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Abstract We introduce a new approximation procedure to improve the accuracy of matrix
analytic methods when using truncated queueing models to analyze infinite buffer systems.
This is accomplished through emulating the presence of unobserved waiting customers be-
yond the finite buffer that are able to immediately enter the system following an observed
customer’s departure. We show that this procedure results in exact steady-state probabilities
at queue lengths below the buffer for truncated versions of the classic M/M/1, M/M/1+M ,
M/M/∞, and M/PH/1 queues. We also present two variants of the basic procedure for
use within a M/PH/1 + M queue and a N -queue polling system with exhaustive service,
phase-type service and switch-in times, and exponential impatience timers. The accuracy of
these two variants in the context of the polling model are compared through several numer-
ical examples.

Keywords Matrix analytic methods · Polling model · Quasi-birth-and-death process ·
Reneging · Phase-type distribution · Truncation

Declarations

Funding

Steve Drekic and Kevin Granville acknowledge the financial support from the Natural Sci-
ences and Engineering Research Council of Canada through its Discovery Grants program
(RGPIN-2016-03685) and Postgraduate Scholarship-Doctoral program, respectively.

Conflict of interest

The authors declare that they have no conflict of interest.

*Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON, Canada
�Present address: Department of Statistical and Actuarial Sciences, University of Western Ontario, Lon-

don, ON, Canada
�kgranvil@uwo.ca (B)
§sdrekic@uwaterloo.ca

1

This is a post-peer-review, pre-copyedit version of an article published in Queueing Systems. The final authenticated version is available 
online at: https://doi.org/10.1007/s11134-021-09706-x



1 Introduction

The process in which a system allocates its resources to customers (or jobs) may be modelled
by what is referred to as a queueing system. A typical queueing system involves customers
waiting in one or more queues to receive service from one or more servers and is thus defined
by the assumptions made about customer and server behaviour. Of particular interest is
the case of multiple queues of customers waiting to be served by an individual server that
periodically visits each of the queues. These systems are specifically referred to as polling
models and have received extensive attention in the queueing literature (e.g., Takagi [32],
Levy and Sidi [23], Vishnevskii and Semenova [33], Boon [6], and Boon, van der Mei, and
Winands [7]). Our analysis method of choice is matrix analytic methods (MAM) (e.g., He
[19]), which relies heavily on Markov chain theory. Some examples of recent queueing papers
that make use of MAM are Chakravarthy [10], Kim and Kim [20], Avrachenkov, Perel, and
Yechiali [3], Perel and Yechiali [26], Sakuma and Takine [30], and Granville and Drekic
[16, 17, 18].

An advantage to using MAM when modelling a queueing system or network is that it is
possible to analyze models with very complex features. Oftentimes, systems are modelled as
a continuous-time Markov chain (CTMC) whose infinitesimal generator matrix is of quasi-
birth-and-death (QBD) form, being only able to move within a level or to an adjacent level
in a single transition. Should the matrix blocks not depend on the level of the process (after
level 0), we refer to this as a level-independent QBD. Otherwise, it is a level-dependent QBD.
Resulting from their structure, convenient algorithms have been developed to numerically
analyze the systems at steady state (e.g., Neuts [25], Gaver, Jacobs, and Latouche [14],
Bright and Taylor [9], Baumann and Sandmann [4, 5], and He [19]).

However, MAM does come with its share of limitations and restrictions. For one, it is
generally unable to accept the assumption of arbitrarily distributed interarrival or service
times. Instead, one is restricted to Markovian distributions such as the exponential or phase-
type (e.g., Neuts [24]). Fortunately, phase-type distributions can be used to approximate
non-negative distributions (e.g., Asmussen, Nerman, and Olsson [2]), although higher levels
of accuracy come at the cost of increased number of phases. Additionally, a level-independent
QBD may permit the state space of only a single dimension (e.g., observable lengths of a
single queue) to be infinite, while a level-dependent QBD typically has finite-many states.

Within this work, we introduce the unobserved waiting customer approximation which
strives to improve the performance of MAM in a situation where it may struggle. Specifically,
it aims to reduce the natural biases incurred from the required use of state truncation on
a system that should, in reality, have infinite buffers. In what follows, let IB denote the
true infinite buffer model of interest, let FB denote the finite buffer model obtained through
simple truncation, and let UWC denote the truncated model making use of the unobserved
waiting customer approximation.

For simple queues, such as a single-queue system modelled as a level-independent QBD,
we may conduct an exact accurate analysis that considers all possible queue lengths. How-
ever, to analyze more complicated queueing systems involving multiple queues and/or level-
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dependent QBD structures (e.g., due to reneging), we may be required to truncate the state
space. If we say, remove all states beyond a threshold representing a queue length of C
customers, then it is typical to interpret the removal of these states as the enforcement of a
finite buffer which is not present in the real world system we are trying to model. This inac-
curacy will result in the steady-state probabilities of the removed states being redistributed
proportionally to lower queue length states.

This was observed by Bright and Taylor [9] within their work on how to numerically
solve for the steady-state probabilities of a level-dependent QBD. They stated that element-
wise, if the CTMC is positive recurrent, the steady-state probability for a state at a given
truncation level is greater than or equal to the true value (which we may recover by letting
the truncation level go to infinity). They discussed how to select the truncation level to
ensure that the steady-state probability of the QBD being in a state at or above this level is
negligible. One method is simply to iteratively increase the level until the sum of steady-state
probabilities of all states at the truncation level is below a desired tolerance. This is similar
to the approach used by Gertsbakh [15] when modelling a 2-queue system where an arriving
customer joins the shortest queue. The level of their process was set to be the length of
the shorter queue, while the longer queue is truncated to never be n customers longer than
the shorter queue. If the difference in queue length reached n, then it was assumed that a
customer would immediately jockey to the shorter queue. In their numerical investigation,
a value of n was selected such that the steady-state probabilities for all states below the
truncation level would change by less than 10−6 when further increasing the threshold level
by 1.

Alternatively, Bright and Taylor [9] also investigated how to construct a dominating
process which can be used to find an analytic upper bound on the tail probability, making
use of normal birth-and-death process results. By ensuring that the upper bound of the
tail probability is below a threshold, the true tail probability must also be acceptable. An
example of applying their methodology is the work of Krishnamoorthy, Babu, and Narayanan
[21], in the context of a queue with self-promoting customers (which resulted in a level-
dependent QBD). Rather than simply considering the tail probability, Kim and Kim [20]
derived an upper bound for the truncation error in their M/PH/1 retrial queue with no
waiting room, such that an arriving customer who did not find the server free immediately
entered an orbit. Truncation error was defined as the sum of absolute-value differences in
the steady-state probabilities for all states between their truncated model and the true IB
model. They similarly used this upper bound to select a level at which to truncate their
customer orbit such that the truncation error was below a specified tolerance.

Unfortunately, it is not always computationally feasible to use a truncation level of C
that is large enough to ensure that the tail probability or truncation error is below a small
tolerance. For example, in Section 4, we consider a N -queue polling system with phase-type
service and switch-in times. If we suppose that each queue has the same truncation level C,
along with one-phase switch-in time and two-phase service time distributions, then Table 1
indicates how the number of states required to model the CTMC (which is explicitly char-
acterized later by Equation (4.3)) increase with N and C. While the increase in the number
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Table 1: The number of states in a CTMC which models a N -queue polling system having
one-phase switch-in time distributions, two-phase service time distributions, and common
truncation level C

C
N 2 4 6 8 10 12

2 42 130 266 450 682 962
3 189 975 2793 6075 11253 18759
4 756 6500 26068 72900 165044 325156
5 2835 40625 228095 820125 2269355 5283785
6 10206 243750 1915998 8857350 29955486 82427046

of states (and hence the increase in the computational cost to calculate the steady-state dis-
tribution) that results from increasing C is not unreasonable for N = 2, the computational
complexity rapidly increases as N gets larger. While the equal truncation level assumption
does not need to hold in practice, if the queueing system has a high level of traffic, then it
would not be surprising to require large truncation levels on multiple queues to obtain accu-
rate results. Furthermore, if we used more complex switch-in and service time distributions
having more phases, then the number of required states would be even larger.

Therefore, whether for the purposes of analyzing a N -queue polling system or some other
system with high traffic and/or a large number of states, it behooves us to consider alternative
modifications to a CTMC that give rise to results that outperform a simple FB model. For
example, Diamond and Alfa [12] analyzed a retrial queue which tracked both the number of
customers in the queue as well as in the retrial orbit. Similar to a 2-queue polling system, it
is impossible to let both the queue and orbit have infinite buffers when using MAM. They
elected to put a finite buffer on the queue, taking the number of customers in the orbit as
the level of their QBD. They modified their CTMC so that after a certain level (chosen
so that the tail probability was below a given tolerance), if their queue is not full, then a
customer will immediately enter it from the orbit. This approximation is fairly reasonable
since as the level increases, the time between retrial attempts will go to zero. This leads to a
level-independent QBD structure beyond this point, resulting in more accurate steady-state
probabilities than ones obtained via simple truncation. Shin and Choo [31] used a similar
approximation in that for part of their analysis of a M/M/s retrial queue with customer
balking and reneging, they assumed that the total effective reneging rate of customers in
queue did not change beyond a certain level.

Differing from these adjustments, we propose the use of our UWC approximation to
improve the overall numerical accuracy when approximating an infinite buffer system when
we are unable to use a large enough C. Our ultimate goal is to reduce the negative bias
in the expected value of queue lengths at steady state as well as the error in approximated
steady-state probabilities that results from state truncation. As we wish to apply this to
polling models with potentially very large state spaces, we will do so without requiring the
model to track additional states. Also, rather than altering the behaviour of customers in
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the system to create a level-independent structure, we will be approximating events that
are unobservable by the model. Suppose that in a given queue we truncate at level C,
such that we remove all states corresponding to queue lengths greater than C. Rather
than assuming the presence of a finite buffer, we assume that customers may be present in
positions C + 1, C + 2, . . ., but are unobservable. If the observed portion of the queue is
full, then following an observed customer departure, an unobserved waiting customer may
immediately fill the available observed position.

The goal of the UWC approximation is to aggregate probability mass from the tail to
the truncation level, resulting in steady-state probabilities at states below the buffer that
are either unbiased or less biased than those in a standard FB model. While not designed
for level-dependent QBDs, ETAQA (an acronym for an efficient technique for the analysis of
QBD-processes by aggregation) is an example of an aggregation method for level-independent
QBDs. ETAQA was introduced by Ciardo and Smirni [11] for level-independent QBDs
satisfying the restriction that all transitions reducing the level of the QBD must transition
into the same sublevel, and was extended to M/G/1-type CTMCs by Riska and Smirni
[28]. Specifically, their ETAQA method calculated steady-state probability vectors π0, π1,
and π∗ =

∑∞
i=2 πi, where π0 and π1 are unbiased and in the latter vector, all sublevels

across higher levels are grouped into individual states (i.e., π∗j =
∑∞

i=2 πi,j). Differing from
ETAQA, an advantage to UWC is that it may be used to improve accuracy in more general
cases where it does not yield exact results. The ability to apply UWC to level-dependent
QBDs is also of more use in general than being limited to level-independent QBDs (we note,
however, that the goal of ETAQA is not to circumvent truncation limitations, but rather
to provide a quicker alternative to solve for quantities such as linear combinations of queue
length moments).

The remainder of the paper is organized as follows. In Section 2, we derive optimal
applications of UWC to simple single-queue models having exponentially distributed service
times (referred to as M/M/-type queues). In Section 3, we broaden our consideration to
queues having phase-type distributed service times and investigate two choices of approxi-
mation that become necessary when assuming both reneging customers and non-exponential
service. We proceed to the application of UWC to polling models in Section 4, specifically
to the case of a N -queue exhaustive polling system with phase-type service times and po-
tential reneging, and present multiple numerical examples that investigate the effectiveness
of UWC. Lastly, we present our concluding remarks in Section 5.

2 M/M/-type Queues

2.1 M/M/1 +M Queue

We begin by considering the classic M/M/1 +M queueing system. In this queue, customer
arrivals are governed by a Poisson process with intensity λ and customers are served individ-
ually by a single server. Each customer requires an independent and identically distributed
(iid) service time following common distribution Ser ∼ Exp(µ). Additionally, each arriving
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customer who is not actively being served is at risk of reneging from the queue due to their
own iid impatience timer. Here, the ‘+M ’ notation (e.g., Boxma and de Waal [8]) indicates
that these times are exponentially distributed and we let their common rate be α. Some
other examples of papers that consider exponentially distributed impatience timers include
Altman and Yechiali [1], Yechiali [34], Shin and Choo [31], Drekic et al. [13], and Granville
and Drekic [16].

Let πi be the steady-state probability of observing i customers in the IB model, i ∈ N.
The balance equations for the IB model of the M/M/1 +M queue are

λπi = (µ+ iα)πi+1, i ∈ N.

Under the normalization condition 1 =
∑∞

i=0 πi, we obtain the solution

πi =

λi

(
i−1∏
j=0

(µ+ jα)

)−1

1 +
∞∑
k=1

λk

(
k−1∏
j=0

(µ+ jα)

)−1 , i ∈ N, (2.1)

where we use the convention
∏0−1

j=0(µ+ jα) = 1.

Let us now briefly consider the simple case where we truncate at level C. Letting πFB
i be

the steady-state probability of observing i customers in the FB model, i = 0, 1, . . . , C, the
modified balance equations for the FB model become

λπFB
i = (µ+ iα)πFB

i+1, i = 0, 1, . . . , C − 2,

λπFB
C−1 = (µ+ (C − 1)α)πFB

C ,

which in combination with the normalization condition 1 =
∑C

i=0 π
FB
i results in

πFB
i = πi ·

1 +
∞∑
k=1

λk

(
k−1∏
j=0

(µ+ jα)

)−1

1 +
C∑
k=1

λk

(
k−1∏
j=0

(µ+ jα)

)−1 > πi, i = 0, 1, . . . , C.

That is, the truncated steady-state probabilities are simply equal to the re-normalized steady-
state probabilities for states 0, 1, . . . , C from the IB model, where all probability mass from
states above level C is proportionately redistributed across the lower states. Therefore, the
calculated steady-state probabilities have a positive bias while the expected queue length
would have a negative bias.

We will now introduce our UWC approximation to adjust the system so that this negative
bias will be reduced. In the FB model, the implication of the buffer is that a customer who
observes a queue length of C at their arrival instant will be blocked and be lost. Instead, we
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suppose that these customers can still wait in the queue, however they are unobserved by
the system. As they are not tracked, we must instead approximate their presence. We do so
by introducing a probability p∗C of there being one or more unobserved customers present in
the queue at an observed customer’s departure epoch when the queue length immediately
prior to the departure was C. In this way, with probability p∗C , there will be a customer
present who will immediately fill the vacant observable position within the queue following
the departure, and hence the observed queue length does not decrement from our perspective.

As we are not introducing any new states and must preserve the Markov property within
our analytical framework, it is a necessity for the distribution of how many observed customer
departures are required to decrement the queue length below the buffer to be geometric with
success probability 1−p∗C . It follows that the amount of time that the UWC model spends in
state C has an Exp((1− p∗C)(µ+ (C − 1)α)) distribution. Letting πUWC

i be the steady-state
probability of observing i customers in the UWC model, i = 0, 1, . . . , C, we modify the FB
model balance equations to obtain

λπUWC
i = (µ+ iα)πUWC

i+1 , i = 0, 1, . . . , C − 2,

λπUWC
C−1 = (1− p∗C)(µ+ (C − 1)α)πUWC

C ,

which, when solved along with the normalization condition 1 =
∑C

i=0 π
UWC
i , yields the

solution

πUWC
0 =

(
1 +

C−1∑
k=1

λi∏i−1
j=0(µ+ jα)

+
1

1− p∗C
· λC∏C−1

j=0 (µ+ jα)

)−1
, (2.2)

πUWC
i =

λi∏i−1
j=0(µ+ jα)

πUWC
0

=

λi∏i−1
j=0(µ+jα)

1 +
∑C−1

k=1
λi∏i−1

j=0(µ+jα)
+ 1

1−p∗C
· λC∏C−1

j=0 (µ+jα)

, (2.3)

for i = 1, 2, . . . , C − 1, and

πUWC
C =

1

1− p∗C
· λC∏C−1

j=0 (µ+ jα)
πUWC
0

=

1
1−p∗C

· λC∏C−1
j=0 (µ+jα)

1 +
∑C−1

k=1
λi∏i−1

j=0(µ+jα)
+ 1

1−p∗C
· λC∏C−1

j=0 (µ+jα)

. (2.4)

We must now determine an appropriate choice for p∗C . We elect to equate the number of
observed customer departures (either from service completions or reneging from the first C
queue positions) during a level-C busy period in the UWC and IB models, where we define
a level-C busy period as the time between the beginnings of a visit to state C and the next
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visit to state C − 1. For the UWC model, this is simply (1 − p∗C)−1. The distribution of a
level-C busy period in the IB model will be identically distributed as a standard busy period
of a M/M/1 + M queue with service rate µ + (C − 1)α and individual customer reneging
rate α. That is, we can group the reneging rates of all customers at or before the truncation
level with the service rate of the leading customer to get an effective overall service rate,
since we only care that a departure occurs, regardless of how a customer left the system (or
from what observed queue position). Let this effective service time be represented by the
random variable SerC ∼ Exp(µ+ (C − 1)α).

In order to solve for the mean busy period of a M/M/1 +M queueing system, we make
use of the theory of alternating renewal processes (e.g., Ross [29], Section 7.5.1), which allows
us to express the long run proportion of time that the server is busy by

1− π0 =
E[BP ]

1
λ

+ E[BP ]
. (2.5)

Rearranging Equation (2.5), we have

E[BP ] =
1− π0
λπ0

. (2.6)

Letting i = 0 and replacing µ by µ + (C − 1)α in Equation (2.1), we apply Equation (2.6)
to ultimately obtain

E[BPC ] =
∞∑
k=1

λk−1

(
k−1∏
j=0

(µ+ (C − 1 + j)α)

)−1
,

where we let BPC denote the IB model level-C busy period. Finally, we set

1

1− p∗C
=

E[BPC ]

E[SerC ]
=
∞∑
k=1

λk−1(µ+ (C − 1)α)∏k−1
j=0(µ+ (C − 1 + j)α)

, (2.7)

implying that

p∗C = 1−

(
∞∑
k=1

λk−1(µ+ (C − 1)α)∏k−1
j=0(µ+ (C − 1 + j)α)

)−1
. (2.8)

Note that the formula on the right-hand side of Equation (2.7) can alternatively be obtained
through a direct derivation of the expected services in a M/M/1 + M queue’s busy period
(followed by replacing µ by µ+ (C − 1)α).

Observe that

1

1− p∗C
· λC∏C−1

j=0 (µ+ jα)
=

(
∞∑
k=1

λk−1(µ+ (C − 1)α)∏k−1
j=0(µ+ (C − 1 + j)α)

)
λC∏C−1

j=0 (µ+ jα)

=
∞∑
i=C

λi∏i−1
j=0(µ+ jα)

. (2.9)
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If we substitute Equation (2.9) into Equations (2.2)-(2.4), we can recover πUWC
i = πi, i =

0, 1, . . . , C − 1, and

πUWC
C =

∞∑
i=C

λi

(
i−1∏
j=0

(µ+ jα)

)−1

1 +
∞∑
k=1

λk

(
k−1∏
j=0

(µ+ jα)

)−1 =
∞∑
i=C

πi.

Therefore, the UWC model can accurately calculate the steady-state probabilities below
the truncation level with no bias, while collecting all excess probability mass into πUWC

C .
It immediately follows that the expected queue length of the UWC model will have less
negative bias than that of the FB model.

2.2 M/M/1 Queue

By setting α = 0 in our results from Section 2.1, we obtain the corresponding results for
the classic M/M/1 queue with patient customers. Assuming that the stability condition
ρ = λ/µ < 1 holds true, we have

πi = ρi(1− ρ), i ∈ N,

πFB
i =

πi
1− ρC+1

, i = 0, 1, . . . , C,

and Equation (2.8) simplifies to give

p∗C = 1−

(
∞∑
k=1

λk−1

µk−1

)−1
= 1−

(
1

1− ρ

)−1
= ρ,

which is independent of the truncation level C and must still result in πUWC
i = πi, i =

0, 1, . . . , C − 1, and πUWC
C =

∑∞
i=C πi.

2.3 M/M/∞ Queue

By setting α = µ in our results from Section 2.1, we immediately recover the analysis for a
M/M/∞ queue where every customer immediately begins an iid Exp(µ) service time upon
entering the system. In summary,

πi =
ρi

i!
e−ρ, i ∈ N,

πFB
i = πi ·

eρ∑C
k=0 ρ

k/k!
> πi, i = 0, 1, . . . , C,

p∗C = 1− ρC

C!

(
eρ −

C−1∑
k=0

ρk

k!

)−1
, (2.10)

and it remains that πUWC
i = πi, i = 0, 1, . . . , C − 1, and πUWC

C =
∑∞

i=C πi.
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3 M/PH/1-type Queues

3.1 M/PH/1 Queue

We now consider an analogous model to the M/M/1 queue, however we generalize the
customer service time distribution from Ser ∼ Exp(µ) to Ser ∼ PHb(β,B). That is, service
times are iid continuous phase-type random variables of order b, and we assume that βe′ =∑b

i=1 βi = 1, indicating that service times must be strictly positive in duration. Here, e′

denotes a column vector of ones having an appropriate length. We assume that λE[Ser ] < 1
to guarantee stability in the model.

The M/PH/1 queue is modelled using a CTMC denoted by {(X(t), Y (t)), t ≥ 0}, where
X(t) is the number of customers in the system and Y (t) is the current service phase at time
t, which has possible values depending on X(t):

Y (t) ∈ ΩY (X(t)) =

{
{0} , if X(t) = 0,

{1, 2, . . . , b} , if X(t) ∈ Z+.

Letting X(t) denote the level of the process and allowing Qi,j to contain the rates corre-
sponding to transitions where X(t) would change from i to j, the infinitesimal generator
matrix for this queue takes on the following QBD form:

Q =



0 1 2 · · · C − 1 C C + 1 · · ·
0 Q0,0 Q0,1 0 · · · 0 0 0 · · ·
1 Q1,0 Q1,1 Q1,2

. . . 0 0 0 · · ·
2 0 Q2,1 Q2,2

. . . . . . 0 0 · · ·
...

...
. . . . . . . . . . . . . . .

... · · ·
C − 1 0 0

. . . . . . QC−1,C−1 QC−1,C 0 · · ·
C 0 0 0

. . . QC,C−1 QC,C QC,C+1
. . .

C + 1 0 0 0 · · · 0 QC+1,C QC+1,C+1
. . .

...
...

...
...

...
...

. . . . . . . . .


. (3.1)

Defining I as an appropriately dimensioned identity matrix and B′0 = −Be′ as the column
vector of absorption rates for rate matrix B, the generator blocks for the M/PH/1 queue
are

Q0,0 = −λ, Q0,1 = λβ,
Q1,0 = B′0, Q1,1 = B − λI, Q1,2 = λI,

Qi,i−1 = B′0β, Qi,i = B − λI, Qi,i+1 = λI, i = 2, 3, . . . .
(3.2)

As Qi,j, j = i−1, i, i+1, do not change with i, i ≥ 2, this is a level-independent QBD. Letting
πi,j be the steady-state probability of observing the CTMC in state (i, j) and partitioning the
steady-state distribution as π = (π0, π1, π2, . . .), where π0 = π0,0 and πi = (πi,1, πi,2, . . . , πi,b),
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i ∈ Z+, we obtain from Equations (3.1) and (3.2)

0 = π0,0(−λ) + π1B
′
0, (3.3)

0 = π0,0(λβ) + π1(B − λI) + π2B
′
0β, (3.4)

0 = πi(λI) + πi+1(B − λI) + πi+2B
′
0β, i ∈ Z+. (3.5)

We now review how to solve for π (e.g., He [19], Section 4.3) as a point of reference when
solving for πUWC and selecting p∗C in the equivalent UWC model. From Equation (3.3), it
immediately follows that

λπ0,0 = π1B
′
0. (3.6)

After post-multiplying Equations (3.4) and (3.5) by e′ and performing some elementary
substitutions, we can similarly obtain

λπie
′ = πi+1B

′
0, i ∈ Z+. (3.7)

Substituting Equation (3.7) for i = 1 into Equation (3.4) and solving for π1, we find

π1 = π0,0βλ(λI − λe′β −B)−1, (3.8)

and from Equations (3.5), (3.7), and (3.8),

πi = πi−1λ(λI − λe′β −B)−1 = π0,0βλ
i(λI − λe′β −B)−i, i ∈ Z+. (3.9)

Letting R = λ(λI − λe′β − B)−1, we obtain the matrix geometric solution πi = π1R
i−1,

i ∈ Z+. Finally, the normalization condition is

1 = π0,0 +
∞∑
i=1

πie
′ = π0,0 + π1(I −R)−1e′ = π0,0

(
1 + βR(I −R)−1e′

)
. (3.10)

We can confirm that

R(I −R)−1e′ = λ(1− λE[Ser ])−1(−B−1e′), (3.11)

where E[Ser ] = −βB−1e′. Substituting Equation (3.11) into Equation (3.10) and solving for
π0,0, we obtain

π0,0 =

(
1 +

λE[Ser ]

1− λE[Ser ]

)−1
= 1− λE[Ser ].

Therefore, by Equation (3.9), the remaining steady-state probabilities for the M/PH/1 IB
model are

πi = (1− λE[Ser ])βλi(λI − λe′β −B)−i, i ∈ Z+. (3.12)

We now consider the UWC model, and confirm that we can recover unbiased steady-
state probabilities for levels 0, 1, . . . , C−1. Define the partitioned row vector of steady-state
probabilities for the truncated CTMC applying the UWC approximation by

πUWC = (πUWC
0 , πUWC

1 , . . . , πUWC
C ),
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where πUWC
0 = πUWC

0,0 . The generator blocks QUWC
i,j are only adjusted for i ≥ C, such that

the blocks which do not contain only zeroes are:

QUWC
0,0 = −λ, QUWC

0,1 = λβ,
QUWC

1,0 = B′0, QUWC
1,1 = B − λI, QUWC

1,2 = λI,
QUWC
i,i−1 = B′0β, QUWC

i,i = B − λI, QUWC
i,i+1 = λI, i = 2, 3, . . . , C − 1,

QUWC
C,C−1 = (1− p∗C)B′0β, QUWC

C,C = B + p∗CB
′
0β,

(3.13)

Here, we no longer observe arrivals at level C, and with probability p∗C , there is at least one
unobserved customer ready to enter the observed states at the time of a service completion,
so we have QUWC

C,C = QC,C + λI + p∗CQC,C−1, while we also set QUWC
C,C−1 = (1− p∗C)QC,C−1 and

QC,C+1 = 0.
From Equations (3.1) and (3.13), we have

0 = πUWC
0,0 (−λ) + πUWC

1 B′0,

0 = πUWC
0,0 (λβ) + πUWC

1 (B − λI) + πUWC
2 B′0β,

0 = πUWC
i (λI) + πUWC

i+1 (B − λI) + πUWC
i+2 B′0β, i = 1, 2, . . . , C − 3,

0 = πUWC
C−2 (λI) + πUWC

C−1 (B − λI) + πUWC
C (1− p∗C)B′0β,

0 = πUWC
C−1 (λI) + πUWC

C (B + p∗CB
′
0β), (3.14)

from which we can obtain

λπUWC
0,0 = πUWC

1 B′0, (3.15)

λπUWC
i e′ = πUWC

i+1 B′0, i = 1, 2, . . . , C − 2, (3.16)

λπUWC
C−1 e

′ = πUWC
C (1− p∗C)B′0.

Since Equations (3.15) and (3.16) have the same form as Equations (3.6) and (3.7), we
similarly find that

πUWC
i = πUWC

0,0 βλi(λI − λe′β −B)−i, i = 1, 2, . . . , C − 1. (3.17)

However, rearranging Equation (3.14) for πUWC
C and substituting Equation (3.17) for i =

C − 1, we have

πUWC
C = πUWC

C−1 λ(−(B + p∗CB
′
0β)−1)

= πUWC
0,0 βλC(λI − λe′β −B)−(C−1)(−(B + p∗CB

′
0β)−1).

The normalization condition for the UWC model becomes

1 = πUWC
0,0 +

C∑
i=1

πUWC
i e′

= πUWC
0,0

(
1 +

C−1∑
i=1

βRie′ + βRC−1λ(−(B + p∗CB
′
0β)−1e′)

)
. (3.18)
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Note that we can alternately express Equation (3.10) as

1 = π0,0

(
1 +

C−1∑
i=1

βRie′ +
∞∑
i=C

βRie′

)
= π0,0

(
1 +

C−1∑
i=1

βRie′ + βRC(I −R)−1e′

)
,

so if p∗C satisfies
βRC−1λ(−(B + p∗CB

′
0β)−1)e′ = βRC(I −R)−1e′, (3.19)

then πUWC
0,0 = π0,0, and by Equation (3.17), πUWC

i = πi, i = 1, 2, . . . , C − 1.
We must now select a value of p∗C . As before, we aim to equate the expected number

of observed customer departures during level-C busy periods in the UWC and IB models.
Note, however, that unlike the exponential service case, we must now consider the service
phase that is underway at the beginning of a level-C busy period, BPC . We define qx,y as
the steady-state probability of the IB model being in state (x, y) immediately prior to a
customer arrival that initiates a level-C busy period (i.e., an arrival that increases X(t) from
C − 1 to C). It follows that at steady-state (e.g., Lakatos, Szeidl, and Telek [22], Chapter
9),

qC−1,y = lim
h→0

P ((X(t), Y (t)) = (C − 1, y)|X(t+ h) = C)

= lim
h→0

P (X(t+ h) = C|(X(t), Y (t)) = (C − 1, y))P ((X(t), Y (t)) = (C − 1, y))∑
m,n P (X(t+ h) = C|(X(t), Y (t)) = (m,n))P ((X(t), Y (t)) = (m,n))

= lim
h→0

(λh+ o(h))πC−1,y∑
n(λh+ o(h))πC−1,n

= lim
h→0

λπC−1,y + o(h)/h∑
n λπC−1,n + o(h)/h

=
πC−1,y
πC−1e

′ . (3.20)

Applying Equations (3.12) and (3.20), we define the modified initial probability row
vector

β∗
C

= (qC−1,1, qC−1,2, . . . , qC−1,b) =
πC−1
πC−1e

′ =
β(λI − λe′β −B)−(C−1)

β(λI − λe′β −B)−(C−1)e′
. (3.21)

It now follows that BPC will be identical in distribution to a busy period of a modified IB
M/PH/1 queue where the first customer of a busy period has a service time with distribution
Ser ∗C ∼ PHb(β

∗
C
, B), but all future service times within the same busy period will be iid

following the original PHb(β,B) distribution. We can calculate E[BPC ] by setting Q0,1 =
λβ∗

C
in Equation (3.2) and solving for the modified steady-state distribution which we will

define as π∗C = (π∗C0,0, π
∗C
1 , π∗C2 , . . .). By Equation (2.6), it readily follows that

E[BPC ] =
1− π∗C0,0
λπ∗C0,0

. (3.22)
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Following similar steps to the original analysis for the IB model, we can show that

π∗Ci = π∗C0,0β
∗
C
λi(λI − λe′β −B)−i, i ∈ Z+.

Using Equation (3.11), we can now solve for π∗C0,0 through the normalization condition,

1 = π∗C0,0 + π∗C1 (I −R)−1e′

= π∗C0,0

(
1 + β∗

C
R(I −R)−1e′

)
= π∗C0,0

(
1 +

λ(−β∗
C
B−1e′)

1− λE[Ser ]

)

= π∗C0,0

(
1 +

λE[Ser ∗C ]

1− λE[Ser ]

)
,

resulting in

π∗C0,0 =
1− λE[Ser ]

1 + λE[Ser ∗C ]− λE[Ser ]
,

and by substituting into Equation (3.22), it is straightforward to show that

E[BP∗C ] =
E[Ser ∗C ]

1− λE[Ser ]
. (3.23)

We now recall the left-hand side of Equation (3.19), which we can rewrite via Equation
(3.21) as

βRC−1λ(−(B + p∗CB
′
0β)−1)e′

= λC(β(λI − λe′β −B)−(C−1)e′)(−β∗
C

(B + p∗CB
′
0β)−1e′). (3.24)

Note that the term −β∗
C

(B + p∗CB
′
0β)−1e′ is simply the expected value of a PHb(β

∗
C
, B +

p∗CB
′
0β) random variable. This corresponds to a phase-type distribution with initial prob-

ability row vector β∗
C

and rate matrix B that restarts with initial probability row vector β
every time it would reach absorption with probability p∗C . We can express

BPC = Ser ∗C +

N∗
C∑

j=1

Ser j, (3.25)

where {Ser j}∞j=1 are iid service times having distribution Ser j ∼ PHb(β,B) within a busy
period after the first service Ser ∗C ∼ PHb(β

∗
C
, B), and N∗C is some discrete random variable

depending on λ, C, and the random service times. If we approximate N∗C by an independent
geometric distribution having probability mass function (PMF) P (N = n) = (p∗C)n(1− p∗C),
n ∈ N, then this would be distributionally equivalent to PHb(β

∗
C
, B + p∗CB

′
0β) (using the

convention
∑0

j=1 Ser j = 0).
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Taking the expectation of Equation (3.25) under this approximation, we have

E[BPC ] = E[Ser ∗C ] +
p∗C

1− p∗C
E[Ser ]. (3.26)

Equating Equations (3.23) and (3.26) and solving for p∗C , we set

p∗C =
λE[Ser ∗C ]

1 + λE[Ser ∗C ]− λE[Ser ]
. (3.27)

Therefore, if we use this choice of p∗C , Equation (3.24) becomes

βRC−1λ(−(B + p∗CB
′
0β)−1)e′ = λC(β(λI − λe′β −B)−(C−1)e′)E[BPC ]

=
λC

1− λE[Ser ]
(β(λI − λe′β −B)−(C−1)e′)E[Ser ∗C ]

=
λC

1− λE[Ser ]
(β(λI − λe′β −B)−(C−1)e′)(−β∗

C
B−1e′)

=
λC

1− λE[Ser ]
β(λI − λe′β −B)−(C−1)(−B−1e′).

Substituting Equation (3.11) into the right-hand side of Equation (3.19) yields

βRC(I −R)−1e′ =
λC

1− λE[Ser ]
β(λI − λe′βe′ −B)−(C−1)(−B−1e′). (3.28)

Thus, we have shown that the choice of p∗C in Equation (3.27) satisfies Equation (3.11), and
it will hold that

πUWC
0,0 = 1− λE[Ser ] = π0,0,

πUWC
i = (1− λE[Ser ])βλi(λI − λe′β −B)−i = πi, i = 1, 2, . . . , C − 1,

and
πUWC
C = (1− λE[Ser ])βλC(λI − λe′β −B)−(C−1)(−(B + p∗CB

′
0β)−1), (3.29)

which must satisfy πUWC
C e′ =

∑∞
i=C πie

′.

Remark 1 We can obtain the corresponding FB model results for the M/PH/1 queue by
setting p∗C = 0 in the above analysis. From Equations (3.19) and (3.28), since

βRC−1λ(−B−1e′) = λCβ(λI − λe′β −B)−(C−1)(−B−1e′)
= (1− λE[Ser ])βRC(I −R)−1e′

< βRC(I −R)−1e′,

it follows that πFB
0,0 > π0,0, and hence by Equation (3.17),

πFB
i = πFB

0,0βλ
i(λI − λe′β −B)−i =

πFB
0,0

π0,0
· πi > πi, i = 1, 2, . . . , C − 1. (3.30)
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Interestingly, since Equation (3.30) confirms that πFB
C−1 is proportional to πC−1, this implies

that we can express Equation (3.21) in terms of the FB steady-state probabilities to obtain

β∗
C

=
πC−1
πC−1e

′ =
πFB
C−1

πFB
C−1e

′ .

This observation will inspire an approximation that we will examine in Section 3.2.2.

3.1.1 M/M/1 Queue

Let us confirm that we recover the results of Section 2.2 if we let β = 1 and B = −µ (i.e.,
if Ser ∼ Exp(µ)). First of all, Equation (3.21) clearly simplifies to β∗

C
= 1 = β. Therefore,

Ser ∗C and Ser have identical distributions, implying that E[Ser ∗C ] = E[Ser ] and Equation
(3.27) simplifies to p∗C = λE[Ser ] = λ/µ = ρ. Thus, Equation (3.29) reduces to

πUWC
C = (1− ρ)λC(λ− λ− (−µ))−(C−1)(−(−µ+ ρ(µ))−1)

= (1− ρ)ρC−1
λ

µ− λ
= ρC ,

as required. Therefore, our two different UWC methods derived from the M/M/1 +M and
M/PH/1 queues both simplify to give the same desired results for the M/M/1 queue.

3.2 M/PH/1 +M Queue

Suppose now that individual customers not currently receiving service in the M/PH/1 queue
from Section 3.1 are at risk of reneging according to iid Exp(α) impatience timers (as in
Section 2.1). This too may be modelled by a CTMC {(X(t), Y (t)), t ≥ 0} with the same
interpretations as previously described. This CTMC is still a QBD whose infinitesimal
generator matrix takes the form of Equation (3.1), with non-zero matrix blocks:

Q0,0 = −λ, Q0,1 = λβ,
Q1,0 = B′0, Q1,1 = B − λI, Q1,2 = λI,

Qi,i−1 = B′0β + (i− 1)αI, Qi,i = B − (λ+ (i− 1)α)I, Qi,i+1 = λI, i = 2, 3, . . . .

As Qi,j now depends on i for j = i − 1, i, this is a level-dependent QBD. Information
concerning the analytical approach required to calculate the steady-state distribution of a
level-dependent QBD may be found in, for example, Bright and Taylor [9]. In our notation,
this algorithm assumes that

πi = π0

i∏
j=1

Rj, i ∈ Z+, (3.31)

which in combination with the QBD form of Equation (3.1) results in the recursive solution

Ri = −Qi−1,i (Qi,i +Ri+1Qi+1,i)
−1 , i ∈ Z+. (3.32)
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As each Ri references the value of Ri+1, in order to actually calculate the steady-state
probabilities, we must implement a state truncation at some level C by setting Ri = 0 for
all j > C. This provides us with the boundary equation

RC = −QC−1,C(QC,C)−1. (3.33)

After calculating RC , we iteratively obtain Ri, i = C − 1, C − 2, . . . , 1. Defining

R0 = Q0,0 +R1Q1,0, (3.34)

it must hold that
π0R0 = 0. (3.35)

The normalization equation becomes

1 =
C∑
i=0

πie
′ = π0

(
I +

C∑
i=1

i∏
j=1

Rj

)
e′ = π0u

′, (3.36)

which in combination with Equation (3.35) provides us with the means to calculate π0,

π0

[
R0 u′

]
=
[

0 1
]
.

The remaining πi’s may then be obtained through Equation (3.31). As this numerical algo-
rithm requires a truncation of the state space at a given level C, it calculates the steady-state
distribution of the FB model approximation by default (when no adjustments are applied),
which will converge to that of the IB model as C →∞.

For the UWC model (with truncation at level C), we must modify our approach due
to the presence of both reneging and phase-type service. In the M/PH/1 queue, the only
way a customer could depart the system was following the completion of their service, after
which the time until the next observed departure would have an iid distribution (i.e., a new
service phase is always selected according to the probability vector β). In the M/PH/1+M
queue, while we re-initialize the service phase after service completions, the current service
phase is unchanged if we observe a departure due to impatience. Therefore, the random
time intervals between observed departures are no longer iid and we cannot make a similar
breakdown of a level-C busy period as in Equation (3.25). That is, we are unable to obtain
the expected number of observed departures from the expected duration of a level-C busy
period. In the analysis of the M/M/1+M queue, this was not a concern due to the existence
of only a single service phase. We will now propose two versions of the UWC approximation
to tackle this more difficult problem.

3.2.1 M/PH/1 +M Queue: UWC Version 1

For UWC version 1, we obtain an analytic approximation that is comparable in compu-
tational complexity to the FB model approximation. To illustrate, we consider the UWC
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model of a M/PH/1+M queue having two service phases. We visualize the state transition
diagram of this model for states near level C in Figure 1, where we denote the absorption
rate out of the jth phase of Ser by Bj,0 = (B′0)j. While in state (C, 1), an observed departure
will decrease the queue length with probability 1− p∗C,1, and the CTMC will remain in state
(C, 1) with probability

(C − 1)α +B1,0β1
(C − 1)α +B1,0

· p∗C,1, (3.37)

or the CTMC will transition to state (C, 2) with probability

B1,0β2
(C − 1)α +B1,0

· p∗C,1. (3.38)

That is, the UWC approximation will respond to departures in the same way in this model
as in a M/M/1 +M model with service rate B1,0, with the exception of service completions
that re-initialize the service phase in a different phase.

As C →∞, Equations (3.37) and (3.38) converge to p∗C,1 and 0, respectively, as observed
customer departures while at level C become dominated by reneging, reducing the probability
of an observed departure that would change the service phase but not decrement the queue
length. Thus, in terms of the UWC behaviour, we approximate being in state (C, j) as if in
state C of a M/M/1+M model with service rate µ equal to Bj,0. In the M/M/1+M queue,
the probability p∗C in Equation (2.8) was optimal for estimating the probability of requiring
at least one more observed departure to lower the level of the CTMC to C − 1. Therefore,
upon observing a departure while in state (C, j), we elect to let

p∗C,j = 1−

(
∞∑
k=1

λk−1(Bj,0 + (C − 1)α)∏k−1
n=0(Bj,0 + (C − 1 + n)α)

)−1
, j = 1, 2, . . . , b, (3.39)

be the (approximate) probability of having one or more unobserved customers present in the
system.

Returning to our two-phase illustration, in addition to service completions that result in
a change of service phase but not a reduction in the number of observed customers, there
is an independent competing Exp(B1,2) timer whose completion would result in a transition
to state (C, 2). When transitioning into state (C, 2), the CTMC retains no memory of the
previous state being (C, 1) or (C − 1, 2), and in either case uses UWC probability p∗C,2 while
in this state. Thus, no information concerning how long the system has remained in level
C is preserved, and we may interpret this event as the removal of any unobserved waiting
customers present in the system at that time instant followed by the initialization of a new
level-C busy period in an M/M/1+M queue with service rate B2,0. This intuition generalizes
logically to any number of service phases, b. Therefore, while p∗C,1, p

∗
C,2, . . . , p

∗
C,b will shift

some steady-state probability mass to the truncation level C, they will underestimate the
true expected number of required customer departures to transition to level C−1 due to the
removal of unseen waiting customers when the service phase (but not the number of observed

18



customers) changes. While the gain in accuracy is not as high as in the simpler models, it will
still outperform the standard FB model since only removing unobserved waiting customers
upon changes in service phase results in fewer lost customers than rejecting everyone who
arrives while the queue length is at C (i.e., when enforcing a finite buffer).

Unlike in Section 3.1, the equations for πUWC
i will recursively depend on the form of

QUWC
C,C through Equations (3.32) and (3.33), whereas previously they only depended on the

value of πUWC
C e′ through the normalization condition in Equation (3.18) used to obtain πUWC

0,0 .
Therefore, as we will see in Tables 2 and 3, the less precise UWC approximation used in QUWC

C,C

and QUWC
C,C−1 may cause slight irregularities in levels near the buffer, where the dependency

on RC is larger. However, these irregularities within a given level vanish as we increase C
causing the distance between that level and the truncation level to grow.

Note that if B0,1 = B0,2 = · · · = B0,b, then p∗C,1 = p∗C,2 = · · · = p∗C,b and no accuracy
in the UWC approximation is lost. Also, these choices of p∗C,j will reduce to the p∗C of the
M/M/1 +M UWC model if we assume exponentially distributed service times, as required.
Moreover, as the proportion of departures due to reneging increases with C, fewer instances of
“lost” unobserved waiting customers will occur and the accuracy of the UWC approximation
itself will improve with larger C. Thus, like the other UWC models, the UWC steady-state
distribution will converge to that of the IB model as C →∞.

3.2.2 M/PH/1 +M Queue: UWC Version 2

We now consider a second version of UWC for this particular model. Rather than making
use of earlier results derived for a simpler model, we apply phase-type theory to approximate
the PMF of N∗C directly, from which we can obtain its expected value and use it to set a
single UWC probability p∗C . As in the analysis of Section 3.1, the initial service phase of the
level-C busy period matters, and like Equation (3.21), we would find that

β∗
C

=
πC−1
πC−1e

′ .

Unfortunately, we do not have a precise analytic solution of πC−1 from the IB model.
However, as seen in Remark 1, these IB steady-state probabilities may be replaced by those
from the FB model with no loss of accuracy for the M/PH/1 model. While this is not
necessarily the case for the M/PH/1 + M model, we still propose to use πFB

C−1 in place of

πC−1, and we denote this approximated initial probability row vector by β̂
∗
C

. As we will
see in Tables 2 and 3, while we do not end up obtaining exact steady-state probabilities
for levels below C, this approximation works very well. Note that this does imply that we
must calculate the steady-state probabilities of the FB model prior to those of this version
of the UWC model, effectively doubling our computational requirement. This is the main
limitation of UWC version 2, which is otherwise typically more accurate than UWC version
1.

Letting D ∈ Z+, we may model the number of customers beyond level C (up until the
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next observed departure) by an absorbing CTMC having infinitesimal generator matrix

Q =

[
QTT QTA

0 I

]
,

where we let ∆ = B − (λ+ (C − 1)α)Ib, ∆A = B′0β + (C − 1)αIb,

QTT =



0 1 2 · · · D − 1 D

0 ∆ λIb 0 · · · 0 0

1 αIb ∆− αIb λIb
. . . 0 0

2 0 2αIb ∆− 2αIb
. . . 0 0

...
...

. . . . . . . . .
...

...
D − 1 0 0 0 · · · ∆− (D − 1)αIb λIb
D 0 0 0 · · · DαIb ∆− (Dα− λ)Ib


,

and

QTA =



0∗ 1∗ · · · (D − 2)∗ (D − 1)∗ −1∗

0 0 0 · · · 0 0 ∆Ae
′

1 ∆A 0 · · · 0 0 0′b

2 0 ∆A
. . . 0 0 0′b

...
...

. . . . . .
...

...
...

D − 1 0 0 · · · ∆A 0 0′b
D 0 0 · · · 0 ∆A 0′b


.

Here, Ib denotes a b× b identity matrix and 0′b is a column vector of b zeroes. This CTMC
applies a FB approximation to the unobserved portion of the queue (considering an effective
total queue length of C + D). If it is absorbed into state (i∗, j), i∗ ∈ {0∗, 1∗, . . . , (D − 1)∗},
j ∈ {1, 2, . . . , b}, then the queue length does not decrease after the next observed departure.
An unobserved customer immediately joins the observed portion of the queue, there are i
unobserved customers in the system, and the next service time begins in phase j. If it is
absorbed into state −1∗, then there were no unobserved customers and the observed queue
length will decrement.

Given the initial probability row vector β̂
∗
C

, if we let D∗ be a set of dummy absorption
states (which cannot actually be observed) and define

Q∗TA =



0∗ 1∗ · · · (D − 2)∗ (D − 1)∗ D∗

0 0 0 · · · 0 0 0′b0b
1 ∆A 0 · · · 0 0 0

2 0 ∆A
. . . 0 0 0

...
...

. . . . . .
...

...
...

D − 1 0 0 · · · ∆A 0 0
D 0 0 · · · 0 ∆A 0


,
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while we let the right-most column of QTA be denoted by

Q′−1∗ =

[
∆Ae

′

0′

]
,

then the probability that the queue length will decrement after the first observed departure
is simply

P (N∗C = 0) =
[
β̂
∗
C

0
]

(−Q−1TT )Q′−1∗ .

Since we can use the knowledge of the absorption state to re-initialize the process to run until
the next observed departure without losing track of the number of unobserved customers,
we can actually express the (approximated) PMF of N∗C as

P (N∗C = n) =
[
β̂
∗
C

0
] [

(−Q−1TT )Q∗TA
]n

(−Q−1TT )Q′−1∗ , n ∈ N.

From here, we evaluate E[N∗C ] and select a UWC probability that equates

E[N∗C ] =
p∗C

1− p∗C
,

or equivalently,

p∗C,j = p∗C =
E[N∗C ]

1 + E[N∗C ]
, j = 1, 2, . . . , b.

Note that this is an approximation for a given choice of D ∈ Z+. As such, a large enough D
should be selected such that this FB approximation approaches that of the true IB model.
For the calculations in Section 3.2.3, we use D = 40.

3.2.3 M/PH/1 +M Queue: Comparing UWC Versions

Defining p∗
C

= (p∗C,1, p
∗
C,2, . . . , p

∗
C,b), we let the non-zero QBD blocks of the UWC model be

given by QUWC
i,j = Qi,j, i = 0, 1, . . . , C − 1, j = 0, 1, . . . , C,

QUWC
C,C−1 = (I − diag(p∗

C
))QC,C−1

= (I − diag(p∗
C

))(B′0β + (C − 1)αI), (3.40)

and

QUWC
C,C = QC,C + λI + diag(p∗

C
)QC,C−1

= B + diag(p∗
C

)B′0β − (I − diag(p∗
C

))(C − 1)αI. (3.41)

In Tables 2 and 3, we illustrate the relative efficiency gains of both versions of the UWC
model over the FB model. We apply the level-dependent QBD algorithm to approximate the
IB model steady-state distribution π using a truncation level of 1000, as well as to calculate
πUWC and πFB for C = 3, 7. We let λ = 0.9, α = 0.1, and consider the following service time
distributions:
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� (E2) Erlang-2 with E[Ser ] = 1 and Var(Ser) = 0.5:

Ser ∼ PH2

(
β = (1, 0), B =

[
−2 2
0 −2

])
.

� (Ef
2) Erlang-2 with feedback with E[Ser ] = 1 and Var(Ser) = 0.75:

Ser ∼ PH2

(
β = (1, 0), B =

[
−4 4
2 −4

])
.

� (Cf
2) Coxian-2 with feedback with E[Ser ] = 1, Var(Ser) = 1.5:

Ser ∼ PH2

(
β = (0.5, 0.5), B =

[
−
(

8+4
√
3

7+4
√
3

)
4+2
√
3

7+4
√
3

4 + 2
√

3 −(8 + 4
√

3)

])
.

� (H2) Hyperexponential-2 with E[Ser ] = 1 and Var(Ser) = 2:

Ser ∼ PH2

(
β = (0.5, 0.5), B =

[
−(2 +

√
2) 0

0 −(2−
√

2)

])
.

As the goal of UWC is to improve the accuracy of approximated steady-state probabilities
at levels below the buffer, we consider the absolute differences between approximated and
IB model probabilities for queue lengths less than C. Specifically, we are interested in the
following measures, which we define as the global maximum measure (Mg) and the marginal
maximum measure (Mm):

Mg = max
(n,y):n<C

∣∣πn,y − πAn,y∣∣ , (3.42)

Mm = max
n:n<C

∣∣πn,• − πAn,•∣∣ , (3.43)

where n is a queue length, y is a service phase (which we let take on a value of 0 when
the server is idle at n = 0), A is a placeholder for which model approximation we are using
(UWC version 1, UWC version 2, or FB), and

πn,• =
∑
y

πn,y and πAn,• =
∑
y

πAn,y

are marginal queue length probabilities. Essentially, Mg acts as a measure of the state-wise
convergence to the true IB values while Mm considers the accuracy of the total probability
of observing the queue at a given length. Due to the small state space of the considered
example, the usefulness of Mm over Mg is limited, but it will be more valuable in later
sections when we consider substantially larger state spaces having smaller probabilities at
individual states (and hence, very small values of Mg).
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Examining Tables 2 and 3, while it is clear that we do not recover πUWC
i = πi, i =

0, 1, . . . , C − 1, by comparing the values of Mg and Mm, UWC version 2 results in approx-
imations that are very close to the true steady-state distribution and UWC version 1 still
gives a better overall approximation than the FB model at these levels (for a given C).
Letting E[X] denote the expected queue length at steady state for a given model, UWC
version 2 provides the best estimates followed by version 1 and then the FB model. The
UWC probability vectors p∗

C
are also provided. Note that these probabilities are identical for

version 1 under E2 and Ef
2 service time distributions since they have equal column vectors

of absorption rates.
Comparing the four service time distributions and using our global and marginal measures

as a benchmark, UWC version 1 has its best performance under H2 service while UWC version
2 has its worst. This is intuitive, as H2 does not permit service phase transitions without
service completions (and hence out of the four considered distributions, it acts most similar
to an exponential distribution). In contrast, the E2 distribution will always observe one such
transition, while the Cf

2 and Ef
2 distributions will have an expected value of two and four

phase transitions between service completions, respectively.
The values of our measures for a given UWC version under the other three distributions

at C = 7 are comparable. For UWC version 1 at C = 3, Cf
2 has the smallest measures,

despite the fact that it observes twice as many phase transitions on average relative to E2.
Therefore, the presence of absorbing rates equalling zero (e.g., B1,0 = 0) also appears to have
a slight negative impact on the efficacy of UWC. Also, since E[XUWC] at C = 3 for E2 is
larger than that for Ef

2 , despite Ef
2 having the larger E[X IB], we can conclude that E2 has

a slight edge in UWC version 1 performance over Ef
2 due to the latter’s larger number of

expected phase transitions. This observation is in agreement with the sizes of Mg and Mm.
We must also point out that it is possible to observe πUWC

i,j < πi,j. For example, at
i = 6, j = 2, C = 7, and H2 service, we have πUWC

6,2 = 0.0408 for UWC version 1 (while
π6,2 = 0.0419). Being only one level below the truncation level, this is an illustration of the
possible irregularities mentioned previously. However, if we further increase C, the distance
between level 6 and the truncation increases and we observe πUWC

6,2 = 0.0418 for C = 8 and
πUWC
6,2 = 0.0419 for C = 9. In either of these cases, UWC version 1 provides a closer estimate

than FB, so it is still preferable to use over FB for any of these service time distributions
at a given C. Observe that at C = 7, Mg and Mm are eight to ten times larger for the FB
model than for the UWC version 1 model.

For UWC version 2, the performance for either distribution is notably better than that
of version 1. This holds even for the H2 service time distribution where UWC version 1
performed its best and UWC version 2 performed its worst. It is also possible to observe
underestimation of the true steady-state probabilities (e.g., i = 0, C = 3, H2 service). If one
can afford the extra computation time, it seems that it would be preferable to use version 2
in these cases. However, note that its gains relative to version 1 are much smaller for C = 7,
where a larger proportion of observed departures during a level-C busy period are caused
by reneging. Note also that in the case of exponential service, both versions of UWC will
in fact result in the same optimal p∗C (since we must have β∗

C
= 1, we have no error from
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approximating it by β̂
∗
C

), and so version 2 is not required.

Remark 2 In our numerical investigations, we have observed that it is not true that UWC
version 2 is always superior to version 1 in terms of accuracy. We found a counterexample
demonstrating poor performance by UWC version 2 within a two-class polling model em-
ploying a ki-limited service policy with H2 service time distributions having extreme mixing
weights (0.001 and 0.999, with very slow or very fast service times, respectively), as well
as impatient customers. For an example of the analysis of this type of queueing system
without the application of UWC, we refer the reader to Granville and Drekic [16]. While
this extreme H2 service time distribution caused issues for UWC version 2 at moderate val-
ues of C within that particular queueing system, the negative impact did vanish as C was
increased. Using this service time distribution within the one-queue M/PH/1 + M model
considered in this subsection, we found that UWC version 2 outperformed version 1 (which
was itself better than FB). Thus, it would appear that version 2’s poor performance was
due to the combination of that service time distribution and the polling model framework
(i.e., having multiple queues with ki-limited service policies). We therefore recommend to
carefully consider the structure of the underlying phase-type service distribution(s) and the
features of the queueing system when deciding which version of UWC to use.

24



T
ab

le
2:

S
te

ad
y
-s

ta
te

p
ro

b
ab

il
it

ie
s

an
d

ex
p

ec
te

d
q
u
eu

e
le

n
gt

h
s

fo
r

U
W

C
ve

rs
io

n
s

1
an

d
2,

F
B

,
an

d
IB

M
/P
H
/1

+
M

q
u
eu

ei
n
g

m
o
d
el

s,
u
n
d
er
C

=
3,

7,
λ

=
0.

9,
α

=
0.

1,
an

d
E
2

or
E
f 2

se
rv

ic
e

ti
m

e
d
is

tr
ib

u
ti

on
s

E
2

C
=

3
C

=
7

U
W

C
ve

r.
1

U
W

C
ve

r.
2

F
B

U
W

C
ve

r.
1

U
W

C
ve

r.
2

F
B

IB

π
0

0.
25

41
0.

22
63

0.
28

86
0.

22
69

0.
22

63
0.

22
93

0.
22

62
π
1

(0
.1

60
2,

0.
11

44
)

(0
.1

42
6,

0.
10

18
)

(0
.1

81
9,

0.
12

99
)

(0
.1

43
0,

0.
10

21
)

(0
.1

42
6,

0.
10

18
)

(0
.1

44
6,

0.
10

32
)

(0
.1

42
6,

0.
10

18
)

π
2

(0
.1

08
3,

0.
11

25
)

(0
.0

96
9,

0.
10

02
)

(0
.1

23
4,

0.
12

77
)

(0
.0

97
2,

0.
10

04
)

(0
.0

96
9,

0.
10

01
)

(0
.0

98
2,

0.
10

15
)

(0
.0

96
9,

0.
10

01
)

π
3

(0
.1

04
5,

0.
14

61
)

(0
.1

47
3,

0.
18

49
)

(0
.0

50
5,

0.
09

81
)

(0
.0

63
8,

0.
07

51
)

(0
.0

63
6,

0.
07

48
)

(0
.0

64
4,

0.
07

59
)

(0
.0

63
6,

0.
07

48
)

π
4

-
-

-
(0
.0

39
1,

0.
04

92
)

(0
.0

39
0,

0.
04

91
)

(0
.0

39
5,

0.
04

97
)

(0
.0

39
0,

0.
04

91
)

π
5

-
-

-
(0
.0

22
3,

0.
02

94
)

(0
.0

22
2,

0.
02

93
)

(0
.0

22
5,

0.
02

97
)

(0
.0

22
2,

0.
02

93
)

π
6

-
-

-
(0
.0

11
6,

0.
01

63
)

(0
.0

11
8,

0.
01

62
)

(0
.0

11
9,

0.
01

64
)

(0
.0

11
8,

0.
01

62
)

π
7

-
-

-
(0
.0

09
5,

0.
01

40
)

(0
.0

10
7,

0.
01

55
)

(0
.0

04
1,

0.
00

89
)

(0
.0

05
9,

0.
00

83
)

E
[X

]
1.

46
77

1.
63

52
1.

25
97

2.
00

10
2.

01
54

1.
94

73
2.

03
62

(M
g
,M

m
)

(0
.0

27
9,

0.
03

01
)

(<
0.

00
01

,<
0.

00
01

)
(0

.0
62

3,
0.

06
73

)
(0

.0
00

7,
0.

00
07

)
(<

0.
00

01
,<

0.
00

01
)

(0
.0

03
1,

0.
00

33
)

-
p∗ C

(0
.9

95
0,

0.
38

20
)

(0
.5

93
4,

0.
59

34
)

(0
,0

)
(0

.8
97

0,
0.

32
78

)
(0

.4
60

4,
0.

46
04

)
(0

,0
)

-

E
f 2

C
=

3
C

=
7

U
W

C
ve

r.
1

U
W

C
ve

r.
2

F
B

U
W

C
ve

r.
1

U
W

C
ve

r.
2

F
B

IB

π
0

0.
26

55
0.

23
42

0.
30

09
0.

23
51

0.
23

42
0.

23
82

0.
23

42
π
1

(0
.1

43
7,

0.
11

95
)

(0
.1

26
7,

0.
10

54
)

(0
.1

62
8,

0.
13

54
)

(0
.1

27
2,

0.
10

58
)

(0
.1

26
7,

0.
10

54
)

(0
.1

28
9,

0.
10

72
)

(0
.1

26
7,

0.
10

54
)

π
2

(0
.1

03
6,

0.
10

79
)

(0
.0

91
6,

0.
09

51
)

(0
.1

17
7,

0.
12

22
)

(0
.0

92
0,

0.
09

55
)

(0
.0

91
6,

0.
09

51
)

(0
.0

93
2,

0.
09

68
)

(0
.0

91
6,

0.
09

51
)

π
3

(0
.1

19
9,

0.
13

99
)

(0
.1

64
5,

0.
18

24
)

(0
.0

69
0,

0.
09

19
)

(0
.0

65
2,

0.
07

08
)

(0
.0

64
9,

0.
07

05
)

(0
.0

66
1,

0.
07

17
)

(0
.0

64
9,

0.
07

05
)

π
4

-
-

-
(0

.0
43

0,
0.

04
76

)
(0

.0
42

8,
0.

04
74

)
(0
.0

43
6,

0.
04

82
)

(0
.0

42
8,

0.
04

74
)

π
5

-
-

-
(0

.0
26

3,
0.

02
96

)
(0

.0
26

2,
0.

02
95

)
(0
.0

26
7,

0.
03

00
)

(0
.0

26
2,

0.
02

95
)

π
6

-
-

-
(0

.0
14

9,
0.

01
72

)
(0

.0
15

0,
0.

01
71

)
(0
.0

15
2,

0.
01

74
)

(0
.0

15
0,

0.
01

71
)

π
7

-
-

-
(0

.0
13

8,
0.

01
60

)
(0

.0
15

5,
0.

01
80

)
(0
.0

07
2,

0.
00

96
)

(0
.0

08
0,

0.
00

92
)

E
[X

]
1.

46
56

1.
64

65
1.

26
07

2.
05

87
2.

07
84

1.
99

31
2.

10
77

(M
g
,M

m
)

(0
.0

31
3,

0.
03

13
)

(<
0.

00
01

,<
0.

00
01

)
(0

.0
66

8,
0.

06
68

)
(0

.0
00

9,
0.

00
09

)
(<

0.
00

01
,<

0.
00

01
)

(0
.0

04
1,

0.
00

41
)

-
p∗ C

(0
.9

95
0,

0.
38

20
)

(0
.6

12
9,

0.
61

29
)

(0
,0

)
(0

.8
97

0,
0.

32
78

)
(0

.4
85

7,
0.

48
57

)
(0

,0
)

-

25



T
ab

le
3:

S
te

ad
y
-s

ta
te

p
ro

b
ab

il
it

ie
s

an
d

ex
p

ec
te

d
q
u
eu

e
le

n
gt

h
s

fo
r

U
W

C
ve

rs
io

n
s

1
an

d
2,

F
B

,
an

d
IB

M
/P
H
/1

+
M

q
u
eu

ei
n
g

m
o
d
el

s,
u
n
d
er
C

=
3,

7,
λ

=
0.

9,
α

=
0.

1,
an

d
C
f 2

or
H

2
se

rv
ic

e
ti

m
e

d
is

tr
ib

u
ti

on
s

C
f 2

C
=

3
C

=
7

U
W

C
ve

r.
1

U
W

C
ve

r.
2

F
B

U
W

C
ve

r.
1

U
W

C
ve

r.
2

F
B

IB

π
0

0.
27

72
0.

25
59

0.
33

55
0.

25
68

0.
25

60
0.

26
30

0.
25

60
π
1

(0
.1

89
9,

0.
01

98
)

(0
.1

75
4,

0.
01

83
)

(0
.2

30
0,

0.
02

39
)

(0
.1

76
0,

0.
01

83
)

(0
.1

75
5,

0.
01

83
)

(0
.1

80
3,

0.
01

88
)

(0
.1

75
5,

0.
01

83
)

π
2

(0
.1

62
7,

0.
01

13
)

(0
.1

53
9,

0.
01

01
)

(0
.2

02
9,

0.
01

32
)

(0
.1

54
3,

0.
01

01
)

(0
.1

53
8,

0.
01

01
)

(0
.1

58
0,

0.
01

04
)

(0
.1

53
8,

0.
01

01
)

π
3

(0
.3

21
8,

0.
01

74
)

(0
.3

64
9,

0.
02

15
)

(0
.1

87
1,

0.
00

74
)

(0
.1

22
7,

0.
00

75
)

(0
.1

22
3,

0.
00

75
)

(0
.1

25
7,

0.
00

77
)

(0
.1

22
3,

0.
00

75
)

π
4

-
-

-
(0

.0
90

3,
0.

00
54

)
(0

.0
90

1,
0.

00
54

)
(0
.0

92
5,

0.
00

55
)

(0
.0

90
1,

0.
00

54
)

π
5

-
-

-
(0

.0
61

8,
0.

00
36

)
(0

.0
61

7,
0.

00
36

)
(0
.0

63
5,

0.
00

37
)

(0
.0

61
7,

0.
00

36
)

π
6

-
-

-
(0

.0
38

9,
0.

00
23

)
(0

.0
39

6,
0.

00
22

)
(0
.0

40
9,

0.
00

23
)

(0
.0

39
6,

0.
00

22
)

π
7

-
-

-
(0

.0
49

4,
0.

00
25

)
(0

.0
51

2,
0.

00
28

)
(0
.0

26
7,

0.
00

11
)

(0
.0

23
8,

0.
00

13
)

E
[X

]
1.

57
51

1.
68

08
1.

26
95

2.
23

42
2.

24
79

2.
11

73
2.

30
42

(M
g
,M

m
)

(0
.0

21
2,

0.
02

12
)

(0
.0

00
1,

0.
00

01
)

(0
.0

79
5,

0.
07

95
)

(0
.0

00
8,

0.
00

08
)

(<
0.

00
01

,<
0.

00
01

)
(0

.0
07

0,
0.

00
70

)
-

p∗ C
(0
.8

35
5,

0.
11

57
)

(0
.6

59
2,

0.
65

92
)

(0
,0

)
(0

.6
55

5,
0.

11
01

)
(0

.5
33

1,
0.

53
31

)
(0

,0
)

-

H
2

C
=

3
C

=
7

U
W

C
ve

r.
1

U
W

C
ve

r.
2

F
B

U
W

C
ve

r.
1

U
W

C
ve

r.
2

F
B

IB

π
0

0.
27

91
0.

26
49

0.
34

72
0.

26
63

0.
26

57
0.

27
46

0.
26

58
π
1

(0
.0

48
3,

0.
14

73
)

(0
.0

45
8,

0.
14

01
)

(0
.0

60
0,

0.
18

39
)

(0
.0

46
0,

0.
14

08
)

(0
.0

45
9,

0.
14

05
)

(0
.0

47
5,

0.
14

52
)

(0
.0

46
0,

0.
14

06
)

π
2

(0
.0

24
7,

0.
13

00
)

(0
.0

22
4,

0.
12

89
)

(0
.0

28
5,

0.
17

40
)

(0
.0

22
7,

0.
12

89
)

(0
.0

22
7,

0.
12

86
)

(0
.0

23
4,

0.
13

28
)

(0
.0

22
7,

0.
12

86
)

π
3

(0
.0

32
5,

0.
33

80
)

(0
.0

39
4,

0.
35

84
)

(0
.0

07
1,

0.
19

93
)

(0
.0

14
2,

0.
10

81
)

(0
.0

14
2,

0.
10

79
)

(0
.0

14
7,

0.
11

15
)

(0
.0

14
2,

0.
10

79
)

π
4

-
-

-
(0
.0

09
5,

0.
08

43
)

(0
.0

09
5,

0.
08

41
)

(0
.0

09
8,

0.
08

70
)

(0
.0

09
5,

0.
08

41
)

π
5

-
-

-
(0
.0

06
3,

0.
06

12
)

(0
.0

06
2,

0.
06

13
)

(0
.0

06
4,

0.
06

37
)

(0
.0

06
3,

0.
06

13
)

π
6

-
-

-
(0
.0

04
2,

0.
04

08
)

(0
.0

03
9,

0.
04

20
)

(0
.0

03
7,

0.
04

49
)

(0
.0

03
9,

0.
04

19
)

π
7

-
-

-
(0
.0

04
4,

0.
06

21
)

(0
.0

05
1,

0.
06

25
)

(0
.0

00
8,

0.
03

41
)

(0
.0

02
3,

0.
02

69
)

E
[X

]
1.

61
66

1.
68

21
1.

26
80

2.
30

54
2.

31
53

2.
15

70
2.

39
22

(M
g
,M

m
)

(0
.0

13
3,

0.
01

33
)

(0
.0

00
9,

0.
00

09
)

(0
.0

81
4,

0.
08

14
)

(0
.0

01
0,

0.
00

08
)

(0
.0

00
1,

0.
00

01
)

(0
.0

08
8,

0.
00

88
)

-
p∗ C

(0
.2

40
4,

0.
81

19
)

(0
.6

78
7,

0.
67

87
)

(0
,0

)
(0

.2
17

3,
0.

63
60

)
(0

.5
63

0,
0.

56
30

)
(0

,0
)

-

26



4 N-Queue M/PH/1 +M Exhaustive Polling System

4.1 Model Assumptions

We consider a polling system of N queues, Q1, Q2, . . . , QN , which are visited in a cyclic order
by a lone server. The server follows an exhaustive service discipline such that after visiting a
queue, they do not leave until it has emptied. If the server arrives to a queue and finds it to
be empty, they immediately move on to the next queue. Let a class-i switch-in time denote
the amount of time that it takes the server to switch from Qi−1 to Qi (where Q0 represents
QN). It is assumed that switch-in times are independent, and class-i switch-in times follow a
PHsi(γi, Si) distribution with column vector of absorption rates S ′0,i = −Sie′, i = 1, 2, . . . , N .
Furthermore, we assume that switch-in times are strictly positive in duration (i.e., γ

i
e′ = 1).

Each Qi has its own class of customers who arrive according to an independent Poisson
process with parameter λi, i = 1, 2, . . . , N . Class-i customers are served on a first-come-first-
served basis within their queue, having iid service time requirements Ser i ∼ PHbi(βi, Bi) with

column vector of absorption rates B′0,i = −Bie
′. Additionally, class-i customers are assumed

to have independent Exp(αi) impatience timers and are at risk of reneging until they reach
the server. By setting αi = 0, we would have the case where class-i customers are patient
and are not at risk of reneging, but for the purposes of this section we assume that αi > 0,
i = 1, 2, . . . , N .

We truncate the length of Qi at Ci <∞. Define p∗i,j as the UWC probability applied to
class i when Qi has Ci observed customers and the server is in phase j of a class-i customer’s
service, j = 1, 2, . . . , bi. Here, for ease of notation, we suppress the dependency of p∗i,j on Ci.
When the server is not currently visiting Qi and there are Ci observed class-i customers, we
use UWC probability p∗i,0. If the server is not at Qi, then Qi acts as an M/M/∞ queue with
Ser ∼ Exp(αi). It is therefore a logical choice to apply Equation (2.10) and set

p∗i,0 = 1− (λi/αi)
Ci

Ci!

(
eλi/αi −

Ci−1∑
k=0

(λi/αi)
k

k!

)−1
.

For p∗i,j, j = 1, 2, . . . , bi, we elect to use analogues of UWC versions 1 and 2 from Section
3.2. For UWC version 1, we use Equation (3.39) and set

p∗i,j = 1−

(
∞∑
k=1

λk−1(B0,i,j + (Ci − 1)αi)∏k−1
n=0(B0,i,j + (Ci − 1 + n)αi)

)−1
, j = 1, 2, . . . , bi, (4.1)

where B0,i,j = (B′0,i)j. For UWC version 2, we require an initial probability vector for the
first service in the level-C busy period for every class i = 1, 2, . . . , N . Following a similar
logic to what was used to derive Equation (3.20), the steady-state probability of the IB
model initializing a level-Ci busy period in service phase y, y = 1, 2, . . . , bi, is∑

nj ,j 6=i
(λiπn1,...,ni−1,Ci−1,ni+1,...,nN ,2i,y + πn1,...,ni−1,Ci,ni+1,...,nN ,2i−1S

′
0,iβi,y)∑

nj ,j 6=i
(λiπn1,...,ni−1,Ci−1,ni+1,...,nN ,2i

e′ + πn1,...,ni−1,Ci,ni+1,...,nN ,2i−1S
′
0,i)

,

27



where βi,y = (β
i
)y and the steady-state probabilities are defined in the following subsection.

We now define the corresponding modified phase-type initial probability row vector

β∗
i

=

∑
nj ,j 6=i

(λiπn1,...,ni−1,Ci−1,ni+1,...,nN ,2i
+ πn1,...,ni−1,Ci,ni+1,...,nN ,2i−1S

′
0,iβi)∑

nj ,j 6=i
(λiπn1,...,ni−1,Ci−1,ni+1,...,nN ,2i

e′ + πn1,...,ni−1,Ci,ni+1,...,nN ,2i−1S
′
0,i)

. (4.2)

In general, we do not know the true IB model steady-state probabilities, so we again
approximate this by using FB model steady-state probabilities and refer to the approximated
vector as β̂

∗
i
. Given these probability vectors, we repeat the numerical procedure for UWC

version 2 for every class to obtain UWC probabilities p∗i , and then let each p∗i,j = p∗i , j =
1, 2, . . . , bi, i = 1, 2, . . . , N .

4.2 State Space and Steady-State Probabilities

This N -queue system may be modelled by the CTMC

{(X1(t), X2(t), . . . , XN(t), L(t), Y (t)), t ≥ 0},

where Xi(t) ∈ {0, 1, . . . , Ci} is the number of class-i customers in the system, i = 1, 2, . . . , N ,
L(t) ∈ {1, 2, . . . , 2N − 1, 2N} denotes the location of the server, where L(t) = 2i − 1 if the
server is conducting a class-i switch-in or L(t) = 2i if they are serving class i, such that

L(t) ∈ ΩL(X1(t), X2(t), . . . , XN(t)) =
N⋃
i=1

ΩL(Xi(t)),

where we define for i = 1, 2, . . . , N ,

ΩL(Xi(t)) =

{
{2i− 1} , if Xi(t) = 0,

{2i− 1, 2i} , if Xi(t) > 0,

and Y (t) tracks the current service or switch-in phase, taking possible values depending on
L(t) as follows:

Y (t) ∈ ΩY (L(t)) =

{
{1, 2, . . . , si} , if L(t) = 2i− 1,

{1, 2, . . . , bi} , if L(t) = 2i.

Letting s =
∑N

i=1 si, the total number of states of this CTMC are

s
N∏
i=1

(Ci + 1) +
N∑
j=1

bj

N∏
i=1

(Ci + 1− δi,j). (4.3)

Let πn1,n2,...,nN ,l,y denote the steady-state probability of observing the CTMC in state
(n1, n2, . . . , nN , l, y). As we are truncating Qi at Ci, i = 1, 2, . . . , N , these are not IB model
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probabilities, but rather UWC model probabilities by default, or FB model probabilities if
we let every p∗i,j = 0. If we are to treat them as being approximately equal to the true IB
model probabilities, sufficiently large values of Ci must be chosen.

For i = 1, 2, . . . , N , we organize the steady-state probabilities into ordered row vectors
as follows:

πn1,n2,...,nN ,l

=

{
(πn1,n2,...,nN ,l,1, πn1,n2,...,nN ,l,2, . . . , πn1,n2,...,nN ,l,si) , if l = 2i− 1,

(πn1,n2,...,nN ,l,1, πn1,n2,...,nN ,l,2, . . . , πn1,n2,...,nN ,l,bi) , if l = 2i.

Next, these vectors are further sorted into

πn1,n2,...,nN
= (π[1]

n1,n2,...,nN
, π[2]

n1,n2,...,nN
, . . . , π[N ]

n1,n2,...,nN
),

where

π[i]
n1,n2,...,nN

=

{
πn1,n2,...,nN ,2i−1 , if ni = 0,

(πn1,n2,...,nN ,2i−1, πn1,n2,...,nN ,2i
) , if ni > 0.

We finally group these vectors into probability row vectors as follows:

πn1
= (πn1,0

, πn1,1
, . . . , πn1,C2

),

πn1,n2
= (πn1,n2,0

, πn1,n2,1
, . . . , πn1,n2,C3

),

and in general for i = 1, 2, . . . , N − 1,

πn1,n2,...,ni
= (πn1,n2,...,ni,0

, πn1,n2,...,ni,1
, . . . , πn1,n2,...,ni,Ci+1

),

such that π = (π0, π1, . . . , πC1
) is the combined probability row vector having C1 + 1 levels.

We can solve for these probabilities by applying the level-dependent QBD algorithm to the
QBD specified in Section 4.3.

We extend the measures defined in Equations (3.42) and (3.43) to correspond to the state
space of this queueing model. As before, the global maximum measure is the maximum
absolute difference between steady-state probabilities at any given state (omitting states
with ni = Ci), whereas we now must consider marginal maximum measures for each queue.
Allowing A to once again represent which model approximation we are considering, these
measures are defined as:

Mg = max
(n1,n2,...,nN ,l,y):ni<Ci,i=1,2,...,N

∣∣πn1,n2,...,nN ,l,y − πAn1,n2,...,nN ,l,y

∣∣ , (4.4)

Mm,i = max
ni:ni<Ci

∣∣∣πmi,ni
− πm,Ai,ni

∣∣∣ , i = 1, 2, . . . , N. (4.5)

where

πmi,ni
=

N∑
j=1
j 6=i

Cj∑
nj=1

∑
l

∑
y

πn1,...,ni−1,ni,ni+1,...,nN ,l,y
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and

πm,Ai,ni
=

N∑
j=1
j 6=i

Cj∑
nj=1

∑
l

∑
y

πAn1,...,ni−1,ni,ni+1,...,nN ,l,y

are marginal queue length probabilities for queue i. Note that we do allow the consideration
of states with nj = Cj when calculating Mm,i, i 6= j.

4.3 Infinitesimal Generator Matrix

Letting the value of X1(t) denote the level of the process, we now construct the generator
blocks, Qi,j, which contain all transition probabilities that result in the level changing from
i to j. To begin, we let

ni = (n1, . . . , ni), i = 2, 3, . . . , N,

denote a row vector of particular queue lengths of the first i queues, so that (ni,m) is equal
to ni+1 with ni+1 = m. Next, we define

λnN
=

N∑
i=1

λi(1− δni,Ci
),

a[m,n]nN
=

n∑
i=m

(si + (1− δni,0)bi), 1 ≤ m ≤ n ≤ N,

p∗
i

= (p∗i,1, p
∗
i,2, . . . , p

∗
i,bi

),

p∗i,ni,l,y
=


p∗i,0 , if ni = Ci, l 6= 2i,

p∗i,y , if ni = Ci, l = 2i,

0 , otherwise,

αnN ,l,y
=

N∑
i=1

αi(ni − δl,2i)(1− p∗i,ni,l,y
),

αnN ,l
=

{
(αnN ,l,1

, αnN ,l,2
, . . . , αnN ,l,si

) , if l = 2i− 1,

(αnN ,l,1
, αnN ,l,2

, . . . , αnN ,l,bi
) , if l = 2i,

and
B∗i,ni

= Bi + δni,Ci
diag(p∗

i
)B′0,iβi, i = 1, 2, . . . , N.

We first construct blocks to track movements in XN(t), after which we will recursively
build outwards to track all queue lengths. We achieve this by modelling changes of Xj(t)
for given values of X1(t), X2(t), . . . , Xj−1(t) using a QBD structure. These will be nested
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within each other, with the innermost QBD describing XN(t). For ni = 0, 1, . . . , Ci, i =
1, 2, . . . , N − 1, we define

Q
[N ]
nN−1

=



0 1 2 · · · CN−1 CN
0 ∆(nN−1,0)

(UD)
[N ]
(nN−1,0)

0 · · · 0 0

1 (LD)
[N ]
(nN−1,1)

∆(nN−1,1)
(UD)

[N ]
(nN−1,1)

. . . 0 0

2 0 (LD)
[N ]
(nN−1,2)

∆(nN−1,2)
. . . 0 0

...
...

. . . . . . . . .
...

...
CN−1 0 0 0 · · · ∆(nN−1,CN−1) (UD)

[N ]
(nN−1,CN−1)

CN 0 0 0 · · · (LD)
[N ]
(nN−1,CN ) ∆(nN−1,CN )


.

Letting

ζnN ,l
=

{
Sj − λnN

Isj − diag(αnN ,2j−1) , if l = 2j − 1,

B∗j,nj
− λnN

Ibj − diag(αnN ,2j
) , if l = 2j,

the main diagonal blocks of Q
[N ]
n1,...,nN−1 are

∆nN
=


∆

[1]
nN

∆
[2]
nN

...

∆
[N ]
nN

 ,
where

∆[1]
nN

=



[
ζnN ,1

S ′0,1γ2 0′s10a[2,N ]
nN

−s2

]
, if n1 = 0,

 ζnN ,1
S ′0,1β1

0′s10a[2,N ]
nN

0′b10s1 ζnN ,2
0′b10a[2,N ]

nN

 , if n1 = 1, 2, . . . , C1,

while for j = 2, 3 . . . , N − 1,

∆
[j]
nN

=



[
0′sj0a[1,j−1]

nN

ζnN ,2j−1 S ′0,jγj+1
0′sj0a[j+1,N ]

nN
−sj+1

]
, if nj = 0,

 0′sj0a[1,j−1]
nN

ζnN ,2j−1 S ′0,jβj 0′sj0a[j+1,N ]
nN

0′bj0a[1,j−1]
nN

0′bj0sj ζnN ,2j
0′bj0a[j+1,N ]

nN

 , if nj = 1, 2, . . . , Cj,

and

∆[N ]
nN

=



[
S ′0,Nγ1 0′sN 0

a
[1,N−1]
nN

−s1
ζn1,...,nN ,2N−1

]
, if nN = 0,

 0′sN 0
a
[1,N−1]
nN

ζnN ,2N−1 S ′0,NβN

0′bN 0
a
[1,N−1]
nN

0′bN 0sN ζnN ,2N

 , if nN = 1, 2, . . . , CN .
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The upper diagonal blocks of Q
[N ]
n1,...,nN−1 are

(UD)[N ]
nN

=
[
λNIa[1,N−1]

nN
+sN

0′
a
[1,N−1]
nN

+sN
0bN

]
for nN = 0 and

(UD)[N ]
nN

= λNIa[1,N ]
nN

for nN = 1, 2, . . . , CN − 1, and the lower diagonal blocks are

(LD)[N ]
nN

=


αN(1−δnN ,CN

p∗N,0)Is1 0′s10a[1,N−1]
nN

+sN−s1
0′
a
[1,N−1]
nN

+sN−s1
0s1 αN(1−δnN ,CN

p∗N,0)Ia[1,N−1]
nN

+sN−s1

(IbN−δnN ,CN
diag(p∗

N
))B′0,Nγ1 0′bN 0

a
[1,N−1]
nN

+sN−s1


for nN = 1 and

(LD)
[N ]
nN

=

[
nNαN(1−δnN ,CN

p∗N,0)Ia[1,N−1]
nN

+sN
0′
a
[1,N−1]
nN

+sN
0bN

0′bN 0
a
[1,N−1]
nN

+sN
(IbN−δnN ,cN diag(p∗

N
))((nN−1)αNIbN +B′0,NβN)

]

for nN = 2, 3, . . . , CN .
We now build the QBD structured blocks that are needed to track changes in Xj(t),

j = 2, 3, . . . , N − 1. For ni = 0, 1, . . . , Ci, i = 1, 2, . . . , j − 1, we define

Q
[j]
nj−1

=



0 1 2 · · · Cj − 1 Cj

0 Q
[j+1]
(nj−1,0)

(UD)
[j]
(nj−1,0)

0 · · · 0 0

1 (LD)
[j]
(nj−1,1)

Q
[j+1]
(nj−1,1)

(UD)
[j]
(nj−1,1)

. . . 0 0

2 0 (LD)
[j]
(nj−1,2)

Q
[j+1]
(nj−1,2)

. . . 0 0

...
...

. . . . . . . . .
...

...
Cj − 1 0 0 0 · · · Q

[j+1]
(nj−1,Cj−1) (UD)

[j]
(nj−1,Cj−1)

Cj 0 0 0 · · · (LD)
[j]
(nj−1,Cj)

Q
[j+1]
(nj−1,Cj)


.

Note how the main diagonal blocks of Q
[j]
nj−1

take the form of Q
[j+1]
nj

, implying that these must

be constructed recursively, starting with our original Q
[N ]
nN−1

blocks. The upper and lower
diagonal blocks make use of a similar recursion in their definitions. The upper diagonal
blocks are (UD)

[j]
nj

, where

(UD)[j]nj+k
=


(UD)

[j]
(nj+k,0)

0 · · · 0

0 (UD)
[j]
(nj+k,1)

. . . 0
...

. . . . . .
...

0 0 · · · (UD)
[j]
(nj+k,Cj+k+1)

 (4.6)
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for k = 0, 1, . . . , N − j − 1, with

(UD)[j]nN
=

[
λjIa[1,j−1]

nN
+sj

0′
a
[1,j−1]
nN

+sj
0bj 0′

a
[1,j−1]
nN

+sj
0
a
[j+1,N ]
nN

0′
a
[j+1,N ]
nN

0
a
[1,j−1]
nN

+sj
0′
a
[j+1,N ]
nN

0bj λjIa[j+1,N ]
nN

]

for nj = 0 and
(UD)[j]nN

= λjIa[1,N ]
nN

for nj = 1, 2, . . . , Cj − 1. Similarly, the lower diagonal blocks are (LD)
[j]
nj

, where

(LD)[j]nj+k
=


(LD)

[j]
(nj+k,0)

0 · · · 0

0 (LD)
[j]
(nj+k,1)

. . . 0
...

. . . . . .
...

0 0 · · · (LD)
[j]
(nj+k,Cj+k+1)

 (4.7)

for k = 0, 1, . . . , N − j − 1, with

(LD)
[j]
nN

=


αj(1−δnj ,Cj

p∗j,0)Ia[1,j−1]
nN

+sj
0′
a
[1,j−1]
nN

+sj
0sj+1

0′
a
[1,j−1]
nN

+sj
0
a
[j+1,N ]
nN

−sj+1

0′bj0a[1,j−1]
nN

+sj
(Ibj−δnj ,Cj

diag(p∗
j
))B′0,jγj+1

0′bj0a[j+1,N ]
nN

−sj+1

0′sj+1
0
a
[1,j−1]
nN

+sj
αj(1−δnj ,Cj

p∗j,0)Isj+1
0′sj+1

0
a
[j+1,N ]
nN

−sj+1

0′
a
[j+1,N ]
nN

−sj+1
0
a
[1,j−1]
nN

+sj
0′
a
[j+1,N ]
nN

−sj+1
0sj+1

αj(1−δnj ,Cj
p∗j,0)Ia[j+1,N ]

nN
−sj+1


for nj = 1 and

(LD)
[j]
nN

=


njαj(1−δnj ,Cj

p∗j,0)Ia[1,j−1]
nN

+sj
0′
a
[1,j−1]
nN

+sj
0bj 0′

a
[1,j−1]
nN

+sj
0
a
[j+1,N ]
nN

0′bj0a[1,j−1]
nN

+sj
(Ibj−δnj ,Cj

diag(p∗
j
))((nj−1)αjIbj +B′0,jβj) 0′bj0a[j+1,N ]

nN

0′
a
[j+1,N ]
nN

0
a
[1,j−1]
nN

+sj
0′
a
[j+1,N ]
nN

0bj njαj(1−δnj ,Cj
p∗j,0)Ia[j+1,N ]

nN


for nj = 2, 3, . . . , Cj.

Finally, the complete infinitesimal generator is simply the QBD modelling changes in
X1(t), namely

Q =



0 1 2 · · · C1−1 C1

0 Q
[2]
0 (UD)

[1]
0 0 · · · 0 0

1 (LD)
[1]
1 Q

[2]
1 (UD)

[1]
1

. . . 0 0

2 0 (LD)
[1]
2 Q

[2]
2

. . . 0 0
...

...
. . . . . . . . .

...
...

C1−1 0 0 0 · · · Q
[2]
C1−1 (UD)

[1]
C1−1

C1 0 0 0 · · · (LD)
[1]
C1

Q
[2]
C1


,
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where we again use Equations (4.6) and (4.7), with

(UD)[1]nN
=

[
λ1Is1 0′s10b1 0′s10a[2,N ]

nN

0′
a
[2,N ]
nN

0s1 0′
a
[2,N ]
nN

0b1 λ1Ia[2,N ]
nN

]

for n1 = 0 and
(UD)[1]nN

= λ1Ia[1,N ]
nN

for n1 = 1, 2, . . . , C1 − 1, and

(LD)
[1]
nN

=


α1(1−δn1,C1p

∗
1,0)Is1 0′s10s2 0′s10a[2,N ]

nN
−s2

0′b10s1 (Ib1−δn1,C1diag(p∗
1
))B′0,1γ2 0′b10a[2,N ]

nN
−s2

0′s20s1 α1(1−δn1,C1p
∗
1,0)Is2 0′s20a[2,N ]

nN
−s2

0′
a
[2,N ]
nN

−s2
0s1 0′

a
[2,N ]
nN

−s2
0s2 α1(1−δn1,C1p

∗
1,0)Ia[2,N ]

nN
−s2


for n1 = 1 and

(LD)
[1]
nN

=


n1α1(1−δn1,C1p

∗
1,0)Is1 0′s10b1 0′s10a[2,N ]

nN

0′b10s1 (Ib1−δn1,C1diag(p∗
1
))((n1−1)α1Ib1 +B′0,1β1

) 0′b10a[2,N ]
nN

0′
a
[2,N ]
nN

0s1 0′
a
[2,N ]
nN

0b1 n1α1(1−δn1,C1p
∗
1,0)Ia[2,N ]

nN


for n1 = 2, 3, . . . , C1.

4.4 Numerical Examples

4.4.1 The Impact of Service Phase Transitions

Continuing from our earlier discussion of the potential impact on the effectiveness of UWC
by the switching of service phases without observing customer departures, we compare mean
queue lengths between our two UWC models as well as the FB model in a 2-queue system
with arrival rates λ1 = λ2 = 8/15, reneging rates α1 = α2 = 0.05, and iid Exp(1) switch-in
times. To easily scale the number of service phases while controlling for expected value, we
select Erlang-k (Ek) service time distributions with means of 1 and 2 for classes 1 and 2,
respectively. Note that when there is only one service phase (i.e., k = 1), these are simply
Exp(1) and Exp(1/2) distributions, respectively.

In Figure 2, we plot E[Xi] for both classes for the corresponding UWC and FB mod-
els. As an impatient customer example, we treat this as a level-dependent QBD and let
C1 = C2 = C, C = 2, 3, . . . , 20. The number of service phases are similarly kept constant
between the classes, and we present the cases for k = 1, 2, 5, 10. Within these plots, the light
grey horizontal lines are approximated E[X IB

i ] values, obtained via calculating the mean
queue lengths for the FB model with C = 40. As expected, we would rank UWC version 2
above version 1, with both outperforming the FB model in all cases. When k = 1, both UWC
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versions are identical due to the presence of only a single service phase. Performance is com-
parable for UWC version 2 across all cases, while version 1 has the widest margins between
itself and the FB model in the k = 1 case, which we know enables the best performance by
this version of UWC. We also observe in all cases that the difference in effectiveness between
the UWC versions decrease as C is increased, reflecting the impact of reneging causing a
larger proportion of customer departures during a level-C busy period.

This combination of parameters resulted in values of E[X IB
i ] between 6.0212 (k = 1)

and 6.3087 (k = 10) for class 1, and 4.3682 (k = 1) and 4.1088 (k = 10) for class 2. Due
to the narrow range of limiting values, this allows us to more accurately compare rates of
convergence. In Table 4, we present E[XUWC

i ]/E[X IB
i ] for C = 2, 3, . . . , 10 for both versions

of UWC. As previously observed, the convergence percentages for the k = 1 cases of UWC
version 1 are noticeably higher than those for k ≥ 2. In fact, the difference in percentage
for a given C between k = 1 and k = 2 is larger than that between k = 2 and k = 10! In
contrast, the percentages for UWC version 2 are not very sensitive to changes in k, and even
increase for class 2 (due to the fact that E[X IB

2 ] is decreasing in k).
The values of the global and marginal maximum measures defined in Equations (4.4)

and (4.5) are plotted for these cases in Figure 3. Note that the scales for these measures are
fairly different, as Mm,i considers the total probability mass spread across multiple states
whereas Mg considers individual states. Additionally, observe that the slopes of these plots
are (in general) decreasing in C as the models converge towards the true IB model and their
measures trend to zero. A tipping point appears to exist near C = 5, after which the rate
of reduction of Mg and Mm,1 largely levels out (i.e., we observe a slope nearer to zero in
absolute value), while the convergence of Mm,2 to zero is smoother. This may be due to class
1 having a larger expected queue length (as presented in Figure 2), resulting in larger gains
in accuracy per increase in C for small C (due to more probability mass at the truncation
level).

We observe that Mg decreases in k for both UWC version 2 and FB, as the larger number
of service phases results in a larger state space. However, it actually appears to be increasing
in k for UWC version 1, demonstrating version 1’s decrease in effectiveness. Of course, this
measure still remains smaller for version 1 than FB at any given k and C. Unlike Mg, Mm,i

does control for the difference in number of states. With respect to the marginal maximum
measures, the performance of UWC version 2 is relatively insensitive to the increase in k while
FB’s accuracy gradually worsens and UWC version 1’s effectiveness at low C experiences
a huge reduction. Therefore, in the absence of exponential service time distributions or
moderate to large C (or alternatively, large reneging rates), UWC version 2 should be used
for service time distributions involving multiple phase transitions.

4.4.2 Examining Marginal Queue Length Probabilities

In Section 3.2, we considered a numerical example which compared the steady-state proba-
bilities of the UWC version 1 and 2 models of a M/PH/1+M queue against those of the FB
model. We now consider a comparison of steady-state probabilities in our polling system.
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Table 4: UWC version 1 and UWC version 2 model steady-state expected marginal queue
length convergence percentages (E[XUWC

i ]/E[X IB
i ], i = 1, 2) at various buffers C1 = C2 = C

under Ek service, k = 1, 2, 5, 10

Class 1, UWC ver. 1 C
k 2 3 4 5 6 7 8 9 10

1 0.2788 0.4036 0.5172 0.6193 0.7090 0.7852 0.8473 0.8957 0.9315
2 0.2464 0.3693 0.4864 0.5944 0.6905 0.7725 0.8391 0.8906 0.9285
5 0.2294 0.3532 0.4728 0.5835 0.6822 0.7664 0.8348 0.8877 0.9266
10 0.2245 0.3490 0.4694 0.5808 0.6800 0.7647 0.8335 0.8868 0.9260

Class 1, UWC ver. 2 C
k 2 3 4 5 6 7 8 9 10

1 0.2788 0.4036 0.5172 0.6193 0.7090 0.7852 0.8473 0.8957 0.9315
2 0.2762 0.3998 0.5129 0.6150 0.7050 0.7819 0.8447 0.8937 0.9302
5 0.2740 0.3967 0.5094 0.6115 0.7018 0.7790 0.8424 0.8920 0.9289
10 0.2730 0.3955 0.5080 0.6101 0.7004 0.7778 0.8414 0.8912 0.9283

Class 2, UWC ver. 1 C
k 2 3 4 5 6 7 8 9 10

1 0.3810 0.5351 0.6615 0.7616 0.8380 0.8940 0.9333 0.9597 0.9766
2 0.3478 0.4964 0.6249 0.7317 0.8163 0.8800 0.9251 0.9553 0.9744
5 0.3283 0.4758 0.6069 0.7176 0.8063 0.8733 0.9211 0.9530 0.9731
10 0.3220 0.4697 0.6020 0.7140 0.8038 0.8717 0.9200 0.9523 0.9727

Class 2, UWC ver. 2 C
k 2 3 4 5 6 7 8 9 10

1 0.3810 0.5351 0.6615 0.7616 0.8380 0.8940 0.9333 0.9597 0.9766
2 0.3949 0.5506 0.6762 0.7738 0.8471 0.9002 0.9373 0.9620 0.9779
5 0.4056 0.5624 0.6869 0.7823 0.8531 0.9041 0.9395 0.9632 0.9784
10 0.4097 0.5670 0.6910 0.7854 0.8552 0.9053 0.9401 0.9635 0.9785
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For the benefit of simplified (and condensed) presentation of data, we consider steady-state
probabilities for marginal queue lengths (rather than for individual states), and we limit
ourselves to a 2-queue system. As marginal queue length probabilities are highly related
to Mm,i, we elect to forgo investigating either measure within this example. We allow the

service time distributions for classes 1 and 2 to be Ef
2 with the following parameters:

� Class 1: E[Ser ] = 1 and Var(Ser) = 0.75:

Ser ∼ PH2

(
β = (1, 0), B =

[
−4 4
2 −4

])
.

� Class 2: E[Ser ] = 2 and Var(Ser) = 3:

Ser ∼ PH2

(
β = (1, 0), B =

[
−2 2
1 −2

])
.

Lastly, as in Section 4.4.1, we let λ1 = λ2 = 8/15 and α1 = α2 = 0.05, while switch-in times
are assumed to be iid Exp(1) random variables.

In Figures 4 and 5, we present barplots of the marginal queue length probabilities for
classes 1 and 2, respectively, for both versions of UWC as well as FB models at even buffer
sizes C1 = C2 = C, C = 2, 4, . . . , 16. Plotted along with these values are those from the
corresponding IB model, approximated via a FB model with C = 40, which are unchanged
between plots within a figure.

Unlike the simple single-queue case, version 2 does not immediately result in near exact
steady-state probabilities for levels below C. While there is still some error present as a
result of using the FB probabilities, we more importantly do not separate the cases (in
terms of UWC probability) where the server begins a level-C busy period due to an arrival
versus after a switch-in time. If the busy period begins after a switch, then as in our earlier
discussion of the original M/PH/1 + M queue UWC version 1 approximation, any cases
where possible unobserved customers could be in the system at this instant are treated as
if there are exactly zero unobserved customers. Unsurprisingly, this results in a failure to
capture all excess probability mass at level C. However, for both classes, we are in fact
observing the intended effect of probability mass being shifted to the truncation level C,
resulting in better approximations at lower levels. The relative difference in gains by the two
versions over the FB model are larger for small C and decrease as C is increased, consistent
with what we have seen previously.

For moderate values of C, we again observe instances of underestimating the IB model
steady-state probabilities at queue lengths near the buffer. While more common for UWC, it
is also observed for FB (e.g., case C = 10 in Figure 5). Fortunately, even if the steady-state
probabilities are slightly underestimated by UWC, they are still generally closer to the target
probabilities than those of the FB model at the same value of C, and the underestimation
vanishes as C is increased. These results indicate that the either version of the UWC model
would indeed be preferable to the FB model at any given C. This experiment was also
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replicated in a more optimal setting using exponentially distributed service times (the results
of which we omit), which led to the same conclusions while observing higher relative accuracy
gains by UWC (with the largest relative gains at small C). Overall, we maintain the same
conclusion that version 2 is preferable although version 1 is comparable at moderate to high
values of C.

4.4.3 Accuracy and Run Time Comparisons Between UWC and a Level-Independent
Approximation

We have compared accuracy gains between both versions of UWC as well as the FB method.
We now consider comparisons of both accuracy and run time between these and a level-
independent approximation (LIA) inspired by the work of Shin and Choo [31] who made the
simplifying approximation that the total effective rate of reneging does not change beyond a
certain level, allowing for the use of level-independent QBD solution techniques. We consider
a LIA approach rather than ETAQA since ETAQA, despite being comparable to UWC due
to its aggregation nature, is restricted to only calculating exact probabilities for states in
levels 0 and 1. To explain LIA, we use an infinitesimal generator in the style of Section 4.3,
but remove the truncation at C1 so that we never reference class-1 UWC probabilities and
we no longer “turn off” class-1 arrivals at level C1:

Q =



0 1 2 · · · C1−1 C1 C1 + 1 C1 + 2 · · ·
0 Q

[2]
0 (UD)

[1]
0 0 · · · 0 0 0 0 · · ·

1 (LD)
[1]
1 Q

[2]
1 (UD)

[1]
1

. . . 0 0 0 0 · · ·
2 0 (LD)

[1]
2 Q

[2]
2

. . . 0 0 0 0 · · ·
...

...
. . . . . . . . .

...
...

...
... · · ·

C1−1 0 0 0 · · · Q
[2]
C1−1 (UD)

[1]
C1−1 0 0 · · ·

C1 0 0 0 · · · (LD)
[1]
C1

Q
[2]
C1

(UD)
[1]
C1

0 · · ·

C1+1 0 0 0 · · · 0 (LD)
[1]
C1+1 Q

[2]
C1+1 (UD)

[1]
C1+1

. . .
...

...
...

...
...

...
. . . . . . . . . . . .


.

In practice, we construct QBD blocks for level C1 as if the truncation point was instead set
at some arbitrary higher level. As is, this would still be a level-dependent QBD, so we make
the simplifying assumptions that for i ∈ N,

(LD)
[1]
C1+i

= (LD)
[1]
C1
,

Q
[2]
C1+i

= Q
[2]
C1
,

(UD)
[1]
C1+i

= (UD)
[1]
C1
,

and

πi =

π0

i∏
j=1

Rj , if i = 1, 2, . . . , C1,

πC1
Ri−C1 , if i = C1 + 1, C1 + 2, . . . .
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Therefore, the QBD is level dependent up to level C1, after which it becomes level inde-
pendent. The implication of this approximation is that the calculated total rate of reneging
for class 1 only takes into account the impatience of class-1 customers waiting in the first
C1 positions of their queue. Any additional waiting class-1 customers are assumed to be
patient. This is reasonable for a large value of C1 when the times between departures due to
reneging are short and the marginal increase to the total reneging rate from an additional
customer is minimial in comparison to the previous total rate. However, it can prove to be
very unrealistic for small values of C1.

It is straightforward to obtain the equation

0 = πC1+i−1(UD)
[1]
C1

+ πC1+i
Q

[2]
C1+1 + πC1+i+2(LD)

[1]
C1+2

= πC1
Ri−1

(
(UD)

[1]
C1

+RQ
[2]
C1

+R2(LD)
[1]
C1

)
,

which provides us with the matrix quadratic equation

0 = (UD)
[1]
C1

+RQ
[2]
C1

+R2(LD)
[1]
C1
,

having matrix R as its minimal non-negative solution (e.g., Neuts [25], Theorem 1.7.1). R
may be calculated by letting R(0) = 0 and iteratively applying the algorithm

R(i) = −
(

(UD)
[1]
C1

+R(i− 1)2(LD)
[1]
C1

)(
Q

[2]
C1

)−1
, i ∈ Z+,

where limi→∞R(i) = R converges monotonically, element-wise. Once R is obtained, we may
calculate Ri, i = 1, 2, . . . , C1, using the following formulas which are obtained in a similar
fashion as Equations (3.32) and (3.33):

RC1 = −(UD)
[1]
C1−1

(
Q

[2]
C1

+R(LD)
[1]
C1

)−1
and

Ri = −(UD)
[1]
i−1

(
Q

[2]
i +Ri+1(LD)

[1]
i+1

)−1
, i = 1, 2, . . . , C1 − 1,

which may be calculated iteratively in reverse order. Finally, in order to obtain all of our
steady-state probabilities, we simply need to solve for π0 through the adjusted normalization
condition

1 = π e′ =
∞∑
i=0

πie
′ = π0

[
I +

C1−1∑
i=1

(
i∏

j=1

Rj

)
+

(
C1∏
j=1

Rj

)
(I −R)−1

]
e′.

To numerically compare these approximation methods, we consider a symmetric 3-queue
system so that the choice of which class to assign as class 1 does not matter. For i = 1, 2, 3,
we set λi = 4/9, αi = 0.05, switch-in times to be iid Exp(1), and service times to be iid Ef

2

such that

Ser i ∼ PH2

(
β = (1, 0), B =

[
−4 4
2 −4

])
.
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We consider values of Ci from 2 to 12, i = 1, 2, 3, and calculate the steady-state distribution
under FB as well as UWC versions 1 and 2, with and without the LIA approximation.
The times to calculate the UWC probabilities as well as the steady-state distributions are
recorded. Since UWC version 2 requires results from the FB model, the FB run times are
included in the UWC version 2 run times. All calculations were done using the statistical
software package R [27] on a computer with 16 GB of RAM and a 4.0 GHz Intel Core
i7-6700K processor.

For the combination of UWC version 2 and LIA, the class-2 and class-3 UWC probabilities
were computed only using steady-state probabilities from levels 0, 1, . . . , C1, despite the
fact that we can calculate the stationary distribution at higher levels using LIA, to be
more directly comparable to UWC version 2 without LIA (i.e., what method is best at
approximating the steady-state probabilities for levels 0, 1, . . . , C1). It would be slightly
more accurate to use steady-state probabilities from higher levels in these calculations as
well, but as we normalize our probability vector β∗

i
in Equation (4.2), the discrepancies

should be small.
The IB model steady-state probabilities are approximated through the use of the FB

method with C1 = C2 = C3 = 25. Both measures from Equations (4.4) and (4.5) are
calculated for each case. Note that the global maximum measure for the LIA cases do not
consider states above level C1. The class-1 marginal maximum measures for the LIA cases
also do not look at states above level C1, but levels up to 25 are used in the calculation of
the class-2 and class-3 marginal maximum measures. Otherwise, the probabilities for those
particular marginal distributions would be systematically underestimated.

In Figure 6, we plot the global maximum measures (denoted by Mg) and run times
for each combination of approximation methods for C1 = 3, 6, 9, 12 and C2 = C3 = C,
C = 2, 3, . . . , 12. We see that in Figure 6 (a), for C1 = 3 which is less than the mean queue
length that is approximately equal to 3.395, the performance of UWC version 2 (followed by
version 1) is the best until C = 5, after which FB with LIA edges out a small advantage.
It appears that for small values of C1 for which LIA is inappropriate, there is nothing to
be gained by combining LIA with UWC. As C1 is increased, LIA simultaneously becomes
more accurate and less impactful, so that the LIA and non-LIA Mg values converge for a
given choice of FB or UWC version. In Figure 6 (g), we observe the relative ordering that
we would expect, where models using UWC version 2 are slightly more accurate than those
using UWC version 1 which is more accurate than FB.

In Figure 6 (b), (d), (f), and (h), we observe a consistent relative ordering of run times.
Since the calculation of the UWC probabilities for version 1 is very simple, UWC version
1 and FB have near identical computational complexity and hence run times. In contrast,
UWC version 2, as expected, takes significantly longer to run. For the LIA methods, the
necessity of calculating R iteratively incurs a significant computational cost. With that in
mind, we do see the same comparable run times for LIA with UWC version 1 and LIA
with FB, while LIA with UWC version 2 takes the longest to calculate. In these plots, we
incorporate a log-10 scale for the run times, so we can see that they increase exponentially
in C for the non-UWC version 2 cases (which begin with a flatter relationship with C at
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lower values, but observe a similar exponential relationship at higher C).
In Figure 7, we plot the marginal maximum measures for each class (denoted by Mm,i)

at the same combinations of Ci. For C1 = 3, the LIA methods prove the most effective at
small values of C, but they get worse as C increases beyond 3 and are surpassed by UWC
version 2 (and version 1) at C = 7. UWC version 2 and version 1 also eventually outperform
the LIA methods for the other classes’ Mm,i values, but the FB and LIA method performs
better until a larger value of C. Just as in Figure 6, the respective LIA and non-LIA methods
converge as C1 increases, while we once again are able to make the same conclusions with
respect to FB and the UWC versions.

Overall, it seems that LIA on its own is more accurate than FB (other than when all the
Ci are small). For the marginal maximum measures, LIA in combination with UWC may
result in some small improvements, but it can come at a notable increase in global maximum
measure values if C1 is small. This is intuitive, since its approximation allows us to model
more levels of the queue and hence the amount of probability mass at lower levels is smaller
relative to when we must normalize over fewer levels. In addition, the approximation is less
appropriate at small values of C1 and we observe this through discrepancies in the exact
probabilities assigned to individual states within these levels. However, as seen in Figure 6,
increasing C1 has a much smaller impact on run times than increasing C, so there should not
be a problem in selecting a large enough value of C1 so that LIA is reliable. Unfortunately,
the use of LIA does incur a large computational cost when calculating the matrix R. Given
that there is minimal to no benefit to its use when C1 is large enough, UWC is a more time
efficient option. Assuming that the values of Ci are not small for i 6= 1, it is advisable to
use UWC version 1 as it is nearly equivalent to the FB method in computational cost, while
UWC version 2 may strategically be used if one or more Ci’s are small.

4.5 Sources of Approximation Error

Due to the necessity of maintaining the Markov property within our CTMCs, we are re-
stricted to using a geometric approximation for the number of observed customer departures
necessary to decrement the observed queue length. That is, we must assume that the events
of observed departures reducing the observed queue length below its truncation level are iid,
having the same success probability p∗C . Since we have this single parameter to manipulate,
we can use such an approximation to equate the expected time spent in that state (or level)
in the UWC model of an elementary queue to the expected duration of a level-C busy period
of the true IB queue. However, the geometric distribution is a simplification and not the
true distribution in general. If we relaxed our restriction on not being able to introduce new
states, it may be possible to model the departures using a phase-type distribution that can
also match higher order moments, presumably improving approximation accuracy.

UWC version 1’s approximation works by considering each service phase as its own
M/M/1 +M queue. As discussed in Section 3.2.1, we can consider transitions from one ser-
vice phase to another having a different absorption rate as removing all currently unobserved
waiting customers and beginning a new busy period in a different M/M/1+M queue. While
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we lose fewer arriving customers relative to a FB model which completely blocks any arrivals
while the queue is at full capacity, the corresponding UWC model would still typically reject
some number of customers that otherwise would have received service in the IB model. This
type of error is non-existent if service times are exponentially distributed, or minimal when a
service time distribution involves few phase transitions. Within the exhaustive service policy,
the queue length must be zero when the server switches away, and while the server is away,
the queue length is treated as in a M/M/∞ model, which (as we have seen in Section 2.3)
can be modelled accurately using UWC. However, if the queue length happens to be at its
truncation length when the server arrives, this departure of unobserved waiting customers
would occur assuming that the initial service phase’s absorption rate differs from that of the
lead customer’s reneging rate. Fortunately, this additional chance for approximation error
may only occur once per cycle.

While UWC version 2 does not suffer as much from service phase transitions, its major
restriction is having a single UWC probability for each service phase. When applied to a
polling model, no distinctions are made between a server arriving and finding the queue
at its truncation length versus the queue reaching this length during the server’s visit (i.e.,
while they are actively serving that class of customers). If a server switches in to find a
“full” queue, then the level-C busy period would likely initiate with multiple unobserved
customers, in contrast to reaching that level during a visit which would begin with no unob-
served customers. Therefore, not only would the distribution of the initial service phase for
that level-C busy period be different, but the expected number of observed customer depar-
tures should be higher (since we begin with a longer queue). If we removed the restriction on
increasing the number of states, then we could add duplicate states and use a separate UWC
probability for each case, thereby eliminating this inaccuracy. Another inaccuracy unique
to UWC version 2 is due to the approximation of IB model probabilities with FB model
probabilities. While this approximation is known to be accurate in the M/PH/1 queue, it is
likely less correct in more complex queues. If using service time distributions which perform
well under UWC version 1 (i.e., in which UWC version 1 experiences minimal approximation
errors), it may be more accurate to replace the unknown IB model probabilities in the cal-

culation of β̂
∗
C

with UWC version 1 model probabilities, rather than FB model probabilities.
Alternatively, one could iteratively apply UWC version 2 and use its own approximations of
the steady-state distribution in the next iteration’s calculation of β̂

∗
C

, although that would
further increase the difference in compuational cost between the UWC versions.

In Remark 2, we discussed a numerical example in which we observed issues with UWC
version 2. In that example, we considered H2 service times with extreme mixing weights. In
such a distribution, it would be more accurate to use UWC version 1, since it would either
spend a long time completing the current service in the rare slow service phase (and hence
go a long time before switching to the common service phase), or experience multiple service
completions in the common service phase with only a minimal risk of switching to the rare
service phase after each completion. Therefore, we advise the use of UWC version 1 over
version 2 when a service phase distribution is similar to an exponential distribution, since
not only does UWC version 1 have a lower computational cost, it should never experience
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unexpected approximation errors as UWC version 2 is prone to do.

5 Concluding Remarks

Within this paper, we have introduced a new method which can improve truncated queueing
models’ ability to approximate true IB systems. This is particularly useful for complex queues
that require a very large number of states to model accurately, such as a polling system, in
which it may not be computationally feasible to simply use sufficiently large truncation
levels. Through the inclusion of a probability to not decrease an observed queue length
from its finite buffer following an observed departure, we are able to emulate the presence
of unobserved waiting customers who are ready to immediately enter the queue. Optimal
choices for this probability have been derived for the M/M/1, M/M/1 +M , M/M/∞, and
M/PH/1 queues, which result in exact steady-state probabilities for states below the buffer
and the aggregation of excess steady-state probability mass from truncated states to the
state(s) at the highest observed queue length.

Two versions of UWC have been presented for use within the M/PH/1 + M queue
as well as a N -queue polling system with phase-type service and customers who may be
impatient. While these versions make use of simplifying approximations and do not result in
exact steady-state probabilities for non-buffer states, they do consistently outperform their
equivalent finite buffer models in the absence of UWC. As UWC version 2 does require
additional computations, version 1 may be more suitable given a sufficiently high reneging
rate or truncation level, or if service time distributions are exponential (or similar). Several
numerical examples have been presented to contrast their performance (both in terms of
accuracy and computer run time) against each other as well as the FB model and the LIA
method inspired by Shin and Choo [31]. A thorough discussion of potential sources of
approximation error is included, and in what situations our two versions of UWC work best
in providing accurate steady-state probability calculations.

For future work, we intend to investigate the generalization of UWC theory to queues
with level-dependent reneging rates. Additionally, we will extend server behaviour within
a polling model framework beyond that of exhaustive and consider UWC alongside the
non-branching k-limited and Bernoulli service disciplines. It is also of interest to observe
the impact of UWC on densities of customer waiting times and to investigate a version of
UWC which relaxes the constraint of not increasing the number of states relative to its
corresponding FB model (as discussed in Section 4.5).
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Figure 1: State transition diagram near truncation level C for a UWC model of a M/PH/1+
M queue with two service phases

46



Figure 2: Plots of expected marginal queue lengths at steady state in a 2-queue system
versus buffers C1 = C2 = C for UWC version 1, UWC version 2, and FB models, under Ek

service, k = 1, 2, 5, 10
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Figure 3: Plots of global and marginal maximum measures in a 2-queue system versus
buffers C1 = C2 = C for UWC version 1, UWC version 2, and FB models, under Ek service,
k = 1, 2, 5, 10
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Figure 4: Barplots of class-1 marginal queue length probabilities at steady state in a 2-queue
system versus buffers C1 = C2 = C for UWC version 1, UWC version 2, FB, and IB models,
under Ef

2 service

49



Figure 5: Barplots of class-2 marginal queue length probabilities at steady state in a 2-queue
system versus buffers C1 = C2 = C for UWC version 1, UWC version 2, FB, and IB models,
under Ef

2 service
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Figure 6: Plots of global maximum measure and run times to calculate UWC probabilities
and steady-state distributions for a 3-queue system versus C1 = 3, 6, 9, 12 and C2 = C3 = C
for UWC version 1, UWC version 2, and FB models with and without LIA.
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Figure 7: Plots of marginal maximum measures for a 3-queue system versus C1 = 3, 6, 9, 12
and C2 = C3 = C for UWC version 1, UWC version 2, and FB models with and without
LIA.
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