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Abstract

Change point analysis, an active area of research in many fields, including statistics,
has attracted a lot of attention in recent years. The focus of this thesis is change point
detection, where the purpose is to estimate the number and locations of changes in the
structure of a data sequence. Despite the recent attention, few papers have addressed
change point analysis for piecewise polynomial signals. To address this gap, the work
focuses on the mean change point problem for such signals. We approach this problem
by applying trend filtering and introduce a method called Pattern Recovery Using Trend
Filtering (PRUTF) to estimate change point locations.

We develop an extension of the trend filtering algorithm in order to construct a dual
solution path that allows us to detect change points. We demonstrate that the dual solution
path constitutes a Gaussian bridge process, which enables us to derive an exact and efficient
stopping rule to terminate the search algorithm. Finally, we prove that the estimates
produced by this algorithm are asymptotically consistent for piecewise polynomial signals.
This result holds even in the presence of staircase patterns (consecutive change points of
the same sign) in the signal, which to the best of our knowledge, previous works have been
unable to address.

Additionally, we employ the post-selection framework to make statistical inference for
change points once selected by the PRUTF method. The key development has been to
represent the set of estimated change points and their signs as a polyhedron in the sample
space. This representation gives us tools for exact statistical inference such as the con-
struction of confidence intervals and testing the significance of the estimated change points.
We also provide some truncation techniques in order to improve the confidence intervals
and enhance the power of the tests.
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Chapter 1

Introduction

Scientific research has focused on understanding the behaviour of processes for over a cen-
tury. This understanding allows researchers to draw conclusions that impact the future
behaviour of processes. The desire to discover the unobserved structure of evolutionary
time series has inspired systematic methods for recording measurements in various fields
such as economics, medical science and environmental studies. These systematic record-
ing methods, along with technological advances in data storage and management, have
enabled researchers to better understand the structure of underlying processes. The im-
mense growth of digital storage and data processing capacities has recently moved the
analysis of time series data to a new stage. The quantity and quality of data in vari-
ous fields such as climate studies, speech analysis, finance, physiology, internet traffic and
astronomy have increased. This improvement in data recording provides researchers with
opportunities to develop new tools for analyzing, understanding and interpreting this data.

Evolutionary processes undergo abrupt transitions, allowing researchers to identify
the point of change and its causes and consequences. For example, policymakers and
economists divide the state of an economy into recession and recovery classes and seek to
determine time points when a transition between these two states occurs. By identifying
such transition points, economists can decide on appropriate policy measures accordingly
[43]. In medicine, doctors monitor physiological measurements of patients over time to
determine sudden abnormalities that may indicate a medical condition [20]. Similarly,
in seismology, scientists deal with predicting earthquakes by tracking velocity changes in
seismic waves [113].

An interesting and informative research field, referred to as change-point detection,
is to estimate the number and location of points where a transition occurs. A change-
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point refers to a location at which the observations before and after it follow two different
models. Change-point analyses are extensively applied in medicine, health sciences, finance,
geographics, environment, etc. In statistics, detecting all change points is crucial because
the homogeneity of a statistical model is affected any time a change point exists. If there
is a change point, performing a statistical analysis without considering its existence would
usually lead to misleading and possibly invalid results.

Here, we present an introductory example for the statistical concept of a change point.
This concept is visualized in Figure 1.1. Statistical properties of both datasets in Figure
1.1 change at locations 75 and 200. In panel (a), the mean of the observations changes
at both locations. As can be seen, there is a noticeable mean shift at the location 75,
whereas the mean shift at the location 200 may not be easily detectable. The observations
in panel (b) undergo changes in both mean and variance. For example, the variation of
the observations in the second segment is more considerable than that of the other two
segments.

The main purpose of this thesis is to introduce a novel statistical approach for change
point detection. Specifically, we employ trend filtering to identify change points in mean
models with piecewise polynomial structure. This approach called Pattern Recovery Using
Trend Filtering (PRUTF) can be used in a range of different applications, thereby allowing
for more insightful analysis and meaningful interpretation of data. We also address the gap
between detecting change points and performing inference for change points after detection.

(a) Changes in the mean. (b) Changes in both mean and variance.

Figure 1.1: Simulated datasets with change points at locations 75 and 200.
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In particular, we study conducting statistical inference on the significance of change points
after detection in the framework of post-selection inference.

Prior to a review of existing literature, a few real-world applications are provided to
emphasize the critical contributions that change point analysis makes to many fields. The
following list of applications also expands the scope of data structures to time series, images
and panel datasets.

1.1 Motivational Examples

The following paragraphs describe examples selected from neuroscience, genetics and fi-
nance. It is worth pointing out that these are fields in which change point analysis is
frequently applied.

The first example is selected from the field of neuroscience. Epileptic seizures and
episodes of abnormal brain activity have received much attention from researchers in ef-
forts to better understand disruptions in normal brain functioning. Such analysis has
helped neuroscientists develop more accurate diagnoses, improved therapy, and effective
early warning systems for seizure activity. During a seizure, sudden and abrupt changes
occur in the spectral profile of brain activity. To identify such changes, electroencephalo-
graphic (EEG) recordings have been studied for over a few decades. The EEG datasets are
frequently modelled as piecewise stationary processes with potential change points [89]. As
a direct implication, a change point detection approach allows neuroscientists to determine
such change points.

The second example has been selected from genetics. A copy number variant (CNV)
in DNA sequences is a type of structural variation that causes a genome to possess an
abnormal number of copies of DNA. These variants have been established as sources of
variation within a population. For a given cell or individual, CNV observations are often
measured in the form of ”log-R ratios” for a range of probes with different locations along
the genome. These observations are measured as log base 2 of the ratio of the observed
probe intensity to the reference intensity for a given probe. The mean of log-R ratios for
normal regions of the genome is 0, whereas the mean of log-R ratios for CNVs is far from
zero [81, 17]. Therefore, to locate CNVs, the goal would be to identify the regions of the
genome whose means of log-R ratios are not zero.

Finally, the third example is selected from the field of finance. Corporate finance
datasets contain the annual value of a range of different financial indicators, such as the
amount of dividend paid out by firms or the values of the firms’ assets. Corporate cash
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holding, a phenomenon in corporate finance whereby firms hold considerable cash, has
grown in recent years. For example, the cash holding by United States firms has doubled
in the past decades. Now, policymakers and scientists are starting to pay a lot of attention
to this corporate cash holding. Scientists believe that the evolution of the phenomenon
can be explained by changes in the ”cost of carry”, that is, the net cost of financing one
dollar of liquid assets, [11, 63]. Therefore, an important subject for a scientist would be to
detect change points in cost of carry data.

1.2 Real Datasets For Analysis

In this thesis, to explain how to apply our proposed method in practice, we will provide
three real examples including the economic data (House Price Index), climate data (GISS
Surface Temperature), as well as health science data (Covid-19). These examples are
interesting in the context of change point analysis, as we will illustrate in Chapter 3.

Example 1.1 The UK House Price Index (HPI) is a National Statistic that shows changes
in the value of residential properties in England, Scotland, Wales and Northern Ireland.
A house price index (HPI) measures the price changes of residential housing. The HPI
measures the price change of completed house sale transactions as a percentage change from
some specific start date. The UK index uses the hedonic regression model as a statistical
approach to produce estimates of the change in house prices for each period. For more
details, see https: // landregistry. data. gov. uk/ app/ ukhpi .

Many researchers including [4], [54], and [57] studied the UK HPI dataset for change
point analysis. We consider monthly percentage change in the UK HPI at Tower Hamlets
(an east borough of London) from January 1996 to November 2018. The dataset is presented
in Figure 1.2.

Example 1.2 Goddard Institute for Space Studies (GISS) monitors broad global changes
around the world. The GISS Surface Temperature Analysis (GISTEMP) is an estimate
of the global surface temperature change (see https: // www. giss. nasa. gov ). In the
analysis of GISTEMP data, the temperature anomalies are used rather than the actual
temperature. A temperature anomaly is a difference from an average or baseline temper-
ature. The baseline temperature is typically computed by averaging 30 or more years of
temperature data (1951 to 1980 in the current dataset). A positive anomaly indicates the
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(a) UK HPI dataset. (b) GISTEMP dataset.

Figure 1.2: Plots of both Tower Hamlet HPI and GISTEMP datasets provided in examples 1.1
and 1.2.

observed temperature was warmer than the baseline. In contrast, a negative anomaly indi-
cates the observed temperature was cooler than the baseline (for more details, see [67] and
[98]).

The GISTEMP dataset has been frequently explored in change point literature, for ex-
ample see [134], [80] and [16]. Figure 1.2 displays monthly land-ocean temperature anoma-
lies recorded from January 1880 to August 2019 (see https: // data. giss. nasa. gov/

gistemp ). The plot reveals the presence of a linear trend with several potential change
points in the dataset.

Example 1.3 Since the initial outbreak of Novel Coronavirus Disease 2019 (COVID-19)
in Wuhan, China, in mid-November 2019, the virus has rapidly spread throughout the
world. The pandemic has infected 167.25 million people and killed more than 3.46 mil-
lions, until April 30, 2021 (https: // covid19. who. int/ ), greatly stressing public health
systems and adversely influencing global society and economies. Therefore, every country
has attempted to slow down the transmission rate by various regional and national policies
such as the declaration of national emergencies, quarantines and mass testing. Of vital
interest to governments is understanding the pattern of the epidemic growth and assessing
the effectiveness of policies undertaken. A scientist can investigate these matters by ana-
lyzing the sequence of infection data for COVID-19. Change-point detection is one possible

5
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framework for studying the behaviour of COVID-19 infection curves. By detecting the lo-
cations of alterations in the curves, change point analysis gives us insights into changes
in the transmission rate or efficiency of interventions. It also enables us to raise warning
signals if the disease pattern changes.

For the analysis, we will consider the log-scale of the cumulative number of confirmed
cases from March 10, 2020 to April 30, 2021, for Australia, Canada, the United Kingdom
and the United States. Figure 1.3 displays these datasets as well as the number of confirmed

Figure 1.3: Number of COVID-19 cases as well as the log cumulative number of cases for
Australia, Canada, United Kingdom and the United States.

6



cases for Australia, Canada, the United Kingdom and the United States.

1.3 Thesis Structure

The main objective of this thesis is to introduce a new approach for detecting the potential
change points in a univariate data sequence. The goal is to use trend filtering to develop
an algorithm that identifies change points in a mean model with a piecewise polynomial
structure. Simulation studies are conducted to provide useful insights into the proposed
approach and illustrate its performance. The proposed approach is also compared with sev-
eral existing state-of-the-art change point approaches, focusing on accuracy and efficiency.
Finally, we employ our proposed approach to analyze the real datasets in Examples 1.1 –
1.3.

Chapter 2 begins with a review of existing literature on change point detection setting,
introducing the reader to the relevant basic foundations and concepts that appear in later
chapters. Various problem formulations and detection approaches are also discussed, fo-
cusing on the state-of-the-art methods that we use as benchmark approaches later in this
thesis.

In Chapter 3, we present our novel change point detection approach, referred to as
Pattern Recovery Using Trend Filtering (PRUTF). The approach aims to split a data
sequence into segments where the properties of the data change from one segment to
another. We assume that the true mean model follows a piecewise polynomial model. This
piecewise polynomial mean model is a more-general problem of estimating the number
and locations of change points and has not received much attention in the literature.
Additionally, the consistency and the rate of convergence for the detected change points
are established. To illustrate the efficiency of PRUTF, simulation studies, as well as real
data analyses, are provided.

In Chapter 4, we discuss a question related to that of Chapter 3: how significant are the
change points estimated using PRUTF ? In other words, our goal is to perform statistical
inference for change points that have been detected using PRUTF. A newly developed
framework called post-selection inference has made it possible to develop inferential tools for
change points after they have been estimated using a detection procedure. This inference
includes computing p-values for the significance of the change points in magnitude and
constructing confidence intervals. Specifically, we propose two approaches that lead to
inferences with high-power tests and narrow confidence intervals.

7



In Chapter 5, we conclude this thesis and discuss several interesting avenues for future
research.
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Chapter 2

Literature Review

Change point detection has gained considerable attention in recent years and found ap-
plications in many fields such as finance and econometrics, [15, 66], bioinformatics and
genomics, [59, 90], climatology, [100, 121], and technology, [136, 116, 104, 125, 60]. In
statistical literature, change point analysis dates back to the 1950s [118, 117]. This type
of analysis has since been a very active field of research due to its broad application, such
as in time series analysis and signal processing, in which data is routinely collected over
time. Since 2010, several factors, including the demand for computationally fast and sta-
tistically efficient segmentation approaches, have renewed statistical researchers’ interest in
the change point problem. Consequently, there is vast and rich literature on this subject.

The problem of change point detection arises when an ordered sequence of data un-
dergoes abrupt and meaningful changes. These changes can occur in the mean, variance,
slope of a trend, or distribution of the underlying data sequence. In general, change point
detection approaches can be classified as offline (retrospective) or online (sequential). The
offline change point framework includes approaches in which the full dataset for analysis
is available. In contrast, in the online change point framework [18, 109, 87, 41, 141], the
analysis is carried out sequentially as more data become available. More-recent papers
address both offline and online change point detection problems in more-complicated sit-
uations, see [8] and [74]. The focus of the research described in this thesis is the offline
change point framework.

Consider a data sequence of length n, denoted by y = (y1, , . . . , yn), which is ordered
by time, location, or some other attributes. The goal is to find the locations of sudden
transition in the data’s structure. We assume that the true number of change points is J0,
with exact locations given by the entries of the vector τ = {τ1, . . . , τJ0

}. The 0-th and
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(J
0

+ 1)-th change points are conventionally defined as τ0 = 0 and τ
J0+1

= n. Statistically,
it is assumed that each data point has a cumulative distribution function F ; that is,
yi ∼ Fi, i = 1, . . . , n. For the canonical change point problem, a change then occurs in
the location τ if Fτ 6= Fτ+1. Formally, we have the following definition for change points.

Definition 2.1 For an observation vector y = (y1, . . . , yn) with a piecewise constant
structure and the assumption Yi ∼ Fi, the locations τ = {τ1, . . . , τJ0

} ⊂ {1, . . . , n} are
called change points if

F1 = . . . = Fτ1 6= Fτ1+1 = . . . = Fτ2 6= Fτ2+1 = . . . = Fτ
J0
6= Fτ

J0
+1 = . . . = Fn , (2.1)

where J0 is the number of change points.

It is worth emphasizing that, in applications, the number of change points J0 and their
locations τ = {τ1, . . . , τJ0

} are usually unknown. The aim in a change point problem is to

consistently estimate J0 and τ = {τ1, . . . , τJ0
} from an observed dataset. We denote the

estimates of J0 and τ = {τ1, . . . , τJ0
} by Ĵ0 and τ̂ = {τ̂1, . . . , τ̂

Ĵ0
}, respectively.

A very common type of change point analysis is the one that looks for transitions in
the mean of the data. In the piecewise constant mean shift change, the goal is to find
locations τ = {τ1, . . . , τJ0

} such that

µ1 = . . . = µτ1 6= µτ1+1 = . . . = µτ2 6= µτ2+1 = . . . = µτ
J0
6= µτ

J0
+1 = . . . = µn, (2.2)

where µ = (µ1, . . . , µn)
T is the true mean of the underlying dataset. This piecewise

constant mean change model is a fundamental problem in change point analysis, and
most of the existing approaches, including the one presented in this thesis, have been
developed specifically for this type of change. Note that in a mean shift problem with an
r degree piecewise polynomial structure, at the location of a change point at least one of
the coefficients in the polynomial function varies.

Section 2.1 briefly reviews some works of change point analysis, emphasizing its growing
application in various fields. Since there are many approaches in change point analysis,
we classify them into two broad categories and then review some state-of-the-art and
popular ones. Our primary focus is on the penalized likelihood models with `1-norm for
discovering change points. Section 2.2 is devoted to a general overview of research in this
field. Particularly, trend filtering, which has recently attracted huge attention, is reviewed
and its properties are outlined. A new framework called post-selection inference has been
recently developed in order to make inferences for derived models through a selection
procedure. In Section 2.3, we summarize some proposed techniques for post-selection
inference, which will be later applied to test the significance of change point locations in
Chapter 4.
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2.1 Change Point Methodologies

This section reviews a body of literature regarding the offline change point framework
closely related to our proposal. We refer the reader to [47, 29, 155] and [34] for more
comprehensive reviews. Depending on various aspects of data, many different techniques
and algorithms exist in the literature. Some techniques, such as likelihood-ratio-based
methods, are very efficient in a single change point detection framework. The penalized
likelihood is another approach that performs well when the number of change points is
fixed and bounded. Search-based techniques like Binary Segmentation and its variants can
identify multiple change points; however, they are computationally intensive, particularly
in large datasets.

We begin with a straightforward problem of change point detection in which we assume
that there is at most one change point in the underlying dataset. In this setting, we often
attempt to test the hypothesis of no change versus one change for the entire data sequence:

H0 : F1 = . . . = Fn v.s. H1(τ) : F1 = . . . = Fτ 6= Fτ+1 = . . . = Fn . (2.3)

As a popular statistical approach for hypothesis testing, the likelihood ratio test can be
applied to examine (2.3) for any given value of τ = 1, 2, . . . , n − 1. If H0 is rejected,
the change point estimate is the maximizer of the likelihood ratio. In order to state the
method in statistical terminology, let Rτ denote the likelihood ratio of the testing problem
in (2.3) for any given τ . The test statistic then becomes, [71]

T = max
1≤τ≤n−1

−2 log
(
Rτ

)
, (2.4)

which rejects H0 if its value exceeds a certain threshold. In such a case, the change point
estimate is given by

τ̂ = arg max
1≤τ≤n−1

−2 log
(
Rτ

)
. (2.5)

The mean change point problem (2.2) when observations follow a Gaussian distribution
with a possible change in the mean and a fixed variance σ2 was studied in [38].

Another popular approach, though closely related to likelihood ratio method, used to
test the hypothesis in (2.2) is cumulative sum (CUSUM), which is constructed based on
partial sums of data points. The CUSUM for a change in the mean of the data sequence
y

1
, . . . , yn is defined by

Un(s) =
1

σ
√
n

bnsc∑
i=1

(
y
i
− ȳ

1:n

)
, 0 ≤ s ≤ 1, (2.6)
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where y
1
, . . . , yn are independently and identically distributed with mean µ and variance

σ2, and ȳ1:n is their average value. If a change occurs at the location bnsc, then the value
of Un(s) becomes large. On the other hand, if there is no change, data points on each side
of the mean will cancel each other out and the value of Un(s) remains small. Under the
null hypothesis of no change, Un(s) is shown to converge to a Brownian bridge [24].

In practice, though, a data sequence frequently undergoes multiple changes and needs
special search algorithms for their change discovery. The multiple change point detection
literature includes many techniques with their mechanism specialized for specific applica-
tions. Depending on whether a method searches for change points all at once or one at
a time, the existing methods in the change point literature fall into two broad categories.
The first category contains methods that aim to detect change points all at once, mainly
by solving an optimization problem consisting of a loss function (often a negative log-
likelihood function) coupled with a penalty function. The other category is closely related
to the change point testing framework, in which the single change point test is locally
conducted to estimate multiple change points. In the following, we review the literature
on the univariate mean change point analysis according to both penalized likelihood and
testing categories.

2.1.1 Penalized Likelihood Approaches

Under a more general distributional assumption on the observations y, one may write the
penalized likelihood function as

−`(y , Xβ) + Pλ(β), (2.7)

where `(·) is the log-likelihood function and Pλ(·) is a penalty function with the regular-
ization parameter λ > 0. The problem (2.7) has been extensively studied in the literature
with various choices of penalties and design matrices X.

Many researchers have studied the problem (2.7) with the penalty function linear in
the number of change points (`0-norm). Assuming a piecewise constant signal, [168, 169]
applied the Schwarz Information Criterion (SIC) as a penalty function with the square error
loss to consistently estimate the bounded number of change points and their locations for
Gaussian observations. Since then, under the same framework as [169], some works have
focused on various forms of penalty function to improve the properties of change point
estimations. For instance, [91] proposed a method using a slightly different version of
SIC, which is still linear in the number of change points. A penalty function, called
Modified Information Criterion (MIC), was proposed by [119], who also showed that its
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estimates are consistent in terms of both the number and the location of change points.
Several other penalties such as the modified Bayesian Information Criterion (mBIC), [171],
Simultaneous Information Theoretic Criterion (SITC), [167] and modified SIC [35, 36] have
been proposed, and their change point estimates have been proved to be consistent.

In a recent paper, [160] studied the change point problem for a piecewise constant mean
model using an `0-penalized least square method. [160] proved that the method is nearly
minimax optimal in terms of the localization error. [170] have since generalized that method
to higher degree polynomials. Specifically, they considered change point localization in a
piecewise polynomial mean model. Their paper proposes a two-step change point detection
method using an `0-penalized least square problem. In the first step, the method identifies
change points by applying the minimal partitioning algorithm. With the estimated change
points and their associated segments provided in the first step, the method updates the
location of change points by minimizing a squared error loss function over each segment.
The authors have established that the method is nearly minimax optimal. Furthermore,
[166] studied the problem of jump detection in piecewise smooth trends under complex
temporal dynamics whose covariance and higher-order structures evolve both smoothly
and abruptly over time. Their method, called multiscale jump point detection (MJPD), is
based on a multiscale statistic that applies an optimal wavelet/filter to the underlying time
series. MJPD is a two-step procedure in which the first step applies the multiscale statistic
to identify the number and locations of jumps, and the second step updates these estimated
jump locations using a CUSUM statistic. The method has been shown to efficiently and
accurately identify all jump locations.

All of the aforementioned methods involve computationally intensive search algorithms,
which become infeasible as the size of data increases. Consequently, many researchers have
invented approaches that enable the fast and efficient running of these algorithms. Segment
Neighborhood [79] and Optimal Partitioning [9] are examples of dynamic programming
algorithms for solving optimization problems. Some pruning algorithms such as PELT, [85,
70], pDPA [127], FPOP, and SNIP [105, 50] have also developed, and allow for more efficient
implementation of the Segment Neighborhood and Optimal Partitioning algorithms.

In the regression context, when an `1-norm is used as the penalty function, the problem
(2.7) is known as lasso [147], and has been greatly studied over the past twenty-five years. In
the context of change point analysis, the application of `1-penalized likelihood approaches
has attracted a lot of attention recently, mainly due to the wealth of works on `1-regularized
regression. The formulation of the change point problem as a penalized regression was
considered in [76]. Dealing with a DNA copy number dataset, they used the optimization
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problem

min
µ∈Rn

1

2

∥∥y − µ∥∥2
2

+ λ
n−1∑
i=1

∣∣µi+1 − µi
∣∣ , (2.8)

to fit a piecewise constant model for the DNA copy number mean µ = (µ1, . . . , µn). The
problem (2.8) was originally proposed in the signal processing framework by [133] and was
called total variation denoising. It was later reproposed as fused lasso in [148]. Motivated
by the work of [76], [68] applied fused lasso to estimate the locations of change points.
Specifically, the consistency of its estimates for change point locations was proved when
the number of change points is known.

[129] proposed sparse fused lasso, composed of both `1-norm and total variation semi-
norm, which yields a sparse piecewise constant fit. [129] established the consistency of the
fused lasso estimates when the variance of noise terms vanishes and the minimum magni-
tude of jumps is bounded from below. However, [132] argued that the consistency results
achieved by [129] are incorrect when a frequently viewed pattern, called staircase, exists
in the signal. The staircase phenomenon occurs in a piecewise-constant model when there
are either two successive jumps down or jumps up in its mean structure. This concept will
be discussed in more detail later in Chapter 3. In addition, the lasso problem derived by
transforming the underlying fused lasso does not satisfy the so-called Irrepresentable Con-
dition ([173]), which is necessary and sufficient for exact pattern recovery. [132] introduced
an alternative property called approximate sign consistency, which is more practical, and
showed that it is satisfied by the fused lasso estimates. The fused lasso estimates for change
point detection were also discussed in [123]. In particular, its inconsistency is illustrated
by the irrepresentable condition as in [132], and a new approach based on puffer trans-
formation of [83] is then proposed. They named the method Preconditioned Fused Lasso
and established that it can recover the exact pattern with a probability approaching one.
The other work that addressed the impact of staircase patterns on fused lasso estimates is
[138]. They established that, in the presence of a staircase pattern, the objective function
of fused lasso fails to improve when adjacent blocks are merged. This fact arises because as
the regularization parameter decreases, the bias remains zero and prevents staircase blocks
from adjoining. Applying this result, a modified version of the algorithm, presented in [72],
leads to consistent pattern recovery. Because of the pivotal importance of fused lasso and
its generalization for the research conducted in this manuscript, we will review and discuss
the topic in more detail in Section 2.2.

Several authors have studied the problem of change point detection for the canonical
parameters in the exponential family. The consistency of estimates derived from minimiza-
tion of the negative log-likelihood along with SIC as the penalty function has been studied
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by [69] and [92]. A more popular work of change point detection for the exponential family
has been provided by [53]. For change point detection in the canonical parameter of a
one-dimensional exponential family of the form fθ(x) = exp{θx−ψ(θ)}, [53] proposed the
Simultaneous Multiscale Change-point Estimator (SMUCE). This technique estimates the
number of change points and their locations by minimizing the number of change points
subject to a constraint on a multiscale test statistic. To be more specific, SMUCE solves
the optimization problem

min
θ

J(θ) subject to Tn(Y,θ) ≤ c, (2.9)

where J(θ) is the number of change points, and c is a threshold. The multiscale statistic
Tn(Y,θ) is given by the maximum of the local likelihood ratio statistic over all possible
segments of the parameter θ in which no change occurs. In other words, Tn(Y,θ) is
the maximum of the likelihood ratio statistic of the hypothesis H0 : θ = θ0 against
H1 : θ 6= θ0, over the interval

[
i/n , j/n

]
, for i, j = 1, . . . , n. One advantage of this

method is that it provides tools for building a confidence set for the canonical parameter
θ. The computational complexity of SMUCE via dynamic programming is of the order
O(n2) and can be reduced by some pruning techniques. Because SMUCE controls the
family-wise error rate (FWER), the method is conservative and usually underestimates the
number of change points, particularly in data sequences with many change points or a small
signal-to-noise ratio. This shortcoming was addressed in [99], and the method FDRseg,
based on False Detection Rate (FDR) control, is suggested. The problem of change point
detection in canonical parameters of exponential families was studied in [120], and [40] for
heteroscedastic and dependent noise variables, respectively.

In a more general case, [111] proposed an approach for change point detection using a
class of non-convex penalty functions. They compared the performance of the penalized
likelihood problem with the SCAD penalty [49], the bridge penalty [58], and the unbounded
penalty [94] in the context of change point analysis. It has been shown that the penalized
likelihood method using the above penalty functions does not guarantee consistent recovery
of change points. By combining the lasso and the unbounded penalty, [111] introduced a
new penalty, termed modified unbounded, which allows consistent estimation of the number
of change points, their locations, and their magnitudes.

2.1.2 Test-Based Approaches

Methods that search for change points one at a time often use the likelihood ratio test or
CUSUM as their basis for finding a single change at each step. Among the most popular
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methods, we review Binary Segmentation [158] and its extensions: Circular Binary Seg-
mentation (CBS) [114], Wild Binary Segmentation (WBS) [56] and Wild Binary Segmen-
tation 2 and Steepest Drop to Low Levels (WBS2.SDLL) [54]. We also discuss more-recent
change point detection methods in the literature including Tail Greedy Unbalanced Haar
(TGUH) [57], Narrowest Over Threshold (NOT) [16], Isolate-Detect (ID) [4] and Narrowest
Significance Pursuit (NSP) [55].

As an extensively used method in multiple change point detection, Binary Segmentation
is a forward selection method that recursively searches for a single mean change within a
certain regime of data points. It starts with testing the existence of a change in the entire
original data sequence using a CUSUM statistic. After detecting a change, it divides the
data sequence into two subsegments, one before and one after the change point. Then
the search for a change continuous within each subsegment, and splitting is carried out.
This procedure is repeated until no further division is possible. The following algorithm
elaborates Binary Segmentation in steps.

Algorithm 2.2 Binary Segmentation Algorithm:

Step 1. Perform the test (2.3) for mean change and, if the null hypothesis is not rejected,
then stop the algorithm and return τ = ∅ as the change point set. Otherwise,
set τ = {τ̂1} where τ̂1 is computed as the maximizer of the CUSUM statistic in
(2.6), and split the data into two subsegments y

1:τ̂1
=
(
y1, . . . , yτ̂1

)
and y

τ̂1+1:n
=(

y
τ̂1+1

, . . . , yn
)
.

Step 2. Similar to step 1, test for the existence of a change for these new subsegments, and
update the change point set τ .

Step 3. Repeat the procedure until no further segmentation is possible.

Proposed by [158], Binary segmentation is a prevalent method in change point detec-
tion analysis and has been widely used by scientists in various disciplines. Simplicity, fast
implementation with the computational complexity of order O(n log n), and relative ac-
curacy account for its popularity. The consistency of Binary Segmentation in identifying
both the number and location of change points has been established for cases in which
the minimum distance among neighbouring segments is of an order greater than O(n3/4),
[157], [56]. However, Binary Segmentation is suboptimal in rates of convergence when
the number of change points is fixed or is growing with the sample size n. On the other
hand, lack of ability to identify a change point located within a long segment is a major
limitation of Binary Segmentation because this method searches only for one change point
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inside each subsegment. The limited nature of such searches leads to poor performance if
there are frequent change points. Thus, Binary Segmentation is likely to estimate change
point locations inaccurately. Some modified versions of this method, [114], [56], [54] and
[57] have been developed to solve this shortcoming and improve the accuracy of Binary
Segmentation.

The first adaptation of Binary Segmentation, Circular Binary Segmentation (CBS)
[114], suggests making a circular sequence by tying both ends of the original signal together.
The test (2.3) can then be performed for two segments ys+1:e and

(
y1:s , ye+1:n

)
, for a fixed

pair (s, e), s < e. Implementation of the test over all possible values of (s , e) makes
CBS computationally expensive; however, it is more powerful than Binary Segmentation
in determining short segments.

To improve efficiency, [56] developed a method called Wild Binary Segmentation (WBS)
for mean change point problems (2.2). The idea is to randomly select a user-specified
number of subsegments, say M , from a segment of data and perform the single change test
for these selected subsegments. The method is based on the hope that one of the selected
subsegments will catch the change within short segments. More precisely, suppose that
intervals [sj , ej], j = 1, . . . ,M , such that sj < ej and sj, ej ∈ {s, . . . , e}, are randomly
selected from the original dataset with the start point s and endpoint e. The interest is
then in testing

H0j : µsj = . . . = µej versus H1j(τ) : µsj = . . . = µτ 6= µτ+1 = . . . = µej , (2.10)

for τ = sj, . . . , ej − 1. The maximum value of the CUSUM statistic in (2.6) over the j-th
random interval is given by Uj = max sj ≤ τ ≤ ej−1 Uj(τ). The change point estimate is the
location in the random intervals [sj , ej] that maximizes the Uj over all j = 1, . . . ,M . In
other words, let ĵ = arg max

1≤ j≤M
Uj, then the change point location is

τ̂
WBS

= arg max
s
ĵ
≤ τ ≤ e

ĵ
−1

U ĵ (τ). (2.11)

Note that, in addition to the threshold value for CUSUM tests, the number of random
draw subsamples M is crucial for both the accuracy and efficiency of the WBS.

In recent years, some papers have attempted to improve the performance of Binary
Segmentation and WBS. [57] argue that the weak performance of Binary Segmentation is
in part due to its forward (top-down) nature, meaning that it starts with the entire signal
and splits it into shorter segments as the process goes on. The authors suggest a backward
(bottom-up) mechanism, labelled Tail Greedy Unbalanced Haar (TGUH), which operates
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by fusing a number of successive neighbouring segments that most likely share the same
structure. In light of the need to merge multiple consecutive segments and to facilitate the
procedure, TGUH uses Unbalanced Haar transformation on the original data sequence.
The computational cost of the method is O(n log2(n)) regardless of the number of change
points. It also guarantees the consistency of the estimations in both the number of change
points and their locations.

WBS is designed to handle cases in which more than one change point exists in each
segment. It has been shown that it performs well for signals with a small or moderate num-
ber of change points. Nonetheless, this performance deteriorates substantially in datasets
with frequent changes. [54] have offered a method called Wild Binary Segmentation 2 and
Steepest Drop to Low Levels (WBS2.SDLL) to deal with the aforementioned challenges in
scenarios with frequent change points. The method solves the issues in two separate steps.
In the first step, called WBS2, an entire solution path for the problem is constructed with
0, 1, . . . , n − 1 change points by executing WBS with a much smaller number of drawn
subsamples M . The distinction between WBS and WBS2 is in the size of M . In WBS2,
M is relatively tiny compared to WBS (100 in WBS2 compared to 20000 in WBS). The
second step, named SDLL, focuses on choosing the next change points. To this end, SDLL
computes the ratio of the two successive CUSUM statistics obtained in the WBS2 step.
The statistic with the largest ratio that exceeds a provided threshold is regarded as the
next change point. The method has been proven fast in run time and accurate in detection.

The method Narrowest Over Threshold (NOT), put forward by [16], provides a solu-
tion to the problem of change point detection in general models, particularly piecewise
constant and piecewise linear models. In the first step, M random subsamples denoted
by [sj , ej], j = 1, . . . ,M are drawn from the entire dataset. A suitable cost function (a
negative log-likelihood in most cases) is chosen and then applied to select potential change
points within each drawn subsample. More specifically, let C b

s , e (y) denote the value of
the cost function for all data points b inside the subsample [s , e]. Calculate the maximum
value of the cost function over subsample [s , e], i.e., C bmax

s , e (y) = max
b∈{s, ... ,e}

C b
s , e (y). Repeat

this calculation for all M randomly drawn subsamples.

In the second step, all derived values C bmax
sj , ej

, for j = 1, . . . ,M , are compared with a
pre-specified threshold to test which interval contains a significant change. The interval
[sj , ej] with the smallest length (narrowest) is chosen from all intervals with a significant
change. Finally, the location that maximizes the cost function for the narrowest interval
is identified as a change point estimation. A similar procedure is recursively carried out to
the left and right sides of the estimated change point. The search for more change points
stops when there is no interval with a cost function that exceeds the threshold.
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The computational complexity of NOT is of the order O(n log(n)) if we select the
optimal choice for M . The order is almost linear in the size of the data. The method
can be extended to cover more general models such as piecewise polynomials if a suitable
cost function is defined. Moreover, NOT provides an asymptotically consistent estimator
of the number and locations of change points. The benefit of NOT over methods like WBS
is that it considers the smallest interval, thereby preventing subsamples from containing
more than one change point.

In a recent work, [4] developed a new approach called Isolate-Detect (ID) to consistently
estimate change points in a sequence of data. The ID method in change point analysis
involves two stages: isolation and estimation. In the isolation stage, the aim is to identify
subintervals of the entire domain that contain only one change point. This isolation is
carried out by a process called interval expansion, which updates intervals upon detection.
Having such subintervals at hand, the estimation stage seeks to locate the change point
within each subinterval. For a suitably chosen loss function, the location of its maximum
value is taken to be a change point if the maximum value exceeds a certain threshold. Once
an appropriate loss function has been appointed, the ID technique can estimate changes
in models other than piecewise constant ones.

ID localizes change points faster than the NOT and WBS methods, which is of great
importance, particularly in data sequences with a large number of change points. More-
over, due to its interval expansion, it covers the entire domain of the dataset and enables
searching for all possible change points. The authors have demonstrated that under certain
mild conditions, the change point estimates derived using ID are consistent.

[55] has also studied the problem of change point detection in a linear model and has
proposed a method called Narrowest Significance Pursuit (NSP). This method is a forward
procedure and proceeds recursively to the right and the left side of a new change point until
no further significant change point can be found. NSP uses a particular multiresolution
sup-norm loss function at each step to find the shortest interval on which the slope of the
underlying linear model is significantly changed. It is shown that NSP performs well with
the assumptions beyond identical and independent Gaussian random noises.

Most existing change point detection methods in the literature focus on univariate
data with possible changes in the mean only and assume that the other characteristics
are unchanged. Other methods provide solutions to the change point problem in other
characteristics such as variance [62, 161] and covariance [7, 10, 42]. In principle, more
complex change point problems that study changes in characteristics other than the mean
can be converted to the canonical mean change problem [28]. This conversion can be
executed by applying a suitable transformation to the original dataset. See [31, 73, 32] and
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[33].

Another important field of active research in change point analysis deals with high-
dimensional datasets. For example, the performance of the least square estimator of a
single change point in a high dimensional setting was studied in [14]. [172] and [48] applied
CUSUM statistics to estimate change points in a high dimensional setting. Additionally,
under the sparsity assumption for change points in a high dimensional setting, [84, 137,
163, 162] and [130] have proposed solutions to the change point problem.

There is no single best approach for all change point problems and applications. The
existing approaches can be compared based on their properties, such as consistency and
the rate of convergence to estimate the true number and exact locations of change points
J , plus the approaches’ computational complexity and scalability. In the change point
literature, a suitable approach is frequently considered to be the one that would closely
estimate the number of change points, and their locations as the number of data points
grows. In statistical terminology, this point implies that the method must yield consistent
estimations.

2.2 Trend Filtering

Over the past 30 years, an active line of statistical research has been devoted to pattern
recovery – techniques for estimating unknown parameter vectors by imposing certain struc-
tures on them and then verifying the conditions under which the techniques perform well.
Pattern recovery, in which the positions of nonzero elements of an unknown parameter
vector are identified, appears in a wide variety of disciplines, including compressed sensing
[44], signal processing [30], and model selection in regression [109]. One way of approaching
pattern recovery problems is to use an optimization problem to compromise a loss function
and a penalty criterion. A natural choice of penalty function is `0-norm, which regularizes
the number of nonzero coordinates of a parameter vector. Unfortunately, minimization of
the `0-regularization problem is intractable due to its non-convexity. As a computationally
feasible surrogate, the `1-regularization problem has attracted much attention over the past
three decades.

As a generalized form of `1-regularization and in order to cover a wide range of models
with structural constraints [154] introduced generalized lasso. The generalized lasso ob-
jective function contains negative log-likelihood loss along with the `1-norm of a specific
matrix times coefficients vector. More clearly, let y ∈ Rn be the response vector, and
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X ∈ Rn×p be the predictor matrix; then the least square generalized lasso is formulated as

min
β∈Rp

1

2

∥∥y −Xβ
∥∥2

2
+ λ

∥∥Dβ
∥∥

1
, (2.12)

where D ∈ Rm×p is called the penalty matrix and reflects the structure of the model and
λ ≥ 0 is the regularization parameter.

The r-th order trend filtering is a special case of the generalized lasso if the predictor
and penalty matrices are replaced by the identity and the r-th order discrete difference
operator, respectively. Such difference operator imposes sparsity in the r-th difference
of the model, and as a result, the r-th trend filtering fit is a piecewise polynomial of
order r. In more concrete terms, define the first-order discrete difference operator matrix
D (1) ∈ Rn−1×n as

D (1) =


−1 1 0 0 . . . 0
0 −1 1 0 . . . 0
0 0 −1 1 . . . 0
...

...

 ,

then for r ≥ 1, the (r + 1)-th operator D (r+1) ∈ Rn−r−1×n can be recursively computed
as D (r+1) = D (1) × D (r) where D (1) is the (n− r−1)× (n− r) version of the first discrete
difference matrix. Here are the examples of D (2) and D (3),

D (2) =


1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
0 0 1 −2 . . . 0
...

...

 , D (3) =


−1 3 −3 1 . . . 0
0 −1 3 −3 . . . 0
0 0 −1 3 . . . 0
...

...

 .

Hence, the r-th order trend filtering estimate is the solution of

min
β∈Rn

1

2

∥∥y − β
∥∥2

2
+ λ

∥∥D(r+1) β
∥∥

1
. (2.13)

If r = 0, trend filtering reduces to one-dimensional fused lasso, [148], also well-known as
one-dimensional total variation denoising [133], and produces piecewise constant estimates.
The existence and uniqueness of the trend filtering estimates are discussed in Section 3.3.

The problem (2.13) was first studied by [140] in context of the image processing and
called higher order total variation regularization. It was later rediscovered by [86] and
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termed as the trend filtering. In their paper, [86] established the properties of linear
trend filtering (r = 1) which fits piecewise linear models. An extensive study of the trend
filtering is carried out by [151]. The paper investigates the properties of trend filtering and
justifies it as a great tool in nonparametric regression. It points out that the trend filtering
resembles smoothing splines [64] and locally adaptive regression splines [107] in the sense
of being its continuous-time versions. More importantly, [151] establishes the convergence
of trend filtering to the true underlying function with minimax rate. In a recent paper,
[149] have also explored connections between trend filtering and discrete splines.

From a computational and algorithmic standpoint, [86] describe the Primal-Dual Interior-
Point (PDIP) method to derive estimates of the linear trend filtering at a fixed λ which
can be readily carried over to the trend filtering of any order. The idea relies on solving a
constrained quadratic problem using the interior point method. The computational com-
plexity of the method in practice is of order O(n), which indicates its efficiency. Another
well-suited approach for deriving estimates of the trend filtering is constructing a solution
path using its dual problem. Such an algorithm is developed in [154] for the generalized
lasso, which is simply applicable for trend filtering by setting D = D(r+1) and X = I.

In order to accelerate solving the trend filtering optimization, [164] suggest the falling
factorial basis, which enables fast computation of the solution in order of O(n). [124]
derived a fast and efficient algorithm for solving (2.13) based on the Alternating Direction
Method of Multipliers (ADMM) presented first in [25]. They then compared their approach
with PDIP, empirically and theoretically and showed that the specialized ADMM algorithm
converges faster and more accurately.

2.3 Post-Selection Inference

Classical statistical theory provides tools for performing inference about pre-specified sta-
tistical questions, determined before observing the data– such as hypothesis testings and
constructing confidence intervals. However, in many applications, data are collected with-
out such questions. An exploratory data analysis is usually used to generate interesting
questions and then provides preliminary answers to them. Consequently, most statistical
methods are composed of two stages [51]:

(i) Model Selection: A practitioner applies the underlying dataset to decide which models
are worthy of attention. This stage allows us to determine statistical questions, such
as formulating estimations and hypothesis testings.
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(ii) Target Inference: The practitioner would like to evaluate the selected model using in-
ferential methods. Essentially, this stage deals with statistically answering questions
generated in the model selection stage.

In statistical terminology, a selected model is called adaptive if a dataset is used in
its derivation. Adaptive models are stochastic due to their dependence on random ob-
servations. Two broad classes of such stochastic models obtained from certain selection
procedures are [22]:

• Models derived from variable selection procedures such as Forward Stepwise or Back-
ward Selection, or models derived from regularized regression, for instance, ridge
regression and Lasso.

• Models derived in an ill-defined way such as those chosen by visual inspection or by
some regression diagnostic methods.

A consequence of such adaptive models is having random hypothesis testings and confidence
intervals. To be more explicit, we present the following example.

Example 2.3 Consider the linear regression setup with the n× p predictor matrix X and
response vector y ∈ Rn drawn from N(µ , σ2 I). Suppose that lasso is run at a fixed value

of the regularization parameter λ, and a subset of variables M̂(y) = M̂ ⊂ {1, . . . , p} is
chosen (model selection). One might be interested in computing p-value for the significance

of a specific coefficient in the selected model, βj , M̂ , that is, H0 : βj , M̂ = 0, for j ∈ M̂
(target inference).

Classical statistical theory treats the selected model as a fixed model and assumes that
the hypothesis is known in advance. To test the hypothesis H0 : ηTµ = 0 for a pre-specified
nonzero vector η ∈ Rp, one can use the usual Z-test (t-test for unknown σ2). In our setting,
these tests are invalidated because the data are used to choose which coefficients should be
tested. The preceding hypothesis H0 : βj , M̂ = 0 is equivalent to H0 : ηTµ = 0, where

η = XM̂

(
XT

M̂ XM̂

)−1
ej.

In this representation, XM̂ is the matrix extracted from columns of the design matrix X
indexed by the model M̂, and ej is the basis vector with the j-th element being 1, and
remaining elements being 0. The classical statistical tools are misleading in this case since
η = η

(
M̂(y)

)
depends on the dataset and thus random.
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As explained above, classical statistical inference is misleading for models chosen by
a selection procedure. The reason is that the selected models are stochastic and are not
accounted for in the classical theory. For example, classical inference considers the same
sampling distribution for post-selection inference. However, this distribution is no longer
the same as the original sampling distribution, because of the stochastic nature of a se-
lection procedure. Moreover, the randomness of data-driven hypotheses implies that the
Type-I error differs from that of classical theory in which the hypotheses are pre-specified.
We make this point in the following example.

Example 2.4 (File Drawer Effect [51]) Suppose random variables Yi, i = 1, . . . , n are

drawn independently from N(µi , 1). For selection, we consider the set Î =
{
i : |Yi| > 1

}
,

which selects variables with large effects. Then, the goal is to test H0 , i : µi = 0 at the

nominal level α = 0.05. For i ∈ Î, classical inference ignores the selection of large effect
variables and rejects H0 , i when |Yi| > 1.96. However, the error rate for hypotheses selected
for testing is no longer 0.05. More specifically, let n0 denote the number of true null effects
and assume that n0 −→∞ as n −→∞. Then, the fraction of errors among the true nulls
we select is

#False Rejections

#True Nulls Selected
=

∑
i:H0 , i true

1
{
i ∈ Î , Reject H0 , i

}/
n0∑

i:H0 , i true

1
{
i ∈ Î

}/
n0

→
Pr

H0 , i

(
i ∈ Î , Reject H0 , i

)
Pr

H0 , i

(
i ∈ Î

)
= Pr

H0 , i

(
Reject H0 , i

∣∣ i ∈ Î ) =
Φ(−1.96)

Φ(−1)
= 0.16.

For years, a major gap existed between model selection procedures and inferential
tools for selected models. Fortunately, a growing line of work has recently been dedicated
to statistical inference after model selection. The framework to make inferences for an
adaptive model, referred to as post-selection inference, also known as selective inference,
attempts to perform statistical inference such as hypothesis testing and confidence interval
construction.

The problem of post-selection inference was first discussed in [122], and later, in a
sequence of articles, [95, 96, 97] explored how to estimate post-selection distributions. This
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subject has attracted much attention more recently as applications for model selection have
proliferated. Several researchers have attempted to address the post-selection inference
problem by applying conditional statistical inference. In particular, in a hypothesis testing
problem, if the model M and the null hypothesis H0 are adaptively chosen, the goal is to
control the Type-I error rate

Pr
(

Reject H0

∣∣ (M , H0

) )
,

at the nominal level α.

Classical hypothesis testing assumes that the null hypothesis and the model are in-
dependent of the data used for inference and, therefore, conditioning on

(
M , H0

)
is not

required. This fact has inspired a class of inferential approaches called data splitting. The
idea, originated by [37], states that the data can be divided into two independent parts.
One part is applied to choose a model, and the other part is used to make inferences about
that model. The inferential targets in the data splitting framework are fixed due to the
independence of the two splits. Consequently, conditioning on the selected model is not
required. However, carrying out this idea is not free. The cost is in the decreased size of
data for both selection and inference phases. Moreover, it is not always possible to split
the data into two independent parts, such as autocorrelated spatial and temporal data.
For more details on data splitting, we refer the reader to [165, 110].

Apart from data splitting, one natural solution to post-selection inference is to condition
the analysis on the selected model. More specifically, to perform hypothesis testing HM

0 , i,
for any i in the selected model M, we are interested in tests that control the post-selection
Type-I error at level α, i.e.,

Pr
(

Reject HM
0 , i

∣∣ (M , HM
0 , i

))
≤ α , i ∈M. (2.14)

These types of tests are called post-selection hypothesis tests. In the same manner, a
post-selection confidence interval forms a confidence interval for a parameter of interest
in the selected model M, namely θM

i , for i ∈ M. More precisely, the interval IMi is a
post-selection confidence interval at the level of (1− α) for θM

i , if

Pr
(
θMi ∈ IMi

∣∣ i ∈M
)
≥ 1− α. (2.15)

The interpretation for the post-selection confidence interval is as follows: if we were to
repeatedly generate y from the underlying model and apply the corresponding selection
procedure, and only focus on cases in which we selected model M, then among such cases,
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the constructed confidence intervals IMi , would contain θMi , i ∈ M, with a frequency
tending to 1 − α. See [153] and [152]. Analogous to the classical case, there is a one-to-
one correspondence between the post-selection tests and confidence intervals. Indeed, the
post-selection confidence intervals can be computed by inverting post-selection tests, [51].

2.3.1 Post-Selection Inference in Regression Setting

Hereafter, we restrict our attention to the regression framework as one of the important
applications of post-selection inference, especially when one is conducting hypothesis test-
ing and constructing a confidence interval for model parameters. In a regression model, let
y ∈ Rn be a response vector and X =

(
X1, . . . , Xp

)
∈ Rn×p be the full predictor matrix.

Also, suppose that the model M ⊂ {1, . . . , p} is chosen using a selection procedure. The
interest is then to make inference for parameters associated with components of M, de-
noted by βM. In other words, targets of inference in post-selection inference are coefficients
contained in the selected model, but not those that are excluded. This setting is called
the submodel view, which assumes that the selected model has its own variables and that
the excluded variables do not exist. In contrast, the full model view assumes that excluded
variables are in the model but with zero coefficients [22].

In practice, a model is adaptively chosen through a selection procedure that uses random
response y. This estimated model, denoted by M̂ = M̂(y) is a result of the map M̂ :

y 7−→ M̂(y) with some crucial natural properties. First, due to the involvement of random

response y in model selection, M̂ = M̂(y) is a random variable and so are its corresponding

parameters βM̂. Second, the selected model M̂ may or may not contain a fixed i ∈
{1, . . . , p}. According to the submodel view, this fact implies that the inference of βM̂

i is

undefined when i /∈ M̂. Third, the interpretation and estimation of the parameter βM̂
i ,

given i ∈ M̂, changes due to its dependence on other parameters contained in the model.

[22] described a method for deriving a confidence interval by controlling the family-wise
error rate (FWER), regardless of the selection procedure. The method leads to universally
valid confidence intervals. Universal validity is a strong property with applications in areas
where model selection is not pre-specified. However, this property is very conservative and
produces undesirably long confidence intervals.

[102] considered the significance test of a predictor variable that enters the active set
of lasso. The authors applied the fitted values of lasso at a given value of regularization
parameter to propose a test statistic, the covariance test statistic. They established that
the asymptotic null distribution of the covariance test statistic is the standard exponential
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under the assumptions that the entries of the predictor matrix are in general position and
that the true model is linear. It is important to point out that this test only checks whether
a predictor variable that enters the current model is significant.

[93] proposed a novel idea for statistical inference of the lasso estimates. The idea

states that the selected model M̂ = M̂(y) corresponds to a polyhedron set over the sample
space of random response y. More specifically, they established that for a lasso selected
model M̂ with sign ŝ

M
at a fixed value of regularization parameter, the event

(
M̂ , ŝ

M

)
can be characterized as a polyhedron of the form {y ∈ Rn : A y ≥ q}. Consequently,
the procedure of making inference given the selected model boils down to the restriction
of the sample space of y to a polyhedron. This characterization could be of great help for
inference after model selection. In Particular, when the distribution of the response vector
is Gaussian, an exact test based on a truncated Gaussian distribution has been derived
[93, 153]. We will describe this idea in more detail in Chapter 4.

[153] concurrently demonstrated the same results as [93] for other model selection meth-
ods such as the forward stepwise and LARS as well as lasso. The extension of the truncated
Gaussian test in this work is based on the models derived after a fixed number of steps.
This characteristic distinguishes this work from [93], which considers models chosen at a
fixed value of the regularization parameter. In a very recent paper, [77] study character-
ization of the polyhedron in the generalized lasso framework. Comparison of the exact
truncated Gaussian among various selection techniques reveals that each technique creates
a typical polyhedron. A number of extensions to different frameworks and applications are
given in [145], [103], [144], [126] and [31].

Several authors have extended the post-selection inference setting to non-Gaussian
distributions. [51] study the theoretical properties of post-selection inference and generalize
the framework to the broad class of distributions: the exponential family. [145] establish
an asymptotic framework for post-selection inference in a high-dimensional setting while
removing the Gaussian assumption. This method is performed for a specific class of model
selection covering the affine selection procedures. [152] proves the uniform convergence
of the post-selection test statistics in the case of non-Gaussian observations. The same
asymptotic framework has been proposed by [146] for randomized responses.
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Chapter 3

Detection of Change Points in
Piecewise Polynomial Signals Using
Trend Filtering

While many approaches have been proposed for discovering abrupt changes in piecewise
constant signals, few methods are available to capture these changes in piecewise polyno-
mial signals. In this chapter, we propose a change point detection method, PRUTF, based
on trend filtering. By providing a comprehensive dual solution path for trend filtering,
PRUTF allows us to discover change points of the underlying signal for either a given
value of the regularization parameter or a specific number of steps of the algorithm. We
demonstrate that the dual solution path constitutes a Gaussian bridge process that enables
us to derive an exact and efficient stopping rule for terminating the search algorithm. We
also prove that the estimates produced by this algorithm are asymptotically consistent in
pattern recovery. This result holds even in the presence of staircases (consecutive change
points with the same signs) in the signal. Finally, we investigate the performance of our
proposed method for various signals and then compare its performance against some state-
of-the-art methods in the context of change point detection. We apply our method to
three real-world datasets, including the UK House Price Index (HPI), the GISS Surface
Temperature Analysis (GISTEMP) and the Coronavirus disease (COVID-19) pandemic.
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3.1 Introduction

We consider the univariate signal plus noise model

y
i

= f
i
+ ε

i
, i = 1, . . . , n, (3.1)

where f
i

= f(i/n) is a deterministic and unknown signal with equally spaced input points
over the interval [0, 1]. The error terms ε

1
, . . . , εn are assumed to be independently and

identically distributed Gaussian random variables with mean zero and finite variance σ2.
We assume that f(·) undergoes J

0
unknown and distinct changes at point fractions 0 =

ω
0
< ω

1
< . . . < ω

J0
< ω

J0+1
= 1, where the number of change point fractions, J

0
can

grow with the sample size n. Additionally, we assume that f(·) is a piecewise polynomial
function with any arbitrary but fixed order r. These assumptions imply that, associated
with ω

0
, . . . , ω

J0+1
, there are change points locations 0 = τ

0
< τ

1
< . . . < τ

J0
< τ

J0+1
= n,

which partition the entire signal f = (f
1
, . . . , fn) into J0+1 segments. More specifically, any

subsignal of f within segments created by the change points follows an r-degree polynomial
structure with or without a continuity constraint at the change points. In other words, for
a piecewise polynomial signal of order r, at least one of the coefficients in the polynomial
function alters at a change point location. See Figure 3.2 for visual schematic of such
signals. Change in the level of a piecewise constant signal, known as the canonical multiple
change point, and change in the slope of a piecewise linear signal are examples of the
problem under consideration in this chapter. In change point analysis, the objective is
to estimate the number of change points, J

0
, as well as their locations τ = {τ

1
, . . . , τ

J0
}

based on the observations y = (y
1
, . . . , yn).

The canonical multiple change point problem, where the signal f is modelled as a
piecewise constant function, has been extensively studied in the literature. Beyond the
canonical change point problem, signals in which f is modelled as a piecewise polynomial
of order r ≥ 1 have attracted less attention in the literature despite many applications.
For instance, piecewise linear signals are applied in monitoring patient health ([3], [139]),
climate change ([131]), and finance ([23]). In such a framework, [13] introduced a method
based on Wald-type sequential tests, and [105] devised a dynamic programming applied to
an `

0
-penalized least square model. In continuous piecewise linear models, [86] developed

a methodology called `
1
-trend filtering. Furthermore, [16] put forward the method of

Narrowest Over Threshold (NOT), and [4] developed an approach called Isolate-Detect
(ID) which both estimate change points in more-general change point problems.

This chapter aims to introduce a unifying method covering the canonical change point
problem and beyond. More precisely, the method can detect change points in piecewise
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polynomial signals of order r (r = 0, 1, 2, . . .) with and without continuity constraint at
the locations of change points.

The canonical change point problem for a sequence of data can be formulated as a
penalized regression fitting problem. According to our notation, the quantity fτ − fτ+1 is
nonzero if the signal f undergoes a change at point τ , and is zero otherwise. Moreover, if
we assume that change points are sparse, that is, the number of locations where f changes,
J

0
, is much smaller than the number of observations n, change points can be estimated

using the one-dimensional fused lasso problem

min
f∈Rn

1

2

∥∥y − f
∥∥2

2
+ λ

n−1∑
i=1

∣∣f
i+1
− f

i

∣∣ ,
where f = (f

1
, . . . , fn).

This formulation of the canonical change point problem was first considered in [76] and
was applied to analyze a DNA copy number dataset. [68] considered the same formulation
and proved the consistency of the respective change point estimates when the number of
change points is bounded. Employing sparse fused lasso, which is composed of both the `

1
-

norm and the total variation seminorm penalties, [129] proposed a sparse piecewise constant
fit and established the consistency of the corresponding estimates when the variance of
the noise terms vanishes and the minimum magnitude of jumps is bounded from below.
However, [132] argued that the consistency results achieved by [129] are incorrect when a
frequently viewed pattern, called staircase, exists in the signal. The staircase phenomenon
occurs in a piecewise constant model when there are either two consecutive downward
jumps or upward jumps in its mean structure. The staircase pattern will be discussed
in more detail in Section 3.7. Additionally, [123] showed that the lasso problem, when
derived by transforming fused lasso, does not satisfy the Irrepresentable Condition ([173])
that is necessary and sufficient for exact pattern recovery. In particular, [123] proposed an
approach called preconditioned fused lasso based on the puffer transformation of [83] and
established that it can recover the exact pattern with probability approaching one.

A similar approach to that of the piecewise constant signals can be considered for
estimating change points in piecewise polynomial signals. In particular, a positive integer
τ is a change location in an r-th degree piecewise polynomial signal f if τ -th element of the
vector D(r+1) f is non-zero, denoted by

[
D(r+1) f

]
τ
6= 0. Here D(r+1) is a penalty matrix

that was defined in Section 2.2. Hence, change points can be estimated from nonzero
elements of D(r+1) f̂ , where f̂ is the solution of

min
f∈Rn

1

2

∥∥y − f
∥∥2

2
+ λ

∥∥D(r+1) f
∥∥

1
. (3.2)
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The trend filtering problem (3.2) fits a piecewise polynomial of order r for the true
signal f . First-order trend filtering was developed by [86] for piecewise linear fits. They
provided a primal-dual interior-point algorithm to fit a model at a specified value of the
regularization parameter λ > 0. For an arbitrary r ∈ N, [154] also provided a solution
path algorithm that yields the trend filtering estimates over all values of the regularization
parameter λ. In a separate paper, [151] focused mainly on the statistical properties of
the trend filtering estimates and compared various algorithms in terms of computational
efficiency. For more details, see Section 2.2.

In this chapter, we develop a new methodology called Pattern Recovery Using Trend
Filtering (PRUTF) for identifying unknown change points in piecewise polynomial signals
with no continuity restriction at change point locations. Therefore, a change point is
defined as a sudden jump in the signal and its all derivatives up to order r. Figure
3.2 displays such change points for various r. In this chapter, we make the following
contributions.

• We propose a generic dual solution path algorithm along with the regularization pa-
rameter for trend filtering. This solution path, whose basic idea is borrowed from
[154] enables us to determine change points at each level of the regularization pa-
rameter. Our algorithm, PRUTF, is different from that of [154] as we remove (r+ 1)
coordinates of dual variables after identifying each change point. This adjustment
to the algorithm allows us to have independent dual variables between each pair of
neighbouring change points. Besides, the elimination of (r + 1) coordinates at each
step leads to faster implementation of the algorithm.

• We establish a stopping criterion that plays an essential role in the PRUTF algorithm
used to find change points. Notably, we show that the dual variables of trend filtering
between consecutive change points constitute a Gaussian bridge process. This finding
allows us to introduce a threshold for terminating our proposed algorithm.

• If the signal contains a staircase pattern, we prove that the method is statistically
inconsistent, making it unfavourable. Explaining the reason for this end, we modify
the PRUTF algorithm to produce estimates consistent in terms of both the number
and location of change points.

This chapter is organized as follows: we first describe how to characterize the dual
optimization problem of trend filtering. In Section 3.4, we develop our main algorithm,
PRUTF, to use in constructing the dual solution path of trend filtering and, in turn,
identifying the locations of change points. Section 3.5 discusses the properties of this dual
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solution path. We establish that the dual variables derived from the solution path form
a Gaussian bridge process that makes them favourable for statistical inference. Applying
these properties, we develop a stopping rule for the change point search algorithm in
Section 3.6. The quality of the PRUTF algorithm is validated in terms of pattern recovery
of the true signal in Section 3.7. It is established that the proposed technique in its naive
form fails to consistently identify the true signal when a special pattern, called staircase,
is present in the signal. Section 3.8 elaborates on how to modify PRUTF in order to
consistently estimate the true pattern. Simulation results and real-world applications are
presented in Section 3.9.

3.2 Notations

We begin this section with setting up notations that will be used throughout this thesis.
For an m × n matrix A, we denote its rows by A

1
, . . . ,Am and express the matrix as

A = (A
T

1
, . . . ,A

T

m
)T . Now for the set of indices I = {i

1
, . . . , i

k
} ⊆ {1, . . . , m}, the

notation AI = (A
T

i1
, . . . , A

T

i
k
)T represents the submatrix of A whose row labels are in

the set I. In a similar manner, for a vector a of length m, we let aI = (a
i1
, . . . , a

i
k
)
T

denote a subvector of a whose coordinate labels are in I. We write A−I and a−I to denote
A{1, ...,m}\I and a{1, ...,m}\I , respectively, where J \I is the set of indices in J but not in
I. Furthermore, for selecting i-th row of A, the notation [A]i and for its (i, j)-th element
the notation [A]ij are used. Also, [a]i extracts the i-th elements of the vector a. We write
diag(A) to denote the vector of the main diagonal entries of the matrix A. Moreover, for
a real number x, bxc denotes the greatest integer less than or equal x, and dxe denotes the
least integer greater or equal x. For a set B, the indicator function is denoted by 1(B).

3.3 Dual Problem of Trend Filtering

Recall the trend filtering problem

min
f∈R

n

1

2

∥∥y − f
∥∥2

2
+ λ

∥∥D(r+1) f
∥∥

1
, (3.3)

where λ ≥ 0 is the regularization parameter for controlling the effect of smoothing, and
the (n − r − 1) × n penalty matrix D(r+1) is the difference operator of order (r + 1). For
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(a) Linear (b) Quadratic (c) Cubic

Figure 3.1: Trend filtering solutions for r = 1, 2, 3 producing (a) piecewise linear, (b) piecewise
quadratic and (c) piecewise cubic fits, respectively.

r = 0, the first order difference matrix D(1) is defined as

D (1) =


−1 1 0 0 . . . 0
0 −1 1 0 . . . 0
0 0 −1 1 . . . 0
...

...

 , (3.4)

and for r ≥ 1, the difference operator of order r + 1 can be recursively computed by
D(r+1) = D(1) × D(r). Notice that, in this matrix multiplication, D(1) is the submatrix
consisting of the first n− r − 1 rows and n− r columns of the matrix in (3.4). Figure 3.1
displays the trend filtering fits for r = 1, 2, 3 for simulated data.

Although the objective function in the r-th order trend filtering (3.3) is strictly convex
and thus the minimization has a guaranteed unique solution, the penalty term is not
differentiable in f , so solving the optimization in its current form is difficult. To overcome
this difficulty, we follow the argument in [154] and convert this optimization problem into
its dual form. Since the objective function in the primal problem is strictly convex with
no constraint, the strong duality holds, meaning that the primal and the dual solutions
coincide [26].

33



The trend filtering problem (3.3) can be rewritten as

min
f∈Rn

1

2

∥∥y − f
∥∥2

2
+ λ

∥∥ z
∥∥

1
, subject to z = Df ,

where, for ease in the notation, we use D = D(r+1). For any given λ > 0, the Lagrangian
is

L(f , z, u) =
1

2

∥∥y − f
∥∥2

2
+ λ

∥∥ z
∥∥

1
+ uT

(
Df − z

)
and, thus the dual function is given by

g(u) = inf
f∈Rn, z∈Rm

L(f , z, u),

which is a concave function defined on Rm
, where m = n − r − 1 and takes values in the

extended real line R ∪ {−∞, ∞}. The vectors f and u are called the primal and dual
variables, respectively. Taking the derivative of the Lagrangian L(f , z, u) with respect to
f and setting it to be equal to zero, we obtain

f = y −DTu. (3.5)

Now substituting this back into the Lagrangian L(f , z, u), and performing certain algebraic
manipulations, we obtain

L∗(z, u) = inf
f∈R

n
L(f , z, u)

= −1

2

∥∥y −DTu
∥∥2

2
+

1

2

∥∥y
∥∥2

2
+ λ

∥∥ z
∥∥

1
− uTz .

Minimizing L∗(z, u), or equivalently maximizing uTz − λ‖z‖1, with respect to z ∈ Rm

leads us to the dual function g(u). Notice that sup
z

{
uTz − λ ‖z‖

1

}
is the conjugate of

the function λ ‖z‖
1

in the context of conjugate convex functions. See [27] and [26]. This
conjugate function is given by

sup
z

{
uTz− λ ‖z‖1

}
=

{
0 if ‖u‖∞ ≤ λ

∞ otherwise .

From all these, the dual function is given as

g(u) = −1

2

∥∥y −DTu
∥∥2

2
+

1

2

∥∥y
∥∥2

2
for ‖u‖∞ ≤ λ ,
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and, thus the dual problem is to find the maximum of the dual function g(u). This is
equivalent to

min
u∈R

m

1

2

∥∥y −DTu
∥∥2

2
subject to ‖u‖∞ ≤ λ . (3.6)

The constraint in (3.6) is an `∞-ball or a hypercube centered at the origin with the bound-
aries given by the set {−λ, λ}m. Since the matrix D is full row rank, the problem (3.6)
is strictly convex and has a unique solution, see [150] and [2]. In addition, notice that the
dimension of the dual vector u is m, which is smaller than that of the primal vector f and
may lead to relatively faster computations. The connection between the primal and the
dual solutions is given by the equations

û
λ

= λ γ̂, (3.7)

f̂
λ

= y −DT û
λ
, (3.8)

where γ̂ ∈ Rm
is a subgradient of ‖x‖

1
computed at x = Df̂

λ
. This subgradient is given

by

γ̂
i
∈


{+1} if

[
Df̂λ

]
i
> 0

{−1} if
[
Df̂λ

]
i
< 0

[−1 , +1] if
[
Df̂λ

]
i
= 0 .

(3.9)

The statements in Equations (3.7)–(3.9) are equivalent to the KKT optimality conditions
of the primal problem (3.3). The dual problem (3.6) demonstrates that DT û

λ
is the

projection, PC(y), of y onto the convex polyhedron C =
{

x ∈ Rm
: ‖x‖∞ ≤ λ

}
. From

this, the primal solution (3.8) can be rewritten in the form of f̂λ =
(
I−PC

)
(y), representing

the residual projection map of y onto the polyhedron C.

Our idea of applying trend filtering to discover change points in piecewise polynomial
signals is inspired by [129] and its correction [128], in which change point detection is
studied using fused lasso. Besides extending to piecewise polynomial signals, the novelty
of our work is in providing an exact stopping criterion, which is based on the Gaussian
bridge property of the trend filtering dual variables. In addition, we propose an algorithm
which, unlike that proposed in [129], always produces consistent change points even in the
presence of staircase patterns.
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3.4 Solution Path of Trend Filtering and PRUTF Al-

gorithm

In this section, we construct and study the solution path of dual variables ûλ as the
regularization parameter decreases from λ = ∞ to λ = 0. In the following, the PRUTF
algorithm is given to compute the entire dual solution path. This dual solution path
identifies the corresponding primal solution using (3.8). For any given λ, we call any
coordinate of ûλ a boundary coordinate if it is a vertex of the polyhedron C =

{
x ∈ Rm

:
‖x‖∞ ≤ λ

}
, meaning that its absolute value becomes λ. In the process of constructing the

solution path, for any λ, we trace several sets, introduced below.

• The set B = B(λ), called the boundary set, contains the boundary coordinates iden-
tified by ûλ.

• The vector sB = sB(λ), called the sign vector, represents collectively the signs of the
boundary points in B(λ).

• The set A = A(λ), called the augmented boundary set, contains the boundary coor-
dinates in B(λ) as well as the first ra = b(r + 1)/2c coordinates immediately after.

• The vector sA = sA(λ) represents collectively the signs of the augmented boundary
points in A(λ).

In the following, we discuss the need for the augmented boundary set A. We begin by
studying the structure of the dual vector u = Df in a piecewise polynomial signal of order
r, where the signal is partitioned into a number of blocks defined by the position of the
change points. Because the signal f is a piecewise polynomial of order r, to compute the
i-th coordinate of the vector u, we need r

b
= d(r + 1)/2e − 1 points directly before the

i-th element of f as well as ra = b(r + 1)/2c points immediately after that. Consequently,
the first ra elements of Df within each block cannot be computed. Moreover, within each
block, the last r

b
+ 1 elements of Df are all nonzero due to the existence of a change

point. This observation is depicted in Figure 3.2 for r = 0, 1, 2, 3. To explain this
point clearly, consider the case of r = 2 in Figure 3.2 in which the structure of Df is
shown, where the true change points are at 6 and 13. As can be seen, the points on
the boundary – the nonzero coordinates of Df – are B(λ) = {5, 6, 12, 13} with their
respective signs sB(λ) = {1, 1, −1, −1}. Notice that Df does not exist at points 7 and 14.
The augmented boundary set contains these points as well as the boundary points; that
is A(λ) = {5, 6, 7, 12, 13, 14}. The respective signs of the coordinates in the augmented
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(a) Piecewise constant, r = 0. (b) Piecewise linear, r = 1.

(c) Piecewise quadratic, r = 2. (d) Piecewise cubic, r = 3.

Figure 3.2: Structure of Df for piecewise polynomial signals with various orders r = 0, 1, 2, 3.
The olive lines display the true signals with two change points at the locations 6 and 13. Empty
circles represent the indices at which Df does not exist.

boundary set A(λ) are given by sA(λ) = {1, 1, 1, −1, −1, −1}. At each value of λ, we call
the coordinates that belong to the augmented boundary set A(λ) the augmented boundary
coordinates, and the rest, the interior coordinates.

At the j-th iteration with λ = λ
j
, we assume that the boundary set and its correspond-

ing sign vector are B = B(λ) and sB = sB(λ), respectively. Furthermore, we assume the
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augmented boundary set and its sign vector are A = A(λ) and sA = sA(λ), respectively.
Dual coordinates can be split into augmented boundary coordinates û

λj,A
and interior co-

ordinates û
λj,−A

. Recall from Section 3.2 that û
λj,A

represents the subvector of û
λj

with

the coordinate labels in the set A and û
λj,−A

represents the subvector of û
λj

with the

coordinate labels in the set {1, 2, · · · , m}\A. It is apparent from the definition of the
boundary coordinates that

û
λj,A

= λ
j
sA . (3.10)

Replacing the boundary coordinate with λ
j
sA in (3.6) and solving the resulting quadratic

problem with respect to the interior coordinates, lead to their least square estimates, given
by

û
λj,−A

=
(
D−ADT

−A

)−1
D−A

(
y − λ

j
DT
A

sA

)
. (3.11)

It should be noted that for the purpose of simplicity, we denote (DA)T and (D−A)T with

DT
A and DT

−A
, respectively. Notice that in (3.11), the first term

(
D−ADT

−A

)−1
D−A y simply

yields the least square estimate of regressing the response vector y on the design matrix

D−A . The second term −λ
j

(
D−ADT

−A

)−1
D−A DT

A
sA can be interpreted as a shrinkage

term due to the condition ‖u‖∞ ≤ λ. The expression (3.11) is true for λ ≤ λ
j

until either
an interior coordinate joins the boundary or a coordinate in the boundary set leaves the
boundary. The following argument explains how to specify values of λ while the interior
coordinates change.

We define the joining time associated with the interior coordinate i ∈ {1, 2, · · · , m}\A
as the time at which this interior coordinate joins the boundary. To determine the next
joining time, we reduce the value of λ in a linear direction starting from λ

j
and solve

û
λ,−A = (±λ, · · · , ±λ)T . Note that the right-hand side of (3.11) can be expressed as
a− λ

j
b, where

a =
(
D−ADT

−A

)−1
D−A y ,

b =
(
D−ADT

−A

)−1
D−ADT

A
sA . (3.12)

The joining time for every i ∈ {1, 2, · · · , m}\A is hence the solution of the equation
a
i
− λ b

i
= ±λ with respect to λ, which is given by

λ
join

i
=

a
i

b
i
± 1

, i ∈ {1, 2, · · · , m}\A .

38



Note that λ
join

i
is uniquely defined because only one of the signs −1 or +1 yields λ

i
∈ [0, λ

j
].

Now we turn the attention to the characterization of a coordinate that leaves the
boundary set B. For i ∈ B, the leaving time is defined as the time that the coordinate i
leaves the boundary set B. Since sB is the sign vector of changes captured by

[
D f̂
]
B
, then

diag(sB)
[
D f̂
]
B
> 0, which in turn, along with Equation (3.8), implies diag(sB)

[
D
(
y −

DT û
λ

) ]
B
> 0. Here, for any vector η, diag(η) denotes the diagonal matrix with the

diagonal elements given by η, and η > 0 holds element-wise. Therefore, a coordinate
i ∈ B leaves the boundary set B if diag(sB)

[
D
(
y −DT û

λ

) ]
B
> 0 is violated. Using the

relation [
D
(
y −DT û

λ

) ]
B

= DB

(
y −DT û

λ

)
,

and the decomposition DT û
λ

= DT
A û

λ,A + DT
−A

û
λ,−A , we obtain

diag(sB)
[
D
(
y −DT û

λ

)]
B

= c− λd , (3.13)

where

c = diag(sB) DB

(
y −DT

−A
a
)
,

d = diag(sB) DB

(
DT
A sA −DT

−A
b
)
. (3.14)

Hence, a leaving time is obtained from the equation c
i
− λ d

i
> 0 as

λ
leave

i
=


c
i

d
i

, if c
i
< 0 and d

i
< 0 ,

0, otherwise .

The conditions in the aforementioned equation is due to the fact that at the j-th iteration
with λ ≤ λ

j
, the expression c

i
− λ d

i
> 0 fails for i ∈ B, if both c

i
and d

i
are negative. An

alternative way to determine the next leaving time is to use the KKT optimality conditions
of (3.6). We refer the reader to the supplementary materials of [154].

The following algorithm, PRUTF, describes the process of constructing the entire dual
solution path of trend filtering.

Algorithm 3.1 (PRUTF Algorithm)

1. Initialize the set of change points locations as τ
0

= ∅, the empty set.
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2. At step j = 1, initialize the boundary set B
1

=
{
τ

1
− r

b
, τ

1
− r

b
+ 1, . . . , τ

1

}
and its

associated sign vector sB1
= {s

1
, . . . , s

1
}, both with cardinality of r

b
+ 1, where τ

1
is

obtained by

τ
1

= argmax
i=1, ...,m

| û
i
| , (3.15)

and s
1

= sign(ûτ1 ), where û
i

is the i-th element of the vector û =
(
DDT

)−1
D y.

The updated set of change points locations is now τ
1

= {τ
1
}. We also record the

first joining time λ
1

=| ûτ1 | and keep track of the augmented boundary set A
1

=
{τ

1
− r

b
, . . . , τ

1
+ ra} and its corresponding sign vector sA1

= {s
1
, . . . , s

1
} of length

r + 1. The dual solution is regarded as û(λ) =
(
DDT

)−1
D y, for λ ≥ λ

1
.

3. For step j = 2, 3, . . . ,

(a) Obtain the pair
(
τ

join

j
, s

join

j

)
from

(
τ

join

j
, s

join

j

)
= argmax

i/∈Aj−1 , s∈{−1, 1}

a
i

s+ b
i

· 1
{

0 ≤
a
i

s+ b
i

≤ λ
j−1

}
, (3.16)

and set the next joining time λ
join

j
as the value of

ai
s+bi

, for i = τ
join

j
and s = s

join

j
.

(b) Obtain the pair
(
τ

leave

j
, s

leave

j

)
from(

τ
leave

j
, s

leave

j

)
= argmax

i∈Bj−1 , s∈{−1, 1}

c
i

d
i

· 1
{
c
i
< 0 , d

i
< 0
}
, (3.17)

and assign the next leaving time λ
leave

j
as the value of

c
i

d
i

, for i = τ
leave

j
and

s = s
leave

j
.

(c) Let λ
j

= max
{
λ

join

j
, λ

leave

j

}
, then the boundary set B

j
and its sign vector sBj are

updated in the following fashion:

– Either append
{
τ

join

j
−r

b
, τ

join

j
−r

b
+1, . . . , τ

join

j

}
and the corresponding signs{

s
join

j
, . . . , s

join

j

}
to B

j−1
and sBj−1

, respectively, provided that λ
j

= λ
join

j
.

Also, add τ
join

j
to τ

j−1
.

– Or remove
{
τ

leave

j
, τ

leave

j
+ 1, . . . , τ

leave

j
+ r

b

}
and the corresponding signs{

s
leave

j
, . . ., s

leave

j

}
from B

j−1
and sBj−1

, respectively, provided that λ
j

= λ
leave

j
.

Also, remove τ
leave

j
from τ

j−1
.
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In the same manner, the augmented boundary set, A
j

and its sign, sAj
are

formed by adding
{
τ

join

j
− r

b
, . . . , τ

join

j
+ ra

}
and

{
s

join

j
, . . . , s

join

j

}
to A

j−1
and

sAj−1
, respectively, if λ

j
= λ

leave

j
or, otherwise, by removing the associated set{

τ
leave

j
, . . . , τ

leave

j
+ r
}

and
{
s

leave

j
, . . . , s

leave

j

}
from A

j−1
and sAj−1

. Thus, the

dual solution is computed as ûAj
(λ) = a − λb for interior coordinates and

û−Aj
(λ) = λ sAj

for boundary coordinates over λ
j
≤ λ ≤ λ

j−1
.

4. Repeat step 3 until λ > 0.

The critical points λ
1
≥ λ

2
≥ . . . ≥ 0 indicate the values of the regularization

parameter at which the boundary set changes.

Remark 3.2 Notice that the vector τ derived by the PRUTF algorithm represents the
locations of change points for the dual variables. In order to obtain the locations of change
points in primal variables, we must add ra to any element of τ , that is,

{
τ

1
+ ra , τ2

+
ra , . . .

}
. This relationship between the primal and dual change point sets is visible from

Figure 3.2.

Remark 3.3 For fused lasso, r = 0, Lemma 1 of [154], known as the boundary lemma,
is satisfied since the matrix DDT is diagonally dominant, meaning that

∣∣[DDT
]
i,i

∣∣ ≥∑
j 6=i

∣∣[DDT
]
i,j

∣∣, for i = 1, . . . ,m. This lemma states that when a coordinate joins the

boundary, it will stay on the boundary for the rest of the path. Consequently, part (b) of
step 3 in Algorithm 3.1 is unnecessary, and hence the next leaving time in part (c) is set
to zero, i.e., λ

leave

j
= 0, for every step j. However, the boundary lemma is not satisfied for

r = 1, 2, 3, . . ..

Remark 3.4 There is a subtle and important distinction between our proposed algorithm,
PRUTF, and the one presented in [154]. The latter work studies the generalized lasso
problem for any arbitrary penalty matrix D (unlike D used in trend filtering, which must
have a certain structure). The proposed algorithm in [154] relies on adding or removing
only one coordinate to or from the boundary set at every step. The key attribute of our
algorithm is to add or remove r+ 1 coordinates to or from the augmented boundary set, an
approach inspired by the argument presented at the beginning of this section. Essentially,
this attribute makes PRUTF, presented in Algorithm 3.1, well-suited for change point anal-
ysis. It is important to mention that PRUTF requires at least r + 1 data points between
neighbouring change points.
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Remark 3.5 For a given λ, equations (3.10) and (3.11) give the values of the dual vari-
ables in û

λ
. The equations demonstrate that the dual solution path is a linear function of

λ with change in the slopes at joining or leaving times λ1 ≥ λ2 ≥ . . . ≥ 0.

Remark 3.6 The number of iterations required for PRUTF, presented in Algorithm 3.1,
is at most (3 p+1)/2, where p = d m

r+1
e, see [150], Lemma 6. However, this upper bound for

the number of iterations is usually very loose. The upper bound comes from the following
realization discovered by [115] and later improved by [106]. Any pair

(
A , sA

)
appears

at most once throughout the solution path. In other words, if
(
A , sA

)
is visited in one

iteration of the algorithm, the pair
(
A , −sA

)
as well as

(
A , sA

)
cannot reappear again

for the rest of the algorithm. Interestingly, this fact says that once a coordinate enters the
boundary set, it cannot immediately leave the boundary set at the next step.

Moreover, note that at one iteration of the PRUTF algorithm with the augmented boundary
set A, the dominant computation is in solving the least square problem

min
u∈Rm

1

2

∥∥y −DT
A

u
∥∥2

2
. (3.18)

One can apply QR decomposition of DT
A

to solve the least square problem, and then update

the decomposition as set A changes. However, since D−ADT
−A

is a banded Toeplitz matrix

(see Section 3.5), a solution of (3.18) always exists and can be computed using a banded
Cholesky decomposition. Thus, the computational complexity for the iteration is of order
O
(
(m − |A|) r2

)
, which is linear in the number of interior coordinates as r is fixed and

usually small. Overall, if K is the total number of steps run by the PRUTF algorithm,
then the total computational complexity is O

(
K(m− |A|) r2

)
. See [154] and [6].

3.5 Statistical Properties of the Solution Path

An important component of the methodology that we develop in this work involves comput-
ing algebraic expressions based on the matrix D = D(r+1). In this section, we describe the
properties of such expressions. To begin with, let A = {A

1
, . . . , A

J
} and sA = {s

1
, . . . , s

J
}

be the augmented boundary set and its corresponding sign vector, respectively, after a
number of iterations of Algorithm 3.1, where A

j
=
{
τ
j
− r

b
, τ

j
− r

b
+ 1, . . . , τ

j
+ ra

}
and s

j
= {s

j
, . . . , s

j
} for j = 1, . . . , J . This augmented boundary set corresponds

to J change points {τ
1
, . . . , τ

J
} that partition all the dual variables into J + 1 blocks

B
j

=
{
τ
j
+1, . . . , τ

j+1

}
for j = 0, 1, . . . , J , with the conventions that τ

0
= 0 and τ

J+1
= m.

In the following, we list some properties of matrix multiplications involving D.
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

6 −4 1 0 0 0 0 0 0
−4 6 −4 1 0 0 0 0 0

1 −4 6 −4 1 0 0 0 0
0 1 −4 6 −4 1 0 0 0
0 0 1 −4 6 −4 1 0 0
0 0 0 1 −4 6 −4 1 0
0 0 0 0 1 −4 6 −4 1
0 0 0 0 0 1 −4 6 −4
0 0 0 0 0 0 1 −4 6


(a) Structure of DDT .



6 −4 1 0 0 0 0
−4 6 −4 0 0 0 0
1 −4 6 0 0 0 0

0 0 0 6 −4 1 0
0 0 0 −4 6 −4 1
0 0 0 1 −4 6 −4
0 0 0 0 1 −4 6


(b) The structure of D−A DT

−A
.

Figure 3.3: Structure of quadratic forms of matrix D.

• It follows from the definition of the matrix D that it is a banded Toeplitz matrix
with bandwidth r + 1. It tuns out that the matrix DDT reveals the same property,
meaning that it is a square banded Toeplitz matrix. Moreover, its r + 1 nonzero
row elements are consecutive binomial coefficients of order 2 r + 2 with alternating
signs. In other words, (i , j)-th element of DDT for i ≥ j is (−1) i−j

(
2 r+2

r+1+i−j

)
. An

example, for r = 1, is given in panel (a) of Figure 3.3. Note that DDT is a symmetric,
nonsingular and positive definite matrix [39].

• The matrix D−ADT
−A

is a block diagonal matrix whose diagonal submatrices corre-

spond to J+1 blocks. More precisely, the j-th submatrix on the diagonal of D−ADT
−A

is a matrix with the first (τ
j+1
− τ

j
− r) rows and columns of DDT , see panel (b) of

Figure 3.3. Notice that, due to its non-singularity, D−ADT
−A

is always invertible. In

fact, both
(
D−ADT

−A

)−1
and

(
D−ADT

−A

)−1
D−A are block diagonal matrices. Another

interesting result is that every row of the matrix
(
D−A DT

−A

)−1
D−A is a contrast

vector, meaning that for any t = 1, . . . , m,

n∑
i=1

[(
D−ADT

−A

)−1
D−A

]
t, i

= 0 .

• Another interesting term in analyzing the behaviour of the dual variables is DT
A sA.

It can be shown that the vector DT
A sA can be partitioned into J + 1 subvectors

associated with the change points τ
j
, j = 1, . . . , J . The subvector associated with
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τ
j
, j = 2, . . . , J−1, is DT

Aj
s
Aj

, whose elements are zero, except the first consecutive

r+1 as well as the last consecutive r+1 elements. The first r+1 nonzero elements of
DT

Aj
s
Aj

are the binomial coefficients in the expansion of s
j
(x− 1)r, and its last r+ 1

elements are the binomial coefficients in the expansion of −s
j+1

(x−1)r. Furthermore,
the first r + 1 elements of the first subvector and the last r + 1 elements of the last
subvector are also equal to zero. For example, for a piecewise cubic signal, r = 3,
with two change points

(
τ

1
, τ

2

)
and signs

(
− 1 , 1

)
, the vector DT

A
sA becomes0, . . . , 0, 1, −3, 3, −1︸ ︷︷ ︸

1 : (τ1+ra )

, −1, 3, −3, 1, 0, . . . , 0, −1, 3, −3, 1︸ ︷︷ ︸
(τ1+ra+1) : (τ2+ra )

, 1, −3, 3, −1, 0, . . . , 0︸ ︷︷ ︸
(τ2+ra+1) :m

 .

Consequently, the structure of DT
Aj

s
Aj

allows us to write DT
A

sA =
∑J

j=0
DT

Aj
s
j
.

Additionally, if the signs of two consecutive change points τ
j

and τ
j+1

are the same,
then [(

D−ADT
−A

)−1
D−A

]
t

(
DT

Aj+1
s
j+1

+ DT
Aj

s
j

)
= −sj, (3.19)

for t = τ
j

+ ra , . . . , τj+1
+ r

b
.

• Let PD = DT
−A

(
D−ADT

−A

)−1
D−A be the projection matrix onto the row space of the

matrix D−A. Moreover, let Xj be the design matrix of the r-th polynomial regression
on the indices of j-th segment

{
τj + 1 , . . . , τj+1

}
, that is,

Xj =



1
τj+1

n

(
τj+1

n

)2
· · ·

(
τj+1

n

)r
1

τj+2

n

(
τj+2

n

)2
· · ·

(
τj+2

n

)r
...

...
...

...

1
τj+1

n

(
τj+1

n

)2
· · ·

(
τj+1

n

)r


.

The orthogonal projection matrix I−PD is a block diagonal matrix whose j-th block
associated with the segment

{
τj + 1 , . . . , τj+1

}
is equal to the projection map onto

the column space of Xj, i.e.,

I−PD = Xj

(
XT

j Xj

)−1
XT

j . (3.20)
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Equation (3.10) says that the absolute values of the boundary coordinates are λ, that
is,

û(t;λ) = λ s
j

for t ∈ Aj. (3.21)

On the other hand, the values of the interior coordinates are given by

û(t;λ) =



[(
D−AD

T
−A

)−1
D−A

]
t

(
y − λDT

A1
s

1

)
, 1 ≤ t < τ

1
− r

b[(
D−AD

T
−A

)−1
D−A

]
t

(
y − λ

(
DT
Aj+1

s
j+1

+ DT
Aj
s
j

))
, τ

j
+ ra < t < τ

j+1
− r

b[(
D−AD

T
−A

)−1
D−A

]
t

(
y − λDT

A
J

s
J

)
, τ

J
+ ra < t ≤ m.

(3.22)

For a given λ, the dual variables û(t; λ) for t = 0, . . . , m can be collectively viewed as
a random bridge, that is, a conditioned random walk with drift whose end points are set
to zero. Moreover, û(t; λ) is bounded between −λ and λ. The quantity û(t; λ) can also
be decomposed into a sum of several smaller random bridges which are formed by blocks
created from the change points. Recall that the last consecutive r

b
+ 1 elements of the

block B
j

are λ s
j
, for any j = 0, 1, · · · , J . Hence, for t = τ

j
+ra , . . . , τj+1

−r
b
, the random

bridge associated with the j-th block is given by

û
j
(t; λ) =

[(
D−ADT

−A

)−1
D−A

]
t

(
y − λ

(
DT

Aj+1
s
j+1

+ DT
Aj

s
j

))
, j = 0, . . . , J , (3.23)

with the conventions s
0

= s
J+1

= 0 ∈ Rr+1
. It is important to note that similar to û(t; λ),

the process û
j
(t; λ) satisfies the conditions û

j
(τ
j
+ra ; λ) = λ s

j
and û

j
(τ
j+1
−r

b
;λ) = λ s

j+1
.

From (3.23), the process û
j
(t; λ) is composed of the stochastic term

û st
j

(t) =
[(

D−ADT
−A

)−1
D−A

]
t

y, (3.24)

and the drift term

ûdr
j

(t; λ) = −λ
[(

D−ADT
−A

)−1
D−A

]
t

(
DT

Aj+1
s
j+1

+ DT
Aj

s
j

)
. (3.25)

According to model (3.1) with Gaussian noises, it turns out that the discrete time
stochastic process term û st

j
(t) can be embedded in a continuous time Gaussian bridge

process. The following theorem describes the characteristics of this process.
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Theorem 3.7 Suppose the observation vector y is drawn from the model (3.1), where the
error vector ε has a Gaussian distribution with mean zero and covariance matrix σ2 I. For
given D and A,

(a) Define

Wj(t) =
(
τj+1 − τj − r

)−(2r+1)/2
[(

D−ADT
−A

)−1
D−A

]
bmtc

y, (3.26)

for (τ
j

+ ra)/m ≤ t ≤ (τ
j+1
− r

b
)/m, where

W
j

( τ
j

+ ra
m

)
= W

j

( τ
j+1
− r

b

m

)
= 0, (3.27)

for j = 0 , . . . , J . Then the stochastic process Wj =
{
Wj(t) : (τ

j
+ ra)/m ≤ t ≤

(τ
j+1
− r

b
)/m

}
is a Gaussian bridge process with mean vector zero and covariance

function

Cov
(
Wj(t) , Wj(t

′)
)

= σ2
[(

D−ADT
−A

)−1]
bmtc,bmt′c

, (3.28)

for any (τ
j

+ ra)/m ≤ t , t′ ≤ (τ
j+1
− r

b
)/m.

(b) The processes Wj and Wj′ are independent, for j′ 6= j.

A proof is given in Appendix A.1.

This theorem could be extended to the case of non-Gaussian random variables and
therefore establishes a Donsker type Central Limit Theorem for Wj. Theorem 3.7 guar-
antees that the dual variable process associated with the j-th block, i.e.

uj =
{
û
(
bmtc; λ

)
: (τ

j
+ ra)/m ≤ t ≤ (τ

j+1
− r

b
)/m

}
is a Gaussian bridge process with the drift term

−λ
[(

D−ADT
−A

)−1
D−A

]
bmtc

(
DT

Aj+1
s
j+1

+ DT
Aj

s
j

)
, (3.29)

and the covariance matrix stated in (3.28).

Recall that a standard Brownian bridge process defined on the interval [a, b] is a stan-
dard Brownian motion B(t) conditioned on the event B(a) = B(b) = 0. It is often
characterized from a Brownian motion B(t) with B(a) = 0, by setting

B
0
(t) = B(t)− t− a

b− a
B(b) .
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The mean and covariance functions of the Brownian bridge B
0
(t) are given by E

(
B

0
(t)
)

= 0
and Cov

(
B

0
(s), B

0
(t)
)

= min{s− a, t− a} − (b− a)−1(s− a)(t− a) for any s, t ∈ [a, b],
respectively. A Gaussian bridge process is an extension of the Brownian bridge process
when the Brownian motion B(t), in the definition of the Brownian bridge B

0
(t), is replaced

by a more general Gaussian process G(t). See, for example, [61].

Remark 3.8 The celebrated Donsker theorem [45] states that the partial sum process of
a sequence of i.i.d. random variables, with mean zero and variance 1, converges weakly to
a Brownian bridge process. See [156] or [24]. A version of Theorem 3.7 involving non-
Gaussian random variables would extend this result to weighted partial sum processes and
show that the limiting process is a Gaussian bridge with a certain covariance structure. So
the Gaussian assumption in Theorem 3.7 is not restrictive. It is also interesting to show
that for r = 0, 1, the process û st

j

(
bmtc

)
boils down to its respective CUSUM processes. To

show this, consider the interval
[
(τ
j

+ ra)/m , (τ
j+1
− r

b
)/m

]
,

• For the piecewise constant signals, r = 0, the quantity
[(

D−ADT
−A

)−1
D−A

]
bmtc

y can

be written as(
0, . . . , 0︸︷︷︸

τj

, 1− bmtc
τ
j+1
− τ

j

, . . . , 1− bmtc
τ
j+1
− τ

j︸ ︷︷ ︸
bmtc

,− bmtc
τ
j+1
− τ

j

, . . . ,− bmtc
τ
j+1
− τ

j

, 0︸︷︷︸
τj+1

, . . . , 0

)
y.

Notice that the above statement is the CUSUM statistic for the j-th segment, that is

bmtc∑
k=τj+1

(
y
k
− y

(τj+1):τj+1

)
, (3.30)

where y
(τj+1):τj+1

is the sample average of
(
y
τj+1

, . . . , yτj+1

)
. It is well known that the

CUSUM statistic (3.30) converges weakly to the Brownian bridge. In addition, for
any (τ

j
+ ra)/m ≤ t′ ≤ t ≤ (τ

j+1
− r

b
)/m, the covariance function becomes

[(
D−ADT

−A

)−1]
(bmt′c,bmtc)

= (bmt′c − τ
j
)−

(bmt′c − τ
j
)(bmtc − τ

j
)

τ
j+1
− τ

j

,

which is identical to the covariance function of the Brownian bridge.

47



• For the piecewise linear signals r = 1, the quantity
[(

D−ADT
−A

)−1
D−A

]
bmtc

y reduces

to
bmtc∑
k=τj+1

k
(
y
k
− f̂

k

)
, (3.31)

where f̂ is the least square fit of the simple linear regression of
(
y
τj+1

, . . . , yτj+1

)
onto

(
τ
j

+ 1, . . . , τ
j+1

)
. As proved in Theorem 3.7, the preceding statistic (3.31)

is also a Gaussian bridge process. Furthermore, using the results in [75], for any
(τ
j
+ ra)/m ≤ t′ ≤ t ≤ (τ

j+1
− r

b
)/m, the covariance function of this Gaussian bridge

process is given by[(
D−AD

T
−A

)−1]
(bmt′c,bmtc)

=

(
∆
j
− bmtc+ τ

j

)(
∆
j
− bmtc+ τ

j
+ 1
)

3 ∆
j

(
∆
j

+ 1
)(

∆
j

+ 2
)

×
(
bmt′c − τ

j

)(
bmt′c − τ

j
+ 1
)

×
[(
bmtc − τ

j
+ 1
)(
bmt′c − τ

j
− 1
)(

∆
j

+ 2
)
−
(
bmtc − τ

j

)(
bmt′c − τ

j
+ 2
)
∆
j

]
,

where ∆
j

= τ
j+1
− τ

j
.

3.6 Stopping Criterion

This section concerns developing a stopping criterion for the PRUTF algorithm. We pro-
vide tools for deriving a threshold value at which the PRUTF algorithm terminates the
search if no values of dual variables exceed this threshold. Consider the dual variables
at the first step of the algorithm, i.e. û st(t) =

[ (
DDT

)−1
D
]
t
y, for t = 0, . . . ,m, which

correspond to û st(t) in (3.24) with A = ∅. It turns out that û st(t) is a stochastic process
with local minima and maxima attained at the change points. This structure is displayed
with cyan-colored lines ( ) in Figure 3.4 for both piecewise constant r = 0 and piecewise
linear r = 1 signals. As the PRUTF algorithm detects more change points and forms the
augmented boundary set A, the local minima or maxima corresponding to these change
points are removed from the stochastic process

û st
−A

(t) =
[(

D−ADT
−A

)−1
D−A

]
t

y =
J∑
j=0

û st
j

(t)1
{
t ∈ Bj

}
, (3.32)
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(a) Piecewise constant with r = 0 (b) Piecewise linear with r = 1

Figure 3.4: The cyan-colored lines show the dual variables for the full matrix D. Dual variables
computed after removing rows of the matrix D associated with τ

1
, that is D−A1

, are displayed

by the olive-colored lines. The augmented boundary set A
2

corresponding to τ
1

and τ
2

results to
the dual variables shown by orange-colored lines.

for t = 1, . . . , m − |A|. This fact is shown by olive-colored lines ( ) in Figure 3.4. The
last equality in (3.32) expresses that the û st

−A
(t) is the stochastic term of the dual variables

for all the interior coordinates and is derived by stacking the stochastic terms of the dual
variables associated with j-th block, û st

j
(t), as defined in (3.24), for j = 0, . . . , J . This

behaviour suggests a way to introduce a stopping rule for the PRUTF algorithm. As can
be viewed from the orange-colored lines ( ) of Figure 3.4, if all true change points are
captured by the algorithm and stored in the augmented set A0, the resulting process

û st
−A0

(t) =
[(

D−A0
DT
−A0

)−1
D−A0

]
t

y for t = 0, . . . , m− |A0| ,

contains no noticeable optimum points and tends to fluctuate close to the zero line (x-axis).

We terminate the search in Algorithm 3.1 at step j by checking whether the maximum
of
∣∣ û st
−Aj

(t)
∣∣, for t = 0, . . . , m − |A

j
|, is smaller than a certain threshold. To exactly

specify this threshold, as suggested by Theorem 3.7, we need to calculate the excursion
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probabilities of a Gaussian bridge process. As stated in [1], analytic formulas for the
excursion probabilities are known to be available only for a small number of Gaussian
processes. One of such Gaussian processes is the Brownian bridge process. It is well
known that for the Brownian bridge process B

0
(t) defined on the interval [a, b]

Pr
(

sup
a≤t≤b

∣∣B
0
(t)
∣∣ ≥ x

)
= 2

∞∑
i=1

(−1)i+1 exp

(
−2 i2 x2

b− a

)
. (3.33)

See, for example, [1], and [135]. Hence for the piecewise constant signals, the required
threshold for stopping Algorithm 3.1 can be obtained from (3.33), for a suitably chosen
interval [a, b]. That is, for a given value α, we choose xα such that Pr

(
supa≤ t≤ b |B0

(t) | ≥
xα
)

= 1−α. Therefore, for r = 0 and a = 0, b = 1, we stop Algorithm 3.1 at the iteration
j

0
if

max
0≤ t≤ 1

∣∣∣û st
−Aj0

(
b kt c

)∣∣∣ ≤ σ xα
√
k , for t = 0, . . . , m− |A

j0
| ,

and k = m− |Aj0
|.

For r ≥ 1, the threshold is obtained in a similar fashion. Although the excursion
probabilities for the Gaussian bridge processes are not known, we notice that by adopting
the steps for the proof of (3.33) in [19], we can establish a similar formula for the Gaussian
bridge process G

0
(t) in Theorem 3.7 as

Pr
(

sup
a≤ t≤ b

∣∣G
0
(t)
∣∣ ≥ x

)
= 2

∞∑
i=1

(−1)i+1 exp

(
−2 i2 x2

S2
r (k)

)
, (3.34)

where k = m− |A
j0
|, and the quantity S2

r (k) is the k-th diagonal element of the matrix(
D−Aj0

DT
−Aj0

)−1
.

Hence, we stop Algorithm 3.1 at the iteration j
0

if

max
0≤ t≤ 1

∣∣∣û st
−Aj0

(
b kt c

)∣∣∣ ≤ σxα (k − r)(2 r+1)/2 , for t = 0, . . . , m− |A
j0
, (3.35)

where xα is derived from the equation

∞∑
i=1

(−1)i+1 exp

(
−2 i2 x2

α

S2
r (k)

)
=
α

2
. (3.36)
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3.7 Pattern Recovery and Theories

The main purpose of this section is to investigate whether the PRUTF algorithm can
recover features of the true signal f . We also demonstrate conditions under which the
structure of the estimated signal f̂ matches the true signal f . To verify the performance of
PRUTF in the discovery the true signal, we first define what we mean by pattern recovery.

Definition 3.9 (Pattern Recovery): A trend filtering estimate f̂ recovers the pattern of
the true signal f if

sign
([

Df̂
]
i

)
= sign

([
Df
]
i

)
, for i = 1, . . . ,m, (3.37)

where m = n − r − 1 is the number of rows of matrix D. We use the notation f̂
pr
= f to

briefly denote the pattern recovery feature of f̂ .

In the asymptotic framework, a trend filtering estimate is called pattern consistent if

Pr
(
f̂
pr
= f

)
−→ 1 as n −→∞, (3.38)

where f̂ = f̂n, to denote its dependency to the sample size n. Pattern recovery is very
similar to the concept of sign recovery in lasso [173, 159] as it deals with the specification
of both locations of non-zero coefficients and their signs.

The problem of pattern recovery is studied for the special case of the fused lasso in
several papers. [129] derived conditions under which fused lasso consistently identifies the
true pattern. This was contradicted by [132], who argued that fused lasso does not always
succeed in discovering the exact change points. [132] showed that fused lasso can be refor-
mulated as the usual lasso, for which the necessary conditions for exact sign recovery have
been established in the literature. Then, they proved that one such necessary condition,
known as the irrepresentable condition, is not satisfied for the transformed lasso when there
is a specific pattern called a staircase (Definition 3.11). Corrections to [129] appeared in
[128]. Later on, [123] proposed a method called puffer transformation, which is shown to
be consistent in specifying the exact change points, including in the presence of staircases.

In the remaining part of this section, we use the dual variables to demonstrate the
situations in which PRUTF can correctly recover the pattern of the true signal. Exact
pattern recovery implies that the dual variables are comprised of J

0
+1 consecutive bounded

processes whose endpoints correspond to the true change points. The following lemma
describes the situations in which exact pattern recovery can be attained. A particular case
of this result in the context of piecewise constant signals was established in [128].
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Theorem 3.10 Exact pattern recovery in PRUTF occurs when the discrete time processes{
û st
j

(t), t = τ
j

+ ra , . . . , τj+1
− r

b

}
, for j = 0, . . . , J

0
, satisfy the following conditions

simultaneously with probability one:

(a) First block constraint: for t = 1 , . . . , τ
1
− r

b
,

−λ
(

1−
[(
D−AD

T
−A

)−1
D−A

]
t

DT
A1

1
)
≤ û st

0
(t) ≤ λ

(
1 +

[(
D−AD

T
−A

)−1
D−A

]
t

DT
A1

1
)
.

(3.39)

(b) Last Block constraint: for t = τ
J0

+ ra , . . . , m,

−λ
(

1 +
[(
D−AD

T
−A

)−1
D−A

]
t

DT
A
J0

1

)
≤ û st

J0
(t) ≤ λ

(
1−

[(
D−AD

T
−A

)−1
D−A

]
t

DT
A
J0

1

)
.

(3.40)

(c) Interior Block constraints: for t = τ
j

+ ra , . . . , τj+1
− r

b
, if s

j
6= s

j+1

− λ
(

1−
[(
D−AD

T
−A

)−1
D−A

]
t

(
DT
Aj+1

1−DT
Aj
1
))
≤ û st

j
(t)

≤ λ
(

1 +
[(
D−AD

T
−A

)−1
D−A

]
t

(
DT
Aj+1

1−DT
Aj
1
))

, (3.41)

and if s
j
6= s

j+1
, which corresponds to a staircase block, û st

j
(t) ≤ 0 or û st

j
(t) ≥ 0.

In the foregoing equations, 1 ∈ Rr+1 is a vector of size r + 1 whose elements are all 1. A
proof of the theorem is given in Appendix A.2.

We analyze the performance of the PRUTF algorithm in pattern recovery in two dif-
ferent scenarios;

• signals with staircase patterns,

• signals without staircase patterns.

To our knowledge, [132] was the first paper to carefully investigate the staircase pattern for
the piecewise constant signals in the change points analysis setting. In [132], a staircase
pattern for a piecewise constant signal refers to the phenomenon of equal signs in two
consecutive changes. We extend this concept to the general case, which covers any piecewise
polynomial signals of order r, by applying the penalty matrix D = D(r+1).
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Definition 3.11 Suppose that the true signal f is a piecewise polynomial of order r with
change points at the locations τ =

{
τ

1
, . . . , τ

J0

}
. Moreover, let B =

{
B

0
, . . . , B

J0

}
be

blocks created by the change points in τ . A staircase occurs in block B
j
, j = 1, . . . , J

0
− 1

if

sign
([

Df
]
τj

)
= sign

([
Df
]
τj+1

)
. (3.42)

The following theorem investigates the consistency of PRUTF in pattern recovery, in
both with and without staircases. Specifically, it shows that for a signal without a staircase,
the exact pattern recovery conditions are satisfied with probability one. On the other hand,
in the presence of staircases in the signal, the probability of these conditions holding, which
is equivalent to the probability of a Gaussian bridge process never crossing the zero line,
converges to zero.

In the literature, the consistency of a change point method is usually characterized
by the signal size n, the number of change points J0, the noise variance σ2

n, the minimal
spacing between change points,

Ln = min
j=0, ..., J0

∣∣Ln, j∣∣ = min
j=0, ..., J0

∣∣τ
j+1
− τ

j

∣∣,
and the minimum magnitude of jumps between change points,

δn = min
j=1, ..., J0

∣∣Dτj
f
∣∣.

All the above quantities are allowed to change as n grows.

In the following, we present our main theorem providing conditions under which the
output of the PRUTF algorithm consistently recovers the pattern of the true signal f .

Theorem 3.12 Suppose that y follows the model in (3.1). Let τ be the set of J0 change

points for the true signal f . Additionally, assume that τ̂ n and f̂n are the set of change
points estimates and the corresponding signal estimate obtained by the PRUTF algorithm,
respectively. The followings hold for the PRUTF algorithm.

(a) Non-staircase Blocks: Suppose there is no staircase block in the true signal f . For
some ξ > 0 and with

λn <
δn L

2r+1
n

n2r 2 r+2
,

if the conditions
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• δn L
r+1/2
n

nr σn
−→∞ and

δn L
r+1/2
n

2 r/2+2 nr σn
√

log(J0)
> (1 + ξ), (3.43)

• λn L
r+1/2
n

nr σn
−→∞ and

2 r/2+1 λn L
r+1/2
n

nr σn
√

log(n− J0)
> (1 + ξ), (3.44)

hold, then the PRUTF algorithm guarantees exact pattern recovery with probability
approaching one. That is,

Pr
(
f̂n

pr
= f

)
−→ 1 as n −→∞.

(b) Staircase Blocks: On the other hand, if the true signal f contains at least one
staircase block, then the probability of exact pattern recovery by the PRUTF algorithm
converges to zero. That is,

Pr
(
f̂n

pr
= f

)
−→ 0 as n −→∞.

A proof is given in Appendix A.3.

Remark 3.13 The performance of PRUTF in terms of consistent pattern recovery relies
on the quantity δn L

r+1/2
n /σn and the choice of λn. In the piecewise constant case, the

former quantity reduces to the well-known signal-to-noise-ratio quantity, which is crucial
for a consistent change point estimation [56, 160]. The statements in 3.43 illustrate that
the consistency of PRUTF in non-staircase blocks is achievable if the quantity δn L

r+1/2
n /σn

is of order O(nr+c), for some c > 0. In addition, the number of the change points J0 is
allowed to diverge, provided

log
(
J0

)
.

δ2n L
2r+1
n

n2r σ2
n

.

The drift term (3.25) plays a key role in assessing the performance of PRUTF in pattern
recovery. From (3.19), this drift for a staircase block B

j
becomes λ s

j
, which is constant

in t for the entire block. Consequently, the interior dual variables û
j
(t;λ) for the staircase

block B
j

contain only the stochastic term û st
j

(t) =
[(

D−ADT
−A

)−1
D−A

]
t

y, which fluctuates

around the line λ s
j
. Recall that the KKT conditions for the dual problem of trend filtering

require û
j
(t; λ) to stay within the lines −λ and λ. Thus, for a signal with staircase

54



(a) Piecewise constant signal with staircase
block (50, 80].

(b) Piecewise linear signal with staircase block
(20, 55].

Figure 3.5: Piecewise constant and piecewise linear signals with staircase pattern at blocks (50,
80] and (20, 55] and their corresponding dual variables.

patterns, the PRUTF algorithm is sensitive to the variability of random noises and identifies
change points once û st

j
(t) touches the ±λ boundaries. Examples of piecewise constant and

piecewise linear signals, along with their corresponding dual variables, are depicted in
Figure 3.5, in which the above argument can be clearly seen.

According to Theorem 3.12, if there is no staircase pattern in the underlying signal,
the PRUTF algorithm consistently estimates the true signal, and fails to do so, otherwise.
Given the results in Theorem 3.12, the natural question is whether Algorithm 3.1 could
be modified to enjoy the consistent pattern recovery in any case. In the next section, we
will present an effective remedy based on altering the sign of a change associated with a
staircase block.
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3.8 Modified PRUTF Algorithm

In this section, we attempt to modify the PRUTF algorithm in such a way that it produces
consistent estimates of the number and locations of change points even in the presence of
staircase patterns. As previously mentioned, for a staircase block, the drift term (3.25)
is constant and leads to false discoveries in change points. This is shown in Figure 3.6
with a piecewise constant signal of size n = 100 and the true change points at τ ={

15, 40, 50, 80
}

. The figure reveals that the staircase block (50, 80] leads to three false
discoveries at the locations 52, 54 and 76.

The inconsistency of PRUTF in the presence of a staircase as established in Theorem
3.12, stems from the fact that the change signs of the two consecutive change points
at both ends of the staircase block are identical. That is, for the staircase block B

j
,

sign
(
[ Df ]τj

)
= sign

(
[ Df ]τj+1

)
. Therefore, a question arises: can we modify Algorithm 3.1

in such a way that the change signs of two neighbouring change points never become equal
but still yield the solution path of trend filtering? We suggest a simple but very efficient
solution to the above question.

Once a new change point is identified, we check whether its r-th order difference sign
is the same as that of the change points right before and after. If these change signs are
not identical, then the procedure continues to search for the next change point. Otherwise,
we replace the sign of the neighbouring change point with zero. This replacement of the
sign prevents the drift term (3.25) from becoming zero. This idea is implemented for the
above signal, and the result is displayed in Figure 3.7. As shown in panel (b), the sign of
the first change point at location 50 is set to zero since its sign is identical to the sign of
the second change point at 15. This sign replacement vanishes false discoveries appeared
in panel (b) of Figure 3.6.

Based on the above argument, PRUTF presented in Algorithm 3.1 can be modified as
follows to avoid false discovery and to produce consistent pattern recovery.

Algorithm 3.14 (mPRUTF)

1. Execute steps 1 and 2 of Algorithm 3.1.

2. (a) Execute part (a) of step 3 in Algorithm 3.1 to obtain τ
join

j
and its sign s

join

j
.

At this point, the algorithm checks whether s
join

j
is identical to the signs of the

change points just before and after τ
join

j
. If so, set the sign of change point which

is identical to s
join

j
to zero. Then, repeat part (a) of step 3 again to obtain new

τ
join

j
and s

join

j
and update the sets A

j
and B

j
.
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(a) First change point at τ = 50. (b) Second change point at τ = 15.

(c) Third change point at τ = 80. (d) Fourth change point at τ = 40.

Figure 3.6: The process of detecting change points using PRUTF for a signal with a staircase
pattern. In panel (b), there are three falsely detected change points {52, 54, 76} which is due to
the staircase block (50, 80].
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(b) Execute parts (b) and (c) of step 3 in Algorithm 3.1.

3. Repeat step 3 until either λ
j
> 0 or a stopping rule is met.

(a) First change point at τ = 50. (b) Second change point at τ = 15.

(c) Third change point at τ = 80. (d) Fourth change point at τ = 40.

Figure 3.7: Steps of the mPRUTF algorithm until all four true change points are identified.
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The modified PRUTF (mPRUTF) algorithm produces consistent change point estima-
tions, even in the presence of staircase patterns. This consistency has been achieved by
converting the staircase patterns to non-staircase patterns that avoid false change point
detection. In other words, running mPRUTF on an arbitrary signal (with or without stair-
cases) is equivalent to running PRUTF on a signal without any staircase; see Figures 3.6
and 3.7. Thus, from part (a) of Theorem 3.12, the mPRUTF algorithm is consistent in
pattern recovery.

Remark 3.15 In step 2, part (a) of the mPRUTF algorithm, presented in Algorithm 3.14,
it is impossible for the sign s

join

j
of the new change point to be identical to the sign of both

of its immediate neighbouring change points, because the algorithm has already checked the
equality of signs at previous steps. If they are equal, the sign of the immediate neighbouring
change point will be set to zero.

Recall that the KKT optimality conditions for solutions of the trend filtering problem
in (3.6) requires the dual variables û

λ
to be less than or equal to λ in absolute values, i.e.,

|û
λ
| ≤ λ. This condition still holds when we replace the sign values (+1 or −1) with 0.

Consequently, we have the following theorem.

Theorem 3.16 The mPRUTF algorithm presented in Algorithm 3.14 is a solution path
of trend filtering.

For brevity, we do not provide the proof of Theorem 3.16 here. We refer the reader to the
similar arguments for the LARS algorithm of lasso in [150].

It is worth pointing out that the mPRUTF algorithm requires slightly more computa-
tion than the original PRUTF algorithm. The increase in computation time directly de-
pends on the number of staircase blocks in the underlying signal. To show how mPRUTF
resolves the problem of false discovery in signals with staircases, we ran both algorithms
for 1000 generated datasets from a piecewise constant and piecewise linear signals. The
frequency plot of the estimated change points for both algorithms are represented in Fig-
ure 3.8. The figure reveals that the original algorithm produces false discoveries within
staircase blocks for both signals, whereas mPRUTF resolves this issue.

3.9 Numerical Studies

In this section, we provide numerical studies to demonstrate the effectiveness and perfor-
mance of our proposed algorithm, mPRUTF . We begin with a simulation study and then
provide real data analyses.
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(a) A piecewise constant signal with blocks 4
and 8 as staircase blocks.

(b) A piecewise linear signal with blocks 3 and
5 as staircase blocks.

Figure 3.8: The frequency plots of estimated change points using the PRUTF and mPRUTF
algorithms.

3.9.1 Simulation Study

In this section, we investigate the performance of our proposed method, mPRUTF, by
a simulation study. We consider two scenarios, namely piecewise constant and piecewise
linear signals with staircase patterns. We compare our method to some powerful state-
of-the-art approaches in change point analysis. These methods, a list of their available
packages on CRAN, and their applicability for different scenarios are listed in Table 3.1.

We have adopted the simulation setting of [16], and consider piecewise constant and
piecewise linear signals as follows.

(i) A piecewise constant signal (PWC) of size n = 2024 with the number of change
points J

0
= 8. The locations of the true change points are τ =

{
205, 308, 512,
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Method Reference R Package Signal
PWC PWL

PELT [85] changepoint X 5

WBS [56] wbs X 5

SMUCE [53] stepR X 5

NOT [16] not X X
ID [4] IDetect X X

Table 3.1: A list of change point detection and estimation methods with their packages in
CRAN. The last two columns indicate which methods can be applied to piecewise constant
or/and piecewise linear signals.

820, 902, 1332, 1557, 1659
}

with jump sizes 1.464, -0.656, 0.098, 1.830, 0.537, 0.768,
-0.574, -3.335. We set the starting intercept to 0.

(ii) A piecewise linear signal (PWL) of size n = 1408 and the number of change points
J

0
= 7. The true change points are located at τ =

{
256, 512, 768, 1024, 1152,

1280, 1344
}

. The corresponding intercepts and slopes for 8 created blocks by τ are
0.111, 0.553, -0.481, 3.002, -7.169, -0.030, 7.217, -0.958 and -8, 6, -3, -11, 12, 4, -7, 8,
respectively.

Figure 3.9 displays the true PWC and PWL signals, with their representative datasets
generated using model (3.1). We note that both PWC and PWL signals contain two
staircase blocks. These blocks for the PWC signal are (512 , 820], (1557 , 1659] and for
PWL signal are (512 , 768] and (1024 , 1152].

We apply mPRUTF presented in Algorithm 3.14 to estimate the number and the lo-
cations of the change points for the PWC and PWL signals. In each iteration of the
simulation study, we simulate a dataset according to model (3.1) under the assumption
that the error terms are independently and identically distributed as N(0 , σ2). Moreover,
we set the significance level to α = 0.05 for the stopping rule in (3.35).

In order to explore the impact of different noise levels on the change point methods,
we run each simulation for various values of σ in

{
0.5, 1, 1.5, . . . , 4.5, 5

}
. We run the

simulation N = 5000 times and report the results for each change point technique in terms
of estimates of the number of change points, estimates of the mean square error given by

MSE = N−1
∑N

i=1

(
f̂
i
− f

i

)2
, estimates of the scaled Hausdorff distance given by

dH =
1

N
max

{
max

j=0, ..., J0

min
i=0, ..., Ĵ0

∣∣τ̂
i
− τ

j

∣∣ , max
i=0, ..., Ĵ0

min
j=0, ..., J0

∣∣τ̂
i
− τ

j

∣∣} ,
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(a) PWC signal with staircases at blocks
(512 , 820] and (1557 , 1659].

(b) PWL signal with staircases at blocks
(512 , 768] and (1024 , 1152].

Figure 3.9: The piecewise constant (PWC) and piecewise linear (PWL) signals with the gener-
ated samples used in the simulation study.

and the computation time in seconds. These quantities are frequently used to assess the
performance of a change point detection technique in the literature, for example, see [16],

[4]. The signal estimate, f̂ , is computed by the least square fit of a polynomial of order r
to the observations within segments created by each change point method. We also remark
that the tuning parameters and stopping criteria for the methods listed in Table 3.1 are
set to the default values by the packages.

The results for the PWC and PWL signals are presented in Figures 3.10 and 3.11,
respectively. In the case of piecewise constant signal, as in Figure 3.10, mPRUTF performs
comparable to PELT and SMUCE in terms of the average number of change points, MSE
and the scaled Hausdorff distance up to σ = 3, and outperforms them as σ increases. For
σ ≥ 4, similar performance to WBS, NOT and ID is viewed from these measurements.
As indicated by the average number of change points, MSE and the scaled Hausdorff
distance, WBS, NOT and ID outperform the other methods in almost all noise levels.
From a computational point of view, mPRUTF takes a slightly longer time, mainly due
to the matrix D multiplications, however, this computation time decreases as noise level
σ increases. As in panel (d) of Figure 3.10, the methods PELT, SMUCE and ID are the
fastest ones.
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In the case of piecewise linear signal, mPRUTF is only compared to NOT and ID
methods, which are applicable to the piecewise polynomials of order r ≥ 1. As in Figure
3.11 mPRUTF outperforms both NOT and ID in terms of the average number of change

(a) Average number of change points. (b) MSE estimations.

(c) Scaled Hausdorff distance. (d) Computation time.

Figure 3.10: The estimated average number of change points, MSE and Hausdorff distance, as
well as the computation time of various methods for PWC signal. The results are provided for
different values of the noise variability σ.
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points and the scaled Hausdorff distance for all noise levels. In terms of MES, mPRUTF
outperforms the other two for σ ≥ 2. As shown in Panel (d) of Figure 3.11, the computation
time of mPRUTF ranks second after ID.

(a) Average number of change points. (b) MSE estimations

(c) Hausdorff distance. (d) Computation time.

Figure 3.11: The estimated average number of change points, MSE and Hausdorff distance, as
well as the computation time of various methods for PWL signal. The results are provided for
different values of the noise variability σ.
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The mPRUTF method performs well in terms of the estimation of the number of change
points, their locations, as well as the true signals. In fact, simulation results for most of the
scenarios indicate that mPRUTF is among the most competitive change point detection
approaches in the literature.

3.9.2 Real Data Analysis

In this section, we have analyzed UK HPI and GISTEMP and COVID-19 datasets, pre-
sented in Section 1.2, using our proposed algorithm. Because σ2 is unknown for these
real datasets, we applied median absolute deviation (MAD) proposed by [65], to ro-
bustly estimate σ2. More specifically, a MAD estimate of σ for piecewise constant sig-
nals is given by σ̂ = Median

(
D(1) y

)/[√
2 Φ−1(0.75)

]
and for piecewise linear signals by

σ̂ = Median
(
D(2) y

)/[√
6 Φ−1(0.75)

]
, where Φ−1(·) represents the inverse cumulative den-

sity function of the standard normal distribution.

Example 3.17 (UK HPI Data) Recall that the UK HPI dataset, discussed in Example
1.1, is monthly percentage changes in the UK HPI at Tower Hamlets from January 1996
to November 2018. We have applied the mPRUTF algorithm to the dataset. The algorithm
have found five change points located at the dates December 2002, April 2008 and August
2009 (may be attributed to the Credit Crunch and Financial Crises), May 2012 (may be
attributed to The London 2012 Summer Olympics) and August 2015 (may be attributed to
regulatory and tax changes, and also by lower net migration from the EU). The dataset,
the change points derived by mPRUTF and its piecewise constant fit are presented in panel
(a) of Figure 3.12.

Example 3.18 (GISTEMP Data) The GISTEMP example, discussed in Example 1.2,
considers the monthly land-ocean temperature anomalies recorded from January 1880 to
August 2019. The plot reveals the presence of a linear trend with several potential change
points in the dataset. For this dataset, we have identified six change points using mPRUTF
located in September 1899, February 1911, May 1929, April 1941, March 1960, October
1984. The locations of change points and an estimate of the piecewise linear signal are
presented in panel (b) of Figure 3.12.

Example 3.19 (COVID-19 Data) For the COVID-19 example, discussed in Example
1.3, we consider the log-scale of the cumulative number of confirmed cases for Australia,
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(a) UK HPI dataset and its piecewise constant fit. (b) GISTEMP dataset and its piecewise linear fit.

Figure 3.12: The time series and fitted signals for both Tower Hamlet HPI and GISTEMP
datasets presented in examples

Canada, the United Kingdom and the United States, during the period March 10, 2020
through April 30, 2021. We have applied mPRUTF to detect change points that have
occurred in the data for each country. We then fitted a piecewise linear model to the data
using the selected change points, which provides a more direct perception of how the growth
rate changes over time.

Figure 3.13 displays the locations of change points detected by the mPRUTF algorithm
as well as the estimated linear trends for the four countries. For example, our algorithm
has identified eight change points for Canada, on March 26, 2020; April 9, 2020; May 11,
2020; July 14, 2020; August 31, 2020; October 10, 2020; January 12, 2021 and March 18,
2021. The figure shows segments created by the estimated change points as well as their
growth rate. The growth rate for the first segment (from March 10, 2020 to March 26,
2020) is remarkably high, but starts to slightly decline after the first change point on March
26, 2020. This mild decline may be linked to the declaration of the the state of emergency,
quarantine and international travel ban declared by the Government of Canada. The third
segment (from April 9, 2020 to May 11, 2020), the fourth segment (from May 11, 2020 to
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Figure 3.13: The change point locations and estimated linear trend for the transformed COVID-
19 datasets in Example 3.19. The dates indicated on each plot show the detected change points.

July 14, 2020) and the fifth segment (from July 14, 2020 to August 31, 2020) have witnessed
noticeable decreases in the growth rate. The decrease can perhaps/probably be explained by
the mandatory use of face-coverings and the border closure with the United States for the
third segment, and the use of COVID-19 serological tests and the national contact tracing
for the fourth and fifth segments. An upward trend in the growth rate observed from August
31, 2020 to October 10, 2020 could have resulted from the opening of businesses and public
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spaces. It seems that the second wave started on October 10, 2020, with a remarkable
increase in the rate that continued until January 12, 2021. After this date, the rate again
declined until March 18, 2021, which could be the result of provincial states of emergency
and lockdowns. The last segment witnessed another surge in the rate, perhaps due to new
variants of Coronavirus.

The mPRUTF algorithm has also detected seven change points for the United Kingdom
on the following dates: April 4, 2020; April 28, 2020; May 25, 2020; June 22, 2020;
September 9, 2020; November 26, 2020 and February 5, 2021. As can be viewed from the
figure, there are remarkable declines in the growth rates for the second segment (perhaps
due to the nationwide lockdown), the third segment (perhaps due to the international travel
ban) and the segments from May 25, 2020 to September 9, 2020 (perhaps due to mandatory
use of face masks and comprehensive contact tracing). The country witnessed a significant
increase in the growth rate starting from September 9, 2020, which aligns with the reopening
of businesses, schools and universities. The second national lockdown could be linked to
the very small decrease in the slope of the segment from November 26, 2020 to February 5,
2021. Finally, the growth rate in the last segment seemed to be under control, which could
be the result of COVID vaccinations.

3.10 More on Models With Frequent Change Points

or With Dependent Errors

This section empirically investigates the performance of mPRUTF in models with frequent
change points as well as models with dependent random errors.

3.10.1 mPRUTF in Signals With Frequent Change Points

In order to evaluate the detection power of mPRUTF in signals with frequent change
points, we employ a teeth signal for the piecewise constant case and a wave signal for the
piecewise linear case. For the teeth signal, we consider a signal with 29 change points and
varying segment lengths defined as follows:

• for 1 ≤ t ≤ 50, ft = 0 if (t mod 10) ∈ {1, . . . , 5}; ft = 1, otherwise,

• for 51 ≤ t ≤ 150, ft = 0 if (t mod 20) ∈ {1, . . . , 10}; ft = 1, otherwise,

• for 151 ≤ t ≤ 250, ft = 0 if (t mod 40) ∈ {1, . . . , 20}; ft = 1, otherwise,
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• for 251 ≤ t ≤ 500, ft = 0 if (t mod 100) ∈ {1, . . . , 50}; ft = 1, otherwise.

The signal is displayed in the top-left panel of Figure 3.14. The wave signal also has 29
change points with varying slopes which is defined as follows:

• for 1 ≤ t ≤ 50, ft = −1 + 0.4 t if (t mod 10) ∈ {1, . . . , 5}; ft = 1− 0.4 t, otherwise,

• for 51 ≤ t ≤ 150, ft = −1+0.2 t if (t mod 20) ∈ {1, . . . , 10}; ft = 1−0.2 t, otherwise,

• for 151 ≤ t ≤ 250, ft = −1+0.1 t if (t mod 40) ∈ {1, . . . , 20}; ft = 1−0.1 t, otherwise,

• for 251 ≤ t ≤ 500, ft = −1 + 0.04 t if (t mod 100) ∈ {1, . . . , 50}; ft = 1 − 0.04 t,
otherwise.

The top-right panel of Figure 3.14 shows this signal.

(a) Teeth signal (b) Wave signal

Figure 3.14: Histograms of the locations of change points for the teeth and wave signals. The
histograms show the frequencies of the change points detected using mPRUTF in both signals.
The result are displayed for two different σ values.
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We generated 1000 independent samples of y
t

in model (3.1) with εt
i.i.d∼ N(0 , σ2) for

both signals. The mPRUTF algorithm was then applied to these samples to estimate their
change point locations. Figure 3.14 shows the histograms of the locations of these change
points for the signals. The figure provides evidence that mPRUTF is unable to effectively
detect change points in signals with frequent change points and short segments. It also
shows that the results deteriorate when the noise variance σ2 or the polynomial order r
increase.

It turns out that the success of the mPRUTF algorithm critically relies on its stopping
rule. Equation (3.35) verifies that estimating the noise variance σ2 and specifying the
threshold xα from a Gaussian bridge process play crucial roles in the stopping rule. As
discussed in [54], the two widely used robust estimators of σ, Mean Absolute Deviation
(MAD) (used here) and Inter-Quartile Range (IQR), overestimate σ in frequent change
point scenarios. In addition, determining the accurate value of the threshold xα using
(3.36) is affected in such scenarios. These two factors prevent the stopping rule from being
effective in the mPRUTF algorithm and lead to the underestimation of change points
for these scenarios. We must note that such poor performance in frequent change point
scenarios is not specific to mPRUTF. As investigated in [54], state-of-the-art methods such
as PELT, WBS, MOSUM, SMUCE and FDRSeg are among the approaches that fail in
such scenarios.

3.10.2 mPRUTF in Models With Dependent Error Terms

How can mPRUTF’s performance be affected by various types of random errors, such
as non-Gaussian or dependent errors? For example, having independent random error
assumption for the three real datasets, analyzed in Section 3.9.2, may be violated. We
explored this assumption by analyzing their residuals in Appendix A.4. This is of course
an important question and will be the topic of future works. Notice that the dual solution
path of trend filtering is not impacted by the type of random errors. However, the type of
random errors plays a key role in the stopping rule of mPRUTF because the stopping rule
is built based on Gaussian bridge processes established by Donsker’s Theorem.

To empirically investigate the performance of mPRUTF for weakly dependent random
errors, a simulation study is carried out here. To this end, we generate N = 5000 samples
from model (3.1) with the PWC and PWL signals. We consider errors εi from an AR(1)
model with εi = ρ εi−1 + ei, for i = 1, . . . , n. Note that for PWC signal n = 2024 and for
PWL signal n = 1408. Here, ei’s are independent and identical random errors drawn from
N
(
0 , (1 − ρ2)σ2

)
with ρ ∈ {−0.5, −0.25, 0, 0.25, 0.5} and σ ∈

{
0.5, 1, 1.5, . . . , 4.5, 5

}
.
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(a) PWC signal

(b) PWL signal

Figure 3.15: The estimated average number of change points, MSEs and Hausdorff distances
of various methods for both PWC and PWL signals. The results are based on weakly dependent
observations and provided for various values of the error variability σ.

The results of mPRUTF for both PWC and PWL signals are provided in Figure 3.15. As
can be seen, the results are very similar, in terms of the average number of change points,
MSEs and the scaled Hausdorff distances, for various values of ρ. Therefore, it appears
that the mPRUTF algorithm is quite robust against dependent error terms. Extensive
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studies of mPRUTF for non-Gaussian and dependent random errors will be carried out in
future research.
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Chapter 4

Valid Post-Detection Inference for
Change Points Identified Using
PRUTF

There are many research works and methods about change point detection in the literature.
However, there are only a few that provide inference for such change points after being
estimated. This chapter mainly focuses on statistical analyses of change points estimated
by the PRUTF algorithm, which incorporates trend filtering to determine change points in
piecewise polynomial signals. We develop a methodology to perform statistical inference,
such as computing p-values and constructing confidence intervals in the newly developed
post-selection inference framework. Our work concerns both cases of known and unknown
error variance. As pointed out in the post-selection inference literature, the length of such
confidence intervals are undesirably long. To resolve this shortcoming, we also provide two
novel methods, global post-detection and local post-detection inferences, which are based on
the intrinsic properties of change points. We run our proposed methods on real-world as
well as simulated datasets to evaluate their performances.

4.1 Introduction

As previously discussed, change point detection seeks the locations of changes in the dis-
tribution of a signal for which an ordered sequence of observations is available. There is a
vast and rich literature on change-point detection in statistical research. Although there
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is a huge body of work on canonical change point framework, a more general case in which
signal f is modelled as a piecewise polynomial has attracted less attention. A few works,
mainly focused on a piecewise linear model, exist in the literature; see [13], [105], [16],
[4], and [170]. Recently, [108] have introduced the PRUTF method, which is designed for
change point detection in piecewise polynomial signals. PRUTF exploits the trend filtering
problem [151] and provides a new algorithm to estimate change points.

After analysts perform change point estimation, genuine interest is to make inferences
about the uncertainty of the estimated points. Many research works such as [30], [47],
and [74] have discussed conducting such inferences. However, they have ignored the data-
driven nature of the detected change points and regarded them as fixed locations. It is
important to note that this data-dependent property of detected change points invalidates
the inferences mentioned earlier. There is a new and rapidly growing framework that
provides tools for conducting inference after a selection procedure. This type of inference
is called post-selection inference and has been mainly developed for inference after variable
selection in high-dimensional regression. See for example [22, 93, 153, 51]. This chapter
adopts this body of work for inference after change point detection in piecewise polynomial
signals.

Interest in post-selection inference research ignited after the work of [122]. Later, in a
sequence of articles, [95, 96, 97] explored the estimation of the post-selection distribution.
This subject has attracted much attention more recently as applications for model selection
approaches have proliferated. [22] performed valid and conservative post-selection inference
by considering all possible procedures that produce a selected model. [102] suggested an
asymptotic test procedure to test whether a nonzero estimated coefficient in the lasso
regression coincides with the true nonzero coefficient. [93] developed an exact test based
on truncated Gaussian distribution for the solution path of lasso at a fixed value of the
regularization parameter λ. Concurrently, a similar test was proposed by [153] for the
lasso, LARs and forward stepwise regression with a fixed number of steps in the solution
path. [51] studied the theoretical properties of post-selection inference and generalized
the framework to the broad class of the exponential family of distributions. A number of
extensions to different frameworks and applications are given in [103], [145], [152], [101],
and [12].

In a post-selection inference setting, since data have been used to fit a model, a condi-
tional inference is required to restrict the sample space to unused data. This conditional
approach prevents an inference procedure from using data twice (once for selection and once
for inference). As a result of this conditioning, the post-detection distribution changes from
Gaussian to truncated Gaussian [93, 153], reflecting the restriction on the sample space.
However, it turns out that this truncation is often very severe and leads statistical tests

74



to lose power and their respective confidence intervals to become undesirably wide; see
Section 4.6. These problems occur because most of the data are employed to select the
model. Consequently, there is insufficient information to use for drawing conclusions after
the selection procedure.

The application of post-selection inference in the change points context, referred to
as post-detection inference, was first addressed in [77]. Their work, which is our main
inspiration, applies a truncated Gaussian test for a given and selected number of steps in
the solution path of the generalized lasso. Similarly, [78] studied post-detection inference for
some popular change point detection methodologies such as Binary Segmentation, Circular
Binary Segmentation, and Wild Binary Segmentation.

In this chapter, we study the problem of conducting valid statistical inferences for
change points detected by the PRUTF algorithm introduced in Chapter 3. At the core
of our framework, an important result states that the set of change points detected by
PRUTF constitutes a polyhedron (a convex cone). We apply the post-selection inference
framework to compute valid post-detection p-values as well as post-detection confidence
intervals.

We make the following contributions in this chapter.

• One fundamental aspect of our contribution is establishing that the set of change
points identified using the PRUTF algorithm characterizes a polyhedron set in y.
This characterization allows us to use the post-selection inference methodology for
conducting statistical inference after change point detection. To the best of our
knowledge, the inference procedures for the significance of detected change points
developed in this chapter are the first of their kind for piecewise polynomial signals.
Chapter 3 also developed a stopping criterion for selecting the number of required
steps for the PRUTF algorithm, which uses the Gaussian bridge property of dual
variables. We will show that this criterion also forms a polyhedron and, consequently,
applies to the post-detection inference framework.

• The implication of post-detection inference for the Gaussian model in (3.1) leads
us to propose two test statistics, one for known σ2 and another for unknown σ2.
A significant feature of these test statistics is that their exact and finite sample
distributions under the null hypothesis are U

(
0, 1

)
. These test statistics allow us to

conduct inference for the significance of change points estimated by PRUTF.

• We inspect the produced p-values and confidence intervals of detected change points
using two test statistics for both known and unknown noise variance cases. We
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show that the confidence intervals derived by these approaches are unacceptably
wide. This behaviour also leads to a loss in the power of hypothesis tests. To
resolve these shortcomings, we introduce two new methods of conditioning for post-
detection inference. We call the first method global post-detection that focuses only on
the target change point and makes inferences regardless of the other change points.
We call the second method local post-detection which takes into account detected
locations that are the most relevant to the target change point.

• We conduct a comprehensive simulation study to investigate the performance of the
proposed procedures in terms of the power of post-detection tests and the length
of their confidence intervals. We also demonstrate applications of our algorithms to
several real datasets.

The rest of this chapter is structured as follows. We first review conducting post-
selection inference based on the polyhedron characterization of a selection procedure. In
Section 4.3, we explain how to capture the representation of the corresponding polyhedron
of the PRUTF algorithm. This representation also determines cases where the number of
steps for the algorithm is adaptively selected using the stopping rule. Next, two different
approaches are established in Section 4.4 to conduct valid post-detection inference when
the error variance is assumed both known and unknown. In Section 4.5, we discuss the
shortcomings of the post-selection inference, conditional on the entire selected model and
its signs, such as reduction in the power of tests and wide confidence intervals. We then
propose two strategies in Section 4.6 to resolve these shortcomings. Section 4.7 provides
some numerical investigation, including real-world data analyses and simulation studies.

4.2 Post-Selection Inference With Polyhedron Selec-

tion Procedures

In this section, we review some key concepts of post-selection inference in a linear regression
setting. For details about a broader class of models, see [51]. Suppose that the observations
y ∈ Rn follow a Gaussian regression model with either known or unknown variance. Also,
let M be a finite collection of all possible models M obtained from a model selection
procedure, that is, M =

{
M : M ⊆ {1 , . . . , p}

}
, for p to be the number of variables.

The goal is, therefore, to carry out statistical inference for a selected model M̂(y) = M.

Since we adaptively choose M̂(y) using the data, for inference, it is natural to consider the

conditional distribution given M̂(y). This conditional distribution is called post-selection
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distribution. For testing null hypothesis H0, we seek to control the post-selection type-I
error, defined as Pr

H0

(
Reject H0

∣∣ M̂(y) ∈ M
)
, at the nominal level α. By analogy to

the classical theory, a post-selection confidence interval can then be built by inverting the
associated post-selection hypothesis test.

Throughout this chapter, we restrict our attention to a specific class of selection proce-
dures known as polyhedron (affine) selection procedures. Again, suppose a variable selection

approach picks a model M̂(y) from a finite collection of modelsM using the data y. This

selection approach is called a polyhedron selection procedure if any M̂(y) ∈ M can be

characterized as a polyhedron set in respect to y. In other words, any selected model M̂(y)
chosen by the polyhedron selection procedure can be written in the form of{

y : Ay ≥ q
}
, (4.1)

where the matrix A ∈ R p×n and the vector q ∈ R p are dependent on the model M̂(y).
Observe that the inequality in (4.1) is interpreted componentwise. Selection approaches
using the `1-penalized generalized linear model, including lasso [93, 153], LARS [142] and
generalized lasso [77], are examples of such polyhedron selection procedures.

4.3 Construction of Polyhedron

In this section, we describe how the change points detection procedure using PRUTF can
be represented as a polyhedron. This representation enables us to state our post-detection
inference conditional on a polyhedron. First, consider the change point model

yi = fi + εi, i = 1, . . . , n , (4.2)

where f is a piecewise polynomial signal of order r with J0 change points. We also assume
that the error terms εi, i = 1 . . . , n, have identical and independent Gaussian distribu-
tion with mean of zero and finite variance σ2 (either known or unknown). Now, suppose{
τ̂ j , ŝj

}
is the set of detected change points and their signs at step j of the PRUTF al-

gorithm over y =
(
y1, . . . , yn

)
. Below, we describe that

{
τ̂ j = τ̂ j(y) , ŝj = ŝj(y)

}
as a

function of y is indeed a polyhedron. Thus, formally, for a matrix A and vector q,{
y : τ̂ j = τ̂ j(y) , ŝj = ŝj(y)

}
=
{

y : Ay ≥ q
}
. (4.3)

From now on, we call A the polyhedron matrix. Observe that, in general, τ̂ j does not
necessarily contain j entries since (except in the case of r = 0) the dual solution path of
PRUTF can either add a change point to or remove it from the augmented boundary set
at each step, see Remark 3.3.
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4.3.1 Construction of Polyhedron Along the Solution Path

In the following, the construction process of the matrix A and vector q associated with
the polyhedron along the dual solution path of PRUTF is provided. We present this
construction in steps according to the steps of PRUTF in Algorithm 3.1.

1. For j = 1, the conditions for deriving
{
τ̂1 , ŝ1

}
can be rewritten as

ŝ1

[(
DDT

)−1
D
]
τ̂1

y ≥ ±
[(

DDT
)−1

D
]
i

y, (4.4)

for any i 6= τ̂1. This implies that the polyhedron matrix after the first step, denoted

by A1, has 2 (m − 1) rows, formed by ŝ1

[(
DDT

)−1
D
]
τ̂1

±
[(

DDT
)−1

D
]
i

, for any

i 6= τ̂1.

2. For j = 1 , 2, . . . , assume that Aj is the polyhedron matrix associated with
{
τ̂ j , ŝj

}
at step j of the PRUTF algorithm. In order to construct the polyhedron matrix for
the set

{
τ̂ j+1 , ŝj+1

}
, a number of rows will be appended to Aj according to Step 2

of Algorithm 3.1. Recall that part (a) of Step 2 corresponds to the specification of
the joining coordinates and their signs. Therefore, specifying τ̂ j+1 is equivalent to
satisfying the conditions

sign(ai)
[(
D−AjD

T
−Aj

)−1
D−Aj

]
i

y ≥ 0, ∀ i /∈ Aj, (4.5)

and [(
D−AjD

T
−Aj

)−1
D−Aj

]
τ̂

join
j+1

y

ŝ join
j+1 +

[(
D−AjD

T
−Aj

)−1
D−Aj

]
τ̂

join
j+1

DT
Aj
ŝAj

≥

[(
D−AjD

T
−Aj

)−1
D−Aj

]
i

y

sign(ai) +
[(
D−AjD

T
−Aj

)−1
D−Aj

]
i

DT
Aj
ŝAj

, (4.6)

for any i /∈ Aj ∪ { τ̂ join
j+1 }. The vector a in the aforementioned equations is given in

(3.12). The above inequalities will add 2
(
m− |Aj|

)
− 1 rows to the matrix Aj.

Part (b) of Step 2 explains conditions for the determination of the leaving coordinates.
First, rows corresponding to conditions ci < 0 and di < 0 for i ∈ Bj are added to
Aj. To this end, we disregard those i ∈ Bj which di ≥ 0 and partition the remaining
entries into two groups. The first group called viable leaving coordinates includes
those which ci < 0 and the second group as its complement. Denoting Lj+1 to be the
collection of viable leaving coordinates, we consider

Lj+1 =
{
i ∈ Bj : di < 0 and ci < 0

}
, (4.7)
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with the complementary set

Lc
j+1 =

{
i ∈ Bj : di < 0 and ci ≥ 0

}
. (4.8)

Since vector d, defined in (3.14), does not depend on y, therefore, given di < 0,
conditions ci < 0 and ci ≥ 0 can be expressed as[

diag
(
ŝBj
)
DBj

(
I−DT

−Aj

(
D−AjD

T
−Aj

)−1
D−Aj

)]
i

y ≤ 0 , for i ∈ Lj+1,

[
diag

(
ŝBj
)
DBj

(
I−DT

−Aj

(
D−AjD

T
−Aj

)−1
D−Aj

)]
i

y ≥ 0 , for i ∈ Lc
j+1, (4.9)

respectively. The above equations correspond to |Lj+1|+ |Lc
j+1| rows of Aj+1. Second,

the condition associated with the specification of the pair
(
τ̂ leave
j+1 , ŝ leave

j+1

)
must be

added to the rows of Aj. This condition can be captured for any i ∈ Lj+1 \ {τ̂ leave
j+1 }

by the inequality[
diag(ŝBj )DBj

(
I−DT

−Aj

(
D−AjD

T
−Aj

)−1
D−Aj

)]
τ̂ leave
j+1

y[
diag(ŝBj )DBj

(
I−DT

−Aj

(
D−AjD

T
−Aj

)−1
D−Aj

)]
τ̂ leave
j+1

DT
Aj
ŝAj

≥

[
diag(ŝBj )DBj

(
I−DT

−Aj

(
D−AjD

T
−Aj

)−1
D−Aj

)]
i

y[
diag(ŝBj )DBj

(
I−DT

−Aj

(
D−AjD

T
−Aj

)−1
D−Aj

)]
i

DT
Aj
ŝAj

, (4.10)

which forms |Lj+1| − 1 rows of Aj+1.

Lastly, the decision of adding or removing a coordinate in part (c) is required. The

condition for the joining time is λjoinj+1 ≥ λleavej+1 , which can be expressed as[(
D−AjD

T
−Aj

)−1
D−Aj

]
τ̂

join
j+1

y

ŝ join
j+1 +

[(
D−AjD

T
−Aj

)−1
D−Aj

]
τ̂

join
j+1

DT
Aj
ŝAj

≥

[
diag(ŝBj )DBj

(
I−DT

−Aj

(
D−AjD

T
−Aj

)−1
D−Aj

)]
τ̂ leave
j+1

y[
diag(ŝBj )DBj

(
I−DT

−Aj

(
D−AjD

T
−Aj

)−1
D−Aj

)]
τ̂ leave
j+1

DT
Aj
ŝAj

. (4.11)

In the case of leaving time, which corresponds to λjoinj+1 < λleavej+1 , the sign of inequality
in (4.11) will flip. Observe that the decision on whether to add or remove a coordinate
will only add one row to Aj. Also, it is important to note that q = 0 in all the above
steps.
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4.3.2 Construction of Polyhedron After Stopping Rule

In the preceding section, we described how to construct the polyhedron matrix A and
vector q after running the PRUTF algorithm for a fixed number of steps. However, the
PRUTF algorithm, as discussed in Section 3.6, terminates using a stopping rule. This
stopping rule is developed based on the stochastic term of the dual variables, û st

−A(t) =[(
D−ADT

−A

)−1
D−A

]
t

y, for t ∈ {1, . . . ,m}\A. In the following, we will show that this

stopping criterion can also be expressed as a polyhedron in y.

The stopping rule in Section 3.6 states that the PRUTF algorithm stops upon the time
the inequality

max
0≤t≤1

∣∣∣ û st
−A

(
b kt c

) ∣∣∣ ≤ σ xα
(
k − r

)(2 r+1)/2
, for k = m− |A| , (4.12)

is satisfied. In order to show that this stopping rule creates a polyhedron, note that, from
(3.32), the condition (4.12) can be rewritten as[(

D−ADT
−A

)−1
D−A

]
t

y ≥ −σ xα
(
k − r

)(2 r+1)/2
, for t /∈ A

−
[(

D−ADT
−A

)−1
D−A

]
t

y ≥ −σ xα
(
k − r

)(2 r+1)/2
, for t /∈ A. (4.13)

These conditions append 2 k rows to the matrix A. Additionally, the above conditions add

2 k non-zero values −σ xα
(
k − r

)(2 r+1)/2
to q.

Remark 4.1 We have just shown that the event
{
τ̂ = τ , ŝ = s

}
, for all fixed τ and

s, constitutes a polyhedron of the form
{

y : A y ≥ q
}

. It would also be interesting to
only characterize change point set

{
τ̂ = τ

}
in the form of a polyhedron. It turns out that{

τ̂ = τ
}

can be represented as the union of such polyhedra. More precisely,{
y : τ̂ (y) = τ

}
=
⋃
S

{
y : τ̂ (y) = τ , ŝ(y) = s

}
=
⋃
S

{
y : A s y ≥ q s

}
, (4.14)

where the union is over all sign vectors, s ∈ {−1, 1} |row(A)|. Observe that the number
of elements for this union is 2 |row(A)| which can grow fast and become intractable when
|row(A)| is moderately large.
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4.4 Post-Detection Inference

Having detected change points using the PRUTF algorithm, an appealing follow-up goal
would be performing statistical inference on the significance of the changes at these lo-
cations. In this section, using the post-selection inference framework, we provide in-
ference tools to apply after implementing the PRUTF algorithm. Given the vector of
observations y, we assume that τ̂ =

{
τ̂

1
, . . . , τ̂

J

}
is the set of ordered change points,

1 < τ̂
1
< τ̂

2
< . . . < τ̂

J
< n− r − 1, detected using the PRUTF algorithm. Additionally,

assume that ŝ =
{
ŝ1, . . . , ŝJ

}
is the set of signs associated with τ̂ . For notational conve-

nience, we denote τ̂0 = 0 and τ̂
J+1

= n − r. Our focus is on conducting valid statistical
inference for the significance of changes at the locations τ̂j, j = 1 , . . . , J .

Hypothesis tests to determine the significance of the detected change points can be
cast in a general linear form H0 : ηT f = 0, for an arbitrarily selected nonzero contrast
vector η ∈ Rn. Of particular interest in this thesis is the hypothesis H0 : Dτ̂j

f = 0,
which tests the significance of a change right at its estimated location τ̂j, where Dτ̂j

is

the τ̂
j
-th row of the penalty matrix D. However, our inferential framework is not specific

to the choice ηT = Dτ̂j
. Many other types of contrast vectors are possible, as long as η

is fixed by conditioning on the detection procedure. For example, the segment contrast,
proposed in [77], considers the difference between the averages of two neighboring segments(
τ̂j−1 , τ̂j

]
and

(
τ̂j , τ̂j+1

]
. Also, [82] have used a window contrast of size h, which considers

the difference between averages of h consecutive points just before the estimated change
point, i.e.,

(
τ̂j − h − 1 , τ̂j

]
and h consecutive points just after that, i.e.,

(
τ̂j , τ̂j + h

]
. The

window contrast is suitable for checking whether a true change point exists near τ̂j. It is
worth mentioning that the choice of η ultimately depends on the researcher’s objective.

The data-dependent nature of change point detection methodologies leads to a random
change point set τ̂ = τ̂ (y). Associated with this randomly chosen τ̂ is the vector η =
η(τ̂ ) which, in turn, is a random object. This randomness invalidates classical theory for
conducting statistical inference about ηT f ; see [22] for a thorough discussion. In such cases,
post-detection inference allows us to carry out our analysis. Specifically, post-detection
inference revolves around the conditional distribution of ηTy conditional on the selected
change points. This conditioning makes η = η(τ̂ ) become a fixed vector. Now, the goal is
to test a hypothesis that controls the conditional type-I error rate at level α as well as to
build a conditional confidence interval Iη, such that

Pr
(
ηT f ∈ Iη

∣∣∣ τ̂ = τ
)
≥ 1− α,

for all fixed τ .
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In a change point detection setting, [77, 78] have exploited post-selection inference to
compute p-values for the significance of change points found by fused lasso, Binary Seg-
mentation, Wild Binary Segmentation, Circular Binary Segmentation. To boost the power
of tests, [82] have suggested a post-detection approach which attempts to reduce the size of
conditioning events. This approach covers change points detected in a piecewise constant
model with identical and independent Gaussian random noises. In [46], the authors have
also considered post-selection inference for change points estimated by using a dynamic
programming for a `0-penalization.

Conducting inference for ηT f in the post-detection framework requires knowledge about
the conditional distribution of ηTy given {τ̂ = τ}. As shown in Section 4.3, {τ̂ = τ , ŝ =
s} creates the polyhedron of the form

{
y : A y ≥ q

}
, and {τ̂ = τ} is a union of such

polyhedra over all possible sign vectors s. Therefore, it is easier to obtain the conditional
distribution of ηTy given {τ̂ = τ , ŝ = s}, a single polyhedron. Observe that inferences
that are valid conditional on this finer event will also be valid conditional on {τ̂ = τ},
[93, 153]. In what follows, we illustrate techniques to compute valid post-detection p-values
for the hypothesis H0 : ηT f = 0 and to construct a post-detection confidence intervals for
the parameter ηT f .

Ignoring the post-detection framework for a moment, recall that when the change points
are assumed fixed, the inference about ηT f , depending on whether the error variance is
known or unknown, is based on the normal or t distributions, respectively. More specifically,
when σ2 is known, the statistic Z = ηTy/σ‖η‖ and when σ2 is unknown, the statistic
T = ηTy/σ̂‖η‖, are employed to make inference for ηT f . We will essentially use the same
statistics Z and T in post-detection inference and focus on determining their respective
conditional distributions. We emphasize that these distributions are no longer the usual
normal or t distributions as they must be conditioned on the detected change points.

To define our proposed test statistics, again assume that the PRUTF algorithm has
detected J change points at locations τ̂ =

{
τ̂

1
, . . . , τ̂

J

}
with the corresponding signs

ŝ =
{
ŝ

1
, . . . , ŝ

J

}
. These change points partition the entire signal f into J + 1 segments,

with each segment having its distinct polynomial signal of order r, namely fj, j = 0 , . . . , J .
Also, let y

j
denote the subvector of observations corresponding to the j-th segment; thus,

fTy =
J∑
j=0

fTj y
j
.

Implementing the least square approach to estimate fj results in f̂j = XT
j

(
XT

j Xj

)−1
XT

j y
j
,
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for j = 0, . . . , J , where Xj is defined as

Xj =



1
τ̂j+1

n

(
τ̂j+1

n

)2
· · ·

(
τ̂j+1

n

)r
1

τ̂j+2

n

(
τ̂j+2

n

)2
· · ·

(
τ̂j+2

n

)r
...

...
...

...

1
τ̂j+1

n

(
τ̂j+1

n

)2
· · ·

(
τ̂j+1

n

)r


. (4.15)

In words, Xj is the design matrix of the r-th polynomial regression of y
j

on the indices
of j-th segment, τ̂

j
+ 1, . . . , τ̂

j+1
. We also denote the projection matrix onto the column

space of Xj as Pj = Xj

(
XT

j Xj

)−1
XT

j . Observe that Pj fj = fj, for j = 0 , . . . , J , or
equivalently P f = f , where P is a block diagonal matrix whose diagonal entries are the
submatrices Pj. With these notations, an unbiased estimator of the error variance, when
σ2 is unknown, is given by

σ̂2 =
1

d

J∑
j=0

∥∥(Ij −Pj) y
j

∥∥2 =
1

d

∥∥(I−P) y
∥∥2 , (4.16)

where d = n− (J + 1).

According to the Gaussian model of (4.2), y follows the exponential family of the form

y ∼ exp

{
1

σ2
fTy − 1

2σ2
‖y‖2 − ‖f‖

2

2σ2

}
.

Decomposing the data into the direction of η and orthogonal to η, as well as using the
fact that P f = f , yield

y ∼ exp

{
1

σ2
fT
(
Pη + P−Pη

)
y − 1

2σ2
‖y‖2 − ‖f‖

2

2σ2

}

= exp

{(
1

σ‖η‖

)(
ηT f

)T ( ηTy

σ‖η‖

)
+

1

σ2
fT
(
P−Pη) y − 1

2σ2
‖y‖2 − ‖f‖

2

2σ2

}
, (4.17)

where Pη is the orthogonal projection on the space spanned by η ∈ Rn, defined as

Pη = η
(
ηTη

)−1
ηT =

η ηT

‖η‖2
·
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Consider a multi-parameter exponential family in which the vector of natural parameters
can be split into two subvectors: the target and the nuisance parameters. The conditional
distribution, given sufficient statistics associated with nuisance parameters, depends only
on the target parameters. It is known that this conditional distribution belongs to an
exponential family with the same target parameters, the same sufficient statistics, but a
different reference measure and the normalizing constant. This fact allows us to derive the
conditional distribution of the statistics Z and T , given the detected change points, their
signs and the sufficient statistics of the nuisance parameters. Consequently, we can perform
statistical inference for the target parameter ηT f based on the derived distributions. We
divide our presentation into two parts: known error variance and unknown error variance
to perform such inferences.

4.4.1 Known Error Variance

When the error variance σ2 is known, the statement (4.17) reveals that ηTy and V =(
P − Pη

)
y are sufficient statistics for ηT f and the nuisance parameters, respectively.

As previously explained, the conditional distribution of ηTy given V eliminates nuisance
parameters from our analysis. Therefore, when σ2 is known, we base our analysis on the
statistic

Z =
ηTy

σ ‖η‖
· (4.18)

We further seek to specify the conditional distribution of this statistic given {V, Ay ≥ q}.
Recall that the polyhedron {Ay ≥ q} is the substitute for

{
τ̂ , ŝ

}
, estimated using PRUTF.

The following theorem illustrates that this conditional distribution is indeed a truncated
normal distribution with an explicitly specified truncation set.

Theorem 4.2 Suppose y follows model (4.2), where σ2 is assumed known. For a nonzero
contrast vector η,

a) the conditional distribution of Z in (4.18), given{
V, Ay ≥ q

}
, (4.19)

is a normal distribution truncated to the interval
[
V−Z , V+

Z

]
, provided V0

Z ≥ 0. This

distribution is denoted by TN
(
ηT f , 1, [V−Z ,V+

Z ]
)
. The truncation boundaries V−Z =

84



V−Z
(
V
)
, V+

Z = V+
Z

(
V
)

and V0
Z = V0

Z

(
V
)

are given by

V−Z = max
i: ρi>0

[
q−AV

]
i

σρ
i

, V+Z = min
i: ρi<0

[
q−AV

]
i

σρ
i

, V0Z = min
i: ρi=0

[
AV − q

]
i
, (4.20)

where ρ
i

=
[
Aη/‖η‖

]
i
, for i = 0 , 1 , . . . ,

∣∣row(A)
∣∣. Here

∣∣row(A)
∣∣ denotes the

number of rows in matrix A.

b) Moreover, let Φ [a , b] (·) be the cumulative distribution function of TN
(
0, 1, [a , b]

)
,

thus, under the null hypothesis H0 : ηT f = 0, the conditional distribution of 1 −
Φ[V−Z ,V

+
Z ] (Z) given the event

{
Ay ≥ q

}
is uniform on the unit interval [0, 1], that is,

1− Φ[V−Z ,V
+
Z ] (Z)

∣∣∣ {Ay ≥ q
}
∼ U(0 , 1) . (4.21)

We refer to this statistic as TN statistic.

The proof is given in Appendix B.1.

Theorem 4.2 enables us to compute a post-detection p-value for the hypothesis H0 :
ηT f = 0 as well as to construct a post-detection confidence interval for ηT f . These tasks can
be carried out using the TN statistic in (4.21). In particular, for the two-sided hypothesis
testing problem

H0 : ηT f = 0 vs H1 : ηT f 6= 0, (4.22)

the value of 2 min
{

1− Φ[V−Z ,V
+
Z ] (Z) , Φ[V−Z ,V

+
Z ] (Z)

}
serves as a valid post-detection p-value,

since under the null hypothesis

Pr

(
2 min

{
1− Φ[V−Z ,V

+
Z ] (Z) , Φ[V−Z ,V

+
Z ] (Z)

}
≤ α

∣∣∣∣Ay ≥ q

)
= α,

for all 0 ≤ α ≤ 1. To construct a two-sided post-detection confidence interval, define the
confidence limits L

Z
(Z) and U

Z
(Z) such that

1− Φ[V−Z ,V
+
Z ]

(
ηTy − L

Z
(Z)

σ‖η‖

)
=
α

2
, and Φ[V−Z ,V

+
Z ]

(
ηTy − U

Z
(Z)

σ‖η‖

)
=
α

2
.

(4.23)

These limits are well characterized since the survival function of TN
(
µ, 1, [a, b]

)
monoton-

ically increases with respect to µ. Hence, the interval
[
L
Z
(Z) , U

Z
(Z)
]

is a valid two-sided
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post-detection confidence interval at a 1−α level for ηT f . This confidence interval can be
interpreted in the following manner. If y is repeatedly drawn from model (4.2) and the
PRUTF algorithm is run, among those cases in which

{
τ̂ , ŝ

}
are detected, the interval[

L
Z
(Z) , U

Z
(Z)
]

contains the parameter ηT f with a relative frequency approaching 1− α.

Remark 4.3 The PRUTF algorithm estimates sings of change points in addition to their
locations. We can incorporate this knowledge in forming the alternative hypothesis, that
is, H1 : ŝ

τ̂j
D

τ̂j
f > 0. This alternative hypothesis means that τ̂

j
is a significant change

point whose jump is in the direction of ŝ
τ̂j

. Note that this test is more powerful than its

two-sided counterpart. [153] have provided a comparison between one-sided and two-sided
tests for the significance of the selected variables using lasso. In general, suppose we are
interested in testing the one-sided hypothesis H0 : ηT f = 0 against H1 : ηT f > 0. As with
the two-sided hypotheses, 1−Φ[V−Z ,V

+
Z ] (Z) is a valid post-detection p-value for the one-sided

test. Additionally,
[
L
Z
(Z) , ∞

)
is a one-sided post-detection confidence interval for ηT f

where

1− Φ [V−Z ,V
+
Z ]

(
ηTy − L

Z
(Z)

σ‖η‖

)
= α.

4.4.2 Unknown Error Variance

This section concerns post-detection inference after estimating change points, in the more
realistic case, when the error variance σ2 is unknown. The main methods proposed for
post-selection inference such as in [93], [153], and [142] proceed with a known σ2, with the
exception of [52]. In the case of an unknown σ2, we must further condition our inference
on the sufficient statistic associated with the nuisance parameter σ2.

According to (4.17), in the case of an unknown σ2, the term ηTy is the sufficient
statistic for the target parameter ηT f/σ2 and

(
V , ‖y‖2

)
is a joint sufficient statistic for

the nuisance parameters. Since testing ηT f/σ2 = 0 is equivalent to testing ηT f = 0, hence,
we construct our analysis based on the statistic

T =
ηTy

σ̂ ‖η‖
, (4.24)

where σ̂2 = d−1
∥∥(I − P) y

∥∥2, with d = n − (J + 1). Notice that σ̂2 is simply a pooled
estimate of the error variance σ2 using J + 1 segments created by the detected change
points τ̂ =

{
τ̂

1
, . . . , τ̂

J

}
. The next step is to find the conditional distribution of T , given
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the sufficient statistics associated with the nuisance parameters and the polyhedron event
identified by the detection procedure. Clearly, this statistic is distributed as a t distribution
constrained to the set

{
V, ‖y‖2, Ay ≥ q

}
. We establish the corresponding distribution

in the following theorem, whose proof is given in Appendix B.2.

Theorem 4.4 Suppose y follows model (4.2) and σ2 is assumed unknown. For a nonzero
contrast vector η,

a) the conditional distribution of T given{
V,
∥∥y∥∥2 , Ay ≥ q

}
, (4.25)

is a generalized (location-scale) t distribution with mean ηT f , variance 1 and degrees
of freedom d = n − (J + 1)(r + 1), truncated to the interval [V−T , V+

T ], denoted by
Tt
(
ηT f , 1, d, [V−T ,V+

T ]
)
. The truncation boundaries V−T = V−T

(
V, W

)
and V+

T =

V+
T

(
V, W

)
are given by

[
V−T , V+T

]
=

|row(A)|⋂
i=1

{
t ∈ R :

[
AV − q

]
i

t2 +

(
2
ηT (I−P)y

σ̂‖η‖

[
AV − q

]
i

+
Wρi
σ̂

)
t

+
[
AV − q

]
i

d ≥ 0

}
, (4.26)

where W =
∥∥(I−P + Pη

)
y
∥∥2.

b) In addition, let G
[a, b]
d (·) denote the cumulative distribution function of Tt

(
0 , 1 , d

, [a , b]
)
, then under the null hypothesis

1−G [V−T ,V
+
T ]

d (T )
∣∣∣ {Ay ≥ q

}
∼ U(0 , 1). (4.27)

We refer this statistic as the Tt statistic.

Theorem 4.4 allows us to perform post-detection tests and construct post-detection con-
fidence intervals for ηT f , when σ2 is unknown. In the same fashion as in the truncated
normal case, the quantity

2 min
{

1−G [V−T ,V
+
T ]

d (T ) , G
[V−T ,V

+
T ]

d (T )
}
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is a post-detection p-value for the two-sided hypothesis problem (4.22). A post-detection
confidence interval for ηT f , when σ2 is unknown, is also given by

[
LT (T ) , UT (T )

]
, where

1−G[V−Z ,V
+
Z ]

d

(
ηTy − LT (T )

σ̂‖η‖

)
= α/2 , and G

[V−Z ,V
+
Z ]

d

(
ηTy − UT (T )

σ̂‖η‖

)
= α/2 .

(4.28)

The same technique explained in Remark 4.3 can be used to construct a one-sided confi-
dence interval for ηT f .

Figure 4.1 demonstrates the distribution of TN and Tt statistics, stated in (4.21) and
(4.27), by displaying their quantiles versus those of U(0 , 1). The figure also represents the
distribution of the two statistics when the truncated normal and truncated t distributions in
(4.21) and (4.27) are replaced with their untruncated counterparts. The figure certifies that
the distribution of Z and T change from normal and t distributions to truncated normal
and truncated t distributions, respectively, while accounting for the detection procedure.

(a) Q-Q plot of survival function of Z. (b) Q-Q plot of survival function of T .

Figure 4.1: The Q-Q plots of survival functions of Z and T for standard and truncated normal
and t distributions. A piecewise constant signal of size n = 100 and a true change point at
τ = {50} is considered. The left panel displays Q-Q plot, constructed over 1000 simulations,
of the distribution of the survival function of Z in (4.21), conditional on the algorithm having
made an incorrect selection in the second step, under standard normal (green dots) and truncated
normal (yellow dots) distributions. The right panel shows Q-Q plots of the distribution of the
survival function of T in (4.27) for the first detected change point, under t distribution (green
dots) and truncated t distribution (yellow dots).
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Remark 4.5 We would like to emphasize that the confidence intervals constructed by using
(4.23) and (4.28) employ the knowledge of the conditional distributions given the estimated
change points and their signs,

{
τ̂ = τ , ŝ = s}, and therefore, have to be interpreted con-

ditionally. These confidence intervals can also be interpreted simultaneously after applying
the Bonferroni correction to properly adjust for multiplicity. That is, we would compute

confidence intervals at the level 1− α

Ĵ
, where Ĵ is the number of change points estimated

by mPRUTF.

One approach for constructing simultaneous confidence intervals in post-detection frame-
work is to use the universal valid post-selection inference of [22], by considering all possible
detection procedures. More precisely, for any change point detection procedure τ̂ : y −→ T ,
where T is the collection of all possible change point sets, the goal of the universal post-
selection inference, referred to as simultaneous PoSI, is to construct confidence intervals
for ηTj, τ̂ f . In this notation, ηj, τ̂ denotes a nonzero contrast vector associated with τ̂j ∈ τ̂ .
According to the simultaneous PoSI method, a valid confidence interval for ηTj, τ̂ f takes the
form

Îj, τ̂ (Kα) =
(
ηTj, τ̂ y ± Kα σ ‖ηj, τ̂‖

)
,

where the constant Kα is derived such that

Pr
(
ηTj, τ̂ f ∈ Îj, τ̂(Kα) , ∀ τ̂j ∈ τ̂

)
≥ 1− α, ∀ τ̂ ∈ T .

Note that the universal valid post-selection inference provides simultaneity both over the
change points and over all detection procedures. This method has the advantage that it does
not depend on the change point detection procedure. However, unless the number of possible
change point sets is fairly small, this method is computationally challenging as the collection
of all possible change point sets becomes intractable. Additionally, the confidence intervals
derived from this method are unnecessarily wide as it disregards the knowledge of how
the change points are estimated. To improve the universal valid post-detection inference,
a method based on a simultaneous over selection (SoS) criterion was proposed by [175].
The method aims to construct confidence intervals for selected variables in a fixed stable
model selection procedure in the regression context. We note that computing simultaneous
confidence intervals is not among the goals of our inference and refer interested readers to
[22], [21], [5] and [175].

Remark 4.6 We have thus far explained how to carry out statistical inference for the
detected change points after completing the PRUTF algorithm. In other words, we have
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computed post-selection p-values and confidence intervals conditional on the entire set of
estimated change points τ̂ . An alternative way is to perform statistical inferences for the
change points in a sequential manner. In particular, suppose τ̂ j−1 and ŝj−1 are the vectors
of detected change points and their corresponding signs at the iteration j−1 of the PRUTF
algorithm. Additionally, suppose τ̂j is the detected change point at step j. In the sequential
scheme, the interest is in making inference about the significance of change at the location
τ̂j, given

{
τ̂ j , ŝj

}
. Notice that the tools provided in Theorems 4.2 and 4.4 are still applicable

in the sequential scheme, but the matrix A and vector q in the polyhedron representation
must be adjusted accordingly. See [102] and [153] which have pursued statistical inference
in a sequential approach.

4.5 A Critique of Post-Detection Inference Methods

In post-detection inference, we lose part of the information from the data because it has
already been used to estimate change points. As a result, the post-detection distributions
change from normal or t distributions to truncated normal or truncated t distributions
(Theorem 4.2 and Theorem 4.4). The performance of post-detection inference heavily
depends on the amount of information in the data used for change point detection. Over-
conditioning, which uses too much information for the detection procedure and leaves little
information for inference, leads to a significant loss in the power of tests and unacceptably
wide confidence intervals; see [51], [93] and [88].

The over-conditioning issue in post-selection inference has motivated researchers to
suggest various approaches that preserve higher amounts of left-over information for in-
ference. One solution to the problem is data splitting (sometimes called data carving),
in which the data is divided into two parts, one part for model selection and the other
for inference [51]. Another approach, put forward by [146], is the idea of randomization,
which selects the model based not on the actual dataset but on a noise-perturbed version
of it. Also, [101] have suggested dividing the final selected model into a high-value and a
low-value submodel. The post-selection inference will then be conducted by conditioning
only on the high-value submodel. Although these approaches improve the performance of
post-selection inference, they also share some drawbacks; see [51].

The specific problem of wide length confidence intervals in post-selection inference has
been investigated by [88] for models chosen by lasso. They have established that a con-
fidence interval produced by the truncated Gaussian distribution with a finite truncation
boundary (either the upper or lower bound) always has an infinite expected length, Theo-
rem 4.7, part (a). In the next theorem, part (b), we will show that the same property also
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holds for a truncated t distribution. More precisely, let a truncation set S be the union
of finitely many open intervals, where the intervals might be unbounded. In other words,
S can be represented in the form of S =

⋃ k
i=1

(
ai , bi

)
, for a finite value k, and for some

a1 < b1 < a2 < b2 < . . . < ak < bk in R.

Theorem 4.7

a) Let Z ∼ TN
(
µ, σ2, SZ

)
, where the truncation set SZ is of the form SZ =

⋃ k
i=1

(
ai , bi

)
.

Also, let
[
LZ(Z) , UZ(Z)

]
be a conditional confidence interval for µ, given SZ. If the

truncation set SZ is bounded, either from below (−∞ < a1) or from above (bk <∞),
then

E
[
UZ
(
Z
)
− LZ

(
Z
)]

=∞. (4.29)

b) Let T ∼ Tt
(
µ, σ2, d, ST

)
, where the truncation set ST is of the form ST =

⋃m
i=1

(
ci , di

)
.

Also, let
[
L
T
(T ) , U

T
(T )
]

be a conditional confidence interval for µ, given ST . Simi-
lar to part (a), if the truncation set ST is bounded, either from below (−∞ < c1) or
from above (dm <∞), then

E
[
UT
(
T
)
− LT

(
T
)]

=∞. (4.30)

A proof is provided in Appendix B.3.

Theorem 4.7 states that the truncation set is crucial in constructing a desirable con-
fidence interval in post-selection inference. To figure out why post-selection confidence
intervals are sometimes exceedingly wide, assume T ∼ Tt(µ, σ2, d, ST ). When the trun-
cation set ST is bounded, values of T which are close to the endpoints of ST leads to wide
confidence intervals. This behaviour is because there are many values of µ that would be
consistent with the data [93, 88]. On the other hand, when ST is unbounded, the interval
length is always bounded regardless of the values of T . Similar arguments hold for a trun-
cated normal distribution. Figure 4.2 displays the lengths of confidence intervals derived
using truncated normal and truncated t distributions for a bounded and an unbounded
truncation set. The left panel indicates that the length of confidence intervals for truncated
normal and truncated t distributions with bounded truncation sets diverge as the values
of z or t approach the edges of the truncation set. This observation certifies the results de-
rived in Theorem 4.7. On the other hand, when the truncation set is unbounded, the right
panel indicates that the length of confidence intervals for both distributions are bounded.
Moreover, the interval length converges to the length of confidence interval obtained from a
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(a) Truncation set S = [−3 , 3]. (b) Truncation set S = (−∞ , −3) ∪ (3 , ∞).

Figure 4.2: Lengths of confidence intervals for a truncated normal distribution and a truncated
t distribution with a bounded truncation set (left panel) and an unbounded truncation set (right
panel). The solid horizontal lines in both panels show the length of confidence intervals (at the
level 0.95) for the usual (untruncated) normal and t distributions.

usual (untruncated) normal or t distributions as the values of the statistics diverge from the
edges of the unbounded truncation sets. Additionally, for both cases of bounded and un-
bounded truncation set, the lengths of confidence intervals for the truncated t distribution
are greater or equal than those of the truncated normal distribution.

To measure the quality of the confidence intervals built in (4.23) and (4.28), we inspect
their corresponding truncation sets to determine whether they are unbounded. The next
theorem verifies that the truncation boundaries provided in Theorems 4.2 and 4.4 are in
fact bounded.

Theorem 4.8 Consider the settings of Theorems 4.2 and 4.4. Also, let
[
V−Z (V) , V+

Z (V)
]

and
[
V−T (V, W ) , V+

T (V, W )
]

be the truncation sets for the truncated normal and truncated
t distributions, derived in (4.20) and (4.26), respectively. Then,
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(a) either one or both truncation boundaries in (4.20) are finite, that is,

−∞ < V−Z
(
V
)

or V+
Z

(
V
)
<∞.

(b) either one or both truncation boundaries in (4.26) are finite, that is,

−∞ < V−T
(
V, W

)
or V+

T

(
V, W

)
<∞.

A proof is given in appendix B.4.

Remark 4.9 Theorem 4.8 states that the truncation sets derived in Theorems 4.2 and 4.4,
for both truncated normal and truncated t distributions, are bounded. This result along with
the result of Theorem 4.7 lead to

E
[
UZ(Z)− LZ(Z)

∣∣∣ {τ̂ , ŝ
}]

=∞,

E
[
UT (T )− LT (T )

∣∣∣ {τ̂ , ŝ
}]

=∞. (4.31)

In words, the expected lengths of the confidence intervals for ηT f with known σ2, given in
(4.23), and with unknown σ2, given in (4.28), are infinite.

4.6 Optimal Post-Detection Inference

Motivated by the fact that post-detection confidence intervals might become extremely
wide, we seek approaches to attain confidence intervals with narrower length properties.
Given a target change point, we can essentially think of τ̂ as containing two types of change
points: those relevant to the discovery of the target change point and those irrelevant to
it. The relevant change points are those change points that directly influence the detection
of the target change point. In most cases, such points are located around the target
change points. Therefore, one solution for improving the performance of post-detection
inference is to allow only the relevant change points to participate in the analysis. In other
words, the post-detection inference is carried out by only conditioning on a set containing
relevant change points. We note that the set which includes these relevant change points
is not necessarily a polyhedron. In the following, we will show that by narrowing down
the conditional event to the set containing relevant change points, the resulting intervals
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become much shorter. This procedure will also lead to improved powers for the associated
hypothesis tests.

In the next two sections, we elaborate on two algorithms for conditioning on the rele-
vant change point sets, leading to more powerful post-detection tests and narrower post-
detection confidence intervals. We introduce two different setups. Section 4.6.1 involves
post-detection inference by conditioning on the event that the given target change point is
included in the estimated change point set. We refer to this setup as global post-detection
because it verifies the significance of the target change point globally over the entire signal.
In contrast, Section 4.6.2 involves statistical inference under the condition that the target
change point and its adjacent change points are only included in the model. This setup
is called local post-detection as it tests the significance of the target change points locally
over its adjacent segments.

4.6.1 Global Post-Detection Inference

As explained before, global post-detection assumes that the target change point has been
detected by the PRUTF algorithm and information about the rest of the change points
is disregarded. In other words, for the given target change point τ̂j, we only assume that
τ̂j ∈ τ̂ . Now, the goal is to carry out post-detection inference by conditioning on the
event { τ̂j ∈ τ̂ }. Observe that this conditioning is different from conditioning on the entire
change point set τ̂ . We then attempt to compute a post-detection p-value for the null
hypothesis H0 : Dτ̂j

f = 0, as well as building a post-detection confidence interval for Dτ̂j
f .

Depending on whether σ2 is known or unknown, the post-detection tests are based on the
statistics

Z glo
j =

Dτ̂j
y

σ‖DT
τ̂j
‖

and T glo
j =

Dτ̂j
y

σ̂
(glo)
j ‖DT

τ̂j
‖

(4.32)

which, under the null hypothesis, are distributed as truncated normal and truncated
t distributions, respectively. Given {τ̂j ∈ τ̂}, we split y into two subvectors y glo

1, j =(
y1 , . . . , yτ̂j

)
and y glo

2, j =
(
yτ̂j+1 , . . . , yn

)
. The projection matrices P glo

k, j associated with

the subvectors yglo
k, j, k = 1 , 2, and the block diagonal matrix Pglo

j = diag
(
P glo

1, j , P glo
2, j

)
can

be defined accordingly (see Section 4.4). The next theorem explains how to specify the
truncation sets for the underlying distributions. We provide the proof of the theorem in
Appendix B.5.

Theorem 4.10 Consider the statistics Z glo
j and T glo

j as defined in (4.32).
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(a) The conditional distribution of Z glo
j given {τ̂j ∈ τ̂}, under the null hypothesis, is the

standard normal truncated to the set
(
−∞ , V−(glo)Zj

] ⋃ [
V+(glo)
Zj

, ∞
)
, where

V −(glo)Zj
=
−λj Dτ̂j

DT
τ̂j

+ Dτ̂j
DT
−τ̂j

ûλj,−τ̂j

σ ‖DT
τ̂j
‖

,

V +(glo)
Zj

=
λj Dτ̂j

DT
τ̂j

+ Dτ̂j
DT
−τ̂j

ûλj,−τ̂j

σ ‖DT
τ̂j
‖

. (4.33)

(b) The conditional distribution of T glo
j given {τ̂j ∈ τ̂}, under the null hypothesis, is t

distribution with d (glo) = n − 2(r + 1) degrees of freedom and truncated to the set(
−∞ , V−(glo)Tj

] ⋃ [
V+(glo)
Tj

, ∞
)
, where

V −(glo)Tj
=
−λj Dτ̂j

DT
τ̂j

+ Dτ̂j
DT
−τ̂j

ûλj,−τ̂j

σ̂ (glo) ‖DT
τ̂j
‖

,

V +(glo)
Tj

=
λj Dτ̂j

DT
τ̂j

+ Dτ̂j
DT
−τ̂j

ûλj,−τ̂j

σ̂ (glo) ‖DT
τ̂j
‖

, (4.34)

and σ̂
2 (glo)
j =

∥∥(I−Pglo
j

)
y
∥∥2/d (glo).

We note that the TN and Tt statistics, provided in (4.21) and (4.27), respectively,
can be constructed using the corresponding distributions in both parts (a) and (b) of
Theorem 4.10. Therefore, we can apply the same procedure as in Section 4.4 to compute
corresponding post-detection p-values and confidence intervals.

It is worth mentioning that σ̂
2 (glo)
j may not be a suitable estimator of σ2. This is

because global post-detection only assumes that τ̂j ∈ τ̂ . Therefore, in the case that there

exit other change points in τ̂ , σ̂
2 (glo)
j is unable to accurately estimate the variation in the

observations. As an alternative, we can apply Median Absolute Deviation (MAD) proposed
by [65], to robustly estimate σ2. Also, see [16] for more details about MAD estimation.

Let
[
Lglo
Zj
, Uglo

Zj

]
and

[
Lglo
Tj
, Uglo

Tj

]
be confidence intervals derived in the same manner

as (4.23) and (4.28) using the pivotal quantities Z glo
j and T glo

j . As the lower and upper
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bounds associated with their distributions are unbounded, we suspect that the underlying
confidence intervals have finite expected lengths. In such a case, [88] have provided an
upper bound for the confidence intervals derived from a truncated normal distribution.
In the following theorem, we will also give such an upper bound for confidence intervals
derived from a truncated t distribution.

Theorem 4.11 Let
[
Lglo
Zj
, U glo

Zj

]
and

[
Lglo
Tj
, U glo

Tj

]
be (1− α)% confidence intervals derived

from truncated normal and truncated t distributions given in Theorem 4.10.

(a) The length of confidence intervals derived from the truncated normal distribution is
always upper bounded by

U glo
Zj
− Lglo

Zj

a.s.

≤ 2σΦ−1
(

1− α

2

)
+ V +(glo)

Zj
− V −(glo)Zj

. (4.35)

(b) For d (glo) ≥ 3 and under the condition

α Gd (glo)

(
−
V+(glo)
Tj

− V−(glo)Tj

2 σ̂
(glo)
j

)
≥ Gd (glo)

(
G−1
d (glo)

(α
2

)
−
V+(glo)
Tj

− V−(glo)Tj

2 σ̂
(glo)
j

)
, (4.36)

the length of confidence intervals derived from the truncated t distribution is upper
bounded by

U glo
Tj
− Lglo

Tj

a.s.

≤ 2 σ̂ (glo)
j G−1

d (glo)

(
1− α

2

)
+ V+(glo)

Tj
− V−(glo)Tj

. (4.37)

A proof is provided in Appendix B.6.

4.6.2 Local Post-Detection Inference

Unlike in Section 4.6.1, here we are dealing with situations where the most relevant es-
timated change points to the target change point are involved in our inferential analysis.
Obviously, the selection of τ̂j as a change point relies on other estimated change points.
Thus, conditioning only on {τ̂j ∈ τ̂} is insufficient to decide whether τ̂j is a meaningful
change point. This fact indicates the need for knowledge about other change points. How-
ever, as previously discussed, conditioning our inference on the entire change point set
yields an undesirable output such as wide confidence intervals. Note that the local nature
of change point setting [112] dictates that inferences for a change point should depend on
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its adjacent change points. For instance, only the immediate neighboring change points
τ̂j−1 and τ̂j+1 play a role in the detection of the target change point τ̂j, and the rest remain
irrelevant. This fact has motivated us to develop the local post-detection algorithm.

Following the local property of change points, we suggest a method for post-detection
inference which leads to higher-powered tests and shorter confidence intervals. The idea
is to condition the post-detection inference on the target change point as well as on its
adjacent change points. In particular, for the given target change point τ̂j, the goal is to
test the hypothesis H0 : Dτ̂j

f = 0, given
{
{τ̂j−1, τ̂j, τ̂j+1} ∈ τ̂

}
. In fact, this conditioning

creates a new change point problem over the shorter subsignal
(
fτ̂j−1+1, . . . , fτ̂j+1

)
. We first

define some notations for ease of exposition. Let yloc
j =

(
yj−1 , yj

)
=
(
yτ̂j−1+1 , . . . , yτ̂j+1

)
and f locj =

(
fj−1 , fj

)
=
(
fτ̂j−1+1 , . . . , fτ̂j+1

)
denote the subvectors of y and f from τ̂j−1 + 1

to τ̂j+1. Also, let Dj be the
(
τ̂j+1− τ̂j−1−r−1

)
×
(
τ̂j+1− τ̂j−1

)
version of matrix D. Applying

these notations, the hypothesis of interest can be re-expressed as H0 : Dj,∆j
f locj = 0, where

∆j = τ̂j− τ̂j−1 and Dj,∆j
is the ∆j-th row of Dj and Ploc

j = diag
(
P loc

1, j , P loc
2, j

)
. For inference,

similar approach taken in the global post-detection can be applied, but this time using yloc
j

and Dj. Depending on whether σ2 is known or unknown, the post-detection tests are based
on statistics

Z loc
j =

Dj,∆j
yloc
j

σ
∥∥Dj,∆j

∥∥ , T loc
j =

Dj,∆j
yloc
j

σ̂
(loc)
j

∥∥Dj,∆j

∥∥ . (4.38)

We obtain the distributions of these statistics in the next theorem whose proof is similar
to that of Theorem 4.10 by replacing y, D, τ̂j, P glo

j and σ̂
2 (glo)
j with yloc

j , Dj, ∆j, Ploc
j and

σ̂
2 (loc)
j .

Theorem 4.12 Consider the statistics Z loc
j and T loc

j defined in (4.38).

(a) Given
{
{τ̂j−1 , τ̂j , τ̂j+1} ∈ τ̂

}
, the conditional distribution of Z loc

j , under the null

hypothesis is the standard normal truncated to
(
−∞ , V −(loc)Zj

] ⋃ [
V +(loc)
Zj

, ∞
)
, where

V −(loc)Zj
=
−λj Dj,∆j

DT
j,∆j

+ Dj,∆j
DT

j,−∆j
ûλj,−τ̂j

σ
∥∥DT

j,∆j

∥∥ ,

V +(loc)
Zj

=
λj Dj,∆j

DT
j,∆j

+ Dj,∆j
DT

j,−∆j
ûλj,−τ̂j

σ
∥∥DT

j,∆j

∥∥ . (4.39)
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(b) Given
{
{τ̂j−1 , τ̂j , τ̂j+1} ∈ τ̂

}
, the conditional distribution of T loc

j , under the null

hypothesis, is t distribution with d
(loc)
j = (τ̂j+1 − τ̂j−1)− 2(r + 1) truncated to the set(

−∞ , V−(loc)Tj

] ⋃ [
V+(loc)
Tj

, ∞
)
, where

V−(loc)Tj
=
−λj Dj,∆j

DT
j,∆j

+ Dj,∆j
DT

j,−∆j
ûλj,−τ̂j

σ̂
(loc)
j ‖DT

j,∆j
‖

,

V+(loc)
Tj

=
λj Dj,∆j

DT
j,∆j

+ Dj,∆j
DT

j,−∆j
ûλj,−τ̂j

σ̂
(loc)
j ‖DT

j,∆j
‖

, (4.40)

and σ̂
2 (loc)
j =

∥∥(I−Ploc
j

)
yloc
j

∥∥2/d (loc)
j .

In the same manner as described in Section 4.4, the TN and Tt statistics can be employed
to perform hypothesis testings and to construct confidence intervals.

Remark 4.13 From Theorem 4.12, it turns out that the lower and upper limits of trun-
cation sets using local post-detection inference are infinite. Therefore, similar to global
post-detection inference, the expected lengths of confidence intervals associated with such
distributions are upper bounded. In particular, let

[
Lloc
Zj
, U loc

Zj

]
and

[
Lloc
Tj
, U loc

Tj

]
be (1−α)%

confidence intervals derived from truncated normal and truncated t distributions, respec-
tively, provided in Theorem 4.12. Hence, the lengths of such intervals are upper bounded
by

• when σ2 is known, the length of confidence intervals is always upper bounded by

U loc
Zj
− Lloc

Zj

a.s.

≤ 2σΦ−1
(

1− α

2

)
+ V+(loc)

Zj
− V−(loc)Zj

. (4.41)

• when σ2 is unknown, for d (loc) ≥ 3 and under the condition

α Gd (loc)

(
−
V +(loc)
Tj

− V −(loc)Tj

2 σ̂
(loc)
j

)
≥ Gd (loc)

(
G−1
d (loc)

(α
2

)
−
V +(loc)
Tj

− V −(loc)Tj

2 σ̂
(loc)
j

)
, (4.42)

the length of confidence intervals is upper bounded by

U loc
Tj
− Lloc

Tj

a.s.

≤ 2 σ̂ (loc)
j G−1

d (loc)

(
1− α

2

)
+ V +(loc)

Tj
− V −(loc)Tj

. (4.43)

98



4.7 Numerical Studies

In this section, we investigate the performance of our proposed post-detection inference
approaches for a piecewise constant signal, r = 0, and a piecewise linear signal, r = 1. We
compare the performance of the approaches in terms of the empirical power for hypothesis
testings and coverage probabilities for confidence intervals. We also apply the proposed
methods to the three real datasets, which have been used to estimate change points using
the PRUTF algorithm in Chapter 3.

4.7.1 Simulation Study

In order to investigate our proposed approaches for post-detection inference, we consider
two signals: piecewise constant and piecewise linear. Suppose that f is a piecewise con-
stant or linear signal of size n = 500, with four change points, J0 = 4, at locations
τ =

{
100 , 200 , 300 , 400

}
. For the piecewise constant signal, we consider a signal with

the starting point 0 and the jump sizes δ. That is,

f con
t =

{
0 for 1 ≤ t ≤ 100 or 201 ≤ t ≤ 300 or 401 ≤ t ≤ 500,

δ for 101 ≤ t ≤ 200 or 301 ≤ t ≤ 400 ,
(4.44)

where δ ∈
{

1 , 1.5 , 2 , . . . , 4.5 , 5
}

. Also, for the piecewise linear signal, we consider

f lin
t =

{
δ (−0.5 + t) for 1 ≤ t ≤ 100 or 201 ≤ t ≤ 300 or 401 ≤ t ≤ 500,

δ (0.5− t) for 101 ≤ t ≤ 200 or 301 ≤ t ≤ 400 .

(4.45)

We have generated a sample y fromN
(
f , σ2 I

)
, with σ2 = 1, for both piecewise constant

and piecewise linear signals, and implemented PRUTF to estimate change points. Next,
we have applied our proposed approaches: polyhedron post-detection (poly), global post-
detection (global) and local post-detection (local) inference procedures. Over N = 5000
repetitions, we have computed the empirical power of a change point hypothesis using the
three methods poly, global and local, for the cases of both known and unknown σ2. Recall
that the empirical power is defined as the ratio between the number of times the true
change point is correctly detected and has p-value less than α, and the number of times
the true change point is correctly detected, see [78]. Here, α is set to 0.05. The results of
the estimation of the second change point, τ2 = 200, are displayed in Figure 4.3. For the
piecewise constant signal, the empirical powers are computed over repetitions that contain
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the underlying change point. This is the spike contrast put forward by [77]. Whereas the
window contrast, used in [82], with h = 15 is employed for the computation in the piecewise

(a) Piecewise constant signal, known σ2. (b) Piecewise constant signal, unknown σ2.

(c) Piecewise linear signal known σ2. (d) Piecewise linear signal unknown σ2.

Figure 4.3: The empirical powers of the three proposed approaches, polyhedron, global and
local post-detection inference. The results are provided for both cases when σ2 is assumed known
and unknown. The two top panels display the empirical powers for the piecewise constant signal.
Also, the two bottom panels show the empirical powers for the piecewise linear signal. The solid
orange lines in both panels (b) and (d) display the empirical powers of the global post-detection

approach when σ̂
2 (glo)
j , an estimation of σ2, is replaced with MAD estimation.
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linear signal. Window contrast is chosen because PRUTF mostly estimates change points
near but not exactly at change points when the polynomial degree r increases.

Panels (a) and (b) of Figure 4.3 provide the empirical powers for the piecewise constant
signal with both known and unknown σ2. When σ2 is known, the local and global post-
detection approaches outperform the polyhedron post-detection approach, as expected. In
the case of unknown σ2, the local post-detection approach again performs better than
the polyhedron one. However, the global post-detection approach performs poorly due to
inaccurate σ2 estimation, see Section 4.6.1. By replacing σ̂

2 (glo)
j in Theorem 4.10 with the

MAD estimation, the empirical power of the global post-detection approach has improved.
The results for the piecewise linear signal are also plotted in panels (c) and (d) of Figure
4.3. Similar patterns are observed for this signal, as well.

Moreover, we have computed the coverage probability for confidence intervals, obtained
using the polyhedron, global and local post-detection methods. The outputs are reported
in Table 4.1.

P
ie
ce
w
is
e
C
o
n
st
a
n
t Known σ2 Unknown σ2

δ Poly Global Local Poly Global Global (MAD) Local
2 0.9515 0.9527 0.9515 0.9515 0.9708 0.9527 0.9504
3 0.9554 0.9564 0.9554 0.9554 0.9817 0.9577 0.9564
4 0.9547 0.9586 0.9547 0.9605 0.9874 0.9601 0.9551
5 0.9543 0.9531 0.9543 0.9618 0.9889 0.9553 0.9545

P
ie
ce
w
is
e
L
in
ea

r Known σ2 Unknown σ2

δ Poly Global Local Poly Global Global (MAD) Local
2 0.9473 0.9543 0.9473 0.9473 0.9660 0.9450 0.9473
3 0.9550 0.9555 0.9550 0.9570 0.9737 0.9581 0.9555
4 0.9453 0.9491 0.9453 0.9491 0.9779 0.9514 0.9441
5 0.9431 0.9419 0.9431 0.9506 0.9786 0.9426 0.9431

Table 4.1: Coverage probabilities of confidence intervals obtained using polyhedron, global and
local post-detection approaches. The results are reported for four values of δ ∈ { 2 , 3 , 4 , 5 }.

4.7.2 Real Data Analysis

In Chapter 3, we have analyzed three real datasets: UK House Price Index, the GISS
Surface Temperature and COVID-19. In the following, we will apply our proposed post-
detection inference approaches to evaluate the significance of change points estimated using
PRUTF for the datasets.
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Example 4.14 (UK HPI Data) In Example 3.17, we have applied the mPRUTF algo-
rithm to find change point locations in the UK HPI at Tower Hamlets from January 1996
to November 2018. Our algorithm has estimated five change points located at months: De-
cember 2002, April 2008 and August 2009, May 2012 and August 2015. We have provided
the results of post-detection inference for these change points in panel (a) of Figure 4.4.
The plot displays % 95 post-detection confidence intervals for the change points. Based on
the polyhedron and local post-detection results, we have concluded that all five estimated
change points are significant as their corresponding intervals excluded zero.

Example 4.15 (GISTEMP Data) We have provided the change point results of the
mPRUTF algorithm for the GISTEMP dataset in Example 3.18. The example has consid-
ered the monthly land-ocean temperature anomalies recorded from January 1880 to August
2019. For this dataset, the algorithm has estimated six change points located at months:
September 1899, February 1911, May 1929, April 1941, March 1960, October 1984. We

(a) CIs For HPI Data. (b) CIs For GISTEMP Data.

Figure 4.4: Valid post-detection confidence intervals for both the UK HPI dataset (left panel)
and GISTEMP dataset (right panel). For each estimated change point, valid % 95 post-detection
confidence intervals, obtained from polyhedron, global using both pooled and MAD variances,
and local post-detection inference approaches, are displayed.
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have applied our proposed post-detection inference approaches to assess the significance of
these estimated change points by computing the associated confidence intervals. The results
are provided in Figure 4.4, panel (b). The outputs obtained from both polyhedron and lo-
cal post-detection inference have confirmed the significance of all estimated change points
except the one in September 1899.

Example 4.16 (COVID-19 Data) The logarithm of the cumulative daily number of
COVID-19 confirmed cases has been analyzed in Chapter 3 using a piecewise linear model.
The choice of the piecewise linear model is natural because the slope of each segment, esti-
mated using the detected change points, indicates the growth rate of the COVID-19 virus.
Consequently, these slopes allow us to compare the virus growth rate among estimated seg-
ments and evaluate the effectiveness of undertaken strategies. Additionally, the linear trend
of the last segment can be used to predict the status of the pandemic for future dates.

In Example 3.19, we have applied the mPRUTF algorithm to detect change points that
have occurred in the transformed COVID-19 datasets from March 10, 2020 until April 30,
2021, for Australia, Canada, the United Kingdom and the United States. We have applied
our proposed post-detection inference approaches to these datasets. The % 95 post-detection
confidence intervals for the estimated change points are provided in Figure 4.5. For exam-
ple, for Canada, based on the polyhedron and local post-detection inference approaches, the
change points located on March 26, 2020; April 9, 2020; May 11, 2020; August 31, 2020
and January 12, 2021 are significant. For the United Kingdom, based on the polyhedron
and local post-detection approaches, only the change point located on June 22, 2020 is in-
significant. Moreover, the figure shows that the confidence intervals for March 18, 2021
in Canada and for February 23, 2021 in the United States derived from polyhedron post-
detection method are very wide and skewed. These observations certify the results provided
in Theorem 4.7.

4.8 More on Post-Detection Inference Versus Classi-

cal Inference

As discussed in Section 2.3, classical inference computes p-values and constructs confidence
intervals for the selected change points without accounting for the fact that the data
have been used in estimating these change points. Therefore, it seems clear that this
naive inference is problematic. For example, the confidence intervals constructed by using
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Figure 4.5: Valid post-detection confidence intervals for COVID-19 datasets.. For each esti-
mated change point, % 95 post-detection confidence intervals obtained from polyhedron, global
with both pooled and MAD variance estimations, and local post-detection inference approaches
are displayed.

classical inference are narrower and have smaller coverage probabilities. In other words,
classical confidence intervals with nominal 1− α coverage, may no longer cover the target
parameter at this level. Many researchers including [96, 22, 143, 93, 174] and [77] have
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investigated this problem in the literature. For more details, see Section 2.3. In the
following, we empirically show that classical confidence intervals may fail to have the
correct coverage properties.

We first conduct a simulation study as follows. We consider piecewise constant signals
with various sizes n, but with four change points, equally spaced along each signal, that
is, τ = {n

5
, 2n

5
, 3n

5
, 4n

5
}. We simulate 1000 samples from the model in (4.2) and run the

mPRUTF algorithm for each sample to estimate change points. We then construct confi-
dence intervals using both classical (naive Z-tests) and the local post-detection methods.
Panel (a) of Figure 4.6 shows the coverage proportion of 95% classical confidence intervals
and 95% of post-detection confidence intervals for various signal sizes. The results show
that the coverage proportion of the post-detection confidence intervals are always near the
nominal level 0.95, whereas the coverage proportions for the classical confidence intervals
may be far below 0.95, specially when the signal sizes are small. However, as the signal
size increases, the coverage proportions of the classical confidence intervals approaches this
nominal confidence level.

(a) Coverage proportions for the simulation study. (b) P-values for the simulated data.

Figure 4.6: Plots of the coverage proportions across a range of sample size (panel a) as well
as p-values for the simulated example (panel b). As can be seen from panel (a), the coverage
proportion of the classical confidence intervals can be far below the nominal level of 0.95. While
the post-detection confidence intervals always have coverage proportion 0.95. In panel (b), for
the false detected change points at 72 and 84 (shown in red), p-values derived from post-detection
method are larger than those of the classical method.
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Additionally, we compare the performance of both classical and post-detection inference
for a simulated example. To this end, we generate a sample from a piecewise constant signal
with n = 100 and two true change points at τ =

{
20, 50

}
. For this example, we do not

apply the stopping rule in mPRUTF, and run the algorithm to detect four change points.
Thus, in addition to the true change points, mPRUTF has detected two false change points
located at 72 and 84. If we treat the detected change points as fixed and naively ignore their
adaptive detection, then the usual Z-test would be a natural choice for determining the
significance of each change point. Panel (b) of Figure 4.6 reports p-values computed from
the naive Z-test as well as those from the post-detection inference. As seen from the figure,
both classical and post-detection methods produce small p-values for the true change points
20 and 50. For the false detected change point located at 72 and 84, the post-detection
method gives p-values away from 0.05 and correctly rejects the significance of these points.
However, p-values obtained by classical inference are closer to 0.05, specifically the one for
location 72, and may lead to incorrectly verifying it as a change point.
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Chapter 5

Conclusions and Future Research

5.1 Conclusions

This thesis has introduced a novel methodology based on trend filtering to detect change
points in a mean model. The PRUTF method has been developed to estimate the number
and locations of change points in piecewise polynomial signals. Unlike the vast majority of
methods currently available in the literature, PRUTF extends the problem of mean change
point detection, going beyond just focusing on piecewise constant signals. Once able to
estimate change points using PRUTF, we proposed polyhedron, global and local post-
detection methods to test the significance of the estimates. To evaluate the performance
of the proposed methods, we have executed simulation studies and compared the methods
to some state-of-the-art approaches in the literature.

In Chapter 3, we proposed the PRUTF method for detecting change points in piecewise
polynomial signals by using trend filtering. We demonstrated that the dual solution path
produced by the PRUTF algorithm forms a Gaussian bridge process for any given value
of the regularization parameter λ. This conclusion has allowed us to derive an efficient
stopping rule for terminating the search algorithm, which is vital in the change point
analysis. We then proved that when there is no staircase block in the signal, the method
guarantees consistent pattern recovery. However, it fails to do so when there is a staircase in
the underlying signal. To address this shortcoming, we have suggested a modification in the
procedure of constructing the solution path, one that effectively prevents false change-point
discovery. Evidence from both simulation studies and real-world data analyses confirms
the accuracy and high detection power of the proposed method.
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In Chapter 4, we attempted to quantify the uncertainty of change points estimated
using PRUTF. We have provided a post-detection inference framework to compute valid
p-values for the significance of change points estimated with PRUTF. We have also con-
structed confidence intervals for the magnitude of such estimated change points. These
inferences have been executed by implementing conditional inferences through three dis-
tinct conditional detection events, giving the polyhedron, global and local post-detection
inference procedures. We have also shown that these global and local post-detection infer-
ences lead to higher-power tests by conditioning on much smaller detection events.

5.2 Future Research

For future work in this area, there are several possible ideas. We want to apply our proposed
post-detection approaches to the extensively used change point detection algorithms such
as binary segmentation, extensions, and `0-norm segmentation. Moreover, our focus in
Chapters 3 and 4 has been on the independently and identically distributed random noises
to precisely highlight the main ideas. However, our proposed approaches are not confined
only to these types of random noises. One possible extension would be to incorporate more
complex random noises. For example, we can consider heavy-tailed distributions or even
auto-correlated random noises. The extension of the proposed approaches will allow us to
provide inferential tools for a wide range of applications.

Our extension of the change point analysis to the generalized linear model framework
is the subject of a forthcoming paper. As discussed, Gaussianity is a crucial assumption
for the analysis in both Chapters 3 and 4. This assumption is required for developing
the stopping rule in PRUTF and deriving the exact distributions of the test statistics
for post-detection inferences. Regarding the Gaussianity assumption, a natural question
arises: what happens if our model does not satisfy the Gaussian assumption? To address
this question, we are working on the change point analysis of the canonical parameter of
an exponential family with a piecewise polynomial structure.

The extension of PRUTF to dependent random noises is another interesting research
topic. We should keep in mind that different types of random noises do not impact the
dual solution path of trend filtering. However, the distribution of random noises plays
a crucial role in the stopping rule of PRUTF. This is because the stopping rule is built
based on the Gaussian bridge processes. As our real examples might be weakly dependent,
we have executed simulation studies to explore the influence of weakly dependent random
noises on PRUTF. Based on these simulation results, provided in Section 3.10, it appears
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that PRUTF is robust against dependent noises. More detailed studies of PRUTF for
dependent random noises will be the subject of our future research.
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Appendix A

Appendix of Chapter 3

A.1 Proof of Theorem 3.7

For ε
1
, . . . , εn , . . .

i.i.d.∼ N(0, σ2), and a sequence q
1
, . . . , qn , . . . of real numbers, let

ν
k

= Var

(
k∑
i=1

q
i
ε
i

)
= σ2

k∑
i=1

q2
i

for k ≥ 1 .

Define the partial weighted sum process
{
Sn(t) : 0 ≤ t ≤ 1

}
by

Sn(t) =
1
√
νn

bntc∑
i=1

q
i
ε
i
, for 0 ≤ t ≤ 1 .

Obviously, for any k ≥ 1, and any 0 < t
1
< t

2
< · · · < t

k
≤ 1, the vector

(
Sn(t

1
), . . . , Sn(t

k
)
)

has a multivariate normal distribution, and therefore
{
Sn(t) : 0 ≤ t ≤ 1

}
is a Gaussian

process for any given n.

a) In our case, first note that[(
D−ADT

−A

)−1
D−A

]
bmtc

y =
[(

D−ADT
−A

)−1
D−A

]
bmtc

(
y − f

)
=
[(

D−ADT
−A

)−1
D−A

]
bmtc

ε, (A.1)
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which is a partial weighted sum process of independent and identical Gaussian ran-
dom variables εi, i = 1 , . . . , n. The first equality in (A.1) is derived from the fact
that the structure of the true signal f remains unchanged within the j-th block,
meaning that

[
D−A

]
bmtc

f = 0, for
(
τ
j
+ ra

)
/m ≤ t ≤

(
τ
j+1
− r

b

)
/m, which in turn

implies [(
D−ADT

−A

)−1
D−A

]
bmtc

f = 0.

Thus, from the aforementioned argument for
{
Sn(t)

}
, the process Wj =

{
Wj(t) : (τ

j

+ ra)/m ≤ t ≤ (τ
j+1
− r

b
)/m

}
is a Gaussian process, where

Wj(t) =
(
τj+1 − τj − r

)−(2 r+1)/2
[(

D−ADT
−A

)−1
D−A

]
bmtc

y.

Additionally, with the conditions given in (3.27), W
j

is a Gaussian bridge process
over the interval (τ

j
+ ra)/m ≤ t ≤ (τ

j+1
− r

b
)/m. Furthermore, from (A.1), the

mean vector and covariance matrix of W
j

can be computed as 0 and σ2
(
D−ADT

−A

)−1
.

b) Recall that the covariance matrix
(
D−ADT

−A

)−1
is a block diagonal matrix which

states that the covariance matrix between two distinct blocks is zero. This completes
the proof of the theorem.

A.2 Proof of Theorem 3.10

a) For t = 1, . . . , τ
1
− r

b
, and both signs ±1, according to the KKT conditions, the dual

variables û(t) must lie between −λ and λ, that is,

−λ ≤ û st
0

(t)− λ
[(

D−ADT
−A

)−1
D−A

]
t

DT
A1

1 ≤ λ (A.2)

which yields the constraint for the first block in (3.39).

b) Similar to the first block, for t = τ
J0

+ ra , . . . , m, the constraint becomes

−λ ≤ û st
J0

(t) + λ
[(

D−ADT
−A

)−1
D−A

]
t

DT
A
J0

1 ≤ λ , (A.3)

which leads to the result of (3.40).
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c) For t = τ
j

+ ra , . . . , τj+1
− r

b
, and j = 1, . . . , J

0
− 1 the constraint for the exact

pattern recovery becomes

λ s
j
≤ û st

j
(t)− λ

[(
D−ADT

−A

)−1
D−A

]
t

(
DT

Aj+1
s
j+1

+ DT
Aj

s
j

)
≤ λ s

j+1
. (A.4)

Since the stochastic process û st
j

(t) is symmetric around zero, when s
j+1

and s
j

have

the opposite signs, this constraint reduces to (3.41). Otherwise, when s
j+1

= s
j
, which

accounts for the staircase in block j, from (3.19) the constraint becomes û st
j

(t) ≤ 0

or û st
j

(t) ≥ 0 .

A.3 Proof of Theorem 3.12

(a) The PRUTF algorithm is consistent in pattern recovery if the event{
τ̂ = τ

}
∩
{

sign
(
Dtf̂n

)
= sign

(
Dtf

)
, ∀ t ∈ τ

}
, (A.5)

occurs with probability approaching one. For ease of exposition, we first compute the
probability of the statement in (A.5) for the piecewise constant case, r = 0. We then
extend this probability computation to an arbitrary piecewise polynomial r ∈ N.

Case r = 0 : In this case, the event in (A.5) is equivalent to
{
An ∩Bn

}
where

An =
{

min
t∈τ

∣∣Dtf̂n
∣∣ > 0

}
, (A.6)

and

Bn =
{

max
t∈τc

∣∣Dt εn
∣∣ ≤ 4λn

}
. (A.7)

For t ∈ τ c = {1, . . . , m}\τ , observe that Dt

(
f̂n − f

)
= 0; therefore,∣∣Dt εn

∣∣ =
∣∣Dt

(
yn − f̂n

)
+ Dt

(
f̂n − f

)∣∣ =
∣∣Dt

(
yn − f̂n

)∣∣
=
∣∣Dt D

T û
∣∣ ≤ 4λn,

which is captured in event Bn. The last inequality in the above equation occurs
because, from Theorem 3.10, we have |û| ≤ λn as well as the fact that

∑m
i=1

∣∣[Dt D
T
]
i

∣∣
= 2 r+2, for an arbitrary r. In the following, we derive the conditions under which
the probabilities of both events An and Bn converge to 1.
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• To compute the probability of An, we first note that, for every t ∈ τ ,∣∣Dt f̂n
∣∣ =

∣∣yn, t − yn, t−1 − λn
(
st − st−1

)∣∣
=
∣∣Dt εn + Dt f − λn

(
st − st−1

)∣∣
≤
∣∣Dt εn − λn

(
st − st−1

)∣∣+
∣∣Dt f

∣∣,
where yn, t is the average of observations in the segment created by block t. The
last inequality in the above statement is derived from the triangular inequality.
Therefore, in order to verify An, it is enough to show that, with the probability
approaching one,

max
t∈τ

∣∣Dt εn − λn
(
st − st−1

)∣∣ ≤ δn, (A.8)

where δn = min
t∈ τ

∣∣Dtf
∣∣ is the minimum jump between change points. Equiva-

lently, it suffices to show that

max
t∈τ

λn
∣∣st − st−1

∣∣ ≤ δn/2, (A.9)

and

max
t∈τ

∣∣Dt εn
∣∣ ≤ δn/2. (A.10)

The inequality in (A.9) holds if λn ≤
δn Ln

4
, where Ln = min

j=0, ..., J0

∣∣τ
j+1
− τ

j

∣∣.
Applying the union and Gaussian tail bounds, the probability of the complement
of the event in (A.10) can be computed as

Pr
(

max
t∈τ

∣∣Dt εn
∣∣ ≥ δn/2

)
≤
∑
t∈τ

Pr
(∣∣Dt εn

∣∣ ≥ δn/2
)

≤
∑
t∈τ

Pr

(∣∣Zn∣∣ ≥ δn
√
Ln

2
√

2σn

)
≤ 2 J0 exp

(
−δ

2
n Ln

16σ2
n

)

= 2 exp

(
−δ

2
n Ln

16σ2
n

+ log(J0)

)
. (A.11)

The probability in (A.11) converges to zero if, for some ξ > 0,

δn
√
Ln

σn
−→∞ and

δn
√
Ln

σn
√

log(J0)
>
√

16 (1 + ξ). (A.12)
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• Next, we verify conditions under which Pr(Bn) −→ 1. Equivalently, it is enough
to determine the conditions under which the following probability converges to
zero.

Pr
(
B c
n

)
= Pr

(
max
t∈τc

∣∣Dtεn
∣∣ ≥ 4λn

)
≤
∑
t∈τc

Pr
(∣∣Dt εn

∣∣ ≥ 4λn
)

≤
∑
t∈τc

Pr

(∣∣Zn∣∣ ≥ 4λn
√
Ln√

2σn

)

≤ 2
(
n− J0

)
exp

(
−4λ2n Ln

σ2
n

)

= 2 exp

(
−4λ2n Ln

σ2
n

+ log
(
n− J0

))
. (A.13)

The above probability converges to zero if, for some ξ > 0, the following condi-
tions hold,

λn
√
Ln

σn
−→∞ and

2λn
√
Ln

σn
√

log(n− J0)
> (1 + ξ). (A.14)

Case arbitrary r : For the piecewise polynomial of order r (r ∈ N), we note that,
for any t ∈ [τj , τj+1),∣∣Dt f̂n

∣∣∣ =
∣∣Dt

(
yn −DT

−A
û
)∣∣∣

=

∣∣∣∣Dt

[(
I−PD

)
yn − λn PD

(
DT

Aj+1
s
j+1

+ DT
Aj

s
j

) ]∣∣∣∣
=

∣∣∣∣Dt

[(
I−PD

)(
f + εn

)
− λn PD

(
DT

Aj+1
s
j+1

+ DT
Aj

s
j

) ]∣∣∣∣,
where PD = DT

−A

(
D−ADT

−A

)−1
D−A is the projection map onto the row space of

D−A . In the preceding statement, the second equality is derived by plugging in the
statement in (3.22) in place of û. From (3.20), recall that I − PD is equivalent
to the prediction matrix in the r-th polynomial regression of y onto indices τj +
1 , τj + 1 , . . . , τj+1. This fact allows us to derive an upper bound for the variance of

130



Dt

(
I−PD

)
εn [170],

max
t∈τ

Var
(
Dt

(
I−PD

)
εn

)
≤ 2 r+1 n

2r σ2
n

L2r+1
n

.

Following a procedure similar to that used in the case r = 0,

Pr

(
max
t∈τ

∣∣Dt

(
I−PD

)
εn
∣∣ ≥ δn

2

)
≤ 2 exp

(
− δ2n L

2r+1
n

2 r+4 n2r σ2
n

+ log
(
J0

))
. (A.15)

For the case of an arbitrary r, there is a slight modification in the definition of event
Bn:

Bn =
{

max
t∈τc

∣∣Dt

(
I−PD

)
εn
∣∣ ≤ 2 r+2 λn

}
. (A.16)

Again, in the same manner

Pr
(
B c
n

)
≤ 2 exp

(
−2 r+2 λ2n L

2r+1
n

n2r σ2
n

+ log
(
n− J0

))
. (A.17)

Therefore, for an arbitrary r, the PRUTF algorithm is consistent in pattern recovery
if, in addition to

λn <
δn L

2r+1
n

n2r 2 r+2
,

the conditions in (3.43) and (3.44) hold.

(b) As shown in part (c) of Theorem 3.10, in staircase blocks, the violation of the KKT
conditions boils down to crossing the zero line for a Gaussian bridge process. Suppose
j-th block is a staircase block; therefore, PRUTF can attain the exact discovery if
û st
j

(t) ≤ 0 or û st
j

(t) ≥ 0, for all (τ
j

+ ra)/m ≤ t ≤ (τ
j+1
− r

b
)/m. Hence the

probability of this event occurring is equal to Pr
(

max
0≤ t≤Lj

û st
j

(t) ≤ 0
)

. According to

[19],

Pr
(

max
0≤ t≤Lj

û st
j

(t) ≤ a
)

= 1− exp
(
− 2 a2

S2
r
(L

j
)

)
, (A.18)

where S2
r
(L

j
) is the L

j
-th diagonal element of the matrix σ2

(
D

Aj
DT

Aj

)−1
. As a result,

the probability converges to zero as a vanishes. This result implies that the PRUTF
algorithm fails to consistently recover the true pattern in the presence of staircase
patterns.
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A.4 Residual Analysis For Real Datasets

In this section, we provide the residual analysis for UK HPI and GISTEMP and COVID-
19 datasets. We compute the residuals for each dataset by subtracting their observations
from the associated signal estimated using the mPRUTF algorithm. The results of auto-
correlation function for these datasets are presented in Figure A.1. As can be seen from
the figure, there is an auto-correlation among observations in GISTEMP dataset as well
as the COVID-19 datasets for Canada, the United Kingdom and the United States.

Figure A.1: Auto-correlation Function For the Real Datasets
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Appendix B

Appendix of Chapter 4

B.1 Proof of Theorem 4.2

a) Note that

Ay = A
(
Pη + P−Pη

)
y =

(
Aη

‖η‖

)
ηTy

‖η‖
+ AV, (B.1)

which allows us to rewrite
{
Ay ≥ q

}
as{

Ay ≥ q
}

=
{
σ
[
Aη/‖η‖

]
Z +

[
AV − q

]
≥ 0

}
.

This representation leads to the truncation set

[
V−Z , V+

Z

]
=

|row(A)|⋂
i=1

{
z ∈ R : σ

[
Aη/‖η‖

]
i

z +
[
AV − q

]
i

≥ 0

}
.

Observe that solving the inequality in the above set with respect to z depends on the
sign of ρi =

[
Aη/‖η‖

]
i
. Therefore,

{
z ∈ R : σρi z +

[
AV − q

]
i
≥ 0 , i = 1, . . . ,

∣∣row(A)
∣∣} =


z ≥

[
q−AV

]
i

σρi
i : ρi > 0,

z ≤
[
q−AV

]
i

σρi
i : ρi < 0,

0 ≤
[
AV−q

]
i

i : ρi = 0.
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The preceding statement leads to the interval
[
V−Z , V+

Z

]
, provided V0

Z > 0, where
V−Z = V−Z (V), V+

Z = V+
Z (V) and V0

Z = V0
Z(V) are provided in (4.20). Given V, these

truncation boundaries are fixed. Therefore, the distribution of Z given
{
V, Ay ≥ q

}
is equivalent to the distribution of a normal distribution constrained to the interval[
V−Z , V+

Z

]
. Hence

Z
∣∣∣ {V, Ay ≥ q

}
∼ TN

(
ηT f , 1 ,

[
V−Z , V+

Z

] )
.

b) Applying the probability integral transform for (4.19) yields

1− Φ[V−Z ,V
+
Z ] (Z)

∣∣∣ {V, Ay ≥ q
}
∼ U

(
0 , 1

)
.

For every 0 ≤ u ≤ 1, by marginalizing the above statement over V, we have

Pr

(
1−Φ[V−Z ,V

+
Z ] (Z) ≤ u

∣∣∣Ay ≥ q

)

=

∫
V

Pr
(

1− Φ[V−Z ,V
+
Z ] (Z) ≤ u

∣∣∣V , Ay ≥ q
)

Pr
(
V
∣∣Ay ≥ q

)
dv

= u

∫
V

Pr(V
∣∣∣Ay ≥ q) dv = u

which establishes Equation (4.21).

B.2 Proof of Theorem 4.4

a) Let W =
∥∥(I−P + Pη

)
y
∥∥2, since both projection matrices P and Pη are symmetric

and idempotent, then

W =
∥∥(I−P) y

∥∥2 +

(
ηTy

‖η‖

)2

+ 2

(
ηT (I−P) y

‖η‖

)(
ηTy

‖η‖

)

= σ̂2

[
d+ T 2 + 2

(
ηT (I−P) y

σ̂‖η‖

)
T

]
.
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From (B.1), the polyhedron set can be rewritten as{
Ay ≥ q

}
=

{(Aη

‖η‖

) ηTy

‖η‖
+ AV ≥ q

}
.

Multiplying both sides of the above inequality by W/ σ̂2 yields the truncation set

[
V−T , V+T

]
=

|row(A)|⋂
i=1

{
t ∈ R :

(Wρi
σ̂

)
t+

[
AV − q

]
i

(
d+ t2 + 2

ηT (I−P)y

σ̂‖η‖
t

)
≥ 0

}

=

|row(A)|⋂
i=1

{
t ∈ R :

[
AV − q

]
i

t2 +

(
2
ηT (I−P)y

σ̂‖η‖

[
AV − q

]
i

+
Wρi
σ̂

)
t

+
[
AV − q

]
i

d ≥ 0

}
. (B.2)

In the above intersection, for each i, i = 1 , . . . , |row(A)|, the inequality can be
solved explicitly. Note that

[
V−T , V+

T

]
is a bounded interval (see Theorem 4.8).

On the other hand, W can also be decomposed as

W =
∥∥(I−P + Pη

)
y
∥∥2 =

∥∥y∥∥2 − ∥∥(P−Pη

)
y
∥∥2. (B.3)

Therefore, conditioning on
{
V , ‖y‖2

}
is equivalent to conditioning on

{
V, W

}
.

This means that, given
{
V , ‖y‖2

}
, the truncation boundaries V−T = V−T

(
V, W

)
and V+

T = V+
T

(
V, W

)
are fixed. Therefore, the distribution of T given

{
V , ‖y‖2

}
is

equivalent to the distribution of a t distribution with d degrees of freedom, constrained
to
[
V−T , V+

T

]
. Hence,

T
∣∣∣ {V,

∥∥y∥∥2 , Ay ≥ q
}
∼ Tt

(
ηT f , 1, d, [V−T ,V+

T ]
)

b) Similar to part (b) of Theorem 4.2, by marginalization of (4.25) over
{
V , W

}
, we

obtain the statement in (4.27)
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B.3 Proof of Theorem 4.7

(a) The result of this part has been proved in [88]. Here, we give the proof in our
notation. Lemma A.4 of the latter reference shows that for bk <∞,

lim
z−→b−

k

(
bk − z

)
LZ(z) = −σ2 log

(
1− α/2

)
,

lim
z−→b−

k

(
bk − z

)
UZ(z) = −σ2 log

(
α/2

)
.

The above equations together leads to

lim
z−→b−

k

(
bk − z

)[
UZ(z)− LZ(z)

]
= σ2 log

(
(2− α)/α

)
This limit states that there exits an ε > 0, such that

UZ(z)− LZ(z) ≥
σ2 log

(
(2− α)/α

)
2
(
bk − z

) for any z ∈
(
bk − ε , bk

) ∩ SZ.
Now, let f ∗ = inf

{
f SZ
µ, σ2(z) : z ∈

(
bk − ε , bk

) ∩ SZ}. Clearly, f ∗ > 0 as f SZ
µ, σ2 is a

probability density function. Therefore,

E
[
UZ(Z)− LZ(Z)

∣∣∣Z ∈ SZ] =

∫
z ∈SZ

[
UZ(z)− LZ(z)

]
f SZ
µ, σ2(z) dz

≥
σ2 log

(
(2− α)/α

)
2

∫
z ∈ (bk−ε , bk)

⋂
SZ

f SZ
µ, σ2(z)

bk − z
dz

≥
σ2 log

(
(2− α)/α

)
f ∗

2

∫
z ∈ (bk−ε , bk)

⋂
SZ

1

bk − z
dz =∞.

(B.4)

This can be similarly shown for a1 > −∞.

(b) From the result in part (a), it suffices to show that

E
[
UT (T )− LT (T )

]
≥ E

[
UZ(Z)− LZ(Z)

]
.
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To this end, we show that a random variable T ∼ Tt
(
µ , σ2 , d , ST

)
has a heavier

tail than a random variable Z ∼ TN
(
µ , σ2 , ST

)
. It is known that a random variable

Y has heavier tails than X if and only if

lim
t−→∞

1− FY (t)

1− FX(t)
=∞.

This equation is equivalent to

lim
t−→∞

fY (t)

fX(t)
=∞.

Now, let f ST
µ, σ2(·) and g ST

µ, σ2, d
(·), denote the density function of Z and T, respectively.

Therefore,

lim
x−→∞

g ST
µ, σ2, d

(x)

f ST
µ, σ2(x)

= lim
y−→∞

g STd (y)

f ST0, 1 (y)
= lim

y−→∞
exp

{
log g STd (y)− log f ST0, 1 (y)

}
= exp

{
lim
y−→∞

−d+ 1

2
log

(
1 +

y2

d

)
+

1

2
y2 + C

}

= exp

{
lim
y−→∞

y2
[
−d+ 1

2 y2
log

(
1 +

y2

d

)
+

1

2

]
+ C

}
,

where in the first equality we use the change variable y = (x− µ)/σ. Since

lim
y−→∞

1

y2
log

(
1 +

y2

d

)
= 0,

we have

lim
x−→∞

g ST
µ, σ2, d

(x)

f ST
µ, σ2(x)

=∞.

The preceding result proves that the truncated t distribution has heavier tails than
truncated normal.

Now, since
[
LZ(Z) , UZ(Z)] and

[
LT (T ) , UT (T )] are confidence intervals at the same

level for truncated normal and truncated t distributions, respectively, and UZ(Z) −
LZ(Z) and UT (T )− LT (T ) are two non-negative random variables such that

UT
(
T
)
− LT

(
T
) a.s.

≥ UZ
(
Z
)
− LZ

(
Z
)
.
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Hence,

E
[
UT (T ) − LT (T )

]
≥ E

[
UZ(Z) − LZ(Z)

]
.

The above equation and Equation (B.4) together lead to the statement in (4.30).

B.4 Proof of Theorem 4.8

(a) From Equation (4.20), it can be viewed that V−Z and V+
Z are unbounded if both

sets
{
i : ρi < 0

}
and

{
i : ρi > 0

}
are empty, where ρi =

[
Aη/‖η‖

]
i
, for i =

1 , . . . ,
∣∣row(A)

∣∣. This condition implies ρi = 0 for all i which in turn requires that
Aη = 0 for all η 6= 0. Hence every vector η 6= 0 is orthogonal to the row space of the
matrix A, which contradicts with the fact that the conditioning set is a polyhedron.

(b) From (4.26), V−T and V+
T are unbounded if the inequality[

AV − q
]
i

t2 +

(
2
ηT (I−P) y

σ̂‖η‖

[
AV − q

]
i

+
Wρi
σ̂

)
t+

[
AV − q

]
i

d ≥ 0 (B.5)

always holds for any i = 1, . . . ,
∣∣row(A)

∣∣. This requires that the quadratic equation
in (B.5) to have at most one real root, i.e.,(

2
ηT (I−P) y

σ̂‖η‖

[
AV − q

]
i

+
Wρi
σ̂

)2

− 4 d
[
AV − q

]2
i

≤ 0 ,

as well as the coefficient sign of t2 must be positive, i.e.,
[
AV − q

]
i
> 0. According

to (4.20), this latter condition occurs if and only if ρi = 0, for all i = 1, . . . ,
∣∣row(A)

∣∣,
which is impossible as shown in part (a).

B.5 Proof of Theorem 4.10

(a) Since sτ̂j is the sign of
[
Df̂
]
τ̂j

= Dτ̂j
f̂ , hence, sτ̂j Dτ̂j

f̂ ≥ 0. From the primal-dual

relationship in (3.8), we get

sτ̂j Dτ̂j

(
y −DT ûλj

)
≥ 0, (B.6)
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where λj is the value of the regularization parameter associated with τ̂j. Now, the
goal is to find a range for Zglo

j for which τ̂j is a change point. Recall that from
KKT conditions of the dual problem (3.6), if τ̂j is a change point then ûλj, τ̂j = sτ̂j λj.

Applying the decomposition y = Pη y +
(
I − Pη

)
y into (B.6) and setting ûλj, τ̂j =

sτ̂j λj, we have

sτ̂j Dτ̂j

(
η

‖η‖2
ηT y +

(
I−Pη

)
y − sτ̂j λj DT

τ̂j
−DT

−τ̂j
ûλj,−τ̂j

)
.

Hence, setting η = DT
τ̂j

in the preceding equation, for sτ̂j = 1,

Dτ̂j
y ≥ λj Dτ̂j

DT
τ̂j

+ Dτ̂j
DT
−τ̂j

ûλj,−τ̂j , (B.7)

and, for sτ̂j = −1,

Dτ̂j
y ≤ −λj Dτ̂j

DT
τ̂j

+ Dτ̂j
DT
−τ̂j

ûλj,−τ̂j . (B.8)

Therefore, given Dτ̂j
, λj, ûλj

, and σ2, the quantity Z glo
j =

Dτ̂j
y

σ ‖DT
τ̂j
‖ is restricted to

regions
(
−∞ , V −(glo)Zj

]
and

[
V +(glo)
Zj

, ∞) where V−(glo)Zj
and V+(glo)

Zj
are given in (4.33).

(b) In the same fashion as part (a), given Dτ̂j
, λj and ûλj

, the quantity T glo
j =

Dτ̂j
y

σ̂
( glo)
j ‖DT

τ̂j
‖

is restricted to the regions
(
−∞ , V −(glo)Tj

]
and

[
V +(glo)
Tj

, ∞
)

where V−(glo)Tj
and V+(glo)

Tj

are given in (4.34).

B.6 Proof of Theorem 4.11

We will prove the inequality for the truncated t distribution. A similar proof can be
applied to the truncated normal distribution which is also provided in [88]. Suppose
T ∼ t

(
µ , σ2 , d) is a location-scale t distribution with cumulative distribution function

Gµ, σ2, d (·). For any 0 < γ < 1, define Qγ(t) via

GQγ, σ
2, d

(
t
)

= PrQγ, σ2, d

(
T ≤ t

)
= γ,
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or equivalently, Qγ(t) = t − σ G−1d (γ). Thus, the cumulative distribution function of T
truncated to S =

⋃m
i=1

(
ci , di

)
, is upper bounded by

GS
Qγ, σ

2, d

(
t
)

=
PrQγ, σ2, d

(
T ≤ t ∩ T ∈ S

)
PrQγ, σ2, d

(
T ∈ S

)
≤

PrQγ, σ2, d (T ≤ t)

PrQγ, σ2, d (T ∈ S)
≤ γ

g
, (B.9)

where g = inf µ Prµ , σ2 , d

(
T ∈ S

)
. On the other hand, from the inequality Pr(A∩ B) ≥

Pr(A) + Pr(B)− 1, we notice that

GS
Qγ, σ

2, d

(
t
)

=
PrQγ, σ2, d

(
T ≤ t ∩ T ∈ S

)
PrQγ, σ2, d

(
T ∈ S

)
≥

PrQγ, σ2, d

(
T ≤ t

)
+ PrQγ, σ2, d

(
T ∈ S

)
− 1

PrQγ, σ2, d

(
T ∈ S

)
≥ inf

µ

PrQγ, σ2, d

(
T ≤ t

)
+ Prµ, σ2, d

(
T ∈ S

)
− 1

Prµ, σ2, d

(
T ∈ S

)
=
γ + g − 1

g
, (B.10)

where g = supµ Prµ , σ2 , d

(
T ∈ S

)
. Equations (4.28) and (B.9) imply that

GS
Qα

2 g, σ
2, d

(
t
)
≤ α

2
= GS

U(T ), σ2, d

(
t
)
.

Because GS
µ, σ2, d

(
t
)

is a decreasing function with respect to µ, hence,

U(T )
a.s.

≤ Qα
2 g(T ) = T − σ G−1d

(α
2
g
)
.

Similarly, from (4.28) and (B.10), we obtain

L(T )
a.s.

≥ Q1−α2 g(T ) = T − σ G−1d
(

1− α

2
g
)
.
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Therefore, from the last two equations, we have

U(T )− L(T )
a.s.

≤ σ

[
G−1d

(
1− α

2
g
)
−G−1d

(α
2
g
)]

= σ

[
G−1d

(
1− α

2
g
)

+G−1d

(
1− α

2
g
)]

≤ 2σ G−1d

(
1− α

2
g
)
. (B.11)

Note that the last equality in the preceding statement is obtained from 1− α
2
g ≤ 1− α

2
g.

Now, consider the minimization problem

inf
µ

Prµ, σ2, d

(
T < d1 or T > cm

)
,

which minimizes at d1+cm
2

, with the minimum value g0 = 2Gd

(
− cm−d1

2σ

)
. Observe that

g0 ≤ g, and since G−1 (·) is an increasing function, then

G−1d

(
1− α

2
g
)
≤ G−1d

(
1− α

2
g0

)
.

Lastly, to obtain the final upper bound in (4.37), it suffices to show

G−1d

(
1− α

2
g0

)
≤ G−1d

(
1− α

2

)
+
cm − d1

2σ
, (B.12)

or equivalently,

G−1d

(α
2
g0

)
≥ G−1d

(α
2

)
− cm − d1

2σ
, (B.13)

Given the condition (4.36), we note that,

α Gd

(
− cm − d1

2σ

)
≥ Gd

(
G−1d

(
α/2

)
− cm − d1

2σ

)
, for d ≥ 3. (B.14)

Hence, by plugging in the value of g0, we have

α

2
g0 = α Gd

(
−cm − d1

2σ

)
≥ Gd

(
G−1d

(α
2

)
− cm − d1

2σ

)
.
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Applying the increasing function G−1d (·) to both sides of the above inequality leads to
(B.13), and in turn (B.12). Now, Equations (B.11) and (B.12) together yield

U(T )− L(T )
a.s.

≤ 2σ G−1d

(
1− α

2

)
+
(
cm − d1

)
.

Finally, the upper bound associated with the truncated t distribution in (4.37) will be

achieved by replacing L(T ), U(T ), σ, d1, cm and d with Lglo
Tj

, Uglo
Tj

, σ̂
(glo)
j , d(glo), V−(glo)Tj

,

V+(glo)
Tj

and d (glo), respectively.

To explore the condition (B.14), define

h(x) =
αGd(−x)

Gd

(
G−1d (α/2)− x

) − 1 , for d ≥ 3 .

The function h(x) has two roots, one at zero and one at a positive value x0. Moreover,
h(x) > 0, for x ∈

(
0 , x0

)
. Notice that the positive root x0 diverges as degrees of freedom

d increases. More specifically, for large d, the truncated t distribution behaves similar to
normal one, and hence h(x) becomes an increasing function for all x > 0. See Figure
B.1, panel (a). Therefore, for large d, the statement in (B.14) always holds. For small to
moderate values of d, (B.14) holds under the condition cm−d1

2σ
∈
(
0 , x0

]
. We have visualized

the behaviour of lengths of confidence intervals and their upper bounds in Figure B.1, panel
(b), for various values of d.
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(a) Function h(x). (b) Truncation set S = (−∞ , −3) ∪ (3 , ∞).

Figure B.1: Panel (a) displays the function h(x) which, for moderate values of d, is a unimodal
function with two roots, zero and a positive value x0. Also, h(x) ≥ 0 for x ∈ [0 , x0]. Panel (b)
shows the lengths of confidence intervals for a truncated normal distribution and a truncated t
distribution, under various values of d. The solid horizontal lines in panel (b) shows the upper
bounds given in Theorem 4.11, for both distributions.
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