
Equality Operators for
Constant-weight Codewords with
Applications in (Keyword) PIR

by

Rasoul Akhavan Mahdavi

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2021

© Rasoul Akhavan Mahdavi 2021

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Homomorphic encryption allows computation to be performed on data while in en-
crypted form. However, the computational overhead of a circuit that is run using homo-
morphic encryption depends on the number of multiplications and multiplicative depth.
For example, equality checks which are a common step in many tasks, have a multiplicative
depth that depends on the bit-length of the numbers. In this work, we propose constant-
weight equality operators, which compare constant-weight codewords using a circuit that
has a multiplicative depth that depends solely on the Hamming weight of the constant-
weight code, not the size of the operands.

Private Information Retrieval (PIR) is one task where equality operations are a solution.
In a PIR protocol, a user wishes to query a database without revealing which element is
queried to the server. In this thesis, we also detail an architecture for PIR which was
previously assumed to be impractical. At the heart of this architecture is the constant-
weight equality operator.

Our experiments show how constant-weight equality operators outperform existing
equality operators and can be used for practical purposes. We also conduct experiments to
show the practicality of PIR using our approach and our results show how constant-weight
PIR outperforms existing work in aspects of scale such as large domain sizes and large
responses.

iii

Acknowledgements

First and foremost, I would like to thank Florian Kerschbaum for his outstanding
supervision during this period. His patience, diligence, and care in working with me as an
inexperienced graduate student, with all the missteps and mistakes, was admirable. His
rigour, not just in his field but also in being considerate and patient, was undoubtedly a
lesson for me in my career to come.

Maintaining sanity during this period of uncertainty, both in the research process and
at the time of a raging pandemic, could not have been possible without the love and
support of a wonderful group of friends. A complete list would require a thesis of its own,
but I specifically thank members of the CrySP lab who spared no effort to make me feel
welcome, included, and supported. Just a handful of CrySP lab members that I want
to thank includes — but is not limited to — Thomas, John, Shannon, Lindsey, Emily,
Jason, Bailey, Miti, Matthew, Nils, Masoumeh, Simon, Nik, and of course one affiliated
CrySP member, Kiernan. Thank you, not only for the professional help but for making
the graduate experience fun, exciting and also just making me a better person.

This work benefited from the use of the CrySP RIPPLE Facility at the University of
Waterloo. All experiments in Chapter 4 were conducted using RIPPLE machines.

iv

Dedication

To my parents, whose unconditional love shall never be explained by science.

v

Table of Contents

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Our Contributions . 2

1.2 Organization . 3

2 Background & Related Work 4

2.1 Homomorphic Encryption . 4

2.1.1 Fan–Vercauteren (FV) Cryptosystem. 5

2.1.2 Microsoft SEAL Library . 5

2.2 Private Information Retrieval . 6

2.3 Single-Server computational PIR . 7

2.3.1 SEALPIR . 8

2.3.2 MulPIR . 10

2.4 Equality Operators . 10

2.4.1 PIR using Equality Operators . 12

2.5 Keyword PIR . 13

vi

3 Our Constructions 14

3.1 Equality Operator for Constant-weight Codewords 15

3.2 Mappings to Constant-weight Codewords 18

3.3 PIR using Constant-weight Codewords . 20

3.3.1 Setup . 21

3.3.2 Query . 22

3.3.3 Process Query . 22

3.3.4 Extract . 25

3.3.5 PIR for Sparse Databases . 25

3.3.6 Probabilistic Keyword PIR . 26

4 Evaluation 27

4.1 Comparing Equality Operators . 27

4.1.1 Plain Operators . 29

4.1.2 Arithmetic Operators . 30

4.2 Comparing PIR Protocols . 32

4.2.1 Implementation and Experimental Details 32

4.2.2 Packed Database Experiments . 33

4.2.3 Varying Domain Size . 37

4.2.4 Varying Response size . 40

5 Applications, Limitations, and Future Work 43

5.1 Applications . 43

5.1.1 First Practical Solution . 43

5.1.2 Setup-Free (Update Friendly) . 44

5.1.3 Less Overhead for Decentralized Database 44

5.1.4 Anti-Fishing . 45

5.2 Limitations . 46

5.3 Future Work . 46

vii

6 Conclusion 48

References 49

viii

List of Figures

4.1 Encoding size as a function of multiplicative depth 40

4.2 Runtime of constant-weight PIR and MulPIR for large response sizes . . . 42

ix

List of Tables

2.1 Cost of operations in SEAL 3.6 . 6

3.1 Stages of PIR using constant-weight codewords 21

4.1 Properties of circuits implementing equality operators 28

4.2 Runtimes for plain equality operators . 30

4.3 Runtimes for arithmetic equality operators 31

4.4 Parameters for different PIR protocols . 34

4.5 Runtimes for Folklore and Constant-weight PIR 35

4.6 Runtime of Constant-weight PIR, SEALPIR, and MulPIR 36

4.7 Runtime of Constant-weight PIR executed with parallelization 37

4.8 Parameters for sparse PIR protocols . 38

4.9 Bit-length of the query in different protocols 39

4.10 Breakdown of runtime for constant-weight PIR over a sparse databases . . 41

4.11 Parameters for different PIR protocols with large response size 42

5.1 Number of operations in single and multi-DB PIR 45

x

Chapter 1

Introduction

Homomorphic encryption is a tool that permits computation over data in encrypted form.
Complex functions over the input data are calculated using basic arithmetic operations.
For example, the FV cryptosystem allows addition and multiplication. However, there is
an imbalance between the cost of these operations. In the case of FV, multiplications are
up to 20× slower than additions. In addition, the maximum number of sequential multi-
plications, commonly referred to as the multiplicative depth, depends on the parameters of
the cryptosystem and performing multiplications beyond that results in an undecryptable
ciphertext. Larger parameters for the cryptosystem are required when the circuit has a
higher multiplicative depth, which in turn makes the circuits slower and less practical.
Consequently, the multiplicative depth and number of multiplications in a circuit directly
impact the efficiency of that circuit when run using homomorphic encryption.

Equality checks are a necessary step in many tasks. For example, in the task of Private
Set Intersection (PSI) the objective is to find the intersection of two private sets held by two
parties, without the two parties learning anything about the sets beyond the intersection.
Elements from the sets must be compared to determine if they fall in the intersection.

One main obstacle when comparing two numbers that are encrypted using homomorphic
encryption is the high multiplicative depth of the circuits that are evaluated. For example,
the simple folklore equality circuit has a multiplicative depth of log2 ` when comparing two
`-bit elements.

In this work we propose constant-weight equality operators, used to compare constant-
weight codewords. Circuits for such a task have a multiplicative depth that depends only
on the Hamming weight of the code, not the length of the codewords. Our theoretical and
experimental evaluation shows how these circuits compare to existing equality operators.

1

Specifically, the plain constant-weight equality operator is up to 10 times faster than the
equivalent folklore operator. Moreover, the arithmetic constant-weight equality operator
is up to 10 times faster than the equivalent folklore operators when parallelized.

Private Information Retrieval (PIR) is another task that requires equality checks at
its core. In PIR, a user wishes to retrieve an element from a database such that it is not
revealed which element it wishes to access. There are many practical solutions in the multi-
server setting, where the database is held by multiple non-colluding servers. However, the
practicality of the PIR in a single-server setting was disputed. Lattice-based cryptosystems
provided solutions that performed better than the trivial solution of downloading the entire
database. XPIR [1] was the first practical solution that utilized an additive homomorphic
encryption system. However, the communication was still on the order of the number of
records in the database. More recent work, namely SEALPIR [6] and MulPIR [4], reduced
the communication cost and provided even faster solutions.

All existing solutions for single-server PIR avoid performing equality operations due to
the high computational cost. We propose the first practical solution to PIR using equality
circuits. Our solution uses the equality operator over constant-weight codewords at its core
for efficiency. Our protocol is also applicable in keyword PIR where the user retrieves an
element from the database using a keyword, not the physical address.

We evaluate our protocol in comparison with existing work and show its practicality
through our experiments. Our evaluations focus on how protocols behave in different
aspects of scale, such as large domains and large response sizes. Our experiments show
how our protocol is a suitable solution in the devised scenarios. Finally, we elaborate on
how the results of our experiments translate to real-world properties and applications.

1.1 Our Contributions

The contributions of this thesis can be summarized as follows:

• We propose constant-weight equality operators, used to compare constant-weight
codewords with a multiplicative depth that depends only on the Hamming weight of
the code. We also provide mappings to efficiently map elements from other domains
to constant-weight codewords.

• We detail a PIR architecture using constant-weight codes which was previously as-
sumed to be impractical. We also explain how it can be extended to the case of
keyword PIR.

2

• We compare constant-weight equality operators with existing equality operators, both
theoretically and through experiments. We compare elements with various bit-lengths
and also examine the effect of parallelization.

• We also compare the PIR protocol proposed in this paper with that of related work
in terms of scalability. For this, we perform experiments in three different scenarios.

• Finally, we elaborate on applications where our constructions are beneficial compared
to existing solutions based on the observations from our experiments.

1.2 Organization

In Chapter 2, the necessary background regarding homomorphic encryption, private infor-
mation retrieval and single-server private information retrieval solutions are summarized.
This chapter also includes descriptions of existing equality operators and their properties.

In Chapter 3, we present our constructions, the constant-weight equality operators,
mapping to constant-weights, and a PIR protocol using constant-weight codes at its core.

In Chapter 4, we perform experiments to compare constructions from Chapter 3 with
those from Chapter 2.

Finally, in Chapter 5, we discuss potential applications for the constructions of Chap-
ter 3 based on the observations from Chapter 4.

3

Chapter 2

Background & Related Work

2.1 Homomorphic Encryption

Homomorphic Encryption allows computation on encrypted data, without the need for
decryption or access to the secret key. This maintains the secrecy of the data while com-
putation is performed. One use case is a client delegating computation on its data to a
remote, untrusted server.

The concept of homomorphic encryption was introduced by Rivest et al. [30] where they
proposed a cryptosystem that permits one operation, e.g. addition, on data in encrypted
form. Later work showed how to construct an encryption scheme that allows additions and
one level of multiplication [9]. In 2009, Gentry proved the existence of a fully homomorphic
cryptosystem based on lattices that can evaluate arbitrary functions on encrypted data [21].
The security of lattice-based cryptosystems is due to a small, random noise that is added
to the plaintexts. This noise accumulates as each homomorphic operation is performed, to
the point where the ciphertext is not decryptable if any more operations are performed.
Gentry proposed an expensive bootstrapping procedure to reduce the noise in a ciphertext
and allow more operations to be performed [21].

Multiple lattice-based cryptosystems were proposed following the seminal work of Gen-
try which improved the efficiency drastically [11, 12, 24, 36]. However, the bootstrapping
procedure remains impractical and cryptosystems are used in a leveled fashion. A leveled
homomorphic cryptosystem allows only a predefined number of sequential multiplications,
determined by the parameters of the cryptosystem, and does not perform the bootstrap-
ping procedure. The Fan–Vercauteren cryptosystem is an example that we explain in the
next subsection.

4

2.1.1 Fan–Vercauteren (FV) Cryptosystem.

The Fan–Vercauteren cryptosystem [20] is a lattice-based cryptosystem where plaintexts
are elements from the polynomial ring Rt = Zt[x]/(xN + 1). The polynomial modulus
degree, N , is a power of two and t is the plaintext modulus. Messages must be encoded as
a polynomial in the field before they can be encrypted. An FV ciphertext is an array of
polynomials, each from Rq = Zq[x]/(xN + 1), where q is called the coefficient modulus. In
the simplest case, the ciphertext is only two polynomials. Let C denote the ciphertext space.
N and q determine both the security parameter and how many homomorphic operations
can be performed on ciphertexts before decryption (or bootstrapping) is necessary.

In addition to the standard operations for a cryptosystem, i.e. key generation, encryp-
tion and decryption, FV supports homomorphic operations over the ring as well. Four of
these operations are listed below. All operations over plaintexts are in the ring Rt.

• Addition: Given ciphertexts c1(x), c2(x) ∈ C that encrypt m1(x),m2(x) ∈ Rt, re-
spectively, output cA(x) which encrypts m1(x) +m2(x).

• Plain Multiplication: Given m1(x) ∈ Rt and c2(x) ∈ C that encrypts m2(x) ∈ Rt,
output cPM(x) which encrypts m1(x)m2(x).

• Multiplication: Given ciphertexts c1(x), c2(x) ∈ C that encrypt m1(x),m2(x) ∈ Rt,
respectively, output cM(x) which encrypts m1(x)m2(x).

• Substitution: Given c(x) ∈ C that encrypts m(x) and an integer k, output cS(x)
which encrypts m(xk).

2.1.2 Microsoft SEAL Library

The SEAL library [31] implements the FV cryptosystem and supports all the operations
mentioned above. Specifically, the implementation for the substitution operation in this
library was first introduced by Angel et al. [6] based on the plaintext slot permutation
technique discussed by Gentry et al. [23]. One FV plaintext can encode N log2(t) bits of
data. Also, the size of the smallest ciphertext that encrypts a plaintext is 2N log2(q) bits.
An important parameter is the expansion factor which is the ratio between the size of a
ciphertext and the largest plaintext that can be encrypted and is equal to

F =
2 log(q)

log(t)
. (2.1)

Table 2.1 compares the four described operations in terms of speed and noise grown, as
implemented in SEAL 3.6.

5

Table 2.1: Cost of operations in SEAL 3.6, for N ∈ {2048, 4096, 8192, 16384} and the
default ciphertext modulus. * Time and Noise growth in plain multiplication also depends
on the value of the unencrypted operand.

Operation
Time (µs)

Noise Growth
N = 2048 N = 4096 N = 8192 N = 16384

Addition 6 19 67 435 Additive
Plain Multiplication∗ 12–135 30–529 105–2201 509–9647 Multiplicative

Multiplication - 3823 15744 66908 Multiplicative
Substitution - 768 4137 26047 Additive

2.2 Private Information Retrieval

Private Information Retrieval [16] is a protocol where a user retrieves an element from
a database, such that the owner of the database cannot determine which element was
retrieved. There are two forms of PIR protocols. In the first form, which we denote index
PIR, the user holds the physical address of the item, e.g., the row in a database table
or the index in a public registry. In the second form, the physical address of the desired
item may not be known and it is only accessible by an identifier pertaining to the sought
item, e.g., the name of a file. The latter is referred to as keyword PIR or sparse PIR, first
introduced by Chor et al. [15].

The privacy guarantee of a PIR protocol can be information-theoretic or computational.
Information-theoretic PIR (IT-PIR) is private even in the presence of a computationally un-
bounded adversary and usually requires computationally inexpensive operations (additions,
XOR, etc.) and achieves communication sublinear in the size of the database [5, 8, 16, 17].
However, these solutions require replication of the database across multiple non-colluding
servers. The assumption of non-collusion is hard to enforce in practice. If only a single
server is used to avoid the non-collusion assumption, Chor et al. proved that any solution
would require communication at least the size of the database for information-theoretic
privacy [16].

Computational PIR (CPIR) relaxes the assumption to an adversary with bounded com-
putational power. In the single-server setting, which is the focus of this paper, solutions
rely on some intractability assumption, e.g., the hardness of determining the quadratic
residuosity modulo composite numbers [25, 27] or the security of lattice-based cryptosys-
tems [1, 4, 6, 18, 19, 22, 38].

In CPIR solutions, each item in the database has to be processed at least once, other-
wise, it can be trivially excluded from the list of potential queries and compromise privacy.

6

Sion and Carbunar argued that the time required for any single-server CPIR protocol
would exceed the time required for the trivial solution of simply downloading the entire
database [32]. Later work by Aguilar-Melchor et al. showed this argument to be incorrect
with the use of lattice-based cryptosystems, which have smaller per-bit computation cost
when used in a batched fashion [1]. They were able to show that PIR is a faster alternative
to downloading the database over networks with less bandwidth.

2.3 Single-Server computational PIR

Single-server computational PIR solutions aim to perform better than the trivial solution
of downloading the entire database. In the trivial solution, the download cost for the
user is equal to the size of the database, with no upload cost for the user. Downloading
the entire database also comes at almost no computational burden for the server, i.e.,
the computational cost is zero. We examine some single-server CPIR protocols in this
subsection and the following subsections to compare them with the trivial solution and
each other, based on their upload, download, and computational cost.

CPIR protocols utilizing homomorphic encryption are the most practical solutions to
date [1, 4, 6]. All these solutions expand on a baseline method that works as follows:

Baseline PIR method. Let DB denote the database with n rows and DB[i] denote the
ith row in this database. Also, throughout this thesis, define [n] = {0, 1, ...n− 1}, for any
n ∈ N. When the goal is to retrieve row q, a response rq is derived as

rq =
∑
i∈[n]

I(i == q) · DB[i]. (2.2)

where I(·) denotes an indicator function which is one when the input evaluates to true
and zero otherwise. It is easy to verify that if q ∈ [n] then rq = DB[q]. Equation (2.2)
is an inner product between the database and a vector of bits called the selection vector.
For obtaining element q in the database, the selection vector is one in index q and zero
otherwise.

PIR protocols realizing Equation (2.2) encrypt the bits of the selection vector with a ho-
momorphic encryption scheme that supports addition and plaintext multiplication and per-
form the operations in Equation (2.2) over ciphertexts. In XPIR [1] and SEALPIR [6], two
recent practical solutions, an additive homomorphic encryption scheme is used. MulPIR [4]

7

is the first practical solution using a fully homomorphic encryption scheme, which is also
the case for our work.

The server requires ciphertexts of the bits of the selection vector, i.e., I(i == q), to
realize Equation (2.2). There are two general approaches for the server to acquire the
encrypted bits of the selection vector: 1) Communicating the selection vector 2) Equality
Operators.

In the first approach, the user generates the selection vector locally, encrypts it and
transmits it to the server. XPIR, SEALPIR, and MulPIR all take this approach. XPIR
uploads the entire selection vector but provides experiments to show the practicality of
this approach [1]. Despite its practicality, the upload cost of XPIR is on the order of the
number of rows in the database which limits scalability.

Recursion is a method to reduce the upload cost to sublinear in the size of the database.
It was first used by Kushilevitz and Ostrovsky [27] and later Stern [34]. This approach is
also used in SEALPIR and MulPIR. In the next section, we describe how recursion is done
in SEALPIR, which is conceptually similar to prior work.

2.3.1 SEALPIR

SEALPIR [6] is a PIR scheme based on the SEAL library which uses recursion and a query
compression technique to reduce the upload cost. They also use additive homomorphic
encryption in a layered fashion.

In SEALPIR, to communicate fewer ciphertexts, the user encodes multiple bits into
one plaintext, which is called the query compression technique. Specifically, for a selection
vector (si)i∈[n], the user constructs the plaintext p(x) =

∑
i∈[n] six

i and encrypts it. Recall
that in SEAL, plaintexts are polynomials of degree at most N , so if the size of the selec-
tion vector exceeds N , more than one plaintext is used. For n bits in the selection vector,
at least dn/Ne ciphertexts are needed. As a consequence of the compression technique,
SEALPIR performs a novel oblivious expansion on the server to extract a vector of cipher-
texts such that each bit of the selection vector is in a separate ciphertext. SEALPIR uses
the substitution operation to perform the oblivious expansion. Algorithm 1 depicts this
procedure for expanding one ciphertext into a vector of 2c ciphertexts, for c ∈ [0, log2N].

To further reduce the communication, SEALPIR uses a technique called recursion in
which the database is restructured into a d-dimensional table. The size of the ith dimension
is di such that

∏
di ≥ n. Then instead of one selection vector, d selection vectors are sent

to the server, one for each dimension. We refer to d as the recursion level. The total size
of the query is at least d d d

√
ne which is sublinear in n for any d ≥ 2.

8

Algorithm 1 SEALPIR Oblivious Expansion

Input: ct(x) ∈ C, compression Factor c ∈ [0, log2N]

1: cts← [ct(x)]
2: for a ∈ [c] do
3: for b ∈ [2a] do
4: c0 = cts[b]
5: c1 = x2

−a · c0
6: cts[b] = c0 + SubN/2a+1(c0)
7: cts[b+ 2a] = c1 + SubN/2a+1(c1)

8: inv = (2−c mod t)
9: for i ∈ [2c] do
10: cts[i]← inv · cts[i]

Output: cts ∈ C2c

As an example, assume d = 2 and d1 = d2 = d
√
ne, and assume that the user’s desired

query, q, is now at row q1 and column q2. Equation (2.3) depicts the formula used to derive
the results in this case.

rq =

n∑
i=1

I(i == q) · DB[i] =
d√ne∑
i1=1

I(i1 == q1)

d
√
ne∑

i2=1

I(i2 == q2) · DB
[
i1
⌈√

n
⌉
+ i2

] (2.3)

In SEALPIR, an additive homomorphic encryption scheme is used so the first multi-
plication is performed as a plaintext multiplication. However, the second multiplication is
between two ciphertexts, which is not supported. To overcome this issue, one ciphertext is
treated as a plaintext in the multiplication. This is referred to as layered encryption and
results in the size of the response multiplying by a factor of F where F is the expansion
factor of the ciphertext. More generally, the size of the response is multiplied by a factor
of F d−1 for recursion level equal to d. Overall, SEALPIR performs

∑d−1
i=0 n

d−i
d F i plaintext

multiplications for recursion level d ≥ 1 and expansion factor of F for the ciphertext.

Ali et al. proposed three optimizations to SEALPIR to reduce the communication
cost: compressing the uploaded ciphertexts by encrypting using the secret key instead
of the public key, compressing the response ciphertexts using modulus switching, and a
modified oblivious expansion to fit more bits into the one ciphertext [4]. Throughout this
thesis, SEALPIR denotes this modified version of the protocol.

9

2.3.2 MulPIR

MulPIR [4] replaces the layered encryption in SEALPIR with homomorphic multiplica-
tions. This reduces the download cost drastically compared to SEALPIR. However, it
comes at the cost of increased computation for the server since homomorphic multiplica-
tions are more expensive than plain multiplications and larger parameters are required to
allow more homomorphic multiplications. Algorithm 2 shows the query evaluation pro-
cess performed by the server after query expansion for a recursion level of d = 2. The
multiplications on lines 2 and 3 are plain and homomorphic, respectively.

Algorithm 2 MulPIR Query Evaluation

Input: n′ = d
√
ne, cts0, cts1 ∈ Cn

′

1: for i ∈ [n′] do

2: ci =
∑
j∈[n′]

cts0[j] · DB [i · n′ + j]

3: c =
∑
i∈[n′]

ci · cts1[i]

Output: c ∈ C

Overall, MulPIR performs n plaintext multiplications and
∑d−1

i=1 n
d−i
d homomorphic

multiplications, for a recursion level d ≥ 1.

In SEALPIR, due to the expansion in the response, the server can not perform any
post-processing on the output which is a disadvantage of the protocol. Examples of post-
processing include deriving functions of the user’s query or conjunctive and disjunctive PIR
queries. In contrast to SEALPIR, the output of the MulPIR protocol can be post-processed
before being sent back to the user. Ali et al. [4] describe how to perform conjunctive and
disjunctive queries in their paper.

2.4 Equality Operators

Checking the equality of two values is an integral step in many tasks over encrypted data
such as secure search [2, 3], secure pattern matching [10, 37], PSI [13, 26], and PIR [16].

We define an equality operator as follows.

10

Definition 1 (Equality Operator). A procedure f is an equality operator over a domain
D if ∀x, y ∈ D,

f(x, y) =

{
1 if x = y
0 o.w.

(2.4)

If Equation (2.4) holds with some probability 1− ε, the procedure f is an ε-probabilistic
equality operator.

We now define some equality operators over their respective domains and derive the
multiplicative depth of a circuit implementing each one. When working with an element
x ∈ {0, 1}`, we treat it as a string of bits and refer to the bits of the string by indexing,
i.e., x[i] denotes the ith bit of x.

Arithmetic Folklore Equality Operator. The first operator is used to compare two
numbers in binary format. For a domain D = {0, 1}`, define fAF as

fAF (x, y) =
`−1∏
i=0

(
1− (x[i]− y[i])2

)
(2.5)

for x, y ∈ {0, 1}`. This operator is correct when operating over any field such as Zp. The
multiplicative depth of a circuit realizing this operator is equal to log2(`) + 1, where ` is
the bit-length of the operands.

The arithmetic folklore operator is oblivious to both input operands. This is critical
in some applications, e.g. comparing two encrypted or secret shared numbers. When one
operator is public, the arithmetic folklore equality operator can be modified such that it
has a smaller multiplicative depth. The modified operator is as follows.

Plain Folklore Equality Operator. For a domain D = {0, 1}`, define fPF as

fPF (x, y) =
∏
y[i]=0

(1− x[i])
∏
y[i]=1

x[i] (2.6)

for x, y ∈ {0, 1}`. This operator depends on the public operand, which is y in this case.
The multiplicative depth of a circuit realizing this operator is equal to log2(`), where ` is
the bit-length of the operands.

When operating over a binary field, the arithmetic folklore equality operator can again
be modified to have a lower multiplicative depth.

11

Binary Folklore Equality Operator. For a domain D = {0, 1}`, define fBF as

fBF (x, y) =
`−1∏
i=0

(1 + x[i] + y[i]) mod 2 (2.7)

for x, y ∈ {0, 1}`. The multiplicative depth of a circuit realizing this operator is equal to
the logarithm of the bit-length of the elements in the domain, i.e., log2(`).

Binary-Raffle Equality Operator. Next, we define a probabilistic equality operator
inspired by the methods of Razbarov and Smolenski [29, 33]. They propose a low degree
approximation of the logical-OR function which can be used as described below to construct
an equality operator.

This operator is used to compare elements in binary format over a binary field. For a
domain D = {0, 1}`, sample N(ε) random elements from {0, 1}`, which we denote as rj for
j ∈ {1, 2, · · · , N(ε)}, then define fBR(x, y) as

fBR(x, y) =

N(ε)∏
j=1

1 +
∑
rj [i]=1

(x[i] + y[i])

 mod 2 (2.8)

for x, y ∈ {0, 1}`.

The output of this operator is correct with probability 1 − ε if N(ε) = log2(1/ε). The
multiplicative depth of a circuit realizing this operator is equal to log2(N(ε)) which solely
depends on the failure probability of this operator.

2.4.1 PIR using Equality Operators

As mentioned in Section 2.3, equality operators are another approach to PIR. In this
approach, the user’s query is encoded into some domain, encrypted and sent to the server.
The server computes each bit of the selection vector using an equality operator between
the user’s encrypted query and each identifier in the database. Then the server, using the
encrypted bits of the selection vector, derives the encryption of rq using Equation (2.2),
which is then sent back to the user for decryption.

PIR with this approach using the folklore equality operator has the smallest upload
cost amongst all non-trivial approaches. In this approach, only the optimal logarithmic

12

binary encoding of the query is encrypted and uploaded. However, the computation cost
is prohibitively high due to the multiplicative depth which depends on the size of the
database. In general, PIR using equality operators is assumed to be impractical due to the
high multiplicative depth of equality circuits as parameters scale [4, 6].

2.5 Keyword PIR

In keyword PIR, also referred to as sparse PIR, a user retrieves an element from a database
using a keyword or identifier pertaining to the sought item. Another way to phrase this
is that in index PIR, all addresses correspond to an element in the database whereas in
keyword PIR, some identifiers may not correspond to any element and those entries are
empty, hence the name sparse PIR.

Previous work has suggested solutions for keyword PIR which all basically reduce key-
word PIR to index PIR at their core. Chor et al. suggested two solutions where the user
interactively queries the server to obtain the physical address of the desired item, given the
identifier. A common solution also proposed by Ali et al. involves a probabilistic hashing
technique to map identifiers into a small domain such that index PIR is feasible.

PIR using equality operators is another approach to keyword PIR, where the users
query is compared to all the keywords present in the database. However, since the cost
of comparing keywords is prohibitively high for large keywords, this approach is assumed
to be impractical. This work proposes a PIR protocol for index PIR which can be easily
extended to keyword PIR with minimal change. Moreover, the practical cost of comparison
results in a practical keyword PIR protocol.

13

Chapter 3

Our Constructions

In this section, we describe our constructions. First, we propose equality operators for
constant-weight codewords. Then we describe mappings from other domains to constant-
weight codes to facilitate the use of our proposed operator in other contexts. Finally, we
explain PIR using constant-weight codewords in detail.

Constant-weight Code. A constant-weight code, also known as m-of-n code, is a form
of error detecting code where all codewords share the same Hamming weight. A binary
constant-weight code has the additional condition that all codewords are binary strings.
The one-hot (unary) code and the balanced code are two examples of a binary constant-
weight code. In a balanced code, the number of ones is equal to the number of zeros in all
codewords.

The length of a code is the maximum bit-length of its codewords and the size of the
code is the number of distinct codewords. For a binary constant-weight code of length
m and Hamming weight of k, the size is

(
m
k

)
. For a fixed Hamming weight k, to have a

binary constant-weight code with a size of at least n, we must choose the length, m, such

that
(
m
k

)
≥ n. By one approximation, we have m ∈ Ω

(
k
√
k!n
)

. We denote the binary

constant-weight code with length m and Hamming weight k by CW (m, k).

In all the constructions, k and m denote the Hamming weight and length of the code,
respectively.

14

3.1 Equality Operator for Constant-weight Codewords

We propose three variants of the equality operator over constant-weight codewords.

Plain Constant-weight Equality Operator. For two constant-weight codewords x, y ∈
CW (m, k),

fPCW (x, y) =
∏
y[j]=1

x[j] (3.1)

is the plain equality operator. This operator is oblivious to the first operand but depends on
the second. A circuit realizing this operator performs k multiplications with a multiplicative
depth of dlog2 ke.

Arithmetic Constant-weight Equality Operator. For two constant-weight code-
words x, y ∈ CW (m, k), Algorithm 3 describes the arithmetic equality operator over
constant-weight codewords. Algorithm 3 operates over any field in which k! has a multi-
plicative inverse.

Algorithm 3 Arithmetic Constant-weight Equality Operator

Input: x, y ∈ CW (m, k)

1: k′ =
∑
i∈[m]

x[i] · y[i]

2: e = 1
k!

∏
i∈[k]

(k′ − i)

Output: e ∈ {0, 1}

Theorem 1. For x, y ∈ CW (m, k), if fACW (x, y) is the output of Algorithm 3, then
fACW (x, y) is an equality operator.

Proof. If x and y are equal, the position of bits equal to one in their encodings are identical,
and consequently, the inner product, k′, will be equal to k. When they are not equal, the
inner product will be in the set {0, 1, ..., k − 1}. Also, based on the definition of e on line
2 of Algorithm 3, it holds that

e =

{
1 k′ = k
0 k′ ∈ {0, 1, ..., k − 1} (3.2)

15

Putting these two together, e will be one, if and only if x and y are equal and zero
otherwise.

A circuit realizing this operator performs m + k multiplications with a multiplicative
depth of 1 + dlog(k)e.

Binary Constant-weight Equality Operator. The final variant is an equality oper-
ator over a binary field. This operator is described in Algorithm 4. In this Algorithm, the
binary representation of k is shown as (bh...b1b0)2.

Algorithm 4 Binary Constant-weight Equality Operator

Input: x, y ∈ CW (m, k), k = (bh...b1b0)2, h = blog kc

1: for i ∈ [m] do
2: z0[i] = x[i] · y[i]

3: b′0 =
∑

j∈[m] z0[j] mod 2

4: for i ∈ {1, 2, ..., h} do
5: si[0] = 0
6: for j ∈ {1, ...,m− 1} do
7: si[j] = si[j − 1] + zi−1[j − 1] mod 2

8: for j ∈ [m] do
9: zi[j] = zi−1[j] · si[j] mod 2

10: b′i =
∑
j∈[m]

zi[j] mod 2

11: e =
∏h

i=0(1 + bi + b′i) mod 2

Output: e ∈ {0, 1}

Theorem 2. For x, y ∈ CW (m, k), if fBCW (x, y) is the output of Algorithm 4, then
fBCW (x, y) is an equality operator over CW (m, k).

Proof. For x ∈ {0, 1}` define I(x) as follows:

I(x) = {i : x[i] = 1} (3.3)

which denotes the set of indices where x is one. We first prove a lemma:

Lemma 1. |I(zi)| = b|I(zi−1)|/2c

16

To prove the lemma, assume

I(zi−1) = {i1, ..., iki−1
}. (3.4)

where i1 < i2 < ... < iki−1
. Now based on the definition of si from line 7 of Algorithm 4,

we have

I(si) = {j : i2t−1 < j ≤ i2t, 1 ≤ t ≤ ki−1/2}. (3.5)

Based on line 9 of Algorithm 4, zi is equal to one in the indices where zi−1 and si−1 are
both equal to one so combining (3.4) and (3.5) we have

I(zi) = {j : j = i2t, 1 ≤ t ≤ ki−1/2} (3.6)

So |I(zi)| = bki−1/2c = b|I(zi−1)|/2c and the lemma is proven.

Next we prove that b′i calculated in line 10 of Algorithm 4 is the ith bit of I(z0). In
other words, if I(z0) = (b′′h...b

′′
1b
′′
0)2, we will prove that b′′i = b′i. Based on the lemma, we

know that I(zi) = (b′′h...b
′′
i+1b

′′
i)2 so

b′i =
m∑
j=1

zi[j] = I(zi) mod 2 = b′′i (3.7)

So I(z0) = (b′h...b
′
1b
′
0)2. To finish the proof, we know that x and y are equal, if and only

if I(z0) = k and line 11 of Algorithm 4 evaluates the folklore binary operator between the
bitwise representation of I(z0) and k, so the theorem is proven.

Overall, Algorithm 4 performs m+ (m+ 1)blog2 kc multiplications. The multiplicative
depth of circuit realizing this operator is given in the following theorem.

Theorem 3. The multiplicative depth of a circuit equivalent to Algorithm 4 is equal to

1 + blog2 kc+ dlog2 (blog2 kc+ 1)e. (3.8)

Proof. Initially, on line 1, one multiplication is performed for each of the bits of the code-
words. Then in the for loop of line 4, one multiplication is performed in each of the
h = blog2(k)c iterations. Additions are also performed in each iteration so the multi-
plications can only be done in sequence. Finally, on line 11, h + 1 multiplications are
done in a tree-style fashion with a depth of dlog2 (h+ 1)e. Hence, the total depth is
1 + h+ dlog2 (h+ 1)e and the theorem is proven.

17

Remark. If k is a power of two, line 11 in Algorithm 4 can be simplified to e = b′h and the
last term in Equation (3.8) can be dropped. The multiplicative depth of the corresponding
circuit is equal to

1 + blog2 kc . (3.9)

3.2 Mappings to Constant-weight Codewords

The equality operators described in the previous section are all over constant-weight code-
words. To benefit from these constructions in a setting where we want to compare elements
from other domains, we also propose two mappings from other domains to constant-weight
codewords. The goal is for the mapping (and inverse mapping) procedure to be efficient
and less expensive than storing an equivalence table.

Perfect Mapping. This mapping is used to map numbers in the set [n] to CW (m, k)
such that it is injective and has an inverse. To have the injective property, the code size
must be at least n, i.e., |CW (m, k)| =

(
m
k

)
≥ n. The mapping procedure is given in

Algorithm 5.

Algorithm 5 Perfect Mapping

Input: x ∈ [n], m, k ∈ N such that
(
m
k

)
≥ n

1: r = x
2: h = k
3: y = 0m

4: for m′ = m− 1, ..., 1, 0 do
5: if r ≥

(
m′

h

)
then

6: y[m′] = 1
7: r = r −

(
m′

h

)
8: h = h− 1

Output: y ∈ CW (m, k)

Intuitively, this procedure is assigning the ith valid codeword from a sorted list of
codewords to the number i. Creating this list and extracting the mapping corresponding
to a number would be prohibitively expensive with an average complexity of θ

((
m
k

))
. The

complexity of our mapping procedure is O(m+ k).

18

Since the mapping is one-on-one, there also exists an inverse mapping which is described
in Algorithm 6. Similar to the mapping, the complexity of the inverse mapping procedure
to O(m+ k).

Algorithm 6 Inverse Perfect Mapping

Input: y ∈ CW (m, k)

1: x = 0
2: h = 1
3: for m′ ∈ [m] do
4: if y[m′] = 1 then
5: x = x+

(
m′

h

)
6: h = h+ 1

Output: x ∈ N0

The perfect mapping also preserves the order between the mapped elements. This is
useful in applications where it is important to preserve the ordering of elements in the
domain, e.g., comparison operators.

Lossy Mapping. In some cases, we may need to map elements of some large domain
to constant-weight codewords but the size of the domain is too large to assign a distinct
codeword to each element. Recall that if S is the domain, the code length, m, needs to be
chosen such that

(
m
k

)
≥ |S| which results in a prohibitively large m.

To address this issue, we propose a lossy mapping inspired by Bloom filters. The
procedure for the lossy mapping is given in Algorithm 7.

Based on the definition, a probability exists that unequal elements of the domain are
mapped to the same codeword which is formalized in the following theorem.

Theorem 4. In Algorithm 7, assume (Hi : S 7→ [m])i∈N is a series of uniformly random
hash functions and Mm,k(x) is the output of the algorithm for input x, m, and k with
(Hi)i∈N as the parameters. For two randomly chosen elements x, y ∈ S such that x 6= y,

P [Mm,k(x) = Mm,k(y)] =
1(
m
k

) . (3.10)

Proof. To prove this theorem, it suffices to prove that for any given codeword in the range
of Mm,k(x) such as c,

P [Mm,k(x) = c] =
1(
m
k

) .
19

Algorithm 7 Lossy Mapping

Parameters: Series of uniformly random hash functions (Hi : S 7→ [m])i∈N
Input: x ∈ S,m, k ∈ N

1: cnt← 0
2: i← 1
3: y ← 0m

4: while cnt < k do
5: m′ = Hi(x)
6: if y[m′] = 0 then
7: y[m

′] = 1
8: cnt = cnt+ 1

9: i = i+ 1

Output: y ∈ CW (m, k)

We prove this by induction over k. For k = 1, it is easy to see that

P [Mm,1(x) = c] =
1

m

for any c ∈ Range(Mm,1(x)).

Let I(c) denote the positions in the codeword c where the bit is set to one. For k > 1,
the probability that H1(x) ∈ I(c) is equal to k

m
. By induction, the probability that set of

the next k − 1 distinct outputs in the series (Hi(x))i≥2 is equal to I(c)− {H1(x)} is equal
to 1

(m−1
k−1)

. Hence

P [Mm,k(x) = c] =
k

m

1(
m−1
k−1

) =
1(
m
k

) .
Due to the lossy nature of the mapping, an inverse mapping is not available for the

lossy mapping.

3.3 PIR using Constant-weight Codewords

In this section, we will describe our protocol for PIR using constant-weight codewords.
Our protocol follows the approach using equality operators with the plain constant-weight

20

Table 3.1: Stages of PIR using constant-weight codewords

Stage Performed by Offline/Online Functionality
Computational

Complexity

Setup Server Offline Set Parameters, Put DB in plaintext format O(n)
Query Client Online Construct query, Send to Server O(m)

Process Server Online
Query Expansion O(m)

Selection Vector Calculation O(n)
Inner product with DB O(ns)

Extract Client Online Decrypt & decode the server’s response O(s)

equality operator at its core and is the first practical and scalable PIR protocol using the
equality operator approach.

The PIR protocol is conducted between a server and user. The server holds a database,
DB, with n entries. Each entry is accessible by a unique identifier. We denote the set of
identifiers in the database by ID. The user holds a query q from the domain of identifiers
which we denote by S(ID). We know by definition that ID ⊆ S(ID), but the user’s
query might not necessarily be in the database. Previous work, including SEALPIR and
MulPIR, focuses mainly on PIR when |S(ID)| = |ID| = n, i.e., index PIR, and keyword
PIR is reduced to index PIR. In contrast, our work is applicable for both index and keyword
PIR. We describe index PIR first and expand on keyword PIR in Sections 3.3.5 and 3.3.6.

The protocol consists of four main stages: Setup, Query, Process, and Extract. The
Setup is an offline stage, whereas the other three stages happen online. An offline stage
does not depend on the user’s query and the server can perform such as stage before the
user sends its query to reduce latency. Table 3.1 summarizes the stages of our PIR protocol.
In the following sections, we will describe each stage in detail.

3.3.1 Setup

In this stage, parameters for homomorphic encryption system are chosen such that they
meet the security requirements. The payload data within each row of the database is then
converted into FV plaintexts. For this protocol, only the contents of each database row
must be converted to plaintexts, not the set of identifiers. This stage only depends on the
choice of encryption parameters and can be done without regard to the user’s query. After
this offline stage the server holds a table of plaintexts with n rows and at most s plaintexts
in each row, for some s ≥ 1.

21

3.3.2 Query

In this stage, the user constructs its query in the appropriate format and sends it to the
server. First, parameters for the user’s query are chosen. The Hamming weight, k, is chosen
and then the code length m, is derived such that

(
m
k

)
≥ n. The user then constructs its

query as depicted by Algorithm 8. Let q ∈ S(ID) denote the user’s query. The user maps
its query to a constant-weight code from CW (m, k). Let Eq denote the mapping of q. Eq
is then converted to FV plaintexts as shown in lines 2–4 of Algorithm 8. The compression
factor, c, indicates how many bits of the user’s query are in each plaintext. Specifically,
for c ∈ {0, 1, ..., log2N}, exactly 2c bits are in each plaintext. A higher compression factor
reduces the upload cost but requires more computation for decompression, as we will see
the next stage. Finally, the plaintexts are encrypted using the user’s secret key. The client
sends the output of Algorithm 8 along with m, k, and c to the server for the next stage.

Algorithm 8 Query

Input: q ∈ S(ID), m, k ∈ N, c ∈ {0, 1, ..., log2N}

1: Eq ← MapToConstantWeightCode(q,m, k)
2: h = dm

2c
e

3: for i ∈ [h] do
4: mi(x) =

∑
j∈[2c]

2−c · Eq[i2c + j] · xj

5: for i ∈ [h] do
6: cti(x) = Enc(sk,mi(x))

Output: (cti(x))i∈[h]

3.3.3 Process Query

The server conducts this stage which consists of three steps: Query Expansion, Selection
Vector Calculation, and Inner Product.

Query Expansion. In the first step, the server expands the ciphertexts received by the
user such that each bit of the user’s query is in a separate ciphertext. Algorithm 9 describes
the query expansion procedure, which is a modified version of Algorithm 1. We replace the
use of two substitutions and one plaintext multiplication in the inner loop of Algorithm 1

22

with one substitution and two plaintext multiplications. Since substitution is slower com-
pared to plain multiplication, as indicated in Table 2.1, there is an overall speedup. This
modification in the expansion algorithm was first adopted in the implementation of MulPIR
from the OpenMined community.1

Algorithm 9 Query Expansion

Input: (ctj(x)) ∈ Cd
m
2c e, m ∈ N, c ∈ {0, 1, ..., log2N}

1: h =
⌈
m
2c

⌉
2: ctxts← []
3: for j ∈ [h] do
4: cts← [ctj]
5: for a ∈ [c] do
6: for b ∈ [2a] do
7: c0 ← cts[b]
8: c0 ← SubN/2a+1(c0)
9: c1 ← x−2

a · c0
10: cts[b+ 2a]← x−2

a · cts[b]
11: cts[b]← cts[b] + c0
12: cts[b+ 2a]← cts[b+ 2a]− c1
13: ctxts← ctxts||cts

Output: ctxts ∈ Cm

We prove the correctness of this procedure by showing it is equivalent to Algorithm 1,
which has been proven to be correct by Angel et al. [6]. The for loop on line 6 of Algorithm 9
can be executed in parallel.

Theorem 5. The output of Algorithm 9 is identical to that of Algorithm 1.

Proof. To prove the correctness of the oblivious expansion in Algorithm 9, we prove it is
equivalent to the oblivious expansion of SEALPIR, shown in Algorithm 1. For this, we
prove that line 4–7 of Algorithm 1 is equivalent to line 7–12 of Algorithm 9.

In Algorithm 1, denote cts[b] on line 4 by m(x) for simplicity. By executing lines 4 to

1https://github.com/OpenMined/PIR

23

https://github.com/OpenMined/PIR

7, of the protocol, we can see that the new values for cts[b] and cts[b+ 2a] are

cts[b]← m(x) + SubN/2a+1(m(x))

cts[b+ 2a]← x−2
a ·m(x) + SubN/2a+1(x

−2a ·m(x))

Similarly for Algorithm 9 and denoting cts[b] on line 7 as m(x), by executing lines 7 to
12, the new values for cts[b] and cts[b+ 2a] are

cts[b]← m(x) + SubN/2a+1(m(x))

cts[b+ 2a]← x−2
a ·m(x)− x−2a · SubN/2a+1(m(x))

So cts[b] gets the same value after both protocols. To show that cts[b + 2a] also gets
the same value, it suffices to show that SubN/2a+1(x

−2a ·m(x)) = −x−2a · SubN/2a+1(m(x))
which can be proven as follows:

SubN/2a+1(x
−2a ·m(x)) = (xN/2

a+1)
−2a ·m(xN/2

a+1)

= x−N−2
a ·m(xN/2

a+1)

= −x−2a ·m(xN/2
a+1)

= − x−2a · SubN/2a+1(m(x))

The output of this step is a vector of m ciphertexts, where each ciphertext contains one
of the bits of Eq, i.e., the encoded query.

Selection Vector Calculation. In this step, the server creates the selection vector using
the expanded query from the output of the previous step. For this, the server iterates over
ID, the set of identifiers in the database, maps each identifier to a constant-weight codeword
and performs the equality operator between the mapped identifier and the user’s query. We
use the plain constant-weight equality operator since one of the operators is unencrypted.
Algorithm 10 depicts this step with the output from the query expansion as input.

This is the most computationally expensive step of the protocol, however, it can be done
in parallel across the identifiers in the database. The output of this stage is an encrypted
selection vector of size n, with each bit in a separate ciphertext.

24

Algorithm 10 Selection Vector Calculation
Input: ctxts ∈ Cm

1: sel← []
2: for i ∈ [n] do
3: E ← MapToConstantWeightCode(ID[i],m, k)
4: sel[i] =

∏
E[j]=1

ctxts[j]

Output: sel ∈ Cn

Inner Product. In the last step of this stage, an inner product is performed between
the selection vector derived from the previous step and the database. Each row of the
database contains at most s plaintexts from the setup phase, hence s inner products are
performed and s ciphertexts are sent to the user as the response. Each inner product
operation includes n plaintext multiplication which can be done in parallel. The s inner
products can also be done in parallel when s is large to enhance performance. The output
of the inner product is sent to the user for the next stage.

3.3.4 Extract

In the last stage, the user decrypts the ciphertext(s) received from the server. The results
are extracted from the decrypted messages by the client.

3.3.5 PIR for Sparse Databases

Recall that ID is the list of identifiers in the database, and S(ID) refers to the domain
of identifiers, i.e., the set of all possible identifiers. By definition, ID ⊆ S(ID). In the
previous sections, we have discussed PIR in the case where ID = S(ID). Related work
has also mainly focused on PIR under this assumption [4, 6]. A sparse database, however,
specifies the case where ID where is much smaller than S(ID). In this case, not all identifiers
in the domain are associated with an element in the database.

The architecture described in this section is applicable when the database is sparse,
with computation on the order of the database size, not the domain size. For this, the
following changes must be made to the protocol.

25

• In the query stage, the code length, m, and Hamming weight, k, are chosen such that(
m
k

)
≥ |S(ID)|.

• In the selection vector calculation step, encrypted bits of the selection vector are gen-
erated only for identifiers in the database, i.e., the for loop on line 4 of Algorithm 10
is performed only over the identifiers in the database.

• Similarly in the inner product step, we only perform plain multiplications and sum
for identifiers in the database.

PIR solutions based on selection vectors have a computational complexity that depends
on the domain size, which makes them unsuitable for sparse PIR.

3.3.6 Probabilistic Keyword PIR

In some cases, the domain of identifiers is so large that a sparse domain is not feasible
either, i.e., the code size, m, is prohibitively large. For example, the identifiers might be a
string denoting the name of a file. A probabilistic version of the protocol is applicable in
this scenario, which we denote probabilistic keyword PIR. For this, we apply the following
changes to the protocol:

• In the query stage, we use the lossy mapping. For a database with n rows and a
chosen maximum failure rate, α, we choose the code length, m, and Hamming weight,
k, such that n/

(
m
k

)
≤ α. The user then uses the lossy mapping to construct the query.

• In the process stage, identifiers in the database are also mapped using the lossy
mapping.

Failure in probabilistic keyword PIR results in an incorrect response. This occurs when
the user’s query maps to the same code as an identifier in the database, while not being
equal to it. The following theorem holds regarding the failure rate.

Theorem 6. Let DB be a database with n rows. For probabilistic keyword PIR using
constant-weight codewords, failure rate is at most ERR = n/

(
m
k

)
where m is the code length

and k is the Hamming weight.

Proof. The probability of the user’s query colliding with any one of the identifiers is derived
using Theorem 4. By applying a union bound, the theorem can be proven.

26

Chapter 4

Evaluation

For our evaluation, we aim to conduct experiments for two purposes. First, compare
equality operators proposed in this work with existing operators. Second, to compare PIR
using constant-weight codewords with existing PIR protocols.

In the first subsection, we compare equality operators in two categories, plain operators
(operators where one operand is public) and arithmetic operators (operators oblivious to
the inputs which can be performed over an arbitrary field). Plain operators are at the
core of the PIR protocols discussed in Chapter 3. Arithmetic operands are also useful in
computation over encrypted data such as PSI, when circuits must be oblivious to both
operands. For example, the PSI protocol proposed by Kacsmar et al. [26] performs an
equality check on a many pairs of number in parallel, hence the circuit used for this
purpose can not depend on any of the inputs.

In the next subsection, we evaluate PIR protocols as parameters such as the domain
and response size scale. We compare the performance of PIR protocols discussed in this
work in terms of runtime and communication, in multiple scenarios. In our experiments,
we also apply parallelization, where applicable, to observe the effect on runtime. We argue
that some protocols achieve a higher speedup when run in parallel compared to others.

4.1 Comparing Equality Operators

The equality operators discussed in this thesis fall into three categories:

• Plain equality operators, where one operand is public, i.e., the circuit depends on

27

Table 4.1: Properties of circuits implementing equality operators mentioned in this work.
Properties include the number of homomorphic and plain multiplications, multiplicative
depth, and size of encoded elements. Parameters are chosen such that the size of the
domain is at least n. M denotes a homomorphic multiplication.

Operator Domain # of Operations Multiplicative Depth Conditions

Plain Folklore {0, 1}` ` · M dlog2 `e ` ≥ log2 n
Plain Constant-weight CW (m, k) k · M dlog2 ke

(
m
k

)
≥ n

Arithmetic Folklore {0, 1}` 2` · M d1 + log2 `e ` ≥ log2 n
Arithmetic Constant-weight CW (m, k) (m+ k) · M dlog2 ke

(
m
k

)
≥ n

Binary Folklore {0, 1}` ` · M dlog2 `e ` ≥ log2 n
Binary Constant-weight CW (m, k) m(log2 k + 1) · M d1 + log2 ke

(
m
k

)
≥ n

Binary Raffle {0, 1}∗ N(ε) · M dlog2N(ε)e -

one of the operands. We consider two candidates in this category: the plain folklore
and the plain constant-weight equality operator.

• Arithmetic equality operators, where the circuit is oblivious to both operands and
operates over an arbitrary field. We consider the folklore arithmetic and the constant-
weight arithmetic equality operators in this category.

• Binary equality operators, where the circuit is oblivious to both operands and oper-
ates over a binary field. We consider the binary folklore, the binary constant-weight,
and the binary raffle equality operators in this category.

Table 4.1 summarizes these operators, along with the properties of circuits that imple-
ment each of them. We include properties that significantly influence the runtime such as
the number of homomorphic operations (plain and homomorphic multiplications), and the
multiplicative depth. Note that different circuits operate over different domains, which are
stated in Table 4.1, but for a fair comparison, we select parameters such that all domains
are of the same size. Conditions for parameters are also in the table. Mappings (such as
those proposed in Section 3.2) can be used to compared elements from domains other than
those stated in the table.

The experiments in this section cover plain and arithmetic operators since the homo-
morphic encryption library that we use, SEAL, is not a suitable choice when operating over
a binary field. We leave implementation of the binary operators with a suitable library for
future work.

28

In the experiments, we vary the domain size to observe the effect on the performance
of the equality circuits. We implement all circuits using C++ and the SEAL library.
Within the SEAL library, we use three different encryption parameters specified by N ,
the polynomial modulus degree, where N ∈ {4096, 8192, 16384}. The default ciphertext
modulus is used to achieve 128-bit security. We also run all experiments both in single-
thread and in parallel across multiple cores. The goal is to see the amount of speed-up in
each circuit when run in parallel.

All circuits are run in a SIMD fashion using the batch encoding functionality of SEAL.
Using this feature, N elements can be compared at the same time. In plain operators,
since the circuit depends on the plain operands, this means that N elements are compared
to the same operand in the clear. This is not the case for the arithmetic operand. N pairs
of numbers are compared simultaneously. The runtime can be divided by N to achieve the
amortized cost of one equality check.

We run all experiments on an Intel Xeon E5-4640 @ 2.40GHz server with 1/2 TB RAM
and 32 cores running Ubuntu 16.04.

4.1.1 Plain Operators

Table 4.2 summarizes the results of our experiments for plain equality operators. We
report the results for the plain constant-weight operator in four categories based on the
relationship between ` and k. For a given `, runtimes using different Hamming weights are
within the same column.

The constant-weight plain operator consistently outperforms the folklore operator in
terms of running time. The advantage is greater when smaller homomorphic encryption
parameters (namely N) can be used. This is possible due to a smaller multiplicative depth
compared to the folklore circuit in cases where k < `. However, the advantage exists even
when using the same homomorphic encryption parameters. This can be attributed to the
fewer multiplications that are performed when a small Hamming weight is used. To achieve
the best runtime, the Hamming weight must be chosen according to `.

Faster runtimes for the plain constant-weight circuit come at the cost of higher memory
usage during the protocol. The memory usage depends on the code length, also specified
in the table. Depending on the application, the code length determines the communication
complexity if operands are communicated over the network.

Parallelization offers roughly up to 10× speedup for both circuits and there is no no-
ticeable difference in the advantage that parallel implementation offers for both circuits.

29

Table 4.2: Runtimes for plain equality operators in milliseconds. Dashes indicate cases
where the ciphertext was undecryptable due to homomorphic noise.

Single-thread Parallel (64 threads)

` 4 8 16 32 64 128 256 512 ` 4 8 16 32 64 128 256 512

Plain
Folklore

Mult Depth 2 3 4 5 6 7 8 9 Mult Depth 2 3 4 5 6 7 8 9
N = 4096 - - - - - - - - N = 4096 - - - - - - - -
N = 8192 120 274 541 - - - - - N = 8192 175 205 258 - - - - -
N = 16384 513 1140 2428 5027 10309 21030 42251 83924 N = 16384 462 748 962 1323 1943 2795 4314 7612

Plain
Constant-

weight
` = k

Hamming
weight

4 8 16 32 64 128 256 512
Hamming

weight
4 8 16 32 64 128 256 512

Mult Depth 2 3 4 5 6 7 8 9 Mult Depth 11429 3 4 5 6 7 8 9
Code

Length (m)
7 12 22 43 85 168 334 665

Code
Length (m)

7 12 22 43 85 168 334 665

N = 4096 - - - - - - - - N = 4096 - - - - - - - -
N = 8192 118 270 566 - - - - - N = 8192 135 186 283 - - - - -
N = 16384 492 1126 2595 4985 10131 20557 40852 81773 N = 16384 415 584 1026 1248 1946 2670 4093 6975

Plain
Constant-

weight
` = 2k

Hamming
weight

2 4 8 16 32 64 128 256
Hamming

weight
2 4 8 16 32 64 128 256

Mult Depth 1 2 3 4 5 6 7 8 Mult Depth 1 2 3 4 5 6 7 8
Code

Length (m)
7 11 19 36 68 132 261 517

Code
Length (m)

7 11 19 36 68 132 261 517

N = 4096 10 - - - - - - - N = 4096 37 - - - - - - -
N = 8192 41 119 272 551 - - - - N = 8192 86 150 180 240 - - - -
N = 16384 171 489 1142 2445 5019 10437 21519 41291 N = 16384 189 375 759 874 1398 2185 2839 4180

Plain
Constant-

weight
` = 4k

Hamming
weight

1 2 4 8 16 32 64 128
Hamming

weight
1 2 4 8 16 32 64 128

Mult Depth 0 1 2 3 4 5 6 7 Mult Depth 0 1 2 3 4 5 6 7
Code

Length (m)
16 24 37 64 117 221 427 838

Code
Length (m)

16 24 37 64 117 221 427 838

N = 4096 0.12 10 - - - - - - N = 4096 0.09 27 - - - - - -
N = 8192 37 41 119 249 493 - - - N = 8192 0.45 58 111 225 252 - - -
N = 16384 1.9 173 486 1136 2444 5037 10077 21062 N = 16384 2.05 189 499 759 1038 1364 1822 2598

Plain
Constant-

weight
` = 8k

Hamming
weight

1 2 4 8 16 32 64
Hamming

weight
1 2 4 8 16 32 64

Mult Depth 0 1 2 3 4 5 6 Mult Depth 0 1 2 3 4 5 6
Code

Length (m)
256 363 569 968 1749 3290 6349

Code
Length (m)

256 363 569 968 1749 3290 6349

N = 4096 0.11 8 - - - - - N = 4096 0.12 28 - - - - -
N = 8192 0.41 38 103 252 545 - - N = 8192 0.46 67 145 220 270 - -
N = 16384 2.7 178 500 1147 2425 5039 10438 N = 16384 2.64 293 537 733 1087 1434 1824

4.1.2 Arithmetic Operators

Table 4.3 summarizes the results of our experiments for arithmetic equality operators.
Similar to before, we report the results for the arithmetic constant-weight operator in four
categories based on the relationship between ` and k. For a given `, runtimes using different
Hamming weights are within the same column.

Unlike the plain operators, the constant-weight arithmetic operator is not always faster
than the equivalent folklore arithmetic equality circuit. This is due to the large number
of homomorphic multiplications that are required in a constant-weight arithmetic circuit
(m+ k). Specifically, when the encoding size m is large due to a small Hamming weight k,
the number of multiplications can be very high compared to the folklore. However, in some

30

Table 4.3: Runtimes for arithmetic equality operators in milliseconds. Dashes indicate
cases where the ciphertext was undecryptable due to homomorphic noise.

Single-thread Multi-thread

` 4 8 16 32 64 128 256 512 ` 4 8 16 32 64 128 256 512

Arithmetic
Folklore

Mult Depth 3 4 5 6 7 8 9 10 Mult Depth 3 4 5 6 7 8 9 10
N = 4096 - - - - - - - - N = 4096 - - - - - - - -
N = 8192 241 490 - - - - - - N = 8192 274 433 - - - - - -
N = 16384 1014 2237 4636 9197 19050 37283 74451 149282 N = 16384 1068 1757 3098 5604 10397 20165 37921 73966

Arithmetic
Constant-

weight
` = k

Hamming
weight

4 8 16 32 64 128 256 512
Hamming

weight
4 8 16 32 64 128 256 512

Mult Depth 3 4 5 6 7 8 9 10 Mult Depth 3 4 5 6 7 8 9 10
Encoding

size
7 12 22 43 85 168 334 665

Encoding
size

7 12 22 43 85 168 334 665

N = 4096 - - - - - - - - N = 4096 - - - - - - - -
N = 8192 385 692 - - - - - - N = 8192 204 289 - - - - - -
N = 16384 1621 3065 6048 12029 23677 46960 93774 186824 N = 16384 722 1072 1418 2013 2788 4483 8224 14369

Arithmetic
Constant-

weight
` = 2k

Hamming
weight

2 4 8 16 32 64 128 256
Hamming

weight
2 4 8 16 32 64 128 256

Mult Depth 2 3 4 5 6 7 8 9 Mult Depth 2 3 4 5 6 7 8 9
Encoding

size
7 11 19 36 68 132 261 517

Encoding
size

7 11 19 36 68 132 261 517

N = 4096 - - - - - - - - N = 4096 - - - - - - - -
N = 8192 310 538 - - - - - - N = 8192 176 220 366 - - - - -
N = 16384 1291 2252 4340 8247 16161 31195 63830 123168 N = 16384 448 845 1113 1671 2629 3997 6565 9561

Arithmetic
Constant-

weight
` = 4k

Hamming
weight

1 2 4 8 16 32 64 128
Hamming

weight
1 2 4 8 16 32 64 128

Mult Depth 1 2 3 4 5 6 7 8 Mult Depth 1 2 3 4 5 6 7 8
Encoding

size
16 24 37 64 117 221 427 838

Encoding
size

16 24 37 64 117 221 427 838

N = 4096 152 - - - - - - - N = 4096 67 - - - - - - -
N = 8192 572 854 1346 - - - - - N = 8192 124 296 423 - - - - -
N = 16384 2562 4385 6474 11429 21156 40279 78214 154572 N = 16384 492 701 1081 1570 2839 4276 7173 12479

Arithmetic
Constant-

weight
` = 8k

Hamming
weight

1 2 4 8 16 32 64
Hamming

weight
1 2 4 8 16 32 64

Mult Depth 1 2 3 4 5 6 7 Mult Depth 1 2 3 4 5 6 7
Encoding

size
256 363 569 968 1749 3290 6349

Encoding
size

256 363 569 968 1749 3290 6349

N = 4096 2078 - - - - - - N = 4096 447 - - - - - -
N = 8192 8483 11998 19033 - - - - N = 8192 818 1151 1621 - - - -
N = 16384 41138 58104 91925 156589 282136 533596 1064621 N = 16384 3045 4540 7078 12449 20359 37048 73267

cases, the smaller Hamming weight results in a lower multiplicative depth, which allows
the use of smaller homomorphic encryption parameters (N). For example, for ` = 16 and
Hamming weight of 4, the constant-weight using N = 8192 is about 4 times faster than
the folklore using N = 16384. The amortized cost is also about 2 times faster.

Similar to the plain equality operators, high memory usage is also an issue with the
arithmetic constant-weight equality operator and it requires much more memory than the
equivalent folklore operator.

The effect of the parallelization is however substantially different between folklore and
constant-weight operators. The folklore circuit runs at most 2 times faster with paralleliza-
tion, whereas the constant-weight circuit has more than a 10× speedup in some cases. The
speedup is larger as ` grows. The speedup is mainly due to the m homomorphic multipli-
cations that can be done in parallel.

31

4.2 Comparing PIR Protocols

In this section, we present the results of experiments conducted to compare the PIR pro-
tocols mentioned in this work. Specifically, we compare four protocols:

• PIR using the folklore equality circuit (which we call folklore PIR)

• PIR using the constant-weight equality circuit (which we call constant-weight PIR)

• SEALPIR [4]

• MulPIR [4]

SEALPIR and MulPIR are based on the approach where the selection vector is commu-
nicated to the server, whereas folklore PIR and constant-weight PIR make use of equality
operators. We aim to compare the two general methods (selection vectors vs. equality
circuits) while also evaluating constant-weight PIR against folklore PIR.

Unary Approach. Note that SEALPIR and MulPIR with d = 1 are equivalent to
constant-weight PIR when k = 1. Hence, we refer to this configuration as the unary
approach and report runtimes separately as a baseline for the other methods.

4.2.1 Implementation and Experimental Details

Constant-weight PIR is implemented as described in Section 3.3. We also implement
folklore PIR using the same architecture and consisting of the same steps described in
Section 3.3. However, we use a logarithmic binary encoding for indices and the equality
operator is replaced with a plain folklore equality operator per definition in Equation (2.6).
In experiments where parallelization is activated, the process stage is performed in parallel
across the rows in the database (not across the multiplications in the equality circuit).

We implement all protocols using C++ and SEAL1 (version 3.6) as the homomor-
phic encryption library. For SEALPIR and MulPIR, we use the implementation by the
OpenMined community.2 This implementation does not include parallelization so we ex-
clude SEALPIR/MulPIR from experiments where the effect of parallelization is taken into
account.

1https://github.com/microsoft/SEAL
2https://github.com/OpenMined/PIR

32

https://github.com/microsoft/SEAL
https://github.com/OpenMined/PIR

We select homomorphic encryption parameters such that it satisfies 128-bit security.
Specifically, we use N ∈ {4096, 8192, 16384} and the default coefficient modulus in SEAL
for 128-bit security. Each protocol is run with the smallest parameter set which produces
decryptable results. Specifically, SEALPIR uses N = 4096, whereas MulPIR, folklore PIR,
and constant-weight PIR require N = 8192.

We run all experiments on an Intel Xeon E5-4640 @ 2.40GHz server with 1/2 TB RAM
and 32 cores running Ubuntu 16.04.

We conduct experiments for three scenarios which vary three parameters: the number
of rows (number of keywords which correspond to existing payload data in the database),
the domain size (the size of the set of all possible queries), and the response size (the
maximum size of the payload data within each row of the database). The scenarios are as
follows:

• PIR over a database in which we vary the number of rows

• PIR over a database with a fixed number of rows, but with a varying domain size

• PIR over a database with a fixed number of rows, but with varying response size

In the next subsections, we explain each scenario in more detail, provide results for the
three scenarios outlined above, and discuss the conclusion derived from each one.

4.2.2 Packed Database Experiments

In this scenario, we perform PIR using a database with the four protocols mentioned
above. We assume each database row contains payload data equal to the size of precisely
one plaintext, hence the name packed. This is the scenario that is focused on in related
work. While some real-world databases might not initially meet this requirement, they are
restructured using the packing techniques for this purpose [4, 7]. Another way to express
a packed database is with the condition |S(ID)| = |ID|. This implies that all database
rows are full (in contrast to the next scenario where some rows might be empty). Table 4.4
compares the properties of the four aforementioned protocols.

In our experiments, the size of a plaintext depends on the homomorphic encryption
parameters used in each approach. So, for a fair comparison, we compare runtimes for
different protocols when the database size (in MB) is roughly the same.

We report the results in two tables. In Table 4.5, approaches using equality circuits,
folklore and constant-weight PIR are compared. In Table 4.6, we compare constant-weight

33

Table 4.4: Parameters for PIR using SEALPIR, MulPIR, folklore PIR, and constant-weight
PIR when |S(ID)| = |ID| = n. The ciphertext expansion factor is denoted by F . PM, M
indicate plain multiplication and homomorphic multiplication, respectively.

Method Mult Depth
Query

Bit-length
of Operations

Download Cost
(in ciphertexts)

SEALPIR d− 1 d d d
√
n e

∑d−1
i=0 n

d−i
d F i · PM F d−1

MulPIR d− 1 d d d
√
n e (n · PM +

∑d−1
i=1 n

d−i
d · M) 1

Folklore PIR dlog2 dlog2 nee dlog2 ne n dlog2 ne · M + n · PM 1

Constant-weight PIR dlog ke O
(

k
√
k!n
)

nk · M + n · PM 1

PIR with approaches using selection vectors, i.e., SEALPIR and MulPIR. The runtimes in
these two tables are not accelerated using parallelization.

Table 4.5 shows the folklore is much slower than the other protocols in the same table.
At ` = 512, the parameters of the homomorphic cryptosystem must be increased from
N = 8192 to N = 16384 to produce valid, decryptable results. Larger parameters increase
the runtime drastically.

The unary approach is the fastest approach amongst the three in Table 4.5, since
the number of homomorphic operations is the fewest (no homomorphic multiplications).
However, the communication cost, specifically the upload cost, increases very quickly and
the expansion step constitutes the bulk of the runtime due to a large query size. Constant-
weight PIR with k = 2 lies between folklore PIR and the unary approach. The upload cost
is the same for all database sizes in Table 4.5. The runtime, albeit higher than the unary
approach, is an order of magnitude less than folklore PIR. Consequently, constant-weight
PIR is the first practical PIR protocol using equality operators.

Table 4.6 compares constant-weight PIR to SEALPIR and MulPIR. This tables in-
cludes runtimes and communication sizes. However, communication sizes for SEALPIR
and MulPIR are reported from the paper [4] since the implementation does not report the
sizes of the messages. Runtimes in this table are much smaller so we can examine larger
database sizes as well. SEALPIR has a large communication cost, specifically because of
the larger download cost compared to the other protocols. However, the runtime is less
than that of constant-weight PIR and MulPIR for the reported database sizes. MulPIR and
constant-weight PIR have the smallest communication cost, with MulPIR having a smaller
runtime in this scenario. This can be attributed to the smaller number of homomorphic
operations in MulPIR compared to constant-weight PIR.

34

Table 4.5: Runtimes for Folklore and Constant-weight PIR
Communication (KB) Time (ms)

DB
Rows (n)

DB Size
(MB)

Query
Bit-length

Query Response Expansion
Sel. Vec.

Calculation
Inner

Product
Total Server

Valid
Response

Folklore (N = 8192)

256 5.242 8 216 103 66 57748 815 58829 3

512 10.485 9 216 103 125 132093 1618 134038 7

1024 20.971 10 216 103 120 296654 3209 300197 7

2048 41.943 11 216 103 121 658535 6354 665211 7

4096 83.886 12 216 103 134 1456388 12964 1469687 7

Folklore (N = 16384)

4096 167.772 12 913 224 764 7086351 54440 7143207 3

8192 335.544 13 913 224 813 15682684 113848 15799042 3

16384 671.088 14 913 224 781 34603717 241270 34847343 3

Unary (N = 4096)

256 2.621 256 46 46 509 9 174 734 3

512 5.242 512 46 46 973 20 376 1411 3

1024 10.485 1024 46 46 1840 51 777 2704 3

2048 20.971 2048 46 46 3688 140 1626 5491 3

4096 41.943 4096 46 46 7468 447 3253 11207 3

8192 83.886 8192 92 46 15080 1945 7043 24110 3

16384 167.772 16384 185 46 29362 6622 12918 48951 3

32768 335.544 32768 371 46 58691 23925 26590 109271 3

65536 671.088 65536 743 46 117832 86717 55412 260057 3

131072 1342.177 131072 1486 46 243702 334502 112959 691343 3

Constant-weight (k = 2, N = 8192)

256 5.242 24 216 103 266 8351 807 9621 3

512 10.485 33 216 103 510 16656 1628 19005 3

1024 20.971 46 216 103 518 33250 3248 37212 3

2048 41.943 65 216 103 1051 66570 6288 74111 3

4096 83.886 92 216 103 1296 132686 12703 146886 3

8192 167.772 129 216 103 2227 265632 24595 292664 3

16384 335.544 182 216 103 2416 538861 53444 595024 3

32768 671.088 257 216 103 4466 1087970 110094 1202754 3

65536 1342.177 363 216 103 5110 2242229 219007 2466662 3

In Table 4.7, runtimes with parallelization are given to further demonstrate the practi-
cality of constant-weight PIR. This table shows that when executed in parallel, constant-
PIR has a 10× speedup and is faster than the existing implementation of MulPIR. A more
detailed comparison of the effect of parallelization requires reimplementation of SEALPIR
and MulPIR with parallelization in mind, which we leave for future work.

To summarize, in a packed database, SEALPIR and MulPIR are the best options in
terms of runtime and communication cost, respectively and constant-weight PIR is not

35

advantageous in this scenario.

Table 4.6: Runtime of Constant-weight PIR, SEALPIR, and MulPIR
Communication (KB) Time (ms)

DB
Rows (n)

DB Size
(MB)

Encoding
Size

Query Response Expansion
Sel. Vec.

Calculation
Inner

Product
Total Server

Valid
Response

Constant-weight (k = 2, N = 8192)

256 5.242 24 216 103 266 8351 807 9621 3

512 10.485 33 216 103 510 16656 1628 19005 3

1024 20.971 46 216 103 518 33250 3248 37212 3

2048 41.943 65 216 103 1051 66570 6288 74111 3

4096 83.886 92 216 103 1296 132686 12703 146886 3

8192 167.772 129 216 103 2227 265632 24595 292664 3

16384 335.544 182 216 103 2416 538861 53444 595024 3

32768 671.088 257 216 103 4466 1087970 110094 1202754 3

65536 1342.177 363 216 103 5110 2242229 219007 2466662 3

SEALPIR (d = 2, N = 4096)

512 4.98 46 61.4 307 - - - 344 3

1024 9.96 64 61.4 307 - - - 463 3

2048 19.92 92 61.4 307 - - - 809 3

4096 39.85 128 61.4 307 - - - 1239 3

8192 79.69 182 61.4 307 - - - 2244 3

16384 159.38 256 61.4 307 - - - 3765 3

32768 318.77 364 61.4 307 - - - 7025 3

65536 637.53 512 61.4 307 - - - 12535 3

131072 1275.07 726 61.4 307 - - - 24696 3

262144 2550.14 1024 61.4 307 - - - 50722 3

524288 5100.27 1450 61.4 307 - - - 100965 3

1048576 10200.55 2048 61.4 307 - - - 199522 3

2097152 20401.09 2898 61.4 307 - - - 430533 3

MulPIR (d = 2, N = 8192)

256 4.98 32 122 119 - - - 2384 3

512 9.96 46 122 119 - - - 4125 3

1024 19.92 64 122 119 - - - 6859 3

2048 39.85 92 122 119 - - - 12759 3

4096 79.69 128 122 119 - - - 22887 3

8192 159.38 182 122 119 - - - 44018 3

16384 318.77 256 122 119 - - - 83304 3

32768 637.53 364 122 119 - - - 163926 3

65536 1275.07 512 122 119 - - - 318856 3

131072 2550.14 726 122 119 - - - 634210 3

262144 5100.27 1024 122 119 - - - 1256404 3

524288 10200.55 1450 122 119 - - - 2531407 3

36

Table 4.7: Runtime of Constant-weight PIR executed with parallelization
Communication (KB) Time (ms)

DB
Rows (n)

DB Size
(MB)

Encoding
Size

Query
Comm.

Response
Comm.

Expansion
Sel. Vec.

Calculation
Inner Product Total Server

Valid
Response

256 5.242 24 216 103 137 392 174 915 3

512 10.485 33 216 103 174 749 400 1523 3

1024 20.971 46 216 103 153 1545 770 2669 3

2048 41.943 65 216 103 192 2959 1688 5044 3

4096 83.886 92 216 103 244 5621 3083 9150 3

8192 167.772 129 216 103 300 11051 6483 18038 3

16384 335.544 182 216 103 325 21704 13094 35332 3

32768 671.088 257 216 103 507 42647 26456 69832 3

65536 1342.177 363 216 103 526 85765 50539 137080 3

131072 2684.354 513 216 103 948 172771 105093 279110 3

262144 5368.709 725 216 103 1195 345965 223047 570666 3

4.2.3 Varying Domain Size

In the previous section, we examined PIR over databases where all keywords/identifiers
in the domain of keywords correspond to some payload data in the database. This is not
always the case and sparse databases (keyword PIR) are an example of this.

In this scenario, we perform PIR over a sparse database by using different domain
sizes but with a fixed number of rows. We examine the effect of a sparse database on
SEALPIR, MulPIR and constant-weight PIR, and perform experiments for constant-weight
PIR. SEALPIR and MulPIR are not specifically designed for a sparse domain so we can
only estimate their performance. A more detailed comparison can be done with reimple-
mentation of the protocols with sparsity in mind, which we leave to future work.

Table 4.8 shows the number of operations adjusted for when the database is sparse. n
denotes the number of rows in the database, whereas |S| refers to the size of the domain
from which the query is selected.

We argue that constant-weight PIR is minimally affected by sparsity in the database
and it is a suitable solution for sparse PIR. Table 4.8 which counts the number of opera-
tions performed on the server for all protocols supports this argument, as the number of
operations does not depend on the size of the domain. The number of operations in this
table does not include the expansion step. Note that we exclude folklore PIR from this
section since it is strictly slower than constant-weight PIR.

Table 4.8 also shows the query bit-length of each method. The query bit-length de-
termines the communication cost in the protocol and also affects the computation cost,
specifically the expansion step. This parameter is affected by the domain size. The query

37

Table 4.8: Parameters for sparse PIR using SEALPIR, MulPIR, and constant-weight PIR.
The ciphertext expansion factor is denoted by F . PM and M indicate plain multiplication
and homomorphic multiplication, respectively.

Method Mult Depth
Query

Bit-length
of Operations

Download Cost
(in ciphertexts)

SEALPIR d− 1 d
⌈

d
√
|S|
⌉

n · PM +
∑d−1

i=1 |S|
d−i
d F i · PM F d−1

MulPIR d− 1 d
⌈

d
√
|S|
⌉

n · PM +
∑d−1

i=1 |S|
d−i
d · M 1

Constant-weight PIR dlog ke O
(

k
√
k!|S|

)
nk · M + n · PM 1

bit-length in constant-weight PIR is equal to the size of the constant-weight code that is
used. SEALPIR and MulPIR use the same type of encoding for PIR queries which essen-
tially calculates the position of the desired row of the database when restructured into a
d-dimensional table. We denote this a dimension-wise encoding in this section.

Table 4.9 shows the number of bits required to represent a query using a constant-
weight code and a dimension-wise encoding. The logarithmic binary encoding, used in
folklore PIR, is given as a reference in the second column and is the most space-efficient
representation of a query. In the next four columns, the constant-weight code size is shown
for different values of k, the Hamming weight. Finally, In the last three columns, we derive
the bit-length of the dimension-wise encoding. The depth refers to the multiplicative depth
in a PIR protocol using the set of parameters in that column.

There are multiple observations from this table. Firstly, larger k or d (and higher
multiplicative depth in turn) drastically reduces the bit-length of the query. Given this
observation, a fair comparison between the constant-weight code and dimension-wise en-
coding is comparing those with the same multiplicative depth since the multiplicative depth
directly impacts the performance. For the same multiplicative depth, the constant-weight
code is smaller than the dimension-wise code. Figure 4.1 visualizes this for even larger
domain sizes and higher multiplicative depths. Note that the scale on the vertical axis is
logarithmic and the gap between the size of the codes increases as the domain size increases
and a larger multiplicative depth is used.

The size of the query can also affect the server runtime in the protocol. Table 4.10
shows this effect by providing a breakdown of the server’s runtime in constant-weight PIR.
We fix the size of the database to roughly 330 MB.

The runtime of the protocol consists of the expansion step, and the iteration step

38

Table 4.9: Bit-length of the query in different protocols

Log2
Binary

Encoding

Constant-weight code size Dimension-wise
Domain

Bitlength
depth=0 depth=1 depth=2 depth=0 depth=1 depth=2

k=1 k=2 k=3 k=4 d=1 d=2 d=3

4 2 16 7 6 7 16 8 9
6 3 64 12 9 8 64 16 12
8 3 256 24 13 11 256 32 21
10 4 1024 46 20 15 1024 64 33
12 4 4096 92 31 20 4096 128 48
14 4 16384 182 48 27 16384 256 78
16 4 65536 363 75 37 65536 512 123
18 5 262144 725 118 52 262144 1024 192
20 5 - 1449 186 73 - 2048 306
22 5 - 2897 295 102 - 4096 486
24 5 - 5794 467 144 - 8192 768
26 5 - 11586 740 202 - 16384 1221
28 5 - 23171 1174 285 - 32768 1938
30 5 - 46342 1862 403 - 65536 3072
32 5 - 92683 2955 569 - 131072 4878
34 6 - 185365 4690 803 - 262144 7743
36 6 - 370729 7444 1135 - 524288 12288
38 6 - 741456 11816 1605 - 1048576 19506
40 6 - - 18756 2268 - - 30966
42 6 - - 29773 3207 - - 49152
44 6 - - 47261 4535 - - 78024
46 6 - - 75021 6413 - - 123858
48 6 - - 119088 9068 - - 196608

(which is selection vector calculation and inner product combined). We report numbers
for k ∈ {2, 3, 4} since we know that k = 1 produces an encoding size that is prohibitively
large. Table 4.10 shows the runtimes of PIR with a varying domain size using constant-
weight PIR, accelerated using parallelization. Initially, for a domain size up to 227, k = 2
has the smallest runtime. However, when the domain size approaches 228, the expansion
time constitutes a significant portion of the runtime and a switch to k = 3 results in a
smaller overall runtime. Similarly, when the domain bit-length reaches 41 bits, a switch to
k = 4 produces the best results.

39

0 1 2 3 4 5
101

103

105

107

109

Mult. Depth

E
n
co

d
in

g
S
iz

e

Domain Size=232

Dimension-wise
Constant-weight

1 2 3 4 5

102

103

104

105

106

107

108

Mult. Depth
E

n
co

d
in

g
S
iz

e

Domain Size=248

Dimension-wise
Constant-weight

2 3 4 5 6

102

103

104

105

106

107

Mult. Depth

E
n
co

d
in

g
S
iz

e

Domain Size=264

Dimension-wise
Constant-weight

3 4 5 6 7

102

104

106

108

1010

Mult. Depth

E
n
co

d
in

g
S
iz

e

Domain Size=2128

Dimension-wise
Constant-weight

Figure 4.1: Encoding size as a function of multiplicative depth

4.2.4 Varying Response size

In the previous scenarios, we performed experiments under the assumption that the re-
sponse is at most one ciphertext. In some applications, the response size might exceed
the size of one ciphertext [28]. In this section, assume the payload data corresponding to
each row can be fit into at most s plaintexts, with one row requiring exactly s plaintexts.

40

Table 4.10: Breakdown of runtime for constant-weight PIR over sparse databases.
Hamming Weight = 2 Hamming Weight = 3 Hamming Weight = 4

log2 |S|
Code
Size

Query
Size

(in cts)

Expansion
Time (ms)

Iteration
Time (ms)

Server
Total

Time (ms)

Code
Size

Query
Size

(in cts)

Expansion
Time (ms)

Iteration
Time (ms)

Server
Total

Time (ms)

Code
Size

Query
Size

(in cts)

Expansion
Time (ms)

Iteration
Time (ms)

Server
Total

Time (ms)

14 182 1 446 33422 34149 48 1 146 54365 54788 27 1 104 75401 75762
15 257 1 447 33810 34510 60 1 160 54148 54566 32 1 116 75858 76220
16 363 1 508 33623 34384 75 1 266 54542 55066 37 1 158 75143 75551
17 513 1 856 33975 35082 94 1 181 54835 55273 44 1 146 75492 75885
18 725 1 810 33038 34103 118 1 233 54825 55306 52 1 142 75400 75792
19 1025 1 1819 33910 35985 148 1 258 55308 55836 62 1 142 75834 76231
20 1449 1 2049 33718 36022 186 1 358 54647 55254 73 1 173 75255 75674
21 2049 1 3578 33860 37699 234 1 310 55656 56226 86 1 205 75824 76284
22 2897 1 3882 33018 37152 295 1 505 55538 56299 102 1 264 74264 74810
23 4097 1 5859 34369 40485 371 1 546 55531 56328 121 1 252 75294 75801
24 5794 1 7560 33528 41340 467 1 501 55507 56257 144 1 316 75081 75645
25 8193 2 7959 34288 42503 588 1 843 55273 56372 170 1 314 75505 76075
26 11586 2 12649 33275 46191 740 1 1042 55081 56366 202 1 359 75510 76122
27 16385 3 16117 33776 50155 932 1 1033 55731 57020 240 1 299 75355 75900
28 23171 3 23921 34585 58762 1174 1 1907 55070 57233 285 1 523 76564 77339
29 32769 5 33171 34088 67529 1478 1 1851 56117 58213 339 1 439 76776 77464
30 46342 6 45910 35789 81971 1862 1 2374 54611 57237 403 1 534 75708 76492
31 65537 9 62272 34539 97090 2346 1 3490 54301 58046 478 1 540 75181 75980
32 92683 12 87382 34898 122573 2955 1 3410 54470 58132 569 1 820 75069 76140
33 131073 17 114097 36645 151056 3723 1 4815 55327 60395 676 1 1085 75140 76470
34 4690 1 6174 56817 63250 803 1 899 76363 77508
35 5909 1 7401 56036 63694 955 1 966 75651 76874
36 7444 1 7897 55919 64080 1135 1 1759 75115 77131
37 9379 2 10107 56242 66604 1350 1 1979 75011 77247
38 11816 2 12381 55660 68294 1605 1 2059 76309 78622
39 14887 2 15333 56644 72240 1908 1 1891 75342 77482
40 18756 3 19917 57105 77282 2268 1 3406 77031 80765
41 23631 3 21794 54999 77053 2697 1 3992 76771 81012
42 29773 4 32581 57650 90501 3207 1 4064 75299 79613
43 37511 5 37536 55374 93182 3814 1 4719 75822 80786
44 47261 6 47000 56874 104155 4535 1 6608 75685 82538
45 59545 8 59277 56286 115844 5393 1 6724 76674 83650
46 75021 10 70884 58772 129944 6413 1 7519 76362 84140
47 94521 12 88535 55770 144599 7626 1 8747 77852 86850
48 119088 15 114411 57590 172302 9068 2 9877 78812 88938

In SEALPIR and MulPIR, the server’s computation (excluding the expansion step) must
be performed s times. Constant-weight PIR is different in that regard and only one step
of the protocol, the inner product step, is repeated s times. Table 4.11 shows how the
response size affects the number of operations. While all the operations are multiplied
by s for SEALPIR and MulPIR, only those corresponding to the inner product step are
multiplied by s in constant-weight PIR.

We perform experiments for PIR over a database with a fixed number of rows and vary-
ing response sizes. We fix the number of rows to 214 = 16384 and measure the response size
in terms of the number of ciphertexts returned by the server. To compare, we use MulPIR
with d = 2 and constant-weight PIR with k = 2, which have a similar communication
complexity as shown in the previous section. Also, comparison of the two protocols when
d = k = 1 is irrelevant since the two protocols reduce to unary approach.

Figure 4.2 visualizes the runtimes for MulPIR and constant-weight PIR. The imple-
mentation of MulPIR used in the experiments does not support response sizes larger than

41

Table 4.11: Parameters for PIR using SEALPIR, MulPIR, and constant-weight PIR when
|S(ID)| = |ID| = n and response is s plaintexts large. The ciphertext expansion factor
is denoted by F . PM, M indicate plain multiplication and homomorphic multiplication,
respectively.

Method Mult Depth
Query

Bit-length
of Operations

Download Cost
(in ciphertexts)

SEALPIR d− 1 d d d
√
n e (

∑d−1
i=0 n

d−i
d F i · PM) · s F d−1s

MulPIR d− 1 d d d
√
n e (n · PM +

∑d−1
i=1 n

d−i
d · M) · s s

Constant-weight PIR dlog ke O
(

k
√
k!n
)

nk · M + ns · PM s

one ciphertext, so we resort to an approximation of the runtime of MulPIR (without paral-
lelization). The approximation is indicated by the blue dotted line. The yellow line shows
the runtime of constant-weight PIR (without parallelization). We include constant-weight
PIR with parallelization for reference. As seen in the figure, the runtime of constant-
weight PIR is initially worse than MulPIR but overtakes it as the response size increases.
Constant-weight PIR outperforms MulPIR when the response size is at least 12 ciphertexts
which is 245.76 KB given the encryption parameters that are used. This corresponds to a
database size of about 4.02 GB in this experiment.

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0

500

1,000

1,500

2,000

Response Size (in ciphertexts)

R
u

n
ti

m
e

(i
n

se
co

n
d

s)

MulPIR (estimate)
Constant-weight

Constant-weight (parallelized)

Figure 4.2: Runtime of constant-weight PIR and an estimation of the runtime of MulPIR
for large response sizes.

42

Chapter 5

Applications, Limitations, and
Future Work

5.1 Applications

In this section, we elaborate on properties of constant-weight codes and constant-weight
PIR and explain how these properties distinguish them from related work. We also describe
scenarios where the constructions proposed in this work are useful and beneficial.

5.1.1 First Practical Solution

PIR using equality circuits has generally been deemed an impractical approach due to the
high cost of equality circuits using homomorphic encryption [4, 6]. Constant-weight equal-
ity operators and constant-weight PIR are the first practical realization of this approach.
Concretely, plain constant-weight operators are up to 10 times faster than equivalent

The computational cost of this approach is inevitably higher than state of the art
approaches for PIR over a packed database. However, it proves the practicality of this
approach. Moreover, constant-weight PIR is the first practical protocol which supports
keyword PIR without the need to reduce the problem to index PIR.

43

5.1.2 Setup-Free (Update Friendly)

Solutions for keyword PIR discussed in Section 2.5 all reduce it to index PIR [4, 15]. The
most common solutions map elements of a large, sparse domain to a small array using a
probabilistic hashing technique. Index PIR is then used on the small array. This poses
multiple problems. First, a setup phase is needed in which the server selects parameters
for the mapping such that there are no collisions, or the number of collisions is minimized.
Second, when elements are added to the database, the mapping must be recalculated to
account for new collisions. If the range of the mapping is too small, parameters must be
increased accordingly. Change in parameters must be coordinated amongst the servers
which hold the database and communicated to all users which interact with the server.

In keyword PIR using equality circuits, a setup is not required. Any update to the
database (insertion, delete, etc) is done without any coordination between the user and
the server. When using a mapping such as the order preserving mapping to construct a
query, an update in the database size is backwards compatible and previous queries are
valid.

5.1.3 Less Overhead for Decentralized Database

In the previous chapters, we only examined PIR in the setting where the database is held
by a single server. Our protocol can also be extended to a setup with multiple data owners,
each holding a portion of the database. This differs from the well known multi-sever setup
described in information theoretic PIR where multiple non-colluding servers hold the same
database. In this setting, which we name multi-DB PIR, there are h servers, namely
s1, ..., sh where si holds a database DBi of size ni. Define the union of DBi as DB. In
contrast to the multi-server setup, there is no non-collusion assumption in this setting.

Assume a user needs to query the union of the databases, DB. One solution is to
aggregate the databases and perform PIR over DB. However, aggregating the data might
not be feasible. While the data might be public, the aggregated database might be con-
sidered intellectual property or dangerous to release. For example, in the case of Password
Checkup [35], companies such as Google may not want to share the list of compromised
credentials they have obtained, albeit through public sources. The company may also have
a list of passwords from its own database that might have been compromised, but is not
willing to give this list to other companies. Conversely, the data might be aggregated ini-
tially but to reduce latency and increase response time, multiple servers are used in parallel
where each server computes on part of the database.

44

Table 5.1: Total number of homomorphic operations in single-DB and multi-DB PIR for
MulPIR (with recursion level of d) and constant-weight PIR over a database with n rows.
In the multi-DB case, the database is spread over h servers.

Single-DB Multi-DB
Method # Mults # Mults Per DB # Total Mults

MulPIR O
(
n

d−1
d

)
O
(

(n
h
)
d−1
d

)
O
(
h

1
dn

d−1
d

)
Constant-weight PIR O(n) O(n/h) O(n)

We argue that in multi-DB PIR solutions based on equality circuits incur no additional
overhead, except aggregating the response from the databases. In contrast, solutions based
on selection vectors such as MulPIR incur excessive overhead when the database is spread
our across multiple servers.

We justify this argument by counting the number homomorphic multiplications needed
in MulPIR and constant-weight PIR. Based on Table 4.8, the number of plaintext mul-
tiplications in both MulPIR and constant-weight PIR is equal to n in both approaches,
hence we omit that from our comparison.

In multi-DB PIR, the client transmits its encrypted query Enc(q) to each of databases
(or transmits it to one and its forwarded to the rest). Then each server i derives PIR(DBi, q)
and the response is equal to the sum of the responses, i.e., PIR(DB, q) =

∑h
i=1 PIR(DBi, q).

The aggregation can be done by one of the servers. The overall number of homomorphic
multiplications done by all the servers is shown in Table 5.1. This shows that multi-DB
PIR using MulPIR induces additional overall overhead compared to the single-DB setting
with a database of the same size. Constant-weight PIR has no additional overhead .

5.1.4 Anti-Fishing

PIR protocols grant access to users to query a database privately. In some applications,
allowing users to query the database is beneficial compared to releasing the entire database.
One example is password checkup, mentioned in the previous section. While compromised
passwords may be sourced from publicly available data, releasing the aggregate data would
empower attackers for credential stuffing attacks [35]. In another hypothetical use case,
assume a private file storage system [28] that stores private, encrypted records of individuals
and grants access to the records through a private retrieval system. This database could be
a hospital storing patient records. While users only store encrypted records on the server,

45

and records can only be decrypted using their own secret key (or passphrase), publicly
releasing the encrypted documents is not a smart solution. This can allow attackers to
perform brute-force attacks offline or, through social engineering attacks, obtain the keys
(pass phrases) for the encrypted documents they have acquired.

In both of these cases, a sparse database can prevent fishing by adversaries. Loosely
speaking, fishing means attempting to access the contents of the database in bulk by
repeatedly querying it. With a sparse database, data is not stored in a contiguous block
of memory. Instead it is stored at addresses known only to the owner of the data, making
it difficult for an adversary to locate and retrieve data is does not own. In other words,
this removes the requirement to explicitly grant access to each user for accessing their own
document, whilst also allowing the user to privately and anonymously access the database.

5.2 Limitations

We know that computation in single-server solutions must be at least on the order of size
of the database. In CPIR solutions using homomorphic encryption, another inherent lower
bound is the number of plaintext multiplications. One plaintext multiplication must be
performed for each row of the database. The inner product step in the constant-weight
PIR protocol is an example of this. Line 2 of Algorithm 2 performs the same operation
in MulPIR. This number of plaintexts multiplications is necessary to account for each row
in the database. The number of homomorphic multiplications is sublinear in the number
of database rows for solutions such as MulPIR. However, the computation time required
to perform the required plaintext multiplications compares to the the runtime for the
homomorphic multiplications. This is despite the fact that plaintext multiplications are
much faster than homomorphic multiplications (Table 2.1).

One possible remedy is to perform all or some plaintext multiplications in an offline
phase to reduce the latency in an online phase. We will investigate this further in future
work.

5.3 Future Work

To examine the effect of parallelization on the PIR protocols, we require a multi-thread
implementation of SEALPIR and MulPIR to compare with that of constant-weight PIR.
We hypothesize that constant-weight PIR performs better when run in parallel compared

46

to related work due to the parallel nature of the protocol, but we leave a more detailed
analysis for future work.

The binary equality operators mentioned in this work, while not applicable for PIR,
are useful in practice. A detailed comparison of those operators is also required. For this,
they must be implemented using a homomorphic encryption system that natively supports
binary operations such as TFHE [14].

47

Chapter 6

Conclusion

In this thesis, we introduced operators over constant-weight codewords and their applica-
tion in tasks such as PIR. We proposed the plain, arithmetic, and binary constant-weight
equality operators for comparing constant-weight codewords. We also described efficient
mappings from other domains to constant-weight codewords. We reiterated existing so-
lutions for the task of private information retrieval and showed how equality operators
are used for some solutions in the single-server setting. With our new equality operator,
we designed a PIR protocol based on an approach previously deemed impractical with
constant-weight equality operators at its core.

For our evaluation, we compared constant-weight equality operators with existing folk-
lore operators. Our experiments showed that plain constant-weight operators are up to
10 times faster than the equivalent folklore operator. The arithmetic constant-weight
equality operator is also up to 10 times faster than the arithmetic folklore operator when
both operators are parallelized. We also compared constant-weight PIR, the PIR pro-
tocol using constant-weight equality operators with existing work such as SEALPIR and
MulPIR. Constant-weight PIR was not advantageous in the case of index PIR, i.e. when
the database is fully packed. However, it can outperform previous work in scenarios where
the parameters of the database such as domain size and response size scale.

Finally, we discussed how the cases where constant-weight PIR is advantageous trans-
late to real-world properties and applications. Constant-weight PIR is the first practical
solution to PIR using an approach that was previously dismissed due to the high cost of
equality operators. This work shows how equality operators can be used in a practical
setting.

48

References

[1] Carlos Aguilar-Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian.
XPIR: Private Information Retrieval for Everyone. Proceedings on Privacy Enhancing
Technologies, 2016(2):155–174, 2016.

[2] Adi Akavia, Dan Feldman, and Hayim Shaul. Secure Data Retrieval on the Cloud: Ho-
momorphic Encryption meets Coresets. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, 2019(2):80–106, 2019.

[3] Adi Akavia, Craig Gentry, Shai Halevi, and Max Leibovich. Setup-Free Secure Search
on Encrypted Data: Faster and Post-Processing Free. Proceedings on Privacy En-
hancing Technologies, 2019(3):87–107, 2019.

[4] Asra Ali, Tancrède Lepoint, Sarvar Patel, Mariana Raykova, Phillipp Schoppmann,
Karn Seth, and Kevin Yeo. Communication–Computation Trade-offs in PIR. In
30th USENIX Security Symposium (USENIX Security 21), pages 1811–1828. USENIX
Association, August 2021.

[5] Andris Ambainis. Upper Bound on the Communication Complexity of Private In-
formation Retrieval. In Pierpaolo Degano, Roberto Gorrieri, and Alberto Marchetti-
Spaccamela, editors, Automata, Languages and Programming, pages 401–407, Berlin,
Heidelberg, 1997. Springer Berlin Heidelberg.

[6] S. Angel, H. Chen, K. Laine, and S. Setty. PIR with Compressed Queries and Amor-
tized Query Processing. In 2018 IEEE Symposium on Security and Privacy (SP),
pages 962–979, May 2018.

[7] Sebastian Angel and Srinath Setty. Unobservable Communication over Fully Un-
trusted Infrastructure. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 551–569, Savannah, GA, November 2016. USENIX
Association.

49

[8] A Beimel, Y Ishai, E Kushilevitz, and Jean-François Raymond. Breaking the
O(n1/(2k−1)) Barrier for Information-theoretic Private Information Retrieval. The 43rd
Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings.,
pages 261–270, 2002.

[9] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF Formulas on Ci-
phertexts. In Joe Kilian, editor, Theory of Cryptography, pages 325–341, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg.

[10] Charlotte Bonte and Ilia Iliashenko. Homomorphic String Search with Constant Mul-
tiplicative Depth. In Proceedings of the 2020 ACM SIGSAC Conference on Cloud
Computing Security Workshop, CCSW’20, pages 105–117, New York, NY, USA, 2020.
Association for Computing Machinery.

[11] Joppe W Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved Security
for a Ring-Based Fully Homomorphic Encryption Scheme. In Martijn Stam, editor,
Cryptography and Coding, pages 45–64, Berlin, Heidelberg, 2013. Springer Berlin Hei-
delberg.

[12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) Fully Homo-
morphic Encryption without Bootstrapping. In Proceedings of the 3rd Innovations in
Theoretical Computer Science Conference, ITCS ’12, pages 309–325, New York, NY,
USA, 2012. Association for Computing Machinery.

[13] Hao Chen, Kim Laine, and Peter Rindal. Fast Private Set Intersection from Homomor-
phic Encryption. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’17, page 1243–1255, New York, NY, USA, 2017.
Association for Computing Machinery.

[14] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: Fast
fully homomorphic encryption library, August 2016. https://tfhe.github.io/tfhe/.

[15] B. Chor, N. Gilboa, and M. Naor. Private Information Retrieval by Keywords. IACR
Cryptol. ePrint Arch., 1998:3, 1998.

[16] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private Informa-
tion Retrieval. In Proceedings of IEEE 36th Annual Foundations of Computer Science,
pages 41–50. IEEE, 1995.

50

[17] Daniel Demmler, Amir Herzberg, and Thomas Schneider. RAID-PIR: Practical Multi-
server PIR. In Proceedings of the ACM Conference on Computer and Communications
Security, volume 2014, 2014.

[18] Changyu Dong and Liqun Chen. A Fast Single Server Private Information Retrieval
Protocol with Low Communication Cost. In Miros law Kuty lowski and Jaideep Vaidya,
editors, Computer Security - ESORICS 2014, pages 380–399, Cham, 2014. Springer
International Publishing.

[19] Yarkın Doröz, Berk Sunar, and Ghaith Hammouri. Bandwidth Efficient PIR from
NTRU. In Rainer Böhme, Michael Brenner, Tyler Moore, and Matthew Smith, editors,
Financial Cryptography and Data Security, pages 195–207, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg.

[20] Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homomorphic En-
cryption. Proceedings of the 15th international conference on Practice and Theory in
Public Key Cryptography, 2012:1–16, 2012.

[21] Craig Gentry. Fully Homomorphic Encryption using Ideal Lattices. In Proceedings of
the forty-first annual ACM symposium on Theory of computing, pages 169–178, 2009.

[22] Craig Gentry and Shai Halevi. Compressible FHE with Applications to PIR.
11892:438–464, 2019.

[23] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully Homomorphic Encryption with
Polylog Overhead”. In David Pointcheval and Thomas Johansson, editors, Advances in
Cryptology – EUROCRYPT 2012, pages 465–482, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[24] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic Encryption from Learn-
ing with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. In
Ran Canetti and Juan A Garay, editors, Advances in Cryptology – CRYPTO 2013,
pages 75–92, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[25] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of computer
and system sciences, 28(2):270–299, 1984.

[26] Bailey Kacsmar, Basit Khurram, Nils Lukas, Alexander Norton, Masoumeh Shafieine-
jad, Zhiwei Shang, Yaser Baseri, Maryam Sepehri, Simon Oya, and Florian Ker-
schbaum. Differentially Private Two-Party Set Operations. In 2020 IEEE European
Symposium on Security and Privacy (EuroS&P), pages 390–404. IEEE, 2020.

51

[27] E. Kushilevitz and R. Ostrovsky. Replication is not Needed: Single Database,
Computationally-private Information Retrieval. In Proceedings 38th Annual Sympo-
sium on Foundations of Computer Science, pages 364–373, 1997.

[28] Travis Mayberry, Erik-Oliver Blass, and A. Chan. Efficient Private File Retrieval by
Combining ORAM and PIR. In NDSS, 2014.

[29] A. A. Razborov. Lower bounds on the Size of Bounded Depth Circuits over a Complete
Basis with Logical Addition. Mathematical notes of the Academy of Sciences of the
USSR, 41(4):333–338, 1987.

[30] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. On Data Banks and
Privacy Homomorphisms. Foundations of secure computation, 4(11):169–180, 1978.

[31] Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL, November
2020. Microsoft Research, Redmond, WA.

[32] Radu Sion and Bogdan Carbunar. On the Computational Practicality of Private
Information Retrieval. In Proceedings of the Network and Distributed Systems Security
Symposium, pages 2006–06. Internet Society, 2007.

[33] R Smolensky. Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit
Complexity. In Proceedings of the Nineteenth Annual ACM Symposium on Theory
of Computing, STOC ’87, pages 77–82, New York, NY, USA, 1987. Association for
Computing Machinery.

[34] Julien P Stern. A New and Efficient All-Or-Nothing Disclosure of Secrets Protocol.
In Kazuo Ohta and Dingyi Pei, editors, Advances in Cryptology — ASIACRYPT’98,
pages 357–371, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[35] Kurt Thomas, Jennifer Pullman, Kevin Yeo, A Raghunathan, Patrick Gage Kelley,
L Invernizzi, B Benko, Tadek Pietraszek, S Patel, D Boneh, and Elie Bursztein. Pro-
tecting Accounts from Credential Stuffing with Password Breach Alerting. In USENIX
Security Symposium, 2019.

[36] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully Ho-
momorphic Encryption over the Integers. In Henri Gilbert, editor, Advances in Cryp-
tology – EUROCRYPT 2010, pages 24–43, Berlin, Heidelberg, 2010. Springer Berlin
Heidelberg.

52

https://github.com/Microsoft/SEAL

[37] Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro Yokoyama, and Takeshi
Koshiba. Secure Pattern Matching using Somewhat Homomorphic Encryption. In Pro-
ceedings of the 2013 ACM Workshop on Cloud Computing Security Workshop, CCSW
’13, page 65–76, New York, NY, USA, 2013. Association for Computing Machinery.

[38] Xun Yi, Mohammed Golam Kaosar, Russell Paulet, and Elisa Bertino. Single-
Database Private Information Retrieval from Fully Homomorphic Encryption. IEEE
Transactions on Knowledge and Data Engineering, 25(5):1125–1134, 2013.

53

	List of Figures
	List of Tables
	Introduction
	Our Contributions
	Organization

	Background & Related Work
	Homomorphic Encryption
	Fan–Vercauteren (FV) Cryptosystem.
	Microsoft SEAL Library

	Private Information Retrieval
	Single-Server computational PIR
	SEALPIR
	MulPIR

	Equality Operators
	PIR using Equality Operators

	Keyword PIR

	Our Constructions
	Equality Operator for Constant-weight Codewords
	Mappings to Constant-weight Codewords
	PIR using Constant-weight Codewords
	Setup
	Query
	Process Query
	Extract
	PIR for Sparse Databases
	Probabilistic Keyword PIR

	Evaluation
	Comparing Equality Operators
	Plain Operators
	Arithmetic Operators

	Comparing PIR Protocols
	Implementation and Experimental Details
	Packed Database Experiments
	Varying Domain Size
	Varying Response size

	Applications, Limitations, and Future Work
	Applications
	First Practical Solution
	Setup-Free (Update Friendly)
	Less Overhead for Decentralized Database
	Anti-Fishing

	Limitations
	Future Work

	Conclusion
	References

