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Abstract

Unit testing is a widely used tool in modern software development processes. A well-
known issue in writing tests is handling dependencies: creating usable objects for depen-
dencies is often complicated. Developers must therefore often introduce mock objects to
stand in for dependencies during testing.

Test suites are an increasingly important component of the source code of a software
system. We believe that the static analysis of test suites, alongside the systems under
test, can enable developers to better characterize the behaviours of existing test suites,
thus guiding further test suite analysis and manipulation. However, because mock objects
are created using reflection, they confound existing static analysis techniques. At present,
it is impossible to statically distinguish methods invoked on mock objects from methods
invoked on real objects. Static analysis tools therefore currently cannot determine which
dependencies’ methods are actually tested, versus mock methods being called.

In this thesis, we introduce MockDetector, a technique to identify mock objects and
track method invocations on mock objects. We first built a Soot-based imperative dataflow
analysis implementation of MockDetector. Then, to quickly prototype new analysis fea-
tures and to explore declarative program analysis, we created a Doop-based declarative
analysis, added features to it, and ported them back to the Soot-based analysis. Both
analyses handle common Java mock libraries’ APIs for creating mock objects and prop-
agate the mock objects information through test cases. Following our observations of
tests in the wild, we have added special-case support for arrays and collections holding
mock objects. On our suite of 8 open-source benchmarks, our imperative dataflow anal-
ysis approach reported 2,095 invocations on mock objects intraprocedurally, whereas our
declarative dataflow approach reported 2,130 invocations on mock objects (under context-
insensitve base analyses in intraprocedural mode), out of a total number of 63,017 method
invocations in test suites; across benchmarks, mock invocations accounted for a range from
0.086% to 16.4% of the total invocations. Removing confounding mock invocations from
consideration as focal methods can improve the precision of focal method analysis, a key
prerequisite to further analysis of test cases.
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Chapter 1

Introduction

Mock objects [1] are a common idiom in unit tests for object-oriented systems. They allow

developers to test objects that rely on other objects, likely from different components, or

that are simply complicated to build for testing purposes (e.g. a database).

While mock objects are an invaluable tool for developers, their use complicates the

static analysis and manipulation of test case source code, one of our planned future research

directions. Such static analyses can help IDEs provide better support to test case writers;

enable better static estimation of test coverage (avoiding mocks); and detect focal methods

in test cases.

Ghafari et al discussed the notion of a focal method [11] for a test case—the method

whose behaviour is being tested—and presented a heuristic for determining focal methods.

By definition, the focal method’s receiver object cannot be a mock object. Ruling out

mock invocations can thus improve the accuracy of focal method detection and enable

better understanding of a test case’s behaviour.

Mock objects are difficult to analyze statically because, at the bytecode level, a call to
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a mock object statically resembles a call to the real object (as intended by the designers

of mock libraries). A naive static analysis attempting to be sound would have to include

all of the possible behaviours of the actual object (rather than the mock) when analyzing

such code. Such potential but unrealizable behaviours obscure the true behaviour of the

test case.

We have designed a static analysis, MockDetector, which identifies mock objects

in test cases. It starts from a list of mock object creation sites (our analyses include

hardcoded APIs for common mocking libraries EasyMock1, Mockito2, and PowerMock3).

It then propagates mockness through the test and identifies invocation sites as (possibly)

mock. Given this analysis result, a subsequent analysis can ask whether a given variable

in a test case contains a mock or not, and whether a given invocation site is a call to a

mock object or not. We have evaluated MockDetector on a suite of 8 benchmarks plus

a microbenchmark. We have cross-checked results across the two implementations and

manually inspected the results on our microbenchmark, to ensure that the results are as

expected.

Taking a broader view, we believe that helper static analyses like MockDetector

can aid in the development of more useful static analyses. These analyses can encode

useful domain properties; for instance, in our case, properties of test cases. By taking

a domain-specific approach, analyses can extract useful facts about programs that would

otherwise be difficult to establish.

1https://easymock.org/
2https://site.mockito.org/
3https://github.com/powermock/powermock
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We make the following contributions in this thesis:

• We designed and implemented two variants of a static mock detection algorithm,

one as a dataflow analysis implemented imperatively (using Soot) and the other

declaratively (using Doop).

• We evaluate both the relative ease of implementation and precision of the imperative

and declarative approaches, both intraprocedurally and interprocedurally (for Doop).

• We characterize our benchmark suite (8 open-source benchmarks, 184 kLOC) with

respect to their use of mock objects, finding that 1084 out of 6310 unit tests use

intraprocedurally detectable mock objects, and that there are a total of 2095 method

invocations on mock objects.

At a higher level, we see the thesis as making both a contribution and a meta-contribution

to problems in source code analysis. The contribution, mock detection, enables more

accurate analyses of test cases, which account for a significant fraction of modern codebases.

The meta-contribution, comparing analysis approaches, will help future researchers decide

how to best solve their source code analysis problems. In brief, the declarative approach

allows users to quickly prototype, stating their properties concisely, while the imperative

approach is more amenable to use in program transformation; we return to this question

in Chapter 7.
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Chapter 2

Background

Static analysis is an important tool for code analysis, especially when analyzing benchmarks

with large code bases. Running an application does not always expose bugs (for instance,

due to missing branch coverage), where static analysis tools are more complete (at the

price of false positives). A good static analysis tool can help developers to find bugs that

are hard to spot manually (e.g., array out of bounds exception), which reduces time and

costs involved in fixing bugs.

2.1 Dataflow Analysis

Dataflow analysis [13] is a static analysis which is performed on a program’s control flow

graph (CFG). A CFG is a directed graph in which each node stands for a statement in the

program (the statement could be an assignment statement, an if statement, etc.), and the

set of directed edges represents the overall control flow of the program.
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Dataflow analysis, meanwhile, is typically implemented using a fixed point algorithm

that computes and gathers all the facts at each program point (i.e., each node in the CFG).

The facts would usually be a mapping between program variables and the abstractions

specifically defined to solve the problem at hand. The most important decision for a

dataflow analysis is the abstraction and associated flow functions to update the abstraction

at each program point.

Forward vs. Backward Researchers or developers need to make two additional deci-

sions before implementation. First, they must decide if the problem should be categorized

as a forward or backward dataflow problem. For a forward dataflow analysis, the facts

propagate along the direction of the control flow. Determining whether expressions are

available (i.e. have already been computed) at each program point is a type of forward

dataflow problem. On the other hand, the facts propagate in the opposite direction from

the control flow in a backward dataflow analysis, and most importantly, we need to access

the future usage of the variables. Analyzing the liveness of variables is a known backward

dataflow problem. Few dataflow problems require bidirectional flows.

May vs. Must Researchers or developers also need to decide if it is a may or must

dataflow problem. The core difference between the two types of problems is how they

handle the facts at all the join points in the program, where multiple branches meet. A

may dataflow analysis keeps facts that hold true on any joined path. “Reaching Definitions”

is a may analysis problem. It checks if a definition (or assignment) of a variable reaches

a specific program point. On the other hand, must dataflow analysis only keeps facts
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that hold true from all the branches. Determining available expressions is a must analysis

problem.

Gen and Kill Set All dataflow analyses requires a transfer function of some kind for

each program point. Generally, the actions on the dataflow analysis domain are often called

“gen” and “kill”. When we have set of facts at each statement, the kill action removes the

facts that are no longer true from the set, while the gen action adds new facts that are

now true. The flow function describing such process are of the form

out(s) = gen(s)
⋃

(in(s) \ kill(s)) (2.1)

Dataflow analyses are usually implemented imperatively, which focuses on the “how”

part of the solution, providing a set of commands or operations to tackle the problem.

2.1.1 Soot

Among all the dataflow analysis tools, Soot [20] is a representative Java optimization

framework, which provides a total of four types of intermediate representations to analyze

Java bytecode.

An intermediate representation (IR) is an abstract language designed for ease of analysis

and transformation. A good IR is independent of the source and target languages, and

thus convenient to translate into code for retargetable architectures.

For our project, we use Jimple (simple Java), which is a stackless, typed 3-address IR in
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the CFG. To familiarize the reader with Jimple IR’s syntax, the following is an example of

high-level Java code and its corresponding Jimple IR for code that defines a mock object.

Java source code:

MavenSession session = mock(MavenSession.class);

Jimple IR:

org.apache.maven.execution.MavenSession r1;

java.lang.Object $r2;

$r2 = staticinvoke <org.mockito.Mockito:

java.lang.Object mock(java.lang.Class)>

(class "Lorg/apache/maven/execution/MavenSession;");

r1 = (org.apache.maven.execution.MavenSession) $r2;

For each method invocation, the Jimple IR contains the type of invocation (i.e. staticin-

voke, specialinvoke, dynamicinvoke, interfaceinvoke, or virtualinvoke) along with the method

signature. The method’s signature consists of the class where the method is declared and

the method’s subsignature (method name, parameter types, and return type).

The actual return object (r1) is of a different type

(org.apache.maven.execution.MavenSession) than the return type

(java.lang.Object) from Mockito’s mock source creation method mock()’s return type.

Java parametrized types exist only at source code level but not at bytecode level. They

are erased from the bytecode1. The Java compiler then produces a cast to bridge from

java.lang.Object (in the bytecode) to the mock return type in the parametrized source

code.

Heros [4] is an inter-procedural, finite, distributive subset problems (IFDS) / interpro-

cedural distributive environment (IDE) solver that provides interprocedural support to the

1They are preserved in attributes but not the bytecode itself.
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Soot framework.

2.2 Declarative Analysis

While an imperative approach focuses on the “how” component of a solution, declarative

analysis focuses on the “what” part during the implementation. It gives a set of constraints

which must be solved.

A declarative approach normally comes with an underlying imperative layer, where

some type of tool handles the imperative processes for the developer.

2.2.1 Doop

We chose Doop [6] as the declarative framework for our project. It comes with a number

of implementations solving the constraints stated in the declarative form. The collection

of analyses are expressed using Datalog rules. The current version of Doop uses Soufflé2

as the Datalog engine for these analysis rules.

Doop takes as input facts generated by Soot (imported into a database) as well as

declarative Datalog rules. It then asks Soufflé to solve the rules on the inputs. Doop

also computes fixed points by embedding them in the constraints it gives to the constraint

solver.

2https://souffle-lang.github.io/docs.html
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2.3 Mock Objects

Mock objects are commonly used in unit test cases. They substitute for the real objects

that are normally hard to create (e.g., a database), or slow to process (e.g., a connection).

It is noteworthy that mock objects are never being tested in test cases. Their purpose is to

stand in for the dependencies, assisting for the behavioural test of the real object. For this

to happen, the mock objects must at least mimic the behaviour at interfaces connecting

to the real object under test.

Imagine you want to test the behaviour of a detonator. It is infeasible to always test the

detonator’s behaviour with a real bomb. So in this scenario, you build a mock bomb. The

mock bomb does not do anything other than check whether it has received instructions to

explode. Note that in the whole process, you are testing the detonator’s behaviour, not

the mock bomb’s behaviour.3

The current static analysis tools, however, could not differentiate a mock object and

a real object, because the containing variables have the same type in Java and in the

IR. Section 3.3 runs a toy example and explains why the current tools are insufficient in

locating mock objects.

For our project, we consider for Java mock source methods from three mocking frame-

works: EasyMock4, Mockito5, and PowerMock6. According to a prior study [14], EasyMock

3The idea of this example is sparked from https://stackoverflow.com/questions/28783722/

when-using-mokito-what-is-the-difference-between-the-actual-object-and-the-mock?

noredirect=1&lq=1.
4https://easymock.org/
5https://site.mockito.org/
6https://github.com/powermock/powermock
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and Mockito are used in about 90% of the 5,000 randomly sampled projects. We then added

a third mocking framework by our own choice. Thus, we believe our analysis results should

be applicable to most Java benchmarks.
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Chapter 3

Motivation

In this chapter, we run through a real-world example selected from benchmark maven.

The unit test case contains both a real object and a mock object, and there is a method

invocation on each of them. We then present a simplified toy example with corresponding

IR processed and used by static analysis tools. We demonstrate why the current tools are

incompetent to differentiate mock objects from real objects. However, before diving into

the current project, let us take a step back and talk about what led us to the research on

detecting mock objects and tracking mock invocations.

3.1 Preliminary Research

2The content of this figure have been incorporated within a NIER paper published by
IEEE in 2020 IEEE International Conference on Software Maintenance and Evolution (IC-
SME), available online: https://ieeexplore.ieee.org/xpl/conhome/9240597/proceeding[doi: 10.1109/IC-
SME46990.2020.00075]. Qian Liang and Patrick Lam, ”SiblingClassTestDetector: Finding Untested Sib-
ling Functions”
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Assembled-
Chronology

Buddhist-
Chronology

withZone():
TESTED X

GJ-
Chronology

withZone():
TESTED X

. . . Strict-
Chronology

withZone():
UNTESTED ×

Figure 3.1: joda-time contains superclass AssembledChronology and subclasses Bud-
dhistChronology, GJChronology, StrictChronology, and others. Method withZone() is tested
in Buddhist- and GJChronology but not StrictChronology.2

Prior to the development for MockDetector, we were working on a project to detect

untested functions that have analogous implementations in sibling classes (they share a

common superclass), where at least one of the related implementations are tested. The

overall goal of that project is to reduce untested code. Though testing could not guarantee

desired program behaviour, developers certainly know nothing about any untested code.

Since the sibling methods share the same specification, it is likely that a unit test case

covering for one sibling class’s implementation may also work for the untested after small

modifications, potentially increasing the statement coverage and consequently having a

better chance to gain behavioural insight of the benchmark.

Figure 3.1 illustrates such an example from an open-source benchmark, joda-time

(version 2.10.5). The abstract class AssembledChronology inherits the specification of

method withZone() from its parent class, which is not shown in the Figure. Assembled-

Chronology ’s subclasses BuddhistChronology, GJChronology, StrictChronology, and many

others are at the same hierarchy level, which are defined as sibling classes. These sibling

12



classes all have an implementation of withZone(); however, the withZone() implementa-

tions in BuddhistChronology and GJChronology are tested, whereas the implementation in

StrictChronology is not.

As the research progressed, we encountered the test case in Listing 3.1, and realized

that it would be a necessary step to remove method invocations on mock objects from

the call graph generated by existing static analysis frameworks, as otherwise we may mis-

takenly treat such test case as the one covering for the tested sibling method, since the

existing static analyses tools could not distinguish method invocations on mock objects

from method invocations on real objects.

1

2 @Test

3 public void addAllForIterable() {

4 final Collection<Integer> inputCollection = createMock(Collection.class);

5 ...

6 final Collection<Number> c = createMock(Collection.class);

7 ...

8 expect(c.addAll(inputCollection)).andReturn(false);

9 }

Listing 3.1: This code snippet illustrates an example from commons-collections4, where

the method addAll() invoked on the mock object c could be mislabelled as a focal method.

13



3.2 Running Example: Detecting Mock Objects and

Mock Invocations

To motivate our work, consider Listing 3.2, which presents a unit test case from the Maven

project. Line 7 calls getRequest(), invoking it on the mock object session. Line 11 then

calls getToolchainsForType(), which happens to be the focal method whose behaviour is

being tested in this test case. At the bytecode level, the two method invocations are

indistinguishable with respect to mockness; to our knowledge, current static analysis tools

cannot easily tell the difference between the method invocation on a mock object on line 7

and the method invocation on a real object on line 11. Given mockness information, an

IDE could provide better suggestions. The uncertainty about mockness would confound a

naive static analysis that attempts to identify focal methods. For instance, Ghafari et al’s

heuristic [11] would fail on this test, as it returns the last mutator method in the object

under test, and the focal method here is an accessor.

1 @Test

2 public void testMisconfiguredToolchain() throws Exception {

3 MavenSession session = mock( MavenSession.class );

4 MavenExecutionRequest req = new DefaultMavenExecutionRequest();

5 when( session.getRequest() ).thenReturn( req );

6

7 ToolchainPrivate[] basics =

8 toolchainManager.getToolchainsForType("basic", session);

14



9

10 assertEquals( 0, basics.length );

11 }

Listing 3.2: This code snippet illustrates an example from maven-core, where calls to

both the focal method getToolchainsForType() and to mock session’s getRequest()

method occur in the test testMisconfiguredToolchain().

3.3 A Toy Example

In this section, we show how hard it is to differentiate mocks from actuals on IR. The toy

example serves the same purpose as the one in Listing 3.2 but comes with a simpler Jimple

IR for easier explanation.

Listing 3.3 shows the creation of two java.lang.Object objects: object1 and object2.

object1 is created via normal initialization by calling to a constructor, thus it is a real

object. Meanwhile, object2 is created by invoking Mockito’s mock API returning a mock

object, thus object2 is a mock object.

Listing 3.4 displays the Jimple IR for Listing 3.3, where $r1 and r2 are the Jimple IRs

of object1 and object2, respectively. Though the initialization of $r1 and r2 are from

different types of invocations, since the static analysis tool does not recognize the mock

source method from Mockito, the tool views both $r1 and r2 as real objects (they are

both of type java.lang.Object after all). Therefore, the tool is unable to recognize the

invocation of foo() on line 10 is definitely not a focal method.
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1 Object object1 = new Object();

2 object1.foo();

3

4 Object object2 = mock(Object.class);

5 object2.foo();

Listing 3.3: A toy example illustrates a real object object1 and a mock object object2,

and their corresponding method invocations of foo().

1 java.lang.Object $r1, r2;

2

3 $r1 = new java.lang.Object;

4 specialinvoke $r1.<java.lang.Object: void <init>()>();

5 virtualinvoke $r1.<java.lang.Object: void foo()>();

6

7 r2 = staticinvoke <org.mockito.Mockito:

8 java.lang.Object mock(java.lang.Class)>

9 (class "Ljava/lang/Object;");

10 virtualinvoke r2.<java.lang.Object: void foo()>();

Listing 3.4: Jimple Intermediate Representation for the code in Listing 3.3.
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Chapter 4

Technique

We present two complementary ways of statically computing mock information: an imper-

ative implementation of a dataflow analysis (using the Soot program analysis framework),

and a declarative implementation (using the Doop framework). We started this project

with the usual imperative approach to implementing a static analysis—in our context, that

meant using Soot. Then, when we wanted to experiment with adding more features to the

analysis, we decided that this was a good opportunity to learn about Doop’s declarative

approach as well. We added new features to the Doop implementation and backported

them to the Soot implementation. While the core analysis is similar, the different imple-

mentation technologies have different affordances. For instance, it is easier for the Doop

version to mark a field as mock-containing (we added 3 rules) than for the Soot version to

do so. We start by describing each implementation in turn, and conclude this section with

the commonalities between the two implementations. Chapter 5 then presents the results

obtained using each technology and compares them.
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4.1 High Level Definitions

A mock object may be created and carried in several ways: it could be the return value

from a mock creation site; it could be a casted version of the return value from a mock

creation site in the intermediate level if the object is not of type java.lang.Object; it

could be a copy of an already-flagged mock; it could be a field mock object defined via

annotations, in constructor <init>, or in @Before/setUp() methods; or it could be hold

by an array or container before re-accessing it.

Therefore, the following is our definition for mockness:

Definition 1. Object x is a mock object if it is either the return value from a mock creation

site (including field mocks), or if the initial mock definition reaches a use point through

casting, transitive definition, or passed along through mock-containing arrays or containers.

We consider paths over the intraprocedural control-flow graph and interprocedural call graph

edges.

In this section, we present the high level definitions for different categories of mock

using Jimple IR. The Soot implementation looks for these Jimple IRs during the “gen”

action for each statement. The declarative Doop analysis is quite close to the high level

definitions.

In the following Jimple IR definitions, the ones highlighted in dashed boxes are consid-

ered as mock, and the ones highlighted in frame boxes are considered as mock-containing

arrays or containers.

The first definition is for mock source creation methods:
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java.lang.Object r1;

r1 = staticinvoke <org.mockito.Mockito:

java.lang.Object mock(java.lang.Class)>

(class "Ljava/lang/Object;");

In the 3 mocking libraries, we consider a total of 9 mock source creation methods. For

the Jimple IR definition , we pick Mockito’s <org.mockito.Mockito: java.lang.Object

mock(java.lang.Class)> as a representative.

The mock source methods return java.lang.Object. For objects of other types, Jim-

ple IR casts the return object from mock source methods. The Jimple IR below uses a

generalized type X (other than java.lang.Object):

X r1;

java.lang.Object $r2;

$r2 = staticinvoke <org.mockito.Mockito:

java.lang.Object mock(java.lang.Class)>

(class "X;");

r1 = (X) $r2;

Field Mocks are commonly defined and used in several of the benchmarks we select.

There are usually three ways to define field mocks.

The first way is to define fields as referencing mock objects via Mockito or EasyMock’s

@Mock annotations. This is unfortunately not reflected in the Jimple IR. Instead, we

implemented the following annotation type check to locate the field mock defined via

annotation.

for (AnnotationTag annotation : tag.getAnnotations()) {

if ( annotation.getType().equals("Lorg/mockito/Mock;")

annotation.getType().equals("Lorg/easymock/Mock;") ) {

}

}
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The second approach defines field mocks in the constructor <init> method.

public void <init>() {

java.lang.Object $r1;

X $r2;

$r1 = staticinvoke <org.mockito.Mockito:

java.lang.Object mock(java.lang.Class)>

(class "X;");

$r2 = (X) $r1;

}

The last approach defines field mocks in the @Before/setUp() method:

private X x;

public void init() {

TESTCLASS r0;

java.lang.Object $r1;

X $r2;

r0 := @this: TESTCLASS;

$r1 = staticinvoke <org.mockito.Mockito:

java.lang.Object mock(java.lang.Class)>

(class "X;");

$r2 = (X) $r1;

r0.<TESTCLASS: X x> = $r2;

}

For mock-containing array (write method), the following is a sample Jimple IR defini-

tion:

java.lang.Object r1, $r2;

java.lang.Object[] $r3;

$r2 = staticinvoke <org.easymock.EasyMock:

java.lang.Object createMock(java.lang.Class)>

(class "java.lang.Object;");

r1 = (java.lang.Object) $r2;

$r3 = newarray (java.lang.Object)[1];

$r3 [0] = r1;
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Similarly, for mock-containing container (write method), the Jimple IR definition is:

java.util.ArrayList $r1;

java.lang.Object $r2;

X r3;

$r1 = new java.util.ArrayList;

specialinvoke $r1.<java.util.ArrayList: void <init>()>();

$r2 = staticinvoke <org.mockito.Mockito:

java.lang.Object mock(java.lang.Class)>

(class "X;");

r3 = (X) $r2;

virtualinvoke $r1 .<java.util.ArrayList: boolean add(java.lang.Object)>(r3);

The container APIs for read and write methods are hard-coded in both the Soot and

Doop implementations.

4.2 Imperative Soot Implementation

We first describe the Soot-based imperative dataflow analysis to find mock invocation sites.

Our tool tracks information from the creation sites through the control-flow graph using a

forward dataflow may-analysis—an object is declared a mock if there exists some execution

path where it may receive a mock value. Our implementation also understands containers

like arrays and collections, and tracks whether containers hold any mock objects. The

abstraction marks all contents of collections as potential mocks if it observes any mock

object being put into the array or container.
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4.2.1 Forward Dataflow May Analysis

Our forward dataflow analysis maps values (locals and field references) in the Jimple in-

termediate representation to our abstraction:

Value 7→ MockStatus.

MockStatus records three bits: one for the value being a mock, one for it being an array

containing a mock, and one for it being a collection containing a mock. At most one of

the three bits may be true for any given value. Not having a mapping in the abstraction

is equivalent to mapping to a MockStatus having all three bits false.

We chose to implement a may-analysis rather than a must-analysis for two reasons: 1)

we did not observe any cases where a value was assigned a mock on one branch and a

real object on the other branch of an if statement; 2) implementing a must-analysis would

not help heuristics to find focal methods, as a must-analysis would rule out fewer mock

invocations. Our merge operation is therefore a fairly standard pointwise disjunction of

the two incoming values in terms of values and in terms of the 3 bits of MockStatus.

Our dataflow analysis uses fairly standard gen and kill sets in the flow function. We

set bits in MockStatus as follows:

First, the gen set includes pre-analyzed fields containing mock objects defined via anno-

tation (e.g. @Mock), inside a constructor <init>, or in JUnit’s @Before/setUp() methods.

We discuss the pre-analysis below in Section 4.2.4.

Second, it includes local variables assigned from mock-creation source methods, which
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consist of Mockito’s java.lang.Object mock(java.lang.Class), EasyMock’s java.lang.Object

createMock(java.lang.Class), and PowerMock’s java.lang.Object mock(java.lang.Class):

X x = mock(X);

Third, it includes values assigned from return values of read methods from mock-

containing collections or arrays:

// array read;

// r1 is in the in-set as an array mock

X x = r1[0];

// collection read;

// r2 is in the in-set as a collection mock

X x = r2.get(0);

Fourth, if x is a mock and casted and assigned to x cast, then the gen set includes

x cast (e.g. r1 in Listing 4.2):

// x is a mock in the in-set

X x_cast = (X) x;

Finally, the gen set includes copies of already-flagged mocks:

// x is a mock in the in-set

X y = x;

The copy-related rules also apply to mock-containing arrays and collections. We add some

additional rules for generating mocks that the program reads from collections and arrays,

as well as rules for marking arrays and collections as mock-containing. For instance, in the
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below array write, if the in set has r2 as a mock, then the destination r1 will be generated

as a mock-containing array. Similarly, if r3 is a known mock, then the collection $r4 to

which it is added (the list of collection add methods is hardcoded) will be generated as a

mock-containing collection.

// r2 is in the in set as a mock

r1[0] = r2;

// r3 is in the in set as a mock

$r4.<java.util.ArrayList: boolean add(java.lang.Object)>(r3);

4.2.2 Toy Example Revisited — Soot Implementation

Let us now revisit the toy example first introduced in Section 3.3.

Figure 4.1 shows how our dataflow analysis works. At the top of the Jimple IR in

Listing 4.1, we begin with an empty abstraction (no mapping for any values, equivalent to

all bits false for each value) before line 3. For the creation of $r1 on line 3 and 4, since the

call to the no-arg <init> constructor is not one of our hardcoded mock APIs, our analysis

does not declare $r1 to be a mock object. In practice, our abstraction simply does not

create an explicit binding for $r1, instead leaving the mapping empty as it was prior to

line 3; but it would be equivalent to create a new MockStatus with all bits false and bind it

to $r1. Thus, we may conclude that the invocation object1.foo() on line 5 in Figure 4.1

is not known to be a mock invocation. Tying back to our focal methods application, we

would not exclude the call to foo() from being a possible focal method.

On the other hand, our imperative analysis sees the mock-creation source methods
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1 // mock: 7 mockAPI: 7

2 Object object1 = new Object();

3

4 // mock: 7

5 object1.foo();

6

7 // mock: 3 mockAPI: 3

8 Object object2 = mock(Object.class);

9

10 // mock: 3

11 object2.foo();

Figure 4.1: Our static analysis propagates mockness from sources (e.g.
mock(Object.class) to invocations.

<org.mockito.Mockito: java.lang.Object mock(java.lang.Class)> on line 7 and 8

in the Jimple IR. It thus adds a mapping from local variable r2 to a new MockStatus with

the mock bit set to true. When the analysis reaches line 10, because r2 has a mapping in

the abstraction with the mock bit being set, MockDetector will deduce that the call

on line 10 is a mock invocation. This implies that the call to method foo() on line 11 in

Figure 4.1 cannot be a focal method.

1 java.lang.Object $r1, r2;

2

3 $r1 = new java.lang.Object;

4 specialinvoke $r1.<java.lang.Object: void <init>()>();

5 virtualinvoke $r1.<java.lang.Object: void foo()>();

6

7 r2 = staticinvoke <org.mockito.Mockito:

25



8 java.lang.Object mock(java.lang.Class)>

9 (class "Ljava/lang/Object;");

10 virtualinvoke r2.<java.lang.Object: void foo()>();

Listing 4.1: Jimple Intermediate Representation for the code in Figure 4.1.

4.2.3 Arrays and Containers

To be explicit about our treatment of arrays and containers: at a read from an array

into a local variable where the source array is mock-containing, we declare that the local

destination is a mock. At a write of a local variable into an array where the local variable

is mock-containing, we declare that the array is mock-containing.

We treat collections analogously. However, while there is one API for arrays—the Java

bytecode array load and array store instructions—Java’s Collections APIs include, by our

count, 60 relevant methods, which we discuss further in Section 4.4. For our purposes here,

we use our classification of collection methods to identify collection reads and writes and

handle them as we do array reads and writes, except that we say that it is a mock-containing

collection, not a mock-containing array.

Mock-containing Array Toy Example

Figure 4.2 illustrates the process of identifying a mock-containing array, and Listing 4.2

displays the Jimple IR of the code in Figure 4.2. Our analysis reaches the mock API

call on line 4–6, where it records that $r2 is a mock object—it creates a MockStatus
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1 // mock: 3 mockAPI: 3

2 Object object1 = createMock(Object.class);

3

4 // arrayMock: 3 ⇐ array-write mock: 3

5 Object[] objects = new Object[] { object1 };

Figure 4.2: Our static analysis also finds array mocks.

abstraction object with mock bit set to 1 and associates that object with $r2. The tool

then handles the cast expression assigning to r1 on line 7, giving it the same MockStatus

as $r2. When the analysis reaches line 9, it finds an array reference on the left hand side,

along with r1 stored in the array on the right-hand side of the assignment statement. At

that point, it has a MockStatus associated with r1, with the mock bit turned on. It can

now deduce that $r3 on the left-hand side is an array container which may hold a mock

object. Therefore, MockDetector’s imperative static analysis associates $r3 with a

MockStatus with mock-containing array bit (“arrayMock”) set to 1.

1 java.lang.Object r1, $r2;

2 java.lang.Object[] $r3;

3

4 $r2 = staticinvoke <org.easymock.EasyMock:

5 java.lang.Object createMock(java.lang.Class)>

6 (class "java.lang.Object;");

7 r1 = (java.lang.Object) $r2;

8 $r3 = newarray (java.lang.Object)[1];
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9 $r3[0] = r1;

Listing 4.2: Jimple Intermediate Representation for the array in Figure 4.2.

4.2.4 Pre-Analyses for Field Mocks Defined in Constructors and

Before Methods

A number of our benchmarks define fields as referencing mock objects via EasyMock or

Mockito’s @Mock annotations, or initialize these fields in the <init> constructor or @Before

methods (setUp() in JUnit 3), which test runners will execute before any test methods

from those classes. These mock field or mock-containing container fields are then used

in tests. In the Soot implementation, we use two pre-analyses before running the main

analysis, under the assumption that fields are rarely mutated in the test cases (and that

it is incorrect to do so). We have validated our assumption on benchmarks. An empirical

analysis of our benchmarks shows that fewer than 0.3% of all fields (29/9352) are mutated

in tests.

The first pre-analysis handles annotated field mocks and field mocks defined in the con-

structors (<init> methods), while the second pre-analysis handles @Before and setUp()

methods.

MockDetector retrieves all fields in all test classes, and marks fields annotated

@org.mockito.Mock or @org.easymock.Mock as mocks.

Listing 4.3 depicts an example where instance fields are initialized using field initializers.

Java copies such initializers into all class constructors (<init>). To detect such mock-
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containing fields, we thus simply apply the forward dataflow analysis on all constructors

in the test classes prior to running the main analysis, using the same logic that we use

to detect mock objects or mock-containing containers in the main analysis. The second

pre-analysis handles field mocks defined in @Before methods just like the first pre-analysis

handled constructors.

1 private GenerationConfig config = mock(GenerationConfig.class);

2 private RuleFactory ruleFactory = mock(RuleFactory.class);

Listing 4.3: Example for field mocks defined by field initializations from

TypeRuleTest.java in jsonschema2pojo.

4.2.5 Interprocedural Support

The Heros framework implements IFDS/IDE for program analysis frameworks including

Soot. With some effort, it would be possible to rewrite our mock analysis with Heros;

however, this would be a more involved process than in the declarative case, where we

simply added two rules. In particular, Heros uses a different API in its implementation

than Soot. Conceptually, though, it should be no harder to implement an interprocedural

Heros analysis than an intraprocedural Soot dataflow analysis.

4.3 Declarative Doop Implementation

We next describe the declarative Doop-based technique that MockDetector uses. We

implemented this technique by writing Datalog rules. Similarly to the dataflow analysis,
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the declarative approach propagates mockness from known mock sources, through the

statements in the intermediate representation, to potential mock invocation sites.

The core of the implementation starts by declaring facts for 9 mock source methods

manually gleaned from the mock libraries’ documentation, as specified through method sig-

natures (e.g. <org.mockito.Mockito: java.lang.Object mock(java.lang.Class)>.)

It then declares that a variable v satisfies isMockVar(v) if it is assigned from the return

value of a mock source, or otherwise traverses the program’s interprocedural control-flow

graph, through assignments, which may possibly flow through fields, collections, or ar-

rays. Finally, an invocation site is a mock invocation if the receiver object v satisfies

isMockVar(v).

// v = mock()

isMockVar(v) :-

AssignReturnValue(mi, v),

callsMockSource(mi).

// v = (type) from

isMockVar(v) :-

isMockVar(from),

AssignCast(_ /* type */, from, v, _ /* inmethod */).

// v = v1

isMockVar(v) :-

isMockVar(v1),

AssignLocal(v1, v, _).

The predicates AssignReturnValue, AssignCast, and AssignLocal are provided by
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Doop, and resemble Java bytecode instructions. Unlike Java bytecode, however, their argu-

ments are explicit. For instance, AssignLocal(?from:Var, ?to:Var, ?inmethod:Method)

denotes an assignment statement copying from ?from to ?to in method ?inmethod. (It is

Datalog convention to prefix parameters with ?s).

We designed the analysis in a modular fashion, such that the interprocedural, collec-

tions, arrays, and fields support can all be disabled through the use of #ifdefs, which can

be specified on the Doop command-line.

4.3.1 Toy Example Revisited — Doop Implementation

Again referring to Jimple Listing 4.1, this time we ask whether the invocation on Jimple

line 10 satisfies predicate isMockInvocation (facts Listing 4.4, line 2), which we define

to hold the analysis result—namely, all mock invocation sites in the program. It does,

because of facts lines 3–7: Jimple line 10 contains a virtual method invocation, and the

receiver object r2 for the invocation on that line satisfies our predicate isMockVar, which

holds all mock-containing variables in the program (Section 4.3 provides more details).

Predicate isMockVar holds because of lines 8–10: r2 satisfies isMockVar because Jimple

line 7 assigns r2 the return value from mock source method createMock (facts line 8), and

the call to createMock satisfies predicate callsMockSource (facts line 10), which requires

that the call destination createMock be enumerated as a constant in our 1-ary relation

MockSourceMethod (facts line 11), and that there be a call graph edge between the method

invocation at line 7 and the mock source method (facts line 12).

1 isMockInvocation(<Object: void foo()>/test/0,
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2 <Object: void foo()>, test, _. r2).

3 |VirtualMethodInvocation(<Object: void foo()>/test/0,

4 | <Object: void foo()>, test).

5 |VirtualMethodInvocation_Base(<Object: void foo()>/test/0,

6 | r2).

7 |isMockVar(r2).

8 |-AssignReturnValue(<Mockito: Object mock(Class)>/test/0,

9 | r2).

10 |-callsMockSource(<Mockito: Object mock(Class)>/test/0).

11 |MockSourceMethod(<Mockito: Object mock(Class)>).

12 |CallGraphEdge(_, <Mockito: Object mock(Class)>/test/0, _,

13 | <Mockito: Object mock(Class)>).

Listing 4.4: Facts about invocation r2.foo() in method test.

4.3.2 Interprocedural Support

From our perspective, including (context-insensitive) interprocedural support is almost

trivial; we only need to add two rules

// v = callee(), where callee’s return

// var is mock

isInterprocMockVar(v) :-

AssignReturnValue(mi, v),

mainAnalysis.CallGraphEdge(_, mi, _, callee),
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ReturnVar(v_callee, callee),

isMockVar(v_callee).

// callee(v) results in formal param

// of callee being mock

isInterprocMockVar(v_callee) :-

isMockVar(v),

ActualParam(n, mi, v),

FormalParam(n, callee, v_callee),

mainAnalysis.CallGraphEdge(_, mi, _, callee),

Method_DeclaringType(callee, callee_class),

ApplicationClass(callee_class).

using Doop-provided call graph edges (relation mainAnalysis.CallGraphEdge) between

the method invocation mi and its callee callee. The first rule propagates information

from callees back to their callers, while the second rule propagates information from callers

to callees through parameters. Note that we restrict our analysis to so-called “application

classes”, excluding in particular the Java standard library. We chose to run our conext-

insensitive analysis on top of Doop’s context-insensitive call graph, but have also reported

results with Doop’s basic-only analysis, which implements Class Hierarchy Analysis.

Mirroring Doop, it would also be possible to add context sensitivity to our analysis, but

our results suggest that this would not help much; we’ll return to that point in Chapter 5.
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4.3.3 Arrays and Containers

Consistent with our analysis being a may-analysis, we define a predicate

isArrayLocalThatContainsMocks to record local variables pointing to arrays that may

contain mock objects. This predicate is true whenever the program under analysis stores

a mock variable into an array; we also transfer array-mockness through assignments and

casts. When a local variable v is read from a mock-containing array c, then v is marked

as a mock variable, as seen in the first rule below. An store of a mock variable mv into an

array c causes that array to be marked as isArrayLocalThatContainsMocks. Note that

these predicates are mutually recursive. A similar predicate is also applied to containers.

We also handle Collection.toArray by propagating mockness from the collection to the

array.

// v = c[idx]

isMockVar(v) :-

isArrayLocalThatContainsMocks(c),

LoadArrayIndex(c, v, _ /* idx */).

// c[idx] = mv

isArrayLocalThatContainsMocks(c) :-

StoreArrayIndex(mv, c, _ /* idx */),

isMockVar(mv).
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4.3.4 Fields

Apart from the obvious rule stating that a field which is assigned from a mock satisfies

fieldContainsMock, we also label fields that have the org.mockito.Mock or

org.easyMock.Mock annotation as mock-containing. We declare that a given field signa-

ture may contain a mock, i.e. the field with a given signature belonging to all objects of a

given type. We also support containers stored in fields.

4.3.5 Arrays and Fields

We also support not just array locals but also array fields. That is, when an array-typed

field is assigned from a mock-containing array local, then it is also a mock. And when an

array-typed local variable is assigned from a mock-containing array field, then that array

local is a mock-containing array.

4.4 Common Infrastructure

We have parameterized our technique with respect to mocking libraries and have instanti-

ated it with respect to the popular Java libraries Mockito, EasyMock, and PowerMock. We

also support different versions of JUnit1: 3, and 4+, and we support the Java Collections

API. We discuss this parameterization in this subsection.

Both JUnit and mocking libraries rely heavily on reflection, and would normally pose

problems for static analyses. In particular, the set of reachable test methods is enumerated

1https://junit.org
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at run-time, and the mock libraries create mock objects reflectively. Fortunately, their use

of reflection is limited and stylized, and we have designed our analyses to soundly handle

these libraries.

4.4.1 JUnit and Driver Generation

JUnit tests are simply methods that developers write in test classes, appropriately anno-

tated (in JUnit 3 by method name starting with “test”, in 4+ by a @Test annotation). A

JUnit test runner uses reflection to find tests. Out of the box, static analysis engines do

not see tests as reachable code.

Thus, to enable static analysis over a benchmark’s test suite, our tool uses Soot to

generate a driver class for each Java sub-package of the suite (e.g.

org.apache.ibatis.executor.statement). In each of these sub-package driver classes,

our tool creates a runall() method, which invokes all methods within the sub-package that

JUnit (either 3 or 4) considers to be non-constructor test cases, all surrounded by calls to

class-level init/setup and teardown methods. Test methods from concrete test classes are

particularly easy to call from a driver, as they are specified to have no parameters and are

not supposed to rely on any particular ordering. Our tool then creates a RootDriver class

at the root package level, which invokes the runall() method in each sub-package driver

class, along with the @Test/@Before/@After methods found in classes located at the root.

The drivers that we generate also contain code to catch all checked exceptions declared to

be thrown by the unit tests. Both our Soot and Doop implementations use the generated

driver classes.
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All static frameworks must somehow approximate the set of entry points as appropriate

for their targets. Additionally, the Wala framework [21] creates synthetic entry points, but

it does this to perform pointer analysis on a program’s main code rather than to enumerate

the program’s test cases.

4.4.2 Intraprocedural Analysis

The Soot analysis is intraprocedural and the Doop analysis has an intraprocedural version.

In both of these cases, we make the unsound (but reasonable for our anticipated use case)

assumption that mockness can be dropped between callers and callees: at method entry

points, no parameters are assumed to be mocks, and at method returns, the returned

object is never a mock. Doop’s interprocedural version drops this assumption, and instead

context-insensitively propagates information from callers to callees and back; we discuss

the results of doing so in Chapter 5.

Call graphs are useful to our intraprocedural analysis in two ways: first, because they

help identify calls to mock source methods (that we identify explicitly); and second, because

they come with entry points (which we effectively supply to the call graph using our

generated driver, as explained above). We assume that developers do not call inherited

versions of mock creation sites (for example, it could be a wrapper of the mock source

method). However, if a call graph of any inherited versions of mock create sites is available

in Doop, our Doop implementation will use it.
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4.4.3 Mock Libraries

Our supported mock libraries take different approaches to instantiating mocks. All of

the libraries have methods that generate mock objects; for instance, EasyMock contains

the createMock() method. We consider return values from these methods to be mock

objects. Additionally, Mockito contains a fluent verify() method which returns a mock

object. Finally, Mockito and EasyMock also allow developers to mark fields as @Mock;

we treat reads from such fields as mock objects. Both implementations start the analysis

with these hard coded facts on mock source methods, as described in the mock libraries’

documentation.

4.4.4 Containers

As stated above, we hardcode all relevant methods from the Java Collections API. There

are 60 such methods in total, which together account for about 1/6th of the total lines in

our Doop analysis. In addition to straightforward get and put methods, we also support

iterators, collection copies via constructors, and add-all methods. An iterator can be

treated as a copy of the container, with the request of an object from the iterator being

tantamount to a container get. An add-all method copies the mock-containing collection

bit.
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Chapter 5

Evaluation

In this chapter, we perform a qualitative evaluation of our MockDetector tool and

its potential contribution to finding focal methods, as well as a quantitative evaluation

of the tool’s effectiveness in identifying mock objects and finding invocations on them.

We compare running times and efficacy between our Soot and Doop implementations. In

addition, we also investigate four Doop base analyses and the effect of the base analysis

on running times and efficacy.

5.1 Qualitative Evaluation

We plan to reproduce Ghafari’s algorithm [11] to automatically identify focal methods, and

see how much it would benefit from mock removal. However, first, before implementing it,

we use manual inspection to evaluate how necessary it is to remove mocks from consider-
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ation as focal methods. We present two examples in this section to showcase how our tool

eliminates method invocations that are definitely not focal methods.

We begin by revisiting the example first discussed in Section 3.2. Figure 5.1 shows the

process of locating the mock object session and thus the mock invocation getRequest()

in the example. Both the Soot and Doop implementations report one mock invocation

from the test case. Soot outputs the Invoke Expression for getRequest(), whereas Doop

outputs the corresponding call-graph edge in the isMockInvocation relation. With the

assistance of MockDetector, we could remove getRequest() from consideration as a

focal method. We judge getToolchainsForType() to be the focal method because it is the

only method invocation remaining after the elimination process. In addition, as the length

attribute of the return object basics from the invocation getToolchainsForType() is

checked in the assertion statement on Line 13, this test case indeed tests the behaviour of

toolchainManager.getToolchainsForType().

For this example, since Ghafari’s algorithm does not consider accessors (or so-called

inspector methods in the paper) as focal methods, they will presumably report no focal

method for this unit test case. This clearly is an incorrect result from Ghafari’s algorithm.

Figure 5.2 displays the second example, a test from vraptor-core with multiple

mock invocations. The field mock objects are defined via mock annotations.

Both the Soot and Doop implementations identify all the field mocks, and consequently

report three mock invocations from the test case. They also successfully output the In-

voke Expressions or the corresponding call-graph edges for the three mock invocations:

getContentType(), deserializerFor(), and unsupportedMediaType(). By a process of
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elimination, we could deduce that intercept() on Line 32 is the focal method.

The heuristic of Ghafari’s algorithm requires the unit test case to have at least one

assertion statement. Since this unit test case does not have any assertion statement,

Ghafari’s algorithm will presumably have undefined behaviour analyzing this unit test.

In summary, Ghafari’s algorithm does not seem to have a provision for methods with

no mutators (presumably returns empty set), nor does it seem to be able to handle test

cases with no assertions (presumably undefined behaviour).

Both examples qualitatively demonstrate that our MockDetector tool can help

remove invocations on mocks from consideration as focal methods, thus making it easier

to identify focal methods. We believe our tool could augment the precision of Ghafari’s

algorithm. We could also potentially construct a novel elimination-based algorithm. Such

an algorithm might be better since it would consider methods that are actually focal

methods, like sophisticated getters.

5.2 Description of Benchmark Suite

We have quantitatively evaluated MockDetector on 8 open-source benchmarks, along

with a micro-benchmark that we developed to test our tool. We ran all of our experiments

on a 32-core Intel(R) Xeon(R) CPU E5-4620 v2 at 2.60GHz with 128GB of RAM running

Ubuntu 16.04.7 LTS.

Table 5.1 presents summary information about our benchmarks and run-times, namely

the LOC and Soot and Doop analysis run-times for each benchmark. The 9 benchmarks
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1 @Test

2 public void testMisconfiguredToolchain() throws Exception {

3 // mock:3 mockAPI:3

4 MavenSession session = mock ( MavenSession.class );

5 MavenExecutionRequest req = new DefaultMavenExecutionRequest();

6 // mock invocation:3 ⇒ focal method:7

7 when( session. getRequest() ).thenReturn( req );

8

9 ToolchainPrivate[] basics =

10 // focal method:3

11 toolchainManager. getToolchainsForType ("basic", session);

12

13 assertEquals( 0, basics.length );

14 }

Figure 5.1: Qualitative evaluation of removing one mock invocation from focal method
consideration.

include over 383 kLOC, with 184 kLOC in the test suites, as measured by SLOCCount1.

The Soot total time is the amount of time that it takes for Soot to analyze the benchmark

and test suite in whole-program mode, including our analyses. The Soot intraprocedural

analysis time is the sum of run-times for the main analysis plus two pre-analyses, as

described in Section 4.2. Meanwhile, the reported Doop run-time is from the context-

insensitive analysis, while the Doop analysis time for intraprocedural mock invocation

analysis is for running the analysis alone based on recorded facts from the benchmark.

The total Doop run-time is much slower than the total Soot run-time because Doop always

computes a call-graph, which is an expensive operation. We believe that the Doop analysis-

only time is also slower because it computes a solution over the entire program, as opposed

1https://dwheeler.com/sloccount/
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1 // Fields used in the unit test case

2 private DeserializingInterceptor interceptor;

3 // mock annotation:3

4 @Mock private HttpServletRequest request;

5 // mock annotation:3

6 @Mock private InterceptorStack stack;

7 // mock annotation:3

8 @Mock Deserializers deserializers;

9 private MethodInfo methodInfo;

10 // mock annotation:3

11 @Mock Container container;

12 // mock annotation:3

13 @Mock private Status status;

14

15 @Before

16 public void setUp() throws Exception {

17 MockitoAnnotations.initMocks(this);

18

19 methodInfo = new DefaultMethodInfo();

20 interceptor = new DeserializingInterceptor(request, deserializers, methodInfo,

container, status);

21 }

22

23

24 @Test

25 public void willSetHttpStatusCode415IfThereIsNoDeserializerButIsAccepted() throws

Exception {

26 // mock invocation:3 ⇒ focal method:7

27 when( request. getContentType() ).thenReturn("application/xml");

28 // mock invocation:3 ⇒ focal method:7

29 when( deserializers. deserializerFor ("application/xml", container) ).thenReturn(

null);

30

31 // focal method:3

32 interceptor. intercept (stack, consumeXml, null);

33 // mock invocation:3 ⇒ focal method:7

34 verify(status). unsupportedMediaType ("Unable to handle media type [application/

xml]: no deserializer found.");

35 verifyZeroInteractions(stack);

36 }

Figure 5.2: Qualitative evaluation of removing multiple mock invocations from focal
method consideration.
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to Soot, which works one method at a time.

5.3 Field Mocks

We perform an evaluation on the necessity of our pre-analyses finding field mocks. Table 5.2

displays the number of field mock objects that are defined via @Mock annotations, in the

constructors, and in the @Before/setUp() methods, respectively.

We focus on the 5 open-source benchmarks that have defined field mock objects. They

are bootique, maven-core, jsonschema2pojo-core, mybatis, and vraptor-core.

Among these 5 benchmarks, jsonschema2pojo-core, mybatis, and vraptor-core

have a high number (565) or a high percentage (over 50%) of of test-related methods

containing mock objects, and have many intraprocedural mock invokes. From the results

collected in Table 5.2, we can tell these benchmarks also prefer to define field mock objects.

Instead of repetitively creating the same mock objects in each test case within the same test

class, these benchmarks create the field mock objects once and and consequently use them

in all the test cases. This pattern reduces the need for code maintenance. In addition,

although bootique and maven-core have lower number of tests using mock objects,

these 2 benchmarks also prefer to define field mock objects. Therefore, 5 out of the 8 open-

source benchmarks prefer to define field mock objects for the ease of testing. This suggests

that our pre-analysis for field mocks described in Section 4.2.4 is indeed a necessary and

an effective step for analyzing mock objects and mock invocations in the test suites.
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5.4 Prevalence of Mocks

We next investigated the prevalence of mocks. Table 5.3 presents the number of test-

related (Test/Before/After) methods which contain local variables or which access fields

that are mocks, mock-containing arrays, or mock-containing collections, as reported by

our Soot-based intraprocedural analysis. Across the 8 benchmarks, test-related methods

containing local/field mocks or mock-containing containers accounted for 0.35% to 51.8%

of the total number of test-related methods found in public concrete test classes. Our

benchmarks are from different domains and created by different groups of developers.

The difference in mock usage reflects their different philosophies and constraints regarding

the creation and usage of mock objects in tests. Benchmarks like vraptor-core and

jsonschema2pojo-core have more than half of their test-related methods containing

mock objects (and mock-containing arrays); in both of these, most field mocks are created

via annotations and reused in multiple test cases in the same class.

The core result of this thesis is in Table 5.4, which presents the number of method

invocations on mocks detected by our implementations. We present numbers from the

imperative intraprocedural Soot implementation, as well as a total of eight versions of

the declarative Doop implementation2: { “basic-only” (class hierarchy analysis), “context-

insensitive” (CI), “context-insensitive-plusplus” (CIPP), “1-object-sensitive” } Doop base

analysis × { intraprocedural, interprocedural }.

Note that our declarative and imperative implementations find exactly the same number

2bootique, mybatis and vraptor timed out for Doop’s 1-object-sensitive analysis without our mock
analysis, and we report “–” for their times.
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of intraprocedural mock invocations for 4 of our benchmarks. On the others, the main

source of missed mock calls in the Soot implementation is missing support for array- or

collection-related functions. Our intraprocedural analysis finds that method invocations on

mock objects account for a range from 0.086% to 16.4% of the total number of invocations.

Our counts of intraprocedural mock invocations show that the benchmarks with more

than half of their test-related methods containing mock objects also have a considerable

percentage of invocations on mocks. Knowing that existing static analysis tools can not

pinpoint mock invocations, this result further suggests that it is necessary to have a tool

to exclude mock invocations from call graph edges for subsequent analyses.

The two implementations of mock analysis serve to cross validate each other. Often

there is only one implementation for a static analysis project, thus it is difficult to judge on

the implementation’s soundness and correctness. It is possible to formally prove analysis

properties, but even then, nothing guarantees conformance of the implementation to the

formal description. For this project, I can cross check the results from two implementations,

investigate the discrepancies and decide which implementation to further improve on. The

improvements on finding intraprocedural mock invocations will be in future work.

Combining the mock counts result from Table 5.3 and intraprocedural mock invocations

result from Table 5.4, we can see that benchmarks such as jsonschema2pojo-core,

mybatis and vraptor-core rely quite heavily on mock objects in their tests, which

supports our motivation that it is quite necessary to track mock objects and invocations

on mocks, to refine existing algorithms to find focal methods and remove candidates that

are definitely not focal methods.
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5.4.1 Intraprocedural vs. Interprocedural

In Section 4.4 we discussed the implementation of our intraprocedural and interprocedural

analyses. We can now discuss the effects of these implementation choices on the experi-

mental results. Recall that we chose, unsoundly, to not propagate any information across

method calls in the intraprocedural analysis. Thus, the intraproc columns in Table 5.4

show smaller numbers than the interproc columns, as expected. Note also that there is

a sometimes drastic increase from the intraprocedural to the interprocedural result, e.g.

from 40 to 1300 for flink-core. In 5 out of the 9 benchmarks analyzed, the difference is

less than 30, which is relatively minor. Meanwhile, for the remaining 4 benchmarks, the

interprocedural analysis reports up to 1200 more mock invocations than the intraprocedu-

ral analysis. Other than the source of mock objects propagated from helper methods to

unit test cases within the test suite, the difference also includes the mock invocations on

the mock objects unavoidably propagated to the main program.

This is because mocks will (especially context-insensitively) propagate from tests to

the methods that they call and throughout the main program code. It would be desirable

to be able to differentiate test helper methods, which we do want to propagate mocks to,

from methods in the main program, which we generally do not want to propagate mocks

to. (Although the main program may make mock invocations on objects it is given, we do

not want to report these mock invocations from main code.) However, our current analysis

infrastructure treats test and main code identically.

Therefore, in the future, we will need a filtering step after the current Doop imple-

mentation, which will eliminate mock invocations that occur outside test code. With a
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working filtering step, we can get closer to seeing the real difference between intraprocedu-

ral and interprocedural results on mock invocations. We will still need to check the validity

and correctness of each interprocedural mock invocation before giving definite conclusions

about the difference (which again suggests the importance of having two implementations

for cross checking). After verifying validity and correctness, we can deduce the set of mock

objects that are propagated from helper methods to test cases.

Because of our unsound assumption for the intraprocedural analysis that mocks don’t

traverse method boundaries, a Doop interprocedural implementation will presumably al-

ways report more mock invocations than our intraprocedural. Assuming our current Doop

interprocedural implementation correctly finds all mock invocations within the test suite

(which can be verified by more manual inspection, or by cross checking after we have a Soot

interprocedural implementation), then it is ready to apply for the focal method candidate

elimination process (remove the mock invocations from consideration).

5.5 Doop Analysis Results

We explored the run-time performance of our 8 declarative analysis variants based on

recorded program facts. We used hyperfine3 to perform 10 benchmarking runs for the

command that performs mock analysis, and present the means and standard deviations

from the 10 runs in Table 5.5 and 5.6.

The running times show that the Doop runs with basic-only base analysis spend more

time on mock analysis for most benchmarks than the run-times from the more advanced

3https://github.com/sharkdp/hyperfine
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base analyses. Basic-only is a naive base analysis that generates a much larger call graph

than more advanced base analyses (though it still misses some edges, as discussed in

Section 5.5.1), and as it would need to check through more call graph edges, we expect

that basic-only would generally spend more time on performing mock analysis. Table 5.7

highlights the number of source classes and target classes presented in the call graph

generated by the four base analyses, which supports the idea that basic-only generates a

bigger call graph, and spends most of the extra time checking over unnecessary classes

generated in the call graph instead of performing actual mock analysis.

To further investigate the interprocedural running times on benchmarks including

jsonschema2pojo-core, mybatis, and vraptor-core, we remove call graph edges

that have library classes or dependency classes as source classes for each base analysis, and

then count the total number of source classes and target classes in the filtered call graph.

As Table 5.8 shows, if we take the difference of the number of target classes from the

number of source classes for each base analysis, the results suggest that the more advanced

base analyses (CI, CIPP) reach more target classes from a better defined subset of source

classes that are application classes.

5.5.1 Investigating Basic-Only CHA

We believe that the basic-only base analysis has some undesired behaviour in the pro-

cess of generating the CHA. We have discussed with the Doop authors. They consider

that calls to concrete implementations of abstract methods are not included in CHA.

We believe this is not correct from our data collection but it is their assumption. Fig-
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ure 5.3 shows the call graph edges from the method isApplicableType on the class Pat-

ternRule to java.lang.String fullName(), which is a sibling method (i.e. a method

that has implementations in multiple classes under the same superclass) that is first

declared in the abstract base class com.sun.codemodel.JType. From Figure 5.3, we

can tell that the basic-only base analysis only reports edges to the (abstract) method

com.sun.codemodel.JType.fullName, whereas the call graph generated by CI base anal-

ysis reports edges to implementation sites of the target method. We believe that this shows

that there are missing edges in basic-only from its choice to stop at the abstract level.

Combining this information with the total number of interprocedural mock invocations

reported for the three benchmarks, we know that CI and CIPP have found notably more

mock invocations in the process of searching through the edges to the implementation sites

of the sibling methods, and the time spent on this process possibly accounts for the higher

mock-analysis running times of CI and CIPP on benchmarks jsonschema2pojo-core,

mybatis, and vraptor-core.

5.5.2 Mock Invocations Results by Different Base Analyses

The four base analyses report the same number of intraprocedural mock invocations in 8

benchmarks. The minor difference in vraptor-core is due to one method (which ought

to be present) not showing up in Doop’s context-insensitive call-graph.

From our investigation of basic-only’s CHA, it is probably safe to disregard interproce-

dural basic-only mock invocation results.
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Call-graph Edge in Basic-only:

0 <org.jsonschema2pojo.rules.PatternRule: boolean

isApplicableType(com.sun.codemodel.JFieldVar)>/com.sun.codemodel.JClass.fullName/0

0 <com.sun.codemodel.JType: java.lang.String fullName()>

Call-graph Edges in CI:

<<immutable-context>> <org.jsonschema2pojo.rules.PatternRule:

boolean isApplicableType(com.sun.codemodel.JFieldVar)>/com.sun.codemodel.JClass.fullName/0

<<immutable-context>> <com.sun.codemodel.JTypeVar: java.lang.String fullName()>

<<immutable-context>> <org.jsonschema2pojo.rules.PatternRule:

boolean isApplicableType(com.sun.codemodel.JFieldVar)>/com.sun.codemodel.JClass.fullName/0

<<immutable-context>> <com.sun.codemodel.JTypeWildcard: java.lang.String fullName()>

<<immutable-context>> <org.jsonschema2pojo.rules.PatternRule:

boolean isApplicableType(com.sun.codemodel.JFieldVar)>/com.sun.codemodel.JClass.fullName/0

<<immutable-context>> <com.sun.codemodel.JNarrowedClass: java.lang.String fullName()>

<<immutable-context>> <org.jsonschema2pojo.rules.PatternRule:

boolean isApplicableType(com.sun.codemodel.JFieldVar)>/com.sun.codemodel.JClass.fullName/0

<<immutable-context>> <com.sun.codemodel.JArrayClass: java.lang.String fullName()>

<<immutable-context>> <org.jsonschema2pojo.rules.PatternRule:

boolean isApplicableType(com.sun.codemodel.JFieldVar)>/com.sun.codemodel.JClass.fullName/0

<<immutable-context>> <com.sun.codemodel.JDefinedClass: java.lang.String fullName()>

<<immutable-context>> <org.jsonschema2pojo.rules.PatternRule:

boolean isApplicableType(com.sun.codemodel.JFieldVar)>/com.sun.codemodel.JClass.fullName/0

<<immutable-context>> <com.sun.codemodel.JDirectClass: java.lang.String fullName()>

<<immutable-context>> <org.jsonschema2pojo.rules.PatternRule:

boolean isApplicableType(com.sun.codemodel.JFieldVar)>/com.sun.codemodel.JClass.fullName/0

<<immutable-context>> <com.sun.codemodel.JCodeModel\$JReferencedClass: java.lang.String fullName()>

Figure 5.3: The call graph edges to the method fullName() from both basic-only
and context-insensitive base analyses. The method is declared in abstract class
com.sun.codemodel.JType and implemented in its children classes.
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More Sophisticated Analyses Analyzing the Doop interprocedural results among the

three more advanced base analyses (CI, CIPP and 1-object-sens), we see that they report

the same number of interprocedural mock invocations in 5 out of 9 benchmarks. CI and

CIPP report the same number of interprocedural mock invocations in 2 more benchmarks

that 1-object-sensitive base analysis timed out in generating the call graph.

We can observe that CI and CIPP have comparable run-times and mock invocation

counts, with CI having slightly higher run-times, both intraprocedurally and interpro-

cedurally. This makes sense, as CIPP is “context-insensitive with an enhancement for

low-hanging fruit: methods that have their params flow to their return value get a meth-

ods that have their params flow to their return value get a 1-obj treatment” [18]. Data

presented in Table 5.7 demonstrates that the call graph sizes are comparable for CI and

CIPP, with CI’s call graphs generally slightly bigger as expected.

On the other hand, since 1-object-sensitive base analysis is a more sophisticated analy-

sis, it spends more time on building the call graph (3 benchmarks ending up with timed-out

runs on building the call graph). We feed the same input to all four base analyses, but

a more sophisticated analysis, like 1-object-sensitive, returns a much smaller call-graph.

We believe it produces a better defined call-graph and thus executes faster on the actual

mock analysis. However, we need to communicate to Doop developers more and have a

better understanding of the logic involved in these sophisticated analyses before making a

conclusion.
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Table 5.1: Our suite of 8 open-source benchmarks (8000–117000 LOC) plus our microbench-
mark. Soot and Doop analysis run-times.

Benchmark Total LOC Test LOC
Soot intraproc
total time (s)

Doop intraproc
total time (s)

Soot intraproc
mock analysis (s)

Doop intraproc
mock analysis (s)

bootique-2.0.B1-bootique 15530 8595 58 2810 0.276 19.93
commons-collections4-4.4 65273 36318 114 694 0.386 14.20
flink-core-1.13.0-rc1 117310 49730 341 1847 0.415 27.21
jsonschema2pojo-core-1.1.1 8233 2885 313 1005 0.282 29.33
maven-core-3.8.1 38866 11104 183 588 0.276 19.49
micro-benchmark 954 883 47 387 0.130 11.73
mybatis-3.5.6 68268 46334 500 4477 0.662 59.83
quartz-core-2.3.1 35355 8423 155 736 0.231 21.06
vraptor-core-3.5.5 34244 20133 371 1469 0.455 34.95

Total 384033 184405 2082 14013 3.123 237.73

Table 5.2: Counts of Field Mock Objects defined via @Mock annotation, in the constructors,
and in @Before methods, in each benchmark’s test suite.

Benchmark
# of Annotated

Field Mock Objects
# of Field Mock Objects

defined in the <init> constructor
# of Field Mock Objects

defined in @Before methods

bootique-2.0.B1-bootique 0 0 8
commons-collections4-4.4 0 0 0
flink-core-1.13.0-rc1 0 0 0
jsonschema2pojo-core-1.1.1 26 126 0
maven-core-3.8.1 7 0 1
micro-benchmark 2 0 29
mybatis-3.5.6 41 0 0
quartz-core-2.3.1 0 0 0
vraptor-core-3.5.5 263 128 83
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Table 5.3: Counts of Test-Related (Test/Before/After) methods in public concrete test
classes, along with counts of mocks, mock-containing arrays, and mock-containing collec-
tions, reported by Soot intraprocedural analysis.

Benchmark
# of Test-Related

Methods

# of Test-Related
Methods with
mocks (intra)

# of Test-Related
Methods with

mock-containing
arrays (intra)

# of Test-Related
Methods with

mock-containing
collections (intra)

bootique-2.0.B1-bootique 420 32 7 0
commons-collections4-4.4 1152 3 1 1
flink-core-1.13.0-rc1 1091 4 0 0
jsonschema2pojo-core-1.1.1 145 76 1 0
maven-core-3.8.1 337 24 0 0
micro-benchmark 59 43 7 25
mybatis-3.5.6 1769 330 3 0
quartz-core-2.3.1 218 7 0 0
vraptor-core-3.5.5 1119 565 15 0

Total 6310 1084 34 26
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Table 5.5: Intraprocedural Doop analysis-only run-time (in seconds) after basic-only,
context-insensitive, context-insensitive-plusplus and 1-object-sensitive base analyses.
“–” = timed out after 90 minutes. Runs [mybatis, basic-only] and [flink-core, 1-object-
sensitive] take close to 90 minutes and sometimes time out.

Benchmark intraproc

basic
-only

σ CI σ CIPP σ
1-obj
-sens

σ

bootique 21.26 1.73 19.93 1.85 19.51 1.74 – –

commons-collections4 15.39 1.39 14.20 1.36 14.48 0.97 13.39 1.08

flink-core 29.87 2.29 27.21 30.34 27.78 4.54 21.17 0.49

jsonschema2pojo 31.72 1.44 29.33 2.33 30.72 3.52 29.35 3.69

maven-core 20.40 0.97 19.49 1.80 16.09 1.61 15.72 1.09

microbenchmark 13.20 0.76 11.73 0.73 11.61 0.59 12.23 1.15

mybatis 83.29 5.57 59.83 4.07 59.76 0.59 – –

quartz-core 21.95 2.28 21.06 2.08 18.88 2.84 17.22 1.91

vraptor 49.27 2.59 34.96 0.79 36.49 1.82 – –

Table 5.6: Interprocedural Doop analysis-only run-time (in seconds) after basic-only,
context-insensitive, context-insensitive-plusplus and 1-object-sensitive base analyses.
“–” = timed out after 90 minutes. Runs [mybatis, basic-only] and [flink-core, 1-object-
sensitive] take close to 90 minutes and sometimes time out.

Benchmark interproc

basic
-only

σ CI σ CIPP σ
1-obj
-sens

σ

bootique 26.44 1.73 24.90 0.69 25.50 1.69 – –

commons-collections4 17.80 1.42 16.64 1.06 16.82 0.79 15.61 1.60

flink-core 68.26 1.98 62.12 3.99 63.94 5.64 54.11 0.32

jsonschema2pojo 39.76 2.33 41.05 2.90 35.37 1.96 37.29 4.55

maven-core 26.41 1.60 23.42 1.98 22.16 1.82 19.62 1.75

microbenchmark 13.76 1.03 12.92 0.95 13.02 1.18 12.30 1.53

mybatis 113.38 4.57 192.16 23.36 181.92 4.01 – –

quartz-core 23.49 2.42 21.92 1.84 21.97 1.78 19.80 2.75

vraptor 70.92 2.85 149.38 5.73 148.35 2.62 – –
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Table 5.7: Call graph statistics: total number of source classes and target classes from inter-
procedural Doop analysis with basic-only, context-insensitive, context-insensitive-plusplus,
and 1-object-sensitive base analyses. “–” = timed out after 90 minutes. Runs [mybatis,
basic-only] and [flink-core, 1-object-sensitive] take close to 90 minutes and sometimes time
out.

Benchmark Source Classes Target Classes

basic
-only

CI CIPP
1-obj
-sens

basic
-only

CI CIPP
1-obj
-sens

bootique 12187 3683 3678 – 12910 3422 3417 –
commons-collections4 8576 2762 2757 2726 8916 2657 2652 2622
flink-core 17381 3962 3946 3928 18062 3764 3748 3731
jsonschema2pojo 16876 2976 2967 2962 17832 2817 2808 2804
maven-core 13228 2858 2849 2845 14102 2726 2717 2713
microbenchmark 7227 1603 1603 1591 7569 1527 1527 1515
mybatis 31778 4774 4771 – 32043 4542 4539 –
quartz-core 11036 2919 2918 2906 11424 2786 2785 2774
vraptor 18294 4352 4339 – 19603 4240 4227 –
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Table 5.8: Call graph statistics: total number of source classes that are application classes
(i.e., excluding classes from dependencies or libraries) and total number of target classes
reached from application classes by interprocedural Doop analysis with basic-only, context-
insensitive, context-insensitive-plusplus, and 1-object-sensitive base analyses. “–” = timed
out after 90 minutes. Runs [mybatis, basic-only] and [flink-core, 1-object-sensitive] take
close to 90 minutes and sometimes time out.

Benchmark Source Classes Target Classes

basic
-only

CI CIPP
1-obj
-sens

basic
-only

CI CIPP
1-obj
-sens

bootique 514 358 358 – 631 663 627 –
commons-collections4 896 799 798 778 1042 1101 1093 1044
flink-core 4730 1372 1365 1362 4951 1855 1812 1777
jsonschema2pojo 123 119 119 119 256 301 301 299
maven-core 798 291 291 291 1244 554 531 515
microbenchmark 13 12 12 12 36 46 46 44
mybatis 1981 1271 1271 – 2385 1872 1842 –
quartz-core 386 288 288 288 559 546 520 501
vraptor 904 649 649 – 1259 1376 1353 –
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Chapter 6

Related Work

We discuss related work in the areas of declarative versus imperative static analysis, treat-

ment of containers, and taint analysis.

6.1 Imperative vs Declarative

Kildall contributed perhaps the first dataflow analysis [13] as the concept is understood to-

day, describing an algorithm for intraprocedural constant propagation and common subex-

pression elimination. His algorithm, operating on the program graph, is described in quite

imperative pseudocode (and proven to terminate). In some sense, implementing algo-

rithms imperatively is the default, and doesn’t need further discussion, except to point

out that program analysis frameworks such as Soot [20] provide libraries that can ease the

implementation burden.
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To our knowledge, Corsini et al did some of the first work in declarative program

analysis [8]; however, that work performed abstract interpretation on (tiny) logic programs

rather than imperative programs. Dawson et al [9] did similar work. Around the same time,

Reps proposed [16] a declarative analysis to perform on-demand versions of interprocedural

program analyses, which is similar to what we have here; however, we compute all of the

analysis results rather than performing an on-demand analysis. CodeQuest by Hajijev et

al [12] also allows developers to perform AST-level code queries using a declarative query

language. Dimple+ [3][2, Chapter 3] by Benton and Fischer may be closest to what we

are advocating as the declarative analysis approach. While Benton’s dissertation presents

a simple Dimple+ implementation of Andersen’s points-to analysis, the Dimple+ work

does not have Doop’s sophisticated pointer analysis available to it. Soufflé, by Scholz et

al [17], advocates for declarative static analysis (but without comparing it directly to an

imperative approach as we do here), and presents performance optimizations needed to

achieve this goal. Finally, Doop [6], which is now primarily implemented with a Soufflé

backend, is perhaps the most powerful extant declarative program analysis, and focuses on

expressing sophisticated pointer analyses in Datalog.

In terms of comparing implementations, Prakash et al [15] compare pointer analyses as

provided by Doop and Wala; in some sense, the present work is similar to that work in that

both works compare two frameworks. However, that work compares empirical results from

two families of pointer analysis implementations (and finds that the specific intermediate

representation used doesn’t change the results much), while we discuss the process of

implementing a static analysis declaratively versus imperatively. Like us, they note that

Doop is difficult to incorporate into a program transformation framework (it works better
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in standalone mode) while Wala’s results are readily available; a similar result applies to

any result that a Soot-based data flow analysis produces as compared to a Doop-based

declarative analysis.

6.2 Treatment of Containers

In this work, we use coarse-grained abstractions for containers, consistent with the approach

from Chu et al [7]. In our experience, test cases do not perform sophisticated container

manipulations where it would be necessary to track exactly which elements of a container

are mocks. Were such an analysis necessary, we could use the fine-grained container client

analysis by Dillig et at [10].

6.3 Taint Analysis

Like many other static analyses, our mock analysis can be seen as a variant of a static taint

analysis: sources are mock creation methods, while sinks are method invocations. There

are no sanitizers in our case. However, for a taint analysis, there is usually a small set of

sink methods, while in our case, every method invocation in a test method is a potential

sink. Additionally, the goal of our analysis (detecting possible mocks) is different in that

it is not security-sensitive, so the balance between false positives and false negatives is

different—it is less critical to not miss any potential mock invocations, whereas missing a

whole class of tainted methods would often be unacceptable.
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Chapter 7

Discussion

Having described our imperative and declarative approaches to implementing mock anal-

ysis, we now comment on the strengths and weaknesses of these two approaches. We hope

that our discussion will help future designers of source code analyses and frameworks.

7.1 Subsequent Use of Results

Doop is a standalone tool. It depends on other tools to provide input, but provides output

in the form of csv files, whose content can be matched to the program source, if a sub-

sequent analysis has the appropriate internal representation. On the other hand, Soot is

a compiler framework. Thus, using the Soot analysis results in a subsequent compilation

phase is quite easy. Doop works quite well for producing analysis results, and not quite as

well for using these results in a compilation process. Our Soot analysis also doesn’t need

to process the whole program for itself to produce the analysis results that we’re interested
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in here—our intraprocedural analysis can use the existing in-memory representation and

pass it on to the next phase, while Doop reads the whole program, throws it away, and

leaves nothing for the next compilation phase.

7.2 Expressiveness vs Concision

In [6], Bravenboer and Smaragdakis point out that:

Even conceptually clean program analysis algorithms that rely on mutually

recursive definitions often get transformed into complex imperative code for

implementation purposes.

The presentation of the declarative approach in Chapter 4 could meaningfully include

direct excerpts from the Datalog; including Java code is rarely meaningful, as there is too

much boilerplate in that language.

The declarative approach takes 237 non-comment lines, compared to about 533 non-

comment lines for the main part of the imperative approach, which is a significant point

in favour of Doop. A head-to-head comparison is tricky, as the imperative approach also

uses pre-analyses which are not present in the declarative approach.

We comment on the reasons for using helper analyses in the imperative version and not

the declarative version. Recall that the helper analyses pre-computed information about

1) mock annotations and 2) constructors and setup methods. The mock annotations are

an inessential difference; they could be computed on the fly in the imperative version, as
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they are in the declarative version. As for the constructors: when thinking imperatively,

it is more intuitive to explicitly order the computations for constructors before regular

test methods. On the other hand, thinking declaratively, it is more natural to use mutual

recursion to declare a dependency on the results of previous computations for fields (our

relation isCollectionFieldThatContainsMocks in particular) than to declare an explicit

ordering. There is a small semantic difference in the two implementations, as the declarative

implementation does not require field writes to be confined to constructors and setup

methods; in this particular case, we empirically verified that the imperative assumption

was almost always satisfied.

We also contrast how we store the abstraction in the two versions. The imperative

version uses a standard dataflow analysis abstraction (three bits per local variable/field

reference), along with an explicitly specified merge operator, while the declarative ver-

sion uses one relation for each of the three bits. Propagating and merging data happens

automatically in Doop.

Another difference between the declarative and imperative versions is in the support for

interprocedural analysis. As stated earlier, in Chapter 4, the declarative version implements

a context-insensitive interprocedural analysis while the imperative version is intraprocedu-

ral. The choice of intraprocedural versus interprocedural depends strongly on the particular

analysis being implemented. Implementing the interprocedural analysis declaratively was

impressively easy, while it is significantly more challenging to implement an interprocedu-

ral analysis in Soot, requiring the use of Heros [5], an additional framework. On the other

hand, the Heros implementation would be IFDS-based and be context-sensitive; it would be

somewhat harder to upgrade our context-insensitive implementation to a context-sensitive
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Doop implementation.

It is easier to add instrumentation, e.g. timers, to the imperative version than the

declarative version. Doop contains some built-in timers, but it is unclear how to add new

ones.

7.3 Development Velocity

To help the reader calibrate our descriptions, we describe our experience levels with Soot

and Doop. I initially had little Soot experience, developed the Soot implementation

through countless hours of testing and debugging, and took guidance and suggestions from

my supervisor, who is an early code contributor to the Soot framework. My supervisor, the

co-author of the submitted conference research paper, developed the Doop implementation.

Soot is a mature program analysis framework and many of the common sticking points

have, over the years, been addressed by the developers. Nevertheless, it can be intimidating

to start working with Soot. Our experience with Doop is that it is overall robust, yet still

being actively developed (i.e. occasionally, at the start, some daily snapshots didn’t work

with some versions of the underlying Soufflé engine). There is more documentation for Soot

than for Doop, although even for Doop, it is often possible to scrape together answers to

one’s questions from the source code and the online documentation. Finding the right API

(or relation, in Doop) to use can be challenging for both Soot and Doop; it’s impossible

for us to fairly compare them, due to our different experiences with Soot and Doop.

We thank the Doop developers for their timely and helpful answers to our questions;
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developer or community support is necessary to successfully use Doop (or, for that matter,

most research-grade program analysis frameworks, including Soot).

Most of the time, adding a feature to the declarative version (e.g. field support) required

an evening of work. This typically happened first; the declarative version is better for

cleanly describing some approximation of the desired behaviour. Somewhat to our surprise,

it was then possible to fast-follow with the imperative version, which ended up not taking

much more than an evening to implement either. We believe that the existence of the

declarative specification helped with designing the imperative version.

The declarative version was still subject to the combinatorial feature interaction prob-

lem; for instance, when we added support for fields and containers, we also specifically

needed to add support for containers stored in fields.

Debugging is an inevitable part of any development process, including this one; declar-

ative languages are no proof against debugging. Some Doop errors were just frustrating,

e.g. hardcoding a syntactically incorrect method signature for a collection method. Other

times, better type system enforcement in Datalog, and in particular, identifying relations

that are unsatisfiable due to type conflicts, would help. Soot errors are typical program-

ming errors.

Iteration speed can help with more effective debugging. On some benchmarks, Soot

iterations could finish in under a minute, while Doop analysis-only iterations could finish

in 10 seconds (but we didn’t know that at the time). To expand on that: while developing

our analysis, we ran our analysis together with the main analysis, and recomputed the

main analysis every time we iterated. Yet, Doop supports running add-on analyses like
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ours, in isolation, after the main analysis terminates. If we were doing it again, we would

develop our analysis as a run-after analysis. Running with the main analysis requires at

least a 2.5-minute iteration time due to the necessity of re-compiling and re-running the

entire analysis every time the analysis changes, while running an analysis after the main

analysis can take 10 seconds, as mentioned above. Setting up the analysis to run after the

main analysis is trickier and requires understanding of Doop which we did not have until

late in the process.

As stated above, instrumentation is easier in Soot than in Doop, and that extends to

printing debug information and using traditional debugging tools, which works as well for

Soot as traditional debugging does in general. To debug the Doop analysis, we resorted to

outputting relevant relations after a Doop run and manually pinpointing which facts were

missing or extraneous. Because Doop uses Soot to generate program facts, understanding

Soot in particular and compilers in general was invaluable while developing the Doop

implementation—we also looked at the Soot intermediate representation to understand

what analysis information was flowing to which intermediate variables.

7.4 Future Work

In this project, we presented two implementations for detecting mock objects and tracking

mock invocations in test suites. There are multiple areas require further investigation to

improve MockDetector’s quality:

• We will work on the Soot interprocedural implementation in our tool for a more
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complete mock analysis. It will be useful to compare and further understand the two

approaches analyzing mock objects.

• The current interprocedural Doop implementation could not differentiate method

invocations in the test suites from the ones in the source code. We will work on

modifying Doop’s implementation to only report results from the test suites for move

accurate results.

• We plan to build construct an automated focal method analysis tool. It aims to help

quantitatively evaluate our MockDetector tool in assisting for the focal method

findings.

7.5 Summary

We would conclude that, especially with the knowledge we have now gained about Doop,

prototyping in Doop is easier than in Soot, but that it is no panacea; it remains subject to

the feature interaction problem as well as debugging. Additionally, trying to add certain

functional behaviours to the Doop implementation, such as timers, can be challenging.

Overall, in this thesis, we have described a case study of the MockDetector static

analysis, which we intend to use for further static analyses of test cases. We have im-

plemented MockDetector twice—once imperatively in Soot, and once declaratively in

Doop—and characterized its performance on a test suite. Finally, we have discussed our ex-

perience implementing this analysis twice, and pointed out the benefits and disadvantages

of the imperative and declarative approaches for writing static analyses.

68



References

[1] Kent Beck. Test-Driven Development: By Example. Addison-Wesley Professional,

2002.

[2] William C. Benton. Fast, Effective Program Analysis for Object-Level Parallelism.

PhD thesis, University of Wisconsin–Madison, December 2008.

[3] William C. Benton and Charles N. Fischer. Interactive, scalable, declarative program

analysis: From prototype to implementation. In Proceedings of the 9th ACM SIG-

PLAN International Conference on Principles and Practice of Declarative Program-

ming, PPDP ’07, page 13–24, New York, NY, USA, 2007. Association for Computing

Machinery.

[4] Eric Bodden. Inter-procedural data-flow analysis with ifds/ide and soot. In Proceedings

of the ACM SIGPLAN International Workshop on State of the Art in Java Program

Analysis, SOAP ’12, page 3–8, New York, NY, USA, 2012. Association for Computing

Machinery.

69



[5] Eric Bodden. Inter-procedural data-flow analysis with ifds/ide and soot. In 1st ACM

SIGPLAN International Workshop on the State Of the Art in Java Program Analysis

(SOAP 2012), pages 3–8, July 2012.

[6] Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of so-

phisticated points-to analyses. In Proceedings of the 24th ACM SIGPLAN Conference

on Object Oriented Programming Systems Languages and Applications, OOPSLA ’09,

page 243–262, New York, NY, USA, 2009. Association for Computing Machinery.

[7] Hang Chu and Patrick Lam. Collection disjointness analysis. In Proceedings of the

ACM SIGPLAN International Workshop on State of the Art in Java Program analysis,

SOAP ’12, pages 45–50, Beijing, China, 2012.

[8] Marc-Michel Corsini, Kaninda Musumbu, Antoine Rauzy, and Baudouin Le Charlier.

Efficient bottom-up abstract interpretation of prolog by means of constraint solv-

ing over symbolic finite domains (extended abstract). In Maurice Bruynooghe and

Jaan Penjam, editors, Progamming Language Implementation and Logic Program-

ming, pages 75–91, Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

[9] Steven Dawson, C. R. Ramakrishnan, and David S. Warren. Practical program anal-

ysis using general purpose logic programming systems—a case study. In Proceedings

of the ACM SIGPLAN 1996 Conference on Programming Language Design and Im-

plementation, PLDI ’96, page 117–126, New York, NY, USA, 1996. Association for

Computing Machinery.

70



[10] Isil Dillig, Thomas Dillig, and Alex Aiken. Precise reasoning for programs using

containers. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL ’11, page 187–200, New York, NY,

USA, 2011. Association for Computing Machinery.

[11] Mohammad Ghafari, Carlo Ghezzi, and Konstantin Rubinov. Automatically identi-

fying focal methods under test in unit test cases. In 2015 IEEE 15th International

Working Conference on Source Code Analysis and Manipulation (SCAM), pages 61–

70, 2015.

[12] Elnar Hajiyev, Mathieu Verbaere, and Oege de Moor. codequest: Scalable source

code queries with datalog. In Dave Thomas, editor, ECOOP 2006 – Object-Oriented

Programming, pages 2–27, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[13] Gary A. Kildall. A unified approach to global program optimization. In Proceedings of

the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages, POPL ’73, page 194–206, New York, NY, USA, 1973. Association for

Computing Machinery.

[14] Shaikh Mostafa and Xiaoyin Wang. An empirical study on the usage of mocking

frameworks in software testing. In 2014 14th International Conference on Quality

Software, pages 127–132, October 2014.

[15] Jyoti Prakash, Abhishek Tiwari, and Christian Hammer. Effects of program repre-

sentation on pointer analyses — an empirical study. In Esther Guerra and Mariëlle
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Appendix A

Field Mutation Analysis
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Table A.1: Counts of fields mutated in test cases, and counts of all fields found in test
cases.

Benchmark
Total # of Fields Mutated

in Test Cases / Total # of Fields

bootique-2.0.B1-bootique 0 / 271
commons-collections4-4.4 3 / 697
flink-core-1.13.0-rc1 8 / 2675
jsonschema2pojo-core-1.1.1 0 / 228
maven-core-3.8.1 0 / 765
microbenchmark 5 / 32
mybatis-3.5.6 0 / 2618
quartz-core-2.3.1 2 / 878
vraptor-core-3.5.5 10 / 1193

Total 29 / 9352
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