
Fast algorithms for computing with
integer matrices: normal forms and

applications

by

Stavros Birmpilis

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2021

© Stavros Birmpilis 2021

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Claude-Pierre Jeannerod
Researcher, INRIA, LIP laboratory,
ENS de Lyon

Supervisors: George Labahn
Professor, Cheriton School of Computer Science,
University of Waterloo

Arne Storjohann
Associate Professor, Cheriton School of Computer Science,
University of Waterloo

Internal Members: Mark Giesbrecht
Professor, Cheriton School of Computer Science,
University of Waterloo

Lap Chi Lau
Professor, Cheriton School of Computer Science,
University of Waterloo

Internal-External Member: William Cook
Professor, Department Combinatorics and Optimization,
University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

The main results of this thesis are based on the following papers that I have co-authored.

1. (Birmpilis, Labahn, and Storjohann, 2019): Deterministic reduction of integer non-
singular linear system solving to matrix multiplication. In Proceedings of the Int’l.
Symp. on Symbolic and Algebraic Computation: ISSAC’19.

2. (Birmpilis, Labahn, and Storjohann, 2020): A Las Vegas algorithm for computing
the Smith form of a nonsingular integer matrix. In Proceedings of the Int’l. Symp.
on Symbolic and Algebraic Computation: ISSAC’20.

3. (Birmpilis, Labahn, and Storjohann, 2021): A fast algorithm for computing the Smith
normal form with the multiplier matrices for a nonsingular integer matrix. Submitted
to the Journal of Symbolic Computation.

iv

Abstract

The focus of this thesis is on fundamental computational problems in exact integer
linear algebra. Specifically, for a nonsingular integer input matrix A ∈ Zn×n, we consider
problems such as linear system solving and computing integer matrix normal forms.

Our goal is to design algorithms that have complexity about the same as the cost of
multiplying together two integer matrices of the same dimension and size of entries as the
input matrix A. If 2 ≤ ω ≤ 3 is a valid exponent for matrix multiplication, that is, if two
n × n matrices can be multiplied in O(nω) basic operations from the domain of entries,
then our target complexity is

(nω log ||A||)1+o(1)

bit operations. Here ||A|| = maxij |Aij| denotes the largest entry in absolute value, and
the exponent 1 + o(1) indicates some missing log n and loglog ||A|| factors.

The first contribution is solving the problem of computing the Smith normal form
S ∈ Zn×n of a nonsingular matrix A ∈ Zn×n along with computing unimodular matrices
U, V ∈ Zn×n such that

AV = US

in time (nω log ||A||)1+o(1). The algorithm we give is a Las Vegas probabilistic algorithm,
which means that we are able to verify the correctness of its output.

The second contribution of the thesis is with respect to linear system solving. We
present a deterministic reduction to matrix multiplication for the problem of linear system
solving: given as input a nonsingular A ∈ Zn×n and b ∈ Zn×1, compute A−1b. The system
solution is computed in (nω log ||A||)1+o(1) bit operations.

v

Acknowledgements

I would like to thank all the people who made this thesis possible.

First and foremost, I want to warmly thank my supervisors George Labahn and Arne
Storjohann who provided me with endless support and interesting discussions. They were
always reachable and actively offering me feedback at every step. I really could not ask for
more.

Moreover, all the members of the Symbolic Computation Group, each in their own
unique way, contributed to making my time in the University of Waterloo particularly
pleasant and creative.

In addition, it would be challenging to put into words how grateful I am towards my
family. Their unconditional support and care during my graduate studies was necessary
for the completion of this thesis.

Finally, I would like to give special thanks to all my friends who were by my side during
this adventure (even though some of them were geographically far).

vi

Table of Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Smith normal form . 2

1.2 Smith multipliers . 6

1.3 Linear system solving . 8

1.4 Other contributions . 10

1.5 Cost model . 11

2 Computational Tools 13

2.1 Lifting initialization . 14

2.2 Double-plus-one lifting . 15

2.3 System solving . 17

2.4 Integrality certification . 18

2.5 Unbalanced multiplications reduced to balanced 20

3 Partial linearization 24

3.1 The partial linearization construction . 26

3.2 The permutation bound . 30

vii

4 Smith massager 33

4.1 Definition . 35

4.2 Compact representation of A−1 . 37

4.3 Approach to create a unimodular Smith massager 39

4.4 Smith massager and partial linearization 41

5 Smith normal form and Smith massager algorithm 44

5.1 Largest invariant factors . 49

5.2 Projection basis . 53

5.3 Maximal index Smith massager . 54

5.3.1 Reduced index Smith massager . 58

5.4 Maximal Smith massager . 59

5.4.1 Combining index massagers . 59

5.4.2 Algorithm . 60

5.4.3 Correctness . 60

5.4.4 Complexity . 63

6 Smith multipliers algorithm 65

6.1 Random perturbations of Smith massagers 68

6.1.1 Small primes . 70

6.1.2 Large primes . 72

6.2 Almost trivial Hermite form certification 76

6.3 A Las Vegas algorithm for the Smith form with multipliers 78

6.3.1 Sizes of V and U . 80

6.4 Computing an outer product adjoint formula 81

viii

7 Deterministic linear system solving 85

7.1 A more general cost model . 87

7.1.1 Computational tools in terms of MM 88

7.2 Triangular 2-Smith form inverse decomposition 90

7.2.1 2-decompositions . 90

7.2.2 2-massagers . 93

7.3 Triangular Smith form algorithm . 96

7.4 The 2-massager algorithm . 99

7.4.1 Computing an index 2-massager . 100

7.4.2 Combining index 2-massagers . 103

7.4.3 Computing a reduced 2-massager 103

7.5 Linear system solving . 104

8 Conclusion 106

8.1 Hermite normal form . 107

8.2 Computing the Smith normal form of a polynomial matrix 108

References 109

ix

List of Tables

1.1 List of work on the Smith form problem over the integers. 4

1.2 List of work on the Smith form with multipliers problem over the integers. 7

x

List of Figures

5.1 Problem IndexMassager . 55

5.2 Algorithm SmithMassager . 61

6.1 Subroutine TrivialLowerHermiteForm 77

6.2 Algorithm SmithFormMultipliers . 79

7.1 Problem TriangularSmithForm . 97

7.2 Problem Index2Massager . 100

7.3 Algorithm 2Massager . 104

7.4 Algorithm Solve . 105

xi

Chapter 1

Introduction

The focus of this thesis is on fundamental computational problems in exact linear algebra.
Specifically, for a nonsingular integer input matrix A ∈ Zn×n, we consider problems such
as linear system solving and computing integer matrix normal forms. Along the way, we
provide a collection of useful computational tools which work as ingredients of our main
algorithms, but could also be applied in other contexts. Exact linear algebra on integer
matrices appears in a wide variety of applications including for example cryptography,
number theory and group theory.

The goal is to design fast algorithms for our integer matrix problems. In particular, we
wish to design algorithms that have complexity about the same as the cost of multiplying
together two integer matrices of the same dimension and size of entries as the input matrix
A. If 2 ≤ ω ≤ 3 is a valid exponent for matrix multiplication, that is, if two n×n matrices
can be multiplied in O(nω) basic operations from the domain of entries, then our target
complexity is

(nω log ||A||)1+o(1)

bit operations. Here ||A|| = maxij |Aij| denotes the largest entry in absolute value, and
the exponent 1 + o(1) indicates some missing log n and loglog ||A|| factors.

Reducing problems in computational linear algebra to matrix multiplication is impor-
tant both theoretically and in practice. Strassen (1969) showed that ω = log2 7 < 2.81
is feasible, which initiated a long series of research results that gradually decreased the
upper bound on ω towards its information lower bound 2. The currently best known cost
bound for the matrix multiplication exponent, by Alman and Williams (2021), ensures that
any ω ≥ 2.37286 is feasible. Most of those theoretically fast algorithms are not practical.
However, one often considers hardware and software optimized implementations which are

1

either cubic with ω = 3 or follow Strassen’s algorithm. The practical effectiveness of re-
ducing exact linear algebra computations to matrix multplication has been convincingly
demonstrated by the success of software packages such as FFLAS-FFPACK: Finite Field
Linear Algebra Subroutines / Package (Dumas et al., 2008), a source code library for basic
linear algebra operations over a finite field inspired by the BLAS interface (Basic Linear
Algebra Subprograms), and IML: Integer Matrix Library (Chen and Storjohann, 2005), a
library of C source code which implements algorithms for diophantine linear system solving.

While the ideal scenario would be to solve our problems deterministically, in some cases
we can only construct randomized algorithms. For randomized algorithms, in addition to
stating the running time, we also indicate the type. In order to simplify things, we will say
that a Monte Carlo type algorithm is allowed to return an incorrect result with probability
at most 1/2, while a Las Vegas type algorithm is allowed to report failure with probability
at most 1/2, and if failure is not reported the output is certified to be correct.

Our two main problems are integer linear system solving and finding the Smith normal
form of an integer matrix along with unimodular transformation matrices. We begin with
the latter.

1.1 Smith normal form

Main computational problems in exact linear algebra that take as input a single nonsin-
gular matrix A ∈ Zn×n include computing the determinant, the Smith normal form, the
characteristic polynomial, and the Frobenius normal form of A. The latter three problems
are generalizations of the first.

In our case, we have focused on the computation of the Smith normal form of a non-
singular integer matrix. The problem underlying the Smith normal form is that of matrix
equivalence. Any integer matrix A ∈ Zn×n is unimodularly equivalent to another matrix
B ∈ Zn×n if and only if there exist unimodular (with determinant ±1 over the Z) ma-
trices U, V ∈ Zn×n such that AV = UB. This equivalence relationship partitions Zn×n
into disjoint equivalence classes, and we seek to determine to which equivalence class an
element of Zn×n belongs to by computing its Smith form. In 1861, Smith showed that
any nonsingular integer matrix A ∈ Zn×n is unimodularly equivalent to a unique diagonal

2

matrix

S =


s1

s2

. . .

sn

 ,
where each si is positive and they form a divisibility sequence s1 | s2 | · · · | sn. The
diagonal entries are called the invariant factors of A. Two integer matrices are equivalent
if and only if they have the same Smith form. Also, since there exist unimodular matrices
U, V ∈ Zn×n such that

AV = US,

it means that | detA| = s1s2 · · · sn. Notice that sn | detA, and so, by Hadamard’s bound
for | detA|, the largest invariant factor can be as large as nn/2||A||n. The equivalence
relation can also be written in the form A = USV or UAV = S but we choose to have it
as AV = US.

The applications of Smith normal forms are numerous. The original purpose behind
the invention of the Smith form was to find the solution of systems of linear diophantine
equations. Suppose that we have the system xA = b with S the Smith form of A satisfying
that AV = US. Then, it has an integral solution if and only if the vector bV S−1 is integral.
Another application is determining the canonical structure of abelian groups (Newman,
1997). For example, let x be a vector representing the generators of an abelian group and
let A be the relation matrix such that we can express the relations among the generators
by xA = 0. Then, the vector xU represents the new generators, and the new relations
are single power relations defined by the invariant factors of A. Such a classification in
turn can be used, for example, to efficiently compute Gröbner bases of ideals invariant
under the action of an abelian group (Faugère and Svartz, 2013). Other applications
include integer programming (Hu, 1969), system theory (Kailath, 1980), and the study of
symplectic spaces (Chandler et al., 2010).

Outside of the domain of integers, another application of the Smith form occurs with
respect to similarity. Two n×n matrices A,B over a field F are similar if and only if there
exists a nonsingular n × n matrix T over F such that B = TAT−1. We can answer that
question since A and B are similar over F if and only if xI −A and xI −B are equivalent
over F[x] (Newman, 1972). For A ∈ Zn×n, the Smith form of xI − A over Q[x] gives
the factorization of det(xI − A), the characteristic polynomial of A, into monic integer
polynomials. Note that the constant coefficient of det(xI − A) equals detA in absolute
value.

3

Previous work

The simplest algorithm for computing the Smith normal form uses the Extended Euclidean
Algorithm in order to eliminate the off-diagonal entries in the input matrix. However, such
algorithms are known to suffer from intermediate expression swell, namely, the intermediate
integers during the process can become very large. For example, Hafner and McCurley
(1991) give an example of a 20 × 20 input matrix with only single-digit entries which
produces numbers of more than 5000 digits during the standard process of first going to a
triangular matrix. To put that into perspective, Hadamard’s inequality bounds the number
of digits of the determinant of such a matrix by 34.

During the past forty years, there has been a considerable progress on algorithms for
computing the Smith form of an integer matrix. The following table summarizes the most
important results. The time complexity is given without the extra log n and loglog ||A||
factors. The last column gives the type of the algorithms which is either deterministic
(Det), Monte Carlo (MC) or Las Vegas (LV).

Citation Time complexity Type

Kannan and Bachem (1979) poly(n, log ||A||) Det
Iliopoulos (1989a) n5(log ||A||)2 Det

Hafner and McCurley (1991) n5(log ||A||)2 Det
Storjohann (1996) nω+1 log ||A|| Det

Eberly, Giesbrecht, and Villard (2000) n2+ω/2 log ||A|| MC
Kaltofen and Villard (2004) n2.695591 log ||A|| MC

Chapter 5 nω log ||A|| LV

Table 1.1: List of work on the Smith form problem over the integers.

The first algorithm, indicated in Table 1.1, proven to run in polynomial time, was given
in 1979 by Kannan and Bachem (1979). They managed to successively control the size
of the entries of the integer matrix after each elimination step. Other early solutions to
the problem, by Iliopoulos (1989a) and Hafner and McCurley (1991), achieved a running
time bounded in (n5(log ||A||)2)1+o(1) by using the idea that the Smith form of A can be
computed modulo the determinant of A. The next substantial improvement in complexity
was by Storjohann (1996, 2000b) who computed the Smith form in (nω+1 log ||A||)1+o(1) by
reducing the exponent of n from 5 down to 4, and by incorporating matrix multiplication.

The previously fastest algorithm for Smith form — and the currently fastest algo-
rithm for characteristic polynomial and Frobenius form — is given by Kaltofen and Villard

4

(2004). They give a Las Vegas algorithm for computing the characteristic polynomial in
time (n3.2 log ||A||)1+o(1) assuming ω = 3, and in time (n2.695591 log ||A||)1+o(1) assuming
the currently best known upper bound for ω < 2.37286 by Alman and Williams (2021)
and the best known bound for rectangular matrix multiplication by Le Gall and Urrutia
(2018). Using their characteristic polynomial algorithm together with ideas of Giesbrecht
(2001) and Storjohann (2000a) they obtain a Monte Carlo algorithm for the Smith form
and Frobenius form, respectively, with the same running time.

A simpler problem than Smith form is to compute only the largest invariant factor
sn of A, that is, the smallest positive integer that clears denominators of A−1 ∈ Qn×n.
Combining the randomized approach of Eberly et al. (2000, Theorem 2.1) with fast linear
system solving gives an algorithm that achieves the target complexity, but in a Monte
Carlo fashion: the algorithm might produce a proper divisor of sn. Furthermore, Eberly,
Giesbrecht, and Villard (2000) showed that also the ith invariant factor can be computed
by means of random perturbations. By employing binary search, all distinct invariant
factors can be found in time (n2+ω/2 log ||A||)1+o(1).

Our result

In Chapter 5, we develop a probabilistic algorithm that computes the Smith normal form
of a nonsingular matrix A within the target complexity, that is, using (nω log ||A||)1+o(1)

bit operations. The algorithm we give is the first that matches, up to logarithmic factors,
the cost of matrix multiplication. In addition, it is also the first that certifies, in a Las
Vegas fashion, the correctness of the Smith form S. The result has appeared in (Birmpilis,
Labahn, and Storjohann, 2020), and it was awarded an ACM/SIGSAM ISSAC Distin-
guished Student Author Award.

Moreover, using the same algorithm, we obtain a very useful object that we call the
Smith massager and that we extensively discuss in Chapter 4. The Smith massager is a
matrix M ∈ Zn×n which, along with the Smith form, gives a fraction-free representation
of the fractional part of the inverse of the input matrix A. In Chapter 6, the object will
prove to be of further use by being the main ingredient for computing Smith multiplier
matrices.

5

1.2 Smith multipliers

Consider the linear system solving problem of the type

xA = b, (1.1)

that is, given a matrix A ∈ Zn×n and a row vector b ∈ Z1×n, find a row vector x ∈ Q1×n

such that xA = b. The problem becomes trivial if matrix A is diagonal.

For any integer matrix A ∈ Zn×n, there are unimodular matrices U, V ∈ Zn×n which
describe the set of invertible integer row and column operations which transform A into
its Smith form S or vice versa. These row and column operations are typically defined as
satisfying matrix equations in the form USV = A or A = USV . However, in our case,
it will be convenient to specify the Smith form multipliers U, V as unimodular matrices
satisfying

AV = US. (1.2)

The form in (1.2) is useful, for example, to transform the linear system in (1.1) to

x̄S = b̄

with x̄ = xU and b̄ = bV . Since S is in Smith form, the new system allows for easier
determination of possible properties of the solutions. For example, the denominator of x,
the vector solving xA = b, will be the same as the denominator of x̄ = S−1b̄.

The above example gives an application where both the Smith form and its unimodular
multipliers are needed. These multipliers are also needed in a number of other settings. For
example, when one not only wants the classification of a finite abelian group into the direct
sum of its cyclic components, but also the isomorphism which takes the group to the direct
sum of cyclic factors. Similarly, if two integer matrices are row and column equivalent then
the Smith form with multipliers provides the matrices which specify the row and column
equivalence. Hubert and Labahn (2016) require both the Smith form and its multipliers
when one looks for possible rational symmetry by a finite abelian group action for a set of
polynomials equations along with determining the rational invariants and rewriting rules
of such an action. Other applications which make use of the Smith multipliers include
determining lattice rules for quadrature formulas over the unit cube (Lyness and Keast,
1995), its use in chip-firing for finite connected graphs in combinatorics (Stanley, 2016),
and many more.

6

Previous work

Although algorithms which solve the Smith form with multipliers problem for a nonsingular
integer matrix have a long history, efficient methods are still not common. The original
paper by Smith (1861) included an algorithm modeled on Gaussian elimination where
greatest common divisors and the associated solutions of linear diophantine equations
replace division. Bradley (1970, 1971) later extended these via algorithms to compute the
greatest common divisors of more than two integers. However, these early algorithms all
encountered rapid growth of intermediate computations since they needed to retain the
row and column operations. One issue is that, although the Smith form is unique, the
same cannot be said for the unimodular multipliers. As such, methods like homomorphic
imaging followed by Chinese Remaindering do not appear to be applicable.

Citation Time complexity Type

Kannan and Bachem (1979) poly(n, log ||A||) Det
Iliopoulos (1989b) n5(log ||A||)2 Det

Storjohann (2000b) nω+1 log ||A|| Det
Chapter 6 nω log ||A|| LV

Table 1.2: List of work on the Smith form with multipliers problem over the integers.

The first algorithm, indicated in Table 1.2 to compute the Smith form with multi-
pliers in polynomial time originated with Kannan and Bachem (1979). Later, Iliopoulos
(1989b) was able to use matrix multiplication and prove running time for the problem
in (n5(log ||A||)2)1+o(1). Storjohann (1997, 2000b) was the first to consider the problem
of space-efficient unimodular multipliers for Smith computation and compute them in
(nω+1 log ||A||)1+o(1). Finally, Jäger (2005) followed this up with a procedure that reduces
one of the unimodular multipliers using LLL reduction at the expense of the other.

Our result

In Chapter 6, we give an efficient algorithm which allows us to compute S, U and V in
a Las Vegas fashion. The algorithm uses (nω log ||A||)1+o(1) bit operations and it is much
faster that the previous state of the art which had an extra factor of n. As we already have
a fast way to compute the Smith form S, our goal is to design an efficient extension that
also returns the unimodular matrices U and V . Previously, determining the Smith form

7

alone had been considered easier than determining the Smith form and its multipliers. We
show that finding the multipliers can also be done in the same time complexity as required
by our previous algorithm to find only the Smith form. This result has been submitted for
publication to the Journal of Symbolic Computation.

The main tool that we will employ to efficiently compute Smith multipliers will be the
Smith massager matrix that we compute using the Smith form algorithm in Chapter 5.
We show that by perturbing a Smith massager M by a random matrix scaled by the
Smith form S, we are able to construct a Smith multiplier using fast Hermite normal form
computation. Efficiency is guaranteed by the fact that the Hermite form has many ones
on its diagonal.

1.3 Linear system solving

Another classical linear algebra problem is that of computing a rational solution vector
A−1b ∈ Qn×1, where A ∈ Zn×n is a nonsingular integer matrix and b ∈ Zn×1 an integer
vector. Linear system solving is a fundamental problem which ubiquitously arises in science
or engineering. For example, in the field of cryptography, there is very often the need
to solve large systems of equations involving very large integers. In addition, there exist
multiple situations where it is desirable to obtain exact solutions. For example, in problems
of number theory and in cases of ill-conditioned inputs where floating point calculations
will be unsuccessful.

One of the challenges of attaining the target complexity for this problem comes from
the size of the inverse A−1 and the solution A−1b. By Cramer’s rule, the bitlength of the
numerators and denominators of entries in A−1b is about n times the bitlength of entries
in A.

Previous work

The first important result on the problem was the X-adic linear lifting algorithm of Dixon
(1982), which achieves an expected running time of (n3 log ||A||)1+o(1) bit operations. The
algorithm computes the solution A−1b modulo some power Xm large enough such that the
exact solution can be recovered using rational reconstruction. The number X is called the
lifting modulus, and it must be relatively prime to detA. The technique is called lifting since
it proceeds in steps, where each step takes the solution modulo X i and returns a “lifted”
solution modulo X i+1. The arithmetic operations at each step handle integers with about

8

the same bitlength as that of the entries in the input matrix A. The essence of linear
lifting is that instead of solving one linear system at full precision, the algorithm computes
initially A−1 mod X and uses it to solve m linear systems of the form A−1bi mod X, where
b0 is the original column vector and b1, b2, . . . are the residues produced by the previous
lower precision systems. The final solution would be given by its X-adic expansion modulo
pm, that is,

A−1b = c0 + c1X + · · ·+ cm−1X
m−1.

Linear X-adic lifting is deterministic once a lifting modulus X with X ⊥ detA is
known. Unfortunately, the only known method to find a lifting modulus within the alotted
time is to use randomization: let X be the power of a prime that is randomly chosen in a
range where fewer than half of the primes selected can possibly divide detA. A second issue
with linear lifting is that each iteration increases the precision only by one, and that the
final expansion requires m coefficients. On the other hand, there is also quadratic lifting
(or Newton iteration) which is a technique very similar to linear lifting, but it manages to
double the precision at each iteration. The downside of quadratic lifting is that it requires
A−1 mod X, A−1 mod X2, A−1 mod X4, . . . to be explicitly computed at each step. The
space needed to write down these intermediate objects exceeds our target cost, which is
(nω log ‖A‖)1+o(1) for any 2 ≤ ω ≤ 3.

The next significant complexity improvement was improving from 3 to ω in the ex-
ponent of n. The high-order lifting technique presented by Storjohann (2003) over the
polynomials computes only a critical high-order component of the expansion, and it al-
lows the incorporation of matrix multiplication to reduce the expected running time to
(nω log ||A||)1+o(1). Storjohann (2005) extended his technique over the integers by intro-
ducing randomization with the invention of the shifted number system. In particular, over
the integers there is the phenomenon of carry propagation, which does not allow the ap-
plication of an arithmetic operation only to the high-order component of an integer. The
shifted number system technique provided a reduction of rational system solving to matrix
multiplication in a Las Vegas fashion.

Subsequently, the shifted number system was replaced by the double-plus-one lifting
technique of Pauderis and Storjohann (2012). The article gives a deterministic high-order
lifting algorithm for linear system solving in (nω log ||A||)1+o(1) assuming that there exists a
lifting modulus X relatively prime to detA like in Dixon’s algorithm. The algorithm is the
most efficient for the problem if we know such an X for the input matrix A. Nonetheless,
if a suitable lifting modulus X is not known, then the method is still of type Las Vegas
since the lifting modulus X is chosen randomly as described above.

9

Our result

In Chapter 7, we present a deterministic reduction to matrix multiplication for the problem
of rational system solving. As mentioned above, the previously known algorithms (Storjo-
hann, 2005; Pauderis and Storjohann, 2012) with running time within our cost, required
randomization to find an integer modulus X ⊥ detA. Our strategy is based on comput-
ing the minimal integer t such that all denominators of the entries in 2tA−1 are relatively
prime to 2. In that case, for an integer vector b having entries with bitlength O(n) times as
large as the bitlength of entries in A, our algorithm also produces the 2-adic expansion of
2tA−1b up to a precision high enough such that A−1b over Q can be recovered using rational
number reconstruction. The result has appeared in (Birmpilis, Labahn, and Storjohann,
2019).

1.4 Other contributions

The contributions introduced in Sections 1.1-1.3 and developed in Chapters 4-7 require
the use of fast algorithms for linear algebra that have been developed over the past five
decades. In Chapter 2, we gather together results related to system solving and we give
an updated treatment using the latest technology. The chapter, using the double-plus-one
lifting construction of Pauderis and Storjohann (2012), gives a thorough description and
analysis of linear system solving, that is, for a nonsingular A ∈ Zn×n and a B ∈ Zn×m, it
computes the system solution A−1B up to some magnitude Xd where X is a lifting modulus
satisfying X ⊥ detA. Furthermore, using the updated linear system solving algorithm, we
present a version of integrality certification, that is, given an integer s ∈ Z>0 along with
A,B, we check whether s is a multiple of the denominator of A−1B and, if yes, actually
compute the fractional part of A−1B. Algorithms for both of these problems that are
within our target complexity have been given by Storjohann (2005), but they require the
use of the randomized shifted number system. The algorithms presented in Chapter 2 are
slightly improved in terms of complexity, and the only randomization now required is the
choice of a small prime that does not divide A.

In Chapter 3, we present a partial linearization technique which will allow us to extend
the algorithms from Chapter 2 so that their cost estimates depend on the average bitlength
of the entries of the input matrix and not on the entry with largest bitlength. The con-
struction has been developed for polynomial matrices by Gupta et al. (2012, Section 6),
and we adapt it to the case of integer matrices. The technique allows us to transform an
input matrix A into a new matrix D which can be used in place of A for all of the algo-

10

rithms presented in Chapter 2 that involve A−1, the Smith form algorithm of Chapter 5,
and many more.

1.5 Cost model

In this section, we give definitions and assumptions regarding the cost model that we will
follow in this thesis.

We begin by defining the function M : Z>0 → R>0 such that integers bounded in
magnitude by 2d can be multiplied using at most M(d) bit operations. The recent algorithm
of Harvey and Van der Hoeven (2021) allows for

M(d) ∈ O(d log d).

Moreover, we will assume that

M(a) + M(b) ≤ M(a+ b) and M(ab) ≤ M(a)M(b) (1.3)

for a, b ∈ Z≥2, as per von zur Gathen and Gerhard (2013, Section 8.3), where you can find
a further discussion about integer multiplication.

In addition, following the approach of previous authors (Storjohann, 2005; Gupta et al.,
2012; Neiger and Pernet, 2021), it will be useful to define an additional function B :
Z>0 → R>0 for bounding the cost of integer gcd-related computations. Then, the extended
Euclidean algorithm with two integers bounded in magnitude by 2d, and the rational
number reconstruction problem from von zur Gathen and Gerhard (2013, Section 5.10)
with modulus bounded by 2d, can be solved with O(B(d)) bit operations (Schönhage,
1971). This means that B(d) ∈ O(M(d) log d) if pseudo-linear integer multiplication is
used, or B(d) ∈ O(M(d)) if M(d) ∈ Ω(d1+ε) for some ε > 0. The assumptions on M given
in (1.3) also apply to B.

The motivation behind our cost model is that almost all of our algorithms are reduced
to a number of matrix multiplications with integer matrices that have size similar to the
size of the input matrix in the overall problem. Therefore, cost estimates are given in terms
of a multiplication time M(d) and the matrix multiplication exponent ω ≤ 3 such that two
n× n integer matrices with entries bounded by 2d can be multiplied in

O(nωM(d))

bit operations. Furthermore, we will assume that ω > 2.

11

Finally, since ω > 2 and to simplify cost estimates, we make the assumption that
M(d) ∈ O(dω−1). This assumption simply stipulates that if fast matrix multiplication
techniques are used, then fast integer multiplication techniques should also be used. The
same assumption applies also to B.

Before we move on, let us mention that, only in Chapter 7, we plan to use a slightly
more general cost model which will still be along the lines of this one, that is, counting
the number of matrix multiplications. The main difference will be that, in Chapter 7,
we do not assume that the complexity of matrix multiplication is given in terms of the
matrix multiplication exponent ω, but allow the cost to be described by any function that
depends on the dimension n and the magnitude 2d. The reason that we don’t assume that
more general cost model everywhere is that it can be more restrictive in simplifying cost
estimates and using the function B.

12

Chapter 2

Computational Tools

In this chapter, we present some fundamental computational tools that we will need
throughout the rest of the thesis in order to establish the complexity bounds of our main
algorithms.

We denote by Z/(X) = {0, 1, . . . , X−1} the ring of integers modulo X for any positive
integer X. In addition, for any rational number α that has denominator relatively prime
to a positive integer X, we let Rem(α,X) denote the unique integer obtained by reducing
α modulo X, that is, Rem(α,X) ≡ α mod X and Rem(α,X) ∈ Z/(X).

The main computational tool that we need is fast nonsingular system solving. Given a
nonsingular A ∈ Zn×n and matrix B ∈ Zn×m, together with a lifting modulus X ∈ Z>0 that
satisfies X ⊥ detA and logX ∈ O(log n + log ‖A‖), the linear system solution expansion
problem is to compute

Rem(A−1B,Xd)

for a given precision d. The second problem that we study is integrality certification. Given
an s ∈ Z>0 in addition to B, determine whether sA−1B is integral, and, if so, return the
matrix

Rem(sA−1B, s).

Provided the “dimension × precision ≤ invariant” compromises m × d ∈ O(n) and m ×
(log ‖B‖+ log s) ∈ O(n logX) hold, our target complexity for solving these problems is

O(nωM(log n+ log ‖A‖) log n) (2.1)

bit operations.

13

The earlier algorithms of Storjohann (2005) for these problems do match our target
complexity, except that: (a) the running time bound has an extra O(nω B(log n+log ‖A‖))
term; (b) the algorithms require randomization. The reason for (a) is that when X is
composite with an unknown factorization, a more general algorithm for the computation
of Rem(A−1, X) is required. We show how to avoid the O(nω B(log n+ log ‖A‖)) term by
choosingX to be the power of a small random prime. Furthermore, our main contribution is
that assuming that we have an X such that X ⊥ detA, we design deterministic algorithms
for linear system solving and integrality certification within our target complexity.

Section 2.1 shows how to choose X as the power of a small random prime. Section 2.2
recalls the double-plus-one lifting algorithm of Pauderis and Storjohann (2012) which forms
the basis of the linear solving and integrality certification algorithms. Sections 2.3 and 2.4
present the linear solving and integrality certification algorithms, respectively, to work with
an X as chosen in Section 2.1.

Finally, Section 2.5 reduces some kinds of unbalanced matrix multiplication, that is,
with matrices whose entries’ size is skewed, to general matrix multiplication.

2.1 Lifting initialization

If C is a bound for | detA|, then a prime p chosen uniformly and randomly in the range

6 logC < p < 12 logC

will satisfy p ⊥ detA with probability at least 1/2 by von zur Gathen and Gerhard (2013,
Theorem 18.10). We can check whether p ⊥ detA by trying to compute an LUP decom-
position of A mod p over Z/(p). If p ⊥ detA, then we can choose our lifting modulus X
to be a power of p.

Lemma 2.1. There exists a Las Vegas algorithm that takes as input a nonsingular A ∈
Zn×n, and returns as output an integer X that satisfies

• X is the power of a prime p with log p ∈ Θ(log n+ loglog ‖A‖),

• X ⊥ detA,

• X ≥ max(10000, 3.61n2‖A‖), and

• logX ∈ O(log n+ log ||A||).

14

The cost of the algorithm is O(nωM(log n+ log ‖A‖)) bit operations.

Proof. By Hadamard’s bound we have C := nn/2‖A‖n ≥ | detA|. By von zur Gathen
and Gerhard (2013, Theorem 18.10), choosing a random prime p as described above can
be done within the allotted time. Working over Z/(p), use O(nωM(log p) + nB(log p)) bit
operations to compute an LUP decomposition (Aho et al., 1974, Section 6.4) of Rem(A, p).
The nB(log p) term in this cost estimate is for inverting the n nonzero pivots arising during
the elimination. Computing Rem(A, p) and then its LUP decomposition is within our
target cost since log p ∈ O(log n + loglog ‖A‖) and B(log p) ∈ O(M(log p)(loglog p)). If,
during the course of the LUP decomposition, it is determined that A is singular modulo
p, then return Fail. Otherwise, let X be the smallest power of p which satisfies the third
requirement of the lemma. Then, X also satisfies the fourth requirement.

We note that the lower bound on the lifting modulus X that is specified by the third
item in Lemma 2.1 is required by the lifting algorithm of Pauderis and Storjohann (2012,
Section 3) which we recall in Lemma 2.3 and base our fast system solving routines.

Corollary 2.2. If X is a lifting modulus as in Lemma 2.1, then Rem(A−1, X) can be
computed in time O(nωM(log n+ log ‖A‖)).

Proof. Let p and LUP be as in the proof of Lemma 2.1. Compute Rem(A−1, p) =
Rem(P TU−1L−1, p), and use O(loglogX) steps of algebraic Newton iteration (von zur Ga-
then and Gerhard, 2013, Algorithm 9.3) to lift Rem(A−1, p) to Rem(A−1, X). The running
time is dominated by the last step of the lifting, which is within the claimed cost.

2.2 Double-plus-one lifting

Any rational number can be written as an integer and a proper fraction. For example,

9622976468279041913

21341
= 450914974381661 +

14512

21341
,

where 450914974381661 is the quotient and 14512 is the remainder of the numerator with
respect to the denominator. A similar construction replaces the quotient with a truncated
p-adic expansion of the fraction, where p should be relatively prime to the denominator.
For example,

9622976468279041913

21341
= 9035820194880943821− 10453

21341
× 264. (2.2)

15

In some applications, we only require the remainder. Multiplying (2.2) by the denominator
21341 shows that

14512 = −10453× 264 mod 21341,

where −10453 is what we call a high-order residue.

The same idea can be extended to integer matrices. Let A ∈ Zn×n be nonsingular
and let X be a lifting modulus as in Lemma 2.1. Given a k ∈ Z>0, double-plus-one
lifting (Pauderis and Storjohann, 2012, Section 3) computes a straight line formula that is
congruent modulo Xk to the X-adic expansion

A−1 ≡ ∗+ ∗X + ∗X2 + · · ·+ ∗Xk−1 mod Xk. (2.3)

The straight line formula consists of only O(log k) matrices instead of k as in (2.3). More
precisely, given a k ∈ Z>0 that is one less than a power of 2, double-plus-one lifting
computes a residue R ∈ Zn×n such that

A−1 = D + A−1RXk, (2.4)

where D ∈ Zn×n satisfies ||D|| ≤ 0.6Xk and ‖R‖ ≤ n‖A‖. Note that D ≡ A−1 mod Xk.
Instead of computing D explicitly, double-plus-one lifting computes a formula

D = (· · · ((A0(I +R0X) +M0X
2)(I +R1X

3) +M1X
6)(I +R2X

7) +M2X
14) · · ·), (2.5)

where A0, R∗,M∗ are n × n integer matrices with magnitude strictly less than X. For
example, for k = 7 we have

D = (A0(I +R0X) +M0X
2)(I +R1X

3) +M1X
6.

The following result is (Pauderis and Storjohann, 2012, Corollary 6) except that we use
Corollary 2.2 to compute Rem(A−1, X) in the allotted time.

Lemma 2.3. (Pauderis and Storjohann, 2012, Corollary 6) Assume we have a lifting
modulus X as in Lemma 2.1. Let k ∈ Z>0 be one less than a power of two. If log k ∈
O(log n), then a residue R as in (2.4) and a straight line formula for D as shown in (2.5)
can be computed in time O(nωM(log n+ log ‖A‖) log n).

For the integrality certification problem only the residue R is required. For solving
A−1b, the straight line formula is applied in O(log n) steps to the X-adic expansion of b.

16

2.3 System solving

In this section, we present an algorithm that computes a linear system solution expan-
sion that matches our target complexity. The double-plus-one lifting construction from
Section 2.2 immediately implies an algorithm of that computes a linear system solution
expansion, but, as far as we are aware, a careful description and cost analysis has not been
presented before in the literature. We offer a treatment here.

Let X be a lifting modulus as in Lemma 2.1. Consider equations (2.4) and (2.5). If
k ≥ d, then given a B ∈ Zn×m, we can compute Rem(A−1B,Xd) by premultiplying B by
the straight line formula for D ≡ A−1 mod Xk on the right hand side of (2.5), keeping
intermediate expressions reduced modulo Xd. Applying the formula requires doing the
following operation O(log k) times: premultiplying an n ×m matrix with entries reduced
modulo Xd by an n× n matrix ∗ with ‖ ∗ ‖ < X.

When X is not a power of 2, we need to use radix conversion to go between the binary
and X-adic representation of integers. To avoid unnecessary radix conversions, we can
compute the X-adic expansion of B once at the beginning, and then keep intermediate
results inX-adic form. The following result is a corollary of Storjohann (2005, Theorem 33).

Lemma 2.4. Let X ∈ Z>0 satisfy logX ∈ O(log n + log ‖A‖). Let C ∈ Zn×n with
‖C‖ < X and B ∈ Zn×m with B = Rem(B,Xd). If m × d ∈ O(n), then Rem(CB,Xd)
can be computed in time O(nωM(log n + log ‖A‖)), assuming the input parameter B and
output Rem(CB,Xd) are given as X-adic expansions.

Theorem 2.5. Assume we have a lifting modulus X as in Lemma 2.1. If entries in
B ∈ Zn×m are reduced modulo Xd and m×d ∈ O(n), then Rem(A−1B,Xd) can be computed
in time

O(nωM(log n+ log ‖A‖) log n).

Proof. Using radix conversion (von zur Gathen and Gerhard, 2013, Theorem 9.17), com-
pute the X-adic expansion of B in time O(nmM(d logX) log d). Simplifying this cost
estimate using

M(d logX) ∈ O(dω−1 M(logX)) and d ∈ O(n/m)

shows that this is within the allotted time. Compute a straight line formula congruent
to A−1 mod Xd using Lemma 2.3. Applying the straight line formula to B mod Xd to
compute the X-adic expansion of Rem(A−1B,Xd) now requires O(log d) ⊆ O(log n) appli-
cations of Lemma 2.4, plus some matrix additions which do not dominate the cost. This

17

can be illustrated by the following scheme. Since the straight line formula has O(log d)
coefficients, then for some i ∈ O(log d):

E,F := 0n×m, B
while i ≥ 0 do

E := Rem(E + (X2i+1−1)2MiF,X
d)

F := Rem(F +X2i+1−1RiF,X
d)

i := i− 1
od
E := Rem(E + A0F,X

d)
return E

(2.6)

Note that the multiplications with powers of X are free since we are working with X-adic
expansions throughout. Finally, compute Rem(A−1B,Xd) from its X-adic expansion using
another radix conversion.

Example 2.6. We give an example of a step-by-step application of the scheme in (2.6).
For d = 7, the straight line formula will be

A−1 ≡ (A0(I +R0X) +M0X
2)(I +R1X

3) +M1X
6 mod X7.

Then, after the first iteration, we have that

E(i=1) = X6M1B and F(i=1) = B +X3R1B,

and after the second, it will be that

E(i=0) = E(i=1) +X2M0F(i=1) and F(i=0) = F(i=1) +XR0F(i=1),

with everything being reduced modulo X7. Finally, we return

E = E(i=0) + A0F(i=0).

2.4 Integrality certification

In this section, we present an algorithm for integrality certification.

A rational system solution A−1B can have entries with large numerators compared to
denominators. Given an s ∈ Z>0, integrality certification can be used to determine whether

18

sA−1B is integral in a cost that depends on log s + log ‖B‖ but not on log ‖sA−1B‖. If
sA−1B is integral, then this version of integrality certification also returns Rem(sA−1B, s).
This is the fractional part of A−1B, and it will be used by the Smith massager algorithm
of Chapter 5.

Our approach is adapted from the algorithm in (Storjohann, 2005, Section 11) which
is randomized. Here we show how to solve the integrality certification problem determin-
istically assuming that we have a lifting modulus X ⊥ detA.

We begin by using double-plus-one lifting to compute a high-order residue R ∈ Zn×n
such that

A−1 = D + A−1R×Xh (2.7)

for some h ∈ Z>0 such that
Xh > 2snn/2||A||n−1||B||. (2.8)

The matrix D, which will satisfy ||D|| ≤ 0.6Xh, is not needed and not computed explicitly.
If the “dimension × precision” compromise

m× (log s+ log ||B||) ∈ O(n(log n+ log ||A||)) (2.9)

holds, then, by Lemma 2.3, such an R can be computed in time

O(nωM(log n+ log ||A||) log n). (2.10)

Now multiply equation (2.7) on the right by sB to see that

sA−1B = sDB + A−1(sRB)×Xh. (2.11)

The next step is to use the linear system solving routine of Theorem 2.5 to compute

Rem(A−1(sRB), X`)

for some ` ∈ Z>0 such that
X` > 2n||A||(0.6sn||B||). (2.12)

Assuming (2.9), this can also be done in time (2.10).

Adjusting slightly the proof of Storjohann (2005, Theorem 46) to account for the fact
that D in (2.7) satisfies ||D|| ≤ 0.6Xh, it can be shown, for the choices of h and ` in (2.8)
and (2.12), respectively, that if C is set to be the matrix equal to Rem(A−1(sRB), X`) but
with entries reduced in the symmetric range modulo X`, then C = sA−1RB (and hence
sA−1RB is integral) if and only if ||C|| < 0.6sn||B||. Considering (2.11), it then follows
that Rem(C ×Xh, s) is equal to Rem(sA−1B, s).

19

Theorem 2.7. Assume we have a lifting modulus X as in Lemma 2.1. Let s ∈ Z>0 and
B ∈ Zn×m be given. There exists an algorithm that determines whether sA−1B is integral,
and, if so, returns Rem(sA−1B, s). If m× (log s + log ‖B‖) ∈ O(n logX) and m ∈ O(n),
then the running time is

O(nωM(log n+ log ‖A‖) log n).

2.5 Unbalanced multiplications reduced to balanced

In this section, we are presenting some statements regarding unbalanced matrix multipli-
cation. In many of the algorithms presented in this thesis, we have to deal with matrices
that have entries of skewed size but bounded overall size. The following lemmas reduce
specific types of multiplications of such skewed matrices to multiplications of uniform ones.

Let us define length(a) for an integer a to be the number of bits in its binary represen-
tation, that is,

length(a) =

{
1 if a = 0
1 + blog2 |a|c otherwise

. (2.13)

By extension, for a matrix we define length(A) = length(||A||), so length(A) is the length
of the largest entry of A in absolute value.

We begin by showing that we can multiply a skewed matrix M together with a vector
w whose length is about as much as the sum of lengths of the columns of M in roughly
the same time as multiplying two matrices of dimension and average length as M .

Lemma 2.8. Let a matrix M ∈ Zn×m and a vector w ∈ Zm×1. Furthermore, assume that

m∑
j=1

length(M1..n,j) ≤ d and length(w) ≤ d

for some d ∈ Z≥0. We can compute the product Mw in time O(nmω−1M(d/m+ logm)).

Proof. Choose X := 2dd/me, and let

M = M0 +M1X + · · ·+Mm−1X
m−1

and
w = w0 + w1X + · · ·+ wm−1X

m−1

20

be the X-adic expansions of M and w. (The coefficients are computed in the symmetric
range modulo X.) Our approach is to compute the product

M̄︷ ︸︸ ︷[
M0 M1 · · · Mm−1

]
W̄︷ ︸︸ ︷

w0 w1 · · · wm−1

w0 · · · wm−2 wm−1

. . .
...

...
. . .

w0 w1 · · · wm−1

,
from which Mw can be recovered fast. (Notice that the operations to compute the X-adic
expansion from a matrix or the matrix from an X-adic expansion take linear time on the
number of entries when X is a power of 2.)

Now, the column dimension of M̄ and row dimension of W̄ is m2 which is too large to fit
within our target complexity. However, because of the assumption that

∑m
j=1 length(M1..n,j) ≤

d and the fact that log(X) = dd/me, matrix M̄ must contain many zero columns. More
specifically, the number of non-zero columns in M̄ cannot exceed

m∑
j=1

⌈
length(M1..n,j)

dd/me

⌉
≤

m∑
j=1

(
m

length(M1..n,j)

d
+ 1

)
≤ 2m.

Therefore, let M̃ ∈ Zn×2m be the matrix obtained from M̄ by omitting m2 − 2m
zero columns, and let W̃ ∈ Z2m×2m−1 be the matrix obtained from W̄ by omitting m2 −
2m rows corresponding to the columns that were omitted in M̄ . This transformation
reduces the multiplication of M̄W̄ to the multiplication of M̃W̃ which can be done in time
O(nmω−1M(d/m+ logm)) since log ‖M̃W̃‖ ∈ O(d/m+ logm).

The next lemma establishes that we can multiply two matrices U,M , where matrix U
has skewed row lengths and matrix M has skewed column lengths, in roughly the same
time as multiplying two matrices of the same dimension and average length as U,M .

Lemma 2.9. For matrices U,M ∈ Zn×n, assume that

n∑
i=1

length(Ui,1..n) ≤ nd and
n∑
j=1

length(M1..n,j) ≤ nd

for some d ∈ Z≥0. We can compute the product UM in time O(nωM(d+ log n)).

21

Proof. Choose X := 2d, and let

U = U0 + U1X + · · ·+ Un−1X
n−1

and
M = M0 +M1X + · · ·+Mn−1X

n−1

be the X-adic expansions of U and M . (The coefficients are computed in the symmetric
range modulo X.) Our approach is to compute the product

Ū︷ ︸︸ ︷
U0

U1
...

Un−1


M̄︷ ︸︸ ︷[

M0 M1 · · · Mn−1

]
,

from which UM can be recovered fast. (Notice that the operations to compute the X-adic
expansion from a matrix or the matrix from an X-adic expansion take linear time on the
number of entries when X is a power of 2.)

Now, the row dimension of Ū and column dimension of M̄ are n2 which is too large to
fit within our target complexity. However, because of the assumption that

n∑
i=1

length(Ui,1..n) ≤ nd and
n∑
j=1

length(M1..n,j) ≤ nd

and the fact that log(X) = d, matrix Ū and matrix M̄ must contain many zero rows
and columns respectively. More specifically, the number of non-zero columns in M̄ cannot
exceed

n∑
j=1

⌈
length(M1..n,j)

d

⌉
≤

n∑
j=1

(
length(M1..n,j)

d
+ 1

)
≤ 2n.

Similarly, the same bound holds for the number of non-zero rows in Ū .

Therefore, let Ũ ∈ Z2n×n be the matrix obtained from Ū and M̃ ∈ Zn×2n the matrix
obtained from M̄ by omitting n2 − 2n zero rows and columns respectively. This transfor-
mation reduces the multiplication of ŪM̄ to the multiplication of ŨM̃ , which can be done
in time O(nωM(d+ log n)) since log ‖ŨM̃‖ ∈ O(d+ log n).

Finally, a corollary follows that replaces the skewed matrix U with a uniform one. The
corollary can be also seen as a generalization of Lemma 2.4.

22

Corollary 2.10. For matrices A,M ∈ Zn×n, assume that

length(A) ≤ d and
n∑
j=1

length(M1..n,j) ≤ nd

for some d ∈ Z≥0. We can compute the product AM in time O(nωM(d+ log n)).

23

Chapter 3

Partial linearization

In this chapter, we present a partial linearization technique which will allow us to extend
many of our algorithms, especially the ones from Chapter 2, so that their cost estimates
depend on the average size of entries of the input matrix and not the largest one.

Typically, the cost of algorithms that take as input an integer matrix A ∈ Zn×m is
expressed in terms of the dimensions n and m, and log ‖A‖ which is proportional to the
bitlength of the largest entry of A in absolute value, namely, length(A) as defined in (2.13).

But consider decomposing A into columns as

A =
[
v1 · · · vm

]
∈ Zn×m.

For some inputs, the lengths of the columns vi can be skewed, that is, the average column
length

d =

⌈
m∑
i=1

length(vi)/m

⌉
can be asymptomatically smaller than length(A) = maxi length(vi). Even length(A) ≈ md
is possible in the case of one column of large length. For such inputs, being able to replace
the term length(A) with the average length d can give significantly improved cost estimates.

Example 3.1. Let A ∈ (Z/(2))n×m be a matrix containing just bits. In this case, length(A)
is 1 and the average column length d is also 1. Furthermore, let A′ ∈ Zn×m be matrix A
but with the last column multiplied by 2m+1 − 1. Now, length(A′) = m+ 1 but the average
length is only d′ = 2.

24

In this chapter, we adapt a partial linearization technique for polynomial matrices from
Gupta et al. (2012, Section 6) to the case of integer matrices. The technique was introduced
by Storjohann (2006, Section 2) and generalized to the version we give here by Gupta et al.
(2012, Section 6). The main motivation is to extend the algorithms from Chapter 2, so
that their cost estimates depend on the average length d and not length(A).

The technique can transform the input matrix A into a new matrix D which can be
used in place of A for all of the algorithms presented in Chapter 2 that involve A−1, and
many more. Matrix D will satisfy that length(D) ≤ d+ 1, at the cost of at most m more
rows and columns than A ∈ Zn×m.

More importantly, the constructed matrix D will “imitate” A in a way such that the
output of the routines with D as input includes the original output in a direct way. Specif-
ically, matrix D will satisfy the following two fundamental properties with respect to A:

(i) D can be obtained from diag(A, I) using unimodular row and column operations.

(ii) The principal n×n submatrix of the adjoint of D equals the adjoint of A (for square
matrices).

Property (i) establishes that the rank, the determinant (for square matrices) and the
Smith form of matrix A can be trivially deduced from the same objects for matrix D. In
Section 4.4, we also show that computing the Smith massager of a nonsingular A can be
directly reduced to computing the Smith massager of D.

Furthermore, property (ii) provides us with a direct extension of system solving. For
any matrix B ∈ Zn×∗, we have that the first n rows of

D−1

[
B
0

]
are equal to A−1B for a nonsingular A ∈ Zn×n. Finally, because of the fact that detD =
detA and property (ii) one can easily check that the principal n×n submatrix of the lower
row Hermite form of D equals the lower row Hermite form of A.

Before continuing, we give an example of a matrix A with skewed column lengths and
its partial linearization D.

Example 3.2. Let

A =


2 4 44199 3061969404
4 8 19644 765492351
7 8 44199 5358446457
7 5 9822 765492351

 ∈ Z4×4

25

with length(A) = 33 and d = 14. Then, let

D =



2 4 11431 12796 2 6663 11
4 8 3260 15487 1 13953 2
7 8 11431 10105 2 15757 19
7 5 9822 15487 0 13953 2
0 0 −16384 0 1 0 0
0 0 0 −16384 0 1 0
0 0 0 0 0 −16384 1


∈ Z7×7.

Notice that ‖D‖ ≤ 2d = 16384.

3.1 The partial linearization construction

In this section, we give all the details regarding the construction of the partially linearized
matrix and its relation with the original matrix.

Let e ∈ Z≥0 and d ∈ Z≥1 be given and assume for the moment that a column vector
v ∈ Zn×1

≥0 contains only nonnegative entries. Then, we define Ce,d(v) to be the unique n× e
matrix over Z≥0 that satisfies

Quo(v, 2d) = Ce,d(v)


1
2d

...
2(e−1)d

 , (3.1)

with all but possibly the last column (if e > 0) of magnitude strictly less than 2d. If e = 0
then Ce,d(v) is the n× 0 matrix, while for e ≥ 1,

v = Rem(v, 2d) + Col(Ce,d(v), 1)2d + · · ·+ Col(Ce,d(v), e)2ed (3.2)

is the 2d-adic series expansion of v, except that the coefficient Col(Ce,d(v), e) of 2ed may
have magnitude greater than or equal to 2d.

Example 3.3. For v =
[

15
]
, Rem(v, 2) = 1 and C2,1(v) =

[
1 3

]
.

We can extend the definition of Ce,d to an arbitrary vector v ∈ Zn×1 in the following way.
Let v(+) denote the vector v but with all negative entries zeroed out, and v(−) = v − v(+)

26

denote the vector v but with all but the positive entries zeroed out. Then, v(+) and −v(−)

are over Z≥0, and v = v(+) − (−v(−)). Finally we let

C∗e,d(v) := Ce,d(v
(+))− Ce,d(−v(−)),

which still satisfies equations (3.1) and (3.2) if we replace Rem and Quo by

Rem∗(v, 2d) := Rem(v(+), 2d)− Rem(−v(−), 2d),

Quo∗(v, 2d) := Quo(v(+), 2d)−Quo(−v(−), 2d).

We define structured matrices Ed and Fd by

Ed := −2d Col(I, 1) =


−2d

 and Fd :=


1
−2d 1

−2d
. . .
. . . 1
−2d 1

 ,

with the dimensions of Ed and Fd to be determined by the context. We remark that F−1
d

will be the unit lower triangular Toeplitz matrix with 2id on the ith subdiagonal. The next
lemma follows from the definitions of Ed and Fd and equations (3.1) and (3.2).

Lemma 3.4. Given v ∈ Zn×1, e ∈ Z≥0 and d ∈ Z≥1, let

c =

{
v if e = 0

Rem∗(v, 2d) if e > 0
,

and
Qe,d(v) =

[
Quo∗(v, 2d) · · · Quo∗(v, 2ed)

]
.

Then, [
c C∗e,d(v)

Ed Fd

]
=

[
In Qe,d(v)

Ie

] [
v

Ie

] [
1
Ed Fd

]
. (3.3)

By replacing the single column vector v with a matrix A =
[
v1 · · · vm

]
of m column

vectors vi we obtain:

27

Corollary 3.5. Given A =
[
v1 · · · vm

]
∈ Zn×m, ē = (e1, . . . , em) ∈ Zm≥0 and d ∈ Z≥1.

Let

ci =

{
vi if ei = 0

Rem∗(vi, 2
d) if ei > 0

,

for 1 ≤ i ≤ m, and define the matrix

D = Dē,d(A) :=


c1 · · · cm C∗e1,d(v1) · · · C∗em,d(vm)

Ed Fd
.

Ed Fd

 ∈ Zn̄×m̄,

with n̄ = n+ e[m] and m̄ = m+ e[m], where e[m] = e1 + · · ·+ em. Then, matrix D satisfies

D =

[
In Q

Ie[m]

] [
A

Ie[m]

] [
Im
E F

]
, (3.4)

where Q =
[
Qe1,d(v1) · · · Qem,d(vm)

]
∈ Zn×e[m], E = diag(Ed, . . . , Ed) ∈ Ze[m]×m and

F = diag(Fd, . . . , Fd) ∈ Ze[m]×e[m].

From equation (3.4), it is apparent that D enjoys the following properties:

Corollary 3.6. Given A ∈ Zn×m, ē = (e1, . . . , em) ∈ Zm≥0 and d ∈ Z≥1. Let D = Dē,d(A)
as in Corollary 3.5. Then

(i) rank(D) = rank(A) + e[m].

(ii) D has the same Smith form as A up to additional trivial invariant factors.

Furthermore, if n = m, then:

(iii) detD = detA.

(iv) The principal n× n submatrix of the adjoint of D equals the adjoint of A.

Notice that Corollary 3.5 does not make any assumptions on the parameters ē and d.
The properties of matrix D = Dē,d(A) corresponding to the original matrix A are true for
any ē and d. However, the partial linearization technique is particularly useful if we pick ē
and d in a way such that m̄ ∈ O(m) and log ‖D‖ corresponds to the average length of the
columns of A. The following is the main result of this section.

28

Theorem 3.7. Given matrix A =
[
v1 · · · vm

]
∈ Zn×m, let

d =

⌈
m∑
i=1

length(vi)/m

⌉
,

ē = (e1, . . . , em) ∈ Zm≥0 where each ei ∈ Z≥0 is chosen minimal such that length(vi) ≤
(ei + 1)d, and D = Dē,d(A). Then:

• ||D|| ≤ 2d,

• n̄ < n+m and m̄ < 2m.

Proof. The choice of ei ensures that, for each vi, the expansion in (3.2) is the 2d-adic
expansion of v. This shows that the length of all entries in the first n rows of D are
bounded by d. Since the entries in the last n̄− n rows of D are bounded in magnitude by
2d, the claimed bound for ||D|| follows.

To prove our upper bounds for n̄ and m̄ we show that
∑m

i=1 ei < m. Note that ei is
precisely defined as

ei =

⌈
length(vi)

d
− 1

⌉
<

length(vi)

d
,

and so
m∑
i=1

ei <
m∑
i=1

length(vi)

d
≤ m.

Example 3.8. Let

A =


2 4 44199 3061969404
4 8 19644 765492351
7 8 44199 5358446457
7 5 9822 765492351

 .
Then, with the average (column) length d = 14 and ē = (0, 0, 1, 2) we get

D =



2 4 11431 12796 2 6663 11
4 8 3260 15487 1 13953 2
7 8 11431 10105 2 15757 19
7 5 9822 15487 0 13953 2

0 0 −16384 0 1 0 0
0 0 0 −16384 0 1 0
0 0 0 0 0 −16384 1


.

29

One can easily verify that the adjoint of A lies in the principal 4 × 4 sub-matrix of the
adjoint of D, and that the Smith form of A lies in the trailing 4 × 4 sub-matrix of the
Smith form of D.

The approach of Corollary 3.5 can also be used to partially linearize the rows of a
matrix A. If we transpose a matrix A with skewed row lengths, then it has skewed column
lengths. Then, by transposing the linearization of AT , it satisfies all the properties given
in Corollary 3.6. We can see that from the row linearization equivalent of equation (3.4),
which is

Dē,d(A
T)T =

[
I ET

BT

] [
A

I

] [
I
QT I

]
. (3.5)

Corollary 3.9. Let A ∈ Zm×n, and consider the matrix D = Dē,d(A
T)T . The magnitude

of the entries in D will then be bounded by 2d where d is the average length over the rows
of A, and D will enjoy all the properties following from Corollary 3.5 and Theorem 3.7.

3.2 The permutation bound

In this section, we will see how to extend the partial linearization technique in order to
handle square matrices that have both large columns and rows.

Our approach so far is particularly effective for matrices A ∈ Zn×n where the average of
the sum of the lengths of the columns (or rows) is small compared to length(A). However,
the technique is not useful for input matrices that have, simultaneously, some columns and
rows of large length. For this reason, as in the case of polynomial matrices (Gupta et al.,
2012, Section 6), we develop an approach to handle such inputs based on the following a
priori upper bound for | detA|.

By definition, detA =
∑

σ∈Sn
sign(σ)

∏n
i=1Ai,σi , where Sn is the set of all permutations

of (1, 2, . . . , n). Therefore,

detA ≤ n! max
σ∈Sn

n∏
i=1

|Ai,σi |,

and so, we define

PermutBnd(A) := max
σ∈Sn

n∑
i=1

length(Ai,σi).

As in the polynomial case, up to a row and column permutation, we may assume that
di = length(Ai,i) bounds the length of the submatrix Ai...n,i...n, for 1 ≤ i ≤ n. Such a row

30

and column permutation can be found by sorting the set of triples {(i, j, |Ai,j|)}1≤i,j≤n into
nonincreasing order according to their third component. Then, by definition, d1+· · ·+dn ≤
PermutBnd(A).

Let d = d
∑n

i=1 di/ne and ē = (e1, . . . , en) with ei ∈ Z≥0 minimal such that di ≤ (ei+1)d.
Then, due to the choice of di, row i of matrix Dē,d(A) will have length bounded by di + 1
for 1 ≤ i ≤ n, and all the extra rows will have length bounded by d + 1. Furthermore,
let ē′ contain ē augmented with

∑n
i=1 ei zeros. We have the following corollary for matrix

D := Dē′,d(Dē,d(A)T)T .

Corollary 3.10. Let A ∈ Zn×n be given. Using the choices for d, ē and ē′ as specified
above, the matrix D := Dē′,d(Dē,d(A)T)T ∈ Zn̄′×n̄′ satisfies:

• ‖D‖ ≤ 2d with d ≤ dPermutBnd(A)/ne,

• n̄′ < 3n,

along with all the properties from Corollary 3.6.

Remark 3.11 (Application to system solving). The fact that the principal n×n submatrix
of the adjoint of the partially linearized matrix D is equal to the adjoint of the original
matrix A ∈ Zn×n provides us with a direct extension to system solving. For any matrix
B ∈ Zn×m, we have that the first n rows of

D−1

[
B
0

]
are equal to A−1B. Therefore, Theorem 2.5 can have cost which depends on the average
bitlength d of A and not the bitlength of the largest entry. The average bitlength d can
assume any of the three definitions given by Theorem 3.7, Corollary 3.9 and Corollary 3.10.

Remark 3.12 (Application to integrality certification). Suppose D is a partial lineariza-
tion of A ∈ Zn×n. For any s ∈ Z>0 and B ∈ Zn×m, it follows from equations (3.4)
and (3.5) that

sD−1

[
B
0

]
will be integral if and only if sA−1B is integral. Therefore, Theorem 2.7 can have cost
which depends on the average bitlength d of A and not the bitlength of the largest entry.
The average bitlength d can assume any of the three definitions given by Theorem 3.7,
Corollary 3.9 and Corollary 3.10.

31

Remark 3.13 (Application to inverting unimodular matrices). Suppose D is a partial
linearization of a unimodular matrix A ∈ Zn×n. A straight line formula for A−1 is given
by [

In 0
]
T

[
In
0

]
where T is a straight line formula for the inverse of D. Such a straight line formula for
A−1 can thus be computed deterministically in O(nωM(log n + d) log n) bit operations by
Lemma 2.3 (Pauderis and Storjohann, 2012, Section 3), where d is the average bitlength
of A according to any of the three definitions given by Theorem 3.7, Corollary 3.9 and
Corollary 3.10.

Remark 3.14 (Application to computing the Hermite form). If A ∈ Zn×n is nonsingular,
then the lower triangular row Hermite form of A shows up as the principal n×n submatrix
of the Hermite form of the partially linearized matrix D.

Example 3.15. The lower triangular row Hermite form of the matrix D from Example
3.8 is 

777 0 0 0 0 0 0
401 1 0 0 0 0 0
174 0 4911 0 0 0 0
762 0 0 765492351 0 0 0

696 0 3260 0 1 0 0
762 0 0 765475967 0 1 0
762 0 0 497056895 0 0 1


with the 4 × 4 principal sub-matrix being the corresponding lower triangular row Hermite
form of A.

32

Chapter 4

Smith massager

In this chapter, we introduce the Smith massager of a nonsingular integer matrix. We give
the definition of the object, and we present important mathematical properties that follow
from the definition.

As we already mentioned, any nonsingular integer matrix A ∈ Zn×n is unimodularly
row and column equivalent to a unique diagonal matrix

S =

 s1

. . .

sn

 ∈ Zn×n.

Each si must be positive and they all form a divisibility sequence s1 | s2 | · · · | sn.
Equivalent means that there exist unimodular matrices U, V ∈ Zn×n such that

AV = US. (4.1)

A Smith massager matrix M ∈ Zn×n can be interpreted as a relaxed version of the
unimodular matrix V . More specifically, matrix V in (4.1) must satisfy the following two
properties.

(V1) The product AV S−1 is integral.

(V2) There exists another matrix V ′ ∈ Zn×n such that V ′V = In .

A Smith massager M will satisfy the same properties, except that we relax condition (V2)
with the equality only holding with the columns taken modulo the corresponding invariant
factors.

33

(M1) The product AMS−1 is integral.

(M2) There exists another matrix M ′ ∈ Zn×n such that M ′M = In cmodS.

We use the notation cmodS to show that the ith column of a matrix or an equivalence
is taken modulo the diagonal entry Sii. Apart from the fact that a Smith massager M is
closely related to a Smith multiplier V , it is easy to see that the ith column of the massager
can always be reduced modulo si without violating properties (M1) and (M2). This is an
important fact because it gives an explicit bound on the size of M .

Before we move on to a detailed discussion regarding the Smith massager, we will give
a high level description on how we plan to compute such a massager in Chapter 5. Our
idea for efficiently recovering the Smith form of a matrix A is inspired by the fact that
if we let v be a random column vector, then the denominator of A−1v is likely to be the
largest invariant factor sn (see Wan (2005); Eberly et al. (2000); Pan (1988); Abbott et al.
(1999)). Since

A−1v = V S−1U−1v,

the denominator of A−1v will be the largest invariant factor sn if the last entry of the vector
U−1v is relatively prime to sn (with U−1 unimodular). If that is the case, apart from the
fact that we recover sn, then, we also have that the vector A−1v is “equivalent” to the last
column of V S−1. The same idea can be extended to recover more invariant factors and
columns “equivalent” to V S−1 by choosing more random column vectors.

After we compute the complete Smith form S of A, then we let the Smith massager
M ∈ Zn×n be the matrix comprised of all those random projection vectors to the space
of A corresponding to each one of the invariant factors. The massager will be such that
MS−1 is “equivalent” to A−1, or to be more specific, the matrix M will satisfy that

snA
−1 ≡R M(snS

−1) mod sn.

This means that matrices M and S can give a representation of the fractional part of A−1,
while asymptotically using almost the same space as the input matrix A. We use ≡R to
denote equivalence up to unimodular column operations over the integers Z, or over a ring
Z/(s) if the relation is given modulo s for some positive integer s.

We proceed by providing the main definition along with some column operations that
keep the massager properties intact. Also, in Section 4.2, we discuss an important prop-
erty of the Smith massager used for giving compact representations of the inverse of A,
while, in Section 4.3, we present additional properties of massagers which will help us to
compute Smith multipliers in Chapter 6. Finally, in Section 4.4, we show that the partial
linearization technique of Chapter 3 also preserves the Smith massager of a matrix.

34

4.1 Definition

In this section, we properly define the Smith massager of a nonsingular integer matrix.

Definition 4.1. Let A ∈ Zn×n be a nonsingular integer matrix with Smith form S. A
matrix M ∈ Zn×n is a Smith massager for A if

(i) it satisfies that
AM ≡ 0 cmodS, (4.2)

(ii) there exists a matrix W ∈ Zn×n such that

WM ≡ In cmodS. (4.3)

Property (i) of a Smith massager M implies that the matrix AMS−1 is integral, while
property (ii) implies that M is unimodular up to the columns of S. As we already men-
tioned, any Smith massager reduced column modulo S is still a Smith massager. Therefore,
if M = (M cmodS), then M is called a reduced Smith massager.

Example 4.2. The Smith form of

A =


−6 3 −13 −15
−4 19 12 −1
−4 10 −6 17
−26 −13 1 −2


is S = diag(1, 1, 9, 29088). For

M =


0 0 7 805
0 0 5 23668
0 0 3 6
0 0 4 10224

 .
we have AM ≡ 0 cmodS. Setting

W =


4 −19 −12 1
−306 3 133 0
5156 805 6332 0
12017 −403 11356 0



35

gives

WM = I4 +


−1 0 −99 −436320
0 −1 −1728 −174528
0 0 59112 23241312
0 0 116172 203616




1
1

9
29088

 ,
implying that WM ≡ I4 cmodS. It follows that M is a Smith massager for A.

It will be useful to notice that a Smith massager M for some matrix A remains a valid
Smith massager under some specific columns operations.

Lemma 4.3. Assume M ∈ Zn×n is a Smith massager for A. Then the matrix obtained
from M by

(i) adding any integer column vector multiplied by si to column i,

(ii) adding any multiple of a latter to a former column, or

(iii) multiplying (or dividing exactly) the ith column by an integer relatively prime to si

is also a Smith massager for A.

Proof. For each one of these operations, we need to show that the modified matrix M still
satisfies properties (i) and (ii) of Definition 4.1.

Let M̄ be the matrix obtained from M by performing operation (i). Then M̄ ≡
M cmodS and thus AM̄ ≡ 0 cmodS and WM̄ ≡ In cmodS still hold.

For operation (ii), let 1 ≤ i1 < i2 ≤ n and c ∈ Z. Let M̄ be the matrix obtained
from M by adding c times column i2 to column i1. Because si1 | si2 , AM̄ ≡ 0 cmodS still
holds. Let W̄ be the matrix obtained from W by adding −c times row i1 to row i2. Then
W̄M̄ ≡ In cmodS.

For operations (iii), let c ∈ Z be relatively prime to si. Let M̄ be the matrix obtained
from M by multiplying column i by c. Then AM̄ ≡ 0 cmodS still holds. Let W̄ be
the matrix obtained from M by multiplying row i by Rem(1/c, sn) ∈ Z. Then W̄M̄ ≡
In cmodS. The case for 1/c is similar.

36

4.2 Compact representation of A−1

An important property of Smith massagers is that the column space of the inverse of a
matrix A ∈ Zn×n can be represented by the Smith massager M with each column divided
by the corresponding invariant factor of A, that is, MS−1.

Theorem 4.4. Let A ∈ Zn×n be nonsingular with Smith form S and Smith massager M .

(i) For any row vector v ∈ Z1×n, vA−1 is integral if and only if vMS−1 is integral.

(ii) It is true that
snA

−1 ≡R M(snS
−1) mod sn. (4.4)

Proof. Let

B =

[
A

In

] [
In
−W In

] [
In M

In

] [
In

S−1

]
=

[
AMS−1 A

(In −WM)S−1 −W

]
.

By Definition 4.1 and since | detA| = detS 6= 0, matrix B is integral and unimodular. If
we pre-multiply B by diag(A−1, In) and then restrict to the first n rows, we obtain[

A−1
]
B =

[
MS−1 In

]
. (4.5)

Since both B and B−1 are integral, we conclude that for any v ∈ Z1×n, vA−1 is integral if
and only if vMS−1 is integral. Furthermore, if we multiply (4.5) by the largest invariant
factor sn, then the equation is over the integers, and, by taking it modulo sn, we conclude

snA
−1 ≡R M(snS

−1) mod sn.

Corollary 4.5. Let A ∈ Zn×n be nonsingular with Smith form S and Smith massager M .
For any row vector v ∈ Z1×n, the denominator of vA−1 equals the denominator of vMS−1.

A key observation from Theorem 4.4 is that MS−1 can be represented with only
O(n2(log n + log ‖A‖)) bits. This compares to O(n3(log n + log ‖A‖)) bits required by
A−1. The property is also useful for computing left equivalent canonical forms of A.

37

Example 4.6. Matrix

A =


−6 3 −13 −15
−4 19 12 −1
−4 10 −6 17
−26 −13 1 −2

 ,
from Example 4.2, has Smith form S = diag(1, 1, 9, 29088) and Smith massager

M =


0 0 7 805
0 0 5 23668
0 0 3 6
0 0 4 10224

 .
Then,

A−1 =
1

29088


−271 −402 −373 −937
580 920 524 −356
−1074 804 −870 258
−784 −352 1008 80

 ,
and from Corollary 4.5, for any row vector v ∈ Z1×n, the denominator of vA−1 equals the
denominator of

v


7 805
5 23668
3 6
4 10224

[1/9
1/29088

]
,

where the first two columns can be omitted because the corresponding invariant factors are
1. Equivalently, from equation (4.4), we have that

−271 −402 −373 −937
580 920 524 −356
−1074 804 −870 258
−784 −352 1008 80

 ≡R


7 805
5 23668
3 6
4 10224

[3232
1

]
mod 29088.

The equivalence between the inverse of A and the Smith massager proves to be very
useful for computing left equivalent matrix canonical forms for a matrix A ∈ Zn×n. Two
matrices are said to be left equivalent if one can be obtained from the other by premulti-
plying with a unimodular matrix. The following theorem is a corollary of Theorem 4.4.

Theorem 4.7. Let A ∈ Zn×n be nonsingular with Smith form S and a Smith massager
M . If a matrix H ∈ Zn×n satisfies that | detH| = detS and

HM ≡ 0 cmodS,

38

then H is left equivalent to A.

In other words, the Smith form S and a Smith massager M can be used to describe an
left equivalent canonical form of a matrix A in a compact and fraction-free way. We will
use Theorem 4.7 in Section 6.2.

4.3 Approach to create a unimodular Smith massager

In this section, we present some statements regarding Smith massagers which are perturbed
by a matrix post-multiplied by the Smith form and regarding the Hermite form of Smith
massagers. We will need these statements later in Chapter 6 where we compute Smith
multiplier matrices by creating a unimodular Smith massager.

In order to motivate the lemmas that follow, we will also describe, in parallel, our
approach to computing a unimodular Smith massager for a matrix A, given an algorithm
that computes a reduced Smith massager. The lemmas that we present here, along with
Lemma 4.3, constitute the main ingredients of the correctness of our process in Chapter 6.
Chapter 6 will mainly be devoted to establishing the efficiency of our algorithm.

Our approach involves first obtaining a nonsingular Smith massager for the input matrix
A and then perturbing it by a matrix post-multiplied by the Smith form. We obtain a
nonsingular Smith massager by computing a reduced Smith massager M for the matrix
2A. From Proposition 4.8, one sees that a Smith massager for 2A has full rank over Z/(2),
and thus, is nonsingular over Z. We then perturb M by a matrix R post-multiplied by the
Smith form 2S, with Proposition 4.8(i) ensuring that M + 2RS is still a Smith massager
for A. In Section 6.1, we will prove that if R is chosen to be a random matrix, then the
Hermite form of M + 2RS will have only one non-trivial column with high probability,
something which will be important for efficiency purposes.

Proposition 4.8. Let c ∈ Z>0 and A ∈ Zn×n. If M ∈ Zn×n is a Smith massager for cA,
then for any matrix R ∈ Zn×n:

(i) M +R(cS) is a Smith massager for A,

(ii) the last i columns of M + R(cS) have full rank over Z/(p) for any p that divides
(csn−i+1).

The proof of Proposition 4.8 follows directly from the next two lemmas.

39

Lemma 4.9. Let c ∈ Z>0 and A ∈ Zn×n. If M ∈ Zn×n is a Smith massager for cA, then
M is also a Smith massager for A.

Proof. First note that if S ∈ Zn×n is the Smith form of A, then cS is the Smith form of
cA. Since M is a Smith massager for cA, Definition 4.1 states that

cAM ≡ 0 cmod cS, (4.6)

and that there exists a W ∈ Zn×n such that

WM ≡ In cmod cS. (4.7)

It follows from (4.6) that AM ≡ 0 cmodS and from (4.7) that WM ≡ In cmodS, and
thus by Definition 4.1, M is a Smith massager for A.

Lemma 4.10. For any prime p that divides sn−i+1, the last i columns of a Smith massager
M have full rank over Z/(p).

Proof. The claim follows from Definition 4.1 of the Smith massager since

WM ≡ In cmod

 s1
. . .

sn



≡ In cmod


s1

. . .
sn−i

p
. . .

p

 .
If the last i columns of WM mod p have full rank, then the last i columns of M mod p
also have full rank.

The second part of our process involves computing a lower triangular row Hermite
form of the perturbed and nonsingular Smith massager M + 2RS, and then, obtaining a
unimodular Smith massager by post-multiplying with the inverse of that Hermite form.

We define the lower triangular row Hermite form of a nonsingular matrix A ∈ Zn×n to
be the unique matrix

H =


h1

∗ h2
...

...
. . .

∗ ∗ · · · hn

 ∈ Zn×n

40

that is left equivalent to A, it has positive diagonal entries, and the off-diagonal entries in
each column are reduced by the diagonal entries.

Lemma 4.12 provides the final ingredient for our correctness argument by proving that
a nonsingular Smith massager for A, post-multiplied by the inverse of its lower triangular
row Hermite form, is still a Smith massager for A, and trivially unimodular. Lemma 4.11
is an intermediate result.

Lemma 4.11. Let M ∈ Zn×n be a Smith massager that is nonsingular and S the corre-
sponding Smith form. If hi is the ith diagonal entry of the lower row Hermite form H of
M , then gcd(hi, si) = 1.

Proof. The lemma follows from the fact that a matrix and its row Hermite form share the
same column rank profile. Therefore, since by Lemma 4.10, the last i columns of M have
full rank over Z/(p) for any p | sn−i+1, then the last i columns of H have full rank over
Z/(p), and thus, p - hn−i+1.

Lemma 4.12. Let M ∈ Zn×n be a Smith massager that is nonsingular for a matrix A,
and let H ∈ Zn×n be the lower triangular row Hermite form of M . Then, MH−1 is a
unimodular Smith massager for A.

Proof. The inverse of any lower triangular matrix can be decomposed as follows.

H−1 =
n−1∏
i=0


I

1
−hn−i+1,n−i 1

...
. . .

−hn,n−i 1




I

1/hn−i
1

. . .

1

 (4.8)

Therefore, multiplying M with H−1 can be represented as a series of n products, where
each multiplication first applies an operation of the type as described in Lemma 4.3(ii), and
second applies one of the type as in Lemma 4.3(iii) as certified by Lemma 4.11. Therefore,
MH−1 is a unimodular Smith massager for A.

4.4 Smith massager and partial linearization

As with the algorithms from Chapter 2, if we have an algorithm which, for a matrix
A ∈ Zn×n, computes the Smith form and a Smith massager with cost that depends on

41

log ‖A‖, we can employ the partial linearization technique to replace the log ‖A‖ term
with the average bitlength d of the columns (or rows) in A. This fact will be exploited
when computing Smith multiplier matrices in Chapter 6.

Theorem 4.13. Let A ∈ Zn×n and D ∈ Zn̄×n̄ be the partially linearized version of A from
Theorem 3.7. If ([

In̄−n
S

]
,

[
0 M1

0 M2

])
is a Smith massager for D, where S ∈ Zn×n, M1 ∈ Zn×n and M2 ∈ Z(n̄−n)×n, then (S,M1)
is a Smith massager for A.

Proof. We will show that S,M1 ∈ Zn×n satisfy Definition 4.1 for A.

From Theorem 3.7, we have that

D

[
0 M1

0 M2

]
=

[
In Q

In̄−n

] [
A

In̄−n

] [
In
E F

] [
0 M1

0 M2

]
=

[
In Q

In̄−n

] [
0 AM1

0 EM1 + FM2

]
.

Therefore, from the first property of the Smith massager for D,

D

[
0 M1

0 M2

]
≡ 0 cmod

[
In̄−n

S

]
,

it follows that [
0 AM1

0 EM1 + FM2

]
≡ 0 cmod

[
In̄−n

S

]
,

and that
AM1 ≡ 0 cmodS.

Moreover, since B is unit lower triangular, we see that

M2 ≡ −F−1EM1 cmodS.

Finally, from the second property of the Smith massager for D, there exist a matrix WD ∈
Zn̄×n̄ such that

WD

[
0 M1

0 M2

]
≡
[
In̄−n

In

]
cmod

[
In̄−n

S

]
.

42

The last equation can be transformed to(
WD

[
In

−F−1E In̄−n

])[
0 M1

0 0

]
≡
[
In̄−n

In

]
cmod

[
In̄−n

S

]
,

from which it directly follows that there exists a matrix W ∈ Zn×n such that

WM1 ≡ In cmodS.

Furthermore, by equation (3.5) and by following the same steps as in the proof Theo-
rem 4.13, we obtain the following Corollary.

Corollary 4.14. Let A ∈ Zn×n and D ∈ Zn̄×n̄ be the partially linearized version of A from
Corollary 3.9 or Corollary 3.10. If([

In̄−n
S

]
,

[
0 M1

0 M2

])
is a Smith massager for D, where S ∈ Zn×n, M1 ∈ Zn×n and M2 ∈ Z(n̄−n)×n, then (S,M1)
is a Smith massager for A.

43

Chapter 5

Smith normal form and Smith
massager algorithm

In this chapter, we present a Las Vegas randomized algorithm to compute the Smith normal
form of a nonsingular integer matrix. As we already mentioned, any nonsingular integer
matrix A ∈ Zn×n is unimodularly row and column equivalent to a unique diagonal matrix

S =

 s1

. . .

sn

 ∈ Zn×n.

Each si must be positive and they all form a divisibility sequence s1 | s2 | · · · | sn. Along
with the Smith form S, the algorithm will also return a matrix M ∈ Zn×n which is a Smith
massager as defined in Definition 4.1.

In order to recover all of the invariant factors of A efficiently, we utilize a “dimension ×
precision ≤ invariant” compromise such as the one required by the algorithms in Chapter 2.
By Hadamard’s bound, | detA| = s1s2 · · · sn ≤ ∆n where ∆ = n1/2||A||. Thus, the number
of invariant factors with bitlength between (1/2i)×n log ∆ and (1/2i−1)×n log ∆ is bounded
by 2i. So, we compute one invariant factor with bitlength at most n log ∆, then two with
bitlength at most n log ∆/2, then four with bitlength at most n log ∆/4, and so on. We
will need only O(log n) iterations of this type.

In order to facilitate certification of the output, we take a structured approach and
compute a full Smith massager for A. This is a tuple of n×n integer matrices (U,M, T, S)
such that

B =

[
A

In

] [
In
U In

] [
In M

T

] [
In

S−1

]
∈ Z2n×2n (5.1)

44

is integral, with T unit upper triangular and S nonsingular and in Smith form. The
algorithm succeeds if we compute a maximal Smith massager, meaning that S is the Smith
form of A. Since (5.1) implies that (detB)(detS) = detA, we can conclude from the
uniqueness of the Smith form that the massager is maximal if and only if B is unimodular.

In addition, from equation (5.1), the matrix[
A AM
U UM + T

] [
In

S−1

]
(5.2)

is integral. This entails that
AM ≡ 0 cmodS

and
UM + T ≡ 0 cmodS

which, since T is unit upper triangular, is equivalent to

(−T−1U)M ≡ In cmodS.

Therefore, if the full Smith massager is maximal, then the matrix M is a Smith massager
for A.

Example 5.1. The matrix

A =


−13 10 −20 27
27 30 15 30
0 15 15 6
−21 0 −15 9


is equivalent to the Smith form

S =


1

3
15

105

 .
Moreover, a Smith massager for A is given by

M =


0 2 0 55
0 0 7 32
0 2 2 41
0 2 10 10

 .
45

Our algorithm for computing the Smith form and Smith massager consists of three
phases. Phase 1 obtains a random lifting modulus X for all linear system solving pro-
cedures, and it uses the Monte Carlo approach of Eberly et al. (2000, Theorem 2.1) to
compute the largest invariant factor sn of A. Phase 2 iteratively computes a full Smith
massager for A, together with the massaged matrix B in (5.1). Phase 3 uses a known algo-
rithm, by Pauderis and Storjohann (2012) that we recall in Lemma 2.3, to assay whether
B is unimodular and certify the output.

Phase 2 is the main part of our algorithm. It uses O(log n) iterations to build a full
Smith massager that extracts more and more invariant factors from A. The algorithm
begins by initializing (U,M, T, S) to be the trivial full Smith massager, with U = M = 0n×n
and T = S = In. At the start of iteration i = 0, 1, 2, . . . we assume that the current full
Smith massager is such that B in (5.1) has the same Smith form as A but with the largest
2i− 1 = 20 + 21 + · · ·+ 2i−1 invariant factors replaced by 1. The goal at iteration i is then
to compute and extract the next largest 2i invariant factors. For example, at iterations
i = 0, 1 and 2, the largest 1, 2 and 4 invariant factors of the current B are equal to (sn),
(sn−1, sn−2) and (sn−3, sn−4, sn−5, sn−6), respectively.

Note that the matrix U of the full Smith massager is not expected to be unimodular
and should not be confused with a unimodular Smith multiplier U . Apart from M being
a Smith massager for A when the algorithm succeeds, the rest of the full Smith massager
structure is mainly used to efficiently extract invariant factors.

Example 5.2. For the matrix A of Example 5.1, we begin by initializing

B0 := diag(A, In) =



−13 10 −20 27
27 30 15 30
0 15 15 6
−21 0 −15 9

1
1

1
1


.

The Smith form S = diag(∗, ∗, ∗, ∗) of A (or the Smith form of B0 with n additional trivial
invariant factors) is still unknown and detB0 = detA.

In the first iteration, we compute the largest invariant factor s4 and we apply unimodular

46

column operations on B0 to make its last column a multiple of s4.

B′0 =



−13 10 −20 27 0
27 30 15 30 43 · 105
0 15 15 6 9 · 105
−21 0 −15 9 −15 · 105

1 0
1 0

1 0
0 41 17 67 40 · 105


Then, by removing that factor we have

B1 :=



−13 10 −20 27 0
27 30 15 30 43
0 15 15 6 9
−21 0 −15 9 −15

1 0
1 0

1 0
0 41 17 67 40


with

S = diag(∗, ∗, ∗, 105) and detB1 = detA/105.

In the second iteration, we recover the two largest invariant factors of B1 which are
s2, s3 and we repeat the same transformation to obtain

B′1 =



−13 10 −20 27 −2 · 3 12 · 15 0
27 30 15 30 24 · 3 46 · 15 43
0 15 15 6 7 · 3 16 · 15 9
−21 0 −15 9 −9 · 3 −5 · 15 −15

1 0 0 0
0 1 2 0 1 · 3 1 · 15 0
0 8 0 0 0 7 · 15 0
0 41 17 67 28 · 3 59 · 15 40



47

and

B2 :=



−13 10 −20 27 −2 12 0
27 30 15 30 24 46 43
0 15 15 6 7 16 9
−21 0 −15 9 −9 −5 −15

1 0 0 0
0 1 2 0 1 1 0
0 8 0 0 0 7 0
0 41 17 67 28 59 40


with

S = diag(∗, 3, 15, 105) and detB2 = detA/(105 · 15 · 3).

Finally,

B :=



−13 10 −20 27 0 −2 12 0
27 30 15 30 0 24 46 43
0 15 15 6 0 7 16 9
−21 0 −15 9 0 −9 −5 −15

0 0 0 0 1 0 0 0
0 1 2 0 0 1 1 0
0 8 0 0 0 0 7 0
0 41 17 67 0 28 59 40


with

S = diag(1, 3, 15, 105) and detB = −1.

The algorithm requires O(n3(log n + log ‖A‖)2(log n)2) bit operations using standard
integer and matrix arithmetic. By employing fast integer and matrix multiplication, we
establish that the Smith form and the Smith massager can be computed in about the same
number of bit operations as required to multiply two matrices of the same dimension and
size of entries as the input matrix. Specifically, the time compexity of our algorithm is in

O(nω B(log n+ log ‖A‖)(log n)2),

where ω is the matrix multiplication exponent and B(d) bounds the cost of gcd-related
operations on integers with bitlength at most d.

Section 5.1 shows how to recover the largest 2i invariant factors of B with high prob-
ability by computing a projection B−1J for a randomly chosen J with column dimension
O(2i). We exploit the fact that if s is a multiple of the largest invariant factor of B, then
the smallest 2i invariant factors of sB−1 correspond to the largest 2i invariant factors of B.

48

In Sections 5.2 and 5.3, we show how to compute an index Smith massager that will extract
the largest 2i invariant factors from B, while, in Section 5.4, we show how to combine the
partial index Smith massagers obtained at each iteration.

5.1 Largest invariant factors

In this section we show how the largest r invariant factors of a nonsingular matrix A ∈ Zn×n
can be recovered with high probability by randomly sampling r+O(log r) vectors from the
columns space of A−1. The method assumes we know an s ∈ Z>0 that is a multiple of the
largest invariant factor sn of A.

Let U, V ∈ Zn×n be unimodular such that AV = US where S = diag(s1, . . . , sn) is the
Smith form of A. Then, the reverse Smith form of sA−1 ∈ Zn×n is equal to

sS−1 =

 s/s1

. . .

s/sn

 .
By reverse Smith form we simply mean that the order of both the rows and the columns
is reversed. The smallest invariant factor is, thus, located in the last row and column.

Example 5.3. The reverse Smith form of the 4× 3 matrix
1

2


is equal to  2

1

 .
Since the largest invariant factor s/s1 of the Smith form of sA−1 is a divisor of s, the

(reverse) Smith form of sA−1 can be computed modulo s over Z/(s). For convenience,
should a diagonal entry in the Smith form over Z/(s) vanish modulo s, we replace it
with s. For example, the reverse Smith form of diag(1, 2, 8, 16, 16) over Z/(16) is equal to
diag(16, 16, 8, 2, 1).

49

To recover only the largest r invariant factors of A, the idea is to choose a matrix
J ∈ Z/(s)n×r uniformly at random and hope that the submatrix comprised of the last r
rows of the reverse Smith form of sA−1J ∈ Z/(s)n×r is equal to

S1 =

 s/sn−r+1

. . .

s/sn

 ,
where sn−r+1, . . . , sn are the r largest invariant factors of A. To ensure a high probability
of success, we adjust the recipe slightly by augmenting J with a small number of additional
columns k. The main result of this section is:

Theorem 5.4. Let A ∈ Zn×n be nonsingular with Smith form S = diag(s1, . . . , sn). Let
s ∈ Z>0 be a multiple of sn. If J ∈ Z/(s)n×(r+k) is chosen uniformly at random for r ≥ 1
and k ≥ 2, then the trailing r×r submatrix of the reverse Smith form of sA−1J over Z/(s)
is equal to S1 = diag(s/sn−r+1, . . . , s/sn) with probability at least

1− 1

2k−1
.

Before we prove Theorem 5.4, we establish a property of J ∈ Z/(s)n×(r+k) that is
sufficient to ensure success. In the following lemma, recall that U, V ∈ Zn×n are unimodular
matrices such that AV = US, and thus sA−1 = V sS−1U−1.

Lemma 5.5. If the r×(r+k) submatrix comprised of the last r rows of U−1J ∈ Zn×(r+k) is
right equivalent to

[
0r×k Ir

]
over Z/(s), then the trailing r× r submatrix of the reverse

Smith form of sA−1J over Z/(s) is equal to S1 = diag(s/sn−r+1, . . . , s/sn).

Proof. Decompose

sS−1 =

[
S2

S1

]
,

where S1 is as in the statement of the theorem, and S2 = diag(s/s1, . . . , s/sn−r).

We work entirely over Z/(s). By assumption, we have that

U−1J ≡R
[
U1 U2

Ir

]
(5.3)

50

for U1 ∈ Z/(s)(n−r)×k and U2 ∈ Z/(s)(n−r)×r. Since all entries in S2 are divisible by the
largest invariant factor s/sn−r+1 of S1, it will be sufficient to show that sA−1J is row and
column equivalent to [

S2U1

S1

]
over Z/(s). We have that

sA−1J = V (sS−1)U−1J (5.4)

≡L (sS−1)U−1J (5.5)

≡R (sS−1)

[
U1 U2

Ir

]
(5.6)

=

[
S2U1 S2U2

S1

]
≡L

[
S2U1

S1

]
, (5.7)

where (5.4) follows from AV = US, (5.5) because V is unimodular, and (5.6) from (5.3).
To obtain (5.7), we can use a unimodular left transformation to zero out the block S2U2

since its entries are all multiples of the diagonal entries in S1.

We need two additional technical lemmas before proving the main theorem.

Lemma 5.6. If k ≥ 1, t ≥ 0 and 0 < x ≤ 1/2, then

k+t∏
i=k

(
1− xi

)
≥ 1− 2xk + xk+t.

Proof. We will use induction on t. For t = 0 the inequality is trivially true. We assume
that

∏k+t
i=k (1− xi) ≥ 1− 2xk + xk+t for a fixed t, and we need to show the same for t+ 1.

k+t+1∏
i=k

(
1− xi

)
= (1− xk+t+1)

k+t∏
i=k

(
1− xi

)
≥ (1− xk+t+1)(1− 2xk + xk+t)

= 1− 2xk + xk+t − xk+t+1 + 2x2k+t+1 − x2(k+t)+1

= 1− 2xk + xk+t+1

(
1 +

1

x
− 2 + 2xk − xk+t

)
≥ 1− 2xk + xk+t+1.

51

In the last step we used that x ≤ 1/2.

Lemma 5.7. If k ≥ 2, then
ζ(k + 1)− 1 < 2−k,

where ζ denotes the Riemann zeta function.

Proof. The lemma inequality is equivalent to:

ζ(k + 1)− 1 < 2−k ⇔
∞∑
n=2

1

nk+1
< 2−k ⇔

∞∑
n=2

(
2

n

)k+1

< 2.

Since the left-hand side of the last inequality is a decreasing function on k, it suffices to
show the claim for k = 2, i.e., ζ(3)− 1 < 1

4
.

Proof (of Theorem 5.4). We start by defining the following event.

FRp: For a prime p that divides s, the last r rows of the random matrix J ∈ (Z/(s))n×(r+k)

have full row rank over Z/(p).

If the last i rows of J over Z/(p) are linearly independent, then they span a vector space
containing pi rows. The probability that an additional row avoids that space is 1−pi/pr+k,
and, thus,

Pr[FRp] =
r+k∏
j=k+1

(
1− 1

pj

)
.

The above statement has already been shown and extensively used in the literature (Blömer
et al., 1997; Cooper, 2000). Furthermore, by applying Lemma 5.6, we obtain

Pr[¬FRp] ≤ 2
1

pk+1
. (5.8)

Next, we define the event described by Lemma 5.5.

FRU : For a matrix U ∈ Zn×n, the last r rows of the random matrix UJ ∈ (Z/(s))n×(r+k)

are right equivalent to
[

0r×k Ir
]

over Z/(s).

52

A matrix J is right equivalent to
[

0r×k Ir
]

over Z/(s) if and only if it has full row rank
over Z/(p) for all primes p that divide s. Therefore,

Pr[¬FRIn] ≤
∑
p|s

p prime

Pr[¬FRp] (5.9)

≤ 2
∞∑
p=2

1

pk+1
(5.10)

= 2(ζ(k + 1)− 1)

< 21−k. (5.11)

We applied the union bound in (5.9), equation (5.8) in (5.10), and Lemma 5.7 in (5.11).

Finally, multiplying matrices from Z/(s)n×(r+k) with a unimodular matrix is an isomor-
phism back to (Z/(s))n×(r+k), which implies that Pr[FRIn] = Pr[FRU−1]. So, according to
Lemma 5.5, the probability described in Theorem 5.4 must be at least

Pr[FRU−1] = Pr[FRIn] > 1− 1

2k−1
.

5.2 Projection basis

Throughout this section let A ∈ Zn×n be nonsingular. In Section 5.1, we showed that the
projection A−1J , for a suitable random integer matrix J , can reveal the r largest invariant
factors of A with high probability. In this section, we define suitable notation which will
help us show how these invariant factors can be extracted from A to produce a matrix B
that has the same Smith form as A but with the r largest invariant factors replaced by
trivial ones.

For any J ∈ Zn×r with r ∈ Z>0, the set

Proj(A, J) = {v ∈ Z1×n | vA−1J ∈ Z1×r}

forms an integer lattice (a sub-lattice of Zn). A basis of Proj(A, J) can be given by a
matrix H ∈ Zn×n such that the set of all integer linear combinations of rows of H is
equal to Proj(A, J). Bases of Proj(A, J) are always nonsingular and are unique up to left
equivalence.

53

Example 5.8. A basis of Proj(A, 0n×r) is In, while a basis of Proj(A, In) is given by A
itself.

The next two lemmas follow directly from the definition of Proj(A, J). Lemma 5.9 is
useful in a way that it allows the projection set Proj(A, J) to be represented only by the
fractional part of A−1J , while Lemma 5.10 will help us reduce the computation of a basis
of Proj(A, J) to computing a basis of another projection set that has A conditioned by
unimodular column operations. The conditioning is supposed to reveal the basis in an
obvious way.

Lemma 5.9. If s ∈ Z>0 is such that sA−1J is integral, and P = Rem(sA−1J, s), then

Proj(A, J) = Proj(sI, P) = {v ∈ Z1×n | vP = 0 mod s}.

Lemma 5.10. Let W ∈ Zn×n be unimodular. Then H is a basis of Proj(AW−1, J) if and
only if HW is a basis of Proj(A, J).

Lemma 5.11 shows that if H is a basis of Proj(A, J), then, for any J , it can be factored
out from matrix A, that is, AH−1 is integral. This is useful because we plan to recover the
Smith form of a matrix A in parts, and we want to extract the part of the Smith profile
already computed in order to continue with computing the next part.

Lemma 5.11. If H is a basis of Proj(A, J), then AH−1 is integral.

Proof. Since the rows of A belong to Proj(A, J), there exists a B ∈ Zn×n such that A =
BH, hence AH−1 = B is integral.

5.3 Maximal index Smith massager

In this section, we combine several results from previous sections to present a random-
ized algorithm for the Problem IndexMassager shown in Figure 5.1. We begin with the
following definition.

Definition 5.12 (Index-(m, r) Smith massager). Let B ∈ Z2n×2n be nonsingular with the
shape

B =

 A ∗
In−m

∗ ∗

 .
54

For m, r ∈ Z≥0 such that m + r ≤ n, an index-(m, r) Smith massager for B is a tuple
(U,M, T, S) ∈ (Zr×n,Zn×r,Zr×r,Zr×r) such that the matrix

C = B


In

I
U Ir

Im



In M

I
T

Im



In

I
S−1

Im

 (5.12)

is integral, with S nonsingular and in Smith form, and T unit upper triangular. We say
that (U,M, T, S) is maximal for B if S is comprised of the r largest invariant factors of
the Smith form of B.

Notice that when m = 0 the matrix B is equal to diag(A, In). When, in addition, r = n,
an index-(m, r) Smith massager for diag(A, In) corresponds to a full Smith massager for A
as defined in the introduction.

IndexMassager(B, n,m, r, s, ε)

Input: B, n, m and r are as in Definition 5.12. In addition, s ∈ Z>0 and ε is
such that 0 < ε < 1.

Output: An index-(m, r) Smith massager (U,M, T, S) for B with T = Ir, entries
in U and M reduced modulo s, and Srr a divisor of s.

Note: If s is a positive integer multiple of the largest invariant factor of B, and
the last n rows and columns of B−1 are integral, then a maximal index-
(m, r) Smith massager for B is returned with probability at least 1− ε.

Figure 5.1: Problem IndexMassager

In the design of the algorithm we are assuming that s is a multiple of the largest
invariant factor of B and that the last n rows and columns of B−1 are integral. If, during
the course of the algorithm, we detect that either of these conditions is not satisfied then we
simply return the trivial index-(m, r) Smith massager (0r×n, 0n×r, Ir, Ir) in order to satisfy
the output requirements of the problem.

As shown in Section 5.2, we can “massage” away a block of the largest invariant factors
of B by computing a basis of Proj(B, J) for a well chosen

J :=

[
J1

J2

]
∈ Z(n+n)×r.

55

Note that under the assumption that the last n columns of B−1 are integral, the basis
Proj(B, J) will remain invariant of the choice of entries in the block J2 ∈ Zn×r. For
this reason, we set J2 to be the zero matrix. Entries in J1 are chosen independently and
uniformly at random from Z/(s).

Next, we use the algorithm supporting Theorem 2.7 to check whether sB−1J is integral,
and, if so, compute the projection

P := Rem(sB−1J, s) =

[
P1

P2

]
∈ Z/(s)(n+n)×r.

Under the assumption that the last n rows of B−1 are integral, we expect P2 to be the
n× r zero matrix. If sB−1J is determined not to be integral, or P2 is not the zero matrix,
then we abort and return the trivial index-(m, r) massager for B.

At this point, by Lemma 5.9, we have reduced the problem of computing a basis of
Proj(B, J) to that of computing a basis of Proj(sI, P). A basis of Proj(sI, P) can be com-
puted as follows. First, using the Smith form algorithm of Storjohann (2000b, Section 7),
compute matrices U ∈ Zr×n and V ∈ Zr×r, such that detV ⊥ s and D := Rem(−UP1V, s)
is congruent to the reverse Smith form of P1 ∈ Zn×r over Z/(s). Then, we have that

−UP1V = D mod s

and
P1V = MD mod s,

for some integer matrix M ∈ Zn×r. We can put those two together and obtain
In

I
−U Ir

Im



P1

I
I
I

 V =


MD
I
D
I

 mod s.

Next, we apply a unimodular left transformation to zero out the block MD, and we take
right equivalence to omit V .

In −M
I

Ir
Im




In
I

−U Ir
Im



P1

I
I
I

 ≡R

I
I
D
I

 mod s (5.13)

56

Finally, define S := sD−1, which will be in regular Smith form, and notice that S is a basis
of Proj(S, Ir) = Proj(sI,D), which corresponds to the non-zero part of the matrix in the
right-hand side of (5.13). Therefore,

In
I

S
Im



In −M

I
Ir

Im




In
I

−U Ir
Im

 (5.14)

must be a basis of Proj(sI, P) according to Lemma 5.10, since the two matrices containing
M and U are unimodular. Postmultiplying B by the inverse of this basis results in an
integer matrix according to Lemma 5.11. That is,

C := B


In

I
U Ir

Im



In M

I
Ir

Im



In

I
S−1

Im

 .
Therefore, matrices (U,M, Ir, S) form an index-(m, r) Smith massager in accordance with
Definition 5.12.

Theorem 5.13. Assume that we have a lifting modulus X as in Lemma 2.1 for the row
partial linearization of B. If r × log s ∈ O(n(d + log n)), where d is the average length of
the rows of B, and ε = 1

8r
, then Problem IndexMassager can be solved in time

O(nω B(d+ log n) log n).

Proof. The correctness of the algorithm follows directly from the preceding discussion. It
is apparent that the proposed massager fits the description of Definition 5.12.

We achieve the probabilistic result, for ε = 1
8r

, by exploiting Theorem 5.4. Instead of
working with the projection sB−1J ∈ Z2n×r, we augment J with k := log2 r + 4 columns.
After the Smith form computation, we keep only the last r rows of U , the last r columns of
M , and the r largest invariant factors of S. This massager will be maximal with probability
at least 1− 1

2k−1 = 1− 1
8r

.

Finally, regarding the running time, the algorithm consists of only two computational
parts. The first is to verify that sB−1J is integral, and, if so, compute P = Rem(sB−1J, s).
By Theorem 2.7 and Remark 3.12, this can be done in time O(nωM(d + log n) log n).
The second is the reverse Smith form computation, which, by Storjohann (2000b, Corol-
lary 7.17), can be done in time O(nω B(d+ log n) log n), after simplifying the cost estimate
using our assumptions on B.

57

5.3.1 Reduced index Smith massager

In this subsection, we introduce the notion of the reduced Smith massager, which keeps
the overall size of the matrices well bounded.

Remember that denote by M cmodS the matrix obtained from M by reducing entries
in column j modulo Sjj, 1 ≤ j ≤ r. Similarly, we denote by U rmodS the matrix obtained
from U by reducing entries in row i modulo Sii, 1 ≤ i ≤ r.

Definition 5.14 (Reduced index-(m, r) Smith massager). Let (U,M, T, S) be an index-
(m, r) Smith massager for B ∈ Z2n×2n as in Definition 5.12. We say that (U,M, T, S) is
reduced if U = U rmodS, M = M cmodS and T = ((T − Ir) cmodS) + Ir.

Note that if T is unit (upper) triangular, then ((T − Ir) cmodS) + Ir is as well since
only the off-diagonal entries are reduced cmodS.

Lemma 5.15. Suppose (U,M, T, S) is an index-(m, r) Smith massager for B ∈ Z2n×2n

as in Definition 5.12. Let U ′ = U rmodS, M ′ = M cmodS and T ′ = ((−U ′M ′ −
Ir) cmodS) + Ir. Then, (U,M ′, T, S) and (U,M, T ′, S) are index-(m, r) massagers for
B, and (U ′,M ′, T ′, S) is a reduced index-(m, r) Smith massager for B.

Proof. Without loss of generality, and in order to simplify the presentation, we consider
the case of an index-(0, r) Smith massager. By multiplying together the first three matrices
in (5.12) we obtain

B =

 A AM
In−r

U T + UM

 In
In−r

S−1

 .
Note that the property that AMS−1 is integral is equivalent to AM cmodS being the
zero matrix. But then A(M cmodS) cmodS is also the zero matrix. This shows that
(U,M ′, T, S) is still an index massager. A similar argument shows that (U,M, T ′, S) is an
index massager. By the definition of T ′,

(T ′ + (U rmodS)(M cmodS)) cmodS

is also the zero matrix. Since T is unit upper triangular and also (T + UM) cmodS is
the zero matrix, we have that −UM cmodS is unit upper triangular, except that the
i’th diagonal entry will be zero for Sii = 1. Using the fact that U = U ′ + SQ for some
Q ∈ Zn×n and the property that S11 | S22 | · · · | Srr, it follows that T ′ is also unit upper
triangular.

58

5.4 Maximal Smith massager

In this section, we develop a randomized algorithm for computing the Smith form along
with a Smith massager for a nonsingular A ∈ Zn×n. Section 5.4.1 gives a subroutine for
combining an index-(0,m) and index-(m, r) Smith massager to obtain an index-(0,m+ r)
Smith massager. The algorithm is given in Section 5.4.2 with a proof of correctness and
running time given in Sections 5.4.3 and 5.4.4, respectively.

5.4.1 Combining index massagers

In this section, we show how an index-(0, n) Smith massager for diag(A, In) can be com-
puted in a block iterative fashion.

Suppose we have an index-(0,m) Smith massager (U,M, T, S) for diag(A, In). Then,
for some r ∈ Z≥0 such that m+ r ≤ n, we deduce from (5.12) that

B =


A

I
Ir

Im



In

I
Ir

U Im



In M

I
Ir

T



In

I
Ir

S−1

 (5.15)

is integral. Let (U ′,M ′, T ′, S ′) be an index-(m, r) Smith massager for B. Then,

C = B


In

I
U ′ Ir

Im



In M ′

I
T ′

Im



In

I
S ′−1

Im

 (5.16)

is integral. A direct computation shows that the product of the first trio of matrices
post-multiplying diag(A, In) in (5.15) with the second trio of matrices post-multiplying B
in (5.16) is equal to

In
I

U ′ Ir
U Im



In M ′ M

I
T ′ −U ′M

T



In

I
S ′−1

S−1

 . (5.17)

Thus, the result of post-multiplying diag(A, In) by the combined trio in (5.17) is integral.
The next result follows as a result of the above discussion and as a corollary of Lemma 5.15.

59

Theorem 5.16. Let (U,M, T, S) be a reduced index-(0,m) Smith massager for diag(A, In),
and let (U ′,M ′, T ′, S ′) be a reduced index-(m, r) Smith massager for the matrix B in (5.15).
If S ′rr is a divisor of S11, then a reduced index-(0,m + r) Smith massager for diag(A, In)
is given by (U ′′,M ′′, T ′′, S ′′) where

U ′′ =

[
U ′

U

]
, M ′′ =

[
M ′ M

]
, S ′′ =

[
S ′

S

]
,

and

T ′′ =

[
T ′ −U ′M cmodS

T

]
.

5.4.2 Algorithm

Algorithm SmithMassager(A) is shown in Figure 5.2.

Phase 2 of the algorithm initializes the working matrix B := diag(A, In) and the index
massager (U,M, T, S) ∈ (Z0×n,Zn×0,Z0×0,Z0×0) to be the trivial index-(0, 0) Smith mas-
sager. Then, the loop uses dlog2(n+1)e applications of Theorem 5.16 to update (U,M, T, S)
to be an index-(0, n) Smith massager for diag(A, In), which is a full Smith massager for A.
The technique of Lemma 5.15 is used to keep the intermediate index massagers reduced.
At the beginning of iteration i of the for-loop, (U,M, T, S) is a reduced index-(0,m) Smith
massager where m = 2i−1− 1. Iteration i then updates (U,M, T, S) to be a reduced index-
(0,m + r) Smith massager where r = 2i−1. In the last iteration, it can be n −m < 2i−1,
and so, r is defined as the min of these two quantities.

At the end of phase 2, the algorithm has computed a full Smith massager (U,M, T, S)
for A. It remains only to assay whether (U,M, T, S) is maximal. This is done by checking
that the massaged matrix B is unimodular.

5.4.3 Correctness

We begin with two lemmas regarding properties of the massaged matrix B in phase 2(c)
of the algorithm.

Lemma 5.17 states that if B is massaged by a maximal index-(0,m) Smith massager,
then it has the Smith form of diag(A, In) but with largest m invariant factors replaced by
trivial ones. The lemma follows from the fact that matrix M ∈ Zn×m consists of the last
m columns of a Smith massager for A, and so, diag(A, In) is properly conditioned so that
the largest m invariant factors are extracted.

60

SmithMassager(A)
Input: Nonsingular A ∈ Zn×n.
Output: The Smith form S ∈ Zn×n of A and a reduced Smith massagerM ∈ Zn×n.
Note: Fail will be returned with probability less than 1/2.

1. [Compute a lifting modulus X and the largest invariant factor sn]

(a) X := a lifting modulus for A and all B as in Lemma 2.1
a modulus may not be found with probability ≤ 1/8.

(b) s := the largest invariant factor sn of A
s may be a proper divisor of sn with probability ≤ 1/8.

2. [Compute an index-(0, n) Smith massager for diag(A, In)]
(U,M, T, S) ∈ (Z0×n,Zn×0,Z0×0,Z0×0)
B := diag(A, In)
for i = 1 to dlog2(n+ 1)e do

m := 2i−1 − 1
r := min(2i−1, n−m)
if i > 1 then s := S11

(a) [Compute an index-(m, r) massager of B and reduce]
(U ′,M ′, I, S ′) := IndexMassager(B,m, r, s, 2−(i+2))
U ′,M ′ := U ′ rmodS ′,M ′ cmodS ′

T ′ := −U ′M ′ cmodS ′ (with 0 diagonal entries replaced by 1)

(b) [Augment massager and reduce]

U,M, T, S :=

[
U ′

U

]
,
[
M ′ M

]
,

[
T ′ −U ′M cmodS

T

]
,

[
S ′

S

]
(c) [Apply massager]

B :=

 A AMS−1

I
U (T + UM)S−1


3. [Certify that (U,M, T, S) is maximal]

if | detB| = 1 then return (S,M)
else return Fail

Figure 5.2: Algorithm SmithMassager

61

Lemma 5.17. If (U,M, T, S) is a maximal index-(0,m) Smith massager for diag(A, In)
with Smith form diag(In, S

′, S), then the Smith form of the massaged matrix B ∈ Z2n×2n

as in (5.15) is diag(In, Im, S
′).

Lemma 5.18 establishes that if B is massaged by a maximal index-(0,m) Smith mas-
sager, then the last n rows and columns of B−1 are integral which is an assumption for
computing a new index massager in the following iteration.

Lemma 5.18. If (U,M, T, S) is a maximal index-(0,m) Smith massager for diag(A, In)
and B ∈ Z2n×2n the massaged matrix as in (5.15), then the last n rows and columns of
B−1 are integral.

Proof. Notice that the augmenting operation of Theorem 5.16 can also be reversed to
separate a Smith massager. We will use induction on m. The base case, for m = 0, holds
vacuously. Next, assume that the statement of the lemma holds for a maximal index-
(0,m) Smith massager (U,M, T, S). This means that: (1) the largest invariant factor
of the massaged matrix B is sn−m according to Lemma 5.17, and: (2) the last n rows
of B−1 are integral according to the induction hypothesis. Now, let (U ′,M ′, T ′, S ′) be a
maximal index-(m, 1) Smith massager for B. The product of the trio of matrices defined
by (U,M, T, S) and the product defined by (U ′,M ′, T ′, S ′) correspond to a trio of matrices
defined by a maximal index-(0,m+1) Smith massager. The inverse of the massaged matrix
C will be 

In
I

sn−m
Im



In −M ′

I
1

Im




In
I

−U ′ 1
Im

B−1.

We see that the largest invariant factor of the product of the last three matrices is still
sn−m. In addition, the row of the product that is multiplied with sn−m, is the only one
from the last n rows of B−1 to which elements from the non-integral part of B−1 are added.
Of course, multiplying with the matrix’s largest invariant factor ensures that the last n
rows of C−1 remain integral.

Finally, the last n columns are necessarily integral since they are the product of integral
parts.

Theorem 5.19. Algorithm SmithMassager shown in Figure 5.2 is correct. The algorithm
returns FAIL with probability less than 1/2.

62

Proof. The correctness of the algorithm follows from Sections 5.3 and 5.4.1 and the certi-
fication of the output by the unimodularity check in phase 3.

Regarding the probability of success, we define the following events.

• E0: In phase 1, s is not the largest invariant factor sn of A.

• Ei: At iteration i = 1, . . . , dlog2(n + 1)e of phase 2, massager (U,M, T, S) is not
maximal.

In other words, in order to prove the theorem, it is enough to show that Pr[Edlog2(n+1)e] <
3/8, where we excluded the initial 1/8 error probability of finding a lifting modulus X such
that (detB) | (detA) ⊥ X.

From the specification of the routine IndexMassager in Figure 5.1 and Lemma 5.18,
we obtain that

Pr[E0] ≤ 1

8
and Pr[Ei|¬Ei−1] ≤ 2−(i+2).

So, if the choice of the lifting modulus X is correct, Algorithm SmithMassager returns
FAIL with probability less than

Pr[Edlog2(n+1)e] ≤
dlog2(n+1)e∑

i=1

2−(i+2) + Pr[E0] <
∞∑
i=1

1

2i+2
+

1

8
=

3

8
.

5.4.4 Complexity

We begin by bounding the cost of phases 2(b) and 2(c). Lemma 5.20 shows how to compute
matrix B in phase 2(c), and Lemma 5.21 how to realize the construction of Theorem 5.16
in phase 2(b).

Lemma 5.20. There exists a procedure that takes a reduced index-(0,m) Smith massager
(U,M, T, S) for diag(A, In), and returns a matrix B as in (5.15). The running time of the
procedure is O(nωM(log n+ log ||A||).

Proof. It is enough to prove the claim for m = n. We have that

B =

[
A AMS−1

U (T + UM)S−1

]
.

63

The cost-dominating operation is the product UM ∈ Zn×n.

Recall that (detS) | (detA) ≤ nn/2‖A‖n, and that the entries in row i of matrix U and in
column i of matrix M are reduced modulo Sii. Thus, the computation of the product UM
fits under the conditions of Lemma 2.9 for d = log(n1/2‖A‖), which proves our claim.

Lemma 5.21. The reduced index-(0,m + r) massager of Theorem 5.16 can be computed
in time O(nωM(log n+ log ||A||)).

Proof. The only nontrivial computation of Theorem 5.16 is the product U ′M ∈ Zr×m, and
the required complexity can be achieved by the same arguments as in Lemma 5.20.

Theorem 5.22. The running time of the Algorithm SmithMassager shown in Figure 5.2
is

O(nω B(log n+ log ||A||) (log n)2).

Proof. Phase 1(a) is done in time

O(nωM(log n+ log ||A||))

by Lemma 2.1 and phase 1(b) in time

O(nω B(log n+ log ||A||) log n)

using the Monte Carlo approach of Eberly et al. (2000, Theorem 2.1) combined with the
fast linear system solving of Theorem 2.5 and rational number reconstruction (von zur
Gathen and Gerhard, 2013, Section 5.10). Phase 2 consists of O(log n) iterations of the
IndexMassager algorithm. Since matrix U is always reduced row modulo S, the average of
the lengths of the rows of U , and consequently of B, is O(log n+ log ||A||). Hence, phase 2
requires time

O(nω B(log n+ log ||A||)(log n)2).

Finally, according to Pauderis and Storjohann (2012, Section 4), the unimodularity check
in phase 3 can be performed in time

O(nωM(log n+ log ||A||) log n).

Remark 5.23 (Smith massager for a skewed matrix). Theorem 4.13 and Corollary 4.14
from Section 4.4 show that the Smith massager of any partial linearization of A will in-
clude the Smith massager of A. Therefore, Theorem 5.22 can have cost which depends
on the average bitlength d of A and not the bitlength of the largest entry. The average
bitlength d can assume any of the three definitions given by Theorem 3.7, Corollary 3.9
and Corollary 3.10.

64

Chapter 6

Smith multipliers algorithm

In this chapter, given a nonsingular matrix A ∈ Zn×n, we present a Las Vegas random-
ized algorithm for efficiently computing its Smith form S ∈ Zn×n along with unimodular
matrices U, V ∈ Zn×n such that

AV = US.

The algorithm’s complexity will match the complexity of the algorithm in Chapter 5 which
was intended to just compute the Smith form, namely, we can compute S, U, V with

O(nω B(log n+ log ‖A‖)(log n)2)

bit operations.

Our plan is to solve our Smith form with multipliers problem by converting a reduced
Smith massager M into a unimodular Smith massager V . To do this we suggest to use the
following steps.

1. Pick a random matrix R ∈ Zn×n where each entry is chosen independently and
uniformly from Z/(λ) for some λ ∈ O(n‖A‖).

2. Perturb the massager by R scaled with S, and let B := M +RS.

3. Compute the lower triangular row Hermite form H ∈ Zn×n of B.

4. The matrix V := BH−1 will be a unimodular Smith massager.

All the arguments that we need to prove that our proposed process is correct are in Sec-
tion 4.3. This chapter is devoted to establishing the efficiency of the method. We begin
by illustrating our algorithm using the following example.

65

Example 6.1. Let

A :=



1 0 0 0 0 0 0
1 1 1 1 1 1 1
1 2 4 1 2 4 1
1 3 2 6 4 5 1
1 4 2 1 4 2 1
1 5 4 6 2 3 1
1 6 1 6 1 6 1


.

Algorithm SmithMassager from Section 5.4 then returns the Smith form and Smith mas-
sager

S :=



1
1

1
1

2
8

80


, M :=



0 0 0
0 2 35
1 5 65
1 4 38
0 1 5
1 2 55
1 2 42


.

We shall always take the matrix M column modulo S.

Pick a random matrix

R :=



0 0 1 1 1 1 1
1 1 0 0 1 0 1
0 0 0 0 0 0 0
1 1 1 1 0 0 0
0 1 0 1 0 1 0
0 1 1 1 1 1 0
1 1 0 0 1 1 0


,

where each entry is chosen independently and uniformly from a set of λ ∈ O(n‖A‖) con-
secutive integers. (For the example, we let λ := 2.)

By perturbing M by the random choice of R post-multiplied with S, we obtain

B := M +RS =



0 0 1 1 2 8 80
1 1 0 0 3 0 105
0 0 0 0 1 5 45
1 1 1 1 1 0 58
0 1 0 1 0 9 25
0 1 1 1 2 8 45
1 1 0 0 3 10 42


.

66

Computing the lower triangular row Hermite form of the random matrix B, gives

H :=



1286
1106 1
441 1
839 1
669 1
1125 1
546 1


.

Our aim is for H to have only the first diagonal entry non-trivial. If B is not left equivalent
to such a matrix H, then the algorithm fails.

To obtain a unimodular Smith massager, we then simply extract H from B by post-
multiplying with H−1.

V := BH−1 =



−43 0 1 1 2 8 80
−47 1 0 0 3 0 105
−24 0 0 0 1 5 45
−27 1 1 1 1 0 58
−20 1 0 1 0 9 25
−29 1 1 1 2 8 45
−29 1 0 0 3 10 42


.

By construction, the matrix V is integral and unimodular.

The fact that H has only one non-trivial column allows us to easily establish a nice
bound on the size of matrix V . Notice that the columns of V have the same bitlength as
the columns of B except for only the first column. In addition, the bitlength of the columns
of B equals the bitlength of the columns of the Smith massager M plus the bitlength of λ.

Finally, all the operations applied to M are included in Lemma 4.3, and so V is still a
valid Smith massager for A. This makes the matrix

U := AV S−1 =



−43 0 1 1 1 1 1
−219 5 3 4 6 5 5
−445 10 6 8 12 11 10
−648 19 12 16 16 13 15
−473 12 4 8 12 10 11
−692 17 10 12 18 10 17
−734 20 13 14 21 10 18


67

also integral and unimodular. By construction, the two unimodular matrices V, U ∈ Zn×n
satisfy AV = US.

Section 6.1 establishes that the Hermite form of a randomly perturbed massager is
trivial with high probability. Section 6.2 shows that we can efficiently certify if the Hermite
form of a matrix is trivial and, if so, return it. Section 6.3 gives the exact algorithm to
compute the Smith multiplier matrices. Finally, in Section 6.4 we show how we can obtain
an outer product adjoint formula given the Smith multiplier matrices. An outer product
adjoint formula is useful, for example, in computing fast the proper fractional part of a
linear system solution.

6.1 Random perturbations of Smith massagers

Let A ∈ Zn×n be nonsingular with Smith form S. In this section, we show how to perturb
a Smith massager M for A into a unimodular Smith massager V . The first step will be to
obtain a Smith massager B := M+RS that is left equivalent (over Z) to a lower triangular
row Hermite form with the shape

| detB|
∗ 1
∗ 1
...

. . .

∗ 1

 ∈ Zn×n. (6.1)

The property that the last n − 1 diagonal entries of B are equal to 1 coincides with the
property that the last n − 1 columns of B mod p are linearly independent over Z/(p) for
all primes p.

Our approach is inspired by and follows that of Eberly et al. (2000, Section 6), where
the following general result is established: for λ ≥ 2, a matrix R ∈ Zn×n with entries
chosen uniformly and randomly from [0, λ− 1] will have an expected number of O(logλ n)
nontrivial invariant factors. Since our purpose here is not to establish a result for arbitrary
λ, we can improve the probability of success by first starting with a Smith massager for
2A, and then by choosing λ to be a multiple of 105 = 3× 5× 7.

Theorem 6.2. Let A ∈ Zn×n be nonsingular with Smith form S. Let M be a reduced
Smith massager for 2A. For any R ∈ Zn×n,

68

(i) the matrix B = M + 2RS is a Smith massager for A, and

(ii) if entries in R are chosen chosen uniformly and randomly from [0, λ− 1], where

λ = 105 max(n,
⌈
(det 2S)1/n

⌉
),

then the probability that there exists a prime p such that the last n − 1 columns of
B mod p are linearly dependent over Z/(p) is less than 1/2.

Part (i) of Theorem 6.2 follows directly from Proposition 4.8, so it remains only to
prove part (ii). This will be done using a sequence of lemmas. For the rest of this section,
we let A, S, M , R, λ and B = M + 2RS be as defined in Theorem 6.2.

We start by defining a set of probabilistic events that will facilitate the proofs in this
section. For a prime p and 1 ≤ m ≤ n − 1, let Deppm denote the event that the last m
columns of B are linearly dependent modulo p. To complete the proof of Theorem 6.2 we
show that Pr[∨pDeppn−1] < 0.5, where ∨p means ranging over all primes. Following Eberly
et al. (2000, Section 6), we will separately consider the small primes p < λ, and the large
primes p ≥ λ. We begin with some lemmas that hold for all primes p.

Lemma 6.3. For any prime p we have

Pr[Depp1] ≤
(

1

λ

⌈
λ

p

⌉)n
, (6.2)

and for any 2 ≤ m ≤ n− 1,

Pr[Deppm | ¬Dep
p
m−1] ≤

(
1

λ

⌈
λ

p

⌉)n−m+1

. (6.3)

Proof. We have Depp1 precisely when the last column of B is zero modulo p. By Lemma 4.10,
for any prime p that divides 2sn we have Pr[Depp1] = 0. For a prime p that does not divide
2sn, Depp1 is equivalent to the vector

(2sn)−1M1..n,n

fixed

+R1..n,n mod p (6.4)

being zero modulo p. Each random entry Ri,n is equal to −(2sn)−1Mi,n modulo p with
probability at most

1

λ

⌈
λ

p

⌉
.

69

The bound (6.2) now follows by noting that vector in (6.4) has n entries.

Now consider the case 2 ≤ m ≤ n − 1. By Lemma 4.10, we have that Pr[Deppm] = 0
for any prime p that divides 2sn−m+1. Assume henceforth that p does not divide 2sn−m+1.
Given ¬Deppm−1, there is an (m− 1)× (m− 1) submatrix D in the last m− 1 columns of B
that is nonsingular modulo p. Assume, without loss of generality, up to a row permutation
of B, that D is the trailing (m − 1) × (m − 1) submatrix of B. Decompose the last m
columns of B as follows: [

v C
w D

]
∈ Zn×m.

Then C and D are fixed at this point and vectors v and w still depend on the random
choice of column n−m+ 1 of R. Fix the choice of w also. Note that[

In−m+1 −CD−1

D−1

] [
v C
w D

]
=

[
a
∗ Im−1

]
mod p.

Then Deppm is equivalent to the vector

(2sn−m+1)−1a = (2sn−m+1)−1M1..n−m+1,n−m+1 − CD−1w

fixed

+R1..n−m+1,n−m+1 mod p

being zero modulo p. By a similar argument as before, the probability of this happening
is bounded by (6.3).

The next lemma follows simply from the union bound on the set of events for 1 ≤ i ≤
n−1 that happen when the ith column from the end is the first that is linearly dependent.

Lemma 6.4. For any prime p we have

Pr[Deppn−1] ≤ Pr[Depp1] +
n−1∑
i=2

Pr[Deppi | ¬Dep
p
i−1].

6.1.1 Small primes

We first deal with the specific small primes {3, 5, 7}. Notice that from Proposition 4.8, we
know that Pr[Dep2

n−1] = 0.

Lemma 6.5. Pr[∨p∈{3,5,7}Deppn−1] < 0.23.

70

Proof. We exploit the fact that λ is a multiple of 105 = 3× 5× 7. Let p ∈ {3, 5, 7}. Since
p | λ, the bound of Lemma 6.3 simplifies to

Pr[Deppm | ¬Dep
p
m−1] ≤

(
1

p

)n−m+1

,

and Lemma 6.4 gives

Pr[Deppn−1] ≤
n−1∑
i=1

(
1

p

)i+1

<
1

p

∞∑
i=1

(
1

p

)i
=

1

p(p− 1)
. (6.5)

Since the events Dep3
n−1, Dep5

n−1 and Dep7
n−1 are independent,

Pr[∨p∈{3,5,7}Deppn−1] = 1−
∏

p∈{3,5,7}

(1− Pr[Deppn−1]). (6.6)

The result now follows by bounding from above the probabilities on the right hand size
of (6.6) using (6.5).

Next we handle the small primes in the range 7 < p < λ.

Lemma 6.6. Pr[∨7<p<λDep
p
n−1] < 0.23

Proof. Let 7 < p < λ. Since p < λ,

1

λ

⌈
λ

p

⌉
<

1

λ

(
λ

p
+ 1

)
=

1

p
+

1

λ
<

2

p
=

1

p/2
,

and the bound of Lemma 6.3 simplifies to

Pr[Deppm | ¬Dep
p
m−1] ≤

(
1

p/2

)n−m+1

. (6.7)

Lemma 6.4 together with (6.7) gives

Pr[Deppn−1] ≤ 1

(p/2)(p/2− 1)
<

1

((p− 1)/2)2
. (6.8)

71

Using the union bound and then (6.8) gives

Pr[∨7<p<λDep
p
n−1] ≤

∑
7<p<λ

Pr[Deppn−1]

<
∑

7<p<λ

1

((p− 1)/2)2

<
∑

x≥11, odd

1

((x− 1)/2)2

=
∑
x≥5

1

x2

= ζ(2)−
4∑

x=1

1

x2

=
π2

6
− 205

144
< 0.23.

6.1.2 Large primes

Consider now the large primes p ≥ λ. Although it follows from Lemmas 6.3 and 6.4 that
Pr[Deppn−1] ≤ 1/(λ(λ − 1)) for any particular prime p ≥ λ, this doesn’t help us to bound
Pr[∨p≥λDeppn−1] using the union bound since there exist an infinite number of such primes.
Instead, we follow the approach of Eberly et al. (2000, Section 6) and show that we only
need to consider those primes which divide some necessarily nonzero minors of B.

Lemma 6.7. Any minor of B is bounded in magnitude by λ2.5n.

Proof. It will suffice to bound | detB| using Hadamard’s inequality, which states that
| detB| is bounded by the product of the Euclidean norms of the columns of B. Recall
that B = M + 2RS where M = M cmod 2S and entries in R are chosen from [0, λ − 1],

72

with λ ≥ max((det 2S)1/n, n). Then

| detB| ≤
n∏
j=1

‖B1...n,j‖2

=
n∏
j=1

‖M1...n,j + 2sjR1...n,j‖2

≤
n∏
j=1

n1/2(2sj − 1 + 2sj(λ− 1))

< (det 2S)nn/2λn

≤ λ2.5n.

Next we develop the following analogue of Lemma 6.3.

Lemma 6.8. We have

Pr[∨p≥λDepp1] ≤ 2.53n

(
1

λ

)n−1

and for any 2 ≤ m ≤ n− 1,

Pr[∨p≥λDeppm | ¬ ∨p≥λ Dep
p
m−1] ≤ 2.53n

(
1

λ

)n−m
.

Proof. By Proposition 4.8, B = M + R(2S) is nonsingular modulo 2, independent of the
choice of R. Thus, up to an initial row permutation of M , we may assume that the trailing
j × j submatrix of B mod 2 is nonsingular over Z/(2) for every 1 ≤ j ≤ n.

First consider the case for m = 1. Decompose the last column of B as[
v
w

]
∈ Zn×1,

where v ∈ Z(n−1)×1 and w ∈ Z. Fix the choice of w, that is, fix the last entry in the last
column of R. By assumption, w 6= 0 mod 2 and thus w 6= 0 over Z. For every prime p - w
we have Pr[Depp1] = 0, and since there are n− 1 entries in v that are still free to be chosen,
the union bound gives

Pr[∨p≥λDepp1] = Pr[∨p≥λ,p|wDepp1]

≤ (logλ |w|)
(

1

λ

)n−1

.

73

Lemma 6.7 gives logλ |w| ≤ 2.5n < 2.53n, establishing the first part of the lemma.

Now consider 2 ≤ m ≤ n− 1. Decompose the last m columns of B as follows:[
v C
w D

]
∈ Zn×m,

where D ∈ Z(m−1)×(m−1). Then C and D are fixed at this point and vectors v and w still
depend on the random choice of column n−m+ 1 of R. Let d = detD, which we know to
be nonzero. There are at most logλ |d| primes p ≥ λ that divide d. Using Lemma 6.3 with
the union bound gives

∑
p≥λ,p|d

Pr[Deppm | ¬Dep
p
m−1] ≤ (logλ |d|)

(
1

λ

)n−m+1

. (6.9)

Next we consider the primes p - d. Note that

[
dIn−m+1 −dCD−1

dD−1

] [
v C
w D

]
=


a1
...

an−m
an−m+1

∗ dIm−1

 ∈ Zn×m,

where, by Cramer’s rule, an−m+1 is the determinant of the trailing m×m submatrix of B.
Since p - d, event Deppm holds if and only if the vector

a1
...

an−m
an−m+1

 = d


v1
...

vn−m
vn−m+1

− dCD−1w. (6.10)

is zero modulo p. Fix the choice of w and vn−m+1. Then an−m+1 6= 0 is also fixed, and
for every prime p - an−m+1 we have Pr[Deppm | ¬Dep

p
m−1] = 0. Since there can be at most

logλ |an−m+1| primes p ≥ λ that divide an−m+1, and since v1, . . . , vn−m are still free to be
chosen, we have

∑
p≥λ,p-d

Pr[Deppm | ¬Dep
p
m−1] ≤ (logλ |an−m+1|)

(
1

λ

)n−m
. (6.11)

74

Combining the bounds (6.9) and (6.11) and using the estimate of Lemma 6.7 for |d| and
|an−m+1| we obtain

Pr[∨p≥λDeppm | ¬ ∨p≥λ Dep
p
m−1] ≤ 2.5n

((
1

λ

)n−m+1

+

(
1

λ

)n−m)

= 2.5n

(
1

λ

)n−m(
1

λ
+ 1

)
< 2.53n

(
1

λ

)n−m
. (6.12)

Here, (6.12) follows using λ ≥ 105.

Lemma 6.9. Pr[∨p≥λDeppn−1] < 0.03.

Proof. Analogous to Lemma 6.4, we have

Pr[∨p≥λDeppn−1] ≤ Pr[∨p≥λDepp1] +
n−1∑
i=2

Pr[∨p≥λDeppi | ¬ ∨p≥λ Dep
p
i−1].

Using the estimates of Lemma 6.8 now gives

Pr[∨p≥λDeppn−1] ≤ 2.53n

(
1

λ

)n−1

+ 2.53n
n−1∑
i=2

(
1

λ

)n−i
< 2.53n

(
1

λ− 1

)
.

Simplifying the last bound using the assumption λ ≥ 105n gives the result.

Proof of Theorem 6.2. The probability defined by Theorem 6.2 is bounded by the sum of
probabilities in Lemmas 6.5, 6.6 and 6.9, that is,

Pr[Depn−1] ≤ Pr[∨p∈{3,5,7}Deppn−1] + Pr[∨7<p<λDep
p
n−1] + Pr[∨p≥λDeppn−1]

< 0.23 + 0.23 + 0.03

< 0.5.

75

6.2 Almost trivial Hermite form certification

In this section, we will see how we can verify whether the last n− 1 columns of the matrix
B ∈ Zn×n from Theorem 6.2 are linearly independent for any prime p ∈ Z. As we already
mentioned, this means that B is left equivalent to a lower triangular row Hermite form
with the shape

H =


| detB|
∗ 1
...

. . .

∗ 1

 ∈ Zn×n. (6.13)

Our main tool will once more be the Smith form and a Smith massager for B.

The following theorem is a corollary of Theorem 4.7.

Theorem 6.10. Let A ∈ Zn×n be nonsingular with Smith form S and a Smith massager
M . If H ∈ Zn×n is a matrix in Hermite form which satisfies that detH = detS and

HM ≡ 0 cmodS,

then H is the row Hermite form of A.

Proof. The statement follows from Theorem 4.7 and the uniqueness of the Hermite form
of A.

We plan to use the description of Theorem 6.10 here in order to check whether the
lower triangular row Hermite form H of the matrix B has n − 1 trailing trivial columns,
and if yes, then also compute the first non-trivial one. For this section, matrices S and M
refer to the Smith form and Smith massager of matrix B.

First of all, we need to ensure that the Smith form S = diag(s1, . . . , sn) of B also
has only one non-trivial invariant factor. If otherwise, then H does not have the desired
structure. Let h1, h2, . . . , hn be the diagonal entries of H. The product h2 · · ·hn equals the
gcd of all the (n− 1)× (n− 1) minors in the last n− 1 columns of B. On the other hand,
the product s1 · · · sn−1 equals the gcd of all the (n− 1)× (n− 1) minors of B, which means
that (s1 · · · sn−1) | (h2 · · ·hn). So, if s1 · · · sn−1 6= 1, then h2 · · ·hn 6= 1.

Now, assuming that S = diag(1, . . . , 1, sn), we are looking to see whether there exists
a vector h̄ ∈ Z(n−1)×1 such that[

sn
h̄ In−1

]
M1..n,n ≡ 0 mod sn,

76

which is equivalent to
M1,nh̄+M2..n,n ≡ 0 mod sn. (6.14)

Since the Hermite form H must be unique, equation (6.14) must have exactly one solution,
which is true if and only if gcd(M1,n, sn) = 1.

The algorithm follows in Figure 6.1.

TrivialLowerHermiteForm(B)
Input: A nonsingular matrix B ∈ Zn×n.
Output: The lower triangular Hermite form H ∈ Zn×n of B if only the first
column is non-trivial, otherwise Not Trivial.
Note: Fail might be returned with probability less than 1/8.

1. [Compute a Smith massager for B.]
(if SmithMassager fails then return Fail)
S,M := SmithMassager(B)

2. [Certify that B is left equivalent to a matrix H as in (6.13).]
if Sn−1,n−1 6= 1 then return Not Trivial
if gcd(Sn,n,M1,n) 6= 1 then return Not Trivial

3. [Compute matrix H and return.]

H :=

[
h1

h̄ In−1

]
where h1 := Sn,n and h̄ := Rem(−M−1

1,nM2..n,n, Sn,n).
return H

Figure 6.1: Subroutine TrivialLowerHermiteForm

Theorem 6.11. Subroutine TrivialLowerHermiteForm is correct and runs in

O(nω B(d+ log n) (log n)2),

where d is the average bitlength of the columns of B ∈ Zn×n.

Proof. The correctness follows from the preceding discussion.

The probability of the algorithm failing follows from Theorem 5.19 and running the
first step (at most) three times.

77

Regarding the time complexity, the computation of the Smith form S ∈ Zn×n of B
along with a Smith massager M ∈ Zn×n dominates the rest of the operations. Let DB

be the partially linearized version of matrix B as specified by Theorem 3.7. Then, by
Theorem 4.13, we can obtain S,M from the Smith form and a Smith massager for DB

without any extra computation. Therefore, the complexity of step 1 is bounded by the
complexity of computing a Smith massager for DB, which is O(nω B(d+ log n) (log n)2) by
Theorem 5.22.

6.3 A Las Vegas algorithm for the Smith form with

multipliers

In this section, we combine the results established in Chapters 4, 5, and 6 to develop the
following algorithm. We show that there exists a Las Vegas randomized algorithm that
computes the Smith form S ∈ Zn×n of a nonsingular A ∈ Zn×n along with two unimodular
matrices V, U ∈ Zn×n such that

AV = US,

using
O(nω B(log n+ log ‖A‖) (log n)2)

bit operations. The algorithm will return the correct output with probability at least 1/4
or Fail otherwise.

The algorithm follows in Figure 6.2.

Theorem 6.12. Algorithm SmithFormMultipliers is correct and runs in

O(nω B(log n+ log ||A||) (log n)2).

Proof. Step 1 of the algorithm computes the Smith form and a Smith massager for matrix
2A. From the Smith form of matrix 2A we can trivially obtain the Smith form S of A.
Furthermore, a Smith massager M for 2A is also a Smith massager for A by Lemma 4.9.
Step 1 runs in O(nω B(log n + log ‖A‖) (log n)2) by Theorem 5.22, and it will return Fail
with probability at most 1/8 with three applications of Theorem 5.19.

In step 2, we are perturbing the Smith massager M by a random matrix R ∈ Zn×n
multiplied with the Smith form 2S. By Proposition 4.8, matrix B = M + R(2S) is
also a Smith massager for A, and it is nonsingular. Moreover, by Theorem 6.2, the last
n− 1 columns of B are linearly independent over Z/(p) for every prime p with probability

78

SmithFormMultipliers(A)
Input: A nonsingular matrix A ∈ Zn×n.
Output: The Smith form S ∈ Zn×n of A and two unimodular matrices U, V ∈
Zn×n such that AV = US.
Note: Fail will be returned with probability less than 3/4.

1. [Compute the Smith form and a Smith massager for 2A.]
(If SmithMassager fails, return Fail)
(2S,M) := SmithMassager(2A)

2. [Perturb the Smith massager M by a random matrix.]
Pick a uniformly random matrix R ∈ Z/(λ)n×n for
λ := 105 max(n,

⌈
(det 2S)1/n

⌉
) as in Theorem 6.2.

B := M +R(2S)

3. [Certify that B is left equivalent to a matrix H as in (6.13) and return it.]
(If TrivialLowerHermiteForm fails, return Fail)
H := TrivialLowerHermiteForm(B)
if H is Not Trivial then return Fail

4. [Compute a unimodular Smith massager.]
V := BH−1

5. [Compute matrix U and return.]
U := AV S−1

return (S, V, U)

Figure 6.2: Algorithm SmithFormMultipliers

greater than 1/2. As we already mentioned in Section 6.1, this is equivalent to B being
left equivalent to a matrix

H =

[
h1

h̄ In−1

]
, (6.15)

where h1 = | detB|. The runtime of step 2 is dominated by the claimed complexity.

Then, Subroutine TrivialLowerHermiteForm called in step 3 certifies that B has the
desired structure and returns matrix H. The complexity of the subroutine depends on the

79

average length of the columns of B, for which

1

n

n∑
j=1

length(B1..n,j) ≤
1

n

(
log

(
n∏
j=1

‖B1..n,j‖

)
+ n

)
≤ 2.5 log λ+ 1

as per Lemma 6.7. Since λ ∈ O(n‖A‖), the complexity of step 3 is also O(nω B(log n +
log ‖A‖) (log n)2).

Subroutine TrivialLowerHermiteForm itself might return Fail with probability at
most 1/8. In addition, if it does not fail, the output of the subroutine will be Not
Trivial with probability at most 1/2 by Theorem 6.2. This makes the probability of
success of Algorithm SmithFormMultipliers to be at least 1 − (1/8 + 1/2 + 1/8) = 1/4
as claimed.

Now, since we know that B ≡L H, the matrix V := BH−1 in step 4 must be integral
and unimodular. The evaluation of the product

BH−1 = B

[
1
−h̄ In−1

] [
1/h1

In−1

]
is covered exactly under Lemma 2.8 and can be computed, for d = n(2.5 log λ + 1), in
time O(nωM(log n + log ‖A‖)). Furthermore, by Lemma 4.12, V is a unimodular Smith
massager for A.

Finally, by the properties of the Smith massager, matrix U := AV S−1 is integral,
and unimodular since V is unimodular. By Lemma 2.10, matrix U can be computed in
O(nωM(log n+ log ‖A‖)) bit operations.

6.3.1 Sizes of V and U

It will be important to have good bounds on the magnitude of entries in matrices V and
U , in order to facilitate the complexity analysis of operations that may use V and U in
general.

Lemma 6.13. Algorithm SmithFormMultipliers returns unimodular Smith multiplier
matrices V, U ∈ Zn×n which satisfy that:

• ‖V1..n,j‖ ≤ cn‖A‖ ·
{
| detA|+ n if j = 1

sj otherwise
,

80

• ‖U1..n,j‖ ≤ cn2‖A‖2 ·
{
| detA|+ n if j = 1

1 otherwise
.

for c = 420.

Proof. First of all, for λ := 105 max(n,
⌈
(det 2S)1/n

⌉
), we have, by Hadamard’s bound,

that λ ≤ 210n‖A‖.
By construction, we know that ‖B1..n,j‖ ≤ 2λsj for every j = 1, . . . , n. Then, multiply-

ing B with H−1 alters only the first column of B. The magnitude of the first column of
V = BH−1 satisfies that

‖V1..n,1‖ ≤

(
2λh1

n∑
j=1

sj

)
/h1 ≤ 2λ(| detA|+ n).

Furthermore, since U = AV S−1, the magnitude of every column of U is bounded by

‖U1..n,j‖ ≤ n‖A‖‖V1..n,j‖/sj.

By replacing λ with 210n‖A‖, the claimed bounds follow.

Corollary 6.14. The average bitlength of the columns of both V and U is bounded by
O(log n+ log ‖A‖).

6.4 Computing an outer product adjoint formula

In this section, we mention an application of the Smith form with the multiplier matrices.
Let A ∈ Zn×n be nonsingular and assume that we have precomputed the Smith form S of
A, together with unimodular matrices U and V such that AV = US.

Let s := Sn,n be the largest invariant factor of A. As a tool to compute A−1, Storjohann
(2015) developed an algorithm to compute an outer product adjoint formula for A: a triple
of matrices (V̄ , S, Ū) such that

Rem(sA−1, s) = Rem(V̄ (sS−1)Ū , s).

Moreover, V̄ = (V̄ cmodS) and Ū = (Ū rmodS). While a tight upper bound for the
number of bits required to represent Rem(sA−1, s) explicitly is O(n3(log n+ log ‖A‖)), we
note that the triple (V̄ , S, Ū) requires only O(n2(log n+ log ‖A‖)) bits.

81

Example 6.15. Matrix

A =


−6 3 −13 −15
−4 19 12 −1
−4 10 −6 17
−26 −13 1 −2


has Smith form S = diag(s1, s2, s3, s4) = diag(1, 1, 9, 29088) and

s4A
−1 =


−271 −402 −373 −937
580 920 524 −356
−1074 804 −870 258
−784 −352 1008 80

 .
An outer product adjoint formula for A is given by (V̄ , S, Ū) where

V̄ =


0 0 7 805
0 0 5 23668
0 0 3 6
0 0 4 10224

 and Ū =


0 0 0 0
0 0 0 0
2 2 0 2

20829 1750 28943 16203

 .
For this particular A, which is well conditioned, multiplying out V̄ (s4S

−1)Ū and reducing
entries in the symmetric range modulo s4 gives s4A

−1. Because s1 = s2 = 1 the first two
columns of V and first two rows of U can be omitted, giving

7 805
5 23668
3 6
4 10224

[3232
1

] [
2 2 0 2

20829 1750 28943 16203

]
≡ s4A

−1 mod s4.

There is a close relationship between an outer product adjoint formula and the uni-
modular Smith multipliers U and V .

Lemma 6.16. Let U, V ∈ Zn×n be unimodular matrices such that AV = US. Then, the
triple (V cmodS, S, U−1 rmodS) gives an outer product adjoint formula for A.

Proof. We have that sA−1 = V (sS−1)U−1. Furthermore, V (sS−1) = (V cmodS)(sS−1) mod
s and (sS−1)U−1 = (sS−1)(U−1 rmodS) mod s, and so

Rem(sA−1, s) = Rem((V cmodS)(sS−1)(U−1 rmodS), s).

82

Storjohann (2015) gives a randomized Las Vegas algorithm to compute an outer product
adjoint formula in

O(n2(log n)B(n(log n+ log ‖A‖)) (6.16)

plus
O(n3 max(log n, log ‖A−1‖)B(log n+ log ‖A‖)) (6.17)

bit operations. Note that (6.16) implies that fast (pseudo-linear) integer arithmetic needs
to be used to achieve a cost that is softly cubic in n, while (6.17) reveals a sensitivity to the
condition number of A. Indeed, we may have log ‖A−1‖ ∈ Ω(n), in which case the upper
bound in (6.17) becomes quartic in n. It was left as an open question if an outer product
adjoint formula can be computed in time (nω log ‖A‖)1+o(1) bit operations. Here, we can
resolve this question by using the approach of Lemma 6.16.

Theorem 6.17. Assume we have the output (S, V, U) of Algorithm SmithFormMultipliers(A).
Then, an outer product adjoint formula for A can be computed in time O(nωM(log n +
log ‖A‖) log n).

Proof. Let V̄ := V cmodS. This can be done in time O(n
∑n

i=1 M(length(V1...n,i)). By
Corollary 6.14,

∑n
i=1 length(V1...n,i) ∈ O(n(log n + log ‖A‖)), which shows that the matrix

V̄ can be computed in time O(nM(n(log n+ log ‖A‖)).

It remains to compute Ū := U−1 rmodS. Let D ∈ Zm×m be the partial column
linearization of U as in Theorem 3.7. It will be that m ∈ O(n), and again by Corollary 6.14,
log ‖D‖ ∈ O(log n + log ‖A‖). Therefore, by Lemma 2.3, we can compute a straight line
formula for D−1 in time O(nωM(log n + log ‖A‖) log n). The formula consists of O(log n)
integer matrices of dimension m and bitlength in O(log n+ log ‖A‖).

Finally, we can compute U−1 rmodS by evaluating D−1 rmod diag(S, Im−n) using the
straight line formula. The evaluation of the formula requires O(log n) matrix multiplica-
tions where the first operand is an m×m integer matrix reduced rmod diag(S, I) and the
second operand is an m×m integer matrix with bitlength in O(log n+log ‖A‖). This type of
matrix multiplication falls exactly under Lemma 2.10 by simply transposing the operation.
Therefore, we can compute U−1 rmodS in time O(nωM(log n+ log ‖A‖) log n).

An application of the outer product adjoint formula is to compute the proper fractional
part of a linear system solution. Let b ∈ Zn×1 satisfy log ||b|| ∈ (n log ||A||)1+o(1). Then

A−1b =

∈ Zn︷ ︸︸ ︷
A−1b− Rem(sA−1b, s)/s+Rem(sA−1b, s)/s,

83

where Rem(sA−1b, s)/s is a vector of proper fractions. By Lemma 2.5, A−1b ∈ Qn×1 can
be computed in a Las Vegas fashion in (nω log ||A||)1+o(1) bit operations, or O(n3 log ||A||)
bit operations if ω = 3. If an outer product adjoint formula for A is known, then the
proper fractional part of A−1b can be computed in only (n2 log ||A||)1+o(1) bit operations.
The following result is a corollary of (Storjohann, 2015, Lemma 4.11).

Lemma 6.18. Assume we have an outer product adjoint formula (V̄ , S, Ū) for a nonsin-
gular A ∈ Zn×n, and let s = Sn,n. Given a vector b ∈ Zn×1 with log ‖b‖ ∈ O(log s), we can
compute Rem(sA−1b, s) in time O(nM(log s)).

Example 6.19. Let A ∈ Zn×n be the matrix of Example 6.15 and

b =


25
94
12
−2

 .
Then

V̄ (29088S−1)Ūb ≡


11011

20716

8682

17424

 mod 29088.

Indeed, we have

A−1b =


−2

3

1

−2

+


11011

20716

8682

17424

 1

29088
.

Applying Lemma 6.18 with b = In gives the following corollary of Theorems 6.12
and 6.17.

Corollary 6.20. Given a nonsingular integer input matrix A ∈ Zn×n, the largest invariant
factor s of A, together with Rem(sA−1, s), can be computed in a Las Vegas fashion in

O(nω B(log n+ log ||A||)(log n)2 + n2 M(log s))

bit operations. This is bounded by (n3 log ||A||)1+o(1) bit operations.

84

Chapter 7

Deterministic linear system solving

In this chapter, we present a deterministic reduction to matrix multiplication for the prob-
lem of linear system solving: given as input a nonsingular A ∈ Zn×n and b ∈ Zn×1, compute
A−1b.

In Chapter 2, we saw that we can solve linear systems within our target complexity
using high-order lifting. The algorithm, however, was not deterministic, as we had to pick
a random lifting modulus X such that X ⊥ detA in a Las Vegas fashion. In this chapter,
we will show how we can derandomize this procedure at the expense of an extra log n factor
in the time complexity.

In addition, we will describe a more general cost model than the one used so far in the
thesis. We will express the asymptotic time complexity of the algorithm in terms of the
function MM(n, d) which bounds the cost to multiply together, modulo 2d, two n×n integer
matrices. So far we have used the slightly less general case that MM(n, d) ∈ O(nωM(d)).
But in this case, the algorithm will be given only in terms of matrix multiplications with
operand matrices that have dimension n and length of entries d ∈ O(log n+log ‖A‖) where
A ∈ Zn×n is the input matrix. Apart from the fact that the problem is reduced to just a
number of matrix multiplications, using the more general cost model allows the function
MM in the cost of the algorithm to be replaced by any reasonable matrix multiplication
cost function.

We design an algorithm that computes the minimal integer t such that all denominators
of the entries in 2tA−1 are relatively prime to 2. In this case, for an integer vector b having
entries with bitlength O(n) times as large as the bitlength of entries in A, our algorithm
also produces the 2-adic expansion of 2tA−1b up to a precision high enough so that A−1b
over Q can be recovered using rational number reconstruction. Both t and the 2-adic

85

expansion can be computed in

O(MM(n, log n+ log ||A||) · (log n+ loglog ||A||)(log n))

bit operations.

Our cost analysis will make the following regularity assumptions on MM(n, d): super-
quadricity in n (H2≤n

MM), super-linearity in d (H1≤d
MM), and at most quadratic in d (Hd≤2

MM).
Under these assumptions, our cost analysis is valid for any MM that satisfies MM(n, d) ∈
Ω(n2d) and MM(n, d) ∈ O(n3d2).

Our approach to derandomize integer linear solving is based on ideas from Gupta et al.
(2012) for polynomial matrices. Corresponding to any A there exists a 2-decomposition: a
tuple (P,H) of matrices where P is a permutation, H is a row Hermite form with powers
of 2 on the diagonal, and the matrix U := APH−1 is nonsingular with odd determinant.

Example 7.1. Assuming the permutation is already applied,

AP[
27 99 92
32 116 −124
195 −121 −8

]
=

U[
27 18 −19
32 21 −37
195 −79 −127

] H[
1 1 12

4 4
16

]
. (7.1)

The utility of this construction is that it replaces the linear system solution

A−1b

with two linear system solutions

y = U−1b and H−1y,

such that we can deterministically find a lifting modulus for U since 2 ⊥ detU and we
can exploit the structure of H to solve them. However, unlike the case when working with
polynomial entries, in the integer setting, we do not have good a priori bounds on the
magnitude of entries in U := APH−1.

As such, we will introduce the notion of a 2-massager. This is a tuple of matrices
(P, S,M) such that P is a permutation, S is in Smith form with powers of 2 on the diagonal,
and M is unit upper triangular with offdiagonal entries in each column of magnitude
strictly less than the corresponding diagonal entry of S. In addition, the matrix APMS−1

is nonsingular with odd determinant and satisfies ||APMS−1|| ≤ n||A||.

86

Example 7.2. For the matrix in (7.1) we have

AP[
27 99 92
32 116 −124
195 −121 −8

] M[
1 3 5

1 15
1

] S−1[
1

1/4
1/16

]
=

APMS−1[
27 45 107
32 53 111
195 116 −53

]
.

We will now properly define the more general cost model that we will follow in this
chapter along with extensions of some routines that we will need under the new model.
In Section 7.2, we will show how the derandomization approach of Gupta et al. (2012)
for polynomial matrices can be adapted to the integer case in order to compute a 2-
decomposition of A and defines the 2-massager along with a duality property between
2-massagers and 2-decompositions. Then, Section 7.3 shows how to compute a suitable
left equivalent triangular form of A up to a column permutation and over Z/(2d) for some
d ∈ Z>0. The main operations that we need to compute a 2-massager, along with a
complexity analysis, are given in Section 7.4. Finally, Section 7.5 gives the deterministic
algorithm for linear system solving.

7.1 A more general cost model

We assume that integers are stored using their binary representation. Thus, for any X a
power of two, we can deduce the X-adic representation of a positive integer without any
computation. The algorithms we propose in this chapter are designed to not require any
radix conversions.

We will give cost estimates using a function

MM(n, d) : (R≥0,R≥0)→ R≥0

which for any nonnegative integers n′ ≤ n and d′ ≤ d bounds the number of bit operations
required to multiply modulo 2d

′
two square matrices over Z/(2d′) of dimension n′. A

lower bound is MM(n, d) ∈ Ω(n2d) and, using an obvious block decomposition, we have
MM(cn, d) ∈ O(MM(n, d)) for any positive constant c.

Furthermore, we assume that MM satisfies the following regularity assumptions:

H1≤d
MM : kMM(n, d/k) ≤ MM(n, d) for all 1 ≤ k ≤ d

H2≤n
MM : k2 MM(n/k, d) ≤ MM(n, d) for all 1 ≤ k ≤ n

Hd≤2
MM : MM(n, kd) ≤ k2 MM(n, d) for all 1 ≤ k

87

The first two of these assumptions allow us to simplify the cost estimates of algorithms
that recurse on the precision d and dimension n, respectively. Also, many of the cost
estimates derived in susbsequent sections are of the form MM(n, d) for a d that satisfies
d ∈ O(log n+ log ‖A‖)) where A is the input matrix to the overall problem. In that case,
the third assumption gives that MM(n, d) ∈ O(MM(n, log(n||A||))).

7.1.1 Computational tools in terms of MM

We will need to make use of several computational tools in this chapter as well. For this
reason, we summarize them here so that their cost estimate is given in terms of the function
MM. We begin with some well known algorithms which reduce computations to matrix
multiplication, and later, we extend some of our results given in Chapter 2.

The first two results are needed only for matrices over Z/(2). The cost of the triangular
matrix inversion algorithm (Bunch and Hopcroft, 1974) follows the recurrence I(n) ≤
2I(n/2) +O(MM(n/2, 1)). Assuming H2≤n

MM , gives the following.

Lemma 7.3. If A ∈ Z/(2)n×n is unit upper triangular, then its inverse can be computed
in time O(MM(n, 1)).

For the next result we can use the LQUP-decomposition of Ibarra et al. (1982). For
an m × n matrix with m ≤ n, the algorithm recurses on m and has complexity following
T (m) ≤ 2T (m/2) + I(m) +O((n/m)MM(m, 1)). Again assuming H2≤n

MM , gives the following
for m = n.

Lemma 7.4. Given A ∈ Z/(2)n×n, the rank r of A together with a nonsingular U ∈
Z/(2)n×n and an n× n permutation matrix P such that UAP has its first r columns those
of In and its last n− r rows zero can be computed in time O(MM(n, 1) log n).

A matrix A ∈ Z/(2d)n×n is unimodular if its determinant is odd. In this case the inverse
of A, denoted by A−1, is the unique matrix from Z/(2d)n×n such that Rem(A−1A, 2d) = In.
Algebraic Newton iteration (von zur Gathen and Gerhard, 2013, Algorithm 9.3) gives the
following, assuming H1≤d

MM .

Lemma 7.5. Let A ∈ Z/(2d)n×n be unimodular. Assuming that Rem(A−1, 2) is known,
then Rem(A−1, 2d) can be computed in time O(MM(n, d)).

Moreover, we will extend the linear system solving routine supporting Theorem 2.5,
and the unbalanced to balanced multiplication reductions of Section 2.5 to equivalent
statements using the cost model of this section.

88

The following theorem is the equivalent of Theorem 2.5. In this chapter, we will avoid
the use of randomization by being able to always choose a power of 2 as lifting modulus,
or in other words, the input matrix for the solving will have odd determinant.

Theorem 7.6. Assume that we have a lifting modulus X as in Lemma 2.1. If entries
in B ∈ Zn×m are reduced modulo Xd and m × d ∈ O(n), then Rem(A−1B,Xd) can be
computed in time O(MM(n, log n+ log ‖A‖) log n).

The next lemma can be shown using the same technique as in Lemma 2.8. The difference
here is that we compute the product reduced modulo a given power of 2 and that we have
a matrix W in place of a vector.

Lemma 7.7. Let a matrix M ∈ Zn×m, a matrix W ∈ Zm×r and an integer k ∈ Z≥0.
Furthermore, assume that kr ∈ O(d) and

m∑
j=1

length(M1..n,j) ≤ d and length(W) ≤ d/r

for some d ∈ Z≥0. We can compute Rem(MW, 2k) in time O((n/m)MM(m, d/m+logm)).

Finally, Lemma 7.8 and Corollary 7.9 that follow are extensions of Lemma 2.9 and
Corollary 2.10 respectively. Note that we will not need Lemma 7.8 in this chapter, but we
give it for completeness.

Lemma 7.8. For matrices U,M ∈ Zn×n, assume that

n∑
i=1

length(Ui,1..n) ≤ nd and
n∑
j=1

length(M1..n,j) ≤ nd

for some d ∈ Z≥0. We can compute the product UM in time O(MM(n, d+ log n)).

Corollary 7.9. For matrices A,M ∈ Zn×n, assume that

length(A) ≤ d and
n∑
j=1

length(M1..n,j) ≤ nd

for some d ∈ Z≥0. We can compute the product AM in time O(MM(n, d+ log n)).

89

7.2 Triangular 2-Smith form inverse decomposition

In this section, we will describe how we can efficiently compute the inverse of a matrix in
triangular Smith form. We already discussed in the introduction that our motivation is
to derandomize linear system solving by decomposing the input matrix A into one matrix
with odd determinant and another which will be upper triangular with even determinant.

Subsection 7.2.1 illustrates how the derandomization approach of Gupta et al. (2012)
for polynomial matrices can be adapted to the integer case in order to compute a triangular
2-Smith form H of A, that is, an upper triangular matrix where the ith diagonal entry is
the largest power of 2 that divides the ith invariant factor of A and, also divides the ith
row of H. At the end of the subsection, we show with an example why the same technique
won’t work in the integer setting. Then, in Subsection 7.2.2, we define a new object, that
we call the 2-massager, which allows us to efficiently represent the inverse of H.

7.2.1 2-decompositions

As we have already mentioned, two matrices, in this case over Z/(2d), are said to be left
equivalent if one can be obtained from the other by premultiplying with a unimodular
matrix. The unimodular matrix represents a set of row operations converting one matrix
into the other. Corresponding to every A ∈ Z/(2d)n×n there is a permutation matrix P
such that Rem(AP, 2d) is left equivalent to a matrix

2e1 ∗ · · · ∗ ∗ · · · ∗
2e2 · · · ∗ ∗ · · · ∗

. . .
...

... · · · ∗
2er ∗ · · · ∗

 ∈ Z/(2d)n×n (7.2)

that is in triangular Smith form: e1 ≤ e2 ≤ · · · ≤ er and all entries in row i are divisible
by 2ei , 1 ≤ i ≤ r. The ei are unique.

The above discussion is for a matrix A over Z/(2d). Now let A ∈ Zn×n be a nonsingular
integer matrix. Then, the 2-Smith form of A is the matrix diag(2e1 , 2e2 , . . . , 2en) with 2ei

the largest power of two which divides the i’th invariant factor of the Smith form of A over
Z, 1 ≤ i ≤ n. Since 2en divides detA, and | detA| ≤ nn/2||A||n, the 2-Smith form of A over
Z can be recovered by computing a triangular Smith form of Rem(A,Xn+1) over Z/(Xn+1),

90

where X is the smallest power of two such that X ≥ n1/2||A||. For the remainder of this
section we will refer to the exponent of the modulus Xp as the “precision” p.

Gupta et al. (2012) show how one can compute a permutation matrix P such that
Rem(AP,Xn+1) is left equivalent (over Z/(Xn+1)) to a triangular Smith form H. (The
algorithms in (Gupta et al., 2012) were developed for polynomial matrices but the approach
carries over directly to integer matrices.) As mentioned previously, the precision n + 1 is
large enough to ensure that H will be as in (7.2) with r = n. The matrix U := APH−1 is
integral with 2 ⊥ detU . We refer to the pair of matrices (P,H) as a 2-decomposition of A
and note that A = UHP−1.

Working with precision n + 1 to compute (P,H) in one fell swoop is too expensive.
Instead, as we did in the Smith form algorithm in Chapter 5, Gupta et al. (2012) use the
observation that many of the initial invariant factors can be recovered using a considerably
lower precision. For any 0 ≤ m ≤ n, we can partition the invariant factors in the 2-Smith
form of A as follows:

diag(

first m︷ ︸︸ ︷
2e1 , 2e2 , . . . , 2em ,

next d(n−m)/2e︷ ︸︸ ︷
2em+1 , 2em+2 , . . . , 2e∗ ,

last b(n−m)/2c︷ ︸︸ ︷
2e∗ , 2e∗ , . . . , 2en)

Lemma 7.10. Let A ∈ Zn×n be nonsingular and 0 ≤ m < n. If X ∈ Z satisfies X ≥
n1/2||A|| then the 2-Smith form of A has at most b(n−m)/2c invariant factors ≥ X2n/(n−m).

An application of Lemma 7.10 with m = 0 states that precision 2 is sufficient to
compute a permutation P such that Rem(AP,X2) is left equivalent to a triangular Smith
form as in (7.2) with r ≥ dn/2e, that is, the first half of the invariant factors require only
constant precision. Next, the algorithm works at precision d2n/(n− r)e to recover at least
d(n − r)/2e ≥ n/4 of the remaining n − r invariant factors, and so on. At each step, the
algorithm exploits our usual dimension × precision ≤ invariant compromise: the number
of remaining invariant factors times the precision is Θ(n).

At the beginning of an iteration, the algorithm has already computed a permutation P1

such that for the previous working precision p, the matrix Rem(AP1, X
p) is left equivalent

(over Z/(Xp)) to a triangular Smith form as in (7.2) with the first m rows nonzero. (At
the beginning of the first iteration r = 0.) Notice that, in contrast with the Smith form
algorithm, in this case, the invariant factors are computed iteratively starting from the
beginning and not the end. Let

H1 =

[
E1

In−m

]
91

be the matrix in (7.2) but with last n−m columns replaced by those of In. We refer to the
pair of matrices (P1, H1) as an index-(0,m) 2-decomposition of A: the matrix B := AP1H

−1
1

will be integral with first m columns having full rank modulo 2. If m = n, we are done,
so, assume that m < n.

Next, the algorithm updates the precision to p := d2n/(n − m)e and computes a
permutation P2 = diag(Im, ∗) such that Rem(BP2, X

p) is left equivalent to a triangular
Smith form having the shape  Im V2 ∗

E2 ∗

 .
By Lemma 7.10, the column dimension r of E2 satisfies r ≥ d(n−m)/2e. (We remark that
because the first m columns of B have full rank modulo 2, there exists a triangular Smith
form of B over Z/(Xp) with first m columns those of In.) Set

H2 =

 Im V2

E2

In−m−r

 .
We call the pair (P2, H2) an index-(m, r) 2-decomposition of B. Because of the structure of
the matrices, we have (P1H

−1
1)(P2H

−1
2) = (P1P2)(H2H1)−1. Then P1P2 is a permutation

with Rem(AP1P2, X
p) being left equivalent to a triangular Smith form that has first m+ r

columns equal to those of

H2H1 =

 E1 V2

E2

In−m−r

 .
Since each iteration computes at least half of the remaining invariant factors of the 2-Smith
form, the number of iterations is bounded by O(log n). The following theorem captures
the approach of Gupta et al. (2012) described above to compute a 2-decomposition.

Theorem 7.11. Let A ∈ Zn×n be nonsingular, 0 ≤ m ≤ n, and 0 ≤ r ≤ n−m. If (P1, H1)
is an index-(0,m) 2-decomposition for A, and (P2, H2) is an index-(m, r) 2-decomposition
for B := AP1H

−1
1 , then (P1P2, H2H1) is an index-(0,m+ r) 2-decomposition for A.

To avoid expression swell, the Hi computed at each step can be transformed into Her-
mite canonical form: offdiagonal entries are reduced modulo the diagonal entry in the same
column. The Hi are then unique up to the choice of the permutations Pi. In the polynomial

92

setting, the inverse H−1 of a matrix H in Hermite form will be a proper matrix fraction,
that is, degrees of entries in (detH)H−1 will be bounded by deg detH, thus ensuring that
U := AH−1 will have degree bounded by the degree of A. However, over the integers, H−1

may not be proper, frustrating attempts to obtain a good bound for the bitlength of entries
in U . We end this section with an example of a class of ill-conditioned Hermite forms.

Example 7.12. For n = 2, 3, 4, . . . consider the family of Hermite forms H ∈ Zn×n that
are Toeplitz, with diagonal entry 2 and offdiagonal entries alternating between 1 and 0.
For example, for n = 6,

H =


2 1 0 1 0 1

2 1 0 1 0
2 1 0 1

2 1 0
2 1

2

 ∈ Z6×6.

Offdiagonal entries in the first row of H−1 satisfy

H−1
1,j =


−1/4 if j = 2
1/8 if j = 3
(−1/2)H−1

1,j−1 +H−1
1,j−2 if j ≥ 4

The closed form for this recurrence shows that log |H−1
1,j | ∈ Θ(j). For n ≥ 500 the largest

entry in (detH)H−1 has bitlength ≈ 1.35n compared to detH which has bitlength n.

7.2.2 2-massagers

Rather than computing a 2-decomposition for our input matrix, we propose the notion of
a 2-massager.

Definition 7.13. Let A ∈ Zn×n be nonsingular. A 2-massager for A is a triple of matrices
(P, S,M) from Zn×n such that:

• P is a permutation,

• S = diag(s1, . . . , sn) is the 2-Smith form of A,

• M is unit upper triangular, and

• APMS−1 is integral with 2 ⊥ detAPMS−1.

93

We say that (P, S,M) is a reduced 2-massager if the off-diagonal entries in M are reduced
column modulo S.

We begin by showing that there is an one to one correspondence between 2-massagers
and 2-decompositions. Note that it follows from the uniqueness of the 2-Smith form S of
A that the triangular Smith form H from any 2-decomposition of A will have the same
diagonal entries as S.

Theorem 7.14. Duality between 2-decompositions and 2-massagers:

• If (P,H) is a 2-decomposition of A, then (P, S, (S−1H)−1) is a 2-massager for A.

• If (P, S,M) is a 2-massager for A, then (P, SM−1) is a 2-decomposition of A.

Proof. SinceH is in triangular Smith form, S−1H will be unit upper triangular and integral.
It suffices to note that APH−1 = AP (SS−1H)−1 = AP (S−1H)−1S−1.

Theorem 7.14 illustrates that a 2-massager is just a way to further decompose a 2-
decomposition. And since we are interested in extracting factors of 2, that is, we want a
compact description of the inverse of H, the massager M is able to achieve just that due
to the fact that we can reduce its columns modulo S.

Suppose (P, S,M) is a 2-massager for A. Since APMS−1 is integral, column i of APM
must be congruent to zero modulo si, 1 ≤ i ≤ n. This gives the following.

Lemma 7.15. If (P, S,M) is a 2-massager for A, then a reduced 2-massager for A can be
obtained by reducing offdiagonal entries in column i of M by si, 1 ≤ i ≤ n.

Our algorithm to compute a 2-massager for A will proceed in a similar manner to the
algorithm for 2-decomposition sketched in the previous section. In order to simplify the
discussion, it will be useful to introduce the following definition.

Definition 7.16. Let B ∈ Zn×n be nonsingular with first m columns full rank modulo 2.
An index-(m, r) 2-massager for B is a triple of matrices (P, S,M) from Zn×n such that

• P = diag(Im, ∗) is a permutation,

• S = diag(Im, sm+1, . . . , sm+r, In−m−r) with the principal (m+ r)× (m+ r) submatrix
equal to that of the 2-Smith form of B,

94

• M is unit upper triangular with first m and last n−m− r columns those of In.

• BPMS−1 is integral with first m+ r columns having full rank modulo 2.

(P, S,M) is a reduced index-(0,m + r) 2-massager if the off-diagonal entries in M are
reduced column modulo S.

Notice that an index-(0, n) 2-massager for A is just a 2-massager for A as per Defini-
tion 7.13.

Suppose we have already computed an index-(0,m) 2-massager (P1, S1,M1) for A. (At
the start of the first iteration m = 0, and we have the trivial index-(0, 0) 2-massager
(In, In, In).) Then, B := AP1M1S

−1
1 will be integral with first m columns of full rank

modulo 2. If m = n, we are done, so, assume m < n. Our goal now is to compute an index-
(m, r) 2-massager for B. By Lemma 7.10, we can guarantee to achieve r ≥ d(n−m)/2e by
working modulo Xp where X is the smallest power of two ≥ n1/2||A|| and p = d2n/(n−m)e.
Compute an index-(m, r) 2-decomposition (P2, H2) for B. For

H2 :=

 Im V2

E2

In−m−r

 ,
let S2 be the diagonal matrix with same diagonal entries as H2. Define D2 by writing
S2 = diag(Im, D2, In−m−r), that is, D2 is the diagonal matrix with same diagonals as E2.
As a corollary of Theorem 7.14, for

M2 := (S−1
2 H2)−1 =

 Ir −V2(D−1
2 E2)−1

(D−1
2 E2)−1

In−m−r

 , (7.3)

(P2, S2,M2) will be an index-(m, r) 2-massager for B.

Then,
A(P1M1S

−1
1)(P2M2S

−1
2) = BP2M2S

−1
2

will be integral with first m + r columns having full rank modulo 2. By exploiting the
duality of Theorem 7.14, we can combine (P1, S1,M1) and (P2, S2,M2) to obtain an index-
(0,m+ r) 2-massager. Define D1 by writing S1 = diag(D1, In−m), that is, D1 is comprised
of the first m entries of the 2-Smith form of A. By duality, (P1, S1M

−1
1) is an index-(0,m)

2-decomposition of A. Let P = P1P2 and S = S1S2. By Theorem 7.11, (P,H2S1M
−1
1)

is then an index-(0,m + r) 2-decomposition of A. Using duality in the opposite direction

95

shows that an index-(0,m+r) 2-massager for A is given by (P, S, (S−1H2S1M
−1
1)−1). Note

that
(S−1H2S1M

−1
1)−1 = (S−1

1 S−1
2 H2S1M

−1
1)−1 = M1S

−1
1 M2S1,

and so, obtain the following result.

Theorem 7.17. Let A ∈ Zn×n be nonsingular, 0 ≤ m ≤ n, and 0 ≤ r ≤ n − m.
If (P1, S1,M1) is an index-(0,m) 2-massager for A, and (P2, S2,M2) is an index-(m, r)
2-massager for B := AP1M1S

−1
1 , then (P1P2, S1S2,M1S

−1
1 M2S1) is an index-(0,m + r)

2-massager for A.

If we write

M1 =

[
F1

In−m

]
(7.4)

and

M2 =

 Im W2

F2

In−m−r

 , (7.5)

then, by Theorem 7.17, an index-(0,m+ r) 2-massager for A is given by (P, S,M) where

M = M1S
−1
1 M2S1 =

 F1 F1D
−1
1 W2

F2

In−m−r

 . (7.6)

The remainder of the chapter will be focused on bounding the complexity of the pro-
cedure we just described in this section.

7.3 Triangular Smith form algorithm

In this section, we give an algorithm for computing a triangular Smith form of a matrix A
over Z/(2d).

Theorem 7.18. Problem TriangularSmithForm in Figure 7.1 can be solved in time

O(MM(n, d)(log n+ log d)).

96

TriangularSmithForm(A, n, d)

Input: A ∈ Z/(2d)n×n for d ∈ Z>0.

Output: U, P such that U ∈ Z/(2d)n×n is unimodular, P is an n×n permutation
matrix, and Rem(UAP, d) is in triangular Smith form over Z/(2d).

Figure 7.1: Problem TriangularSmithForm

Proof. We describe a divide and conquer algorithm that recurses on the precision parameter
d and has running time bounded by the recurrence

T (d) ≤
{
T (dd/2e) + T (bd/2c) +O(MM(n, d)) if d > 1
O(MM(n, 1) log n) if d = 1.

Assuming H1≤d
MM , we have the solution

T (d) ∈ O(dMM(n, 1) log n+ MM(n, d) log d),

which simplifies to the target complexity since dMM(n, 1) ≤ MM(n, d) using H1≤d
MM .

For the base case d = 1 use Lemma 7.4. Assume now that d > 1. Then set d1 = dd/2e
and d2 = bd/2c and recursively compute

U1, P1 := TriangularSmithForm(Rem(A, 2d1), n, d1).

Let r be the number of nonzero rows of Rem(U1AP1, 2
d1) and let S be the r × r diagonal

matrix with Sii = Rem(U1AP1, 2
d1)ii, 1 ≤ i ≤ r. Then,[
S−1

In−r

]
Rem(U1AP1, 2

d)

is an integral matrix. We can thus split Rem(U1AP1, 2
d) into two parts using Rem and

Quo. Let [
T T ′

]
=

[
S
In−r

]
Rem

([
S−1

In−r

]
Rem(U1AP1, 2

d), 2d1
)

and [
B B′

]
=

[
S
In−r

]
Quo

([
S−1

In−r

]
Rem(U1AP1, 2

d), 2d1
)
.

97

Then,

Rem(U1AP1, 2
d) =

[
T T ′

]
+
[
B B′

]
2d1 .

where T is r × r and B is n× r. Note that by construction both[
S−1

In−r

] [
T T ′

]
and [

S−1

In−r

] [
B B′

]
will be integral.

Let V = Rem((S−1T)−1, 2d1). Since the diagonal entries of S are powers of 2 of degree
at most d1 − 1, the matrix 2d1S−1 will be integral and, moreover, Rem(2d1S−1, 2) = 0r×r.
The matrix

U ′1 =

[
Ir

In−r

]
−
[

2d1BV S−1
]

thus satisfies that Rem(U ′1, 2) = In, and hence, it is unimodular.

Next we show that

Rem(U ′1U1AP1, 2
d) =

[
T ∗

C2d1

]
for an (n− r)× (n− r) matrix C. Considering the structure of U ′1, it suffices to note, on
the one hand, that [

2d1BV S−1
] [T T ′

]
≡

[
2d1B(V S−1T) 2d1BV (S−1T ′)

]
(mod 2d)

≡
[

2d1B(Ir + ∗2d1) 2d1BV ∗
]

(mod 2d)

≡
[
B2d1 ∗2d1

]
(mod 2d),

where the ∗ are integral matrices. Recall that 2d1 ≥ d and thus the term 22d1 vanishes
modulo 2d. On the other hand, we have that[

2d1BV S−1
] [

B B′
]

2d1

≡
[
BV 2d1

] [S−1

I

] [
B B′

]
2d1 (mod 2d)

≡
[
BV 2d1

] [
∗ ∗

]
2d1 (mod 2d)

≡ 0n×n (mod 2d).

98

We can then compute

U2, P2 := TriangularSmithForm(C, n− r, d2)

and return

U, P = Rem

([
Ir

U2

]
U ′1U1, 2

d

)
, P1

[
Ir

P2

]
.

It remains to bound the cost of the nonrecursive work. Other than some multiplications of
matrices bounded in dimension by n and precision d, the only other computation is that of
the inverse V . Lemmas 7.3 and 7.5 show that V can be computed in time O(MM(n, d)).

7.4 The 2-massager algorithm

In this section, we gather together everything that we presented so far in this chapter
to design an algorithm that computes a reduced 2-massager (P, S,M) for a nonsingular
matrix A ∈ Zn×n in time

O(MM(n, log n+ log ‖A‖)(log n+ log log ‖A‖) log n).

The complexity translates into O(log n) number of iterations to compute all the columns of
the massager, and to O(log n+ log log ‖A‖) matrix multiplications for each iteration with
the log ‖A‖ factor appearing because of algorithm TriangularSmithForm recursing on the
precision.

We begin by showing how to apply a reduced (index) 2-massager as per Definitions 7.13
and 7.16 to an input matrix A in order to produce the massaged matrix U := APMS−1.
If the massager is a 2-massager, then 2 ⊥ detU . If, on the other hand, we apply an index-
(m, r) 2-massager to a matrix B which has the first m columns of full rank modulo 2, then
the matrix BPMS−1 has the first m+ r columns of full rank modulo 2.

Theorem 7.19. Given a nonsingular matrix A ∈ Zn×n and a reduced index-(m, r) 2-
massager (P, S,M) for A, we can apply the massager, that is, compute APMS−1 in time

O(MM(n, log n+ log ‖A‖)).

Proof. By Corollary 7.9, we can compute the product (AP)M in time O(MM(n, log n +
log ‖A‖)) by setting d = length(n‖A‖).

99

Subsection 7.4.1 proves the correctness and complexity bound for the algorithm solving
the Index2Massager problem seen in Figure 7.2 which, given a nonsingular matrix B ∈
Zn×n that has been massaged by a reduced index-(0,m) 2-massager, computes an index-
(m, r) 2-massager for B. Then, Subsection 7.4.2 bounds the complexity of combining
a reduced index-(0,m) 2-massager and an index-(m, r) 2-massager into a reduced index-
(0,m+r) 2-massager. Finally, Subsection 7.4.3 gives an iterative algorithm which combines
O(log n) index 2-massagers into a 2-massager for the overall input matrix A ∈ Zn×n.

7.4.1 Computing an index 2-massager

In this subsection, we show how to use the system solving algorithm supporting Theo-
rem 7.6 and algorithm TriangularSmithForm to compute an index-(m, r) 2-massager for
an input matrix B ∈ Zn×n. The algorithms assume that B is the matrix obtained after
applying a reduced index-(0,m) 2-massager to the original input matrix A of the overall
problem.

Index2Massager(B, n,m, p,X)

Input: Nonsingular B ∈ Zn×n, m ∈ Z with 0 ≤ m < n, p ∈ Z≥1, and X
the smallest power of 2 such that X ≥ n1/2||A|| for a nonsingular matrix
A ∈ Zn×n.

Output: P, S,M, r such that (P, S,M) is an index-(m, r) 2-massager for B, with
r maximal such that invariant factor m+r of the 2-Smith form of A is < Xp.
The matrix M will satisfy M = Rem(M,Xp).

Condition: B = AP1M1S1
−1 where (P1,M1, S1) is a reduced index-(0,m) 2-

massager for A.

Figure 7.2: Problem Index2Massager

Theorem 7.20. If p = d2n/(n −m)e, then Problem Index2Massager in Figure 7.2 can
be solved in time

O(MM(n, log n+ log ‖A‖)(log n+ log log ‖A‖)).

Proof. We describe a 7 step algorithm.

100

Step 1: Let Q be the permutation P from the LQUP-decomposition of Rem(B, 2)T .
Then, since the first m columns of B have full rank modulo 2, QB can be written in a
block decomposition as

QB =

[
B11 B12

B21 B22

]
,

where B11 ∈ Zm×m is nonsingular modulo 2.

Cost 1: O(MM(n, 1) log n).

Step 2: Compute[
C1

C2

]
= Rem

([
B11

B21 In−m

]−1 [
B12

B22

]
, Xp

)
using the algorithm supporting Theorem 7.6. We now have the partial triangularization

Rem

([
B11

B21 In−m

]−1 [
B11 B12

B21 B22

]
, Xp

)
=

[
Im C1

C2

]
(7.7)

of QB over Z/(Xp).

Cost 2: O(MM(n, log n+ log ‖A‖) log n), by Theorem 7.6

Step 3: Compute

U ′, P ′ := TriangularSmithForm(C2, n−m, p log2X)

using the algorithm supporting Theorem 7.18. Set P := diag(Im, P
′).

Cost 3: By Theorem 7.18,

O(

T1︷ ︸︸ ︷
MM(n−m, p logX)

T2︷ ︸︸ ︷
(log(n−m) + log(p logX))).

First note that

T1 = MM

(
n

n/(n−m)
, d2n/(n−m)e logX

)
∈ O((n/(n−m))2 MM

(
n

n/(n−m)
, logX

)
∈ O(MM(n, logX))

usingHd≤2
MM andH2≤n

MM in succession. Next, the logarithmic factor T2 is simplified
using log(n−m) ≤ log n and log(p logX) ∈ O(log n+ log log ‖A‖).

101

Step 4: We can now complete the triangularization of (7.7):

Rem

([
Im

U ′

] [
Im C1

C2

]
P,Xp

)
=

 Im V ∗
E ∗

 .
Here is the point where via the Rem(·, Xp) operation we discover the value of r. Let E
be an r × r triangular Smith form and let V contain the first r columns of C1P

′. In
addition, let D be the r × r diagonal matrix with the same diagonal entries as E, and set
S := diag(Im, D, In−m−r).

Cost 4: O(MM(n−m, p logX)).

It remains to compute M . By Lemma 7.15 we may compute M modulo Xp. As shown
in (7.3), we can take

M = Rem

 Im −V (D−1E)−1

(D−1E)−1

In−m−r

 , Xp

 .

We will compute this M in the final three steps.

Step 5: First compute T := Rem((D−1E)−1, Xp).

Cost 5: O(MM(n−m, p logX)), by Lemmas 7.3 and 7.5.

Step 6: Instead of computing the product Rem(−V T,Xp) we will proceed as follows.
Let B′12 be the first r columns of B12P

′. Compute the product Rem(B′12T,X
p).

Cost 6: O(MM(n, log n+ log ‖A‖)), by Corollary 7.9.

Step 7: Compute Rem(V T,Xp) = Rem(B−1
11 (B′12T), Xp) using the algorithm support-

ing Theorem 7.6.

Cost 7: Same as the cost of step 2.

102

7.4.2 Combining index 2-massagers

In this section, we show how to combine an index-(0,m) and an index-(m, r) 2-massager
to obtain an index-(0,m+ r) 2-massager.

Theorem 7.21. Given a reduced index-(0,m) 2-massager (P1, S1,M1) for a nonsingu-
lar A ∈ Zn×n, an index-(m, r) 2-massager (P2, S2,M2) for Ā := AP1M1S

−1
1 with M2 =

Rem(M2, X
p) for p = d2n/(n−m)e, and X the smallest power of 2 such that X ≥ n1/2||A||,

we can compute a reduced index (0,m+ r) 2-massager (P, S,M) for A in time

O(MM(n, log n+ log ‖A‖)).

Proof. Write M1 and M2 using a block decomposition as shown in (7.4) and (7.5). By
Theorem 7.17, the only computation required to produce (P, S,M) is to compute F1D

−1
1 W2

as shown in (7.6), where F1 ∈ Zm×m and V := D−1
1 W2 ∈ Zm×r. By Lemma 7.15, it will

suffice to compute Rem(F1V,X
p). For simplicity, and without loss of generality, we will

assume that m = n so that F1 has dimension n× n and V has dimension n× r.

The multiplication can be realized in O(MM(n, log n+ log ‖A‖)) by Lemma 7.7.

7.4.3 Computing a reduced 2-massager

In this section, we show how to use the algorithms presented in the previous three subsec-
tions to compute a reduced 2-massager.

Theorem 7.22. Algorithm 2Massager in Figure 7.3 is correct. The running time is

O(MM(n, log n+ log ‖A‖)(log n+ log log ‖A‖) log n).

Proof. Correctness of the algorithm follows from the input and output specifications of the
subroutines supporting Theorems 7.19, 7.20 and 7.21. By Lemma 7.10, the number of loop
iterations is bounded by log2 n with the cost of each loop iteration being dominated by the
call to Index2Massager. The running time estimate is obtained by multiplying the cost
estimate of Theorem 7.20 by log n.

103

2Massager(A, n)

Input: Nonsingular A ∈ Zn×n.

Output: (P, S,M), a reduced 2-massager for A.

X := the smallest power of 2 such that X ≥ n1/2||A||
P, S,M,m := In, In, In, 0
while m < n do

B := APMS−1

p := d2n/(n−m)e
P ′, S ′,M ′, r := Index2Massager(B, n,m, p,X)
P, S,M := CombineMassager(P, S,M, n,m, P ′, S ′,M ′, r,X)
m := m+ r

od
return (P, S,M)

Figure 7.3: Algorithm 2Massager

7.5 Linear system solving

Suppose a/b ∈ Q is a signed fraction with a ∈ Z, b ∈ Z>0, a ⊥ b and b ⊥ 2. Then, rational
number reconstruction from von zur Gathen and Gerhard (2013, Section 5.10) can be used
to reconstruct a/b from its image Rem(a/b, 2d) for large enough d. More precisely, given
upper bounds N and D such that |a| ≤ N and b ≤ D, then

RatRecon(Rem(a/b, 2d), 2d, N,D)

will reconstruct a/b for any d that satisfies 2d ≥ 2ND. If the first argument to RatRecon

is a vector then the intent is to apply rational reconstruction elementwise to the entries.

104

Solve(A, b, n)

Input: Nonsingular A ∈ Zn×n and b ∈ Zn×1.

Output: x, t ∈ Zn×1,Z≥0 with t minimal such that all denominators of the
entries in 2tA−1 are relatively prime to 2, and x = Rem(2tA−1b, 2d) where
d is as defined in step 3.

Note: 2tA−1b = RatRecon(x, 2d, N,D).

1. (P, S,M) := 2Massager(A, n)
t := log2 Snn

2. U := APMS−1

3. N := bnn/2||A||n−1||b||c, D := bnn/2||A||n/2tc and d := dlog(2ND)e
y := Rem(U−1b, 2d)

4. x := Rem(PM(2tS−1)y, 2d)
return x, t

Figure 7.4: Algorithm Solve

Our algorithm for system solving is based on the following observation. If (P,M, S) is
a 2-massager for A and U := APMS−1, then 2tA−1 = PM(2tS−1)U−1, where t = log2 Snn.

Theorem 7.23. Algorithm Solve in Figure 7.4 is correct. If log ||b|| ∈ O(n(log n +
log ‖A‖)) the running time is

O(MM(n, log n+ log ‖A‖)(log n+ log log ‖A‖) log n).

Proof. The correctness of the algorithm follows from the input and output specifications of
2Massager, ApplyMassager and the algorithm supporting Theorem 7.6. Using Hadamard’s
bound and Cramer’s rule, the denominators and numerators of entries of 2tA−1b are
bounded by D and N as computed in step 3 of the algorithm. This shows that the
note added to the algorithm header also holds.

Now consider the running time. By Theorems 7.22, 7.19 and 7.6, the cost of steps 1, 2
and 3, respectively, are within the target cost.

Finally, consider step 4. Let z = 2tS−1y. The computation of Mz falls under the
conditions of Lemma 7.7 and can be done in time O(MM(n, log n+ log ‖A‖)).

105

Chapter 8

Conclusion

In this thesis, we have studied algorithms that solve several central problems in exact
integer linear algebra by reducing them to matrix multiplication operations with integer
matrices that have almost the same size as the input matrix to the overall problem.

Solving the problem of computing the Smith normal form S ∈ Zn×n of a nonsingular
matrix A ∈ Zn×n along with computing unimodular matrices U, V ∈ Zn×n such that
AV = US in time

O(nω B(log n+ log ‖A‖)(log n)2)

is one of our main contributions. The algorithm we give is a Las Vegas probabilistic
algorithm which means that we are able to verify the correctness of its output. In other
words, one can keep running the algorithm until the correct output is returned, and the
expected running time will still be the claimed one.

Moreover, in the context of the Smith normal form, we define an object that we call the
Smith massager. The Smith massager is a matrix M ∈ Zn×n from which many interesting
properties follow. The central one is that the Smith form S and Smith massager M ,
whose ith column is reduced modulo the ith invariant factor si, give a nice fraction-free
representation of the fractional part of the inverse of A.

The other main contribution of the thesis has been with respect to linear system solving.
We present a deterministic reduction to matrix multiplication for the problem of linear
system solving: given as input a nonsingular A ∈ Zn×n and b ∈ Zn×1, compute A−1b. As
an intermediate algorithm we also give a system solving routine which, for a nonsingular
A ∈ Zn×n and a B ∈ Zn×m, computes the system solution A−1B up to some magnitude
Xd where X is a lifting modulus satisfying X ⊥ A.

106

In addition, we have presented a partial linearization technique which allows us to
extend many of our algorithms, so that, their cost estimates depend on the average size
of entries of the input matrix and not the largest one. More specifically, the technique
transforms an input matrix A into a new matrix D which can be used in place of A for
the system solving algorithms, the Smith form and Smith massager algorithm, and many
more.

8.1 Hermite normal form

As we already mentioned in Section 4.2, we see a promising approach to compute the
Hermite normal form of a nonsingular matrix A ∈ Zn×n by utilizing the property of the
Smith massager stated in Theorem 6.10.

Recall that corresponding to every nonsingular matrix A ∈ Zn×n there exists a unique
left equivalent matrix (which in the normal case is upper triangular)

H =


h1 h12 · · · h1n

h2 · · · h2n

. . .
...
hn

 (8.1)

with all entries nonnegative, and off-diagonal entries h∗i strictly smaller than the diagonal
entry hi in the same column. H is the unique Hermite row basis of A. The product
h1h2 · · ·hi of the first i diagonal entries is equal to the greatest common divisor of all i× i
minors of the first i columns of A, for 1 ≤ i ≤ n. Moreover, h1h2 · · ·hn = detH = | detA|.

So, assume that we compute the Smith form S and a Smith massager M for the
input matrix A, and that we are looking for some left equivalent canonical form H of A.
Theorem 6.10 states that we can find H by solving the equation

HM ≡ 0 cmodS

for an H that is in the desired form and has minimal determinant (or detH = detS). In
other words, it is only a system solving problem under the condition that the ith column
of HM must be a 0 modulo the ith invariant factor si. For example, row i of H is the
solution to

[hi hi,i+1 · · · hi,n] M = 0 cmod (s1, . . . , sn)

while satisfying that hi,k < hk, for i + 1 ≤ k ≤ n, and with minimality of determinant
being ensured by the choice of the diagonal entries.

107

8.2 Computing the Smith normal form of a polyno-

mial matrix

The focus of this thesis has solely been on algorithms that involve integer matrices. We
highlight the fact that algebraic algorithms designed over the integers can be naturally
extended to work over the polynomials. This extension is particularly useful for the Smith
normal form, since a deterministic and fast algorithm for the polynomial version of the
problem is basically the last algorithm missing in polynomial matrix algebra.

Let K be a field, and let the input be a nonsingular matrix A ∈ K[x]n×n. In addition
to the matrix dimension n, it has become customary to give cost estimates in terms of the
generic determinant bound by Gupta et al. (2012, Section 6):

D(A) = max
π∈Sn

∑
1≤i≤n

deg(Ai,πi)

where Sn is the set of permutation of {1, 2, . . . , n}. (If p = 0, let deg(p) = 0.) Then
deg(detA) ≤ D(A). The generic determinant bound is the equivalent of the permutation
bound that we give in Section 3.2. Let d = dD(A)/ne, and assume that d ≥ 1.

A highlight among recent results, following a long line of work, is an algorithm from
Jeannerod et al. (2016) that computes the Popov form of A for an arbitrary shift in
time (nωd)1+o(1). In addition, Zhou et al. (2014) present an algorithm that computes a
representation of the inverse of A in the same time. We aim to compute deterministically
the Smith form of A ∈ K[x]n×n in time (nωd)1+o(1). Zhou et al. (2014) also give a way to
compute the largest invariant factor sn of A within our target cost deterministically. Can
the remaining invariant factors be computed quickly?

We could utilize the usual degree × dimension compromise, and compute the invariant
factors in O(log n) iterations as in the algorithm from Chapter 5. At each iteration, we can
use the compact representation of the inverse to infer the r largest invariant factors. The
main challenge is to invent a similar massager construction which will let us extract those
r invariant factors from the working matrix deterministically within our target complexity.

The problem seems difficult because of the same reasons that it is difficult over the
integers. Even though, in the polynomial case, we can deterministically compute the largest
invariant factor sn, finding a suitable massager, without introducing any randomness, in
matrix multiplication time might be out of reach.

108

References

J. Abbott, M. Bronstein, and T. Mulders. Fast deterministic computation of determinants
of dense matrices. In S. Dooley, editor, Proc. Int’l. Symp. on Symbolic and Algebraic
Computation: ISSAC’99, pages 197–204. ACM Press, New York, 1999.

A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

J. Alman and V. V. Williams. A refined laser method and faster matrix multiplication. In
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
522–539, 2021. doi: 10.1137/1.9781611976465.32.

S. Birmpilis, G. Labahn, and A. Storjohann. Deterministic reduction of integer nonsingular
linear system solving to matrix multiplication. In Proc. Int’l. Symp. on Symbolic and
Algebraic Computation: ISSAC’19, page 58–65, New York, NY, USA, 2019. ACM. ISBN
9781450360845. doi: 10.1145/3326229.3326263.

S. Birmpilis, G. Labahn, and A. Storjohann. A Las Vegas algorithm for computing the
Smith form of a nonsingular integer matrix. In Proc. Int’l. Symp. on Symbolic and
Algebraic Computation: ISSAC’20, page 38–45, New York, NY, USA, 2020. ACM. ISBN
9781450371001. doi: 10.1145/3373207.3404022.

S. Birmpilis, G. Labahn, and A. Storjohann. A fast algorithm for computing the Smith nor-
mal form with the multiplier matrices for a nonsingular integer matrix. 2021. Submitted
to the Journal of Symbolic Computation.

J. Blömer, R. Karp, and E. Welzl. The rank of sparse random matrices over finite fields.
Random Structures and Algorithms, 10(4):407–419, July 1997. ISSN 1042-9832. doi:
10.1002/(SICI)1098-2418(199707)10:4〈407::AID-RSA1〉3.0.CO;2-Y.

G. H. Bradley. Algorithm and bound for the greatest common divisor of n integers. Com-
munications of the ACM, 13(7):433–436, July 1970.

109

G. H. Bradley. Algorithms for Hermite and Smith normal form matrices and linear dio-
phantine equations. Mathematics of Computation, 25(116):897–907, October 1971.

J. Bunch and J. Hopcroft. Triangular factorization and inversion by fast matrix multipli-
cation. Mathematics of Computation, 28:231–236, 1974.

D. B. Chandler, P. Sin, and Q. Xiang. Incidence modules for symplectic spaces in char-
acteristic two. Journal of Algebra, 323(12):3157 – 3181, 2010. ISSN 0021-8693. doi:
https://doi.org/10.1016/j.jalgebra.2010.02.038.

Z. Chen and A. Storjohann. A BLAS based C library for exact linear algebra on integer ma-
trices. In M. Kauers, editor, Proc. Int’l. Symp. on Symbolic and Algebraic Computation:
ISSAC’05, pages 92–99. ACM Press, New York, 2005.

C. Cooper. On the distribution of rank of a random matrix over a finite field. Random
Structures and Algorithms, 17(3-4):197–212, oct 2000. ISSN 1042-9832. doi: 10.1002/
1098-2418(200010/12)17:3/4〈197::AID-RSA2〉3.0.CO;2-K.

J. D. Dixon. Exact solution of linear equations using p-adic expansions. Numer. Math.,
40:137–141, 1982.

J.-G. Dumas, P. Giorgi, and C. Pernet. Dense linear algebra over word-size prime fields:
the fflas and ffpack packages. ACM Trans. on Mathematical Software (TOMS), 35(3):
1–42, 2008. ISSN 0098-3500. doi: 10.1145/1391989.1391992.

W. Eberly, M. Giesbrecht, and G. Villard. Computing the determinant and Smith form of
an integer matrix. In Proc. 31st Ann. IEEE Symp. Foundations of Computer Science,
pages 675–685, 2000.

J.-C. Faugère and J. Svartz. Gröbner bases of ideals invariant under a commutative group:
The non-modular case. In Proc. Int’l. Symp. on Symbolic and Algebraic Computation:
ISSAC’13, pages 347–354. ACM Press, New York, 2013.

J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, 3rd edition, 2013.

M. Giesbrecht. Fast computation of the Smith form of a sparse integer matrix. Computa-
tional Complexity, 10(1):41–69, 11 2001.

110

S. Gupta, S. Sarkar, A. Storjohann, and J. Valeriote. Triangular x-basis decompositions
and derandomization of linear algebra algorithms over K[x]. Journal of Symbolic Com-
putation, 47(4), 2012. doi: 10.1016/j.jsc.2011.09.006. Festschrift for the 60th Birthday
of Joachim von zur Gathen.

J. L. Hafner and K. S. McCurley. Asymptotically fast triangularization of matrices over
rings. SIAM Journal of Computing, 20(6):1068–1083, December 1991.

D. Harvey and J. Van der Hoeven. Integer multiplication in time O(n log n). Annals of
Mathematics, 193(2):563 – 617, 2021. ISSN 0021-8693. doi: https://doi:10.4007/annals.
2021.193.2.4.

T. C. Hu. Integer Programming and Network Flows. Addison-Wesley, Reading, MA, 1969.

E. Hubert and G. Labahn. Computation of invariants of finite abelian groups. Mathematics
of Computation, 85:3029–3050, 2016.

O. Ibarra, S. Moran, and R. Hui. A generalization of the fast LUP matrix decomposition
algorithm and applications. Journal of Algorithms, 3:45–56, 1982.

C. S. Iliopoulos. Worst-case complexity bounds on algorithms for computing the canonical
structure of finite abelian groups and the Hermite and Smith normal forms of an integer
matrix. SIAM Journal of Computing, 18(4):658–669, 1989a.

C. S. Iliopoulos. Worst-case complexity bounds on algorithms for computing the canonical
structure of infinite abelian groups and solving systems of linear diophantine equations.
SIAM Journal of Computing, 18(4):670–678, 1989b.

G. Jäger. Reduction of Smith normal form transformation matrices. Computing, 74(4):
377–388–22, 2005.

C.-P. Jeannerod, V. Neiger, É. Schost, and G. Villard. Fast computation of minimal
interpolation bases in Popov form for arbitrary shifts. In Proc. Int’l. Symp. on Symbolic
and Algebraic Computation: ISSAC’16. ACM Press, New York, 2016.

T. Kailath. Linear Systems. Prentice Hall, Englewood Cliffs, N.J., 1980.

E. Kaltofen and G. Villard. On the complexity of computing determinants. Computational
Complexity, 13(3–4):91–130, 2004.

111

R. Kannan and A. Bachem. Polynomial algorithms for computing the Smith and Hermite
normal forms of an integer matrix. SIAM Journal of Computing, 8(4):499–507, November
1979.

F. Le Gall and F. Urrutia. Improved rectangular matrix multiplication using powers of the
Coppersmith-Winograd tensor. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10,
2018, pages 1029–1046, 2018. doi: 10.1137/1.9781611975031.67.

J. N. Lyness and P. Keast. Application of the Smith Normal Form to the structure of
lattice rules. SIAM J. Matrix Anal. Appl., 16(1):218–231, 1995.

V. Neiger and C. Pernet. Deterministic computation of the characteristic polynomial in
the time of matrix multiplication. Journal of Complexity, page 101572, 2021. ISSN
0885-064X. doi: https://doi.org/10.1016/j.jco.2021.101572.

M. Newman. Integral Matrices. Academic Press, 1972.

M. Newman. The Smith normal form. Linear Algebra and its Applications, 254:367—381,
1997.

V. Y. Pan. Computing the determinant and the charactersitic polynomial of a matrix via
solving linear systems of equations. Inf. Proc. Letters, 28:71–75, 1988.

C. Pauderis and A. Storjohann. Deterministic unimodularity certification. In Proc. Int’l.
Symp. on Symbolic and Algebraic Computation: ISSAC’12, page 281–288. ACM Press,
New York, 2012. ISBN 9781450312691. doi: 10.1145/2442829.2442870.

A. Schönhage. Schnelle Berechnung von Kettenbruchentwicklungen. Acta Informatica, 1:
139–144, 1971.

H. J. S. Smith. On systems of linear indeterminate equations and congruences. Phil. Trans.
Roy. Soc. London, 151:293–326, 1861.

R. Stanley. Smith normal form in combinatorics. Journal of Combinatorial Theory, Series
A, pages 476–495, 2016.

A. Storjohann. Near optimal algorithms for computing Smith normal forms of integer
matrices. In Y. N. Lakshman, editor, Proc. Int’l. Symp. on Symbolic and Algebraic
Computation: ISSAC’96, pages 267–274. ACM Press, New York, 1996.

112

A. Storjohann. A solution to the extended gcd problem with applications. In W. W.
Küchlin, editor, Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC’97,
pages 109–116. ACM Press, New York, 1997.

A. Storjohann. Computing the Frobenius form of a sparse integer matrix., 2000a. Unpub-
lished note.

A. Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, Swiss Federal Institute
of Technology, ETH–Zurich, 2000b.

A. Storjohann. High–order lifting. Extended Abstract. In T. Mora, editor, Proc. Int’l.
Symp. on Symbolic and Algebraic Computation: ISSAC’02, pages 246–254. ACM Press,
New York, 2002.

A. Storjohann. High–order lifting and integrality certification. Journal of Symbolic Com-
putation, 36(3–4):613–648, 2003. Extended abstract in Storjohann (2002).

A. Storjohann. The shifted number system for fast linear algebra on integer matrices.
Journal of Complexity, 21(4):609–650, 2005. Festschrift for the 70th Birthday of Arnold
Schönhage.

A. Storjohann. Notes on computing minimal approximant bases. In W. Decker, M. De-
war, E. Kaltofen, and S. Watt, editors, Challenges in Symbolic Computation Soft-
ware, number 06271 in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2006.

A. Storjohann. On the complexity of inverting integer and polynomial matrices. Computa-
tional Complexity, 24:777–821, 2015. doi: http://dx.doi.org/10.1007/s00037-015-0106-7.

V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13:354–356,
1969.

Z. Wan. Computing the Smith Forms of Integer Matrices and Solving Related Problems.
PhD thesis, University of Deleware, 2005.

W. Zhou, G. Labahn, and A. Storjohann. A deterministic algorithm for inverting a poly-
nomial matrix. Journal of Complexity, 2014.

113

	List of Tables
	List of Figures
	Introduction
	Smith normal form
	Smith multipliers
	Linear system solving
	Other contributions
	Cost model

	Computational Tools
	Lifting initialization
	Double-plus-one lifting
	System solving
	Integrality certification
	Unbalanced multiplications reduced to balanced

	Partial linearization
	The partial linearization construction
	The permutation bound

	Smith massager
	Definition
	Compact representation of A-1
	Approach to create a unimodular Smith massager
	Smith massager and partial linearization

	Smith normal form and Smith massager algorithm
	Largest invariant factors
	Projection basis
	Maximal index Smith massager
	Reduced index Smith massager

	Maximal Smith massager
	Combining index massagers
	Algorithm
	Correctness
	Complexity

	Smith multipliers algorithm
	Random perturbations of Smith massagers
	Small primes
	Large primes

	Almost trivial Hermite form certification
	A Las Vegas algorithm for the Smith form with multipliers
	Sizes of V and U

	Computing an outer product adjoint formula

	Deterministic linear system solving
	A more general cost model
	Computational tools in terms of MM

	Triangular 2-Smith form inverse decomposition
	2-decompositions
	2-massagers

	Triangular Smith form algorithm
	The 2-massager algorithm
	Computing an index 2-massager
	Combining index 2-massagers
	Computing a reduced 2-massager

	Linear system solving

	Conclusion
	Hermite normal form
	Computing the Smith normal form of a polynomial matrix

	References

