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Abstract

The crucial role of point correspondences in the process of stereo vision and camera
projector calibration is to determine the relationship between the camera view(s) and the
projector view(s). Consequently, acquiring accurate and robust point correspondences
can result in a very accurate 3D point cloud of a scene. Designing a method that can
detect pixel correspondences quickly and accurately and be robust to factors such as object
motions and color is an important subject of study. The information that lies in the
point correspondences determines the geometry of the scene in which depth plays a very
important role, if not the most important. However, point correspondences will include
some outliers. Outlier removal is another important aspect of obtaining correspondences
that can have substantial impact on the reconstructed point cloud of an object. During the
Single-Shot Structured Light (SSSL) calibration process, a pattern consisting of tags with
differently shaped symbols inside and separated by grids are projected onto the object.
The intersections of these grid lines are considered to be potential pixel correspondences
between a camera image and the projector pattern.

The purpose of this thesis is to study the robustness and accuracy of pixel correspon-
dences and to enhance their quality. In this thesis we propose a detection method that uses
the model of the pattern, specifically the grid lines, which are the largest and brightest
feature of the pattern. The input image is partitioned into smaller patches and then the
optimization process is executed on each patch. Eventually, the grid lines will be detected
and fitted to the grid, and the intersections of those lines are taken as potential correspond-
ing pixels between the views. In order to remove incorrect pixel correspondences, or in
other words, outliers, Connected Component Analysis is used to find the closest detected
point to the top left corner of each tag. The points remaining after this step are the correct
pixel correspondences.

Experimental results show the improvement of using a locally adaptive thresholding
method against the baseline in detecting tags. The proposed thresholding method showed
a maintained accuracy compared to the baseline method while automatically tune all the
parameters whereas in the baseline method some parameters need fine tuning. Introduced
model-based grid intersection detection yields an approximately 50 times improvement in
speed. Inaccuracy in point correspondences are compared with state-of-the-art method
based on the generated final reconstructed point clouds using both methods against the
CAD model as ground truth. Results show an average of 3 pixels higher error in distance,
between the reconstructed point clouds and the CAD model, in the proposed method
compared to the baseline.

v



Acknowledgements

I owe my deepest gratitude and appreciation to my supervisor Dr. Paul Fieguth. I
appreciate all the efforts and support he had for me during the pandemic and my work. I
learned a lot, working with him and his team.

[ would like to thank Dr. John Zelek and Dr. Zhou Wang for serving as readers for my
thesis.

I would like to thank Mohamed A. Naiel for his support and help during my study. I
appreciate all the input and suggestions that helped me become a better researcher.

[ want to thank Christie Digital Systems and Mark Lamm for facilitating the necessary
equipment for my study.

I want to dedicate my work to my parents for supporting me in every way they could
during my study. They were there for me even from thousand miles away. I appreciate
you and your continuous sacrifices for me.



Table of Contents

List of Figures viii

List of Tables X

1 Introduction 1

1.1 Motivation and Overview . . . . . . . . . . .., 2

1.2 Research Contributions . . . . . . . . . . . . . 4

1.3 Thesis Outline . . . . . . . . . ., 5

2 Background 6
2.1 3D Reconstruction . . . . . . . . .

2.1.1 Calibration and Triangulation . . . . . . ... ... ... ... ... 11

2.2 Image Binarization . . . . . . . .. . Lo 14

2.3 Low Level Image Feature Detection . . . . . .. ... ... ... ... ... 18

2.3.1 Hough Transform . . . . ... .. ... .. ... ... .. ... 21

2.3.2 Radon transform . . . . . . . .. 22

2.4 Conclusion . . . . . . . 23

3 Problem Formulation 24

3.1 Thresholding . . . . . . . . .. 25

3.2 Grid Intersection Detection . . . . . . . ... 28

vi



4 Locally Adaptive Thresholding

4.1 Experimental Results . . . .

4.1.1 Evaluation Methodology . . . . . .. .. .. ... ... ... ...,

4.1.2 Quantitative and Qualitative Results . . . . . .. .. .. ... ...

5 Grid Intersection Detection

5.1 Experimental Results . . . .

5.1.1 Ewvaluation Methodology . . . . . . . .. .. ... ... .......

5.1.2  Qualitative Results .
5.1.3 Quantitative Results

6 Conclusions and Future Work

References

vii

33
37
37
40

42
44
45
47
48

52

55



List of Figures

1.1
1.2

2.1
2.2
2.3
24
2.5

3.1

3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6

Schematics of a camera projector system . . . . .. .. ... ... ... .. 2
Example of a structured light pattern . . . . . . . ... ... ... ... .. 3
[lustration of different 3D reconstruction methods . . . . . . . . .. .. .. 7
Different types of structured light . . . . . ... ... ... .. ... .... 8
Block address encoding scheme example . . . . . ... ... ... .. ... 10
Relationship between optic sensor coordinate system . . . . . . ... ... 12
The Hough transform on a sample patch . . . . . ... ... ... ... .. 21

The BAE binary pattern and captured camera image showing the pattern

projected on an object . . . . .. . ... 25
Input image preprocessing . . . . . . . . ... 26
Global thresholding examples . . . . . . . ... ... ... ... ... 27
Different examples of grid intersection. . . . . . . . . ... ... ... ... 29
Grid intersection detection by parameterizing lines. . . . . . . .. .. ... 31
Block diagram of the SSSL pipeline . . . . . . .. ... ... ... ... .. 33
Block diagram of Sauvola local thresholding . . . . . . .. ... ... ... 34
Block diagram of proposed thresholding process . . . . . . . ... ... .. 35
proposed evaluation methodology . . . . . . ... ... ... ... ... 37
Qualitative comparison of Sauvola and the proposed methods . . . . . .. 39
Effect of different k values on SP’s method performance . . . . . . . .. .. 40

viil



5.1
5.2
2.3
5.4
2.5

2.6
5.7

6.1

[Mlustration of main block diagram . . . . . . .. .. ... ... ... ... .. 42

Results of Radon transform on a sample image patch . . . . .. ... ... 43
Block diagram of the evaluation methodology . . . . . .. ... ... ... 45
Qualitative results of the proposed grid detection method . . . . . . . . .. 47
Performance comparison between the proposed method and method in [27]

on the reconstructed point clouds . . . . .. ... ... ... ... 48
Effect of different skewness on a sample image . . . . . .. ... ... ... 49
Performance result with different noise factors . . . . . . .. .. ... ... 50
New design for BAE pattern . . . . . . . ... ... .. L. 54

X



List of Tables

3.1 Formulation notations . . . . . . . . . ... ... 24
4.1 Quantitative results of thresholding method . . . . . . ... ... ... .. 38
5.1 Quantitative results of the proposed grid intersection detection method . . 50
5.2 Comparison between the proposed and method in [27] . . . . . . . ... .. 51



Chapter 1

Introduction

3D reconstruction is a well studied field over the past decades [99, 22, 40, , 18]. 3D re-
construction is a core technology of many applications such as medical imaging, projection
mapping, computational science, virtual reality, and digital media. The 3D reconstructed
model of an object contains information about its physical appearance.

There are different ways to create a 3D model from an object, which will be discussed
in detail in Chapter 2. The fundamental equipment for creating a 3D model of a scene is
a light source, which can be either ambient light or light emitted from a projector, and
camera(s) which capture images from the scene, as shown in Fig. 1.1. However, capturing
2D images will not be of much help without knowing the relative position between the
views. This leads to the key principle in 3D reconstruction, which is the establishment
of pixel correspondences. Pixel correspondences relate different pixels of an image to the
corresponding pixels in another image. Finally, after pixel correspondences between the
camera image(s) and projector view(s) are established, they are triangulated to find their
location in 3D space.

This thesis aims to improve the speed and robustness of a recent method [27] used
in single-shot structured light (SSSL) systems to create a faster 3D reconstruction of a
scene, maintaining the relative accuracy of the final reconstruction. In this SSSL system
a hand-designed structured pattern is projected on an object. As the name suggests, only
one image is captured by a camera. The captured image is then processed to extract the
necessary information including point correspondences from it and reconstruct a 3D point
cloud from the object. One of the effective factors is the accuracy and acquisition speed of
pixel correspondences. The accuracy of the pixel correspondences affects the accuracy of
the final point cloud. On the other hand, acquiring pixel correspondences in real-time will
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Figure 1.1: Schematics of a camera projector system

enable the process to be used in different conditions and applications.

1.1 Motivation and Overview

The equipment provided for this project is one camera and one projector. The projector
is used to project a structured light pattern on an object in front of it, and an image is
captured by the camera.

Pixel correspondences, or the correspondence problem in general, help associate dif-
ferent parts of an image to corresponding parts in another image. In a structured light
pattern, such as in Fig. 1.2, the pattern is designed with a certain structure such as colored
blobs or vertical and horizontal stripes that contains a variety of features that can be used
as correspondences between the camera and projector views. For instance, the features in
Fig. 1.2 (a) are the centroid of the colored blobs as the position of the correspondences.
Their color is a factor that associates the blob in the camera image with the correct one
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Figure 1.2: An example of a structured light pattern. Notice the structure of the patterns,
color blobs separated by black grid in (a) and the number and width of the stripes in (b)

in the projector pattern. Fig. 1.2 (b) is a multi-shot pattern meaning that several pat-
terns with specific properties are projected on an object, sequentially, and in the end each
pixel will have a unique ID that associates with a pixel with the same ID in the projector
pattern.

Detecting features and establishing pixel correspondences are essential parts of 3D re-
construction [22, |. Furthermore, establishing an accurate set of pixel correspondences
can result in an accurate 3D reconstruction. However, establishing an accurate set of
correspondences can be time-consuming. Some of the applications that involve moving
objects, such as reconstructing the surrounding environment of a moving car, the recon-
struction should be carried out quickly. Hence, designing a method that can detect and
find pixel correspondences quickly will ultimately help the whole reconstruction process
significantly. Different approaches have been developed to acquire accurate correspon-
dences [94, 17, , ]. However, there are some limitations to these approaches. For
instance, the multi-shot approaches in [94, 17] projected sequential patterns onto an ob-
ject to get a dense and accurate set of pixel correspondences. However, they projected
multiple patterns onto the object which requires the object to be still at all times. The
advantage of single-shot approaches in [159, 138] over the ones in [94, 17], is utilizing one
image for pattern projection which enables the object to move. The single-shot approaches
in [159, | used colored speckle and colored dot patterns which are susceptible to noise,
and using color can be troublesome on colorful objects. Hence, designing a method that
can detect pixel correspondences quickly and accurately and be robust to factors such as



object motions and color is an important subject of study. In this thesis, we have proposed
a detection method to tackle the computation speed of the previous method in [27], which
we use as baseline to compare our results. The baseline method aimed to obtain the opti-
mal four corners of a quadrilateral bounding box that can best fit each tag. This is a time
consuming process that we have aimed to improve in this thesis.

1.2 Research Contributions

We have different goals when we use 3D reconstruction and depending on what goal is in
mind, different techniques are used throughout the process of reconstruction including the
process of establishing pixel correspondences. For instance, the density of the point cloud
might be of interest or the computational complexity of the acquired point cloud could be
of importance. The types of features, susceptibility of a detection technique to noise and
distortion, aspect ratio between projector and camera views, etc. are amongst the factors

that determine the computational complexity of the process or the density and accuracy
of the final 3D model.

The purpose of this thesis is to reconstruct a 3D model of an object relatively fast
with less concern for the density of the final point cloud. Hence, the establishment of
pixel correspondences needs to be done in real-time, where there is a short amount of
time to capture the image and reconstruct the model, in addition to being distributed
over the whole shape so that enough depth information can be recovered. We propose
a technique for single-shot structured light (SSSL) where the projected pattern consists
of black squares, which we call tags, containing hand-designed symbols separated by grid
lines. This pattern has multiple features that allow us to use them for different purposes.
The grid lines and the tags are good for detecting the correspondences while the symbols
can help associating the right pixel in the camera image to its corresponding pixel in the
projector pattern. This binary pattern does not have any colored pixel which can be
useful when projecting on a colorful object. This pattern is also used in [26] and [27].
The correspondence technique used in [27] tries to find four points per each tag using a
time-consuming optimization process that is carried on each tag individually.

To tackle the speed complexity, the proposed method finds only one point per grid
intersection. This reduces the number of correspondences roughly by four times. However,
the proposed method finds multiple intersections in one patch simultaneously using the
Radon transform, which improves the time complexity by approximately 50 times. To
facilitate the process of detection, the image is binarized using the adaptive thresholding
method introduced in Section 3.1. The purpose of thresholding the image is to help ease

4



the detection process. In this manner, the thresholding method is improved accordingly
and is tested to show the efficiency of the method. However, thresholding is not the main
contribution of the thesis. The grid intersection detection method is the problem that
this thesis tries to address. The method is designed and tested under different synthetic
situations with various distortions added to the image to test the performance of the
method. Additionally, the performance of the method is tested on real objects to prove
the applicability of the method in practical situations.

1.3 Thesis Outline

This thesis consists of six chapters. Chapter 2 will provide the necessary background
material for the methods introduced in Chapter 4 and 5. The problems are formulated in
Chapter 3. Finally, the work is concluded and future directions are discussed in Chapter
6.



Chapter 2

Background

This chapter reviews the background material needed for understanding the contents of
future chapters. In this chapter we will introduce the concept of 3D reconstruction and
different approaches that are used to do 3D reconstruction in Section 2.1. Further back-
ground is provided on camera calibration systems and different thresholding methods in
Section 2.1.1. The main background concepts to understand the binarization and the fea-
ture detection method proposed in this thesis are reviewed at the end of this chapter in
Sections 2.2 and 2.3.

2.1 3D Reconstruction

The 3D reconstruction of objects has been widely studied for years [99, 12, 60, , 60, ,

|. Different approaches and methods have been developed to extract rich and accurate
depth information from a 3D scene. Generally, 3D reconstruction can be divided into two
major categories, as shown in Fig. 2.1, of active [108, 10, , 18] and passive [22, 60, 155]
methods. Each of these fields was developed to extract information from a scene under
different circumstances.

Passive methods [22, 60, 155] are developed to work only with the ambient lighting,.
Stereo vision is one of the most important and frequently used methods in this category. In
stereo vision systems, cameras capture images from at least two different views. Different
algorithms have been designed to find corresponding points between views in such systems,
such as sum of absolute intensity difference (SAD) [78, 38|, squared intensity difference
(SD) [107, 39] and normalized cross correlation [39, |. Every algorithm makes use
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Figure 2.1: Ilustration of different 3D reconstruction methods

of a matching cost function to calculate the level of similarity between different views to
establish correspondences between two pixels. Passive reconstruction methods are generally
fast. However, the performance of these methods is highly dependant on the richness and
clarity of surface texture.

Active methods [108, 10, ], on the other hand, actively interact with the scene.
Each active method illuminates the scene and uses a technique to recover the depth from
it. One of the techniques is time of flight (TOF) [10, 58] during which a light source
illuminates a scene and a sensor collects the scattered light from the scene and calculates
the depth based on the time difference from when the light leaves the device until the light
reaches the sensor, as shown in Fig. 2.1. This technique does not require triangulation
since the depth information is readily available and there is no need for corresponding
pixels, hence, it is suitable for mobile applications. However, this method lacks sufficient
accuracy in cases of short-range emission since the speed of light is high.

Structured light [108, 32] is another subcategory of active reconstruction methods which
is used to recover depth information from a 3D scene. Structured light techniques are sim-
ilar to stereo vision, where one of the cameras is replaced by a projector. The projector
in these systems plays the role of the light source, illuminating the scene with a particular
structured light which encodes information that will be used to establish corresponding
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Figure 2.2: Illustration of different structured light techniques. Thumbprint images copied
from [32].

pixels between camera images. Structured light comes in different models with different
properties suitable for various scenarios [32]. Sequential projections or multi-shot struc-
tured light and single-shot structured light are the two major categories that structured
lights can be divided into.

Multi-shot structured light (MSSL) [136, 19, (6], as shown in Fig. 2.2, can be divided
into three major categories: binary patterns and Gray coding [113, 19, 66], gray level pat-
terns [10, 32, 17] and phase shifts [150, 68, 91]. Binary patterns are made up of a sequence
of different black and white striped patterns projected sequentially onto the surface over
time. Each pattern projected on the surface is captured by a camera. After projection, each
camera pixel has a binary code assigned to it which is then used to find the corresponding
pixel in the projector view with the same binary code. N patterns can code 2% stripes,
which can be a high number of images compared to a technique like gray-level patterns.
Gray level patterns are used to reduce the number of patterns needed to encode the image
frame compared to binary patterns. Let us say each gray level pattern can consist of M
different levels of intensity. N patterns can encode M¥ stripes which compared to binary



code is a lesser number of patterns for an object depending on M. Phase shift patterns
are another MSSL techniques during which every pixel along a line can be represented by
a specific phase. Any deformation on a surface will cause the phase of the points to differ,
which is recorded as a phase deviation. These deviations provide us with information about
the depth of the surface.

MSSL techniques create a dense set of correspondences from a scene which in turn
helps to create an accurate 3D point cloud of the scene. However, the scene needs to be
completely still during the projection time, which makes these techniques unsuitable for
moving objects or in cases where fast image acquisition is needed.

To solve this problem, single-shot structured light (SSSL) [79, , , 48, | is
introduced. SSSL can be divided into three major categories of continuous varying
patterns, stripe indexing patterns, and grid indexing patterns.

Continuous varying patterns [32] consist of main color channels with fixed wave-
lengths mixed, creating a rainbow color pattern. The fixed geometry of the rainbow light
projector helps establish a one to one corresponding pixels between the projection angle
and a specific wavelength of the rainbow light. Ultimately, triangulation from the known
correspondences with a known baseline and known viewing angle will be straightforward.
Stripe indexing patterns [32] try to index each stripe in the pattern which consequently
makes it easy to track the stripes even though the order of the stripes in the projected
pattern is not the same as the one captured by the camera. This displacement happens
due to the inherent parallax caused by the angle difference between the projector and cam-
era position. Stripe indexing patterns include colored stripes [10, 28], segmented stripes
patterns [73], and grayscale patterns [21].

The idea behind grid indexing patterns [32] is to label each subwindow of the pattern
so that each subwindow would be unique and identifiable with respect to its position in
the pattern. This method can be divided into Pseudo-Random Arrays (PRA), Color-coded
grids, and Dot arrays.

Pseudo-Random Arrays (PRAs) [61, 79, 117] are constructed by folding pseudo-random
sequences [72, 71] into two dimensional arrays. These pseudo-random sequences are ob-
tained from a primitive polynomial. The pseudo-random sequence is then used to fill an
array, called a pseudo-random array. One of the constraints of pseudo-random arrays is the
uniqueness of a sliding subwindow, of a certain size, in the array. By searching through the
pattern and leveraging the uniqueness of subwindows in the pattern, we can locate the cor-
responding subwindow in the projected pattern resulting in corresponding pixels between
the views. Color coded grids [90, 87] benefit from coloring the horizontal and vertical lines
of the generated grid lines. The uniqueness of the encoded subwindows in the pattern is
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Figure 2.3: Sample tags and blocks in a block address encoding produced structured light
pattern. The BAE pattern, (b), is generated using the hand designed symbols of (a). Each
distinct block, B(i,j), in the pattern is unique.

not guaranteed. Additionally, color encoding sequences for vertical and horizontal lines are
not mandatory to differ depending on the application. Using dots and squares along with
color-coded grid lines will help produce more reliable results.

All of the encoding schemes mentioned above can also be combined to broaden the
applications of structured light. Combining structured light to create a sort of hybrid
structure light pattern may help in some applications and produce more accurate results
[32]. Figure 2.2 illustrates different types of structured light reviewed earlier along with
examples of how each structured light appears.

A new approach introduced in [20] creates a grid structured binary pattern, similar
to PRA, which will be used in this thesis. The methods introduced in Chapters 4 and 5
are employed and tested using this encoding scheme. Block Address Encoding (BAE) [20]
generates a binary pattern consisting of unique non-overlapping blocks, where each block
consists of K distinguishable tags. Each tag is identified by an integer : = 0, 1,2, ..., K — 1.
Every distinct block has a tag inside it, one of which is a unique marker tag that is located
in the center of each block and is used as the origin. The paired indices of each block, (i, j),
denote the location of a block, B(i,j), as shown in Fig. 2.3. Similar to PRA, uniqueness
is important in this encoding scheme. However, uniqueness in BAE patterns is defined
block-wise, meaning every distinct block is unique in the projected pattern, as opposed
to PRA, where a sliding subwindow has to be unique. Assigning addresses to distinct
blocks enables the algorithm to avoid searching through the whole pattern and directly
corresponds blocks in both views using their addresses. After assigning the center marker
tag, k*, the remaining 72 — 1 tag locations and K — 1 symbols encode the rest of the block,
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Tags surrounding k* in (2.1) are associated with specific error detection and correction
digits. The purpose of error detection and correction digits is to detect any misclassified or
unclassified tag caused by bad illumination or blurriness in the camera image. The block
indices are converted to base K — 1 and [k, k{] and [k, kj] from (2.1) encode the digits of
the converted indices.

2.1.1 Calibration and Triangulation

One of the crucial steps in 3D reconstruction is camera calibration. Recent camera cali-
bration studies have been done in the computer vision community [137, , , 155]. In
order for camera calibration to be done, first the relative pose of the views needs to be
defined. This is carried out by finding corresponding pixels between the views. Since the
system used in this project utilizes structured light to calibrate the system, at least one
projector must be present in the system. However, establishing pixel correspondences gives
us the ability to project the camera image to the projector image and treat the projector as
a camera. Hence, the camera-projector calibration becomes camera calibration, which is a
well-studied field [134, , , , 80, 66, 18]. Henceforth, we refer to camera-projector
calibration as camera calibration since we will treat the projector as a camera view after
establishing pixel correspondences.

Pixel correspondences are the main tool to define the geometric transformation from
one view to another. The structured light system calibration uses this tool to infer the
transformation from the world to the camera and projector coordinate systems, as shown in
Fig. 2.4. The camera is usually described as a pinhole model [158], which mathematically
describes the transformation from the world coordinate system [X*, Y% Z* 1]T to the 2D
projected image in camera image plane coordinate system [z¢ 3¢, 1]7. The relationship
between the 3D point and its 2D image projected point is

s-[x¢ 95, 1) = ARt [ XY, Y, 2% 1]F (2.2)

with matrix A representing the intrinsic parameters of the camera

Je 7V P
A=10 fy Dy (2-3)
0O 0 1
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Figure 2.4: A general stereoscopic system showing the relationship between two optical
sensor coordinate systems, O; and Oy with focal lengths, f; and f,. Two points, x; and
X9, represent the 2D locations corresponding to the 3D point, X. The corresponding lines,
[; and [y, intersect in 3D space at X. Inferring the projection from X in 3D space to x;
and x5 in 2D image plane is the calibration process.

The intrinsic parameters in (2.3), matrix Asyg, represent the inherent properties of a
camera or a projector such as their focal length, f, and f,, measured in pixels, in the
and y direction, the principle points (p,, p,) and the skewness v between the x and y axes.
Without loss of generality, we can assume that the model plane is on Z = 0, hence, Z,, = 0.
This will result in

s-[x¢ 9,17 = A[R|][ X, Y™, 0,1]" (2.4)

which means that there exists a homography between the model plane and its image plane
coordinate systems,

s- 2%y 1) = HIX", Y",0,1]7 with H = [R|t] (2.5)

Using the homography in (2.5), one can find the transformation from the 3D lens coordi-

12



nate system to the 2D image coordinate system of the camera up to a scale. [R|t] denotes
the rotation, R3«3 and translation, t34; matrices from which the world coordinate system
is related to the camera coordinate system. Using the extrinsic parameters, the transfor-
mation from the 3D world coordinate system to the 3D camera lens coordinate system is
achievable. Additionally, the formula in (2.2) can be written as

s- ¢y 1" = PIXY, Y, Z2v 1" (2.6)

where Ps.4 denotes the transformation matrix from the 3D world coordinate system to the
2D image coordinate system, up to a scale, which is called the camera matrix [12]. It should
be noted that the coordinate systems are all represented in homogeneous coordinates in
(2.6), the additional 1 for the last element of coordinates is added so that the extrinsic
parameters can be represented in a single matrix [5]. The camera matrix, P, is in principle
a homography which maps the 3D world coordinates, X®, to the 2D image coordinates,
z°, similar to that in (2.5). Camera calibration will then boil down to minimizing a cost
function, as in (2.7), over the intrinsic and extrinsic parameters or, in other words, the
homography from the world to the camera image plane.

Having N correspondences between at least two views, x; <> 2, as shown in Fig. 2.4,
the goal is to minimize the distance between the correspondences and their projection from
the 3D model,

M N
argmin Y > ||lzi; — 2(A, Ry £, X;)|” (2.7)

ARE o =

where M denotes the number of views and N denotes the total number of correspondences
in the j;, view.

As mentioned in Section 2.1, MSSL techniques establish a dense set of correspondences
which in turn creates a richer distribution of samples to pick from and calibrate the system.
However, the inability of MSSL techniques to perform on moving scenes leads to using SSSL
techniques that do not result in a dense set of correspondences, hence there are not as
many samples to calibrate the system, which magnifies the importance of correspondence
accuracy.

The camera calibration process is followed by triangulation which is trivial in principle
[11]. Each point in a plane corresponds to a line in space, as illustrated in Fig. 2.4, thus
corresponding pixels in two views, x; <> xo have corresponding lines in space, l; <> [lo.
Considering that the views are angled towards the 3D shape in front of them, [; and [,
would intersect at a point in 3D space, X, that lies on the 3D shape. In order to find
the corresponding lines, camera matrices P and P’ are needed which are computed by the
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calibration process described in (2.7) where P is divided into intrinsic, A; and extrinsic, R;
and t;, components in the equation. Similar to camera calibration, triangulation has to deal
with the misplacement in the correspondences, hence the corresponding lines [y <+ I do not
necessarily intersect in the 3D world coordinate system. However, part of the misplacement
may be already taken care of since during calibration one can also formulate a constraint
for correspondences, which is another optimization trying to minimize the distance between
the established correspondences in each view, x), and zi,, and the correct ones, z1; and

To;, as they did in [66].
N

min Y |z — ,|” + |wa — 7, (2.8)
i=1
Minimizing (2.8) we will obtain the closest estimate of the true correspondences, which
can be used to estimate the fundamental matrix by:

Numerous triangulation techniques have been proposed over the years [13, 11, 12, 93, 45
] that used different techniques in order to optimize the estimated location of the points
in 3D space.

2.2 Image Binarization

Image binarization is the simplest segmentation method [I 18] that has been used for var-
ious applications such as target detection [9, |, printed character extraction [54, 1],
quality inspection of materials [119, 117], cell images [91], segmentation of various image
modalities for nondestructive testing [35, 52|, and many other applications. In principle,
every thresholding method, regardless of performing locally or globally, assigns a threshold
to each pixel in the image to binarize the pixel values. One of the major categories of
thresholding methods is Global thresholding [$5, 63, 15] where a single threshold value,
T, is assigned to compare every single pixel in the whole image, I, to and binarize the pixel

accordingly:
1, if [T >T
Iey) =4 (#.9) 2 (2.10)
0, if I(z,y)<T

The other major category is Local thresholding [112, 11, | where different areas of
the image are treated differently in terms of assigning a threshold value, meaning that if
there are variations in intensity over the whole image, we cannot assign a single value as
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a threshold. Therefore, a value should be assigned to a certain area according to the pixel
intensity distribution of that area.

'(z.y) = {1, it I(x,y) > T(z,y)

! (2.11)
0, if I(z,y) <T(z,y)

Global Thresholding

Image thresholding is often used to preprocess an image for subsequent operations, depend-
ing on the application. Global thresholding methods use different techniques to assign one
value as a threshold to every image pixel. These techniques can be classified into different
categories such as:

Clustering-based thresholding methods [(4, | cluster gray level pixels into two sets
corresponding to two lobes of the histogram. There is a disadvantage of these methods
since the intensity distribution may not be two lobes. Some of these methods simply pick
the midpoint of the peaks of each cluster.

T = (p1+p2)/2 (2.12)

where p; and py are the peaks of each cluster. Another group of clustering based methods
try to minimize the weighted sum of the within-class variances of the foreground and back-
ground pixels (two lobes of the histogram). One of the most common global thresholding
methods introduced by Otsu [85] falls under this subcategory, which defines three criteria
based on which an optimization is done and a threshold value is obtained. These criteria
are

AN=ogploy,  y=0i/o,  n=0p/0] (2.13)

The optimization tries to maximize any one of the criteria in (2.13) where o,,, 0% and o2
denotes the within-class variance, the between-class variance and the total variance in pixel
intensity levels, respectively [30]. Since these three criteria are dependent on one another,

ol =02 +op<=y=A+1,n=)\/(\+1) (2.14)
therefore, by maximizing one the optimum value of others is automatically achieved. It is
noted that 02 and 0% are functions of threshold level T, but o7 is independent of T. The
chosen criterion in [35] is 1 due to its simplicity with respect to the threshold value 7" since

0% is a function of the threshold value whereas o2 is not.

n(T) = op(T)/o} (2.15)
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op(T*)* = max op(T)? (2.16)

1<T<G

where G is the maximum gray level in the image. Maximizing 7, or equivalently maximiz-
ing 0% in (2.15), will result in the optimum threshold value T*. Other subcategories of
Clustering-based thresholding methods are minimum error thresholding [57, 53] and fuzzy
clustering thresholding [50, 3].

the second global thresholding technique is Entropy-based methods, which try to
maximize the entropy between the foreground and background resulting in maximum in-
formation being preserved during thresholding [38, 153]. Histogram shape-based tech-
niques [101, 37, | find the threshold value based on the shape properties of the image
histogram. Thresholding based on attribute similarity select the threshold value
based on the quality or similarity of attributes in gray level and binarized image. These
attributes can be edge matching [110, 122], gray level moments [135, 122], and connectivity

(50, 63].

Locally Adaptive Thresholding

All of the methods discussed in Section 2.2, output a single value, T', as the threshold value
for thresholding an image, which can be useful in stabilized conditions in terms of illumi-
nation where the image has a relatively smooth distribution of pixel intensities. Binarizing
a document image in the stabilized lighting condition of a lab for text detection can be
one of the cases where global thresholding performs reasonably well [ 18]. However, these
methods would not perform well under conditions of high illumination variation. In other
words, if the distribution of the pixel intensities in different areas in the image have differ-
ent foreground and background intensity distributions or the distribution histogram does
not contain two clear classes, where they have high overlap or more than two clusters are
present, these methods might not perform well. Therefore, to handle these shortcomings,
local thresholding methods are used.

Local thresholding methods, assign a threshold value, T'(z,y) to each pixel, (z,y) in
the image based on local statistical properties of their neighborhood such as variance
[84, 112, 14] and contrast [113, 8, 120].

The local thresholding method in [34] uses the mean, m(z,y), and standard deviation,
o(x,y), of a local region to adapt threshold values to the pixel in the region.

T(x,y) =m(x,y) + ko(z,y) (2.17)
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where £ is a bias parameter to adjust the threshold value above or below the mean, m(x,y).
Another local thresholding method that uses local variance is introduced in [112] where
the effect of standard deviation is adjusted based on the dynamic range, R in the image.

T(z,y) = m(z,y) (1 - k:(l - w» (2.18)

The similarity between (2.18) and (2.17) suggests that the method in [112] is an improved
version of [¢1] specifically designed for stained and badly illuminated images [!18]. Differ-
ent experiments suggest different values for k (including our own where & = —0.1) were
satisfactory in (2.18). In [133] the value of k = 0.2 is chosen and in [120] a range of

k = [0.2,0.5] has achieved optimum results. As suggested the value of k is highly case
dependent. In (2.18) k can have positive values, where the threshold is set below the mean
or negative values meaning the threshold is set above the mean. Although the value of k in
(2.17) is still case dependent, the effect of negative and positive values of k is the opposite
way around than (2.18). This means that parameter, k needs to be fine-tuned by the user
to result in an optimum thresholded image. In Chapter 4 we introduce a new adaptive
method where this value is obtained automatically. These local thresholding methods fall
under Local variance methods.

Another subcategory of the local thresholding methods is Local contrast methods.
Bernsen’s method [3] is one of the most used methods under this subcategory. It is a
local thresholding method that compares the contrast of each pixel with its neighboring
pixels in a window. A threshold value is set at the midrange of the minimum, 7,,;,(x,y)
and maximum, /,,..(z,y) intensities in the neighborhood.

T(m,y) _ Imm(fﬂ,y) _; Imax(xv y) (2‘19)

However, if the difference in contrast is lower than a certain value, v then the whole
neighborhood, N(z,y) is considered to be consisting of only one class of pixels depending
on T'(z,y).

[max(x7y) - [mm(x>y) <7

1, if T > Vinar 2.20
N(Ly):{, if T(z,y)> = (2.20)

0, if T(x,y) < Yme

where V,,,,, is the maximum intensity value in the image. Locally adaptive thresholding
methods have the advantage of doing statistical operations in local neighborhoods thus
they are more robust to noise and intensity variations than global thresholding methods.
However, since the operations are being done locally the distribution of the pixel intensities
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plays a crucial role in the quality of their performance. Hence, choosing the right window
size can affect the performance of the method.

The reviewed locally adaptive thresholding methods in this section need to be fine
tuned by the user. For instance, the bias parameter, k, in both Niblack [31] and Sauvola-
Pietikdinen [l 12] needs to be fine-tuned by the user before applying to image. For this
purpose, we have proposed our method in Chapter 4 to automatically pick the optimum
values for the method in each local region.

2.3 Low Level Image Feature Detection

The transformation between the views in a camera calibration system boils down to map-
ping certain pixels, which are also called key points, in one view to the corresponding pixels
in the other view. To find the corresponding pixels, corresponding features need to be de-
tected. In the field of computer vision, a feature is defined as a piece of information that
indicates a certain region in an image with certain properties. In the context of an image,
low-level features can be described as pixels, edges, lines/curves [67]. SIFT [3, 506, ],
SURF [7, 23, |, and ORB [102, &1, | are more recent feature detectors and consist
of two parts; one is a key point detector, which detects the location of the pixel and the
second is a feature descriptor, which describes the surrounding neighborhood of the pixel.
Traditional feature detectors only detect and locate the key points in an image and they
don’t have a descriptor. These detectors include the Harris corner detector [11, 21] and
Shi-Tomasi detector [123, 12]. In this chapter we only review the key point detection
part of the feature detectors since the descriptor used in our project is defined based on
classifying tags and is done differently from the algorithms in SIFT, SURF and ORB.

One of the most common feature detectors in computer vision is the SIFT detector
[0, , Db, |, the scale-invariant feature transform, that tries to convert an image, I, to
a set of key points, (z,y), and describe each key point with a descriptor vector. For a given
image, I, the key point, (z,y) is achieved by blurring the image with a Gaussian filter with
different scale factors, o, and computing the difference of intensity between them to locate
the points that stand out, which are the points along the edges in the image. These points
are the points of interest:

L(z,y,0%) = G(z,y, o?) x I(z,y)

D(,y,0%) = L(x,y, ko®) — L(z,y,0%) = (G(z,y, ko?) — G(x,y,0%)) * I(z, y) (2.21)

where G(z,vy,0%) is the Gaussian filter, with a certain variance, o2, which is convolved
with the image I(x,y), and L(x,y,0?) is the scale space associated with the image. The
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difference of scale spaces, D(z,y,0?), highlights the points of interest in the image. The
same operation is done on different scales of the image as well to account for variation
in distance between the camera and an object. These operations direct the focus on the
changes in the pixel intensities and away from their absolute value, which makes this
algorithm robust to different illuminations and scales.

Older feature detectors that have been used in many studies to compare against newer
feature detectors [1 14, 75, 76, 129] are the Harris [11] and Shi-Tomasi [123] corner detectors.

The Harris and Shi-Tomasi feature detectors have similar basic principles to detect key
points in the image. Both methods leverage the gradients in a local region of an image
to detect the intensity changes in the region. The difference between these methods is
the way they determine a point in an image to be a key point. As mentioned before, the
principle is to detect intensity changes in a local region in an image. These changes can
be described as

flay) = Y (I(wv) = I(u+d,v+5,)) (2.22)

(uv)EN(z,y)

where f(x,y) is the intensity change in the surrounding neighborhood of the key point
location, (z,y) and ¢, and §, are the shifts in horizontal and vertical directions. The
squared difference between the image, I(u,v) and its shifted version, I(u + d,,v + &),
yields the information about the gradients of the image, I in the local region. Using a
Taylor expansion, we can approximate the shifts in both direction as

I(u+ 64,0 +6,) = I(u,v) + [y Jy] B“] (2.23)

where [J,J,] is the Jacobin matrix, which contains the first-order partial derivatives of the
image, I, in both directions. Substituting (2.23) into (2.22) results in

fay) = > ([ 1] m)? (2.24)

(u,0)ENg y

Now the intensity changes, f(z,y) are (2.24) is only dependent on the neighboring pixels,
N(z,y). Since the shifts, ¢, and d,, are not dependent on (x,y) the summation can be
moved into the Jacobian matrix:

oo B (B K e

.
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where M is the structure matrix containing the gradient information of the region sur-
rounding the key point, (z,y). Matrix M essentially contains all the information about
the gradients in the local region in both directions. In other words, the partial derivatives
in M can give us the necessary information about the magnitude of gradients and their
directions in a local patch to detect and locate a corner.

The Harris corner detector uses a criterion, R to determine whether a point should be
counted as a key point. It uses the determinant and trace of matrix M, which are related
to its eigenvalues.

R = det(m) — k(trace(M))? = My — k(A + \2)? (2.26)

where k is a weighting factor. Essentially, if (x,y) is a corner then the intensity change or
gradient in both direction has a large value hence the eigenvalues of M would be large for
both directions and J, and .J, will be large, whereas if (x,y) is on an edge or a flat region
these value would not both be large.

flat region if A=A =0

(z,y) = { edge it M >X or M<K (2.27)
corner if AMx=A>0
Shi-Tomasi [123] uses the same parameters to calculate the criterion. However, it finds

the minimum eigenvalue, which we denote here as \A,,;,, of the structure matrix, M, and
defines the property of a point based on one value. Based on the value of \,,;,, a pixel
would be defined as a corner if minimum eigenvalue \,,;, is bigger than a threshold T'.

These feature detectors leverage image gradients or difference of Gaussians in order to
find the candidate corner detectors.

The recent feature detectors such as SIFT [33], SURF [7] and ORB [102] have powerful
properties that makes them suitable for feature detection. However, the BAE pattern that
we have used in this project has defined structure which makes it easier to detect features.
Additionally, the keypoint detector in those feature detectors detect keypoints based on
the intensity changes in a local region, which will in turn detect feature points along the
edges of the tags and the edges of the symbols. This introduces many unwanted outliers,
which are difficult to remove. Therefore, we propose a method that can detect the feature
points according to the defined structure of the BAE pattern and is fast enough to process
an image in real-time The biggest and brightest feature in the BAE patterns is the grid.
Therefore, detecting the grid and trying to find features in it makes more sense. Since grid
lines are essentially horizontal and vertical lines separating the tags, fitting lines to the grid

20



seems a logical approach which is studied in this thesis. One of the common algorithms in
line detection is the Hough transform, which was introduced by Paul VC. Hough [17] in
1962.

2.3.1 Hough Transform

The Hough transform has been used in different applications such as object detection
[125, 132], medical imaging [25, 157], robot navigation [51, 34].

The simplest utilization of the Hough transform is for line detection, where a line is
defined in polar coordinates as

p=xsinf + ycosf (2.28)

where z,y are the pixel coordinates, and p is the distance between the origin and the
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Figure 2.5: Illustration of a sample patch, B, with grid lines separating the tags and the
corresponding look-up table obtained from the Hough transform, H(n,,mg). Notice the
intersection of the curves that are bright, which we call maxima. Shown in cyan are the
desired maxima in H(n,, mg), which correspond to the lines in B.. The longest horizontal
and vertical lines are shown in cyan in B..
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line, and —90° < 0 < 90° is the angle between the perpendicular vector and the positive
direction of the z axis.

Let H be a Hough transform matrix consisting of rows and columns corresponding to
p and 6 values, respectively. Let N, and My denote the number of different p and 6 values,
respectively. Let n, =1,2,..., N, and my = 1,2, ..., My be the indices of different p and 0,
respectively. Now, for a given pixel, one can compute the value of p, n,, at every possible
angle 6, ng, and the corresponding element at the accumulator matrix, H(n,, mg), can be
incremented by one as:

H(n,,mg) = H(n,,mg) + 1 (2.29)

Obtaining the look-up table, H(n,,my) simply contains the information about the sum-
mation over pixel intensities along every line. A maximum in this look-up table would be
a line in the image along the pixels with the highest intensity values, as shown in Fig. 2.5.
Thus the challenging process of global line detection is converted to a simple peak detection
process.

2.3.2 Radon transform

The Radon transform [96] can be considered as a branch of the Hough transform in our grid
detection application. The Radon transform is tool that is used for medical MR images,
as well as other disciplines, including radar, geophysical and medical imaging [!] and some
structured light applications [20, 74]. The basic principle of the Radon transform is to
consider a ray going through an object as a line which is defined based on two parameters,
p and 0, The Radon transform calculates the accumulated energy of this ray going through
the object. In our case, the ray going through an object would be a line in an image patch
and the absorbed energy is translated to summing up the pixel intensities along the line.
Given an arbitrary line L with slope s and intercept t, the Radon transform is defined by:

3

Radon(y = tan(f)z + ¢, B), 0 € [
Radon(z = cot(f)y +¢,B), 6¢€ [

.
N

J (2.30)

Y

R(O,1) = {

o
oK

Y

N

Two look-up tables are constructed in (2.30), which separately captures the horizontal
and vertical lines with the defined range of the angle, #. The constructed look-up tables
similar to that created in the Hough transform are constructed, which simply contain the
information about the summation over pixel intensities of every line in each direction. A
maximum in each look-up table corresponds to a line in the image along which lies the
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pixels with the highest intensities. In Chapter 5, we use these look-up tables achieved from
the Radon transform to find the peaks which give us the equation of the desired lines in
the image. Therefore, the challenging process of global curve detection is converted to a
simple peak detection process.

2.4 Conclusion

In this chapter we reviewed the basic concepts of 3D reconstruction and camera calibration.
Additionally, we reviewed different techniques of global and local thresholding in Section
2.2, which need user interference and fine tuning parameters. Due to this disadvantage, we
propose a new method in Chapter 4 that does not need any of the parameters to be fine
tuned. In Section 2.3, we reviewed some of the recent non-network object detectors such
as Harris corner detectors and SIFT feature detectors. Although these feature detectors
are used commonly in various projects, they are hard to restrict to find specific structures
such as the grid intersections in the BAE pattern. Therefore, we have used the Radon
transform in our detector to address this challenge.
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Chapter 3

Problem Formulation

As mentioned in Chapter 1, one of the main principles to reconstruct the 3D model of a
scene is establishing pixel correspondences between projector-camera views. The purpose
of pixel correspondences is to define the relationship between the light source, projector,
and camera.

In this thesis, the Block Address Encoding (BAE) pattern defined in Section 2.1 is
used, which is basically a set of symbols that are separated by horizontal and vertical lines.
This pattern has multiple features that allow us to use them for different purposes. The
grid lines and the tags are good for detecting the feature points while the symbols can help
associating the feature point in the camera image to its corresponding pixel in the projector
pattern after the feature points have been detected. This binary pattern does not have
any colored pixel which can be useful when projecting on a colorful object. Ultimately,
different features can be detected for establishing pixel correspondences between the views,

Table 3.1: Formulation notations
(z,y) & (1,7) pixel coordinates
T

threshold value
camera image
binarized camera image
grid line map
projector image
angle of a line
distance between a line and center of an image

N in’\‘\r’:\'
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Projector Pattern Camera image

Figure 3.1: Illustration of a projected pattern, I, using the BAE method [26] and corre-
sponding camera output image, /..

such as the top left corner of each tag, four corners of the tags, and the intersection of the
grid lines. The proposed detection method detects grid intersections which are then used
to generate pixel correspondences.

In this chapter, we formulate the methods including a preprocessing binarization method
and grid intersection detection method.

3.1 Thresholding

As mentioned at the beginning of this chapter, the goal of this thesis is to detect grid inter-
sections of the camera image(s), which would eventually be used as pixel correspondences
in inferring 3D structure. The rationale behind binarization is that the projected pattern
is a binary image projected on a scene from which camera images are taken, which are gray
level images as shown in Fig. 3.1. In order to reduce the effect of the noise in the gray-scale
image, normalizing the pixel intensities to some degree and also, have the camera image
and the projector image in the same class would enable us to compare them and assess
the performance. Thus, binarizing the image would enable us to cast these images into the
same class. By utilizing a good thresholding method the end image should have the tags
completely separated with the symbols being completely contained in the boundaries of
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Figure 3.2: Example showing the preprocessing done on the input image, /.. Symbol
removal is carried out using connected component analysis and the grid line map, M, is
constructed. The tags on the background in M, are removed using a mask created during
the process of connected component analysis.

the tag, I in Fig. 3.2. The reason for that is for the connected component analysis to be
able to distinguish symbols and tags from the grid and remove the symbols from the tags
which result in an image containing only the black squares separated by the grid, M., as

shown in Fig. 3.2.

Thresholding the camera-captured image can be done in a global or local manner, as
discussed in Section 2.2. Binarizing an image globally is definitely advantageous in some
aspects, such as low computational complexity. However, these methods do not always
perform the way that is desired under different circumstances. For instance, these methods
would not perform well when there is high illumination variation in the image, meaning
that some areas of the image have low pixel intensity differentiation between foreground
and background, as opposed to other areas which have high differentiation, as shown in
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Figure 3.3: Global thresholding performance with three different thresholds along with
three zoomed-in areas for better illustration.

Fig. 3.3. In Fig. 3.3, a sample camera image is thresholded with three different thresholds,

, )1 it I3, 5) > T
[_{0, it I(i,j)<T (3.1)

In the first row of Fig. 3.3, labeled as low threshold, the threshold is set in a lower part
of the dynamic range of the image. The second row chooses the threshold level based on
Otsu’s automatic global thresholding method [25], reviewed in Section 2.2. The third row
indicates the result of setting a threshold in the higher part of the dynamic range.

In all three cases in Fig. 3.3, it can be observed that the thresholded image does not
have the quality that we are looking for. The best performance out of these three cases is
Otsu’s thresholding method, but the image is poorly binarized in some areas. In the other
two cases, which show a higher and lower threshold value, the quality of the binarized
image is worse.
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The other approach to thresholding is local thresholding, reviewed in Section 2.2, which
assigns a threshold value to each pixel depending on a local property of the image:

o1 TG ) > TG )
IC(Z’])_{O, it I(i7) < TG ) (3.2)

where T'(i,j) is computed based on some local property of the neighborhood of I.(i, j).
The produced grid line map, M., should have several properties:

1. All of the symbols are removed from the binarized image.
2. Grid lines are preserved.

3. The shape of the tags is retained.

Constructing a grid line map, M. is specifically implemented to improve the performance
of the proposed detection method as explained in Chapter 5. In order to have a better
detection performance, the image is cleared from every feature except the grid lines.

A locally adaptive thresholding method accounts for varying intensity differentiation
in different areas of a camera image I.. Additionally, a good quality binarized image will
result in a good quality grid line map as shown in Fig. 3.2. However, since the thresholding
method is implemented as a preprocessing step in the pipeline it is important that the
method be completely automatic. In other words, the method should not need any input
from the user and should only rely on the information extracted from the image itself and
its local properties. A new locally adaptive thresholding method is proposed in Chapter 4.

3.2 Grid Intersection Detection

The initial step to obtaining pixel correspondences is to have at least one camera image
from the scene to correspond to features from the projector pattern, I,,.

In SSSL systems, there is only one image captured per camera from the scene. The
pattern projected onto the scene has certain features which can be used to establish cor-
responding pixels between the views. The information from the scene lies in the acquired
image by the camera(s). Hence, the captured image(s) must undergo a detection process
to detect points to use as potential pixel correspondences.
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Figure 3.4: Ilustration of two different techniques for grid intersection detection: Tag
Corner intersection detection and Grid intersection detection. The left column shows the
grid intersections using the two Grid-Tag and grid intersection approach on the projector
pattern, I, and the right column shows the two approaches on a sample grid line map, M..

As mentioned in Section 2.1, there are several features to detect in a BAE binary
pattern, one of which is grid intersections. As shown in Fig. 3.1, the grid is the biggest
feature present in the image and the grid intersections are effective features to detect. For
the sake of argument, let us assume that a good quality binarized image has been achieved
and a final grid line map, M., is produced, as shown in Fig. 3.2.

Grid intersection detection can be looked at from multiple aspects. There are two loca-
tions that one might call grid intersection as indicated in Fig. 3.4. One is the intersection
of the horizontal and vertical edges of the tags which results in four intersections for each
tag, or in other words, corners of each tag. Two is the intersection of the intersecting grid
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lines, which is located in the center of the intersection. The former approach of finding
tag corners is not easy and this is due to the curved corners and jaggy edges of the tags,
as shown in Fig. 3.4. The jaggedness in the thresholded image is the result of binariz-
ing the gray level image. Additionally, a tag is basically a squared shape, which can be
deformed by projective transformations or discontinuities in the image and in turn, adds
more challenge to detecting the corners of the square. However, Since an intersection is a
point rather than a square, it is robust to any projective transformation. it is also robust
to discontinuities since it is a single point and it is more difficult to break a point or change
its location by discontinuity.

In a grid line map, M., such as the one in Fig. 3.2, there are many intersection locations.
This simply means that in order to find all these pixel locations at once, we would need to
optimize the distance between all of the variable pixel locations and the grid intersections.
Let us define an objective function of the input image, which is the grid line map M., as
f(Me, {x;,y:}), that describes the goodness of fit of the variable detected points, {z;,y;},
to the grid intersections in the image. In order to optimize the distance between the
detected coordinates and the correct grid intersection locations, we need to optimize over
all the parameters, {x;,y;}:

min f(M., {z:,y:}) (3-3)

i,yi
The number of parameters, {x;, y;}, in (3.3) is equal to the number of the intersections in
the image thus it will be challenging for the optimizer to optimize all these variables all
together. The search space for this optimization increases as the input image gets larger
in size.

Let’s consider the BAE pattern to find any properties in the pattern that would result
in a simpler solution. Since the BAE pattern in the projector view, I,,, consists of straight
parallel and perpendicular grid lines, as shown in Fig. 3.4, the problem can be formulated
in terms of lines instead of pixel locations and hence, can be formulated with three different
variables per direction globally over the whole image regardless of its size. Lines can be
described by three different parameters, 6, p, and § in each direction. 6 is the angle of a line
and p is its distance from the origin. The third parameter, S is the spacing between the lines
since all the lines in the projector pattern, I, are spaced equally. With these assumptions
we can formulate the objective function, f, optimized over the line parameters. These
parameters can further be described in the horizontal and vertical directions and ultimately
the objective function f from (3.3) can be redefined as a function of line parameters fitting
the grid lines and optimized over six parameters in total.

min f(Me, O0n, pr, Sh, 0u, pv, Sv) (3.4)

01,01 >Sh 0 ,0v,Sv
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Figure 3.5: Grid intersection detection by finding the parameters of the lines in a sample
patch. Lines are parameterized (a) and their intersections are obtained (b).

By switching to lines instead of point locations, the variables of our optimization have
changed from thousands of coordinates in (3.3) to only six parameters in (3.4). However,
The assumptions made based on the I, do not hold in the camera image, /., and the grid line
map, M., constructed from I.. Deformations such as surface discontinuities and curvature
changes the properties of the grid lines in I, compared to I, such as perpendicularity and
shape of the lines. Therefore, in order to be able to implement the same optimization with
the same variables, we need to localize the process. Partitioning the camera image into
smaller blocks, will localize the process and enable us to approximate the curves caused by
the surface variations of the object with lines. Comparing the image shown in Fig. 3.1 and
the sample patch in Fig. 3.5 shows the effect of localization on the surface deformations and
line detection. The localization enables the optimization defined for the projector pattern
in (3.4) to be used here as well. However, in the projector pattern the grid lines have equal
spacing between them, which allows us to find a set of lines instead of individual lines,
whereas in the camera image lines may not be equally spaced. Therefore, each line in both
directions is represented by its own parameters.

min f(Me, 0, o), 0], p)) (35)

92 7p7;‘L 79% 7p{1

The horizontal and vertical lines in (3.5) are optimized on their angles, 6; and 6;, and their
distance from the origin, p; and p;, respectively. By optimizing f in (3.5), the optimum
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parameters and therefore the equation of each line is obtained and, finally, the problem boils
down to a mathematical process of finding the intersections of the lines. The computational
complexity is increased compared to (3.4) since each line should be detected individually
with two parameters in (3.5) whereas two sets of lines are detected with three parameters
using (3.4), but there are far fewer variables compared to (3.3). The method is explained
in detail in Chapter 5.
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Chapter 4

Locally Adaptive Thresholding

Image thresholding usually serves as a preprocessing operation to prepare an image for
future steps in a process. The reconstruction scheme used in this thesis is no different. As
shown in Fig. 4.1, the proposed scheme starts with binarizing a given camera image, . to
preprocess it for future operations. To this end, we propose a locally adaptive thresholding
method in this chapter, which we have formulated in Section 3.1. According to Fig. 4.1,
the input image is first binarized and used to create a grid line map, which is the input of
the following detection process.

In Sauvola and Pietikdinen’s (SP) method [112], as reviewed in Section 2.2, given an
input camera image I., this method uses the local mean m(z,y) and the local standard

@ap
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3D Reconstruction

Figure 4.1: Block diagram of the proposed single-shot 3D reconstruction scheme. The first
block highlighted in this process uses the proposed locally adaptive thresholding method
explained in this chapter.
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Figure 4.2: Block diagram of the local thresholding method introduced in [I12]

deviation o(x,y) computed around the (z,y)th pixel location to set a threshold value,

Hnyes T(z,y) =m(z,y) (1 —k (1 a U(x’y))> )
) ’ R |

where R is the dynamic range of the image pixels and k is the bias parameter. The
threshold value, T'(x,y), is then used to binarize the input image, I.(z,y).

, )L, it L(w,y) > T(x,y)
L(z,y) = {0’ £ L(2.y) < T(r.y) (4.2)

An illustration of SP’s thresholding method on a sample image patch is shown in Fig. 4.2.
Unlike SP’s method that requires fine-tuning for the parameter k in (4.1) for every image,
our proposed method aims to obtain automatically an optimal k£ to adaptively threshold
each image pixel within a local region. Fig. 4.3 shows the overall architecture of the
proposed method. Different areas of the image have different pixel intensity distributions,
thus assigning threshold values adaptively to each area is of importance. This will be
carried out in a block-wise process during which adaptive threshold values are assigned to
each pixel in a block. In the proposed method, an integral image [! 1] of the input image,
I. is obtained. Essentially, an integral image is a tool that can be used to compute the
sum of multiple overlapping blocks with only a single pass through the image. To compute
an integral image, terms to the left and above the pixel (z,y) are stored at each location,
I.(z,y).

Ic('T?y) = 10(33, y) + Ic(x - 17 y) + Ic('ra Y- 1) - Ic('T o 17y - 1) (43>

The camera image is partitioned into a number of distinct blocks to enable the method to
analyse the pixel intensity distribution locally. Therefore, the effect of lighting conditions
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Figure 4.3: Block diagram of our proposed method, where the K map is produced, from
which, T, is computed. The smoothed & map consists of the value of the bias parameter k
for each pixel in the image. The K map is constructed by smoothing the K map, denoted
by K in the figure, with an average filter.

are minimized. A criterion in each block is needed that not only thresholds the darkest
and brightest pixels correctly, but also binarizes the mid-range gray pixels as accurately
as possible. Additionally, this criterion needs to be robust to imbalance pixel intensity
distributions and the noise added by lighting conditions or the camera. Since the structure
of the pattern is known, we can have a large enough window, which we call blocks, to look
through the image to include a mixed number of black and white pixels in every block and
avoid any blocks with only one class of pixel intensities. In the gray-scale camera image,
in addition to white and black pixels, mid-range gray pixels, which can be caused by noise
or interpolation on the edges of the tags and symbols, exist. Therefore, in some blocks
of the gray-scale image the distribution can be imbalanced, meaning that the majority of
the block might be black or white, and in these cases criteria such as mean and median
would fail to set a good threshold. Percentiles on the other hand, would have a reasonable
estimation, if set correctly, of the very bright and dark pixel distributions. Again, based
on the structure of the pattern we know that in every block we have at least 10% very
dark and very bright pixels hence, taking the 904,,pggtr and 104,,p1g:n percentiles would be
a good categorization of these groups of pixels. The threshold set at the average of the
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904, and 10y, percentiles would ensure the correct binarization of the very dark and very
bright pixels:
T'(u,v) = w (4.4)

however, (4.4) only gives us a basic threshold with regards to these pixels, but the mid-
range gray pixels need to be thresholded as accurately as possible as well. Therefore, the
threshold value needs to be updated. Initially, based on the difference between I'(u, v) and
the average intensity value of the block, M (u,v), the algorithm assigns a specific k to each
block as follows:

['(u,v) — M(u,v)

R

where R is the image dynamic range. Updating the primary threshold is then carried
out by the bias parameter k, which we automatically compute using (4.5). k(u,v) is the
parameter that will be used to update the threshold value with regards to the majority of
white and black pixels, above or below M (u,v).

After defining k for each block, a K map that defines the k value per block is created
as shown in Fig. 4.3. In order to avoid blocking artifacts, a smooth version of the K map
is constructed, which we denote by K , using an average (mean) filter. The average filter
replaces each pixel intensity of the K map, which in this case are the values of k, by the
average values of an arbitrary neighborhood of the pixel, which smooths the sharp edges of
the K map shown in Fig. 4.3. Finally, the smoothed K map, i.e., K , which has the values
of k corresponding to each pixel in the image, is then used to create the threshold map, 7"

k(u,v) = (4.5)

7o) = mie) (1 KGep) (1- 752 (46)

where m(z,y) and o(z,y) are the local average and local standard deviation of each pixel,
and K (x,y) is the bias parameter by which we decide how far below or above m(x,y)
we need the threshold to be set. The usual values for the parameter k& suggested by
[112 | would not necessarily be the optimum value for the SSSL application and are
case dependent, as we will show in Section 4.1.2, whereas our method can compute K (x,y)
automatically, which eliminates the need to get parameter k from the user.

Finally, the thresholded image, I’, is achieved by applying the acquired threshold map,

bl c)

T, on the camera image, I.., using (4.2).
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Figure 4.4: Block diagram of the evaluation process for assessing the proposed method,
where I, is binarized using the proposed thresholding method, or any other thresholding
method, and the ground truth correspondences, ¢4, are used to map the binarized image,
I7, to the projector view. The values of valid corresponding pixels, G, in I, are compared
to the projector pattern, I,,.

4.1 Experimental Results

For the experimental setup, we have used a Flea 3 camera with a resolution of 2448x2048
and a Christie Digital projector with a resolution of 1920x1200. We tested the proposed
method using SSSL patterns projected on three different 3D-printed objects, named Wolf
Head, Zigzag [00] and Building Facade [60].

4.1.1 Evaluation Methodology

Fig. 4.4 shows a diagram for our proposed evaluation methodology for assessing the perfor-
mance accuracy of the proposed method. To evaluate the local thresholding techniques, we
first generate dense pixel-correspondences between the camera and projector images, ¢y,
using the multi-shot gray code structured light patterns in [66]. Our assessment strategy
is to map a thresholded pixel in a given thresholded camera image to the projector space
leveraging the dense correspondences, ¢4, and then to compare the intensity value of the
mapped pixel to the corresponding pixel in the original binary projector pattern, I,, as
its ground-truth. The original SSSL binary pattern, I, that is projected on the surface is
considered as the ground-truth image due to it not being affected by the surface geometry
deformation. Having a dense set of correspondences will help us to have a rich set of pixels
to compare with the ground truth.
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To apply this strategy, given an input SSSL camera image, I., we obtain the binarized
image, I, by applying our proposed method, or any other thresholding method in com-
parison. Based on the acquired multi-shot pixel-correspondences between the camera and
projector images, ¢4, we map the binarized camera image, I}, into the projector space,
I7,,. Next, for every pixel location, (z,y), in I| we find the corresponding pixel, (2',) in
the projector pattern, I, and collect the neighboring pixels, X, ,, in a neighborhood of size

UReSNUE

Nyy = {IP(Z7J> | |2 =i < 5 ly' —j| < 5} (4.7)

When all the neighboring pixels, 8,/ ,/, have the same value as I,(2',y'), then we assume
the corresponding pixels (x,y) <> (2/,) is a valid correspondence to be used to compare
against the ground-truth. This process can be expressed as follows:

L, if L2, y) =Ny,

. (4.8)
0, otherwise

G(z,y) = {
where G(x,y) is the valid pixel-correspondences that can be used to assess the performance
of a thresholding method. It should be noted that since G contains the corresponding
pixels, G(z,y) and G(2,y") are both in G thus their notation can be used interchangeably.

Having the valid set of corresponding pixels, GG, helps us to compare the mapped camera
image, 1/,(2',y') against the ground-truth, I,(2,y'). Therefore, we can assess whether a

Surface Method & k

SP [112] | 0.15% | 0.2

Wolf Head SP [112] | 0.30% | 0.0

Proposed | 0.17% | —

SP [112] | 3.50% | 0.2

Zigzag SP [112] | 2.60% | 0.1

Proposed | 2.60% | —

SP [112] | 8.30% | 0.2

Building Facade | SP [112] | 3.10% | 0.0

Proposed | 3.80% | —
Table 4.1: Error rate, &, for the proposed method and the method in [112]. Two values for
k are shown for SP’s method [112], where one is the optimum value, shown in bold, and

a non optimal value. The optimum k value is automatically assigned to each pixel in the
proposed method.
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given pixel has been binarized correctly or not. Let the sets of True, Right, and False,

Wrong, pixel-correspondences be defined as
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Figure 4.5: Sample qualitative results for SP’s method vs our proposed method on three
different surfaces, where a marker with red color denotes incorrect thresholded pixels. Note
that SP’s method requires adjusting k£ to 0.2, 0.1 and 0.0 for the Wolf Head, ZigZag and
Building Facade, respectively, in order to generate the best results.
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where Z and # are the sets of correctly and incorrectly thresholded pixels, respectively.
Obtaining the correct and incorrect set of thresholded pixels from (4.9) we can compute
the error rate of the thresholding method. The error rate (£) can be expressed as

7]
= x 100% (4.11)
2| + V]
where | - | indicates the cardinality of the set. The metric £ counts the percentage of

incorrectly thresholded pixels from the total number of valid correspondences. In the rest
of this section, we utilize the proposed evaluation methodology to compare the thresholding
error rate of the proposed scheme with that of SP’s method [112].

4.1.2 Quantitative and Qualitative Results

Fig. 4.5 shows the different qualitative results of SP’s method [112] and the proposed
method. Both methods seem to have errors on edges and discontinuities in the image
which is expected since the significant intensity variation impacts the statistics of a patch.

—+— Wolf head
—i— Zigzag
61 Building facade | |
5 .
S
2
o
83t
Ll
2t
1 | -
S e
0 . B e T | |
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Bias parameter k

Figure 4.6: Effect of changing & = [—0.3,—0.2,...,0.3] on the error rate, &, for the SP’s
method. Note that the optimum value of k is dependent on the image.
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As shown in Fig. 4.6, SP’s method performance is dependent on the value of k. This
indicates that this method is case dependent and needs the k£ parameter to be fine tuned
by the user, whereas in the proposed method this parameter is automatically obtained for
every pixel.

Tab. 4.1 shows the error rate comparison between the proposed method and the SP
method. As shown in the table, the error rate of the proposed method is close to that of
the Sauvola and Pietikdinen’s (SP) method with optimum value for k. As can be observed,
the SP’s method error rate becomes larger than the error rate of the proposed method as
the value of k£ deviates from the optimum value.
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Chapter 5

Grid Intersection Detection

In order to establish pixel correspondences, features in one view need to be detected and
represented in a way that can be related to other views. Therefore, detecting corresponding
features will result in establishing pixel correspondences, which are used in the 3D recon-
struction scheme used in this thesis. We have formulated the feature detection problem in
Section 3.2 and now we propose a detailed solution in this chapter.

In the SSSL pattern, as explained in Section 2.1, tags are divided by parallel grid lines
which we wish to detect. Before executing the detection, the input camera image needs
to be preprocessed to prepare the image for detection. The proposed method in Chapter
4 is used to binarize I., resulting in I, and the symbols are removed using connected

sy
HEETET 1
PRORROORORY
PRDOROUEBOE
SODBO080080 I
300N 0R00R
ooo02082283 .
A i Connected | Radon Grid
Binariz?::ion ——> Component T Transform —> Intersection
| c Analysis M c I R(p,6) Detection
1
\~ Gegmet.nc < Address Decoding [+ Tag Recognition [« Tag Detection <«
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3D Reconstruction

Figure 5.1: Block diagram of the proposed single-shot 3D reconstruction scheme. The two
blocks, Radon transform and grid detection, highlighted in this process use the proposed
grid detection method explained in this chapter.
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Figure 5.2: Illustration of the detection method on a sample patch. Sample patch (a)
undergoes the Radon transform and the two constructed Radon maps in horizontal and
vertical direction are searched to find their peaks, marked red (b), which are used as initial
estimates of line parameters. The lines are then fitted based on the optimized parameters
computed from the initial estimates (c).

component analysis (CCA) [121, 29] to create a grid line map, M., as shown in Fig. 4.1.

The details of CCA are outside the scope of this thesis, so we give only a brief description
here. CCA is an algorithm in graph theory which determines how a subset of components
should be labeled based on a certain heuristic. Based on the heuristic, pixels that are
connected to each other will be considered as a blob. The blobs can be used for various
applications such as detection, classification, and morphological operations.

Using the result of CCA, we can remove the blobs labeled as symbols and end up
with black squares, which represent the tags, as illustrated in Fig. 5.1. In order to make
our model adapt to surface variations, or in other words, to overcome the effects of the
curvature and discontinuities on the grid lines; as explained in Section 3.1, the binarized
image I is divided into overlapping blocks.

Now the Radon transform is employed on each block resulting in a radon map, R, such
as in Fig. 5.2, which is then explored to find the peaks. The peaks are the initial estimates
for the parameters 6, p and the number of the peaks represent the number of lines in each
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direction, N} and N,. Arbitrary ranges for the angle of horizontal and vertical lines are
defined based on the skewness of the lines and deformation of the surfaces.

(PhOn) = Rlpn,0n) 60° < 6, <120°,

5.1
(P2, 0°) = R(py, 0,) —30°<6,<30° (5:1)

We then formulate the problem as a model based search to find simultaneously the optimum
parameters for the set of horizontal and vertical lines that maximize the average pixel
intensities in each set using the following formula:

Np—1 ; . Ny—1 . .
R(ph, 0h) R(pi, 03)

— — 5.2

L, 3 SR 5 R 52)

where 0,, p,, 05, pr are the vertical and horizontal line angles and distances, respectively.
The constructed Radon maps enable us to limit the search space since the initial estimates
for the variables obtained from the Radon maps, 0,, p,, 05, and pp, are reasonably good
estimation of the correct peaks, as observed in Fig. 5.2. Therefore, the search space is
limited to an arbitrary value for each parameter, p; and 67, below and above the initial
estimates to cover the neighboring area of the peak in the Radon map.

Oh — 6 <6, <6, +0,
00 — 0, <0 <6 +0,
ph =< P < P+ o,
Py — < py < 0+ o,

5.1 Experimental Results

In order to evaluate the detection performance of the proposed method, we captured a
dataset by using two shapes, namely, a smoothly curved shape and piece-wise planar shape,
we will refer to them as Curved and Zigzag, respectively. The Curved shape is chosen
to represent smooth surfaces with occasional folds, whereas the Zigzag shape contains
sharper discontinuities in planar surfaces. The dataset includes projector patterns with
two different tag sizes, three different lighting conditions, and three different views with 18
different cases in total for each shape. To have a more complete evaluation another test
is done on the projector pattern, I,, which is the ideal image. This experiment is done to
see the effect of different levels of synthetic noise and distortions solely on the detection
performance without the effects of the camera and projector.
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Figure 5.3: Block diagram of the evaluation methodology for the proposed grid intersection
detection method. After acquiring intersections, X!, nearest multi-shot correspondences,
X are found. These correspondences are used to find the corresponding pixels in the

projector domain, X g) and the weighted average of the mapped coordinates will ultimately

result in the closest correspondence, X ép, to the ground truth, X;, in the projector domain.

5.1.1 Evaluation Methodology

We leverage the multi-shot structured light, as shown in Fig. 5.3, to estimate the position
of the detected points in the projector view and find the distance between the estimated
positions and the corresponding grid intersections in the projector pattern, I,. For this
purpose, let the ordered pairs of the i detected corner in the camera image, I., be X!,
where ¢ = 1,2,... Ny and N, is the number of detected intersections. Also let the ordered
pairs of the j nearest multi-shot correspondence to a given X! in the camera image be
X & X 2, where j = 1,2,... N, and N, is the maximum number of neighboring corre-
spondences defined by us. The distance between the i intersection and its j** neighboring
correspondence in the camera space is calculated as

d? = ||X} — X2 (5.4)
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As shown in Fig. 5.3, the estimated location, Xép, is the weighted average of the N,

multi-shot correspondences of the detected point, X i in the projector domain, Xgp:

Ne
i i i
ch—g wv - X
Jj=1

L
di

S d
j=1 di

The error, e;, between the estimated location, Xép, and the nearest ground truth intersec-
tion, X, is obtained:

(5.5)

w" =

ei = X5 — X |12 (5.6)

Now based on e;, we can classify each corresponding coordinate, X! <> Xép, as either
True positive, T'P, if e; is less than a threshold, e, or False positive, F'P, if e; is greater
than . The constant ¢ has an empirical value related to the thickness of the grid lines,
dgriq, determined by the projector pattern, I, € = \/ﬁdgm-d. From the T'P and F'P values,

Precision and Recall can be computed for a given intersection detection method.
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Figure 5.4: Example qualitative results for the proposed grid intersection detection method
on the Curve and Zigzag shapes.

5.1.2 Qualitative Results

The proposed method is evaluated on real objects to show the effects caused by ambient
lighting, and camera projector distortions as well as synthetic circumstances to measure
the impact of various noise parameters on its performance. Fig. 5.4 demonstrates sample
visual results when the proposed method is used to detect the grid intersections in the
camera captured images, where the Curve and Zigzag shapes are used. As can be seen
in this figure, the proposed method can detect the intersections on curved, smooth, and
piecewise smooth surfaces, while it suffers from border areas of the shapes where sudden
surface variations happen.

To show the effectiveness of the proposed scheme we utilize the pixel correspondences
generated by the proposed method for 3D reconstruction, and then compare the results to
the 3D CAD model as the ground-truth. The reconstructed point clouds achieved by the
method in [27] is also compared to the 3D CAD model of the shapes. Fig. 5.5 shows the
3D point clouds for the proposed method and the method in [27] on the Curve and Zigzag
shapes. It can be seen from this figure that the proposed method offers sparser point
clouds than the method in [26], which is due to the fact that our method only detects one
pixel correspondence for every grid intersection (shared by up to four tags) instead of four
corners obtained per tag as in [27]. The proposed scheme is able to follow the geometry of
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Curve

CAD Model Baseline Proposed

Figure 5.5: Comparison between the reconstructed point cloud from the method in [27]
and the proposed method.

the surface.

5.1.3 Quantitative Results

In order to test the performance of the proposed method under different levels of synthetic
noise, binary projector patterns of uint8, with white = 255 and black = 0 with two different
tag sizes, 10 x 10 and 20 x 20, are used. Gaussian blur with standard deviation of (o =1
pixels) is applied and Zero mean Gaussian white noise (SNR = 31.7db) is added to the
image along with Random rotation. The image, I(x,y), is then distorted with different
level of skewness, 0 < SH < 0.6, by shearing the image:

) 1 SH 0] ¢
{}: 0 1 0 H (57)
Ynew o o 1|
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(b)

Figure 5.6: Illustration of the impact of skewness on a sample test image and the resulting
grid line map. Test images are randomly rotated and different skewness levels, lowest,
SH = 0, (a) and highest, SH = 1, (b) with a fixed stretch factor, SF = 0.3 is applied
to them. Maximum level of skewness and stretch factor is shown in (c). Notice that the
constructed grid line map becomes cluttered and the symbols are not removed completely
from it as the image is more distorted.

and stretch factor, 0.65 < SF' < 1.35, which squishes or stretches the image.
. SF 0 0
=10 10
0 01

ynew

T

¥ (5.8)

An example of the effect of shear and stretch factor on a sample grid line map, M.,
is shown in Fig. 5.6. The neutral points in skewness and stretch factors are SH = 0 and
SF =1, meaning at SH = 0 and at SF' = 1 the image remains unchanged.

The noisy image is detected for the grid intersections using the proposed detection
method and the RMSE of the detected points are computed using the grid intersections of
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Figure 5.7: Performance accuracy of the proposed method with different levels of shear
and squish added to the image with two different tag sizes, 10 x 10 and 20 x 20. The RMSE
between the detected grid intersections and the pattern grid intersections as ground truth
are computed. The camera image is affected by noise, blur, image resizing and rotation.

the pattern as the ground truth. As shown in Fig. 5.7, as the variables move away from the
neutral points, shown in red boxes, the resulting grid line map becomes more cluttered and
the accuracy starts to decrease, specifically with stretch factor. As the image is squished
the performance suffers since the grid line map, M., becomes noisier and the symbols are
not completely removed from the tag, as shown in Fig. 5.6(b). Although squishing the
image reduces the accuracy of the method, stretching the image seems to have less impact
on the performance of the method according to the results shown in Fig. 5.7.

Shapes|Tag size in I,| Np. |Precision(%) |Recall(%)

Curve 10 x 10 3862 92.74 96.23
20 x 20  |1096 92.25 86.57

Zigzag 10 x 10 |4874 89.32 93.43
20 x 20 |1463 88.79 87.23

Table 5.1: Evaluation results of the proposed detector on the dataset consisting of Curved
and Zigzag shape, where projector pattern, I, with two different tag sizes are projected
on the objects. Ny represents the number of detected pixel correspondences, which are
related to the size of the tags in the projector pattern, I,,.
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Shapes Methods N,. | RMSE (pixels) | Run time (secs)

Curoe | Method in [27] | 4496 7.12 10.80 x10°
Proposed 1186 11.71 29.67

JigZag Method in [27] | 8064 5.77 9.82 x103
Proposed 2348 6.07 47.12

Table 5.2: Comparison between the number of pixel correspondences (NN,.), RMSE between
the 3D reconstructed shape with the CAD model of the object and detection run time of
the proposed method vs. the baseline method [27]. The run times are computed using a
personal computer hardware with Windows operating system.

The quantitative evaluation of the proposed method on real objects, Curved and ZigZag
surfaces, and 3D reconstruction results show the performance of the proposed method in
practical situations in Tab. 5.1.

As suggested in Tab. 5.2 and based on the reconstructed point clouds in Fig. 5.5,
the proposed method performs relatively well on a smooth surface, such as the Curve
shape, while the results decrease on the Zigzag shape due to higher variations and sharper
discontinuities.

The purpose of the proposed method is to improve the detection speed of the pipeline
to be employable in practical situations. The detection run time along with the 3D re-
construction root mean square error (RMSE) for the proposed method and the method in
[27] are compared, and the results are given in Tab. 5.2, where the CAD model of each
shape is used as ground truth to evaluate a reconstructed point cloud. As illustrated in
Tab. 5.2, the RMSE of the proposed method is slightly higher than the method in [27]
because some of the detected points in the proposed method are not exactly positioned
at the center of the intersection and thus the 3D points in the reconstructed point cloud
are slightly misplaced. Additionally the optimization technique in [27] fits the point to the
corner of the tags, which has less error in distance. Although the RMSE of the proposed
method is higher than the method in [27], our proposed scheme offers ~ 50 times faster
detection speed than its counterpart.
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Chapter 6

Conclusions and Future Work

In Chapter 1, we introduced the problem of establishing accurate pixel correspondences and
were motivated to develop a new method for detecting and obtaining them. In Chapter 2,
we reviewed the background material related to the concepts used in this thesis. Detailed
approaches were proposed in Chapter 4 and 5 to address the binarization and detection
challenges formulated in Chapter 3. In this chapter we summarize the contributions of this
thesis and present ideas for future studies.

Conclusions

In Chapter 4 of this thesis, we have proposed

e A locally adaptive thresholding method that

— adaptively assigns a threshold value to each pixel with regard to the statistics
of its local neighborhood;

— is suitable for our SSSL system since it automatically tunes all parameters for
selecting the optimum threshold value and does not require any input from the
user.

In Chapter 5 we proposed

e A grid intersection detection method that
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— detects grid intersections by fitting straight lines to the grid lines in an image;

— reduces the computational complexity by approximately 50 times compared to
the baseline in [27];

— constructs sparser pixel correspondences since it detects grid intersections as
opposed to the baseline method where four corners are found per intersection.

The experiments in Chapter 4 show a slight decrease in the accuracy of the proposed
thresholding method. According to Tab. 4.1, however, the proposed method does not
require any of the parameters to be tuned by the user as opposed to the baseline method
[112]. Additionally, the proposed method suffers from the same condition as the baseline
method such as sharp surface variations and discontinuities.

The experimental results in Chapter 5 shows an increase in distance error of 3 pixels on
average on the final reconstructed point clouds compared to the baseline for the two tested
objects. The accuracy of the proposed detection method, on the other hand, is expected to
decrease as the surface of an object becomes more deformed and challenging; as the local
areas include more severe discontinuities. Furthermore, since the assumption of the method
is to find grid lines and detect the intersection from those lines, more deformation will result
in curved grid lines or smaller line segments, which in turn will affect the performance of the
detection method. Additionally, the final point cloud is sparser compared to the baseline
method since only one point is detected per intersection.

Future Work

Although the proposed detection method is faster than the previous method, [27], it still
lacks the desired accuracy in the reconstructed point clouds compared to the previous
method. The resulting detected intersections are not at the center of the grid intersections
as shown in Fig. 5.4. Finding these grid intersections correctly can improve the quality
and prevents any deformation caused by misplacement of the detected points in the re-
constructed point clouds. Since our current SSSL system tries to calibrate the camera
projector system and reconstruct the 3D point cloud simultaneously, it is not possible to
map the camera image back to the projector view to correct the pixel correspondences or
find them because, the calibration parameters between the camera and the projector are
not known. Therefore, the correspondences need to be corrected in the camera domain.
Hence an idea to investigate in the future to tackle this problem is to superimpose markers
at the grid intersections to correct the location of the detected grid intersections:
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Figure 6.1: Rectangle red blob at the center of the intersection to use as a reference. Ideally,
the centroid of the blob, (Z,7), is the target point towards which the detected point, (z,y),
should move.

e These reference markers can be black or colored blobs, as shown in Fig. 6.1, located at
the center of intersections in the projector pattern, I,,, large enough to be detectable
in the camera image after projection;

e Intensity or gradients can be used to detect the blobs and move the detected inter-
section to the center of the blobs.

The pattern in Fig. 6.1 shows the new design of the pattern. However, after projection,
the camera captured image might affect the shape or intensity of the blobs.
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