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Abstract

T
his research study investigates the effect of magnification on content-based image
search in digital pathology archives and proposes to use multi-magnification im-

age representation. Image search in large archives of digital pathology slides provides
researchers and medical professionals with an opportunity to match records of current and
past patients and learn from evidently diagnosed and treated cases. When working with
microscopes, pathologists switch between different magnification levels while examining
tissue specimens to find and evaluate various morphological features. Inspired by the con-
ventional pathology workflow, this thesis investigates several magnification levels in digital
pathology and their combinations to minimize the gap between AI-enabled image search
methods and clinical settings. This thesis suggests two approaches for combining magnifi-
cation levels and compares their performance. The first approach obtains a single-vector
deep feature representation for a WSI, whereas the second approach works with a multi-
vector deep feature representation. The proposed content-based searching framework does
not rely on any pixel-level annotation and potentially applies to millions of unlabelled
(raw) WSIs. This thesis proposes using binary masks generated by U-Net as the primary
step of patch preparation to locating tissue regions in a WSI. As a part of this thesis, a
multi-magnification dataset of histopathology patches is created by applying the proposed
patch preparation method on more than 8,000 WSIs of TCGA repository.

The performance of both MMS methods is evaluated by investigating the top three
most similar WSIs to a query WSI found by the search. The search is considered success-
ful if two out of three matched cases have the same malignancy subtype as the query WSI.
Experimental search results across tumors of several anatomical sites at different magnifi-
cation levels, i.e., 20×, 10×, and 5× magnifications and their combinations, are reported
in this thesis.

The experiments verify that cell-level information at the highest magnification is es-
sential for searching for diagnostic purposes. In contrast, low-magnification information
may improve this assessment depending on the tumor type. Both proposed search meth-
ods generally performed more accurately at 20× magnification or the combination of the
20× magnification with 10×, 5×, or both. The multi-magnification searching approach
achieved up to 11% increase in F1-score for searching among some tumor types including
the urinary tract and brain tumor subtypes compared to the single-magnification image
search.
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Chapter 1

Introduction

P
athology is concerned with the microscopic study of tissue specimens and cells to
investigate the nature of diseases. The analysis of tissue specimens by pathologists

is the “gold standard” in assessing many diseases, including almost all types of cancer.
Some practical aspects of pathology include differential diagnoses, biopsy interpretation,
tumor grading, and tumor staging [40, 75]. For quite a long time, more than centuries,
conventional light microscopy has been utilized as a well-established tool in pathology.
With the progress in digital imaging techniques, the digital acquisition of pathology glass
slides has gained considerable momentum in the recent decade. Worldwide, pathology
laboratories and clinics are slowly beginning to trade in their light microscopes for digital
whole-slide scanners, computers, and monitors to proceed towards digital pathology [42,60,
89]. Fig. 1.1 shows a sample WSI which is the digital version of a conventional pathology
glass slide.

Digital pathology offers many advantages over conventional pathology, including more
efficient workflows, more affordable and more reliable storage solutions for medical records,
and a powerful venue for easier collaboration and telepathology. In addition to these ad-
vantages, digital pathology have provided an opportunity for the applications of AI and
learning-based methods since large databases of WSIs are now available [42, 86]. The im-
pressive performance of AI and deep learning methods in various tasks of digital pathology
have provided a powerful argument for proponents of modern pathology to justify the
advantages of going digital. AI-driven tools have extended the horizons of the pathol-
ogist’s view beyond a microscopic glass slide and provided new insights into pathology
data [42,66,86,89].

The rest of the introduction chapter is organized as follows. Section 1.1 elaborates
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on the motivation of this research study and thesis objectives. Section 1.2 declares thesis
contributions. In the end, Section 1.3 provides the organization of the rest of the thesis.

100,546

5
8
,
7
3
3

Figure 1.1: Illustration of a gigapixel WSI of lung adenocarcinoma with the size of
100, 546× 58, 733 pixels.

1.1 Motivations

Image search and retrieval in digital pathology can assist pathologists and medical profes-
sionals in different diagnostic, research, and educational tasks. Experts users can search
through thousands of digital tissue slides through databases, find the cases most simi-
lar to a query slide, compare current tissue samples with past patients, and recommend
well-informed diagnoses and treatments. A multi-magnification image search engine allows
pathologists to benefit from a content-based image search method that actively exploits
different magnifications for better accuracy. Previous studies [41, 42, 52, 55, 56, 64] primar-
ily defined content-based image search as a technology where the search input (query) is
a digital image, not a textual description. A simple text-based search engine may use
some keywords of a disease to find the most relevant cases. The advantage of CBIR is
obtaining valuable visual information in large digital biopsy slides. In CBIR, the output
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is determined based on the “content” of images, e.g., tissue morphology and cell nuclei
distribution.

Pathologists usually use various lenses of a microscope in their detailed inspection of
a tissue sample, switching between different magnification as needed. They usually start
with low magnifications to identify regions of interest. Then, they look for diagnostically
relevant regions to make preliminary diagnoses. Higher magnifications are often needed
to confirm or rule out those diagnoses [12, 40, 92]. The tradition of utilizing the highest
magnification power for many diagnosis tasks may be attributed to the fact that in several
tumors, a high mitotic rate and atypical mitosis indicate malignancy [61].

As a logical expectation, an AI framework should emulate what expert pathologists do.
Ultimately, the closer an AI model follows the pathologist’s routines, the more realistic
and reliable its results may become. Hence, this thesis investigated content-based search
encompassing multiple magnification levels to parallel what pathologists do. In other
words, since light microscopy in conventional pathology usually comes with interchangeable
objective lenses, this thesis aims to develop the feature of adjustable digital magnification
power for the proposed search engine to serve as a more powerful and more reliable AI-
driven tool.

10 

2.5    and below

20   /40

5 

Figure 1.2: Pyramidal structures of a WSI in digital pathology. The base magnification of
a WSI is usually 20× or 40×.

The multi-magnification data type of WSIs increased the motivation for this research
study. WSIs are multi-resolution images. They usually consist of three to five different
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magnification levels since a typical light microscope conventionally has around four ob-
jective lenses. However, the number of slide levels can vary depending on the scanning
protocol, and device [86]. Fig. 1.2 displays the pyramidal data structure of a sample WSI.
As it can be seen, the resolution of slide levels, i.e., the number of pixels representing a
specimen, increases with the magnification level.

Even though distinct magnification levels are essential for various assessments, and
despite the availability of several magnification levels, current methods in computational
pathology mainly evaluate digital slides at a single magnification level, most often at 20×.
Several morphological characteristics can be recognized at low magnifications, including
the spatial distribution of normal and abnormal tissue components, tumor growth pat-
terns, and heterogeneity. There are several examples of the low-magnification applications;
first, identifying reactive epithelial alterations from dysplasia [76], secondly, estimating the
extent of histological patterns for classification (e.g., in pure special type breast carcino-
mas [71]), and lastly, grading (e.g., in prostatic adenocarcinomas [62]). Hence, exploiting
several magnification levels is valuable for different pathology tasks.

A histopathology search tool that can perform at various magnification levels is func-
tionally valuable for several reasons. First, selecting the right magnification level for digital
slide evaluation depends on the type of histopathology assessment. For instance, microin-
vasions are detectable at the highest magnification [23], whereas distinguishing some well-
differentiated malignant tumors from benign tumors or non-tumoral lesions is challenging
at high magnifications [16,57]. Also, each magnification level contains some pieces of histo-
pathology information. At lower magnification levels, the contextual information of glands
and tissues is exploited, e.g., architectural patterns, whereas, at higher magnification, cel-
lular contents such as nuclei and cytoplasm are more distinctive.

1.2 Contributions

The main contributions of this thesis include:

i. Developing the feature of adjustable digital magnification power for an image search
framework in digital pathology with proposing two methods to combine magnification
information

ii. Investigating the effect of magnification on whole-slide image search by comparing the
performance of two MMS methods at 5×, 10×, 20× magnifications and all of their
possible combinations
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iii. Creating a multi-magnification dataset of large-sized patches at three magnification
levels by proposing and applying a patch preparation approach to a comprehensive
and public database of unannotated WSIs

These main contributions aim to provide a multi-magnification image search and re-
trieval framework for digital pathology that can represent the content of WSIs at multiple
magnifications and any combination of magnification levels. This multi-magnification im-
age search tool is empowered with various AI methods and deep learning models to find
and retrieve similar WSIs. This multi-magnification image search tool can provide new
pathology data insights and assist pathologists in their diagnostic, research, and educa-
tional tasks.

1.3 Thesis Organization

The remainder of this thesis is structured as follows. Chapter 2 first provides background
information and some core concepts used in this thesis. Next, this chapter reviews rele-
vant research papers investigating multi-magnification for histopathology analysis in var-
ious tasks in digital pathology. Additionally, previous research studies that investigated
the content-based image search in digital pathology are briefly reviewed. The proposed
method for MMS is compiled in Chapter 3. Chapter 4 explains the preparation proce-
dure for creating a multi-magnification dataset of patches for the MMS experiments. In
Chapter 5, the experiments and evaluation measures to implement the MMS framework
and quantitatively assess its performance are described. Chapter 6 first reports results and
then analyzes those results and discusses findings from the investigation on the effect of
magnification on search. Finally, conclusions and future directions are stated in Chapter 7.
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Chapter 2

Background Literature

T
his chapter covers the core concepts used in this research thesis and reviews the rel-
evant literature. At the outset, Section 2.1 provides brief background information

on digital pathology and concisely reviews the impact of magnification on histopathology,
from objective lenses on a conventional light microscope to magnification levels in a WSI.
Section 2.2 briefly reviews content-based image search with an emphasis on image search in
digital pathology. In addition, concise background information regarding image represen-
tation, search, and retrieval are provided. Section 2.3 overviews deep CNNs and presents
background information about network architectures that have been utilized in this thesis
for histopathology feature learning and tissue segmentation. In the end of this chapter,
Section 2.4 reviews the related literature.

2.1 Magnification in Histopathology

At the outset of the clinical pathology routine, a part of the malignant (or suspicious)
tissue is collected. After various stages of processing tissue specimens to chemically and
physically stabilize them, thin-cut slices of tissue are stained for better visualization, then
mounted on a glass slide. Next, the pathologist evaluates the biopsy glass slide at multiple
magnification levels [58].

Conventionally, pathologists use a microscope set at various objectives (magnification
levels) in their detailed inspection of the biopsy sample, zooming in and zooming out
as needed. [58]. Pathologists must use various magnification levels and carefully analyze
the glass slides containing tissue specimens to render pathology reports. The pathology
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reports are used for many clinical decisions, including surgery decisions for tumor resection
(removing an organ or tissue parts), and other treatment plans. Pathologists usually start
with low magnifications to identify regions of interest. Then, they look for diagnostically
relevant regions to make preliminary diagnoses. Higher magnifications are often needed to
confirm or rule out those diagnoses [12,40,92].

Fig. 2.1 shows a pathology microscope that is used for the examination of biological
tissue specimens. Objective lenses are essential parts of any light microscope. A notable
feature of any objective lens, written with the largest font, is magnification. The type of
lens design, tube length, and coverslip thickness are other features of an objective lens in
optical microscopy [69]. Traditionally, microscopes used for clinical pathology usually have
three to five objective powers.

The digitization of biopsy glass slides has recently become more prevalent in pathology
practice. Telepathology, creating an efficient digital workflow, and new analytical tools for
pathologists are the most evident benefits of moving towards digital pathology. Modern
high-resolution scanners can quickly scan an entire glass slide, convert it into a gigapixel
image, and produce a WSI in less than minutes [18]. The biopsy glass slide digitization
has several other benefits for pathology laboratories and clinics as well. First, these med-
ical centers must keep the records of their patients for at least ten years [58]. The digital
version of glass slides, WSIs, take considerably less space for storage. Moreover, WSIs are
more robust toward damaged, lost, or fading over time compared to biopsy glass slides.
As another advantage, WSIs can be explored by image viewers, but biopsy glass slides
should be put under a microscope. A typical conventional microscope has only two oc-
ulars and is not designed for multiple users (Fig. 2.1). Therefore, for applications such
as education or consulting, using a WSI is easier and more practical than a microscope.
Furthermore, despite the large size of scans (a typical WSI file is usually at least sev-
eral hundred megabytes), recent storage and network sharing progress make it possible to
share these files much faster than mailing glass samples for the purpose of consultations
and acquiring second opinions [2]. Studies have shown that there is no noticeable difference
between diagnoses rendered by pathologists using digitized images and diagnoses rendered
using a microscope [8, 58]. Another significant benefit of digital pathology is that AI and
computer vision methods can be applied on tissue scans to assist pathologists [66,68,89].

A whole-slide scanner digitizes the glass slide at several resolutions, and produces
zoomable images in a pyramid data format. Fig. 1.2 shows pyramid data structure of
a WSI. The pyramid structure of WSI allows smooth zooming to resemble a conventional
microscope. Accordingly, the digital scan of the biopsy glass slide can be explored using im-
age viewers such as a computer monitor in much the same way as standard microscopy [63].
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Figure 2.1: Motic Binocular microscope that is commonly used for examination of biological
tissue specimen in histopathology. The red arrow points at objectives of the microscope
for setting the magnification level.

2.2 Content-based Image Search

Content-based image search is a type of search where the search input (query) is a digital
image, not a textual description or any keywords. A simple text-based search engine may
use some keywords of a disease to find the most relevant cases. The advantage of CBIR
is exploiting the invaluable hidden information in the pixel values of images without de-
manding any external information. In the clinical pathology setting, there is no additional
information regarding the new biopsy sample. Therefore, keyword-based searching for find-
ing diagnosis-relevant cases is not an option because there is no diagnosis data concerning
the new patient at the outset. However, CBIR can apply to raw pathology images without
demanding any external information, and the output of the search is determined based on
the content of images. Image search and retrieval has been one of the most popular and
valuable AI-driven tools in digital pathology. An image search engine can find and retrieve
similar WSIs and their associated metadata, such as annotations and pathology reports,
based on the content similarity to the query WSI. Therefore, these search operations can
assist pathologists in finding cases similar to the current patient, and they learn from those
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already diagnosed and treated patients. CBIR methods rank the database in a decreasing
order of similarity to find the best match for the query image [20,42,43].

In general, image search and retrieval require salient, discriminative, and representative
features that are descriptive of the content of images. In image search, the similarity
between image representations, not the raw pixel values, is employed to rank the images.
In other words, each image on the database may be represented by a feature vector. Then,
the similarity between those feature vectors can be measured to find the most similar
matches. Basically, the similarity computation between feature vectors determines the
performance of an image search method. Thus, features must be robust, discriminative,
and efficient [20, 43].

Image representation by deep neural networks has become popular and commonly used
for nearly a decade. Deep neural networks are composed of multiple processing layers to
learn abstract-level representations of their input images. Before the popularity of deep
networks, various hand-crafted feature descriptors have been investigated to represent the
images. However, a clear shift from hand-crafted methods to deep CNN has been observed
after the emerge of deep learning [20,51].

2.3 Deep Convolutional Neural Networks

Deep neural networks can learn and discover high-level representations from the raw input
data. Non-linear transformations at each layer of a deep neural network are applied to
successively learn the abstract representation. In other words, after each layer of a deep
neural network, a slightly more abstract level of representation is obtained by applying
simple but non-linear transformations. As a result, very complex functions and high-level
abstract representations can be learned with the composition of enough such transforma-
tions [51].

The most popular deep network architectures in computer vision have been CNNs in
recent years. A typical CNN is composed of several convolutions, poolings, BNs, activa-
tion functions such as ReLU, and other nonlinear transformation layers. Deep CNNs are
commonly trained by using the backpropagation learning algorithm. During the training
phase of a deep CNN, the learnable parameters of its layers are changed to optimize a
loss function. In this way, a CNN learns relevant patterns in thousands (even millions) of
images.
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2.3.1 DenseNet

DenseNet was proposed by Facebook AI Research in 2017 and its architecture was a break-
through in CNNs [38]. DenseNet introduced dense connectivity between layers, intending
to maximize information flow and reduce feature redundancy in deep CNNs. Therefore, the
network could get deeper, and the content of images could be perceived more accurately
and efficiently. In total, DenseNet-121 contains around 7 million learnable parameters.

Fig. 2.2 shows a single image that is passed through the DenseNet layers to obtain an
abstract feature representation. DenseNet is composed of several (generally four) dense

blocks. In each dense block, all layers are densely connected. Accordingly, there are L(L+1)
2

direct connections in the DenseNet architecture, where L is the number of layers. Each
layer of DenseNet applies transformations such as convolution, BN, ReLU, and pooling.

Figure 2.2: A deep DenseNet with three dense blocks. Image Source: [38]

DenseNet has been used as a feature extractor in various digital pathology tasks
[34,42,43,72]. For instance, authors in [72] fine-tuned and re-trained the DenseNet-121 ar-
chitecture, initialized with ImageNet pre-trained weights [48], with histopathology patches.

2.3.2 U-Net

U-Net [74] is a convolutional neural network which firstly was proposed for the segmentation
of neural structures in electron microscopic images in 2015. Since then, this network has
shown impressive performance in several semantic segmentation tasks [15, 19,65,101].

Fig. 2.3 shows the U-Net architecture. The U-shape architecture of U-Net has two
parts, called encoder and decoder. The first sub-network, known as the encoder, is very
similar to a typical CNN and extracts high-level features to capture the image content. The
decoder sub-network, also known as the expansion part, creates the desired segmentation
map. The encoder and decoder parts are perfectly symmetric in the U-Net architecture.
Also, there are shortcut connections between encoder and decoder layers in the network
architecture of U-Net.
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As the input image passes through the first sub-network, higher-level features are ex-
tracted. In the next sub-network, deep feature maps are combined with low-level feature
maps from the encoder sub-network. The spatial resolution of feature maps are increased
in the second sub-network to achieve an output mask with the same size as the input
image. The connections between the encoder and decoder in U-Net architecture facilitate
information propagation. In terms of connections in the U-Net architecture, feature maps
from the encoder part are cropped and concatenated to feature maps in the decoder sub-
network to retrieve local information. These connections enable the network to learn from
a few samples.

Figure 2.3: U-Net architecture [74]

2.4 Related Works

This section presents an overview of the literature related to multi-magnification or content-
based image search in digital pathology. Section 2.4.1 reviews previous research studies in
digital pathology that utilized multi-magnification in their investigations or investigated
in various levels of magnification. Multi-magnification research studies showed promising
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results and achievements in terms of accuracy and performance. In contrast to most of
the multi-magnification research studies that utilized annotation provided by pathologists,
this thesis did not use any manual expert annotations for neither training the proposed
model nor testing. The last section of this chapter, Section 2.4.2, reviews previous research
studies that targeted the task of content-based image search and CBIR in digital pathology.

2.4.1 Multi-Magnification Investigations

Early studies on utilizing multiple magnification levels for digital pathology, before the
emerging of deep learning in the computer vision field, are, among others, based on wavelet
approaches [97,98]. After the emergence of deep learning, there is an evident shift towards
using learning-based approaches and CNNs for multi-magnification investigations in the
recent literature of digital pathology.

Deep-Hipo [47] is among recent multi-magnification studies that combined high and low
magnification information to locate cancerous regions. Having two receptive fields, Deep-
Hipo takes two concentric patches at high and low magnification and concatenated their
features to compute the cancer probability of the central pixel. The network architecture
of Deep-Hipo consists of two branches, and the backbone of each branch is CAT-Net [93].
CAT-Net is texture-based CNN and consists of convolutional layers, max-poolings, and
inception modules [87], followed by fully connected and softmax layers. In the Deep-Hipo
paper, the authors used a private dataset of gastroscopic tumors with 94 WSIs. Pathol-
ogists manually annotated their dataset to determine cancer regions versus non-cancer
regions, and allocated a binary label to the central pixel of each patch accordingly. Also,
pathologists manually categorized their private stomach cancer dataset into four subtype
classes, i.e., well-differentiated, moderately-differentiated, poorly-differentiated adenocarci-
noma, and poorly cohesive carcinoma. In total, they obtained approximately 160k patches
at each magnification level for training and validation. They reported comparative exper-
iments with state-of-the-art CNNs in histopathology and computer vision. Their bench-
mark CNNs included NNet [80], VGG16 [82], DenseNet [38], Efficient-Net [88], Multi-
Resolution Deep learning network (MRD-Net) [4] at 10×20× magnification, MRD-Net [4]
at 5 × 20× magnification, Google Brain’s Inception V3 (GB-INCV3) [87] , and also the
single-magnification version of Deep-Hipo, which is CAT-Net [93]. Deep-Hipo could achieve
higher accuracy results than benchmark CNNs, and outperformed in patch-based comput-
ing of the cancer probability. In terms of multi-magnification assessment, 20× and 5×
outperformed other magnification configurations, i.e., 20 × 10× and 5 × 10× magnifica-
tions. As an external assessment, the performance of Deep-Hipo is evaluated on a subset
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of the TCGA dataset consisted of Stomach Adenocarcinoma (TCGA-STAD) and Colon
Adenocarcinoma (TCGA-COAD).

Much of the recent literature on histopathology image analysis based on multiple mag-
nification levels pays particular attention to semantic segmentation tasks [28, 36, 90, 95].
HookNet is a multi-magnification model for histopathology tissue segmentation [95]. Hav-
ing collected two manually annotated datasets of breast and lung tissues, Van Rijthoven
et al. trained and evaluated their proposed HookNet model. The model architecture of
HookNet included multiple branches to combine contextual information with fine details
detectable only at the highest resolution. This network processed a pair of concentric
patches at high and low magnification levels to create a segmented map of its input WSI.
Results indicate that multi-magnification models are generally more accurate than single
magnification models.

Similarly, authors in [36] adopted a multi-magnification approach and proposed DMMNs.
DMMNs approached the semantic segmentation task in breast tissues via processing sets of
patches from 20×, 10×, and 5× magnifications. The architecture of DMMNs is composed
of various combinations of multiple encoders, decoders, and concatenation blocks. In the
decoder part, feature maps of 5× and 10× are concatenated with 20× feature maps to
recover local and contextual information. In other words, DMMNs enriched feature maps
of the high magnification level with feature maps of lower magnification levels to acquire
better spatial characteristics in the segmented image. Concerning the dataset, a patholo-
gist partially annotated 38 breast WSIs and classified regions into six tissue subtypes to
prepare a private dataset for the DMMNs study. The authors conclude that their proposed
deep multi-magnification network outperforms single-magnification counterparts.

In another relevant research paper, two multi-magnification networks were presented
to segment WSIs using a U-Net-based network architecture [28]. In this method, feature
maps of lower resolutions were combined with feature maps of higher resolutions to create
accurate binary masks. Their authors used WSIs of the CAMELYON16 dataset to train
and test their proposed networks.

Authors in [103] proposed a WSI analysis framework for histopathology image classifica-
tion and retrieval at multi-magnification levels to generate a probability map of malignancy.
A fully annotated dataset with 145 containing epithelial breast tumors was employed in
their experiment. As the preprocessing step, they utilized color deconvolution for stain
normalization. Next, a superpixel segmentation approach was adopted for segmenting
WSIs. They considered four magnifications (20×, 10×, 5×, and 2×) in the feature ex-
traction and retrieval stages to capture contextual information. To find the regions, they
applied the SIFT method. Next, they utilized a simple neural network with three fully
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connected layers and a max-pooling layer to extract features from SIFT points. Finally,
they binarized feature vectors intending to increase the efficiency of retrieval in large-scale
databases. Their experiments showed that multi-magnification could improve the perfor-
mance of histopathology classification of breast cancer images.

Many other papers in digital pathology have also hinted at combining context and
detail information and investigation on multiple magnification levels, including cervical
cell segmentation with a multi-scale CNN model [84], detecting regions of interests based
on a superpixel algorithm [9], segmentation of the glands in the colon-rectal digital slides
[25], cell classification using a CNN model with multi-scale input and multi-feature lay-
ers [104], urothelial carcinoma classification at multi-magnifications using a pre-trained
network [100], and cancer subtype classification with a multi-instance CNN [30].

2.4.2 Image Search in Digital Pathology

There is a considerable literature on content-based image search and CBIR in digital pathol-
ogy [5, 33, 34, 42, 43, 45, 59, 70, 72, 77, 85, 102, 103]. SMILY [33], allows a user to select a
region of interest to obtain matches. A pre-trained network condenses an input image into
a feature vector. The network architecture of SMILY is a deep ranking network that was
pre-trained on the 5,000,000 natural images from 18,000 distinct classes. This network
learned to extract discriminative features by computing and comparing the embeddings of
input images. To evaluate the search performance in finding patches with the same histo-
logic features, SMILY adopted a dataset manually annotated by pathologists. Top-5 scores
have been reported for patch-based searches at 40×, 20×, 10×, and 5× magnification lev-
els. In another experiment, pathologists compared the search results of SMILY to random
search results. Their database contains about 109 image patches and an embedding for
each patch. SMILY is implemented as a web-based tool, and Google used 400 computers
with 10 compute threads. Considering the rapid growth in histopathology images, this
level of computation cost for future applications is not practical, and the higher level of
efficiency is essential.

In another recent paper, [43] introduced a search engine, named Yottixel, for real-time
whole slide image retrieval in the digital pathology. Yottixel is a combination of two words,
first, “yotta“, which is the largest decimal unit prefix in the metric system, denoting 101024

and secondly “pixel“. Thus, the term “Yottixel“ alludes to the big-data nature of the
WSI search in digital pathology. The authors used an unsupervised color-based clustering
method to extract a set of images at 20× magnification from each WSI. They called the set
of patches Mosaic, where around %5 of the tissue specimen was covered. Then, the Mosaic
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was fed to pre-trained deep CNNs to extract deep features. In the next step, the feature
vectors were barcoded, i.e., binarized, to create a Bunch of Barcodes for fast indexing of
WSIs. The barcoding of gigapixel WSIs enables Yottixel to perform millions of searches
in real-time. The performance of Yottixel evaluated on a private dataset of 300 WSIs and
also a public dataset of 2020 WSIs (a portion of the TCGA archive).

KimiaNet [72] is another recent research study that proposed and reported image rep-
resentation for search in digital pathology. In their research, the DenseNet topology was
re-trained at several configurations. The training data were collected from a publicly avail-
able TCGA dataset without any pathologist annotation or manual delineation of regions
of interest. A clustering-based approach was adopted to select histopathology images at
20× magnification based on a high-cellularity metric. Then, the type of malignancy asso-
ciated with the WSI was used as the soft label of all extracted images from that WSI to
fine-tune DenseNet. Around 240,000 histopathology images with the size of 1000 × 1000
pixels from more than 7,000 WSIs were selected for training the DenseNet at four dif-
ferent stages. Accordingly, this study proposed and reported the results of four feature
extractors, i.e., re-training only the last dense block of the DenseNet-121 (fine-tuning 20
percent of network parameters) and continue to unfreeze the parameters of more dense
blocks at different stages. After training the feature extractor and in the test phase, fea-
ture vectors were converted to binary codes using the Min-Max barcoding algorithm [43]
to increase the efficiency of image search. KimiaNet was tested for image search on three
public histopathology datasets for multi-organ WSI search. KimiaNet reported two types
of image search: 1) image search across the entire dataset with the intention of finding
the WSI with a similar tumor type to the query WSI among all WSIs, 2) Image search to
find similar type of malignancy in an anatomical site, i.e., search for similar WSI with the
similar tumor subtype among all WSIs of the same tumor site in their test dataset.
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Chapter 3

Multi-Magnification Search (MMS)

T
his chapter explains the methods employed in the content-based WSI search frame-
work to compare WSIs at multiple magnifications. The framework is based on repre-

sentations provided by a deep convolutional neural network to find similar WSIs via feature
matching.

The deep feature extraction procedure is elaborated in Section 3.1. Next, Section 3.2
and Section 3.3 explain two searching methods based on those deep features. Both search-
ing methods can perform at a single magnification and also any combination of magnifi-
cations. The first MMS method, called single-vector, obtains a single multi-magnification
feature vector of a WSI without demanding any pixel-level or regional annotation. The
primary purpose of the feature vector representation for WSIs is to find the most simi-
lar WSIs to a query WSI based on the selected magnification level(s). The second MMS
method, called multi-vector, performs on a multi-feature vector basis and compares patch
feature vectors to find similar WSIs at each magnification, then takes a majority vote
among magnifications.

3.1 Deep Feature Extraction

Pre-trained deep CNNs can learn to extract content-based features from their input image.
An example is KimiaNet [72] which is a customized feature extractor for the histopathology
images. The architecture of KimiaNet includes four dense blocks, with several convolutional
and pooling layers and dense connections. KimiaNet has around seven million parameters
in total. Model parameters of KimiaNet are adjusted to derive histological characteristics
from input images.
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3.1.1 Magnification-wise Fine-Tuning of KimiaNet

KimiaNet was originally trained at 20×magnification. Therefore, this thesis employs Kimi-
aNet without any modification to extract tissue features from 20× magnification patches.
To do so, all high-resolution patches are fed to KimiaNet, one by one, to generate a deep
feature vector as a representation of each histopathology patch. Note that the term deep
feature here indicates the output of the latest pooling layer in the KimiaNet model archi-
tecture.

The last DenseNet-121 block [38], i.e., 20 percent of KimiaNet layers, were re-trained
with 10× and 5× magnification patches to adjust this feature extractor to those mag-
nifications. In this fashion, the weights of the KimiaNet have been changed according
to different magnification levels, attempting to imitate how a pathologist changes their
microscope’s objective lenses. As a result, different sets of parameters for the KimiaNet
model architecture at three magnification levels were obtained. The model architecture
and configurations of feature extractors are the same for all magnification levels. Details
of fine-tuning procedure is presented in chapter 5, Section 5.3.1, on page 37.

3.1.2 Representing Patches with KimiaNet Deep Features

After training, in the feature extraction phase, the input of KimiaNet is still a histo-
pathology patch. The output is a feature vector with a size of 1024 × 1 representing the
input patch. As mentioned before, dimension reduction is not the primary purpose of uti-
lizing pre-trained deep CNNs. Feature vectors generated by KimiaNet contain histological
characteristics and distinct features of the input patches as the network has been trained
with histopathology patches and their corresponding primary diagnostic labels.

Note that most deep learning approaches in digital pathology, including KimiaNet, are
applied on patches rather than the entire WSI due to the extremely large image size of
WSIs [72,86]. See Chapter 4 for more details related to patching. This thesis proposed two
methods for the WSI representation and search using KimiaNet patch features. Section 3.2
and Section 3.3 explain single-vector and multi-vector methods to represent an entire WSI
based on its patch features. WSI representations can be compared to find and retrieve the
most similar WSIs.

17



3.2 Single-Vector WSI Representation: Median Ag-

gregation

In the context of WSI feature representation, the goal is to obtain a single feature space
so that WSIs with similar histological features are close to each other. Up to this point,
patches, i.e., square images acquired from tissue regions of a WSI at a specific magnification
level, have been fed to KimiaNet to generate deep feature vectors. In other words, each
deep feature vector (the output of KimiaNet as the feature extractor) represents a patch,
not the entire WSI. The median aggregation approach first creates a feature space for each
magnification level. To do so, all patch feature vectors of a WSI are aggregated by taking
the median value with respect to feature positions to create a single vector representing of
the WSI at a specific magnification.

Next, the aggregated vectors of different magnifications are concatenated to create a
multi-magnification vector representation. Fig. 3.1 shows this procedure.

The Euclidean distance between median feature vectors in the dataset can be com-
puted to compare WSIs. In the single magnification searching, each WSI is represented
by a single-vector. Therefore, the pair-wise Euclidean distance can be calculated between
single-vector features to find matches. In the double-magnification searching, each WSI
is still represented by a single vector that is the concatenation of two single-magnification
vectors. Therefore, the euclidean distance is calculated between those two concatenated
vectors for double-magnification searching in a similar way. If all three magnification
levels are considered, the concatenation of all magnification generates a single-vector Tri-
magnification representation for each WSI. Again, the pair-wise Euclidean distances are
calculated accordingly for searching at multiple magnifications.

3.3 Multi-Vector WSI Representation: Median-of-Mins

One may also extract many patches and attempt to represent a WSI with all feature vectors
at the same time. The median-of-mins approach performs patch-to-patch, patch-to-slide,
and slide-to-slide comparisons [43]. The procedure is repeated for all magnification levels
in an independent manner.
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3.3.1 Binarization of Feature Vectors (Feature Barcoding)

Working with many feature vectors when operating on large WSI archives can be pro-
hibitively time-consuming. The calculation of Hamming distance between binary codes is
much faster than calculating Euclidean distance between full-precision feature vectors. In
large-scale search problems, reducing the demand for memory and computational resources
is another advantage of binary feature vectors. Hence, hashing feature vectors would be
required in case of multi-vector WSI representation.

Instead of the Min-Max barcoding algorithm as proposed before [43], this research study
uses the SNRQ, an unsupervised hashing approach, for barcoding patch feature vectors.
The NRQ method is an extended version of the iterative quantization (ITQ) method [27].
NRQ applies dimensionality reduction and utilizes non-rigid transformations along with
rigid transformations such as rotation to further reduce the quantization error caused by
hashing. Employing non-rigid transformations allow a more robust quantization since the
degree of freedom in non-rigid transformations is higher. Sequential NRQ (SNRQ) is an
efficient implementation of NRQ based on sequential updates.

3.3.2 WSI to WSI Distance Calculation

Let assume the test dataset contain np patches from ns WSIs. First, pair-wise Hamming
distances between barcoded feature vectors of all patches are calculated, generating a patch-
to-patch-distance matrix with dimension of np × np. Note that distances between patches
of the same WSI are set to infinity for convenient search purposes. In the next step, the
minimum distance from each patch to all patches of each WSI is calculated, generating the
patch-to-slide-distance matrix of dimension np × ns. Finally, pair-wise distances between
WSIs are calculated by finding the median of patch-to-slide distances, generating a slide-
to-slide-distance matrix of dimension ns × ns.

This median-of-mins matching process repeated for all magnification levels. Figure 3.2
illustrates the three independent search processes for a query WSI at 5×, 10×, and 20×
magnifications. In terms of multi-magnification search, all retrieved WSIs are considered
at selected magnification levels for later evaluation.
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Figure 3.2: Image search among urinary tract WSIs using the multi-vector method. The
search has been performed three times based on extracted patches at 5×, 10×, and 20×
magnification. The search at a single magnification is successful if at least two of the three
search results show correct primary diagnosis. The multi-magnification search (MMS) is
successful if the majority of the search results at selected magnifications indicates the same
disease type as the query WSI.
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Chapter 4

Data Preparation, Methods and
Experiments

G
igapixel WSIs, with a common image size of 100,000×100,000 pixels for large tissue
samples, are too large to be processed by typical CNNs directly. To address this

challenge, a patch-based approach is usually adopted [5,26,43,72,86]. This research study
also adopts a patching approach to overcome the computational challenges of utilizing
a deep CNN. The term “patch” here refers to a rather small sub-image of a WSI with
manageable dimensions.

In the first step of multi-magnification image search (MMS), patches with a manageable
image size should be extracted from tissue regions of a WSI at various magnification levels.
This chapter first addresses the challenge of locating the tissue specimen regions in the
gigapixel WSI for patch extraction. The task of tissue localization can be addressed by
hand-operated annotation by pathologists. In many research studies [28,36,47,93,95,103],
expert pathologists annotated regions of interest in a small private dataset, and patches
were extracted from those regions accordingly. It must be pointed out that only expert
pathologists with a high level of domain knowledge can annotate WSIs. Therefore, the
hand-operated annotation of WSIs is not a feasible task for a large-scale dataset. Even
for a small dataset, the delineation of gigapixel WSIs is tedious, time-consuming, and
subject to errors and variability. Accordingly, this thesis did not use any pathologist’s pixel
annotations or manual delineations. The following sections explain the proposed method
for creating a multi-magnification dataset of histopathology patches without demanding
any pixel-level annotation by pathologists.
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4.1 Tissue Segmentation

Although for a human operator the discrimination between tissue and background is obvi-
ous, the identification of tissue regions in WSIs could be challenging for computers mainly
due to the existence of color variations and artifacts. This thesis uses binary masks to
identify tissue regions and avoid patch extraction from blank areas or artifacts. In a bi-
nary mask, pixels belonging to tissue regions have a value of one, whereas pixels belonging
to background regions have zero value.

To overcome the challenge of background removal in histopathology images, the per-
formance of two methods for generating binary masks were evaluated. The First method,
otsu thresholding [67], is hand-crafted and is one of the best traditional methods for fore-
ground and background segmentation. The second method for generating a binary mask
is utilizing pre-trained U-Net, which can be considered as a deep learning approach.

4.1.1 Otsu Thresholding

Otsu binarization method is a well-known algorithms to classify pixels into foreground
and background. The otsu algorithm is a robust iterative thresholding method that has
been widely used to compute the optimal threshold. This hand-crafted image thresholding
method performs the best for images with only two distinct pixel values. Since the image
histogram of an image with only two distinct values would only consist of two peaks, a
decent threshold would be in the middle of those two values. In this way, the Otsu’s
algorithm determines an optimal global threshold value, and for every pixel the same
threshold value is applied to generate the corresponding binary mask.

The otsu thresholding is not cable of identification of artifacts such as marker traces
and extra stain. Identification of those non-tissue areas as tissue regions leads to patch
extraction from non-informative background, and can confuse any CNNs. Moreover, some
tissue types such as alveolar tissue types, fatty tissues, and tissues with poor staining are
more challenging to detect with the otsu thresholding method.

4.1.2 U-Net

Experiments on U-Net architecture with different network backbones have been performed
to select the best topology for the tissue segmentation task. After comparing a wide range
of backbone networks, the U-Net architecture with MobileNet [37] backbone was utilized

23



Concatenate

Input Image Output Mask

Encoder Decoder

Figure 4.1: U-Net for tissue segmentation. Each block shows a feature map.

for the tissue segmentation. U-Net with MobileNet backbone has been trained to segment
input thumbnail WSI, i.e., WSI at one of its low magnifications, into tissue and non-tissue
regions. Non-tissue regions include the blank background and artifacts such as bubbles,
tissue folds, extra stains, broken glass, debris, and marker traces.

Fig. 4.1 shows the U-Net proposed approach for generating binary masks. The input
image is a WSI at low magnification. As the input image passes through the first sub-
network, higher-level features are extracted. In the next sub-network, deep feature maps
are combined with low-level feature maps from the encoder sub-network. The spatial
resolution of feature maps are increased in the second sub-network to achieve an output
mask with the same size as the input image. The connections between the encoder and
decoder in U-Net architecture facilitate information propagation. In terms of connections in
the U-Net architecture, feature maps from the encoder part are cropped and concatenated
to feature maps in the decoder sub-network to retrieve local information.

The encoder part of the U-Net is a feature extractor, and it can be a pre-trained CNN,
e.g., MobileNet [37] and EfficientNet [88] without the last fully connected layers. The
decoder part of the U-Net with MobileNet backbone consists of 5 decoder blocks. The
structure of each decoder block is made up of one 2d-upsampling layer and two repetitions
of 2d-convolution, BN, and ReLU activation. Four skip connections connect layers from
the encoder part, usually the output of ReLU activation at a certain layer of each encoder
block, to the last four decoder blocks, after the up-sampling layer. A 2d-convolution
layer with Sigmoid activation is the last layer of the network. The Segmentation Models
library [101] with various backbones for U-Net has been used for the experiments on tissue
segmentation with U-Net.
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(a) Sample WSI 1 (b) Otsu Mask (c) U-Net Mask

(d) Sample WSI 2 (e) Otsu Mask (f) U-Net Mask

(g) Sample WSI 3 (h) Otsu Mask (i) U-Net Mask

(j) Sample WSI 4 (k) Otsu Mask (l) U-Net Mask

(m) Sample WSI 5 (n) Otsu Mask (o) U-Net Mask

Figure 4.2: Comparison between Otsu and U-Net methods for generating binary masks.
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4.2 Patch Extraction Using a Binary Mask

After generating a binary mask, the binary mask image is divided into grids. If a pixel
has the value of one in a binary mask, that pixel belongs to tissue regions. If a pixel has
zero value in a binary mask, that pixel does not belong to tissue regions. Therefore, all
the pixels in that grid area are summed up to find out whether that grid area, i.e., patch,
contains mainly tissue regions or not. Next, qualified patches, i.e., patches containing
tissue regions more than a threshold, are selected. In this procedure, the tissue percentage
threshold parameter is identical for all WSIs to make the process as automated as possible.
The procedure is repeated for different magnification levels to generate a unique dataset
of patches at each magnification.

The steps of the patch extraction procedure without demanding on any pathologist’s
annotation is outlined in algorithm 1. In the literature [43], a small percentage, usually a
range between 5 percent to 20 percent of patches of tissue regions, is randomly selected by
preserving the spatial diversity at the high magnification due to a large and unmanageable
number of patches. The empirical experiments have shown than sampling tissue regions
with a ratio around 20 percent is representative enough [43]. The parameter SamplingRate
in algorithm 1 determines this percentage. This sampling step, i.e., step 15 in Algorithm
1, It only is applied to high-magnification where there is redundancy, and the number of
patches is too large and unmanageable. Normal Distribution was used to sample various
tissue types all over the input WSI.

Fig. 4.3 show the procedure of path extraction. To make the procedure faster and
more efficient, binary masks were generated at the lowest magnification level, usually 1×
or 2.5× magnification. Next, the window size for gridding the binary mask was scaled from
the target magnification to the mask magnification to find tissue regions in that binary
mask. For example, a 1000× 1000 patch at 20× magnification (a target magnification for
patching) is equivalent to 125× 125 area at 2.5× magnification (the mask magnification).
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Algorithm 1: Patch Extraction

Input : WSI Path
Output: Set of Patches
1: mx ← (Set the Magnification Level)
2: PatchSize ← (Set the Patch Size)
3: Threshold ← (Set a Threshold for Binary Mask)
4: SamplingRate ← (Set the Sampling Ratio)
5: procedure
6: wsi ← Open WSI using OpenSlide Library
7: m0 ← Objective-Power of the Highest Magnification (20× or 40× )
8: mtarget ← ( Determine the Slide Level based on m0 and mx)
9: thumbnail ← Get Thumbnail at Lowest Magnification Level
10: mask ← Feed thumbnail to Pre-trained U-Net
11: GridSize ← Set Girding size the based on mask size, PatchSize, and mtarget

12: Grids ← Grid the Mask to GridSize
13: Loop: Calculate the Tissue Percentage for Each Grid ;
14: Mask-Coordinates ← Select Grids with Tissue Percentage above the Threshold
15: Mask-Coordinates ← Sample Mask-Coordinates (Only at high-magnification)
16: Patch-Coordinates ← Scale Mask-Coordinates to mx

17: Patches ← Read the WSI Regions at Patch-Coordinates with size of PatchSize
18: end procedure
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20×

1) Thumbnail 2) Binary Mask

3) Gridded mask 4) Patch Selection  

10×

5×

Figure 4.3: The pipeline of pre-processing, patch extraction procedure at 5×, 10×, and
20× magnification levels. A binary mask is utilized for the tissue specimen detection.
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4.3 Creating a Reusable Multi-Magnification Dataset

As a part of this research study, this thesis aims to create a multi-magnification dataset
of histopathology patches for various deep learning-based cancer research purposes rather
than a dataset only limited to this study. The gigapixel WSIs are too large to be used for
many deep learning approaches. Hence, a multi-magnification dataset of large-size patches
is created from extracting tissue regions of more than 8,600 WSIs. This multi-magnification
multi-organ datasets consist of 1000 × 1000 patches, with three sub-datasets at 5×, 10×,
and 20× magnifications.

4.3.1 WSI Repository

The Cancer Genome Atlas, in short TCGA, is an open-access and rich resource of digital
pathology data for worldwide cancer research [1]. This repository was used as the source of
the multi-magnification dataset. TCGA is one the most comprehensive publicly available
dataset of hematoxylin and eosin (H&E)-stained whole slides in digital pathology. In
the literature [18], diagnostic slides of the TCGA data repository are categorized to 13
anatomical sites and 33 human tumor types. The tumor types of the TCGA dataset are
presented in Table 4.1. Note that there is neither regional nor patch-level pathologist’s
annotation for WSIs used in this research study. However, WSIs in the TCGA dataset are
associated with pathology information such as morphology, primary diagnosis, tissue or
organ of origin, patient age at the time of diagnosis, tumor stage, medical center, gender,
race, and ethnicity. This information applies to the entire WSI.

4.3.2 Data Collection and Preprocessing

At the outset, formalin-fixed paraffin-embedded human pathology samples of the TCGA
dataset were collected for this research, i.e., only diagnostic slides were considered. Frozen
sections, generally showing somewhat lower image quality, were eliminated to maintain a
more consistent evaluation. Many of the remaining slides did not include 20× or higher
magnification levels. Therefore, this research study only included permanent section diag-
nostic slides with 20× or higher levels of magnification. Next, these slides were categorized
based on morphology codes, primary sites, and diagnosis, again omitting the groups with
lower than 20 slides due to search purposes in the test phase. This grouping allowed
having a minimum of two WSIs from each class in the test dataset. Finally, 8,611 per-
manent H&E stained digital slides were recorded from 13 anatomic sites (categorization
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based on [18]). The anatomical site of a digital slide indicates the organ or body system
biopsied. Anatomical sites of this dataset consists of Brain, Endocrine, Gastrointestinal
tract, Gynecological, Haematopoietic, Liver/Pancreaticobiliary, Melanocytic malignancies,
Prostate/Testis, Pulmonary, Urinary tract, Breast, Head and Neck, Soft Tissue, and Thy-
mus. Next, the dataset was split with a ratio of roughly 80, 10, and 10 percent with
respect to the anatomical sites into the train, test, and validation sub-datasets, respec-
tively. Therefore, each train, test, and validation dataset includes 7,126, 744, and 741
H&E WSIs, respectively.

Next, concerning each WSI, regions containing tissue specimens were segmented to
remove background region. As mentioned in Section 4.1, the term background here refers
to non-informative pixels in a WSI, including white-coloured backgrounds of a glass slide
and artifacts such as ink marker and extra stain. This thesis utilized a pre-trained U-Net
model with the MobileNet backbone to generate binary masks at the lowest magnification
level (see Section 4.1.2 for more details on U-Net for tissue segmentation). The binary
mask facilitates identifying the background and foreground of a WSI. After recognizing
tissue regions (foreground), high-, medium-, and low-resolution patches with a fixed size of
1000×1000 pixels were extracted. Fig. 4.5 shows a WSI and its extracted patches at three
magnification levels. Some samples of patches at various magnification levels are presented
in Fig. 4.6. Patches were extracted in an automated way and without any pathologist
supervision or delineation of regions of interest. Fig. 4.4 shows three sample WSIs and the
location of their extracted patches.

A total of 242,202 histopathology 20× magnification patches were selected from those
7,126 H&E digital slides and used for re-training the DenseNet to find the model parameters
for KimiaNet at 20× magnification [72]. Concerning the 10× magnification level, 190,257
patches were collected to fine-tune KimiaNet. The last DenseNet-121 block, i.e., 20 percent
of KimiaNet layers, were re-trained with those 10× magnification patches. In a similar
way, the previous Dense-block was fine-tuned again with 167,746 patches acquired at 5×
magnification. All versions of KimiaNet were trained to classify patches from 30 primary
diagnoses.

In the search phase and concerning the test dataset, 20% of tissue regions of 744 WSIs
were sampled at 20× magnification, resulting in a collection of 91,287 patches. The patch
selection with the sample ratio of 20 percent generates a manageable collection of histo-
pathology patches at 20× magnification. Other studies in the literature followed similar
sampling settings with a sample ratio of 5 to 20 percent to collect data from gigapixel
WSIs [43]. As the patching algorithm tries to distribute the location of patches over the
entire specimen areas, patches are selected from diverse tissue regions. Moreover, this sam-
pling helps to reduce data redundancy in the patch dataset since many patches, especially
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patches extracted from some tissue types such as fatty tissues, can be considered the same
piece of data. According to empirical evidence, sampling from well-distributed locations
at 20× magnification with a sample ratio of 20 percent is sufficiently representative. Since
WSI image sizes at 10× and 5×magnifications are smaller than 20×magnification, even the
sample ratio of 100% at 10× and 5× magnifications creates a manageable patch collection.
Therefore, every patch that mainly contains tissue texture (and not much background) was
extracted at 10× and 5× magnifications. The number of overall collated patches in for the
test dataset is 97,389 and 20,397 concerning the 10× and 5× magnification, respectively.

Figure 4.4: Illustration of multi-magnification patch selection in a gigapixel WSI.
Green, blue, and black bounding boxes indicate patches at 5×, 10×, and 20× magni-
fication, respectively. All patches are of size 1000× 1000 pixels.
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(a) Sample WSI (b) 20×

(c) 10× (d) 5×

Figure 4.5: Patch collections of a WSI at 5×, 10×, and 20× magnifications. All patches
at all magnification levels have the same size. 20% of tissue regions at 20× is sampled to
make a manageable collection and avoid redundancy in dataset.
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(a) 5× (b) 10× (c) 20×

Figure 4.6: Sample patches of 5×, 10×, and 20× magnification datasets.
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Table 4.1: TCGA cancer types. TCGA Codes are sorted in alphabetical order.

TCGA Code Primary Diagnosis
ACC Adrenocortical Carcinoma
BLCA Bladder Urothelial Carcinoma
BRCA Breast Invasive Carcinoma
CESC Cervical squamous cell carcinoma Endocervical adenocarcinoma
CHOL Cholangiocarcinoma
COAD Colon Adenocarcinoma
DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma
ESCA Esophageal Carcinoma
GBM Glioblastoma Multiforme
HNSC Head and Neck Squamous Cell Carcinoma
KICH Kidney Chromophobe
KIRC Kidney Renal Clear Cell Carcinoma
KIRP Kidney Renal Papillary Cell Carcinoma
LGG Brain Lower Grade Glioma
LIHC Liver Hepatocellular Carcinoma
LUAD Lung Adenocarcinoma
LUSC Lung Squamous Cell Carcinoma
MESO Mesothelioma
OV Ovarian Serous Cystadenocarcinoma
PAAD Pancreatic Adenocarcinoma
PCPG Pheochromocytoma and Paraganglioma
PRAD Prostate Adenocarcinoma
READ Rectum Adenocarcinoma
SARC Sarcoma
SKCM Skin Cutaneous Melanoma
STAD Stomach Adenocarcinoma
TGCT Testicular Germ Cell Tumors
THCA Thyroid Carcinoma
THYM Thymoma
UCEC Uterine Corpus Endometrial Carcinoma
UCS Uterine Carcinosarcoma
UVM Uveal Melanoma
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Chapter 5

Experiments on MMS

T
his chapter explains the performed experiments to implement and evaluate the pro-
posed MMS framework. Section 5.1 explains procedures of MMS performance as-

sessment. Section 5.2 describes the evaluation metrics. Section 5.3 provides experimental
setup details.

5.1 Assessment of the Search Performance

This section explains the procedures to evaluate the performance of the proposed MMS
framework. Generally, an image search method can show the results after retrieval and
leave the evaluation to the expert user. However, for the purpose of benchmarking, the
performance of the search must be somehow quantified. The input of MMS engine is a WSI
as the query image, and its output is a set of most similar whole-slide images in the test
dataset matched to that query WSI based on the selected magnification. The proposed
MMS is applied to digital slides from several anatomical sites, at three magnification levels
and their combinations.

Various techniques can be used to evaluate the quality of retrieved WSIs from different
points of view. The accuracy of content-based image search methods can be measured
if the search is treated like classification. In this regard, this thesis investigated the top-
three most similar WSIs to a query WSI found by the search. Next, the majority vote
among those three most similar WSIs to the query slide were examined to predict the
diagnosis. One may examine the top-n search results for n > 3 if larger test datasets are
available. Finally, the prediction via majority vote was compared to the actual diagnosis
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of the query WSI. In other words, this experiment considers a search successful if two out
of three matched cases have the same subtype of malignancy to the query slide. Taking
the majority vote is much more rigorous than the top-n accuracy in computer vision that
assumes correctness if at least one of the search results is correct.

The anatomical site (organ) of any digital slide is given since the organ of biopsy is
known before any assessment. As the primary site is a pivotal knowledge about a WSI,
the search space for each query WSI was limited to WSIs with the same anatomical organ.
Hence, this experiment would be interested in identifying primary diagnoses for each pri-
mary site. In other words, each query WSI was compared to all other WSIs of the same
primary site, with the intention of finding cases with the same subtype of malignancy.
Then, the top WSIs with minimum distances to that query glswsi were selected. The
term “distance” here depends on the image search method. Concerning the single-vector
approach, the distance metric is the Euclidean distances between WSI embeddings. Con-
cerning the multi-vector method, the distance metric is the median of minimum Hamming
distances between hashed feature vectors.

This search experiment requires two text labels for each WSI to evaluate the quality of
retrieved WSIs based on the diagnosis similarity. The first label is the primary anatomical
site which is the organ biopsied. The second label is the primary diagnosis which indicates
the type of malignancy. It must be pointed out that the proposed MMS does not rely on
any text information to find matches, and the labels have been used only for evaluation
purposes. The following explains how the accuracy of the search was estimated.

This experiment used the “leave-one-patient-out” approach, i.e., excluding one WSI,
finding similar cases to this WSI in the search space, and repeating this process for all WSIs
in the test dataset. The search is successful if two out of three matched cases have the same
subtype of malignancy to the query slide. In other words, This experiment considered all
WSIs one by one as the search query, and retrieved the three most similar WSI to the
query WSI in the test dataset. Note that among the 13 anatomical sites, the classification
(majority voting) experiments concern 9 anatomical sites with more than one subtype.

5.2 Search Evaluation Measures

Precision, Recall and F1-score are the standard evaluation metrics to assess the perfor-
mance of image search and CBIR methods [20, 43, 72]. Precision indicates the fraction
of retrieved documents that are relevant to the query, and is defined as the number of
relevant images retrieved by a search divided by the total number of images retrieved by
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that search. Recall indicates the fraction of the relevant documents that are successfully
retrieved, and is defined as the number of relevant images retrieved by a search divided by
the total number of relevant images existing in the dataset. F1-score is the harmonic mean
of the precision and recall. The formula for calculating F1-score is shown in Eq. (5.1).

F1-score =
2× Precision× Recall

Precision + Recall
(5.1)

5.3 Experimental Setups

Details of conducted experiments for implementation and evaluation of the proposed MMS
methods are provided in the following sub-sections. First, Section 5.3.1 describes the fine-
tuning setting of the deep feature extractor, i.e., KimiaNet. Next, the implementation
procedure of single-vector method and multi-vector method is overviewed in Section 5.3.2
and Section 5.3.3, respectively.

5.3.1 Fine-Tuning KimiaNet for 5× and 10× Magnifications

In two independent experiments, the last dense block of KimiaNet was re-trained with 10×
and 5× patches. The fine-tuning procedure was implemented using the Tensorflow Keras
framework. At the outset, the KimiaNet model was initialized with KimiaNet-IV pre-
trained weights [72]. The input of the network was batches of 1000× 1000 patches at 10×
or 5× magnification, with the batch size of 128, and their TCGA-codes as corresponding
labels ( Table 4.1 on page 34). One Hot encoding was applied on class labels to fine-tune
the KimiaNet as a classifier. Also, data augmentation was performed in the original image
patches by 90,180 and 270 degrees rotation. In terms of the experimental setup of training,
cross-entropy loss function and Adam optimizer [44] were utilized. Two Tesla V100 GPUs
with 32GB memory for each GPU were used for fine-tuning the KimiaNet.

After training, the network has learned to convert the input histopathology to a high-
level representation. To extract features and represent histopathology patches, we used the
last average pooling layer of the fine-tuned network. Accordingly, the size of each feature
vector is 1024.
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5.3.2 Experimental Setups for Single-vector Method

Seven Python Dictionaries were generated for experiments on single-vector method since
we have evaluated this method on a magnification-basis, i.e., at 5×,10×,20×, 5 × 10×,
5 × 20×, 10 × 20×, and 5 × 10 × 20× magnifications. In each dictionary, a key is the
name of a WSI, and its corresponding value is a single vector representation of that WSI
at that magnification(s). In the retrieval phase, the test dataset must be ranked based on
the euclidean distances (similarity) to the query WSI to retrieve the most similar matches.
Scipy library1 was used for calculating euclidean distances between WSI representations.

T-SNE Experiment

We used t-SNE [94] to visualize single-vector representations. Single-vector representations
are high-dimensional feature vectors, with a dimension of 1024, 2048, or 3096, depending
on the magnification settings. Sklearn 2 library were used to convert high-dimensional
embeddings to low-dimensional embeddings for visualization. Considering the very high
number of dimensions, we used PCA for the dimensionality reduction to 64 before applying
the t-SNE method. The parameters of t-sne, i.e., perplexity, learning rate, and the number
of iterations, were set empirically to 15, 800, and 2000, respectively.

5.3.3 Experimental Setups for Multi-Vector Method

After the deep feature extraction from KimiaNet, the first step is barcoding the feature
vectors to speed up the distance calculation between binary codes. Parameters in the
SNRQ method for barcoding were set empirically. The algorithm was run for 70 iterations,
with the control quantization power of 3.

Next, a Python class with three functions was implemented for patch-to-patch, patch-
to-WSI, and WSI-to-WSI distance calculations, respectively. Several Numpy and Scipy

built-in function were used for implementing the median-of-mins algorithm in the multi-
vector method.

In the WSI-to-WSI matrix (2D- Numpy array), row[i] shows the distance between
ith WSI to all other WSIs in the test dataset. Accordingly, in the search phase, the
most similar WSIs to the ith WSI are associated with indices of the minimum values, i.e.,
minimum distances, along the row[i].

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.cdist.html
2https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
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Chapter 6

Results and Analysis

T
his chapter reports and analyzes the search results of the MMS framework. At the
outset, Section 6.1 discusses the discriminative power of the single-vector method us-

ing the t-SNE visualization. The second section, Section 6.2, reports search performances
at different mixtures of magnification levels for several anatomical sites. Section 6.3 ana-
lyzes the search results with respect to the anatomical sites. Finally, Section 6.4 discusses
the most important findings of the MMS.

6.1 T-SNE Visualization of Single-Vector Method

Fig. 6.1 and Fig. 6.2 visualize the TM and 20× magnification representations of 744 WSIs
from 13 anatomical sites on the test dataset, respectively. WSIs with the same anatomical
site are shown by the same color in this visualization. WSIs with different tumor types of
the same anatomical are shown by same color and different markers. The presented t-SNE
is associated with the WSI representation via single-vector method. The multi-vector WSI
representation method is based on the patch-to-patch distances and does not offer any
single vector representation for a WSI. Thus, there is no t-SNE visualization associated
with the multi-vector method.
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Figure 6.1: T-SNE visualization of TriMagnification embeddings (Single-Vector method).
Each point of this t-SNE picture displays a feature vector associated with one WSI in the
test dataset. Each color is associated with one anatomical site. Tumor types of the same
anatomical are indicated by different markers, e.g., plus, x, point, and star.
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Figure 6.2: T-SNE visualization of 20×Magnification embeddings (Single-Vector method).
Each point of this t-SNE picture displays a feature vector associated with one WSI in the
test dataset. Each color is associated with one anatomical site. Tumor types of the same
anatomical are indicated by different markers, e.g., plus, x, point, and star.

The t-SNE visualizations show clear class discrimination of WSI features. It can be seen
from the data in the t-SNE visualization that tissue types and subtypes are generally well
clustered. Although the single-vector search method is not aware of the anatomical sites
(feature extractors trained with primary diagnosis labels), tumors derived from the same
anatomical site are generally formed in close clusters. The most apparent results are brain,
lung, and kidney with 2, 2, and 3 distinct sub-clusters associated with tumor subtypes
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(primary diagnoses), respectively. Concerning kidney tumour sub-types, there are three
distinct and adjacent clusters displaying each subtype in both Fig. 6.2 and Fig. 6.2. These
clusters are associated with Kidney Renal Papillary Cell Carcinoma (KIRP), Kidney Renal
Clear Cell Carcinoma (KIRC), and Kidney Chromophobe (KICH). However, the WSI
feature vectors associated with the anatomical site of the Bladder, i.e., Bladder Urothelial
Carcinoma (BLCA), has not created a single cluster, not in proximity to kidney tumors.
This may be attributed to the fact that although [18] considers KIRP, KIRC, KICH,
and BLCA subtypes of urinary tract tumors, many pathology books consider bladder and
kidney two distant tumor types [61].

A white-colour cluster of lung tumors, i.e., LUAD and LUSC, is also evident in both
Fig. 6.2 and Fig. 6.2. Two main clusters associated with gastrointestinal tract tumors (red
colour) were recognized as well. Concerning prostate/testis tumors, two disjoint clusters
(green colour) were observed in both t-SNE visualizations at 20× magnifciation and TM.
Testis tumors (THCA) are perfectly clustered with considerable margin from other tumor
types. When it comes to pancreas/liver tumors (black colour), there are two distant clusters
associated with pancreas (PAAD) and liver (LIHC). Some consider the two tumor types
for pancreas and liver since they have different pathology features [61].

6.2 Search Accuracy Report of MMS

This section reports the results of several experiments performed to evaluate the per-
formance of two MMS methods. These experimental results investigate the impact of
magnification on diagnosis-wise image search.

Detailed results obtained from the magnification analysis of proposed single-vector
searching methods among 744 test digital slides are reported in Tables 6.1 to 6.3. Search
results of the proposed multi-vector searching methods is presented in Tables 6.4 to 6.6.
The performance of both MMS methods are evaluated and reported in terms of precision,
recall, and F1-score. There are seven columns in each table, corresponding with seven ex-
periments at 5×, 10×, 20×, 5×10×, 5×20×, 10×20×, and all three magnifications (TM),
i.e., 5 × 10 × 20×. These experiments were conducted independently on nine anatomical
sites with more than one tumour subtype. Note that according to categorization proposed
by [18], 9 anatomical sites among 13 anatomical sites in the dataset have more than one
tumor subtypes. In each experiment, three most similar WSIs to a query WSI were re-
trieved. The search was evaluated as correct if the majority of retrieved WSIs have the
same type of malignancy (primary diagnosis) as the query WSI. This process was repeated
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Table 6.1: Percentage of precision search results for the Single-Vector method at three levels
of magnification and their combinations. Search considered successful if the majority of
retrieved WSIs from an anatomical site has the same tumor type as the query WSI in the
leave-one-out procedure.

Site Subtype #samples 20x 10x 5x 5x10x 5x20x 10x20x TM
Brain GBM 35 72 70 72 69 72 72 80
Brain LGG 39 96 92 85 83 96 96 100
Endocrine ACC 6 100 0 0 0 100 100 0
Endocrine PCPG 15 74 90 75 69 78 78 72
Endocrine THCA 51 98 82 88 89 96 96 96
Gastro COAD 32 61 61 60 53 61 61 56
Gastro ESCA 14 88 75 83 86 88 88 86
Gastro READ 12 38 27 18 18 38 36 31
Gastro STAD 30 77 65 71 69 79 79 81
Gynaeco CESC 17 85 65 75 71 81 85 81
Gynaeco OV 10 100 75 80 73 100 100 100
Gynaeco UCS 3 100 0 0 0 100 100 100
Liver/panc CHOL 4 43 33 25 0 43 50 50
Liver/panc LIHC 35 94 94 100 100 97 94 97
Liver/panc PAAD 12 100 59 64 69 100 100 91
Melanocytic SKCM 24 86 86 88 89 86 86 86
Melanocytic UVM 4 0 0 100 100 0 0 0
Prostate/testis PRAD 40 98 97 91 91 98 98 98
Prostate/testis TGCT 13 100 86 100 100 100 100 100
Pulmonary LUAD 38 74 62 58 52 74 74 74
Pulmonary LUSC 43 85 68 62 55 85 85 80
Pulmonary MESO 5 75 50 0 0 75 75 67
Urinary tract BLCA 34 92 83 91 88 92 92 97
Urinary tract KICH 11 100 70 83 83 100 100 90
Urinary tract KIRC 50 91 85 75 74 91 91 94
Urinary tract KIRP 28 88 79 83 72 88 88 96
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Table 6.2: Percentage of recall search results for the Single-Vector method at three magni-
fication and their combinations. Search considered successful if the majority of retrieved
WSIs from an anatomical site has the same tumor type as the query WSI in the leave-one-
out procedure.

Site Subtype #samples 20x 10x 5x 5x10x 5x20x 10x20x TM
Brain GBM 35 97 94 85 85 97 97 100
Brain LGG 39 66 63 72 66 66 66 76
Endocrine ACC 6 33 0 0 0 17 17 0
Endocrine PCPG 15 93 60 60 60 93 93 87
Endocrine THCA 51 98 100 100 100 100 100 100
Gastro COAD 32 69 72 81 72 72 72 72
Gastro ESCA 14 50 46 42 46 50 50 43
Gastro READ 12 42 33 17 17 42 42 33
Gastro STAD 30 80 57 61 60 77 73 73
Gynaeco CESC 17 100 87 86 80 100 100 100
Gynaeco OV 10 80 60 89 80 70 80 80
Gynaeco UCS 3 67 0 0 0 67 67 33
Liver/panc CHOL 4 75 25 25 0 75 75 75
Liver/panc LIHC 35 97 83 97 94 97 97 94
Liver/panc PAAD 12 67 83 70 92 75 75 83
Melanocytic SKCM 24 100 100 100 100 100 100 100
Melanocytic UVM 4 0 0 25 25 0 0 0
Prostate/testis PRAD 40 100 95 100 100 100 100 100
Prostate/testis TGCT 13 92 92 69 69 92 92 92
Pulmonary LUAD 38 82 66 54 45 82 82 76
Pulmonary LUSC 43 79 70 72 67 79 79 81
Pulmonary MESO 5 60 20 0 0 60 60 40
Urinary tract BLCA 34 97 100 88 88 97 97 100
Urinary tract KICH 11 82 64 50 45 82 82 82
Urinary tract KIRC 50 96 90 98 96 96 96 98
Urinary tract KIRP 28 79 54 54 46 79 79 89
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Table 6.3: Percentage of F1-score search results for Single-Vector method at three magni-
fication and their combinations. Search considered successful if the majority of retrieved
WSIs from an anatomical site has the same tumor type as the query WSI in the leave-one-
out procedure.

Site Subtype #samples 20x 10x 5x 5x10x 5x20x 10x20x TM
Brain GBM 35 83 80 78 76 83 83 89
Brain LGG 39 78 75 78 74 78 78 87
Endocrine ACC 6 50 0 0 0 29 29 0
Endocrine PCPG 15 82 72 67 64 85 85 79
Endocrine THCA 51 98 90 93 94 98 98 98
Gastro COAD 32 65 66 68 61 66 66 63
Gastro ESCA 14 64 57 56 60 64 64 57
Gastro READ 12 40 30 17 17 40 38 32
Gastro STAD 30 79 61 65 64 78 76 77
Gynaeco CESC 17 92 74 80 75 89 92 89
Gynaeco OV 10 89 67 84 76 82 89 89
Gynaeco UCS 3 80 0 0 0 80 80 50
Liver/panc CHOL 4 55 29 25 0 55 60 60
Liver/panc LIHC 35 96 88 99 97 97 96 96
Liver/panc PAAD 12 80 69 67 79 86 86 87
Melanocytic SKCM 24 92 92 94 94 92 92 92
Melanocytic UVM 4 0 0 40 40 0 0 0
Prostate/testis PRAD 40 99 96 95 95 99 99 99
Prostate/testis TGCT 13 96 89 82 82 96 96 96
Pulmonary LUAD 38 78 64 56 48 78 78 75
Pulmonary LUSC 43 82 69 67 60 82 82 80
Pulmonary MESO 5 67 29 0 0 67 67 50
Urinary tract BLCA 34 94 91 90 88 94 94 99
Urinary tract KICH 11 90 67 62 59 90 90 86
Urinary tract KIRC 50 93 87 85 83 93 93 96
Urinary tract KIRP 28 83 64 65 57 83 83 93
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Table 6.4: Percentage of Precision search results for the Multi-Vector method at three
magnification and their combinations. Search considered successful if the majority of re-
trieved WSIs from an anatomical site has the same tumor type as the query WSI in the
leave-one-out procedure.

Site Subtype #samples 20x 10x 5x 5x10x 5x20x 10x20x TM
Brain GBM 35 79 74 59 72 79 79 79
Brain LGG 39 88 85 66 78 88 86 86
Endocrine ACC 6 0 0 25 0 0 0 0
Endocrine PCPG 15 78 75 71 75 75 79 78
Endocrine THCA 51 94 91 92 93 93 96 94
Gastro COAD 32 71 60 67 67 71 67 66
Gastro ESCA 14 78 67 71 83 75 75 75
Gastro READ 12 33 20 44 38 50 43 43
Gastro STAD 30 69 64 54 62 69 68 66
Gynaeco CESC 17 89 75 81 78 84 84 81
Gynaeco OV 10 100 100 88 88 86 86 100
Gynaeco UCS 3 60 100 100 100 75 75 67
Liver/panc CHOL 4 20 40 17 25 17 29 25
Liver/panc LIHC 35 89 91 91 91 94 91 91
Liver/panc PAAD 12 78 69 50 67 82 80 67
Melanocytic SKCM 24 89 86 88 88 89 86 86
Melanocytic UVM 4 100 0 33 50 100 0 0
Prostate/testis PRAD 40 100 97 95 98 98 100 98
Prostate/testis TGCT 13 93 86 85 92 92 93 92
Pulmonary LUAD 38 71 76 69 76 70 77 76
Pulmonary LUSC 43 74 71 62 62 67 77 67
Pulmonary MESO 5 80 0 0 0 50 75 50
Urinary tract BLCA 34 92 92 83 92 92 97 97
Urinary tract KICH 11 91 83 57 80 91 100 100
Urinary tract KIRC 50 91 92 80 87 91 92 86
Urinary tract KIRP 28 91 91 78 91 95 96 100
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Table 6.5: Percentage of recall search results for the Multi-Vector method at three magni-
fication and their combinations. Search considered successful if the majority of retrieved
WSIs from an anatomical site has the same tumor type as the query WSI in the leave-one-
out procedure.

Site Subtype #samples 20x 10x 5x 5x10x 5x20x 10x20x TM
Brain GBM 35 89 85 59 76 89 86 86
Brain LGG 39 79 74 66 74 79 79 79
Endocrine ACC 6 0 0 17 0 0 0 0
Endocrine PCPG 15 93 80 67 80 80 100 93
Endocrine THCA 51 98 100 98 98 100 100 100
Gastro COAD 32 75 66 84 81 84 81 78
Gastro ESCA 14 50 46 42 38 43 43 43
Gastro READ 12 25 25 33 25 25 25 25
Gastro STAD 30 83 60 54 70 83 77 77
Gynaeco CESC 17 94 100 93 93 94 94 100
Gynaeco OV 10 70 60 78 70 60 60 60
Gynaeco UCS 3 100 67 67 67 100 100 67
Liver/panc CHOL 4 25 50 25 25 25 50 25
Liver/panc LIHC 35 94 86 86 91 91 89 91
Liver/panc PAAD 12 58 75 50 67 75 67 67
Melanocytic SKCM 24 100 100 91 96 100 100 100
Melanocytic UVM 4 25 0 25 25 25 0 0
Prostate/testis PRAD 40 98 95 95 98 98 98 98
Prostate/testis TGCT 13 100 92 85 92 92 100 92
Pulmonary LUAD 38 66 68 51 50 61 71 58
Pulmonary LUSC 43 79 84 82 86 79 84 86
Pulmonary MESO 5 80 0 0 0 20 60 20
Urinary tract BLCA 34 97 100 100 100 100 100 100
Urinary tract KICH 11 91 91 40 73 91 91 91
Urinary tract KIRC 50 96 94 90 94 96 96 98
Urinary tract KIRP 28 75 75 50 71 75 89 75

47



Table 6.6: Percentage of F1-score search results for the Multi-Vector search at three mag-
nification and their combinations. Search considered successful if the majority of retrieved
WSIs from an anatomical site has the same tumor type as the query WSI in the leave-one-
out procedure.

Site Subtype #samples 20x 10x 5x 5x10x 5x20x 10x20x TM
Brain GBM 35 84 79 59 74 84 82 82
Brain LGG 39 83 79 66 76 83 82 82
Endocrine ACC 6 0 0 20 0 0 0 0
Endocrine PCPG 15 85 77 69 77 77 88 85
Endocrine THCA 51 96 95 95 95 96 98 97
Gastro COAD 32 73 63 74 73 77 73 71
Gastro ESCA 14 61 55 53 53 55 55 55
Gastro READ 12 29 22 38 30 33 32 32
Gastro STAD 30 76 62 54 66 76 72 71
Gynaeco CESC 17 91 86 87 85 89 89 89
Gynaeco OV 10 82 75 82 78 71 71 75
Gynaeco UCS 3 75 80 80 80 86 86 67
Liver/panc CHOL 4 22 44 20 25 20 36 25
Liver/panc LIHC 35 92 88 88 91 93 90 91
Liver/panc PAAD 12 67 72 50 67 78 73 67
Melanocytic SKCM 24 94 92 89 92 94 92 92
Melanocytic UVM 4 40 0 29 33 40 0 0
Prostate/testis PRAD 40 99 96 95 98 98 99 98
Prostate/testis TGCT 13 96 89 85 92 92 96 92
Pulmonary LUAD 38 68 72 59 60 65 74 66
Pulmonary LUSC 43 76 77 71 72 72 80 76
Pulmonary MESO 5 80 0 0 0 29 67 29
Urinary tract BLCA 34 94 96 91 96 96 99 99
Urinary tract KICH 11 91 87 47 76 91 95 95
Urinary tract KIRC 50 93 93 85 90 93 94 92
Urinary tract KIRP 28 82 82 61 80 84 93 86

48



Br
ain

En
do

cr
ine

Ga
str

o

Gy
na

ec
o

Liv
er

/p
an

c
M

ela
no

cy
tic

Pr
os

ta
te

/te
sti

s
Pu

lm
on

ar
y

Ur
ina

ry
 tr

ac
t

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

20x
10x
5x
5x10x
10x20x
TM

Figure 6.3: Accuracy histogram of Single-Vector (Median Aggregation) with respect to
the magnification level and anatomical site. Vertical axis shows fraction of correct sub-
type classifications. For each anatomical site, the total image search accuracy at different
magnification levels is visualized.

for all WSIs in the test dataset through “leave-one-out” approach, and the accuracy of the
experiment was calculated accordingly.

Since the search is interpreted as a classification task to measure the search perfor-
mance numerically, the classification accuracy can be also calculated accordingly. Figs. 6.3
and 6.4 show how accurate the search methods are in the tumor subtype classification of
each anatomical site. Fig. 6.3 shows the overall classification accuracy achieved at each
magnification using the single-vector method. For example, this histogram shows that
classifying brain WSIs into GBM and LGG are more than 85 percent accurate using the
single-vector method at TM. Note that classification means majority voting between re-
trieved WSIs. Fig. 6.4 presents the overall classification accuracy of multi-vector method
at each magnification for searching among different anatomical sites in the test dataset.
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Figure 6.4: Accuracy histogram of Multi-Vector method (median-of-mins) with respect to
the magnification level and anatomical site. Vertical axis shows fraction of correct sub-
type classifications. For each anatomical site, the total image search accuracy at different
magnification levels is visualized.

6.3 Analysis of Results

This section analyzes the search performance. The aim here is to suggest the best search
method, and above that, to suggest the most effective magnification level (or combination
of levels) relevant to each tumor type.

Since F1-score is the harmonic mean of the precision and recall, this measure can
reflect both specificity and sensitivity of the search method. Accordingly, F1-score was
selected for the comparison of search performance in the following analysis of results. Note
that F1-score has been the most common way to evaluate the search performance in the
literature [20,42,43,72]. Accordingly, this section analyzes the search mainly based on the
F1-score results presented in Table 6.3 and Table 6.6.
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Brain

Using TM instead of 20×magnification improved the single-vector method performance, in-
creasing the F1-score for Glioblastoma Multiforme (GBM) and Low-grade Gliomas (LGG)
from 0.83 and 0.78 to 0.89 and 0.87, respectively. Results indicate that MMS using the
single-vector algorithm at TM may be the most appropriate configuration for searching
among brain tumors.

Endocrine

The class imbalance challenge in this dataset is noticeable. Adrenocortical carcinoma
(ACC), pheochromocytoma and paraganglioma (PCPG), and thyroid carcinoma (THCA)
have 6, 15, and 51 samples, respectively. This disparity in the number of subtype samples
markedly affects the search performance. There are not enough samples of ACC tumors,
causing confusion in finding two or more similar cases and resulting in zero F1-scores in
the evaluation using some magnifications/methods. Overall, results indicate that utilizing
10× magnification along with 20× magnification has been beneficial for the multi-vector
method, improving the F1-score accuracy of PCPG and THCA by three and two percent,
respectively, compared to 20× magnification. The results support using the single-vector
method at 20× magnification or at the 10× 20× magnifications.

Gastrointestinal Tract

The single-vector method at 20× magnification achieved the most accurate results con-
cerning the image search among gastrointestinal tract tumors. However, the multi-vector
method at 5 × 20× magnification surprisingly showed 12 percent F1-score improvement
compared to the previously suggested configuration for searching for colon adenocarcinoma
(COAD) cases.

Gynecological Tumors

The limited number of samples for uterine carcinosarcoma tumors (UCS) negatively af-
fected the performance of the single-vector method at 10× and 5× magnifications and
their combination. Interestingly, the multi-vector method showed satisfactory performance
across all magnifications. However, more samples are required for a more reliable assess-
ment. Overall, the single-vector method at 20× magnification is the best MMS configura-
tion for diagnosis-related searches among gynecological WSIs.
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Liver, Pancreaticobiliary

The single-vector method at TM achieved the most accurate results in overall. Interest-
ingly, single-vector method 5× achieved the F1-score of 0.99 concerning liver hepatocellular
carcinoma (LIHC).

Melanocytic Malignancies

Since there are only four samples of uveal melanoma (UVM) tumors, only three samples
were left in the leave-one-out approach. Therefore, finding two or more UVM matches
within three retrieved samples can be considered slightly unlikely. Overall, the single-vector
method at 5×, 5× 10×, and the multi-vector method at 20× and 5× 20× magnifications
achieved the most accurate results. Since the computational complexity using the single-
vector method at 5×magnification is less than other configurations, representing WSIs with
melanocytic malignancies using the single-vector method at 5× magnification is preferred.

Prostate

Image search at 20× achieved accurate results with 0.99 and 0.96 F1-score for prostate ade-
nocarcinoma (PRAD) and testicular germ cell tumors (TGCT), respectively. These results
are regardless of the searching method, i.e., both single-vector and multi-vector methods
achieved the same F1-score results. Combining lower magnification levels information with
20× magnification information using the single-vector method also achieved similar results
as for the 20× magnification.

Pulmonary

Top search results concerning lung tumors, i.e., lung adenocarcinoma (LUAD) and lung
squamous cell carcinoma (LUSC), were achieved using the single-vector method at 20×
magnification, and also the combination of 20×magnification with one lower magnification,
i.e., 10× 20× and 5× 20×. Concerning mesothelioma (MESO) diseases, the multi-vector
method showed an unanticipated improvement in the F1-score compared to the single-
vector method at 20× magnification, improving from 67 to 80 percent.
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Urinary Tract

The most apparent advantage of utilizing multi-magnification can be seen in searching
among urinary tract tumor cases. Both MMS methods achieved higher-accuracy results
for most urinary tract tumor cases at TM compared to single magnification counterparts.
For instance, 10 and 4 percent F1-accuracy improvement in the single-vector method and
the multi-vector method were observed for KIRP, respectively. These results indicate that
employing low and medium magnification along with high magnification can improve the
assessment of urinary tract tumors.

6.4 Findings and Discussion

This section first discusses the most important findings from the magnification-wise analysis
of results. Next, Section 6.4.2 compares two proposed MMS methods. Finally, a discussion
about the search dataset is provided in Section 6.4.3.

6.4.1 High Magnification for Diagnosis-based Evaluations

The results confirmed that the high magnification information played an essential role in
diagnosis-based evaluations. The searching at 20× magnification or its combination with
other magnifications outperformed searching at other magnification levels. Image search
at 20× magnification, the combination of 10 × 20× magnifications, or TM reported the
highest accuracy results in most anatomical sites. The general trend of successful searches
is also visible among searching at the mentioned magnifications regardless of the searching
methods. As can be seen in Fig. 6.3 and Fig. 6.4, both search methods, i.e., single-vector
and multi-vector, achieved more than 80 percent classification accuracy at the mentioned
magnifications in 7 out of 9 anatomical sites. The 20× magnification (both searching
methods) acquired above 80 percent F1-score accuracy in the classification of 13 tumor
subtypes. This value for 10× 20× and TM is 12 and 13, respectively. Both MMS methods
could achieve an F1-score above 65 percent at 20× and 10×20× in more than 20 out of 26
primary diagnosis types. It must be pointed out that the highest magnification is usually
used by pathologists for confirming a diagnosis [12,40,61,92].
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6.4.2 Single-vector vs. Multi-vector Comparison

Using the single-vector method for the brain, liver/pancreas, and urinary tract tumor
cases, TM achieved the highest overall classification accuracy (Fig. 6.3), and the highest
F1-score in most subtypes (Table 6.3) in comparison with all other magnification set-
tings. Results show that exploiting single-vector method at TM for representing WSIs can
improve diagnostic assessments. Accordingly, if one of the anatomical sites mentioned ear-
lier is a diagnostic consideration, evaluation based on multiple magnification levels using
the single-vector method is highly recommended. Concerning the multi-vector method,
20× magnification has achieved slightly higher accuracy compared to the TM in many
cases. This method at TriMagnification (TM) votes between retrieved WSIs of single-
magnifications. As a potential solution to improve the accuracy at TM, a weighted major-
ity voting approach may emphasize the 20× magnification. The suggested approach may
be more successful with trainable weights. In comparison between methods at TM, the
single-vector method tends to be more successful in combining all magnifications than the
multi-vector method. That means the single-vector WSI representation performed more
accurately than the multi-vector at TM in finding cases with the same tumor subtypes
in most anatomical sites. The reported search accuracy associated with the brain, gyne-
cological, liver/pancreaticobiliary, prostate/testis, and urinary tract tumors supports this
finding. Another advantages of the single-vector method over the multi-vector method are
less computational complexity, more efficient storage, and faster indexing and searching.

6.4.3 A Discussion on the Dataset

The results of this thesis study provide further support for the hypothesis that there
is a direct relationship between the number of WSIs in the test dataset and the search
accuracy [42]. ACC, USC, CHOL, UVM, and MESO are tumor subtypes with less than
six samples in the test dataset. Due to the limited number of samples, the search framework
was unsuccessful in finding two or more similar WSIs at some magnifications. Besides, top
accuracy results are associated with frequent tumor types with a relatively high number of
samples, i.e., BLCA, PRAD, and THCA, with 34, 40, and 51 samples, respectively. Many
of the “primary diagnosis” labels obtained from the TCGA referred to groups of tumors
with different morphologies (e.g., LGG, THCA, ESCA, CESC, OV, CHOL, SKCM, PRAD,
and TGCT). It is possible that multiple magnifications improved the assessment of urinary
tract tumors because only specific types of tumors were included in this anatomical site
(i.e., BLCA, KICH, KIRC, and KIRP). However, this improvement was not seen for the
specific types of tumors included in “Pulmonary”.
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This thesis performed multi-magnification content-based image searches on a diverse
and multi-organ WSI repository. Results indicated that the search performance varies
depending on anatomical site and disease type. In other words, MMS performed very ac-
curately in some anatomical sites, such as prostate/testis, while it performed less accurately
in some other tumor types, e.g., tumors of the gastrointestinal tract. This difference might
be attributed to the fact that the histology and architectural complexity of tumors varies
depending on the tumor types and diseases [61]. To put it simply, the diagnosis of some
tumor types is more challenging than others, even for expert pathologists. This difference
in search performance has also been observed in previous research studies [42,43,72].
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Chapter 7

Summary and Conclusions

M
ulti-Magnification image search in digital pathology is a useful AI-enabled tool that
can assist pathologists in many diagnostic, research and educational tasks and pro-

vide new insights into pathology data. Inspired by conventional pathology that analyzes
glass slides at different magnification levels, this thesis proposed the function of adjustable
magnification for a search engine and suggested using multi-magnification for content-based
image search and retrieval in digital pathology. Based on the tumor type and the histology
assessment, the magnification level can be adjusted in the proposed MMS framework to
search more efficiently and accurately.

This thesis investigated three magnification levels and their combinations to search
among unannotated (unlabelled) WSIs. MMS first represents the content of WSIs at
different magnification levels using deep features and then measures the similarity between
WSIs according to those representations. MMS works based on the deep feature vectors
and uses KimiaNet, a deep CNN with DenseNet-121 network architecture, for extracting
high-level histopathology information from patches. In this thesis, the last dense block
of the KimiaNet was fine-tuned with 5× and 10× patches to learn features at low and
medium magnifications more accurately. MMS is empowered with two independent search
methods to measure similarities between WSIs. The first MMS method, single-vector
representation, combines patch feature vectors by taking their median values to represent
a WSI at a given magnification level. Subsequently, single vectors of all magnifications
are concatenated to construct a single-magnification vector to represent each WSI. The
second MMS method, multi-vector representation, measures the similarity between WSIs
based on the median-of-minimum distance calculation of all patch feature vectors at any
magnification. The deep feature vectors associated with patches are first converted to
binary codes, i.e., barcodes, using the SNRQ hashing method to accelerate searching.
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This thesis created a multi-magnification dataset of histopathology patches not only
for MMS investigations but also for other deep learning-based studies in digital pathology.
Since the manual annotation of gigapixel WSIs is not practical for large-scale datasets,
this thesis proposed and used an automated way for patch extraction. Binary masks,
generated by U-Net with MobileNet backbone, were used to detect tissue regions and
remove non-informative background and artifacts regions from a WSI. In the next step of
patch preparation, binary masks were split at various scales to find tissue patches at the
selected magnification level. This approach was applied on a subset of the TCGA dataset
with 13 anatomical sites (30 tumor subtypes) to create a multi-magnification dataset of
large-size patches. The dataset was used for the magnification-oriented feature learning
and evaluations in this thesis.

The experiments on MMS verified the capability of both MMS methods in finding WSIs
with the same malignancy among WSIs of the same affected anatomical site. When search
is evaluated as a classification task, MMS could achieve more than 80 percent accuracy
in most of the anatomical sites. Significant accuracy improvements for diagnostic tasks
were achieved concerning kidney tumors, e.g., F1-score of 0.93 for kidney renal papillary
cell carcinoma (KIRP) using the TM search compared to 0.83 F1-score using the single
magnification (20×) counterpart. The results confirmed that enriching high magnification
search information with low magnification is a promising way to increase search accuracy
in some cases. Also, the results showed that the highest magnification, containing the
cell-level information and detailed morphological features, is an essential resolution for
diagnostic tasks (the most accurate results were achieved using the 20× magnification or a
combination of 20× magnification with other magnifications). These results are supported
by the fact that pathologists often use high magnifications to confirm or rule out a diagnosis.

With tumor-oriented analysis of search results, this thesis proposed the best configu-
ration of the MMS framework, in terms of method and magnification, to search for sim-
ilar WSIs among WSIs of each anatomical site. These experimental results and analysis
indicated that depending on the tumor type, the image search should use different mag-
nifications and combinations of magnifications for more accurate and reliable search and
retrieval. Therefore, magnification level selection is a valuable function of a digital pathol-
ogy search platform.

7.1 Potential Areas for Future Research

Future work can include applying the proposed MMS methods in additional archives of
WSIs in digital pathology. MMS framework does not require any manual annotations by
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the pathologist and can easily be applied on raw databases of WSIs upon their availability.
Without demanding any external information or annotation, the MMS can be verified on
datasets of WSIs of various organs, and the search outputs can be evaluated by expert
pathologist or based on corresponding metadata.

The data preparation procedure can be extended and improved to select patches more
wisely. The binary mask can be extended to a multi-class mask by segmentation of various
tissue types. The extended version of U-Net for tissue segmentation can potentially boost
the MMS performance, and more generally, the accuracy of histopathology feature learning
and representation.

The future direction of MMS might be driven by employing improved deep learning
models for feature learning. Self-supervised and unsupervised learning approaches poten-
tially can provided new insights into pathology data.

MMS has shown promising performance in diagnosis-oriented retrieval of WSIs. The
performance of MMS can be further evaluated based on other morphological characteris-
tics. Moreover, future research might investigate MMS for pan-cancer analysis to consider
morphological similarities among tumors of different organs.
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