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Synchronized closed path following for a
differential drive and manipulator robot

Yuqian Li and Christopher Nielsen Member, IEEE

Abstract—We locally solve a synchronized path following
problem for a heterogenous multi-agent system consisting of a
differential drive robot and a serial manipulator. Each is assigned
a simple, regular, closed curve in its output space. The outputs
of the systems must approach and traverse their assigned curves
while synchronizing their motions along the paths. We use the
notion of path following outputs to facilitate a solution and
present a novel synchronization controller and a novel singularity
avoidance controller. The controllers are all given in closed-
form making their implementation straightforward. A numerical
simulation is presented which includes modelling uncertainty to
demonstrate the utility of this approach.

I. INTRODUCTION

Flexible manufacturing systems have the ability to quickly
change their workflow over time. For example, Amazon.com
Inc. has successfully used teams of mobile robots and robotic
manipulators to automate its warehouse operations. Consider
a scenario where (i) a robotic manipulator picks up a part
and (ii) places it on a mobile robot which (iii) delivers the
part to a station to be processed and (iv) the scenario repeats
indefinitely. In this scenario, the manipulator’s end effector and
the mobile robot should each traverse an appropriately planned
closed curve in order to repeatedly pick up and deliver parts.
The traversal of the curves should be very accurate to avoid
collisions with other stations. Finally, the machines should be
synchronized so that neither of the robots are waiting.

Partially motivated by the scenarios like the one above, this
paper focuses on a synchronized path following problem for
closed paths and a heterogenous multi-agent system consisting
of a differential drive robot and a serial manipulator. Path fol-
lowing refers to the problem of driving the output of a system
to a pre-assigned path with no a priori time parameterization
of the motion along the path. This distinguishes path following
from trajectory tracking and allows path following controllers
to remove performance limitations for non-minimum phase
systems [1] and to enforce path invariance [2]. Path invariance
means that path following controllers are able to stabilize all
the motions of a system whose associated output trajectory
lies on the assigned path.

For a multi-robot system, coordinated path following entails
making each robot approach a pre-assigned path, again, with
no a priori time parameterization. Once on the paths, the
robots should coordinate. This could mean various things
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depending on the application. The robots may be required to:
keep a desired inter-vehicle formation pattern in time [3], [4],
[5]; get into formation and then move along straight lines [6];
or to get their path variables, the variable that describes where
a robot is on its path, to converge to a common value [7]. These
papers all share the property that synchronization is enforced
through a clever re-parameterization of the assigned paths.
Once the re-parameterization is obtained, the synchronization
problem reduces to a consensus problem [8].

We take an invariant sets approach to the coordinated path
following problem [9] and view the problem as an instance
of hierarchical control [10]. This means that our controllers
first stabilize all the motions of the robots whose associated
output signals belong to the assigned path. Synchronization is
modeled by a function whose zero level set constrains the al-
lowable motions along the paths. Synchronization is achieved
by stabilizing the zero level set of this function. By using a
constraint function, we achieve at least three things that make
this approach unique. First, we do not need to cleverly re-
parameterize the paths to frame the synchronization problem
as a consensus problem. Second, we achieve synchronization
invariance. This is accomplished by stabilizing all the trajec-
tories of the team for which the synchronization constraint
is satisfied. In other words, if the robots are traversing their
paths in a synchronized manner and we decide to change, say,
the velocity of the synchronized team, they will converge to
the new velocity profile without falling out of synchronization
nor leaving their paths. Thirdly, using this constraint function
allows us to achieve more general forms of synchronization
than just maintaining a formation. These features are unique to
path following as opposed to synchronization using a tracking
approach [11], [12].

While our approach is based on [9], this paper has sev-
eral key differences1. We consider a heterogenous team of
robots that do not have identical dynamics. We introduce a
novel singularity avoidance controller for differential drive
robots that extends the applicability of the results in [9].
An explicit characterization of synchronization functions is
provided. Furthermore, by focusing on the special case of two
robots and closed-paths, we are able to obtain a closed-form
expression for our synchronization controller that is applicable
to relative degree two systems. We also present a closed-
form expression for a controller that allows the positionally
synchronized system to track a velocity profile.

1A preliminary version of this paper appeared in [13]. The paper has
a completely different singularity avoidance controller (Section IV), we
present an improved synchronization controller that does not require a leader
(Section VI) and more robust simulations with model uncertainty are provided.
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A. Notation

Given vectors x, y ∈ Rn, 〈x, y〉 denotes the Euclidean
inner product and ‖x‖ the associated Euclidean norm. For
a set A ⊂ Rn, the point-to-set distance is written ‖ · ‖A.
Given n ∈ N, n := {1, . . . , n}. If L > 0 and real, then the
notation R mod L represents the real numbers modulo L and
[·]L : R→ R mod L. Let arg : C→ (−π, π] map a complex
number to its principal argument. The symbol ⊗ denotes the
Kronecker product while := means equal by definition.

For a function σ : A → B, Im(σ) denotes its image. The
function σ is proper if the pre-image of every compact set in
B is compact in A where A and B are topological spaces.
If φ : Rn → Rm is a smooth map, dφx denotes its Jacobian
evaluated at x and Hess (φ) is its Hessian matrix. If f , g :
Rn → Rn are smooth vector fields, we use the following
standard notation for iterated Lie derivatives L0

fφ(x) := φ(x),
Lkfφ(x) := Lf (Lk−1f φ)(x) = 〈dLk−1f φx, f(x)〉, LgLfφ(x) :=
Lg(Lfφ)(x) = 〈dLfφx, g(x)〉.

II. PROBLEM FORMULATION

We consider a synchronized path following problem for
two different nonlinear, control-affine, deterministic control
systems. System Σa is taken to be a differential drive robot.
Differential drive, i.e., type (2, 0) mobile robots [14], are
commonly called unicycle robots. Its state vector is xa :=
(x1, x2, x3, x4) (see Figure 1). Translational and rotational
accelerations are the control inputs. The resulting model has
the form ẋa = f(xa) + g1(xa)u1,a + g2(x1)u2,a;

ẋa =


x4 cosx3
x4 sinx3

0
0

+


0
0
0
1

u1,a +


0
0
1
0

u2,a. (1)

The robot’s position in the plane is taken as its output
ya = ha(xa) = (x1, x2). Let pa := 2 denote the dimension of
ya and let τ(x3) := (cos (x3), sin (x3)) denote the unicycle’s
heading direction.

System Σb is taken to be a fully actuated serial manipulator
with a 4-dimensional configuration space R4 and 4 control
inputs τ ∈ R4. The dynamic model is given in standard vector
form as

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)τ (2)

where the symmetric inertia matrix M(q) is positive definite
for all q and B : R4 → R4×4 is smooth, non-singular for all
q. We take the position of the robot’s wrist in the task space
as the output

yb = hb(q), hb : R4 → R3. (3)

Let pb := 3 denote the dimension of yb. The closed-form
expression of (3) is omitted but can be computed using
standard methods for forward kinematics.

We now describe the class of paths considered. Let i ∈
{a, b} and let Ci be a simple, regular, closed curve of length
Li > 0 in the output space of system Σi with smooth unit
speed parameterization σi : R→ Rpi , Im (σi) = Ci, ‖σ′i(·)‖ ≡
1.

Assumption 1 (implicit representation). The regular closed
curves Ci ⊂ Rpi , i ∈ {a, b}, have implicit representations

Ci = {yi ∈Wi ⊆ Rpi : si(yi) = 0}

where si : Wi ⊆ Rpi → Rpi−1 are smooth functions such that
rank (dsi) = pi − 1 on Cr and Wi are open sets containing
Ci.

Assumption 1 automatically holds if pi ∈ {2, 3}, as in our
case, or if the parameterizations are regular of order pi. Our
control objective is to design feedback control laws that make
the closed-loop output of Σi approach the curve Ci and syn-
chronize their motion. To make our notion of synchronization
precise, we introduce a synchronization constraint.

Definition II.1. A path following synchronization constraint
for two systems Σi and curves Ci ⊂ Rpi , i ∈ {a, b} is a
relation F (ya, ẏa, yb, ẏb) = 0 where F : Ca×Rpa×Cb×Rpb →
Rk is smooth, k ∈ 4, and rank (dF ) = k on F−1(0).

Synchronized path following problem (SPFP) : Given two
regular closed curves Ca and Cb satisfying Assumption 1, and
a path following synchronization constraint F : Ca × Rpa ×
Cb × Rpb → Rk, find control laws ua : Rna × Rnb → Rma ,
ub : Rna × Rnb → Rmb such that, for an open set of initial
conditions Xa ⊆ Rna , Xb ⊆ Rnb with Ca ⊂ ha(Xa), Cb ⊂
hb(Xb), the closed-loop systems satisfy

A (Attractivity) The solutions xa(t), xb(t) satisfy
‖ha(xa(t))‖Ca → 0 and ‖hb(xb(t))‖Cb → 0 as
t→∞.

I (Invariance) The curves Ca and Cb are output invariant
for the respective closed-loop systems.

S (Synchronization) If, for all t ≥ 0, ha(xa(t)) ∈ Ca,
hb(xb(t)) ∈ Cb, then F (ya(t), ẏa(t), yb(t), ẏb(t)) → 0
as t→∞.

♦
Objective A in SPFP asks that the assigned paths be

attractive for the closed-loop systems. Objective I asks that
the assigned paths be invariant in the sense that, if the
closed-loop systems are properly initialized, the corresponding
solutions evolve on their assigned paths irrespective of the
synchronization specification. Finally, objective S asks that the
systems synchronize their motion along the path.

Remark II.2. We have expressed S as a constraint on the
allowable motions on the curve in accordance with Defini-
tion II.1. In practice, condition S must also hold for solutions
that asymptotically approach the curves. The more practical
scenario is studied using an appropriately defined projection
onto the curves (see (4) and Section VI).

III. PATH FOLLOWING OUTPUTS

Let Σ be a control affine system assigned a simple closed
curve in the class described in Section II. Let α : U ⊆ Rn →
Rp−1 x 7→ s◦h(x) where U := s−1(W ) and s(·), W ⊆ Rp are
defined in Assumption 1. The function α(·) has the property
that if h(x) ∈ C then α(x) = 0. This property allows one to
treat the problem of driving the output of Σ towards C as an
output stabilization problem. Intuitively, one can view s(·) as
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a signed distance function from the system output to the path
and the problem of getting on the path as being the problem
of driving this distance to zero.

Additionally, let π : U ⊆ Rn → R be defined as x 7→
$ ◦ h(x) where

$ : N (C) ⊂ Rp → R mod L

y 7→ arg min
λ∈[0,L)

‖y − σ(λ)‖. (4)

The function (4) returns the parameter λ ∈ [0, L) that
minimizes the distance from the output to the path. It is
well-defined in a neighbourhood N (C) of the curve C. The
function π has the property that, for all x1, x2 ∈ Rn such that
h(x1), h(x2) ∈ C and π(x1) 6= π(x2) then h(x1) 6= h(x2).
This makes it a useful function for controlling the motion of
the system on the curve. The following definition summarizes
this discussion.

Definition III.1. The path following output of a control sys-
tem Σ with respect to a closed curve C satisfying Assumption 1
is

yPF :=

[
α(x)
π(x)

]
. (5)

The path following manifold [2], denoted Γ?, with respect to
C is the largest controlled invariant subset of α−1(0).

Lemma III.2. The dynamic unicycle (1) with path following
output (5) yields a well-defined vector relative degree of
{r1, r2} = {2, 2} at each point on h−1a (Ca) at which x4 6= 0.

The proof of Lemma III.2 is omitted. By Lemma III.2,
in a neighbourhood of every point in the open set{
x ∈ R4 : αa(x) = 0

}
\ {xa : x4 = 0} the unicycle system is

feedback equivalent to

η̇a1 = ηa2 ξ̇a1 = ξa2
η̇a2 = v

‖
a ξ̇a2 = vta .

(6)

The path following manifold of the unicycle (1) with respect to
the curve Ca is Γ?a =

{
xa ∈ R4 : αa(x) = Lfαa(x) = 0

}
={

xa ∈ R4 : ξa1 = ξa2 = 0
}

and has dimension two.
In the case of the manipulator (2), (3), if we augment the

path following output with a fourth artificial output φ(q) :=
q2 + q3 + q4, then the output (yPF, φ) yields a relative degree
of {2, 2, 2, 2} away from kinematic singularities. Hence the 4-
DOF manipulator is feedback equivalent, in a neighbourhood
of every point on the path Cb, to

ζ̇b1 = ζb2 η̇b1 = ηb2 ξ̇11 = ξ12 ξ̇21 = ξ22
ζ̇b2 = vζ η̇b2 = v

‖
b ξ̇12 = vtb,1 ξ̇22 = vtb,2.

(7)

The path following manifold of the manipulator (1) with
respect to the curve Cb is Γ?b =

{
xb ∈ R8 : ξij = 0, i, j ∈ 2

}
=
{
xb ∈ R8 : αb(x) = Lfαb(x) = 0

}
and has dimension 4.

The ζb states, which model redundant dynamics, play no role
in the SPFP. We hereafter set vζ = Kζζ to exponentially
stabilize (ζb1, ζ

b
2) = (0, 0).

IV. SWITCHING THROUGH SINGULARITIES

Lemma III.2 shows that the path following output does
not yield a well-defined vector relative degree for (1) when
x4 = 0. In order for the unicycle to synchronize with (2),
it may have to stop or turn around on its path which can
result in zero translational velocity. In this section we propose
a scheme that avoids this singularity. We partition the state
space of the unicycle into two regions. Let δ > 0 be a
fixed constant and define Mδ := {xa : ‖(x4, ξa)‖ < δ} and
M := {xa : ‖(x4, ξa)‖ ≥ δ}. The set Mδ corresponds to the
unicycle’s translational velocity being small (small x4), it’s
position close to Ca (small ξa1 ) and its heading almost tangent
to Ca (small ξa2 ). When xa ∈ M , we apply the feedback
transformation that yields (6). When xa ∈ Mδ , we instead
apply [14] the coordinate transformation Ψ : R4 → R4

ηa1
ηa2
`
θ

 =


πa(xa)
Lfπa(xa)〈

Rπ
2
σ′a(λ?), ha(xa)− σa(λ?)

〉
arg
(
ej(x3−ϕ(λ?))

)
 (8)

where λ? = πa(xa) is the value returned by (4) and ϕ : R mod
La → R mod 2π is the map associating to each λ ∈ [0, La)
the angle of the tangent vector σ′a(λ) to Ca at σ(λ). The states
(`, θ) represent the signed distance from the unicycle to its
path and its orientation error, see Figure 1.

Fig. 1: Physical meaning of the states ` and θ.

Proposition IV.1. For every xa ∈ Γ?a, there exists an open set
U ⊂ R4 containing xa such that (8) is a local diffeomorphism.

Proof. The Jacobian of Ψ evaluated at xa ∈ Γ?a has the form

dΨ(xa) =


∂πa
∂x1

∂πa
∂x2

0 0
∂Lfπa
∂x1

∂Lfπa
∂x2

∂Lfπa
∂x3

∂Lfπa
∂x4

∂`
∂x1

∂`
∂x2

0 0
∂θ
∂x1

∂θ
∂x2

1 0

 .
To show that dΨ is non-singular, we argue that (i) the (2,
4)-entry is non-zero and (ii) rows one and three are linearly
independent. Simple calculations yield

∂Lfπa
∂x4

= Lg1Lfπa =
〈σ′a(λ?), τ(x3)〉
‖σ′a (λ?)‖

= 〈σ′a(λ?), τ(x3)〉 .

On Γ?a, the unicycle is on the path and its heading is tangent
to the path and therefore 〈σ′a(λ?), τ(x3)〉 = ±1.

Next, we show that rows one and three are linearly inde-
pendent. To begin with, write the first and third components
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of Ψ as compositions ψ1(xa) = $a ◦ ha(xa), ψ3(xa) = γ ◦
ha(xa). Applying the chain rule dψ1 = d($a)ha(xa)dha(xa),
dψ3 = dγha(xa)dha(xa) and so it is sufficient to show that
d($a)ya and dγya are linearly independent. This fact follows
from [15, Lemma 3.2] which shows that ∇$a = d($a)>ya and
∇γ = dγ>ya are orthogonal.

The unicycle (1) under the coordinate transformation (8) is
given by [14]

η̇a1 = ηa2
η̇a2 = L2

fπa + Lg1Lfπau1,a + Lg2Lfπau2,a
˙̀ = x4 sin (θ)

θ̇ = u2,a − x4 cos (θ)
κ(ηa1 )

1−κ(ηa1 )`

where xa = Ψ−1 (ηa, `, θ) and κ : R mod La → R is
the signed curvature function of Ca. Consider the feedback
transformation[

u1,a
u2,a

]
= β̃(xa)−1

([
−L2

fπa

x4 cos (θ)
κ(ηa1 )

1−κ(ηa1 )`

]
+

[
v
‖
a

vtδ

])
(9)

with
β̃(xa) :=

[
Lg1Lfπa Lg2Lfπa

0 1

]
.

Corollary IV.2. The feedback transformation (9) is well
defined at every xa ∈ Γ?a.

Proof. The determinant of β̃(xa) is Lg1Lfπa(xa) which,
as shown in the proof of Proposition IV.1, equals
〈σ′a(λ?), τ(x3)〉 = ±1 at xa ∈ Γ?u.

The proof of Corollary IV.2 illustrates that, when the
heading vector τ(x3) is orthogonal to the path, feedback (9) is
not well-defined. This observation helps motivate the definition
of Mδ since we only switch to (9) when the unicycle is almost
tangent to the path. After applying (9), the unicycle model is

η̇a1 = ηa2
˙̀ = x4 sin (θ)

η̇a2 = v
‖
a θ̇ = vtδ .

(10)

V. ATTRACTIVITY AND INVARIANCE OF THE PATHS

The unicycle’s normal form (6) and the manipulator’s
normal form (7) are useful for solving SPFP. When the ξi,
i ∈ {a, b}, states are zero the systems evolve on their respec-
tive path following manifolds. As such the ξi-dynamics govern
that portion Σi’s dynamics that move it towards or away from
the assigned curve; we call them transversal dynamics. Since
these dynamics are linear and controllable, objectives A and
I of SPFP can be solved using linear feedback. The simplest
choice of transversal controllers are

vta = Kaξ
a, vtb = Kbξ

b (11)

where the real gains Ka, Kb are selected so that the closed-
loop matrices are Hurwitz. The LTI controllers (11) make
the equilibrium points ξi = 0 of the closed-loop transversal
subsystems exponentially stable. Physically this implies that
if the systems are initialized on their paths with a velocity
tangent to the path, then they remain on the path for all future
time. Therefore, path invariance I is achieved. Furthermore,

if the closed-loop trajectories are bounded, then ξa, ξb → 0
implies that xa → Γ?a, xb → Γ?b which means that the paths
are attractive (objective A).

There is an additional complication for the unicycle because
it is not feedback equivalent to (6) when x4 = 0. To overcome
this problem we employ the results of Section IV. When
xb ∈ Mδ , the unicycle is feedback equivalent to (10). By
the physical meaning of (`, θ) (see Figure 1) we conclude that
ξa1 = ξa2 = 0 if, and only if, ` = 0 and θ ∈ {0, π}.

We now design the input vtδ such that if a singularity is
encountered near the path following manifold the unicycle
does not leave its path. Our controller uses the smooth bump
function R→ R

bump(K,A,c) (θ) = K

(
1

h(A)2
h (θ +A)h (A− θ) + c

)
(12)

with

h(θ) =

θ∫
−∞

f(τ + 1)f(1− τ)dτ, f(τ) =

{
e−

1
τ τ > 0

0 τ ≤ 0.

The constant A > 0 determines the width of the bump; c ∈ R
determines the offset; K ∈ R is a scaling factor.

Proposition V.1. System (10) with

vtδ = −b01(θ)x4` sinc (θ)− bπ1 (θ)x4` sinc ([θ]2π − π)

− b2(θ)|x4| sin (θ)
(13)

where

b01(θ) = bump(K1,π/2,0)(θ), bπ1 (θ) = bump(K1,π/2,−1)(θ)

b2(θ) = bump(2K2,π/2,−0.5)(θ), K1,K2 > 0
(14)

enjoys the following properties.
(i) The set Γ?a is controlled invariant.

(ii) The equilibria (`, θ) = (0, 0), (`, θ) = (0, π) of the (`, θ)-
subsystem are stable.

(iii) If lim inft→∞ |x4| 6= 0 then (`, θ) = (0, 0) and (`, θ) =
(0, π) are locally asymptotically stable.

Proof. To prove (i) let xa ∈ Γ?a = {xa : ξa = 0}. By the
definitions of (`, θ) and Γ?a, ξa = 0 if and only if ` = 0 and θ ∈
{0, π}. Both (`, θ) = (0, 0) and (`, θ) = (0, π) are equilibria
of the (`, θ)-subsystem of (10) under the feedback (13) which
shows that (i) holds.

To prove (ii) let2 U0 := {(`, θ) : |θ| < 0.5}. On this set
b01(θ) = K1, bπ1 (θ) = 0 and b2(θ) = K2 so that (13) reduces
to

vtδ = −K1x4` sinc (θ)−K2|x4| sin (θ).

Next consider the candidate Lyapunov-like function V : R ×
U0 → R, V (`, θ) = K1

`2

2 + θ2

2 . The time derivative of V
along the (l, θ)-subsystem gives

V̇ = K1`x4 sin (θ)−K1θx4` sinc (θ)−K2θ|x4| sin (θ)

= −K2θ|x4| sin (θ) ≤ 0.

2The set U0 depends on the choice of the parameter A in (12) but the
stated value is valid for the choices made in (14).
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which shows that (`, θ) = (0, 0) is stable and Ω0 :=
supc≥0 V

−1(c) such that Ω0 ⊂ R×U0 is a compact positively
invariant set. To show that (`, θ) = (0, π) is also stable
let Uπ := {(`, θ) : |θ| > π − 0.5} and consider the smooth
function V : R×Uπ → R, V (`, θ) = K1

`2

2 + ([θ]2π − π)
2
/2.

On Uπ , b01(θ) = 0, bπ1 (θ) = K1 and b2(θ) = −K2 so that (13)
reduces to

vtδ = K1x4` sinc ([θ]2π − π) +K2|x4| sin (θ).

The derivative of V , for (`, θ) ∈ R× Uπ , satisfies

V̇ = K1`x4 sin (θ) +K1 ([θ]2π − π)x4` sinc ([θ]2π − π)

+K2 ([θ]2π − π) |x4| sin (θ)

= K2 ([θ]2π − π) |x4| sin (θ) ≤ 0.

This shows that (`, θ) = (0, π) is stable and Ωπ :=
supc≥0 V

−1(c) such that Ωπ ⊂ R×Uπ is a compact positively
invariant set.

To prove (iii) consider the set

E := {(`, θ) ∈ Ω0 : V̇ = 0} = {(`, θ) ∈ Ω0 : |x4|θ = 0} .

By assumption there exists a positive number ε > 0 such that
as t → ∞, |x4| > ε. Under this observation we characterize
the largest invariant set contained in E0. For a solution to
remain in E we must have that θ = 0 and θ̇ = 0. By
the choice of control law (13), this means that x4` = 0.
Therefore the largest invariant set contained in E is given by
M = {(`, θ) ∈ E : x4` = 0}. If |x4| ≥ ε, then the invariance
principle implies (`, θ) → 0. A similar argument applies to
(`, θ) = (0, π).

In summary, the unicycle’s control algorithm works as
follows. In M , we feedback linearize the unicycle using
the path following output to obtain (6) and apply the linear
controller vta in (11). In the singularity set Mδ , we switch
to feedback transformation (9) with vtδ defined in (13). If
this switch occurs while on the path following manifold,
the control vtδ maintains controlled invariance of the path
following manifold. Moreover, the switching has no effect on
the tangential dynamics of the unicycle.

VI. SYNCHRONIZATION CONTROL DESIGN

We now design the tangential controllers v‖a, v‖b to achieve
S. The relevant tangential dynamics of Γ?a and Γ?b are

η̇a1 = ηa2 η̇b1 = ηb2
η̇a2 = v

‖
a η̇b2 = v

‖
b .

(15)

with state space (R mod La × R)× (R mod Lb × R). Physi-
cally, ηa1 and ηb1 represent the arc-length along the respective
paths to the location of the output, while ηa2 and ηb2 govern the
velocities along the paths. Let ηa := (ηa1 , η

a
2 ), ηb := (ηb1, η

b
2)

and define η1 := (ηa1 , η
b
1), η2 := (ηa2 , η

b
2).

Assumption 2. System Σa has ηb available for feedback
while Σb has ηa available for feedback. The synchronization
constraint F : Ca × Rpa × Cb × Rpb → Rk is known to all.

1) Position synchronization: Positional synchronization
corresponds to a path following constraint (cf. Definition II.1)
of the form F : Ca×Cb → Rk. The set Ca×Cb is diffeomorphic
to R mod La × R mod Lb which in turn is diffeomorphic
to the 2-torus T2. These arguments show that Ca × Cb is a
manifold of dimension 2 and hence F : Ca × Cb → Rk
is restricted to have co-domain with k ∈ 2. If k = 2 then
F−1(0) is a point on Ca×Cb. The k = 2 case is uninteresting
because it amounts to each system going to a particular point
on its path. Such an objective can be solved easily, in light
of the tangential dynamics (15), in a decentralized manner. If
k = 1 then F−1(0) is an embedded submanifold. Instead of
working with F , it convenient to instead work the function
G : R mod La × R mod Lb → Rk uniquely defined by the
diagram

N (Ca)×N (Cb)
($a,$b)// R mod La × R mod Lb

(σa,σb)//

G

((

Ca × Cb

F
��

Rk.

Synchronization is achieved at time t if G(ηa1 (t), ηb1(t)) = 0.

Example VI.1. Consider the map G : R mod La × R mod
Lb → R defined by

G1(ηa1 , η
b
1) = sin

(
2π

Lb

[
ηb1 − f(ηa1 )

]
Lb

)
(16)

where f : R mod La → R mod Lb. For example f(ηa1 ) =[
c1 cos

(
2π
La
ηa1 + c2

)]
Lb

where c1, c2 ∈ R are constants. This

function equals zero when ηb1−f(ηa1 ) = 0 or ηb1−f(ηa1 ) = Lb
2 .

It corresponds to the position of Σb on its path being a periodic
function of the position of Σa on its path. Figure 2 provides a
visualization of this constraint on R mod La×R mod Lb and
on the torus. Note that the level set G−1(0) has two connected
components.

0 1 2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

14

16

18

(a) R mod La × R mod Lb. (b) T2 ⊂ R3

Fig. 2: Zero level sets of (16) with c1 = 10, c2 = 0, La = 3π,
Lb = 6π.

Another example is

G2(ηa1 , η
b
1) = sin

(
2π

(
c1
La
ηa1 −

c2
Lb
ηb1

))
. (17)

If c1, c2 are commensurate then the zero level set of (17)
corresponds to a closed curve on the torus. The zero level
set again has two connected components which correspond to
c1
La
ηa1 − c2

Lb
ηb1 = 0 and 1/2.
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The zero level set of

G2(ηa1 , η
b
1) = (ηa1 − c1)2 + (ηb1 − c2)2 − r2 (18)

is a circle but G is not smooth as a function on the
torus. However, if the constants c1, c2, r are chosen so
that G−1(0) ⊂ (0, La) × (0, Lb) then it is a permissible
synchronization constraint. 4

Next, we propose synchronization control laws. To begin
with define synchronization error according to

e =

[
e1
e2

]
:=

[
G(ηa1 , η

b
1)

∂G
∂ηa1

ηa2 + ∂G
∂ηb1

ηb2

]
.

The e-dynamics are given by

ė1 = e2

ė2 =
[
ηa2 ηb2

]
Hess (G)

[
ηa2
ηb2

]
+ dG

[
v
‖
a

v
‖
b

]
.

Select the tangential control law[
v
‖
a

v
‖
b

]
=
[
∇G
‖dG‖2

N(η1)
‖dG‖2

] [ −η>2 Hess (G)η2 +Kee
vs

]
(19)

where ∇G = dG> ∈ R2, N(η1) := Rπ
2
∇G, Rπ

2
is a π/2

counter-clockwise rotation of the plane, Ke ∈ R1×2 is a matrix
of negative gains, and vs ∈ R is an auxiliary control input to
be designed so that the synchronized system has a desired
motion while synchronized, i.e., restricted to G−1(0). This
controller is well-defined as long as dGη1 6= 0 which means,
by the Morse-Sard theorem, it is well-defined except on a set
of Lebesgue measure zero. In particular it is well-defined in a
neighbourhood of G−1(0).

With this choice the closed-loop e-dynamics become

ė1 = e2

ė2 = Ke,1e2 +Ke,2e2
(20)

and, so long as dG 6= 0, e → 0 so that3 (ηa, ηb) → S? :={
(ηa, ηb) : e1 = e2 = 0

}
.

Remark VI.1. We stress that when ξa = 0 and ξb = 0
the systems Σa and Σb, respectively, evolve on their assigned
paths Ca and Cb. Meanwhile, under the control law (19), the
set S? =

{
(ηa, ηb) : e1 = e2 = 0

}
is controlled invariant and

locally attractive. On this set the positional synchronization
constraint is enforced and the two systems are synchronized.

To control the evolution of the overall system while synchro-
nized we find an expression for the tangential dynamics (15)
restricted to the set S?.

Proposition VI.2. The closed-loop tangential dynamics (15)
under the control law (19) restricted to the set S? satisfy

η2(t)|S? =
1

‖dG(t)‖2
〈N(η1(t)), η2(t)〉N(η1(t)) (21)

3Since the domain of G is compact, G(ηa1 , η
b
1) → 0 if, and only if,

(ηa1 , η
b
1)→ G−1(0).

and

η̇2|S? = − ‖η2‖
2

‖dG‖2
N>(η1) Hess (G)N(η1)

∇G
‖dG‖2

+vs
N(η1)

‖dG‖2
.

(22)

Proof. On the set S?, η2 ∈ Ker (dG). Since N(η1) = Rπ
2
∇G

we have that Ker (dG) = span (N(η1)) which shows that η2
is colinear with the unit vector N(η1)

‖DG‖ , i.e.,

η2|S? = k(η1, η2)
N(η1)

‖dG‖
.

The function k is uniquely defined by the properties (i) |k| =
‖η2‖ and (ii) positive when η2/‖η2‖ and N(η1)/‖dG‖ are
equal. The function

k(η1, η2) =
1

‖dG‖
〈N(η1), η2〉

meets these requirements which shows that (21) holds. Lastly,
since e = 0 when synchronized, direct substitution of (19)
into (15) yields (22).

Suppose we are given a desired velocity profile for the
synchronized system. In light of Proposition VI.2 and (21),
the desired velocity profile has the form

ηref2 (t) := v(t)
N(η1)

‖dG‖
(23)

with v : R→ R smooth. Define the velocity tracking error

ev :=
1

‖dG‖
〈N(η1), η2〉 − v. (24)

Under the feedback (19), differentiating (24) we obtain

ėv =

〈(
N ⊗ d

(
1

‖dG‖

)
+

1

‖dG‖
dNη1

)
η2, η2

〉
+ vs

1

‖dG‖
− v̇.

(25)

The expression (25) does not require that (15) be restricted
to S? as in Proposition VI.2; the evolution of the ev dynam-
ics (25) is decoupled from the synchronization error e. The
expression (25) immediately suggests the control law

vs = ‖dG‖
(

v̇ −
〈(

N ⊗ d

(
1

‖dG‖

)
+

1

‖dG‖
dNη1

)
η2, η2

〉)
+Kv‖dG‖ev, Kv < 0.

(26)

Lemma VI.3. Given G : R mod La × R mod Lb → R there
exists an open set of initial conditions U1 × U2 ⊆ (R mod
La × R mod La) × R2 with G−1(0) ⊂ U1 such that for any
initial condition (η1(0), η2(0)) ∈ U1 × U2 the closed-loop
tangential dynamics (15) under controllers (19) and (26):
(i) Achieve synchronization G(ηa1 (t), ηb1(t))→ 0.

(ii) The synchronized system tracks the desired velocity pro-
file (23) ev → 0.

(iii) The synchronization constraint is invariant, i.e., if
(η1(0), η2(0)) ∈ S? then, for all t ≥ 0, (η1(t), η2(t)) ∈
S?.
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Proof. Claims (i) and (iii) follow from the form the expres-
sion of the closed-loop synchronization error dynamics (20).
Claim (ii) follows from the closed-loop velocity tracking error
dynamics ėv = Kvev.

Remark VI.4. The controllers (19) and (26) ensure that
the set S? is controlled invariant. Therefore, if the desired
velocity profile v : R → R changes in real-time, the systems
will (a) stay on their paths (b) remain synchronized and (c)
asymptotically track the new velocity profile. These features
are unique to the proposed control laws.

2) Velocity synchronization: Consider the special case
where the path following synchronization constraint from
Definition II.1 imposes a constraint on the velocities along the
path. Analogously to the construction in Section VI-1, this can
be viewed as a relation G(ηa2 , η

b
2) = 0 where G : R×R→ Rk,

k ∈ 2, is smooth. As before, we assume that k = 1 to avoid
the trivial case. We propose the tangential controllers

v‖a = Kv
a

∂G

∂ηa2
G(ηa2 , η

b
2), v

‖
b = Kv

b

∂G

∂ηb2
G(ηa2 , η

b
2), Kv

a ,K
v
b < 0.

(27)

Lemma VI.5. Given a velocity synchronization constraint G :
R2 → R, there exists an open set of initial conditions U1 ×
U2 ⊆ (R mod La×R mod La)×R2 with G−1(0) ⊂ U2 such
that for any initial condition (η1(0), η2(0)) ∈ U1 × U2 the
closed-loop tangential dynamics (15) under the controller (27)
are such that G(ηa2 (t), ηb2(t)) → 0 as t → ∞. If G is proper
then ηa2 (t) and ηb2(t) are bounded.

Proof. The synchronization constraint evolves according to

d

dt
G =

∂G

∂ηa2
v‖a +

∂G

∂ηb2
v
‖
b

=

(
Kv
a

(
∂G

∂ηa2

)2

+Kv
b

(
∂G

∂ηb2

)2
)
G.

Since Kv
u,K

v
r < 0 and dG has rank 1 in a neighbourhood

of G−1(0), G(t) approaches 0 exponentially as t → +∞.
Boundedness of ηb2 and ηb2 follows from the boundedness of
G and the hypothesis that G is proper.

Remark VI.6. If G is a linear velocity constraint, i.e.,
G(ηa2 , η

b
2) = g1η

a
2 + g2η

b
2, it is not proper. The conclusions

of Lemma VI.5 still hold in this case except that bound-
edness is shown using the Lyapunov function V (ηa2 , η

b
2) =

−Kv
b /2 (ηa2 )

2 −Kv
a/2

(
ηb2
)2

.

VII. NUMERICAL EXAMPLE WITH MODEL UNCERTAINTY

We implement the feedback linearization controllers using
the path following output as well as (11), (19) and (26) for
both systems. For the unicycle, when a singularity is en-
countered, we switch from the feedback linearizing controller
to (9), (13). The model parameters for the manipulator are
taken from [16] which provides a high accuracy model of a
Clearpath R© Robotic Manipulator whose shoulder, elbow, and
wrist links are actuated by D.C. linear actuators.

A nominal manipulator model (2) is used for as the basis
for control design. The simulated model has ±1% uncertainty

TABLE I: Controller parameters used in simulation

Ka, Kb δ Kv Ke K1, K2

−
[

104 20
]

0.3 −7 −
[

10 6
]

1,
√
2

on the motor inertias and damping and ±0.5% uncertainty
on all masses associated with the manipulator. The latter
respresenting severe modelling uncertainty. The unicycle is
assigned an elipse

Ca =

{
ya :

1

a21
(ya,1 − a2)

2
+

1

a23
(ya,2 − a4)

2 − 1 = 0

}
,

σa(λ) = (a1 cos (λ) + a2, a3 sin (λ) + a4). The manipulator
is assigned a limaçon-like curve Cb with smooth parameteri-
zation

σb(λ) =

 (b1 + b2 cos (λ)) cos (λ) + b5
(b1 + b2 cos (λ)) sin (λ) + b6
(b3 + b4 cos (λ)) cos (λ) + b7

 .
The real constants ai, i ∈ 4, and bj , j ∈ 7 determine the
properties of Ca and Cb. We use4 a = (80, 0, 50, 500) and
b = (100, 50, 70, 100, 0, 500, 200) in this simulation so that
La ≈ 413.8, Lb ≈ 828.1 where all distances are in millime-
tres. By Lemma III.2 the unicycle is feedback equivalent to (6),
provided x4 6= 0. Similarly, by selecting the parameters bj in
σb(λ) so that the path Cb does not pass through kinematic
singularities of the manipulator, the manipulator is locally
feedback equivalent to (7).

Table I lists the gains and controller parameters used in
simulations. The transversal gains Ka, Kb in (11) were
selected using pole placement to ensure a fast approach to
the paths with closed-loop poles at s = −10 ± j2. The
switching parameter δ was chosen to reduce the peak values
of the unicycle’s control signal. The remaining gains were
chosen in an ad-hoc manner though LQR optimization or pole
placement could be used to select the gain Ke that governs
the synchronization error dynamics (20).

We simulate a case where the synchronization constraint
switches to illustrate the unique features of our approach. For
the first half of the simulation the constraint is (17) with
c1 = c2 = 1. This represents the two systems traversing
their respective paths together. At t = 25s the constraint
switches to (18) with c1 = 200, c2 = 400, and r = 100. This
constraint represents the two systems oscillating along their
paths in a synchronized manner. The desired velocity for the
synchronized systems is always v(t) = 50 + 25 cos (2π/10t).

Figure 3 shows typical output trajectories for both systems.
Observe that both systems remain on their paths when the
synchronization constraint is changed. Figure 4 shows the
transversal states do not jump during the switch. This indicates
that the robots do not leave their path due to switching. The
invariance of the path is unique feature of path following
controllers that make the path following manifold controlled
invariant.

Figure 5 shows the phase plot ηa1 vs ηb1 of the tangential
states. They converge to the initial constraint (a line) and then

4Where a := (a1, a2, a3, a4) defines Ca, similarly with b and Cb.
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Fig. 3: Output trajectories ya(t) and yb(t).
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Fig. 4: Attractivity of paths despite model uncertainty.

at t = 25 s, when G−1(0) changes to a circle, they converge to
the new synchronization constraint. This is further illustrated
in Figure 6 where the value of G is plotted in blue for t ≤ 25
and black for t > 25.
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Fig. 5: ηa1 vs ηb1.
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Fig. 6: G(ηa1 (t), ηb1(t)) versus time.

Figure 7 shows that when the synchronization function
changes, a transient is introduced to the velocity tracking error
but the synchronized system quickly returns to tracking the
assigned velocity profile v(t).

The model uncertainty manifests itself in the steady-
state error in the synchronized velocity tracking (Fig-
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Fig. 7: Velocity tracking error (24).

ure 7). The steady-state velocity tracking error oscillates
between ±2mm/s. The model uncertainty is also notice-
able in the steady-state value of the synchronization func-
tion G(ηa1 (t), ηb1(t)). While these results are encouraging,
the performance could be improved by employing Lyapunov
redesign [16] or adaptive control.
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