pointer instead of the old pointer.
This means that only remove operations can change the old pointer to a non-null value.
The SWCAS never marks/flags the old pointer at all meaning a non-null old pointer always
corresponds with a concurrent remove operation. Consequently, the SWCAS implementa-
tion requires two psyncs per insert. The extra psync is in the CreateNode function. I omit
the body of the CreateNode function.

In the SWCAS version before attempting to physical delete at node n the operation
must first CAS the old pointer from null to n. After unlinking n and persisting the
updated next pointer, the old pointer can be reverted back to null using a CAS.

The old pointer is also used to help concurrent remove operations. Updates confirm
that the old pointer of any node that they want to modify is null. If it is non-null then
the update will invoke the HelpOld function which will help to physically unlink the node
pointed to by the old pointer.

In the Logical-Del list, since inserts do not set the old pointer to a non-null value, it
is possible that a remove operation will set the old pointer of a node n then a concurrent
insert will update n.next. This is not problematic because the old pointer will later be
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reverted back to null without any issues. This is not possible in the Physical-Del list
because the predecessor of a marked node is flagged before the old pointer is set so an
insert cannot successfully CAS n.next.

The old pointer is set back to null in the following functions Find, HelpRemove (for
the Logical-Del-S version only) and HelpOld. Consider the example where the old pointer
in the node u is non-null. In the HelpOld function the CAS to revert old back to null

is only performed after first attempting to help the remove that set the old pointer to a
non-null value. Call the node pointed to by the old pointer d (for node to delete). Helping
the remove requires attempting a CAS on the next pointer from d to u.next. If this CAS
failed then either 1) some other process completed the CAS to unlink d but no process
progressed any further meaning u.old still points to the last durable value stored in u.next
and u.next is not durable or 2) some process unlinked d and persisted u.next meaning if
u.old still points to d then u.old is stale. Regardless of whether or not the CAS succeeded
we persist u.next. Finally we attempt to CAS u.old from d to null. This CAS will only
succeed if it was true that u.old is stale. In the Find and HelpRemove functions if the
operation relies on the durability of the next pointer in some node v and v.next is found
to be non-durable then we persist v.next. We will also attempt to revert the v.old back to
null via a CAS. After rereading v.next, this CAS is attempted if and only v.old points to
a node other than v.next and v.next is durable. This will fail if the remove that set v.old
to a non-null value has not been completed. In that case the process might need to help
the remove. This helping is done in Insert and Remove.

Implementing other persistent sets using SWCAS would follow the same approach where
the old pointer is never reverted to null without doing one of the following 1) helping the
concurrent remove that set the old pointer to a non-null value, 2) confirming that the
concurrent remove has completed or 3) if the response of remove operations relies only on
marking for logicial deletion then the old field might need need to be reverted to null as a
result of conflicting updates (as described previously with the Logicial-Del list).
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1 Find(key)
2 gp = null
3 p = head
4 pNext = p.next
5 curr = UnmarkPtr(pNext)
6 cNext = null

8 while true
9 cNext = curr.next

10 i f IsMarked(cNext) then
11 i f not IsDurable(cNext) then
12 Persist(curr, cNex)
13 Trim(parent, curr)
14 else
15 i f curr.key ≥ key then break
16 gp = p
17 p = curr
18 pNext = curr.next
19 curr = UnmarkPtr(pNext)

21 gpNext = gp.next
22 i f not IsDurable(gpNext) then
23 Persist(gpOld, gpNext)
24 gpOld = gp.old
25 gpOldN = UnmarkPtr(gpOld)
26 gpNext = gp.next
27 gpNextN = UnmarkPtr(gpNext)
28 i f gpOldN 6= gpNextN and

IsDurable(gpNext) then
29 CAS(gp.old, gpOld, null)

31 i f not IsDurable(pNext) then
32 Persist(pOld, pNext)
33 pOld = parent.old
34 pOldN = UnmarkPtr(pOld)
35 pNext = p.next
36 pNextN = UnmarkPtr(pNext)

38 i f pOldN 6= pNextN and
IsDurable(pNext) then

39 CAS(p.old, pOld, null)
40 return 〈p, curr〉

41 PersistenceFreeContains(key)
42 p = head
43 pNext = p.next
44 curr = UnmarkPtr(pNext)

46 while true
47 i f curr.key ≥ key then break
48 p = head
49 pNext = p.next
50 curr = UnmarkPtr(pNext)

52 marked = GetMark(curr)

54 i f IsDurable(pNext) then
55 i f curr.key == key then
56 return not marked
57 else
58 return fa l se
59 else i f not wasDur and

IsIflagged(pNext) then
60 return fa l se
61 else
62 i f curr.key == key then
63 marked = GetMark(curr)
64 return not marked
65 else
66 old1 = parent.old
67 pNext2 = parent.next
68 old2 = parent.old

70 pDiff = pNext 6= pNext2
71 oldDiff = old1 6= old2
72 oldNull = old1 == null

74 wasDur = pDiff or oldDiff
75 wasDur = wasDur or oldNull

77 i f wasDur then
78 return fa l se
79 else
80 old1 = UnmarkPtr(old1)
81 return old1.key == key

Figure 6.7: Logical-Del-S, Find and Persistence-Free Contains
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1 Trim(p, nodeToDel)
2 i f CAS(p.old, null, nodeToDel) then
3 HelpOld(p, nodeToDel)

9 Persist(node, nextP tr)
10 Psync(&node.next)
11 durNext = UnmarkPtr(nextP tr)
12 durNext = MarkDurable(nextP tr)
13 CAS(node.next, nexPtr, durNext)

18 Insert(key, val)
19 while true
20 〈p, curr〉 = search(key)
21 pOld = p.old
22 durCurr = MarkDurable(curr)

24 i f pOld 6= null then
25 pNext = p.next
26 HelpOld(p, old, pNext)
27 continue

29 newNode = CreateNode(key, val, curr)
30 if lagNew = MarkIflag(newNode)

32 i f CAS(p.next, durCurr, iflagNew)
then

33 Persist(p, iflagNew)
34 return true

35 HelpOld(node, old)
36 succ = UnmarkPtr(old.next)
37 durNext = MarkDurable(old)
38 CAS(node.next, durNext, succ)

nodeNext = UnmarkPtr(node.next)
39 i f not IsDurable(nodeNext) then
40 Persist(node, succ)
41 CAS(node.old, old, null)

45 Remove(key)
46 while true
47 〈p, curr〉 = search(key)
48 cNext = curr.next
49 cOld = curr.old
50 pNext = p.next
51 pOld = p.old

53 i f curr.key != key then return
fa l se

55 i f cOld! = null then
56 HelpOld(curr, cOld, cNext)
57 else i f pOld! = null then
58 HelpOld(p, pOld, pNext)
59 else
60 markedCurr = MarkForDel(cNext)
61 exp = UnmarkPtr(cNext)
62 exp = MarkDurable(ext)
63 i f CAS(curr.next, exp,markedCurr)

then
64 Persist(curr,markedCurr)
65 Trim(p, curr)
66 return true

Figure 6.8: Logical-Del-S, Update functions and helpers
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6.4 Correctness

In this section I will provide a proof sketch arguing that the DWCAS implementation
of the Physical-Del list is durable linearizable and lock-free. Proving that the Physical-
Del list is linearizable and lock-free is very similar to the correctness proof of [30]. It
is fairly straightforward to prove lock-freedom and linearizability of the Physical-Del list
since the volatile synchronization utilized in the Physical-Del list can be thought of as a
simplified version of the linked list in [30] which is linearizable and lock-free. The proof of
the DWCAS Harris style list is a natural extension of this proof and the original Harris
list correctness proof.

6.4.1 Linearization Points

I will begin by describing how I choose the linearization points for every operation in
the Physical-Del list. These linearization points are chosen such that updates are lin-
earized at some point after the CPE of the operation. Note that this assumes that the
ContainsPersistFree is utilized. If the ContainsPersistFree is never invoked then I
can argue that the Physical-Del list is strict linearizable. This requires that the lineariza-
tion point is always chosen to be the CPE of the operation (or for unsuccessful updates
and searches the CPE of the corresponding successful update). Before describing the lin-
earization points I provide some necessary definitions.

Definition 19 (Durable). At configuration c, a pointer ρ is considered durable if the dura-
bility bit in ρ is set to 1 at c.

A node n, is considered durable if the pointer into n is durable at c.

c, we say that n is durably linked in the volatile data structure if n is durable and n is
reachable via a traversal starting from the root at c.

Definition 20 (Volatile Data Structure). The volatile data structure at a configuration c,
is the set of nodes that are reachable by a traversal starting from the head.

Definition 21 (Volatile Abstract Set). The volatile abstract set at a configuration c is the
set of keys in nodes in the volatile data structure, at configuration c.

Definition 22 (Persistent Data Structure). Consider an execution E of the Physical-
Del list. Let c be the configuration after the last event in E. Let E ′ be the crash-recovery
extension of E. Let c′ be the configuration after the last event in E ′. The persistent data
structure at c is equivalent to the volatile data structure at c′.
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Definition 23 (Persistent Abstract Set). Consider an execution E of the Physical-Del list.
Let c be the configuration after the last event in E. Let E ′ be the crash-recovery extension
of E. Let c′ be the configuration after the last event in E ′. The persistent abstract set at c
is the equivalent to the volatile abstract set at c′.

Insert. Consider an Insert π invoked by process p where the key provided as an argument
to π is k. Case 1: π returns false at line 7. If π returns false then there must be a
configuration c that exists during the execution of π where k is in the persistent abstract
set at c and we linearize π at a time corresponding to when k is in the persistent abstract
set at c. To prove that such a time exists, assume that k is never in the persistent abstract
set at any configuration that exists during the execution of π. If this were true either k is
not in the volatile data abstract set at any configuration that exists between the invocation
and response of π or k is contained in a node that is in the volatile data structure but
the node is not durable at any configuration that exits exists between the invocation and
response of π. Since the insert returned false curr.key was equal to k. This means that k
must have been in the volatile abstract set since we found it via a traversal starting from
the head. The Find invoked by π which returned curr guarantees that curr is durable.
This means that there is a configuration that exists between the invocation and response
of π where k is in the persistent abstract set. Case 2: π returns true. If π returns true

then the DWCAS on line 19 succeeded inserting the node newNode by updating p.next.
In this case we linearize π at the first successful DWCAS that sets the persistence bit in
p.next while p.next points to newNode. This DWCAS must exist at some point before
the response of π since the DWCAS performed by the Persist invoked on line 20 can fail if
and only if some process other than p successfully performed an identical DWCAS setting
the persistence bit in p.next. See lemma 37 for a proof of this claim.

Remove. Consider a Remove π invoked by process p where the key provided as an argument
to π is k. Case 1: π returns false. If π returns false then there must be a configuration
c that exists during the execution of π where k is not in the persistent abstract set at c
and we linearize π at the time corresponding to when k is not in the persistent abstract set
at c. To prove that such a time exists, assume that k is always in the persistent abstract
set at any configuration that exists during the execution of π. If this were true the node
n containing k must always be in the persistent data structure at every configuration that
exists between the invocation and response of π. If n is in the persistent data structure
then n is also in the volatile data structure. This means that the traversal performed by
the Find invoked by π will end at n meaning it will be returned as curr. This means
that the check on line 28 will fail which is impossible if π returns false. Case 2: π
returns true. If π returns true then the DWCAS on line 20 of the HelpMarked function
succeeded in physically deleting the node nodeToDel by updating parent.next to point
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to the successor of nodeToDel. In this case we linearize π at the first successful DWCAS
that sets the persistence bit in parent.next while parent.next points to the successor of
nodeToDel. This DWCAS must exist at some point before the response of π since the
DWCAS performed by the Persist invoked on line 21 can fail if and only if some process
other than p successfully performed an identical DWCAS setting the persistence bit in
p.next.

Contains that Persist Data. Consider a ContainsPersistLast π invoked by process p
where the key provided as an argument to π is k. Case 1: π returns true. If π returns true
then there must be a configuration c that exists between the invocation and response of π
where k is in the persistent abstract set at c and we linearize at the time corresponding
to when k is in the persistent abstract set at c. The proof is the same as an Insert

that returns false. Case 2: π returns false. If π returns false then there must be a
configuration c that exists between the invocation and response of π where k is not in the
persistent abstract set at c and we linearize at the time corresponding to when k is not in
the persistent abstract set at c. The proof is the same as an Remove that returns false.

The linearization points and proofs for the other versions of the Contains function that
perform persistence events follow the same structure.

Persistence Free Contains. Consider a ContainsPersistFree π invoked by process p
where the key provided as an argument to π is k. Case 1: π returns true at line 13. In
this case the node curr was found via a traversal starting from the head, the pointer into
curr was durable and curr does contain k. This means that there is a time during the
execution of π when k was in the persistent abstract set and we linearize at that time.

Case 2: π returns false at line 13. In this case the node curr was found via a traversal
starting from the head and the pointer into curr was durable and curr does not contain k.
This means that there is a time during the execution of π when k was not in the persistent
abstract set and we linearize at that time.

Case 3: π returns true at line 26. In this case the node curr was found via a traversal
starting from the head and it contains k, however, when we first traversed the pointer into
curr it was not durable. After rereading, we found that either the pointer into curr or the
old field in the predecessor of curr has changed. Apply the same structure as in the proof
of lemma 37 and note that before the DWCAS the Persist function performs a psync.
This means that if either of these fields changed then some process must have written curr
to persistent memory. This means that there is a time during the execution of π when k
was in the persistent abstract set and we linearize at that time.

Case 4: π returns false at line 26. This is the same as case 3 except that curr does
not contain k. This means that there is a time during the execution of π when k is not in
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the persistent abstract set.

Case 5: π returns false at line 29. In this case we have not established the existence of
a time where curr is durable and the old field in the predecessor of curr is iflagged. This
means that curr is being inserted by a concurrent operation. We linearize π at any point
after its invocation and before the CPE of the concurrent insert. Since we found that curr
is not durable and the old field of the predecessor of curr is iflagged we know that this
time exists at some point during the execution of π.

Case 6: π returns true at line 32. In this case we have not established the existence of
a time where curr is durable but the old field in the predecessor of curr is not iflagged and
curr contains k. This means that curr is not durable because a concurrent remove has
physically deleted the last predecessor of curr. Applying the same argument as in case 3,
we establish a time during the execution of π where curr is in the persistent data structure
meaning k is in the persistent abstract set and we linearize π at that time.

Case 8: π returns true at line 35. In this case we have not established the existence
of a time where curr is durable but the old field in the predecessor of curr is not iflagged.
This means that curr is not durable because of an incomplete remove operation. Let p
be the predecessor of curr. By theorem 35 the node old pointed to by p.old was the last
durable value in p.next. If π returned true then p.old contained k. Since p.old was not
null and p.old contains k then there is a time during the execution of π when k is in the
persistent abstract set and we linearize π at that time.

Case 9: π returns false at line 35. This is the same as case 8 except old does not
contain k. This means that there is a time during the execution of π when k is not in the
persistent abstract set and we linearize π at that time.

I prove that the Physical-Del list maintains several invariants. First, I define some
other necessary terminology used in the proofs.

Definition 24 (Dflagged). A node n is considered dflagged at configuration c if the dflag
bit in n.next is set to 1 and n is reachable via a traversal starting from the head in c.

Definition 25 (Logically Deleted). A node n is considered logically deleted at configuration
c if the marked bit in n.next is set to 1 and n is reachable via a traversal starting from the
root in c.

Definition 26 (Physically Deleted). A node n is considered physically deleted at configu-
ration c if n cannot be reached by a traversal starting from the root.

Definition 27 (Consistency). The Physical-Del list is consistent with some persistent ab-
stract set P if ∀k ∈ P , k is in a durable node in the volatile data structure.
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Invariant 28. A node is never both logically deleted and dflagged.

Invariant 29. Once a node is marked its next pointer never changes.

Invariant 30. If the node n is in the volatile data structure at configuration c and n is
logically deleted in c, then the predecessor of n is dflagged and the successor of n is not
logically deleted in c.

Invariant 31. In a configuration c, if n.next is not durable then the n.old is the last
durable pointer stored in n.next

Invariant 32. Consider an execution E of the Physical-Del list. Let c be the configuration
after the last event in E. Let Pc denote the persistent abstract set at c and Vc denote the
volatile abstract set at c. Pt \ Vt is a subset of the keys that were part of remove operations
that have no response in E and Vt \ Pt is a subset of the keys that were part of insert
operations that have no response in E.

Theorem 33. theorem 28 always holds for any configuration produced by an execution of
the Physical-Del list.

Proof. The invariant is trivially true for an empty list. When a new node is created the next
pointer in the node is not marked or dflagged. This cannot change until the node is linked
in the list such that it is reachable via a traversal from the head. The next pointer of any
node is atomically updated by the DWCAS on line 55 of the ContainsAsynchPersistAll
function, line 9 of the Persist function, line 19 of the Insert function, line 40 of the
Remove function, line 20 of the HelpMarked function, line 34 of the HelpRemove function
and line 9 of the Persist function. None of these DWCAS will update a node to be both
marked and dflagged.

Theorem 34. theorem 29 always holds for any configuration produced by an execution of
the Physical-Del list.

Proof. No DWCAS will ever modify a marked pointer. The expected value of every DW-
CAS in the form 〈n, o〉 is always explicitly defined such that n is unmarked.

Theorem 35. theorem 31 always holds for any configuration produced by an execution of
the Physical-Del list.

Proof. The old field in any node n is updated to a non-null value by the DWCAS on
line 19 of the Insert function or the DWCAS on line 20 of the HelpMarked function. Let
〈e1, null〉 be the expected value of the DWCAS that updated n.old to a non-null value
and 〈x1, x2〉 be the new value. In both cases the x2 is explicitly defined to be equal to e1
and e1 is explicitly defined to be a durable pointer.
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Theorem 36. theorem 30 always holds for any configuration produced by an execution of
the Physical-Del list.

Proof. This is trivially true for an empty list and a list that contains only a single node.
For a list containing two or mode nodes consider the following. If a node n is in the volatile
data structure at configuration c then n is reachable via a traversal starting from the head.
This means that the both the successor (if one exists) and predecessor of n are in the
volatile data structure at c. n can only become logically deleted by the DWCAS on line 34
of the HelpRemove function. If an execution of HelpRemove reached this DWCAS then the
condition of the while loop in HelpRemove must have been true. This means that there
was a time during the execution of HelpRemove where the predecessor of n was dflagged.
The only DWCAS that removes the dflag is the DWCAS on line 20 of the HelpMarked

function. This DWCAS also physically deletes the successor of the dflagged node. This
means that if the DWCAS succeeds, n will no longer be in the volatile data structure
and while n is in the volatile data structure its predecessor is dflagged. In order for the
successor of n to be logically deleted the DWCAS on line 34 of HelpRemove must succeed.
The expected value of this DWCAS is explicitly constructed such that it is unflagged and
unmarked on line 28. Since n is logically deleted the DWCAS will never succeed meaning
the successor cannot be logically deleted.

Lemma 37. The DWCAS on line 9 of the Persist function invoked by process p will fail
if and only if some process other than p successfully completes an identical DWCAS.

Proof. Consider an execution of the Persist function by process p. Let n be the node
such that the destination field of the DWCAS on line 9 of the Persist by process p is
〈n.next, n.old〉. Call this DWCAS d. The expected value of d is 〈x, o〉 where x is a non-
durable pointer. d sets the persistence bit in n.next and reverts n.old to null. Assume p
fails d. This means that the actual value of n.next is either x′ where x′ is equivalent to x
with the persistence bit set or some other value y 6= x.

In this case some other process p′ must have concurrently updated n when n.next was
x. This means that p′ must have performed an update involving n or an asynchronous-
persist-all Contains.

If p′ successfully completed the the DWCAS in asynchronous-persist-all Contains while
n.next was x then it is easy to see that this DWCAS is identical to d. The DWCAS in
every other function (excluding Persist) has an expected value that is explicitly defined
to be a durable next pointer and a null old pointer. This means that these DWCAS will
always fail if the n.next is not durable. Since x is not durable, any process that attempts a
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DWCAS on n in any of the update or helper functions will fail. In each case, if the process
fails the DWCAS it must retry the operation. This will eventually lead to the process
invoking Persist with the first two arguments being n and x. Thus one of these processes
will successfully complete a DWCAS identical to d.

Theorem 38. Update operations of the Physical-Del list change the volatile abstract set
exactly once.

Proof. We can identify each of the atomic instructions that update the volatile abstract set.
Note that unsuccessful update operations do not change either the volatile data structure
or the volatile abstract set. For insert operations the volatile abstract set is updated at
the success of the DWCAS on line 19 of the Insert function. For remove operations the
volatile abstract set is updated at the success of the DWCAS on line 20 of the HelpMarked

function. These atomic instructions also correspond to the points at which the volatile
data structure is updated.

Theorem 39. Update operations of the Physical-Del list change the volatile abstract set
before changing the persistent abstract set.

Proof. Consider an execution E of the Physical-Del list. Let c be the configuration after
the last event in E. The persistent data structure at c contains all of the durable nodes in
volatile data structure at c as well as any non-durable node in volatile data structure at c
where the node is not durable because of a remove operation.

Update operations modify the volatile abstract set before they update the persistent
abstract set. Insert operations modify the volatile abstract set at the success of the DWCAS
on line 19 of the Insert function. Remove operations modify the volatile abstract set at
the success of the DWCAS on line 20 of the HelpMarked function. In both cases the
DWCAS by definition always happens before the CPE of the update operation.

If a crash occurs after a remove operation π succeeds the DWCAS on line 20 of
HelpMarked but before its CPE then the persistent abstract set will still contain the key
that π removed from the volatile abstract set. More precisely, let R be the set of remove
operations that were incomplete in E. Let kπ be the key that was input to π ∈ R. For
any π ∈ R that completes the DWCAS on line 20 of HelpMarked but the CPE of π has
not occurred kπ will not be in the volatile abstract set at c but kπ will be in the persistent
abstract set at c.

Similarly, if a crash occurs after an insert operation π succeeds the DWCAS on line
19 of Insert but before its CPE then the the volatile abstract set will contain the key
inserted by π but the persistent abstract set will not.
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Theorem 40. Invariant 32 holds for any configuration produced by an execution of the
Physical-Del list.

Proof. This follows from theorem 39.

Theorem 41. Insert, Remove and Contains are lock-free.

Proof. Insert, Remove and Contains all perform the same traversal of the list beginning
from the head. In each case the traversal is a while loop that after finding a node contain
a key greater or equal to the search key. Each iteration of the loop executes O(1) steps. If
no concurrent process successfully performs the DWCAS on line 19 of Insert or line 20
of HelpMarked then the volatile data structure and the volatile abstract set is unchanged.
This means that the loop will terminate in a finite number of steps. If a concurrent process
successfully performs the DWCAS on line 19 of Insert then the loop could require one
more iteration. This means that the traversal will complete in a finite number of steps or
another process completes a DWCAS updating the volatile abstract set.

In the case of Contains operations or the Find function, the instructions performed
after the traversal execute O(1) steps.

Update operations have a retry loop. One iteration of the loop executes O(1) steps. For
Insert another iteration of the loop is required if the node p node returned by the Find

function is marked or flagged or if the DWCAS on line 19 fails. If the DWCAS in Insert

fails then some other concurrent process must have completed a DWCAS on p. If p is dirty
then the Insert will help the concurrent update. The helper function HelpMarked executes
O(1) steps. The helper function HelpRemove has a retry loop. A single iteration of this
loop executes O(1) steps. Another iteration of the loop is required if the DWCAS on line
34 fails and the value returned is not marked. Since the condition of the loop checks that
the node nodeToDel is still the successor of the node parent, failing the DWCAS means
that some other concurrent operation successfully performed a DWCAS on parent. If no
other process performs a DWCAS on parent then the loop in HelpRemove will terminate.

For Remove another iteration of the loop is required if the node p or the node curr
returned by the Find function is marked or flagged or if the DWCAS on line 40 fails. If
the DWCAS in Remove fails then some other concurrent process must have completed a
DWCAS on p. If p is dirty or node is dirty the Remove will help complete the concurrent
update requiring the same steps as described for the case of Insert.

Theorem 42. The Physical-Del list is always consistent with some persistent abstract set
P .
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Proof. From theorem 38 we know that the volatile abstract set is changed exactly once
by any update operation. It follows from theorem 39 that the Physical-Del list will be
consistent with P since every completed successful update operation will be reflected in P
along with some of the pending update operations.

theorem 42 and theorem 41 and the way in which I choose the linearization points for
the Physical-Del list collectively prove theorem 18.

Proving the SWCAS implementations is significantly more involved due to the extra
volatile memory synchronization. A proof of the SWCAS implementations could be con-
structed similarly to the proof of the Physical-Del list. The main difference would be the
proof of theorem 35 since a node’s old pointer is updated independently of its next pointer.

6.5 Generic Extended Link-and-Persist Correctness

For most data structures it is not difficult to be convinced that the original link and
persist technique provides durability linearizability. David et al. provide a brief discussion
of correctness for the original link and persist technique. They note that the link and
persist technique provides two properties 1) every update ensures that its modifications
are durable before returning and 2) every operation ensures that its dependencies are
durable before making any changes. They claim that together these properties guarantee
durable linearizability. There are some nuances in by these proprieties that I would like to
have more clearly defined. In the first property, this is the idea of making a change durable.
To say that a change or modification is durable is to say that the write that updated the
value of some object has been successfully flushed to persistent memory. For the second
property we need to define what it means for an operation to be durable. I have already
defined this for the model used in this thesis when I defined the CPE of an operation.
Even with these clearly defined properties, we do not yet guarantee durable linearizability
without the need for other assumptions or implementation constraints. Consider a data
structure which uses a double-compare-single-swap (DCSS) primitive to perform updates.
Suppose that the DCSS utilizes a descriptor and a pointer to the descriptor is installed in
every field that is part of the DCSS. ([12] is an example of a data structure that uses DCSS
in this way). If a data structure link l is updated via a DCSS then the link will point to a
DCSS descriptor until the DCSS completes. The link and persist technique requires that
l is flushed to persistent memory. If the descriptor is never flushed to persistent memory
then we have a problem. Suppose a system crash occurs immediately after l is updated
to point to the DCSS descriptor. Since the descriptor itself was never flushed, the DCSS
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cannot be completed and it cannot be undone since we do not know what l pointed to
before the DCSS descriptor was installed. This means that the recovery procedure might
fail to recover operations that completed before the crash, violating durable linearizability.
The obvious solution is to flush the contents of the descriptor. In practice this is simple
assuming the descriptor fits into a single cache line which is likely to be true for a DCSS.
However, other primitives such as a K-CAS [36], could easily span more than one cache line,
introducing further complexities that require extra flushes. In general, the link and persist
technique requires that any data that a data structure link can point to must be flushed to
persistent memory before the link is updated to point to the data. David et al. also claim
that their data structures are linearizable since they start from linearizable objects and add
only flushes. I agree that the data structures from [24] are indeed linearizable, however,
the link and persist technique does add more than just flushes. We have already noted
that the link and persist technique requires that operations help persist their dependencies.
To perform this efficiently, this requires extra volatile memory synchronization, which, if
implemented incorrectly could break both linearizability and lock-freedom.

Proving correctness in general for the extended link and persist technique does not
require much more than the original link and persist technique. Operations must still
guarantee that they persist their changes before returning and that they help persist any
dependencies before making modifications. Likewise, we require that any data that a data
structure link can point to is written to persistent memory before the link is updated to
point to it. We also need to restrict how the implementation uses the old field. Update
operations must guarantee correct usage of the old field. This means that updates can only
update the old field to a non-null value after guaranteeing that the corresponding link is
persistent. Likewise, updates can only update the old field back to null after attempting
to persist the corresponding link.
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Chapter 7

Evaluation

I present an experimental analysis of my persistent list compared to existing persistent lists
on various workloads. I test the variants of the contains operation separately meaning
no run includes more than one of the variants. To distinguish between my implementa-
tions of the contains operation I prefix the names of my persistent list algorithms with
the abbreviation of a contains variant. I test the performance of these lists in terms of
throughput (operations per second). I also examine the psync behaviour of these algo-
rithms. Specifically, I track the number of psyncs that are performed by searches and the
number of psyncs that are performed by update operations.

All of the experiments were run on a machine with 48 cores across 2 Intel Xeon Gold
5220R 2.20GHz processors which provides 96 available threads (2 threads per core and
24 cores per socket). The system has a 36608K L3 cache, 1024K L2 cache, 64K L1 cache
and 1.5TB of NVRAM. The non-volatile memory modules installed on the system are Intel
Optane DCPMMs. The machine is running Ubuntu 20.04. I utilize the same benchmark as
[12] for conducting the empirical tests. I modify the existing work such that all of the data
structures that I test utilize the same allocation and reclamation algorithms. Note that for
the Link-and-Persist list I only test the list algorithm alone. The link-cache and NV-epochs
mechanisms are disabled. Excluding the variants of my list that rely on asynchronous flush
instructions, all of the other data structures use the clflush instruction to flush data
from the volatile cache to persistent memory. Where asynchronous flush instructions are
necessary the clflushopt instruction is utilized.

Accessing Persistent Memory. The persistent memory is exposed to the programmer
via memory-mapped files. A filesystem which supports direct access (DAX) is mounted on
the persistent memory device. I utilize the Intel’s memkind library [14] to allocate memory
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within the address space of the memory-mapped files.1 Internally the memkind library
utilizes jemalloc which is known to perform well on NUMA systems. Note that memkind
is not a persistent allocator meaning it does not persist data structures utilized internally
by the allocator. This is beneficial since it means the allocator does not add any extra
psyncs. On the other hand this does leave open the possibility of persistent memory leaks
and ignores the possibility of the virtual address space space changing between restarts.
This work is not concerned with issues related to persistent memory leaks which would
require the use of a persistent allocator. If the virtual address space of the memory-mapped
files can change after a restart extra metadata would need to be persisted. This is true
of all of the algorithms that I consider. One approach to preventing problems related to
changes in virtual address mapping is to persist offsets as in Intel’s libpmemobj library
[22]. Efficient persistent memory allocation is a complex problem on its own. It would
be possible to modify memkind to ensure that it persists its own metadata similar to the
modifications proposed in [24] where jemalloc was configured such that the thread caches
are flushed (however the thread caches were not mapped to persistent memory which is
obviously a problem).

7.1 Throughput

Figure 7.1 shows the throughput of my DWCAS Physical-Del list variant. Unsurprisingly,
the persist-last (PL) and persistence-free (PF) variants perform better than the persist-all
(PA) and asynchronous-persist-all (APA) variants. For this reason I omit the persist-all
and and asynchronous-persist-all from all other figures. Figure 7.2 shows the throughput
of my SWCAS implementations compared to my DWCAS implementations. I observe that
the DWCAS implementations of my list out performed the SWCAS implementations.

Figures 7.3-7.5 show the throughput of my best persistent list variants compared to the
existing algorithms. The existing approach of [58] performs best when the maximum size
of the list is lower than the maximum number of concurrent threads. In all other cases,
my persistent list is comparable or better than the existing approaches especially when the
list is larger than the maximum number of concurrent threads. Note that I are not able to
replicate the same throughput reported in [58] on the evaluation system even when using
the author’s implementation and benchmark.

1The memkind library was recently updated to support persistent memory. In the past it was used
as a volatile allocator and it automatically removes the memory-mapped files when the client program
terminates. On Linux, memkind accomplishes this with the unlink system call. To retain the memory-
mapped files I would remove the call to unlink.
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(a) 99% Search, K = 50 (b) 50% Search, K = 50

(c) 99% Search, K = 500 (d) 50% Search, K = 500

Figure 7.1: Persistent list throughput for the different variants of DWCAS Physical-Del
implementations. Y-axis represents operations per second. X-axis represents the number
of concurrent threads. K is the maximum key.
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(a) 99% Search, K = 50 (b) 50% Search, K = 50

(c) 99% Search, K = 500 (d) 50% Search, K = 500

Figure 7.2: Persistent list throughput for my SWCAS implementations compared to DW-
CAS implementations. Y-axis represents operations per second. X-axis represents the
number of concurrent threads. K is the maximum key.
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(a) 99% Search, K = 50 (b) 99% Search, K = 100

(c) 99% Search, K = 500 (d) 99% Search, K = 1000

Figure 7.3: Persistent list throughput for 99% search workload. The y-axis represents
operations per second. The x-axis represents the number of concurrent threads. K is the
maximum key.
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(a) 50% Search, K = 50 (b) 50% Search, K = 100

(c) 50% Search, K = 500 (d) 50% Search, K = 1000

Figure 7.4: Persistent list throughput for 50% search workload. The y-axis represents
operations per second. The x-axis represents the number of concurrent threads. K is the
maximum key.
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(a) 1% Search, K = 50 (b) 1% Search, K = 100

(c) 1% Search, K = 500 (d) 1% Search, K = 1000

Figure 7.5: Persistent list throughput for 1% search workload. The y-axis represents
operations per second. The x-axis represents the number of concurrent threads. K is the
maximum key.
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7.2 Psync Behaviour

The recent trend to persist less data structure state has influenced implementations of
persistent objects focused on minimizing the amount of psyncs required per operation.
We know that strict linearizable algorithms cannot have persistence-free searches without
allowing an unconstrained recovery procedure. From [17] we also know that update oper-
ations require at least 1 psync. Of the persistent lists that I consider, the persistent lists
from [58] are unique in that the the maximum number of psyncs per update operation is
bounded. While these results are theoretically interesting, the question of whether or not
this matters in practice is unanswered. To better understand the cost incurred by psyncs,
I track the number of psyncs performed by search operations (contains) and the number
of psyncs performed by update operations. Figure 7.6 and figure 7.6 show the average
number of pysncs per search and the average number of pysncs per update operation. I
observe that searches rarely perform a psync in any of the algorithms that do not have
persistence-free searches. Similarly, on average, update operations do not perform more
than the minimum number of required psyncs.

Observation: Algorithmic techniques such as persistence bits for reducing the number of
psyncs are highly effective. A large amount of contention is required for the optimized
algorithms to perform extra psyncs. On average, there are very few redundant psyncs in
practice.

7.3 Recovery

It is not practical to force real system crashes in order to test the recovery procedure of
any algorithm. One could simulate a system crash to evaluate the recovery procedure. It
is also possible to evaluate the recovery procedure as a standalone algorithm by running it
on an artificially created memory configuration. This is problematic because the recovery
procedure of a durable linearizable algorithm is often tightly coupled to some specific
memory allocator. This is true of the existing algorithms that I consider. This makes a
fair experimental analysis of the recovery procedure difficult. It is easier to describe the
worst case scenario for recovering the data structure for each of the algorithms. To be
specific, I describe the worst case persistent memory layout produced by the algorithm
noting how this relates to the performance of the recovery procedure. First, I briefly
introduce the idea of memory chunks. It is common for memory allocators to request
memory from the operating system in sizes significantly larger than the size of any data
structure objects. We say that the memory is allocated in chunks. The size of a single
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(a) 99% Search, K = 50 (b) 50% Search, K = 50

(c) 99% Search, K = 500 (d) 50% Search, K = 500

Figure 7.6: Psync Behaviour. Y-axis represents average psyncs per search. X-axis repre-
sents the number of concurrent threads. K is the maximum key.
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(a) 99% Search, K = 50 (b) 50% Search, K = 50

(c) 99% Search, K = 500 (d) 50% Search, K = 500

Figure 7.7: Psync Behaviour. Y-axis represents average psyncs per update. X-axis repre-
sents the number of concurrent threads. K is the maximum key.
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memory chunk depends on the allocator. In some cases the recovery procedure is forced to
traverse all allocated memory. If this is the case, then the size of a memory chunk directly
effects the recovery complexity. The ability to determine if a chunk is empty will also effect
the recovery complexity. I now describe the recovery complexity in terms of the worst case
memory layout for each of the algorithms that I evaluate.

The Link-Free list does not persist data structure links. While the links of the data
structure could be written to persistent memory by a background flush since a link is never
explicitly flushed to persistent memory we cannot know if the link points to a valid node.
As a result, there is no way to efficiently discover all valid nodes meaning the recovery
procedure might need require traversing all of the memory. The memory allocator used
by [58] requests memory in chunks.2 We can construct a worse case memory layout for
the recovery procedure as follows: Suppose that we completely fill persistent memory by
inserting keys into the list. Call the total number of nodes that fit in memory M . M
corresponds to the peak size of the list. These M nodes will be stored in C full memory
chunks. Now suppose that we remove nodes from the data structure such that every
memory chunk contains only one node at an unknown offset from the start of the chunk.
Call the number of nodes still in the list N . Since no chunk is empty, in order to discover the
N valid nodes, the recovery procedure must traverse the entire contents of all C memory
chunks.

The SOFT list also does not persist data structure links. The requirements of the
recovery procedure for SOFT list is the same as the Link-Free list. We can construct the
worst case memory layout for the recovery procedure in the same way as I did for the
Link-Free list yielding the same asymptotic time complexity.

The Link-and-Persist list persists data structure links. Marked pointers are also explic-
itly flushed meaning persistent memory can contain logically deleted nodes. Similarly, a
pointer marked as not persistent might have been written to persistent memory by a back-
ground flush. The recovery procedure does not need to cleanup any of these marked nodes
since this can be done by any other operation. This means that the Link-and-Persist list
can support an empty recovery procedure. The time complexity of this traversal is Θ(N)
for a list containing N nodes. The actual recovery procedure implemented by the authors
of [24] traverses memory to free any nodes that are no longer reachable starting from the
root.3

2The allocator used by [58] is SSMEM [25] which is actually a volatile memory allocator. SSMEM
would require various modifications to work with real persistent memory.

3The original implementation of the recovery procedure relies on the author’s memory management
algorithm which they call NV-epochs. The NV-epochs algorithm relies on a version of jemalloc which does
not support allocating memory from the address space of memory-mapped file. This would require various
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I utilize DWCAS and asynchronous flush instructions to achieve a minimum of one
psync per insert operation. There are some subtleties with this implementation that
prevents the use of an empty recovery procedure. In the worst case, the recovery complexity
is O(N + n) for a list containing N nodes and a maximum of n concurrent processes.
Implementations that use SWCAS (or DWCAS allowing for a minimum of two psyncs per
insert) can use an empty recovery procedure.

Observation: If structure is persisted, recovery can be highly efficient. Without any
persisted structure, recovery must traverse all of shared memory with little or no guidance.
Memory reclamation drastically complicates the issue of recovery.

7.4 Strict linearizable vs. Durable linearizable Algo-

rithms

I have demonstrated that that there exists a theoretical separation between strict lin-
earizable and durable linearizable sets when the recovery procedure is constrained. For
persistent lists I observe that this separation does not lead to significant performance dif-
ferences in practice. 4 of the algorithms shown in figures 7.3-7.5 are strict linearizable.
Specifically, the list implemented using the Link-and-Persist technique, the Link-Free list
and both of the variants of my persistent list that use the persist-last contains operation
are strict linearizable. The SOFT list, and the two variants of my list that use persistence-
free searches are durable linearizable. The high cost of a pysnc and the impossibility of
persistence-free searches in a strict linearizable lock-free algorithm would suggest that the
strict linearizable algorithms that I test should perform noticeably worse. In practice, it is
true that for most of the workloads that I test, the algorithms that have persistence-free
searches perform best. However, for many of the workloads, the performance of the strict
linearizable algorithms is comparable to the durable linearizable algorithms. In fact, for
some workloads my strict linearizable algorithms perform better than the SOFT list.

Observation: Strict linearizable algorithms can be just as fast as (or faster than) durable
ones, despite any theoretical tradeoffs.

modifications to work with real persistent memory.
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Chapter 8

Conclusion

8.1 Summary

In this work I presented two lower bounds. First, I proved that it is impossible to im-
plement strict linearizable lock-free sets with persistence-free searches for the classes of
strict linearizable implementations considered in this thesis. This seemed to align with
existing work which demonstrated that durable linearizable lock-free sets that did sup-
port persistence-free searches outperformed other existing strict linearizable lock-free sets.
Second, I proved that for any implementation of a durable linearizable lock-free set there
must exist an execution in which some process performs a redundant psync as part of an
update operation. This bound as seems to agree with trends in existing work which em-
phasizes persisting less data structure state in favour of performing fewer psyncs. I also
presented several implementations of persistent sets and evaluated these implementations
against existing persistent sets. I found that in practice, when the recovery procedure is
constrained to produce configurations that existed before the crash strict linearizable sets
often perform as well as durable linearizable sets. I observed that redundant psyncs rarely
occurred during my evaluations. This suggests that psync complexity is not a good pre-
dictor of performance in practice. This contrasts the trends of existing work and suggests
that there is a need to look for better metrics to compare persistent objects. Based on the
results, I recommend that researchers should not immediately sacrifice strict linearizability
by prioritizing persistence-free reads. Instead, I recommend that researchers should begin
with strict linearizable implementations since a strict linearizable implementation may not
have much overhead and it may be sufficient for the application. The results also suggest
that persisting extra data structure state can be beneficial.
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8.2 Future Work

Memory Management. Memory management is an important factor that effects both
recovery and runtime performance. I only briefly discussed the topic of memory allocation
and reclamation in this work. Even without the concerns related to persistent memory,
safe and efficient memory allocation and reclamation is a complex problem. Solutions for
volatile memory have been studied in detail e.g. [13, 9, 45]. Persistent memory adds a
new layer of complexity. In particular, the possibility of persistent memory leaks is an
important problem to consider. Designing an efficient persistent allocator that addresses
these issues would greatly benefit further implementations of persistent objects.

Better Persistent Universal Construction. In chapter 3 I described some universal
constructions that convert volatile concurrent objects to persistent concurrent objects.
Typically these perform significantly worse than hand-crafted solutions. While hand-
crafted solutions usually perform better compared to universal constructions, they can
be difficult to implement and might not generalize between different abstract data types.
It would be interesting to explore creating a more efficient universal construction capable
of producing efficient persistent concurrent objects.
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