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Abstract—We examine a regulator problem for a class of fully
actuated continuous-time invariant systems on Lie groups, using
a discrete-time controller with constant sampling period. We
present a smooth discrete-time control law that achieves global
regulation on simply connected nilpotent Lie groups. We first
solve the problem when both the plant state and exosystem state
are available for feedback, then in the case where the plant
state and plant output are available for feedback. The class of
plant outputs considered includes, for example, the quantity to
be regulated. This class of outputs allows us to use the classical
Luenberger observer to estimate the exosystem states. In the full-
information case, the regulation quantity on the Lie algebra is
shown to decay exponentially to zero, which implies that it tends
asymptotically to the identity on the Lie group.

I. INTRODUCTION

The regulator problem is central to control theory; it com-
bines reference tracking, disturbance rejection, and stabiliza-
tion. The problem was completely solved in the continuous-
time linear case in the seminal papers [1], [2], [3]. These linear
results were extended to nonlinear systems in [4], wherein the
continuous-time nonlinear regulator equations—the celebrated
Francis-Byrnes-Isidori equations—were developed; this work
inspired analogous results for the discrete-time regulator prob-
lem in [5]. More recently, researchers have tried to specialize
continuous-time regulator problems to classes of systems
evolving on Lie groups. The output regulation problem was
solved for a class of systems evolving on the special Euclidean
group SE(n) in [6] by identifying a separation principle. In [7],
an almost-global solution to the output regulation problem for
a class of systems on SE(3) was proposed; these results were
extended to local results on arbitrary Lie groups in [8].

Many engineering systems can be modelled on Lie groups,
which eliminates dependence on local coordinates, thereby
avoiding representational singularities in the dynamical model.
The motion of robots in a plane is modelled on the solvable
Lie group SE(2) [9], and their motion in space, such as
that of UAVs’, is modelled on SE(3) [10]. Quantum systems
evolve on the unitary groups U(n) [11] and SU(n) [12],
[13]. Even the noise responses of some circuits evolve on Lie
groups [14], specifically the solvable Lie group of invertible
upper-triangular matrices. Control on the nilpotent Heisenberg
group has also been the object of much study [15], [16].
In continuous-time, certain classes of vector fields can be
approximated as being on nilpotent Lie algebras [17], [18].
This is of interest because of the relatively simple Lie algebraic
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structure of nilpotent Lie algebras. Additionally, systems in
chained form [19] are expressions of an invariant system on
a particular nilpotent Lie group of unipotent matrices [20]
in exponential coordinates of the second kind. In this paper,
we study the regulator problem for sampled-data systems on
nilpotent Lie groups.

To the authors’ knowledge, the literature on the sampled-
data regulator problem for systems on Lie groups is sparse,
currently comprising only [21], which developed a control law
for invariant systems that achieves global tracking on certain
Lie groups for sufficiently fast sampling, our preliminary
work [22] on commutative Lie groups, and step tracking using
passivity for general Lie groups [23].

The sampled-data setup is ubiquitous in applied control [24].
The design of a discrete-time controller for a discretized plant
is called direct design. Since nonlinear ODEs generally do not
have closed-form solutions, the plant dynamics must usually
be approximately discretized. Approximation-based direct de-
sign has two main weaknesses [25]: 1) closed-loop stability
may be impossible for a given discretization method; 2) when
closed-loop stability is possible, it relies on fast sampling,
which may be infeasible. For example, when using machine
vision, the sampling rate may be limited by the framerate of
the camera [26]. The latter issue is also the main weakness
of emulation: solving the control problem in continuous-time,
but implementing a discrete-time controller that approximates
the continuous-time controller at the sampling instants [27].

Systems belonging to the class of left- and right-invariant
systems on Lie groups have trajectories that can be expressed
in closed-form using the matrix exponential [28]. Thus, direct
design may be performed without resorting to approximations.
In this paper, we examine a regulation problem for invariant
systems on simply connected nilpotent Lie groups. The study
of this class of systems is partially motivated by the nilpotent
approximation techniques developed in [17], [18]. We show
that, when the group is nilpotent and the plant is fully actuated,
that the origin of the Lie algebra can be made semiglobally
exponentially stable; as a corollary, the identity of the Lie
group is globally asymptotically stable. We show that when
the trajectories of the exosystem are bounded, the intersample
behaviour of the closed-loop system is also bounded.

One of the main contributions of this work is to elucidate
how the stability results from [29] can be used to design
feedback controllers that solve a regulation problem. This
allows for a significant generalization of the results in [22],
which applied only to commutative Lie groups. We show how
the restrictive assumptions of [29] (Property 1 in the current
paper) can be enforced by a judicious choice of state feedback.
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A. Notation and Terminology

If N ∈ N, then NN := {1, . . . , N}. Given a matrix
M ∈ Cn×n, σ(M) is its spectrum, and ρ(M) its spectral
radius. If x ∈ Cn, then ‖x‖ is its norm (the choice of norm
is arbitrary but fixed); if M ∈ Cn×n, then ‖M‖ is its induced
norm. A word ω in a Lie algebra g with length |ω| ∈ N over
the n ∈ N letters X1, . . . , Xn ∈ g is a (nested) Lie bracket
[Xω1 , [Xω2 , [. . . Xω|ω| ] · · · ], where Xωi ∈ {X1, . . . , Xn}.

II. SAMPLED-DATA REGULATOR PROBLEM

We study the sampled-data control problem for the system
illustrated in Figure 1.

Fig. 1. Sampled-data plant on a Lie group G. The blocks H and S in Figure 1
are the ideal hold and sample operators, respectively, operating synchronously
at a common, fixed sampling period T > 0.

The plant is modelled by the differential equation

Ẋ(t) = (A+Bu(t) +Qdwd(t) +Qcwc(t))X(t). (1)

The system has a measured output Ym, which models the
information from the plant and exosystem that is available to
the controller. It is convenient to model a plant output

Y (t) = exp(C +Ddwd(t) +Dcwc(t))X(t), (2)

which models a signal that is available for feedback, which is
a function of the plant state and exostates. This signal could
be, for example, the quantity to be regulated.

We assume, as is typical, that the exogenous signals wd, wc,
depicted in Figure 1, evolve according to known dynamics,
modelled as

wd[k + 1] = Sdwd[k]

ẇc(t) = Scwc(t).
(3)

In (1) and (2), X ∈ G where G ⊆ GL(N,C) is an n-
dimensional simply connected nilpotent Lie group—which is
formalized in Assumption 1 below—over the complex field
C which includes, as a special case, real Lie groups. The
associated Lie algebra is g, which is an n-dimensional vector
space over the field F, which is equal to either C or R. The
control input is u(t) ∈ Fn, the discrete- and continuous-time
exostates are wd[k] ∈ Frd and wc(t) ∈ Frc , respectively,
and Sd ∈ Frd×rd , Sc ∈ Frc×rc . The quantities A and C are
elements of g, and B : Fn → g, Qd : Frd → g, Qc : Frc → g,
Dd : Frd → g, and Dc : Frc → g are linear maps.

Equation (1) is an invariant system evolving on a Lie
group G, where the plant output (2) is some quantity that
could be available for feedback. The exosystem (3) comprises
both discrete- and continuous-time subsystems. This enables
modelling of, for example, physical plants that are subject to
continuous-time disturbances, but are sent reference signals
from a computer. We impose four standing assumptions.

Assumption 1. The Lie group G is simply connected, and
nilpotent with nilindex p.

Under Assumption 1, the Lie Group G is diffeomorphic to
its Lie algebra g, which is isomorphic to Fn; in particular, the
exponential map exp : g → G is a (global) diffeomorphism.
This is easily verified by nilpotency of g and the Baker-
Campbell Hausdorff formula [30, Theorem 1.2.1].

Assumption 2. The spectra of Sd and Sc lie outside the open
unit disc and in the closed right half plane, respectively.

Assumption 2 incurs no loss of generality; if necessary, Sd
and Sc can be redefined as their restrictions to their respective
unstable modal subspaces [31, §2.3].

Assumption 3. The plant is fully actuated: ImB = g.

The foregoing assumption is necessary for the linearization
of the tracking error dynamics to be stabilizable. The follow-
ing technical assumption greatly simplifies our analysis, and
guarantees well-posedness of the closed-loop dynamics, as it
obviates use of the Magnus expansion in deriving the exact
discretization of (1). See the proof of Proposition II.1.

Assumption 4. The image of Qc is in the centre of g.

Assumption 4 can be interpreted as the continuous exostate
acting as a purely linear disturbance in the plant dynamics on
the Lie algebra. Under Assumption 4, letting X[k] := X(kT ),
u[k] := u(kT ), and wc[k] := wc(kT ), the plant (1) and
exosystem (3) have exact discretizations, as we will prove at
the end of this section:

X+ = exp

(
TA+ TBu+ TQdwd +Qc

∫ T

0

eτScdτ wc

)
X,

(4)
and [

w+
d

w+
c

]
=

[
Sd 0

0 eTSc

]
︸ ︷︷ ︸

=:S

[
wd

wc

]
︸ ︷︷ ︸
=:w

. (5)

To simplify the notation, let r := rd+rc and identify Frd×
Frc with Fr, define Q : Fr → g, (wd, wc) 7→ TQdwd +

Qc
∫ T
0

eτScdτwc, and D : Fr → g, (wd, wc) 7→ Ddwd +
Dcwc. Equipped with this notation, we rewrite the discretized
plant dynamics (4) and the plant output in the compact form

X+ = exp(TA+ TBu+Qw)X (6)
Y = exp(C +Dw)X.

Proposition II.1. The dynamics (6) are the exact discretization
of (1), in the sense that for all k ≥ 0, X[k] = X(kT ).

Proof. Consider an ODE Ẋ = U(t)X(t), where X ∈ G
and U : R → g is a piecewise continuous time-varying
vector field. It is well-known, and can be verified from
the Magnus expansion [32], that if for all t1, t2 ≥ 0,
[U(t1), U(t2)] = 0, then the unique solution to this ODE is
X(t) = exp

(∫ t
0
U(τ)dτ

)
X(0).

For (1), for t ∈ [kT, (k + 1)T ), we have U(t) =
(A+Bu(kT ) +Qdwd(kT )) + Qcwc(t), where, under As-
sumption 4, [U(t1), U(t2)] = 0 for all t1, t2. Thus, over this



sampling period, the ODE (1) is satisfied by

X(t) = exp

(
(t− kT )A+ (t− kT )Bu(kT )

+ (t− kT )Qdwd(kT ) +Qc

∫ t

kT

wc(τ)dτ

)
X(kT ).

The rest of the proof follows from routine calculation.

The goal of the regulator problem is to drive a regulation
quantity to identity. We take the regulation quantity to be

Z(t) = exp(F +Gw(t))X(t), (7)

where F ∈ g and G : Fr → g is a linear map.
Given the plant with state X ∈ G evolving according to (6),

measured output Ym : G × Fn × Fr → Y , where Y is some
Cartesian product of multiples of G and Fr, and regulation
quantity Z ∈ G given by (7), the objective of the sampled-
data regulator problem is to find, if possible, a control law of
the form

x+c = fc(xc, Ym), u = hc(xc, Ym),

where xc belongs to an a priori unspecified Lie group1 such
that

1) the closed-loop system is well-posed;
2) for all initial conditions, Z[k]→ I as k →∞.
We impose no requirements on internal stability or the

intersample behaviour. Concerning the latter, see Remark IV.2.
Regarding the former, it follows from (7) that, when w ≡ 0,
there is a unique constant X? such that if X = X?, then
Z = I; when F = 0, this constant is X? = I . Thus internal
stability is trivially satisfied by any regulating control law.
We consider two cases: 1) Ym = (X[k], w[k]); 2) Ym =
(X[k], Y [k]). The former is called the regulator problem
with full information, the latter the regulator problem with
plant state information. In both cases, since there is no direct
feedthrough from u to Ym, the closed-loop system is well-
posed.

III. PRELIMINARIES

A. Nilpotent Lie Groups and Lie Algebras

We now define what it means for a Lie group or algebra
to be nilpotent. We also state several algebraic properties of
such Lie algebras used in our analysis.

Definition III.1 (Lower Central Series). The lower central
series of a Lie algebra g is defined recursively by g(1) := g,
g(i+1) := [g(i), g], for i ≥ 1.

There are two important consequences of Definition III.1:
the algebras of the lower central series g(i) are ideals, and for
all i ≥ 1, g(i) ⊇ g(i+1).

Definition III.2 (Nilpotent). A Lie algebra g is nilpotent if
there exists a finite p such that g(p+1) = 0. The smallest such
p is called the nilindex of g. A Lie group is nilpotent if its
Lie algebra is nilpotent.

1Possibly commutative, e.g., Rnc as an additive group.

Theorem III.3 ([30, Theorem 1.2.1]). If G is a simply
connected nilpotent Lie group with Lie algebra g, then exp :
g→ G is an analytic diffeomorphism.

By the foregoing theorem, the matrix exponential has a
globally defined inverse, which we denote by Log : G → g,
thus the group G is globally diffeomorphic to a finite dimen-
sional vector space.

B. The Class of Systems

To prove the validity of our proposed solution, we leverage
(specializations of) the results in [29]. We first introduce
notation that allows us to succinctly describe the class of
systems studied therein.

Define the tensor product (Fn ⊗ g,⊗). If f1, . . . , fm are
series of words with letters x1, . . . , xN ∈ g, where in fi, the
scalar coefficients of the word ω is ciω ∈ F, then

f(x) :=
f1(x1, . . . , xN )

...
fm(x1, . . . , xN )

 =


∑
ω c

1
ωω

...∑
ω c

m
ω ω

 =
∑
ω


c1ω
...
cmω

⊗ ω,
which we write compactly as

f(x) =
∑
ω

cω ⊗ ω.

Relabelling r of the letters as w1, . . . , wr ∈ g, and redefining
x as the remaining letters, we have

x+ = f(x,w) = Ax+ Pw +
∑
|ω|≥2

cω ⊗ ω. (8)

We are interested in systems of the form (9), where f :
gN × gr → gN enjoys Property 1.

Property 1. The function f : gN ×gr → gN in (9) enjoys the
following properties:
(a) the origin of gN is a unique fixed point: for all w ∈ Fr,

f(x,w) = 0 ⇐⇒ x = 0;

(b) there exists an ideal h ⊆ g with nilindex p, such that
h ⊇ [g, g], whereof each ideal in the lower central series
of
(
h(i)
)N ⊆ gN is invariant under f , i.e.,

f

((
h(i)
)N

, gr
)
⊆
(
h(i)
)N

.

If (8) enjoys Property 1(a), then P = 0 and every word ω
has at least one letter in the set {x1, . . . , xN} [29, Proposition
4]. Therefore, we will focus on systems of the form

x+ = f(x,w) = Ax+
∑
|ω|≥2

cω ⊗ ω. (9)

There are two key results in [29] applicable to the regulator
problem under consideration.

Theorem III.4 ([29, Theorem 4]). Consider the dynamics (9).
Let g be a nilpotent Lie algebra and suppose f : gN × gr →
gN enjoys Property 1, where Property 1(b) is satisfied with



h = g. If there exist β ≥ 0, s ≥ 1 such that ‖w[k]‖ ≤ βsk,
and ρ(A) < s−

p(p−1)
2 , then the origin of gN is semiglobally

exponentially stable.

Theorem III.5 ([29, Theorem 6]). Consider the dynamics (9).
Let g be a nilpotent Lie algebra and suppose f : gN×gr → gN

enjoys Property 1. If ρ(A) = 0 and for all k ≥ 0, w[k] ∈ hr,
then x[k] converges to zero in finite time.

IV. THE SOLUTION

In this section, we show that the regulator problem has a
solution under the standing assumptions of Section II. We
first solve the regulator problem with full information, i.e,
Ym = (X[k], w[k]), which is equivalent to Ym = (Y [k], w[k]),
since the plant state can be computed algebraically as X[k] =
Y [k] exp(C+Dw[k])−1. We then solve the regulator problem
when the exostate is not measured, i.e., Ym = (X[k], Y [k]).

To prove our main results, we will invoke Theorems III.4
and III.5, which require the system to enjoy Property 1, which
is quite restrictive. Much of our effort in the current paper is
devoted to proving that by a judicious choice of state feedback
and observer design, the closed-loop system does in fact enjoy
the unlikely Property 1.

A. Regulator Problem with Full Information

We solve the regulator problem with full information in
two steps: 1) make the tracking manifold T := {(X,w) ∈
G × Fr : Z = I} positively invariant in discrete-time; 2)
make the tracking manifold globally attractive. The tracking
manifold T is positively invariant if there exist Π : Fr → G
and Ψ : Fr → g satisfying the regulator equations:

Π(Sw) = exp(TA+ TBΨ(w) +Qw)Π(w)

I = exp(F +Gw)Π(w).

Straightforward arithmetic yields the state reference

Π(w) = exp(F +Gw)−1 (10)

and the friend

Ψ(w) =
1

T
B−1

(
Log

(
Π(Sw)Π(w)−1

)
− TA−Qw

)
. (11)

By construction, if the restriction of u to the tracking
manifold equals the friend Ψ, then the tracking manifold is
controlled-invariant under the dynamics (6).

Remark IV.1. These regulator equations are always solvable,
because Z is a product of group elements on G, and B
is invertible under Assumption 3; this decouples the two
equations, which makes it possible for X[k] to track any
Π(w[k]) when properly initialized.

In particular, that B is invertible allows us to choose u
such that the discrete-time plant dynamics are of the form
X+ = UX , where U ∈ G can be set arbitrarily. Choosing
U [k] = Π(Sw[k])X[k]−1 results in one-step-ahead deadbeat
reference tracking for any sampling period. Technically, such a
control law would solve the regulator problem, but, in practice,
such a control law would generally be impractical, as it would
(attempt to) effect potentially very large actuations in very

small time scales, e.g., rotating a 0.5-meter-long robotic arm
by 60 degrees in 1 millisecond.

Remark IV.2. Regulation at the sampling instants does not
imply intersample regulation. If u[k] = Ψ(w[k]), then the
continuous-time plant dynamics (1) over the sampling period
t ∈ [kT, (k + 1)T ) are

Ẋ =

(
1

T
Log

(
Π(Sw[k])Π(w[k])−1

)
+Qcwc −

1

T
Qc

∫ T

0

eτScdτwc[k]

)
X[k].

Solving for X(kT + δ), where δ ∈ [0, T ), and setting X[k] =
Π(w[k]), we have

X(kT + δ) = exp

(
δ

T
Log

(
Π(Sw[k])Π(w[k])−1

)
+Qc

(∫ δ

0

eτScdτ − δ

T

∫ T

0

eτScdτ

)
wc[k]

)
Π(w[k]),

(12)

which shows X(t) 6= Π(w[k]) for all t ∈ [kT, (k + 1)T ).

Remark IV.2 may seem ominous, but under the standard
assumption that the exosystem (5) is neutrally stable, we can
partially characterize the intersample behaviour.

Proposition IV.3. If the trajectories of (3) are bounded and
X[k] = Π(w[k]), then for all t ≥ 0, X(t) is bounded.

Proof. Given a square matrix A, ‖ exp(A)‖ ≤ exp(‖A‖).
Applying this property to (12), we obtain

‖X(kT + δ)‖ ≤ exp

(
δ

T

∥∥Log
(
Π(Sw[k])Π(w[k])−1

)∥∥
+

∥∥∥∥∥Qc
(∫ δ

0

eτScdτ− δ
T

∫ T

0

eτScdτ

)∥∥∥∥∥‖wc[k]‖

)
‖Π(w[k])‖.

Since w is bounded, Π(w), its inverse, and Π(Sw) are
bounded. Since Log : G→ g is a diffeomorphism, the bound-
edness of Π(Sw)Π(w)−1 implies that Log(Π(Sw)Π(w)−1) is
bounded. Noting that wc is bounded completes the proof.

The next result addresses the important special case of step
reference tracking and disturbance rejection.

Proposition IV.4. If wd and wc are constant and X[k] =
Π(w[k]), then Z is identity for all t ≥ kT .

Proof. Without loss of generality, we take Sd = I and Sc = 0.
Then (12) simplifies to X(kT + δ) = Π(w). Thus, X(t) is
constant. The result is immediate from (7) and (10).

The two foregoing Propositions furnish analogous corollar-
ies for the intersample behaviour of Z, which follow immedi-
ately from (7).

We now use state feedback to make the tracking manifold
T globally attractive. Define the state-tracking error E :=
XΠ(w)−1. By definition, if E = I , then (X,w) ∈ T . We will



design a control law that stabilizes the Jacobian linearization
of the tracking error dynamics on g; this of course implies
local exponential stability of the tracking manifold T on any
Lie group. We then use the results of [29] to show that such a
controller achieves global regulation on nilpotent Lie groups.

We propose a controller of the form

u[k] = Γ(X[k], w[k]) + Ψ(w[k]),

where Ψ is given by (11), and Γ(X,w) := K Log(E), where
K : g → Fn is a yet-to-be-specified gain. The tracking
manifold T is rendered invariant by the friend Ψ, and attractive
by the state feedback Γ. Define e := Log(E) and π := Log ◦Π;
under Assumption 1, e is well-defined for all E ∈ G. Using
the proposed controller, the error dynamics on G are

E+ = X+Π(w+)−1

= exp
(
TBKe+ Log

(
Π(Sw)Π(w)−1

))
XΠ(Sw)−1

= exp
(
TBKe+ Log

(
Π(Sw)Π(w)−1

))
E
(
Π(Sw)Π(w)−1

)−1
.

(13)
We examine the tracking error dynamics (13) on the Lie

algebra g. To facilitate this, we use a generalization of the
Baker-Campbell-Hausdorff (BCH) formula [33], developed
in [34, §5]. Given A1, . . . , An ∈ g,

Log(exp(A1) · · · exp(An)) =

n∑
i=1

Ai +
1

2

∑
i<j

[Ai, Aj ] + · · · ,

(14)
where the remaining terms comprise scalar multiples of all
words of length at least three.

Applying the BCH to Log
(
Π(Sw)Π(w)−1

)
in (11), and

the generalized BCH to (13), performing some simplifications
and rearranging, we obtain

e+ = (I + TBK)e+
1

2
[TBKe, e] +

1

2
[π(Sw), e]

+
1

2
[−π(w), e]+

1

2
[TBKe, π(w)]+

1

2
[TBKe,−π(Sw)]+· · · ,

which can be written in the form of (9) thus

e+ = (I + TBK)e+
∑
ω

cω ⊗ ω, (15)

where the words ω are over the letters e,BKe, π(Sw), π(w);
the disturbance signals are π(Sw) and π(w). Note that the pair
(I, TB) is stabilizable if and only if Assumption 3 is satisfied.
We now state the main result of this section.

Theorem IV.5. If Π : Fr → G and Ψ : Fr → Fn are given
by (10) and (11), respectively, then there exists K : g → Fn
such that if

u = K Log(XΠ(w)−1) + Ψ(w), (16)

then (16) solves the regulator problem with full information.

To leverage the results of [29] in the proof of Theorem IV.5,
we require the following Lemma.

Lemma IV.6. There exists K : g→ Fn such that the tracking
error dynamics on the Lie algebra (15) enjoy Property 1.

Proof. We verify that (15) enjoys each of Properties 1(a)
and 1(b), in order.

Claim 1. There exists K : g→ Fn, such that (I + TBK) is
Schur and every subspace h ⊆ g is BK-invariant.

Proof. Fix α ∈ (0, 2) and K = −α(TB)−1. Then BK =
−αT−1I leaves any subspace invariant, and (I + TBK) =
(1− α)I is Schur.

Fix K : g → Fn such that (I + TBK) is Schur and
BKg(i) ⊆ g(i) for all i ∈ Np. Such a K exists by Claim 1.

Claim 2. The dynamics (15) enjoy Property 1(a).

Proof. Note that e ∈ g is a fixed point of (15) if and only
if E = exp(e) is a fixed point of (13). Solving for the fixed
points of (13),

Π(Sw)Π(w)−1 = exp
(
TBKe+ Log

(
Π(Sw)Π(w)−1

))
⇐⇒ Log

(
Π(Sw)Π(w)−1

)
=

TBKe+ Log
(
Π(Sw)Π(w)−1

)
⇐⇒ TBKe = 0.

By the Spectral Mapping Theorem, (I + TBK) is Schur
only if 0 is not an eigenvalue of TBK, implying that TBK
is an isomorphism. Thus, TBKe = 0 if and only if e = 0.

Claim 3. The dynamics (15) enjoy Property 1(b).

Proof. By Claim 2, e = 0 is an equilibrium, so without loss
of generality, we may assume that every word in (15) has at
least one letter e [29, Proposition 3.1.10], so if e ∈ g(i), then
since g(i) is an ideal, every word is in g(i). By our choice of
K, (I + TBK)g(i) ⊆ g(i).

Claims 2, 3, and the initial argument verify the Lemma.

Equipped with Lemma IV.6, we prove Theorem IV.5.

Proof of Theorem IV.5. Let K = −(TB)−1. Then (I +
TBK) = 0. By Lemma IV.6, Property 1 is satisfied. By
Theorem III.5, the tracking error e converges to 0 in finite
time. Consequently, E converges to identity in finite time.

B. Rate of Convergence

In the proof of Theorem IV.5, we invoked Theorem III.5
to demonstrate the existence of K : g → Fn such that
the state-tracking error converges to zero in finite time; in
the proof of Theorem III.5 in [29], this time is found to be
bounded above by a linear combination of the dimensions of
the ideals of the lower central series of g. In this section, we
characterize the general rate of convergence. In anticipation
of invoking Theorem III.4, we establish the following lemmas,
which assert that the growth rates of the exogenous signals are
independent of the choice of norm; this is important, because
per Theorem III.4, this growth rate defines a sufficiently small
spectral radius for stability.

Lemma IV.7. For the discretized exosystem (5), there exists
s ≥ 1, such that given any norm ‖·‖ : Fr → R and any initial
condition w[0], there exists β ≥ 0 such that ‖w[k]‖ ≤ βsk.

We emphasize that Lemma IV.7 establishes a bound on the
rate of growth of w independent of the norm chosen.



Proof. Let ‖ · ‖ : Fr → R be arbitrary. Fix ε > 0 and let
‖ · ‖ε : Fr → R be a norm such that its induced norm satisfies
‖S‖ε = ρ(S) + ε =: s. Since all norms are equivalent on
finite-dimensional vector spaces, there exists α > 0 such that
for all w ∈ Fr, ‖w‖ ≤ α‖w‖ε. Since the solution to (5) is
w[k] = Skw[0], we have ‖w[k]‖ε ≤ sk‖w[0]‖ε, so

‖w[k]‖ ≤ α‖w[k]‖ε = (α‖w[0]‖ε)︸ ︷︷ ︸
=:β

sk.

Since ε was arbitrary, s can be made arbitrarily close to ρ(S),
which, under Assumption 2, is at least 1.

Lemma IV.8. There exists s ≥ 1 such that given any norms
on Fr and g, and any initial condition w[0] ∈ Fr, there exists
β ≥ 0 such that ∥∥∥∥∥∥∥

 π(Sw)

π(w)

C +Dw


∥∥∥∥∥∥∥ ≤ βsk.

Proof. We first bound the norm of π(Sw[k]):

‖π(Sw[k])‖ = ‖F +GSw[k]‖ ≤ ‖F‖+ ‖GS‖‖w[k]‖.

Applying Lemma IV.7,

‖π(Sw[k])‖ ≤ ‖F‖+ ‖GS‖β′sk ≤ (‖F‖+ ‖GS‖β′)sk.

where we have used that s ≥ 1. Similarly, we establish
‖π(w[k])‖ ≤ (‖F‖+ ‖G‖β′)sk and ‖C +Dw[k]‖ ≤ (‖C‖+
‖D‖)β′sk. Let β := max{‖F‖ + max{‖GS‖, ‖G‖}, ‖C‖ +
‖D‖}β′.

Proposition IV.9. There exists K : g → Fn such that the
origin of g is semiglobally exponentially stable under (15).

Proof. Fix α ∈
(

1− ρ(S)−
p(p−1)

2 , 1 + ρ(S)−
p(p−1)

2

)
and

K = −α(TB)−1. Then I+TBK = (1−α)I , whose spectral
radius is |1 − α| < ρ(S)−

p(p−1)
2 , and the letters ω in (15)

reduce to {e, π(Sw), π(w)}, where the exogenous signals are
π(Sw) and π(w). Stacking the exogenous signals into a single
variable W ∈ g × g, we apply Lemma IV.8. The result then
follows by direct application of Theorem III.4.

Since g is diffeomorphic to G, we translate the Proposi-
tion IV.9 to the group.

Theorem IV.10. There exists K : g → Fn such that the
identity of G is globally asymptotically stable under the group
tracking-error dynamics (13).

C. Regulator Problem with Plant State Information

Four natural choices of a measured output Ym are 1) Ym =
(X[k], w[k]); 2) Ym = (Y [k], w[k]); 3) Ym = (Y [k], X[k]);
4) Ym = Y [k].

The first case is that of full information studied in the
previous subsection. The second case is equivalent to the
first, because it allows us to algebraically compute X[k] =
exp(C+Dw[k])−1Y [k]. The third case includes, for example,
the case where the plant state X and the regulation quantity
Z are measured, i.e., Y = Z, F = C, and D = G. The

fourth case characterizes the regulator problem with output
information. In this section, we treat the third case, and leave
the fourth case as a topic for future research.

When Ym = (Y [k], X[k]), at each sampling instant, we can
compute

Dw[k] = Log(Y [k]X[k]−1)− C. (17)

We therefore propose the linear observer

ŵ+ = Sŵ + L(Dŵ −Dw), (18)

which yields the estimation error dynamics

e+w = (S + LD)ew. (19)

Under Assumption 2, L : g → Fr can be chosen such
that (19) is stable, if and only if the pair (D,S) is observable.

Theorem IV.11. If the pair (D,S) is observable, then there
exist K : g → Fn and L : g → Fr such that the control law
defined by (10), (11), (18), and

u = K Log(XΠ(ŵ)−1) + Ψ(ŵ) (20)

solves the regulator problem with plant state information.

Proof. If (D,S) is observable, then there exists L : g → Fr
such that ρ(S + LD) = 0; fix such an L. Then for all k ≥ r,
ew[k] = 0, or equivalently, ŵ[k] = w[k]. For all k ≥ r, the
control law (20) reduces to (16) from the full-information case.

Since all the dynamics under consideration are polynomial
in the dynamical variables, none of the trajectories can exhibit
finite escape time, so for k ≤ r, the trajectories are well-
defined, and for all k ≥ r, the tracking error dynamics are (13)
on the group, and (15) on the algebra. The proof follows from
applying the arguments used in the proof of Theorem IV.5 to
establish global attractivity of the origin under the tracking
error dynamics.

V. SIMULATIONS ON THE HEISENBERG GROUP

To illustrate our results, we simulate Brockett’s nonholo-
nomic integrator [35] on the Heisenberg group G ⊂ GL(3,R),
which is a prototypical example for nonlinear control prob-
lems [36], further, it is a special case of a system in chained
form, which can be expressed as an invariant system on the
Heisenberg group [20, §4.1].

We choose the basis for the Heisenberg algebra g to be
{g1, g2, g3}, where

g1 =

0 1 0

0 0 0

0 0 0

 , g2 =

0 0 0

0 0 1

0 0 0

 , g3 =

0 0 1

0 0 0

0 0 0

 .
The lower central series is g =: g(1) ⊃ g(2) ⊃ g(3) =

0, where g(2) = [g, g] = LieR{g3} = spanR{g3}, thus the
nilindex is p = 2.

We present several examples with different exosystems. In
every case, ρ(S) = 1, and the observer gain L is chosen such
that ρ(S+LD) = 0. We first consider a system with exosystem
parameters Sd = 1 and Sc = 0, which both define steps in
discrete- and continuous-time, respectively; plant parameters:

A = g1 + g2 + g3, Qd1 = g1 + g2 + g3, Qc1 = g3,

B1 = g1, B2 = g2, B3 = g3,



where Bu =
∑3
i=1Biui; plant output parameters:

C = g1 + 2g2 + 3g3, Dd1 = g1 − g2, Dc1 = g2 + g3,

and regulation quantity parameters:

F = −3g1 − 2g2 − g3,
Gd1 = −g1 + 2g2 − 3g3, Gc1 = 2g1 + g2 − 3g3.

We use a sampling period of T = 1 and initialize with

X(0) = exp(g1 + 2g2 − 3g3),

wd[0] = 1, ŵd[0] = 0,

wc(0) = 1, ŵc[0] = 0.

We choose K = −(1/2)I , which yields (I + TBK) =

(1/2)I , whose spectral radius is 1/2 ≤ ρ(S)−
p(p−1)

2 = 1.
By Theorem IV.11, this choice of K and L furnishes a
control law that solves the regulator problem. As predicted
by Proposition IV.4, since wd and wc are constant, Z(t)→ I
as t→∞, as seen in Figure 2.
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Fig. 2. Regulation quantity Log(Z) for constant w.

To illustrate non-step-tracking behaviour, we redefine the
exosystem dynamics as

Sd =

[
cos(1) − sin(1)

sin(1) cos(1)

]
, Sc =

[
0 −1

1 0

]
,

which define discrete- and continuous-time sinusoids, respec-
tively, both with unit frequency. We extend the plant, plant
output, and regulation quantity definitions with the parameters

Qd2 = −g1 − g2, Qc2 = −g3,
Dd2 = g1 + g2 + g3, Dc2 = g1 + g3

Gd2 = g3, Gc2 = g1 + 2g2 + 3g3,

where now Qdwd =
∑2
i=1Qdiwdi, etc.

We use the same sampling period T = 1 and initial
condition X(0), and initialize the observer states at the origin,
but now initialize the exostates at

wd[0] = (0, 1), wc(0) = (1,−1).

We use the same tracking-error feedback gain K. Since the
exostates are bounded, Proposition IV.3 predicts that Z(t) will
be bounded, as is implied in Figure 3.

Repeating the simulation again, but changing the discrete-
time exosystem dynamics to

Sd =

[
1 1

0 1

]
,
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Fig. 3. Regulation quantity Log(Z) for sinusoidal w.

which defines a ramp, the regulation quantity exhibits the be-
haviour seen in Figure 4. At the sampling instants, Z[k]→ I ,
however, the intersample behaviour of Z(t) is unbounded.
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Fig. 4. Regulation quantity Log(Z) for ramp wd and sinusoidal wc.

However, if we remove the continuous-time exostate wc,
or equivalently set wc(0) = 0, then we make the interesting
observation that Z(t) is bounded, as is implied in Figure 5.
From (12), it is not surprising that eliminating the continuous-
time disturbance improves intersample behaviour, and it seems
plausible that when, in addition, the growth rate of wd is
bounded, that the intersample behaviour is bounded. However,
due to the nonlinearity of (12), it is not obvious that this is
always the case. We leave this as a topic for future research.
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Fig. 5. Regulation quantity Log(Z) for ramp wd and wc ≡ 0.

VI. SUMMARY AND FUTURE RESEARCH

We extended existing results for the sampled-data regulator
problem for a class of invariant systems on commutative Lie
groups [22], to simply connected nilpotent Lie groups in two
cases: 1) when the plant state and exostate are available for



feedback; 2) when the plant state and a so-called plant output
are available for feedback. In the latter, we used a Luenberger
observer to estimate the exostates, thereby furnishing a dy-
namical control law. In the full-information case, we showed
that the origin of the Lie algebra is semiglobally exponentially
stable under the tracking error dynamics.

Future work includes regulation when the plant is under-
actuated, but controllable, i.e., LieF ImB = g, rather than
ImB = g. We conjecture that this could be done using
multirate sampling. The case where only the plant output
Y is available for feedback should also be addressed. The
last simulation in Section V suggests that our conditions for
bounded intersample behaviour can be refined. Another natural
extension is to remove Assumption 4, and use the Magnus
expansion to express the local trajectory of the plant’s state
and design control laws. It would also be of interest to identify
conditions for robustness to noise and structural stability of
the error dynamics. The utility of the methods described in
this paper should be tested using the nilpotent approximation
methods of [17], [18].
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