
Compact Sparse Coulomb Integrals
using a Range-Separated Potential

by
Michael James Lecours

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Chemistry

Waterloo, Ontario, Canada, 2021

© Michael James Lecours 2021



Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Dr. Trygve Helgaker
University of Oslo, Oslo, Norway

Supervisor: Dr. Marcel Nooijen
University of Waterloo, Waterloo, ON, Canada

Supervisor: Dr. W. Scott Hopkins
University of Waterloo, Waterloo, ON, Canada

Internal Member: Dr. Pierre-Nicholas Roy
University of Waterloo, Waterloo, ON, Canada

Internal Member: Dr. German Sciaini
University of Waterloo, Waterloo, ON, Canada

Internal-External Member: Dr. Roger Melko
University of Waterloo, Waterloo, ON, Canada

ii



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii



Abstract

The efficient calculation of so-called two-electron integrals is an important component for
electronic structure calculations on large molecules and periodic systems at both mean field
and post-HF, correlated, levels. In this thesis, a new and fairly complicated representation
of the Coulomb interaction is presented. The Coulomb potential is partitioned into short
and long-range parts. The short-range interactions are treated analytically using conventional
density fitting methods. The long-range interactions are treated numerically through either
a Fourier transform in spherical coordinates or through a Cartesian multipole expansion.
The Fourier transform is used for intermediate distances, while multipole expansions (up to
octupole) are used for longer range, with a switching algorithm to decide between the two.
In this range-separated representation, the corresponding two-electron Coulomb integrals can
be calculated efficiently and the amount of data scales linearly with respect to system size.
Hartree-Fock theory is used as an extensive test of the range-separated method, but the
same building blocks can be used in correlated calculations like Second-order Møller-Plesset
perturbation theory and (Cluster in Molecule) type Coupled Cluster calculations.
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larger than 24Å. The molecules are sorted by their largest orbital extents, from
largest to smallest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xi



List of Algorithms
1 Short Range Density Fit Fock Contributions . . . . . . . . . . . . . . . . . . 86
2 Fourier Fock Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3 Multipole Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4 One-body Fock Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xii



List of Abbreviations
AO atomic orbital. 2, 9, 39, 47, 79, 83, 84, 88, 93, 94, 103, 108

CC Coupled Cluster. 1

CFMM continuous fast multipole method. 5, 110

CIM cluster in molecules. 2, 47, 111

COO coordinate. 47

CSC compressed sparse column. 47

CSR compressed sparse row. 47

DF density fitting. 5, 9, 38, 80, 84, 89

DFT Density Functional Theory. 1

DIIS direct inversion of the iterative subspace. 4, 95

DLPNO domain-based local pair natural orbitals. 1, 47

EOMCC Equation of Motion CC. 2

FMM fast multipole method. 5, 6

FTAO Fourier transform atomic orbitals. 58

FTC Fourier-transform Coulomb. 5, 110

GPU graphic processing units. 6

HF Hartree-Fock. 4, 10, 42

LinK linear-in-K. 5

LO local orbitals. 40, 47, 80, 88

MO molecular orbital. 79

PySCF Python-based simulations of chemistry framework. 45

SCF self-consistent field. 4, 43, 79

xiii



Chapter 1

Introduction

1.1 Motivation

In this thesis, a report on an alternative implementation of Hartree-Fock calculations is pre-

sented. The implementation is based on a new and fairly complicated representation of the

Coulomb interaction and the corresponding two-electron integrals. There are a number of

excellent implementations of Hartree-Fock and Density Functional Theory (DFT) in the

community and the goal of this work is not so much to add another Hartree-Fock code. The

Coulomb integrals are needed in all post-Hartree Fock calculations for both ground and excited

electronic states. The approach that will be described in this thesis allows for highly efficient

calculations of selected Coulomb integrals which is an exceedingly important component of

electronic structure calculations for large molecules and periodic solids.

Currently there are basically two main paradigms to perform accurate wave function based

electronic structure calculations for large molecules. In all of these approaches Coupled Cluster

(CC)1–4 and low-order perturbation theory (MP2)5,6 is the main paradigm as it has proven to

be highly accurate and efficient for smaller systems, when using canonical, delocalized molecular

orbitals. A first, common, step for larger molecules is to localize the occupied orbitals that

result from a Hartree-Fock calculation. The various approaches diverge at this point.

In the so-called domain-based local pair natural orbitals (DLPNO) approaches7–18 the primary

idea is to define a small set of virtual orbitals associated with each pair of localized occupied

orbitals (LMO’s). In practice, one might use 5 ‘pair natural orbitals’19 (or PNO’s) when the

orbitals are distant, and up to about 40 orbitals when the LMO’s are close. This is an enormous

reduction of the complete virtual space (1000’s of virtuals). To achieve sufficient accuracy

second order perturbation theory (MP2) is required for all distant pairs, while CC is used for

close pairs. As a result, the number of double excitation amplitudes is small enough and can
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1.1. MOTIVATION

be solved for. Current implementations scale (nearly) linear with the size of molecules. There

are a number of disadvantages, however, that are related to the fact that all virtual orbitals are

very different depending on the pair of occupied orbitals. This leads to a very large number of

atomic orbital (AO) and LMO/PNO integrals and integral transformations. The CC equations

are significantly more complicated due to the presence of numerous overlap integrals between

PNO’s corresponding to different pairs. The DLPNO-CC equations refer to the complete

molecule and the solution of these equations is quite hard to parallelize efficiently. The main

drawback from our perspective is that one has to develop equations and computer code for

each approach, e.g. CC for ground states, Equation of Motion CC (EOMCC)20 and similarity

transformed EOMCC21 for excited states, multireference approaches and so on. Each of these

implementations is very time-consuming and not so interesting in itself (technical).

The second paradigm, denoted as a cluster in molecules (CIM) calculations22–39 divides the

full calculation into a (very) large number of smaller calculations that each require a subset

of orbitals. The scheme is most easily explained for the ground state, based on the expression

for the (closed-shell) correlation energy:

Ecorr=
Nocc∑
i

∆Ei (1.1)

∆Ei=
1

2

∑
j,a,b∈I

V ab
ij τ

ij
ab (1.2)

There is a sum over localized occupied orbitals i, and associated with this central orbital there is a

limited set of localized occupied orbitals j, and localized virtual orbitals a,b, that are in the vicin-

ity of i, optimized for maximum effect, which define an orbital domain I. The term V ab
ij is the anti-

symmetrized two-electron integrals and τ ijab=t
ab
ij for MP2 or τ ijab=t

ab
ij +tiat

j
b−tjatib for CC. The big

difference between CIM and PNO approaches is that each calculation corresponding to an orbital

domain I is completely independent and is just a canonical calculation using a set of orthonormal

orbitals. The equations are the same and can be run using standard implementations. In a CIM

calculation one would typically perform a Hartree-Fock and MP2 calculation for the complete

molecule, but the highest layer of calculation (coupled cluster) is divided up in small independent

calculations that only require the Hamiltonian integrals over a suitable small subset of orbitals,

2
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irrespective of the total size of the molecule. The orbital domains in CIM calculations are on

the order of 200-300 orbitals and canonical calculations with this number of orbitals are routine.

The advantages of the CIM paradigm are clear. The hardest part of the calculation uses existing

canonical codes and each of them can be run independently without any communication, leading

to trivial parallelization. The demanding part of an implementation is to carry out the numerous

integral transformations (one for each occupied orbital), and to make judicious use of potential

sparsity during the integral recalculation and transformation. The long-range nature of the

Coulomb potential provides a challenge for efficient screening techniques. Currently the method

is only used for ground state energy calculations. The approaches can be generalized for excited

states, especially for methods that have been developed in the Nooijen lab (STEOM-CCSD and

MREOM-CCSD), which require a dressed Hamiltonian in a limited (active) orbital space.

Both LPNO and CIM approaches can benefit from the representation of integrals which is the

main subject of the thesis, and this is the main reason for our interest. The implementation of

Hartree-Fock is of some interest but it is more important as an extensive test of the approach.

The implementation of Laplace MP2 is in progress and our approach is potentially quite fruitful

here40.

There is one more challenge in electronic structure calculations that can benefit from the integral

representation in this thesis and this concerns Gaussian basis set calculations for periodic

solids41–46 (in 1, 2, or 3 dimensions). These calculations are not nearly as well developed as

calculations for molecules, and even Hartree-Fock calculations are not very efficient. Most of

the current routine calculations for solids use DFT and plane wave basis sets. Such calculations

have limited accuracy and the availability of efficient Quantum Chemistry machinery would

constitute a real advance in the field. This research project started out as a new approach for

Hartree-Fock calculations and representations of Coulomb integrals for solids. The partitioning

of the Coulomb potential into a short-range and long-range part is very beneficial for solids.

The short-range integrals can easily be deployed using density fitting 3-center integrals. Most

of the troubles for periodic systems arise from long-range interactions. They can be dealt with

using a Fourier technique in spherical coordinates to cancel the g−2 singularity in the Fourier

transform of r−1
ij . Beyond Hartree-Fock, a CIM approach can be adopted, which would yield

a localized approach to electron correlation. Unfortunately, this interesting approach to solids
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will not be discussed further as (too) many challenges needed to be overcome to get things

to work for molecules. The extension to solids will be left for future investigations.

In the remaining part of this introduction a thorough review of the current status of Hartree-Fock

calculations is presented, and then a concise overview of the scope of this thesis is provided.

1.2 Overview of Linear Scaling Hartree-Fock Calculations

A Hartree-Fock (HF) calculation is often the first step in many electronic structure methods as

it provides a basis for wavefunction-based electron correlation methods such as CC and MP2.

The HF orbitals, which are the canonical molecular orbitals, are optimized in an iterative

procedure called the self-consistent field (SCF) method. Briefly, the SCF algorithm begins with

a guess at the one-particle density matrix which is used to calculate the Fock operator. The

Fock operator is then involved in a matrix-eigenvalue problem which is conventionally solved

through diagonalization and a better density matrix is obtained. This process is repeated until

the calculation converges. The two most expensive steps in the canonical SCF algorithm are

the formation of the two-electron contribution to the Fock matrix and the diagonalization of the

Fock matrix. This discussion will focus on the construction of the Fock matrix, the two-electron

direct and exchange contributions in particular, as this is related to the work in this thesis.

The SCF algorithm can be accelerated by directly solving for the one-particle density matrix

using density matrix based SCF methods47–58 and the convergence of the method can be

improved with accelerators such as direct inversion of the iterative subspace (DIIS)59–62.

In the 1980’s it was suggested by Almlöf63 that the two-electron integrals should be recomputed

at every SCF iteration to avoid the storage issues, this lead to the direct-SCF method which

is staple in modern SCF codes. Integral pre-screening is essential for direct SCF methods as

negligible contributions to the Fock matrix can be recognized and avoided, which reduces the al-

gorithm to quadratic scaling. The Schwartz-inequality is the simplest of the screening methods64,

it provides an estimate on the integral that is an upper bound but not necessary a tight bound.

Over the decades more efficient screening methods have been developed which are more efficient

and use tighter bounds for screening65. These screening methods are also highly advantageous

for correlated calculations66. Almlöf’s second suggestion was to calculate the direct Coulomb
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and exchange contributions individually using the most efficient methods for each67,68. This is

counter intuitive at first because the direct (J) and exchange (K) contributions involve the same

quantities, the density matrix, Dγβ, and the two-electron repulsion integrals, (αδ|γβ).

Jαβ=
∑
γδ

(αβ|γδ)Dγδ (1.3)

Kαβ=
∑
γδ

(αδ|γβ)Dγδ (1.4)

The Coulomb contribution can be formed via fast multipole method (FMM)69–72, the first linear

scaling method to evaluate the Coulomb potential is the continuous fast multipole method

(CFMM) by White et. al.70. In this method Coulomb contribution is partitioned into near field

and far-field contributions where the near-field contributions are calculated through conventional

methods and the far-field contributions are treated with a multipole expansion. The CFMM is

efficient for the treatment of far-field interactions but the near-field contributions, which scale

linearly, dominate the computational time. The J-engine method73 greatly improves the effi-

ciency of calculating the near-field contributions by directly summing the density matrix into the

underlying Gaussian integral. This method avoids the calculation of two-electron integral inter-

mediates. Similar techniques have also been developed by Ahmadi and Almloöf68 and Neese74

which rely on the resolution of the identity, commonly referred to as density fitting (DF). In this

thesis DF is essential for the treatment of our integrals. An alternative scheme for calculating J is

through a discrete Fourier transform of the density, called the Fourier-transform Coulomb (FTC)

method75–78. This method scales linearly with respect to system size and uses plane waves.

The natural scaling of the exchange contribution is almost linear for local electronic structures,

this is partially due to the fact the at exchange phenomenon is predominately a local phe-

nomenon. However, the exchange is still the more expensive of the two contributions. Improve-

ments have been made to the calculation of the exchange contribution, the first linear scaling

exchange algorithm is ONX by Schwegler et. al.79 which utilizes a sophisticated loop structure

and preordered integral estimates. The draw back to this method was that it lacked permuta-

tional symmetry in the integral calculation and contractions. The linear-in-K (LinK) method by

Ochsenfeld et. al.79,80 exploits the permutational symmetry and is linear scaling. The chain-of-

spheres algorithm by Neese et. al.81 is a semi-numerical algorithm which reduces the scaling with
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respect to the size of basis set and is advantageous when large l-quantum number basis functions

dominate the overall computational time. In recent years efforts have been made to implement

linear scaling exchange algorithms for use with graphic processing units (GPU)82–85.

1.3 Overview of Range-Separated Coulomb Interactions

The Coulomb potential is an inverse pairwise potential that decays slowly as a function of

r12.

VCoul(r12)=
1

|r12|
(1.5)

This slow decay is partially why large scale calculations are so difficult, long-range interactions

scale quadratically with respect to system size. Coulomb interactions can be evaluated linearly

with respect to system size through the FMM69,71. In the FMM the system space is divided

into smaller and smaller boxes and the well-separatedness of the boxes is used to partition

the potential into near field (NF) and far field (FF) contributions where the FF contributions

are treated through multipole expansions. The range-separated potentials in this thesis do

not use this method, instead Ewald summation techniques86,87 are used to explicitly partition

the potential into short and long-range regions.

VCoul(r12)=Vsr(r12)+Vlr(r12) (1.6)

Vsr(r12)=
erfc(α|r12|)
|r12|

(1.7)

Vlr(r12)=
1

|r12|
−Vsr(r12) (1.8)

The parameter α, called the range-separation parameter, is the control which governs the

extent of the short-range region and the onset of the long-range region. In this form the

long-range potential is not purely long range because Vlr(r12) is not zero at r12 =0. To insist

that the long-range potential is zero at r12 =0, a Gaussian is added to Vsr(r12) and subtracted

from Vlr(r12).

Vsr(r12)=
erfc(α|r12|)
|r12|

+X0e
−γ|r12|2 (1.9)
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The Gaussian parameters X0 and γ are chosen such that Vlr(0) is zero and as flat as possible

around r12 =0. Both X0 and γ are related to α such that α is the only controlling parameter

for partitioning the potential. The value of α ranges from 0.1 to 0.8, the smaller the value

of α the further the short-range region extends.

Short-range interactions scale linearly with respect to system size because the short-range po-

tential quickly decays to zero as a function of r12. These interactions can be treated analytically

using conventional methods.

The long-range potential is more complicated as it still exhibits the slow 1
|r12| decay of the

Coulomb potential. The long-range potential can be evaluated through a multipole method

or it can evaluated numerically through a Fourier transform method. The Fourier transform

of Vlr(r12) is given by

Vlr(r12)=

∫
dg3 1

|g|2
η(g)eig·r12 (1.10)

η(g)=
4π

(2π)3
e−ω|g|

2− |g|2

(2π)3(2γ)3/2
e−

1
4γ
|g|2 (1.11)

The Fourier transform introduces a singularity at g=0. The singularity can be cancelled out

by choosing to evaluate the integral in spherical coordinates.

Vlr(r12)=

∫
dΩ

∫
dgrη(gr)e

ig·r12 (1.12)

Equation 1.12 is evaluated numerically using points and weights. The grid points are comprised

of an angular and radial grid. Lebedev88 quadrature is used for the angular grid and a simple

equidistant grid is used for the radial grid, other radial quadratures89–92 can be used if desired.

The numerical weights represent the function η(gr) which rapidly decays as a function of gr

limiting the extent of the radial grid. The numerical grid does not need to increase with

increasing system sizes.

Evaluating the long-range potential using the Fourier method works well for short/medium-

range interactions. The Fourier method does not work well for very far interactions because

of the term eig·r12, which is essentially a rapid oscillator at large enough r12. The multipole
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method exhibits the opposite behaviour, it is most accurate for interactions at large r12 while

at smaller r12 high-level multipole expansions are needed to maintain accuracy. The preferred

method for evaluating Vlr(r12) is to use the Fourier method for small r12 then switch to the

multipole method for large r12.

The singularity in the Fourier transform of Vlr(r12) can be explicitly removed through a reg-

ularization procedure introduced in chapter 2. The regularization is performed by introducing

a grid of fixed points called gauge centres Ri which are located near the coordinates ri. This

definition of the gauge centres is ambiguous and a more rigorous definition is provided when

atomic orbitals are introduced. The regularization procedure leads to a three part potential

where the long-range potential is split into a regularized long-range potential, V R
lr , and a

one-body potential V1body.

VCoul(r12)=Vsr(r12)+V R
lr (r1,r2,R1,R2)+V1body(r1,r2,R1,R2) (1.13)

V R
lr (r1,r2,R1,R2)=

∫
dΩ

∫
dgrη(gr)[e

−ig·r1−e−ig·R1][eig·r2−eig·R2] (1.14)

V1body(r1,r2,R1,R2)=Vlr(|r2−R1|)+Vlr(|R2−r1|)−Vlr(|R2−R1|) (1.15)

The one-body potential can be evaluated analytically while the regularized long-range potential

is evaluated numerically. The one-body potential is the dominant contribution to the long-range

potential and it is inexpensive to calculate. The regularized long-range potential, V R
lr , is the

significantly smaller contribution, it makes up about 1% of the total long-range potential. It

is also the only contribution that needs to be evaluated numerically. The key advantage to the

regularized method is that the most expensive term to calculate is also the smallest. Therefore

one can choose to either ignore V R
lr completely or to evaluate it using a small numerical grid

without much loss in accuracy. The regularization procedure is general for any smooth radial

potential, it is not limited to the potential described in equation 1.6.

Chapter 2 entitled “Range-separated Coulomb potentials” is devoted to the derivations and

analysis of the bare range-separated potentials described above. The methods defined in

chapter 2 establish the ground work needed to introduce the range-separated two-electron

Coulomb integrals. Chapter 3 is the core of this thesis and a thorough investigation of the

two-electron integrals is presented in this chapter with emphasis on data scaling and accuracy.
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Using the potential defined in equation 1.6 the two-electron repulsion integrals are partitioned

into short and long-range integrals.

(αβ|γδ)=(αβ|γδ)sr+(αβ|γδ)lr (1.16)

The short-range integrals are well behaved and can be treated with conventional methods such

as DF. The long-range integrals are treated in a similar manner as the long-range potential

described above, using a numerical Fourier transform for short/medium-range interactions

and switching to the multipole method for long-range interactions. The integrals evaluated

through each method; DF, Fourier and multipole can all be represented compactly using three

centre integrals.

(αβ|γδ)=
∑
xy

(αβ|x)srM
−1
xy (y|γδ)sr

+
∑
g

(αβ|g)Θ(R12)η(g)(γδ|g)∗

+
∑
mn

(αβ|m)fmn(R12)Θ̄(R12)(γδ|n) (1.17)

The first line in equation 1.17 describes the short-range DF integrals, which uses the auxiliary

fitting basis x and the inverse short-range Coulomb metric. The short-range three centre

integrals (αβ|x)sr are sparse because there is a limited number of AO orbitals, αβ, in the

vicinity of the auxiliary orbital x. The amount of significant integrals scale linearly with respect

to system size because of this sparsity, which is not present in full-range DF integrals because

those integrals use the Coulomb potential.

The second and third line in equation 1.17 represent the long-range interactions. The functions

Θ(R12) and Θ̄(R12) are switching functions used to determine which method is used for a specific

long-range integral. The Fourier integrals (αβ|g) are complex, sparse and also scale linearly with

respect to system size. They scale linearly with respect to system size because the size of the

numerical grid does not need to increase with respect to system size because η(g) decays rapidly

as a function of g. The multipole integrals (αβ|m) are Cartesian multipole moment integrals

where m represents the multipole level and function fmn(R12) denotes analytic derivatives of
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the long-range potential. Correctly switching between the Fourier and multipole methods is one

of the most challenging aspects to this project and is discussed thoroughly in chapter 3.

The regularization procedure used for the long-range potential is expanded in chapter 3,

from this procedure regularized Fourier and regularized multipole methods are derived. The

two-electron one-body integrals arise from this procedure.

(αβ|γδ)1body=SαβVγδ(Rα)+Vαβ(Rγ)Sγδ−SαβSγδV (Rα−Rγ) (1.18)

Here Sαβ is the overlap matrix and Vγδ(Rα) are nuclear-electron like attraction integrals with

a charge centred on Rα. Rα is a gauge centre used in the regularization and an unambiguous

definition of these centres is explained in chapter 3. The one-body contribution is evaluated

analytically and these terms do not scale linearly with respect to system size but they are one-

body contributions and will not become a computational bottleneck until very large systems are

a used. The linear scaling of the integrals is due to the sparsity in the three centre representations,

therefore integral pre-screening is essential to the evaluation of these integrals.

The accuracy of the methods is reported using the accuracy of the Hartree-Fock direct and

exchange matrices because the four centre integrals do not fit in memory and are never fully

assembled in practice. The accuracy of the exchange and direct term exhibit different behaviour

with respect to the range-separation parameter α. The exchange is only assembled with the

Fourier method, it was found that a large α and a medium numerical grid were sufficient

to accurately represent the exchange. The long-range direct term is more complicated and

requires switching between methods. The accuracy of the direct term is underwhelming, it

can only be assembled accurately if a small α and a sizeable numerical grid are used. The

smaller the value of α the further the short-range region extends implying the DF integrals

are less sparse and this increases the short-range linear scaling prefactor.

Chapter 4 describes the range-separated HF method, where algorithms for assembling the

long-range direct and exchange contributions are outlined. Approximate SCF schemes are also

discussed in chapter 4 using the regularized representation.

Chapter 5 entitled “Conclusions and Outlook” provides the reader with insight into the future
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direction of the project including how these range-separated Coulomb integrals can be used

in correlated calculations.
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Chapter 2

Range-separated Coulomb Potential

2.1 Introduction

The Coulomb potential is a pairwise potential representing the interaction between charged parti-

cles. The direct method for evaluating Coulombic interactions entering a molecular Hamiltonian

scales as O(N2) for nuclear-nuclear interactions and as O(N4) for electron-electron interactions.

Owing to the slow 1
|r12| decay and the lack of sparsity in long-range interactions of the coulomb

potential, the evaluation of these interactions is delicate. In an effort to more efficiently treat

Coulomb interactions in large systems, a range-separated Coulomb potential is explored.

VCoul(r12)=Vsr(r12)+Vlr(r12) (2.1)

In this chapter, boldface is used to emphasizes vector quantities while non-bold typeface

is used to represent scalars. The potentials are written as V (r12) even if they only depend

on the magnitude of r12, written |r12|. The reason is that many of the representations and

partitionings used in this chapter may depend on r12 and we will not reduce the expressions

to a radial form as this is not how they would be used in practice when integrals over orbital

products are introduced later in the thesis.

The potential is partitioned into short and long-range regions. The short-range region is well

behaved because any long-range interactions are zero which leads to sparsity resulting in natural

low order scaling with respect to system size. The long-range region still exhibits the challenging

1
|r12| decay however, it can be approximated accurately using the multipole expansion.

Ewald partitioning86,87 is used to separate the potential, a Gaussian is subtracted from the

long-range partition with optimal parameters to ensure that Vlr is zero at r12 =0 and that it
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is flattest near small r12.

Vsr(r12)=
erfc(α|r12|)
|r12|

+X0e
−γ|r12|2 (2.2)

Vlr(r12)=
1

|r12|
−Vsr(|r12|) (2.3)

The parameter α is the range separation parameter which controls the extent of the short-range

potential, while the parameters X0 and γ are determined by α. The larger the value of α the

shorter the short-range potential. For visual aid, a range-separated potential with α=0.6 is

shown in figure 2.1.

Figure 2.1: The Coulomb potential partitioned into long and short-range regions with α = 0.6

The simplest method to evaluate the range-separated potential is to evaluate the short-range

potential analytically and to approximate the long-range region of the potential with the

multipole expansion. The multipole expansion is most accurate in the long-range region of Vlr,

however, the short-range region of Vlr requires very high multipole levels to obtain accurate

results. Figure 2.2 depicts Vlr approximated at increasing multipole levels, the analytical Vlr

is shown for reference. It is clear that near r12 =0 the multipole expansion is inaccurate, but

at large r12 the approximation is accurate even for the lowest level of expansion. It is possible

to increase the overall accuracy of the short-range region of Vlr by choosing a small α. In this

case however, Vsr has a large extent which is not ideal.
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Figure 2.2: The long-range potential approximated with increasing orders of the multpiole expansion

Alternatively one could evaluate Vlr numerically through a Fourier transform.

Vlr(r12)=

∫
dg3 1

|g|2
η(g)eig·r12 (2.4)

η(g)=
4π

(2π)3
e−ω|g|

2− |g|2

(2π)3(2γ)3/2
e−

1
4γ
|g|2 (2.5)

The Fourier transform introduces a singularity at g=0 which is easily avoided by transforming

to spherical coordinates.

Vlr(r12)=

∫
dΩ

∫
dgrη(gr)e

ig·r12 (2.6)

The Fourier representation of Vlr is evaluated numerically, using points and weights, which has

stability issues at large g·r12. The stability issues do not come from η(gr) which has structure

at small gr but decays to zero at large gr. Owing to the limited range of gr a fixed integration

grid can be used independent of system size. The stability issues arise at large r12 as depicted

in figure 2.3.
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Figure 2.3: The function Vlr evaluated analytically and numerically. The numerical integration becomes unstable
at large r12

The numerical integration can be viewed as the summation of many oscillators with frequencies

g·r12. In order to increase the stability of the numerical integration a finer integration grid can be

used, but eventually r12 will become large enough to destabilize the numerical integration.

The multipole representation works well at large r12 but struggles at smaller r12, the Fourier

representation exhibits the converse stability. The simplest solution would be to combine the

two methods and partition Vlr once more.

VCoul(r12)=Vsr(r12)+Vinter(r12)+Vulr(r12) (2.7)

Vlr(r12)=Vinter(r12)+Vulr(r12) (2.8)

Here Vinter is the intermediate range of the potential represented through the Fourier transform

and Vulr is the ultra long-range potential represented through the multipole expansion. To

represent this potential mathematically, Vmr is introduced which is a medium-range potential
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with αm

Vsr(r12)=
erfc(αs|r12|)
|r12|

+Xse
−γs|r12|2 (2.9)

Vmr(r12)=
erfc(αm|r12|)
|r12|

+Xme
−γm|r12|2 (2.10)

Vinter(r12)=Vmr(r12)−Vsr(r12) (2.11)

Vulr(r12)=
1

r12

−Vmr(r12) (2.12)

Visually the three-range potential is shown below in figure 2.4

Figure 2.4: The three-range potential with αs = 0.5 and αm = 0.2

The value of αm is small enough that the multipole expansion is accurate across the whole r12

region and αs is large enough that Vsr has reasonably short extent. The medium-range of the

potential is represented by Vinter which still exhibits instability at large r12 shown in figure 2.5.

At large r12, Vinter is zero but the numerical integration does not evaluate to zero. The solution is

to introduce a cut off threshold (Tcut) such that if r12>Tcut the value of Vinter is set to zero.
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Figure 2.5: The function Vinter evaluated analytically and numerically. The numerical integration becomes
unstable at large r12 where Vinter should be zero.

Accurate results of the Fourier transform can be obtained through the “bandaid” method

of Tcut. However, is it possible to further improve the stability and accuracy of the Fourier

transform? To answer this question we shall explore a gauge invariant regularized long-range

potential. A grid of fixed gauge points Ri is introduced as points near the coordinates ri and

then eig·Ri is subtracted from eig·ri in reciprocal space. Using Vlr from the two-range potential

as an example, the regularized long-range potential can be introduced as.

V R
lr (r1,r2,R1,R2)=

∫
dg3η(g)(eig·r2−eig·R2)(e−ig·r1−e−ig·R1)

=Vlr(|r2−r1|)−Vlr(|r2−R1|)−Vlr(|R2−r1|)+Vlr(|R2−R1|) (2.13)

If Ri is chosen to always be close to ri the regularized potential will always be small. In-

troducing the vector xi = ri−Ri the oscillators in the regularized potential can be written

as eig·R(eig·x−1) which is the product of a fast and slow oscillator. Equation 2.13 can be

rearranged into V R
lr and a group of one-body terms called V1body

Vlr(r12)=V R
lr (r1,r2,R1,R2)+V1body(r1,r2,R1,R2) (2.14)

V1body(r1,r2,R1,R2)=Vlr(|r2−R1|)+Vlr(|R2−r1|)−Vlr(|R2−R1|) (2.15)
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The advantage here is that V R
lr is the only term that needs to be evaluated numerically, V1body

is evaluated analytically and is inexpensive by comparison. The regularized contribution is

the smallest contribution by a significant amount only contributing about one percent of the

total long-range potential as seen in 2.6. The regularized potential does have some structure

at small r12 and in this case has a small negative contribution. The orientation of Ri with

respect to ri can adjust the shape of V R
lr .

Figure 2.6: The two-range potential with Vlr regularized into V R
lr and V1body. The points Ri are placed 1 unit

orthogonally away from ri.

A regularized multipole expansion also exists and the regularization procedure can be performed

on the three-range potential. The hope was that if V R
lr is small, the accuracy of the Fourier

transform would increase. The data shows that this does not appear to be the case. Using

the regularized potential in general does not appear to improve the accuracy. However, when

accuracy is not the greatest concern Vlr can be approximated as V1body by either fully neglecting

V R
lr or neglecting V R

lr for r12 larger than a threshold. This approximation would be a fairly

cheap approximation to the long-range potential. Cases where this might be advantageous

would be in early stages of geometry optimizations or in transition state searches.

The disadvantages to the regularization technique are that it is fairly complicated and doesn’t

really provide a clear gain in accuracy. The cost of evaluating V R
lr is similar to the cost of

evaluating Vlr. The definition of the gauge points Ri is ambiguous, which could potentially
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lead to small discrepancies every time the gauge centres are defined. Any algorithm that uses

this potential should have a clear algorithm to define the gauge centres.

In summary the Coulomb potential will be explored through the two range-separated potentials,

two-range and three-range, which are further divided into eight evaluation schemes. The

schemes are summarized in the table 2.1 below. Several schemes require a threshold Tcut which

occurs at a specific r12 value. Every scheme involving a Fourier transform requires Tcut to turn

off the numerical integration at r12 =Tcut. In Scheme 2, Tcut is used to turn off the Fourier

transform while simultaneously turning on the multipole approximation. Schemes four through

eight are regularized schemes requiring gauge centres.

Scheme Long-Range Potential Multipole Fourier One-Body Notes

1 Vlr X Requires large α
2 Vlr X X Switch between FT

and MP at Tcut
3 Vinter+Vulr X X Turn off FT at Tcut
4 V R

lr +V1body X X
5 V R

lr +V1body X X Turn off FT at Tcut
6 V1body X Use V R

lr =0
7 V R

inter+V
R
ulr+V1body X X X Regularize with αs

8 Vinter+V
R
ulr+V1body X X X Regularize with αm

Table 2.1: Eight schemes to evaluate the long-range Coulomb potential.

2.2 Derivations

This section is devoted to deriving many of the equations introduced in the introductory section

of this chapter. For ease of access some equations have been repeated. Boldface is used to

emphasizes vector quantities while non-bold typeface is used to represent scalars. Repeated

indices are assumed to be summed over.

2.2.1 Partitioning the Coulomb Potential

Range separation and long-range regularization is most easily understood through the Fourier

transform. Let V (r12) be the Coulomb potential between points r1 and r2 (r12 =r2−r1) such
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that the Fourier transform is written as:

1

|r12|
=

4π

(2π)3

∫
dg3 1

|g|2
eig·r12 (2.16)

this function can be partitioned into long and short-range parts by introducing the function

θ(g)=e−ω|g|
2
, as employed in Ewald summation86,87.

1

|r12|
=

4π

(2π)3

∫
dg3(1−θ(g))

1

|g|2
eig·r12+

4π

(2π)3

∫
dg3θ(g)

1

|g|2
eig·r12 (2.17)

=Vsr(r12)+
4π

(2π)3

∫
dg3θ(g)

1

|g|2
eig·r12 (2.18)

The short-range potential can be evaluated in real space as:

Vsr(r12)=
erfc(α|r12|)
|r12|

(2.19)

α=
1

2
√
ω

(2.20)

The short-range potential is well behaved and is not the focus of this chapter. The long-range

potential has some issues that need to be addressed and hence the remainder of the chapter

will focus on the long-range potential. The first issue with the long-range potential is that it

is not purely long range, and the second issue is that the Fourier representation has a |g|−2

singularity. A Gaussian (X0e
−γ|r12|2) is added and subtracted in real-space to set the long-range

potential to zero at r=093.

Vsr(r12)=
erfc(α|r12|)
|r12|

+X0e
−γ|r12|2 (2.21)

Vlr(r12)=
4π

(2π)3

∫
dg3θ(g)

1

|g|2
eig·r12− X0

(2π)3

1

(2γ)3/2

∫
dg3e−

1
4γ
|g|2eig·r12

=

∫
dg3 1

|g|2
η(g)eig·r12 (2.22)

η(g)=
4π

(2π)3
e−ω|g|

2− |g|2

(2π)3(2γ)3/2
e−

1
4γ
|g|2 (2.23)

The parameters, X0 and γ are chosen by setting the limit of the long-range potential and its
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first derivative to zero at r=0.

X0 =lim
r→0

erf(α|r12|)
|r12|

=
2α√
π

(2.24)

d

dr
Vlr(r=0)=2X0(−

α2

3
+γ) (2.25)

γopt=
α2

3
(2.26)

Therefore the potential has only one controlling parameter α, such that the smaller the α the

further the short-range region extends. Typically α is chosen between 0.1 and 0.6. It is possible

to have a long-range potential with additional features such as a small short-range attractive

region. This is done by choosing a γ value smaller than γopt. There maybe applications where

this could be a useful potential, however, for this thesis this is not ideal and γopt will be used

for all potentials. Visually this is depicted in figure 2.7

Figure 2.7: The Coulomb potential separated into two parts, short-range(blue) and long-range(green). The solid
lines are for the optimal γ where the long-range is flattest for small r12. Choosing values larger or smaller than
γopt can result in a steep slope (dash-dot) or a slightly negative potential (dashed). The shape of the short-range
potential remains consistent with respect to γ

The three-range potential is obtained by further partitioning Vlr into medium-range and ultra

long-range contributions. This is done though two α’s, αs which controls the extent of the

short-range potential and αm which controls the onset of the ultra long-range potential. A
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medium-range potential Vmr is used to connect the three parts of the potential.

Vsr(r12)=
erfc(αs|r12|)
|r12|

+Xse
−γs|r12|2 (2.27)

Vmr(r12)=
erfc(αm|r12|)
|r12|

+Xme
−γm|r12|2 (2.28)

Vinter(r12)=Vmr(|r12|)−Vsr(|r12|)

=
erfc(αm|r12|)
|r12|

− erfc(αs|r12|)
|r12|

+Xme
−γm|r12|2−Xse

−γs|r12|2

=
erf(αs|r12|)
|r12|

− erf(αm|r12|)
|r12|

−Xse
−γs|r12|2+Xme

−γm|r12|2 (2.29)

Vulr(r12)=
1

|r12|
−Vmr(r12)

=
erf(αm|r12|)
|r12|

−Xme
−γm|r12|2 (2.30)

The Fourier representation of Vinter is denoted as:

Vinter(r12)=

∫
dg3 1

|g|2
η3(g)eig·r12 (2.31)

η3(g)=
4π

(2π)3
e−ωs|g|

2− |g|2

(2π)3(2γs)3/2
e−

1
4γs
|g|2

− 4π

(2π)3
e−ωm|g|

2

+
|g|2

(2π)3(2γm)3/2
e−

1
4γm
|g|2 (2.32)

The numerical integration of the two-range or three-range potential is mechanically the same.

The functions η(g) from equation 2.23 and η3(g) from equation 2.32 are the only difference

between the numerical contributions of the potentials. Therefore the same code can be used

to integrate both potentials.

Numerical Integration

The numerical evaluation of the long-range potential is performed in spherical coordinates to

cancel the singularity in the Fourier transform. The long-range integral is written as a sum
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of both angular and radial grid points.

Vlr(r12)=
4π

(2π)3

∫ ∫ ∫
dθdφdgrg

2
rsin(θ)η(gr)

1

g2
r

eig·r12

=
∑
Ω,r

wΩwre
ig·r12 (2.33)

It may appear that the angular points are redundant, which would be true for a purely radial

potential. However, the angular points are required when gauge centres are introduced as the

orientation of Ri with respect ri is important. In addition the numerical integration of atomic

orbitals, introduced in chapter 3 requires an accurate angular grid.

The angular grid points are represented through Lebedev quadrature88, which is readily

available through the Python package QuadPy92. Lebedev grids are only available for specific

polynomial orders as these quadratures are derived from octahedral symmetries. The Lebedev

quadratures are the best choice for representing the angular part of Vlr.

Unlike the angular points, there are many quadratures available to represent the radial grids

points. The radial points need to be well suited to represent the radial function η(gr) or η3(gr)

for Vinter. The η functions have structure at small gr but quickly decay to zero at large gr.

Several common radial quadratures are shown in figure 2.8 along with the function η(gr). Here

it can be seen that number of key integration points (points around small gr) are more or less

the same, and therefore an equidistant radial grid was found to be sufficient. Quadratures

such as Gauss-Legendre91 and Gauss-Chebyshev90 were found to not have much significant

improvement on accuracy.
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Figure 2.8: The radial function η(gr), with different numerical quadratures.

2.2.2 Regularization of the Long-Range Potential

The original motivation for regularizing the long-range potential was to explicitly remove

|g|−2 singularity and improve the accuracy of the Fourier transform at large g·r. The radial

function η(gr) decays quickly for large gr but when gr is small and r is very large the numerical

integration destabilizes. This is because we are essentially trying to represent a rapid oscillator

with a small number of grid points. One solution is to use a larger numerical grid for larger

systems, while this will work, the scaling with respect to system size is impractical.

Instead we introduce a grid of fixed points called gauge centres (Ri) that are near to the points

ri and subtracting eig·Ri. The Fourier transform can be rewritten as

V R
lr (r,R)=

∫
dg3η(g)(eig·r−eig·R) (2.34)

This integrand will always be small as long as r is close to R and the |g|−2 singularity is also

removed. For convenience, the vector xi :=ri−Ri is introduced such that:

V R
lr (r,R)=

∫
dg3η(g)eig·R(eig·x−1) (2.35)

Which can be viewed as the product of a fast oscillator and a slow oscillator, this should
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improve the accuracy of the numerical integration over Vlr. In figure 2.9 the real part of the

Fourier integrands are shown for both Vlr and V R
lr . It is clear that V R

lr is much smaller than

Vlr however both do oscillate at similar frequencies as depicted in figure 2.9.

Figure 2.9: The real part of the Fourier integrands as a function of gr for the V R
lr (blue) and Vlr (green) for

two different distances. The gauge centre R is 0.2 from r.

Using the strategy introduced above, V R
lr can be written for r12 :=r2−r1.

V R
lr (r1,r2,R1,R2)=

∫
dg3η(g)(eig·r2−eig·R2)(e−ig·r1−e−ig·R1)

=

∫
dg3η(g)eig·r2e−ig·r1−

∫
dg3η(g)eig·r2e−ig·R1

−
∫
dg3η(g)e−ig·r1eig·R2+

∫
dg3η(g)eig·R2e−ig·R1

=Vlr(|r2−r1|)−Vlr(|r2−R1|)−Vlr(|R2−r1|)+Vlr(|R2−R1|) (2.36)

Rearranging the above equation the long-range potential can be written as the sum of the

regularized potential plus the one-body potential.

Vlr(r1,r2,R1,R2)=V R
lr (r1,r2,R1,R2)+V1body(r1,r2,R1,R2) (2.37)

V1body(r1,r2,R1,R2)=Vlr(|r2−R1|)+Vlr(|R2−r1|)−Vlr(|R2−R1|) (2.38)
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In the three-range potential the intermediate-range contribution can be regularized as:

V R
inter(r1,r2,R1,R2)=

∫
dg3η3(g)(eig·r2−eig·R2)(e−ig·r1−e−ig·R1) (2.39)

=Vinter(|r2−r1|)−Vinter(|r2−R1|)

−Vinter(|R2−r1|)+Vinter(|R2−R1|) (2.40)

The ultra long-range potential can be regularized as well.

V R
ulr(r1,r2,R1,R2)=

∫
dg3(η(g)−η3(g))(eig·r2−eig·R2)(e−ig·r1−e−ig·R1) (2.41)

=Vlr(|r2−r1|)−Vlr(|r2−R1|)−Vlr(|R2−r1|)+Vlr(|R2−R1|)

−Vinter(|r2−r1|)+Vinter(|r2−R1|)

+Vinter(|R2−r1|)−Vinter(|R2−R1|) (2.42)

There are two choices for the function η(g) in the regularization of Vulr using either αs or αm.

If αs is chosen Vlr−Vinter=Vulr such that equation 2.42 becomes:

V R
ulr(r1,r2,R1,R2)=Vulr(|r2−r1|)−Vulr(|r2−R1|)−Vulr(|R2−r1|)+Vulr(|R2−R1|) (2.43)

If αm is chosen Vlr−Vinter=Vulr−Vinter which does not simplify things, therefore αm is chosen.

It is simpler to leave Vinter unregularized and regularize Vulr only. To summarize the two

choices;

� αs : VCoul=Vsr+V
R
inter+V

R
ulr+V1body(αs)

� αm : VCoul=Vsr+Vinter+V
R
ulr+V1body(αm)

2.2.3 Regularized Multipole Expansion

Similar to the Fourier representation the regularized long-range potential can be approximated

through a multipole expansion. Cartesian coordinates are used for the multipole expansion

as it is much simpler to understand the regularization procedure even though the Cartesian

multipole expansion contains redundant information. First let V (r) be a general radial potential.
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A Taylor expansion about the point r=x+R is then performed. For convenience the variable

s= 1
2
r·r= 1

2
(x+R)·(x+R) is introduced, and it is assumed that the potential can be written

in the form V (s). The term V will be used for both and repeated indices are summed over.

The third order Taylor expansion is given as:

V (x+R)≈V (R)+
∂V

∂xi
xi+

1

2

∂2V

∂xi∂xj
xixj+

1

3!

∂3V

∂xi∂xj∂xk
xixjxk (2.44)

changing variables from r to s and using the chain rule.

∂V

∂xi
=
∂V

∂s

∂s

∂xi

=
∂V

∂s
(xi+Ri) (2.45)

∂2V

∂xi∂xj
=

∂

∂xj

∂V

∂xi

=
∂2V

∂s2
(xi+Ri)(xj+Rj)+δij

∂V

∂s
(2.46)

∂3V

∂xi∂xj∂xk
=

∂

∂xk

∂2V

∂xi∂xj

=
∂3V

∂s3
(xi+Ri)(xj+Rj)(xk+Rk)

+
∂2V

∂s2

(
δik(xj+Rj)+δjk(xi+Ri)+δij(xk+Rk)

)
(2.47)

Note that derivatives of s with respect to x with order greater than two are zero, which

simplifies the expansion. Evaluating the derivatives at x=0:

V (x+R)≈V (R)+
∂V

∂s
Rixi+

1

2

(∂2V

∂s2
RiRj+δij

∂V

∂s

)
xixj

+
1

3!

[∂3V

∂s3
RiRjRk+

∂2V

∂s2

(
δijR

k+δikR
j+δjkR

i
)]
xixjxk (2.48)

Above is the expansion for a general potential in Cartesian coordinates, as long as it is

differentiable. One of the main advantages of this representation is that the derivatives of the

potential are only dependent on the expansion centres R and not the moment coordinates

x. This means that when atomic orbitals are introduced only the Cartesian moment integrals

are required.
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Similar to the one sided expansion the radial potential V (r2−r1) can be expanded about points

x,y=0 using the substitution r1 =x+R1 and r2 =y+R2.

V (r2−r1)≡V
[
(y−x)+(Ry−Rx)

]
≡V

[
(y−x)+R

]
(2.49)

Sparing some details.

V (y−x+R)≈V (R)+
∂V

∂s
Ri(yi−xi)

+
1

2

(∂2V

∂s2
RiRj+δij

∂V

∂s

)
(xixj−(yixj+xiyj)+yiyj)

+
1

3!

[∂3V

∂s3
RiRjRk+

∂2V

∂s2

(
δijR

k+δikR
j+δjkR

i
)]

(yiyjyk−(xiyjyk+yiyjxk+yixjyk)+(yixjxk+xiyjxk+xixjyk)+xixjxk)

(2.50)

A more compact notation can be introduced for convenience.

V (y−x+R)=
∑
k,l

mk
yf

(k,l)(R)ml
x (2.51)

Here m terms are the Cartesian moments for x and y, respectively, with orders k and l, while f

is the derivatives of the potential. See appendix B for the two-range potential f (k,l) terms.

The regularized multipole potential can be derived by subtracting the one-body potential,

equation 2.38 from V .

V R(y−x+R)=V (y−x+R)−V (r2−R1)−V (R2−r1)+V (R2−R1)

=V (y−x+R)−V (y+R)−V (R−x)+V (R)

=
∑
k,l

mk
yf

(k,l)(R)ml
x−
∑
k

mk
yf

(k,0)(R)−
∑
l

f (0,l)(R)ml
x+V (R)

=
∑
k,l

mk
yf

(k,l)(R)ml
x−
∑
k 6=0

mk
yf

(k,0)(R)−
∑
l6=0

f (0,l)(R)ml
x−f (0,0)

=
∑
k,l6=0

mk
yf

(k,l)(R)ml
x (2.52)
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The terms in the one-body potential can be expanded as one sided multipole expansions. In

other words, the regularized multipole expansion is the multipole expansion without the k,l=0

terms.

A very important feature to the regularized multipole expansion is that the required Cartesian

moment integrals are one order lower than that of the expansion coefficients. For example this

is very useful when Gaussian basis sets are added because octupole accuracy can be achieved

with only the hexapole moments.

2.3 Analysis of the Potential

The evaluation schemes presented in table 2.1 are analysed in this section. Since it is possible

to analytically calculate all contributions through subtraction, errors are reported as the log

of the absolute errors. Log errors around negative five or smaller are considered manageable,

whereas log errors larger than negative three are considered too large. Typically we would

want the errors to be as small as possible.

Log Error=log10(|Vanalytical−Vnumerical|) (2.53)

The schemes involving regularization (schemes 4-8) require additional vectors R1 and R2 which

are defined as points near r1 and r2, typically 0.2 to 2 units away. To limit the amount of data,

we limit ourselves to a collinear configuration where all points lie on a line unless specified

as depicted in figure 2.10.

Figure 2.10: The orientation of the gauge centres with respect to the points r1 and r2.

When the points r1 and r2 are stretched the points R1 and R2 are adjusted such that x and

y remain fixed.

29



2.3. ANALYSIS OF THE POTENTIAL

2.3.1 Unregularized Potentials

The range separation parameter α has a large effect on the accuracy of both the multipole

and Fourier contributions to the long-range potential. The smaller the value of α the further

the short-range potential extends which reduces the toll on the long-range potential. Large

α values result in a shorter short-range potential increasing the demand on the long-range

potential, specifically in the short-range region of Vlr. The effect of α on the two-range potential

is depicted in figure 2.11 where each column represents a different α. The bottom row of figure

2.11 displays the accuracy of both the Fourier and multipole methods. The Fourier method

is evaluated with a radial grid of 30 points and the multipole method is evaluated with up

to hexapole contributions.

Figure 2.11: The effect of α on accuracy of the two-range potential. Each column represents a different α value
while the top row depicts the range-separated potential and the bottom row displays the accuracy of Vlr evaluated
through either the multipole or Fourier representations.

The multipole expansion (blue) has poor accuracy for small r12, but the accuracy increases

with increasing r12. The multipole expansion is reasonable at small r12 for only the smallest

values of α; at large r12 the multipole expansion is always viable regardless of α. The Fourier

representation is only viable for small r12 and it is a poor choice once Vlr≈VCoul.
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Scheme 1 in table 2.1 is to evaluate Vlr using only the multipole expansion, which is only

viable for α≤0.2. Scheme 1 is not ideal for large systems because Vsr extends too far. Scheme

2 evaluates Vlr using the Fourier representation at small r12 and switches to the multipole

representation when it becomes more accurate than the Fourier method. The switch occurs

at the point where the curves cross in the bottom row of figure 2.11. The switching scheme

is reasonable for point charges, however, once atomic orbitals are introduced the switching

point becomes ambiguous due to the extents of the orbitals which is not ideal.

Evaluation scheme 3 uses the three-range potential which requires the evaluation of Vinter to

be truncated at r12>Tcut. The accuracy of this scheme is shown as the bottom half of figure

2.12. The dashed line in bottom half of figure 2.12 represents the accuracy of the three-range

potential if Vinter was calculated analytically, depicting the multipole error, while the dashed

dot line represents the accuracy if Vulr was a calculated analytically depicting the Fourier error.

The overall accuracy of the three-range potential is reasonable provided that Vinter is truncated

at r12 =Tcut.

Figure 2.12: Top half: The three-range potential with αs=0.5 and αm=0.3. Bottom half: The overall accuracy
(solid blue) of the three-range potential with the numerical evaluation of Vinter truncated at 14. The accuracy
using approximated Vulr and analytical Vinter is shown as the dashed line. The accuracy using approximated
Vinter and analytical Vulr is shown as the dashed dot line.
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2.3.2 Regularized Potentials

The accuracy of the regularized two-range potential with respect to r12 is depicted in figure

2.13. The error for this potential solely originates from the evaluation of V R
lr (r1,r2,R1,R2) as

the one-body and short-range contributions are evaluated analytically. The three methods to

evaluate V R
lr gives rise to the evaluation schemes: 4, 5 and 6 which are to evaluate V R

lr through

the mutipole expansion, Fourier transform or to approximate V R
lr as zero. The data in figure

2.13 shows us that the regularized Fourier method is not good at long-range and that the

multipole method is the best choice for the long-range region. The more interesting conclusion

is that approximating V R
lr as zero is not that much worse at long range than evaluating V R

lr

through either method.

Figure 2.13: The log errors of the regularized two-range potential with α=0.4. The points Ri were located 0.2
from the points ri. The short-range and one-body contributions are evaluated analytically while the regularized
long-range is evaluated through the multipole method, blue dashed line, the Fourier method, solid black or not at
all, green dash dot.

There are two choices on how to regularize the three-range potential. The first choice is to

regularize this potential with αs which results in a regularized Vinter and a regularized Vulr.

The other option is to regularized with αm which results in unregularized Vinter and regularized

Vulr. The accuracy of these two options is shown in figure 2.14 along with the unregularized

three-range potential. In this case there is a gain in accuracy using the αs regularized potential

labelled as scheme 7. The αm regularized potential is approximately the same accuracy as the

unregularized potential. The dotted line labelled αs switched is scheme 7 but Vulr is evaluated
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with the Fourier method for r12<7.5 then evaluated with the multipole method for r12>7.5

this is the most accurate evaluation scheme.

Figure 2.14: The log errors of the regularized three-range potential with αs=0.5 and αm=0.3. The point Ri

were located 0.2 from the points ri. The short-range and one-body contributions are evaluated analytically while
Vinter and Vulr are evaluated through the Fourier and multipole methods respectively. The accuracy of the
potentials without regularization is also shown. Note that Vinter as truncated at r12=14. The line labelled αs

switched has Vulr is evaluated with the Fourier method for r12<7.5 then evaluated with the multipole method
for r12>7.5

Orientation of the Gauge Centres

The orientation of the gauge centres Ri with respect to the coordinates ri is important, specifi-

cally the distance between the vectors. Figure 2.15 depicts the average accuracy of the two-range

potential when the point R2 is placed on a sphere of distance y from the point r2. The points r1,

r2 and R1 are fixed in a collinear fashion as in figure 2.10. From this simulation one can see that

the average shape of the accuracy curve is similar to the collinear orientation figure 2.13. The

distance vector y has a much larger effect on the accuracy than the spherical orientation.
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Figure 2.15: The log errors of the regularized two-range potential evaluated with the Fourier method r12<Tcut
and the multipole method r12>Tcut with α=0.4 and Tcut=10.0. The error for each value of r12 is the average
error of 100 random orientations of point R2 on the sphere y from the point r2.

To further investigate the error associated with the angular orientation of R2, a contour plot

is presented in figure 2.16. In this figure the log error is show for the gauge centre R2 located

at (0.2,θ,φ) from r2. In this figure it is clear there are some angles where the accuracy spikes,

i.e. the error dips sharply, but most of the angular surface is dominated by larger error.

Figure 2.16: A contour plot of the log error for R2 located at (0.2,θ,φ) from the point r2. The two-range
potential with α=0.4 was used at r12=9. The points r1, r2 and R1 are fixed in a collinear fashion.
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2.4 Additional Potentials

One of the key strengths to the range-separated method is that the technique will work for

any radial potential so long as it is smooth and differentiable. This method is not limited to

the two- and three-range potentials. For example, it is possible to change the values of γ in the

two-range potential, currently it is determined by setting the first derivative of the potential

to zero at r12 =0. The method is also not limited to a single Gaussian, it is possible to add

a second Gaussian to the long-range potential.

Vlr(r12)=
erf(α|r12|)
|r12|

−1

2
X0e

−γ1|r12|2−1

2
X0e

−γ2|r12|2 (2.54)

The second Gaussian provides the opportunity to tune the values of γ1 and γ2 such that both

the first and second derivatives of the potential can be set to zero. The parameter X0 is chosen

such that Vlr(0)=0. The values of γ1 and γ2 are related to the range separation parameter

through.

2

3
α2−γ1−γ2 =0 (2.55)

4

9
α4−2γ2

1−2γ2
2 =0 (2.56)

For α = 0.2 this potential has a very flat long-range region as shown in figure 2.17. The

long-range potential does have a brief negative region, which may or may not be beneficial.

The regularization of this potential would lead to a V R
lr (r12) that is even smaller than the

two-range potential’s V R
lr (r12).
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Figure 2.17: The double Gaussian potential with α=0.2.

There are many range-separated potentials that could be explored, the hard part of developing

the engine to calculate the range-separated integrals has been achieved in this thesis and it

is fairly easy to implement new potentials.

2.5 Conclusion

The evaluation of the range-separated potential is complicated, specifically the evaluation of

the long-range region. Contributions to the long-range potential evaluated using the numerical

Fourier transform are not accurate enough at large distances irrespective of the grid size.

The multipole expansion is only accurate enough when a small range separation parameter

α is chosen. A small α implies a far extending short-range potential defeating the purpose

of separating the potential in the first place. A three-range potential is the best choice to

represent the Coulomb potential out of the schemes presented. In the three-range potential

Vsr is evaluated analytically, Vinter is evaluated through a truncated Fourier transform and

Vulr is evaluated through the multipole expansion. In practice the two-range potential is the

better choice once atomic orbitals are introduced as discussed in chapter 3.

In an attempt to further improve the numerical accuracy of the long-range potential a reg-

ularization scheme was introduced. The regularized potentials are much smaller in magnitude

than the one-body potentials which can always be evaluated analytically. Owing to the high
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demand on accuracy in electronic structure calculations the regularized contributions must

be evaluated accurately. The most accurate evaluation scheme is to regularize the three-range

potential using αs, which is slightly more accurate than the unregularized three-range potential.

However, the comparison and accuracy data presented in this chapter is for point charges

which can only tell us so much. It is critical to evaluate the numerical schemes in the context

of electronic structure calculations presented in the next chapter.
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Chapter 3

Two-electron Integrals

3.1 Introduction

The two-electron Coulomb integrals entering a molecular Hamiltonian can be written in terms

of the atomic basis functions φα in a compact (Mulliken) notation as:

(αβ|γδ)=

∫
dr1dr2φα(r1)φβ(r1)

1

|r2−r1|
φγ(r2)φδ(r2) (3.1)

The evaluation and representation of the four centre two-electron integrals (equation 3.1) is

a critical aspect to the efficiency of quantum chemistry programs. In practice the two-electron

integrals are too numerous to store or even fully calculate for large systems. To combat

this large computational cost most large scale packages employ a combination of integral

pre-screening and the resolution of the identity approximation, often referred to as density

fitting (DF)94–97. In the DF approximation auxiliary basis functions are used to represent the

two-electron integrals as:

(αβ|γδ)=
∑
X,Y

(αβ|X)M−1
X,Y (Y |γδ) (3.2)

WhereA, B represent the fitting basis andM−1
X,Y is the inverse Coulomb metric. In most applica-

tions the Coulomb metric only needs to be calculated once and hence the expense of calculating

the two-electron integrals is reduced to the calculation of the three centre integrals (αβ|X).

DF with efficient integral pre-screening is an essential tool for many linear scaling electronic

structure methods42,45,98–104. While the DF approximation is efficient, the three centre integrals

are not sparse since the r−1 decay is so slow which can still lead to expensive calculations.

In this chapter the two-electron integrals are explored through the range-separated Coulomb
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potentials introduced in the previous chapter, namely the two-range potential.

V2range(r12)=Vsr(r12)+Vlr(r12) (3.3)

Vsr(r12)=
erfc(α|r12|)
|r12|

+X0e
−γ|r12|2 (3.4)

Vlr(r12)=
1

r12

−Vsr(r12) (3.5)

Integrating the atomic basis functions over the two-range potential allows the two-electron

integrals to be partitioned into short and long-range contributions.

(αβ|γδ)2range=(αβ|γδ)sr+(αβ|γδ)lr (3.6)

The short-range integrals can be approximated through density fitting analogous to the

full-range integrals. The long-range integrals are more complicated and are evaluated either

numerically through a Fourier transform or they are evaluated through a multipole expansion.

Effectively, the four centre integrals are partitioned into three parts.

(αβ|γδ)2range=
∑
xy

(αβ|x)srM
−1
xy (y|γδ)sr

+
∑
g

(αβ|g)Θ(R12)η(g)(γδ|g)∗

+
∑
mn

(αβ|m)fmn(R12)Θ̄(R12)(γδ|n) (3.7)

The first line of equation 5.4 represents the short-range contribution to the two-electron integrals

which is approximated through DF using the auxiliary basis x and the inverse short-range

Coulomb metric M−1
xy . The short-range three centre integrals (αβ|x) are sparse because the size

of the integral decays exponentially with increasing distance between the orbital’s α and β and

for each orbital pair there are only a limited number of atomic orbital (AO) centres within the

vicinity of each auxiliary centre x. The short-range DF integrals behave essentially the same

as full-range DF integrals with the added sparsity, this added sparsity leads to linear scaling

with respect to system size because the range of α,β and the auxiliary index is limited.

The second and third line in equation 5.4 represent the long-range contribution of the potential,
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3.1. INTRODUCTION

the second line is the evaluation of the potential through the Fourier transform method and the

third line is the evaluation of the potential through a multipole expansion. The Fourier method is

most accurate when the distance between the orbital densities ραβ and ργδ (ραβ(r)=φα(r)φβ(r))

is small, and the multipole method is most accurate when the distance between the orbital densi-

ties is large. The function Θ(R12) and its converse Θ̄(R12) are used as switch between the Fourier

and multipole methods, which ever method is most accurate is the method that is used.

The Fourier integrals (αβ|g) are complex and sparse, η(g) denotes the numerical weights of the

long-range potential and g is the numerical grid points. The size of the numerical grid does not

need to increase with respect to system size because the function η(g) in spherical coordinates

decays rapidly with respect to g and the Fourier method is never used for large R12.

η(g)=
4π

(2π)3
g2e−ω|g|

2− 1

(2π)3(2γ)3/2
e−

1
4γ
|g|2 (3.8)

For small systems the evaluation of the Fourier integrals is expensive; the number of grid points

is larger than the short-range auxiliary basis, but for large systems the size of the auxiliary

grows with respect to systems size while the Fourier grid can remain constant.

The multipole integrals are (αβ|m) and are Cartesian multipole moment integrals expanded

about a centre R1. The multipole method is assembled in Cartesian coordinates for simplicity

even though there is some redundant information in this representation. The multipole level

m can take on values 0,1,2,3 and these integrals are independent of the potential, the potential

information is represented in the function fmn(R12) which is the analytic derivatives of the

potential. These quantities are inexpensive with respect to the DF and Fourier integrals.

The challenge in assembling the two-electron integrals through the two-range potential is

correctly choosing either the Fourier or multipole method to evaluate the long-range contribution.

The accuracy of each method largely depends on the distance between the orbital densities

ραβ and ργδ which can be estimated from |R12| := |R2−R1|. The centres R1 and R2 are gauge

centres representing the centres of the orbital densities ραβ and ργδ respectively. There is some

ambiguity in the definition of these centres; should the centre R1 sit closer to the centre of φα or

closer to φβ? This problem is addressed in more detail in the the subsection “Assigning gauge

centres” where a solution using local orbitals (LO) is introduced to removed the ambiguity.
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The local orbitals µ have well defined centres Rµ which are used as the gauge centres.

A generic three centre integral (αβ|G) can be half transformed into a mixed AO/LO repre-

sentation (αµ|G) which has a well defined centre Rµ leading to half transformed four centre

long-range integrals which can be assembled as:

(αµ|γν)lr=
∑
g

(αµ|g)Θ(Rµν)η(g)(γν|g)∗

+
∑
mn

(αµ|m)fmn(Rµν)Θ̄(Rµν)(γν|n) (3.9)

Here the well defined vector Rµν is used to accurately choose between the Fourier and mul-

tipole methods. Once assembled in the half transformed representation the integrals can be

transformed back into the AO basis if needed.

The gauge centres Rµ are convenient expansion centres for the multipole method and they

can be used to regularize the long-range potential, a procedure introduced in chapter 2. Briefly

a regularization scheme for the long-range potential was introduced to explicitly remove the

singularity in the Fourier transform in an effort to improve the numerical accuracy of the

method. The regularization procedure involves the gauge centre R near the point r.

V R
lr (r)=

∫
dg3η(g)(eig·r−eig·R) (3.10)

The half transformed Fourier integrals then become:

(αµ|g)R=

∫
d3rφα(r)φµ(r)e

ig·r−Sαµeig·Rµ (3.11)

A consequence of the regularization is the introduction of analytical one-body integrals.

Vlr(R)αβ=

∫
d3rφα(r)φβ(r)Vlr(|r−R|) (3.12)
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The half transformed regularized two-range potential can then be written as:

(αµ|γν)R2range=
∑
xy

(αµ|x)M−1
xy (y|γν)

+
∑
g

(αν|g)RΘ(Rµν)η(g)(γν|g)R∗

+
∑
mn6=0

(αµ|m)fmn(Rµν)Θ̄(Rµν)(γν|n)

+SαµVlr(Rµ)γν+Vlr(Rν)αµSγν−SαµSγνVlr(Rµν) (3.13)

The short-range DF integrals do not need to be assembled in the mixed representation unless it

is convenient to do so. The Fourier weights are the same for the regularized and unregularized

potentials, only the three centre integrals, (αν|g)R are regularized. The regularized multipole

expansion can be derived by subtracting the one-body potential from the multipole expansion,

effectively removing the the m,n= 0 terms from the multipole expansion. The fourth line

in equation 3.13 is the one-body contribution which is assembled from nuclear-electron like

attraction integrals with a charge of one centred at R and the overlap matrix Sαβ. These

integrals do not scale linearly with respect to system size but are evaluated analytically and

are two index quantities which is relatively inexpensive compared to the three centre integrals.

For very large systems these integrals may become a bottleneck.

The potential benefit to using the regularized potential is that contribution from the Fourier/Multipole

methods are very small and could perhaps be evaluated with a smaller numerical grid/lower

level expansion than their unregularized counterparts, while maintaining similar accuracy

increasing the overall efficiency of a calculation. In preliminary geometry optimizations steps

the regularized potential might even be neglected completely.

The accuracy of these methods can be studied by comparing the approximated integrals to the

analytical four centre integrals. However, in practice the four centre two-electron integrals are

never assembled, instead quantities that contribute to the molecular Hamiltonian are assembled

through the three centre representations. Therefore to study the accuracy and validity of

the range-separated method a four centre integral analysis will only be used for the smallest

systems and the Hartree-Fock (HF) method4,105–107 will be used as the benchmark method

for larger systems.
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The HF wave function is the cornerstone of ab initio electronic structure theory and the

optimization of molecular orbitals by the HF method is often the first step in many electronic

structure methods. In quantum chemistry, molecular orbitals |ψi〉 are represented as a linear

combination of atomic orbitals, or basis functions |φα〉.

|ψi〉=
∑
α

Cα,i|φα〉 (3.14)

Here Cα,i are the expansion coefficients, these coefficients can be used to form the one electron

density matrix.

Dαβ=
∑
i

Cα,iCβ,i (3.15)

The molecular orbitals are obtained by solving the Hartree-Fock-Roothaan equations.

FC=SCε (3.16)

Here F is the Fock operator and S is overlap integrals. These non-linear equations are solved

iteratively though a procedure called the self-consistent field (SCF) method. The Fock matrix

is composed of one and two-electron contributions and the focus will be on the accurate

construction of the two-electron contribution to the Fock matrix. The Fock matrix for closed

shelled systems in the atomic orbital basis is shown in equation 3.17.

Fαβ=Hcore
αβ +2Jαβ−Kαβ (3.17)

The term Hcore
αβ denotes the one electron integrals describing the kinetic energy and nuclear

attraction of an electron, the second and third terms are the direct and exchange Coulomb

integrals contracted with the density matrix.

Jαβ=
∑
γδ

(αβ|γδ)Dγδ (3.18)

Kαβ=
∑
γδ

(αγ|βδ)Dγδ (3.19)
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To tie everything together, the density matrix can be factorized through a pivoted-Cholesky

routine to yield local occupied orbital transformation coefficients.

Dγδ=
∑
µ

Cγ,µCδ,µ (3.20)

Which can be used to simplify 3.18 and 3.19.

Jαν=
∑
µ

(αν|µµ) (3.21)

Kαβ=
∑
µ

(αµ|βµ) (3.22)

The exchange is more straightforward to analyse. Using equation 3.9 one can see that for the

exchange Θ(Rµµ) is evaluated at 0 always, such that Fourier method is always the method of

choice. The direct term uses Θ(Rνµ) as the switch between the Fourier and multipole methods

and the half transformed direct term is the result. The direct term (Jαν) must be projected back

into the AO basis to be assembled into the AO Fock matrix, which has some additional com-

plications associated with it discussed in the “Analysis of the Integral Accuracy” section.

To summarize the goals of this chapter, the range-separated potentials introduced in chapter 2

are used to partition the two-electron Coulomb integrals into short and long-range contributions.

The range-separated integrals are all compact and sparse, the expensive integrals scale linearly

with respect to system size. The accuracy of the methods are validated using the four centre in-

tegrals for small systems and the HF direct and exchange contributions for larger systems.

3.2 Methods

3.2.1 Notation

The notation used throughout this chapter is summarized below in table 3.1. Boldface is

used indicate vectors r is used for electron coordinates and R is used for gauge centres.
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Label Definition

α,β,γ,δ General atomic orbitals
i,j,k,l Canonical occupied orbitals
p,q,r,s Canonical virtual orbitals
µ,ν,σ,τ Local occupied orbitals
µ̄,ν̄,σ̄,τ̄ Local virtual orbitals

Table 3.1: Index Notation.

3.2.2 Computational Details

This subsection is devoted to clarifying the computational details of this chapter. All calcu-

lations were carried out in a custom written Python program interfaced with Python-based

simulations of chemistry framework (PySCF)108. Primitive three centre integrals were calcu-

lated in PySCF which uses the Libcint integral library109, the range-separated integrals and

two-electron quantities such as the Fock matrix are assembled in the custom code. At this

stage a converged SCF calculation from PySCF is used to check the final results in the new

code. Once appropriate procedures have been determined the convergence of Hartree-Fock

calculations can be tested. This will be discussed in Chapter 4.

The two properties that we wish to demonstrate for the range-separated potential are the

accuracy and the scaling of the integrals with respect to system size. To present the data three

different molecular examples are chosen to highlight the key feature of this method.

A simple water dimer is used to demonstrate many of the challenges faced when working with

the range-separated potential without overcomplicating the analysis. The distance between

the oxygen atoms is increased such that the long-range potential can be studied. The water

dimer maybe too simple at times, in this case a similar approach is taken with a stretched

glycine dimer. These two stretched dimers are used to show the strengths and weaknesses of

the potentials.

To demonstrate integral scaling with respect to system size polyacetylene chains with repeating

unit (C2H2)n are used as test molecules. By using a molecule comprised of repeating chains

it is easier to demonstrate the scaling of three centre integrals.

To demonstrate general properties four molecules were chosen and are depicted in figure 3.1.
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The molecules are glycine, toluene, benzophenone and 12-amino dodecahexanone. Glycine

and toluene were chosen to demonstrate how the integrals behaves with small molecules.

Benzophenone and 12-amino dodecahexanone are larger molecules to demonstrate how the

long-range integrals behave.

Figure 3.1: Four molecules used to demonstrate features of the range-separated method. A. Glycine. B. toluene.
C. Benzophenone. D. 12-amino dodecahexanone.

A more general study on a larger varriety of molecules is presented in chapter 4 where molecules

from the GMTKN55 database110–112 were investigated. The GMTKN55 database is a database

of small to medium sized molecules designed to benchmark general main group thermochemistry,

kinetics and noncovalent interactions. It consists of some 2400 plus single point calculations

which make up approximately 1500 relative energies and it is often used to benchmark the

validity of density functionals used in density functional theory. This thesis uses a restricted

HF code so only the restricted single point calculations from the GMTKN55 database were

performed.

The Python programming language is excellent for fast development of code and testing of

new algorithms, but it is very slow compared to other languages and in this case the overhead

between the custom code, PySCF and Libcint can be expensive. However, our goal was to

create a code to test the validity of the range-separated method and it is not optimized for

large scale calculations, therefore for the smaller molecules triple zeta basis sets such as ccpvtz

were used with the associated auxiliary fitting set ccpvtz-jkfit but for larger molecules such
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as the polychains smaller Pople basis sets such as 6-31g had to be used.

3.2.3 Sparse Matrices

It is important for efficiency and scaling to take advantage of the sparsity of the AO integrals.

All three index integrals used throughout this thesis are stored as sparse matrices to reduce

amount of memory required for matrix-matrix operations. A sparse matrix is a matrix whose

elements are dominated by zeros with only a few non-zero elements. There are several ways

to format a sparse matrix. The coordinate (COO) format is the most human readable format

where the sparse matrix is sorted in three arrays: data, row and column indices. The COO

format is not efficient for matrix-matrix operations but it is easy to understand and work with.

There are other formats such as compressed sparse row (CSR) or compressed sparse column

(CSC) which can be efficient for sparse matrix-matrix operations if the sparsity structure is

random or unknown. In quantum chemistry there is structure to the sparsity and several

groups exploit this sparsity to further optimize matrix operations113,114. In this thesis COO

and CSR formats are used, the COO format is used to make the code more readable and the

CSR format is used for matrix operations. Simple transformations are available in the Scipy115

python libraries to switch between formats.

One of the technical challenges faced in this thesis is that Scipy sparse matrix routines only

work for square matrices (two index) but our primitive integrals are three index quantities. The

dimensions mismatch is a challenge which is solved by compressing indices in the three index

integrals. For example the three index integral (αβ|γ) can be stored as (α+β∗nα|γ) where

nα is the size of α index. Index compression is used where needed throughout the code.

3.2.4 Local Orbitals

Localised molecular orbitals (LO) are molecular orbitals that occupy a limited spatial region.

LO’s are an important tool in many electronic structure methods as contributions between

spatially distant orbitals can be treated at a lower (cheaper) level of theory, which can drastically

increase the efficiency of post Hartree-Fock correlation calculations. For example, the popular

local correlation approaches include domain-based local pair natural orbitals (DLPNO)7–13 and

cluster in molecules (CIM)22–36,116 which all rely on the use of local molecular orbitals.
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There are many flavours of orbital localisation schemes available; two of the more popular

schemes are the Pipek-Mezey and Boys localisation schemes117–119. Boy’s localization mini-

mizes the spatial extent of the orbitals while Pipek-Mezey localisation maximizes the orbital

dependent partial charges on the molecules nuclei. Both are readily available in many software

packages, including PySCF.

In this thesis, the preferred method for obtaining the localisation coefficients is through a

pivoted-Cholesky decomposition120 of the Hartree-Fock density matrix.

Dαβ=
∑
µ

CαµCβµ (3.23)

the coefficients can be orthonormalized through Löwdin orthonormalization if required.

Cαµ=
∑
µ′

Cαµ′M
1/2
µ′µ (3.24)

M=CSC† (3.25)

This is the preferred localisation method because we can introduce the half-transformed three

centre integral, (αµ|g) which is important in construction of the HF direct and exchange

contributions.

The rank of the density matrix is the number of electrons (number of electron pairs in restricted

calculations) and hence the range of µ is limited to the occupied labels. For the virtual orbitals,

the same pivoted-Cholesky procedure can be performed on D̄αβ which would yield the local

virtual orbitals labelled µ̄. Orthogonalizing the local virtual orbitals from Cholesky can lead

to small eigenvalues in the inverse metric, therefore orthogonalizing the virtual orbitals should

be avoided.

The local orbitals µ have a well defined centre Rµ which can be obtained via the dipole

moments.

Rµ=
(µ|r|µ)

(µ|µ)
(3.26)
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The well defined centre is essential for assigning the correct gauge centre to a half-transformed

integral block (αµ|g), a problem which is discussed in the “Assigning Gauge Centres” subsec-

tion.

The “locality” of an orbital can be quantified by calculating the standard deviation of the

orbitals.

σ2
x=(µ|x2|µ)−(µ|x|µ)2

σ2
y=(µ|y2|µ)−(µ|y|µ)2

σ2
z =(µ|z2|µ)−(µ|z|µ)2 (3.27)

3.2.5 Assigning Tile and Gauge Centres

In chapter 2 gauge centres are introduced as an essential part of the treatment of the long-range

potential. The gauge centres have multiple uses, they are used to regularize the Fourier integrals,

as expansion centres for the multipole representation, distance metric for switching between mul-

tipole and Fourier methods and finally the gauge centres are used as part of a coarse grained pre-

screening described in the “Integral pre-screening” section. In terms of integral pre-screening the

gauge centres are referred to as tile centres. The definition of a gauge centre (Ri) in chapter 2 is a

point near the point ri. In this chapter we are concerned about atomic basis functions which are

not points and therefore the gauge centres need to be redefined as points near the centre of these

atomic orbitals. Atomic orbitals are atom centred orbitals and the centre is always the nuclear

coordinate, therefore gauge centres can be defined as points near the nuclear coordinates.

It is not required to have a gauge centre on each nuclear coordinate if atoms are close enough

one gauge centre would be sufficient to represent all of the nearby orbitals. For example, in

a water molecule it is sufficient to place a gauge centre at coordinate of the oxygen atom as

the hydrogens are close enough. However, for more complicated systems such as polyethylene

it may be sufficient to place a gauge centre between each carbon pair or on each carbon atom

themselves. The placement of gauge centres is still ambiguous.

Figure 3.2 depicts a simple algorithm for assigning AO gauge centres. The first step (panel

A) is to introduce gauge centres as a three dimensional grid of points equidistantly separated
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by 1−2 angstroms (adjustable parameter Tsep). The second step is to place the molecule of

interest in this grid then assign each nucleus nearest gauge centre. If no atoms are assigned to

a gauge centre that centre is removed as shown in panel C. If multiple atoms are assigned to

the same gauge centre, that gauge centre is migrated to the centre of charge of that particular

group of atoms shown in panel D which is the resulting AO gauge centres.

Figure 3.2: A pictorial representation of the algorithm used to assign atomic orbital gauge centres.

Each AO label can be assigned to a gauge centre. Capital letters are used to identify the gauge

centre in the Mulliken notation.

(αAβB|γCδD) (3.28)

In the evaluation of the four centre two-electron integrals there are potentially four unique

gauge centres based on the current definition, but there can only be two centres used for the

regularization. For the orbital pair αβ, what vector should be used for R1? There are three

possibilities to consider, Rα, Rβ or Rαβ :=
Rα+Rβ

2
, which leads to three situations.

� If α,β are close: Rα,Rβ and Rαβ are all sufficient.

� If α,β are far apart: The integral is zero because α,β decays exponentially due to the

Gaussian product theorem.

� If α,β are far but not too far: Rα is OK for φα but poor for Rβ. Rαβ is poor choice
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for both α,β.

Integrals that fall in the third situation are the hardest to represent accurately as there is no

good solution to the placement of the gauge centre. To keep choices simple Rα will always be

used. Note that this breaks some of the symmetry in the four centre integrals as (αβA|γδC)≈

(βαB|γδC). This error can be used as a metric to judge the accuracy of the method.

A solution to the ambiguity of gauge centre placement that works very well with the assembly

of the Fock matrix is to introduce local orbitals and the half transformed integral, written in

a mixed AO/LO representation.

(αµ|γν)=
∑
βδ

(αβ|γδ)CβµCδν (3.29)

Here the gauge centres will be defined as Rµ and Rν, their centres are defined by equation

3.26.

For the direct term the vector Rµν :=Rµ−Rν can be used to determine the switching between

multipole and Fourier methods. The switch can be improved by including the orbital extents,

equation 3.27. The orientation of the extents that minimizes Rµν is the orientation used for

determining switching.

To summarize, there are two sets of gauge centres calculated for each molecule Rα and Rµ.

The AO gauge centres Rα are defined once at the start of the calculation and are used to

partition the integrals into sizeable blocks that are easily handled in memory. The local gauge

centres Rµ are calculated once per SCF iteration and are used in the assembly of the long-range

integrals as the distance metric for Θ(Rµν). They are also used as expansion centres for the

multipole method and are essential for regularizing the Fourier integrals.

3.2.6 Integral Pre-screening

All integral calculations should be pre-screened to avoid the calculation of integrals that

evaluate to zero. Integral pre-screening is imperative for the calculation of the primitive three

centre integrals because they are all sparse objects and their low order scaling is a result of

their sparsity. In practice it would be ideal to screen all AO integrals by their basis function
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shells. However, in our code, there is too much overhead between the Libcint integral package

(written in C) and the python code. Instead, a course grained pre-screening algorithm is used

focused on the AO gauge centres. In the context of integral pre-screening tile centres are better

a name for the AO gauge centres.

The AO indices and hence their basis function shells are mapped to their nearest tile centres

based off a tile separation threshold. The smaller the threshold the more tile centres used,

maxing out at one tile centre for each nuclear coordinate. The three centre integrals can then

be written with a tile centre subscript, (αAβB|xX), this is referred to as a block of integrals.

In the screening algorithm, any quantities referencing a block are referencing the maximum

value on any basis shell in that block.

The screening that is implemented is a modification to the tight distance dependent estimator

proposed by Hollman et al. in 201565. The reason for the modification is due to the block

screening and the range-separated long-range potential.

The simplest estimator invokes the Schwarz inequality121.

(αβ|γδ)≤|(αβ|αβ)|1/2|(γδ|γδ)|1/2 (3.30)

This inequality holds true because equation 3.30 is positive-definite. However, while this is an

upper bound, the Schwarz screening is not a tight bound. A better screening algorithm would

use a reliable tight bound with conservative thresholds and the bound doesn’t necessarily need

to be an upper bound122. Screening the short-range three centre integrals with the Schwarz

inequality would yield:

(αAβB|xX)≤|(αAβB|αAβB)|1/2|(xX|xX)|1/2

(αAβB|xX)≤QABQX (3.31)

QAB=Max(|(αAβB|αAβB)|1/2) (3.32)

QX=Max(|(xX|xX)|1/2) (3.33)

The above inequality is lacking information about the distance between blocks AB and blocks
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X. To add in information about the radial distance between the blocks the vector rABX is

introduced.

rABX =min(rAX,rBX)

rAX = |RA−RX|−extA−extB (3.34)

The maximum extent of an orbital extA is included in the definition of rABX. The screening

estimator is then:

if rABX> 0:

(αAβB|xX)≈QABQXVsr(rABX)

if rABX< 0:

(αAβB|xX)≈QABQX (3.35)

The estimator in equation 3.35 results in a tight screening that is not an upper bound. If a con-

servative screening threshold is used the block screening can be fairly efficient. To demonstrate

the tight bound the short-range three centre block integrals (αAβB|xx) were calculated for

the polyacetlyene molecule with 16 carbon atoms in the def2tzvp basis (def2tzvp-jk auxiliary

basis). A log-log plot of the actual verse estimated block value is depicted in figure 3.3. The

features to note in figure 3.3 is that the actual values are fairly close to the one-one ratio (solid

black line), with a slight bias towards the conservative side.
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Figure 3.3: Log-Log plot of the estimated value and actual short-range integral value for the C16 polyacetylene
chain in the def2tzvp basis.

The tile separation threshold (Tsep) is the control between the number of integral blocks and

the rough size of each integral block, this parameter is used to find a compromise between

memory usage and run time for the calculation of the short-range three centre integrals. Data

for the polyacetlyene molecule with 20 carbon atoms are tabulated in table 3.2. The numerical

quantities required for pre-screening are calculated once at the beginning of the calculation and

stored in memory. These values are per block which totals to the number of tile centres cubed.

The timings reported in table 3.2 are the time it takes to evaluate equation 3.35 and call the C

library for a block of integrals if the estimator is larger than the pre-screen threshold (10−8 in

this case). It can be seen that it is expensive to call a block of integrals which is mainly due to

the python-C overhead. The most efficient block screening is with a tile centre on each atom

(42 gauge centres) which screens out about 54 percent of all three centre integrals. However

this calculation takes about 13 times longer than when 18 tile centres are used which only

screens about 45 percent of all integrals. The average size of an integral block is also reported,

ideally the integral blocks should not be too large as the code starts to run into memory issues.

As a compromise between speed and memory a tile separation of somewhere between 2.5 and

5Å is used. The parameter Tsep may need further tuning for genuine 3d molecules rather than

the 2d structures used here.
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Tsep (Å) # of Tile Centres % of Integrals Screened Average Ints./Block Time (s)
0 42 54.2 588 2125.6

2.5 18 45.8 8845 170.0
5 5 24.5 574417 11.4
10 3 15.5 2979107 9.7
100 1 0.0 95133696 9.8

Table 3.2: Tabulated data on the screening of the C20 molecule with α=0.4 in the def2tzvp basis.

A similar technique is used to screen the long-range Fourier integrals, resulting in the following

estimator.

(αAβB|g)≤QAB
√
wg (3.36)

Figure 3.4 depicts log-log plots comparing the estimated integral value to the actual integral

value for the C16 polyacetlyene chain in the def2tzvp basis. When the numerical weights

are not included the estimator is not a tight bound but it is an upper bound. Using the full

numerical weights for screening yields an estimate that is slightly too large. The square root of

the weights is the best estimator because it is the tightest bound. Conservative pre-screening

values of 10−8 to 10−11 should be used to ensure integrals are accurately screen to approximately

10−7 in magnitude.

Figure 3.4: Log-Log plot of the estimated value and actual integral value, for the C16 polyacetlyene chain in the
def2tzvp basis.
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3.3 Integral Definitions

3.3.1 Short-Range Analytical Integrals

The short-range integrals are represented through density fitting, which is commonly used

technique in many quantum chemistry packages. To briefly summarise, an auxiliary basis set

is chosen such that equation 3.1 can be written as:

(αβ|γδ)=
∑
xy

(αβ|x)(x|y)−1(y|γδ) (3.37)

Where

(αβ|x)=

∫
dr1dr

′φα(r1)φβ(r1)Vsr(r1,r
′)χx(r

′) (3.38)

(x|y)=

∫
dr′dr′′χx(r

′)Vsr(r
′,r′′)χy(r

′′) (3.39)

The metric matrix (x|y) shall be relabelled as Mxy, and for density fitting the inverse metric

matrix is required. It is also beneficial to decompose the metric matrix into two symmetric

halves (M−1
xy =mxlmyl) such that equation 3.37 can be written as:

(αβ|γδ)=
∑
x,y,l

(αβ|x)mxlm
†
yl(y|γδ) (3.40)

=
∑
l

(αβ|l)(l|γδ) (3.41)

Which simplifies the evaluation of the short-range integrals. There are a few ways to perform

the decomposition of the metric matrix, such as using the matrix square root or Cholesky

decomposition. The Cholesky decomposition is the preferred method because it is more easily

implemented and for tight thresholds more sparse than the square root method. However, for

looser thresholds the opposite is true.

Data for the total number of nonzero (αβ|l) integrals using both the square root and Cholesky

methods for factoring the metric matrix are presented in figure 3.5. A linear polyacetylene

chain was used as the example molecule in the 6-31g basis, the integrals are stored in a sparse
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matrix, the data plotted is the length of the data array. A threshold of 10−15 (solid lines)

and a threshold of 10−8 (dashed lines) were used to prune the sparse matrices. There is a

sizable difference in the amount of data between the methods with no notable loss in accuracy,

therefore pruning the sparse matrix data is essential.

Figure 3.5: Total number of non zero (αβ|l) integrals. The solids lines are with a pruning thresh of 10−15 and
the dashed lines are with a pruning thresh of 10−8.

The short-range primitive integrals scale linearly with respect to system size because the αβ

range is limited, as it decays exponentially due to the Gaussian product theorem. The auxiliary

basis centre has to be close to the orbital density ραβ because of the short-range potential used.

The linear scaling of the three centre integrals is not clear in figure 3.5 because the system

has to reach a certain size for linear scaling to become clear, this is shown in the “Integral

Scaling” subsection.

The DF Fock matrix terms used in the accuracy analysis are:

Jαβ=
∑
γ,δ,l

(αβ|l)(l|γδ)Dγδ (3.42)

Kαβ=
∑
γ,δ,l

(αγ|l)(l|βδ)Dγδ (3.43)
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3.3.2 Long-Range Fourier Integrals

The two-electron integrals can be evaluated using the Fourier representation of the Coulomb

potential as:

(αβ|γδ)=

∫
dg3(αβ|g)f(g)(g|γδ) (3.44)

f(g)=
4π

(2π)3

1

|g|2
(3.45)

(αβ|g)=

∫
d3rφ∗α(r)φβ(r)e

ig·r (3.46)

Where equation 3.46 denotes the Fourier transform atomic orbitals (FTAO) integrals, which

are complex integrals. Let us first replace the Coulomb potential with the long-range half of

the two-range potential. The two-electron integral becomes:

(αβ|γδ)lr=

∫
dg3(αβ|g)f(g)(g|γδ) (3.47)

f(g)=
4π

(2π)3

1

|g|2
e−γ|g|

2

(3.48)

The only difference between the equations 3.44 and 3.47 is the function f(g). The integrals

over the atomic orbital basis functions, equation 3.46, are identical in both equations. The

function f(g) that contains all the information about the long-range potential. This is very

convenient because the numerical evaluation of equation 3.47 requires the continuous vector

g and function f(g) to be represented as numerical points and weights, the FTAO integrals

are evaluated analytically (integral over r). The FTAO integrals are also readily available in

many integral codes such that evaluating these integrals over new potentials is not a difficult

development task. To evaluate new potentials one simply needs to calculate new points and

weights to adjust the numerical quadrature.

The numerical representation of equation 3.47 using spherical grid points gi is shown in equation

3.49.

(αβ|γδ)lr=
∑
i

(αβ|gi)wi(gi|γδ) (3.49)
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In practice one would split the weights in two and attach them to either side of the three

centre AO integrals. This is usually very straight forward and a simple square root of the

weights will work for most potentials as AO integrals are complex numbers but the weights are

semi-definite positive. However, when the regularized potential from chapter 2 is introduced,

the function η(g) might have negative values. This is a technical problem that is easily solved

by factoring the weights into magnitude and phase.

(αβ|γδ)lr=
∑
i

(αβ|gi)|wi|pi(gi|γδ) (3.50)

=
∑
i

(αβ|gi)
√
|wi|pi

√
|wi|(gi|γδ) (3.51)

=
∑
i

Iαβ(gi)piI
∗
γδ(gi) (3.52)

Here the phase pi has only three values −1,0 or +1 and through presorting the grid points

according the the sign of the phase the above equation becomes:

(αβ|γδ)lr=
∑
i,pi=1

Iαβ(gi)I
∗
γδ(gi)−

∑
i,pi=−1

Iαβ(gi)I
∗
γδ(gi) (3.53)

To maximize efficiency only unique FTAO integrals are calculated. These integrals are Iαβ(gi)

for α≥β, and they are pre-screened using the magnitude of the square root of the weights

in conjunction with the overlap matrix.

Regularizing the Fourier transform involves introducing the gauge centre Rα defined as a point

near r. Similar to how the potentials are regularized in the previous chapter the regularized

three centre FTAO integrals are:

(αβ|g)R=

∫
d3rφα(r)φβ(r)(e

ig·r−eig·Rα)

=

∫
d3rφα(r)φβ(r)e

ig·r−
∫
d3rφα(r)φβ(r)e

ig·Rα

=(αβ|g)−Sαβeig·Rα (3.54)
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Therefore equation 3.49 becomes:

(αβ|γδ)lr=
∑
i

(αβ|gi)Rwi(gi|γδ)R∗ (3.55)

In summary, the regularized FTAO’s are obtained by subtracting phase shifted overlap integrals.

The pure Fourier integrals and regularized Fourier integrals are both written in the same

compact notation. Therefore, it very easy to switch between pure FT and regularized FT in

a calculation. This can be done for the whole system or for individual orbital pairs.

The Fourier representation is only good when the orbital densities ραβ and ργδ are not very

far apart, up to about 10Å. The accuracy of the Fourier integrals breaks down for large g·r12,

which will always occur if the system is large enough. The breakdown arises from the phase

factor eig·r12 which oscillates very rapidly and is hard to integrate accurately for large r12.

Therefore the Fourier integrals need to be turned off and the long-range multipole integrals

need to be turned on at some point.

Introducing the half transformed representation the Fock contributions can be written down

with a well defined distance metric Rµν which is used even if regularization is not.

Jαµ=
∑
ν,g

(αµ|g)(g|νν) (3.56)

Kαβ=
∑
ν,g

(αν|g)(g|βν) (3.57)

The key feature to the exchange is that the distance vector Rνν is zero always. Therefore the

construction of the Fourier exchange will always be accurate and the numerical grid will not

need to increase with respect to system size.

3.3.3 Long-Range Multipole Integrals

In chapter 2 we derived an expression for the multipole expansion of a radial potential in

Cartesian coordinates as:

V
[
(y−x)+(Ry−Rx)

]
=
∑
k,l

mk
yf

(k,l)(R)ml
x (3.58)
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Atomic basis functions can now be introduced such that equation 3.58 can be written as:

(αβ|γδ)=
∑
k,l

(αβ|k,Ry)f
(k,l)(Rxy)(αβ|l,Rx) (3.59)

(αβ|k,Ry)=

∫
(d3y)φ∗α(Ry)φβ(Ry)y

k (3.60)

The integrals (αβ|k,Ry) are the local Cartesian moment integrals and these are easily obtained

by shifting the global moment integrals which are:

S̃αβ=(α|β) (3.61)

D̃αβ=(α|r|β) (3.62)

Q̃αβ=(α|r2|β) (3.63)

Õαβ=(α|r3|β) (3.64)

Using the tilde to identify global moments and substituting r=x+Rx the local moments can

be obtained.

Sαβ=S̃αβ (3.65)

Dαβ=D̃αβ−RxS̃αβ (3.66)

Qαβ=Q̃αβ−
∑
mn

[
(RxD̃αβ)mn+(RxD̃αβ)nm

]
+RxRxS̃αβ (3.67)

Oαβ=Õαβ−
∑
lmn

[
(RxQ̃αβ)lmn+(RxQ̃αβ)nlm+(RxQ̃αβ)mnl

]
+
∑
lmn

[
(RxRxD̃αβ)lmn+(RxRxD̃αβ)nlm+(RxRxD̃αβ)mnl

]
+RxRxRxS̃αβ (3.68)

The function f (k,l) denotes the derivatives of the potential. In the regularized multipole the

values of k,l are restricted such that they are not zero. Note this leads to gain of one free

multipole order. For example, the regularized multipole can be calculated at hexapole accuracy

using only the octupole AO moment integrals and the 4th derivatives of the potential. This is

an advantage because the derivatives are cheap to calculate but the multipole moment integrals

can be sizeable.
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The above method can be used for the assembly of any radial potential that has well behaved

derivatives. From here on, the long-range part of the two-range potential will be used. The

derivatives of the long-range potentials are well behaved even at r=0. Here the full Carte-

sian expansion is presented, but in practice only the unique degrees of freedom would be

calculated.

The contributions to the Fock matrix are:

Jαµ=
∑
ν,k,l

(αµ|k,Rµ)f
k,l(Rµν)(l,Rν|νν) (3.69)

Kαβ=
∑
ν,k,l

(αν|k,Rµ)f
k,l(0)(l,Rν|βν) (3.70)

The multipole method is never very accurate at small Rµν therefore the exchange is always

calculated using the Fourier method. The multipole contribution to the direct term is only

used when Rµν is large.

3.3.4 Analytical One-Body Integrals

The one-body integrals are a consequence of the regularization procedure and are only used

when regularized long-range integrals are used. The one-body potential from chapter 2 is

defined as:

V1body=Vlr(|r2−R1|)+Vlr(|R2−r1|)−Vlr(|R2−R1|) (3.71)

Including the AO basis functions the one-body contribution can be written as an outer product

of one-body terms.

(αβ|γδ)1body=SαβVγδ(Rα)+Vαβ(Rγ)Sγδ−SαβSγδV (Rα−Rγ) (3.72)

Physically, the integrals Vαβ(Rγ) are nuclear-electron attraction integrals with a charge centred

at Rγ and as always Sαβ is the AO overlap matrix.

Vlr(Rγ)αβ=

∫
d3rφα(r)φβ(r)Vlr(|r−Rγ|) (3.73)

62



3.4. INTEGRAL SCALING

The direct and exchange contributions are assembled using local gauge centres Rµ and Rν.

Jαµ=
∑
ν

SαµVνν(Rµ)+Vαµ(Rν)Sνν−SαµSννV (Rµ−Rν) (3.74)

Kαβ=
∑
ν,k,l

SανVβν(Rν)+Vαν(Rν)Sβν−SανSβνV (0) (3.75)

3.4 Integral Scaling

The scaling of the data with respect to systems size is one of the motivations behind this

research. In particular the scaling of the short-range density fit and long-range Fourier integrals.

To convince the reader that the data scales as advertised, polyacetylene, which has repeating

units of (C2H2)n, is chosen as the test molecule. Owing to the code limitations a chain length

of 12 units or 24 carbon atoms is the largest chain available using the ccpvtz basis with

ccpvtz-jkfit auxiliary basis. In some cases the 6-311g basis needed to be used.

3.4.1 Three Centre Integrals

There are three types of three center integrals that are considered: short-range DF, long-range

FT and multipole integrals. The DF and FT integrals are further separated into two types:

primitive and contracted. Primitive integrals are the bare three centre AO integrals that

are returned from the integral library. Contracted integrals are primitive integrals that have

been contracted with the middle term, for DF integrals this is the square root of the inverse

metric and for FT integrals it is the square root of the weights. It is important to consider

both types of integrals because their sparsity is different and expensive contractions like the

half-transformation are more efficient to perform on sparser matrices.

All integrals are stored as sparse matrices and the data plotted in this section is the total

number of non-zero integrals. In practice many of the integrals are non-zero but extremely

small and do not significantly contribute to the accuracy of the method. Essentially they can

be set to zero. The three centre integrals are pruned according to a threshold Tsparse which

typically is set to a small value between 10−8 and 10−15.

Two parameters that control the linear scaling or the onset of linear scaling are Tsparse and
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α, the range separation parameter. Figure 3.6 depicts how the total number of short-range

integrals scales with the sparsity threshold for the polyacetylene chain in the 6-31g basis. One

can see how large of an effect the sparse threshold has on the system’s scaling with respect

to number of carbon atoms. It should be noted that all three thresholds do not effect the

accuracy of the Hartee-Fock direct and exchange contributions in any meaningful way. The

accuracy analysis is more thoroughly covered in the next section and all data presented from

here on are screened with a sparsity threshold of 10−9.

Figure 3.6: Total number of integrals above the sparsity thresholds for the ployacetylene chain system in the
6-31g basis with α=0.2.

The range separation parameter is essential to control the onset of linear scaling for the short-

range integrals. Although the parameter does not affect the amount of primitive long-range

Fourier or multipole integrals, it does effect the weighted Fourier integrals and regularized

Fourier integrals. Figure 3.7 depicts the total number of primitive short-range integrals (left)

and the total number of weighted long-range Fourier integrals (right). The amount of short-

range integrals can be reduced significantly with increasing α values. Only the weights of

the numerical grid are effected by α such that the effect of α on the Fourier integrals is less

significant. In the next section “Analysis of the Integral Accuracy” we will learn that the

accuracy of the Fourier integrals decreases with increasing α. A trade off exists between total

number of integrals and accuracy which can be controlled through α.
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Figure 3.7: Total number of integrals above the sparsity thresholds for the ployacetylene chain system in the
ccpvtz-basis basis. The short-range integrals are primitive integrals and the Fourier integrals are weighted
integrals. A sparsity threshold of 10−9 was used.

Linear scaling for the short-range integrals can be seen in figure 3.8 which is dependent on

the value of α. For α=0.1 the linear scaling begins around 8 chain lengths and for α=0.5

the onset of linear scaling is closer to 4 chain lengths.

Figure 3.8: Total number of short-range integrals for the ployacetylene chain system in the ccpvtz-basis basis.
One can see how the onset of linear scaling can be controlled through the value of α. A sparsity threshold of
10−9 was used.

The difference between the primitive and contracted short-range integrals is significant. For

small α values the contracted integrals are more sparse than the primitive integrals, the opposite
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is true for large α values and larger systems as shown in figure 3.9.

Figure 3.9: Total number of short-range integrals above the 10−9 sparsity threshold for polyacetylene in 6-31g
basis. The solid lines represent the primitive integrals and the dashed lines represent the contracted integrals.

All Fourier integrals scale naturally with respect to system size, as shown in figure 3.10. The

three types of Fourier integrals are primitive, weighted and regularized. The regularized

integrals are significantly more sparse than the primitive and weighted integrals which is

advantageous if efficient screening and sparse matrix operations are used.

Figure 3.10: Total number of Fourier integrals in the ccpvtz basis with a numerical grid of size (23,22).

The multipole integrals do not scale linearly with respect to system size but are considerably
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less numerous than the DF and Fourier integrals. The multipole integrals are also independent

of α.

3.4.2 One-Body integrals

The number of one-body integrals is significantly less than the number three centre integrals

for small to medium sized systems. For very large systems these integrals become a bottleneck

because they do not scale linearly with respect to system size. The scaling of the one-body

nuclear electron like integrals are shown below. The local occupied gauge centres are used for

Vαµ and the local virtual gauge centres are used for Vαµ̄.

Figure 3.11: The scaling of the one-body terms for the polyacetylene chain in 6-31g basis with a sparse threshold
of 10−9.

For reference figure 3.12 depicts the scaling of several important quantities needed for a HF calcu-

lation. It can be seen that the density matrix and the exchange contribution do not scale linearly

with respect to system size. The overlap and direct contributions do scale linearly with respect

to system size. The short-range exchange does scale linearly with respect to system size.
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Figure 3.12: The scaling of several common one-body quantities for the polyacetylene chain in 6-31g basis with
a sparse threshold of 10−9.

3.5 Analysis of the Integral Accuracy

The accuracy of the direct and exchange contributions to the Fock matrix are analysed as a

means to judge the accuracy of the integrals. The two-electron integrals are only analysed

for the short-range contribution, the memory demand is too high to analyse the long-range

four centre integrals. PySCF is used to calculate the “answer” which is compared to the result

from the range-separated code. All errors are then reported as the log of the absolute error

to quantify the accuracy, for quantities other than the HF energy the maximum absolute error

of the matrix is reported.

Log(Error)=Log10(|PySCF−Range-separated|) (3.76)

To analyse Fock contributions, a restricted HF calculation is first performed in PySCF to obtain

the converged density matrix and the Fock matrix answer. The converged PySCF density

matrix is used to assemble the range-separated two-electron Fock contributions which are:

J=JDF+JFT+JMP (3.77)

K=KDF+KFT (3.78)
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The PySCF HF calculation uses density fitting such that the short-range contributions JDF

and KDF can be subtracted from the answer to isolate long-range errors. There is a slight

problem with this method in that the long-range answer is the long-range DF answer which

is slightly different from the analytic long-range answer which cannot be calculated in the

current code as it would require the analytic long-range four centre integrals. The values from

the range-separated code are precise enough that this is not a large concern.

3.5.1 Short-Range Contributions

The short-range contributions are assembled using density fitting. Figure 3.13 depicts the

maximum error of the short-range four centre integrals as a function of the range separation

parameter α. The maximum error is independent of the range separation parameter. It can

be assumed that the short-range integrals are precise to around the fourth decimal place, small

fluctuations from this value would depend on the basis and fitting basis.

Figure 3.13: The maximum log error in the short-range four centre integrals assembled through density fitting
as a function of range separation parameter α. The ccpvtz basis was chosen with the ccpvtz-jkfit auxiliary basis.

The total number of short-range integrals decreases with increasing α as the potential is more

long-range. The smaller molecules glycine and toluene are small enough that the short-range

potential extends the full length of the molecule even for α=0.8. For the two larger molecules

the total number of non-zero integrals decreases with increasing α. It is important to point out

that the DF error is dependent on the atoms and basis set used rather than the magnitude of
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the integral. Figure 3.14 depicts the total number of non-zero integrals as a function of α.

Figure 3.14: The total number of short-range four centre integrals with magnitude greater than 10−9. The
ccpvtz basis was chosen with the ccpvtz-jkfit auxiliary basis.

3.5.2 Long-Range Exchange Contributions

The long-range exchange contribution is assembled in the half transformed representation using

the Fourier transform method or the regularized Fourier transform method.

Kαβ=
∑
µ,g

(αµ|g)wg(g|βµ)∗ (3.79)

KR
αβ=

∑
µ,g

(αµ|g)Rwg(g|βµ)R∗+
∑
µ

SαµVβµ(Rµ)+Vαµ(Rµ)Sβµ (3.80)

Where wg are the numerical weights of the Fourier transform. The associated gauge centres

for the half transformed integrals is Rµ and the distance between the gauge centres is Rµµ

which is always zero such that the Fourier method is always chosen. The exchange can be

evaluated through the multipole method but it is much less accurate.

Figure 3.15 depicts the log error of the HF exchange energy for both the Fourier transform

(solid lines) and the regularized Fourier transform (dashed lines) for changing α values. The

accuracy of the HF exchange energy is better than the DF error (dotted red line) for most

values of α . The larger the value of α the more the function η(g), represented by the numerical
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weights, oscillates. This is why the accuracy diminishes for larger values of α. For small α

the regularized Fourier method is approximately the same accuracy as the Fourier method,

there is some variance at larger α values.

Figure 3.15: The log error of the HF exchange energy as a function of α at the ccpvtz level of theory with the
(23,22) numerical grid. The solid lines represent the Fourier transform method, the dashed lines represent the
regularized method. The dotted red line is the DF error for reference.

The accuracy of the Fourier method depends on the numerical grid size which is a combination of

angular points and radial points. Figure 3.16 depicts the exchange energy error for a fixed angu-

lar grid (left) and a fixed radial grid (right). There is no significant gain in accuracy by increasing

the numerical grid. If the grid is too small (23,14) the error can be improved. To be conservative

the (23,22) grid or larger should be used to calculate the exchange contribution.
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Figure 3.16: Log (Errors) of the HF exchange energy at the ccpvtz level of theory for chaining numerical grids.
Left is a fixed angular grid of order 23. Right is a fixed radial grid of 22 equidistant points.

An important feature to the scaling of the Fourier integrals is that numerical grid does not need

to increase with respect to system size to maintain the same accuracy. Figure 3.17 demonstrates

this feature. The log(error) of the HF exchange energy is plotted for three different grid sizes

(17,18), (23,22) and (31,30) for the polyacetylene system. The error grows with respect to

system size which is expected for a systematic error. The error begins to scale linearly with

respect to system size for the larger chains and all three grids evaluate to the same error. For

the largest chain C26 the DF fitting set contains 1180 basis functions while the (17,18) grid

consists of 1980 grid points. If the system was to double in size, not possible with the current

code, the number of DF integrals will be larger than the number of Fourier integrals.

72



3.5. ANALYSIS OF THE INTEGRAL ACCURACY

Figure 3.17: Log (Errors) of the HF exchange energy at the 6-31g level of theory for the polyacetylene system
for α=0.2. All three numerical grids evaluate to the same numerical error independent of chain length.

It is well known that the exchange is predominantly a short-range phenomenon and one would

expect the long-range energy contribution to be small. The HF exchange energy values are

tabulated in 3.3 for both the Fourier and regularized Fourier methods. The regularized Fourier

method contains two values, the regularized Fourier value and the one-body value which is

calculated analytically. The first feature to note is that the long-range exchange contributions are

small and they are accurate to roughly 6 decimal places which is better than the DF error.

The regularized Fourier exchange contributions are small and negative which is strange, the

one-body contribution is larger and positive such that the sum of the two is correct. The

negative energy contributions can be adjusted by deviating from γopt in the range-separated

potential. In applications where accuracy is not the largest concern, K1body or perhaps a scaled

value of K1body can be used to approximate the long-range exchange.

α 0.1 α 0.3 α 0.5

FT Method Regularized FT FT Method Regularized FT FT Method Regularized FT
KFT KR

FT K1body KFT KR
FT K1body KFT KR

FT K1body

Glycine 0.0010 -0.0011 0.0021 0.1380 -0.1619 0.2999 0.8602 -1.0778 1.9380
Toluene 0.0027 -0.0049 0.0076 0.3024 -0.5931 0.8955 1.6540 -3.1816 4.8356

Benzophenone 0.0051 -0.0175 0.0226 0.5560 -1.5395 2.0955 3.0250 -6.8783 9.9033
12-amino dodecahexanone 0.0055 -0.0087 0.0141 0.5715 -0.9748 1.5463 3.1806 -5.5234 8.7043

Table 3.3: Tabulated long-range HF exchange energy contributions (ccpvtz basis) for the Fourier (KFT ) and
regularized Fourier methods (KR

FT + K1body). The one-body contribution is calculated analytically.

To summarize this section the HF exchange contribution works very well for a decent range
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of α values (0.1-0.5). Increasing the numerical grid does not significantly increase the accuracy

and as long as the grid is large enough the exchange is calculated accurately. There is no clear

advantage to the regularized method other than the one-body contribution might be a valid

approximation if accuracy is not a large concern. For very large systems the numerical Fourier

method will contain less integrals than the short-range density fit contribution. Conservative

recommended parameters for calculating the exchange would be a grid size of (23,22) with

an α value from 0.1 to 0.3.

3.5.3 Long-Range Direct Contributions

The long-range direct contribution should be simple, however it is the most challenging term

to assemble. The direct term is challenging to assemble because it requires a switch between

the long-range Fourier and long-range multipole methods. This switch (Tswitch) is determined

by the distance between the gauge centres Rµν which are the local gauge centres. The AO

gauge centres do not work well for the switching as seen in figure 3.18.

Figure 3.18: Log(error) of the direct HF energy using the AO gauge centres (x) and the local gauge centres
(circles). The AO gauge centres should not be used.

The multipole method is essential to maintain accuracy in the direct term which is demon-

strated in figure 3.19 using a stretched water dimer. The green dashed line is the error of the

Fourier method without a switch, it breaks down for largely separated integrals. The blue

curve is the switched method, with Tswitch = 8Å, the Fourier method is turned off and the
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multipole method is turned on at this value..

Figure 3.19: The maximum error of the direct matrix for the stretched water dimer in the ccpvtz basis. The
green line is the pure Fourier method, the blue line is the switched method where contributions closer than 8Å
are calculated using the Fourier method and contributions further than this are calculated using the multipole
method.

The switch between Fourier and multipole methods is dependent on the range separation

parameter. To find optimal Tswitch values as a function of α, calculations were run using the

stretched water dimer in the ccpvtz basis and the error of the direct term was monitored.

For more complex systems the Tswitch may need to be adjusted, the recommended values are

presented below in table 3.4.

α Tswitch (Å) α Tswitch (Å)

0.1 24 0.5 8
0.2 20 0.6 6.3
0.3 14 0.7 5.8
0.4 10 0.8 5

Table 3.4: Optimal Tswitch values for a given range separation parameter. Values are determined from the
stretched water dimer in the ccpvtz basis.

The accuracy of the direct terms are much more sensitive to α than the exchange terms. Figure

3.20 depicts the error of the HF direct energy. It is recommended to use small α values for

calculation of the direct term. The stability of the numerical Fourier transform breaks down

for large α values as the function η(g) oscillated more rapidly.
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Figure 3.20: The log error of the direct long-range HF energy as a function of α. Solid lines are the Fourier-
multipole method and dashed lines are the regularized method. The red dotted line is the density fit error for
reference.

The size of the numerical grid is important for the accuracy of the method. In figure 3.21 log of

the HF energy error is plotted as a function of N-Grid. N-grid is the both the angular order and

the number of equidistant radial points. For the largest molecule 12-amino dodecahexanone

(solid black line), a numerical grid of at least 27 is required to achieve numerical accuracy on

the order of the DF error (dotted red line).

Figure 3.21: The log of the HF energy error as a function of N-Grid. N-grid is the both the angular order and
the number of equidistant radial points. A range separation parameter of 0.2 and the ccvptz basis was used.
The dotted red line is approximately the density fit error.
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There is a small window in the parameters were the direct term is evaluated accurately. It

is recommended to evaluate this term with α≤0.3 and a numerical grid of at least 27.

3.6 Conclusion

Range-separated two-electron integrals are discussed in this chapter with the goal of convincing

the reader that the amount data scales linearly with respect to system size and that the

integrals are accurate enough to be used in quantum chemistry calculations. The two-range

potential described in chapter 2 is used to partition the four centre integrals into short and

long-range contributions. The short-range contribution is assembled using density fitting. The

three centre DF integrals, (αβ|x), scale linearly with respect to system size because the orbital

β must be close to α (decays like the AO overlap matrix) and the auxiliary index x must be

spatially close to αβ because the integrals are short range.

The long-range contribution is evaluated through either a numerical Fourier transform or a

multipole expansion. The Fourier method is used for close interactions while the multipole

method is used for long-range interactions, both methods are essential to maintain high accuracy.

Determining when to switch between methods is complicated. Local orbitals |µ〉 are used to

define local gauge centres Rµ which are unambiguous in definition. The distance between

gauge centres Rµ and Rν is used to determine which method may be employed to evaluate

the integral (αµ|γν), orbital extents are accounted for in this distance metric. The switching is

controlled by Tswitch and table 3.4 reports recommended Tswitch values for a range of α’s.

The Fourier integrals scale linearly with respect to system size because the numerical grid size

does not need to increase with respect to system size. The Cartesian multipole moments do

not scale linearly with respect to system size but are significantly less numerous then the DF

and Fourier integrals.

The accuracy of the integrals is analysed through an analysis of the HF direct and exchange

contributions. This is because it is not practical to fully assemble the four centre integrals to

check accuracy in sizeable systems. The accuracy of the direct and exchange terms behave

differently with respect to the range separation parameter and the numerical grid size. The

exchange contribution can be evaluated with a large α value and a small numerical grid. The
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direct term should be assembled with a small α value, we recommend α≤0.3 and a numerical

grid of at least N-grid 23. If the recommended parameters are chosen, the long-range error

should be better than the error introduced from density fitting.

Regularized Fourier and mulitpole integrals are derived in this chapter following a similar

derivation to the regularization of the long-range potential in chapter 2. The one-body contribu-

tion is a product of the regularization procedure. These one-body integrals do not scale linearly

with respect to system size but they are comprised of nuclear-electron like attraction integrals

and the overlap matrix which are significantly cheaper to calculate than the DF, Fourier and

multipole integrals. In very large systems these integrals might become a bottleneck. The

one-body integrals are evaluated analytically and the error in the regularized method comes

from the error in the regularized Fourier and multipole methods. The regularized integrals

are significantly more sparse than their unregularized counterpart. The accuracy of regularized

integrals is on the same order as the accuracy of unregularized integrals.

Hopefully the data presented in this chapter convinces the reader that the range-separated

molecular integrals and the regularized integrals are accurate enough to use in quantum

chemistry calculations.
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Chapter 4

Integral Direct Hartree-Fock

4.1 Introduction

Hartree-Fock theory4,105–107 is the cornerstone of ab initio electronic structure theory and it is

equivalent to the molecular orbital approximation. Optimizing the molecular orbitals through

the HF method is often the first step in many electronic structure methods. The orbitals are

optimized by solving the Hartree-Fock Roothaan equations. The Hartree-Fock Roothaan equa-

tions, see equation 4.1, are non-linear because the Fock operator F is dependent on the density

matrix (the molecular orbital (MO) coefficients C) and is therefore solved iteratively.

F(C)C=SCε (4.1)

The iterative self-consistent field (SCF) procedure is used to solve these equations. Briefly, the

SCF procedure starts with a guess at the MO coefficients which are used to construct the Fock

operator F which is then used to obtain a better guess at the MO coefficients. This procedure

is repeated until the MO coefficients converge. The largest expense of the SCF procedure is cal-

culating the direct (J) and exchange (K) contributions to the Fock matrix, which are assembled

using the two-electron integrals and the atomic orbital (AO) density matrix Dγδ as:

Jαβ=
∑
γ,δ

(αβ|γδ)Dγδ (4.2)

Kαβ=
∑
γ,δ

(αγ|βδ)Dγδ (4.3)

Since the two-electron integrals are too numerous to store, they are recalculated at each SCF

iteration66; this procedure is called direct-SCF and is computationally expensive but the

storage bottleneck caused by the two-electron integrals is avoided.
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In this chapter, we present a range-separated Fock matrix that is assembled from range-separated

integrals that scale linearly with respect to system size. The range-separated potentials used

throughout this chapter are the two-range potential and the regularized two-range potential,

both of which are explored in the previous chapters.

V2range=Vsr+Vlr (4.4)

V R
2range=Vsr+V

R
lr +V1body (4.5)

The range-separated Fock matrix is assembled in two parts; short-range and long-range contri-

butions. The short-range contributions are assembled through the density fitting (DF) approxi-

mation using the short-range three centre integrals (αβ|x) which exhibit the same behaviour as

conventional full-range integrals with the added sparsity along the auxiliary axis. In principal

the short-range contribution to the Fock matrix can be assembled in modern J andK engines by

swapping integral codes, the added sparsity can only improve the efficiency of these codes. Our

own implementation tries to take full advantage of the sparsity of the 3-center integrals.

The equations for the short-range J and K are:

Jαβ=
∑
γ,δ,x,y

(αβ|x)M−1
xy (y|γδ)Dγδ (4.6)

Kαβ=
∑
γ,δ,x,y

(αγ|x)M−1
xy (y|βδ)Dγδ (4.7)

The inverse metric, M−1
xy , is calculated once at the start of the calculation and does not need

to be calculated at every SCF iteration. Since he integrals (αβ|x) need to be calculated at

each iteration, it is essential to have efficient integral pre-screening which can be enhanced

by including information about the density matrix.

In order to assemble the long-range contribution, local orbitals (LO) |µ〉=Lαµ|α〉 and corre-

sponding local gauge centres Rµ must first be introduced. The transformation coefficients Lαµ

are obtained through a pivoted-Cholesky decomposition of the density matrix that needs to

be done once at the start of each SCF iteration. The coefficients are orthonormalized through
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Löwdin orthonormalization.

Dγδ=
∑
µ

LγµLδµ (4.8)

The gauge centres are well-defined vectors that can be calculated from the dipole moments.

Rµ=
〈µ|r|µ〉
〈µ|µ〉

(4.9)

Using the local orbitals, the range-separated direct contribution can then be written down in

a half transformed AO/LO representation.

Jαν=
∑
µ,g

Θ(Rµν)(αν|g)|wg|Pg(g|µµ)∗

+
∑
k,l,µ

Θ̄(Rµν)(αν|k)f (k,l)(Rµν)(k|µµ) (4.10)

The first line in equation 4.10 is the numerical Fourier transform and the second line is the

multipole expansion of the same contribution. The function Θ(Rµν) and its converse Θ̄(Rµν)

are switching functions to decide which method is used for each µν pair. The switch is based

off the magnitude of Rµν which is an estimate of the distance between the three centre integrals

(αν|g) and (µµ|g)∗. The Fourier method is used when Rµν is small and the multipole expansion

is used when Rµν is large, the size of Rµν is the magnitude of the vector minus the extents of

orbitals, see Chapter 3 “Assigning Gauge Centres” for more information. The terms |wg| and

Pg are the magnitudes and phase of the numerical grid points, they are split into two terms

because it is possible to have negative weights. The function f (k,l) is the analytical derivatives

of the long-range potential. The switching between Fourier and multipole methods is explained

in more detail in the chapter 3.

To obtain the direct contribution in the AO representation, Jαµ must be projected back into

the AO space. The projector LᵀS is used to project from the half transformed representation

to the AO representation. However, this projector only projects out the occupied block of the

Fock matrix such that equation 4.11 only contains information about the occupied-occupied
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and virtual-occupied blocks since the α index is not projected.

JαO=
∑
µγ

JαµLγµSγβ (4.11)

=JVO+JOO (4.12)

The occupied-virtual block is easy to obtain from the transpose of JαO. To get the virtual-virtual

block, an assembly similar to the assembly of Jαµ is conducted using local virtual orbitals |µ̄〉

to assemble Jαµ̄. The local virtual orbitals are obtained via pivoted-Cholesky decomposition

of D̄=S−1−D without orthonormalization as this can lead to numerical issues with small

eigenvalues in large basis sets. The long-range direct contribution can be assembled as:

J=JαO+JOα−JOO+JV V (4.13)

The long-range exchange is simpler to assemble as only the Fourier transform method is used

and there is no need to project back into the AO representation.

Kαβ=
∑
µ,g

(αµ|g)|wg|Pg(g|βµ)∗ (4.14)

To assemble the regularized long-range direct and exchange contributions one only needs use

the regularized integrals for the long-range J and K matrices and calculate the one-body

contributions.

Jαν=
∑
µ

Vαν(Rµ)Sµµ+SανVµµ(Rν)−SανSµµV (Rµ−Rν) (4.15)

Kαβ=
∑
µ

Vαµ(Rµ)Sβµ+SαµVβµ(Rµ)−SαµSµµV (0) (4.16)

Again Jαν̄ must be assembled using local virtual orbitals to obtain the correct JV V block.

The algorithms to assemble the two-electron contributions to the range-separated Fock matrix

are presented in section “Algorithms”, the algorithms make use of sparse-matrix multiplies and

integral pre-screening. There are many techniques that have been developed over the decades

82



4.2. ALGORITHMS

to aid in the efficiency of the construction of the Fock matrix and the SCF procedure4,107, see

the introduction chapter of this thesis for more details. Examples of such are the incremental

Fock matrix approach, where the change in the density matrix is used to construct the change

in the Fock matrix at each iteration.

F ′αβ=Fαβ+∆Fαβ (4.17)

∆Fαβ=J(∆Dγδ)+K(∆Dγδ) (4.18)

∆Dγδ=D′γδ−Dγδ (4.19)

The incremental Fock approach is advantageous because the ∆Dγδ can be used to pre-screen

the two-electron integrals for large computational gain. The use of an incremental Fock

approach for the long-range contributions is not obvious in our scheme because the incremental

density is not positive definite.

The primary goal of this chapter is to convince the reader that the range-separated Fock matrix

can be assembled and that there are no issues with the convergence of the SCF procedure.

Therefore many of the “bells and whistles” found in optimized codes have not been implemented

in our code mainly due to the required implementation time. The code is still in early stages

of development and is not competitive in regards to computation time.

4.2 Algorithms

The following algorithms are called once for each SCF iteration to assemble the direct and

exchange term to the Fock matrix. At the start of each iteration the local occupied and local

virtual orbitals are obtained from pivoted-Cholesky decomposition of D and D̄ along with the

local gauge centres.

Integral pre-screening is essential for efficiency of the algorithms. The integrals are pre-screened

in blocks defined by their associated nuclear coordinates. The AO’s α are batched by grouping

their associated atoms A into a group of local atoms centred around RA termed tile centres.

The molecule’s coordinates are reordered to follow the tile centre ordering, this is done once at

the start of the calculation. The integrals can then be batched into small batches (αAβB|κK)
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(κ is used for general 3 index integral ) that can be recalculated as necessary. The tile centres

RA and RB can be screened to identify which A,B blocks are non-zero indicated as B∈A.

The batching of the label κK depends on the specific type of three centre integral, for DF

integrals this is the auxiliary index, for Fourier integrals this the grid point g and for the

multipole integrals this label is the multipole level l.

Similar to the AO labels the Cholesky labels µ can be grouped around a common center M.

The coefficients Lαµ can then be batched into smaller LαAµM blocks and the A,M pairs that

are non-zero (above a threshold) can be identified and labelled as A∈M.

To assemble the direct and exchange terms simultaneously we assume an integral block (αAβ|x)

can be calculated and stored in memory as a sparse matrix. Screening is used such that A,B,K

blocks that are essentially zero are ignored, greatly reducing the memory demand.

The long-range direct term is evaluated through either the Fourier or multipole method

depending on the distance between the local orbitals µν. This choice is made at the start

of each SCF iteration and depends on the value of the range separation parameter. In later

iterations when the calculation is near convergence it is possible to fix these choices. The

choices are stored in boolean arrays called FTmap and MPmap.

The current code is still is not optimized and it is not possible to report on the scaling of

computational time versus system size.

4.2.1 Assembly of the Density Fit Contributions

The short-range direct term is assembled in three steps. First the inverse metric matrix (M−1
xy )

is contracted with the three centre integrals to form the intermediate I1(γ,δ,y), which is later

contracted with the density matrix to form I2(x). The final step is to contract the intermediate

I2(x) with the three centre integrals, this requires the three centre integrals to be calculated

twice per SCF iteration which can be costly but the integrals are short-range and the amount

of data calculated at each call scales linearly with respect to system size. The efficiency of

the calculation of I1(γ,δ,y) and I2(x) can be improved by including the sparsity of the density
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matrix in the integral pre-screening.

Jαβ=
∑
γ,δ,x,y

(αβ|x)M−1
xy (y|γδ)Dγδ

=
∑
γ,δ,x

(αβ|x)I1(γ,δ,x)Dγδ

=
∑
x

(αβ|x)I2(x) (4.20)

To assemble the short-range exchange contribution we take advantage of the local orbitals and

the half transformed representation.

Kαβ=
∑
γ,δ,x,yµ

(αγ|x)M−1
xy (y|βδ)LγµLµδ

=
∑
µ,x,y

(αµ|x)M−1
xy (y|βµ)

=
∑
µ,x,y

(αµ|x)mxkmky(y|βµ)

=IK(αµ,k)IK(βµ,k) (4.21)

The advantage to this method is that the exchange can be assembled by batching over the local

orbitals |µ〉 and the local coefficients Lγµ can be used to screen which γ indices to included

in the calculation of (αγ|x) limiting the range of αγ pairs.

The calculation of the direct intermediate I2(x) can be performed during the assembly of the

short-range exchange contribution. Algorithm 1 outlines the construction of the short-range

contributions. The algorithm requires the batched primitive integrals (αAβ|y), the density

matrix, the batched local orbital coefficients LαA,µ and both the inverse metric matrix and

its symmetric halves M−1
xy =

∑
k

mx,kmk,y.

The main loop for the the exchange contribution is a loop over a batch of local orbitals. The

local orbitals are batched into M groups to keep the memory demand low. For a particular

orbital |µ〉, the magnitude of LαA,µ determines which |αA〉 to include in the calculation of

(αAβ|y) for that µ, the threshold to control this screening is Tdensity.
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Algorithm 1 Short Range Density Fit Fock Contributions

1: MapA=False ∀A . Vector to keep track of which A’s have been summed into I2(x)
2: for M=1 in nM do . Batch of local orbitals µ
3: for A∈M do . Defined by max(LαA,µ)>Tdensity
4: Obtain the Integral Batch (αAβ|y) . B∈A,Y ∈AB
5: (µβ|y)+=

∑
αA

(αAβ|y)LαAµ
6: if MapA 6=True then . Intermediate used for J, only do this once
7: I1(αA,β,x)+=

∑
y

(αAβ|y)M−1
xy

8: I2(x)+=
∑
αAβ

I1(αA,β,x)DαAβ

9: MapA at A=True
10: end if
11: end for
12: IK(µβ,x)+=

∑
y

(µβ|y)my,x

13: Kβγ+=
∑
µk

IK(µβ,x)IK(µγ,x) . Exchange Contribution

14: end for
15: for A do
16: Obtain the Integral Batch (αAβ|x) . B∈A,X∈AB
17: JαAβ=

∑
x

(αAβ|x)I2(x) . Direct Contribution

18: end for

The largest matrix kept in memory at one time is the sparse matrix (αAβ|x) which will

never be too large because the integrals are short range and the size of A is controlled by the

user/program. It is important to note that this is independent of the size of the molecule,

however the memory usage can become large if very large basis sets are used.

The two main loops in algorithm 1 are a master loop over M and a loop over A, the second

loops range is restricted since there is small range of αA associated with M. There maybe some

redundancy in the number of times the integral block (αAβ|x) is calculated which happens

when different M require the same integrals. It is possible to sort the order of M indices such

that M+1 is as similar as it can be to M and a rolling set of integral blocks can be kept in

memory to minimize the amount of redundant integral calculations. Another option is to label

each integral block as a sparse or dense blocks and keep the sparse blocks on disk or even

memory. Only the dense block would be recalculated as needed.

To calculate I2(x) we need to be careful not to double count any integrals, so the first time

an integral block is calculated it is added to I2(x), then if it is recalculated for a different M
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it is not added, MapA is used to keep track of this information.

The scaling of this algorithm should be low order, the total amount of data in the primitive

integral blocks, (αAβ|y) scales linearly with respect to system size. The primitive blocks need to

be calculated at least twice to construct J and K. The integrals used in the construction K can

be heavily screened with the local orbital coefficientsLαA,µ. Unfortunately, the current code is far

from optimized and hard data on the scaling of the algorithm cannot be shown at present.

Loss of numerical precision can occur if one sums many small numbers into a large number.

For example if one tried to sum a million numbers that had a value of about 1 but were precise

to 15 decimal places, the final summation number would have a value of 1 million but would

only be precise to about 9 decimal places. This issue would occur in the construction of the

short-range direct term if the I2(x) intermediate was built by first contracting with the density

then contracting with the inverse metric matrix.

I1(y)=
∑
αβ

(αβ|y)Dαβ (4.22)

I2(x)=
∑
y

M−1
xy I1(y) (4.23)

Equation 4.23 is referred to as case 1 and this is not implemented in the SCF code because

it causes precision problems. The first step in case 1 is summing the I1(y) intermediate which

has larger numerical values than I2(x) and some numerical precision is lost in this process.

Equation 4.25, referred to as case 2, is the order that is implemented in the SCF code and

it does not cause issues with numerical precision.

I1(α,β,x)=
∑
y

M−1
xy (αβ|y) (4.24)

I2(x)=
∑
αβ

I1(α,β,x)Dαβ (4.25)

Figure 4.1 depicts the convergence of the SCF method for a simple water dimer, using equations

4.23 and 4.25 to assemble the I2(x) intermediate. One can see how the SCF oscillates and

cannot converge for case 1 because the SCF convergence threshold is tighter than the numerical

precision of the intermediate I2(x).
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Figure 4.1: The convergence of the SCF energy for a simple water dimer separated by 5Å. Case 1 is where
I2(x) is assembled using equation 4.23 and Case 2 is where I2(x) is assembled using equation 4.25.

In practice, converging the SCF energy to very tight thresholds is unnecessary for the vast

majority of molecules. This very tight convergence is only necessary when the molecule of

interest sits on a flat potential energy surface and the user wants to ensure that they are not

trapped in a local minima.

4.2.2 Assembly of the Fourier Contributions

The Fourier contribution is evaluated numerically in spherical coordinates using a spherical grid

of points and weights. The spherical grids are defined by an angular order (Lebedev88) and radial

quadrature, while the weights are dependent on the radial potential used. Throughout this work

an equidistant radial grid was used, however, Gauss-Legendre91 or Gauss-Chebyshev90 quadra-

tures also work. We did not find any significant improvement between these quadratures.

The numerical Fourier contributions to the Fock matrix are presented below in equation 4.27.

The direct term is assembled in a mixed AO-LO representation Jαν which when transformed

back to the AO basis contains information about the occupied-virtual and occupied-occupied
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blocks of the Fock matrix. To obtain the virtual-virtual block, Jαν̄ must also be calculated.

Jαν=
∑
µ,g

(αµ|g)|wg|Pg(g|µµ)∗ (4.26)

Kαβ=
∑
µ,g

(αµ|g)|wg|Pg(g|βµ)∗ (4.27)

The primitive FTAO integrals are unique from the other primitive integrals because they are

complex. The numerical weights are purely real but they cannot be square rooted and attached

to the primitive three index integrals because for some potentials the weights are negative.

The weights must first be factored into magnitude (|wg|) and phase (Pg), the phase of the

weights is either +1 or −1, the magnitude of the weights can be square rooted and attached

to the primitive three index integrals.

Similar to the short-range integrals, it is assumed that the the primitive integrals can be

calculated in a small batch (αAβB|gi) where gi would be a small batch of g points controlled

by the user/program. The size of the primitive integrals is limited, independent of system size,

because A must always be close to B and the number of g points held in memory at one time

is controlled. Local orbitals are essential to the assembly of the Fourier contribution and it

is assumed that the local orbital coefficients are in memory and batched into LαAµM .

The Fourier method is most accurate for small values of Rµν, for the exchange matrix

Rµν=Rµµ=0 such that the Fourier method is always reasonably accurate. This is not the case

for the direct term. The accuracy of the direct term is dependent on the size of the vector Rµν;

for small Rµν the Fourier method should be used, for large Rµν the multipole method should be

used. To identify which µν pairs are to be calculated with the Fourier method, a map is created

called FTMap which controls which µν pairs are added to the direct Fourier contribution.

The assembly of the Fourier contributions is outlined in algorithm 2. The master loop is over

the batches of g which is used to control the size of the primitive integrals. Then similar to the

DF assembly we loop over M and all A∈M to create the first intermediate termed K3a.

K3a(µβ|g)+=
∑
αA

(αAβ|g)LαAµ (4.28)
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Next the appropriate weights are attached K3b=K3a·|wg|
1
2 , the weights are dependent on

the specific potential that is being assembled. The K3b object is sparse and should be pruned

at this step to remove any small values. The beauty to this algorithm is that the regularization

of the Fourier integrals is very simple, if the integrals are to be regularized, K3b is regularized

by subtracting a phase shifted overlap matrix.

K3bR(µβ|g)=K3b(µβ|g)−|wg|
1
2 ·Sµβeig·Rµ (4.29)

The exchange can be assembled in one loop over the g batches, the direct term requires the

primitive integral to be recalculated. The first loop over g creates an intermediate used for the

direct term I1(µ,g). The second loop over g is where K3b(νβ|g) is created and the FTMap is

used to decide which µν pairs are added to the direct term. A similar loop is needed to create

the Jαν̄ term where the virtual orbtials are used instead of the occupied local orbitals.

One of the key advantages to algorithm 2 is that it can be paralelized over the main loop,

since each g label is independent and the primitive integrals (αAβ|g) are never very large. This

is independent of system size. The regularization of the integrals is inexpensive and can be

toggled on or off by a simple boolean flag such that no special treatment is required. The

regularized integrals are even more sparse than their unregularized variants, which could lead

to an increase in efficiency if efficient sparse-sparse matrix multiplies are used. The number

of g points is independent of system size and the amount of data required for this algorithm

scales linearly with respect to system size.
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Algorithm 2 Fourier Fock Contributions

1: for G in gbatch do . Batch of grid points g
2: for M=1 in nM do . Batch of local orbitals µ
3: for A∈M do . Defined by max(LαAµ)>Tdensity
4: Obtain the Integral Batch (αAβ|g) . B∈A
5: K3a(µβ|g)+=

∑
αA

(αAβ|g)LαAµ . Intermediate used for K

6: end for
7: K3b(µβ|g)=K3a(µβ|g)·|wg|

1
2 . attach the square root weights

8: if Regularize then
9: K3b(µβ|g)=K3b(µβ|g)−|wg|

1
2 ·Sµβeig·Rµ

10: end if
11: I1(µ,g)=

∑
β

K3b(µβ|g)Lβµ . Intermediate used for J

12: Kβγ+=
∑
µg

Pg ·K3b(µβ|g)·K3b∗(µγ|g) . Exchange Contribution

13: end for
14: end for
15: Relabel I1(µ,g) as I1(ν,g)
16: for G in gbatch do . Batch of grid points g
17: for M=1 in nM do . Batch of local orbitals µ
18: for A∈M do . Defined by max(LαAµ)>Tdensity
19: Obtain the Integral Batch (αAβ|g) . B∈A
20: K3a(µβ|g)+=

∑
αA

(αAβ|x)LαAµ

21: end for
22: K3b(µβ|g)=K3a(µβ|g)·|wg|

1
2 . attach the square root weights

23: if Regularize then
24: K3bR(µβ|g)=K3b(µβ|g)−|wg|

1
2 ·Sµβeig·Rµ

25: end if
26: for ν∈FTMap do . Only the µν pairs that are close
27: Jβµ+=

∑
νg

Pg ·K3b(µβ|g)·I1(νg)

28: end for
29: end for
30: Repeat lines 17 to 29 using local virtual orbitals to obtain JV V
31: end for
32: J=JαO+JOα−JOO+JV V

4.2.3 Assembly of the Multipole Contributions

The multipole contributions are assembled in Cartesian coordinates for simplicity even though

there is redundant information. It is possible to calculate the exchange term through the

multipole expansion, however, it is always less accurate than the Fourier method and is therefore
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not calculated. The direct contribution in the multipole expansion is defined as:

Jαν=
∑
k,l,µ

(αν|k)f (k,l)(Rµν)(k|µµ) (4.30)

The required components to assemble the multipole contribution are the analytic derivatives

of the potential, f (k,l), the local orbital coefficients Lαµ and the Cartesian multipole moments

(αβ|k) where k is the multipole level which ranges from 0−4. Only contributions with large

|Rµν | are assembled through the multipole method, this is controlled by the array MPMap

which is the converse of FTMap such that every µν pair is accounted for between the methods.

To obtain the regularized multipole expansion the integrals (αβ|0) are removed from the sum.

For a full derivation of the Cartesian multipole expansion see chapter 3 and the appendix.

Only lines 7-14 scale quadratically with respect system size and the term I2(ν,l) is of dimension,

number of occupied orbitals by multipole level which will always fit in memory.
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Algorithm 3 Multipole Contributions

1: for µ do . Each local orbital µ
2: for k do . Each multipole level k, skip k=0 if regularizing
3: Obtain (αβ|k)(Rµ) . Expansion centre is Rµ

4: I1(µ,k)=
∑
αβ

(αβ|k)LαµLβµ

5: end for
6: end for
7: for ν do
8: for µ do
9: if µν∈MPmap then
10: Obtain f l,kµν =f l,k(Rµν)
11: I2(ν,l)+=

∑
k

f l,kµν I1(µ,k)

12: end if
13: end for
14: end for
15: for ν do
16: for l do . Skip l=0 if regularizing
17: Obtain (αβ|l)(Rν) . Expansion centre is Rν

18: Obtain (αν|l)=
∑
β

(αβ|l)Lβν

19: Jαν=
∑
l

(αν|l)·I2(ν,l)

20: end for
21: end for
22: Repeat lines 15 to 21 using local virtual orbitals to obtain JV V
23: J=JαO+JOα−JOO+JV V

4.2.4 Assembly of the One-Body Contributions

The one-body contributions are only assembled if the potential is regularized. Here we assume

that the Cholesky coefficients Lαµ and the overlap matrix in mixed representation are available

in memory. The mixed direct term and the AO exchange term are:

Jαν=
∑
µ

Vαν(Rµ)Sµµ+SανVµµ(Rν)−SανSµµV (Rµ−Rν) (4.31)

Kαβ=
∑
µ

Vαµ(Rµ)Sβµ+SαµVβµ(Rµ)−SαµSµµV (Rµ−Rµ)

=
∑
µ

Vαµ(Rµ)Sβµ+[
∑
µ

Vαµ(Rµ)Sβµ]
ᵀ−SαµSµµV (0) (4.32)

The two-range potential is defined to have V (R=0)=0 such that the exchange contribution
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can be simplified to single term plus its transpose. Depending on the specific potential used, V

will change, for the two-range potential V is Vlr but for the three-range potential V would be

Vulr. The algorithm is consistent independent of the potential used therefore V is used for the

potential. The integrals Vαβ(Rν) are nuclear-electron like repulsion integrals with a unit charge

located at Rν, these integrals are long range and extend throughout the whole molecule.

The assembly of the one-body contributions are outline in algorithm 4. The master loop is a loop

over µ which is the total number of electrons. The exchange can fully be calculated in this single

loop. This is the big advantage to the regularization as the one-body exchange contribution is

simple to calculate and it is the largest contribution to the long-range exchange energy.

The direct term is more complicated, it needs to be calculated in two parts Jαµ and Jαµ̄ such

that it can be projected back into the AO space. This algorithm requires a loop over ν and a

loop over ν̄. The algorithm scales quadratically with respect to system size which may become

cumbersome for large systems. It is still cheaper to calculate the one-body contribution than

the DF/Fourier contributions for small to large systems. For very large systems this may

become a bottleneck.

Algorithm 4 One-body Fock Contributions

1: Obtain Sγµ
2: Obtain Sγµ̄
3: for µ do . Each Cholesky Vector µ
4: Obtain Vαβ(Rµ) . V is dependent on the specific potential used
5: Transform to mixed rep. Vαµ(Rµ)=

∑
β

Vαβ(Rµ)Lβµ . used only for the exchange

6: Ik(αγ)=
∑
µ

Vαµ(Rµ)Sγµ

7: Increment the exchange Kαγ+=Ik(αγ)+Iᵀk(αγ)
8: Vαν(Rµ)=

∑
β

Vαβ(Rµ)Lβν . Needed for J

9: Vαν̄(Rµ)=
∑
β

Vαβ(Rµ)Lβν̄ . Needed for JV V

10: end for
11: for ν do . Each Cholesky Vector ν
12: Obtain Vαβ(Rν) . V is dependent on the specific potential used
13: Vµµ(Rν)=

∑
µ,α,β

Vαβ(Rν)LαµLβµ . This is a constant

14: Jαν=
∑
µ

SανVµµ(Rν)+Vαν(Rµ)Sµµ−SανSµµV (Rµ−Rν)

15: end for
16: Repeat lines 11 to 15 using local virtual orbitals to obtain JV V
17: J=JαO+JOα−JOO+JV V
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4.3 SCF Convergence Analysis

The SCF code used in this thesis is PySCF’s SCF code108 with the exception that the Fock

matrix is assembled in the custom code using the algorithms described above. Common SCF

features such as direct inversion of the iterative subspace (DIIS) are used as they are built

into PySCF’s SCF engine. The initial guess density from PySCF is not idempotent and this

is a poor guess for the range-separated integrals because they rely on local orbitals from the

Cholesky decomposition of the density matrix. This guess is not ideal but only adds an extra

cycle or two to the SCF method.

The molecules used in this analysis are glycine, toluene and a glycine dimer separated by

10 Å to capture the multipole contribution when small α values are used. These molecules

are described in more detail in Chapter 4 section “Computational Details”. Results from

calculations on molecules from the GMTKN55 database110–112 are presented in the final section

to convince the reader that the method works with the recommended parameters on a large

variety of molecules.

The two most important parameters for controlling the range-separated SCF method are

the range separation parameter α, and the sparsity threshold Tsparse. The range separation

parameter controls the partitioning of the short and long-range regions. The smaller the value

of α the further the short-range regions extends. The Fourier integrand η(g) is also smoother

for smaller α values and can be integrated accurately with a smaller numerical grid compared

to large α values. The sparsity threshold is essential for linear/low order scaling since it controls

how many small integrals are discarded. If Tsparse is too loose the accuracy of the integrals

and hence the SCF method will decrease, if Tsparse is too tight then there is a large loss in

efficiency which can be detrimental for the calculation of large systems.

4.3.1 Hartree-Fock Exchange Contribution

In this subsection, the HF direct term is calculated without range separation using the J

engine from PySCF and is assumed to be error free. The HF exchange is calculated with the

range-separated method, the PySCF full-range exchange matrix is considered to be the answer

and is used to report on the accuracy of the range-separated method, errors are reported as
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log errors.

Log(Error)=Log10(|PySCF−Range-Separated|) (4.33)

The long-range exchange is only calculated with the Fourier method which makes it much

simpler than the HF direct contribution. The two parameters that control the exchange

contribution are the range-separated parameter and the size of the numerical grid. Figure 4.2

depicts the log of the HF energy error as a function of numerical grid size (N-Grid) for the

glycine molecule in the ccpvtz basis. The HF energy error is the converged HF energy error

and N-Grid is the Lebedev order and number of equidistant radial points.

Figure 4.2: The Log of the HF energy error at convergence for the glycine molecule in the ccpvtz basis, the
PySCF converged energy is the used as the reference energy. Several values of α are shown.

One can see that for the larger α values a larger numerical grid is needed to obtain accurate

results. For the largest α value of 0.8, the accuracy of the method reaches an error of ≈10−4

Hartree at an N-grid of 23, which is still considered a medium size numerical grid containing 4268

grid points. The size of the numerical grid is independent of the system size and the molecule of

interest as shown in chapter 3. The errors converge to≈10−4 because this is the error associated

with DF; the accuracy of the Fourier method is better than the accuracy of DF.

Figure 4.2 demonstrates that an aggressive α can be used with a small-medium sized numerical
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grid. The advantages of a large α are that the short-range potential is very short-range, greatly

increasing the sparsity of the short-range DF integrals. To obtain an accurate calculation, the

size of the numerical grid should increase with increasing α however the gird size does not

need to be overly large.

The range-separated exchange is relatively simple to construct and can be assembled in linear

scaling algorithms. This is quite powerful because the long-range exchange is conventionally

the troublesome term to calculate.

4.3.2 Hartree-Fock Direct Contribution

In this subsection the HF direct and exchange contributions are assembled through the

range-separated methods.

Range Separation Parameter

Figure 4.3 displays the convergence of the SCF energy for the glycine dimer using the ccpvtz

basis set. The glycine monomers are separated by 10Å such that there is at least some

contribution from Jmp for all α’s. One can easily see that only range separation parameters to

converge are α=0.1 and α=0.2, these curves are dashed for clarity. The larger α values did

not converge and the range-separated method should not be used for the direct contribution

if α is greater than 0.2.
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Figure 4.3: The convergence of the HF energy for each SCF cycle. The molecule is a glycine dimer in the
ccpvtz basis with a numerical grid of size (23,23).

The rational we have for the poor convergence of α≥0.3 is that the accuracy of the direct

integrals is poor as was shown in chapter 3. It might be possible to converge the larger α values

if very large numerical grids are chosen. The recommended value for α should be between

0.1 and 0.2 for the direct term.

Numerical Grid

The accuracy of the direct term is heavily dependent on the numerical grid size. In the previous

chapter it was shown that the direct term is the troublesome term and the long-range HF

exchange is evaluated accurately even for very small grids. This is not the case for the direct

term, large grids should be used.

Table 4.1 presents data from calculations of the glycine dimer in the ccpvtz basis with increasing

grid sizes, the range separation parameter is 0.2 in this case. The angular order and number of

radial points were the chosen to be the same value, N-Grid. The smaller grids do not integrate

the long-range Fock contribution accurately and the converged SCF energy is very far from

the PySCF converged energy. The SCF procedure converges independent of the grid chosen.

A grid size of 23 or larger is needed to converge the HF energy to within a milli-Hartree of

the PySCF answer.
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N-Grid Number of Grid Points SCF Cycles HF Energy Error (Hartree) Density Matrix Error (Max ∆D)

15 1290 17 3.10 0.15
17 1870 15 0.38 0.03
19 2768 15 6.41×10−3 1.29×10−3

21 3570 15 3.68×10−3 8.84×10−4

23 4462 15 −7.80×10−4 1.32×10−3

27 7176 15 1.51×10−4 4.16×10−4

31 10500 15 −1.57×10−5 6.36×10−5

35 14750 15 5.04×10−5 5.96×10−5

41 23516 15 3.28×10−8 5.59×10−5

Table 4.1: Convergence data for the glycine dimer in the ccpvtz basis, a range separation parameter of α=0.2
was used.

The recommended grid size depends on the value of α and for α=0.1 an N-Grid value of 23

should be sufficient.

Regularization

The regularized long-range potential is an interesting approach. The regularization procedure

explicitly removes the 1
g2

singularity in the Fourier transform and is described in more detail in

the previous two data chapters. The regularized Fourier and multipole integrals require local

orbitals and local gauge centres but are straight forward to calculate. The regularized direct

term is composed of three contributions; short-range, regularized long-range and analytical

one-body contributions.

J=Jsr+Jlr

=Jsr+J
R
lr +J1Body (4.34)

Table 4.2 presents the energy breakdown of the regularized direct and exchange energy con-

tributions. One can see that the regularized contributions are very small, less than 0.1 percent

for both the direct and exchange contributions. The unfortunate result is that 0.01% of the

direct energy contribution is equivalent to about 200 milli-Hartree so it is important that this

contribution is calculated accurately.
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Direct Energy Contribution Exchange Energy Contribution

Molecule Short-Range Regularized Long-Range one-body Short-Range Regularized Long-Range one-body
Glycine 98.53 0.02 1.45 99.92 0.03 0.05
Toluene 96.98 0.02 3.00 99.81 0.07 0.11

Benzophenone 90.18 0.01 9.80 99.74 0.11 0.15
12-amino Dodecahexanone 85.38 0.01 14.61 99.85 0.06 0.09

Table 4.2: A break down of the energy contribution for the regularized approach. Molecules were calculated in
the ccpvtz basis with α=0.2 and a numerical grid of N-Grid = 23.

The accuracy of the regularized integrals is on the same order as the accuracy of the un-

regularized integrals as shown in the previous chapter. There is no clear significant gain to

using regularized integrals in the conventional SCF procedure. However, it is advantageous

to converge the SCF method without the regularized long-range contributions, that is, to

approximate the long-range direct contribution as the one-body contribution.

J≈Jsr+J1Body (4.35)

During the final SCF cycle, JRlr should be reintroduced to obtain an accurate SCF calculation.

The advantage to this method is that the expensive calculation of the regularized long-range

integrals is avoided for all but the final SCF cycles, which leads to much faster SCF iterations.

The disadvantage is that this is an approximation so the convergence thresholds need to be

loosened slightly, a value of 10−6 for the SCF energy convergence was used instead of the

default 10−10. In practice, one does not need to converge the SCF to such tight thresholds

unless SCF energy is very flat in the orbital rotation space.

Table 4.3 tabulates three schemes for evaluating J and K during the SCF iterations. These

schemes neglect different small contributions. The final SCF iteration is always done without

neglecting terms. Scheme 1 is the range-separated potential without regularization and is used

for reference. Schemes 2 and 3 are the approximate schemes where the regularized Fourier

contributions are neglected in all but final SCF iteration.

Scheme 1 J≈Jsr+JFT+JMP K≈Ksr+KFT

Scheme 2 J≈Jsr+JRMP+J1Body K≈Ksr+KFT

Scheme 3 J≈Jsr+JRMP+J1Body K≈Ksr+K1Body

Table 4.3: Regularized SCF schemes
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Figure 4.4 depicts the errors of the converged SCF energy and density matrix for the glycine

molecule in the ccpvtz basis using schemes 1-3. One can see that scheme 1 is acceptable for

α values between 0.1-0.2, an acceptable error is about 0.1 milliHartree as this is roughly the

error introduced from the DF approximation. For scheme 2 and 3 one can see that for α<0.2

the accuracy is reasonable, for larger α this approximation should not be used as the error

is much larger than the DF error. It is important to note that approximating the long-range

exchange as K1Body has very little effect on the accuracy especially for small α.

Figure 4.4: The converged SCF energy error (left) and the maximum error in the density matrix (right) for the
glycine molecule in the ccpvtz basis.

Figure 4.5 depicts a similar plot as figure 4.4 but for the glycine dimer. In scheme 2 and 3 the

regularized multipole contribution is included in each SCF cycle since Jmp is inexpensive to

calculate. The density matrix obtained from scheme 2 and 3 is a better density matrix than the

density matrix obtained from scheme without regularization, which is an interesting result.

Figure 4.5: The converged SCF energy error (left) and the maximum error in the density matrix (right) for the
glycine dimer in the ccpvtz basis.

The regularized potential can be used to converge the SCF method accurately provided that

the range separation parameter α is small (< 0.2). By ignoring the expensive regularized
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contributions the speed of SCF iterations are greatly increased which is largely advantageous

for procedures such as geometry optimizations. The one-body contributions do not scale

linearly with respect to system size and this will become a bottleneck for very large systems. A

recommended scheme would be to partition long-range direct interactions into near, far and very

far contributions. The near contributions can be ignored because the long-range potential is

flat near r12 =0, the far contributions should be approximated with the one-body contributions,

the regularized contributions in this region can be ignored. The very far interactions should be

calculated without regularization through the multipole contribution. The final SCF iteration

should include all integrals.

4.3.3 Sparsity Thresholds

The sparsity threshold is the threshold that is used to determine if a value is to be pruned from

a sparse matrix, this threshold is important for efficiency. Table 4.4 presents the number of SCF

cycles required to converge the HF energy to 10−10 Hartree, which is the default convergence

threshold. For very loose sparsity thresholds of 10−6, many integrals are discarded and the

SCF method struggles to converge, which is the expected result. For tighter thresholds the

SCF method converges without issue. There are many unnecessarily small integrals included

with tight threshold which do not significantly contribute to the calculation. For example

the Benzophenone molecule in a minimal basis has approximately 22% more Fourier integrals

when a threshold of 10−15 is used compared to the looser threshold of 10−8, both calculations

converge the SCF energy to the same accuracy. A balance between efficiency and precision

is to use a sparsity threshold around 10−8.

Sparsity Thresh 10−6 10−7 10−8 10−9 10−11 10−13 10−15

Glycine 15 15 15 15 15 15 15
Toluene Did not converge 14 14 14 14 14 14

Benzophenone Did not converge 21 20 20 20 20 20
12-amino Dodecahexanone Did not converge 19 20 19 19 19 19

Table 4.4: The number of cycles required to converge the SCF method. The 6-311g basis was used with an α
value of 0.2 with a medium size numerical grid of size (23,22).
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4.4 Future Improvements

The current code utilizes sparse-sparse matrix operations for efficiency and the sparsity in the

AO integrals is key to achieving low order scaling the in HF algorithm. The most expensive

step in a SCF calculation is the recalulation of the two-electron integrals, in our case this is

the recalculation of the range-separated integrals, many of which are sparse. In an optimal

code this sparsity should be taken advantage of by first partitioning the three centre integrals

(αβ|k) into blocks around their tile centres (αAβB|kK). The label k is used for general three

centre index, for short-range integrals this will be x the auxiliary index, g for Fourier integrals

and l for multipole. The idea would be to label the (αAβB|kK) integral blocks as either sparse

or dense blocks and to keep the sparse blocks in memory or on disk. Only the dense integrals

would be recalculated at every step, this would be a significant time save.

A more complicated approach would be to partition the direct term into close, medium, far and

very far interactions. The close interactions would be assembled with the Fourier method, the

medium interactions would use the regularized Fourier method and the far interactions would

use the regularized multipole method. This method would ensure that the switching occurs

between regularized Fourier and regularized multipole methods which is the best methods to

switch between because they are the smallest. The very far interactions should be calculated

with the pure multipole method such that the one-body terms do not become a bottleneck

in very large systems.

4.5 Conclusion

The range-separated SCF procedure behaves as expected. If there are large errors in the AO

integrals then the SCF procedure will struggle to converge. If accurate integrals are used the

SCF procedure will converge, provided the convergence criterion is looser than the numerical

precision. The exchange contribution can be assembled with an aggressively large α and a

medium numerical grid. The is very powerful because the long-range exchange is conventionally

the expensive term to calculate.

The long-range direct contribution is more difficult to calculate accurately, only small α values

with large numerical grids should be used, we recommended an α value of 0.1-0.3 with a
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medium to large numerical grid. For small α values the long-range direct contribution can be

approximated as J1body which is much cheaper to calculate. The SCF method can be converged

with this approximation. Post HF methods in practice do not require a highly converged

HF calculation, it is usually acceptable to preform a post-HF calculations starting from a

reasonably converged SCF calculation.

To convince the reader that the range-separated method works with a large variety of molecules

the log energy errors (PySCF is used as the reference energy) of GMNTK database molecules

are presented in figure 4.6. This data used the converged PySCF density matrix such that

a larger basis set (ccpvtz) could be used. The calculations were run with an α value of 0.1

and numerical grid size of Lebedev order 23 and 22 equidistant radial points.

As one can see all errors are below -4.5 which is accurate to 0.1 milli-Hartree, most calculations

are more accurate than this.

Figure 4.6: The log error of molecules from the GMNTK database in the ccpvtz basis. The range-separated
Fock matrix was calculated with the converged PySCF density matrix as input. Errors are relative to the
PySCF energy. the value of α is 0.1 and the numerical grid is (23,22), the Fourier method is used for direct
contributions within 24Å and the multipole method was used for contributions larger than 24Å. The molecules
are sorted by their largest orbital extents, from largest to smallest.

Most of the accuracy issues are associated with the calculation of the direct term, conventionally

the direct term is the simpler term, it is possible to use modern J engines to calculate the

direct term and use range-separated methods to calculate the exchange term. The short-range

exchange can be calculated in modern K engines. The long-range exchange can be calculated
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using the Fourier approach which is linear scaling and parallelizable. This is advantageous

because the exchange can be calculated with a large α and a small numerical grid.
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Chapter 5

Conclusions and Outlook

5.1 Conclusions

This thesis establishes groundwork for a range-separated Hamiltonian that one day might be

useful for range-separated correlated calculations. The three data chapters in this thesis build

on each other starting with the Coulomb potential in chapter 2, then molecular integrals in

chapter 3, and concluding with range-separated integral direct Hartree-Fock in chapter 4.

The range-separated potential is introduced by partitioning the Coulomb potential into short and

long-range regions using Ewald partitioning. The partitioning is controlled by a single parameter

α called the range separation parameter. Gaussians are added and subtracted from the short and

long-range potentials using optimal parameters related to α to ensure that the long-range poten-

tial is zero at r12 =0 and that it is as flat as possible for small r12. The typical range of α is be-

tween 0.1 and 0.8, the smaller the value of α, the further the short-range potential extends.

Vsr(r12)=
erfc(α|r12|)
|r12|

+X0e
−γ|r12|2 (5.1)

Vlr(r12)=
1

|r12|
−Vsr(|r12|) (5.2)

The short-range potential is well behaved and the treatment of the long-range potential is the

focus of this chapter. The long-range potential can be evaluated numerically either through a

Fourier transform or through a multipole expansion. The Fourier transform of the long-range

potential introduces a g−2 singularity which is cancelled out by choosing to evaluate the integral

in spherical coordinates. The Fourier transform takes on the general form

Vlr(r12)=

∫
dg3η(g)eig·r12 (5.3)
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The function η(g) depends on the specific radial potential used. The transform is integrated nu-

merically using a numerical grid defined by radial and angular grid points. Lebedev quadrature

is used to define the angular grid and equidistant radial points are used for the radial quadrature.

Other radial quadratures such as Gauss-Hermite, Gauss-Legendre and Gauss-Chebyshev can

also be used but no significant gain over the equidistant grid was found. The numerical weights

are determined by the function η(g), which for the long-range potential quickly decays limiting

the range of g, the extent of the radial grid does not need to increase with increasing r12.

The term eig·r12 is troublesome for large r12 because it oscillates rapidly. The Fourier method

will always breakdown at large enough r12 which is why the multipole method is essential for

very long-range interactions. The multipole expansion is evaluated in Cartesian coordinates

for simplicity even though there is some redundant information. The long-range potential

does not satisfy the Laplace equation and therefore conventional multipole expansions are not

immediately applicable.

Chapter 2 introduces the regularization method to further partition the long-range potential

and it is used throughout the thesis. The regularized long-range potential utilizes fixed points

called gauge centres (Ri) defined as points near the coordinates ri to explicitly remove the

singularity in the Fourier transform. The resulting long-range potential consists of a regularized

long-range potential V R
lr , and an analytical one-body potential V1body. The one-body potential

makes up approximately 99% of the long-range potential while the regularized long-range

potential contributes only about 1% of the long-range potential. The regularized long-range

potential is treated with the same methods as the long-range potential (Fourier and multipole)

but it is significantly smaller.

The potentials and methods defined in chapter 2 establish the groundwork needed to introduce

the range-separated molecular integrals which is the theme of chapter 3. The two-electron

repulsion integrals are the main focus of this chapter, they are partitioned into three parts.

(αβ|γδ)2range=
∑
xy

(αβ|x)srM
−1
xy (y|γδ)sr

+
∑
g

(αβ|g)Θ(R12)η(g)(γδ|g)∗

+
∑
mn

(αβ|m)fmn(R12)Θ̄(R12)(γδ|n) (5.4)
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The short-range integrals are represented through density fitting, which is commonly used in

large scale quantum chemistry packages. The long-range integrals are assembled through Fourier

and multipole methods similar to how the bare potential is assemble in chapter 2. The term

Θ(R12) is a switching function used to determine which method is used for a specific long-range

integral. The switch is dependent on R12 which is the distance between the gauge centres R1

and R2. In equation 5.4 these gauge centres would be the atomic orbital (AO) gauge centres Rα

and Rγ which are poorly defined and ambiguous. Local orbitals |µ〉 are introduced in this chap-

ter as a means solve this ambiguity in the gauge centre definitions. The long-range integrals can

also be regularized using a similar method described in chapter 2, local orbitals are essential for

the regularization of the long-range integrals. Regularized Fourier and regularized multipole rep-

resentations are derived in this chapter as part of the regularization method. The primitive three

centre integrals are the same if the potential is regularized or unregularized, this is convenient for

development because these integrals are readily available in most integral packages. These meth-

ods are general for any radial potentials, we are not restricted to the two-range potential.

The amount of data in the short-range and Fourier integrals scale linearly with respect to

system size. The linear scaling in the short-range integrals arises from the added sparsity

in the auxiliary index, which is not present in full-range DF integrals. The Fourier integrals

scale linearly because the size on the numerical grid does not need to increase with respect to

system size, this is because η(g) quickly decays as a function of g. The multipole and one-body

integrals do not scale linearly with respect to system size but they are much cheaper to evaluate

than the DF and Fourier methods. Integral pre-screening and sparse matrices are essential

to obtain linear scaling in the three centre integrals, both are discussed in chapter 3.

The accuracy of the methods is reported using the accuracy of the Hartree-Fock direct and

exchange matrices because the four centre integrals do not fit in memory and are never fully

assembled in practice. The long-range exchange is assembled though only the Fourier transform,

it was found that a large α and a medium numerical grid were sufficient to accurately represent

the exchange. The long-range direct term is more complicated and requires the Fourier method

for short/medium range contributions and the the multipole method for long-range interactions.

To evaluate the direct term accurately one needs to use a small α and a sizeable numerical

grid.
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A range-separated Hartree-Fock method is presented in the final data chapter. The range-

separated integrals are used to assemble the HF direct and exchange contributions. In principle

it is possible to assemble the V Ne integrals contributing to the Fock matrix but these integrals

are typically orders of magnitude cheaper to calculate. The direct and exchange contributions

are represented by three terms if regularization is not used.

J=JDF+JFT+Jmp (5.5)

K=KDF+KFT (5.6)

or four terms if regularization is used.

J=JDF+JRFT+JRmp+J1body (5.7)

K=KDF+KR
FT+K1body (5.8)

Low order scaling algorithms to assemble all contributions are presented in this chapter. The al-

gorithms rely on sparse matrix multiplies and integral screening to achieve this scaling. The code

used to assemble these contributions is unoptimized and hard data supporting the low order scal-

ing is not available at this time. The regularization of the methods is controlled through a single

boolean switch and it is possible to pick and choose which interactions are regularized.

In principle, the short-range DF contributions can be assembled in modern J/K engines by

swapping integral codes, the added sparsity from the short-range integrals can only improve the

efficiency of these codes. The long-range exchange is well behaved, it can be assembled using

an aggressive α and a medium sized numerical grid. This is very powerful because typically

the long-range exchange is expensive to calculate and it does not scale linearly with respect

to system size. In our representation the long-range exchange is straightforward to calculate

and it can be assembled in a highly parallelized algorithm with a medium sized numerical grid

that does not need to increase with respect to system size. The large α value will ensure that

the short-range integrals are very sparse increasing the efficiency of the DF code as well.

The direct term is difficult in this representation as it requires both the Fourier and multipole

methods, local occupied and local virtual orbitals and proper projections to obtain the correct
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AO J matrix. On top of this, the accuracy is not very good unless small α values are used with

moderate numerical grids. There are many excellent linear scaling algorithms in the literature

to construct J such as the continuous fast multipole method (CFMM)70,71 and J-engine

method73 and the Fourier-transform Coulomb (FTC)75–78 method. Advantages of using the

the range-separated direct term over these conventional methods is not clear at this time.

The Fourier contribution is the most expensive long-range term to calculate, the same is true if

regularization is used. In the regularization scheme JRlr and KR
lr are the smallest contributions

and it is possible to converge the SCF calculation without these integrals, called the regularized

SCF approximation.

J=JDF+JRmp+J1body (5.9)

K=KDF+K1body (5.10)

Using this approximation the converged density matrix is similar enough to the correct density

matrix that accurate HF energies can be obtained from this approximate density matrix by in-

cluding JRlr andKR
lr in the final SCF iteration. This approximation is powerful since the expense

of the long-range calculation is greatly reduced. This would be advantageous in expensive cal-

culations such as geometry optimizations where one doesn’t really need a highly converged SCF

method at early stages. It is also possible to proceed with coupled cluster calculations if the HF

calculation is qualitatively correct, which appears to be the case with this approximation.

To summarize, using the range-separated method, all the major issues lie in the calculation of

the long-range direct contributions. This is because both the Fourier and multipole methods

must be used to represent the whole long-range potential. Using both methods requires a

switch which complicates the assembly and if not done correctly can ruin the overall accuracy

of the method. The Fourier method is excellent for small r12, however at some point r12 will

become large enough that the Fourier method will always breakdown. The multipole method

has the opposite behaviour it is an excellent approximation for very long-range interactions

but it does not approximate the smaller r12 region well. The region where the Fourier method

breaks down and the the region where the multipole method starts to accurately represent the

potential do not overlap well. If a region existed where both the Fourier and multipole methods
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accurately represented the potential then there would not be major issues with accuracy. This

was the idea behind the three range potential introduced in chapter 2.

VCoul(r12)=Vsr(r12)+Vinter(r12)+Vulr(r12) (5.11)

Here the ultra long-range potential Vulr(r12) could be accurately represented by the multipole

expansion and the intermediate-range Vinter(r12) potential could be accurately represented by

the Fourier transform, without the need for switching. In practice, through anecdotal evidence

not reported in the thesis, this did not work and a switch was still required for the ultra

long-range potential.

The method works excellently for the long-range exchange, and the regularized SCF approx-

imation is quite powerful when tight SCF convergence is not needed.

5.2 Future Outlook

Some very useful lessons were learned while building a Hartree-Fock code using the range-

separated integral representation. Work has started in the Nooijen research group on applying

these new techniques to cluster in molecules (CIM) calculations, which we mentioned as a

major long term goal in the introduction to this thesis. The first steps in a CIM calculation

are a HF and MP2 calculation on the complete system. These steps are necessary to take

into account long-range Coulomb effects both at the mean field and correlated level. For

these steps we need all the machinery developed here and all three layers: Density fitting of

short-range (3-center) integrals, Fourier representation at intermediate range and multipole

expansions for the truly long range, including a switching mechanism between Fourier and

Multipole. We have recently submitted a paper in which we describe an efficient algorithm to

perform so-called Laplace-MP2 calculations40, in which the cumbersome denominator in MP2

is replaced by a factorizable time integration (Laplace transform) that can be done using a 1d

numerical integration with few points (8 or so). We use the same sparse matrix representations

of all (local) quantities as pursued in the thesis and the amount of data processed scales linearly

with the size of the system. This work on Laplace MP2 did not yet include the multipole layer

and switching and this is currently in progress. We have established that it is needed.
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The next steps in CIM are in principle easier, although a lot of work will be involved in the

efficient implementation. The key step is to determine a domain of occupied and virtual orbitals

associated with a particular localized orbital i, or a small subset of these, defining a central cell.

In our group we have established that the exchange matrix associated with the central orbitals

provides an excellent path to selecting the remaining occupied and virtual orbitals in the domain.

The algorithm is a bit involved and requires additional exchange matrices to be calculated40 (e.g.

corresponding to the full domain of occupied orbitals, and not only the central orbitals). This

allows for highly efficient calculations in the context of this thesis. We have amply demonstrated

that accurate exchange matrices can be obtained using short-range integrals with a large α,

implying they decay very fast, and a small grid for the Fourier transform. No multipole layer or

cumbersome switching is required. Since the orbitals selected in a particular orbital domain are

all spanning the same vicinity in space we can anticipate that accurate integrals can be calculated

using the same two-layer strategy, fast decaying short-range and relatively low-level Fourier grid.

Given the extents of the orbitals in the domain all primitive AO integrals and integral transforma-

tions can be assembled in a direct fashion using the screening techniques developed here. Most

importantly, we do not anticipate complicated algorithms. The hard developmental work is done

in the context of Hartree-Fock, and one should be able to focus on technical aspects of the imple-

mentation and focus on improved efficiency, coding up certain critical steps in Fortran or C++,

rather than Python. This work will be left to a new generation of students and long-standing

collaborator Ondrej Demel, who was the principal developer of the Laplace MP2 module.

Another interesting avenue concerns accurate correlated calculations for solids. The calculation

of short-range interactions like Hartree-Fock exchange and the exchange terms in MP2 as well as

local correlation effects using Coupled Cluster can most likely be done using the two-layer Short-

range / Fourier representation of integrals. It is straightforward to include translational sym-

metry using k-vectors in the first Brillouin zone. The long-range direct Coulomb interaction in

Hartree-Fock and MP2 is more cumbersome. It is likely that all four layers discussed in this the-

sis: Short-range, Fourier, Multipole and one-body should be deployed to create an accurate and

efficient implementation for solids. This may require the blood, sweat and tears of another grad-

uate student, dedicating a complete PhD trajectory to the project. It will be a challenge.

Once these building blocks are in place the generalizations from ground state calculations to
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excited states, multireference situations can commence. The work never ends.
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63. Almlöf, J.; Faegri Jr., K.; Korsell, K. Principles for a direct SCF approach to
LICAO–MOab-initio calculations. Journal of Computational Chemistry 1982, 3, 385–399.
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Appendices

A Derivatives of Vlr

Using the substitution that s= 1
2
r12·r12 the long-range potential becomes:

Vlr=
erf(α

√
2s)√

2s
−X0e

−2γs (1)

∂Vlr
∂s

=
X0

√
2se−2α2s−erf(α

√
2s)

2s
√

2s
−(−2γ)X0e

−2γs (2)

∂2Vlr
∂s2
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√
2se−2α2s(3+4α2s)−3erf(α
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4s2
√

2s
−(−2γ)2X0e

−2γs (3)
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2se−2α2s(15+20α2s+16α4s2)−15erf(α

√
2s)

8s3
√

2s
−(−2γ)3X0e

−2γs (4)

The nth derivative of Vlr(s) takes on the form:

∂nVlr
∂sn

=(−1)n+1

X0

√
2se−2α2s

[
n∑
i=1

(4α2s)i−1
n−1∏
k=i

(2k+1)

]
−
n−1∏
k=0

(2k+1)erf(α
√

2s)

√
2s(2s)n

−(−2γ)nX0e
−2γs (5)

Using L’Hospital’s rule the limits of Vlr(0) can be obtained.

lim
s→0

∂nV

∂sn
=(−1)nX0(

(2α2)n

2n+1
)−Xo(−1)n+1(2γ)n (6)

B The fk,l Terms for the Two-Range Potential

The terms fk,l can be related to the terms fk,0. These relationships are shown below.

l
k 0 1 2 3 4
0 f00 −f10 f20 −f30 f40

1 f10 −2f20 3f30 −4f40

2 f20 −3f30 6f40

3 f30 −4f40

4 f40

Where the fk,0(R) terms are.
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f0,0 =V (R) (7)
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∂s
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