
A Watermarking-Based Framework
for Protecting Deep Image Classifiers

Against Adversarial Attacks

by

Chen Sun

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2021

c© Chen Sun 2021

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Although deep learning-based models have achieved tremendous success in image-
related tasks, they are known to be vulnerable to adversarial examples—inputs with im-
perceptible, but subtly crafted perturbation which fool the models to produce incorrect
outputs. To distinguish adversarial examples from benign images, in this thesis, we pro-
pose a novel watermarking-based framework for protecting deep image classifiers against
adversarial attacks. The proposed framework consists of a watermark encoder, a possible
adversary, and a detector followed by a deep image classifier to be protected.

At the watermark encoder, an original benign image is watermarked with a secret key
by embedding confidential watermark bits into selected DCT coefficients of the original
image in JPEG format. The watermarked image may then go through possible adversarial
attacks. Upon receiving a watermarked and possibly attacked image, the detector accepts it
as a benign image and passes it to the subsequent classifier if the embedded watermark bits
can be recovered with high precision, and otherwise rejects it as an adversarial example.
The embedded watermark is further required to be imperceptible and robust to JPEG
re-compression with a pre-defined quality threshold.

Specific methods of watermarking and detection are also presented. It is shown by
experiment on a subset of ImageNet validation dataset that the proposed framework along
with the presented methods of watermarking and detection is effective against a wide range
of advanced attacks (static and adaptive), achieving a near zero (effective) false negative
rate for FGSM and PGD attacks (static and adaptive) with the guaranteed zero false
positive rate. In addition, for all tested deep image classifiers (ResNet50V2, MobileNetV2,
InceptionV3), the impact of watermarking on classification accuracy is insignificant with,
on average, 0.63% and 0.49% degradation in top 1 and top 5 accuracy, respectively.

iii

Acknowledgements

First and foremost, I would like to thank my supervisor, Prof. En-Hui Yang, for his
continuous guidance and support throughout my master’s training. Prof. Yang formed my
understanding of what insightful research looks like, and how it makes a difference to the
community.

I would like to thank Prof. George Freeman and Prof. Zhou Wang for being my thesis
committee members and reading my thesis. Their feedback is invaluable for me to improve
my research.

I would like to thank all of my colleagues and friends in Multimedia Lab, especially Dr.
Hossam Amer and Dr. Bin Chen, for generously offering their time for discussion.

Finally, I would like to express my deepest appreciation to my parents. They always
respect my decisions and provide me with infinity support, both physically and mentally.

iv

Dedication

To my Mom and Dad.

I always hesitate to express my feelings, but you will always be the most important
people in my life.

v

Table of Contents

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Thesis Motivations and Problem Description 1

1.2 Thesis Contribution . 2

1.3 Thesis Organization . 3

2 Background and Literature Review 5

2.1 JPEG Image Compression Standard . 5

2.2 Digital Watermarking . 8

2.2.1 Robustness of Digital Watermarks 8

2.2.2 JPEG-resistant Semi-fragile Watermarking 9

2.3 Vulnerability of Deep Models: Adversarial Example 10

2.3.1 Formulation of Adversarial Example 10

2.3.2 Targeted and Untargeted Attack 11

2.3.3 Adversary’s Knowledge . 11

2.3.4 Distance Metric . 12

2.3.5 Gradient-based Attacks . 12

2.3.6 Optimization-based Attacks . 14

vi

2.4 Adversarial Defense Methods . 16

2.4.1 Adversarial Training . 16

2.4.2 Randomization-based Approach . 17

2.4.3 Input Transformation and Reconstruction 19

2.4.4 Detection-based Methods . 19

3 Watermarking-based Framework Overview and Design Principles 21

3.1 Overview . 21

3.2 Framework Design . 21

3.3 Watermarking Method Design Principles and Evaluation Metrics 23

4 Methods of Watermarking, Detection, and Adversarial Attacks 25

4.1 Overview . 25

4.2 Watermark Embedding Positions . 25

4.3 Watermarking Method . 27

4.4 Detection Method . 30

4.5 Adversary Design . 31

4.5.1 Modifications of Regular Adversaries 31

4.5.2 Design of Type 1 Adaptive Adversary 32

4.5.3 Design of Type 2 Adaptive Adversary 34

5 Experiment Result 37

5.1 Overview . 37

5.2 Experiment Setup . 37

5.3 Classification Accuracy and PSNR . 38

5.4 Robustness to JPEG Re-compression . 40

5.5 Combating FGSM and PGD Attacks . 41

5.6 Combating C&W-l2 Attack . 42

vii

6 Conclusion and Future work 45

6.1 Conclusion . 45

6.2 Future Work . 46

6.2.1 Reconstruct Adversarial Examples to Benign Images using Water-
marking Information . 46

6.2.2 Reduce the Amount of Blocks That Need To Be Watermarked . . . 47

6.2.3 Justify the Selection of Hyper-Parameters 47

References 48

viii

List of Figures

2.1 Key components of JPEG compression pipeline. 6

2.2 An example of JPEG quantization process. 7

2.3 Illustration of random resizing and padding pipeline proposed by Xie et al.[56]. 18

3.1 Illustration of the watermarking-based adversarial defense framework. . . . 22

4.1 Coefficient-wise perturbation analysis for FGSM with ε = 8. 26

4.2 Illustration of the pipelines of watermarking and detection methods. 28

4.3 Comparison between standard rounding function and approximated round-
ing function. 34

4.4 Illustration of the last step in a Type 2 adaptive adversary. 35

5.1 An example of watermarking and adversarial perturbation. 39

5.2 Comparison of adversarial perturbation generated by adaptive and static
C&W-l2 attack. 43

ix

List of Tables

5.1 Top-1 and Top-5 accuracy before and after watermarking for three pre-
trained DNNs. 38

5.2 Average BER for different rounds of JPEG re-compression with random QF. 40

5.3 Average BER for different rounds of JPEG re-compression with descending
QF. 40

5.4 Detection rate and effective false negative rate in the case of static white-box
FGSM and PGD attacks. 41

5.5 Detection rate and effective false negative rate in the case of adaptive white-
box FGSM and PGD attacks. 41

5.6 Detection rate and EFNR in the case of static, type 1 adaptive, and type 2
adaptive C&W-l2 attacks. 42

5.7 Detection rate and effective false negative rate in the case of type 1 adaptive
C&W-l2 attacks for different BER thresholds. 43

x

Chapter 1

Introduction

1.1 Thesis Motivations and Problem Description

In recent years, Deep Neural Networks (DNNs) have demonstrated tremendous success for
many image related tasks, such as image classification and face recognition. Unfortunately,
DNNs are also known to be vulnerable to adversarial examples—subtly crafted, but im-
perceptible modifications of benign inputs which, once fed into DNNs, can lead DNNs to
produce incorrect outputs. Specifically, given an original benign image x, a small pertur-
bation can be easily crafted and added to x to generate a modified image x′. The output of
a DNN in response to x′ will be different from that of the DNN in response to x. Such x′ is
an adversarial example for x. The existence and easy construction of adversarial examples
pose significant security risks to DNNs, especially in safety-critical applications, including
face recognition and autonomous driving.

To safeguard DNNs against adversarial attacks, one approach is to build a classifier that
distinguishes adversarial examples from natural images. The rationale is that although the
adversarial perturbations are imperceptible to human eyes, it may be still possible to design
an algorithm to detect their existence. Along this line, several detection-based methods
have been proposed [34, 33, 41]. Some detection-based methods focus on finding general
intrinsic properties of adversarial examples. Other detection-based methods aim to train
classification networks to distinguish adversarial examples from benign images.

Although the detection-based defenses mentioned above are effective, to some extent,
against some specific adversarial attacks, they in general have been proven vulnerable to
more advanced adaptive adversaries, which have the full knowledge of the DNN to be

1

secured and the given detection strategy itself. Indeed, in their recent study, Carlini et
al. examined 10 detection-based defenses proposed in recent years, and designed adaptive
adversaries to defeat them all [6]. It seems that there is no general pattern or intrinsic
property shared by all adversarial perturbations. The underlying reason is that adversarial
examples can be generated in various of ways, and new attacking methods can be designed
to avoid a specific pattern. As suggested by many studies [16], adversarial examples are
widely distributed in the high-dimensional image space, indicating that finding a property
that covers most cases may not be feasible. As such, a more robust and effective defense
strategy is desirable. In this thesis, we are going to present such a method.

1.2 Thesis Contribution

In this thesis, we took a radically different approach to build our detector by considering
another application scenario. For many real-world applications, from Quality Control cam-
eras in manufacturing [37, 53] to cameras and sensors in self-driving cars, it is reasonable
to assume that the original benign image can be processed upon acquisition before it is
attacked.

In this thesis, instead of exploring general intrinsic properties of all adversarial exam-
ples, we focus on adversarial perturbation itself, which is the malicious modification being
made to the benign image by the adversary. Inspired by semi-fragile watermark [11, 15], we
propose a radically different approach for adversarial perturbation detection. Specifically,
we propose a novel watermarking-based framework for protecting deep image classifiers
against adversarial attacks.

The proposed framework consists of a watermark encoder, a possible adversary, and
a detector followed by a deep image classifier to be secured. At the watermark encoder,
an original benign image is watermarked with a secret key by embedding confidential
watermark bits into selected DCT coefficients of the original image in JPEG format. The
watermarked image may then go through possible adversarial attacks. Upon receiving a
watermarked and possibly attacked image, the detector accepts it as a benign image and
passes it to the subsequent classifier if the embedded watermark bits can be recovered
with high precision, and otherwise rejects it as an adversarial example. The embedded
watermark is further required to be robust to JPEG re-compression with a pre-defined
quality threshold. We also present specific methods of watermarking and detection that
are specially optimized for adversarial example detection. The proposed framework is
independent of adversarial attack methods, and can be applied to protect any image task
related DNN.

2

Our contributions in this thesis are as follows:

• We propose a novel watermarking-based framework for safeguarding image task related
DNNs against adversarial attacks.

• Within our proposed framework, specific methods of watermarking and detection are
presented.

• Regular adversaries such as Fast Gradient Sign Method (FGSM) [17], Projected Gradient
Descent (PGD) [32] and Carlini & Wagner (CW) [7] attacks are modified to work within
our proposed framework, and are further extended to attack our watermarking-based
detection strategy (i.e., adaptive white-box attacks).

• We show by experiment on a subset of ImageNet validation dataset that our proposed
framework along with the presented methods of watermarking and detection is effective
against a wide range of advanced attacks (static and adaptive), achieving a near zero
(effective) false negative rate for FGSM and PGD attacks (static and adaptive) with the
guaranteed zero false positive rate.

• It is shown that for all tested deep image classifiers (ResNet50V2 [21], MobileNetV2 [42],
InceptionV3 [49]), the impact of watermarking on classification accuracy is insignificant
with, on average, 0.63% and 0.49% degradation in top 1 and top 5 accuracy, respectively.

1.3 Thesis Organization

The remainder of this thesis is organized as follows:

Chapter 2 reviews some core concepts and literature related to this thesis. First, we
present an overview of JPEG compression standard. Then we introduce digital watermark-
ing schemes and invoke an invariant property of DCT coefficients from [30]. We describe
adversarial attack and defense methods in detail, including their categorization and several
representative methods.

Chapter 3 presents the formulation, design principles, and evaluation metrics of the
proposed framework.

Chapter 4 presents a specific watermarking and detection algorithm, which is optimized
for adversarial perturbation detection. We present the modification to regular adversaries,
which make them compatible with our pipeline, and 2 adaptive adversaries as countermea-
sures against our framework.

3

Chapter 5 explores the effectiveness of the proposed framework by presenting the ex-
perimental results of the evaluation metrics mentioned in chapter 3.

Chapter 6 summarizes the key idea of the thesis and also proposes related future work.

4

Chapter 2

Background and Literature Review

In this chapter, we will go through several fundamental concepts related to this thesis.
Section 2.1 introduces JPEG compression standard, the most widely used standard for both
human vision and machine vision. Section 2.2 introduces the concept of watermarking and
invokes an invariant property of DCT coefficients. Section 2.3 presents detailed information
about adversarial examples, including categorization and 3 specific generation algorithms.
Section 2.4 introduces several popular directions of adversarial defenses.

2.1 JPEG Image Compression Standard

JPEG [54] is a lossy image compression standard designed for human vision system. Over
the last 30 years, as the amount of image data increased exponentially, JPEG has become
the most popular image compression standard. By preserving more low frequency infor-
mation and discarding more high frequency information, a typical JPEG image achieves
10:1 compression ratio without introducing perceptible distortion to human eyes. JPEG
standard is also widely adopted in computer vision datasets and pipelines, e.g., all the
images in ImageNet dataset are in JPEG format.

A typical JPEG compression pipeline is shown in Figure 2.1. The key steps of JPEG
compression are introduced below:

Color space conversion: A given image is first converted from RGB color space to
YCbCr color space, where Y is the luminance (pixel brightness) channel and Cb and Cr
are chrominance (pixel color) channels.

5

Figure 2.1: Key components of JPEG compression pipeline.

Chroma subsampling: As human’s vision system relies mainly on brightness information
(Y channel), the other two channels (Cb and Cr channels) were down-sampled to yield
greater compression ratio, i.e., each 2× 2 pixels are merged into a single pixel.

Block splitting: The smallest unit of a JPEG compressed image is 8× 8 block. For each
channel, the image is first padded in the right and bottom side so that its size is the next
multiple of 8× 8, then being divided into 8× 8 blocks for further processing.

Block-wise DCT: For each channel, the image is firstly divided into non-overlapping
8 × 8 blocks. Then, the 64 pixel values of the block are decomposed into 64 frequency
components with 2-D discrete cosine transform (DCT), namely DCT coefficients. In what
follows, for each i ∈ {0, 1, ..63}, we will use d(i) to denote the DCT coefficient at the i-th
frequency in zigzag order. Note that a lower index represents a lower frequency.

Quantization: After Block-wise DCT, 64 DCT coefficient will be further quantized to
an integer multiple of their corresponding quantization step sizes as follows:

DQF (i) = b d(i)

QQF (i)
e, (2.1)

where DQF (i) is the i-th quantized DCT coefficient integer, b·e denotes the rounding func-

6

Figure 2.2: An example of JPEG quantization process.

7

tion which returns the nearest integer, QQF (i) is the quantization step size with respect
to a certain JPEG quality factor (QF, ranges from 1 to 100), and the quantized DCT
coefficient is equal to DQF (i)QQF (i). A smaller QF corresponds to higher quantization
step sizes, which means worse image quality. In theory, any quantization step size other
than QQF (i) can also be used in Equation (2.1). An example of JPEG quantization pro-
cess is shown in Figure 2.2. Figure 2.2(b) is the default JPEG quantization table for the
luminance channel (Y channel). DCT coefficients with high frequency yields greater quan-
tization step size and are compressed more to increase compression ratio while maintaining
fine image quality for human vision.

Huffman coding: Finally, quantized DCT coefficients are scanned in zigzag order, pro-
ducing an 1-D array starting from DC component to highest frequency component. It will
go through Run-Length coding and then encoded by Huffman algorithm to produce the
final JPEG archive.

2.2 Digital Watermarking

2.2.1 Robustness of Digital Watermarks

A digital watermark in an image is like a bookmark in a book. If the image is being pro-
cessed, the bookmark may also be changed accordingly. Over the years, watermarks have
been widely used for copyright protection and authentication. Based on their robustness,
digital watermarking techniques can be classified into three categories:

• Fragile watermark A fragile watermark yields low robustness towards modifications,
where the watermark will be destroyed after small amount of modification, indicating
malicious operation is conducted. Usually, the content of a fragile watermark is not
important, however, the presence of the watermark matters, which is considered as the
indication of originality.

• Robust watermark Just in the opposite way of fragile watermark, A robust wa-
termark should be difficult to remove or damage. Based on specific purposes, robust
watermarks are designed to be resistant to a given set of image transformations. If the
attacked watermarked image still has a decent quality for the user to use, the watermark
should be able to be extracted from it. If the robust watermark cannot be extracted
from the attacked image, very likely the attacked watermarked image is in a very bad
shape and not usable. In this case, the content of the watermark is usually set to be

8

ownership information, which provides the host image with Intellectual Property (IP)
protection.

• Semi-fragile watermark In practice, not all distortion are introduced by malicious
operations. For example, unintentional manipulations caused by common image process-
ing operations like JPEG compression won’t change the visual meaning of the image.
Semi-fragile watermarks are designed to be robust to a set of legal operations and frag-
ile to other operations. As a result, it is commonly used for authentication in specific
pipelines.

2.2.2 JPEG-resistant Semi-fragile Watermarking

Attacks modify images and make them carry different visual meanings to the observer. Be-
fore the advent of DNNs, fragile or semi-fragile watermark [11], an invisible and removable
component of the image that would be distorted after illegal operations, has been invented
as one way to protect images from tampering. For these watermarking pipelines, typi-
cally a secret algorithm was used to embed watermark into the image before distribution.
Therefore, given a copy of the image, the same algorithm was used to detect the presence
of the watermark. If the watermark is seriously distorted, this copy will be considered
untrustworthy.

In this research thesis, we focus on the setting that JPEG compression as the legal
operation and adversarial attacks as the malicious operation. To make the watermark
robust to JPEG re-compression, a practical solution is to embed the watermark into DCT
domain [11, 15].

To provide theoretical proof for the robustness of these semi-fragile watermarking
schemes against JPEG re-compression, we invoke an invariant property of DCT coeffi-
cients from [30][Theorem 1].

Lemma 1 (DCT Invariant Property) If d is an integer multiple of q0, then for any
quantization step size q < q0, quantizing d with q is invertible. That is, d can be fully
reconstructed from its quantized value bd

q
eq.

Proof Write d as d = kq0, where k is an integer. It can be verified that∣∣∣∣d− bdq eq
∣∣∣∣ ≤ q

2
<
q0
2
. (2.2)

9

Dividing both sides of (2.2) by q0 yields∣∣∣∣∣k − b
d
q
eq
q0

∣∣∣∣∣ < 1

2
. (2.3)

Therefore, given a DCT coefficient d, re-quantizing bd
q
eq with q0 yields back k and hence

d.

2.3 Vulnerability of Deep Models: Adversarial Exam-

ple

From linear classifies to Deep Neural Networks (DNNs), as the depth and complexity
increase, the advancement of machine learning methods comes at the cost of worse inter-
pretability and robustness. Since the seminal work of Szegedy et al. [50] and Biggio et
al. [5] firstly suggested the existence of adversarial examples, various algorithms have been
proposed to craft adversarial perturbations—a small and imperceptible noise that, once
added to the original image, will change the model’s behaviour. In this section, we will
introduce the definition and objectives of adversarial examples, along with several represen-
tative adversarial attack methods. In addition, this section also covers the categorization
of adversarial attack methods from 4 different perspectives.

2.3.1 Formulation of Adversarial Example

Mathematically, Given a trained classifier C and an benign image x, the objective of an
adversarial untargeted attack is to compute an perturbation vector δ such that C(x+ δ) 6=
C(x) and D(x, x + δ) ≤ ρ, where D(·) is a given distance function and ρ > 0. Formally,
the basic optimization problem to craft adversarial perturbation can be formulated as:

minimize D(x, x+ δ)

subject to C(x+ δ) 6= C(x)

x+ δ ∈ [0, 1]n,

(2.4)

where n is the dimension of the image.

10

2.3.2 Targeted and Untargeted Attack

Based on the purpose of an adversary, the adversarial attack methods can be divided into
2 categories: targeted attack and untargeted attack.

Targeted attack In most cases, the adversary aims to arbitrarily change the DNN’s
output in response to an input image. In this case, a attacker-specified targeted class y′ is
given, and the first constraint in Equation 2.4 is replaced as follows:

C(x+ δ) = y′ (2.5)

This type of attack is particularly harmful to practical pipelines, as the attacker would
make use of the target DNN to force the target pipeline performing a specific behaviour.

Untargeted attack In other cases, the adversary simply wants to damage the func-
tionality of the target DNN, which is made by change the the prediction result in response
to x+ δ, or minimize the confidence of the original classification result C(x).

It is worth noting that the targeted attack is strictly harder than untargeted attack,
since a successful targeted adversarial example is also a successful untargeted adversarial
example. Furthermore, untargeted adversarial example has an considerable chance to
make the DNN under attack to produce the second-likely prediction of the benign example
because in many cases it requires less distortion so as to minimize the objective function
expressed in Equation 2.4. Based on this observation, targeted attack is considered a more
important research problem and was paid with more attention.

2.3.3 Adversary’s Knowledge

In addition, adversary’s knowledge is also critical to attack’s performance. There are three
different commonly used threat models:

Black-box adversary This type of adversary has no knowledge of either the DNN
to be safeguarded or the defense strategy. As such, the choice of attack is limited to a few
approaches such as transfer attacks [39] or query-based attacks [2, 9].

Static white-box adversary A static white-box adversary has the full knowledge
of the DNN to be secured (including its architecture and parameters), but does not know
anything about the defense strategy. Adversarial examples for an image x are generated
based on the DNN to be secured, the image x, a targeted output, and the allowed maximum
perturbation distance from x.

11

Adaptive white-box adversary An adaptive white-box adversary is aware of both
the DNN to be secured and the defense strategy. Using this perfect knowledge, it could
generate the strongest adversarial examples to defeat the defense strategy and cause the
DNN to produce incorrect outputs.

2.3.4 Distance Metric

An important goal of adversarial attacks is to introduce as small perturbation to the benign
image x as possible. This perturbation term is usually treated as a constraint or used as a
penalty term in the objective function. To measure the adversarial distortion, 3 distance
metrics are widely-used in the literature, which are L0, L2 and L∞ norms.

The definition of Lp norm is formulated as follows:

||δ|| = (
n∑
i=1

|δi|p)
1
p (2.6)

These 3 Lp norms are selected as the distance metric for their intuitive physical mean-
ings. L0 distance measures the number of pixels being altered by the attack. L2 distance
measure the Euclidean distance between x and x+ δ. L∞ distance measures the maximum
distortion introduced to any of the pixels.

Recall that adversarial examples are expected to be both imperceptible to human eyes
and radically different from machine learning perspective, the distance metrics introduced
here are really aimed at measuring the human perceptual similarity. Empirically, adver-
sarial examples measured in L0 distance add large distortion to a small fraction of pixels of
an image, which makes the altered pixels conspicuous among its background, and a human
eye can easily pick up the difference. In construct, Both L2 and L∞ adds small distortion
to many pixels, which is better for adversary’s purpose.

2.3.5 Gradient-based Attacks

Based on the way how attack algorithms searching for adversarial examples, attack al-
gorithms can be roughly divided into two main categories: gradient-based attack and
optimization-based attack. In this subsection, we introduce the concept and development
history of gradient-based attacks, along with 3 most popular gradient-based attacks, in-
cluding FGSM, BIM, and PGD. FGSM and PGD are also used to generate adversarial
examples in the experiment of this thesis.

12

To solve the optimization problem expressed in Equation 2.4, adversarial perturbations
are usually calculated based on the gradients of the target DNN with respect to the original
image x. In back-propagation, the loss function J is usually defined as the error between
the desired output y (usually the ground truth label) and the neural network output in
response to a particular input. By consider the input as a constant variable, the calculated
loss value is used to determine the gradients of each model parameter θ, which are used to
update these parameters in the training process.

The same concept of back-propagation is used in gradient-based attacks to produce a
perturbation vector for x. Contrary to the training process, it considers θ constants and
x as variables. As a result, the calculated gradients are the partial derivative of the loss
function with respect to each input element, e.g., pixel values for RGB images or DCT
coefficient values for JPEG images. These gradients are further processed to form different
perturbation vectors.

FGSM FGSM is a simple yet effective method that create the adversarial pertur-
bation in one-step [17]. Mathematically, the computation process can be formulated as
follows:

xadv = x+ ε ∗ sign(∇xJ(θ, x, y)) (2.7)

sign(x) =

{
1 x ≥ 0

−1 x < 0
, (2.8)

where ε is the perturbation budget. As sign(∇xJ(θ, x, y)) is a matrix whose absolute value
of all elements is 1, the distortion introduced by perturbation vector ε ∗ sign(∇xJ(θ, x, y))
is exactly ε in terms of L∞ norm. The intuitive of introducing the sign() function is to
generate the adversarial perturbation with same intensity for each images, and maximize
the attack performance under a given L∞ perturbation budget.

As an untargeted attack, Equation 2.7 aims to minimize the DNN’s confidence on y
for input x. FGSM can also be extended to a targeted attack by maximizing the DNN’s
confidence on y′ for input x, where y′ is the target label. Mathematically, it can be
formulated as follows:

xadv = x− ε ∗ sign(∇xJ(θ, x, y′)). (2.9)

The authors in [17] explain the reason why one-step attack is can be effective by DNN’s
highly linear nature. Although the design of DNNs involves non-linearity to increase model
capacity and to better fit non-linear functions, they behaves in very linear ways with respect
to small perturbations. Furthermore, the non-linearity of many models are intentionally
decreased to speed up the training process, e.g., implementing Rectified Linear Unit (ReLU)

13

[36]
f(x) = max{0, x} (2.10)

or Leaky ReLU [57]
f(x) = max{0.01x, x} (2.11)

instead of traditional activation functions such as Sigmoid or Tanh. This linearity suggests
that this one-step attack that works for linear model should also damage DNNs.

BIM and PGD From the optimization point of view, FGSM can be extended in sev-
eral ways. In [27], Iterative-FGSM (I-FGSM) was first proposed as Basic Iterative Method
(BIM) to increase attack strength by applying FGSM for T iterations with perturbation
budget α for each step. In the t th iteration, the update rule of adversarial example is as
follows:

x0adv = x, (2.12)

xt+1
adv = Clipx,ε{x+ α ∗ sign(∇xJ(θ, xtadv, y))}, (2.13)

where Clipx,ε clips the intermediate result xt+1
adv into the ε-neighbourhood of the original

input x so as to fit the overall perturbation budget ε. Note that although α, T, ε are user-
defined hyper-parameters, αT ≥ ε are required for the adversarial example to make full
use of the perturbation budget.

Going one step further, PGD [32] was extended from BIM to further increase attack
strength by adding random initialization. Contrary to Equation 2.12, PGD initializes
x0adv to a random point inside the ε-neighbourhood of the original input x, and restarts
the attack algorithm with new starting points until a satisfactory adversarial example is
achieved. Under L∞ constraint, the update rule for PGD is identical to Equation 2.13.

2.3.6 Optimization-based Attacks

The traditional way of adversarial example generation that defining an objective function
and perform gradient descent is effective to some extent, however, it only works well on
highly linear optimization space. Hence, much powerful optimization tools are eagerly
desired to generate stronger adversarial attacks. In this section, we introduce the most
representative and popular research work, Carlini and Wagner attacks [7], to address this
problem.

Carlini and Wagner attacks In [7], Carlini and Wagner proposed a set of powerful
optimization-based attacks that produces effective adversarial examples which distortion

14

are measured in L0, L2 or L∞ budget, namely C&W-L0, C&W-L2 and C&W-L∞ attacks.
The optimization problem of these attacks are formulated as:

minD(x, x+ δ) + c · f(x+ δ) (2.14)

subject to
x+ δ ∈ [0, 1]n, (2.15)

where D(·, ·) denotes the selected distance metric, δ is the adversarial perturbation and
f(·) denotes a customized adversarial objective loss that satisfies f(x+ δ) ≤ 0 if and only
if C(x+ δ) = t, i.e., the output of the target DNN C in response to input x+ δ is the target
label t. The constant c is used to balance the trade-off between the distance metric and
the loss function. It is worth noting that c is not a user-defined parameter, but is found
by binary search so as to meet a sweet point. It is mostly lower bounded by 1× 10−4 and
upper bounded by +∞.

Further, each element of δ, namely δi, is substituted by si as follows:

δi =
1

2
(tanh si + 1)− xi. (2.16)

As −1 ≤ tanh si ≤ 1, the constraint xi+δi ∈ [0, 1] always holds. This variable substitution
also helps to smooth the optimization process of this attack [7].

In the paper, 7 different objective functions are analyzed and evaluated, in which the
best one is given by:

f(xadv) = max(max{Z(xadv)i : i 6= t} − Z(xadv)t,−κ), (2.17)

where max{Z(xadv)i : i 6= t} is the highest probability for non target class and κ is an
user-defined hyper-parameter to encourage an adversarial example that will be classified
as target class t with high confidence.

After the optimization problem is defined, an Adam optimizer [25] is employed to
optimize over s in each binary search step with different c. In addition, multiple random
starting point, the same technique used in PGD, is used to avoid stuck in the optimization
process.

C&W-l2 attack yields almost 100% attack success rate on undefended DNNs for MIN-
IST, CIFAR-10 and ImageNet datasets, and was reported to be able to bypass several
strong defenses with no or small modifications such as changing loss function [6][22][7].
However, it also has several limitations. First, the computational cost is very expansive

15

and its runtime is reported to be 10 times slower compared with BIM [7], which makes
C&W-l2 attack incompatible for real-time tasks and adversarial training. Second, adver-
sarial examples generated by C&W-l2 attacks are very delicate, any additional distortion,
such as random Gaussian noise and high quality JPEG compression can restore the adver-
sarial samples to benign samples [20][12]. Finally, the transferability of C&W-l2 adversarial
examples is bad, i.e., adversarial examples for one model is not likely to fool another model,
which is desired for black-box attack.

2.4 Adversarial Defense Methods

The existence of adversarial examples poses a serious threat to practical deep learning. In-
spired by adversarial examples, researches have been performed to hardening DNNs against
adversarial attacks, either to increase the model’s robustness with respect to small pertur-
bations, detect adversarial principles based on their intrinsic property, or set obstacles to
the optimization process of adversarial example generation. In this section, we present a
few representative defense directions, their effectiveness, and countermeasures.

2.4.1 Adversarial Training

Adversarial training is an intuitive and straightforward method against adversarial samples,
which attempts to augment the training set with adversarial examples. The objective of
adversarial training is described as a min-max problem, which the training procedure is
trying to minimize the classification error on the strongest possible adversarial examples.
[32][45]. This objective function can be formulated as follows:

min
θ

E(x,y)∼D [max
x+δ∈B(x,ε)

L(θ, x+ δ, y)], (2.18)

where (x, y) ∼ D represents training data sampled from distribution D, L(·) denotes the
loss function and B(x, ε) is the set of possible examples within allowed perturbation ε,
defined as B(x, ε) = {x+ δ ∈ [0, 1]n|D(x, x+ δ) ≤ ε}. In practice, the inner maximization
problem in Equation 2.18 is to find the most effective adversarial example, which is usually
crafted by PGD, whereas the outer minimization problem is solved by standard DNN
training strategies using Equation 2.18 as its loss function. The resultant DNN is supposed
to be resistant to the adversarial attack method used in the inner maximization problem.

PGD searches for a strong adversarial example within the allowed perturbation budget
from multiple random starting points and is considered as a universal L∞ attack [32]. It

16

is shown by experiment that model trained against PGD is also resistant to most known
L∞ attacks, including FGSM, BIM, and C&W-L∞, to some degree. As a result, PGD
adversarial training [32] has become the most widely acknowledged baseline for adversarial
training. Based on this baseline, much research effort is also put on decreasing the com-
putational cost [44] and enhancing adversarial robustness against other types of attacks
[51].

Adversarial training is an effective method to increase model’s robustness. By aug-
menting the training set with adversarial examples in each training loop, the trained model
behaves much better than the standard trained model when facing adversarial examples.
On the MINIST dataset, state-of-art adversarial training provides a robust model with over
90% classification accuracy against 20-step PGD attack, however, this number decreases
to around 50% and 40% for CIFAR-10 and ImageNet datasets, respectively. Additionally,
while PGD-trained networks are resistant to a wide-range of gradient-based attacks, the
trained network is still vulnerable to more advanced C&W-l2 attack. On top of that, the
extended training time and decreases training time also decreases practicality.

2.4.2 Randomization-based Approach

Adversarial examples are effective yet delicate, especially for strong adversarial examples
with small perturbation. Some random noise added to such adversarial examples is likely
to remove their adversarial effect. That is intuitive to understand: most examples sampled
around the original benign example x are not adversarial, so the examples sampled around
an adversarial example x + δ should be the same if D(x, x + δ) is reasonable small. For
example, PGD and C&W adversarial perturbations are being constructed precisely, and
there is a good chance that can be degraded to random effects under another distortion.
In another hand, DNNs are not very sensitive to such random distortion in most cases.
Therefore, DNNs equipped with certain randomization measures are likely to perform
better on adversarial attacked images.

The first the most intuitive randomization-based approach is random input transfor-
mation presented by Xie et al.[56]. In their work, the input image x is first processed by
random resizing and padding, generating a modified input x′, which is consequently fed
into the underlying DNN. The pipeline is illustrated in Figure 2.3. [56]. Both the random
resizing layer and random padding layer are simple layers that transform the image but in
a random manner. The input image x is first resized and then zero-padded to the DNN’s
input size. The proposed method is tested effective in black-box settings, however, was
being broke quickly by Expectation over Transformation (EoT) method [4], in which the

17

Figure 2.3: Illustration of random resizing and padding pipeline proposed by Xie et al.[56].
The input image is first resized then padded with zero in an random manner before feeding
into the DNN under protection.

gradient of the new pipeline is approximated by averaging over the gradients of multiple
differently resized and padded image.

Apart from directly modify the input image, randomization can also be added to the
DNN architecture. Feature pruning is another seemingly promising direction of adversarial
defense, in which some of DNN’s learned features are ’pruned’ thus do not contribute to
the model’s output. In [14], a subset of features that have relatively smaller activation
values are being stochastically selected and pruned for each layer to stabilize the behavior
of the model with respect to adversarial examples. To compensate for the pruned features,
the remaining activation values are scaled up and normalized. In other feature pruning
papers, new criteria to select the features or neurons to be pruned are also proposed,
and new mechanisms are used to further hardening its defense. However, an obvious
limitation to this line of feature pruning is that it decreases the model capacity, hence the
performance on benign examples degenerates. In addition, adversarial attacks against this
specific defense have also been proposed and tested effective [4].

18

2.4.3 Input Transformation and Reconstruction

Different from previously mentioned defense methods that mainly focus on increasing the
DNN’s robustness, input reconstruction methods aim at filtering out the adversarial per-
turbation by transforming or reconstructing the input image.

Instead of directly feeding the suspicious input image x to the DNN, x̂ Given an suspi-
cious image x, these type of adversarial defense methods attempt to cleanse x by a function
G(·), producing a reconstructed image x̂ = G(x). x̂ is then fed into the underlying DNN
instead of the original input x. Previous works point out three directions to build such
a function G(·). The first direction attempts to apply traditional image processing tech-
niques to either distort the adversarial perturbation or using lossy operations to filter out
small perturbations [20]. The second direction construct G(·) based on Generative Ad-
versarial Networks [41][47]. Especially, a generator is trained to learn the distribution of
the benign dataset, and trying to project an adversarial example to its benign form. The
third direction is based on auto-encoder architectures [33] [24], which attempts to learn
the manifold of benign examples. In [33], the encoder compares the input example with
the learned manifold, whereas the decoder reforms the input example such that its output
lies on the data manifold. In addition, the encoder alone can be used as an adversarial
example detector by comparing the distance between the input example and the learned
data manifold.

In general, this kind of defense does not require any modifications to the underlying
DNN, thus can be introduced to existing pipelines as an additional module. However,
adaptive adversaries with perfect knowledge of the defense can still easily bypass these
defenses. Since these defenses are close to adding another detector, either another neural
network or simple image processing layers, to the beginning of the DNN under protection,
it makes sense that adversarial examples can fool the integrated model.

2.4.4 Detection-based Methods

Detection is another intuitive approach against adversarial examples by directly discarding
them from the dataset. Further, we introduce a few representative defense-based methods
from 3 popular directions.

The first direction of detection-based method is to train a secondary classifier that
distinguishes adversarial examples from benign examples. Authors in [34] propose a simple
neural network that takes an image as input and returns a binary digit as an indication

19

of benignity. The network is further trained on a dataset that each image is labeled as a
benign example and adversarial example,

Secondly, authors in [19] proposed an adversarial re-training approach, in which a new
class is introduced to the classification as the adversarial class, and the adversarial examples
in the training set are labeled as this new class. Therefore, the DNN is trained to detect
the adversarial examples by classifying them into the adversarial class. The authors claim
that adversarial examples and benign examples are drawn from different distributions, and
thus can be detected by statistical tests. The modification of the DNN is also designed
based on this prior knowledge.

Lastly, another statistical detection approach aims to detect the intrinsic properties
of adversarial examples. To this end, detection based on Principle Components Analysis
(PCA) [23] [29] and distributional detection [19] are proposed. At a high level, these
methods attempt to find a common pattern of changes in statistical properties after an
image is attacked.

All of the mentioned detection methods are effective to a certain extent under static
settings. Given that adversarial examples can easily fool a single DNN, it is reasonable
that they are fool another detection network at the same time. For the statistical detection
approaches, it is hard to find an intrinsic property that applies for all adversarial examples,
given that the pattern of adversarial perturbation can be easily modified by the adversary.

20

Chapter 3

Watermarking-based Framework
Overview and Design Principles

3.1 Overview

The key idea of our work is to use semi-fragile watermarking for adversarial perturbation
detection. In this chapter, we introduce our proposed framework consists of a few compo-
nents in Section 3.2. Then, we introduce our design principles and evaluation metrics for
the watermarking method in Section 3.3.

3.2 Framework Design

As shown in Figure 3.1, our proposed watermarking-based adversarial defense framework
consists of a watermark encoder, a possible adversary, and a detector followed by the
DNN C to be secured. Consider an original image x. Instead of directly exposing x to an
adversarial environment, we use the watermark encoder φ to convert x into xwm = φ(x, S),
a watermarked version of x, by embedding watermark bits into x with a secret key, where
S denotes both the secret key and embedded watermark bits. Note that S is kept in secret,
i.e., the adversary does not have access to it. Consequently, xwm may undergo adversarial
attacks in the adversarial environment or some allowed legal operation before being passed
to the detector. Let ϕ denote an adversarial attack algorithm and g denote the allowed
legal operation. The image received by the detector would be either xwm, ϕ(xwm), or
g(xwm). With the help of S, the detector will further distinguish the watermarked and

21

Figure 3.1: Illustration of the watermarking-based adversarial defense framework. Original
images are first watermarked with a secret key and then possibly attacked by adversaries.
Watermarked and possibly attacked images are accepted by the detector only if the em-
bedded watermark bits are recovered with high precision.

22

attacked image ϕ(xwm) from benign images xwm and g(xwm). The received image will be
fed into C only if it is accepted as a benign image by the detector.

As one of the most commonly-used formats for images, JPEG standard is also widely
adopted in computer vision datasets and pipelines, e.g., the ImageNet dataset [13]. Since
high quality JPEG compression is often acceptable or even required in practical applica-
tions, we consider JPEG re-compression with QF ≥ 50 as the legal operation g in our
framework hereafter.

3.3 Watermarking Method Design Principles and Eval-

uation Metrics

There are two main objectives for our framework. First, the embedded watermark should
not visibly distort the original image x, nor degrade C’s performance significantly. Second,
the images accepted by the detector should be harmless to C. Formally, the performance
metrics of the proposed framework are listed below:

• Classification accuracy on xwm Watermarking should not significantly degrade the
classification accuracy of C . We evaluate the performance degradation of C by comparing
the Top-1 and Top-5 accuracy on the original dataset and watermarked dataset.

• Watermarking distortion The watermarking distortion is evaluated using PSNR
between x and xwm.

• False positive rate If the watermarked image xwm is not attacked, it should be
accepted by the detector as a benign image with high probability. The false positive
rate is defined as the percentage of xwm that are rejected by the detector as attacked
images. As we shall see later, for our proposed methods of watermarking and detection,
the false positive rate is guaranteed to be 0.

• Robustness to high quality JPEG re-compression The embedded watermark
should be robust to high quality JPEG re-compression with QF ≥ 50, i.e., the detector
should not reject g(xwm) so as to produce a false positive case. The robustness against
high quality JPEG re-compression is evaluated using the JPEG re-compression false
positive rate (JRFPR), defined as the percentage of g(xwm) that are rejected by the
detector as attacked images.

23

• Detection rate The detection rate is defined as the percentage of attacked images
ϕ(xwm) that are accepted by the detector as benign images. It reflects the watermark’s
sensitivity to adversarial attacks.

• Effective false negative rate The effective false negative rate is defined as the per-
centage of attacked images ϕ(xwm) that are simultaneously accepted by the detector and
also successfully cause the DNN C to produce outputs different from those correspond-
ing to xwm. The rationale for introducing this metric is to report harmful adversarial
examples only: although the adversary may bypass occasionally the detector by decreas-
ing the perturbation budget, the strength of the resulting adversarial example will also
decrease. Thus, if ϕ(xwm) and xwm share the same prediction result with respect to C,
ϕ(xwm) is indeed harmless and should not be considered as an effective false negative
case.

24

Chapter 4

Methods of Watermarking,
Detection, and Adversarial Attacks

4.1 Overview

We now describe how the watermark encoder, detector, and adversaries are designed within
our proposed framework. We firstly explain our motivation of choosing watermark embed-
ding positions in Section 4.2, and then describe the specific methods of watermarking and
detection in Section 4.3 and Section 4.4. Lastly, we introduce the design of adversaries
that adapt to our framework in Section 4.5.

4.2 Watermark Embedding Positions

Adversarial attacks introduce different amounts of perturbation to different frequency com-
ponents of an image. As suggested in [46, 52], there are in general more perturbations in
low frequency bands than in high frequency bands, at least for ImageNet models. This
motivates us to embed watermark bits into DCT coefficients at low frequencies since large
perturbations at low frequencies will likely destroy watermark bits embedded therein once
the watermarked image is attacked.

To determine possible DCT coefficients where watermark bits can be embedded into, we
performed an coefficient-wise perturbation analysis for 100,000 JPEG blocks in Luminance
channel with respect to FGSM with ε = 8. We collected the values of additive adversarial

25

Figure 4.1: Coefficient-wise perturbation analysis for FGSM with ε = 8 from the values of
additive adversarial perturbations in 64 DCT coefficients of 100,000 JPEG blocks: (a) the
standard derivation of perturbations per DCT coefficient; (b) distribution of perturbations
at DC coefficient (DCT coefficient on the top-left corner). Note that the mean value of
perturbations per DCT coefficient is more or less zero, and the perturbation energy is
largely concentrated on low DCT frequencies.

26

perturbation in 64 DCT coefficients of these JPEG blocks. The standard derivation of per-
turbations per DCT coefficient is shown in Figure 4.1 (a). As can be seen from Figure 4.1
(a), the perturbation energy introduced by FGSM is largely concentrated on low frequen-
cies, particularly the first 16 DCT coefficients in zigzag order. Also shown in Figure 4.1 (b)
is the distribution of perturbations at DC, which is more or less a zero-centered Gaussian
distribution. Based on this analysis, we shall select the first 16 DCT coefficients in zigzag
order as possible embedding positions.

4.3 Watermarking Method

Our methods of watermarking, adaptive attacks, and detection applies the DCT Invariant
Property Lemma 1 several rounds. Figure 4.2 (a) sketches the pipeline of our watermarking
method. In our method, the secret information S is divided into three parts: the secret
key, the watermark bits, and a special reference switch bit. The secret key is used for
DCT coefficient selector to determine the embedding positions. The reference switch bit
along with the key is used to determine a reference bit. With reference to the reference
bit, the watermark bits are first differentially encoded and then embedded into the Least
Significant Bit (LSB) of the selected DCT coefficients after the latter is further quantized
with the respective quantization step size from the quantization table corresponding to
QF = 50. Formally, for each 8×8 JPEG block, the watermark embedding process consists
of the following 4 steps:

DCT coefficient selector The first step is to randomly select 5 DCT coefficients
from 16 possible embedding positions. This selector requires a key of length blog2

(
16
5

)
e

for each block. Among the 5 selected DCT coefficients, the first one is used as a reference
to determine, along with the special reference switch bit, the reference bit. The other
4 selected DCT coefficients are used for watermark embedding, namely the embedding
positions. There are 4 watermarking bits per block, one for each embedding position.
Therefore, the length of S per 8× 8 JPEG block is blog2

(
16
5

)
e+ 5.

Quantization of selected DCT coefficients Denote the DCT coefficient at the
watermark embedding position i as d(i). As the second step, we quantize d(i) with the
quantization step size Q50(i) from the quantization table corresponding to QF = 50 as
follows:

D50(i) = b d(i)

Q50(i)
e. (4.1)

Watermark embedding Given a watermark bit w to be embedded into the embed-
ding position i, we differentially encode w with respect to the reference bit to derive an

27

Figure 4.2: Illustration of the pipelines of watermarking and detection methods. The blue
part of the original block represents the 16 possible embedding positions. The green part
of the watermarked block represents the selected watermark embedding positions.

28

embedding value E. The bit w is then embedded into the position i by embedding E into
the LSB of D50(i) as follows:

Dwm
50 (i) = 2bD50(i)/2c+ E, (4.2)

where Dwm
50 (i) is the embedded DCT coefficient integer.

The calculation of E is another important operation in our method. Let d(j) be the
selected reference DCT coefficient. To determine the reference bit r for this block, we first
quantize d(j) with the quantization step size Q50(j) and then select r to be the second
or third last bit of the quantized coefficient integer, depending on whether the special
reference switch bit s is 0 or 1. Formally,

r = bb d(j)

Q50(j)
e/2s+1c mod 2. (4.3)

Finally, the embedding value E for the watermark bit w is determined by

E = r ⊕ w. (4.4)

The underlying rationale for embedding E rather than w directly is to prevent the ad-
versary from directly accessing the watermark bits through the LSB of Dwm

50 (i). Otherwise,
even though the selected watermark embedding positions are not known to the adversary,
the adversary can iterate over all possible embedding positions and keep the correspond-
ing watermark bits consistent with the watermarked image so as to bypass the detector
without significantly deviating from desired adversarial examples (see Section 4.5 for more
details).

Re-quantization of embedded DCT coefficient Finally, the embedded DCT co-
efficient needs to be re-quantized using the quantization table of the original image so as
to keep the consistency of quantization. The watermarked and re-quantized DCT coeffi-
cient with respect to the original quantization step size Dwm

ori (i) can be obtained from the
following process:

Dwm
ori (i) = bDwm

50 (i) ∗Q50(i)/Qori(i)e, (4.5)

where Qori(i) is the quantization step size at position i in the quantization table of original
image. Here we assume that the original quantization step size Qori(i) is strictly less than
Q50(i), which is the case in many applications.

29

Repeat this procedure for all JPEG blocks in the Luminance channel. The resulting
image will be the watermarked image. Pseudo code of our watermarking method is shown
in Algorithm 1. It took a single 4.5 GHz CPU approximately 0.3 second to compute (in
Python) an watermarked image for ImageNet dataset.

Algorithm 1: Method of Watermarking.

Data: Original image; Secret key;
Result: Watermarked image;
Load the Luminance channel of the original image as Y ;
Load Q50;
for each 8× 8 block in Y do

Determine the 4 watermark embedding positions and 1 reference position given
by the key;

Determine the reference bit r from the reference position using the reference
switch bit s;

for each watermark embedding position do
Determine the embedding value E by differentially encoding its watermark
bit with respect to the reference bit r;

Quantizing the DCT coefficient using the quantization step size in the
corresponding location of Q50 ;

Embedding E into the LSB of the quantized DCT coefficient;
Re-quantize the DCT coefficient using the quantization step size with
respect to the original image;

4.4 Detection Method

Figure 4.2 (b) illustrates the pipeline of our detection method. Given a received block,
which could be a watermarked block, a watermarked and attacked block, or a watermarked
and JPEG re-compressed block, the detection method has three main steps:

Quantization with Q50 Determine the 5 selected embedding positions from the key.
Quantize the DCT coefficients at those determined positions with Q50 to compute the
respective D̂50(i), in a way similar to Eq. (4.1). If the received block is not attacked, nor
re-compressed, it follows from the DCT Invariant Property that D̂50(i) will be equal to
Dwm

50 (i).

30

Watermark bits extraction For each watermark embedding position, take the LSB
of D̂50(i) as the estimation Ê of E. Also, compute the estimation r̂ of the reference bit
r from the reference position according to Eq. (4.3) with d(j) replaced by d̂(j). The
extracted watermark bit ŵ corresponding to the watermark bit w is then computed as

ŵ = Ê ⊕ r̂. (4.6)

Comparator For all the watermark embedding positions, we compare the extracted
watermark bits with the original watermark bits and compute the Bit Error Rate (BER).
The BER represents the percentage of embedded DCT coefficients that are significantly
distorted and a larger BER means more distortion is added to the watermarked image.
We empirically set a BER threshold of 0.01 to distinguish attacked images from benign
images. The received image will be accepted by the detector only if it yields a BER ≤ 0.01.

Finally, after the received image is accepted, its quantized version after the step 1 above
is presented to the classification DNN.

4.5 Adversary Design

Regular adversaries usually work with valid RGB images with fixed image size. That is,
input images to a regular adversarial attack algorithm normally take integer-valued pixel
intensities and also have their size equal to the input size of the classification DNN. In
order for regular adversaries to be able to work within our proposed framework, certain
modifications are necessary. Below we first describe how to modify regular adversaries to
their advantage so that they can work with JPEG images with various resolutions, and
then further extend them to attack our detection strategy itself.

4.5.1 Modifications of Regular Adversaries

A regular adversary is modified via the following key steps:

No pixel rounding in JPEG decoding A regular adversary is modified to take
JPEG images directly as their inputs. However, in the process of decoding a JPEG image
into its RGB pixel intensities, real-valued pixel values will be kept without any rounding.
This avoids possible damages caused by rounding on watermark bits.

31

Adaptation to various resolutions In our framework, it is necessary for the adver-
sary to provide adversarial examples with the same size as the image to be attacked. To this
end, we integrate the resizing process into the classification model as the front layer, which
resizes the image to the model’s input size. The adversary can then directly add adversarial
perturbations into the image through either gradient-based attacks or optimization-based
attacks for the integrated model. The resulting attacked images are adversarial examples
for the integrated model, and after resizing, are also adversarial examples for the original
model.

JPEG encoding Finally, the attacked images, after being JPEG compressed using
the same quantization table as in the original image, are adversarial examples produced
by the modified regular adversary.

4.5.2 Design of Type 1 Adaptive Adversary

The JPEG encoding step in a modified regular adversary may weaken its attack strength,
especially for C&W-l2 adversary. To eliminate the negative impact of JPEG encoding on
attack strength, we apply JPEG-resistant method proposed by Shin et al. [48] to strengthen
modified regular adversaries including PGD, FGSM, and CW-l2, resulting our Type 1
adaptive adversaries.

In our pipeline, an static adversarial example is first JPEG encoded by the adversary for
re-distribution, then JPEG decoded to RGB image for inference. To avoid the alleviation of
adversarial effect, the adversarial constraint expressed in Equation 2.4 needs to be updated
as follows:

C(Decoding(Encoding(x+ δ))) 6= C(Decoding(Encoding(x))). (4.7)

Given the original trained network C, we define C ′(x) = C ′(Decoding(Encoding(x))). C ′ is
constructed by adding JPEG encoding and decoding process as 2 layers to the beginning
of C. The encoding layer takes the original RGB image as input and output blocks of DCT
coefficients, whereas the decoding layer takes the DCT coefficients as input and outputs
the reconstructed RGB image. The task of Type 1 adaptive adversary is then defined as
generating adversarial perturbation δ such that x+ δ is an successful adversarial example
for the integrated network C ′.

The JPEG compression as adversarial defense can be interpreted as an obfuscated gra-
dient method [3]. Most of adversarial attacks rely on calculating the gradient, which is the
partial derivative of the loss function with respect to each input elements. However, the

32

quantization process in JPEG encoding is a non-differentiable operation, which restricts
the feasibility of these attacks. To address this problem, a common solution is Backward
Pass Differentiable Approximation (BPDA) [3], which attempts to calculate the gradi-
ent by computing the forward pass normally and computing the backward pass using a
differentiable approximation of C ′.

To build such approximation, each step in JPEG encoding and decoding process should
be re-formulated to a form that is suitable for neural networks and optimization. In addi-
tion, the JPEG encoding and decoding process should be implemented as two TensorFlow
layers which only involves differentiable operations defined by TensorFlow itself. As a re-
sult, the differentiation process when computing the backward pass will be automatically
handled by TensorFlow. We referred to the method proposed by Shin et al. [48] to create
these two customized layers, as the key steps of JPEG formulated as follows:

• Color space conversion The color space conversion from RGB to YCbCr is expressed
as matrix multiplication as follows: YCb

Cr

 =

 0.299 0.587 0.114
−0.168736 −0.331264 0.5

0.5 −0.418688 −0.081312

RG
B

+

 0
128
128

 (4.8)

• Chroma subsampling Observe that down-sampling Cb and Cr channels by merging
every 2× 2 region on the image is the same as performing a 2× 2 average pooling with
a stride of 2. This step is implemented by calling the pooling function pre-defined by
TensorFlow.

• Block splitting Block splitting is involves 2 parts: padding the channels to the next
multiple of the block size and dividing JPEG blocks. The first part is implemented by
the padding function in TensorFlow by padding zeros to the bottom side and right side
of the image, whereas the second part is implemented by matrix reshaping.

• Block DCT DCT itself is an differentiable transformation. It is then implemented by
matrix operation and re-arranged to 8× 8 JPEG blocks by zigzag scanning [48].

• Block quantization The quantization step expressed in Equation 2.1 involves 2 steps:
perform an element-wise division over the DCT coefficients and rounding of these quan-
tized coefficients. As a function of DCT coefficient d(i), DQF (i) = b d(i)

QQF (i)
e has derivative

0 nearly everywhere, which is not suitable for generating adversarial examples. Authors

33

Figure 4.3: Comparison between standard rounding function and approximated rounding
function.

in [48] proposed to use an approximation b·eapprox instead of the standard rounding
function b·e. The approximation is defined as follows:

bxeapprox = bxe+ (x− bxe)3 (4.9)

As illustrated in The difference between b·eapprox and b·e is compared in Figure 4.3.
b·eapprox is increasing monotonically, and has positive derivatives nearly everywhere,
which is helpful for the gradient descent used in adversarial attack methods.

It is worth noting that the lossless compression part, including Run-Length coding and
Huffman coding, are not implemented in this approximated JPEG because they are does
not change the content of the image. After the encoding layer is finished, the decoding
layer is constructed by reversing all these operations and their order.

4.5.3 Design of Type 2 Adaptive Adversary

Our watermark detection method only takes care of the embedded watermark bits and
the reference bits of the received watermarked image, which are lower binary digits of

34

Figure 4.4: Illustration of the last step in a Type 2 adaptive adversary, which is a replace-
ment of the JPEG encoding step in a modified regular adversary.

35

embedded DCT coefficients. As a result, there is still possible for an adaptive adversary to
produce adversarial examples that only modifies the higher binary bits, while maintaining
the lower ones. Thus, the watermark in the adversarial example is still retained, and the
adversarial example will be passed to the DNN under protection.

Taking the advantage of the complete knowledge of our watermarking and detection
methods, we define the Type 2 Adaptive Adversary, who is able to completely bypass the
detector. It replaces the last JPEG encoding step in a modified regular adversary by the
pipeline shown in Figure 4.4. The DCT Invariant Property guarantees that after both the
watermarked image and the adaptive attacked image are quantized with quantization table
Q50, the quantized DCT coefficient integer of the DCT coefficient in the adaptive attacked
image and its counterpart in the watermarked image have the same last three bits at each
possible embedded position. As we shall see later, although this type of adaptive adversary
completely bypasses the detector, it does not necessarily cause harm to the DNN to be
secured.

36

Chapter 5

Experiment Result

5.1 Overview

In this chapter, we demonstrate the effectiveness of our watermarking-based framework
against both static and adaptive adversarial attacks. The detailed experiment setup is
introduced in Section 5.2.

We firstly show the effect of watermarking on classification accuracy and image quality
in Section 5.3, followed by its robustness to JPEG re-compression 5.4. Then, we evaluate
the effectiveness of our defense against a wide range of adversaries in the rest of this
chapter.

5.2 Experiment Setup

We evaluated our proposed defense against adversarial examples on a subset of ImageNet
ILSVRC 2012 validation dataset, which was formed by randomly choosing 1,000 images
from the whole validation dataset. All selected images are classified correctly before and
after watermarking by ResNet50V2 [21]. (Otherwise, a new image would be selected
and tested until this condition was satisfied.) Our adversarial images were produced by
attacking ResNet50V2, a pre-trained DNN obtained from Keras [10]. Three representative
targeted adversarial attack methods FGSM, PGD and C&W-l2 were selected. They were
implemented with the reference implementations from the CleverHans package [38], which
were slightly modified to accommodate the modifications mentioned in Section 4.5. The

37

DNN Top1 Top1 wm Top5 Top5 wm

ResNet50V2 67.00% 66.51% 87.81% 87.43%
MobileNetV2 70.85% 69.63% 89.80% 89.01%
InceptionV3 76.85% 76.66% 93.30% 93.00%

Table 5.1: Top-1 and Top-5 accuracy before and after watermarking for three pre-trained
DNNs from Keras [10]. Note that the classification accuracy may be different from that
reported by the original work due to different pre-processing methods.

targets for targeted attacks were randomly selected. The parameters selected for these
attacks are described below:

• For FGSM and PGD, the adversarial perturbations are computed subject to an L∞ con-
straint and the parameter ε controls the magnitude of maximum perturbation per pixel.
To evaluate our framework under different perturbation levels, we employed targeted
FGSM attacks with ε = 2, 4 and 8, as well as targeted PGD attacks with ε = 8. The
selected parameters are commonly used values in other studies [12].

• For C&W-l2, the adversarial perturbations are optimized under L2 constraint. Its hyper-
parameter κ specifies the confidence that the adversarial image is misclassified by the
target DNN, and also controls the amount of perturbations. The smaller κ, the smaller
perturbations. Since small perturbations are difficult to be detected, we employed tar-
geted C&W-l2 attacks with κ = 0 to evaluate our proposed defense strategy in the worst
case scenario. It is worth noting that this is the worst case scenario for C&W-l2 attack
in terms of parameter κ.

5.3 Classification Accuracy and PSNR

Table 5.1 shows the top-1 and top-5 accuracy before and after watermarking of ResNet50V2,
MobileNetV2, InceptionV3 over the entire ImageNet ILSVRC 2012 validation dataset. The
impact of watermarking on classification accuracy is indeed insignificant with, on average,
0.63% and 0.49% degradation in top 1 and top 5 accuracy, respectively. The PSNR be-
tween the original and watermarked images is found to be 39.34 ± 1.13 dB. As shown
in Figure 5.1, the watermark distortion is imperceptible, and significantly less than the
adversarial perturbation.

38

Figure 5.1: An example of watermarking and adversarial perturbation: (a) the original
image; (b) watermark distortion (amplified 10 times); (c) the watermarked image; (d)
the adversarial perturbation generated by FGSM with ε = 8; and (e)the FGSM attacked
image.

39

Rounds of JPEG Re-compression 1 2 3 5

Average BER 0.00067 0.0082 0.021 0.038

Table 5.2: Average BER for different rounds of JPEG re-compression with random QF.

Rounds of JPEG Re-compression 1 2 3 4 5

Average BER 0 0 0.009 0.040 0.044

Table 5.3: Average BER for different rounds of JPEG re-compression with descending QF.

5.4 Robustness to JPEG Re-compression

In our framework, the watermarking and detecting method are designed to be robust to
JPEG re-compression. With multiple rounds of re-compression, the error will gradually
accumulate and eventually endanger the classification of benign examples. To evaluate the
watermarking robustness to JPEG re-compression and justify our choice of BER threshold,
two sets of experiments are conducted.

In the first set of experiment, we simulated the situation in daily use, where water-
marked images are compressed by multiple rounds of JPEG re-compression with each QF
randomly selected from [50, 100) before feeding to the detector. Table 5.2 reports the re-
spective average BER of the detector in each case. It is clear from Table 5.2 that our
watermarking method is indeed very robust to one or two rounds of high quality JPEG re-
compression. The results in Table 5.2 also justify empirically our choice of BER threshold
0.01.

As proved in 1, if the secondary JPEG re-compression uses a greater QF than the
previous one, the quantized DCT coefficient can be precisely reconstructed. As a result,
in the second set of experiments, the choice of QFs used in different rounds of JPEG re-
compression are changed to be descending order. The QF for the first round is fixed to be
90, and the QF used in the following round is decreased by 10 compared with the previous
round. As a result, a maximum of 5 additional JPEG re-compression are performed, where
the corresponding QFs are 90, 80, 70, 60 and 50, respectively. The average BER results are
shown in Table 5.3. As shown in Table 5.3, the BER is almost zero with QFs greater than
70, indicating strong robustness. As the number of rounds increases and QF decreases, the
error quickly accumulates and results in a near 0.044 BER after

Overall, the selected BER threshold 0.01 is good for 2 rounds of JPEG re-compression

40

Metric FGSM FGSM FGSM PGD
ε = 2 ε = 4 ε = 8 ε = 8

Detection rate 99.7% 100.0% 100.0% 100.0%
EFNR 0.2% 0.0% 0.0% 0.0%

Table 5.4: Detection rate and effective false negative rate in the case of static white-box
FGSM and PGD attacks.

Metric FGSM FGSM FGSM PGD
ε = 2 ε = 4 ε = 8 ε = 8

Detection rate 99.8% 100.0% 100.0% 100.0%
EFNR 0.1% 0.0% 0.0% 0.0%

Detection rate 0.0% 0.0% 0.0% 0.0%
EFNR 0.1% 0.0% 0.4% 1.5%

Table 5.5: Detection rate and effective false negative rate in the case of adaptive white-box
FGSM and PGD attacks: top for type 1 adaptive adversary; bottom for type 2 adaptive
adversary.

with random QF or 3 rounds of JPEG re-compression with descending QF. In most
pipelines, it is of little chance for image data to be compressed multiple times.

5.5 Combating FGSM and PGD Attacks

Table 5.4 and Table 5.5 show the detection rate and effective false negative rate in the
case of static FGSM and PGD attacks, and in the case of adaptive FGSM and PGD at-
tacks, respectively. Clearly, the detector can effectively detect adversarial perturbations
introduced by static and type 1 adaptive FGSM and PGD attacks. Although type 2 adap-
tive FGSM and PGD can bypass the detector completely by design, they are nonetheless
harmless to the subsequent classification DNN with near zero EFNR. The quantization
process with Q50 along with forcing the last three bits at each possible embedding position
to be the same as those of the counterpart in the watermarked image essentially undoes
the adversarial perturbation.

For type 2 adaptive, we also conducted a case study using PGD, in which ε = 64. The
increased perturbation does help to construct a successful adversarial example, however,

41

Static Type 1 Type 2

Detection rate 34.1% 38.4% 0%
EFNR 4.7% 25.3% 0.0%

Table 5.6: Detection rate and EFNR in the case of static, type 1 adaptive, and type 2
adaptive C&W-l2 attacks.

this amount of perturbation is way too large to be imperceptible to human eyes and severely
damaged the visual content of the image. Hence, in this case, our defense makes generation
of adversarial examples much harder and significantly increased the desired perturbation
budget.

5.6 Combating C&W-l2 Attack

C&W-l2 attack [7] provides strong adversarial examples with high confidence under a
tight perturbation budget. The light perturbation increased the difficulty of detecting it.
However, as suggested in [20, 12], adversarial perturbation generated by C&W-l2 method
is fragile to JPEG compression. That is, JPEG compression can effectively filter out the
adversarial perturbation and recover the original classification result. The results for both
static and adaptive white-box C&W-l2 attacks are shown in Table 5.6. The relatively-
low detection rate of static C&W-l2 attack suggests that the watermarked coefficients are
barely distorted after quantization. On the other hand, converting adversarial examples
to JPEG format also significantly decreases the effectiveness of the static attack, resulting
in a low effective false negative rate.

With the JPEG-resistant feature, type 1 adaptive C&W-l2 yielded a higher effective
false negative rate at 25.3%. It also increased the distortion required and resulted in a
higher detection rate. A comparison of C&W-l2 adversarial perturbation generated static
and type 1 adaptive adversaries are shown in Figure 5.2. In Figure 5.2(b), it is clear
that the adversarial perturbation is mostly distributed to some DCT coefficients of each
blocks, showing a apparent division of blocks. This helps the adversarial perturbation to
be preserved after DCT quantization process. In addition, both adversarial perturbation
shown in Figure 5.2 concentrates on similar regions. The type 1 adaptive adversary intro-
duces more distortion measure in L2norm to the benign example, resulting in a slightly
increased detection rate, however, the improvement of its attack success rate also increased
the EFNR to 25.3%. In terms of type 2 adaptive adversary, both detection rate and EFNR

42

Figure 5.2: Comparison of adversarial perturbation generated by adaptive and static C&W-
l2 attack (amplified 250 times).

are 0% for the same reason described in Section 5.5.

To combat C&W-l2 attack, an effective way is to decrease the BER threshold of the
detector. Table 5.7 shows the detection rate and effective false negative rate in the case of
type 1 adaptive C&W-l2 attacks for different BER thresholds. When the BER threshold is
set to 0.0025, the detection rate increases significantly from 38.4% to 85.1%, whereas the
effective false negative rate decreases significantly from 25.3% from 5.8%. The improved
performance is at the cost of watermarking robustness to multiple rounds of high quality
JPEG re-compression. With the BER threshold at 0.0025, our watermarking method is

BER threshold 0.0025 0.005 0.0075 0.01

Detection rate 85.1% 67.5% 54.6% 38.4%
EFNR 5.8% 12.3% 16.7% 25.3%

Table 5.7: Detection rate and effective false negative rate in the case of type 1 adaptive
C&W-l2 attacks for different BER thresholds.

43

very robust to only one round of JPEG re-compression.

44

Chapter 6

Conclusion and Future work

6.1 Conclusion

This research thesis presents a watermarking-based framework for adversarial example de-
tection. Most previous detection-based methods are dedicated to finding general intrinsic
properties of the adversarial sample compared to benign examples, so as to classify the in-
put image, however, most of them cannot resist adaptive adversarial attacks if their defense
method is known to the adversary. In this thesis, we focus on the adversarial perturbation
itself and present a semi-fragile watermarking scheme, in which a watermark is embedded
to the benign image upon acquisition, then released to an adversarial environment. Before
the watermarked image is fed into the DNN under protection, a detector will check the
watermarking bits of the watermarked image, and pass the image to the DNN only if the
watermarking bits can be recovered with high precision. As a result, we can effectively
monitor possible adversarial attacks during image re-distribution.

Specific methods of semi-fragile watermarking and detection are also presented. When
designing the watermarking method, four design principles are considered:

• Watermark should be invisible to human eyes;

• Watermark should not introduce too much distortion or degrade classification accuracy
of the neural network;

• Watermark should be robust to pre-defined legal operations, which is defined as high-
quality JPEG compression in our study;

45

• Watermark should be severely distorted after adversarial attacks.

Based on statistical properties of both adversarial perturbation and JPEG compression,
we determined the first 16 DCT coefficients of each JPEG block as possible embedding
positions. Among them, 4 positions are randomly selected and embedded with a image-
independent watermark bit. Both the selection of embedding position and the value of
watermark bit is determined by a secret key, which is blind to the adversary.

The proposed method is evaluated on a subset of ImageNet validation dataset against a
wide range of advanced attacks (FGSM, PGD and C&W-l2 attacks). Two types of adaptive
adversaries are also introduced and evaluated. It has been shown by experiment that the
framework is effective against a wide range of advanced attacks (static and adaptive),
achieving a near zero (effective) false negative rate with the guaranteed zero false positive
rate. At the same time, the impact of watermarking on classification accuracy of DNNs is
insignificant.

6.2 Future Work

This work can be further proved in several ways. In the following subsections, we discuss
some of these possible improvements.

6.2.1 Reconstruct Adversarial Examples to Benign Images using
Watermarking Information

Once the watermark is extracted from the received image, not only we can calculate the
BER, but also the regions where the watermark is distorted can be determined. Adversarial
perturbation generally focus on edges and textures of the image for the reason that these
regions contributes the most to the model’s output. If we can eliminate the adversarial
perturbations in these regions or make better use of the rest of the image, we can partially
restore the value of the image. With the help of the watermark, we can localize such regions
with adversarial perturbations. therefore, we can mask or reconstruct these regions so as
to make use of the images again. For example, for each JPEG blocks, we determine this
block as perturbed block if any one of the four watermark bits is distorted. Afterwards,
these perturbed blocks can be reconstruct by several possible ways, e.g. low quality JPEG
compression or GAN-based image completion [8] [58].

46

6.2.2 Reduce the Amount of Blocks That Need To Be Water-
marked

In our proposed the method, each JPEG blocks are treated equally with 4 watermarking
bits embedded. In this case, all the blocks contributes equally to the BER. This is consistent
with JPEG compression, however, can be optimized for adversarial attacks.

Given a perturbation budget, most adversarial attack methods tends to put more per-
turbation in the important regions, which normally are edges and textures of the main
objects. In addition, with the same amount of perturbation, these blocks make more dif-
ference to the model’s output. Thus, if we only deploy our watermark in these regions, the
sensitivity of the watermark can be increased, whereas the watermarking distortion can
be decreased. There are quite a few possible ways to determine such important regions
as a saliency map or producing regions of interest (ROI), including Grad-CAM [43] and
bounding boxes used in Faster R-CNN [40].

6.2.3 Justify the Selection of Hyper-Parameters

In this thesis, several empirical choices were made in the methodology, including possible
embedding positions, the number of watermark bits per block, and the acceptable BER
threshold. Although their influence on the overall performance against different adversarial
attacks is partially examined and discussed, it is important to justify the basis of these
choices by conducting comparative experiments.

47

References

[1] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:
A system for large-scale machine learning. In 12th {USENIX} symposium on operating
systems design and implementation ({OSDI} 16), pages 265–283, 2016.

[2] Moustafa Alzantot, Yash Sharma, Supriyo Chakraborty, Huan Zhang, Cho-Jui Hsieh,
and Mani B Srivastava. Genattack: Practical black-box attacks with gradient-free op-
timization. In Proceedings of the Genetic and Evolutionary Computation Conference,
pages 1111–1119, 2019.

[3] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false
sense of security: Circumventing defenses to adversarial examples. In International
conference on machine learning, pages 274–283. PMLR, 2018.

[4] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust
adversarial examples. In International conference on machine learning, pages 284–293.
PMLR, 2018.

[5] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel
Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine learning at
test time. In Joint European conference on machine learning and knowledge discovery
in databases, pages 387–402. Springer, 2013.

[6] Nicholas Carlini and David Wagner. Adversarial examples are not easily detected:
Bypassing ten detection methods. In Proceedings of the 10th ACM Workshop on
Artificial Intelligence and Security, pages 3–14, 2017.

[7] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural
networks. In 2017 ieee symposium on security and privacy (sp), pages 39–57. IEEE,
2017.

48

[8] Vaishnav Chandak, Priyansh Saxena, Manisha Pattanaik, and Gaurav Kaushal. Se-
mantic image completion and enhancement using deep learning. In 2019 10th In-
ternational Conference on Computing, Communication and Networking Technologies
(ICCCNT), pages 1–6. IEEE, 2019.

[9] Jianbo Chen and Michael I Jordan. Boundary attack++: Query-efficient decision-
based adversarial attack. arXiv preprint arXiv:1904.02144, 2(7), 2019.

[10] François Chollet et al. Keras. https://keras.io, 2015.

[11] Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, and Ton Kalker. Digital
watermarking and steganography. Morgan kaufmann, 2007.

[12] Nilaksh Das, Madhuri Shanbhogue, Shang-Tse Chen, Fred Hohman, Siwei Li, Li Chen,
Michael E Kounavis, and Duen Horng Chau. Shield: Fast, practical defense and
vaccination for deep learning using jpeg compression. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
196–204, 2018.

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

[14] Guneet S Dhillon, Kamyar Azizzadenesheli, Zachary C Lipton, Jeremy Bernstein,
Jean Kossaifi, Aran Khanna, and Anima Anandkumar. Stochastic activation pruning
for robust adversarial defense. arXiv preprint arXiv:1803.01442, 2018.

[15] Anna Egorova and Victor Fedoseev. Semi-fragile watermarking for jpeg image au-
thentication: A comparative study. In 2019 7th International Symposium on Digital
Forensics and Security (ISDFS), pages 1–6. IEEE, 2019.

[16] Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S Schoenholz, Maithra Raghu,
Martin Wattenberg, and Ian Goodfellow. Adversarial spheres. arXiv preprint
arXiv:1801.02774, 2018.

[17] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[18] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LATEX Companion.
Addison-Wesley, Reading, Massachusetts, 1994.

49

https://keras.io

[19] Kathrin Grosse, Praveen Manoharan, Nicolas Papernot, Michael Backes, and Patrick
McDaniel. On the (statistical) detection of adversarial examples. arXiv preprint
arXiv:1702.06280, 2017.

[20] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens Van Der Maaten. Counter-
ing adversarial images using input transformations. arXiv preprint arXiv:1711.00117,
2017.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in
deep residual networks. In European conference on computer vision, pages 630–645.
Springer, 2016.

[22] Warren He, James Wei, Xinyun Chen, Nicholas Carlini, and Dawn Song. Adversarial
example defense: Ensembles of weak defenses are not strong. In 11th {USENIX}
workshop on offensive technologies ({WOOT} 17), 2017.

[23] Dan Hendrycks and Kevin Gimpel. Early methods for detecting adversarial images.
arXiv preprint arXiv:1608.00530, 2016.

[24] Uiwon Hwang, Jaewoo Park, Hyemi Jang, Sungroh Yoon, and Nam Ik Cho. Pu-
vae: A variational autoencoder to purify adversarial examples. arXiv preprint
arXiv:1903.00585, 2019.

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[26] Donald Knuth. The TEXbook. Addison-Wesley, Reading, Massachusetts, 1986.

[27] Alexey Kurakin, Ian Goodfellow, Samy Bengio, et al. Adversarial examples in the
physical world, 2016.

[28] Leslie Lamport. LATEX — A Document Preparation System. Addison-Wesley, Reading,
Massachusetts, second edition, 1994.

[29] Xin Li and Fuxin Li. Adversarial examples detection in deep networks with con-
volutional filter statistics. In Proceedings of the IEEE International Conference on
Computer Vision, pages 5764–5772, 2017.

[30] Ching-Yung Lin and Shih-Fu Chang. Semifragile watermarking for authenticating jpeg
visual content. In Security and Watermarking of Multimedia Contents II, volume 3971,
pages 140–151. International Society for Optics and Photonics, 2000.

50

[31] Ching-Yung Lin and Shih-Fu Chang. A robust image authentication method dis-
tinguishing jpeg compression from malicious manipulation. IEEE Transactions on
Circuits and Systems for Video Technology, 11(2):153–168, 2001.

[32] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. arXiv
preprint arXiv:1706.06083, 2017.

[33] Dongyu Meng and Hao Chen. Magnet: a two-pronged defense against adversarial
examples. In Proceedings of the 2017 ACM SIGSAC conference on computer and
communications security, pages 135–147, 2017.

[34] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. On de-
tecting adversarial perturbations. arXiv preprint arXiv:1702.04267, 2017.

[35] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a
simple and accurate method to fool deep neural networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2574–2582, 2016.

[36] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann
machines. In Icml, 2010.

[37] Ridvan Ozdemir and Mehmet Koc. A quality control application on a smart factory
prototype using deep learning methods. In 2019 IEEE 14th International Conference
on Computer Sciences and Information Technologies (CSIT), volume 1, pages 46–49.
IEEE, 2019.

[38] Nicolas Papernot, Fartash Faghri, Nicholas Carlini, Ian Goodfellow, Reuben Fein-
man, Alexey Kurakin, Cihang Xie, Yash Sharma, Tom Brown, Aurko Roy, Alexander
Matyasko, Vahid Behzadan, Karen Hambardzumyan, Zhishuai Zhang, Yi-Lin Juang,
Zhi Li, Ryan Sheatsley, Abhibhav Garg, Jonathan Uesato, Willi Gierke, Yinpeng
Dong, David Berthelot, Paul Hendricks, Jonas Rauber, and Rujun Long. Tech-
nical report on the cleverhans v2.1.0 adversarial examples library. arXiv preprint
arXiv:1610.00768, 2018.

[39] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik,
and Ananthram Swami. Practical black-box attacks against machine learning. In
Proceedings of the 2017 ACM on Asia conference on computer and communications
security, pages 506–519, 2017.

51

[40] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. Advances in neural information
processing systems, 28:91–99, 2015.

[41] Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-gan: Protect-
ing classifiers against adversarial attacks using generative models. arXiv preprint
arXiv:1805.06605, 2018.

[42] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 4510–4520, 2018.

[43] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam,
Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks
via gradient-based localization. In Proceedings of the IEEE international conference
on computer vision, pages 618–626, 2017.

[44] Ali Shafahi, Mahyar Najibi, Amin Ghiasi, Zheng Xu, John Dickerson, Christoph
Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for
free! arXiv preprint arXiv:1904.12843, 2019.

[45] Uri Shaham, Yutaro Yamada, and Sahand Negahban. Understanding adversarial train-
ing: Increasing local stability of supervised models through robust optimization. Neu-
rocomputing, 307:195–204, 2018.

[46] Yash Sharma, Gavin Weiguang Ding, and Marcus Brubaker. On the effectiveness of
low frequency perturbations. arXiv preprint arXiv:1903.00073, 2019.

[47] Shiwei Shen, Guoqing Jin, Ke Gao, and Yongdong Zhang. Ape-gan: Adversarial
perturbation elimination with gan. arXiv preprint arXiv:1707.05474, 2017.

[48] Richard Shin and Dawn Song. Jpeg-resistant adversarial images. In NIPS 2017 Work-
shop on Machine Learning and Computer Security, volume 1, 2017.

[49] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2818–2826, 2016.

[50] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

52

[51] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh,
and Patrick McDaniel. Ensemble adversarial training: Attacks and defenses. arXiv
preprint arXiv:1705.07204, 2017.

[52] Yusuke Tsuzuku and Issei Sato. On the structural sensitivity of deep convolutional
networks to the directions of fourier basis functions. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 51–60, 2019.

[53] Javier Villalba-Diez, Daniel Schmidt, Roman Gevers, Joaqúın Ordieres-Meré, Martin
Buchwitz, and Wanja Wellbrock. Deep learning for industrial computer vision quality
control in the printing industry 4.0. Sensors, 19(18):3987, 2019.

[54] Gregory K Wallace. The jpeg still picture compression standard. IEEE transactions
on consumer electronics, 38(1):xviii–xxxiv, 1992.

[55] Jun Xiao, Zhiqiang Ma, Bai Lin, Jiaorao Su, and Ying Wang. A semi-fragile wa-
termarking distinguishing jpeg compression and gray-scale-transformation from mali-
cious manipulation. In 2010 IEEE Youth Conference on Information, Computing and
Telecommunications, pages 202–205. IEEE, 2010.

[56] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille. Mitigating
adversarial effects through randomization. arXiv preprint arXiv:1711.01991, 2017.

[57] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified
activations in convolutional network. arXiv preprint arXiv:1505.00853, 2015.

[58] Chuanxia Zheng, Tat-Jen Cham, and Jianfei Cai. Pluralistic image completion. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 1438–1447, 2019.

53

	List of Figures
	List of Tables
	Introduction
	Thesis Motivations and Problem Description
	Thesis Contribution
	Thesis Organization

	Background and Literature Review
	JPEG Image Compression Standard
	Digital Watermarking
	Robustness of Digital Watermarks
	JPEG-resistant Semi-fragile Watermarking

	Vulnerability of Deep Models: Adversarial Example
	Formulation of Adversarial Example
	Targeted and Untargeted Attack
	Adversary's Knowledge
	Distance Metric
	Gradient-based Attacks
	Optimization-based Attacks

	Adversarial Defense Methods
	Adversarial Training
	Randomization-based Approach
	Input Transformation and Reconstruction
	Detection-based Methods

	Watermarking-based Framework Overview and Design Principles
	Overview
	Framework Design
	Watermarking Method Design Principles and Evaluation Metrics

	Methods of Watermarking, Detection, and Adversarial Attacks
	Overview
	Watermark Embedding Positions
	Watermarking Method
	Detection Method
	Adversary Design
	Modifications of Regular Adversaries
	Design of Type 1 Adaptive Adversary
	Design of Type 2 Adaptive Adversary

	Experiment Result
	Overview
	Experiment Setup
	Classification Accuracy and PSNR
	Robustness to JPEG Re-compression
	Combating FGSM and PGD Attacks
	Combating C&W-l2 Attack

	Conclusion and Future work
	Conclusion
	Future Work
	Reconstruct Adversarial Examples to Benign Images using Watermarking Information
	Reduce the Amount of Blocks That Need To Be Watermarked
	Justify the Selection of Hyper-Parameters

	References

