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Abstract— We present a smooth nonlinear control law for
a kinematic plant on commutative matrix Lie groups that
achieves regulation, if the state tracking and estimation errors
are initialized in a suitable neighbourhood of identity. We show
that in exponential coordinates, the closed-loop dynamics are
linear. Our control law uses output feedback; to this end, we
propose an almost-globally defined state estimator.

I. INTRODUCTION

We examine the regulator problem for systems that evolve
on matrix Lie groups, using a sampled-data feedback control
configuration. The regulator problem is one of the central
problems in control theory. It combines stabilization with
reference tracking and disturbance rejection. The regulator
problem has been analyzed in great detail in the linear
case [1] and the nonlinear case, in both continuous- [2] and
discrete-time [3]. More recently, the continuous-time regu-
lator problem for systems on Lie groups has received some
attention. Almost-global output regulation was achieved for
a class of systems evolving on SE(n) by identifying a sepa-
ration principle and using output feedback [4]. Local output
regulation was also achieved for a class of systems evolving
on general Lie groups with outputs in a homogeneous vector
space and exostates evolving on a compact set [5].

There are many dynamical systems whose state spaces
are naturally modelled as matrix Lie groups. Networks of
oscillators can be modelled on SO(2)™ [6]. The group SE(3)
captures the dynamics of rigid bodies in space, such as
underwater vehicles [7] and UAVs [8]. Planar motion of
robots can be modelled on SE(2) [9]. Quantum systems
evolve on the unitary groups U(n) and SU(n) [10]. Even the
noise responses of some circuits evolve on Lie groups [11].

In general, Lie groups are not vector spaces; they are
smooth manifolds endowed with a group structure, which
facilitates control design in global coordinates as well as
local design and analysis using the rich theory of control
on manifolds. The Lie structure has been leveraged, for
example, for motion tracking on SE(3) [12], and the control
of UAV [13] and spacecraft [14] orientation on SO(3).

We study such systems in the sampled-data configuration,
i.e., a continuous-time plant and a discrete-time controller.
This configuration is ubiquitous in applied control [15],
where controllers are implemented on embedded devices.
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The main sampled-data design approach in practice is em-
ulation. A continuous-time controller is designed for the
continuous-time plant, but is implemented using an approx-
imate discretization. If the sampling-period is sufficiently
small, then the actual closed-loop system is stable. This
technique has two key shortcomings [16]: 1) it may not be
possible for a given approximate discretization method, e.g.,
Euler’s method; 2) it relies on fast sampling, which may
not be possible due to hardware limitations. For example,
a UAV’s translation relative to a reference can be computed
using machine vision, where the speed of sampling is limited
by the frame rate of the camera, e.g., 25 Hz [17].

For LTT systems, the continuous-time state trajectory can
be solved exactly, thereby admitting a discrete-time model
that matches the continuous-time behaviour at the sampling
instants. This enables analysis and design to be done entirely
in discrete-time, hence the controller can be implemented
exactly. This technique is called direct design. Its key ad-
vantage is that it allows guarantees about performance to
be made at the sampling instants, such as stability. This
is not the case for most nonlinear systems, which do not
admit exact discretizations. The efficacy of direct design
depends on the accuracy of the discretization. In one case
study, sampling periods as low as 30 us, combined with an
Euler discretization of a synchronous machine plant, yielded
an ineffectual model predictive controller [15]. Right (left)-
invariant systems on matrix Lie groups are an exception, in
that for piecewise constant inputs, the state trajectories have
exact solutions [18].

Sampled-data control of systems on Lie groups has hereto-
fore been subject to limited formal study, including the
authors’” works on passivity [19] and synchronization [20] on
matrix Lie groups. Controllability using multirate piecewise
constant inputs was investigated for matrix Lie groups in [21]
and control-affine systems whose Lie algebra of vector fields
is nilpotent in [22]. Discrete-time control has also received
some attention [23]. The closely related class of bilinear
systems has also been studied in the discrete-time [18] and
sampled-data [24] settings.

We present a control law that solves the regulator problem
for sampled-data systems on commutative matrix Lie groups.
If the state tracking and estimation errors are initialized
in a suitable neighbourhood of identity, then regulation is
achieved.

A. Notation and Terminology

For n € N, let N, := {1,...,n}. Given a matrix
M € C™*", M7 is its (non-Hermitian) transpose, || M || is
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its Frobenius norm, M is its Moore-Penrose pseudoinverse,

and vec(M) = [Mll Mml M21 an]—l— S
C™; if m = n, then o(M) is its spectrum. given
an ordered set of matrices {Mj,...,M,}, define M =

[vec(M;) vec(M,)] € C™*4. Let 0,, € R" and
0,,xn € R™*™ denote the column and matrix of ze-
ros, respectively. When a discrete-time signal appears in a
continuous-time expression, it to be understood as having
passed through an ideal zero order hold.

II. SAMPLED-DATA REGULATOR PROBLEM

We consider a plant modelled by the differential equation

X = <A + Z Bju; + i Qaiwa; + i Qciwci> X (1)
i=1 i=1

=1

with measured output

Td Te
Y = exp <C + Y Dawai + Y Dciwm) X ©
i=1 i=1
We assume, as is typical, that the exogenous signals wg, w,
evolve according to known dynamics, modelled as

We = Scwe. 3)

Here, X € G where G C GL(N,C) is an n-dimensional
connected matrix Lie group over the complex field C which
includes, as a special case, real matrix Lie groups. The
matrices A, B;, Qci, Quqi» C, Dyi, and D.; are elements
of the Lie algebra g of G, which is a vector space over a
field F equal to either C or R. The control input is u € F™,
the discrete- and continuous-time exostates are wy; € R
and w,. € R", respectively, and S; € R"¢*" S € R"eXe,

wh = Sqwy,

Assumption 1. The Lie group G is commutative. <

Assumption 1 is restrictive, as all commutative matrix
Lie groups are diffeomorphic to R* x T"~*  as discussed
in Section III-B. We examine this class of Lie groups to
facilitate this preliminary research in this area. However,
there are systems of practical interest on such Lie groups,
e.g., networks of oscillators on SO(2)™ 2 T™ [6] and single-
axis rigid body manoeuvres on R x SO(2) 2 R x T [25].

Assumption 2. The spectra of Sq and S, lie outside the open
unit disc and in the closed right half plane, respectively. <

Assumption 2 is not restrictive. If S; or S. has stable
eigenvalues, then the dynamics of (3) can be redefined as
their restriction to the unstable modal subspaces [26, Chapter
2, §3] of Sy and S.. The dynamics on the stable modal
subspaces can be ignored, since tracking or rejecting a zero
signal is equivalent to stability.

Equation (1) is a kinematic model of a system evolving
on a matrix Lie group G, where the output (2) models the
information that is available for feedback. The exosystem (3)
comprises both discrete- and continuous-time subsystems.
This enables modelling of, for example, physical plants that
are subject to continuous-time disturbances, but are sent
reference signals from a computer. The plant is assumed to be

fully actuated in the sense that spang {B1, ..., By} = g. We
justify this assumption in Section V-A. We are interested in
the sampled-data control of this system in which the control
law is implemented on an embedded computer, which we
explicitly model using the setup in Figure 1. The blocks H
and S in Figure 1 are the ideal hold and sample operators,
respectively. Sample and hold are, respectively, idealized
models of A/D and D/A conversion.

’wc(t)l
wlk .
f_l-» o X = f(X,u,wq, w,) g _X(_k_Tl
w:l[_k]_> Y = h(X, wq, we)

Fig. 1: Sampled-data plant on a matrix Lie group G.

Assumption 3. The sample and hold blocks operate at the
same period T > 0 and are synchronized. <

Under Assumption 3, letting X[k] = X (kT), ulk] =
u(kT), and w,[k] :== w.(kT), the plant (1) and exosystem (3)
have exact discretizations, as we will prove in Section IV:

m Td
Xt =exp (TA +TY Biui + T Quiwa;
i=1 =1 (4)

Tec T
+ Z Qcie;‘r / eTSC dr wc) X,
i=1 0

where e; is the ¢th canonical basis vector of R"=, and
w;_ Sd Ordxrc wq
wg
S w

e 5)
A. The Sampled-Data Regulator Problem

()'I"C Xrg We

The goal of the regulator problem is to drive a regulation
quantity to identity. Define the regulation quantity

Td Te
Z = exp (F +>_ Gaiwai + ) Gciwc,) Y, (©
i=1 i=1
where F,G4;,Gei € 9.
Local Output Regulation on Matrix Lie Groups : Given a
plant with continuous-time dynamics (1), output (2), regula-
tion quantity (6), sampling period 7' > 0, and exosystem (3),
find, if possible, a discrete-time control law u, which depends
on only the output Y, such that for all initial conditions
X (0), we(0), wg[0], in a neighbourhood of the identity in
G x R"™ x R", Z[k] = Iy as k — oo. ¢
Such a u is said to solve the regulator problem with
output information. If instead the input w has access to
X, wy, and w,, then u is said to solve the the regulator
problem with full information. We will first solve the
latter using a controller of the form v = I'(X, wq, w.) +
U(wg, we). We then extend our result to design an output
feedback controller using a dynamic state estimator.



III. PRELIMINARIES
A. The matrix logarithm

Theorem IIL.1 ([27, Theorem 1.31]). If X € F"*™ has no
nonpositive real eigenvalues, then there exists a unique A €
F»*" whose spectrum lies in {z € C : —7 < Im(z) < 7},
such that exp(A) = X.

The matrix A in Theorem III.1 is the principal logarithm
of X and is denoted by Log(X). If | X — I| < 1,
then Log(X) = >, (71,): 1(X — I)*. The principal
logarithm is the inverse of the matrix exponential, but
only on a subset U C GL(V,C) containing the identity.
For example, on GL(N,C), Log is well-defined on U =
{exp(4) € GL(N,C) : ||A|| < Log(2)}, but on SO(n), U =
{R €S0(n): —1 ¢ o(R)}, even though ||R| = y/n for all
R € SO(n).

B. Exponential Coordinates and One-Parameter Subgroups

Definition III.2 (One-Parameter Subgroup). Given a Lie
group G, a one-parameter subgroup is a continuous mor-
phism of groups ¢ : R — G.

To generalize the concept of one-parameter subgroups
to higher dimensional manifolds, we consider generalized
cylinders. A generalized cylinder is an n-dimensional man-
ifold that is diffeomorphic to T* x R"~*. Such a diffeo-
morphism exists if and only if there exist n commutative
and everywhere-linearly-independent vector fields on the
manifold [28, §49]. If the manifold is a Lie group G, then
this simplifies to the requirement that its Lie algebra g have
a commutative basis.

Let G be such a manifold and fix a commutative basis

H,, ..., H, forits Lie algebra g. Consider the one-parameter
groups ¢; : R — G associated with each H;. The image
of ¢(x1,...,x,) = ¢1(x1)P2(x2) - - Pn(xy,) is G. Without

loss of generality, let ¢;, i € Ni, 0 < k < n have nonzero
kernel, and let ¢;, i € {k+ 1,...,n} have zero kernel.

Fixing such a basis, the Log map induces local coordinates
on GNU. Given X € G, by commutativity of Hy,..., H,,
X =exp(xHy)---exp(r,Hy,) = exp(x1 Hi+- -+, Hy).
If X € GN U, then Log(X) = o Hi + -+ x,H,.
Then, by linear independence of Hi,...,H,, x1,...,2,
can be uniquely determined, yielding local coordinates
(z1,...,2n) € R™. Thus, a Lie group G can be locally iden-
tified with an open subset of the vector space R™ containing
the origin. By commutativity of G, these local coordinates
coincide with the familiar exponential coordinates of both
the first and second kinds [29, Remarks 5.33.1].

C. Properties of the composed flow

The map ¢ : R® — G, defined in the previous section,
is critical to our analysis throughout this paper. In this
section, we establish important properties of ¢ when G is
a generalized cylinder.

Proposition IIL3. If G is a generalized cylinder, then ¢ :
R™ — G is a morphism of groups.

Proof. Let =, = (zY,...2"™) € R and
Ty = (.’I};l),,l‘gn)) € R™, where (ﬁ(.’lﬁl) = X;
and ¢(z;) = X;. By commutativity of Hi,...,Hp,
dz; + z;) = Tl exp ((:cgk)+x§»k))Hk) =

[Ty exp (o Hi) Ty exp (9 ) -
o(w)o(x;) O

To facilitate discussion and greatly simplify presentation,
we shall tacitly make extensive use of the following simple
lemma, whose proof follows from direct computation.

Lemma III.4. Let p,q € N, Al,.‘ ,Ap € C9%9, and € €

CP. Then Y % _, Ap&, = vec 1 (AL).

When G is a matrix Lie group, the map ¢ is given by
¢(x) = exp (vec (Hz)).

Proposition IILS. In a neighbourhood of identity U C G,
¢ : R™ — G has inverse

¢~H(X)

Proof. Since H : R™ — vec(g) is injective, a left inverse
is H' : vec(g) — R”, which is surjective. It follows from
direct computation that (7) is a left inverse of ¢.

To prove that (7) is a right inverse of ¢, we require H' to
be a right inverse of H, which does not hold globally. Let
H~vec(g) == {z € R" : Hz € vec(g)} be the preimage
of vec(g) under H, and let HT|H~vec(g) be the restriction
of H' to this subspace. Let + € R", then HH'(Hz) =
H(H'H)x = Hz. Since two-sided inverses are unique, this
implies that on the domain H ~!vec(g), the left inverse of H,
HT, is also the right inverse. Therefore, H HT|H~'vec(g) is
identity. The rest follows from direct computation. O

U C G — R" defined

= H'vec(Log(X)). (7)

Proposition IIL.6. The map ¢~ :
in (7) is a morphism of groups.

Proof. The inverse of a morphism, if it exists, is itself a
morphism [30, Chapter 1, Theorem 20]. O

IV. LocAL DYNAMICS

Proposition IV.1. The continuous-time plant (1) has exact
discretization (4).

Proof. Consider a matrix ODE X (t) = M(¢)X(t). If for
all t t >0, M( YM(t') = M(t')M(t), then for ¢t > 0,

fo 7)dT X (0) [31, §V]. Since g is commutative,
the Vector ﬁeld commutation property holds for all time.
Solve (1) at t = kT and t = (k + 1)T. Factoring the former
solution from the latter yields (4). O

Much of our analysis is facilitated by using local co-

ordinates. Define A := = HTA, C = HiC, o= HYF,
Qd = H'Q,, and Qc = HTQCI eTS cdr, Dy = HTDd
DC = H'D,, Gd = H'Gy, and G = HIG..

X,Y,Z € U, we compute y = ¢ (YY), z == QS’l(Z),



and the discrete-time dynamics of x = ¢~ !(X):

2T =TA+ TBu+ TQqwg + Qew, + (8)
yzé—&—f)dwd—kﬁcwc—&—x,
z = (ﬁ + 6) + (éd + Ed)wd + (éc =+ Ec)wc + .
V. CONTROLLABILITY AND STATE ESTIMATION
Our solution to the regulator problem uses output feed-
back. Thus, we require local detectability and stabilizability.
A. Controllability
We first define and characterize the notion of controllabil-
ity for a discrete-time linear-affine system:
2T = Az + Bu +c, )
where A € R™*"™, B € R"*™, x,¢ € R", and u € R™.

Definition V.1. System (9) is controllable if for all xo,T €
R™, given z[0] = xo, there exist k € Z>o and
ul0],...,ulk — 1] € R™ such that z[k] = Z.

Proposition V.2. System (9) is controllable if and only if the
pair (A, B) is controllable.

Proof. Routine calculation verifies z[n] = A"z[0] +
S AiBuln—1—i]4+ Y7 Aic. Thus, driving system (9)
to z € R™ in n time steps is equivalent to driving the linear
system 27 = Az + Bu to & — .~ A’c in n time steps.
This is possible if and only if (A4, B) is controllable. O

We now analyze the controllability of the sampled
plant (4). Set the exostates wy and w, to zero. Then the
local sampled dynamics (8) reduce to + = T A+ T Bu + .

Proposition V.3. The sampled plant (4) is controllable if
and only if spang{B1,...,Bn} =g

Proof. In local coordinates (8), the state matrix is i~dentity,
so the PBH test for controllability reduces to rank(B) = n.
This is satisfied if and only if spang{By,...,Bn} =9g. O

B. State Estimation

ALEt Ll c Rnxn’ L2 c erxn’ L3 c chxn’
X, Y € G wg € R @, € R e =
¢~ (YY~'). Defining the output estimate Y

exp (C + Y14 Dagitha; + Y 5o Deithe;) X, we propose a
state estimator with dynamics:

m Td
Xt =exp <TA +TY Biui + T Qaitbas

i=1 i=1

Te T
+ Z Qcie;r / e dr . + vee ! (ﬂLley)> X
i=1 0
UA)(—; = Sqwgq + Lgey
Wl = elSagp, + Lse,,.

(10)

Given the output Y, we seek to choose Li, Lo, and L3,

such that the estimation errors E, = XX 1 — Iy, e, ==
Wwqg — wgqg — 0., , and e, == W, —w, — 0, as k — oo.

In local coordinates, the output estimation error e, and
the dynamics of the state estimation error e, = Q‘l(Ew)
are e, = Deey, + Dgew, + €, and e} = e, + TQaew, +
Qcew, + Liey, from which, direct calculation verifies

AO
" i~ —
€y I, TQq Qe
+ _
Cuwy | = Ord xn Sd Ord XTe
ej;c Orc xn Orc XTq eTSe
Ll €Ex
+ | Lo I, Dy D, Cwy | >
—_——
L3 (o ewc
L

which are the estimation error dynamics of a Luenberger
observer. Thus, we directly apply linear observer theory.
Since A, is block diagonal, we have o(4,) = o(l,) U
o(Sq) U o(eT5¢). Thus, under Assumption 2, o(Ag) is
entirely outside the open unit disc, so (C,, A,) is detectable
if and only if it is observable.

Proposition V4. The pair (C,, A,) is observable if and only
if the following matrix is full rank:

ﬁd(Sd_ITd)+Téd Ec (eTSC _ITC)—’_éc

(11)
5d (SZ+Td+Tc _I"'d)
+TQa YL e sy

5@ ((eTsC )n+m+m —Irc)
QU ()
Proof. Given the observability matrix of (C,, 4,), subtract-

ing the top block row from those below yields a block trian-
gular matrix with block diagonal elements I,, and (11). [

Corollary V.5. If (C,, A,) is observable, then the following
are equivalent:

1) there exists an L such that A, + LC, is Schur;

2) the matrix (11) is full rank;

3) the point (E., ey, ew,) = (In,0.,,0.) is locally
asymptotically stable.

Thus, for suitable L and initial conditions, the state
estimator dynamics (10) are well-defined for all £ > 0.

VI. SOLUTION TO THE REGULATOR PROBLEM

In this section, we propose a solution to the regulator
problem using state feedback. We also prove a separation
principle, which allows the state feedback controller and
state estimator to be designed independently. As with linear
systems, this yields an output feedback controller that solves
the regulator problem.

A. Regulation with Full Information

We design our controller in two parts: 1) a map ¥ : R"* x
R"e = R+ — F™ that makes the manifold {X € G :
7 = Iy} invariant; 2) a state feedback K : R” — F™ that
renders this manifold locally asymptotically stable.



We first find the state reference II R™ x RTe ==
Rretre G, which characterizes the trajectory
of XI[k| yielding Z[k] = In. Substituting (2)

into (6) and setting Z = Iy, we obtain II(w) =
exp (—(F +C) —vec™! ([(Gd +D; G.+ DC] w)),

which has the local expression ¢~ !(ITI(w)) =
—(13 + 6’) — Gw, where G = {éd +D; G. —|—l~)c}. For
convenience, define w = ¢—1 o II. We make the manifold
characterized by Z = In controlled-invariant by choosing
u = W(w) such that if X = II(w), then Xt = I(w™).
Setting 1 = 7(w™) and z = w(w), we have —TBY¥(w) =
TA + Qu + m(w) — m(w™), where Q = [T@d + @6],
which simplifies to TA + (Q + G(S — I,,4,.))w, which
yields ¥(w) = =B (TA+ (Q + G(S — Ly4r.))w).

The map ¥ contains the term —ETZ, which will cancel
the affine term in the sampled plant dynamics (4). As will
be seen in the proof of the following theorem, the remaining
dynamics after application of U are linear, thus, we augment
U with a stabilizing linear term.

The state-tracking error E = XTI(w)~! is of critical
importance in the context of the regulator problem.

Theorem VIL1. If spany{Bi,...
exists K € F™*"™ such that

u= K¢ H(XT(w)™ )+ ¥(w)

, B} = g, then there

(12)
solves the regulator problem with full information.
Proof. Using e := ¢ Y(E) =z + F 4+ C + Gu,
et =TA+TB(Ke+ ¥(w)) + Qu + (e 4+ m(w)) — w(w™h)
= (I, + TBK)e.
By Propositions V.2 and V.3, if spang{ B, ..., By} = g,
then there exists a K such that I,, + TBK is Schur. O

From Theorem VI.1, it follows that there exists a positively
invariant neighbourhood of the identity in G for suitable K.
Thus, for E[0] suitably close to the identity, the closed-loop
dynamics are well-defined for all £ > 0. Note that there is
no restriction on the plant state X.

B. Regulation with Output Feedback

Theorem V1.2 (Separation Principle). If the control law (12)
is implemented using the state estimates provided by the state
estimator (10), then the closed-loop tracking and estimation
errors are locally asymptotically stable.

Proof. Using & = e, +x = e, + e + m(w),
et =TA+TB(K (& —7(d)) + ¥(d)) + Quw + = — w(w™)
= (I, + TBK)e + TBKe,
+TBE(G ~Q —G(S — Iytr.))ew.
Since %e* = Iy + TBK and the state estimator dy-
namics (10) do not depend on wu, the set of eigenvalues

of the closed-loop system using output feedback is the
union of the eigenvalues of the state estimator with the

eigenvalues of the closed-loop system using state feedback:
o(I,+TBK)Uo(A, + LC,). O
Corollary VI3. If YV, X, 0 = [wg ] T are as
defined in (10), and spang{Bi,..., By} g, then u =
Ko Y (XTI(w) ™) + U (), where K € F™*" satisfies (12),
solves the local regulator problem with output information.

w

VII. SIMULATION ON G = SO(2) x R

We consider the generalized cylinder G 2 SO(2) xR, with
Lie algebra g. A commuting basis for g is

0 -1 10
. Hy= .
1 o] lo 1]

We consider a system with exosystem parameters:

11 0 —1
5 Sc: 5
0 1] [1 o]

which define a ramp and sinusoid, respectively; plant param-
eters: A= Hy— Hsy, By = Hy, By = H,, Qd1 = H1+2H,,
Qa2 = —H1 + Hz, Qa1 = Hy + Hz, Q2 = Ha; output
parameters: C' = Hy + 2Hy, Dy3 = Hy — Ha, Dy =
Hy +1Hs, Doy = Hi, Dy = 2H; 4+ Hs; and regulation
quantity parameters: F' = Hy — 3Hs, Gg1 = Hi + 2Ho,
Gd2 = 2H1 +H2, Gcl = ].H1 — H2, GC2 = 3H1 + HQ.

We solve the linear quadratic regulator problem with
identity weight matrices to design both our locally stabilizing
controller gain K and our state estimator gain L. This yields
K = —0.6181, and

H, =

Sa =

 [~0.855 0.165 ~ [o.0817 —0.707
YT 0242 —243|° 27 10.0464 —0.188]°
~ [~0.0042 —0.00470
571 0256 0.111

We use a sampling period of 7" = 1 and initialize with
X(0) = exp(0.2H; +0.2Hs), wal0] = [0 0.5] ", w,(0) =
(0.3 —0.3]", X[0] = I, wal0] = 05, 10[0] = 0,.

Figure 2 depicts the plant states. In Figure 3, we see that
Z[k] — In,i.e., we have solved the regulator problem. How-
ever, we see that Z(t), t € (kT, (k+1)T) does not tend to I
— there are no guarantees regarding intersample behaviour.
In Figure 2, we see that the state on SO(2) (locally) “wraps
around” several times, which is characteristic of dynamics
on a quotient space.

Since the output is a static map of the states, it too exhibits
this wrapping behaviour. However, as depicted in Figure 4,
the state estimates converge.

VIII. CLOSING REMARK AND FUTURE RESEARCH

It is worth noting that all our results hold globally if G
has no compact subgroups, i.e., for G commutative, SO(2)
is not a subgroup of G. Future work includes extending our
results to dynamics on nilpotent and solvable Lie groups, and
allowing X, Y, and Z to be defined on distinct Lie groups.
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