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Abstract 

This thesis outlines a set of procedures for estimating annual average daily bicycle traffic (AADB) 

from one day, 8-hour turning movement counts (TMCs). Factoring methods for annualizing short 

duration counts have been long established for motor vehicle traffic, and more recent research has 

adapted many of these methods to pedestrians and bicyclists. However, much of this research has 

been concerned with estimating AADB on dedicated cycling facilities. Less has been done to transfer 

these methods to estimating cyclist activity at intersections, even though it would be valuable to 

measure cyclist exposure for network safety analysis and for broader planning purposes. TMCs 

represent a valuable potential source of data for this purpose, as it is common for North American 

jurisdictions to regularly collect them as part of ongoing traffic monitoring programs. Sets of video 

monitoring unit (VMU) data from Milton, Ontario, and Pima County, Arizona, were used to evaluate 

whether existing methods could be appropriately applied to 8-hour TMCs. Several updates to 

conventional estimation methods were proposed to account for the differences between TMCs and 

“conventional” cyclist counts. Additionally, methods are proposed for filtering VMU data; and for 

matching short-duration count locations to empirical factor groups using their land-use and physical 

characteristics. The resulting set of procedures could be implemented by transportation agencies using 

data which they may already be collecting to generate estimates of cyclist activity at any intersection 

in their jurisdiction, although further work is likely needed to improve estimation accuracy, especially 

at low-volume locations.  
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Chapter 1  

Introduction 

1.1 Background and Need 

Cycling as a legitimate mode of commuting has grown substantially in North America over the past 

20 years, with the number of cycling commuters in Canada alone growing by 87.9% between 1996 

and 2016 [1]. This growth has been accompanied by (or possibly driven by) an increase in policy 

promoting sustainable transportation and the development of larger and more comprehensive cycling 

infrastructure networks, with governments at all levels acknowledging the potential health, 

environmental, social, and economic benefits that cycling provides. With this increase in interest, it is 

necessary for transportation agencies to adapt their policies and procedures to account for the growing 

demand. It also creates the need for more comprehensive and detailed cyclist activity data to facilitate 

an informed, multi-modal transportation planning process. 

Although the volume of research relating to cycling activity has increased as well [2], the body of 

literature is still lacking somewhat compared to that for motor vehicle traffic. Still, there has been a 

significant number of studies published since 2010 relating to the estimation of non-motorized traffic 

volumes. Of particular emphasis has been methods for calculating expansion factors, which can be 

calculated from complete datasets (i.e. data collected by permanent, continuous traffic monitoring 

equipment) and then applied to short-duration counts (typically manual counts less than 24-hours in 

length) to produce estimates of annual average daily bicycle traffic (AADB). Although procedures for 

the development and application of expansion factors for motorized traffic have been long 

established, equivalent procedures for cyclists are more recent.  

Importantly, the scope of research on this subject has been limited to estimating AADB on 

permanent, dedicated, usually high volume and high priority cycling facilities. While this is very 

useful, it is also somewhat constraining. It is well established that the presence of dedicated facilities 

increases cycling activity [3] [4], and although it is more difficult to show that variation in relative 

temporal patterns can be explained by facility type, it seems reasonable to assume that cyclist activity 

patterns at a given facility will be most similar to activity patterns at facilities of the same type This 

would mean that factors calculated using continuous data collected from dedicated cycling facilities 

would be most appropriately applied to estimate AADB at other dedicated cycling facilities, so that 

only a very small portion of the overall transportation network in most North American cities could 
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be covered by such an analysis. It would be more valuable, then, to be able to estimate AADB at 

intersections across the whole network, so that some measure of cyclist exposure is available to use 

for safety analysis and for broader planning purposes. 

Until recently, the key limitation towards this goal had been data availability, with most count data 

coming from dedicated cycling infrastructure. However, video monitoring units (VMUs) which 

provide continuous, movement specific traffic counts at intersections are becoming more common. 

With these data, it should be possible to calculate sets of expansion factors which can be used to 

estimate AADB from one-day TMCs at any intersection in a network. 

1.2 Purpose 

This thesis outlines a comprehensive procedure for the development and application of expansion 

factors to estimate annual average daily bicycle traffic (AADB) statistics from one day, 8-hour 

turning movement counts (TMCs). Cyclist data from several North American jurisdictions are used to 

develop, refine, and test methods for quality checking continuous cyclist count data; establish factor 

groups in sets of count locations; calculate standardized temporal expansion factors; and those factors 

used to generate estimates of AADB from 8-hour turning movement counts (TMCs) which local 

jurisdictions are already collecting. These methods could be implemented by transportation agencies 

as part of ongoing traffic monitoring programs, giving them the ability to estimate AADB at any 

intersection for which a TMC is available, creating a valuable source of data for numerous 

transportation planning processes. 

1.3 Research Scope and Organization 

This thesis is divided into five additional chapters. Each of these chapters has a specific purpose and 

scope, all contributing to the broader goal of developing a comprehensive procedure for the 

estimation of AADB from one-day TMCs. A review of practice is split up throughout the thesis, so 

that the literature most relevant to the work done in each chapter is discussed alongside it.   

1.3.1 Chapter 2: Filtering Continuous TMC Data 

This chapter is concerned with adapting already established quality control measures for conventional 

cyclist count data to video monitoring unit (VMU) data. The specific research objectives of this 

chapter are to: 
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• Summarize and characterize the datasets used in this research. 

• Understand the cyclist count patterns which may indicate a counting error in a conventional 

count dataset. 

• Develop a set of baseline filters for identifying suspicious observations in a set of 

conventional counts. 

• Understand the differences between conventional cyclist count data and cyclist counts 

collected using a VMU; adjust the baseline filtering logic accordingly. 

• Establish rules for simulating the collection of TMCs in real-world practice. 

Several different datasets are used in this chapter: a set of conventional cyclist count data from 

Hamilton, Ontario is used to establish the baseline filters; a VMU dataset from Milton, Ontario is 

used to adjust the filters; and the adjusted filters are applied to a VMU dataset from Pima County, 

Arizona, which is the primary dataset used in subsequent chapters. 

1.3.2 Chapter 3: Baseline AADB Expansion Methods 

Chapter 3 includes a detailed review of the existing literature pertaining to expansion factors for 

AADB estimation. Several “baseline” methods are identified and applied to the Milton and Pima 

County VMU datasets. The research objectives for this chapter are to: 

• Summarize in detail the state of practice pertaining to expansion factors for AADB 

estimation. 

• Identify and understand a set of common “baseline” methods, discussing the advantages and 

limitations of each. 

• Develop a procedure for testing estimation methods, using a VMU dataset to simulate the 

collection of one-day TMCs.  

• Compare results from the baseline methods in terms of estimation accuracy. 

1.3.3 Chapter 4: Adapting the Baseline Expansion Methods for TMCs 

Having identified and applied “baseline” expansion methods in Chapter 3, Chapter 4 improves upon 

those methods by adapting them to better suit TMCs. The objectives for this chapter are to: 

• Identify the limitations of using TMCs for AADB estimation, with reference to the results 

produced in Chapter 3. 

• Identify adjustments that could be made to the baseline methods which would address these 

limitations. 

• Propose an updated set of expansion factors and test them on the Pima County dataset; 

compare these results to the baseline results in terms of estimation accuracy. 
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1.3.4 Chapter 5: Modelling Factor Groups Using Locational Characteristics 

The second to last chapter in this thesis addresses the issue of identifying the correct factor group for 

a short-term count location (STCL) for which less than 24-hours of count data is available. The 

research objectives for this chapter are to: 

• Collect a set of land-use and roadway-characteristic data for count locations in the Pima 

County dataset, referencing literature on variables which influence cyclist activity patterns. 

• Develop a multivariate linear model relating expansion factors to land use variables. 

• Develop a logistic regression model relating nominal factor groups to land use variables. 

• Develop an iterative procedure for evaluating these models by predicting the accuracy of 

factor-group prediction; evaluate the impact of using predicted groups on estimation 

accuracy. 

• Propose an alternative approach to determining STCL factor groups by manually assessing 

the land use characteristics of each Pima County intersection and relating them to cyclist 

activity patterns. 
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Chapter 2 

Filtering Continuous Cyclist Turning Movement Counts 

Several different sets of data – both “conventional” cyclist-only counts and automated intersection 

traffic monitoring data – were used to study AADB estimation methods. Data sources are introduced, 

datasets summarized, and data preparation discussed in this chapter, along with a detailed discussion 

of the development and adaptation of filtering rules for turning movement count (TMC) data.  

2.1 Data Sources 

This section will provide an overview of the data used in this study. Several different datasets were 

used for different purposes. These will be referred to as either the Hamilton, the Milton, or the Pima 

County datasets, with more information on the source and composition of each found below. 

2.1.1 Hamilton, ON Continuous Cyclist Count Data 

Conventional cyclist count data was obtained from the City of Hamilton, Ontario, Canada. It was 

collected by permanent counting equipment installed at six different locations around Hamilton, all 

on permanent cycling infrastructure. The distinction between “conventional” data and the TMC data 

which comprises the other two datasets will be expanded on in the rest of this chapter. Refer to Table 

1 below for a summary of the Hamilton dataset by location.  

Table 1: Summary of Hamilton count locations 

ID Location AADB Start Date End Date Count Days Infrastructure Type 

1 Bay@Cannon 142 2017-11-21 2019-09-30 678 Bidirectional cycle track 

2 Bay@Hunter 177 2017-11-27 2019-09-30 672 Bidirectional cycle track 

3 Bay@Stuart 86 2017-12-04 2019-09-30 665 Painted bike lane 

4 Cannon@Bay 113 2015-12-11 2019-09-30 1389 Bidirectional cycle track 

5 Cannon@West 390 2016-01-19 2019-02-28 1136 Bidirectional cycle track 

6 King 270 2016-07-19 2019-09-30 1168 Bidirectional cycle track 

2.1.2 Milton, ON Intersection Traffic Monitoring Data 

Turning movement count (TMC) data represents the volumes of traffic passing through an 

intersection over a given time period by approach movement (left, right, or through), often 

disaggregated by traffic type (light and heavy vehicles, articulated trucks, buses, pedestrians, bicycles, 
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etc.). TMCs are usually collected manually during peak-hours for a single weekday; more information 

on TMC collection can be found in Section 2.7. However, with the ongoing improvements to video 

collection and processing technology, it is becoming more common to install video monitoring units 

(VMUs) at high volume intersections [5]. These collect video which is then processed through image 

recognition software to produce highly accurate, continuous TMC data [6].  

VMU data was collected at eight intersections in Milton, Ontario, Canada. Refer to Table 2 below 

for a summary of the Milton dataset by location, and to Figure 1 for a map of locations. Raw data 

contained a timestamped record for every vehicle, bicycle, or pedestrian passing through the 

intersection; this was aggregated to 15-minute and 24-hour intervals for analysis. 

Table 2: Summary of Milton count locations 

ID Name Start Date End Date 
Count 

Days 

Avg. Daily 

Motorized 

Avg. Daily 

Bicycles 

4 Thompson Road and Childs Drive 2018-06-05 2020-04-16 681  30,769  35.9 

5 Thompson Road and Laurier Avenue 2018-06-06 2020-04-16 680  29,912  34.1 

9 Ontario Street South and Pine Street 2018-10-12 2020-04-16 552  24,689  12.8 

14 Bronte Street North and Main Street 

West 

2018-11-06 2020-04-16 527  23,161  18.8 

15 Ontario Street South and Childs Drive 2018-10-12 2020-04-16 552  25,888  10.4 

17 Main Street East and Mall Entrance 2018-10-19 2020-04-16 545  21,518  11.3 

22 Thompson Road and McCuaig Drive 2018-05-25 2020-04-16 692  30,640  11.7 

25 Main Street East and Ontario Street 

North 

2018-10-12 2020-04-16 552  32,259  18.5 
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Figure 1: Milton count locations (Map data copyrighted OpenStreetMap contributors [7]) 

2.1.3 Pima County, AZ Intersection Traffic Monitoring Data 

VMU data was also acquired from a number of intersections in Pima County, Arizona, in the same 

format as the Milton dataset. Refer to Table 3 below for a summary of the Pima County dataset by 

location, and to Figure 2 for a map of locations. 

  



 

 8 

Table 3: Summary of Pima County count locations 

ID Name Start Date End Date 
Count 

Days 

Avg. Daily 

Motorized 

Avg. Daily 

Bicycles 

5 Drexel Rd / Palo Verde Rd 2020-01-02 2020-09-10 252  15,877  13.0 

6 Craycroft Rd / Sunrise Dr 2019-11-20 2020-09-10 295  25,878  22.3 

7 Overton Rd / Shannon Rd 2020-01-05 2020-09-10 249  12,681  8.2 

9 Benson Hy / Swan Rd / Valencia Rd 2020-01-02 2020-09-10 252  28,460  7.1 

13 La Cholla Bl / Orange Grove Rd 2019-11-18 2020-09-10 297  35,901  8.2 

34 La Cholla Bl / Ruthrauff Rd 2019-05-07 2020-09-10 492  30,504  18.8 

36 Camino de la Tierra / Ina Rd 2019-03-31 2020-09-10 529  31,221  15.7 

38 Sunrise Dr / Swan Rd 2019-12-05 2020-09-10 280  42,778  5.8 

39 Cortaro Farms Rd / Magee Rd / 

Shannon Rd 

2020-01-05 2020-09-10 249  21,544  11.4 

41 Hardy Rd / La Canada Dr / Overton 

Rd 

2020-01-05 2020-09-08 247  27,038  37.2 

42 Romero Rd / Ruthrauff Rd 2019-09-29 2020-09-10 347  20,407  21.7 

43 Calle del Marques / Sunrise Dr 2019-12-05 2020-09-10 280  30,837  20.1 

49 Sabino Canyon Rd / Sunrise Dr 2019-10-03 2020-09-10 343  5,527  83.3 

50 Magee Rd / Shannon Rd / Tuscany Dr 2020-01-05 2020-09-10 249  21,743  8.4 

52 1st Av / Christie Dr / Ina Rd 2019-05-12 2020-09-10 487  21,868  9.0 

53 La Cholla Bl / Magee Rd 2020-01-05 2020-09-10 249  26,119  9.0 

57 Orange Grove Rd / Shannon Rd 2019-11-18 2020-09-10 297  25,584  4.9 

59 Hardy Rd / Thornydale Rd 2020-01-05 2020-09-10 249  17,002  22.1 

62 Cortaro Farms Rd / Thornydale Rd 2020-01-05 2020-09-10 249  26,041  4.7 

69 Orange Grove Rd / Skyline Dr 2019-11-20 2020-09-10 295  32,189  11.2 

70 Linda Vista Bl / Thornydale Rd 2018-10-10 2020-09-10 701  19,185  9.7 

71 Kolb Rd / Sunrise Dr 2019-10-09 2020-09-10 337  15,407  29.2 

72 La Canada Dr / River Rd 2019-12-10 2020-09-10 275  42,050  13.9 

73 Ina Rd / La Canada Dr 2019-06-10 2020-09-10 458  41,169  29.1 

76 Campo Abierto / Sunrise Dr 2019-12-05 2020-09-10 280  28,911  17.4 

77 Camino De La Tierra / Orange Grove 

Rd 

2019-11-17 2020-09-10 298  28,103  10.3 

80 Alvernon Wy / Valencia Rd 2020-01-02 2020-09-10 252  30,046  5.2 

81 Overton Rd / Thornydale Rd 2018-10-09 2020-09-10 702  18,123  13.9 

85 37th St / Golf Links Rd / Palo Verde 

Rd 

2020-01-02 2020-09-10 252  27,309  11.8 

96 Ina Rd / Mona Lisa Rd 2019-05-07 2020-09-10 492  30,088  8.1 

97 Colossal Cave Rd / Mary Ann 

Cleveland Wy 

2019-11-12 2020-09-10 303  15,078  30.1 

100 Pontatoc Rd / Sunrise Dr 2019-12-05 2020-09-10 280  31,362  26.9 

101 Ina Rd / Westward Look Dr 2019-11-19 2020-09-10 296  31,733  29.6 

105 La Cholla Bl / Overton Rd 2020-01-05 2020-09-10 249  10,182  9.6 
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Figure 2: Pima County count locations (Map data copyrighted OpenStreetMap contributors [7]) 

Although data at several Pima County intersections was available into 2019 and 2018, for consistency 

it was decided to only use data starting from the last date on which data was available for most 

locations (this was January 5, 2020, but data was included up to January 1, 2020 where possible). 

Furthermore, it was assumed that the emergence of the Covid-19 pandemic early in 2020 would 

substantially impact transportation activity patterns. It was estimated that restrictions relating to the 

pandemic started to come into effect around March 15, 2020 in Pima County. Figure 3 below very 

clearly shows motor vehicle traffic volumes across all 34 count locations falls steeply at about this 

time, while at the same time average cyclist volumes climbed rapidly. For this reason, data for the 

remainder of 2020 after March 15 was considered unrepresentative and was excluded from the Pima 

County. 

Tucson 
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Figure 3: Average daily bicycle and motor vehicle traffic volumes across all 34 Pima County count locations, 

01/01/2020 - 10/09/2020 

2.2 Filtering Conventional Cyclist Counts 

Much of the existing work related to cyclist demand estimation is built on what can be labelled as 

“conventional” cyclist counts. In general, these counts are bi-directional, often mid-block, and 

collected continuously by automated infra-red or inductive loop counters installed on high-volume 

dedicated cycling infrastructure. As a consequence, most common practice for quality checks was 

developed for conventional counts. The Hamilton dataset was used to develop a cyclist count filtering 

framework, based on a review of relevant literature on quality checks for active transportation data.  
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2.2.1 Review of Relevant Literature and Practice 

The primary purpose of filtering count data is to identify erroneous or inaccurate data which may 

adversely affect an analysis. “Erroneous” data in this application specifically refers to inaccurate data 

measurements caused by counting equipment malfunctions or other external factors. Some possible 

scenarios which could lead to inaccurate measurements from a conventional bike counter include: 

• Counting equipment malfunctions, damage occurring to the equipment, or a loss of power 

which cause the counter to stop recording or record inconsistently 

• Environmental factors, such as snow buildup blocking an infrared sensor or camera causing 

abnormally low counts; or an impediment on the sidewalk causing pedestrians to walk 

through a bike lane, resulting in abnormally high counts [8] 

Many of these issues are specific to the technology deployed in a location, and furthermore many of 

the filtering techniques applied across the literature are done so in an ad-hoc fashion to best meet the 

requirements of any given study or data source. However, several count patterns were identified both 

from the literature and by inspecting the Hamilton data which probably indicate some form of 

counting error: 

1. “Null”, or missing counts 

2. Consecutive zero counts 

3. Consecutive, identical non-zero counts 

4. Automated count interval outliers (i.e. 15-minute count outliers) 

5. 24-hour zero counts 

6. 24-hour count outliers 

Each of these six count patterns can be identified through a separate sub-process falling under the 

larger heading of “data filtering”. The goal of these sub-processes is to identify potentially inaccurate 

or unrepresentative counts for future investigation [9], the removal of which can improve the overall 

quality of the database. Data are not removed outright from incoming datasets, only flagged if they 

meet one of the filtering conditions. A researcher can then examine flagged counts in more detail to 

determine if they should be excluded. A scan of quality control techniques was conducted across 

several sources and summarized in Table 4. 

Table 4: Summary of literature scan for quality control thresholds 



 

 12 

Source 
"Missing" 

Counts 

Consecutive 

Zeros 

Consecutive 

Non-zero’s 

Outliers 

(interval) 

Outliers  

(24h Count) 

24h Zero 

Counts 

Colorado 

DOT [10] 

Targeted visual 

inspection of 

temporal plots 

Flag series of 8 

or longer 1h 

counts 

Flag series of 4 

or longer 1h 

counts 

Flag 1h counts 

outside 

2.5(IQR) + Q3 

from weekly 

average for that 

hour 

- - 

Miranda-

Moreno et al 

[11] 

Visual 

inspection of 

temporal plots 

 - - Visual 

inspection of 

temporal plots 

for “extreme” 

values 

- - 

McNeil et al 

[12] 

"Null" values 

removed 

outright 

Flag series 

longer than 99 

15-min counts 

Flag series of 9 

15-min counts, 

at the longest 

Flag 15-min 

counts >=250 

for expected 

volume <100 

 - - 

Medury et al 

[13] 

 - Flag periods 

longer than 24-

hours 

- - “Median 

Absolute 

Deviation” 

method 

- 

Minnesota 

DOT [14] 

Visual 

inspection of 

temporal plots 

Undefined 

“long” runs 

 - - Flag counts 

outside of 2 

Stdv. from 

mean 

Remove daily 

zeros outright 

Nordback et 

al [9] 

- Flag series of 

>15 1h counts 

Flag series of 

>6 consecutive 

records 

Flag hours 

>1500 

Flag days 

>10,000 

Flag days with 

zero counts 

Note:”-“ in the table indicates that paper did not identify this as something for which filtering was applied 

Although the literature provides some guidance on automated cyclist count filtering, there is  a lack of 

consensus on specific thresholds for flagging erroneous data. For this reason, the Hamilton dataset 

was used to further develop filtering logic for identifying each of the six count patterns listed in the 

previous section as probably representing a counting error.  

2.2.2 Filter 1: Missing Data 

Filter 1 (F1) identifies missing data at the disaggregate count interval level (i.e. raw 15-minute 

counts) by flagging “null” observations. A “null” observation is different from a count of zero which 

– barring the presence of any other counting errors – would mean that a counter was operational, but 

that no cyclists passed the counter during a given interval. A “null” (or blank) record in the dataset, 

however, indicates that the equipment was not recording at all, whether cyclists were present or not 
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(for instance, if the equipment ran out of battery or was damaged in some way). A “null” entry then 

almost certainly indicates a counting error and should always be flagged. 

2.2.3 Filters 2 and 3: Consecutive Identical Counts 

There are times when detectors may erroneously report - as what could be a result of an equipment 

malfunction or environmental interference - sequences of count intervals with identical, consecutive 

volumes. These volumes can be zero or any positive integer, which appear in a long series of count 

intervals. Although this issue is commonly encountered, there is no consensus as to what constitutes a 

“long” series, or what the threshold for the length of a sequence of consecutive identical counts 

should be for it to be considered suspicious. If we consider cyclist arrivals at a given point to be 

randomly distributed, then we should assume that sequences of matching counts will occur in a set of 

count data purely by chance. These ‘valid’ runs of counts need to be distinguished in some way from 

the erroneous ones. In other words, we want to establish a threshold (N) for the number of 

consecutive, identical count intervals (n) such that when n ≥ N, those intervals can confidently be 

flagged as suspect. One strategy for doing so is to examine our count data as being Poisson 

distributed. Cyclist arrivals at a given detector are, or are close enough to appear to be, randomly 

distributed and discrete, and so can be examined as a Poisson process where the probability of X 

cyclists arriving during a time period T can be expressed by Equation (1). 

𝑃[𝑋] =
(𝜆𝑇)𝑋𝑒−𝜆𝑇

𝑋!
 (1) 

Where: 

λ  = mean arrival rate (cyclists/hour) 

T = time interval duration (minutes) 

X = number of cyclists arriving during a time interval with duration T 
 

If this is true, then we can also calculate the probability of observing a count of Xi for a 15-minute 

interval (0.25 hour) i, given an average arrival rate for that count interval (λ). For example, if λ = 12 

cyclists/hour, then the probability of observing exactly 2 cyclists in any given interval i is: 

𝑃[𝑋 = 2] =
(12 × 0.25)2𝑒−(12×0.25)

2!
= 0.224 (2) 
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For this filter, however, we are not just interested in the probability of observing Xi once, but the 

probability of observing the same value of X in consecutive intervals, or put another way using the 

numerical example from above, the probability of observing count value Xi = 2 given that the value of 

X in n previous time intervals was also 2. This is expressed as P[Xi = 2| Xi-1 = 2| Xi-2 = 2|…| Xi-n = 2], 

and since arrivals are a Poisson process: 

𝑃[𝑋𝑖 = 2|𝑋𝑖−1 = 2| … |𝑋𝑖−𝑛 = 2] = 𝑃[𝑋𝑖 = 2] × 𝑃[𝑋𝑖−1 = 2] × … 𝑃[𝑋𝑖−𝑛 = 2] (3) 

And the general case is: 

𝑃[𝑋𝑖|𝑋𝑖−1| … |𝑋𝑖−𝑛] = 𝑃[𝑋]𝑛 = (
(𝜆𝑇)𝑋𝑒−𝜆𝑇

𝑋!
)

𝑛

 (4) 

The implication of this is that it becomes more unlikely to observe the value X in n consecutive time 

intervals the larger n becomes, which supports the idea that very long runs of X could be arising from 

some counting error and should be labelled as suspect. Knowing this, we can now try to establish a 

threshold (N) for n, which will be a function of how confident we want to be in correctly flagging 

erroneous runs of consecutive counts.  

To begin with we will set a confidence limit, β (0 < β < 1), representing our willingness to identify 

valid data as suspicious. A confidence limit of 0.95 for instance would indicate that we wish to 

identify runs of counts where there is a greater than 95% probability of not observing a count value X 

in n consecutive intervals, and that we are accepting that 5% of the time, correct count volumes will 

be mistakenly identified by the filter. If the probability of observing n consecutive, identical counts is 

given by P[X]n as calculated in Equation (4), then the probability of not observing that sequence can 

be defined as β = 1 – P[X]n and we can rewrite Equation (4) as 

𝛽 = 1 − 𝑃[𝑋𝑖|𝑋𝑖−1| … |𝑋𝑖−𝑛] = 1 − 𝑃[𝑋]𝑛 = 1 − (
(𝜆𝑇)𝑋𝑒−𝜆𝑇

𝑋!
)

𝑛

 (5) 

Increasing the value of β raises the threshold N, reducing the number of counts which will be 

flagged, but also decreasing the likelihood of mistakenly declaring valid data as suspect. Instead of 

calculating an integer value for N, we can use our confidence interval directly as the actual threshold 

value by filtering interval counts where (1 - P[Xi]) is greater than β, or where the probability of 

observing the count Xi in the nth consecutive interval is lower than we would be confident of 

observing in an accurate dataset.  
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Consider again the numerical example from above, λ = 12 cyclists/hour and Xi = 2, evaluated at a β 

value of 99.9%. The probability of observing the count 2 in n consecutive intervals is calculated by 

Equation (6) and the evaluation of P[Xi] for n equals one through 6 is seen in Table 5, the third 

column of which shows that 1-P[2]n surpasses the β threshold at n = 5; the probability of not 

observing a count value of X=2 five consecutive times is 99.94%.  

𝑃[2]𝑛 = (
(12 × 0.25)2𝑒−12×0.25

2!
)

𝑛

 (6) 

Table 5: Evaluation of P[2]n for n = {1,2,3,4,5,6} 

n 𝑷[𝟐]𝒏 1 - 𝑷[𝟐]𝒏  (1 - 𝑷[𝟐]𝒏) ≥ β 

1 22.40% 77.60% No 

2 5.02% 94.98% No 

3 1.12% 98.88% No 

4 0.25% 99.75% No 

5 0.06% 99.94% Yes 

6 0.01% 99.99% Yes 

 

2.2.3.1 Calculating Arrival Rate (λ) 

Consider again the variable N as the value of n at which (1 - P[Xi]) surpasses the β threshold. Figure 4 

below shows how the value of the N threshold for consecutive values of X=2 responds to the hourly 

cyclist arrival rate λ, for β values of 98%, 99.8%, and 99.99%. 
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Figure 4: Value of N by hourly cyclist arrival rate (λ) for X = 2, at several levels of confidence 

There is clearly some significant variation in N according to arrival rate, which is where another 

difficulty in the Poisson approach arises. Cyclist arrival rates are, of course, not constant from hour to 

hour, day to day, or month to month. Even within a single day the rate of arrivals at a counting station 

fluctuates substantially, which is illustrated in Figure 5; on the King Street Cycle Track in Hamilton, 

the average hourly arrival rate, calculated across multiple years’ worth of data for that counting 

station, has a range of 27 cyclists/hour, following a commuter-peak pattern which is consistent across 

other locations. We cannot then use just one constant arrival rate to calculate N across an entire 

dataset. Referring again to the example in Figure 4, a λ value of 1 would give us an N value of 3 for 

X=2 at β=99.99%, compared to N=7 for λ=8. The higher arrival rate here would result in far fewer 

sequences of counts being flagged than would the lower. Furthermore, since N is also a function of 

the interval count value, and the functional forms seen in Figure 4 are different for every value of X, a 

filtering algorithm using a constant arrival rate could not be said to be applying itself consistently 

across a dataset.  

 

Figure 5: Average hourly cyclist arrival rate (λ) by hour-of-day for three Hamilton counting stations 
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We can address this issue using a moving window which sums every interval count with the previous 

two and next one consecutive values, expressed below in Equation (7): 

𝜆𝑖 =  𝑋𝑖 + 𝑋𝑖+1 + 𝑋𝑖−1 + 𝑋𝑖−2 (7) 

These four 15-minute intervals are a good representation of the hourly arrival rate at a given 15-

minute count interval i. Every i in the dataset will have an associated λ value calculated in this way, 

and P[Xi] will be calculated using this value instead of a constant. This sampling pattern was chosen 

to ‘centre’ the interval count in an hourly arrival rate, rather than summing the prior 3 or subsequent 

three counts which would put the interval at either the leading or trailing end of that hour, 

respectively.  

2.2.3.2 Filter 2: Consecutive Zero Counts 

Issues with the Poisson method arise when considering runs of consecutive zero counts, or sequences 

of intervals where no cyclists were counted, which may indicate that the counter has stopped 

recording counts correctly. As discussed above, this should be distinguished from a “null” or empty 

data entry, which occurs when the equipment stops recording entirely, and which are all considered 

counting errors. A zero count may still be a valid entry, however an extremely long sequence of 

consecutive count intervals with zero counts is usually indicative of a counting error, such as if snow 

has built up against the sensor so that it is still technically operating but is unable to detect any 

passing cyclists [8]. Since zero counts are still by far the most common entry in the 15-minute 

interval datasets we have examined – resulting from the long, lean daily off-peak periods most cyclist 

infrastructure experiences – this threshold must be appropriately high to avoid incorrectly flagging 

data entries. 

Although it is discussed in the previous section how using a constant λ value is not appropriate for 

the calculation of N, in the case of consecutive zero counts the opposite may be true. As Figure 6 

below illustrates, N is especially sensitive to the value of λ when λ is small and X = 0.  For this 

reason, most of the relevant studies from the literature use a constant value of N.  
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Figure 6: Value of N by hourly cyclist arrival rate (λ) for X = 0, at different levels of confidence 

Different researchers have found different thresholds to be appropriate, although there is no real 

consensus on what the most appropriate value is.  While the Colorado Department of Transportation 

uses a threshold of over 2-days of consecutive zeros [10], the U.S. Federal Highway Administration 

Travel Monitoring Analysis System (TMAS) filters runs of just 7-hours or longer [12]. Research done 

at Portland State University placed the threshold somewhere in the middle, finding that runs of over 

15-hours were uncommon [9]. It is possible that N should be geographically specific, but there is no 

clear basis for this in the literature, nor does there not appear to be an objective method to calibrate 

the optimal value for N for consecutive zero-counts.   

2.2.3.3 Sensitivity Analysis 

Unlike for non-zero counts - which will be discussed in the next section, and where counts are filtered 

using the β confidence limit - there is no way of calibrating our willingness to incorrectly identify 

valid runs of zero-count entries. Only by setting a constant value for N high enough can we be more 

confident in correctly identifying invalid data, and then we run the risk of failing to identify it at all. 

For this reason, the filter results should be considered cautiously. 

Figure 7 shows the relative frequency of consecutive zero-count runs- by run-length across five 

Hamilton counting locations, illustrating how the value of N would impact the proportion of 

sequences being filtered. Instances of individual zero-counts, or zero-counts which are not part of a 
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sequence of consecutive zeros, are excluded from these calculations because: one, they are not the 

target of this filter; and two, they make up by far the largest proportion of zero-counts, individual 

interval counts of zero being much more common than observing any other sequence length. The five 

counting stations included in this graph have very similar run length distributions, and so have been 

aggregated here for the sake of graphical clarity. From this figure, and from the supporting data, we 

can make several observations. First, couples of zero-counts, or runs of length 2, are by far the most 

common. This is to be expected as they are more likely to occur throughout the day, even during on-

peak hours, than longer sequences. Second, the relative frequency of run-lengths decreases as N 

increases, and the rate of that decrease also decreases as N grows. Third, runs of zero-counts between 

25 and 60 intervals long (6.25 to 15 hours long) are not common, representing just under 1% of all 

sequences witnessed, although they are still occasionally observed. Fourth, runs greater than 61 

intervals long are very rare, comprising just 0.05% of the observed sequences for these 5 locations. 

Finally, there does not seem to be objective way to determine the appropriate value of N, but by 

plotting relative frequency as we have done here it is possible to get an impression of what will be 

included and excluded from the filter depending on what N is chosen. In this case, it would seem as if 

60 would be an appropriate value for N because of the rarity of runs above this length. 

 

Figure 7: Relative frequency of consecutive zero-runs by run-length, for five Hamilton counting locations 

Another way to examine zero-count runs is to plot the relative frequency not of the runs themselves 
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most frequently occurring sequences, representing 38% of all sequences, the actual number of 

intervals which are part of a sequence of two consecutive zero-counts make up only 13% of the total 

number of intervals which are in a zero-count sequence. This helps give some idea of how many 

intervals will actually be filtered depending on the value of N. From Figure 7 we came to the idea that 

60 might be an appropriate value for N. Here, we might come to the same conclusion by examining 

Figure 8. The relative frequency of intervals in a run of between 61 and 100 zero-counts is just 

0.24%, far lower than the other bins displayed. 85% of intervals which are in a zero-count sequence 

would be excluded from this filter. The relative frequency for N > 100 is again much higher, but this 

is to be expected as this bin captures those sequences which run into the thousands of consecutive 

zero-counts and so are obviously erroneous. An N value of 60 then could reasonably be thought of as 

a threshold where the rate of occurrence of accurate sequences of zero-counts has peaked and where 

inaccurate sequences begin to appear. 

Accordingly, in this study a value of N of 60 count intervals has been chosen from the literature [9], 

representing 15 hours of consecutive intervals, which is consistent with the findings above. 

 

Figure 8: Relative frequency and cumulative relative frequency of interval zero-counts by the length of the run 

which they are a part of, across five Hamilton counting locations 

One Hamilton counting location, Bay at Stuart, was excluded from Figure 7, and displayed instead 
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appropriately applied to other counting stations might still be inappropriate. Bay at Stuart is a very 

low-volume location, which sees substantially fewer daily cyclists than the other Hamilton locations 

included in the analysis above. Because of this, long runs of zero-counts are much more likely. We 

can see from Figure 10 that intervals that are part of runs which are between 61 and 100 intervals long 

make up a full 5.3% of the sequenced intervals for Bay at Stuart, compared to 0.24% across the other 

five. Using an N threshold of 60, these intervals would all be flagged. It is entirely plausible that the 

counting equipment was operating correctly when those runs were recorded but that other factors, 

weather especially being one, may have been responsible for the large number of consecutive runs. 

For instance, one flagged day in the Bay at Stuart dataset would be January 11, 2019, a day when 

temperatures in Hamilton were very cold and substantial snow had built up; although the filter clause 

would be triggered here, it is not inconceivable that there were no cyclists for this entire day even 

though the literature, and our own analysis on other counting locations, tells us this span of time is 

unlikely. 

 

 

Figure 9: Relative frequency of consecutive zero-runs by run length, for Bay @ Stuart counting location 
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Figure 10: Relative frequency and cumulative relative frequency of interval zero-counts by the length of the run 

which they are a part of, for the Bay @ Stuart counting location 
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Figure 11: Sample of filtered daily-zero values for N=60, from Hamilton counting location Bay@Stuart 

2.2.3.5 Filter 3: Consecutive Non-Zero Counts 

Although, as was discussed in the previous section, there is some difficulty in our Poisson approach 

when the arrival rate λ is equal to zero. When X > 0 so to is λ, so the full Poisson approach can be 

applied to identify erroneous runs of non-zero counts. This is the basis of Filter 3 (F3). 

The algorithm is as follows: 

 Step 1: Determine the current length of the sequence: 

  If Xi <> Xi-1, then set n = 1; otherwise, n = n+1 

 Step 2: Determine the arrival rate for the current count interval: 

λi = Σ(Xi , Xi+1 , Xi-1 , Xi-2) 

 Step 3: Compute the probability of observing Xi in the current interval: 

𝑃[𝑋𝑖 = 𝑋] =
(𝜆𝑇)𝑋𝑒−𝜆𝑇

𝑋!
 

(8) 

 Step 4: If n > 1, then compute the probability of 𝑃[𝑋𝑖|𝑋𝑖−1| … |𝑋𝑖−𝑛]: 

𝑃[𝑋𝑖|𝑋𝑖−1| … |𝑋𝑖−𝑛] =  𝑃[𝑋𝑖 = 𝑋] × 𝑃[𝑋𝑖−1|𝑋𝑖−2| … |𝑋𝑖−𝑛] (9) 
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 Step 5: If the probability 𝑃[𝑋𝑖|𝑋𝑖−1| … |𝑋𝑖−𝑛] is sufficiently small (i.e. <  (1 − 𝛽) then 

  declare  the count data for intervals i, i-1, …, i-n as suspect.  

Like with zero-count runs, some calibration of the filter threshold is needed. Although the N threshold 

here is being replaced with the direct β probability threshold, it is useful to plot the relative frequency 

of non-zero runs by length, as has been done in Figure 12, to get an idea of the frequency with which 

runs occur. What we can see is that runs of length two are by far the most common, as would be 

expected under our Poisson process assumption as the probability of observing a run decreases 

exponentially with its length. While runs of length 3 and 4 are not uncommon, longer runs occur less 

and less frequently, with no runs longer than 11 observed across the entire Hamilton dataset. 

 

Figure 12: Relative frequency of consecutive non-zero runs by length, across 6 Hamilton counting locations 

In testing the filter algorithm, it was noticed that occasionally runs of just two-consecutive non-zero 

values were filtered. Usually, the cause of this could be attributed to the method used for calculating 

cyclist arrival rate (λ); for instance, where an interval with a very high count, which brings up the 

value of λ, was followed by two intervals with much lower count values, then those intervals would 

be flagged as they are considered unlikely relative to the high arrival rate. Given this, and referring to 

Figure 12 above, an extra condition was added to Step 5 of the F3 algorithm, preventing it from 

filtering runs of less than 4 consecutive counts:  

 Step 5*: IF:   𝑃[𝑋𝑖|𝑋𝑖−1| … |𝑋𝑖−𝑛] <  (1 − 𝛽) 

  AND:   n > 4, then declare the count data for intervals i, i-1, …, i-n as suspect.  
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One variable which still needs to be set is the confidence limit (β), although once again it is difficult 

to do so in a purely objective way. Remember that a high β value reduces our risk of mistakenly 

identifying valid data, but decreases the number of runs which are identified, creating a risk of failing 

to identify invalid data. A low β increases the probability of mistakenly identifying valid data, but 

also ensures that all the invalid data will be captured. Since erroneous sequential non-zero counts are 

relatively rare in our estimation, the best strategy would seem to be setting the threshold on the high-

end to avoid filtering too many sequences. With extremely large datasets of counts, sequential counts 

are bound to happen purely by chance even if the probability of observing them is low. Figure 13 

below shows the sensitivity of the number of sequences filtered from the Bay @ Hunter dataset, by β-

values, which stresses the importance of appropriately setting the threshold. The difference between 

99.85% and 99.90% at this location is the difference between filtering 19 or 8 sequences. At 99.99%, 

no sequences at all are filtered.  

 

Figure 13: Count of filtered sequences by β-threshold, for Hamilton counting location Bay @ Hunter 

For this project, a β-threshold of 99.95% was chosen, high enough to filter only the most improbable 

consecutive non-zero count sequences.   

2.2.4 Filter 4: Hard Cap Value 

The likelihood of observing a count in a 15-minute interval which is higher than the expected daily 

volume at that counting location is very unlikely. For a given day and daily volume, we simply would 
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not expect for all those cyclists to have arrived at the counting station during just one 15-minute 

interval because of what we know about cyclist behaviour, even if arrival rates do vary greatly over 

the course of a day. We can observe much more consistent and distributed patterns of arrivals, which 

makes extreme variations from those patterns suspicious. If such a variation is present in the dataset, 

it is likely the result of a counting error or equipment malfunction and should be flagged. 

As with some previous filters, the conditional value C used here was adapted from the literature. 

McNeil et al [8] performed an analysis on a large cyclist dataset from Portland, Oregon, to develop 

cyclist count quality checks, and produced the following table of recommended C values: 

Table 6: Recommended hard-cap values, by expected daily volume, adapted from McNeil et al [12] 

Expected daily volume Suspicious Possibly Suspicious 

Unknown 1000 500 

< 100 250 100 

100 – 500 500 250 

> 500 2000 1000 

 

Several of these values were tested on the Hamilton data, but no data points were flagged, even for 

the lowest thresholds. Clearly such high 15-minute interval counts are also extremely rare, even non-

existent, in the Hamilton data. However, the filter was maintained in case the issue arises in future 

datasets, using a C value of 250 (the “suspicious” count value for locations with <100 daily expected 

riders). Note that, as can be seen in the table above, a hard-cap filter could be made more robust by 

making it volume dependent, where the hard cap is a function of the expected daily value. However, 

this raises some complications about the calculation of expected daily values which changes 

dramatically from season to season and even within the season depending on many external factors. 

For the purposes of identifying abnormally high 15-minute interval counts here, a non-volume-

specific threshold is enough. 

2.2.5 Filter 5: 24-hour Zero Counts 

Counting equipment is often installed in high-volume locations, to maximize its benefit relative to the 

cost of installing it. With this in mind, 24-hour counts of zero should be considered suspicious. 

Although it is possible that no cyclists pass a station in a day, even at a high-volume location because 

of the seasonal variations inherent to cycling volumes, this filter flags daily zeros for further 

investigation to determine whether the result was erroneous. For instance, a zero value on Christmas 
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day would be more likely than a zero value during the peak summer cycling season. Most daily zero 

values will be captured by F2, however the F2 algorithm can be interrupted by a “null” value, in 

which case the sequence wouldn’t be flagged. So, it is necessary to include this daily filter, and it 

additionally makes it easier to quickly identify when the zero counts occurred.  

2.2.6 Filter 6: Daily Maximum (IQR Cut-off) 

While abnormally high-count values are dealt with at the 15-minute interval level by F4, there also 

needs to be a way of flagging upper outliers in 24-hour counts. These filtered data points don’t 

necessarily represent a technical failure, as very high daily counts can occur accurately for a number 

of reasons (for instance, cycling counts were abnormally high in the City of Hamilton datasets on 

May 28, 2019, “Bike to Work Day”). However, whether these counts are accurate, they should still be 

flagged and assessed for suitability in future analysis. If an outlying daily count is a result of some 

one-off event, and not of the permanent, inherent characteristics of that counting location, then it is 

not suitable for building a model for expanding short term counts.  

A relatively common threshold for filtering outliers, not just in the realm of cyclist count quality 

checks but in other data science applications, is the 2(IQR)+Q3 formula shown by Equation (10) [12]. 

The issue with using this formula, like with some of the other filters, is that cycling activity varies 

extremely over the course of the year, in Canada especially, so that the inter quartile range (IQR) of 

an entire dataset spanning multiple years may not accurately represent any given single day’s count. 

For this reason, a 27-day moving window is applied to give every daily data feature an associated 

quartile value based on the previous 13, and the subsequent 13 days. If the daily value exceeds the 

filtering threshold (𝛽𝐹6) as calculated for that 27-day window, then it is flagged. 

 

𝛽𝐹6,𝑡 = 2(𝑄3,𝑡 − 𝑄1,𝑡) + 𝑄3,𝑡 (10) 

Where: 
 

𝛽𝐹6,𝑡 = Filter 6 threshold for day-of-year t  

𝑡 = The day-of-year, expressed as an integer value between 1 and 365  
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𝑄1,𝑡 = Quartile 1, calculated across the set of 24-hour counts for days in the 

range [t-13 .. t+13] 
 

𝑄3,𝑡 = Quartile 3, calculated across the set of 24-hour counts for days in the 

range [t-13 .. t+13] 
 

Important to note that, as this is the last filtering operation performed, it can be performed on a 

reduced dataset which does not include any of the previously filtered counts. If a datapoint has been 

filtered by any of the previous five filters, it is skipped by the moving window when calculating 

quartiles (e.g., a “null” value will not be one of the 27 values used to calculate the IQR). As well, this 

technique means that the filter will not be applied to the first 13 and last 13 days of data, as they fall 

outside of the moving windows range. 

Figure 14 below shows the 24-hour counts which were flagged by F6 for a single Hamilton 

location. Although most of the flagged values are obviously extreme upper outliers, occasionally 

unexpected values are also flagged; for instance, 08/11/2018 from Bay@Cannon is a relatively low 

count value of 118, but comes on the downward slope of the count curve and is substantially higher 

than any of the subsequent 13 daily counts, which is why it was flagged. The filter performed 

“correctly”, but some consideration might need to be given as to whether this is a value worth 

eliminating from the dataset. 
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Figure 14: Daily counts flagged by Filter 6 across two years of 24-hour counts from the Bay@Cannon count 

location 

2.2.7 Filter Summary 
Table 7 below contains a summary of the filters described in this section. These filters were applied to 

count data from six of the Hamilton locations; summaries of filtering results are given by Table 8, 

Table 9, and Table 10.  

Table 8 shows the results of Filters 1 through 4, which are applied at to the raw, 15-minute interval 

counts. A large number of “null” intervals were identified by F1, and an even larger number of 

intervals which were a part of a run of consecutive zero-counts. Over 10,000 15-minute intervals were 

flagged by this filter for the Bay@Cannon location, representing over 16% of all data; this is a highly 

suspicious result, and further investigation found that the road was closed for construction during a 

long stretch in early 2019, resulting in no cyclists being counted. Very few sequences of consecutive 

identical non-zero counts were identified, and no counts at all were flagged by F4 for 15-minute 

outliers. 
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Table 9 shows filtering results at the daily level; F5 and F6 operate on 24-hour counts, but for 

Filters 1 through 4 a count is given of days on which at least one 15-minute interval was flagged. A 

large number of daily zero values were flagged by F5 across all six locations, although examining the 

results it was noticed that most of these occurred during the winter months and so likely represent 

valid counts. Very few days were flagged as 24-hour count outliers by F6 (just 26 count days across 

all 5714 represented in the dataset). The number of count days flagged at each location ranged from 

as low as 1.85% at Cannon@West, to as high as 18.4% at Bay@Cannon. In total, 89.3% of the count-

days represented in the Hamilton dataset were found to be valid according to the six filters described 

in this section. 

Table 7: Summary of filtering process and sub-processes 

# Name Description Condition Threshold 

Group One – 15-minute counts  

1 Null Flag Counts expressed as “null”, but not zero Xi = “ ” N = 1 

2 
Consecutive 

Zero Counts 

Sequences of 60 or more consecutive counts of zero Xi = Xi-1 = 0 N ≥ 60  

3 

Consecutive 

Non-zero 

Counts 

Sequences of non-zero count values where the 

probability of observing that number of consecutive 

identical counts is less than the threshold β   

Xi = Xi-1,  

 Xi  > 0 

P[X]n < β,  

Β = 0.01% 

4 Hard Cap 
Upper limit on the number of cyclists observed in a 

15-minute period, as a constant value 

Xi ≥ 250 N = 1 

Group Two – Daily Counts 

5 
Daily Zero 

Flag 

Flag daily intervals with a count value of zero Xi = 0 N = 1 

6 
Interquartile 

Range Flag 

Upper limit on the number of cyclists observed over 

one day, based on surrounding days data 

Xi > 2(IQR) 

+ Q3 

N = 1 

 

Table 8: Summary of 15-minute interval flags 

Counting 

Station 

Total 15-min 

Intervals 
1 – Null Entry’s 2 – Zero Counts 

3 – Non-Zero 

Counts 
4 – Hard Caps 

Bay@Cannon 65,184 144 (0.22%) 10778 (16.53%) 4 (0.01%) 0 (0%) 

Bay@Hunter 64,608 336 (0.52%) 8835 (13.67%) 3 (0.00%) 0 (0%) 

Bay@Stuart 63,936 8 (0.01%) 4858 (7.60%) 9 (0.01%) 0 (0%) 

Cannon@Bay 133,440 3175 (2.38%) 7205 (5.40%) 19 (0.01%) 0 (0%) 

Cannon@West 109,152 124 (0.11%) 555 (0.51%) 15 (0.01%) 0 (0%) 

King West 112,224 857 (0.76%) 9202 (8.20%) 9 (0.01%) 0 (0%) 
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Table 9: Summary of daily count flags by counting location 

Counting 

Station 

Total 

Daily 

Counts 

1 – Null 

Entry’s 

2 – Zero 

Counts 

3 – Non-

Zero 

Counts 

4 – 

Hard 

Caps 

5 - 

Daily 

Zero 

6 - 

Daily 

Max 

Flagged 

Days 

% Days 

Flagged 

Bay @ 

Cannon 
679 5 115 2 0 114 5 125 18.41% 

Bay @  

Hunter 
673 7 95 2 0 96 2 104 15.45% 

Bay @  

Stuart 
666 2 89 4 0 43 12 107 16.07% 

Cannon @  

Bay 
1390 39 80 11 0 107 5 134 9.64% 

Cannon @  

West 
1137 4 7 11 0 6 0 21 1.85% 

King West 1169 12 98 8 0 103 2 120 10.27% 

 

Table 10: Aggregate filter summary for Hamilton datasets 

 

  

Filter: Days Flagged  

1 - Null 69 

2 - Zero Count 484 

3 - Non-zero 38 

4 - Hard Cap 0 

5 – Daily Zero 469 

6 - Daily Maximum 26 

Total Flagged: 611 

Total Days: 5714 

% Valid 89.31% 
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2.3 Adapting Conventional Methods to Turning Movement Counts 

As described in the previous section, work was done to develop a robust set of filtering rules for 

conventional cyclist count data, adapting from the literature accepted filtering logic to go alongside 

some novel approaches. Importantly though, this work, in consistency to the bulk of the literature on 

the subject, was done using data from a group of conventional, automated, continuous mid-block 

counters installed on high-volume dedicated cycling infrastructure in Hamilton, ON. These filtering 

rules then may not be appropriate for the purpose of filtering turning movement counts (TMCs), or 

more specifically the video monitoring unit (VMU) data used in this study, which differs from 

conventional cyclist counts in a number of important ways: 

1. Continuous counts of cyclists at intersections are often collected using a real-time vision-

based system rather than the infra-red sensors and/or induction loop sensors commonly used 

to measure conventional active-transportation counts. These technologies are subject to  

different potential sources of failure.  

2. By definition, TMCs are obtained at intersections (most frequently signalized intersections) 

whereas conventional counts are usually taken “mid-block”, or at least, outside of 

intersections, so that counts are at most bi-directional. TMCs capture the turning-movement 

specific, cardinal directionality of traffic at intersections.  

3. Permanent conventional counters are usually installed at high-volume locations to maximize 

their effectiveness. VMU data is obtained at intersections, often for the purposes of assessing 

traffic signal operations, and therefore cyclist volumes may be quite low.  

4. Finally, the VMU data contains counts of both motorized vehicles and cyclists, whereas 

conventional active transportation sensors are most frequently deployed so that they do not 

provide counts of motorized vehicles.  

Accordingly, some adjustments need to be made to the process described in Section 2.2. One year of 

VMU data – from January 1, 2019 to December 31, 2019 – was obtained for eight intersections in 

Milton, Ontario, aggregated to 15-minute intervals. This dataset was evaluated under the conventional 

filtering framework, and the results used to adapt the process for continuous TMC data.  

2.3.1 Filter 1: Missing Data 

The filtering of conventional cycling count data requires methods to determine when the detector 

system has malfunctioned and has not recorded count data.  Systems may be designed such that when 
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the system malfunctions and no count is made, then a “null” entry is recorded in the database (this 

was the case of the Hamilton dataset first used to calibrate filtering rules). Conversely, the system can 

be configured such that when it is malfunctioning and nothing is recorded, the reported count value is 

zero (this is the case of the Milton VMU data used in this study). The difference between the way 

these two sets of counts are recorded creates an issue for the application of Filter 1 on the Milton 

VMU data, which was designed to look for “null” entries which may no longer exist. 

Of course, when a system is operating correctly but no cyclists pass the detector during the count 

interval, then the system also reports a zero count. In conventional count data, the difference between 

a valid and invalid zero-count is made somewhat more distinct by the presence of “null” entries. The 

likelihood of a zero count being valid is highly dependent on the mean volume of cyclists. When the 

mean volume is small, then the probability that no cyclists pass the detector during the interval is 

relatively high and we must have many consecutive intervals with a zero count before we can reliably 

conclude that that the system was malfunctioning.   

However, the video-based monitoring system which collected the data used in this analysis has the 

advantage over conventional cyclist monitoring systems of reporting for each minute not only the 

number of cyclists, but also the number of motorized vehicles (by type) and pedestrians observed for 

each turning movement (or pedestrian crossing). These 1-minute data records (termed the “raw” data) 

were aggregated to provide counts for 15-minute time intervals. We make the assumption that if the 

system malfunctions (e.g. camera view is obscured, camera power failure, communication failure, 

etc.), then counts are not available for traffic, cyclists, and pedestrians. Consequently, we use the 

combined motorized vehicle and cyclist counts (termed traffic counts) across all turning movements 

as the means to identify when the system is malfunctioning.   

A traffic count of zero in a 15-minute interval may represent one of two things: (i) the counting 

system was operating correctly, but no vehicles or cyclists, passed through the intersection during the 

aggregation period, or (ii) the detector system was not operating correctly and count of zero has been 

recorded even though some traffic passed through the intersection, in which case the count should be 

flagged as invalid.  

Examination of the data showed that traffic counts equal to zero for one or two consecutive 

intervals occurred relatively frequently but when they occurred, they most often occurred during 

times of the day when traffic volumes are expected to be very low, and so probably did not represent 
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a system malfunction. Consequently, it was determined that if a zero count is reported by the system 

for three or more consecutive intervals (i.e. for 45 minutes or longer), then it is concluded that the 

system may have malfunctioned and we label those intervals as suspect. An updated filtering 

algorithm for Filter 1 (F1) can be seen below: 

Step 1 Determine if the count Xi is equal to 0, and adjust count c:  

 If Xi =0, then c = 1; else c = 0   

Step 2 Check the value of c to determine the length of the sequence:  

 If c ≥ 3, then declare count data in intervals  

[i, i-1, … , i-(c+1)] to be suspect  
 

2.4 Filters 2-6 

The distinction between “null” and zero-counts is discussed above. Conventional sensors for 

obtaining cyclist counts may exhibit failures by failing to report any count (i.e. “null” count in the 

database), by reporting a zero count for a series of consecutive intervals, or by reporting the same 

count value (greater than zero) for a series of consecutive intervals.  As such, filtering of data from 

these conventional sensors typically uses some threshold of reported zero counts over a number of 

consecutive 15-minute intervals and daily totals of zero to identify system malfunctions.  

The application of these filters though is made difficult by some of the distinctions between 

conventional cyclist counts and TMCs. Normally, filtering approaches would be applied to data 

obtained from permanent sensors installed on facilities where motorized vehicles are prohibited, as 

these are often the highest volume locations and the most valuable to collect count data on. Long runs 

of consecutive zero counts are unlikely at these locations - and daily counts of zero even less so - and 

can be reliably filtered as erroneous. This is not always the case at intersections where VMUs are 

installed, which are not selected because of their high cyclist volumes; the least trafficked of the 

Milton locations included in this study experienced, on average, just over 5 cyclists per day in 2019. 

At these locations, zero-counts are much more likely, and even full days of daily counts cannot be 

assumed to have been a result of an equipment malfunction. 

Seasonality also plays a large part. Figure 15 shows that daily zero-counts are by far more common 

in the Milton database during off-season months (December through April) than during the summer 

peak, when volumes are highest. Evidence shows a strong negative relationship between cycling 
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volumes and winter weather [15], so it might be safer to assume that off-season zero-counts are valid 

than that they aren’t. 

 

Figure 15: Count of 2019 days with a recorded daily cyclist volume of zero, across eight Milton locations 

It can therefore be seen that consecutive and daily zero-counts do not represent a reliable basis for 

filtering of the Milton VMU data, as it would be for conventional cyclist counts. Unlike conventional 

count data, however, the Milton dataset provides counts for both automobile and cyclist traffic. Since 

automobile traffic volumes are much higher than cyclist volumes at all the study locations, missing 

automobile counts – as is discussed in the previous section – provide a more reliable basis for 

identifying equipment malfunctions than cyclist counts of zero. For these reasons, results of Filters 2 

and 5 are ignored for the purposes of this portion of the project, under the assumption that the 

erroneous counts which would have been captured by using a zero-cyclist count filter will be 

identified under the new Filter 1 for zero traffic counts instead. 

Filters 3, 4, and 6 were found to be appropriate for VMU data and were carried through as is.  

2.5 Primary Filtering Results - Milton 

Primary filtering results for 2019 Milton data can be seen in Table 11 and Table 12. 
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Table 11: Summary of 2019 15-minute filtering results for target Milton count locations 

# Name Intervals F1 Flags F2 Flags F3 Flags F4 Flags Total  %  

4 
Thompson Road and 

Childs Drive 
35040 4 - 7 0 11 0.0% 

5 
Thompson Road and 

Laurier Avenue 
35040 426 - 0 0 426 1.2% 

9 
Ontario Street South 

and Pine Street 
35040 49 - 0 0 49 0.1% 

14 
Bronte Street North and 

Main Street West 
35040 488 - 0 0 488 1.4% 

15 
Ontario Street South 

and Childs Drive 
35040 4 - 0 0 4 0.0% 

17 
Main Street East and 

Mall Entrance 
35040 8 - 0 0 8 0.0% 

22 
Thompson Road and 

McCuaig Drive 
35040 1224 - 0 0 1224 3.5% 

25 
Main Street East and 

Ontario Street North 
35040 429 - 0 0 429 1.2% 

Total 280320 2632 - 7 0 2639 0.9% 

Table 12: Summary of 2019 24-hour filtering results for target Milton count locations 

# Days F1 Days F2 Days F3 Days F4 Days F5 Days F6 Days Total % 

4 365 1 - 1 0 - 0 2 0.5% 

5 365 22 - 0 0 - 0 22 6.0% 

9 365 2 - 0 0 - 4 6 1.6% 

14 365 7 - 0 0 - 5 12 3.3% 

15 365 1 - 0 0 - 15 15 4.1% 

17 365 2 - 0 0 - 9 10 2.7% 

22 365 17 - 0 0 - 8 25 6.8% 

25 365 101 - 0 0 - 2 103 28.2% 

Total 2920 153 - 1 0 - 43 195 6.7% 

 

Relatively few days were flagged by F1, with the exception of Location 25 where at least one 

“null” 15-minute interval was observed on a large number of days. Subsequent examination found 

that all of these “null” intervals occurred during off-peak hours, when traffic is expected to be the 

lowest. For this reason, these counts were not considered suspicious. F1 results for other locations 

however still raised some concern. Take location 14 for instance, at Bronte Street and Main Street. At 

this location, 488 15-minute intervals were flagged under F1, but these came from only 7 days. For 

four of the seven flagged days, total traffic counts for all 96 15-minute intervals were zero, which we 

can say with certainty represents an inaccurate count. It is not reasonable to think that 24 hours passed 

without a single vehicle of any kind passing through the intersection, even at a low volume location.  
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Only one sequence, which contained only seven consecutive identical values, was flagged under 

F3, this being at Location 4. No F4 flags were thrown for any of the eight target locations. The results 

for F2 and F5 are not included here, acknowledging the discussion of the issues they present in the 

previous section. 

 

Figure 16: F6 (Daily Upper Outliers) flags for Milton count location Thompson Road and McCuaig Drive, Jan-

2019 to April-2019 

Quite a few days are identified by filter F6 for having count values outside of the 2(IQR) range. 

Keep in mind that these days do not necessarily represent “incorrect” counts, but this filter too should 

not be ignored as the counts flagged by it are still problematic. Take the early-2019 count distribution 

for a relatively low volume count location shown in Figure 16. On February 19, 2019 a daily count 

value of 6 was flagged by F6. While this may not seem like a particularly high-count value, it 

represents a significant outlier compared to the rest of the month, during which only 10 total cyclists 

were counted. This count on this day is not representative of the average expected volume at this 

location and should be identified as such. For this reason, a minimum count threshold of 15 was 

implemented, so F6 would only be triggered when a 24-hour count was greater than this value.  
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2.5.1 Secondary Data Filtering - Milton 

The previous sections presented approaches used to identify suspect counts at the 15-minute count 

interval level. We have termed those filters the primary data filtering.  It is also necessary to establish 

the maximum acceptable number of suspect 15-minute intervals in a day before the daily count is also 

labelled as suspect.  This process, described in this section, is termed secondary filtering. 

Because we are using the combined traffic count and not just the cyclist count, the mean volume is 

usually much larger than zero and thus the probability of having zero vehicles (motorized plus 

cyclists) in a 15-minute is relatively low.  However, we would expect to observe some number of 

valid zero -counts in a day, especially late at night at low-volume locations when 15 minutes may 

plausibly pass without any traffic at an intersection. Figure 17 shows a frequency histogram of total 

time within a day for which the reported traffic count for an individual site is zero.  The graph shows 

the results summed across all eight locations for the calendar year 2019 (2,920 total days).  

 

Figure 17: Frequency of 2019 days across 8 counting locations by hours of missing data 

While the vast majority of days did not have any intervals with zero traffic counts, there were 391 

days that experienced between one and ten 15-minute intervals (0.25 – 2.5 hours) during which no 

traffic was counted. A very small number of days (25) experienced between 2.5 and 15 hours of zero-

counts, and no days were observed with between 15 and 22.5 hours of zero-counts. 
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These results might indicate that 5-hours might be a reasonable threshold for identifying erroneous 

daily counts from 15-minute zero counts. However, it is plausible that this threshold might result in 

daily counts being flagged which are correct, such as at low volume locations or on holidays (and in 

fact, some investigation found that most of the days with more than 5 and less than 15 hours of 15-

minute zero counts were either December 25th or 26th). In order to be more certain that valid count 

days were not filtered, a more conservative threshold of 20 was used, as the days with greater than 

this amount of zero-counts could be said to be invalid with much more certainty. 

2.6 Filtering Results – Pima County 

The filtering methods described in the rest of this section, developed using intersection traffic 

monitoring data from Milton, ON, were applied to the Pima County dataset. Results are presented in 

Table 13, which shows the number of count days flagged by each filter. 

Across data for all 34 locations from 01/01/2019 – 03/15/219, just 57 days, or 2.3% of the total 

number of count days, were flagged by Filters 1, 3, 4, and 6 (remember that filters 2 and 5 are not 

relevant for VMU data). The highest number of days flagged at any location was six, at location 76, 

with almost 60% of locations having one or fewer flagged days. Furthermore, only 13 of the flagged 

days were TMC days (Tuesday, Wednesday, or Thursday). Overall, these results indicate a high 

enough standard of data quality to proceed with the rest of the study. 
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Table 13: Summary of filtering results for the Pima County TMC dataset 

Location Count Days F1 F3 F4 F6 Total % 

5 74 1 0 0 1 2 2.7% 

6 75 0 1 0 1 2 2.7% 

7 71 1 0 0 0 1 1.4% 

9 74 1 0 0 1 2 2.7% 

13 75 0 0 0 1 1 1.3% 

34 75 0 0 0 1 1 1.3% 

36 75 0 0 0 0 0 0.0% 

38 75 0 0 0 0 0 0.0% 

39 71 1 0 0 0 1 1.4% 

41 71 1 0 0 0 1 1.4% 

42 75 0 0 0 0 0 0.0% 

43 75 0 0 0 1 1 1.3% 

49 75 0 0 0 3 3 4.0% 

50 71 3 0 0 0 3 4.2% 

52 75 0 0 0 3 3 4.0% 

53 71 1 0 0 2 3 4.2% 

57 75 0 0 0 1 1 1.3% 

59 71 1 0 0 0 1 1.4% 

62 71 1 0 0 0 1 1.4% 

69 75 3 0 0 1 4 5.3% 

70 75 1 0 0 0 1 1.3% 

71 75 0 0 0 0 0 0.0% 

72 75 2 0 0 3 5 6.7% 

73 75 2 0 0 0 2 2.7% 

76 75 4 0 0 2 6 8.0% 

77 75 0 0 0 1 1 1.3% 

80 74 1 0 0 2 3 4.1% 

81 75 1 0 0 0 1 1.3% 

85 74 1 0 0 0 1 1.4% 

96 75 0 0 0 1 1 1.3% 

97 75 0 0 0 0 0 0.0% 

100 75 0 0 0 3 3 4.0% 

101 75 0 0 0 0 0 0.0% 

105 71 1 0 0 1 2 2.8% 

Total 2514 27 1 0 29 57 2.3% 

% - 1.1% 0.0% 0.0% 1.2% 2.3%  
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2.7 Turning Movement Count Collection 

An essential element of this study is to simulate the collection of one-day, 8-hour turning movement 

counts (TMCs), which is necessary to be able to assess the viability of using these counts as the basis 

of AADB estimates in actual practice. TMCs indicate directional volumes of traffic passing through 

an intersection during a count collection period, specific to right, left, and through movements for 

every intersection approach. It is very common for North American transportation agencies to 

manually collect turning movement counts as part of either infrequent traffic studies or regular traffic 

monitoring programs [16] [17]. Pima County, for example, requires morning and evening peak period 

TMCs to be obtained for every cross-street intersection as part of the traffic impact studies for most 

large developments, extrapolated to a maximum of three years [18].  

Although automated methods are becoming more and more widespread, manual traffic counting 

remains the most common and cost-effective way of collecting TMCs [5]. This means that extra 

consideration needs to be given to real-world collection procedures, to best simulate them in this 

study. Although the specifics of TMC collection may vary by jurisdiction, general guidelines are to 

collect morning, mid-day, and afternoon peak period counts on a weekday during the “on-season”. 

For Milton, it was assumed that TMCs would be made: 

• During the Spring (April – June) and Fall (September – November) months 

• On a weekday (Tuesday, Wednesday, or Thursday) 

• During the two-hour AM peak (7:00-9:00); three-hour midday peak (11:00-2:00); and the 

three-hour PM peak (15:00-18:00) 

The same assumptions were made for Pima County, with the exception that the “on-season” for short-

term count collection was assumed to be the Winter months (January, February, March, April, May, 

as well as September and October) to avoid the extremely hot summer and the holidays in December.  

2.8 Adverse Weather Conditions 

Consideration needs to be given to inclement weather conditions, not because of their effect on cyclist 

activity patterns – although this topic is very widely studied – but because it is unlikely in practice 

that TMCs be collected on “poor weather” days, and so it makes sense to try and exclude them from 

the dataset for this study. Conditions which would prevent a transportation agency from collecting 

TMCs likely vary substantially from jurisdiction to jurisdiction.  
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In the absence of a jurisdictional survey, or some local knowledge which would help formulate 

better guidelines for establishing “inclement weather” conditions, a brief analysis of historical 

weather data can be used. Weather data for Milton was obtained from Environment Canada [19] and 

for Pima County from the U.S. National Oceanic and Atmospheric Administration [20]. 

Unfortunately, data from 2019 for Milton itself was not available, so data from Oakville, ON – which 

is approximately 20km south of Milton – was used instead, with the assumption that its proximity 

would make it a suitable approximate. 

Thresholds were set for total daily rainfall, total daily snowfall, and mean daily temperature, based 

on the frequency of these events in the historical climate data, and on an estimation of what 

conditions could reasonably interfere with a short-term count program. Days for which the rainfall or 

snowfall exceeded the threshold, or for which the mean temperature was less than the threshold were 

designated as having inclement weather and were removed from consideration for the selection of 

TMC days.  

 

Figure 18: Frequency of 2019 days by total precipitation recorded, for Milton and Pima County 
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Thresholds for inclement weather were chosen somewhat subjectively, based on plots of the 

frequency of weather events. Figure 18 for instance shows the frequency of rainfall events recorded in 

Milton and Pima County for 2019. Days that received less than 10mm of rain were relatively 

common, while rainfall greater than this amount were relatively rare, so 10mm was chosen as the 

threshold for rainfall which classifies a day as “inclement”. Surprisingly, given the radically different 

climates of the two urban areas examined here, it seemed appropriate to use the same weather 

thresholds; as can be seen from Figure 18, relative rainfall patterns are similar, although Milton is 

obviously somewhat more wet. A similar process was used to select a threshold for total daily 

snowfall ≥ 1cm, and a mean daily temperature threshold ≤ -5o C.  

2.9 Holidays 

Consideration was also given to statutory holidays, both because of their impact on cyclist activity 

patterns, and because of their impact on TMC collection. It is unlikely in practice that one-day TMCs 

would be collected on a statutory holiday, so they were excluded both from the calculation of 

expansion factors and from the selection of one-day STCs for AADB estimation. Also considered 

were extended school holidays, such as spring break, which could substantially impact cyclist activity 

patterns. These then were also excluded from the analysis. 

Datasets of holiday dates were created using information from the relevant jurisdictional school 

boards (the Halton District School Board calendar for Milton; and the Pima County Schools 

Superintendent’s Office calendar for Pima County). 

2.10 Conclusions 

This chapter outlined the compounding process of building data filtering rules for continuous turning 

movement counts (TMC), or video monitoring unit (VMU) data. Although it will not be used in the 

remainder of this study, conventional cyclist count data from Hamilton, Ontario was useful for 

establishing baseline filtering logic, referring extensively to the literature on the subject. Having 

established filters using conventional count data, however, it was determined that they may not have 

been appropriate for filtering VMU data, because of the inherent differences between TMCs and 

conventional cyclist counts, and the technological differences in how they are collected. A VMU 

dataset from Milton, Ontario was used to adapt baseline filters; the adapted filtering logic was applied 

to a second VMU dataset from Pima County, Arizona. With the help of some researcher judgement, 
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the filters were able to identify some obviously erroneous observations, although for both datasets the 

number of filtered days was very small. The outcome of this filtering process is two “clean” VMU 

datasets, which can be more confidently used for the AADB estimation process which will be 

described in subsequent chapters. 
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Chapter 3 

Baseline AADB Estimation Methods 

This chapter provides an overview of common-practice, factor-based methods for expanding short-

term counts (STCs) to AADB, which are in general adaptations of equivalent methods for motor-

vehicle AADT estimation. Applying these methods provides a baseline for testing the feasibility of 

using 8-hour turning movement counts (TMCs) for AADB estimation as part of ongoing traffic 

monitoring programs.  

3.1 Expansion Methods 

Over the past decade there has been a growing body of literature on the subject of expanding short 

term cyclist counts to AADB estimates, where once the field may have predominantly focused on 

motor vehicle traffic. From this we can identify a set of conventional methods, which are commonly 

applied throughout the literature but also which appear to be commonly applied in practice. 

3.1.1 Annual Average Daily Bicycles 

To test the estimation accuracy of expanding short-duration counts, it is necessary to first calculate 

“truth”. As is the case for motor vehicle traffic, there are at least two general methods for calculating 

annual average daily bicyclists (AADB) for an intersection, road segment, or piece of active 

transportation infrastructure. The first is the “simple average” method [Equation (11)], which is the 

sum of 24-hour bicycle count volumes (24hBVs) over the number of days for which they are 

available.  

𝐴𝐴𝐷𝐵𝑗 =
1

𝑛
∑ 𝑉𝑗,𝑡

365

𝑡=1

 
(11) 

Where 

𝐴𝐴𝐷𝐵𝑗 = True AADB at count location j for a given year 

𝑛 = Number of days on which cyclist counts were collected at location j in the year 

of interest 

𝑉𝑗,𝑘 = 24hBV at individual count location j on day-of-year t 
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This method requires a full 365 days of valid 24-hour cyclist counts to be entirely accurate [21]. As 

is evident from the data used in this study, a full year of reliable data is rarely available, even where 

permanent counting equipment is installed. For this reason, an alternative, adapted AASHTO 

formulation [Equation (12)] is used in this thesis wherever it is necessary to calculate AADB. This 

method is more flexible, as it takes the average of counts across days-of-week within months-of-year 

to give monthly average daily bicyclists (MADB) values for every month in which data is available, 

which are then averaged to AADB. It too has data requirements, that at least one valid day of data be 

available for every day-of-week-of-month to be accurate, but this is less demanding than for the 

simple average method. 

 

𝐴𝐴𝐷𝐵𝑗 =  
1

𝑛𝑗
∑ [

1

𝑛𝑗𝑚
∑ (

1

𝑛𝑗𝑚𝑑
∑ 𝑉𝑗𝑚𝑑𝑖

𝑛𝑗𝑚𝑑

𝑖=1

)

7

𝑑=1

]

12

𝑚=1

 (12) 

Where 

𝐴𝐴𝐷𝐵𝑗 = True AADB at count location j for a given year 

𝑛𝑗 = Number of months-of-year m for which there is at least one valid 24hBV 

observation 

𝑛𝑗𝑚 = Number of days-of-week d in month-of-year m for which there is at least one 

valid 24hBV observation 

𝑛𝑗𝑚𝑑 = Number of valid 24hBV observations for day-of-week d in month-of-year m at 

location j 

𝑉𝑗𝑚𝑑𝑖 = 24hBV at location j on the ith occurrence of day-of-week d in month m 

3.1.2 Expanding 8-hour Cyclist Counts 

Although a substantial amount of research has attempted to deal with STCs shorter than 24-hours, it is 

generally common in the literature to expand daily (24-hour) counts to estimates of AADB. This 

makes sense where the data is available, as expanding STCs shorter than 24-hours is conclusively less 

accurate than expanding a full daily count [22]. However, in consistency with real-world practice for 

TMC collection, it is more realistic to assume that only 8-hours of count data will be available for any 

given day. 

There are two options for dealing with 8-hour counts in a factor-based expansion method. The first 

is to express the difference between 8-hour and 24-hour counts explicitly through the inclusion of a 
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“K-factor”, which factors the 8-hour count to an estimate of 24-hour volume, which can then be 

expanded to AADB using traditional methods [23]; or, factors can be calculated using 8-hour counts 

in place of 24-hour counts so that the difference between the two is represented implicitly in the 

traditional expansion factors. El Esawey [23] found that including an explicit k-factor did not 

substantially improve estimation accuracy compared to “direct” AADB estimation from a 1-hour 

count [23], so for the purposes of testing the traditional methods presented in Section 3.1.3, factors 

will be calculated using 8-hour instead of 24-hour counts. However, a more detailed exploration of 

this topic will appear in Chapter 4. 

3.1.3 Factoring Methods for Non-motorized Traffic 

As outlined in the U.S. Federal Highway Administration’s Traffic Monitoring Guide (TMG), factors 

representing the ratio of one number to another – the most relevant to this study being the ratios of 

average day-of-week or month-of-year traffic volumes to AADT, which are used to adjust short-

duration traffic counts - are common to a variety of transportation engineering analysis [21]. 

Although general factoring procedures are not as commonly established for non-motorized traffic 

[24], several recurrent factoring methods can still be identified in the literature: 

1. Day-of-week & Month-of-year (DOW/MOY) 

2. Day-of-week-of-month (DOWOM) 

3. Day-of-year (DOY) 

3.1.3.1 Day-of-week & Month-of-year (Traditional) 

Frequently termed the “traditional” method, the day-of-week and month-of-year (DOW/MOY) 

factoring approach – which may be the most common, especially in practice – is an adaptation of a 

corresponding method for estimating motor vehicle annual average daily traffic (AADT) from the 

U.S. Department of Transportation’s Traffic Monitoring Guide [21]. This method involves the 

separate calculation of seven “day-of-week” and 12 “month-of-year” factors, for 19 total, reflecting 

the average weekly and monthly variation from the AADB of counts across the calibration dataset. 

Nordback et al [25] achieved factor-group specific mean absolute percent errors (MAPE) of between 

20% and 46% when applying this method to multi-day short term counts (STCs). They found 7-days 

to be the most cost-efficient STC duration, as beyond this the reductions in error related to count 

duration began to level out. Another study by Hankey et al [24] found that the “traditional” method 
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resulted in much higher errors than other disaggregate methods, to be discussed below, but especially 

when expanding from counts shorter than 7-days. The high estimation error associated with this 

method is usually attributed to its failure to account for short-term variability related to weather, 

special events, etcetera, to which cyclist counts are particularly sensitive [26] [27]. 

Formulas for day-of-week (DOW) and month-of-year (MOY) factors, and for calculating AADB 

estimates are shown in Equations (13), (14), and (15) below. Note that DOW factors are calculated 

from 8-hour bicycle volumes, and MOY from 24-hour bicycle volumes. Remember from Section 

3.1.2 that the difference between 8 and 24-hour bicycle volume is being expressed implicitly in the 

methods discussed here. However, if both the DOW and MOY factors were calculated from 8-hour 

counts, this difference would be “double counted”. So, in this case, the DOW factor can be thought of 

serving the dual role of expanding 8-hour counts to an estimate of 24-hour volume, and also adjusting 

those 24-hour estimates according to day-of-week patterns. Then, the MOY factor further adjusts the 

24-hour estimate according to month-of-year patterns. It should not matter whether the DOW or 

MOY factor in this method is calculated from 8-hour counts, only that just one of them is. Tests were 

performed for both options, and an insignificant difference in estimation accuracy observed.   

𝐷𝑂𝑊𝑗𝑑 =  

1
𝑛𝑗𝑑

∑ (
1

𝑛𝑗𝑚𝑑
∑ 8ℎ𝐵𝑉𝑗𝑖𝑑𝑚

𝑛𝑗𝑚𝑑

𝑖=1
)12

𝑚=1

𝐴𝐴𝐷𝐵𝑗
 

(13) 

Where 

𝐷𝑂𝑊𝑗𝑑 = Day-of-week factor for location j and day-of-week d 

𝑛𝑗𝑑 = Number of months-of-year m for which there is at least one valid 8hBV 

observation for day-of-week d at location j 

𝑛𝑗𝑚𝑑 = Number of 8hBV observations collected on a day-of-week d in month m at 

location j 

8ℎ𝐵𝑉𝑗𝑖𝑑𝑚 = 8-hour bicycle volume at location j on the ith occurrence of day-of-week d in 

month m 

𝐴𝐴𝐷𝐵𝑗 = Annual Average Daily Bicyclists for location j 

  

𝑀𝑂𝑌𝑗𝑚 =  

1
𝑛𝑗𝑚

∑ (
1

𝑛𝑗𝑚𝑑
∑ 24ℎ𝐵𝑉𝑗𝑖𝑑𝑚

𝑛𝑗𝑚𝑑

𝑖=1
)7

𝑑=1

𝐴𝐴𝐷𝐵𝑗
 

(14) 

Where 

𝑀𝑂𝑌𝑗𝑚 = Month-of-year factor for location j and month m 
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𝑛𝑗𝑚 = Number of days-of-week d for which there is at least one valid 24hBV 

observation for month-of-year m at location j 

𝑛𝑗𝑚𝑑 = Number of 24hBV observations collected on a day-of-week d in month m at 

location j 

24ℎ𝐵𝑉𝑗𝑖𝑑𝑚 = 24-hour bicycle volume at location j on the ith occurrence of day-of-week d in 

month m 

𝐴𝐴𝐷𝐵𝑗 = Annual Average Daily Bicyclists for location j 

  

𝐴𝐴𝐷𝐵̂𝑠𝑓𝑚𝑓𝑑 = 8ℎ𝐵𝑉𝑠𝑑𝑚 ×
1

𝐷𝑂𝑊𝑓𝑑𝑑

×
1

𝑀𝑂𝑌𝑓𝑚𝑚
 (15) 

Where 

𝐴𝐴𝐷𝐵̂𝑠𝑓 = AADB estimate for STCL s, which belongs to factor group f 

8ℎ𝐵𝑉𝑠𝑑𝑚 = 8-hour bicycle volume at STCL s on day-of-week d in month m 

𝐷𝑂𝑊𝑓𝑑𝑑 = DOW-factor for factor group fd on day-of-week d 

𝑀𝑂𝑌𝑓𝑚𝑚 = MOY-factor for factor group fm for month-of-year m 

3.1.3.2 Day-of-week-of-month (DOWOM) 

Day-of-week-of-month (DOWOM) factoring is a more disaggregate method than the traditional one, 

with 84 total factors being calculated across every day-of-week in every month-of-year. While they 

expected that this would better capture seasonal variation, Nordback et al [28] saw similar results 

using the DOWOM method to the traditional method (20% MAPE for 7-day STCs and 34% for 1-day 

STCs). Notably, they found significant variation in estimation error by count location, producing a 

17% MAPE for 1-day DOWOM factoring at the lowest error location but 79% at the highest. 

Consistent with the results discussed above for the traditional method, error was significantly reduced 

when using 7-day STCs compared to 1-day [28]. Other studies found similar results in terms of 

similar MAPE compared to the traditional method, and also found significant reductions in MAPE as 

the STC duration increased [26]. There is also some evidence that error can be reduced using a 

“correcting function”. Figliozzi et al. proposed a regression-calibrated model to adjust for factors like 

holidays, rain, and other significant variables and found that it reduced MAPE by as much as a 4% for 

1-day DOWOM factoring [29]. Formulas for day-of-week-of-month (DOWOM) factors, and for 

calculating AADB estimates are shown in Equations (16) and (17). 

𝐷𝑂𝑊𝑂𝑀𝑗𝑚𝑑 =  

1
𝑛𝑗𝑚𝑑

∑ 8ℎ𝐵𝑉𝑗𝑚𝑑𝑖
𝑛𝑗𝑚𝑑

𝑖=1

𝐴𝐴𝐷𝐵𝑗
 

(16) 
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Where 

𝐷𝑂𝑊𝑂𝑀𝑗𝑚𝑑 = Day-of-week-of-month factor for DOW d, month m, at location j 

𝑛𝑗𝑚𝑑 = Number of 8hBV observations collected on a day-of-week d in month m at 

location j 

8ℎ𝐵𝑉𝑗𝑖𝑑𝑚 = 8-hour bicycle volume at location j on the ith occurrence of day-of-week d in 

month m 

𝐴𝐴𝐷𝐵𝑗 = Annual Average Daily Bicyclists for location j 

𝐴𝐴𝐷𝐵̂𝑠𝑓 = 8ℎ𝐵𝑉𝑠𝑑𝑚 ×
1

𝐷𝑂𝑊𝑂𝑀𝑓𝑚𝑑
 (17) 

Where 

𝐴𝐴𝐷𝐵̂𝑠𝑓 = AADB estimate for STCL s, which belongs to factor group f 

8ℎ𝐵𝑉𝑠𝑑𝑚 = 8-hour bicycle volume at STCL s on day-of-week d in month m 

𝐷𝑂𝑊𝑂𝑀𝑓𝑚𝑑 = DOWOM-factor for factor group f on day-of-week d in month m 

3.1.3.3 Day-of-year (DOY) 

The day-of-year (DOY), or “disaggregated” method, is generally found to be the most accurate – 

when a suitable amount of data is available – of the baseline expansion methods, as it in theory best 

accounts for seasonal and short-term variation [26] [30]. Budowski [31] achieved a 10% MAPE for 

seasonal average daily traffic estimation (SADT) from 14-day STCs using this method, which makes 

use of individual factors for every day-of-year included (up to 365 individual factors). El Esawey [30]  

found a MAPE of 17.5% for DOY factoring, compared to 24.5% for DOWOM. Nosal et al [26] 

achieved a 14% MAPE across all counting locations for 1-day DOY expansion, a very low error 

value considering the length of the STC and the high cyclist volumes of the locations being studied. 

Extended treatments, such as the separation of weekday and weekend counts [27], or of wet and dry 

day counts [30] may reduce estimation error. Formulas for day-of-year (DOY) factors, and for 

calculating AADB estimates are shown in equations (18) and (19).  

𝐷𝑂𝑌𝑗𝑡 =  
8ℎ𝐵𝑉𝑗𝑡

𝐴𝐴𝐷𝐵𝑗
 (18) 

Where 

𝐷𝑂𝑌𝑗𝑡 = Day-of-year factor for location j on day-of-year t 

8ℎ𝐵𝑉𝑗𝑡 = 8-hour bicycle volume at location j on day-of-year t 

𝐴𝐴𝐷𝐵𝑗 = Annual Average Daily Bicyclists for location j 
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𝐴𝐴𝐷𝐵̂𝑠𝑓 = 8ℎ𝐵𝑉𝑠𝑡 ×
1

𝐷𝑂𝑌𝑓𝑡
 (19) 

Where 

𝐴𝐴𝐷𝐵̂𝑠𝑓 = AADB estimate for STCL s, which belongs to factor group f 

8ℎ𝐵𝑉𝑠𝑡 = 8-hour TWT bicycle volume at STCL s on day-of-year t 

𝐷𝑂𝑌𝑓𝑡 = DOY-factor for factor group f on day-of-year t 

3.2 Factor Grouping 

A barrier to accurately estimating AADB from short-duration cyclist counts is the substantial 

variation between count locations not only in terms of actual cyclist volumes, but also in terms of 

relative, temporal activity patterns. Factor-based approaches to AADB estimation normalize average 

cyclist counts to a ratio of AADB. This makes the absolute value of a cyclist count relatively less 

important than its value relative to the AADB of the location where it was collected, when calculating 

a set of factors.  

There is significant evidence that grouping count locations with similar cyclist traffic patterns can 

reduce AADB estimation error [22] [23] [28]. Factor grouping of permanent count locations (PCLs) 

used to calculate expansion factors should minimize variation within groups and maximize variation 

between groups [32]. Short term count locations (STCLs) should be matched with the factor group 

that most closely matches their temporal cyclist patterns to generate the most accurate estimates of 

AADB. Inaccurate factor grouping, or incorrectly matching an STCL to a factor group, is likely to 

result in even higher estimation error than if factor grouping was not performed. Consider Figure 19 

below, which shows the variability of average DOW factor values for the Pima County locations 

(each blue line represents a location). Lines showing the minimum and maximum values for every 

day-of-week illustrate the range of factors across all 34 locations. For example, the maximum 

‘Monday’ factor value is ~1.2, meaning that average Monday cyclist volume at that location is 120% 

of AADB; the minimum ‘Monday’ value is 0.6, indicating that Monday volume at another location is 

just 60% of AADB. It is evident that using the factor calculated from the first location to estimate 

AADB at the second will result in a large overestimation. By grouping the second location with other, 

more similar locations, a factor can be calculated which more closely matches the “true” ratio of 

Monday volume to AADB, resulting in more accurate estimates. 
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Figure 19: Day-of-week Factor Variability among Pima County Count Locations  

Griswold [32] identifies two distinct approaches to establishing factors groups. The ‘land use 

classification’ approach relies on the assumption that land uses surrounding a count location will have 

some influence on cyclist activity. This means that locations can be grouped according to their 

physical attributes, and that locations within groups should have similar cyclist activity patterns. 

‘Empirical’ factor grouping uses statistical methods to group locations based on observed count 

values. This approach should do a better job of minimizing variation within groups, and so should 

usually result in more accurate volume estimates, meaning that an empirical approach is more 

appropriate wherever continuous count data is available [32]. One of the challenges in the AADB 

estimation process is that empirical factor grouping is not possible when only 8-hours of count data is 

available, as is the case when expanding TMCs. Thus, it becomes important to be able to link 

locational characteristics to empirical factor groups; this is the subject of Chapter 5. There are a few 

alternative approaches to empirical factor grouping, some of which are covered below. 
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3.2.1 Visual Analysis 

The most common method of factor grouping in practice, according to the FWHA Traffic Monitoring 

Guide, is visual analysis and charting of existing data [21]. It is possible to identify groups by plotting 

real cyclist volumes; Nordback [33] similarly divided locations into “commute” and “non-commute” 

groups based on a visual analysis of hour-of-day traffic plots, with “commute” locations assumed to 

have two distinct rush-hour peaks and non-commute assumed to have just one [25]. However, it may 

be easier to normalize cyclist volumes to ratio values, so that locations with different absolute 

ridership levels can be compared. Turner [10] plotted average hour-of-day, day-of-week, and month-

of-year volumes as a percentage of AADB, using a visual inspection of these profiles to establish 

commuter, recreational, and mixed-purpose groups [10]. Broad, purpose-based classification scheme 

(i.e. commuter versus recreational, especially) is very common, as these patterns seem to often be the 

most easily identified in continuous cyclist data.  

This method may be appropriate where only data is only available for a few locations, but it can 

become inconvenient as more locations are added. Furthermore, a judgement-based visual analysis 

might not be expected to capture all the variation present in some data; there may be pattern groups 

present which do not become evident without more detailed analysis. Establishing groups using day-

of-year traffic profiles, for instance, might be difficult, as day-of-year plots contain a lot of noise 

which would make comparison difficult. 

3.2.2 Temporal Indices 

An extension to normalizing counts is to use temporal indices as aggregated, standardized expressions 

of cyclist activity patterns. The most commonly applied of these are the “Weekend-Weekday Index” 

(WWI) and an “AM-Midday Index” (AMI) first proposed by Miranda-Moreno et al. [11] shown in 

Equations (20) and (21) respectively, although additional indices such as a “Peak-Non Peak Index” 

(PPI) have also been suggested [27]. AMI should be calculated using only weekday counts, as the 

commuter patterns it is meant to capture might not appear on weekends. Definitions of which hours to 

use for calculating AMI vary study to study and may have to be determined on a contextual basis 

using researcher judgement. 
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𝑊𝑊𝐼 =  
𝑣̅𝑤𝑒

𝑣̅𝑤𝑑
 (20) 

Where 

𝑊𝑊𝐼 = Weekend-Weekday index for a given count location 

𝑣̅𝑤𝑒 = Average 24-hour weekend cyclist volume 

𝑣̅𝑤𝑑 = Average 24-hour weekday cyclist volume 

𝐴𝑀𝐼 =  
∑ 𝑣̅ℎ

9
ℎ=7

∑ 𝑣̅ℎ
13
ℎ=11

 (21) 

Where 

𝐴𝑀𝐼 = AM-Midday index for a given count location 

𝑣̅ℎ = Average weekday hourly volume for hour h 

 

To illustrate the application of temporal indexes for factor grouping, WWI was calculated for the 

eight Milton locations, and used to establish empirical factor groups. Common practice is to divide 

locations along a WWI threshold of 1, with values above 1 indicating a recreational activity pattern, 

and values below 1 indicating a utilitarian pattern. The resulting factor groups are summarized in 

Table 14. 

Table 14: Milton count locations and WWI factor groups 

Location AADB WWI Group 

4 45.69 0.79 1 

5 43.09 0.86 1 

9 9.21 0.91 1 

14 15.40 1.18 2 

15 11.36 0.94 1 

17 5.57 1.05 2 

22 16.71 0.68 1 

25 13.55 1.22 2 
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Figure 20: Average daily day-of-week volume as a ratio of AADB, by factor group 

Day-of-week factors were calculated across both factor groups and plotted in Figure 20. The plot 

shows a distinct difference between the cyclist activity patterns across the two factor groups 

established using WWI, with relative volume for the “recreational” group (2) clearly peaking on 

Saturday and Sunday, and relative volume for the “utilitarian” group (1) being much higher on 

weekdays. However, although these indices are intuitive, useful metrics for establishing empirical 

factor groups, both AMI and WWI are of limited application for TMC data. TMCs are usually 

collected on Tuesdays, Wednesdays, or Thursdays, and never on weekends, meaning for a short-term 

count location (STCL) it would be impossible to calculate WWI. Although it would be possible to 

calculate AMI, there is little evidence that this value corresponds well to day-of-week and month-of-

year variation in cyclist volumes, and so is not a suitable basis for factor grouping as part of AADB 

estimation. 

3.2.3 Geographic Grouping 

Grouping count locations on the basis of geographic proximity is common practice, based on the 

assumption that some temporal variation can be explained by both the large-scale location of a PCL 

(i.e. the city or metropolitan region) and the small-scale location (i.e. the location within a city or 

metropolitan region). In some sense, nearly every study includes implicit geographic factor grouping; 

it is rare that factors calculated from PCLs in one city or metropolitan region be applied to estimate 
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AADB at STCLs in another. This reveals a limitation in the factor-based estimation approach, which 

is that it may not be spatially transferrable, and in fact “…no models have been developed 

to…estimate missing volumes for some locations using data from other locations” [23]. This being 

said, some previous research has made successful use of data from across multiple jurisdictions. 

Nosal [26] used data from both Montreal and Ottawa to test the accuracy of AADB estimation 

methods with weather-based adjustment factors, finding a MAPE of just 18% across all locations for 

1-day counts. However, these two cities are very similar in terms of both weather and, subjectively, 

"cycling culture". In cases such as this, it may be possible to group together metropolitan areas. 

3.2.4 Statistical Clustering Methods 

Where data is available for a large number of locations, and so manual classification becomes 

onerous, it may be appropriate to use statistical clustering to create empirical factor groups. In 

principle, this might be considered to be the “best” approach, as the result should be an “optimal” 

grouping schema, although how this is defined may vary. Commonly used is a k-means clustering 

algorithm using Euclidean distance as a dissimilarity measure, which aims to minimize variation 

within clusters and maximize the variation between groups. This algorithm has been similarly applied 

to temporal indices, such as WWI and AMI [27], and normalized count data [31] [25] [13] (i.e. day-

of-week, month-of-year, and day-of-season data).  

To illustrate this method, the 34 Pima County locations were clustered using their normalized day-

of-week cyclist traffic profiles. In this case, each location was associated with a vector of seven day-

of-week factor values, and the algorithm minimized the sum-of-squared distance between the 

members of the groups and the group means across all seven values. The results of this process are 

shown in Figure 3, which shows two very evident pattern groups as identified by the k-means 

clustering algorithm: group “1”, which has relatively stable volume across all seven days; and group 

“2”, which sees an increase in weekend volume.   

For the purposes of evaluating the AADB estimation methods discussed in this thesis, a factor 

group cannot have just a single member. Because of this, after the algorithm was run, the resulting 

factor groups were checked for if any had less than two members. If any did, the “lonely” member 

was removed and the remaining locations re-clustered. Finally, the “lonely” member was re-assigned 

to the group with the nearest mean. 
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Figure 21: Day-of-week cyclist traffic profiles for the Pima County locations, grouped using the k-means 

clustering method 

Ultimately, even where statistical methods are applied, some element of researcher judgement and 

local knowledge is almost always present in the factor grouping process. For instance, Budowski [31] 

used statistical clustering to "...provide guidance for grouping stations with similar characteristics 

together, but the final decision on how groups should be formed [was] based on the analyst's 

judgement". Using local knowledge, they identified two groups within their sample of count locations 

from Winnipeg, Manitoba: a "Winnipeg" group with more traditional seasonal traffic patterns, and a 

"Post-Secondary" group which saw large spikes in volume corresponding with event days at nearby 

stadiums.  

3.2.5 Computing Intra-Group Factors 

After empirical factor groups have been established, factors are calculated as an average across each 

group, using Equation (22). This equation is the same for all the factoring methods discussed in 

Section 3.1.3, although for the Traditional method, two sets of factors (DOW and MOY) need to be 

calculated for each group.  
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𝐹𝑓 =
1

𝑛𝑓
∑ 𝛼𝑗 × 𝐹𝑗

𝑁

𝑗=1

 (22) 

Where 

𝐹𝑓 = Factor value for factor group f 

𝐹𝑗 = Factor value for count location j 

𝛼𝑗 = 1 when count location j is in factor group f; otherwise, 0 

𝑁 = Total number of individual permanent count locations 

𝑛𝑓 = Number of individual permanent count locations in factor group f  

 

3.3 Error Metrics 

Several measures of AADB estimation accuracy appear commonly throughout the literature. 

Applying these common measures will make it easier to compare results to past findings and make 

conclusions about the viability of using TMCs in place of conventional cyclist counts. The most 

commonly used is absolute percent error (APE) (Equation (23)), which is the absolute difference 

between estimated and actual AADB relative to the actual AADB. This can be averaged to mean 

absolute percent error (MAPE). 

 

𝐴𝑃𝐸𝑗,𝑘 =  
|𝐴𝐴𝐷𝐵𝑗,𝑡

∗ −  𝐴𝐴𝐷𝐵𝑗|

𝐴𝐴𝐷𝐵𝑗
 

 

(23) 

Where 

𝐴𝐴𝐷𝐵𝑘
∗ = Estimated AADB for location j on day-of-year k 

𝐴𝐴𝐷𝐵𝑗 = Observed AADB for location j  

𝐴𝑃𝐸𝑗,𝑘 = Absolute percent error of AADB estimation for location j on day-of-year k 

Although it is useful to standardize error measures for the sake of comparison, it should be noted 

that APE tends to be positively biased for low-volume locations. Say an AADB estimate of 2 was 

produced for a location with a true AADB of 1; the APE for this estimate would be 100%, even 

though it was within only one cyclist of the correct value. Now compare this to a second estimate of 

51, produced for a location with a true AADB of 50. The APE for this estimate is 2%, much lower 
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than the APE for the previous estimate, even though in terms of actual absolute error both were 

equally accurate. This means that when MAPE is calculated as a summary metric across all study 

locations, it will be weighted towards the low volume locations where average percent errors tend to 

be highest.  

To somewhat avoid this problem, a second summary metric is proposed, a “volume-weighted mean 

absolute percent error” (VWMAPE), shown in Equation (24). This takes the sum of mean absolute 

error across all locations and divides it by the sum of AADB values, which should provide a less 

biased expression of average error.  

𝑉𝑊𝑀𝐴𝑃𝐸 =
∑ 𝑀𝐴𝐸𝑗

𝑁
𝑗=1

∑ 𝐴𝐴𝐷𝐵𝑗
𝑁
𝑗=1

 (24) 

Where 

𝑉𝑊𝑀𝐴𝑃𝐸 = Volume weighted mean absolute percent error across all count locations 

𝑀𝐴𝐸𝑗 = Mean absolute estimation error for location j 

𝐴𝐴𝐷𝐵𝑗 = True AADB for location j 

𝑁 = Total number of individual count locations 

3.4 Estimating AADB from TMCs Using Baseline Methods 

In actual practice, factors are calculated from data collected at permanent count locations (PCLs), and 

then applied to short-term counts (STCs) which are collected at short-term count locations (STCLs) 

for which AADB is not known, meaning that there is no way of evaluating estimation accuracy. To 

test the baseline methods discussed in this chapter, the Milton and Pima County TMC datasets will be 

used to both calibrate sets of factors, and to simulate the collection of STCs, allowing the methods to 

be evaluated based on the accuracy of the estimates they produce. This workflow is described by 

Figure 22. First, sets of expansion factors are calculated for every location in the filtered input dataset 

(1), as well as true AADB (2). Then, locations are empirically grouped, based on their factor-vectors 

established in the previous step (3). Note that for the Pima County results, a k-means clustering 

approach is taken; for the Milton results, locations are grouped based on their WWI values. One by 

one, locations are removed from the dataset, and average factors are calculated across the other 

locations in their group (4). Repeating this process will provide every location with an associated set 

of factors calculated as if it were a STCL. Finally, AADB estimates can be generated for every day of 
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data at every location in the input dataset (5), treating each day as if it were an STC. These estimates 

can be compared to the true AADB calculated in the first step (6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: AADB Estimation Workflow (adapted from Nordback et al [28]) 

The DOW/MOY, DOWOM, and DOY expansion methods were applied to the Milton and Pima 

County TMC datasets. AADB estimation results are presented and discussed below. 

3.4.1 Milton, ON 

A summary of the baseline results for Methods 1 – 3 can be found below, using 8-hour TMCs, for 

Tuesday-Wednesday-Thursdays of spring and summer months of 2019. Both “grouped” and 

“ungrouped” trials were conducted. For grouped trials, the WWI factor grouping logic outlined in 

Section 3.2.2 was followed, so that results were collected separately for a “utilitarian” group (1) and a 

“recreational” group (2). For the ungrouped trial, the STCLs were treated as if they were all part of a 

single factor group.  
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Remember that in order to best simulate real-world counting conditions, only counts which met the 

following criteria are included in the calculation of estimation error: 

• Counts greater than 0 

• Counts which fall into the Spring (April – June) or Fall (September – November) seasons 

• Counts on mid-week workdays (Tuesday, Wednesday, or Thursday) 

• Counts from days which meet the weather criteria of experiencing less than 10mm of rainfall, 

less than 1cm of snowfall and having an average temperature greater than -5o C  

A summary of estimation results is shown below in Table 15. Of the three baseline methods 

discussed in this chapter, the disaggregate DOY method produced the most accurate estimates from 

the Milton TMC data in the ungrouped trial, although the DOWOM method was by far more accurate 

in the grouped trial. The ‘traditional’ DOW/MOY method produced both the highest error, and 

somewhat surprisingly, the highest spread of estimation results; standard deviation of MAPE for the 

ungrouped trial was 71.3%, indicating that estimation accuracy varied greatly day to day. In principle, 

the DOY approach should be most susceptible to short-term variation, resulting in less consistent 

estimates. Aggregating counts to DOW and MOY averages is supposed to eliminate some of that 

variation. 

Table 15: Summary of Baseline AADB Estimation Results for Milton TMC Data 

 Method DOW/MOY DOWOM DOY 

 Stat Avg. SD. Avg. SD. Avg. SD. 

Ungrouped APE 62.3% 71.3% 47.8% 51.9% 46.9% 55.2% 

 AE 13.2 20.3 9.9 15.1 9.3 13.6 

Grouped APE 69.5% 89.8% 54.8% 66.2% 64.3% 138.7% 

 AE 15.6 28.6 11.7 21.3 12.9 28.1 

Diff. APE +7.1% +18.5% +7.0% +14.3% +17.4% +83.5% 

 AE +2.4 +8.3 +1.8 +6.2 +3.6 +14.5 

 

Although we would expect the grouped results to be on average more accurate, it would seem that 

this is not the case, with MAPE being higher in the grouped trial than in the ungrouped trial for all 

three baseline methods. The spread of estimation results also increased substantially under the 

grouped scenario, so estimates were both less accurate and less consistent. It may be that the positive 

effect of calibrating expansion factors from groups of locations with similar activity patterns is offset 
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by the effect of having fewer locations per factor group, which is known to increase estimation error 

[28]. There have been several attempts to establish minimum factor group sizes in the literature, with 

Nordback et al. [28] recommending a minimum of eight locations per group where day-of-week-of-

month factors are used. Although this recommendation is met in the ungrouped trial, the grouped trial 

sees the factor group sizes fall to five (Group 1) and three (Group 2), which may have had an adverse 

impact on results.  

This line of thinking is further supported by examining the grouped results by location, shown in 

Table 16. Estimation error across Group 1 is close to the same as results from the ungrouped trial, but 

error for Group 2 is extremely high; MAPE for the DOY method across just Group 2 locations was 

92%, with a standard deviation of 203%. These results would not be acceptable in practice. For any 

given one-day TMC at location 14 for instance, the resulting AADB estimate might be anywhere 

between 0 and ~70. In fact, the highest DOY estimate produced for location 14, on 3/4/2019, was 

295. Evidently, more locations may be needed to calibrate a set of factors for accurate AADB 

estimation, and estimation months may need to be further limited to avoid the high-variation shoulder 

season.  

Table 16: Milton AADB Estimation Results, by Location 

Method: DOW / MOY DOWOM DOY 

Loc AADB Group 

Avg 

Est MAPE 

SD of 

APE 

Avg 

Est MAPE 

SD of 

APE 

Avg 

Est MAPE 

SD of 

APE 

4 45.5 1 63.1 54.9% 49.5% 51.1 36.4% 37.8% 53.0 35.1% 43.3% 

5 42.9 1 83.4 108.0% 138.1% 67.1 78.5% 105.5% 67.8 77.1% 108.1% 

9 9.2 1 12.4 54.5% 67.8% 9.6 40.6% 43.0% 10.0 39.6% 42.1% 

14 15.1 2 24.7 99.9% 152.2% 21.1 80.8% 105.2% 29.3 138.9% 332.7% 

15 11.2 1 11.8 45.4% 35.6% 10.0 41.3% 29.5% 9.6 35.3% 24.7% 

17 5.4 2 6.4 58.1% 66.7% 5.9 48.7% 43.5% 6.4 60.9% 84.4% 

22 16.5 1 22.3 65.4% 44.7% 17.7 44.9% 31.4% 17.6 44.2% 33.9% 

25 13.4 2 17.9 62.0% 47.4% 16.5 62.5% 51.6% 18.1 76.2% 76.3% 

Average: 
1 38.6 65.6% 76.6% 31.1 48.4% 57.0% 31.6 46.2% 58.5% 

2 16.3 73.3% 99.7% 14.5 64.0% 72.2% 18.0 92.0% 203.0% 

 

Because a full year of continuous data is available for the Milton locations, it is possible to plot 

how estimation error changes across TMC months (April – June, September – November). MAPE 

across all eight locations, by month, for the “ungrouped” results is shown in Figure 23. From this we 

can see that, although error in the shoulder months (April, May, and November) is unacceptable 
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relative to some of the results found in the literature – with error for the DOW/MOY method in April 

being on average over 100% - AADB estimates for the “on-season” months were generally much 

more accurate. This is consistent with a common recommendation from the literature, that STCs 

should be collected during the months when count variation is the lowest in order to minimize 

estimation error [25] [28], which in Milton should be in June through September. 

 

Figure 23: MAPE across Milton Locations for "Ungrouped" AADB estimates, by month 

3.4.2 Pima County, AZ 

Baseline methods were used to generate AADB estimates for 34 Pima County count locations (the 

selection of which is discussed in detail in Chapter 2). As was also discussed in Chapter 2, the Pima 

County dataset was limited by the emergence of the Covid-19 pandemic in early 2020. Under the 

assumption that the pandemic drastically impacted prevailing travel patterns, only data from between 

January 1st and March 15th was used in this analysis. Additionally, as was done for the Milton results 

in order to best simulate real-world TMC collection, target count days were limited to Tuesdays, 

Wednesdays, and Thursdays, which did not meet any of the “inclement weather” conditions, which 

were not holidays, and on which the 24-hour cyclist count at a given location was greater than zero. 
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The result was 30 (or occasionally fewer) STC days – and thus 30 AADB estimates – for each of the 

34 count locations. Average estimation results across all locations are shown below in Table 17.  

Table 17: Summary of baseline AADB estimation results for Pima County 

Method Groups MAPE SD of APE 
Weighted 

MAPE 
ANOVA (p) 

DOW / MOY 

(Traditional) 

1 44.4% 37.8% 38.8% 

0.819 
2 43.4% 34.8% 39.4% 

3 42.2% 33.7% 39.8% 

4 41.8% 33.6% 39.5% 

DOWOM 

1 43.9% 37.5% 38.4% 

0.983 
2 42.8% 35.0% 38.9% 

3 42.3% 38.6% 38.6% 

4 41.8% 38.7% 38.3% 

DOY 

(Disaggregate) 

1 41.7% 39.2% 35.4% 

0.998 
2 41.8% 46.1% 35.2% 

3 41.3% 45.5% 35.8% 

4 41.2% 41.3% 36.0% 

 

Empirical factor groups were established using K-means clustering on factor values, so that 

separate grouping schema were established for each of the three expansion methods. When the 

number of groups is “1”, this indicates that all locations were placed in a single factor group, 

essentially meaning that they are ungrouped. 

The disaggregate DOY method produced the lowest average error, both in terms of real MAPE and 

weighted MAPE, however it also had the highest average standard deviation of estimation results 

(39.2% for 1 factor group, 41.3% for 4 factor groups), indicating that it may be the least reliable 

method. The lowest average error for the other two methods was produced by the Traditional method 

using a 4-group factor grouping schema. This method also had the lowest average spread of 

estimation results (SD of APE = 33.6%), indicating that it may be the most reliably accurate of the 

baseline methods.  

An analysis of variance (ANOVA) was used to test the association between the number of factor 

groups and average estimation error, across the three methods tested. In each case, ANOVA results 

fail to show that there is any significant difference between the mean of estimation error for any of 

the four grouping schemas. Manually inspecting MAPE values, it seems as though increasing the 

number of factor groups at least slightly improved estimation results for all three cases, but this 
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conclusion is not statistically supported. This indicates that, for the Pima County sample, performing 

factor grouping for AADB estimation using traditional expansion methods does not produce 

substantially different results than acting as if all locations are part of a single factor group.  

Weighted MAPE for all three methods either stays consistent or slightly increases, indicating that 

any improvement in estimation results is occurring in low volume, high error locations. As well, the 

standard deviation of APE seems to increase with the number of factor groups for the DOWOM and 

DOY methods, meaning that while estimates on average may become more accurate, the spread of 

estimates also increases around that average.  

To further examine the effect of factor grouping on AADB estimation using the Traditional 

method, location-specific results are provided in Table 18, for both the 1-group and 4-group trials. As 

mentioned before, low volume locations tend to have higher APE, and this is evident from the 

disaggregate results; MAPE for 1-group results across locations with AADB<10 is 60.9%, and across 

locations with AADB≥10 is 38.5%. Furthermore, nearly all the improvement in MAPE observed by 

increasing the number of factor groups to 4 occurs for just a handful of low volume locations; 

locations 62, 57, 28, 80, 9, 85, 38, and 105 all have AADB less than 13 and saw at least a 10% 

improvement in MAPE from the 1-group to 4-group scenarios. Nearly all other locations actually saw 

an increase in MAPE. Furthermore, nearly all the improvement occurred for locations in DOW-group 

#3; the average difference in MAPE for these locations was -18%, while for groups 0, 1, and 2 the 

average difference was -2.1%, +3.3%, and -1.5% respectively. This implies that using more 

disaggregate factor grouping did have a substantial, positive effect on estimation accuracy, but only 

for select locations.  

3.4.3 Conclusions 

Separate AADB estimates were generated using continuous TMC data from Milton, ON, and Pima 

County, AZ, using three different factor-based methods, which we have called the “baseline” 

methods. Although overall estimation error for Milton was very high (even relative to what is to be 

expected from the literature when expanding from low-volume counts less than 24-hours in length 

[34]), further investigation found that error was substantially lower in the “on-season” summer and 

fall months (June, September, October) than in the “shoulder” months (April, May, November) when 

day-to-day cyclist activity is most variable. Although in practice it may not be possible to be selective 

about when a TMC is collected, it would be best to try and estimate AADB using counts from on-
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season months. The number of Milton locations for which data was available (eight) made it difficult 

to evaluate the efficacy of baseline factor-grouping methods. Because factor grouping is such an 

important part of the AADB estimation process, subsequent chapters will rely on the Pima County 

dataset instead, for which data was available at 34 locations. 

AADB estimation results for Pima County fell within a very wide range, with location-specific 

MAPE ranging from 22% at the lowest to 103% at the highest for an un-grouped scenario using the 

Traditional method, although estimation error was inflated at low-volume locations. Statistical 

analysis was not able to show a significant effect of empirical factor grouping, but a noticeable 

decline in estimation error was observed for an increased number of factor-groups.  

For both datasets the most accurate of the baseline methods was the disaggregate DOY method, 

although it suffered somewhat from a high spread of estimates. The Traditional DOW/MOY method, 

for Pima County, was not substantially less accurate than the other two methods. Furthermore, we 

expect that it should be possible to model empirical factor groups using land use characteristics for 

this method, while it may be more difficult for the other two, as generalized relationships between 

temporal activity patterns and land uses should become more apparent at a more aggregate level. For 

this reason, the next chapter will attempt to make improvements upon the Traditional method which 

address several of the problems related to expanding 8-hour TMCs. 
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Table 18: AADB Estimation Results for Pima County Locations (Trad. Method, 1-group vs. 4-groups) 

  Factor Group 1-Group 4-Group  

Loc AADB DOW MOY 
Avg. 

Est. 
MAE 

SD of 

MAE 
MAPE 

Avg. 

Est. 
MAE 

SD of 

MAE 
MAPE 

MAPE 

Diff. 

7 5.6 0 0 6.2 3.0 2.3 53% 6.4 3.0 2.3 55% +1% 

96 10.8 0 0 13.5 5.5 3.8 51% 14.0 5.7 4.3 53% +2% 

77 14.8 0 0 15.2 4.3 3.6 29% 15.7 4.4 3.5 30% +1% 

41 34.9 0 0 29.8 13.8 9.5 40% 30.3 13.8 9.5 40% +0% 

5 17.6 0 1 12.2 8.8 7.4 50% 13.1 8.5 7.7 48% -2% 

62 2.5 0 2 4.6 2.6 2.3 103% 4.0 1.7 1.9 68% -35% 

53 8.8 0 3 10.0 2.9 2.3 33% 10.9 3.6 2.6 41% +8% 

42 19.6 0 3 17.3 4.5 3.3 23% 18.4 4.5 2.9 23% -0% 

36 22.8 0 3 22.6 6.3 4.6 27% 24.4 7.1 5.1 31% +4% 

34 25.0 0 3 22.1 7.8 4.1 31% 23.5 7.8 4.2 31% +0% 

69 11.9 1 0 11.9 5.1 3.3 43% 12.9 5.4 3.7 45% +2% 

52 14.3 1 0 12.7 6.9 4.6 48% 13.8 7.2 5.4 50% +2% 

43 22.5 1 0 23.7 8.6 6.5 38% 25.7 9.4 7.0 42% +4% 

72 18.5 1 1 19.3 6.2 4.5 34% 22.6 8.1 5.0 44% +10% 

97 24.0 1 1 16.8 10.5 6.5 44% 19.0 9.9 6.2 41% -2% 

100 24.2 1 1 24.6 8.6 6.5 35% 29.0 10.9 9.1 45% +10% 

81 13.2 1 3 10.8 4.7 3.4 35% 12.2 4.9 3.7 37% +2% 

76 15.7 1 3 15.0 5.0 3.2 31% 17.2 5.3 4.3 34% +2% 

101 22.0 1 3 16.1 7.8 5.6 35% 17.9 7.8 5.6 35% -0% 

73 31.6 1 3 26.1 12.1 8.3 38% 29.4 12.5 9.7 40% +1% 

71 35.5 1 3 36.3 13.4 10.7 38% 41.6 15.4 14.2 43% +6% 

50 9.8 2 0 11.3 4.1 3.9 42% 10.8 3.7 3.4 37% -5% 

13 13.2 2 0 16.2 6.0 5.0 45% 15.8 5.5 4.5 42% -3% 

70 11.9 2 1 12.7 4.7 3.6 39% 13.0 4.7 3.1 39% -0% 

59 20.7 2 1 20.1 4.6 3.5 22% 20.8 5.9 4.0 28% +6% 

49 74.5 2 1 68.2 24.9 19.4 33% 69.9 27.9 16.2 37% +4% 

57 5.5 2 2 6.5 4.1 4.2 75% 5.7 3.3 2.5 60% -15% 

39 8.7 2 3 7.8 4.8 4.0 55% 7.7 4.8 4.3 54% -1% 

6 20.2 2 3 22.3 7.4 5.2 37% 22.8 7.8 6.2 39% +2% 

80 7.7 3 0 12.7 6.2 4.2 80% 9.9 4.1 2.5 53% -28% 

9 10.2 3 0 13.7 5.5 4.5 54% 10.3 3.4 3.0 34% -20% 

85 12.9 3 0 15.8 7.5 5.4 58% 11.7 5.6 3.8 43% -15% 

38 5.4 3 1 7.2 2.7 2.7 49% 5.7 1.9 1.5 35% -15% 

105 4.8 3 3 5.9 2.7 2.1 56% 4.5 2.1 1.4 43% -12% 
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Chapter 4 

Refining the Traditional AADB Estimation Method 

This chapter will draw upon the results and conclusions from Chapter 3 to develop an update to 

traditional factor-based AADB estimation approaches – which have typically been developed using 

“conventional” cyclist counts – to make them more suitable to one-day, 8-hour turning movement 

count (TMC) data. Issues posed by using TMCs for AADB estimation will be defined in a 4-part 

problem statement. Statistical analysis will be used to TMC-appropriate factor aggregations, for 

Tuesday-Wednesday-Thursday (TWT) day-of-week factors, and for a newly introduced 8-hour/24-

hour “K”-factor. Formulas will be defined for the proposed method, and the method will be evaluated 

using the Pima County dataset.  

4.1 Problem Statement 

The 8-hour TMC expansion process can be expressed in four distinct steps: 

1. Select a factoring method and calibrate a set of factors for every permanent count location 

(PCL) 

2. Group PCLs with similar temporal cyclist volume patterns into ‘factor-groups’, using the 

factors calculated in step (1). 

3. Identify which factor-group a short-term count location (STCL) belongs to. 

4. Apply factors to an 8-hour count from the STCL to generate an AADB estimate for that 

location. 

The difficulty in proposing a method for expanding cyclist TMCs is that the method must work 

with only the minimum amount of data which might be collected as part of a TMC study, which for 

any given location is just the eight “peak” hours of a single weekday. Working backwards through the 

four steps further elucidates this problem. 

Starting at step (4) with the collection of short-term counts (STCs), which in this study are 8-hour 

TMCs: In general, the longer the duration of an STC, the higher the accuracy of the AADB estimate 

produced from that STC [26] [28]. Nosal [26]found that mean absolute percent error (MAPE) could 

be reduced by one-third by increasing the length of a STC from one to five days [26]; Nordback 

[35]found furthermore that MAPE for 8-hour counts was four percent higher than for 24-hour counts, 

and another 16% higher for 2-hour weekday counts [35]. Cyclist traffic volume is subject to 
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extremely high day-to-day variation, which contributes to high estimation error. Collecting a larger 

sample (i.e. a STC collected over a longer time period) can help to mitigate this effect, but this is not 

necessarily possible with TMCs.   

Next, for step (3), it becomes easier to correctly identify the factor group to which a STCL belongs 

the longer the duration of an STC. With seven contiguous days of data, the day-of-week profile can 

be matched to that of the appropriate factor group. Even with just two full days of data, one weekday 

and one weekend, a weekend-weekday index (WWI) can be calculated, which forms a reliable basis 

for minimizing intra-group variation [11]. However, being limited to a single day of data poses a 

challenge. Similar to WWI, a ‘morning-midday index’ (AMI) can be calculated as the ratio of 

morning to midday traffic, and this can be used to group locations with less than 24-hours of counts 

[35] [11]. However, AMI values may not consistently reflect day-of-week or month-of-year traffic 

patterns, which are both more important to AADB estimation under any of the traditional factoring 

approaches. If this is the case, then an AMI-based factor-grouping approach will not be adequate. 

Some other, more robust approach may be needed.   

Third, in respect to step (2), a grouping schema should be chosen which is most conducive to step 

(3). We would assume that it will be more difficult to identify STCL group membership in a more 

disaggregate grouping schema, as a more complex temporal pattern will be more difficult to model 

using only a single day of count data. Although a more disaggregate schema may improve estimation 

accuracy by capturing more of the random variation in cyclist counts, we are limited in our approach 

to those schemas which we are able to model from an 8-hour count. 

Finally, the factoring approach chosen for step (1) is, by extension, limited in the same way as the 

factor grouping approach in step (2). Intuitively, it makes sense that the factor types used to establish 

groups should also be used to generate AADB estimates; so if Day-of-week-of-month (DOWOM) 

factors are to be used, for instance, then DOWOM factors should be used to establish empirical factor 

groups (i.e. factor groups established from PCLs using statistical methods, such as K-means 

clustering), so that intra-group variation between locational DOWOM profiles is minimized. Traffic 

patterns for a count location at one temporal scale may not have any relationship to traffic patterns for 

the same location at a different temporal scale. So, a group of locations with very similar day-of-week 

traffic profiles may have very different month-of-year patterns. Day-of-week (DOW) factors 

calculated across this group will produce more accurate estimates than month-of-year (MOY) factors, 
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as variation has been minimized at the DOW level but may still remain high at the MOY level. For 

this reason, the factoring approach chosen for step (1) should match the factor grouping approach 

chosen for step (2), and so is subject to the same constraints from all previous steps.  

Given these points, some further points might be made with regard to adapting traditional factor-

based approaches to AADB estimation for TMCs. First, the factoring method chosen should be as 

aggregate as possible while still providing accurate estimates, to best enable the correct identification 

of empirical factor group membership for STCLs for which there is only 8-hours of count data. This 

would indicate that the most appropriate method for turning movement counts is the “Traditional” 

Day-of-week/Month-of-year (DOW/MOY) approach. Under this approach, day-of-week and month-

of-year variations are expressed separately, meaning that they should be easier to model using 

locational land-use characteristics. Second, and further along these lines, an additional factor should 

be added to express the difference between average 8-hour and 24-hour counts, which we will call the 

“K” factor. One would expect the locational characteristics which are correlated with average K-

factor values to be different than those correlated with day-of-week traffic profiles. Therefore, for the 

purposes of modelling STCL factor-group membership, it makes sense to separate K and DOW 

factors. Finally, in order to minimize the intra-group variation between locations in terms of all three 

of their K, DOW, and MOY factor profiles, empirical factor grouping should be performed at three 

different levels, one for each factor type.     

4.2 K-factor for 24-hour Count Estimation 

Following the recommendations outlined in Section 4.1, this section will explore the viability of using 

a “K”-factor - calculated as the ratio of average daily 8-hour to average daily 24-hour cyclist count 

volume - to compute estimates of 24-hour volume from TMCs. The primary purpose of introducing a 

K-factor here is to separate peak-hour temporal patterns from day-of-week and month-of-year 

patterns, to enable more accurate factor-group modelling. However, it may have additional benefits in 

terms of estimation accuracy. 8-hour TMCs tend to be lower volume than conventional cyclist counts, 

which is detrimental to estimation accuracy. Conventional cyclist counts are generally taken on 

permanent cyclist infrastructure, where volumes might be expected to be both higher [36] and more 

consistent.  

The existing literature recommends that STCs of less than 24-hours be avoided [28] [33] [37], as 

estimation accuracy is less reliable without a full day of data. Working from TMCs means that this 
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recommendation cannot always be met. To help address this challenge, a “K-factor” can be calculated 

as the ratio of 8-hour to 24-hour cyclist volume, as proposed by El Esawey [23]. This value acts as an 

additional expansion factor which brings 8-hour counts to an estimate of 24-hour volume; the 24-hour 

count can then be expanded using traditional factors to an estimate of AADB. The formula for a one-

day, location-specific K-factor is shown in Equation (25).  

𝐾𝑗 =
8ℎ𝐵𝑉𝑗

24ℎ𝐵𝑉𝑗
 (25) 

Where 

𝐾𝑗 = K-factor for location j for a given day 

24ℎ𝐵𝑉𝑗 = 24-hour bicycle volume at location j for a given day 

8ℎ𝐵𝑉𝑗 = 8-hour bicycle volume at location j for a given day 

4.2.1 Nested ANOVA of K-factor Values 

K-factors were calculated for every available count day at the 34 Pima County locations, using the 

formula in Equation (25). A nested analysis of variance (ANOVA) was conducted on the dataset to 

determine the proportion of variance in K-factor values explained by several different variables. El 

Esawey [23] found that 62% of variability in K-factor values could be “…attributed to the variation 

from weekends to weekdays”. However, this difference is not relevant to a study of TMCs, which are 

collected on Tuesday, Wednesday, or Thursdays (TWT) by convention. Accordingly, the analysis 

was conducted using only valid TWT counts, from between January 1, 2020 and March 15, 2020. 

 The ANOVA model equation is shown by Equation (26).  

𝐾𝑗𝑚𝑑 = 𝜇 + 𝛼𝑗 + 𝛽𝑗𝑚 + 𝛾𝑗𝑚𝑑 + 𝜖𝑗𝑚𝑑𝑘 (26) 

Where 

𝐾𝑗𝑚𝑑 = K-factor value for location j on a day-of-week d in month m 

𝜇 = Overall mean K-value 

𝛼𝑗 = Effect for jth count location (j=1, 2, 3, …, 34) 

𝛽𝑗𝑚 = Effect for mth month (m=Jan, Feb, Mar) at jth count location 

𝛾𝑗𝑚𝑑 = Effect for dth day-of-week (d=Tue, Wed, Thu) of mth month at jth count location 

𝜖𝑗𝑚𝑑𝑘 = Unexplained variance 
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Table 19: Summary of nested ANOVA results for K-factor values 

Variance Component DF Sum Sq. Mean Sq. F Pr(>F) η² ω² 

location 33 5.530 0.168 4.653 1.96E-15* 13.1% 0.103 

location : month 68 3.641 0.054 1.487 0.009* 8.6% 0.029 

location : month : DOW 204 8.048 0.039 1.095 0.202 19.1% 0.019 

within DOWs (residuals) 705 24.996 0.035 - - 59.2% - 

*Significant at a 95% level of confidence   /   
^
Negative ω² value  

Results in Table 19 indicate that the mean of K-factor values are not significantly different between 

Tuesdays, Wednesdays and Thursdays within a given month at a given location. The month-of-year at 

a given location was found to be a significant variable at a 5% confidence level, however the 

proportion of variance explained (as expressed by η²) by the month-of-year was found to be just 

8.6%, a much smaller proportion than either location or day-of-week. 

While exploring factor data by location, it was noted that the relative day-to-day variation of K-

factor values tended to be very high at low volume locations. To avoid the influence of these 

locations, a second set of ANOVA results were obtained from the 25 locations where the average 8-

hour TWT volume was greater than ten. These results are shown in Table 20.  

Table 20: Summary of nested ANOVA results for K-factor values (AA8hB ≥ 10) 

Variance Component DF Sum Sq. Mean Sq. F Pr(>F) η² ω² 

location 24 2.876 0.120 4.543 2.02E-11* 13.3% 0.104 

location : month 50 1.313 0.026 0.996 0.485 6.1% 0.000 

location : month : DOW 150 3.779 0.025 0.955 0.627 17.5% 0^ 

within DOWs (residuals) 517 13.636 0.026 - - 63.1% - 

*Significant at a 95% level of confidence   /   
^
Negative ω² value  

The second set of results shown in Table 20 indicate that, excluding low volume locations, neither 

month-of-year nor day-of-week have significant effects on the ratio of 8-hour to 24-hour volume at 

the Pima County locations. Only ‘location’ was found to be a significant variable, as would be 

expected given the obvious differences in temporal count patterns between count locations.  

Eta-squared (η²) is included to provide an estimate of the proportion of variance explained by each 

variable. For high-volume locations, approximately 13% of the variation in the ratio of 8-hour to 24-

hour cyclist volume can be attributed to location, just 6.1% to MOY, and 17.5% to DOW, leaving 

63.1% of the variation unexplained. This would suggest that DOW is a more powerful predictor than 
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location. However, η² is known to be positively biased [38], so a less biased expression of effect size, 

omega-squared (ω²) [38], was also computed. This shows the effect size of month and day-of-week to 

be essentially zero, while only location has any statistical effect (ω² = 0.104).  

Given these model outcomes, we can be comfortable calculating a single K-factor for every 

location, rather than calculating DOW or MOY specific K-factors, since the mean ratio of 8-hour to 

24-hour volume across DOWs or MOYs has not been shown to be significantly different. This may 

not always be the case, as it is expected that relative temporal variation differs substantially by 

geographic region. For instance, cyclist traffic may be consistent between January, February, and 

March in Pima County, where the weather for these months is very stable. But the cyclist traffic 

patterns may change radically between TMC months in Milton, ON – where short-term weather 

patterns are much more variable – in which case separate MOY-K-factors may be needed. This 

analysis should be repeated when establishing factoring models in a new geographic region, but 

existing research showing that monthly variation in K-factors is limited [23] makes us more confident 

in aggregating the factor here.   

Only a single formula then is needed for location-specific K-factors, which is shown in Equation 

(27). Only TWT volumes need to be considered by the formula, as these are the only days captured 

by TMCs.   

𝐾𝑗 =

1
𝑛𝑗

∑ [
1

𝑛𝑗𝑚
∑ (

1
𝑛𝑗𝑚𝑑

∑ 8ℎ𝐵𝑉𝑗𝑚𝑑𝑖
𝑛𝑗𝑚𝑑

𝑖=1
)3

𝑑=1 ]12
𝑚=1

1
𝑛𝑗

∑ [
1

𝑛𝑗𝑚
∑ (

1
𝑛𝑗𝑚𝑑

∑ 24ℎ𝐵𝑉𝑗𝑚𝑑𝑖
𝑛𝑗𝑚𝑑

𝑖=1
)3

𝑑=1 ]12
𝑚=1

 (27) 

Where 

𝐾𝑗 = K-factor for location j 

24ℎ𝐵𝑉𝑗𝑑𝑚𝑖 = 24-hour bicycle volume at location j on the ith occurrence of day-of-week d in 

month m 

8ℎ𝐵𝑉𝑗𝑑𝑚𝑖 = 8-hour bicycle volume at location j on the ith occurrence of day-of-week d in 

month m 

𝑛𝑗𝑑𝑚 = Number of valid 8hBV observations for day-of-week d in month-of-year m at 

location j 

𝑛𝑗𝑚 = Number of TMC day-of-weeks (1, 2, or 3) for which there is at least one valid 

8hBV observation in month m 

𝑛𝑗 = Number of months for which data is available for a given year (in the current 

data set, data are available for Jan, Feb, and March and therefore 𝑛𝑗 = 3) 
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4.2.2 K-factor Validation 

A subset of count locations from the Pima County dataset was used to test whether K-factors could be 

used to generate accurate 24-hour count estimates from 8-hour counts. For every subject count 

location, an average K-factor was calculated across all other count locations in the subset, simulating 

a scenario where all count locations belonged to a single factor group. The average factor group K-

factor was then applied to the subject count location 8-hour counts from 01/01/2020 to 15/03/2020 to 

produce 24-hour count estimates, which could be compared to the actual 24-hour counts for that 

location for those same days. This process was repeated so that each site was treated in turn as the 

subject count location.  Resulting predicted 24-hour counts are shown by Figure 24 (each datapoint 

corresponds to one day of data at a given location to which a K-factor was applied).  

Predicted 24-hour counts were relatively accurate, as illustrated by an obtained R2 of ~0.88 

between actual and estimated 24-hour counts. The mean absolute percent error (MAPE) across all 

estimates at all subject count locations was 24.1%, with a standard deviation of absolute percent 

errors (APEs) of 18.1%. Even without grouping count locations with similar daily count profiles, K-

factors calibrated using data from PCLs were able to produce estimated 24-hour counts from one-day 

8-hour counts that were within ~24% of the actual 24-hour count for that day, on average. Although 

the spread of results was relatively high, this indicates that in the aggregate K-factors could be a 

viable component of the AADB estimation process.   
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Figure 24: Actual and predicted 24-hour cyclist count values for Pima County dataset 

4.3 Adapting the “Traditional” Method 

The “DOW/MOY” method, often referred to as the “traditional” method [31] addresses several of the 

issues with expanding 8-hour TMCs identified in Section 4.1. Most importantly, its relative simplicity 

in terms of the number of factors per count location – 19 factors, for seven DOWs and twelve MOYs, 

compared to 84 factors for the day-of-week-of-month method, or 365 for the day-of-year method – 

should make correctly identifying STCL factor group membership more reliable.  

However, the traditional method was developed for conventional cyclist count data, which differs 

from 8-hour TMC data in several important ways and consequently some adjustments to the method 

may be needed to adapt it for use in the TMC context.  

4.3.1 Refined DOW and MOY Factors 

As was done with K-factor’s, a nested ANOVA was conducted to assess the proportion of variance in 

daily traffic patterns that was attributable to different temporal factors. A “daily factor” was 
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calculated for every day of data at every location in the subject dataset. This value is the ratio of the 

24-hour count on a given day to the AADB of the location at which that count was collected. 

Again, since weekend traffic is not relevant to TMCs, the analysis was limited to TWT counts from 

January, February, and March. Results for the full set of Pima County locations are summarized in 

Table 21. As was done for K-factors, a second ANOVA was conducted on a subset of high-volume 

locations to avoid the disproportionate variation associated with low-volume locations.  

Table 21: Summary of nested ANOVA results for Daily Factor values 

Variance Component DF Sum Sq. Mean Sq. F Pr(>F) η² ω² 

location 33 11.86 0.359 2.296 6.49E-05* 7.1% 0.040 

location : month 68 16.99 0.250 1.596 0.002* 10.2% 0.038 

location : month : DOW 204 29.22 0.143 0.915 0.777 17.5% 0^ 

within DOWs (residuals) 694 108.63 0.157 - - 65.2% - 

*Significant at a 95% level of confidence   /   
^
Negative ω² value  

Table 22: Summary of nested ANOVA results for Daily Factor values (AA8hB ≥10) 

Variance Component DF Sum Sq. Mean Sq. F Pr(>F) η² ω² 

location 24 8.05 0.335 2.650 4.25E-05* 8.0% 0.050 

location : month 50 6.09 0.122 0.962 0.550 6.0% 0^ 

location : month : DOW 150 21.37 0.142 1.126 0.174 21.2% 0.024 

within DOWs (residuals) 517 65.42 0.127 - - 64.8% - 

*Significant at a 95% level of confidence   /   
^
Negative ω² value  

The ANOVA conducted on the full set of 34 locations (Table 21) found MOY to be a significant 

variable, accounting for a larger proportion of variance than either location or DOW. However, model 

outcomes for the high-volume subset of locations (Table 22) were similar to those for K-factors, with 

MOY and DOW explaining very small proportions of variance in the dependent variable. In addition 

to the difference between mean of daily factors being insignificant between MOYs and DOWs within 

those MOYs, the mean of daily factors was also not significantly different between locations.  

Given the lack of evidence to indicate that there is a statistically significant effect size of the DOW 

variable (p-values are much larger than 5%, and therefore there is not enough evidence to confidently 

reject the null hypothesis that there is a different mean K-factor value on each TMC day-of-week) it is 

appropriate to combine Tuesday, Wednesday, and Thursday traffic into an aggregate count, as was 

done with K-factors. A more aggregate approach is desirable in that it should be possible to model a 
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single TWT factor value for STCLs more reliably than it would be to model a disaggregate TWT 

profile. Accordingly, a combined “Tuesday-Wednesday-Thursday” (TWT) factor is proposed, 

representing the ratio of average 24-hour TWT volume to AADB (Equation (28]).   

𝑇𝑊𝑇𝑗 =

1
𝑛𝑗

∑ [
1

𝑛𝑗𝑚
∑ (

1
𝑛𝑗𝑚𝑑

∑ 24ℎ𝐵𝑉𝑗𝑚𝑑𝑖
𝑛𝑗𝑚𝑑

𝑖=1
)3

𝑑=1 ]12
𝑚=1

𝐴𝐴𝐷𝐵𝑗
 

(28) 

Where 

𝑇𝑊𝑇𝑗 = Tuesday-Wednesday-Thursday combined factor for location j 

𝐴𝐴𝐷𝐵𝑗 = Annual average daily bicycle volume at count location j 

24ℎ𝐵𝑉𝑗𝑑𝑚𝑖 = 24-hour bicycle volume at location j on the ith occurrence of day-of-

week d in month m, where d is 1=Tuesday, 2=Wednesday, or 

3=Thursday 

𝑛𝑗𝑑𝑚 = Number of valid 8hBV observations for day-of-week d in month-of-

year m at location j 

𝑛𝑗𝑚 = Number of TMC day-of-weeks (1, 2, or 3) for which there is at least 

one valid 8hBV observation 

𝑛𝑗 = Number of TMC months-of-year m for which there is at least one 

valid 8hBV observation 

The results in Table 22 also show that there is insufficient evidence to indicate that MOY is a 

significant variable in daily factor values for high-volume locations. However, this does not mean that 

the MOY factor should be aggregated as the DOW factor was. Data for the daily factor ANOVA 

model was limited to January, February, and the first half of March, a period across which the 

weather is consistent (and, subjectively, comfortable) in Pima County where the data was collected. 

Although relative TWT volume may not vary significantly from January to March in Pima County, 

this does not mean that there will be no difference between STC-months in other locations. As a 

result, we hypothesize that MOY would have been shown to be statistically significant if data for the 

entire year had been available.  Given the limitations of the available data set, this could not be 

confirmed, however, for this reason, we have decided not to remove or aggregate the MOY factor. 

Thus, the calculation of MOY factors remains unchanged from the traditional method and can be 

seen in Equation (29). Note that while the TWT and K factors are calculated using only Tuesday-

Wednesday-Thursday counts, the MOY factor makes use of all available data. Calculating the MOY 
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factor with just TWT counts would result in the relative difference between average day-of-week 

volumes and AADB being “double-counted”, increasing estimation error.  

𝑀𝑂𝑌𝑗𝑚 =

1
𝑛𝑗𝑚

∑ (
1

𝑛𝑗𝑚𝑑
∑ 24ℎ𝐵𝑉𝑗𝑑𝑚𝑖

𝑛𝑗𝑚𝑑

𝑖=1
)7

𝑑=1

𝐴𝐴𝐷𝐵𝑗
 

(29) 

Where 

𝑀𝑂𝑌𝑗𝑚 = Month-of-year factor for month m location j 

𝐴𝐴𝐷𝐵𝑗 = Annual average daily bicycles for location j 

24ℎ𝐵𝑉𝑗𝑑𝑚𝑖 = 24-hour bicycle volume at location j on the ith occurrence of day-of-week d in 

month m 

𝑛𝑗𝑑𝑚 = Number of valid 8hBV observations for day-of-week d in month-of-year m at 

location j 

𝑛𝑗𝑚 = Number of days-of-week in month m for which there is at least one valid 

8hBV observation at location j 

4.3.2 Improved Factor Grouping Methods 

In past research, short term count locations are generally assigned to a single factor group (i.e. group 

of permanent count locations) based on one or some combination of traffic pattern characteristics ( 

[11], [31], [39], [33]). For example, Nordback et al [28] use a combination of WWI values, visual 

inspection of temporal plots, and local expertise to divide count locations into three distinct groups: 

recreational, mixed, and utilitarian. Although several input metrics were applied, the output was a 

single vector containing a single factor group ID for each count location. 

However, this approach may not be sufficient when using TMCs to estimate AADB. The goal of 

factor grouping is to minimize temporal variation among locations in a group; if locations are grouped 

according to their day-of-week traffic profiles, then variation is minimized with respect to day-of-

week patterns. But there is no guarantee that a location’s day-of-week profile has any relationship to 

its month-of-year profile; within that same group, variation may be very high with respect to month-

of-year patterns. The result of using this single grouping schema will be accurate monthly average 

daily bicycle (MADB) estimates and inaccurate AADB estimates. Therefore, a “triple-grouping” 

approach is proposed to factor grouping for the refined traditional method. Under this approach, three 

separate grouping schemas are established, one for each factor type: A K-group (f k), a TWT-group (f 

d), and a MOY-group (f m).  
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Factor values can then be calculated across each group, using Equations (30), (31), and (32): 

𝐾𝑓𝑘 =
1

𝑛𝑓𝑘
∑ 𝛼𝑗 × 𝐾𝑗

𝑁

𝑗=1

 (30) 

Where 

𝐾𝑓𝑘 = K-factor for factor group f k 

𝐾𝑗 = K-factor for count location j 

𝛼𝑗 = 1 when count location j is in factor group f k; otherwise, 0 

𝑁 = Total number of individual permanent count locations 

𝑛𝑓𝑘 = Number of individual permanent count locations in factor group f k  

 

𝑇𝑊𝑇𝑓𝑑 =
1

𝑛𝑓𝑑
∑ 𝛼𝑗 × 𝑇𝑊𝑇𝑗

𝑁

𝑗=1

 (31) 

Where 

𝑇𝑊𝑇𝑓𝑑 = Tuesday-Wednesday-Thursday factor for factor group f d 

𝑇𝑊𝑇𝑗 = Tuesday-Wednesday-Thursday factor for count location j 

𝛼𝑗 = 1 when count location j is in factor group f d; otherwise, 0 

𝑁 = Total number of individual permanent count locations 

𝑛𝑓𝑑 = Number of individual permanent count locations in factor group f d   

 

𝑀𝑂𝑌𝑓𝑚𝑚 =
1

𝑛𝑓𝑚
∑ 𝛼𝑗 × 𝑀𝑂𝑌𝑗𝑚

𝑁

𝑗=1

 (32) 

Where 

𝑀𝑂𝑌𝑓𝑚𝑚 = Month-of-year factor for month m and factor group f m 

𝑀𝑂𝑌𝑗𝑚 = Month-of-year factor for month m and count location j 

𝛼𝑗 = 1 when j is in factor group f m; otherwise, 0 

𝑁 = Total number of individual permanent count locations 

𝑛𝑓𝑚 = Number of individual permanent count locations in factor group f m   
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The empirical factor grouping methodology, making use of a K-means clustering algorithm, is 

discussed in more detail in Chapter 3.  

4.3.3 Final Proposed Method 

The summation of the previous sub-sections is an updated method for AADB estimation from 8-hour 

TMCs which addresses the problems associated with this type of cyclist count data as identified in 

Section 4.1. The calculation of factors is performed using data from PCLs, which have up until now 

been denoted by the subscript j. AADB estimates are meant to be generated at STCLs where it cannot 

be calculated directly; these locations will be denoted by the subscript s. The method is expressed by 

Equation (33): 

𝐴𝐴𝐷𝐵̂𝑠𝑓𝑘𝑓𝑑𝑓𝑚 = 8ℎ𝐵𝑉𝑠𝑑𝑚 ×
1

𝐾𝑓𝑘
×

1

𝑇𝑊𝑇𝑓𝑑
×

1

𝑀𝑂𝑌𝑚𝑓𝑚
 (33) 

Where 

𝐴𝐴𝐷𝐵̂𝑠𝑓𝑘𝑓𝑑𝑓𝑚 = AADB estimate for STCL s in month m, which is a member of factor groups f 
k, f d, and f m 

8ℎ𝐵𝑉𝑠𝑑𝑚 = 8-hour TWT bicycle volume at STCL s on day-of-week d in month m, where d 

is one of Tuesday, Wednesday, or Thursday 

𝐾𝑓𝑘 = K-factor for factor group f k  

𝑇𝑊𝑇𝑓𝑑 = TWT-factor for factor group f d 

𝑀𝑂𝑌𝑓𝑚 = MOY-factor for factor group f m 

4.4 Results 

The proposed method for 8-hour TMC expansion was tested using the Pima County dataset. The full 

dataset was filtered and refined, as was outlined in Section 4.4.1. Only data from January 1, 2020 to 

March 15, 2020 was used under the assumption that the COVID-19 pandemic would significantly 

alter traffic patterns in the second half of March and beyond. The analysis workflow is shown in 

Figure 25. The numbers in parentheses in some of the boxes indicate the equations used to carry out 

the calculations for that step in the process. The analysis workflow was repeated for 4 different factor 

grouping schemes, namely schemes that consisted of dividing the sites into only a single group, 2 

groups, 3 groups, and 4 groups.    
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Figure 25: Analysis workflow for testing improved AADB estimation method, adapted from Nordback et al [28] 

Table 23: Summary of AADB estimation results for the "Proposed" TMC expansion method 

Method Groups MAPE SD of APE 
Weighted 

MAPE 

p-value 

(T<=t) 

Proposed Method 

1 44.5% 37.9% 38.8% - 

2 42.9% 37.6% 38.5% 0.14 

3 40.9% 33.6% 37.9% 0.046* 

4 40.6% 34.0% 38.5% 0.039* 

*Significant at a 95% level of confidence 

A summary of estimation results using the “proposed” method is shown in Table 23. Estimation 

accuracy is quantified in terms of the mean absolute percent error (MAPE).  There is a noticeable 

improvement in MAPE for 2, 3, and 4-group scenarios compared to placing all locations in a single 

factor group (44.5% MAPE for 1-group, 40.6% MAPE for 4-groups). Paired two-sample T-tests were 

used to compare successive grouping scenarios to the baseline of a single factor group. Under the 

assumption that increasing the number of groups should decrease estimation error, p-values for a one-

Filtered 

Dataset 

Compute K 

Indices (27) 

Compute DOW 

Indices (28) 
Compute MOY 

Indices (29) 

Establish K 

Groups 

Establish DOW 

Groups 
Establish MOY 

Groups 

Compute True 

Location 

AADB 

Remove 

“Target” Site* 

Estimate AADB from 

8Hour Counts (33) 

Compute Error 

Compute intra-group K (22), 

TWT (31), and MOY (32) 
factors 

Return Target 

Site to Dataset 

Repeat for 

every site 

in dataset 



 

 82 

tail T-test is provided. Although a significant difference was not found for the 2-group scenario, both 

the 3 and 4-group scenarios were found to produce statistically significantly lower average error 

across all locations than the 1-group scenario, at a 5% level of significance. This would indicate that 

factor grouping using empirical clustering at least slightly improved estimation accuracy, as would be 

expected to be the case, although an analysis of variance across all four scenarios did not find a 

significant effect for the number of factor groups (F{3}=0.627, p=0.599).  

Results for the proposed method were comparable or better than results for the three baseline 

methods (as described in Chapter 3), although means testing using paired two-sample T-tests was 

unable to show a significant difference between the proposed and any of methods for the same 

number of factor groups (t{33} = -0.359, p = 0.722 for 2-group proposed method versus 2-group 

DOW/MOY method). 

A summary of estimation results by location for the 3-group scenario is shown in Table 24. The 

standard deviation of absolute percent error (APE) across all locations was 33.6%, indicating a wide 

spread of estimates, as was the case in previous trials. This is further illustrated by Figure 26, which 

shows the spread of AADB estimates around their mean, by location. Note that true AADB is 

indicated by a red dot. In most cases, the mean of AADB estimates was close to truth; however, the 

spread of estimates was very large (the range of estimates for Location 49, for instance, was 16 to 

162, even though MAPE was only 33%). As was the case for the baseline results, MAPE tends to be 

higher at locations with low AADB, as does the relative spread of estimates (MAPE for locations 

with AADB less than 10 is 50.1%; for AADB greater than 10, 37.6%). Intuitively it makes sense that 

mean estimation error at a location is directly related to count variability. The more spread-out counts 

are around the AADB, the more spread out AADB estimates will be. Future work could be done to 

investigate whether count-variability can be explained by site characteristics, so that potentially high-

error sites could be identified and a type of confidence interval for estimates established.   
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Figure 26: 95% Confidence Interval Plot for AADB Estimation Results by Location (3-group Scenario) 
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Table 24: Summary of AADB estimation results by location for the 3-group scenario 

Location 
True 

AADB 

K 

group 

TWT 

group 

MOY 

group 

Avg. 

Estimate 
MAE SD of AE MAPE 

SD of 

APE 

39 8.7 0 0 2 9.2 0.5 5.3 5.0 60.8% 

81 13.2 0 1 0 16.1 2.9 6.8 5.4 51.6% 

5 17.6 0 1 0 17.5 -0.1 8.0 12.1 45.5% 

101 22.0 0 1 2 22.1 0.1 8.1 6.3 36.8% 

42 19.6 0 2 0 18.4 -1.2 4.8 3.2 24.4% 

34 25.0 0 2 0 23.6 -1.4 8.1 4.3 32.5% 

77 14.8 0 2 2 15.7 0.9 4.4 3.6 29.6% 

53 8.8 1 0 0 10.4 1.6 3.3 2.4 37.9% 

76 15.7 1 0 0 15.8 0.0 4.8 3.6 30.5% 

72 18.5 1 0 0 20.1 1.6 6.8 4.3 36.6% 

59 20.7 1 0 0 21.0 0.3 5.7 3.3 27.4% 

36 22.8 1 0 0 23.6 0.8 6.8 5.5 29.6% 

100 24.2 1 0 0 25.6 1.4 9.0 6.9 37.2% 

57 5.5 1 0 1 5.8 0.3 3.4 2.6 62.2% 

43 22.5 1 0 2 23.4 0.8 8.2 6.2 36.4% 

97 24.0 1 1 0 20.0 -4.0 10.0 6.7 41.6% 

7 5.6 1 1 2 7.2 1.7 3.6 2.8 64.8% 

69 11.9 1 1 2 13.8 2.0 5.9 4.2 50.0% 

52 14.3 1 1 2 14.7 0.4 7.3 5.9 51.2% 

73 31.6 1 1 2 30.0 -1.7 12.3 8.9 38.8% 

41 34.9 1 1 2 34.4 -0.5 15.1 10.4 43.4% 

6 20.2 1 2 0 19.9 -0.3 6.4 4.3 31.8% 

96 10.8 1 2 2 11.5 0.7 4.4 3.0 40.7% 

85 12.9 1 2 2 13.5 0.6 6.2 4.2 48.1% 

105 4.8 2 0 0 5.4 0.6 2.5 1.6 51.5% 

70 11.9 2 0 0 11.5 -0.4 4.4 2.8 36.8% 

62 2.5 2 0 1 3.3 0.7 1.3 1.3 52.8% 

50 9.8 2 0 2 9.8 0.0 3.6 3.0 36.1% 

13 13.2 2 0 2 14.1 0.9 4.9 3.6 37.2% 

71 35.5 2 0 2 31.4 -4.1 12.3 8.6 34.8% 

49 74.5 2 1 0 72.1 -2.4 25.3 18.1 34.0% 

38 5.4 2 2 0 5.7 0.3 1.9 1.6 34.8% 

80 7.7 2 2 2 9.7 1.9 3.9 2.4 50.0% 

9 10.2 2 2 2 10.3 0.1 3.4 2.9 33.0% 

       All: 40.9% 33.6% 

       VMAPE: 37.9% - 
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4.4.1 Permanent Count Location Selection  

Extensive filtering has already been done to identify and remove from the dataset erroneous counts. 

This process is detailed extensively in Chapter 2. However, even after removing obviously erroneous 

counts, it was noticed that the day-to-day variation in factor values was much higher at some 

locations that others. It was thought that the wide spread of count values relative to AADB at these 

locations might be having an undue influence on factor calculation. Accordingly, daily factors were 

calculated for every Tuesday, Wednesday, and Thursday in the Pima County dataset as the daily 

count for that day divided by AADB for the location at which that count was collected. A coefficient 

of variation (CV) was then calculated for every location as the standard deviation of these daily factor 

values over their mean. Those in the top half of daily factor CVs were flagged as “high variation” 

count locations. Figure 27 illustrates the spread of daily factor values at Pima County locations, with 

the “high variation” locations indicated by a red dot.  

 

Figure 27: Plots of Tuesday, Wednesday, and Thursday Daily Factor values by Pima County count location. 

Boxes show the inter-quartile range, and whiskers the 95% confidence interval. “High Variation” locations are 

indicated by a red dot at the median. 
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Accordingly, it was hypothesized that estimation error might be reduced by splitting the dataset 

into two groups, a “training” set comprised of locations with low relative variation in their counts; 

and a “test” set comprised of the remaining locations. Factors would be calculated using data from the 

training set, and applied to both the training and test set, as was done in the previous section.  

Several different methods of selecting locations for the training set were tested. Methods were 

evaluated using the proposed method shown in Section 4.3.3, under a 1-group factor grouping 

scenario. These results are shown in Table 25 below. As can be seen, in no case did using a reduced 

“training” set result in significantly different estimation results than the baseline, and in only one case 

was overall estimation error observed to be reduced (when the training set was chosen as the 50th 

percentile of locations in terms of their CVs in daily factor values). This would imply that removing 

locations with high variation in this case made no difference to estimation results. Although average 

estimates did change slightly on a location-by-location basis, overall accuracy was similar. Even 

comparing within the model and test groups, average error was about the same in both cases.  

Without significant differences in MAPE, there was no metric for objectively determining the 

“correct” set of locations for model calibration, so in this instance there is no reason not to use data 

from all available count locations to calibrate the factor model. It may still be beneficial in some 

circumstances to remove data from a calibration dataset – say, if one has access to a very large pool 

of data or if some locations are obvious outliers in terms of their temporal patterns – but in this case it 

did not have any significant effect. 

Table 25: Pima County estimation results for reduced training set 

Training Set Set Size MAPE 
SD of 

APE 

Weighted 

MAPE 

p-value 

(T<=t) 

Baseline 34 44.5% 37.9% 38.8% - 

AA8hB > 3 26 46.5% 40.7% 40.2% 0.631 

AA8hB > 8 17 49.5% 44.9% 42.5% 0.257 

50th percentile CV for K-factors 17 47.8% 42.4% 41.1% 0.448 

50th percentile CV for Daily factors 17 43.0% 35.6% 37.9% 0.398 

*Significant at a 95% level of confidence 
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Chapter 5 

Modelling Factor Groups Using Locational Characteristics 

This chapter will address the challenge presented by matching short-term count locations (STCLs) 

with appropriate “factor groups” for the purposes of expanding 8-hour turning movement counts 

(TMCs) to estimates of annual average daily bicycles (AADB). The estimation methods outlined in 

previous chapters require that permanent count locations (PCLs) be grouped according to the 

similarity of their bicycle traffic patterns. A set of expansion factors can then be calculated across 

each group and applied to one-day TMCs from STCLSs to generate AADB estimates. Various 

literature on this subject states that AADB estimation error can be reduced by grouping STCLs with 

the correct factor group, as this will minimize the difference between the “true” traffic patterns 

present at the STCL and the traffic patterns expressed by the factor group. However, with less than 

24-hours of count data, it is difficult (or impossible) to do so empirically, since the multi-day traffic 

profiles used to group the PCLs are unavailable. Thus, several alternative approaches have been 

proposed, which will be explored here: first, a linear regression approach, which attempts to directly 

model average factor values as a function of several locational attributes; second, a logit regression 

approach which models the probability of a location belonging to a given group; and finally, a 

generalized approach which uses a quasi-subjective evaluation framework to construct context-

specific guidelines for assigning STCLs to a factor group.  

5.1 Multivariate Linear Regression Approach 

Little explicit emphasis has been made in the literature on the relationships between temporal cyclist 

count patterns and spatial count location characteristics. However, attempts at modelling direct cyclist 

demand are common, and provide a good starting point for identifying potentially significant 

variables. Figliozzi et al [29], for instance, calibrated a “correcting function” that used a combination 

of temporal and weather variables to improve factor-based AADB estimates by 15% on average. 

Griswold [40] calibrated separate log-linear models for weekend and weekday 2-hour afternoon 

cyclist volumes at intersections. They found the positive influence of commercial retail and post-

secondary schools to be greater on weekdays than on weekends; and the influence of bicycle facilities 

to be greater on weekends [40]. A number of other similar sources were reviewed and summarized in 

Table 26.  
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Table 26: Summary of past research on direct demand cyclist count modeling  

Variable Expected Relationship Sources 

Socio-Economic Variables 

Age - % of Residents over the age of 65 or under the age of 5 (-) [24] 

Educational Attainment - % College Educated (+) [24] [41] 

Household Income (+) [24] [41] 

Land Use Variables 

Population Density (+) [24] 

Number of commercial properties (+) [40] 

Distance to post-secondary institutions (-) [40] 

Distance from the CBD (-) [41] 

“Land use mix” (+) [41] [42] 

Employment (+) [42] [43] 

Presence of schools (+) [42] 

Presence of a metro station (+) [42] 

Presence of an area of commercial use (+) [42] 

Presence of institutional land uses (+) [44] 

Bus stops (+) [44] 

Roadway Characteristic Variables 

Presence of bicycle facilities (+) [40] [41] 

Average slope of surrounding terrain (-) [40] 

“Node Connectivity” of intersection (+) [40] 

Bicycle Level of Service (+) [43] 

Bicycle-trail access (+) [43] 

Roadway leads to a bridge (+) [43] 

Number of lanes (+) [43] 

Speed limit (-) [43] 

Bike-lane width (+) [43] 

Weather 

Precipitation (-) [29] [45] 

Temperature (+) [29] [45] 

Humidity (-) [45] 

Temporal Variables 

Holidays (-) [29] 

Lagging variables (DOY-1) N/A [29] [45] 

Morning period (-) [43] 

Hour-of-day, Day-of-week, Month-of-year N/A [45] 
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5.1.1 Data Collection 

Data for this study was derived from the Pima County Miovision data, Pima County Open Geospatial 

Data, and U.S. Census Bureau statistics. Data was primarily processed in the QGIS open-source 

geographic information system application, using a combination of geoprocessing tools to link 

spatially referenced data to the set of study locations.  

One difficult decision to make when collecting data in a cyclist demand model is choosing the scale 

at which to measure variables. Roadway characteristics are inherent to an intersection, but land use 

characteristics are usually defined in terms of some buffer zone surrounding an intersection. Including 

variables at multiple scales can improve model development [44]. Buffer distances vary from study to 

study. Medury used different search distances for different land use classes, ranging from 500 to 1200 

meters, for a study of mixed pedestrian-cyclist traffic [13]; Tabeshian and Kattan performed a multi-

scaled analysis to develop a model for direct cyclist demand at intersections which included 

institutional land uses within 0.5 miles, low density residential within 0.1 miles, commercial density 

within 0.1 miles, and bus stops within 0.25 miles [44]; Mukoko cites National Household Travel 

Survey data which says that about 60% of all bicycling trips in the United States are one mile or less 

in establishing a one-mile “ideal buffer width” [46]; Strauss used a 400 meter buffer for employment 

and schools, and an 800 meter buffer for metro stations and land use mix, but just a 50 meter search 

area for commercial land uses [42]. Common across all these studies seems to be the assumed 

positive relationship between the “gravity” of a land use and its area of influence (i.e. the ideal buffer 

distance for a university is probably wider than the ideal buffer for a convenience store).  

The land use patterns of Pima County further complicate this choice. A substantial number of the 

sample count locations do not have any land uses abutting them, meaning that too small a buffer will 

not capture the dominant surrounding land uses, which likely still influence traffic patterns. After 

trialing several alternatives in QGIS, 450-meter and 900-meter buffer distances seemed to adequately 

capture surrounding land-uses in the Pima County context. Both distances were tested for most 

variables, with the better correlated between the two options carried through to the final analysis.  

Variables considered are summarized in Table 27. 
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Table 27: Summary of locational land-use and roadway characteristics 

Variable Name Short Form Description Source 

Annual average 

Daily Traffic 

aadt Sum of average daily intersection volume 

across all approaches. 

Derived from intersection 

traffic monitoring data.  

Weekend-

Weekday Index 

wwi Ratio of intersection average weekend to 

weekday motorized vehicle traffic. 

Derived from intersection 

traffic monitoring data. 

Speed Limit sl Average speed limit across all intersection 

approaches. 

Pima County Open Data 

(Speed Limits, 2021) 

Traffic Lanes lanes Sum of through lanes (no turning lanes) 

across the widest of the North-South 

approaches, and the widest of the West-East 

approaches.  

Pima County Open Data 

(Number of Lanes, 2021) 

Bike Lane b_lane “1” if a bike-lane is present on any of the 

approaches, otherwise “0”. 

Pima County Open Data 

(Bicycle Routes, 2021) 

Proportion of 

Heavy Vehicles 

%hv Proportion of AADT which is “heavy” 

traffic (trucks, semi-trailers, buses). 

Derived from intersection 

traffic monitoring data. 

Presence of a 

Safer Alternative 

posa “1” if an off-road cycling route (such as a 

multi-use path) is present within 450 meters 

of an intersection; otherwise “0”.  

Pima County Open Data 

(Bicycle Routes, 2021) 

Population pop Total population of the census division 

containing an intersection, divided by 

10,000.  

U.S. Census Bureau 

(2019) American 

Community Survey: Age 

and Sex  

Population 

Density 

per_km Population per square kilometer of the 

census division containing an intersection. 

U.S. Census Bureau 

(2019) American 

Community Survey: Age 

and Sex 

Age age Median age of the census division 

containing an intersection. 

U.S. Census Bureau 

(2019) American 

Community Survey: Age 

and Sex 

Income inc Median income of census division 

containing an intersection, divided by 

10,000. 

U.S. Census Bureau 

(2019) American 

Community Survey: 

Income 

Parcels  count_all Count of all land use parcel centroids 

within 900 meters of an intersection, 

divided by 1000. 

Pima County Open Data 

(Parcel Centroids, 2021) 
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Variable Name Short Form Description Source 

Parcels – 

Residential 

p_r Proportion of parcel centroids within 900 

meters of an intersection associated with a 

“residential” land use. 

Pima County Open Data 

(Parcel Centroids, 2021) 

Parcels - 

Commercial 

count_c Count of parcel centroids within 900 meters 

of an intersection associated with a 

“commercial” land use, divided by 100. 

Pima County Open Data 

(Parcel Centroids, 2021) 

Parcels - 

Industrial 

industrial “1” if any parcel centroids within 900 

meters of an intersection are associated with 

an industrial land use; otherwise, “0”.  

Pima County Open Data 

(Parcel Centroids, 2021) 

Business 

Licenses 

licenses Count of business licenses geo-located 

within 900 meters of an intersection, 

divided by 100. 

Pima County Open Data 

(Business Licenses, 2021) 

Urban Boundary ub Distance in kilometers of an intersection to 

the urban boundary, as delineated by the 

regional zoning code. 

Pima County Open Data 

(Zoning – All 

Jurisdictions, 2021) 

Points of Interest poi “1” if any civic point of interest is within 

450 meters of an intersection (e.g.  hospital, 

library, shopping center, etc.); otherwise 

“0”. 

Pima County Open Data 

(Points of Interest, 2021) 

Schools school “1” if any middle school, high school, or 

post-secondary school is within 900 meters 

of an intersection; otherwise “0”.  

Pima County Open Data 

(Schools, 2021) 

Parks park “1” if any park or recreational area larger 

than 1 km2 is within 900 meters of an 

intersection; otherwise “0”. 

Pima County Open Data 

(Parks and Recreation, 

2021) 

Trailheads trailhead “1” if any access point to an off-road path is 

within 900 meters of an intersection; 

otherwise “0”.  

Pima County Open Data 

(Trailheads and Trails, 

2021).  

5.1.2 Model Development 

It is mostly acknowledged that “…OLS is not the best approach for traffic counts,” since they are not 

normally distributed and are non-negative integers [41]. However, this is not an issue here, as factor 

values are being modelled in place of actual cyclist counts. Average K and TWT factor values were 

tested using the Shapiro-Wilk normality test, which found in both cases the factors to be normally 

distributed (see Table 28). This conclusion is also supported by visually inspecting plots of factor 

values; the histogram of K-factors in Figure 28 shows a distinctly normal distribution. For this reason, 

OLS regression was deemed to be appropriate. 



 

 92 

Table 28: Shapiro-Wilk tests for count-location average factor values 

Factor Value Mean SD W-Statistic DF Sig.* 

K 0.619 0.068 0.974 33 0.594 

TWT 0.865 0.101 0.971 33 0.497 

 * Conclude that sample is not Normally distributed if Sig value ≤ 0.05  

 

Figure 28: Histogram of average K-factor values for count locations, with normal curve overlay 

Variable selection was performed using a mixed stepwise-Akaike’s Information Criterion (AIC) 

minimization approach. Because of the small sample size of just 34 count locations, the goal of this 

process was to reduce the number of variables to three or fewer per model, or approximately 10 

observations per model term.  

First, a model was calibrated which included all the available variables described by Table 27. 

Then, stepwise AIC minimization was performed. Insignificant variables were removed to produce a 

further reduced model, which was again subjected to AIC minimization. The resulting model was 

finalized by removing any remaining insignificant variables and testing the assumptions of 

homoscedasticity and normality of the residuals. A relatively high significance level of 10% was 

chosen, to reflect the combination of a small sample size and a noisy dataset. Following this process, 

separate models were developed for K (Table 29) and TWT (Table 30) factors.  
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Table 29: OLS regression model for direct K-factor estimation 

 Estimate Pr (> |t|) 

(Intercept) 0.649 < 2e-16 * 

posa 0.061 0.029 * 

licenses -0.030 0.054*  

trailhead -0.068 0.01 * 

* Significant at α = 0.1  

R2 = 0.229 F(3, 30) = 4.27, p=0.013 

 

Table 30: OLS regression model for direct TWT-factor estimation 

 Estimate Pr (> |t|) 

(Intercept) 0.9422 1.37e-12 * 

aadt 0.0041 0.031 * 

age -0.0045 0.017 *  

poi 0.0948 0.053 * 

* Significant at α = 0.1   

R2 = 0.2462 F(3, 30) = 4.59, p=0.009 

  

The final model for K-factor values includes the presence of a safer alternative (or an off-road path) 

within 900 meters, the number of commercial licenses within a 900-meter buffer, and the presence of 

a trail access point within 900 meters. The proportion of variance explained by these variables is 

relatively low (R2=0.2462), but the overall F-statistic significance (p=0.013) shows that we can be 

confident that the model fits the data better than an intercept only model at a 95% level of confidence.  

The final model for TWT-factor values included the annual average motor vehicle traffic, the 

median age of the census tract containing the count location, and the presence of any places of 

interest within 900 meters. Again, the model R2 is relatively low (0.2462), indicating the predictive 

power of the model is weak, but the overall model is significant at a 95% level of confidence 

(p=0.009).  

5.1.3 Model Evaluation 

The models developed in Section 5.1.2 were applied to the 34 Pima County count locations to test the 

viability of using multiple-linear regression to predict STCL group membership. This process 

followed an iterative structure, as illustrated by Figure 29. 
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Figure 29: Model evaluation process for STCL group prediction 

Starting from the full set of 34 locations (1), empirical clusters were calculated to establish ground 

“truth” (2). One by one, locations were removed from the dataset to form the “test” set (3), leaving 

the remaining locations to be the “training” set (4). Model parameters were then calibrated using the 

training set (5) and used to predict a factor value for the test location. This value was used in turn to 

predict factor group membership (6). Steps (3) through (6) were repeated once for every location in 

the sample, meaning that 34 different models were calibrated. Predicted factor groups were compared 

to the empirical groups established in step (2) to generate final results (7). This analysis was repeated 

twice, for K-factors and for TWT-factors. For both factor types, two, three, and four-cluster scenarios 

were all considered.  

The predicted factor group for the test location was determined by finding the nearest neighbour to 

the predicted factor value within the set of cluster centroids. Take for example a two-group k-factor 

example where k1 = 0.34 and k2 = 0.45; a test location with a predicted k-factor value of 0.41 will be 

assigned to group k2. Results of the model evaluation process are quantified in terms of the prediction 

accuracy (i.e. fraction of the test locations that have been assigned to the correct factor group) and 

summarized in Table 31. 
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Table 31: STCL group prediction results using multivariate linear regression 

# of Groups 
Group Prediction Accuracy 

K-Factor TWT-Factor 

2 76% 76% 

3 50% 41% 

4 41% 35% 

 

As would be expected, overall prediction accuracy was the highest for the 2-group scenario (76% 

accuracy for both K and TWT factor groups) and declined as the number of groups was increased. 

Prediction accuracy for both factor types was at or below 50% for the three and four group scenarios. 

It is possible that a model calibrated from a larger dataset would produce better results, but it’s also 

possible that in reality there are no more than two distinct groups in the Pima County context. As has 

been noted, one of the shortcomings of the dataset used for this study is the homogeneity of the 

sample count locations, both in terms of cyclist traffic patterns and in terms of locational 

characteristics. To accurately model variation in cyclist count patterns, there needs to be a significant 

amount of non-random variation in the data.  

Note that MOY factors were not considered for this analysis. While K and TWT factors are 

aggregated to a single value for every location, a location’s relative MOY traffic patterns are 

expressed by a vector of month-specific values (in this analysis, each location has three associated 

values, for January, February, and March). It is not reasonable to calibrate separate regression models 

for every month of the year; for a full dataset, this would mean calibrating twelve models. Even if 

individually the models were relatively accurate, each additional model would introduce error into the 

prediction of MOY factor groups. This method is not likely to produce acceptable results. 

Furthermore, initial attempts were unable to produce regression models for MOY factor values that 

were significantly better than intercept-only models. The stepwise regression process described above 

was not able to produce models for January, February, or March MOY factors that contained any 

statistically significant independent variables. Clearly, alternative methods will need to be explored 

for the determination of MOY factor groups for STCLs. 

5.1.4 Impact on AADB Estimation 

Grouping schema produced by the OLS regression models for K and TWT-factor values were used to 

generate estimates of AADB using the factor-based estimation method proposed in Chapter 4. These 
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results were compared to grouped and ungrouped results for the proposed method, to assess the error 

associated with “incorrect” grouping resulting from STCL group prediction. Results for the OLS 

factor-value prediction model are shown in Table 32, along with results obtained from empirically 

grouped and un-grouped schemas (which were presented in previous chapters). Note that, because no 

method for predicting MOY factor groups was developed, it was assumed for the purposes of this 

evaluation that the “correct” MOY-groups were known. So, the K and TWT-group schema were 

predicted using the OLS models, but MOY-groups were determined empirically. 

Table 32: Summary of AADB estimation results from OLS-predicted factor groups 

Method Groups MAPE SD of APE 
Weighted 

MAPE 
p-value (T<=t) 

OLS Regression 2 43.6% 35.5% 38.8% - 

Empirical Clustering 2 42.9% 37.6% 38.5% 0.602 

Ungrouped 1 44.5% 37.9% 38.8% 0.328 

*Significant at a 90% level of confidence 

Using the 2-group K and TWT factor grouping schema predicted by the OLS models described in 

the previous two sections, AADB estimates were generated with a MAPE of 43.6% across all 34 

Pima County locations. Overall estimation results were very similar to results from the 2-group 

empirical clustering schema, and the ungrouped schema. Two-sample paired T-tests were used to 

compare MAPE between the “OLS Regression” results to the other sets of estimation results. A 

significant difference was not found between either of the two pairs. Although it would appear that 

“correct” empirical clustering resulted in very slightly more accurate estimates than using either the 

predicted or ungrouped schemas – and that even the “incorrect”, predicted grouping schema resulted 

in more accurate estimates than using just a single factor group – this conclusion is not statistically 

supported. It would seem as if, in this case, results would be similar no matter how locations were 

grouped.  

5.2 Logit Regression Approach 

An alternative to the OLS approach to linking empirical clusters to land use variables described in the 

previous section is proposed by Medury [13]. Pointing out that “…activity patterns can vary between 

sites so that there is potential to create more accurate estimates by grouping similar long-term count 

trends into factor groups,” they suggest a probabilistic approach to link empirical clusters of mixed 

pedestrian-cyclist count locations to land use data collected using the Google Places API. Under this 
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method, the labels for empirical clusters become the categorical response variable in a logistic 

regression. The resulting model can be used to calculate the probability that a location with a given 

set of characteristics belongs to group g, and the maximum probability among the set of all g is used 

to predict group membership.  

This section will outline an attempt to calibrate similar logit models for the Pima County count 

locations, with separate models developed for each of the K, TWT, and MOY empirical grouping 

schema. The same set of data was used as was for the OLS method (variables are summarized in 

Table 27). 

5.2.1 Establishing Binary Empirical Factor Groups 

We showed in the previous section that prediction accuracy under the OLS method dropped off 

steeply as the number of clusters increased. Assuming that this would also be the case under a logistic 

approach, it seems acceptable to limit this evaluation to a binary grouping scenario. As well, 

increasing the number of groups would decrease the sample size per group, compromising the model 

quality and reducing the already small number of independent variables which could be included.  

K-means clustering was used to establish binary empirical factor groups for K, TWT, and MOY 

factors. Each of the 34 locations was assigned three group IDs. As will be discussed in more detail, 

these IDs became the dependent variable in the logistic regression. The group labelled as “0” will be 

used as the reference group in the regression. 

In order to better understand the logit model outputs, the calculated empirical factor groups are 

summarized in Table 33 below.  

Table 33: Summary of binary empirical factor groups for a logistic regression analysis 

Factor 
Group 0  

(reference group) 

Avg. Factor 

Value 
Group 1 

Avg. Factor 

Value 

K Off-peak 0.55 On-peak 0.66 

TWT Weekend 0.79 Weekday 0.97 

MOY Decreasing 

Jan – 1.22 

Feb – 0.98 

Mar – 0.79 

Constant 

Jan – 0.94 

Feb – 0.97 

Mar – 1.07 

 

Two distinct groups were identified based on K-factors: an “off-peak” group, the locations in 

which experience relatively lower relative cyclist volumes during the 8-hour TMC period; and an 
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“on-peak” group, which experience relatively higher 8-hour volumes. For TWT factors, the two 

empirical factor groups were: a “weekend” group, where average location TWT volume is relatively 

lower compared to AADB; and a “weekday” group, where TWT volume is relatively higher. And 

finally, for MOY factors: a “decreasing” group where average cyclist volumes decreased month over 

month during the January to March study period; and “constant” locations where average monthly 

volume relative to AADB was consistent.  

5.2.2 Model Development 

The small sample size for this study of 34 count locations substantially limited certain elements of the 

development of a logistic regression model. Logistic regression usually requires a large sample size 

compared to standard OLS. Peduzzi [47] recommends that the sample size for a binomial experiment, 

N, be equal to ten times the number of covariates divided by the proportion of positive cases. As per 

these guidelines, N would need to be 10(1/0.65) = 15 to confidently include just one variable in a 

model for K-factor groups; for two variables, N = 30; for three variables, 46. Long [48] furthermore 

recommends a minimum N of 100, irregardless of the number of variables. Under this 

recommendation, we would not have a large enough sample size to conduct a logistic regression 

study. Medury [13], for reference, used a sample of 153 count locations spread across the 

southeastern USA. Considering these limitations, models were developed subject to a maximum 

number of independent variables of two.  

The generalized functional form of the logit model is shown in Equations (34) and (35). These 

equations are the same for all three of the K, TWT, and MOY models, except that different 

combinations of linear predictors (𝑥𝑗𝛽) will be calibrated for each. Note that the logit model does not 

directly represent the linear relationship between a set of predictors – in this case the land use 

variables associated with a given location, such as the number of surrounding commercial buildings – 

and a probability value. Rather, it models the linear relationship between a set of predictors and the 

log of the probability that a location belongs to Group 1 over the probability that the location belongs 

to Group 0. Thus, the calibrated regression models will provide predicted values for the log-odds that 

a given STCL will belong to Group 1, which can be converted to a probability value, and thus used to 

predict group membership under some binary classification logic.  
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𝜃𝑗 =
𝑒𝑥𝑗𝛽

1 + 𝑒𝑥𝑗𝛽
 (34) 

𝑙𝑜𝑔𝑖𝑡[𝜃𝑗] = ln [
𝜃𝑗

1 − 𝜃𝑗
] = 𝑥𝑗𝛽 (35) 

Where 

𝜃𝑗 = The probability that location j belongs to Group 1 

𝑥𝑗 = A vector of covariates associated with location j 

𝛽 = A vector of regression coefficients 

Model specification followed a very similar process to that described in the previous section for the 

linear regression models. First, models were calibrated that included the full set of available 

predictors. These models were, of course, extremely overfit; fitted model values were either 1 or 0, 

indicating perfect predictive power. Attempts to condense these models using a stepwise AIC 

minimization approach produced unsatisfactory models as well. So, a reduced set of predictors was 

manually selected. Variables selected were meant to represent those land use attributes and locational 

characteristics identified in the literature (and in previous work in this study) as being best correlated 

with cyclist traffic patterns. These were: business licenses within 900 meters; traffic lanes; the 

presence of a bike lane; population density (per km2); the presence of industrial land uses; the motor 

vehicle traffic weekend-weekday index of the intersection; and the presence of AT trailheads within 

900 meters. 

The stepwise AIC minimization process was then applied to a model containing this subset of 

variables to generate final logit models. Final models were checked for the statistical significance of 

their components using Wald tests at a 10% level of significance, with insignificant variables 

discarded (although some flexibility was applied in this regard). As well, sequential likelihood-ratio 

tests were used to compare the full models against less complex models in order to simplify them 

until only two variables remained. Final model specifications are shown in Table 34.  
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Table 34: Logit regression models for K, TWT, and MOY factor groups 

K-factor      

Variable β SE of β Z-ratio p  Odds Ratio 

Intercept 1.406 1.519 0.926 0.355 4.081 

lanes 1.370 0.632 2.168 0.030 3.935 

perkm -1.781 0.913 -1.950 0.051 0.168 

      
Model χ2 = 10.217,  p = 0.006    

Pseudo R2 = 0.259     

n = 34     

      

TWT-factor      

Variable β SE of β Z-ratio p  Odds Ratio 

Intercept -7.257 2.401 -3.022 0.003 0.001 

licenses 2.676 1.220 2.193 0.028 14.529 

lanes  1.514 0.582 2.599 0.009 4.544 

      
Model χ2 = 19.696,  p = 0.000    

Pseudo R2 = 0.440     

n = 34     

      

MOY-factor      

Variable β SE of β Z-ratio p  Odds Ratio 

Intercept 2.260 1.011 2.235 0.025 9.581 

licenses  -2.175 1.332 -1.633 0.102 0.114 

trailhead 2.661 1.708 1.558 0.119 14.313 

      
Model χ2 = 7.758,  p = 0.021    

Pseudo R2 = 0.204     

n = 34     

      
Notes: Cox-Snell statistic provided as Pseudo-R2  

 

Remember that the response variable in a binary logit model is the log-odds of observing a 

“success”. In this case this means observing a location which belongs to the factor group which is 

coded to be “1”. Refer to Table 33 for a summary of empirical factor groups. Interpreting the model 

outputs can be made somewhat easier by exponentiating coefficients, which are log-odds, to give an 

odds-ratio. This is the expected multiplicative increase in the odds of a location belonging to group 

“1” for a one unit increase in the associated variable.  

A likelihood ratio test was performed on all three models to evaluate overall model significance; 

model chi-square (χ2) values are provided. In each case, the model was shown to be a significant 
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improvement over the “null”, or intercept-only model at the 5% level. Pseudo R-squared statistics 

were also calculated to give a rough impression of goodness-of-fit (although these values should not 

be interpreted as direct measures for variance explained, as they would be in OLS regression). These 

show the model for TWT-groups to be relatively better fit than either of the K or MOY-group models, 

which is supported by the other evaluation criteria. From this we might conclude that the land-use 

variables collected for this study are best correlated with temporal patterns in relative weekday-

weekend cyclist volumes, out of the three pattern-groups studied.      

The model for K-groups indicates that the odds of a location belonging to group K-1, the “on-peak” 

factor group, are about four times higher for every additional traffic lane, all else being equal. Odds of 

K-1 membership also decrease by about 83% for every one-unit increase in population density (or 

every increase in density of 1000 pop/km2).  

TWT group membership seems to be strongly associated with commercial land uses; the odds of a 

location belonging to group TWT-1, of the “weekday” group, is a full 14 times higher for every 

additional 100 commercial licenses within 900 meters. As well, TWT-1 membership becomes 

significantly more likely with every additional traffic lane. In fact, this seems to be the strongest 

relationship out of any of the variables tested across all three models. Weekend riders may then be 

trying to avoid wide, high volume roads, as one might expect to be the case.  

Finally, the MOY-group model, which may be the most difficult to interpret. It seems as though 

commercial licenses are associated with lower odds of a location having a “constant” MOY pattern, 

which is somewhat incongruous. One would expect locations with heavily commercial surroundings 

to see consistent month-over-month traffic, as commercial uses usually don’t fluctuate seasonally in 

the way that school or recreational land uses would. Furthermore, the presence of “trailheads” within 

900 meters is associated with a large increase in the odds of a location belonging to the “constant” 

MOY group. Again, this makes little sense, as recreational traffic associated with trailheads would be 

expected to fluctuate seasonally. It seems likely that, in truth, there are more than two distinct MOY 

traffic patterns in the Pima County data. The binary approach may not be sufficient, and the missing 

group(s) may be obfuscating the results. An even more likely limitation is that the sample size (just 

three months of data from 34 locations) is too small for a robust logistic analysis. Future study could 

make substantial improvements by addressing this issue. 
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It should be noted that logistic regression is known to be positively biased in studies with small to 

moderate sample sizes [49], with odds ratios being systematically overestimated as sample size is 

decreased. Any conclusions made in this section should be considered carefully with this in mind.  

5.2.3 Model Evaluation 

The models developed in Section 5.2.2 were applied to the 34 Pima County count locations to test the 

viability of using logit regression to predict STCL membership. An iterative approach was taken, 

identical to that presented in Figure 29 for OLS models, but with the addition of a MOY model to the 

K and TWT models. The empirical factor groups established in Section 5.2.1 were used as ground 

“truth”. One by one, locations were removed from the dataset to form the “test” set, and the 

remaining locations were used to calibrate three logit models. These models were then used to predict 

group membership for the test location. 

Because binary grouping schema were evaluated, the probability threshold for classifying test 

locations was set to 0.5. If the expected probability given by the model was less than 0.5, the test 

location was assigned to Group 0; if greater than 0.5, Group 1. To illustrate the application of the logit 

models, take Location 52 as an example. This location belongs to the empirical TWT-factor group 

“0”, or the “weekend” factor group; the number of lanes at this location is 3, and the number of 

commercial licenses within 900 meters is 42 (see Table 27 for more details). By applying the model 

coefficients shown in Table 34, an estimate of the log-odds of this location belonging to Group 1 can 

be calculated as -7.257 + (2.676 x 3) + (1.514 x 0.42) = -1.59. This can be exponentiated to an odds-

ratio, 0.20, which can be converted to a probability as 0.20 / (1 + 0.20) = 16.9%. Since the predicted 

probability is less than the classification threshold of 0.5, Location 52 is placed into the predicted 

group “0”, which is the same as its “true” empirical group. This process is summarized in Table 35. It 

should be noted that the model coefficients applied to Location 52 during the model evaluation were 

actually very slightly different than the coefficients shown in Table 35, since a model was calibrated 

specific to each location which excluded it from the calibration dataset.  
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Table 35: Example of TWT-group Logit Model Application 

Location 

Empirical 

TWT-Group lanes licenses Log-odds Odds Prob. 

Predicted 

Group 

52 0 3 0.42 -1.59 0.20 16.9% 0 

 

Prediction results are shown below in Table 36.  

Table 36: STCL group prediction results using multiple logistic regression 

Factor Overall Group 0 Group 1 

K 70.6% (24/34) 81.8% (18/22) 50.0% (6/12) 

TWT 79.4% (27/34) 80.0% (16/20) 78.6% (11/14) 

MOY 73.5% (25/34) 22.2% (2/7) 92.0% (23/25) 

 

Overall prediction accuracy was relatively high, between 70%-80% for all three models. However, 

accuracy was noticeably imbalanced between groups. For the K-group model, the smaller Group 1 

had a prediction accuracy of only 50%. For MOY-groups the smaller Group 0 had a prediction 

accuracy of 22.2%. It seems from this that there may be some bias in the models towards the group 

with the larger sample size. This could be solved both by using a much larger overall sample size, and 

by equalizing sample sizes between groups in future studies.  

5.3 Generalized Manual Approach 

Part of the fundamental purpose of this research is to help develop widely applicable methods for 

local transportation planning agencies to enhance their planning processes. Relatively complex 

statistical analysis requiring somewhat large and detailed datasets may be less useful in this sense 

than a more generalized approach which uses local knowledge and more readily available 

information. Such an approach may in fact be more than sufficient for the purposes outlined here.  

The following sections describe the establishment of empirical factor groups for the 34 Pima 

County locations based on their average K, TWT, and MOY factor values. Then, these groups are 

evaluated under a quasi-subjective framework using data gathered manually from Google Maps aerial 

and street view imagery. Ideally, it would be possible to translate these evaluations to a generalized, 

manual approach to assigning STCLs to an appropriate factor group, for the purpose of estimating 

AADB using a set of expansion factors calibrated from PCLs which have similar temporal cyclist 
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patterns. However, the attempts to do so below find mixed results, with some factor groups exhibiting 

more obvious relationships to their physical surroundings than others.  

5.3.1 Data Collection 

A short set of variables was established, based on previous work and on expectations of which land 

use variables would be most relevant to temporal patterns, as well as considering the practicality of 

assessing those variables from Google maps imagery. This evaluation framework is outlined in the 

subsequent sections. Note that this framework is subjective in nature, predicated on researcher 

judgement, and could be improved through local knowledge. 

5.3.1.1 Commercial / Employment Uses 

Intersection surroundings were scanned for major commercial or employment land-uses, such as large 

shopping plazas, malls, or office complexes. Consideration was given to the expected sphere of 

influence or different land-uses. The size of commercial generators was assumed to be positively 

related to their influence on cyclist traffic patterns, with larger commercial or employment centres 

assumed to have a larger sphere of influence. As a general rule, one major block (or approximately 

750 – 900 meters) was considered the limit in terms of direct impacts. For example, the count location 

indicated by the red chevron in Figure 30 below (Location 36: Camino de la Tierra & Ina Rd) was 

considered to be in the sphere of influence of the large commercial plaza at the next intersection to 

the east, especially given that the plaza extends nearly halfway down the block towards it. 

 

Figure 30: Google Maps. (2021) [W Ina Rd & N Camino De la Tierra, Casas Adobes, AZ] 



 

 105 

5.3.1.2 Educational / Institutional Uses 

Intersection surroundings were also scanned for educational and institutional land uses, such as 

schools, libraries, and community centres. Note that elementary schools were not considered, both 

because they are much smaller than junior high or high schools, and so aren’t expected to have 

significant impacts on travel demand; and because most of the count locations are at major 

intersections, which young children wouldn’t be expected to pass through even if they were cycling to 

school. Also note that healthcare, such as hospitals or medical centres, were considered to be 

“employment” and not “institutional” land uses, and so were captured under the “Commercial / 

Institutional” land use category. Similar ‘sphere of influence’ guidelines were applied as was done for 

commercial land uses. Larger schools, especially high schools or post-secondary institutions, were 

assumed to have the largest sphere of influence, up to an approximate maximum of one major block.  

5.3.1.3 Recreational Uses and Trail Access 

The final land-use category which was scanned for at study locations was recreational generators, 

such as large parks and conservation areas. Also considered were access points to major trail systems, 

such as the “Tucson Loop River Path” system. In some cases, consideration was given as to whether 

the count location was on-route to a major recreational destination. For instance, Location 97: 

Colossal Cave Rd & Mary Ann Cleveland Wy is well into the south-eastern exurbs of the Tucson area; 

there are no major generators at or within a wide radius of the intersection, but the location is close to 

the urban boundary and on route to several major recreational areas, such as the “Colossal Cave 

Mountain Park”. The surrounding area was thus classified as ‘recreational’ in nature, and this effect 

could indeed be seen in the count data which exhibited a recreational pattern. 

5.3.1.4 Relative Geographic Area 

Study locations were generally clustered in three semi-distinct areas: Casas Adobes/North Tucson, the 

Catalina Foothills, and South-East Tucson. Each of these areas had somewhat distinct characteristics 

and land-use patterns (as per the researcher’s judgement) which were thought to possibly have some 

influence on traffic patterns: 

- North Tucson: Generally flat, mid-density suburbs mixed with large commercial plazas. Not 

close to the urban boundary and associated recreational areas but interspersed by an extensive 

paved multi-use path network following the Rillito River basin.   



 

 106 

- Catalina Foothills: Most count locations located along a single west-east roadway corridor, 

Skyline Drive / Sunrise Drive with some intermittent commercial uses surrounded by 

extremely low density, high income residential land-uses. Characterized by hilly topography, 

and close to the north-eastern urban boundary and the associated recreational areas. 

- SE Tucson: Somewhat industrial or heavy-commercial land uses in the areas around and 

between Tucson International Airport and the Davis-Monthan Air Force Base. Limited 

recreational land uses. 

5.3.1.5 Bicycle Level of Service 

A large number of bicycle level of service (BLOS) frameworks have been proposed by various 

researchers as ways to summarize the level of comfort which cyclists feel on a given road segment or 

at a given intersection. A very subjective, researcher dependent framework was applied here to score 

intersections on a scale from A (most comfortable) to F (not comfortable at all). The scale could also 

be expressed as a cyclist’s willingness to choose a route featuring a given road segment in the 

presence of some other hypothetical option. Ultimately, these measures are a matter of the opinion of 

the researcher, which introduces some considerable bias.  

The major and minor approach at every intersection were assessed separately, taking into 

consideration factors such as the number of lanes, road speed, road geometry, perceived traffic 

volume and composition, and the presence of bike lanes. An average BLOS for each count location 

was assigned as the average BLOS of the major and minor approaches (rounded up). Table 37 shows 

the subjective BLOS framework applied in this study.  
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Table 37: Bicycle Level of Service Framework 

BLOS Comfort Level Examples 

A 
Completely comfortable, 

would always choose 

Physically separated bicycle infrastructure of some kind is available, 

for example a protected cycle track  

Low volume, traffic calmed local road 

B 
Less comfortable, but 

would usually choose 
Painted bike lanes on a low volume, 2-lane collector 

C 
Comfortable, but would 

prefer another option 

Painted bike lanes on a medium volume, 2-lane collector  

Wide shoulder on rural road 

D 

Uncomfortable, but 

would choose if 

necessary 

Painted bike lanes on 4-lane, medium volume collector 

2-lane street with no bike lane or a narrow shoulder 

E 

Very uncomfortable, 

would almost never 

choose 

4-lane, medium volume collector with no bike lane or wide shoulder 

4-lane high-volume, high-speed arterial with painted bike lanes 

F 
Not comfortable at all, 

would never choose 

High volume 6+ lane road, with or without bike lanes or painted 

shoulder, high % of heavy vehicles, merging lanes and slip-lanes for 

right turns are present 

 

It is expected that different cyclist “classes” will prefer different types of roadways, contributing to 

observed differences in traffic patterns. For instance, recreational cyclists might prefer higher BLOS 

roads while utilitarian cyclists may not have a choice but to choose a given route. One of the 

difficulties with this sort of analysis is that it is extremely rider dependent. A seasoned cyclist will 

exhibit much higher levels of comfort than an inexperienced one. Another problem, in the Pima 

County context, is that essentially all the study roads are in the D-E-F range. There is relatively little 

variation in BLOS between the 34 study locations, at least under this subjective framework.  

5.3.2 Evaluation of K-factor Groups 

K-factors represent the ratio of average 8-hour cyclist volume – the hours for which TMCs are 

normally collected; 7:00-9:00, 11:00-14:00, and 15:00-18:00 – to average daily 24-hour cyclist 

volume. K-factors for Pima-County locations were calculated just for STC days, Tuesday, 

Wednesday, and Thursday (TWT), so they do not reflect weekend hour-of-day patterns. In previous 

research on applying a K-factor to non-motorized traffic, count locations were categorized 

subjectively using a 95% confidence interval plot of K-factor values [23]. The resulting groups were 

labelled low, medium, and high, with no attempt to further explain the variation between groups, 

although it is noted that most of the variability in K-factor values can be attributed to the difference 
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between weekends and weekdays. Miranda-Moreno [11] uses an AM-Midday index (AMI) to help 

classify PCLs based on their hour-of-day profiles, with high AMIs assumed to represent ‘utilitarian’ 

travel patterns, and low AMIs ‘recreational’ patterns.  

Although the K-factor differs significantly from the AMI in its formulation, it might be thought of 

similarly here. A high K-factor value would indicate that a large proportion of weekday cyclist 

volume occurs during the 8-hour ‘peak’ period. Trips made during this period can be assumed to be 

utilitarian in nature, so that a location with high K-factors could be labelled as “utilitarian”. The 

inverse would also be true, with low K-factor locations seeing more of their volume outside of 

workday hours, indicating that that location might be “recreational”.  

Locations were empirically clustered using their K-factor values for the purposes of STCL group 

modelling using OLS and logit regression, as outlined in Sections 5.1 and 5.2. Under a binary 

grouping approach, two semi-distinct groups were established. The average K-factor across one group 

was 0.55; this group might be deemed “recreational”. The other group had an average K-factor of 

0.66 and might be deemed “utilitarian”.  A two-sample T-test comparing these two groups showed the 

difference between their means to be significant (T[32]=7.71, p=8.54E-09).  

However, although these two factor groups could be identified empirically in the Pima County 

locations, it is not evident that they have any relationship to the locational characteristics outlined in 

Section 5.3.1. One would expect that the utilitarian group would be more commonly surrounded by 

commercial land uses, and the recreational group recreational uses, but this sort of relationship is not 

apparent. Table 38 below shows the average K-factors across land use categories. Remember that 

land use categories are non-hierarchical, so a location may have all three of commercial, educational, 

and recreational land uses present (or it may have none of the three). There is very little difference 

between the average K-factors across locations where a given land-use is present versus locations 

where it is absent, indicating that none of the land use classifications examined are correlated with the 

proportion of 8-hour to 24-hour cyclist volume at a location. Means testing also failed to find 

significant differences between the mean of K-values across locations within different land use 

classifications. 

Chi-square tests were also used to check for association between empirical groups and different 

land use variables (Table 39). In no case was a significant association found.  
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Table 38: Means testing for average K-factor values across land-use variable categories 

Land Use Variable Category Avg. K-Factor T-test (p) 

Commercial/ Employment Present 0.62 
0.758 

 Absent 0.61 

Educational/ Institutional Present 0.62 
0.933 

 Absent 0.62 

Recreational Present 0.60 
0.335 

 Absent 0.63 

Area 1. SE Tucson 0.64 1v2:  0.885 

 
2. Catalina Foothills 0.63 1v3:  0.391 

 3. North Tucson 0.64 2v3:  0.233 

BLOS A/B/C 0.63 
0.403 

 D/E/F 0.62 

 

Table 39: Contingency tables, association testing for land use and empirical grouping categories 

  Group 
Chi-square (p) 

Land Use Recreational Utilitarian 

Commercial 
Present 7 13 

0.966 
Absent 5 9 

Institutional 
Present 4 6 

0.711 
Absent 8 16 

Recreational 
Present 4 4 

0.320 
Absent 8 18 

Area 

SE Tucson 2 3 

0.128 Catalina 1 9 

N Tucson 9 10 

BLOS 
A/B/C 5 8 

0.761 
D/E/F 7 14 

 

None of the composite land-use categories identified in the evaluation framework seem to be 

uniquely related to one or the other K-factor group. For example, although 13 of 21 (61%) of 

utilitarian locations are within one major block of a commercial land use, 7 of 5 recreational 

locations are also within one major block of a commercial land use. Certain patterns seem to match 

expectations – for example utilitarian locations are more often on low BLOS roadways, which would 

make sense if utilitarian trips are assumed to be non-discretionary – but these patterns cannot be 

shown statistically to be correlated with the K-group variable.  
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This represents a substantial barrier to proposing a generalized approach for matching STCLs to K-

factor groups. It is not apparent from these results that, in truth, there is more than one factor group in 

the Pima County sample. Given the relatively small range of observed K-factor values - most 

locations see between 30% and 50% of their daily volume during the 8-hour period – it may be 

acceptable to treat these locations as a single group, although this can be confirmed by measuring 

MAPE for AADB estimation under this condition.  

5.3.3 Evaluation of TWT-factor Groups 

Tuesday-Wednesday-Thursday (TWT) factors represent the ratio of average TWT cyclist volume to 

AADB. In this sense, an average TWT factor value for a location can be thought of in a very similar 

way to the Weekend-Weekday Index proposed by Miranda-Moreno et al. [11]. An average TWT 

greater than one indicates that weekday cyclist volumes are higher than weekend, in the same way as 

does a WWI value less than one. An average TWT less than one indicates a location sees more 

weekend than weekday cyclists, as does a WWI value greater than one. Miranda-Moreno describes 

count locations as recreational (those with high relative weekend volumes), utilitarian (low relative 

weekend volumes), mixed utilitarian, or mixed recreational. Of the three factors tested, TWT 

exhibited the most evident relationships with its surroundings. 

One issue with using TWT factor values to classify count locations is that variability in the average 

values is suppressed, making it more difficult to identify empirical groups. WWI is calculated directly 

as the ratio of average weekend to weekday volume. A TWT factor though is calculated as average 

TWT cyclist volume over the AADB, which in turn includes both weekend and weekday volumes in 

its calculation. Consider two PCLs as an example, one with very high weekend volume and one with 

very low weekend volume. The relative difference between the WWI calculated for these two PCLs 

will be very high compared to the relative difference between their two TWT factor values.  

Comparing WWI values makes it very clear that there is a difference between the locations but 

comparing TWT values less so. In a sample of 37 automated counting stations, Miranda-Moreno [11] 

observed a minimum WWI of 0.43 and a maximum of 2.26. The average WWI for the utilitarian 

group was 0.65, and 1.97 for the recreational group. Clearly, these two groups exhibited substantially 

different traffic patterns, giving little doubt that at least two factor groups exist. In the sample of 34 

PCLs being examined here, there is a minimum average TWT value of 0.68 and a maximum of 1.01, 

a range of just 0.33, making it much more difficult to identify pattern groups.  
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Nevertheless, for the purposes of this study, locations were divided using the K-means algorithm. 

The result was two empirical factor groups, a “weekend” location with an average TWT value of 

0.79; and a “weekday” group with an average TWT value of 0.97. A two-sample students t-Test on 

the two groups indicates that we can be highly confident that they represent two different populations 

with some intrinsic differences (T[32] = -8.919, p < 0.05). An assessment of the two groups was done 

using the framework described in Section 5.3.1, which is summarized below: 

Weekend • Weekend locations are those with low TWT values (between 0.68 

and 0.86 for the Pima County sample), indicating that average 

weekday volumes are a small percentage of AADB. This factor 

group is analogous to the “recreational” patterns identified in the 

literature, which assume that weekend cycling trips are usually 

recreational in nature. 

• The majority of weekend locations are not near a large school or 

institutional land use; of those that are, most are also nearby to 

major recreational uses boosting weekend traffic.  

• In general, in the Tucson context, weekend locations are located 

close to the urban boundary, where recreational destinations 

abound. The Catalina Foothills area especially has a lower average 

TWT factor value than the other identified study areas. 

• Weekend cyclist patterns appear to be more prevalent in suburban 

or exurban areas, often at lower volume, high BLOS intersections. 

Some consideration should be given to popular cycling routes if that 

sort of local knowledge is available.  

Locations: 

5, 7, 39, 

41, 43, 49, 

50, 52, 57, 

59, 62, 69, 

70, 71, 73, 

81, 97, 

100, 101, 

105 

Examples: Location 49: Sabino Canyon Road and 

Sunrise Drive

 

Google Maps. (2021) [E Sunrise Dr & N 

Sabino Canyon Rd, Catalina Foothills, 

AZ] 

Location 105: La Cholla Boulevard and 

Overton Road 

 

Google Maps. (2021) [N La Cholla Blvd 

& W Overton Rd, Tortolita, AZ] 
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• Low volume, 2-lane roads with 

painted bike lanes.  

• Right on the urban boundary, with 

access to an enormous recreational 

area off the NE corner. 

• This location is the archetype for 

“weekend” count locations.  

• Well into the lightly developed 

northern suburbs. 

• No major generators of any type, no 

real reason for utilitarian cyclists to 

travel through the intersection on an 

average weekday. 

Weekday • Weekday locations are those with high TWT factor values (between 

0.89 and 1.01 for the Pima County sample), indicating that weekday 

cyclist volumes are close to or greater than the AADB. This group is 

analogous to the “utilitarian” pattern groups identified in the 

literature, with weekday trips usually assumed to be for a work, 

school, or retail purpose. 

• Locations in this group can primarily be identified by the presence 

of commercial or employment generators; 13 of the 14 PCLs in this 

group had land use of this type within one major block.  

• Although some weekend locations do have commercial uses nearby, 

these are also near to major recreational uses, or are further into the 

suburbs/exurbs where recreational cycling seems to be more 

prevalent. 

• Different types of cyclists respond differently to environmental 

stimuli; recreational trips, being discretionary, are more likely to be 

put off by weather, for instance [50]. In the same way, we might 

assume that utilitarian weekday cyclists are more willing to use the 

roads with the lowest BLOS, as they are making non-discretionary 

trips. This would appear to be supported by the Pima County data; 

weekday patterns seem to be more likely to appear at intersections 

with a BLOS below D. 

 

Locations: 

6, 9, 13, 

34, 36, 38, 

42, 53, 72, 

76, 77, 80, 

85, 96 
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Examples: Location 38: Sunrise Drive and Swan 

Road 

 

 

Google Maps. (2021) [E Sunrise Dr & N 

Swan Rd, Catalina Foothills, AZ] 

• Low BLOS intersection with large 

commercial plazas at all corners. 

• Area is prone to recreational cycling 

(Catalina Foothills), but this location 

isn’t close to the urban boundary or 

any large recreational areas. 

Location 53: La Cholla Boulevard and 

Magee Road 

 

Google Maps. (2021) [N La Cholla Blvd & W 

Magee Rd, Casas Adobes, AZ] 

• Large mall directly to the South-West 

of intersection. 

• BLOS of both approaches is F: high 

speeds, 6-lanes or more on all 

approaches, slip lanes and merging 

lanes on all approaches. There is no 

apparent reason why a recreational 

cyclist would ever plan a route 

through this intersection. 

 

5.3.4 Evaluation of MOY-factor Groups 

MOY factors represent the ratio of monthly average daily bicyclists (MADB) to AADB. As to my 

knowledge, there have been relatively few attempts to characterize month-of-year patterns for the 

purposes of factor grouping, with most research focusing on hour-of-day and day-of-week profiles 

[28]. Budowski [31] identifies two traffic pattern groups for PCLs in Winnipeg, Manitoba; a 

“Winnipeg” group with a higher proportion of July and August volume; and a “Winnipeg Post-

Secondary” group, which had relatively higher September and October volumes. Pima County is 

radically different from Winnipeg in terms of climate, but a context-specific approach considering 

weather and schools may still be appropriate. 
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Empirical analysis identified three relatively distinct MOY factor-groups in the 34 Pima County 

locations, for data from January 1, 2020 to March 15, 2020. The first are those with stable month-

over-month volume; the second are those with increasing volumes from January to March; and the 

third are those with decreasing volumes from January to March. These groups were evaluated using 

the framework from Section 5.3.1, the results of which are shown below.  

Stable • The stable MOY pattern is characterized by stable month-to-

month volumes, with MOY factor values for January, February, 

and March generally being within 0.1 of each other.  

• It appears as though the locations with the most stable MOY 

volumes are those without any major recreational (14 of 19) or 

educational (also 14 of 19) land uses nearby. This would make 

some sense as these uses are temporally sensitive; cyclist traffic at 

an intersection with a nearby school would be expected to vary 

with the school calendar, and traffic near a major recreational 

generator with changes in the weather. Traffic related to 

commercial land uses though would be expected to be the most 

stable, although the split of stable locations between commercial 

and non-commercial locations is 10 to 9. 

Locations: 

6, 7, 13, 34, 

36, 39, 41, 

42, 50, 52, 

53, 70, 71, 

72, 73, 76, 

81, 101, 

105 

Examples: Location 13: La Cholla Boulevard and Orange Grove Road 

 

Google Maps. (2021) [N La Cholla Blvd & W Orange Grove Rd, Casas Adobes, AZ] 
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• Primarily commercial and employment uses surrounding the intersection 

(see: large commercial plazas and major health-care hub to South-East). 

These uses are stable trip generators, and would be expected to be less 

susceptible to MOY variation (somebody who has to bike to work in January 

probably also has to bike to work in March). 

  

Increasing • Increasing locations show an increasing month-over-month 

pattern. Only five locations in the Pima County sample exhibited 

this pattern, with an average January to March change in MOY 

factor values of 0.34.  

• Increasing patterns seem to most often occur nearby to major 

recreational generators. This would correlate well to climate 

patterns, with average daily temperatures rising from 11oC in 

January to 16oC in March [20]. One would assume that this 

increase in temperature would incentivize increased outdoor 

activity. 

 

Locations: 

5, 38, 49, 

59, 97, 100 

Examples: Location 97: Colossal Cave Road and Mary Ann Cleveland Way 

 

Google Maps. (2021) [E Colossal Cave Rd & E Mary Ann Cleveland Way, Rancho Del Lago, 

AZ] 
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• Location is far out in the south-east exurbs of the urban region, on route to a 

major recreational destination (Colossal Caves Mountain Park); recreational 

activity would be expected to increase as weather warms up, resulting in the 

increasing MOY traffic pattern. 

 

Decreasing • The decreasing MOY pattern is characterized by declining 

volumes over the January-February-March period. Month-over-

month changes in MOY factor values are generally between -0.1 

and -0.2, with some extreme declines as high as -0.7. Average 

January to March change across the group is -0.43.  

• Declining patterns appear to be most prevalent at locations that are 

not close to a recreational land use (8 of 9), or that are close to a 

school or institutional land use (6 of 9).  

• It is difficult to say for sure that the decreasing pattern is related to 

the presence of schools, as the factors which would explain it 

should have been nullified by only using data up to March 15. The 

Pima County school district March break for 2020 was scheduled 

for the week of March 15, and the effects of the Corona virus on 

traffic patterns were not thought to substantially emerge until later 

towards the end of March. 

Locations: 

9, 43, 57, 

62, 69, 77, 

80, 85, 96 

Examples: Location 80: Alvernon Way and Valencia Road 

 

Google Maps. (2021) [E Valencia Rd & S Alvernon Way, Tucson, AZ] 
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• Enormous high school ~500m to the east of this intersection; hard to say for 

sure that this is what is responsible for declining traffic pattern, especially 

since volumes at this location are very low to start with (indicating that not 

that many students are biking anyways). 

 

One serious issue with the grouping schema identified above is that they pertain to patterns in 

relative MOY-factor values, but not the actual factor values themselves. To illustrate, consider Figure 

31 and Figure 32 below. Figure 31 shows the average of MOY factors relative to January 2020 

values, across each group. Illustrating the data in this way, the three distinct groups become very 

apparent. However, examining Figure 32 which shows the average of actual MOY factor values 

across groups, those patterns are no longer evident. Grouping locations based on their relative 

patterns does not necessarily minimize variation within groups, as is the goal of factor grouping. 

However, a more optimal grouping schema does not produce recognizable patterns which can be 

translated into a generalized approach.  

 

Figure 31: MOY factor values relative to January 2020 
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Figure 32: Actual average MOY factor values by group 

5.3.5 Conclusions Regarding the “Generalized” Approach 

Developing a generalized approach to grouping cyclist count locations according to their shared 

attributes proved to be somewhat difficult. Although there seem to be some relationships between 

locational and temporal characteristics of the 34 Pima County locations, there isn’t enough evidence 

to say with certainty that they exist. Furthermore, none of these relationships are universal; we can at 

best say that some locational characteristic might indicate the presence of some temporal traffic 

pattern.  

TWT-factors seem to be the easiest to categorize. There are some relatively clear relationships 

between land use and weekday-weekend traffic patterns. MOY and K-factor groups are harder to 

define. It is difficult to identify anything consistently linking the locations in each group. As was 

mentioned, it may be acceptable to use just a single factor group, especially for K-factors, but further 

study is needed to determine if this is the case.  

Finally, one serious limitation to this methodology seems to be specific to the context in which it 

was developed. Pima County cyclist traffic, at least according to the sample data, is heavily 

recreationally biased. Most locations could be classified as fully recreational or mixed recreational-
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utilitarian under other grouping schema (see: Miranda-Moreno et al [11]). “Utilitarian” count 

locations are either entirely missing or at least severely underrepresented in this study, making it 

much more difficult to delineate clear land-use relationships. 
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Chapter 6 

Conclusions and Recommendations 

This thesis has examined the problem of estimating annual average daily bicycle (AADB) counts at 

intersections from short duration counts, specifically 8-hour turning movement counts. The problem 

can be decomposed into four sub-problems, namely (i) filtering data measurements to identify and 

exclude erroneous data; (ii) grouping continuous count sites to establish groups that have similar 

temporal characteristics (factor grouping); (iii) estimating AADB from short-term counts when the 

associated factor group is known; and finally (iv) determining the appropriate factor group for each 

short-term count site.  

The insights and conclusions found from this research for each of these sub-problems are described 

in the following sections.   

6.1 Filtering Turning Movement Counts 

A set of filters for conventional cyclist count data was developed in accordance with the best 

practice identified in the literature. This included a novel approach to identifying erroneous runs of 

consecutive identical counts based on the compound probability of observing a given count N number 

of times in a row. However, in trying to apply these filters to a VMU dataset from Milton, Ontario, it 

was determined that the technological differences between conventional and VMU data collection 

equipment may make it inappropriate to apply conventional filters to VMU data. Accordingly, Filter 

1 (F1) for “null” observations was substantially revised to check for the presence of a valid motor-

vehicle observation; and Filters 2 and 5 (F2 and F5) for consecutive zero and 24-hour zero counts 

were removed outright. The remaining filters were found to be appropriate and carried through. The 

resulting set of four filters were used to check the quality of the Milton dataset, as well as an 

additional VMU dataset from Pima County, Arizona. This filtering procedure could be useful in any 

subsequent study looking to make use of VMU data, as standardized procedures for this data type 

have yet to be established to our knowledge. 

6.2 Baseline Methods for AADB Estimation 

A review of literature on AADB estimation from conventional short term cycling counts (STCs) 

identified three primary baseline factoring methods: a “traditional” day-of-week and month-of-year 
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method (DOW/MOY), a day-of-week-of-month method (DOWOM) and a “disaggregate” day-of-year 

method (DOY). All three were applied to both the Milton and Pima County VMU datasets separately, 

using an iterative procedure that removed locations from the datasets one by one to act as short-term 

count locations (STCLs).  

Estimation error on average across all Tuesdays, Wednesdays, and Thursdays in TMC months was 

extremely high for all three methods, for both Milton and Pima County, and significantly higher than 

compared to average results from the literature. However, it is expected that this result can be at least 

partially explained by the extremely low cyclist volumes observed at nearly all of the Milton and 

Pima County intersections. The lowest AADB at a Milton count location was 10.4 daily cyclists; at a 

Pima County location, 4.7. For comparison, Nordback [25] classified any count station where AADB 

was less than 200 as a “low” volume location. This reveals a limitation in using TMC data for AADB 

estimation, which is that cyclist volumes are typically much lower than on the dedicated infrastructure 

where “conventional” counts are collected. Relative variation among counts will be higher when 

counts are lower, contributing to higher estimation error, and furthermore relative error will be higher 

even where absolute error is small. Future study might try to determine if conventional cyclist counts, 

which might be higher and more consistent, can be used to calculate factors which can be applied to 

8-hour TMCs.  

Some baseline factor grouping methods were also trialed. Based on the literature, it was expected 

that factor grouping would have a positive effect on estimation results. However, for the Milton 

dataset, factor grouping using temporal indices as suggested by Miranda-Moreno [11] actually 

increased estimation error. It is possible that the already small number of study locations was 

responsible for this result. For Pima County, although a slight decrease in MAPE was observed as the 

number of factor groups increased, it could not be shown that there was any statistical difference 

between any of the trials. Further study on this subject using expanded datasets may be necessary.  

Although Milton AADB estimates for “on-season” summer months were much more accurate than 

for the “shoulder” months, the lowest MAPE achieved using the DOW/MOY method was 40% for 

September, which is still prohibitively high. We can see then another significant limitation in the use 

of TMCs for AADB estimation, at least in a cold-climate North American context. It is commonly 

recommended in the literature that STCs be collected during the peak on-season months, when 

cycling activity is at its highest and most stable [25] [31]. In Milton, for instance, we would expect 
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estimation error to be lowest in July and August, when counts are highest and day-to-day variation is 

at a minimum. However, in practice, TMCs would not be collected during these months. Standard 

procedures for TMC collection would mean that the STC used for AADB estimation would be just as 

likely to come from April, May, or November – when error would be very high – as it would be to 

come from June, September, or August – when error could be expected to be lower. It may be 

necessary when applying these methods to consider the relationship between the month-of-year that a 

TMC was collected and the expected AADB estimation accuracy; further study is needed to establish 

procedures for compensating for this effect. 

6.3 Adapting Baseline Methods for Turning Movement Counts 

Drawing from the conclusions made in Chapter 3 regarding the baseline estimation methods 

identified in the literature, several updates were proposed to the “traditional” day-of-week/month-of-

year (DOW/MOY) method to address some of the core issues posed by TMCs to factor-based AADB 

estimation. First, it was proposed that a separate “K-factor” representing the average ratio of daily 8-

hour to 24-hour cyclist volume be added. This was done in order to separately represent 8-hour/24-

hour variation from day-of-week and month-of-year variation. Statistical analysis showed that 8-

hour/24-hour factors are generally consistent across Tuesdays, Wednesdays, and Thursdays and 

across January-February-March in Pima County, indicating that a single, aggregated K-factor is 

appropriate (rather than calculating separate day-of-week or month-of-year K-factors).  

Second, it was found that day-of-week (DOW) factors do not vary substantially across Tuesdays, 

Wednesdays, and Thursdays within given months in Pima County. This again indicates that a 

combined Tuesday-Wednesday-Thursday (TWT) factor is appropriate for expanding TMCs, which 

are generally only collected on these days. Finally, it was proposed that every permanent count 

location (PCL) should be assigned to three separate empirical factor groups for the purposes of 

calculating expansion factors, one for each of the K, TWT, and month-of-year (MOY) factor vectors. 

This differs somewhat from conventional methods, where a single grouping schema is usually 

established. 

This updated method was tested using the Pima County VMU dataset using the same iterative 

procedure as was used to test the baseline methods. Comparing methods, the “proposed” method was 

found to be at least or more accurate than all three of the baseline methods. The proposed method also 
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has the additional advantage of facilitating the linking of empirical and land-use factor groups – 

which is more difficult under the baseline methods.  

Conclusions regarding the best factor group methods should be considered carefully, remembering 

that the data used for the analysis was very limited (both by the emergence of the Covid-19 pandemic 

in early 2020, and by overall low cyclist volumes). It would be useful to repeat the statistical analysis 

used to establish the K and TWT factors using more complete datasets, ideally from several different 

metropolitan regions.  

6.4 Modeling Factor Group Characteristics 

A limitation to factor-based AADB estimation methods commonly identified in the is that while it is 

relatively straightforward to establish empirical factor groups for permanent count locations (PCLs) 

for which multiple days, weeks, or months of data may be available, it is much more difficult to 

assign short-term count locations (STCLs) to the correct factor group. This is especially true for TMC 

locations, for which only 8-hours of count data is available. An attempt was made to address this 

limitation using three different methods. 

A multi-variate linear modelling approach was tested on the Pima County dataset, trialing a large 

number of land-use variables. Under a two-group approach, the resulting models were able to predict 

the correct empirical factor group 76% of the time, although accuracy dropped significantly for the 

three and four-group scenarios. Similarly, a logit regression approach was tested, and the resulting 

models were ~75% accurate in predicting empirical factor group membership in a two-group 

scenario. These methods represent reasonable solutions to the problem of assigning STCLs to a factor 

group and make use of commonly available geospatial data. 

As an alternative to statistical approaches, a generalized “manual” approach was proposed. 

Although it would be very difficult to evaluate the accuracy of this method, it was useful to show 

practically that temporal cyclist activity patterns can be linked to easily identifiable locational 

characteristics such as the presence of commercial land uses, or perceived traffic intensity of a given 

intersection.  

Additional research may be needed to establish more transferrable guidelines for STCL factor 

group modelling. The work done here was highly context specific, and there is no reason to assume 

that the land use patterns correlated with a given activity pattern in Pima County are the same as in 
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Milton. It would be useful then to repeat the analysis described here using data from several different 

metropolitan regions, or even using a combined dataset containing data from different geographic 

areas.  

6.5 Final Recommendations 

This thesis outlines in detail a set of procedures by which data which is already being collected 

regularly in numerous transportation jurisdictions – specifically turning movement counts (TMCs) – 

could be used to generate estimates of annual average daily bicycle traffic (AADB) at any intersection 

where an up-to-date TMC is available. This work expands on existing methods which are already 

being applied in practice across North America [51], showing that there is potential for real-world 

application. 

The main factor limiting the analysis and outcomes of this research is the limited set of data that 

was available.  This was largely due to the significant impacts that the COVID-19 pandemic had 

(starting in March 2020) on travel patterns, including cycling patterns.  As a result, the first key 

recommendation is to assemble a larger dataset that would include at least 40 sites per 

geographic/climactic region for which continuous count data are available for at least one year, and to 

have data from a minimum of three different regions.   

Second it is recommended to explore the application of machine learning (ML) techniques for the 

estimation of AADB from TMCs.  The techniques would provide the advantage that they are highly 

non-linear and do not require prior assumptions about the relationships between explanatory factors 

and AADB.  This may permit the integration of both land use characteristics and data from 

continuous count sites into a single ML model to estimate AADB.  

Third, it has been observed in this work that when the AADB is very low, measures of estimation 

error may be very high, suggesting that the AADB estimates are unreliable.  However, from a 

practical engineering and planning perspective, it may be sufficient to know that the AADDB is low.  

Consequently, it is recommended to examine more robust measures of estimation errors.     

Finally, it is recommended to examine how AADB estimates from TMCs at intersections can be 

utilized by engineers and planners (e.g. planning and prioritizing infrastructure and road safety 

studies) and can be integrated with measurements and AADB estimates for dedicated cycling 

infrastructure. 
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