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Path following using dynamic transverse feedback
linearization for car-like robots

Adeel Akhtar

Abstract—This paper presents an approach for designing path
following controllers for the kinematic model of car-like mobile
robots using transverse feedback linearization with dynamic
extension. This approach is applicable to a large class of
paths and its effectiveness is experimentally demonstrated on a
Chameleon R100 Ackermann steering robot. Transverse feedback
linearization makes the desired path attractive and invariant
while the dynamic extension allows the closed-loop system to
achieve the desired motion along the path.

I. INTRODUCTION

The problem of generating accurate motion along a given
path for a control system can be broadly classified as either a
path following problem or a trajectory tracking problem [1].
In a path following problem, unlike trajectory tracking, the
main task of the controller is to follow a path with no a priori
time parameterization associated to the motion along the path.

The extra degree of freedom in path following of assigning
the timing law associated with path traversal allows a sig-
nificant improvement in the achievable performance for non-
minimum phase systems [2], [1]. Another key advantage of
adopting the path following approach is that the path can be
made an invariant set for the closed-loop system. In the context
of mobile robotics, this means that once the mobile robot is on
the path, with appropriate orientation, it never leaves the path.
On the other hand, since a tracking controller tracks a specific
system trajectory, if the robot is initialized on the path but its
position does not coincide with the reference position the robot
may leave the path before asymptotically approaching the
reference point on the path again [3]. In this paper we design a
path following controller for the kinematic model of a car-like
robot [4]. This model approximates the mobility of a car and is
relevant in automated driving applications. Moreover, the car-
like robot is the simplest nonholonomic vehicle that displays
the general characteristics and the difficult maneuverability of
higher dimensional systems, e.g., of a car towing trailers [4].
Accurate movement along a path is desirable for car-like
robots when they operate in tight spatial conditions, like indoor
robots moving in a room with obstacles. In these cases, path
following can be used in conjunction with path planning to
achieve collision-free motion.

Trajectory tracking and internal stability of the car-like robot
were analyzed in [5]. The performance of the controller therein
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was tested both in simulation and on an experimental testbed.
Path following controllers were proposed for the car-like robot
in [6], [7], [8]. The approach in [6] is similar to the one
followed in this paper. The key difference is that we do not
fix the translational velocity of the car and consequently the
path can be rendered invariant while having variable dynamics
along the path. In [9], [10] a similar problem is solved in the
presence of phase constraints and limited control resources.
The car-like robot is treated as a single input system, and
the translational velocity is a given, sign-definite, possibly
time-varying, function. In [11] it was shown that transverse
feedback linearization can be used to design path following
controllers for the car-like robot using only the steering input.
In this paper we provide explicit expressions for feedback
control laws that achieve path following while allowing the
motion along the path to change.'.

Feedback linearization controllers are criticized because
they only work “perfectly” in simulation, i.e., in the absence
of disturbances and parameter uncertainty. The authors of [13]
highlight that dynamically extended feedback linearized con-
trollers can involve high-order derivative terms which can be
sensitive to sensor noise and modeling uncertainty making
them difficult to implement experimentally. Furthermore, the
sensors used to estimate the states of car-like robots are
relatively inaccurate with lower update rates. These practical
constraints make the implementation of the proposed con-
troller challenging. Experimental implementation of a path
following controller using sliding mode control was presented
in [8]. A reference tracking and set-point regulation dynamic
feedback linearization controller was presented in [14].

A large class of non-linear systems fall in the category of
differentially flat systems [15]. Finding a flat output is, in
general, difficult and involves finding a function that satisfies
the conditions given in [16]. The search for a flat output can
be simplified by noting that they often have strong geometric
interpretations [17]. In [18] a flatness based approach is used
to derive open-loop control laws for a kinematic car-like robot
that are combined with interpolation using G?2-splines. In
this paper we choose a virtual output because it has very
strong physical meaning for the path following problem and
subsequently show that it is a flat output. We use dynamic
extension [19] of the original system to achieve the desired
relative degree of the closed-loop system. Every system which
is feedback linearizable via dynamic extension is differentially
flat [20]. While we consider a kinematic model, the proposed
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controller can be extended to dynamic models using integrator
backstepping [21].

A. Contributions

The main contributions of this paper are 1) an approach to
designing path following controllers for car-like vehicles that
is physically intuitive and mathematically proven to achieve
invariance of the path while traversing the path with desired
dynamics 2) A method for approximating arbitrary smooth
parameterized paths as the zero level set of a function 3)
Experimental results that demonstrate accurate path following
and feasibility of the proposed approach.

B. Notation

Let col(zy,...,x,) = [ @1 T ]T € R™ where "
denotes transpose. We denote the Euclidean inner product by
(x, y) and the associated Euclidean norm by ||z||. We let I,,
represent the nxn identity matrix and 0,,, x,, represent the m x
n zero matrix. Given a set A C R", the point-to-set distance to
A is denoted ||-|| 4. Given a function f : A — B, we let Im(f)
or f(A) denote its image. A continuous function « : [0, c0) —
[0,00) is said to belong to class-Ko if a(0) = 0 and it is
strictly increasing [22]. Given a C'' mapping ¢ : R® — R™
let d¢, be its Jacobian evaluated at x € R". If f, g : R® — R"
are smooth vector fields we use the following standard notation
for iterated Lie derivatives L}¢ := ¢, Li¢ := Lf(L’;’ld)) =
(ALY fus (@), LgLy¢ = Ly(L;¢) = (AL sy, g(x)).

II. PROBLEM FORMULATION

Consider the kinematic model? of a car-like robot with rear
traction

cosrs 0
. sin xg 0 v
= %tan x4 0O { w ] M
0 1

where x € R* is the state, the input v € R is the translational
speed and w € R is the angular velocity of the steering angle
x4. We impose a steering angle constraint

(VtzO)—g<fE4§x4(t)§E4<g 2)

where T4 > 0 is given. We take the car’s position in the plane
as the output of (1)

3)

Suppose we are given a curve C in the output space R? of (1)
as a regular parameterized curve

A= col (o1(A), 02(N)),

y = h(z) = col (z1, x2).

o:D—R?

“4)

where ¢ € C" with r > 3 and C = Im (o). Since o is
regular, without loss of generality, we assume it is unit-speed
parameterized, i.e., ||o’(-)|| = 1. Under this assumption, the
curve o is parameterized by its arc length. For closed curves
with finite length L, this means that D = Rmod L and o is

2 We do not model friction because it has a negligible effect on vehicle
performance for indoor scenarios with velocity and heading rate control inputs.
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L-periodic, i.e., for any A € D, o(A + L) = o(L). When the
curve is not closed D = R. We impose geometric restrictions
on the class of curves considered [23].

Assumption 1 (submanifold). The curve C is a one-
dimensional embedded submanifold of R2.

Assumption 1 imposes that the path has no self-
intersections, no “corners”, and does not approach itself
asymptotically.

Assumption 2 (implicit representation). The curve C C R?
has implicit representation C = {y € W : s(y) = 0} where
s: W CR2 5 R, is a smooth function such that ds, # 0 on
C and W is an open set. Moreover, there exist two class-Ko
functions a, 8 : [0,00) — [0, 00) such that

(vy € W) allylle) < sl < B(lylle)- (5)

Assumption 2 asks that the entire path be represented as the
zero level set of the function s. This is always possible, locally,
if Assumption 1 holds. The second part of Assumption 2
ensures that, when C is not bounded, s(y) — 0 if and only if
y — C.

Since dh, = I for the output (3), the map h : R* — R?
is transversal [24] to C and therefore, if Assumption 1 holds,
the lift of C to R*

[:=(s0h) ' (0)={z e R*:s5(h(z)) =0}  (6)

is a three dimensional submanifold.

Assumption 3 (curvature constraint [18], [25]). Given a
steering angle constraint (2) the curvature k(\) of (4) satisfies

1
< —tan (T4).

(VAED) k(M) < 7

(7

Assumption 3 ensures that the path is feasible, in light of
the steering angle constraint, for the car-like vehicle.

Problem 1: Given a curve C satisfying Assumptions 1, 2,
and 3 find, if possible, a smooth control law for (1), (3) of the
form

a(z, ¢) + b(z, Qu

(-
{ " ] = c(z,¢) + d(z,{)u ®)

with ¢ € RY, u = (u1,us) € R? such that for some open set
of initial conditions U x V C R* x R? with C C h(U)

PF1 The solution (x(t),((t)) of the closed-system (1), (8)
exists for all t > 0 and ||h(z(t))||c — 0 as t — oo.

The curve C is output invariant independent of the desired
motion along the path, i.e., if properly initialized, then
I1h(z(t))|lc =0 for all t > 0.

The system asymptotically tracks a given motion profile
(At (1)) where N : R — D is smooth and N (t) is
uniformly bounded away from zero.

PF2

PF3
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III. DIFFERENTIALLY FLAT PATH FOLLOWING OUTPUTS

The path following manifold, denoted I'*, associated with
the curve C is the maximal controlled invariant subset of the
lift (6). Physically it consists of all those motions of the car-
like robot (1) for which the output signal (3) can be made to
remain on the curve C by suitable choice of control signal [3].
The path following manifold is the key object that allows
one to treat the path following problem as a set stabilization
problem. If the path following manifold can be made attractive
and controlled invariant for the closed-loop system then PF1
and PF2 are satisfied.

When we apply the above definition to the car-like robot or,
more generally, to any drift-less system, it is immediate that
I'™ =T. This is because one can trivially make the entire set I"
controlled invariant by setting v = 0. This characterization of
I cannot be used to solve Problem 1 because path invariance
is not achieved independently of the motion along the path.
Stabilizing I" with v|. = 0 ensures path invariance (PF2) but
fixes the motion along the path.

On the other hand, when v = v # 0 is a fixed constant, the
path following manifold can be characterized [11] using the
steering input w. Physically, this means that the car like robot
can be made to follow C solely using its steering input. The
main deficiency with the solution presented in [11] is that PF3
cannot be satisfied since v is fixed. To overcome this difficulty
a time-scaled transformation was applied in [9], [10], which
made it possible to ensure path invariance for variable speed
v(t).

To overcome this problem let v = v + (3, where (7 is the
first state of our dynamic controller and v # 0 is constant.
We take the simplest possible structure for the control law (8)
and let Cl = (3. In order to finish defining the control law we
let (» = u; where u; is a new, auxiliary input. To simplify
notation, henceforth we do not distinguish between physical
states of the system (z1, 22, 23, 24) and states of the controller
(¢1,¢2). Let x5 := (1, xg := (2. Therefore the system we
study has the form

&= f(x)+ g1(x)ur + g2(x)uz

(v + x5) cos 3 0 0
(v + a5)sinxs 0 0
(425) tan 0 0 &)
= [ 4
0 + 0 Uy —+ 1 u2
Tg 0 0
0 1 0

and the set I' in (6) is embedded in the extended state
space RS. The dynamic extension allows us to enforce PF2
independently of the function A™f(¢) from PF3. Similar ideas
have been applied to a tower crane model in [26].

A. Feedback linearization

We treat the path following problem as a set stabilization
problem and we follow the general approach of [3], [23].
In order to satisfy PF1 and PF2 we first stabilize the path
following manifold I'*. Once the path manifold has been
stabilized we use the remaining freedom in the control law
to impose desired dynamics on the path and satisfy PF3.

Let N(C) C R? denote a neighbourhood of the curve C.
The neighbourhood A(C) has the property that if y € N(C)
then there exists a unique y* € C such that ||y||c = ||y — v*||-
This allows us to define the function

w:N(C)—D

. 10)
Flly — . (
y = arg nf ly — oMl

This function is as smooth as ¢ is which, by assumption, is
at least C3. Using (10) define the “path following output”

. | m(x) | | woh(x)
vy= alz) | | soh(z) |-
Let 'y = TN {I€R62I5+V>O}, ' =1Tn
{x eERG:z5+v< 0}. The next lemma shows that the out-

put (11) yields a well-defined relative degree on I'} J[T—
where ][ denotes disjoint union.

(11)

Lemma II1.1. The dynamic extension of the car-like robot (9)
with output (11) yields a well-defined vector relative degree
of {3,3} at each point on T [T _.

Proof. Let * € T J[T_ be arbitrary. By definition of T
the output h(z*) is on the path C. Let A* € D be such that
h(z*) = o(A*). By the definition of vector relative degree we
must show that Ly, L}7(x) = Ly, Lyn(z) = Ly, Lya(z) =
Lg, Lya(z) = 0 for i € {0,1} in a neighbourhood of z* and
that the decoupling matrix

Ly, L% ()

D(x) = Lg, Lia(x)

L,, L27(x)
L;Iéoz(x) (12

is non-singular at © = x*. Since

or(xz)  Oda(x)
axi B 8%

for i € {3,4,5,6}, it is easy to check that L, Lim(z) =
Lg;Lya(x) = 0 for i € {0,1}, j € {1,2}.

To show that the decoupling matrix (12) is non-singular at
xr = x*, we first find that

0

det (D(x)) = 7

T fcos?xy (01(A") 0z, = 05(A")0z, ).

The only way for this determinant to vanish is if either (i) v =
—x5 or (i) o7 (A\*)Op,ax— 05 (A*) 0z, @ = 0. Condition (i) does
not occur for z € 'y [[T'—. We now argue that condition (ii)
never occurs on the path because the vectors col(0y, &, Oy, @)
and o’(A\*) are orthogonal.

The chain rule and the form of the output map (3) yield
col (O, a(x*), Op, (™)) = dsg(x*). By Assumption 2 the
differential ds, # 0 for y € C. Thus the vector ds;(x*)
is a non-zero gradient vector and is orthogonal to the path
at h(z*). On the other hand the vector o’(\*) is non-zero
because o is regular and also tangent to the curve. Hence
<dsz(%,*)7 g/(/\*)> = 0. If we rotate the vector dSZ(w*) by
/2 radians then the rotated vector and ¢'(\*) are linearly
dependent. Let Rz be a rotation of the plane by = /2. Then

Rzdsy,.) = k(a(A))a’(A%)



for some smooth, scalar-valued, non-zero function & : R? —
R. The function k is never equal to zero because the vector
dsZ( 24 is never zero.

Returning to the expression for det (D(x)), we have that

o) = S5 (N )s,0 = (Rgdsfoy, 0'(V))
= k(a(X)) (o' (A7), o' (A7)
= k(e(\"))llo"(A)]?
= k(a(\Y)).
O
Let IT* = <2z eR:a(x)=Lsa(z)= L?ca(a:) = 0}.
Define I'}, :=T" NI} and I'* := I NI'_. The next result

defines a diffeomorphism valid in a neighbourhood of I'%.. The
equivalent result for I'* is omitted to avoid repetition.

Corollary IIL2. Let x* € I"}. There exists a neighbourhood
Uy C R® containing T% such that T : Uy — T(Uy)

m m(z)
Up) L%mr(x)
AL
& Lyo(x)
& Lia(x)

is a diffeomorphism onto its image.

Proof. In order to show that (13) is a diffeomorphism in a
neighbourhood of I'} we appeal to the generalized inverse
function theorem [24, pg. 56]. We must show that 1) for all x €
I'%, dT, is an isomorphism, and 2) T\F*+ TH = T(%)isa
diffeomorphism. An immediate consequence of Lemma III.1
and [19, Lemma 5.2.1] is that the first condition holds. To
show that the second condition holds we explicitly construct
the inverse of T restricted to I'}. On I}, & (2) = &(2) =
&3(z) = 0 and simple calculations show that the inverse of T
restricted to I'% is’

1 o1(m)

T2 aa(m)

3 1 e(m)

ay | T|Fi (n,0) = arctan (£k(n))
L5 M2 —V

L6 3

where ¢ : D — Rmod 27 is the map that associates to each
11 € D the angle of the tangent vector o’(n;) to C at o(n;)
and x : D — R is the signed curvature. The inverse is clearly
smooth which shows that T'|.. is a diffeomorphism onto its
image. " O

This coordinate transformation of Corollary III.2 is physi-
cally meaningful for path following applications. When £ = 0
the system is restricted to evolve on the path following man-
ifold T'*. We call the £-subsystem the transversal subsystem
and the states ¢ the transversal states. On the path following
manifold the motion of the car-like robot on the path is

3The inverse is obtained under the assumption that the curve is arc-length
parameterized.
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governed by the n-dynamics. We call the 7-subsystem the
tangential subsystem and states 7 the tangential states. When
the robot is on the path following manifold, ie., & = 0
then 7; determines the position of the robot on the path,
1o represents velocity of the robot along the path and 73
represents acceleration of the robot along the path.

We apply the regular feedback transformation

) = oo ([ )

where (vll,v™) € R x R are auxiliary control inputs. By
Lemma III.1 this controller is well-defined in the neighbour-
hood of I', from Corollary II1.2. Thus in a neighbourhood of
I [resp. I'* ] the closed-loop system becomes

(14)

=12 §:1 =&
N2 =13 §2=2&3 (15)
iy = vl & ="

We refer to the control input v™ as the transversal input and v/
as the tangential input. The control law (14) has decoupled the
transversal and tangential subsystems which makes designing
(vll,9™) to solve Problem 1 particularly easy. In summary, we
have shown that the extended car-like robot is differentially
equivalent to a controllable linear time invariant system (LTI)
in a neighbourhood of each connected component, I'}. and
I'*, of the path following manifold. Another way to state this
is to say that the output (11) is a flat output for the car-like
robot (1) [27], [28].

B. Transversal and tangential control design

The objective of the transversal controller is to force the
system to converge to the path. For that we to stabilize the
origin of the transversal subsystem. The simplest choice for
the transversal input is

v™(€) = k1&1 + koo + kals,

with k; < 0, i € {1,2,3}, chosen so that the polynomial
53 — k3s? — kys — ky is Hurwitz. This controller exponentially
stabilizes €& = 0 and hence, under (5) in Assumption 2,
makes the path following manifold attractive. These gains can
be chosen using, for instance, pole-placement or quadratic
optimization (LQR).

(16)

Assumption 4 (desired motion on path). The desired
motion on C given by a smooth function 0™ (t) =
(Aref(£), AreE (1), AreE (1)), ¢ > 0 with || uniformly bounded
away from zero.

Assumption 4 ensures that x5 + v # 0 for the desired
motion. When x5 + v = 0 the robot has no translational
velocity, the decoupling matrix loses rank and the control
law (14) is not well-defined. Given a desired motion that
satisfies Assumption 4, let

vl(n) = ka(m—ni"(t)) + ks (n2 — 757 (1))

(17)
+ ke (13 — 5 (8) + T (1),
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with gains k; < 0, ¢ € {4, 5,6}, chosen so that the polynomial

3 — k¢s® — kss — ky is Hurwitz. The numerical value of
these gains can be chosen similarly to the transversal gains.
Typically, one seeks that the closed-loop transversal dynamics
converge to zero faster than the closed-loop tangential dynam-
ics.

Proposition IIL.3. The control law (14), (16), (17) solves
Problem 1.

Proof. Assume that* 71 > 0 and let 2(0) € U, where
U, C RS is defined in Corollary II1.2. By Lemma IIL1, and
by shrinking U if necessary, the control law (14), (16), (17)
is well defined in U;. The transversal controller (16) ex-
ponentially stabilizes £ = 0 and hence, by Assumption 2,
x — I} C Uy and PF1 holds. Since £ = 0 is an equilibrium
of the closed-loop transversal subsystem, if 2:(0) € I'}, C Uy,
h(x(t)) remains on the path for all future time. Therefore (16)
achieves PF1, PF2 in Problem 1.

Define errors coordinates e,, := n—n*ef. It is straightforward
to show that, for the tangential controller (17), that e, — 0.
Once again, by shrinking U, if necessary, it is possible to
ensure that 75(t) # 0 during the transient phase in which
12 — 11. This shows that the closed-loop tangential dynamics
satisfy PF3 and hence Problem 1 is solved. O

Remark II1.4. When the desired motion corresponds to ve-
locity tracking then n***(t) = (0,05t (t), n¢f (t)). In this case
we select ky = 0. Similar comments apply to acceleration
tracking.

Remark IILS. Proposition III.3 shows that the region of
attraction’ is an open subset of U, [resp. U_]. Since (13)
relies (10), the image of this set under (3) must be a neigh-
bourhood of C in which the closest point on the path is well-
defined. This is a necessary, far from sufficient, property of the
region of attraction.

IV. CURVE REPRESENTATION

The control design technique discussed in this paper relies
on having both a parametric representation (Equation (4))
and an implicit representation (Assumption 2) of the path C.
Although such curve representation pairs are well known for
many commonly used paths such as circles and Cassini ovals,
not all cases can be addressed this way.

Given an arbitrary curve C in R? witha C™, r > 3, regular
parameterization (4), we provide the following procedure for
finding its implicit representation. First, we approximate the
parametric representation as a rational parametric curve using
the Weierstrass approximation theorem. Second, relying on
elimination theory [30] , we represent the image of the rational
approximation as an implicit function.

A. Polynomial approximation
Given o(A) = col (o1(X),02(X)) we generate polynomial
approximations p; () to the functions 0; : D — R, j € {1, 2}.

AIf ﬁ{e‘v < 0 then the proof is the same, mutatis mutandis, using U— C RS,
5 See [29] for further discussion on estimating the region of attraction.

We start by sampling the domain . Let {A1, A, -+, A1}
be ¢ + 1 points in D with A\; < Ajy1, ¢ € {1,...,q}. Let
I :=[A1, Ag+1] C R. The associated points on C are given by
a(A;) = col(o1(Ng),02(N\)), i € {1,...,q+ 1}. If we seek
a single polynomial p;(A) of fixed order N that approximates
oj(A) at the sample points, then we can simply solve two
least squares optimization problems for p;(\) = Zl 0 al N,
J € {1,2} to find the coefficients a] € R. The Weierstrass
Approximation Theorem [31] ensures that for any € > 0, there
exists IV sufficiently large such that

max [loj (A) = p; (M) <e. (18)
Furthermore, at the sample points o ()\;), the above polynomial
approximation is optimal in the least squares sense.

A drawback of the above approach is that, for a given set
{A1,A2,-+ ,A\g41} and a given € > 0, the order N of the
polynomial required to ensure (18) holds is a priori unknown.
In such cases we propose an algorithm to recursively compute
polynomials p; that satisfy (18).

Our algorithm is based on the constructive proof of Weier-
strass Approximation Theorem presented in [31]. In that proof,

given a uniformly continuous function f : [0,1] — R, one
constructs a Bernstein polynomial

n

chh’“ (19)

where ¢, := f (k/n) and hE(0) := (})6%(1 — 6)"~*, which
is shown to converge uniformly to f as the order of B]
gets sufficiently large. In our application, on the interval
I = [M1, A\g+1], define the function 7 : [0,1] — I as

7(9) =)\ +9<)\q+1 —)\1).

This function is a homeomorphism between [0, 1] and I. We
use it to define

fi(6) :==0j07(0), je{1,2}.

Using the Weierstrass Approximation Theorem and Bernstein
polynomials for the function (20), we have that for any € > 0,
there exists an integer N > 0 such that

Bli(9) < e

(20)

(vn > N) max f;(60) - 21
These arguments lead to the following conclusion.

Lemma IV.1. There exists a positive finite integer N such
that (18) holds with

pi(\) = Bl (171 (V), je{l,2}.

Algorithm 1, given below, shows how to use Lemma IV.1
to find the polynomials p;.

Bi( n> N,

B. Sylvester matrix elimination method

We now apply elimination theory to form an implicit
representation of the planar curves obtained in Section IV-A.
There are multiple ways to accomplish this but we present
Sylvester’s method [32].



input : 0; : D = R

e>0
N = 1; (start with the smallest possible order)
I = [A, Agya]

output: p;(\)

compute: f; = o; o 7(6)
while error > e do
for k=0:N do
compute: ¢ = f;(k/N)
compute: 1% (0) = (})o%(1 — 9)N—F
compute: p;j(A) = p;(A) + cihk (771(N)
end
calculate error: maxyer ||o;(A) — p;j(A)]]
N=N+1

end
Algorithm 1: Curve approximation

Sylvester’s dialytic expansion [32] computes the resultant
of a given polynomial system by constructing a matrix that is
rank deficient whenever the polynomial system has a solution.
Consider two polynomials constructed using the ideas of
Section IV-A pi(A) = S0 g aiX', pa(A) = D0, biA". Let
y1 = p1(A) and y2 = p2(A) and rewrite the polynomials as

Pi(A)i=a, A"+ -+ aA+(ap—y1) =0
Po(\) i= by A™ + - + by A + (bg — y2) = 0.

The key insight in [33] is that, by viewing the terms (a9 — y1)
and (bp — y2) in (22) as constant terms, the associated resul-
tant expresses the relationship which must exists among the
coefficients in order for there to exist A that simultaneously
satisfies both equations (22). In other words, the resultant itself
is the implicit form of the parametric curve.
Let Syl (P1, P2, A) denote the (n+m) x (n+m) Sylvester
matrix of P, and P, with respect to A. Then, the resultant of
Py and P, with respect to A is denoted by Res (Py, P>, A) and
is given by Res (P1, P2, A) = det (Syl (P, P2, ).
In summary, we use the following two step approach to
implicitize a curve C C R? with regular parameterization (4).
1) Approximate the function o; : D — R, j € {1,2} as
a uni-variate polynomial p;(\) over a compact interval.
Do this using least squares optimization or Algorithm 1.

2) Form the Sylvester matrix Syl (Py, P>, A) using (22)
then set s(y) = Res (Py, Py, \) = det (Syl (P1, P, \))
as the zero-level set representation of the approximation
of C obtained above.

(22)

V. IMPLEMENTATION ISSUES

In order to implement the proposed controller the coordinate
transformation (13), the feedback (14) with D(x) defined
in (12) and transversal and tangential controllers (16), (17)
must be computed. In this section we address the two main
issues that complicate implementing the above. The first is that
the parameterization of C may not be unit-speed. The second
is that the computation of the tangential states (71, 72,73)
involves computing the projection (10) and its derivatives. In
general the function (10) does not have a closed-form which
makes these calculations non-obvious.
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Following the discussion in Section IV, we assume that
we are given C, a not-necessarily unit-speed parameterization
 : R — R? and a function s : R? — R such that
Assumption 2 holds. Note that having an expression for s(y)
makes the computation of the transversal states straightforward
using symbolic algebra software.

Let V'(C) C R? be a neighbourhood of C. Now introduce a
projection operator, defined in A/(C), which is the same as (10)
except it uses a non-unit speed parameterization

N =a(y) = arg inf [y —a(A)]. (23)

The value A\* can be effectively numerically computed using
line search algorithms. For closed-curves this calculation is
straightforward because the line search is over a compact
interval of R. For non-closed curves heuristic methods must
be employed to compute the infimum. To calculate the first
tangential state we find the arc-length

do

.
m = g(A\") 1=/ -
! o |ldx

so that n; = g o @ o h(z). To calculate 12 we note
_O(gowoh) dx
2= ox dt

- (@) (&)

Simple geometric arguments, similar to those used in the proof

du (24)

(v + z5) cos (x3) } .

y=h(z) [ (v + x5) sin (x3)

of Lemma III.1, show that %’ is given by
-y

o _ @)
oy~ 7OV 2
Differentiating (24) one obtains
dg Iy x
A [&" (A (26)
and so
RGN { (v + 5) cos (w3) ]
=500 | (v 4 2s) sin (zs) | 27

To simplify notation let

(@' (\) " {
Ar) i= ~——2—, Q=
AN PO

To ﬁnd n3 we differentiate (27) and get 13 = AQ + AQ. The
term {2 is easy to compute using the system dynamics (9). The
term A = A’X can be found by noting that

(v + x5) cos (x3) }
(v+x5)sin(x3) |-

A= R )

and, using (24) and the chain rule,
A= %nz. (29)

lo"]?

This shows that the tangential state 73 can be computed
effectively using (25), (28), (29), 2 and Q.

Finally, in order to implement the feedback transforma-
tion (14) we must find expressions for L?w and the first
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row of the decoupling matrix (12). The decoupling matrix is
straightforward but tedious to compute, and calculations give

' dA/ 72 ZQ_ 5/&1
[TV N NP O 4 2 £ui=1 "% A1
jm ||5'||< M A T q
+AQ+AQ2
(30)
where
e [ (= 2eganey
0y 1= = tan (z2) (1 + 2z6) cos (x3)
(v+ 965)3 2 cos (w3)
— g tan (4) sin (x3) |-

Implementation of controller and the regular feedback (14) is
summarized by Algorithm 2.

input : 5(\) : R — R?
s:WCR?2 SR
System model (9)
Current state € RS
output: (uq,us)

(non-unit speed)

for each do

Using (23) numerically compute \*.
Compute &’(X*), a”(X*), " (\%), ||o’(AM)]).
Numerically compute 7; using (24).
Compute 75 using (27).

Compute 73 using (25), (28), (29), €2 and Q.
Compute L7 using expression (30).
Compute &1, &9, &3, L?ca.

Compute (u1,ue) using (14), (16), (17).

end
Algorithm 2: Control algorithm

VI. EXPERIMENTAL VERIFICATION

A. Experimental platform and setup

The Chameleon R100 built by Clearpath Robotics Inc., see
Figure 1(a), is a low cost car-like robot for testing control
and estimation algorithms. A DC motor is attached to the
rear axle of the robot. A servo motor is used to control the
steering angle of the robot. The maximum steering angle is
approximately 74 = 0.4712 rad (27 degrees). This means that
Assumption 3 is satisfied, given that £ = 22.9 c¢m in this case,
if the maximum curvature of the path is 2.22m~'. The wheels
of the robot provide sufficient friction with the ground to make
the rolling without slipping assumption implicitly made in (1)
hold. However, the steering linkage to front wheels permits up
to =+ 7 degrees of error. This error source is not captured by the
mathematical model (1) used for control design. The chassis of
the robot measures 30 x 22 x 20 cm (I/w/h) and is controlled
from an Intel Atom Notebook. Onboard electronics provide
low-level commands to the motors while the proposed control
algorithm is implemented on the notebook, hereafter called the
control computer, running the Robot Operating System (ROS)
in Linux.

To implement Algorithm 2, all of the robot’s states are
needed. To this end, an Indoor Positioning System (IPS) is

(b) Experimental Setup.

Fig. 1: The Chameleon R100 robot and the experimental
setup are shown. The position and orientation of the robot
is measured by the IPS.

TABLE I: Controller gains used in Section VI

Description Symbols Values
Transversal gains (16)  {k1, k2, k3} {—46.3,—38.7,—10.8}
Tangential gains (17) {ka, ks, ke} {0,-1.3,-2.3}

employed using the NaturalPoint OptiTrack local positioning
system. The IPS uses sixteen near-infra red cameras. Infra red
(IR) reflectors are attached to the robot’s chassis to make the
position (1, z2) and orientation x5 available for feedback, via
the IPS, over WiFi. The control computer uses multithreaded
Publish/Subscribe model to read the position and orientation
of the robot at 100Hz from the IPS.

In many car-like robot platforms, the steering angle can
be directly measured using a potentiometer or an absolute
optical encoder; however the Chameleon R100 lacks this
feature. Since the steering angle cannot be measured by the
IPS, a standard Extended Kalman Filter (EKF) is used to
obtain estimate (x1, 2, T3, T4, Ts5, Tg) from the measurements
(21,9, z3) and the control inputs (u1, ug). The control inputs
of the Chameleon are its steering angle and translational speed.
However, the control inputs of (1) are the rate of change of
the steering angle and translational speed. The steering control
input can be computed from the rate of change of steering
angle by integration.



B. Experimental Results

In the first experiment the Chameleon R100 robot is asked
to follow a circular path of radius » = 1.3 meters while
maintaining a constant speed of n¢f(t) = 0.3 m/sec along
the path, ie., n"*'(t) = (0,0.3,0) which clearly satisfies
Assumption 4.

In the experiment, pole placement was used to select
the gains so that the control signals did not saturate. The
closed-loop transversal dynamics were designed to converge
to zero faster than the closed-loop tangential error dynamics,
to promote convergence to the path over progress along the
path. In the following experiments, the desired pole locations
for the transversal states £ were chosen as —3.9, —3.6, —3.3.
The desired pole location for the tangential error states e, =
(e —nit, m3 —nt) are chosen to be —1.2, —1.1. The controller
gains computed for the desired pole locations as shown in the
Table I.

The robot’s initial position is indicated by a solid green dot
in Figure 2(a). The desired circle is represented by a dotted
line in the figure.

(a) Chameleon R100 following the circular path.

:
—&
6 — &1
il & |
Al
~ of
Gp
3 —2\\M
RV
A
b
I
8}
710?’[
2 i i i i i i i
0 5 10 15 20 25 30 35 40

t(sec)

(b) Convergence of &1, &2, €3 states.

Fig. 2: Chameleon R100 robot following the circular curve
o :[0,2.6m) — R%, A+ col(1.3sin(N/1.3), 1.3 cos (A/1.3)).

The position of the robot along the path is given by the
transformed state 7; € [0,2.67). In this example the path is
closed and has arc-length 2.67; therefore D = [0,27r) =
[0,2.67) and 7; remains bounded between 0 to 271 as shown
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in Figure 3(a). The tangential state 75 is shown in Figure 3(b).
A fixed tangential speed of 0.3 m/sec was chosen due to the
limited capabilities of the vehicle and the limited test area
available inside the indoor positioning system capture region.
Simulation examples with variable speed profiles can be found
in [12].

i i i i i i i i
0 5 10 15 20 25 30 3 40 45
t(sec)

(a) Position n; of the robot along the path.

o 5 10 15 2 25 3 3 40 45
t(sec)

(b) Chameleon R100 maintaing a desired speed of 0.3 m/sec
along the path.

Fig. 3: Velocity and position of the Chameleon R100 robot
while following the circular curve o : [0,2.67) — R2, \
col(1.3sin(A/1.3), 1.3 cos (A/1.3)).

In the second experiment the Chameleon R100 robot is
made to follow a non-closed sinusoidal path. Figure 4(a) shows
that the robot first converges to the desired path and follows
it. Due to limited lab space the robot is asked to follow only a
small portion of the sinusoidal path. All the transversal states
(the ¢ states) converge to zero (Figure 4(b)). As the robot
follows the sinusoid path a desired speed of 0.3 m/sec is
achieved as shown in Figure 5.

In the third experiment the repeatability of the proposed
controller is tested on a circular path of radius 1.3 meters.
The experiment is repeated six times and the convergence
of the path following error is analyzed. In each test the
robot converges to the desired path starting from an initial
point away from the path as shown in Figure 6(a). The
path following error epp := \/x? + 23 — 1.3, is shown in
Figure 6(b). The initial pose (position and orientation) and
steady-state path following error |efp| := lim; oo sup |epp|
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(a) Chameleon R100 following the sinusoidal path.
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(b) Convergence of &1, &2, &3 states.

Fig. 4: Chameleon R100 robot following the non-closed, non-
unit speed, sinusoidal path &(\) = col(\, 0.8 cos (X)).
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Fig. 5: The Chameleon R100 maintaining a desired speed of

0.3 m/sec along the sinusoidal path.

of the robot in each run is presented in Table II. Figure 7 gives
a zoomed in view of the path following error. We see that the
path following error in each run remains within £0.015m. We
conclude that path following controller gives fairly accurate
and reliable results as the mean path following error of the
six runs is 1.0689cm with a standard deviation of 0.154cm.

I I I I I i
-3 -2 -1 0 1 2 3 4

30 40 50 60 70
t(sec)

(b) Path following error.

Fig. 6: Multiple experiments following circular path o
[0,2.6m) — R2, X\ = col(1.3sin(\/1.3), 1.3 cos (A/1.3)).

el (m)

i I I I
22 24 26 28 30 32 34 36 38 40
t(sec)

Fig. 7: Magnified view of the path following error after the
convergence of the robot to the desired path.

We observed that the closed-loop performance is very sen-
sitive to IPS calibration errors. A small misalignment between
the center of IR reflectors and center of the rear axle, i.e.,
(x1,22), is reflected in the path following error. Moreover,
we observed that the error is reduced by a few centimeters if
an EKF is used, as described above, on all six states of the
system. An adaptive path following controller may perform
better in the face of calibration errors.



TABLE II: Steady-state path following error. The initial condi-

tions (z

1(0),22(0)) and x3(0) are given in metres and radians,

respectively. The path following error is given in centimetres.

Test  (21(0),22(0)) z3(0) lebr

1 (3.0267,0.4083) 1.8153 1.0580
2 (—0. 1675 —1.7628) 0.1440 1.3766
3 (2.7383,1.2309) 2.3205 0.9556
4 (1.4719,1.8907) 2.9793 1.0089
5 (—0. 0971 —0.3565) —0.6987 1.0148
6 (—2.2894,—-0.4131) —1.0454 0.9992

VII. CONCLUSIONS AND FUTURE RESEARCH

In this paper a path following controller is designed for the
kinematic model of a car-like mobile robot using transverse
feedback linearization with dynamic extension for a large class
of paths. The control method is experimentally demonstrated
on a Chameleon R100 Ackermann steering robot. It has been
shown that the path following controller forces the robot to
converge and then follow the desired path with very small
error. Future research includes precise characterizations of the
region of attraction of the proposed controllers, and the use of
adaptive, nonlinear PI path following controllers based on the
notion of immersion and invariance [34] to reduce sensitivity
to sensor calibration errors.
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