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Abstract 

Freight demand models are a set of tools utilized for the forecasting, planning, analysis, and/or 

optimization of the movement of commodities, such as the billions-of-dollars-worth of goods and 

services that are moved annually in Canada, and they contain uncertainty. There are two types of 

uncertainty that affect freight demand models: input and model uncertainty. Input uncertainty is 

concerned with the fact that there is error in the data used as inputs to model transportation demand 

such as biased surveys, incomplete datasets, varying commodity and industry classifications, etc. 

Model uncertainty is concerned with the fact that the model specification and 

calibration/estimation may contain error such as omitted variables, inappropriate assumptions, 

simplifications, etc.  

There is a lack of understanding surrounding the uncertainty of freight demand models. 

Regardless, these models are widely researched, developed, and applied without characterizing the 

uncertainty of typical data sources used as inputs. The contributions of the variation present in 

different inputs to the model results are unknown, making it impossible to know the robustness of 

the model outputs or how the results might be improved. The literature review revealed that the 

most common freight model classification system is based on the unit of demand generation, the 

most used freight demand models in the North American practice are commodity-based, and input 

uncertainty has a greater effect on transportation demand models. Thus, this thesis proposes a 

formal five-step framework (i.e., uncertainty source identification, distribution of source 

identification, simulation, estimation of output distributions, and analysis of results) to analyze the 

effects and propagation of input uncertainty on the uncertainty of the outputs in commodity-based 

freight demand models.  

The framework is applied to an Aggregate-Disaggregate-Aggregate version of a strictly empirical 

commodity-based freight demand model used to analyze the effects the Comprehensive and 

Progressive Trans-Pacific Partnership on Canada’s trade infrastructure. Essentially, uncertainty 

for three inputs is introduced and a set of outputs is simulated through repeated simulation. The 

three inputs are high level supply chain characteristics, value-weight ratios, and domestic mode 

shares – each being an input to one sub-model of the freight demand model. Dispersion, confidence 

intervals, and performance against the outputs of an illustrative base case are explored. In general, 

the case study model generates consistent results to the base case when looking at the conclusions 

of aggregated outputs, despite the tendency to high variance of the disaggregated outputs and the 

poor results of the confidence interval analyses. Implementation of the framework generated 

insight on the accuracy of the case study model, and it highlighted the specific instances where the 

modeller needs to be more cautious of the results when using only point data, as in the illustrative 

base case. 
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Chapter 1. Introduction  

1.1. Background  

The economic importance of trade and trade infrastructure to Canada is massive. Exports and 

imports of goods and services in Canada were 32.13% and 34.09% as a percentage of Gross 

Domestic Product in 2018, respectively (WITS, n.d.-a). In comparison, these values were 12.22% 

and 15.33% for exports and imports, respectively, in the United States, which is Canada’s closest 

neighbour and a large western economy (WITS, n.d.-b).  Moreover, the Government of Canada 

(2017) revealed that one in six jobs depended on international commerce in 2017. In the budget of 

the same year, the Government of Canada allocated $10.1 billion over 11 years to the maintenance, 

expansion, and efficiency of trade and transportation corridors (Government of Canada, 2019). 

This substantial investment demonstrates the importance of both trade and its infrastructure to 

Canada. Consequently, Canada is continuously trying to expand the reach of its economy, 

increasing the importance of trade and trade infrastructure. There are fifteen free trade agreements 

(FTAs) currently enforced. Two of the latest FTAs to be enforced are the Comprehensive and 

Progressive Trans-Pacific Partnership (CPTPP), enforced in 2018, and the Canada-United States-

Mexico Agreement (CUSMA), enforced in 2020 (Government of Canada, 2020). The CPTPP is 

an FTA between Canada and ten Asia-Pacific countries: Australia, Brunei, Chile, Japan, Malaysia, 

Mexico, New Zealand, Peru, Singapore, and Vietnam (Government of Canada, 2020). 

Freight demand models are a set of tools utilized for the forecasting, planning, analysis, and/or 

optimization of the movement of commodities, such as the billions-of-dollars-worth of goods and 

services that are moved annually in Canada. Freight demand models are used by both private and 

public entities to incorporate freight movement considerations into the transportation planning 

process, usually with the goal of making informed investments or to develop related projects or 

policies (United States Department of Transportation, 2020). There are multiple approaches in the 

literature and in practice to modelling freight that are catered to different variables such as spatial 

reach (e.g., state-wide versus country-wide), type of analysis (e.g., forecasting and performance), 

unit of reference (e.g., vehicle-trips, or commodity flows), level of aggregation, etc. Typical 

applications of freight demand modelling include:  

• describing base year freight flows and explaining their transport-related variables;  

• forecasting of freight flows and alternative analysis; 

• assessing the performance of existing or possible freight systems; and 

• designing and optimizing freight transport systems (Tavassy & De Jong, 2014). 

Freight demand modelling was recently used to quantify the impact of FTAs on Canada’s domestic 

trade infrastructure. Bachmann (2017) studied this by extending a typical computable general 

equilibrium (CGE) simulation of the Canada-European Union Comprehensive Economic and 

Trade Agreement (CETA) through the estimation of high-level supply chain characteristics for 

trade flows. Jahangiriesmaili et al. (2018) expanded on this body of knowledge to assess the 

potential impact of CETA on Canada’s transportation network through the estimation of before-

and-after origin-destination (O-D) trade flows, mode shares, and transportation flows. The result 
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of these efforts was a commodity-based freight demand model, capable of assessing the effects of 

FTAs on the transportation of international export/import of commodities throughout Canada. 

This model, along with all other travel and freight demand models, has uncertainty related to its 

inputs and the models themselves (de Jong et al., 2007; Rasouli & Timmermans, 2012). Input 

uncertainty is concerned with the fact that there is error in the data used as inputs to model 

transportation demand such as biased surveys, planning and land-use model outputs, etc. Model 

uncertainty is concerned with the fact that the model specification and calibration/estimation may 

contain error such as omitted variables, inappropriate assumptions, simplifications, etc.  

1.2. Problem Statement  

Despite the enormous body of work surrounding transportation demand models, there is limited 

understanding of the uncertainty present in these models. A literature review yielded 

approximately sixty studies that investigated different sources of uncertainty in a multitude of 

transportation demand models, and a couple of land-use models. Most of these studies were ad-

hoc and concerning only passenger travel demand models. Westin et al. (2016)  present the only 

study that directly analyzed uncertainty in a freight demand model. Their study used sensitivity 

analysis by varying the production-attraction base matrices from -20% to 20% in increments of 

10%, for a total of 5 runs, while keeping everything else constant in the commodity-based freight 

demand model, SAMGODS (Westin et al., 2016). The study concluded that model outputs contain 

uncertainty from the input uncertainty, but it did not formally quantify the uncertainty nor did it 

study its propagation through successive sub-models (Westin et al., 2016).  

Consequently, a formal effort is needed studying the effects of uncertainty propagation through 

successive sub-models or functions of a model in the context of freight demand modelling. Zhao 

and Kockelman (2002) present the most comprehensive study into the propagation of uncertainty 

through successive sub-models of a travel demand model. The authors study a typical four-step 

passenger travel demand model by arbitrarily assigning univariate and multivariate distributions 

to inputs and parameters and running a Monte Carlo (MC) Simulation one hundred times to 

estimate the distribution of the outputs at each step (Zhao & Kockelman, 2002). However, the 

sources of uncertainty were related to passenger travel and no substantial effort was made to 

estimate the actual distributions of their input sources (Zhao & Kockelman, 2002).  

There is a lack of understanding surrounding the uncertainty of freight demand models. 

Regardless, these models are widely researched, developed, and applied without characterizing the 

uncertainty of typical data sources used as inputs. The contributions of the variation present in 

different inputs to the model results are unknown, making it impossible to know the robustness of 

the model outputs or how the results might be improved.  

1.3. Research Objectives  

The goal of this thesis is to develop and implement a framework to analyze the effects and 

propagation of input uncertainty on the uncertainty of the outputs in a commodity-based freight 

demand model.   
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The objectives of this research are as follows:  

• Review the literature on freight demand modelling to identify and classify research 

efforts and practical efforts on available modelling techniques.  

• Review the methodologies used previously in uncertainty analysis of transportation 

demand models (passenger and freight). 

• Develop a framework to study and quantify input uncertainty in commodity-based 

freight demand models.  

• Quantify the propagation of uncertainty due to inputs in the model developed by 

Bachmann (2017) and Jahangiriesmaili et al. (2018). 

• Evaluate the uncertainty associated with the freight impacts of FTAs in Canada using 

the CPTPP as a case study. 

1.4. Research Scope  

The scope of this research is limited to commodity-based freight demand models. The case study 

used as an application of the proposed framework is limited to the domestic trade infrastructure of 

Canada, namely exports, before and after signing the CPTPP. This application is done through the 

commodity-based freight demand model developed by Bachmann (2017) and Jahangiriesmaili et 

al. (2018) which is hereafter referred to as “the model”. The spatial scope of this model is two-

fold: 1) the economic model depicts international export/imports (with aggregations that include 

all regions of the world) with a focus on Canada, 2) the freight model allocates those international 

trade flows to Canada’s domestic trade network.  

The temporal scope is introduced through the period of the model’s analysis and the variation 

applied to two of the model’s input variables. The first temporal scope is from 2015 to 2035 (20 

years) which is the period in which the model is used to analyze the impacts of the CPTPP on 

Canadian trade infrastructure. The second temporal scope is introduced through the six-year 

variation of the data used to calculate the shares that disaggregate country-to-country trade flows 

resulting from the economic model forecast. The six years available for the Canada Border Service 

Agency (CBSA) data are 2010, 2011, 2012, 2013, 2014, and 2015. Lastly, the data used to 

calculate shares that aggregates the disaggregated trade flows into domestic flows (province-to-

province) is varied over 7 years. The years available for the Canadian Freight Analysis Framework 

(CFAF) data are 2011, 2012, 2013, 2014, 2015, 2016, and 2017. 

The scope includes the following two primary areas of contribution. The first contribution is a 

framework to quantify the propagation of uncertainty due to input uncertainty through a 

commodity-based freight demand model. The second contribution is the quantification of the 

propagation of uncertainty due to input uncertainty of the only model in Canada that estimates the 

effects of free trade agreements on the domestic transportation network using the CPTPP as a case 

study.  

The scope of this thesis has two important boundaries. Firstly, uncertainty due to model 

specification or model estimation is not studied since the framework only analyzes input 
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uncertainty. Secondly, the research presented does not study any other type of freight demand 

model such as trip-based or activity-based models.  

Due to the above-mentioned scope boundaries, this research contains the following limitations. It 

is assumed that the model to which the framework is applied has been correctly specified and 

estimated since model uncertainty is not studied. However, the nature of model development 

necessitates simplifying assumptions, which are likely to induce some additional error. 

Nonetheless, studies on passenger demand models have concluded that input uncertainty has 

greater effects than model uncertainty on the outputs of the model (e.g., de Jong et al., 2007). 

Another limitation stems from not studying uncertainty in activity-based models. Activity-based 

models are different from trip-based and commodity-based models in that they are stochastic; thus, 

the propagation of their uncertainty necessitates its own framework. For example, in the passenger 

travel demand literature, a large portion of the research effort has been dedicated to quantifying 

the effects of stochastic simulation error as opposed to input uncertainty or other forms of model 

uncertainty (i.e., specification and estimation) (Castiglione et al., 2003; Cools et al., 2011; Gibb & 

Bowman, 2007; Lawe et al., 2009). 

1.5. Structure of Thesis/Thesis Organization  

This thesis is organized in five major sections. Chapter 1 is the introduction. Chapter 2 contains 

the findings of the literature review. Chapter 3 outlines the methodologies both for the proposed 

framework and its application to the case study. Chapter 4 presents and discusses the results. 

Chapter 5 contains the major conclusions, the limitations of the research, and possible future 

research topics.  

Chapter 1 introduces the study. The background provided explains the importance of trade in 

Canada, introduces freight demand models, and briefly describes the development of the model 

used in the case study. The problem statement, research objectives, and research scope define the 

purpose, desired outcomes, and limitations of this study.  

Chapter 2 presents the literature review. It is divided in three sections according to the aims of the 

review. The first aim is to identify current types of freight demand modelling techniques. The 

second is to establish the model type most widely used in practical applications in North America. 

The last aim is to identify uncertainty analysis techniques used in transportation demand models. 

Observations are presented in relation to those three aims.  

Chapter 3 presents the methodology behind the framework and its application to the case study. In 

addition, the case study model is defined prior to explaining the application of the framework. The 

case study model, an aggregate-disaggregate-aggregate version of an entirely data-driven approach 

to the traditional four-step commodity-based model, is introduced. Then, a five-step framework is 

proposed to assess the uncertainty of the outputs of a commodity-based freight demand model due 

to the uncertainty of its inputs along with its application to the case study model.  

Chapter 4 presents the results, the analyses of the results, and their respective discussions. There 

are three types of outputs generated by the case study model that are explored using the framework. 

The first set of outputs are the three disaggregated outputs from the three sub-models that comprise 
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the freight model used in the case study. The second set of outputs reproduces the aggregated 

results of the original model application. The case study model was previously used to analyze the 

effects of the CPTPP on Canada’s trade infrastructure and major conclusions were based on 

aggregated tables (e.g., total tonnage by international transport model, port of exit, etc.). The last 

set of outputs contains two targeted analyses of the disaggregated data. Two single supply chains 

are selected. One explores the results of a non-signatory country of the CPTPP - United States - 

and the other explores the results of a supply chain primarily serving the signatories of the CPTPP.  

Chapter 5 presents the conclusions. The conclusions are presented according to the research goal 

and objectives described in Section 1.3. Additionally, the major findings of the application of the 

proposed framework to the case study are summarized. Lastly, the limitations and future possible 

research topics are discussed.  
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Chapter 2. Literature Review 

This literature review has three aims: 1) to identify current types of freight demand modelling 

techniques; 2) to establish the model type most widely used in practical applications in North 

America; and 3) to identify uncertainty analysis techniques used in transportation demand models.  

A review of model types and their classifications systems is needed in order to use the correct 

terminology throughout this research. Additionally, a review of the freight demand models used 

in the United States’ and Canadian practices is necessary to identify the most widely used model 

types, in order to ensure the developed framework is widely applicable. Lastly, a review of 

available research efforts regarding uncertainty analysis of transportation demand models is 

needed in order to identify possible methodological foundations and gaps in the literature.  

The scope of this review consisted of using various journal indexing systems including SCOPUS, 

Google Scholar, Research Gate, and Science Direct. In addition, the indexing tool available 

through the University of Waterloo library, entitled OMMI, was used to simultaneously search all 

journals and documents accessible through the University. Additional information through 

different government websites in Canada and the United States was also collected.   

The remainder of this chapter is organized into three subsections: 

• Classification of Freight Demand Models  

• Freight Demand Models in Canada and the United States 

• Uncertainty Analysis of Transportation Demand Models 

2.1. Classification of Freight Demand Models  

There are ongoing discussions regarding best practices to classify freight demand models. For 

example, Winston (1983) divided models based on the level of aggregation of the data used to 

develop the models. Zlatoper and Austrian (1989) also followed the classification of aggregate 

versus disaggregate models presented by Winston (1983). Alternatively, Regan and Garrido (2001) 

divided their review based on both the nature of the data (aggregate or disaggregate) and the spatial 

scope (international, intercity/interregional, urban). 

This section reviews the most popular classification systems discussed in the literature in order to 

present an all-encompassing perspective. The first classification system is based on spatial scope, 

the second is based on the unit of reference of the demand generation, and the third, the Model 

Class System, has been recently implemented in the United States. 

2.1.1. Classification Based on Spatial Scope 

The first classification system proposed in the literature is based on the spatial scope of the models. 

This includes model types divided based on whether they analyze international, regional, or 

local/urban systems.   

The National Highway Cooperative Research Program (NHCRP) (2008) released a report 

regarding the state-of-the-art of freight modelling in the United States (US). The authors 

highlighted the need to differentiate between long (or intercity) and short distances (or local) 
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because there are different factors affecting the movement of freight that depend on the transport 

distance (National Cooperative Highway Research Program, 2008). The report further divided 

long-distance, interstate freight movement into three categories according to the nature of the 

origin-destination (O-D) pairs (National Cooperative Highway Research Program, 2008): 

o shipments with an O-D pair in a single state,  

o shipments with an O-D pair in two states, and 

o shipments with an O-D pair in two states passing through intermediate states.  

Another good example of this classification system was described by Nuzzolo et al. (2013). Their 

classification system based on spatial scope included subcategories that separated aggregate versus 

disaggregate models (Nuzzolo et al., 2013). Figure 1 depicts their proposed classification system.  

 

 

Figure 1 Classification System Proposed by Nuzzolo et al. (2013) 

This classification system and the system based on unit of reference (see Section 2.1.2) are blurred 

when the authors further categorized long distance disaggregate models into agent-based models 

(Nuzzolo et al., 2013). Moreover, agent-based models are further divided based on the interactions 

between agents (i.e. carriers, shippers, and freight forwarders) that they consider, as seen in Figure 

2 (Nuzzolo et al., 2013). The authors consider any model that incorporates some sort of agent 

Freight Demand 
Models

Long Distance 

•International

•National Flows

Aggregate 
Models 

•Elasticity Method

•Time Series                  
Analysis

•Economic I/O or 
Production/ 
Consumption 
Methods

•Four-Step 
Modelling

•Network Model

Disaggregate 
Models

•Agent-Based 
Models

Short Distance

•Urban Flows

•Last Mile Flows

Aggregate 
Models 

•Vehicle

•Quantities

•Delivery

Disaggregate 
Models

•Micro 
Simulation



8 

behaviour as agent-based models and microsimulation is a specific set of agent-based models 

where the data to specify the model is already disaggregated. 

 

Figure 2 Agent-Based Model Classification (Nuzzolo et al., 2013) 

The authors concluded that there is a trend towards agent-based models or disaggregate models 

that are harder to estimate and calibrate but incorporate key elements of freight movements such 

as shipper, carrier, and freight forwarders logistic decisions (Nuzzolo et al., 2013). Furthermore, 

at the short distance scale, they concluded that the literature has few models that examine the 

interactions between freight and passenger movement. They argued that this interaction is 

important due to congestion generated by both types of trips (Nuzzolo et al., 2013).  

2.1.2. Classification Based on Reference Unit for Demand Generation 

Referring to types of models based on the reference unit for demand generation is done throughout 

the literature (Chow et al., 2010; Fischer et al., 2005; Liedtke & Schepperle, 2004; National 

Cooperative Highway Research Program, 2008; Nuzzolo et al., 2013). Models classified by 

reference unit of demand generation include trip-based, commodity-based, and activity-based 

models. 

For example, Nuzzolo et al. (2013) used this classification as subcategories to their proposed 

category of short distance aggregate models. In their vehicle-based models, the reference unit is a 

trip taken by a freight vehicle much like trip-based models. In their quantity-based models, the 

reference unit is the amount of a commodity which is similar to the commodity-based models. In 

their delivery-based models, the focus is on pick-ups and deliveries, which parallels the definition 

of activity-based models. However, as explained in the next paragraphs, this classification applies 

to all freight models and not only the ones developed for short distances with aggregated data (as 

used by Nuzzolo et al. (2013)). 
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Trip-Based Models 

Trip-Based models generate production and attraction demand based on individual vehicle trips. 

These models only have three components (Figure 3) (Holguín-Veras & Thorson, 2000), akin to 

the vehicle-based models described by Nuzzolo et al. (2013). The mode choice step is not needed 

in these models because they only consider a single mode, which is usually trucks.  

 

Figure 3 Three-Step Trip-Based Models (Recreated) (Holguín-Veras & Thorson, 2000) 

Both advantages and disadvantages of these models are discussed in the literature. The benefits of 

using these types of models include: significant availability of data (traffic counts, screen counts, 

intelligent transportation retrofitting data, etc.), as well as less computational power required, and 

empty trips can be easily considered (Holguín-Veras & Thorson, 2000; Nuzzolo et al., 2013). One 

disadvantage of using trip-based models is their single modal nature which assumes that mode 

selection was previously done and consequently they do not account for other modes (Nuzzolo et 

al., 2013). Additionally, these models are not able to demonstrate the socio-economic and cargo 

characteristic variables behind mode selection, and do not take into account commodity production 

and attraction (Holguín-Veras & Thorson, 2000; Nuzzolo et al., 2013; Wisetjindawat et al., 2012).  

Commodity-Based Models 

Commodity-Based models have the commodity being transported as the reference unit of demand, 

relying on the idea that vehicle flows or trips are a result of the need for commodity movement 

(Holguín-Veras & Thorson, 2000; Wisetjindawat et al., 2012). These models often have the four 

components of the traditional four-step modelling approach but include a commodity production-

attraction step (see Figure 4) instead of the usual vehicle trip generation. This step is used in order 

to better capture freight modelling economic mechanisms driven by cargo characteristics 

(Holguín-Veras & Thorson, 2000).  
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Figure 4 Four-Step Commodity-Based Models (Recreated) (Holguín-Veras&Thorson, 

2000) 

The vehicle loading step corresponds to the conversion between commodity flows and trips 

(Holguín-Veras & Thorson, 2000). Referring to quantity-based models, Nuzzolo et al. (2013) also 

explains this process. The quantities (or commodity flows) are generated by attraction models 

based on socio-economic data. Then, the quantities are spatialized, both in terms of O-D pair 

interactions and spatially dependent mode choices, using random utility models (RUM). Finally, 

the quantities are transformed into vehicle trips via additional steps (Nuzzolo et al., 2013).  

A link to this classification system is found in the United States Model Class System. This system, 

which is explained in Section 2.1.3, contains two commodity-based classes of models: Class D 

The Four-Step Commodity Model and Class E Logistics Models (Chow et al., 2010; National 

Cooperative Highway Research Program, 2008). 

Although commodity-based models are considered an improvement to trip-based models, there 

are multiple disadvantages of this modelling paradigm. Holguin-Veras and Thorson (2000) focus 

on the difficulties of modelling empty trips using commodity-based models. Empty trips are 

determined by freight movement logistics, the data for which are often not available to modellers 

(Holguín-Veras & Thorson, 2000). Some modellers have attempted to incorporate empty trips as 
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a separate commodity, but this does not ensure the compatibility between total empty trips and 

total loaded trips, nor the influence of logistical attributes (Holguín-Veras & Thorson, 2000). Other 

disadvantages proposed by Fischer et al. (2005) are the lack of commodity flow data available at 

the traffic analysis zone level, and lack of local logistics data (deliveries, pick-up location, etc.). 

In addition, Liedtke and Schepperle (2004) as well as Chow et al. (2010) raised concerns regarding 

the crude conversions between commodity and vehicle flows because a formal and standardized 

approach to these conversions is missing. Additionally, while these models can be used to analyze 

changes in employment, modal utility, trip patterns, and network infrastructure, they do not take 

into account the interactions between freight industry decision makers or freight industry activities 

(e.g., logistics, tours, firm to firm relations etc.) (National Cooperative Highway Research 

Program, 2008). 

Activity-Based Models 

Activity-based or agent-based models consider freight activities or agents’ behaviours as the 

primary generators of demand. Liedtke and Schepperle (2004) suggest the goal of activity-based 

models is to provide traffic planners with the tools to explain individual operational and logistical 

decisions, in order to analyze the effects of changes on transnational and federal transport policy. 

Multiple authors concluded that there is a trend of the current research towards developing activity-

based models due to advances in computational power (Chow et al., 2010; Liedtke & Schepperle, 

2004; National Cooperative Highway Research Program, 2008; Nuzzolo et al., 2013; 

Wisetjindawat et al., 2012). As alluded above, activity-based models need large, disaggregated 

agent/activity data which are often not publicly available. Consequently, these models are large, 

complicated, and require high performing computers and time to develop (Liedtke & Schepperle, 

2004; Nuzzolo et al., 2013).  

2.1.3. United States’ Class System 

In the US, NHCRP 606 report presented the Class System as a standardized way to classify all the 

existing freight modelling efforts used in practice by different states (National Cooperative 

Highway Research Program, 2008). Chow et al. (2010) updated the naming system and added 

short forms to the classes by categorizing them from A to E. The NHCRP 606 report highlighted 

modelling needs that the identified five classes did not meet and further stated that any single 

model class did not satisfy all freight modelling needs (National Cooperative Highway Research 

Program, 2008). Additionally, the report provided typical freight modelling components and 

concluded that Class A to E models share many of these components but differ in their organization 

and use (National Cooperative Highway Research Program, 2008). Table 1 shows the model 

classes included in NHCRP 606 report and their corresponding model components (in green). 
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Table 1 Class System Differences According to Model Components (Recreated) (National 

Cooperative Highway Research Program, 2008) 

Class 

Model Component 

Direct 

Factoring  

Trip 

Generation 

Trip 

Distribution 
Mode Split  

Traffic 

Assignment  

Economic/ 

Land Use 

Modeling 

A 

Direct Facility 

Flow 

Factoring 

Method  

1      

B 

O-D 

Factoring 

Method 

2      

C Truck Model   3  5   

D 

Four-Step 

Commodity 

Model  

 3     

E 

Economic 

Activity 

Model 

 4     

 
1 Direct factoring of facility flows. 
2 Direct factoring of O-D tables. 
3 Trip generation based on exogenously supplied zonal activity. 
4 Trip generation based on outputs of economic model. 
5 Not applicable because the mode is assumed to be trucks.  

Fischer et al. (2005) separately conducted a review of the available types of models and identified 

two additional ones: Logistic Chain models and Tour-based models. Both of these types of models 

aim to better simulate interactions between the different decision makers in the movement of 

freight to assess policy making and impact assessment (Chow et al., 2010; Fischer et al., 2005). 

Chow et al. (2010) formally recognized seven model classes by adding the Class F: Logistics Chain 

Model and Class G: Tour-based models.  

Class A, Direct Facility Flow Factoring Method, uses growth factors on available facility flow data 

for short-term forecasts (National Cooperative Highway Research Program, 2008). Models in this 

class are simple to implement and rely on regression equations from either a time series analysis 

or an economic analysis (National Academies of Sciences, 2008). The estimates of flow can be 

based on growth factors applied to data of flow within the facility or data of flow diversion to other 

routes or modes (National Academies of Sciences, 2008). Several assumptions must be made 

because the method does not consider many important factors and it also does not provide overall 

system forecasts (National Academies of Sciences, 2008).  
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Class B, Origin-Destination Factoring Method, uses growth factors on available O-D tables in 

order to perform conventional mode split and trip assignment using a newly generated O-D table 

(National Cooperative Highway Research Program, 2008). Economic, employment, or other 

indicators of zonal growth can be used to develop growth rates (National Cooperative Highway 

Research Program, 2008). The zonal growth factors are typically applied in an iterative manner to 

the O-D tables that proportionally fits and balances production and attraction growth rates 

(National Cooperative Highway Research Program, 2008).  

Class C, The Truck Model, is also known as the three-step model because it uses three of the four 

steps in the conventional four-step model: trip generation, trip distribution, and trip assignment 

(National Cooperative Highway Research Program, 2008). The mode split step is not necessary 

because it only uses truck trips, and consequently, these models cannot analyze modal shifts 

(National Cooperative Highway Research Program, 2008). Truck models are typically use in 

conjunction with passenger cars to analyze flows on road links and are commonly used as part of 

urban travel forecasting models (National Cooperative Highway Research Program, 2008). Trucks 

types in the models are classified based on their gross vehicle weight into light, medium, and 

heavy, which loosely relate to other truck properties such as the number of units per truck (National 

Cooperative Highway Research Program, 2008). 

Class D, The Four-Step Commodity Model, follows the traditional travel demand four-step model 

approach but the base unit is commodity flows obtained from economic forecasts instead of using 

passenger trips (National Cooperative Highway Research Program, 2008). These models require 

large amounts of data and time to develop, for example, they require statewide zone and network 

structures (National Cooperative Highway Research Program, 2008). It is difficult to develop 

utility information for modal split in freight modelling due to its complexity, thus, simple existing 

market mode shares are typically applied or adjusted in a qualitative manner (National Cooperative 

Highway Research Program, 2008). These models also require conversion from commodity 

tonnage or monetary value to equivalent trips depending on the mode split. In the NHCRP 606 

report, the authors recommended using payload factors obtained from processing data in the 

Vehicle Inventory and Usage Survey (VIUS) or the Commodity Flow Survey (CFS) (National 

Cooperative Highway Research Program, 2008). However, the report also acknowledges that 

different models use varying methodology and data sources for these conversions (National 

Cooperative Highway Research Program, 2008). All the drawbacks of the commodity-based 

models, discussed in Section 2.1.2, apply to these models.  

Class E, The Economic Activity Model, uses the typical four-step process but links the outputs of 

the freight model to economic forecasts and iterative methods are often used to jointly model their 

interactions (National Cooperative Highway Research Program, 2008). Like in Class D models, 

economic forecasts are inputs in this class of models (National Cooperative Highway Research 

Program, 2008). The difference is that the economic forecasts are updated using the performance 

outputs from the freight model (usually integrated with a passenger model); and then, the updated 

forecasts are fed back into the freight model creating a dynamic spatial input-output (I-O) model 

(National Cooperative Highway Research Program, 2008). 
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Class F, Logistics Models, simulate logistics choices by applying analytical methods (Fischer et 

al., 2005). Supply chains or distribution channels are simulated by incorporating multiple origin 

and destinations with intermediate stops (Chow et al., 2010). The base unit of these models are 

commodity flows instead of  vehicle trips since supply chains follow a commodity from raw 

through finished product (Chow et al., 2010). The models under this category vary significantly 

and include both commodity-based models, for example the Strategic Model for Integrated 

Logistics Evaluation (SMILE), and activity-based models, such as Liedtke and Schepperle’s 

freight model (Chow et al., 2010; Liedtke & Schepperle, 2004).  

Class G, Tour-Based Models, are activity-based models that focus on tour characteristics of truck 

trips instead of the commodity characteristics (Fischer et al., 2005). These models intend to 

generate a more accurate evaluation of the vehicle movement and the decisions of carriers (Chow 

et al., 2010). The focus so far has been in truck modes, thus modal split analysis is not considered 

(Fischer et al., 2005). 

2.2. Models in Canada and the United States 

This section provides an overview of freight demand models used in Canada and the United States. 

Information on modelling practices is more readily available in the US context than in Canada. 

Thus, although the research presented in this thesis is based on a Canadian model, it is important 

to gather knowledge from a neighbouring country with similar characteristics.  

Both countries developed integrated datasets regarding national freight movements which 

allocated commodity flows in origin-destination format. The Freight Analysis Framework (FAF) 

was developed in the US through a partnership between the Bureau of Transportation Statistics 

and the Federal Highway Administration (National Transportation Research Center et al., 2021). 

In its fifth version (FAF5), O-D datasets have been synthesized for the base year of 2017 

containing information by region of O-D, commodity type, and mode (National Transportation 

Research Center et al., 2021).  Data for the years of 2018-2019 and forecasts for the years 2020-

2050 as well as previous years (1997-2012), both in increments of five years, will be available in 

later versions (National Transportation Research Center et al., 2021). Similarly, CFAF combined 

data available in Statistics Canada to produce datasets containing O-D data, shipment value, 

commodity type, number of shipments, weight transported, tonne-kilometers, revenue, and mode 

by province, by sub-areas such as Toronto, or by international destinations/origins (Statistics 

Canada, 2020). However, FAF5 has the ability to complete commodity flow network assignments 

on major road networks making it a freight demand model and not just an integrated database like 

its Canadian counterpart (National Transportation Research Center et al., 2021; Statistics Canada, 

2020).  

2.2.1. Models in Canada  

The following is the result of exploratory research on freight demand models used in practice by 

different levels of governance across Canada. Regional, provincial, and territorial models were 

researched. It is important to note that this was a search on information available to the public 

online; and thus, it is not all-encompassing. 
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The Transport and Regional Economic Simulator of Ontario (TRESO) is a passenger, freight, and 

macroeconomic model developed for the Province of Ontario (Duggal et al., 2017). Freight 

demand modelling is handled by three sub-models: a commodity flow model, a long-distance truck 

model, and an urban truck tour model (Duggal et al., 2017). The commodity flow model uses 2011 

Transport Canada data and 2012 Commercial Vehicle Survey (CVS) data to forecast flows (in 

units of weight) and identifies each commodity based on the Standard Classification of 

Transported Goods-2 (SCTG2) (Duggal et al., 2017). The commodity flows are then converted 

into truck trips and added into the long-distance truck model along with other truck data such as 

private trucks carrying company equipment (e.g., contractor tools) that are not otherwise 

considered commodities (Duggal et al., 2017). The truck touring model is a variation of the 

microsimulation truck touring model developed for Calgary by Hunt and Stefan (Damodaran, 

2017; Hunt & Stefan, 2007). 

Transport Quebec conducted a study to analyze the transportation of merchandise (freight) and it 

used a truck model to evaluate truck trips in the province (Transport Quebec, 2005). The model 

consisted of the standard trip generation, distribution and assignment steps. The model also had an 

added component created by MTO and IBI to detect travel inconsistencies and adjust them 

interactively (Transport Quebec, 2005). 

The Greater Toronto and Hamilton Area uses the GTAModel, that is currently in version 4.1.0, 

which includes an integrated freight sub-model (Travelling Modelling Group, 2019). The holistic 

transportation demand model, GTAModel V4.1.0, handles passenger movement with a 

disaggregate activity-based model named TASHA that was validated for the Greater Toronto and 

Hamilton Area (GTHA) by Roorda et al. (2008) (Miller et al., 2015; Travelling Modelling Group, 

2019). The freight demand sub-model is a truck model, much like the ones described under Class 

C Truck Models in Section 2.1.3, and it is based on a commercial vehicle model designed by 

Chowdhury and Roorda (see Figure 5) (Travelling Modelling Group, 2019; Tufayel & Roorda, 

2020).  
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Figure 5 GTAModel V4.1.0 Freight Demand Module Framework (Travelling Modelling 

Group, 2019) 
1 Commercial Vehicle Surveys (CSV). 

As part of the Lower Mainland Truck Freight Study, the Greater Vancouver/Fraser Valley Region 

developed a Truck Demand Forecasting Model as a sub-model of their EMME/2 Travel Demand 

Forecasting Model (TransLink, 2000). O-D surveys along with vehicle volumes and classification 

surveys were conducted in order to create the EMME/2 model between 1999 and 2000 (TransLink, 

2000). The collected data, in addition to special generators data (e.g. Port of Vancouver, 

Vancouver International Airport, etc.), was used to link truck demand to demographic variables 

for forecasting AM peak hour or 24 hour period demand for the years 2006, 2011, 2021 

(TransLink, 2000). The report disclosed that commodity flow analysis was not part of the 

development of this model (TransLink, 2000). Moreover, the specific framework of the model is 

not disclosed in the report.  

The Calgary Region developed a tour-based microsimulation model to forecast urban freight 

movement as a sub-model to their Regional Transportation System Model (RTM) (National 

Academies of Sciences, 2008). The RTM is composed of a personal travel demand model, which 

is an aggregate equilibrium model, a commercial vehicle movement model, and a joint vehicle 

assignment process (National Academies of Sciences, 2008). The main source of data for model 

development was interviews about commercial vehicle movements collected in 2001 from own-

account sources (National Academies of Sciences, 2008). Tour generation is done at an aggregate 

level, the rest of the steps in the framework are done through different Monte Carlo simulations, 

and lastly, the model iterates to “grow” the tours, see Figure 6 (National Academies of Sciences, 

2008).  

•Simple linear regression equations for light, medium, and 
heavy trucks callibrated with truck traffic counts. Their 
explanatory variable is employment, and their dependent 
variable is the total number of incoming and outgoing trips in 
a weekday

Trip 
Generation

•Gravity models, with β parameters obtained from previous 
GTHA freight model, and directly adding CVS1 O-D matrices for 
medium and heavy truck external flows.  

Trip 
Distribution

•Periods: early off peak, a.m. peak, midday off peak, p.m. peak, 
late off peak

Trip
Assignment



17 

It
er

at
es

 t
o

 “
gr

o
w

” 

 

 

Figure 6 Calgary Region Tour-Based Model Framework (National Academies of Sciences, 

2008) 

The Ottawa-Gatineau Metropolitan area or National Capital Region developed a transportation 

forecasting model using EMME/4 which considers truck trips via truck O-D tables (MMM Group 

Limited, 2014b). Using an interprovincial truck survey conducted in 2007, truck/commercial O-D 

matrices were created as inputs for the EMME/4 model (MMM Group Limited, 2014b). The model 

is mainly focused on passenger movement, but it incorporated truck flows in the a.m. and p.m. 

peak periods assignment (MMM Group Limited, 2014b).  

Several Canadian locations have limited or unavailable information regarding their freight demand 

modelling tools. The City of Winnipeg developed a transportation planning model using 

TransCAD; however, a study by MMM Group Limited (2014a) that used the model and expanded 

it to the Manitoba Capital Region disclosed that the model was unable to simulate movement of 

goods due to unavailability of truck data. According to Damodaran (2017), Transport Quebec 

conducted a study which led to a freight modelling methodology, however more information was 

not found; although, the organization offers passenger transport modelling (Transport Quebec, 

2005). The same tour-based model used in Calgary was said to be being developed for Edmonton 

in conference proceedings of 2008 but more information was not found (National Academies of 

Sciences, 2008).  

Other Canadian locations had freight demand models developed by researchers but no information 

on the models being used in practice was found. Rwakarehe et al. (2014) developed an I-O 
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commodity-based model for the Province of Alberta in 2014 but information on practical 

implementation was not available. Similarly, Rwakarehe et al. (2015) developed a commodity-

based model using data from the Province of Saskatchewan but no information on practical 

implementation was found. Bela and Habib (2019) developed a tour-based truck model for the 

City of Halifax in 2019, and the Halifax Regional Municipality expressed a need to incorporate 

freight movements into their Regional Transportation Demand model in a 2016 report, but no 

practical implementation was found (Davis Transportation Consulting, 2016). In the Northwest 

Territories, researchers used utility functions and logit models to assign mode shares along the 

Makenzie River Corridor in order to analyze the shift in shippers’ decisions based on river water 

conditions (Du et al., 2017). Similar to the other examples, in this last case, no information on 

practical applications was found. 

Table 2 is a summary of the models described above along with their corresponding model types 

based on the classification described in Section 2.1.2. The summary shows that the majority of the 

models used in practice are trip-based. However, general conclusions about the state-of-practice 

in Canada cannot be drawn since these are part of a small sample found in publicly available 

information and therefore may not be truly representative.  

Table 2 Summary of Freight Demand Models in Canada 

Governance Model Type Model Name 

GTHA Trip-Based 

Truck Model Demand 

Module as part of GTAModel 

V4.1.0 

Greater Vancouver/Fraser 

Valley Region 
Trip-Based 

Truck Demand Model 

(EMME/2) 

Calgary Region Activity-Based 
Tour-based Microsimulation 

Model 

Ottawa–Gatineau Metro Trip-Based Truck Trips O-D Tables 

Halifax Activity-Based 
Tour-based urban truck 

model (like Calgary)* 

Quebec Trip-based Truck Model 

Alberta Commodity-Based 
I-O and Commodity-Based 

Four Step Model* 

Ontario 
Commodity-Based, Activity-

based 

Commodity Flow Model, 

Long-Distance Truck Model, 

Urban Truck Tour-Based 

Model 

Saskatchewan Commodity-Based Commodity-based Model* 

Northwest Territories Activity-Based 
Utility function and logit 

model* 

* Research studies developed these models for the governance context and no practical 

applications were found.  
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2.2.2. Models in the United States 

This section provides some insight on the state of practice in the US regarding freight demand 

modelling. A few examples of models included in the National Cooperative Highway Research 

Program (NCHRP) 606 report are discussed as well as the relevant results of the comprehensive 

review in the subsequent NHCRP report from 2010 (National Cooperative Highway Research 

Program, 2008, 2010). The NHCRP 606 report provides case studies that include ten models, two 

per model class from Class A to Class D, used in practice by different states (National Cooperative 

Highway Research Program, 2008). In the toolkit, the case studies were all reviewed under the 

same headings: general modelling approach, model data (source and outputs), model development, 

model validation, model application, and performance measures and evaluation (National 

Cooperative Highway Research Program, 2008). A summary is presented in Table 3.  

Table 3 Models Used in Practice by US Government Bodies (National Cooperative 

Highway Research Program, 2008) 

Class 
Demand 

Generation 
Name Description 

A 
Truck trip-

based 

Minnesota Trunk 

Highway 10 Truck Trip 

Forecasting Model 

Forecast model of corridor TH 101 that used historical truck 

data (1992-1999) and regional employment data along with 

growth factors derived as per the QRFM2 

A 
Truck trip-

based 

Heavy Truck Freight 

Model for Florida Ports 

The model used truck flow data (1996-1998) in and out of the 

Port of Miami and linear regression to estimate the freight 

volume movement of the facility. Then, a time series analysis 

was used to examine forecasts. 

B 
Commodity-

based 

Ohio Interim Freight 

Model  

Base year commodity O-D tables from TRANSEARCH3 

(1998) were factored using growth rates derived by mapping 

economic activity data to each commodity class in order to 

perform model split and network assignment4.  

B 
Commodity-

based 

Freight Analysis 

Framework  

The national model used various public and proprietary 

datasets to develop commodity O-D tables at the national, state, 

and county levels for the base year of 1998 and forecasted 

years. Mode split was conducted using historical mode shares 

and highway network assignment was performed too4.  

C 
Truck trip-

based 

New Jersey Statewide 

Model Truck Trip 

Table Update 

A statewide model that divided truck types by weight into 

medium and heavy. Demand was generated through 

employment-based equations and other identified special 

generators (ports, etc.). Standard techniques were used for trip 

distribution and assignment.  
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Class 
Demand 

Generation 
Name Description 

C 
Truck trip-

based 

SCAG5 Heavy-Duty 

Truck (HDC) Model 

A combination of six counties developed a model that derived 

demand from a shipper and receiver survey and divided into 

categories based on employment and truck sizes. Some of the 

external trips are proprietary data that are in commodity flows 

which are then transformed into truck loads using the TIUS6. 

Trip distribution was done trough gravity models and 

assignment is divided by time periods (a.m. peak, midday, p.m. 

peak, night). Since this model is part of a Travel Demand 

Model, the trucks were converted to PCEs7.  

D 
Commodity-

based 

Indiana Commodity 

Transport Model 

The model used standard four-step methods with data from the 

1993 CFS. Conversion of flows was done using a different 

procedure than previously explained before the mode split step. 

Mode split included nine different modes and a separate model 

was used called NEWMODE.  

D 
Commodity-

based 

Florida Intermodal 

Statewide Highway 

Freight Model  

This model followed the standards of a commodity four-step 

model. The data for conversions of money to weight and weight 

to trips were obtained using 1997 CFS, the Consumer Price 

Index and VIUS.  

E 
Commodity-

based 

Cross-Cascades 

Corridor Analysis 

Project 

A combined passenger and freight economic integrated spatial 

I-O model. Trips were generated iteratively, and freight mode 

choice was handled with time-based costs much like passenger 

models. At the time of the report this model had not been 

applied 

E 
Commodity-

based 

Oregon Statewide 

Passenger and Freight 

Forecasting Model 

The model generated demand/production from an activity 

location and transportation network interface, then a set of 

possible paths are identified to which commodity flows are 

converted to trips in an iterative process. The model had the 

ability to check returning empty vehicles. 
1 Trunk Highway 10 (TH 10) 
2 Quick Response Freight Manual (QRFM) now know as the Quick Response Freight Methods in 

its 2019 edition. (Federal Highway Administration, 2019) 
3 TRANSEARCH is a privately owned US freight dataset used by multiple government bodies to 

develop models and forecasts. (IHS Markit, 2020) 
4 Flow conversions were done as explained under Class D models using VIUS data. (National 

Cooperative Highway Research Program, 2008) 
5 Southern California Association of Governments (SCAG) is an association of the counties of         

Los Angeles, Orange, San Bernadino, Riverside, Venture, and Imperial. (National Cooperative 

Highway Research Program, 2008) 
6 Federal Truck Inventory and Use Survey (TIUS) (National Cooperative Highway Research 

Program, 2008) 
7 Passenger car equivalent (PCE) 
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Another NHCRP (2010) report presented their findings on a state of practice review and compared 

them to the state of research in the US. The findings were clustered into eight categories that they 

proposed as a framework and the specific models were not disclosed. The categories are 

summarized below: 

1. Time series models are based on historical or observed data and range from simple regressions 

models to complex multivariate autoregressive models. 

2. Behavioural models capture how different agents (shippers, carriers, receivers, etc.) react and 

select from available freight shipment choices. 

3. Commodity-based input-output models link economic activity data to freight flows and exhibit 

all the benefits and drawbacks of commodity-based models. 

4. Multimodal network models assign freight flows to modes and routes by minimizing total 

transport costs.  

5. Microsimulation models depict individual movements and agent-based models define a set of 

agents and their potential actions and interactions to preform “what-if” scenarios.  

6. Supply and chain logistics models are as defined previously (National Cooperative Highway 

Research Program, 2008) 

7. Network design models output optimal freight movement service based on frequency, mode, 

routing, and scheduling for freight logistic companies.  

8. Routing and schedule models try to optimize those two attributes.  

Table 4 below is a reconstruction of their findings with an added column categorizing their  model 

groups into the ones proposed by the NHCRP 606 report and Chow et al. (Chow et al., 2010; 

National Cooperative Highway Research Program, 2008). 
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Table 4 Review of Freight Demand Modelling in the US (National Cooperative Highway 

Research Program, 2010) 

Model 

Category 
Model Class 

Model 

Development 

Model 

implementation 

Public Sector 

Applications 

Time Series  A, B 
   

Behavioral F, G 
   

Commodity-

Based I-O 
D 

   

Multimodal 

Network 
D, F 

   

Microsimulation 

and Agent Based 
F, G 

   

Supply 

Chain/Logistics  
F 

   

Network Design 

Models 
F, G 

   

Routing and 

Scheduling  
G 

   

Widely used/state of practice  

Emerging model/limited use  

Lacking research/application 

The 2010 report concluded that, while there are many advances in the literature, public sector 

applications are concentrated mostly on commodity-based variants of the traditional four-step 

approach or simple time series models (National Cooperative Highway Research Program, 2010).  

2.3. Uncertainty Analysis  

There are only a few instances where uncertainty analysis is applied to transportation demand 

models. Only one study was found during this review where uncertainty analysis was applied 

specifically to a freight demand model (Westin et al., 2016). Most of the research regarding this 

topic studied passenger travel demand models. For this reason, the majority of the discussion will 

be regarding passenger models in order to draw from their lessons learned and apply the knowledge 

to the context of freight demand modelling.  

The section is divided into three subsections. First, a description of the main sources of uncertainty, 

as defined in the literature, is presented. Second, different methodologies used to analyze 

uncertainty are explored. Last, the current state of research is discussed.  

2.3.1. Uncertainty Sources 

Uncertainty analysis in transportation demand models is concerned with the sources and 

propagation of uncertainty through the models due mainly to two sources: input uncertainty and 

model uncertainty (de Jong et al., 2007; Rasouli & Timmermans, 2012). De Jong et al. (2007) 
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concluded that in transportation models uncertainty is present because the values that forecasted 

variables will take in the future are unknown, which is also defined as dispersion. Input uncertainty 

is concerned with the fact that there is error in the data used as inputs to model transportation 

demand such as biased surveys, incomplete datasets, varying commodity and industry 

classifications, etc. (de Jong et al., 2007; Rasouli & Timmermans, 2012). Model uncertainty is 

concern with the fact that the model specification and calibration/estimation may contain error 

such as omitted variables, inappropriate assumptions, simplifications, etc. (de Jong et al., 2007; 

Rasouli & Timmermans, 2012). Input uncertainty was found to be more important than model 

uncertainty when uncertainty analysis was applied to the Dutch National and Regional passenger 

transport models (de Jong et al., 2007). Only a few papers have studied input uncertainty alone 

(e.g., Leurent, 1998; Rodier & Johnston, 2002) or model uncertainty alone (e.g., Brundell-Freij, 

1997, 2000; Hugosson, 2005). Rather, most studies analyzed uncertainty due to both sources (e.g., 

Armoogum, 2003; Ashley, 1980; de Jong et al., 2007; Krishnamurthy & Kockelman, 2003; Kroes, 

1996; Matas et al., 2012; Petrik et al., 2016; Pradhan & Kockelman, 2002; Zhang et al., 2011; 

Zhao & Kockelman, 2002). Moreover, the literature shows that, for activity-based models, the 

research effort has been mostly dedicated to uncertainty of the outcomes due to the randomness of 

the simulations (e.g., Castiglione et al., 2003; Cools et al., 2011; Gibb & Bowman, 2007; Lawe et 

al., 2009).   

2.3.2. Uncertainty Analysis Methodologies 

Methods for analyzing uncertainty within transportation demand models over the years have 

overwhelmingly included a form of repeated simulation using sensitivity analysis techniques, 

scenario analysis and variants of MC simulations (de Jong et al., 2007; Manzo, 2014; Rasouli & 

Timmermans, 2012; Westin et al., 2016). Analytical methods have also been used but are only 

known to work with simpler models (de Jong et al., 2007; Rasouli & Timmermans, 2012).  

Different forms of sensitivity testing have been used in previous studies. Sensitivity testing 

consists of repeated model simulations while varying one or multiple input variables over a 

possible range; therefore, these tests are commonly used to analyze the effect of input uncertainty 

in model outcomes (de Jong et al., 2007). In activity-based models, sensitivity analysis has been 

used to identify influential parameters; for example, using one-at-a-time methods (e.g., Bao et al., 

2016).  

Scenario analyses are a form of repeated simulation (sensitivity testing) used to quantify the 

combined effect of uncertainty in the outputs due to varying multiple input variables according to 

a set of possible scenarios (de Jong et al., 2007; Westin et al., 2016). To develop scenarios, the 

researchers must identify which variables would have the greatest effect on the outcome of interest 

and what possible values the variables may take (Westin et al., 2016). Identifying possible 

correlations among the varied variables is important in order to maintain the scenarios internal 

consistency (Westin et al., 2016). A good methodology to achieve internal consistency is 

Morphological Analysis, described in Eriksson and Ritchey (2002) (Westin et al., 2016). 

Probabilities are often not attached to scenarios making it impossible to obtain uncertainty margins 

of the outputs.  
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MC simulation consists of random sampling that can be used to generate runs for sensitivity tests 

in order to study both input and model uncertainty (de Jong et al., 2007; Manzo, 2014; Westin et 

al., 2016). Input variables and/or model parameters are given known distributions from which 

random draws are taken and the model is run several times with a different set of random draws 

each time. Distributions for the model outcomes can be estimated based on the repeated 

simulations. Distributions for both input and model uncertainty variables are needed in order to 

use this methodology.  

MC simulation has been used in the transportation modelling literature multiple times including 

Ashley (1980), Zhao and Kockelman (2002), Krishnamurthy and Kockelman (2003), De Jong et 

al. (2007), and Zhang et al. (2011). Most studies have assumed distributions types, and/or 

distribution parameters (e.g., Ashley, 1980; Krishnamurthy & Kockelman, 2003; Zhang et al., 

2011; Zhao & Kockelman, 2002) for both types of uncertainty variables, which is problematic. A 

solution to these assumptions is using time series data to estimate the distribution of input variables 

and their correlations (Manzo, 2014). Another solution is to determine estimates of the distribution 

of the parameters (model uncertainty) from the calibration process or using re-sampling 

techniques, such as Jack-Knifing (see Quenouille (1949) for description and Armoogum (2003) 

for an applied example) and Bootstrap (e.g., Hugosson, 2005), using the original calibration dataset 

(de Jong et al., 2007; Manzo, 2014). Manzo (2014) provides a detailed description of these two 

resampling techniques in their literature review. 

The randomness of MC simulations requires several runs that may be hard to accomplish with 

complicated transportation demand models. A solution to this problem is using stratified or quasi 

random sampling techniques such as Halton draws (e.g., de Jong et al., 2007), the Latin Hypercube 

Sampling (LHS) (e.g., Yang & Chen, 2009), or the Sobol Method which has only been discussed 

once in the transportation demand modelling context (e.g., Bao et al., 2016). Table 5 provides a 

summary of sampling and resampling techniques.   
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Table 5 Summary of Sampling and Resampling Techniques 

Technique Description e.g. 

Monte 

Carlo 

Random draws are taken from input/parameter distributions to 

use in repeated simulations 

(Zhao & 

Kockelman, 

2002) 

LHS 

Stratified random draws are taken from input/parameter 

distributions to use in repeated simulations.  

The cumulative distribution of variables is divided into equal 

intervals and one random value is taken from each interval. 

(Yang & 

Chen, 2009) 

Halton 

Draws 

Quasi-random draws are taken from input/parameter distributions 

to use in repeated simulations.  

The quasi-random draws are based on a form of the Halton 

Sequence (Daly et al., 2003). 

(de Jong et 

al., 2007) 

Sobol 

Method 

Quasi-random draws are taken from input/parameter distributions 

to use in repeated simulations.  

The quasi-random draws are based on a form of the Sobol method 

explained in Saltelli (2002).  

(Bao et al., 

2016) 

Jack-

Knifing 

Resampling method usually used, in this context, to recalibrate 

parameters by creating subsamples.  

n +1 (where n is the original sample size) subsamples are created 

by subtracting one or more observations from the original sample 

at a time.  

(Armoogum, 

2003) 

Bootstrap 

Resampling method usually used, in this context, to recalibrate 

parameters by creating subsamples.  

As many subsamples as possible are created by drawing n (where 

n is the original sample size) observations from a distribution of 

the original sample. This means that each observation has a 

probability of being drawn of 1/n and the subsample or bootstrap 

sample may contain repeated original sample observations or ones 

that appear zero times.  

(Hugosson, 

2005) 

Response surface methodologies have been used in combination with MC simulation in order to 

quantify the effects of uncertainty in the inputs for a selected outcome using simpler meta-models. 

Adler et al. (2014) used a response surface methodology approach consisting of one third of 33 

fractional factorial design (9 runs) to obtain a meta-model that explained the traffic forecast 

response in terms of three inputs. The distributions of the inputs were estimated using different 

datasets (Adler et al., 2014). The meta-model was then used in a MC simulation with several draws 

being possible due to the simpler nature of the meta-model when compared to the original travel 

demand model (Adler et al., 2014). Copperman et al. (2016) used a similar approach but with 

several more inputs. The authors first tested a fractional factorial three-level resolution IV design 

(81 runs) to assess possible two-factor interactions and concluded that these were counterintuitive 

(Copperman et al., 2016). Then, a smaller three-level fractional factorial test (27 runs), followed 

by a three-level probabilistic design (27 runs), and five full model runs were used to fit a meta-
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model (Copperman et al., 2016). Lastly, like in the previous study, the meta-model was used in 

MC simulations to get a distribution for the output (Copperman et al., 2016).   

2.3.3. Uncertainty Analysis of Transportation Demand Models 

This section describes the findings of two major review papers regarding uncertainty analysis in 

transportation demand modelling by De Jong et al. (2007) and Rasouli and Timmermans (2012). 

Additional insights regarding the propagation of uncertainty through successive models (Zhao & 

Kockelman, 2002) and a discussion of the only analysis of uncertainty performed on a freight 

demand model (Westin et al., 2016) are also included.  

In their review paper, De Jong et al. (2007) identified 21 studies in the literature (up to 2007) that 

investigated uncertainty in passenger travel demand models. Most of the studies researched the 

effects of input uncertainty on model outputs and only nine were concerned with the effects of 

model calibration/specification uncertainty (or uncertainty in the estimation of parameters) (de 

Jong et al., 2007). Some form of repeated simulation was always used to quantify the amount of 

input uncertainty by specifying some statistical distributions (mostly univariate) and randomly, or 

at specific intervals, drawing input variables from these distributions (de Jong et al., 2007). The 

univariate distributions do not allow for correlation between input variables to be examined. The 

methodologies for quantifying model uncertainty were more varied and included analytical 

expressions if models were simple, sampling techniques (such as jack-knifing, bootstrapping), and 

variants of the Monte Carlo simulation. At the time of this review, only Zhao and Kockelman 

(2002) looked at the propagation of uncertainty through multiple sub-models.  

De Jong et al. (2007) proposed preferred methodologies based on their review. They concluded 

that a natural approach to analyze uncertainty in input variables was a Monte Carlo simulation 

while including variable correlation (e.g., using multivariate normal distributions) (de Jong et al., 

2007). In the case of model specification uncertainty, they proposed to use the jack-knife/bootstrap 

sampling techniques (de Jong et al., 2007). Lastly, to evaluate model estimation uncertainty, they 

concluded that a Monte Carlo simulation is preferred (de Jong et al., 2007). 

Rasouli and Timmermans (2012) also presented a comprehensive review of uncertainty analysis 

in transportation demand models. Their paper summarized fifteen additions to the literature 

dividing them into four-step models, discrete choice models, and activity-based models 

(microsimulation and computational processes) (Rasouli & Timmermans, 2012). The authors 

concluded that, although the body of research regarding transportation demand forecasting is 

enormous, the research into uncertainty is scarce and not systematic, since the efforts differ greatly 

in methodologies (Rasouli & Timmermans, 2012). Most of the studies are ad hoc and vary a single 

source of uncertainty without a systematic approach or without identifying significant factors 

(Rasouli & Timmermans, 2012). The studies concentrated on the uncertainty of the outcomes with 

little attention paid to correlations between variables that affect travel demand (Rasouli & 

Timmermans, 2012). They also concluded that most studies used a univariate or multivariate 

(normal) distribution for variables but suggest that in some cases, such as free flow travel times 

used as inputs in activity-based models, this is not a good assumption (Rasouli & Timmermans, 

2012). Finally, they echoed that for practical use, the effects on the outcome of models due to input 
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uncertainties is the most valuable information, thus collecting data on input variability to generate 

better distributions would be helpful in the future (de Jong et al., 2007; Rasouli & Timmermans, 

2012).  

Zhao and Kockelman (2002) have the most substantial findings on the topic of error propagation 

through successive sub-models. In their research, distributions were assigned to inputs and 

parameters, which were then varied over 100 runs of a typical 4-step model (Zhao & Kockelman, 

2002). The distributions of some inputs were assumed to be multivariate to account for some 

correlations (Zhao & Kockelman, 2002). The output distribution and variation were estimated 

from the results of the repeated simulations and quantified for each step of the model (Zhao & 

Kockelman, 2002). A multivariate regression analysis was then conducted to identify important 

contributors to overall uncertainty (Zhao & Kockelman, 2002). Their results showed that 

uncertainty is likely to compound itself over a series of successive sub-models using the mean, 

95th, and 5th percentiles of the coefficients of variations (COVs) of the outputs (see Figure 7) 

(Zhao & Kockelman, 2002).  

 

 

Figure 7 Results of COV Change Throughout the Four-Step Model by Zhao and 

Kockelman (2002) 

The literature regarding uncertainty analysis in the context of freight demand modelling is 

extremely limited with only one paper (Westin et al., 2016) that explicitly studied uncertainty in a 

(commodity-based) freight demand model. de Jong et al. (2007) examined uncertainty in the Dutch 

National Model System, which deals with freight transport through external truck O-D matrices as 
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inputs. However, in their study they did not vary the truck O-D matrices, so the effect of an 

uncertainty source related to freight transport was out of their scope. Westin et al. (2016) authored 

the only study that directly examined uncertainty in a freight demand model. Their paper used 

sensitivity analysis by varying the production-consumption (PC) base matrices from -20% to 20% 

in increments of 10%, for a total of 5 runs, while keeping everything else constant (Westin et al., 

2016). The base matrices are the main input of the Swedish national freight model system, 

SAMGODS (Westin et al., 2016). The results of various outputs were presented graphically and 

compared to a base scenario (Westin et al., 2016). The authors concluded that model outputs 

contain uncertainty from the input uncertainty since non-linear responses were observed on the 

graphs of percent changes between the base scenario and the different simulations (Westin et al., 

2016).  

Table 6 is a summary of the studies (in chronological order) included in both literature reviews by 

De Jong et al. (2007) and Rasouli and Timmermans (2012), plus additional studies excluded from 

those reviews. Over 60 studies were identified, each with varied methodologies tackling input 

and/or model uncertainty. In general, the additional studies followed the trends discussed above. 

More obvious is the recent trend towards studying uncertainty in activity-based models. 



29 

Table 6 Summary of the Literature on Uncertainty Analysis in Transportation Demand Models Compiled by (de Jong et al., 

2007) and (Rasouli & Timmermans, 2012) with Additional Contributions Found  

Publication Model Type 
Type of 

Uncertainty 
Variable Outputs Methods Measures 

Ashley (1980) 
Trip-based 

passenger model 
Input + Model 

Inputs: income, fuel 

cost, planning data 
Growth Factors, 

Future Year 

Matrix, Traffic 

flow on specific 

road links 

Random draws from 

distributions (MC) for inputs 

and model coefficients 

Graph of 

probability 

distribution of 

outputs 

Model: base year 

matrix, vehicle/mileage 

elasticities, network 

speeds, routeing 

parameter elasticities,  

  

Lowe et al. 

(1982) 

Trip-based 

passenger model 
Input + Model 

Input: zonal 

characteristics, fuel 

price, and GDP 

Link flows 

Random draws (10, MC) from 

distributions for inputs and 

model coefficients 

Percentiles Model: route choice 

coefficient in base 

year, and route choice 

elasticity 

Ben-Akiva and 

Lerman (1985) 

N/A (Discrete 

choice models) 
Model  

Transport cost and time 

coefficients (as an 

example) 

N/A 

Analytical formula for model 

uncertainty in multi-

coefficients model 

95% confidence 

interval 

De Jong 

N/A (car ownership 

model) 
Model All parameters 

Number of 

households with a 

car, and km per 

car per year 

Analytical formula for 

sampling and estimation 

variance 

Standard error 
-1989 

Fowkes  (1995) 
N/A (synthetic 

utility functions) 
Model 

Coefficients of modal 

split including costs, 

wait time, and in-

vehicle time 

Mode benefit 
Repeated estimation (50) on 

simulated datasets  

Standard error of 

coefficients and 

confidence 

interval of mode 

benefit 

Kroes (1996)  N/A Input + Model Any deemed critical  
Link flows and 

toll revenues 

Repeated model runs 

assuming all varied variables 

are independent and assigning 

subjective probabilities to 

estimates (low, medium, high) 

Standard error and 

other statistics 
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Publication Model Type 
Type of 

Uncertainty 
Variable Outputs Methods Measures 

Brundell-Freij 

(1997) 

N/A (Discrete 

choice model) 
Model 

Coefficients of modal 

split model 

N/A (only 

variation on 

coefficients was 

quantified) 

Repeated simulation (1500) on 

estimated datasets for different 

sample sizes 

t-ratios and 

confidence 

intervals 

Leurent (1998) 

Trip-based (dual 

criteria traffic 

assignment of 4-

step) 

Input  
Value of time, O-D 

volumes, journey times 

Travel times and 

daily number of 

cars on a link 

Repeated model runs 
Standard 

deviation  

De Jong et al. 

(1998) 

N/A (update on 

value of time) 
Model  

All parameters and  

N/A 

Jack-knife method to get 

variances of parameter 

estimates and draws from 

multivariate normal 

distribution (1000, MC) 

Standard error 
value of time 

Boyce  (1999) 

N/A (standard 

aggregate traffic 

model) 

Input + Model  

Input: several 
Change in vehicle-

km 

Repeated model simulation 

(10000, MC) drawing from 

distribution for input variables 

Standard error and 

ration of forecasts Model: elasticities 

Grue  (1999) 

Trip-based 

passenger model (4-

step) 

Model 
Parameters for income 

and quality of transport 

Number of cars, 

number of trips by 

mode,  

Repeated model simulations 

drawing from distributions for 

model coefficients 

95% confidence 

interval 

Veldhuisen et 

al.  (2000) 

Activity-based 

passenger model 

(RAMBLAS) 

Model 

(simulation 

error) 

N/A 
O-D tables and 

traffic intensities 

Repeated simulations using 

different MC sets (5) 

R-squared, 

Robinson’s 

agreement 

measures  

Brundell-Freij  

(2000) 
Multiple models  Model Value of time 

N/A (only 

variation on value 

of time was 

quantified) 

Using MC and bootstrap 

simulations to run the model 

specification procedure 

multiple times (100) 

Standard error  

Pradhan and 

Kockelman  

(2002) 

LUM1 data fed into 

a trip-based 

passenger model (4-

step) 

Input + Model 

Input: population and 

employment growth 

rates, household and 

employment mobility 

rates  

Model: location choice 

coefficients, land price 

coefficient. 

LUM: Land 

prices, occupancy 

rates, occupancy 

densities 

Stratified draws from 

distributions (factorized 

design) for inputs to a LUM 

and are then input to a TDM 

COV5 and p-value 

of outputs 
TDM2: VMT3, 

VHT4, selected 

average link flows 
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Publication Model Type 
Type of 

Uncertainty 
Variable Outputs Methods Measures 

Zhao and 

Kockelman  

(2002) 

Trip-based 

passenger model 

(NTM-4, 4-step) 

Input + Model 

Input: production and 

attraction rates  

Model: impedance 

parameter, mode split 

parameters, 

volume/delay 

coefficients,  

Link flows 

Random draws (100) from 

multivariate distributions 

(MC) for inputs and 

parameters 

Standard error of 

outputs 

Rodier and 

Johnston  

(2002) 

Trip-based 

passenger model 

(SACMET96, 4-

step) 

Input 

Population and 

employment, fuel 

price, household 

income 

Trips, VMT, 

VHD, multiple 

types of vehicle 

emissions 

Scenario analysis 

Percentage over 

and 

underprediction 

Castiglione et 

al.  (2003) 

Activity-based 

passenger model 
Model 

Random number 

sequence  

Outputs of all sub-

models 

The sequence of random 

numbers used to simulate 

behaviour is changed over 100 

runs  

Descriptive 

statistics of 

outputs and % 

difference from 

final mean and . 

(microsimulation, 

San Francisco 

model) 

(simulation 

error) 

Krishnamurthy 

and Kockelman 

(2003) 

Trip-based 

passenger model 

(UTPP, 4-step) 

Input + Model  

Input: population and 

employment growth 

Land-Use: 

weighted 

residential and 

commercial 

densities 
Random draws (200) (MC) for 

inputs and parameters 

Variance-

covariances 

between 

parameter, COV 

and p-value of 

outputs 
Model: all (95) 

assuming multivariate 

normal  

TDM: VHT, 

VMT, average 

link flows,  

Armoogum  

(2003)    

Trip-based (demand 

generation of 4-

step)  

Input + Model 

Input: population 

forecasts 
Number of trips 

and distance 

travelled 

Jack-knifing for parameter 

recalibration and scenario 

analysis for input uncertainty 

Variance and 

percentage 

deviation from 

reference 
Model: all parameters 

Boyce and 

Bright  (2003) 
- Input + Model Several Revenue 

Repeated model simulation,  

Percentiles 

drawing from distributions 

for input variables and 

Scenario 

analysis 

NCHRP  (2003) 
N/A (pavement 

models) 
Model Multiple coefficients 

Number of 

pavement sections  
Jack-knife method 

Correlation 

coefficient, 

standard error 
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Publication Model Type 
Type of 

Uncertainty 
Variable Outputs Methods Measures 

Hugosson  

(2005) 

N/A (Discrete 

choice model) 
Model 

All logit model 

parameters 

Total and O-D 

demand by mode, 

link flows, train 

lines and value of 

time (parameter) 

Bootstrap sampling, repeated 

estimation and model 

application 

95% confidence 

interval 

Walker  (2005) 

Trip-based 

passenger model 

with a tour-based 

step 

Model 
Auto travel times and 

sample size 

VMT, and number 

of transit trips 

Sensitivity analysis for 

aggregate error by varying 

travel times and repetitive 

simulations (10 each) with 

different sample size (500, 5k, 

50k,500k) for model 

uncertainty 

Percent error 

Gibb and 

Bowman  

(2007) 

Activity-based 

passenger model 

(SACSIM) 

Model 

(simulation 

error) 

Samples 
VHT, O-D Travel 

times 

Repeated simulations (10) 

with different samples of 

population 

Error bars, 

standard deviation 

and evidence of 

convergence 

De Jong et al.  

(2007) 

Tour-/activity- 

based (Dutch 

National Model 

System) 

Input + Model 

Input: household 

disposable income, car 

ownership, car cost per 

km, jobs by sector, 

population by age 

group, household size, 

occupation, part/full 

time employment 

Total number of 

tours and km by 

mode, and 

selected link flows 

Halton draws used to generate 

numbers for MC (100). Inputs 

are varied while keeping 

model parameters constant 

(40) and vise versa (40) plus 

the first 10 draw for each are 

combined (20).  

Standard 

deviations 

Model: all but fixed 

coefficients 

Lawe et al.  

(2009) 

Activity-based 

passenger model 

(TRANSIMS) 

Model 

(simulation 

error) 

Seed number 

Traffic volumes 

and average 

speeds by link 

Repeated simulation (5) with 

different seed numbers  
COV  

Yang and Chen  

(2009) 

Trip-based 

passenger model 

(combined travel 

demand model) 

Input + Model 

Input: several  

OD demand, link 

flow, total travel 

time,  

 

Stratified random draws 

(1000) of input variables using 

LHS for repeated simulations 

and analytical sensitivity-

based analysis for both input 

and model uncertainty  

  

Derivatives, 

elasticities, 90% 

confidence 

intervals  

Model: route and 

destination choice, α, γ, 

parameters,  
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Publication Model Type 
Type of 

Uncertainty 
Variable Outputs Methods Measures 

Cools et al.  

Activity-based 

passenger model 

(FEATHERS) 

Model 

(simulation 

error) 

N/A 

Average daily 

number of trips 

per person and 

average daily 

distance travelled 

per person 

Repeated simulations (200) 

for the same 10% fraction of 

the population 

COV 
-2011 

Zhang et al.  

(2011) 

N/A (Discrete 

choice model) 
Input + Model 

Input: demand and 

supply of travellers 

O-D demand, link 

flows, WMT, 

WHT 

Random draws (300, MC) 

varying all uncertainty 

variables simultaneously  

COV 

Model: BPR function 

parameters (α,β), 

travelers’ value of 

time, and the 

coefficient for car 

operating cost 

Matas et al.  

(2012) 

N/A (Traffic 

assignment model) 
Input + Model 

Input: GDP, gasoline 

price, toll prices 

Traffic forecast 

Random draws (1000) from 

assumed distributions 

assigned to inputs and 

parameters using 

bootstrapping. The total 

uncertainty is estimated from 

draws that vary all variables, 

model uncertainty is estimated 

from draws that held inputs 

fixed, and a subtraction of the 

two gives input uncertainty 

Confidence 

intervals  Model: unspecified 

coefficients 

Rasouli et al. 

(Rasouli et al., 

2012) 

Activity-based 

passenger model 

(ALBATROSS) 

 Model 

(simulation 

error) 

N/A 

Distance travelled 

and number of 

trips 

Similar to Cools et al. (2011) 

COV and 

confidence 

intervals 

Yang and Chen  

(2013) 

Trip-based 

passenger model 

(combined travel 

demand model) 

Input + Model 

Input: travel cost and 

number of potential 

travellers 
OD demand, link 

flow, total travel 

time, total vehicle 

miles  

Analytical sensitivity-based 

analysis for both input and 

model uncertainty  

Differences, 90% 

confidence 

intervals, and 

correlations  

Model: attractiveness, 

route, mode, 

destination, travel time, 

α, and γ  parameters 
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Publication Model Type 
Type of 

Uncertainty 
Variable Outputs Methods Measures 

Adler et al.  

(2014) 

Trip-based 

passenger model 

with corridor 

macroscopic 

simulation  

Input 
Value of time per hour, 

economy, toll rate/mile 

Daily one-way 

trips using I-4 

Express Lanes  

A response surface 

methodology approach 

consisting of a R:1/3 33 

fractional factorial design with 

distribution of the inputs 

estimated based on data and 

distribution of the output 

estimated running a MC 

simulation on the surface 

model  

Graphical 

distribution of 

output 

Bekhor et al. 

(2014)  

Activity-based 

passenger model 

Model 

(simulation 

and sampling 

error) 

Sample size VHT 

Repeated simulation similar to 

Cools et al. (Cools et al., 

2011)  

Deviation from 

average 

Bao et al. 

(2015) 

Activity-based 

passenger model 

(FEATHERS) 

Model 

(simulation 

error) 

N/A 

Average daily 

activities per 

person, average 

daily trips per 

person, average 

daily distance 

travelled per 

person 

Repeated simulation (100) to 

find stable average based on 

number of runs. Similar to 

(Cools et al., 2011) 

Graphs of 

percentiles vs. 

number of runs 

Bao et al.  

(2016) 

Activity-based 

passenger model 

(FEATHERS) 

Input Multiple variables Choice frequency 

Once-at-a-time approach to 

quantify output distribution by 

selected varying input while 

keeping others as observed. 

Quasi-random draws (5120, 

Sobol method) while varying 

inputs. 

Sensitivity 

measures (impact 

condition, 

coefficient of 

monotonicity  
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Publication Model Type 
Type of 

Uncertainty 
Variable Outputs Methods Measures 

Copperman et 

al.  (2016) 

Trip-based 

passenger model 

(BPM-V3) 

Input 
Multiple risk input 

variables 

High Speed Rail 

Revenue 

A response surface 

methodology approach 

consisting of a 3-level 

fractional factorial design runs 

(81,plus 27), probabilistic 

design runs (27), and extreme 

scenario runs (5) with 

distribution of the inputs 

estimated based on data and 

distribution of the output 

estimated running a MC 

simulation on the surface 

model  

Graphical 

distribution of 

output 

Petrik et al.  

(2016) 

N/A (Discrete 

choice model) 
Input + Model 

Input: socio-economic 

and mode shift inputs 

Mode shift 

 

 

Re-estimation of model using 

bootstrap (10000) 

Standard 

deviation as 

percentage of the 

mean for mode 

shift Model: all parameters 

Input uncertainty was 

quantified by generating a 

synthetic population, varying 

socio economic, mode-

specific, and combined inputs 

through a MC (10000 each 

time) 

 

  

Westin et al.  

(2016) 

Commodity-based 

freight model 

(SAMGODS) 

Input PC matrices 

Tonne-km, 

vehicle-km per 

mode (road, rail, 

sea), consolidation 

levels, order cost, 

holding cost, 

transport cost, 

total cost 

 

 

 

The PC matrices are varied 

from -20% to 20% in 10% 

increments while keeping 

everything else is constant 

during repeated simulations 

(5) 

 

  

Percent change 

from base 

scenario 
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Publication Model Type 
Type of 

Uncertainty 
Variable Outputs Methods Measures 

Petrik et al. 

(2018) 

Activity-based 

passenger model 

Model 

(parameter, 

simulation 

error, 

sampling 

error)  

Important parameters, 

sample size  

VKT, PKT, 

Number of trips, 

Number of tours, 

different type of 

tour mode shares  

Sensitivity analysis using a 

meta-model determined 

important parameters to use in 

a repeated simulation (500) 

with LHS draws to assess 

parameter uncertainty. 

Simulation error was done 

similar to Cools et al. (Cools 

et al., 2011). Sampling error 

was done by repeated 

simulation with different 

sample sizes. 

Standard 

deviation and 

COV  

Zhuge et al.  

(2019) 

Activity-based 

passenger model 

(MATSim) 

Model 

(parameter) 

Population scaling 

factor, number of 

iterations, time step 

size, time mutation 

rate, performing utility 

Plan score, travel 

distance, average 

V/C ratio, travel 

speed, standard 

deviation of V/C 

ratio 

Sensitivity analysis to identify 

influential parameters then 

once-at-a-time local 

sensitivity analysis to 

identified parameters 

Graphical once-at-

a-time results with 

standard 

deviations 

 

1 Land-use Model (LUM) 
2 Travel Demand Model (TDM) 
3 Vehicle Miles Travelled (VMT) 
4 Vehicle Hours Travelled (VHT) 
5 Coefficient of Variation (COV) 
6 Urban Transportation Planning Package’s (UTPP) 
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2.4. Gaps in the Literature and Conclusions 

For the remainder of this thesis, the terminology used to describe and categorize different freight 

demand models is based on the unit of reference for demand generation. Although there was 

disagreement in the literature regarding the correct terminology, this categorization was referenced 

and used in the other two systems identified (spatial scope and US Class System), making it 

commonly used. Additionally, it is easy to quickly identify general characteristics of the examined 

models when referring to them by using their reference units. For example, trip-based models need 

the least computation effort, followed by commodity-based models, and trailed by agent-based 

models. General characteristics are not readily apparent when defining models using spatial scope 

since both long or short distance models may require a large or small computational effort 

depending on their level of detail. On the other hand, the US Class System breaks down the models 

into more categories that sometimes makes discerning specific characteristics or patterns 

confusing. Moreover, the unit of reference for demand generation is widely quoted in most of the 

studies examined in this literature review suggesting that most researchers and practitioners are 

acquainted with the terminology.  

The most widely used type of freight demand model in practice is the commodity-based model. 

This was less apparent in the Canadian review than in the US review. However, the Canadian state-

of-practice review was not comprehensive due to the limited information available publicly. It is 

also commonly known that freight modelling is more widely used in the US than in Canada in 

practice. For example, the FAF has been around for a long time in the US (it has been developed 

up to its fifth version) and it is capable of forecasting and assignment unlike its Canadian 

counterpart (CFAF), which is a newer and less developed tool. Moreover, state-wide commodity-

based models are more common in the US due to its more complex geography. Canada exhibits 

simpler inter-provincial freight patterns because the provinces run east to west (no interior states) 

with fewer major highways. Thus, smaller-scale models (e.g., within cities or metropolitan areas) 

that are trip-based, due to the higher availability of vehicle trip data, are more frequently developed 

in Canada. It is safe to conclude that commodity-based freight demand models are more widely 

used when looking at both countries in aggregate. However, it is also important to note that 

multiple authors pointed at the trend towards activity-based modelling in industry (Chow et al., 

2010; Liedtke & Schepperle, 2004; National Cooperative Highway Research Program, 2008; 

Nuzzolo et al., 2013; Wisetjindawat et al., 2012). 

There are two important gaps in the literature regarding uncertainty analysis in freight demand 

models. First, there is a lack of a formal approach to studying uncertainty specific to freight 

demand models. As mentioned before, only one study has dealt with this topic and it used a simple 

sensitivity analysis approach (Westin et al., 2016). A more methodical approach is needed using 

the best practices identified in the review. Second, there is no analysis studying the propagation of 

uncertainty through successive sub-models in freight demand models. In Section 2.1.2, 

commodity-based models are explained to generally be composed of a set of successive sub-

models. Thus, a formal study of the propagation of uncertainty through a commodity-based freight 

demand model, akin to the analysis that Zhao and Kockelman (2002) performed on a passenger 

demand model, is needed.  
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Other gaps in the uncertainty analysis literature that have been somewhat studied but need a more 

substantial research effort include the following:  

• Using other more systematic variations instead of Monte Carlo simulation such as factorial 

designs, probabilistic designs, etc. 

• Estimating the distribution of the parameters and/or inputs as supposed to making 

assumptions.  

• If distributions are assumed, using types other than univariate normal or multivariate 

normal distribution to compare the impact of those assumptions.  

• Using a more educated approach to selecting variables to vary in the repeated simulations 

(i.e., which variables affect the outputs the most based on practical/outside experience and 

knowledge). 
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Chapter 3. Methodology  

The literature review found that there is a lack of a formal approach to studying uncertainty specific 

to freight demand models, as well as the absence of any study of uncertainty propagation through 

successive sub-models in freight demand models. To this end, a framework to study the uncertainty 

due to inputs on the outputs of commodity-based freight demand models is developed.  

This section first introduces the case study model to which the framework is applied. The model 

of the case study was developed by Bachmann (2017) and Jahangiriesmaili et al. (2018) and it is 

used to analyze the effects of the Comprehensive and Progressive Agreement for Trans-Pacific 

Partnership free trade agreement on Canada’s trade infrastructure. This model is subsequently 

referred to as “the model” and is introduced later in the section. Then, the methodology of a general 

framework that can be used to assess input uncertainty in any commodity-based freight demand 

model is presented along with the details of the application of the framework to the case study 

model. The framework is developed following the best practices learned through the review of the 

literature.  

3.1. Case Study Model 

The model used in the case study was developed to study the effects of FTAs on Canada’s domestic 

trade infrastructure. The model was first developed by Bachmann (2017) who extended a typical 

CGE simulation of CETA through the estimation of high-level supply chain characteristics. Later, 

Jahangiriesmaili et al. (2018) expanded this work to assess the potential impact of CETA on 

Canada’s transportation network by estimating before-and-after origin-destination trade flows, 

mode shares, and transportation flows. The result of these efforts was a commodity-based freight 

demand model, capable of assessing the effects of FTAs on the transportation of commodities 

throughout Canada. 

This research  is extending earlier work (Bachmann, 2017; Jahangiriesmaili et al., 2018) to analyze 

the effects of the CPTPP, signed in 2018, using CGE forecasts for 2015, 2035, and 2035 after 

implementing CPTPP policy shocks (Dade et al., 2017). Through this application, the CGE 

forecasts developed in Dade et al. (2017) are used to create the base case of this thesis’ case study. 

In Chapter 4, the results of this base case are compared to the results of the repeated simulation.   

The developed freight model is a data-driven commodity-based model of the aggregate-

disaggregate-aggregate (ADA) freight model described by Ben-Akiva and De Jong (2013). It 

follows a modified version of the traditional four-step approach. Figure 8 shows a summary of the 

model alongside a typical description of a four-step freight demand model. A major deviation from 

the traditional four-step approach is the lack of parameter estimation. For each step, a share is 

empirically calculated using CBSA, CFAF, or the International Trade Division of Statistics 

Canada datasets. This was done to study only input uncertainty as there is no model estimation and 

therefore there is no model uncertainty introduced. 



40 

 

Figure 8 Case Study Model Comparison 

Figure 9 shows the ADA modelling process. The ADA approach intends to overcome two major 

drawbacks of most freight transport models: 1) the lack of important aspects of logistics decision-

making and 2) the assumption of zone to zone (aggregate level) mode optimization (Ben-Akiva & 

de Jong, 2013). To achieve this, the generation of trade flows or production-consumption flows 

and assignment to networks is done in an aggregate way, but the logistic decisions are simulated 

at the level of individual firm-to-firm pairings (Ben-Akiva & de Jong, 2013). In the disaggregate 

portion of these models, logistics models can take into account shipment size and transport chain 

choice by minimizing total logistics costs (Ben-Akiva & de Jong, 2013). The difference between 

the ADA framework and the model used in this research is that the logistic decisions are derived 

empirically in the latter. In the ADA framework, the decisions are typically modelled using random 

utility maximization derived from behavioural choice theory.   

Step

Commodity Generation

Commodity Distribution

Commodity Mode Split

Vehicle Loading

Traffic Assignment 

Typical Approach

Commodity generation or 
zonal regression models 

Gravity models (simply or 
doubly constrained) or 

intervening opportunities

Logit models based on panel 
data. Rarely done in urban 

areas

Loading rates based on 
previous surveys

Standard traffic assignment

FTA Model

CGE Model Generates 
Commodity Flows [$]

Empirically using shares from 
CBSA and CFAF

Empirically using shares from 
CBSA and CFAF

Out of Scope

Out of Scope
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Figure 9 ADA Modelling Schematic (Ben-Akiva & de Jong, 2013) 

The resulting commodity-based freight demand model is depicted in Figure 10. In summary, the 

model is composed of four steps: a CGE economic model, and the following three steps are the 

sub-models that make up the freight model:  

1. A sub-model is used to estimate the high-level supply chain characteristics of each trade 

flow, including subnational region of origin/destination, subnational region of entry/exit, 

international transport mode, and port of clearance using CBSA export records (i.e., 

aggregate to disaggregate trade flows [$]).  

2. A sub-model is used to transform trade flows from value ($) to weight (kg) using value-

weight ratios obtained by linking data from the International Trade Division of Statistics 

Canada to the CBSA export records.  

3. A sub-model is used to estimate the domestic mode splits in tonnes using data from the 

CFAF assembled by Statistics Canada. These flows can then be aggregated into O-D flows.  

The following subsections expand on the explanation of each step focusing on export flows, as 

export data are used for the analysis of uncertainty.  

Scope of this Study 
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Figure 10 Modelling Framework and Study Scope 

Freight model 

Economic model 

Computable General 

Equilibrium model 

Value ($) to quantity 

(kg) transformation 

Mode share splits 

Shipment conversion 

Traffic assignment 

Trade flow 

disaggregation 

Country-country trade 

flows by commodity 

type ($) 

Social accounting 

matrices, elasticities, 

parameters, scenario 

shocks (e.g., tariffs)    

Inputs Models Outputs 

Supply chain 

characteristics 

Province-country trade 

flows by commodity 

type ($) 

Commodity weight-

value (kg/$) data 

Province-country 

commodity flows by 

commodity type (kg) 

Shipping data by 

mode 

Province-province 

commodity flows by 

commodity type and 

mode (kg) 

Payload/shipment data 

Multi-modal freight 

transport network 
Traffic flows 

Province-province 

commodity flows by 

commodity type and 

mode (shipments) 

Trade costs 

1. 

2. 

3. 

4. 

5. 

6. 

Scope of this study 
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The spatial scope of the model can be divided into two. First the economic model (see Section 

3.1.1) focuses on exports and imports to/from Canada to/from another 39 economies representing 

all the other regions of the world (see Table 9 for a full breakdown of these economies). Second, 

the freight model allocates those commodities flows to the Canadian domestic trade network. The 

figure below shows the provinces and territories (later referred to as subnational regions), the main 

gateways (defined more in detail in Section 4.2.1), and their interactions with the rest of the world 

economies.  

 

Figure 11 Representation of Canada’s Domestic Trade Network 

3.1.1. Economic Model 

The first step is a CGE economic model. CGE models are typically used to simulate the changes 

to international trade flows caused by the enforcement of an FTA (Bachmann, 2017). CGE models 

are a system of equations that represent macroeconomic constraints on the economy and individual 

microeconomic interactions between parts of the economy. An initial set of equilibrium 

commodity quantities and prices are specified for a particular economy and year. Then, an 

exogenous variable is changed (e.g., changes brought upon by an FTA such as tariff reductions 

etc.). Finally, the model is re-solved for new equilibrium commodity quantities and prices. 

Burfisher (2017) provides an excellent introduction to CGE models that includes the theory and 

applications regarding FTAs (Bachmann, 2017).  

Rest of the world 

Rest of the world 

Rest of the world 
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3.1.2. Freight Model 

3.1.2.1. High Level Supply Chain Characteristics  

High-level supply chain characteristics (e.g., subnational region of origin/destination, subnational 

region of exit/entry, international transportation mode, and port of clearance) are modelled after 

the effects of the CPTPP on international exports (Bachmann, 2017). Equation 1 shows the first 

sub-model of the freight model (second step of the general model) which disaggregates the 

international (country-to-country) trade flows into province-to-country trade flows to estimate 

their high-level supply chain characteristics. Shares for each characteristic combination can be 

determined using export data. Then, these are applied to the international trade flows as per the 

equation below.  

   𝑧𝑖,𝑗,𝑘,𝑙,𝑚,𝑛 = 𝑠𝑖,𝑗,𝑘,𝑙,𝑚,𝑛  × 𝑧𝑖,𝑙     (1) 

where zi,j,k,l,m,n  is the trade flow ($) (disaggregated) of commodity i produced in subnational region 

j exported by subnational region k to country l by international mode m through port of clearance 

n. si,j,k,l,m,n  is the international export share of commodity i exported to country l that is produced 

in subnational region j exported by subnational region k by international mode m through port of 

clearance n, determined from initial shares in the export trade data. zi,l is the international trade 

flow ($) of commodity i to country l, from the CGE forecasts by Dade et al. (2017).  

It is assumed that an FTA does not affect the existing subnational supply chains in order to use the 

existing shares to disaggregate the trade flows. For example, the share of international exports that 

exit through port of clearance n remains unchanged after the FTA is introduced. The original 

purpose of this model was to identify areas in the transportation network that exhibit a large change 

in commodity flows and thus congestion may occur. The supply chains may shift in these areas of 

high congestion although this is not captured by the model.  

3.1.2.2. Value to Quantity Transformation  

Monetary values are converted into physical quantities to capture the physical transportation 

impacts of commodity trade flows. Value-weight ratios ($/tonne) can be determined using trade 

data. The following equation depicts the aforementioned conversion: 

   𝑡𝑖,𝑗,𝑘,𝑙,𝑚,𝑛 =
𝑧𝑖,𝑗,𝑘,𝑙,𝑚,𝑛

𝑤𝑖,𝑗,𝑘,𝑙,𝑚,𝑛
      (2) 

where ti,j,k,l,m,n is the trade flow (tonnes) of commodity i produced in subnational region j exported      

by subnational region k to country l by international mode m through port of clearance n. wi,j,k,l,m,n 

is the value-weight ratio ($/tonnes) for shipments of commodity i produced in subnational region 

j exported by subnational region k to country l by international mode m through port of clearance 

n. 

Value-weight ratios are measured in initial prices, meaning that the forecasted trade flows in 

monetary units (zi,l) must also be measured in initial prices or any price increase in the policy 

replacement scenario will inflate the tonnage in Equation 2. Measuring a change in initial prices 
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is referred to as volume change in CGE modelling. On the other hand, value change is measured 

in final prices.  

Some of the subscripts in wi,j,k,l,m,n can be dropped if data are limited. However, they are useful in 

distinguishing supply-chain characteristics that can affect value-weight ratios. For example, a 

study using a model specific to marine analysis found that exports to less developed countries are 

heavier than to developed countries and that expensive goods tend to be transported further away 

(Luis et al., 2014).  

3.1.2.3. Domestic Mode Splits 

The last sub-model of the fright model (fourth step) estimates domestic flows using observed 

freight shipments in Canadian transportation survey data and aggregates them by provincial O-D 

pair:  

     𝑡𝑗,𝑘,𝑑 = ∑ (𝑠𝑖,𝑗,𝑘,𝑑 × ∑ ∑ ∑ 𝑡𝑖,𝑗,𝑘,𝑙,𝑚,𝑛𝑛𝑚𝑙 )𝑖      (3) 

where tj,k,d is the total trade flows (tonnes) shipped from subnational region j to subnational 

region k by domestic mode d. si,j,k,d is the share of commodity i shipped from subnational region j 

to subnational region k by domestic mode d. 

3.2. Case study - CPTPP Model Data 

This section describes the data used for the CPTPP base analysis and all the available data for each 

step of the model. A summary of the datasets used in the model is shown in Table 7.  
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Table 7 CPTPP Model Data Summary 

Data Source Description Model Usage 

GTAP1 

Describes bilateral trade partners, production, 

consumption and intermediate use of 

commodities and services. 

CGE export forecasts 

(economic model). 

CBSA 

Export data (2010-2015) including Harmonized 

Systems code, SCTG2 code, provinces of origin 

and exit, country of destination, international 

mode of transport, and port of clearance. 

Supply chain 

characteristics (first sub-

model) and value-weight 

ratios (second sub-

model).   

International Trade 

Division of Statistics 

Canada 

Total value ($) and weight (kg) of exports and 

imports by SCTG code (2008). 

Value-weight ratios 

(second sub-model).   

CFAF 

Integrated dataset (2011-2017) of freight flows 

across Canada including estimated tonnage, 

value, and tonne-kilometers, origin and 

destination provinces, commodity types, and 

mode. 

Domestic mode split 

(third sub-model).  

1Global Trade Analysis Project  

3.2.1.1. Economic Model Data 

The model used for the economic forecasts utilized as inputs for the successive freight model is a 

dynamic version of the GTAP CGE model (Dade et al., 2017). CPTPP policy shocks considered 

included non-tariffs barriers in goods and services and foreign direct investment (FDI), 

liberalization commitments for tariffs, and effects of rule of origin on preference utilization. FDI 

is simulated by introducing a foreign-owned representative firm into each GTAP region-sector. 

The simulation is done using the GTAP V9 database with a base year of 2011, the CPTPP is 

assumed to enter into force on January 1, 2018, and it covers 33 sectors (see Table 8) and 40 

economies (see Table 9). The sector market is classified using the GTAP Sector Classification 

(GSC2). The GTAP database is simulated forward to the year 2035. Then, the same simulation is 

ran with CPTPP policy shocks for comparisons. For a detail report on this simulation and its 

findings refer to Dade et al. (2017). 
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Table 8 Sectors in CGE model  (Dade et al., 2017) 

Agriculture and 

Food 

Forestry, Fishing, 

Mining  

Industry and 

Manufacturing  
Services 

Rice Forestry Textiles and Apparel Construction  

Wheat and Cereals 

Fruit and Vegetables  
Fishing Leather Products Trade 

Oil Seeds and 

Vegetable Oils 
Fossil Fuels 

Chemicals, Rubber, 

and Plastics  
Transport 

Sugar Mineral Products 
Metals and Metal 

Products 
Communication 

Dairy  Automotive Financial Services 

Beef  Transport Equipment  Business Services 

Pork and Poultry  Electronic Equipment  Recreation 

Other Agriculture  
Machinery and 

Equipment  
Other Services 

Food Products  Other Manufactures   

Beverages and 

Tobacco 
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Table 9 Economies in CGE Model (Dade et al., 2017) 

CPTPP1 Other RCEP2  TTIP3/Other TISA4  TFTA5 and ROW6 

Australia  Indonesia EU289 Ethiopia  

Canada Philippines Norway Kenya 

Chile Thailand Switzerland Mozambique 

Japan 
Rest of Southeast 

Asia8 

Other EFTA10 

(Iceland and 

Liechtenstein) 

Tanzania 

Malaysia China Israel Uganda 

Mexico Korea Pakistan Rwanda 

New Zealand  India Turkey Rest of East Africa 

Peru  Hong Kong SACU11 

Singapore  Taiwan Other TFTA5 

U.S.7  Colombia ROW6 

Vietnam  

Central America 

(Costa Rica and 

Panama) 

 

  

Other South America 

(Paraguay and 

Uruguay) 

 

1Comprehensive and Progressive Trans-Pacific Partnership 
2Regional Comprehensive Economic Partnership 
3Transatlantic Trade and Investment Partnership  
4Trade and Services Agreement 
5Tripartite Free Trade Area 
6Rest of World 
7United States of America 
8Brunei (a CPTPP country) is part of Rest of Southeast Asia  
9European Union 
10European Free Trade Association 
11South African Customs Union 

Lastly, monetary manipulations of the GTAP trade flows were needed as well. First, the CGE trade 

flows, in 2011 US dollars (USD), were converted to Canadian dollars (CAD) using the 2011 
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exchange rate of 1 USD to approximately 0.99 CAD. Second, the CAD values were adjusted for 

inflation to match the years of the other datasets. Consumer Price Index (CPI) was used to adjust 

the units of the CGE forecasts, after their conversion to CAD. For example, in the base case, the 

CGE forecasts were multiplied by a 2015 CPI of 126.6 and divided by a 2011 CPI of 119.9 (base 

year 2002=100) to bring the monetary year of the trade values (2011) forward and match the year 

for the CBSA data (2015).  

Using this data, the resulting international trade flows (zi,l) are multidimensional. The number of 

sector aggregations or commodities (i) is 33 and the number of countries or international regional 

aggregations (l) is 39 (excluding Canada). This creates 72 distinct international supply chains of 

exports.  

3.2.1.2. Freight Model Data 

3.2.1.3. Data for High Level Supply Chain Characteristics  

The shares in Equation 1 (si,j,k,l,m,n) are empirically calculated using CBSA export data. The data 

were provided to Transport Canada from Statistics Canada (Bachmann, 2017). There are six years 

available of export data between 2010-2015. The export data include several attributes: 

Harmonized System (HS) codes for sectors, province of exit (k), country of destination (l), 

international mode of transport (m), and port of clearance (n). The export data are in monetary 

units. For example, for the base case, the 2015 data were used thus the units of the trade flows 

were 2015 Canadian dollars (2015 CAD).  

Correspondence tables of different sector classification systems were used in order to pair the 

appropriate sectors between the calculated shares (si,j,k,l,m,n) and the results from the CGE economic 

model (zi,l) in Equation 1. This is necessary since the shares (si,j,k,l,m,n) use the HS sector 

classification system and the forecasted trade flows (zi,l) use GSC2. There are correspondence 

tables provided by GTAP between GSC2 and Central Product Classification (CPC) and between 

GSC2 and International Standard Industrial Classification (ISIC). Both concordance tables are 

needed because GSC2 includes both commodities and industries. Correspondence tables between 

HS-CPC and CPC-ISIC are also available through the United States Statistical Division. Figure 

12 summarizes the procedure to assign a GSC2 code to the shares (si,j,k,l,m,n) using the concordance 

tables.   
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Figure 12 Procedure to Assign GSC2 Code to CBSA Shares 

This procedure was previously validated by Bachmann (2017) for 2011 export trade flows. It is an 

aggregation scheme since the CBSA data classification system (HS) is coded at a higher sectorial 

detail than the GSC2 forecasts. Bachmann (2017) compared the CBSA aggregated trade flows 

(i.e., the raw data before they are converted into shares) to the GTAP trade flows for 2011. 

Correlation between the two sets mean approximately 0.96 and ranged from 0.89 (exports to 

Middle East and North Africa) to 0.99 (exports to rest of Europe) for all regions in the model. This 

indicates very good consistency between the CBSA trade flows aggregated by GSC2 code and the 

CGE forecasts for 2011.  

Using this data, the resulting disaggregated trade flows (zi,j,k,l,m,n) are multidimensional. The 

number of sector aggregations or commodities (i) is 33, the number of subnational regions (j,k) 

are 11 each (including all provinces with the territories being aggregated into one representative 

region), the number of countries or international regional aggregations (l)  is 39 excluding Canada, 

the number of international modes (m) is 5 (air, water, road, rail, other), and the number of ports 
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of clearance (n) is 246 (see Figure 22 for their locations). This totals approximately 191.5 million 

distinct supply chains of exports.  

3.2.1.4. Data for Value to Quantity Transformation  

The International Trade Division of Statistics Canada provided value-weight data for the year 

2008. The data included the total value (2008 CAD) and weight (kg) of exports and imports by 

six-digit Standard Classification of Transported Goods (SCTG) commodity code. For each SCTG 

commodity, a value-weight (2008CAD/kg) ratio is calculated and then linked to the CBSA data 

(2010-2015 CAD) in order to create the value-weight ratios (wi,j,k,l,m,n) unique to each supply chain 

that are used in Equation 2.  

In this case, additional momentary manipulations are needed as well since the CBSA data and the 

International Trade Division of Statistics data have units in CAD for different years. For example, 

in the base case, the 2015 CBSA data were multiplied by a 2008 CPI of 114.1 and divided by a 

2015 CPI of 126.6 (base year 2002 = 100) to match the year of the value-weight ratios (2008). The 

2008 CAD units cancel out during final value-weight ratio (wi,j,k,l,m,n) calculations.  

Using this data, the resulting disaggregated trade flows in tonnages (ti,j,k,l,m,n) are multidimensional. 

The number of supply chains is the same as the desegrated trade flows in monetary values (zi,j,k,l,m,n) 

with a total of approximately 191.5 million distinct supply chains of exports.  

3.2.1.5. Data for Domestic Mode Splits 

The Canadian Freight Analysis Framework is maintained by Statistics Canada and contains 

domestic freight data for the years 2011 to 2017. Attributes of the database include estimated 

tonnage, value, tonne-kilometers, O-D provinces, 12 commodity types (aggregations of SCTG), 

and three modes (air, rail and truck). The microdata are not yet available at the time of this study, 

thus the publicly available aggregated data were used to calculate the domestic mode shares for 

each of the 12 commodities between province pairs (si,j,k,d) used as inputs for Equation 3. The 

SCTG aggregations are linked to HS codes, using a correspondence table, which are then linked 

to the GSC2 codes as previously explained.  

Using this data, the resulting domestic trade flows in tonnages (tj,k,d) are multidimensional. The 

number of subnational regions (j,k) are 11 each, and the number of domestic modes (d) is 2 (truck 

and rail). This totals 242 distinct domestic supply chains.   

3.3. Framework  

The framework presented in Figure 13 is a formalized approach proposed to study the uncertainty 

due to inputs on outputs of commodity-based freight demand models based on the literature review 

found in Section 2.3. An explanation of each step of the framework is provided below. The 

literature has shown that input uncertainty is often a greater contributor to uncertainty of the 

outputs than model uncertainty (de Jong et al., 2007). Additionally, the same or similar datasets 

are used as inputs for multiple commodity-based freight demand models, whereas uncertainty due 

to model specification/calibration is more specific to the development of each model. For these 
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reasons, the framework below was developed to analyze uncertainty in the outputs of freight 

demand models due to uncertainty in the inputs. This method can be used to assess the uncertainty 

of the model due to one or multiple inputs depending on the identification step. 

 

Figure 13 Framework for the Analysis of Uncertainty in Commodity-Based Freight 

Demand Models 

The case study model was used to assess the effects of the CPTPP on Canada’s trade infrastructure 

by using a specific set of years and other variables to develop the parameters of the model. This is 

referred to as the base case in this thesis. As seen in Section 3.2, there is a range of data available 

to use in the calculation of various inputs to the model. The major question then becomes: how 

different are the results of the same analysis after introducing variation on certain inputs when 

compared to the base case? Note that this framework is only applied to the freight model (as 

described in Section 3.1.2) and not the economic model (i.e., the economic forecast is fixed).  

First, a formal introduction of the base case is needed. The economic model results are one of the 

inputs to the first sub-model of the freight demand model (recall Figure 10). They consist of 

forecasted 2015 trade flows, forecasted 2035 trade flows, and forecasted 2035 trade flows after 

CPTPP policy shocks all in monetary units with a base year of 2011. The other inputs of the first 

freight sub-model are the supply chain shares (si,j,k,l,m,n), which in the base case are calculated using 

2015 CBSA (most recent) data. Next, the base case inputs for the second sub-model, the value-

weight ratios (wi,j,k,l,m,n), are calculated using value-weight data with sectors classified using 5-digit 

SCTG codes (most disaggregated) in combination with 2015 CBSA data. Finally, the inputs for 

the third sub-model, the domestic mode shares (si,j,k,d) are calculated using 2015 CFAF data in the 

base case (matching the CBSA data).    

The rest of this section is divided as per the framework presented in Figure 13. Each subsection 

describes the general aspects of each step and its application to the case study. 

Results/Discussion

Uncertainty measures, other statistical tests, etc. 

Estimation of Output Distributions and/or Distribution Parameters

Use the data generated in the simulation

Simulation

Random/stratified/quasi random draws, number of runs needed, etc.

Input Uncertainty Variation

Use historical/forecasted data or other methods to estimate input distribution, or other 

Identify Sources of Input Uncertainty

Identify the variables related to sources of uncertainty and their respective outputs 
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3.3.1. Step 1: Identify Sources of Input Uncertainty  

As explained in Section 2.3.1, input uncertainty refers to the error in the data used as inputs for the 

transportation demand model (de Jong et al., 2007; Rasouli & Timmermans, 2012). Examples of 

such sources of uncertainty are biased surveys, incomplete datasets, varying commodity and 

industry classifications, varying sector classifications, error in economic forecasts (e.g., a CGE 

model feeding forecasts into a freight demand model), etc.  

In this step, the goal is to identify all sources of error in the inputs and their respective outputs. 

First, identify all the inputs that have uncertainty associated with them. Transportation models are 

sometimes extensive and may have countless input variables that are uncertain. In those cases, it 

is important to identify which inputs are more critical for the analysis that is intended to be aided 

by the model. There are multiple ways to analyze which variables have a greater effect on certain 

model outputs. For example, a simple sensitivity test can be used by varying the inputs over a 

specified range one at the time and seeing how the desired output is affected. This can be measured 

in percent change relative to the original output value. A high percent change seen in the output 

caused by varying a specific input means that this input has a high effect on the output of the 

model. Similarly, if the assumption of normality is made, then multiple linear regression can also 

be used to identify which variables have a greater effect on a desired output.  

Second, identify all the outputs that may be affected by the sources of input uncertainty directly 

and as a result of uncertainty propagation through successive models. Commodity-based models 

often follow a version of the traditional four-step model approach. Therefore, it is necessary to 

identify the sources of uncertainty in the inputs at each step or sub-model. If a particular input is 

related to a particular output alone, then these relations should be noted in order to analyze their 

isolated effects. This way, the propagation through successive sub-models can be compared to the 

uncertainty found at a particular step due to a particular input.  

Third, identify the type of data available for the chosen inputs. Identifying the available data aids 

in the completion of the next step, which is estimating input uncertainty distributions. There can 

be estimations of distributions and distribution parameters in the literature for some inputs. 

Similarly, if the inputs are the results of other modelling techniques (e.g., economic, land-use), 

then the variables may be modelled as probability distributions with the mean value used as inputs 

in the freight demand model. On the other hand, inputs may have multiple years of historical data. 

Depending on the model, historical data can be used directly to vary the identified inputs.  

The case study freight model is simple in terms of input parameters. Essentially, for each equation 

there is one input that may be a source of new uncertainty and one input that carries the uncertainty 

of the previous sub-model. For the first sub-model (Equation 1) the input is the supply chain shares 

(si,j,k,l,m,n). The CGE forecasts are also inputs for the first sub-model, but they are out of the scope 

of this study since this study focuses on the freight model, not the economic model. For the second 

sub-model (Equation 2) the input is the value-weight ratios (wi,j,k,l,m,n) and the source that carries 

over the previous sub-model’s uncertainty is the disaggregated trade flows in monetary values 

(zi,j,k,l,m,n). For the last sub-model (Equation 3) the input is the domestic mode shares (si,j,k,d) and 
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the source that carries over the previous sub-model’s uncertainty is the trade flows in tonnages 

(ti,j,k,l,m,n). All inputs are multidimensional, meaning that there are several values for each one, even 

for the same dataset. For example, there are millions of supply chains (i,j,k,l,m,n) and therefore 

there are millions of supplies chain shares and value-weight ratios. Thus, even though the model 

is simple, the multidimensional variables coupled with added source data variation for each input 

increases the computation effort needed for repeated simulation.  

Identifying the affected outputs is also straightforward for this model as each equation is a linear 

equation with one output. The output of the first sub-model, the disaggregated trade flows in 

monetary value (zi,j,k,l,m,n), is directly affected by any uncertainty in the supply chain share inputs 

(si,j,k,l,m,n). The output of the second sub-model, the disaggregated trade flows in weight (ti,j,k,l,m,n), 

is affected by the uncertainty in the value-weight ratios (wi,j,k,l,m,n) and the disaggregated trade flows 

in monetary value (zi,j,k,l,m,n). The output of the third sub-model, the aggregated domestic trade 

flows (tj,k,d), is affected by the uncertainty in the domestic mode shares (si,j,k,d) and the 

disaggregated trade flows in weights (ti,j,k,l,m,n). Notice that due to the successive nature of the sub-

models, the uncertainty introduced at each step most likely affects the outputs of each successive 

step. Moreover, these outputs are also multidimensional.  

The datasets available for each source of uncertainty were already introduced in Section 3.2. Table 

10 is a summary of this information organized for each sub-model of the freight model and their 

respective inputs.  

Table 10 Summary of Data Available on Sources of Uncertainty 

Sub-Model  Inputs Data Available 

Trade Flow 

Disaggregation 

GTAP forecasts 
Forecasts for 2015, 2035, and 

2035 after CPTPP. 

Supply chain shares 
CBSA export data for 2010-

2015 (6 years) 

Value to Quantity 

Transformation 

Disaggregated trade flows 

($) 
Output of previous sub-model 

Value-weight ratios 
Value and weight data for 

2008 at the 5-digit SCTG level  

Domestic Mode Splits 

Disaggregated trade flows 

(tonnes) 
Output of previous sub-model 

Domestic mode shares 
CFAF domestic freight data 

for 2011-2017 (7 years) 

 

3.3.2. Step 2: Input Uncertainty Distributions 

The goal of this step is to identify the form of variation that is going to be used in the repeated 

simulation step. One route is to estimate or assign probability distributions to the inputs identified 
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in the previous step. Another is to use historical data, if available, to vary the input base year using 

exclusively empirical data.   

Estimating the probability distribution of the inputs is difficult. Estimating the central value and 

dispersion of the inputs may be done using available data, for example, using time series data 

(Manzo, 2014). The difficulty arises in defining the distribution type (Manzo, 2014). In the 

literature, multiple studies have used univariate or multivariate normal and log-normal 

distributions to estimate the variation of the inputs in transportation demand models (de Jong et 

al., 2007; Manzo, 2014; Rasouli & Timmermans, 2012; Zhao & Kockelman, 2002). For example, 

De Jong et al. (2007) used 20 year historical data to calculate moving means and standard 

deviations for their inputs before assuming a multivariate normal distribution. Similarly, Zhao and 

Kockelman (2002) used point estimates (means) from the Dallas-Ft. Worth travel model’s dataset 

and assumed both the coefficients of variation (0.30) and lognormal distributions for their inputs 

and model parameters.  

On the other hand, using historical data to directly vary different values for the desired input is 

easier and requires fewer assumptions. Often a base year for a certain input variable is used when 

developing models. This strictly empirical method works in situations where multiple years of data 

are available, and the model is simple enough to run for all possible combinations while changing 

the base years of the inputs. The major assumption required to use this method is that the temporal 

variation exhibited in the years of data available continues, sincethe researcher is taking values 

directly from each year as opposed to estimating distributions using time series analysis. This 

assumption is generally valid in the practice of transportation demand modelling as modellers are 

often forced to arbitrarily choose base years (based on available data) to develop models and do 

not engage in a full time series analysis due to lack of resources. Thus, this method incorporates 

this general assumption used in practical modelling along with the assumption that more data (or 

resources) are not available to fully conduct a time series analysis.  

It is not necessary to examine the parameters and types of the distributions of the identified sources 

of uncertainty for the case study. The identified sources of uncertainty are empirically calculated 

using the available datasets. Thus, variation can be created by simply calculating those inputs using 

all available datasets and incorporating the assumption, discussed above, that the temporal 

variation presented in those datasets continues. Then, repeated simulation can be ran using all 

calculated inputs. More details of this procedure are provided in the explanation of the repeated 

simulation step that follows.  

The variation for the identified input of the first and third sub-models are simple. The supply chain 

shares are varied over all available CBSA data years 2010-2015 (six years/runs). Similarly, the 

domestic mode shares are varied over all available CFAF data years 2011-2017 (seven years/runs).  

The variation for the value-weight ratios is more catered towards this case study’s analyses. Sector 

classification systems provide different levels of detail with their codes. For example, the SCTG 

five-digit code 02200 is for commodities that are “corn except sweet, but including seed and corn 

for popping”, whereas the two-digit equivalent code 02 is for commodities that are “cereal grains” 

(Statistics Canada, 2015). Usually, detail increases with an increasing number of digits. It can be 
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argued that sectoral detail is important in this type of analysis since FTAs often have highly 

detailed commodity-specific policies. This can be explored by varying the sectoral detail. Thus, 

the value-weight ratios are varied by changing the number of digits on the SCTG codes (i.e., 

aggregating over digits to lower resolution). Five-digit (base case), four-digit, three-digit, and two-

digit aggregations are explored in the repeated simulations (4 aggregations/runs).  

3.3.3. Step 3: Simulation  

After the form of variation for the desired inputs is identified, the next step is to use repeated 

simulation. Essentially, the model is run as many times as possible. Stochastic simulation is 

preferred in the case where distributions were estimated to avoid further bias introduced by the 

modeller. Repeated simulation using random draws is referred to as Monte Carlo simulation. The 

problem with stochastic simulation is the large amount of runs necessary for unbiased results. 

There are other forms of semi-random or quasi-random draws that can be used in order to lower 

the number of runs needed while still obtaining less biased results. Table 11 is a summary of the 

sampling techniques identified in the literature.  

Table 11 Sampling Techniques for Repeated Simulation 

Technique Description e.g. 

Monte 

Carlo 

Random draws are taken from input/parameter distributions to 

use in repeated simulations 

(Zhao & 

Kockelman, 

2002) 

LHS 

Stratified random draws are taken from input/parameter 

distributions to use in repeated simulations.  

The cumulative distribution of variables is divided into equal 

intervals and one random value is taken from each interval. 

(Yang & 

Chen, 

2009) 

Factorized 

Design 

Stratified random draws are taken from input/parameter 

distributions to use in repeated simulations.  

The cumulative distribution of variables is divided into equal 

intervals and the mid-percentile value is taken from each interval. 

(Pradhan & 

Kockelman, 

2002) 

Halton 

Draws 

Quasi-random draws are taken from input/parameter distributions 

to use in repeated simulations.  

The quasi-random draws are based on a form of the Halton 

Sequence. (Daly et al., 2003) 

(de Jong et 

al., 2007) 

Sobol 

Method 

Quasi-random draws are taken from input/parameter distributions 

to use in repeated simulations.  

The quasi-random draws are based on a form of the Sobol method 

explained in Saltelli (2002).  

(Bao et al., 

2016) 

Repeated simulation using all available combinations is preferred in the case where historical data 

are being used directly. If it is possible, all years available for each input should be used. For 

example, if ten years of data for input A and 5 years of data for input B are available, then the 

simulation should be repeated 50 times or 50 runs of the model. This ensures that all available 

empirical information is being utilized and less bias is introduced by unnecessary assumptions. 
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The results are then extracted exclusively from the empirical data without assumptions about the 

types or parameters of the distributions.  

For the case study, the repeated simulations have a total of 168 runs. Table 12 summarizes the 

variation introduced at each sub-model. After this, a mathematical representation of the repeated 

simulation is presented and explained.  

Table 12 Summary of Variation Used in Simulation 

Sub-Model  Inputs Variation 

Trade Flow 

Disaggregation 

GTAP forecasts Constant (out of scope) 

Supply chain shares 6 years (2010-2015) 

Value to Quantity 

Transformation 

Disaggregated trade flows 

($) 

6 sets (output of previous 

model) 

Value-weight ratios 4 digit aggregations  

Domestic Mode Splits 

Disaggregated trade flows 

(tonnes) 

24 sets (output of previous 

model) 

Domestic mode shares 7 years (2011-2017) 

Final Result/Output Domestic O-D flows 
6 years x 4 digit aggregations x 

7 years = 168 versions 

Adding the variation to the supply chain shares, the first sub-model becomes:  

  𝑧𝑦,𝑖,𝑗,𝑘,𝑙,𝑚,𝑛 = 𝑠𝑦,𝑖,𝑗,𝑘,𝑙,𝑚,𝑛  × 𝑧𝑖,𝑙     (4) 

where zy,i,j,k,l,m,n is the trade flow ($) (disaggregated) for CBSA year y of commodity i produced in 

subnational region j exported by subnational region k to country l by international mode m through 

port of clearance n. sy,i,j,k,l,m,n is the international export share for CBSA year y of commodity i 

produced in subnational region j exported by subnational region k to country l by international 

mode m through port of clearance n, determined from initial shares in the export trade data. zi,l is 

the international trade flow ($) of commodity i to country l, from the CGE model results (Dade et 

al., 2017). 

For the first sub-model there are six possible years that can be used to calculate supply chain 

shares. Using the available CBSA export data, six different supply chain shares (sy,i,j,k,l,m,n) are 

calculated. The y subscript denotes the CBSA export data year used to calculate that share. The 

shares are then fed into the first sub-model which in turn creates six sets of disaggregated trade 

flows in monetary values (zy,i,j,k,l,m,n).  
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Similarly, with the added variation to the previous model and the value-weight ratios with varied 

aggregation levels, the second sub-model becomes:  

   𝑡𝑦,𝑎,𝑖,𝑗,𝑘,𝑙,𝑚,𝑛 =
𝑧𝑦,𝑖,𝑗,𝑘,𝑙,𝑚,𝑛

𝑤𝑎,𝑖,𝑗,𝑘,𝑙,𝑚,𝑛
     (5) 

where ty,a,i,j,k,l,m,n is the trade flow (tonnes) for CBSA year y, with SCTG digit aggregation a, of 

commodity i produced in subnational region j exported by subnational region k to country l by 

international mode m through port of clearance n. wa,i,j,k,l,m,n is the value-weight ratio ($/tonnes) 

with SCTG digit aggregation a, for shipments of commodity i produced in subnational region j 

exported by subnational region k to country l by international mode m through port of clearance 

n. 

There are four different SCTG digit aggregations to use in the calculation of the value-weight 

ratios (wa,i,j,k,l,m,n). The subscripts a represents each aggregation: 5-digit, 4-digit, 3-digit, and 2-

digit meaning that there are four different sets of value-weight ratios. Adding the variation of the 

previous step, the output of this step (ty,a,i,j,k,l,m,n) has 6x4 (y x a) sets of values.  

Finally, the third sub-model becomes the following after the uncertainty of domestic mode shares 

is added:  

  𝑡𝑦,𝑎,𝑏,𝑗,𝑘,𝑑 = ∑ (𝑠𝑏,𝑖,𝑗,𝑘,𝑑 × ∑ ∑ ∑ 𝑡𝑦,𝑎,𝑖,𝑗,𝑘,𝑙,𝑚,𝑛𝑛𝑚𝑙 )𝑖     (6) 

where ty,a,b,j,k,d is the total trade flows (tonnes) for CBSA year y, with SCTG digit aggregation a, 

for CFAF year b, shipped from subnational region j to subnational region k by domestic mode d. 

sb,i,j,k,d is the share for CFAF year b, of commodity i shipped from subnational region j to 

subnational region k by domestic mode d. 

There are seven set of domestic mode shares (sb,i,j,k,d) because the CFAF database provided seven 

years of data 2011-2017. The subscript b represents each CFAF year. Adding the variation of the 

previous two models, the final output of the freight model has 6 x 4 x 7 = 168 (y x a x b) sets of 

values.  

The 168 simulations outline above were performed for all three CGE economic forecast inputs: 

2015, 2035, 2035 with CPTPP. The results obtained using the latter forecast, 2035 trade flows 

after CPTPP policy shocks, is often referred to as CPTPP on result figures for the sake of brevity.  

3.3.4. Step 4: Estimation of Output Distribution and/or Distribution Parameters 

Using the data generated in the repeated simulation, distributions for the outputs can be estimated. 

This step is similar to estimating the distribution of the inputs. However, the data that are used to 

calculate the point estimate (mean) and dispersion (standard variation) is the set of values 

generated for each output during the repeated simulation step. This can be done for each sub-model 

output or outputs, if the model consists of successive sub-models (e.g., a traditional four-step 

model). If the number of runs is large enough, the distribution type can be assessed using a 

histogram analysis for a more informed assumption than simply assuming normal or lognormal 

distributions. Assessing the distribution type may be difficult if the number of outputs is large. 
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It is desirable to assume that the outputs are normally distributed since this is the most utilized and 

understood probability distribution. Unlike nonparametric tests, there are multiple parametric 

statistical tests that require some form of normality to be assumed. For example, regression 

analysis and subsequent analysis of variance (ANOVA) require the residuals to be normally 

distributed. A more formal normality test such as a normal probability plot (NPP) can be used to 

assess if a dataset can be safely assumed to be normally distributed. If the data are not readily 

normally distributed, then a transformation may be used so that the transformed data are normally 

distributed. However, the normality assumption for a lot of parametric tests regards the sample 

mean. Thus, if the observations themselves are not normal, some parametric statistical tests can 

still be used. 

This step of the framework is very difficult for this case study. The multidimensional outputs 

contain millions of individual sets of simulated observations. For example, after the second sub-

model, there are over 190 million sets of trade flows (tonnes) with 24 observations each. The 

distributions need to be assessed for each of those sets using the 24 observations generated through 

the simulation step. Statistical analysis of the outputs is performed using some assumptions and 

the aid of the central limit theorem due to the very difficult task of estimating the distribution of 

millions of outputs. More details on these procedures and assumptions are provided in the 

following section.  

3.3.5. Step 5: Analysis of Results and Discussion 

The analysis portion of this framework relies heavily on statistical analyses as the results are 

obtained through repeated simulation. Depending on the outcome of the previous step, further 

analysis of the distribution type may be required. For example, if the distribution of the outputs 

cannot be easily estimated, or if they are not normally distributed, the central limit theorem can be 

used to justify the usage of some powerful parametric statistical tests (i.e., confidence intervals, t-

tests, ANOVA, etc.).  

3.3.5.1. Importance of the Normal Distribution 

The normal distribution is a highly desirable assumption as it is well understood and has desirable 

properties. The normal distribution is presented in the equation below. 

    𝑓(𝑥) =
1

𝜎√2𝜋
𝑒𝑥𝑝 {−

1

2
(

𝑥−𝜇

𝜎
)

2

}     (7)  

where μ is the mean, and σ2 is the variance. These two parameters describe its shape. The shape of 

a typical normal distribution is a bell curve as depicted in Figure 14. However, this figure depicts 

the standard normal distribution with a mean of 0 and variance of 1.  



60 

 

Figure 14 Standard Normal Distribution (Bhandari, 2020) 

The standard normal distribution along with z-score tables (denoting the area under the curve 

between 0 and z standard deviations above the mean) are used to run hypothesis testing on the 

population mean (μ) and the population variance (σ2). This is a type of parametric statistical test, 

but it is almost never used because it assumes that true population parameters (μ and σ2) are known. 

This is generally not the case as researchers often work with a sample of the population with a 

given sample size (N), sample mean (𝑋̅), and sample variance (S2).  

One of the main advantages of using the normal distribution is its symmetry. As a result of 

symmetry, the mean, median, and mode are all the same. Additionally, exactly half of the 

population or sample is greater than the mean and half is smaller than the mean. This allows 

researchers to determine the exact proportions of values that fall within a distance, often measured 

in standard deviations (S), from the mean. This is also known as the Empirical Rule that states 

68% of normally distributed observations fall within one standard deviation, 95% within two 

standard deviations, and 99.7% within three standard deviations (The Pennsylvania State 

University, 2021).  

Another advantage of the normal distribution is that if a population is normally distributed then its 

sample mean and sample variance are independent of each other provided that it is a random 

sample of the population (Mordkoff, 2016). This means that any error in the estimation of the 

sample mean is independent of any error in estimating the sample variance. This property only 

occurs in the normal distribution, and it simplifies the mathematics of further analyses (Mordkoff, 

2016).  

3.3.5.2. Testing the Normality Assumption 

There are two well-established ways to test for normality: plotting methods and nonparametric 

statistical tests. Plotting methods include histograms, normal probability plot, stem-and-leaf plots, 

boxplots, probability-probability plots, and quantile-quantile plots. Common normality tests 

include the Kolmogorov-Smirnov (K-S) test, Lilliefors corrected K-S test, Shapiro-Wilk (SW) test, 

D’Angostino-Pearson (DAP)  omnibus test, and the Jarque-Bera (JB)  test (Öztuna et al., 2006).  
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Normal probability plots are a tool used to determine if a sample comes from a normal distribution. 

A detailed procedure to construct an NPP can be found in Montgomery (2005). Software packages 

often have NPPs included in them as well. Figure 15 is an example of an NPP. A sample is 

considered normal if the observations follow a straight line on an NPP. It is recommended to place 

more emphasis on the central values of the plot rather than the extremes when visualizing a line 

(Montgomery, 2013). An advantage of a graphical method, such as constructing NPPs, is that the 

researchers can detect outliers and judge the normality of the bulk of the data, thus making 

conclusions more robust. 

 

Figure 15 Example of a Normal Probability Plot (Montgomery, 2013) 

In the testing methods, the null hypothesis (H0) is that “the sample distribution is normal”. 

Therefore, if the p-value is higher than the significance level (α) then there is insufficient statistical 

evidence to reject H0 and the sample is normally distributed. A test’s power is the probability of 

not committing a Type I Error (i.e., incorrectly rejecting the H0). A study found that the JB test 

was the most powerful meaning that it was the least likely to commit Type I Error, and the SW 

test was the best to correctly identify that a distribution was non-normal (Öztuna et al., 2006). 

However, that study did not include outlier points which are often found in real data; they tested 

variables that were forced to a particular distribution. Thus, their findings do not include how 

sensitive a test is to outliers.  

In normality testing, robustness is how sensitive a test is to outliers or small deviations from 

normality. This is common drawback of most available normality tests (Stehlík et al., 2014). 

Stehlik et al. (2014) concluded in their study that an unambiguous conclusion cannot be drawn in 

terms of the best or most robust test and further explained that this is an inherent problem when 

comparing normality tests. Essentially, there is not a test that is inherently the most powerful test 

for normality (Stehlík et al., 2014). For this reason, it is recommended to use graphical methods, 
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when possible, although this requires a researcher that has adequate knowledge to correctly assess 

the plots.  

Out of the tests, the most widely applied ones are the K-S and SW nonparametric tests (Mishra et 

al., 2019; Mordkoff, 2016). The K-S test is known to be highly sensitive to outliers and it is not 

recommended for occasions when parameters are estimated from data (e.g., simple linear 

regression) (Steinskog et al., 2007). A study found that even after the modifications by Lilliefors 

(1967) and later by Dallal and Wilkinson (1986), the JB and SW tests have more power than the 

modified K-S test. Typically, the K-S test is used for larger sample sizes (>50) and the SW test is 

used for smaller sample sizes (<50)  (Mishra et al., 2019). The SW test is recommended in various 

studies as it resulted in the best power under different circumstances detailed in their studies 

(Farrell & Rogers-Stewart, 2006; Keskin, 2006; Mendes & Pala, 2003; Mohd Razali & Bee Wah, 

2011; Öztuna et al., 2006; Romão et al., 2010; Yap & Sim, 2011; Yazici & Yolacan, 2007). 

However, a review of these studies concluded that for small sample sizes (<50), the power of the 

SW tests were small and always under 0.5 (Ruxton et al., 2015). This means that there is a less 

than 50% probability that the SW test will not commit Type I Error (i.e., incorrectly reject the H0). 

In terms of normality testing, there is less than a 50% probability that the test correctly found 

enough statistical evidence to prove that the sample is not normally distributed.  

The Shapiro-Wilk test is widely available in software packages. The null hypothesis (H0: sample 

is normally distributed) is rejected if the calculated W statistic is below a critical value. The W 

statistic can be calculated through the following equation:  

    𝑊 =  
(∑ 𝑎𝑖𝑥𝑖

𝑛𝑁
𝑖=1 )

2

∑ (𝑥𝑖−𝑥̅)2𝑛𝑁
𝑖=1

        (8) 

where: x1,…,xN are sample values ordered from smallest to largest, a1,…,aN are weights (most 

software packages use the algorithm by Royston (1995)) (Ruxton et al., 2015), and N is sample 

size. 

The denominator has the same form as the equation for the variance of a sample (S2), and the 

numerator is related to the best estimation of the sample variance if it were drawn from a normal 

distribution (Ruxton et al., 2015). As mentioned above, the power of this test decreases with 

sample size (Ruxton et al., 2015).  

3.3.5.3.  The Central Limit Theorem 

The Central Limit Theorem (CLT) is often used to justify the assumption of normality behind 

parametric statistical tests. The CLT states that for a random variable (X) with population mean 

(μ) and population variance (σ2), the distribution of sample means (𝑋̅) of sample size N approaches 

normality as N increases regardless of the distribution of X (Montgomery, 2013) . There are many 

cases where the CLT applies even at very small sample sizes (N<10) (Montgomery, 2005). 

However, the more skewed the distribution of X, the larger the sample size has to be for the CLT 

to apply (Montgomery, 2013). In the literature, sample sizes of 20-30 are often used as the lower 

limit to apply CLT. These numbers are in part based on empirical analyses using the exponential 
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distribution because its shape is very different from the shape of the normal distribution (Mordkoff, 

2016).   

3.3.5.4. Parametric and Nonparametric Tests  

Parametric tests require some form of normality assumption whereas nonparametric tests do not 

require this. In most cases, parametric tests can be used as they are relatively insensitive to small 

deviations from normality and the CLT can be applied under certain circumstances (Montgomery, 

2013). For example, constructing confidence intervals using the t-test statistic value requires the 

sample means (𝑋̅) to be normally distributed which can be justified using the CLT regardless of 

the distribution of the original sample (Penlindis, 2019). Non-parametric tests have the advantage 

of not needing any normality assumption. Additionally, data can be categorical or rank data 

(Montgomery & Runger, 2010). However, parametric tests tend to be more powerful than 

nonparametric tests for the same sample size (Chin & Lee, 2008). The following table is a summary 

of available parametric tests for means and their nonparametric counterparts for medians.  

Table 13 Parametric and Nonparametric Tests for Similar Analyses (Frost, 2021) 

Parametric Tests of Means 
Nonparametric Tests of 

Medians 
Null Hypotheses 

1-sample t-test 
1-sample Sign test, 1-sample 

Wilcoxon 

H0: mean/median ≥ or ≤ or = 

hypothesized value 

2-sample t-test Mann-Whitney test 
H0: mean/median of sample 1 = 

mean/median of sample 2 

One-Way ANOVA 
Kruskal-Wallis2 median test, 

Mood’s median test 

H0: mean/median of sample 1 = 

…. = mean/median of sample k3 

Factorial DOE1 with a factor and 

a blocking variable 
Friedman test 

Like One-Way ANOVA but 

with blocking variables 

1Design of Experiments 
2Kruskal-Wallis test can also test the mean ranks 
3k is the number of samples 

3.3.5.5. Transformations 

As explained previously, the normal distribution is highly desirable for different statistical 

analysis. Thus, if the output is found not to be normally distributed and this is necessary for the 

type of analysis (e.g., simple regression for simplicity and transparency (Penlindis, 2019)), a 

transformation may be tried. Common transformations of independent variables (X) (i.e., outputs 

or responses) are 𝑙𝑜𝑔(𝑋), 1/𝑋 and √𝑋 (Penlindis, 2019). One popular method to determine an 

appropriate transformation is the Box-Cox method. A detailed explanation of this method is 

provided in Sakia (1992).  
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3.3.5.6. Application of Step 5 to Case Study 

There are three different types of results discussed in the case study. First, the outputs of each sub-

model are referred to as disaggregated outputs. Second, in a preliminary analysis of the CPTPP 

effects using this model, the results were presented in aggregated tables to allow for major 

conclusions to be drawn (e.g., for major gateways, corridors, and ports). These are referred to as 

aggregated outputs. Lastly, two specific sets of i, j, k, l, m, n, d combinations are selected for a 

targeted analysis. One set covers the usage of the freight model as a trade growth analysis tool 

only and the second set covers the usage of the model as an FTA analysis tool. To that end, the 

first set is centered around the US, a major non-CPTPP Canadian trade partner, and the second set 

is centered around the CPTPP signatories. These are subsequently referred to as the targeted 

outputs.  

The analysis for this study is threefold. First, the disaggregated outputs of each sub-model are 

analyzed by calculating descriptive statistics, creating confidence intervals about the population 

means, and comparing these intervals to the base case values. Second, the outputs are aggregated 

to recreate the results of the preliminary base case study. These results consist of aggregations of 

export results for major Canadian gateways, aggregations of results by ports of entry to establish 

the top ten ports, and the presentation of domestic movement summary tables. Descriptive statistics 

and confidence intervals are calculated for these aggregated scenarios, and they are compared to 

the base case to assess similarities and differences. The aggregated results by ports are also 

analyzed using rank error measurements (Xaykongsa, 2021) since they are a ranked list (i.e., most 

impacted to least). Lastly, two targeted analyses are presented to illustrate the correct procedure of 

results analysis including formal normality assumption checks, confidence intervals creation, and 

comparison to the base case. The targeted analyses are meant to not only illustrate a correct 

procedure for the analysis of these types of results, but also assess the uncertainty associated with 

the modelling of regular trade growth versus modelling the uncertainty of FTA policy shocks on 

trade over 20 years. The normality checks used are the SW test and NPPs (described in Section 

3.3.5.2). More details on the different statistical analyses and assumptions are provided in Chapter 

4.  
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Chapter 4. Results and Discussion  

The simulations were performed as described in Section 3.3.3 using Python version 2.7. 

Disaggregated outputs for each sub-model (zy,i,j,k,l,m,n, ty,a,i,j,k,l,m,n, ty,a,b,j,k,d) were obtained. Then, 

following the preliminary analysis performed for the base case, aggregated output tables were 

created. Finally, a detailed analysis was performed on two targeted results.  

The following sections present the outputs, the statistical analyses performed on the results, and a 

discussion of findings for the three types of results obtained (disaggregate, aggregate, and 

targeted).  

An important aspect of the results are the monetary values and their reference years. All monetary 

values were transformed to 2015 CAD, which is the unit of the base case. This is done to properly 

calculate the descriptive statistics and perform other comparative analyses. Otherwise, the results 

would be misleading because they would technically be in different units from year to year (i.e., a 

2011 CAD is not worth the same as a 2015 CAD).  

4.1. Disaggregated Outputs 

This section is divided into two: analysis of the data using descriptive statistics, and analysis of 

the data using confidence intervals.  

Descriptive Statistics Analysis  

After the simulations were performed, three outputs were collected directly from each sub-model. 

Descriptive statistics were then calculated for each set of observations. For example, for the 

disaggregated trade flow values (zy,i,j,k,l,m,n), the output of the first model, over 190 million sample 

means, sample standard deviations and sample coefficient of variations were calculated using the 

6 observations for each supply chain (i,j,k,l,m,n). Notice that since a source of uncertainty was 

varied at each step, the outputs of each step vary over a different set of runs or observations. For 

example, the disaggregated trade values (zy,i,j,k,l,m,n) only vary over 6 runs of the simulation as they 

are only affected by uncertainty on the supply chain shares (sy,i,j,k,l,m,n). Table 14 summarizes the 

outputs for each sub-model. 
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Table 14 Dimensionality of Descriptive Statistics for Disaggregated Outputs 

Sub-Model  Output 
No. of 

Observations 
Descriptive Statistics 

Trade Flow 

Disaggregation 

Disaggregated Trade Flows 

(CAD) 

zy,i,j,k,l,m,n 

6 
𝑋̅i,j,k,l,m,n, 

Si,j,k,l,m,n, 

COV i,j,k,l,m,n 

Value to Quantity 

Transformation 

Disaggregated trade flows 

(tonnes) 

ty,a,i,j,k,l,m,n 

24 

𝑋̅ i,j,k,l,m,n, 

S,i,j,k,l,m,n, 

COVi,j,k,l,m,n 

Domestic Mode 

Splits 

Domestic Trade Flows 

ty,a,b,i,j,k,d 
168 

𝑋̅i,j,k,d, 

Si,j,k,d, 

COV i,j,k,d 

To further illustrate the calculation of the descriptive statistics, the outputs of the first sub-model 

are used as an example below:  

 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑒𝑎𝑛 = 𝑋̅𝑖,𝑗,𝑘,𝑙,𝑚,𝑛 =
1

𝑁
∑ 𝑍𝑦,𝑖,𝑗,𝑘,𝑙,𝑚,𝑛

𝑁
𝑦=1        (9) 

 𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑆2
𝑖,𝑗,𝑘,𝑙,𝑚,𝑛 =

∑ (𝑍𝑦,𝑖,𝑗,𝑘,𝑙,𝑚,𝑛−𝑋̅𝑖,𝑗,𝑘,𝑙,𝑚,𝑛)
2𝑁

𝑦=1

𝑛−1
   (10) 

 𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑆𝑖,𝑗,𝑘,𝑙,𝑚,𝑛 = √𝑆2
𝑖,𝑗,𝑘,𝑙,𝑚,𝑛    (11) 

 𝑠𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 = 𝐶𝑂𝑉𝑖,𝑗,𝑘,𝑙,𝑚,𝑛 =
𝑆𝑖,𝑗,𝑘,𝑙,𝑚,𝑛

𝑋̅𝑖,𝑗,𝑘,𝑙,𝑚,𝑛
   (12) 

where N is the total number of observations. In the example above, N is 6. 

The resulting descriptive statistics are multidimensional. Each set of subscripts refers to a different 

supply chain (sub-models 1 and 2) or domestic movement (sub-model 3). For this reason, the 

sample means and sample variances are highly different from each other. Moreover, the units of 

these values are not constant. In the first sub-model, the units of the sample means and sample 

standard deviations are in 2015 CAD, whereas the second and third sub-models have units of 

weight (tonnage). This makes these values incomparable between sub-models.  

To facilitate comparisons, sample COVs are calculated. These are unitless ratios of noise (sample 

standard deviation) to signal (sample mean), meaning they measure the dispersion of the data. 

Typically, a COV that is less than one is considered “low variance” meaning that the noise is 

smaller than the signal. Conversely, a COV larger than one is considered “high variance” meaning 

that the noise is larger than the signal. In normally distributed variables, higher variances mean 

that the bell curve is wider. Due to the unitless property of COVs, comparisons between sets with 

very different means is feasible. These are the measures used to compare the uncertainty at each 

step of the freight demand model.  
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As shown on Figure 15, the COVs were pooled and averaged for each sub-model and the 5th and 

95th percentiles were calculated for all three economic model forecasts 2015, 2035 and 2035 after 

CPTPP. This analysis is similar to the one conducted by Zhao and Kockelman (2002). On the x-

axis trade values refer to the outputs of the first sub-model (zi,j,k,l,m,n), trade quantities refer to the 

outputs of the second sub-model (ti,j,k,l,m,n), and domestic quantities refer to the outputs of the third 

sub-model (tj,k,d). Appendix A – 2035 Forecast Mean COVs for the Outputs of Each Sub-model 

examples of more disaggregated mean COVs using the 2035 CGE forecast.  

 

Figure 16 Mean COVs for Each Sub-model (All Forecast Years) 

There are no obvious differences between the results for the outputs of sub-models for the three 

CGE forecasts. This is expected due the nature of the GTAP CGE model. CGE models are 

specified to reproduce an initial economy (base year). The base year economy in the dynamic 

GTAP model is the GSC2 sector market of 2011 with its 40 regions. This is an exact calibration 

rather than a statistical one, meaning that forecasted year equilibria are solved using the same 

parameters and assumptions as for the base year. There are differences in the results for 

combinations of sectors and regions. However, the number of values for a given forecasted year is 

large and the set of rules to solve the equilibria is constant. Consequently, there is not enough 

deviation to notice on the COV means between forecast years when the descriptive statistics are 

calculated on the results of the freight model and they are further averaged. Thus, one economic 

forecast can be examined alone, as on Figure 17. 
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Figure 17 Mean COVs for Each Sub-model (2015 CGE Forecast) 

The means of the COVs over each sub-model are all higher than one. This means that on average, 

all the sub-models exhibit high variance of their outputs. The trend of the mean COVs shows that 

there is an increase in the dispersion of the outputs of the first sub-model and the second sub-

model, and then a sharper decrease between the second and third sub-model. By the last sub-model, 

the mean dispersion of the domestic trade flows (tj,k,d) is close to one and lower than the mean 

dispersion of the outputs of the first sub-model (zi,j,k,l,m,n).  

In the space between the 5th percentile and 95th percentiles lie 90% of the COVs. These additional 

lines allow conclusions to be made about the majority of the COVs. For the outputs of the first 

sub-model (zi,j,k,l,m,n), 90% of the COVs are contained within the values ~0.4 to ~2.2. If a 

distribution of the COVs for this sub-model was estimated it would be skewed towards high 

variance values (i.e., above one), meaning that more observations are above one than below one 

since the mean line is closer to the 95th percentile line. Over 50% of those COVs are higher than 

the mean of ~1.7. This is because medians or 50th percentiles tend to be further towards the 

extremes than the means on skewed distributions (see Figure 18). For the outputs of the second 

sub-model (ti,j,k,l,m,n), 90% of the COVs are contained within the values ~0.5 to ~2.8. This range is 

larger than the previous step, meaning that not only did the mean dispersion increase, but the 

variation of the dispersion (COVs) also increased from the first sub-model to the second. For these 

outputs (ti,j,k,l,m,n), more than 50% of the COVs are higher than the mean of ~1.9. The trend of 

increasing dispersion of the COVs continued further on the third sub-model, where 90% of the 

COVs of its outputs (tj,k,d) are between ~0.1 and ~2.9. However, at this sub-model, the distribution 
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of the COVs is skewed towards the lower values. This means that over 50% of the COVs have 

values below their mean of ~1.0. Unlike the other two sub-models, the majority of outputs (tj,k,d) 

for this sub-model have low variance.  

 

Figure 18 Mean COVs for Each Sub-model with Medians (2015 CGE Forecast) 

The trends exhibited by the mean COVs are reasonable. The first two sub-models have outputs 

that are highly disaggregated with over 190 million unique supply chains. It is reasonable that the 

measure of dispersion on average increased from the first model output (zi,j,k,l,m,n) to the next 

(ti,j,k,l,m,n) since an additional source of uncertainty, the SCTG code aggregation scheme used to 

calculate the value-weight ratios (wi,j,k,l,m,n), was introduced. The last sub-model output (tj,k,d) is 

more aggregated than the first two by six orders of magnitude, with 363 distinct domestic 

movement combinations. For this reason, the mean dispersion of this output (tj,k,d) is lower than 

even the first sub-model’s output despite a new source of uncertainty introduced as well (variation 

on the domestic shares due to seven years of CFAF data). Thus, the trends seen in the mean COVs 

are within reason.  

The calculation of the percentiles revealed more interesting observations. An interesting finding is 

that the range of the observed COVs increased over all sub-models. Thus, by the last sub-model 

there are values of dispersion as high as ~2.8. Calculating the percentiles also showed an 

interesting finding regarding dispersion of the outputs at each sub-model. For the first two sub-

models, the percentile analysis shows the same results as the mean COVs since the distribution of 

the dispersion values are skewed towards values that indicate high variance of those outputs. 

However, for the third sub-model, the percentile analysis differs from the mean COV conclusion 



70 

and shows that in fact most of the COVs (over 50%) have values that indicate low variance of the 

outputs (tj,k,d) - meaning that over 50% of the domestic movement combinations (j,k,d) exhibit low 

variance. Ultimately, the high aggregation that occurs between the second sub-model and the third 

is enough to lower the dispersion for the majority of domestic movements to low variance.  

Confidence Interval Analysis  

Confidence intervals (CI) can be constructed around a population parameter. CIs are ranges where 

the true value of a parameter is expected to lie. The general formulation for a confidence interval 

of a parameter θ is presented below: 

 𝐶𝐼:  𝜃̅  ± (𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟)√𝑉𝑎𝑟(𝜃)    (13) 

where 𝜃̅ is the parameter estimate and Var(θ) is the variation of the chosen parameter. The 

multiplier depends on the distribution of the parameter (θ), the confidence level (1-α) or 

significance (α), and the degrees of freedom (N-1). Confidence is defined as: if a large amount of 

CIs were constructed using repeated random sampling from a population, (1-α) percent of those 

intervals would contain the true parameter (Montgomery, 2013). 

In this study, confidence intervals of the population or true mean (μ) were constructed to compare 

the CI range of the outputs to the base case outputs. This answers the question: are the base case 

outputs within the range of the expected central tendency of the outputs after the sources of 

uncertainty are introduced and repeated simulations are performed (i.e., within the range of true 

population means of the outputs) for a confidence level of (1-α) percent?   

Confidence intervals about the population mean (μ) can be constructed using the standard normal 

distribution (i.e., μ = 0 and σ2 =1) if the sample size is sufficiently large and the variance (σ2) is 

known (Montgomery, 2013). Otherwise, the interval must be constructed using the sample 

variance (S2) and the sample mean (𝑋̅) follows a student t-distribution rather than a normal 

distribution (Montgomery, 2013). Using the sample means from the first sub-model outputs 

(zi,j,k,l,m,n) as an example, Equation 13 then becomes:  

 𝐶𝐼𝑖,𝑗,𝑘,𝑙,𝑚,𝑛:  𝑋̅𝑖,𝑗,𝑘,𝑙,𝑚,𝑛  ± 𝑡
𝑆𝑖,𝑗,𝑘,𝑙,𝑚,𝑛

√𝑁=6
    (14) 

t is the t-factor and can be obtained through different software or t-tables by specifying the degree 

of freedom (N-1) and significance level (α) desired. 

The use of the student t-statistic carries with it the normality assumption of the parameter for which 

the CI is being created. In this case, the sample means (𝑋̅) need to be normally distributed. Proving 

the normality assumption can be done using the Central Limit Theorem (CLT) if the sample sizes 

(N) are large enough (see more details in Section 3.3.5). CLT is not applicable for the for the 

outputs of the first sub-model (zi,j,k,l,m,n) as the sample size (N) of 6 is too small. However, it can be 

argued that it applies for the outputs of the second and third sub-models as these have sample sizes 

of 24 and 168, respectively. The sample size of the outputs of the second model are under 30 which 

is often the recommended limit. However, moderate departures from normality do not seriously 
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affect the result of a student t-test (Montgomery, 2013). Thus, a sample size of 24 is close enough 

to 30 that it should not affect the confidence interval analysis using the t-factors. 

There are three options for the outputs of the first sub-model that do not meet the sample size 

requirement of the CLT. The first is to assume that they are approximately normally distributed 

and continue with the analysis. The second is to test for normality each individual supply chain 

over their six observations and continue with the analysis using only the outputs of the supply 

chains that are normally distributed according to the results of the normality tests. The third, is to 

use a non-parametric multiplier to create a CI. The last option is not desirable because the non-

parametric tests are less powerful than parametric tests at the same sample sizes (Chin & Lee, 

2008) and the sample sizes of the outputs of the other two sub-models are relatively small as well. 

Thus, the following is an exploration of the other two options.  

First, the analysis was performed assuming that all the supply chains of the first sub-model follow 

a normal distribution. The CIs were calculated for all the outputs of the first (zi,j,k,l,m,n), second 

(ti,j,k,l,m,n), and third (tj,k,d) sub-models. Then, the base case outputs for all three sub-models were 

compared against the ranges of their respective CIs. Finally, the percentage of base case outputs 

that were within the range of their respective CIs was calculated for each sub-model for all three 

CGE forecasts (2015, 2035, and 2035 with CPTPP). Figure 19 shows the results for three 

confidence levels 99%, 95%, and 90%.  

 

Figure 19 Percentage of Base Case Outputs Within Mean CI 

Similar to the COV analysis (Figure 16), there is almost no difference between the results of each 

of the three CGE forecasts. Thus, the results for the 2015 forecast are presented an example in 

Figure 20. 
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Figure 20 Percentage of Base Case Outputs Within Mean CI (2015 Forecast) 

As expected, as confidence is increased, the number of base case outputs that fall within the CI 

range increases. This is because confidence intervals become narrower as the confidence level 

decreases (i.e., on repeated sampling from the population, less percentage of the total CIs will 

contain the true mean because they are narrower). The downward trend through the successive 

sub-models was also expected. Equation 14 shows that as N increases, the CIs become narrower 

since N is in the denominator. The sample size quadruples from the first sub-model to the second 

and is seven times larger than previously by the third sub-model. This explains why the trend is 

downwards as more variation (i.e., larger N) is introduced at each sub-model. 

An unexpected result was the sharp decline in the percentage within CI90 and CI95 for the second 

sub-model. This decline was expected to resemble the trend for 99% confidence interval because 

the sample size increase from the first to the second sub-model is smaller than the sample size 

increase from the second to the third sub-model. Hence, it is expected to see a larger drop in the 

percentage of the base case outputs that fall within the CIs between the second to third sub-model 

than between the first to second sub-model. The only explanation for these observations is that the 

base case data happen to yield more extreme values for the second sub-model outputs that more 

often fell outside of the CIs at the confidence levels of 95% and 90%. 

The normality test used on the outputs (zi,j,k,l,m,n) of the first sub-model is the Shapiro-Wilk (SW) 

test, which is often recommended by researchers for various setups (Farrell & Rogers-Stewart, 

2006; Keskin, 2006; Mendes & Pala, 2003; Mohd Razali & Bee Wah, 2011; Öztuna et al., 2006; 

Romão et al., 2010; Yap & Sim, 2011; Yazici & Yolacan, 2007). The null hypothesis (H0) in this 

test is that the data are normally distributed. The test found not enough statistical evidence to reject 

the H0 for only about 23% of all the outputs of the first sub-model. These outputs, which are then 

assumed normally distributed, were analyzed separately in Figure 21. 
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Figure 21 Percentage of Base Case Outputs Within Mean CI After SW Test on Trade 

Values (2015 Forecast) 

The downward and steepness trends are similar to the results of the analysis using all the outputs 

of the first sub-model (i.e., assuming normality for all results). However, there is a noticeable 

difference between results for different confidence levels. In Figure 20, the percentage of base case 

outputs that fell within the range of the CIs did not go below 70%, even at the 90% confidence 

level. Figure 21 shows that at the 95% confidence level, the percentage drops to about 64%. Then 

it drops further to about 44% at the 90% confidence level. If this study only conducted the analysis 

using a confidence level of 95% (which is typical), the conclusions about the outputs of the first 

sub-model would be very different depending on whether the assumption of normality was made 

or how it was tested. This highlights the importance of understanding the assumption of normality 

and choosing the correct procedure for statistical analysis. Finally, at the 99% confidence level, 

there is very little difference between the normality tested results and the assumed normality 

results.   

The overall conclusion of this CI analysis is however the same for both the assumed normality 

results and the ones obtained using the SW normality test. Overall, the percentages of base case 

outputs that are within the ranges of the CIs for the 95% confidence level are very low. In both 

cases, the percentage start at acceptable values but rapidly drops below 30% by the second sub-

model and then just above 10% by the third sub-model at the 95% confidence level. This means 

that only about 10% of the base case outputs (tj,k,d) for the third sub-model fall within the range of 

the CIs at the 95% confidence level. This suggests that if all the available data are used (i.e., the 

true population of the outputs is simulated), the freight model will yield statistically different mean 

values than the base case values. However, these results pertain specifically to the illustrative base 

case, other base cases may fall closer to or further from the population mean outputs.  
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4.2. Aggregated Outputs 

In the preliminary study, three types of aggregated results from the base case were provided. The 

first set of results were aggregations over three gateways (defined below). The second set of results 

were aggregations over all supply chain characteristics (i,j,k,l,m) except for ports of entry (n) in 

order to identify the top ten most affected ports by the absolute increases in yearly tonnage of 

exports. The last set of results were the aggregated domestic export trade growth results. More 

detail is provided in the sections below. The gateways, ports of clearance, and provincial/territorial 

boundaries are presented in Figure 22. 

  

Figure 22 Gateways and Ports of Clearance 

The aggregated outputs were presented in the form of tables. For each type of result, two tables 

were prepared. The first table showed the growth in exports over the study period (2015-2035) due 

to forecasted trade growth alone. The second table showed the additional export impact introduced 

into the economy by forecasting the effects of the CPTPP policy shocks over the study period.  

The analysis procedure applied to the aggregated outputs similar to the one applied to the 

disaggregated outputs. First, descriptive statistics are calculated, then confidence intervals are 

created, and finally, the percentage of base case outputs that fall within the CIs are obtained. The 

results are presented using similar tables to the preliminary study for ease of direct comparison of 

Legend  

Asia-Pacific Gateway 

Continental Gateway  

Atlantic Gateway 

Ports of Clearance 
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conclusions. Consequently, the major conclusions of the base case study are reassessed using mean 

data and compared to the base case conclusion to discern similarities and discrepancies.  

The analysis performed on the port rankings is different from the analyses performed on the 

disaggregate data. Rank measurements are used in addition to the descriptive statistics to assess 

the variation on the top ten results.  

Note that a high level of detail for the explanations of some of the procedures is not provided 

below as they are, in essence, the same as the descriptions in Section 4.1. 

4.2.1. Gateway Summaries 

There were three gateways defined in the base case study. The Asia-Pacific gateway includes the 

trade infrastructure in the provinces of British Columbia, Alberta, Saskatchewan, and Manitoba. 

The Continental gateway encompasses the trade infrastructure of Ontario and Quebec. Lastly, the 

infrastructure of the Canada’s Maritime provinces (Nova Scotia, New Brunswick, Prince Edward 

Island, and Newfoundland and Labrador) belongs to the Atlantic gateway.  

The repeated simulations yielded 24 unique values for each summary table (i.e., 6 x 4). Essentially, 

24 tables depicting the results of the forecasted export trade growth over 2015-2035 were created 

as well as 24 tables showing the additional impacts of the CPTPP on exports. The gateway analyses 

are only affected by the variation introduced on the first and second sub-models as they are 

concerned with international trade quantities (ti,j,k,l,m,n) measured in yearly tonnage. Domestic 

supply chains are not introduced in the gateway analysis.  

Descriptive statistics were calculated for the results of the repeated simulations regarding export 

trade growth between 2015-2035 without the CPTPP. Table 15 shows the means of the 24 

observations (tables) created through repeated simulations. Table 16 shows the corresponding 

COVs. The colour coding on this table depicts the magnitude of dispersion for each point on the 

table with red being the highest and green being the lowest. COV values over 1 are considered 

high variance and are shown in different shades of reds. Conversely, dispersion values under 1 are 

considered low variance and are depicted in a range of yellow to green colours.  

Most of the same major findings on the base case study (Table 17) can be concluded using the 

mean data (Table 15) but some cannot. First, the largest relative growth in exports on average was 

observed on the Atlantic gateway to CPTPP countries. However, the relative growth observed in 

the base case is larger (106%) than the mean outputs (66%) making the conclusion more obvious. 

Second, the largest absolute growth in exports is from the Atlantic gateway to the rest-of-the-world 

(ROW) countries on the base case but it is from the Continental gateway to ROW on average. 

Third, double digit growth is forecasted over the study period for almost all of Canada’s 

international transportation modes on average and in the base case. Last, the largest relative and 

absolute growth are by air and water respectively on average and for the base case. However, once 

again, the values for the base case are higher than the mean values. Overall, most major findings 

were the same, meaning that, although many aspects of this model exhibit high variance in the 

disaggregated results, the conclusions of the base case are mostly in line with the mean major 

conclusions for major gateways after findings are aggregated.  
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Table 15 Mean Values for Forecasted Export Tonnage Growth - Gateway Summary 

 Water Air Road Rail Other Total 

Gateway Tonnes % Tonnes % Tonnes % Tonnes % Tonnes % Tonnes % 

Asia-Pacific, outbound to CPTPP 4,345,219 18 326,082 49 74,413 37 189,870 34 730 58 4,936,313 20 

Asia-Pacific, outbound to ROW 49,825,882 50 340,402 44 1,408,454 9 2,174,181 13 2,182,283 3 55,931,202 27 

Continental, outbound to CPTPP 1,005,116 26 172,147 45 292,456 57 616,338 54 1,033 61 2,087,090 36 

Continental, outbound to ROW 53,384,451 65 1,420,239 52 5,938,553 10 3,689,745 13 285,459 3 64,718,447 35 

Atlantic, outbound to CPTPP 4,150,785 66 3,368 36 2,367 29 434 70 98 49 4,157,052 66 

Atlantic, outbound to ROW 37,876,934 33 30,812 31 170,828 9 39,778 10 68,166 5 38,186,518 32 

Total, Outbound (Exports) 150,588,387 47 2,293,051 50 7,887,071 10 6,710,344 14 2,537,769 3 170,016,622 31 

Table 16 COVs for Forecasted Export Tonnage Growth - Gateway Summary 

 Water Air Road Rail Other Total 

Gateway Tonnes % Tonnes % Tonnes % Tonnes % Tonnes % Tonnes % 

Asia-Pacific, outbound to CPTPP 0.045 0.041 1.355 0.394 0.434 0.108 0.269 0.096 1.461 0.321 0.092 0.088 

Asia-Pacific, outbound to ROW 0.109 0.265 0.364 0.334 0.096 0.049 0.071 0.070 0.144 0.102 0.097 0.214 

Continental, outbound to CPTPP 0.877 0.401 0.256 0.068 0.153 0.053 0.178 0.124 1.000 0.138 0.435 0.205 

Continental, outbound to ROW 0.219 0.099 0.327 0.102 0.139 0.069 0.065 0.044 0.242 0.050 0.182 0.096 

Atlantic, outbound to CPTPP 1.656 0.424 1.775 0.460 0.807 0.383 0.784 0.196 1.344 0.524 1.654 0.426 

Atlantic, outbound to ROW 0.825 0.266 1.410 0.330 0.095 0.076 0.448 0.292 0.308 0.350 0.818 0.272 

Total, Outbound (Exports) 0.279 0.104 0.300 0.157 0.108 0.061 0.065 0.049 0.147 0.087 0.250 0.087 

Table 17 Base Case Values for Forecasted Export Tonnage Growth - Gateway Summary 

 Water Air Road Rail Other Total 

Gateway Tonnes % Tonnes % Tonnes % Tonnes % Tonnes % Tonnes % 

Asia-Pacific, outbound to CPTPP 4,467,562 19 1,742,885 95 54,415 39 171,755 35 94 40 6,436,711 25 

Asia-Pacific, outbound to ROW 52,120,795 38 301,027 50 1,687,842 8 2,240,270 12 2,345,448 3 58,695,381 22 

Continental, outbound to TPP 3,885,784 52 124,631 42 316,226 59 686,841 60 2,526 74 5,016,008 53 

Continental, outbound to ROW 68,040,143 58 966,772 58 5,982,323 10 3,690,373 12 356,474 3 79,036,086 35 

Atlantic, outbound to CPTPP 17,200,845 106 26,095 77 467 26 786 69 22 12 17,228,214 106 

Atlantic, outbound to ROW 108,004,056 45 7,755 26 159,053 9 35,425 9 65,216 3 108,271,505 45 

Total, Outbound (Exports) 253,719,184 47 3,169,165 71 8,200,325 10 6,825,450 13 2,769,781 3 274,683,906 35 
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The COVs for each gateway summary value can be seen in Table 16. Most of the values exhibit 

low variances (COV<1). For example, all the relative growth values have dispersion values under 

0.5 except for the values of the Atlantic gateways outbound to CPTPP countries using other mode 

of transportation (~0.52). This gateway also exhibited high variance of the absolute growth in 

yearly tonnage results more often than the other gateways and it had the highest COV value (~1.77) 

on the table. Although there are a few instances of high variance, the values are still relatively 

small as expected. The gateway summary analysis is highly aggregated which lowers the 

dispersion in the data.  

The CIs were created for all the values in the table as well.  Table 17 shows the base case values 

with colour coding depicting the values that fell within their respective 95% CIs (green) and the 

values that did not (red).  The percentage of values that were within the CI was calculated for 

confidence levels of 99%, 95%, and 90%. The results were 29.8% 20.2% and 17.9% for the 99%, 

95%, and 90% CIs respectively. These percentages are low meaning that statistically, the base case 

aggregated outputs are not generally within the expected values on average for 99%, 95%, and 

90% levels of confidence.  

Although, the dispersion is relatively small, there was not enough statistical evidence to prove that 

about 70% of the base case values were within the expected range of the central tendency at the 

99%, 95% and 90% confidence levels. The range or size of CIs lowers as dispersion lowers 

meaning that they get narrower. This effect is seen in distributions with less pronounced extremes 

or tails due to the lower dispersion. Ultimately, the base case data seem to yield values that are 

closer to the extremes of the sample mean distribution based on the CIs created through repeated 

simulation. However, it was also shown that due to the low dispersion of these results, similar 

major conclusions can be drawn from the freight model after using point (base case) data and the 

repeated simulation outputs for summaries of gateways.  

Table 18 and Figure 23 further illustrate the point above as examples. Table 18 shows an analysis 

of all the simulated outputs for exports through the Asia-Pacific gateway outbound to CPTPP 

signatories via water mode using absolute and relative errors (with the expected value being the 

sample mean).   
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Table 18 Asia-Pacific Gateway Exports outbound to CPTPP Countries (Water) 

Simulation Setting  
Value 

[tonnes] 

Abs. 

Error 

Rel. 

Error 

2010 CBSA, 5_digit 4,389,039 43,820 1.01 

2011 CBSA, 5_digit 4,476,427 131,209 3.02 

2012 CBSA, 5_digit 4,630,654 285,436 6.57 

2013 CBSA, 5_digit 4,485,372 140,153 3.23 

2014 CBSA, 5_digit 4,360,683 15,464 0.36 

2015 CBSA, 5_digit 4,467,562 122,344 2.82 

2010 CBSA, 4_digit 4,180,517 164,702 3.79 

2011 CBSA, 3_digit 4,119,557 225,661 5.19 

2012 CBSA, 2_digit 4,240,844 104,374 2.40 

2013 CBSA, 4_digit 4,249,153 96,066 2.21 

2014 CBSA, 3_digit 4,225,931 119,288 2.75 

2015 CBSA, 2_digit 4,514,013 168,794 3.88 

2010 CBSA, 4_digit 4,307,891 37,327 0.86 

2011 CBSA, 3_digit 4,339,072 6,147 0.14 

2012 CBSA, 2_digit 4,775,116 429,898 9.89 

2013 CBSA, 4_digit 4,150,886 194,333 4.47 

2014 CBSA, 3_digit 4,174,771 170,447 3.92 

2015 CBSA, 2_digit 4,587,785 242,566 5.58 

2010 CBSA, 4_digit 4,066,489 278,729 6.41 

2011 CBSA, 3_digit 4,106,590 238,628 5.49 

2012 CBSA, 2_digit 4,595,107 249,889 5.75 

2013 CBSA, 4_digit 4,136,104 209,114 4.81 

2014 CBSA, 3_digit 4,150,572 194,647 4.48 

2015 CBSA, 2_digit 4,555,110 209,891 4.83 

Mean [tonnes] 4,345,219 - - 

Standard Deviation [tonnes] 194,829 - - 

95% CI [tonnes] 4,262,950 - 4,427,490 - 

The base case output is highlighted in yellow. The outputs of the simulation settings that are 

highlighted in green are the ones that fall within the confidence interval about the population mean. 

These values have relative errors of less than approximately 1%. Any other simulation output that 

differs from the sample mean by more than about 1% is not within the expected range of the true 

population mean at the 95% confidence level. This is expected as the COV indicates that the 

standard deviation is small for this output which makes the CI narrower. The base case output has 

a relative error of less than 3%. This small relative error also explains why similar conclusions can 

be drawn using the base case output and the mean output, despite the difference not being small 

enough to fall within the expected range of the true population mean at the 95% confidence level.   
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Figure 23 Asia-Pacific Gateway Exports outbound to CPTPP Countries (All Modes) 

Figure 23 shows the confidence intervals (confidence level = 95%), the mean (in green), and the 

base case outputs (in red) for the exports through the Asia-Pacific gateway outbound to CPTPP 
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signatories via all modes and their total over all modes. The other makers on the figure are the 

other simulated observations (in light grey). Essentially, this figure is a different visual 

representation of the absolute export results on the first rows of Table 15 and Table 17. As in Table 

17, the only value that falls within the CI at the 95% confidence level is the export value of the rail 

mode. The base case values for the mode of air and the total are far outside of the CI range. This 

makes sense since rail is a highly utilized mode for the transportation of commodities meaning 

that there is likely more consistency in shipments via rail from year to year (large amounts of 

commodities are shipped year to year); and the opposite is true for the air mode where any increase 

between years can be perceived as a large fluctuation since it is likely less consistently utilized. 

This is also confirmed looking at their respective COVs (see Table 16) where rail exhibits low 

variances and air exhibits high variances.  

Additionally, Figure 23 shows that there are observed values that are separated from the bulk of 

the results. For example, the base case value for the mode of air is significantly larger than other 

sets of results. This indicates there was a significant uptake in the exports transported via air in the 

last year of data available for the CBSA records for the Asia-Pacific gateway aggregation. It is 

hard to discern whether this is a trend that continues forward (after 2015) or if this year is an outlier 

because there are no data available for later years.  Moreover, the supply chains of the presumptive 

outliers may not be the same for all results. For example, the base case (in red) is within the bulk 

of the results for the modes of water, road, rail and other, but it is far outside of the bulk of the 

runs for the modes of air and total. This makes it difficult to choose a supply chain as an outlier 

since the researcher would have to choose which output to use in identifying the outlier, since the 

apparent outlier supply chains likely differ among the simulated results of the outputs.  

The same analysis was repeated for the gateway summary of additional export impacts of 

implementing the CPTPP from 2015-2035. Table 19, Table 20, and Table 21 show the results.  
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Table 19 Mean Values for Additional CPTPP Export Tonnage Impact - Gateway Summary 

 

Table 20 COVs for Additional CPTPP Export Tonnage Impact - Gateway Summary 

 

Table 21 Base Case for Additional CPTPP Export Tonnage Impact - Gateway Summary 

 

The CI analysis yielded lower percentages for the additional export results than the forecasted 

growth results. The results were 21.4%, 14.3% and 11.9% for the 99%, 95%, and 90% confidence 

levels, respectively. At the 95% confidence level, there was not enough statistical evidence to 

prove that ~88% of the base case results are within the expected range of the repeated simulations 

on average.  

The exact same major observations of the base case can be concluded using the mean results. The 

overall impacts of implementing the CPTPP are relatively small when compared to those due to 

trade growth, with total net increases in exports of 240 thousand tonnes per year by 2035. This 

number is smaller in the base case, 198 thousand tonnes per year by 2035, but the same conclusion 

remains. As in the base case, the largest impacts were observed in the Asia-Pacific gateway, 

increasing by over a million tonnes per year in exports (about the same as the base case value) 

shipped by water to CPTPP countries. In both the base case and the mean values, the magnitude 

Water Air Road Rail Other Total

Gateway Tonnes Tonnes Tonnes Tonnes Tonnes Tonnes

Asia-Pacific, outbound to CPTPP 1,090,177 87,827 4,368 -5,441 57 1,176,987

Asia-Pacific, outbound to ROW -343,321 -3,902 -52,439 -36,819 -33,595 -470,076

Continental, outbound to CPTPP 29,977 21,802 5,045 -8,338 12 48,498

Continental, outbound to ROW -193,591 -16,644 -120,934 -58,886 -4,476 -394,530

Atlantic, outbound to CPTPP 10,887 411 787 19 36 12,140

Atlantic, outbound to ROW -125,037 -396 -5,301 -881 -1,302 -132,917

Total, Outbound (Exports) 469,090 89,098 -168,474 -110,346 -39,267 240,101

Water Air Road Rail Other Total

Gateway [-] [-] [-] [-] [-] [-]

Asia-Pacific, outbound to CPTPP 0.134 0.429 1.028 0.294 0.801 0.103

Asia-Pacific, outbound to ROW 0.122 0.175 0.089 0.154 0.146 0.112

Continental, outbound to CPTPP 1.009 0.290 0.884 0.742 2.192 0.625

Continental, outbound to ROW 0.176 0.463 0.147 0.094 0.262 0.106

Atlantic, outbound to CPTPP 1.118 0.506 1.146 1.671 1.480 1.012

Atlantic, outbound to ROW 0.609 0.692 0.123 0.195 0.278 0.570

Total, Outbound (Exports) 0.146 0.416 0.070 0.122 0.159 0.242

Water Air Road Rail Other Total

Gateway Tonnes Tonnes Tonnes Tonnes Tonnes Tonnes

Asia-Pacific, outbound to CPTPP 1,195,368 118,723 -2,143 -4,320 17 1,307,647

Asia-Pacific, outbound to ROW -397,467 -3,446 -61,918 -43,635 -36,292 -542,758

Continental, outbound to CPTPP 127,571 17,774 4,525 -11,866 -25 137,979

Continental, outbound to ROW -234,527 -7,564 -108,778 -64,796 -5,196 -420,862

Atlantic, outbound to CPTPP 13,215 185 -9 88 1 13,479

Atlantic, outbound to ROW -290,038 -147 -4,825 -906 -1,267 -297,183

Total, Outbound (Exports) 414,122 125,525 -173,149 -125,434 -42,762 198,302
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of the total CPTPP impacts show a clear relation to the gateway’s proximity to the CPTPP 

countries, with the largest being at the Asia-Pacific (nearest), then the Continental, and lastly the 

Atlantic (furthest).  

The dispersion of the results is low. The majority of the COVs indicated low variance on Table 

20. Only the COV of the Continental gateway additional export impacts outbound to CPTPP 

countries via other mode is over 1.7. The Atlantic gateway additional export impacts outbound to 

CPTPP countries exhibited more instances of high variance over all the modes.  

As in the forecasted export growth results, the findings are reasonable. The low dispersion of the 

data, due to their highly aggregated nature, explains the ability to draw similar conclusions using 

both the base case results and the mean results although the CI analysis yielded low percentages. 

In these results, the base case data also seem to yield results at the 99%, 95% and 90% confidence 

levels, that did not present enough statistical evidence to conclude that they are within the expected 

range of the central tendency of the simulated results, meaning that the base case data tend to yield 

more extreme results (i.e., results closer to the tails of the distribution).  

4.2.2. Ports of Clearance Top Ten 

In the preliminary study, the results were aggregated by port of clearance and the top ten ports 

were presented (see Table 22). The top ten ports were selected based on the largest absolute 

impacts measured in yearly tonnage from 2015 to 2035 for both the forecasted export growth 

results and the additional CPTPP export impact results. The total number of ports examined was 

246.  

Table 22 Forecasted Export Growth Top Ports of Clearance – Base Case Results 

Port of Clearance Province Gateway Tonnes % 

St. Johns Newfoundland/Lab Atlantic 73,139,564 71 

Vancouver - Marine and Rail British Columbia Asia-Pacific 48,248,095 37 

Montréal - Main Long Room Quebec Continental 34,267,760 85 

Sept-Îles Quebec Continental 33,368,912 67 

St. Stephen New Brunswick Atlantic 28,965,628 73 

Halifax Nova Scotia Atlantic 18,263,551 46 

Prince Rupert British Columbia Asia-Pacific 3,965,453 49 

Port Hawkesbury Nova Scotia Atlantic 3,439,787 6 

Nanaimo British Columbia Asia-Pacific 2,668,910 85 

Sarnia Ontario Continental 2,495,096 11 

The simulation created 24 set of results for all 246 ports of clearance for both the forecasted export 

growth results and the addition CPTPP export impact results. The total observations are 24 and 

not 168 for the same reason as the gateway summary analyses discussed in Section 4.2.1: the third 

sub-model (domestic quantities) is not used. These sets were used to calculate descriptive statistic 

measures. Table 23 shows the top ten ports of clearance according to their mean forecasted export 

growth results from 2015-2035 measured in yearly tonnage. The table also shows their respective 

mean relative growth results (%) and their COVs. The resulting dispersion of the top ten results 

indicates mostly low variance as expected of highly aggregate results.  
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Table 23 Forecasted Export Growth Top Ports of Clearance - Mean Results  

Port of Clearance Province Gateway 
Tonnes % 

Avg. COV Avg. COV 

Vancouver - Marine and Rail British Columbia Asia-Pacific 44,811,919 0.10 45 0.19 

Sept-Îles Quebec Continental 40,817,257 0.28 88 0.15 

St. Johns Newfoundland/Lab Atlantic 24,326,502 1.03 65 0.11 

Montréal - Main Long Room Quebec Continental 9,442,516 0.81 47 0.29 

Halifax Nova Scotia Atlantic 6,637,938 0.71 50 0.18 

St. Stephen New Brunswick Atlantic 5,757,590 1.46 37 0.85 

Prince Rupert British Columbia Asia-Pacific 4,444,807 0.17 47 0.22 

Port Hawkesbury Nova Scotia Atlantic 2,658,748 0.84 8 0.52 

Nanaimo British Columbia Asia-Pacific 2,617,392 0.27 77 0.05 

Sarnia Ontario Continental 2,355,496 0.05 11 0.03 

A visual comparison of Table 22 and Table 23 shows that the ports on both top tens are the same 

but in different rankings. For example, the Vancouver – Marine and Rail port of clearance ranked 

first on average, whereas the St. Johns port of clearance ranked first on the base case results. This 

observation prompted an examination of the ranked positions of the ports in the top for all the 

repeated simulation results.  

Figure 24 shows the results of this examination. For al 24 simulation runs, a total of 18 unique 

ports of clearance were ranked in the top ten. The percentage of total observations (24) where a 

port ranked in a particular place (from 1st to 10th) was calculated for all 18 ports.  
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Figure 24 Forecasted Export Growth Top Ports of Clearance – All Ports in Top Ten 

Figure 24 presents 11 ports plus an aggregation of remaining ports in the “other” category. The 

selection of the ports in the other category was based on cumulative percentages. The 11 ports 

presented on the figure account for over 90% of the total observations (24 runs by 10 ranked ports). 

The other category includes the ports: Quebec, St. Andrews, Fort Erie, Ontario, Conerbrook, 
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Vancouver – Main Long Room and Toronto Pearson International Airport (<8% of total 

observations).     

The most variation in rankings is observed in the mid-ranking places. The first and second places 

were occupied by the same three ports: Sept-Îles, Vancouver – Marine and Rail and St. Johns. An 

interesting finding is the percentage of time that the port of Sept-Îles occupies first place is higher 

than that of the Vancouver – Marine and Rail port which is ranked first on average. This means 

that the values of the forecasted export growths measured in yearly tonnes (2015-2035) for Sept-

Îles are on average smaller than the values for Vancouver – Marine and Rail but manage to exceed 

the latter port for first place more often. Another interesting finding is that not all top ten lists 

contain the same ports. This observation prompted another analysis using rank error measures.  

The utilized rank error method (Xaykongsa, 2021) quantifies the level of similarity between 

ranking methodologies. In this thesis, the ranking methodologies studied are defined as one 

simulation run. Consequently, the rank error method was used to quantify the level of similarity 

between the top ten rankings created by each simulation run (total 24). This method contains 

multiple measures. However, for this thesis, the relative rank error (RREn) and the relative rank 

error weighted average (RREwa) are used. The RREn percentage represents the fraction of the top 

n ranked ports of clearance that would be expected to be different between simulation run results. 

The RREwa is a weighted average of the RREn over the total possible number of lists N.  The top n 

relative rank error (RREn) is computed using the following:  

𝑅𝑅𝐸 𝑛 =
𝑛−𝑚

𝑛
       (15) 

where m is the number of sites that are included by all simulation runs in the top n ranked ports of 

clearance. Then, the equation below was used to calculate the weighted average of the relative 

rank errors:  

     𝑅𝑅𝐸 𝑤𝑎 =
∑

𝑅𝑅𝐸𝑛
𝑛

𝑁
𝑛=1

∑
1

𝑛
𝑁
𝑛=1

      (16) 

Using the 24 simulation results, the calculated RREwa was 78.4%. Six ports out of the top ten are 

expected to be different (RRE10 = 60%), when the ports are ranked using the freight model after 

introducing uncertainty in the supply chain shares (6 years of CBSA data) and in the value-weight 

ratios (4 aggregation schemes of SCTG codes). Table 24 shows the results of the RREn for each 

value of n. The high RREwa suggests that, regardless of the small dispersion of the ports ranked top 

ten using the means, there is significant fluctuation between the simulation runs on the ports that 

are selected as top ten. This is in line with Figure 24, as this visual representation of the variation 

present in the ports of clearance ranked top ten, for different simulation runs, also suggests that 

they vary widely.  When the disaggregated simulation results are aggregated by ports of clearance 

and then averaged, the ranked top ten list is very similar to the base case (i.e., same ports on both 

lists but with differences in the places they occupy). However, the RREwa reveals that, if the results 

are not averaged but different base case scenarios are selected individually, the top 10 rankings 

obtained are going to be very different on average between different scenarios. Thus, the results 



86 

imply the importance of considerations selecting base cases for these aggregated port of clearance 

results if all available data are not used.  

Table 24 Rank Error Results for the Forecasted Export Growth Top Ports of Clearance 

n m RREn 

1 0 1.00 

2 0 1.00 

3 1 0.67 

4 2 0.50 

5 2 0.60 

6 3 0.50 

7 4 0.43 

8 4 0.50 

9 4 0.56 

10 4 0.60 
 RREwa 78.39% 

Finally, a similar conclusion to the major conclusion presented on the base case study can be 

observed on the mean data as well. For both ranked lists, the top two largest absolute impacts were 

seen on the ports of St. John and Vancouver – Marine and Rail. This is in line with other results 

as these highly aggregated results exhibit low variance in terms of their values despite the high 

RREwa. 

The same three analyses were conducted for the results of the repeated simulations for additional 

export impacts after implementing the CPTPP. Table 25 shows the results for the base case and 

Table 26 shows the top ten ports according to the mean of the 24 runs. Figure 25 shows the fraction 

of total observations that a port occupies a particular ranked place.  

The visual comparison between Table 25 and Table 26 yielded different observations for this set 

of results. Unlike in the forecasted growth results, there are six ports of clearance that are unique 

to either ranked list. The other 14 ports that are common in both tables vary in their ranked places 

as expected. Additionally, Table 26 has more instances where the COVs indicate high variance, 

but most of the values are low variance.  
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Table 25 Additional CPTPP Export Impact Top Ports of Clearance – Base Case Results 

 

Table 26 Additional CPTPP Export Impact Top Ports of Clearance – Mean Results 

 

Figure 25 shows all the ports that ranked in the top ten for all simulated results and the fraction of 

the total observations that they placed in a certain rank. A total of 17 unique ports were ranked in 

the top ten over the 24 runs. The same procedure as before was used to create the other category. 

The 11 ports that are distinctly presented in the figure make up about 89% of all observations. The 

ports aggregated in the other category are Toronto -Main Long Room, Edmonton, Halifax, 

Montreal – Mirabel Int. Airport, Montreal – Main Long Room, and Lacolle.  

Port of Clearance Province Gateway Tonnes $1,000

Vancouver - Marine and Rail British Columbia Asia-Pacific 822,865 1,050,063

Calgary Alberta Asia-Pacific 77,082 31,573

Vancouver - Int. Airport British Columbia Asia-Pacific 38,028 128,799

Montréal - Main Long Room Quebec Continental 21,918 -42,563

Port Alberni British Columbia Asia-Pacific 14,707 4,857

Niagara Falls Ontario Continental 5,680 44,420

Toronto - Pearson Int. Airport Ontario Continental 5,675 48,056

Montréal - Trudeau Int. Airport Quebec Continental 4,264 84,357

Kitimat British Columbia Asia-Pacific 2,325 7,900

Vancouver - Main Long Room British Columbia Asia-Pacific 2,227 60

Avg. CV Avg. CV

Vancouver - Marine and Rail British Columbia Asia-Pacific 754,624 0.15 1,068,819 0.03

Vancouver - Int. Airport British Columbia Asia-Pacific 64,640 0.56 141,580 0.48

Calgary Alberta Asia-Pacific 16,008 1.30 77,064 0.96

Vancouver - Main Long Room British Columbia Asia-Pacific 8,682 2.07 13,725 2.13

Port Alberni British Columbia Asia-Pacific 7,152 0.54 3,736 0.29

Lethbridge Alberta Asia-Pacific 6,707 0.59 2,479 0.37

Nanaimo British Columbia Asia-Pacific 5,890 1.48 5,182 0.56

Montréal - Trudeau Int. Airport Quebec Continental 4,792 0.31 42,859 0.46

Niagara Falls Ontario Continental 4,343 0.26 29,777 0.28

Edmonton Alberta Asia-Pacific 3,164 2.11 30,819 2.05

POE Province Gateway
Tonnes $1000 [2015CAD]
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Figure 25 Additional CPTPP Export Impact Top Ports of Clearance – All Ports in Top Ten 

Upon a visual inspection there appears to be more variation in this set of results than the previous 

one. All the ranked placements had at least 4 ports occupying them for a percentage of the runs. 

The only exception was the first place which was occupied by the Vancouver – Marine and Rail 

port for 100% of the runs.  
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The calculated RREwa for the additional export impact results is 36.5% (see Table 27). Seven of 

the top ten ports of clearance are expected to be different between simulation runs (RRE10 = 70%).  

Table 27 Rank Error Results for Additional CPTPP Export Impact Top Ports of Clearance 

n m RREn 

1 1 0.00 

2 1 0.50 

3 2 0.33 

4 2 0.50 

5 2 0.60 

6 2 0.67 

7 2 0.71 

8 2 0.75 

9 2 0.78 

10 3 0.70 

  RREwa 36.51 

Despite the slight increase in dispersion and moderately high RREwa, the major conclusion 

observed in the base case was also observed in the mean results of the repeated simulation. As 

expected, most the impacts of the CPTPP on exports are felt in ports of clearance that serve the 

Asia-Pacific and Continental gateways. This conclusion seems reasonable since these ports serve 

CPTPP countries.  

The results of the analyses performed on the repeated simulation outputs for both the forecasted 

export growth and the additional export impacts of the CPTPP are promising for the port of 

clearance aggregations. Major conclusions are consistent with the base case for the aggregated top 

ten ports of clearance outcomes, despite the mean COVs of the first two sub-models in the 

disaggregated results indicating high variance (see these results in Section 4.1). The RREwa values 

also suggest that using a single base case scenario may result in very different top ten port of 

clearance rankings depending on the base case selected. Lastly, there was higher dispersion on the 

results of the additional CPTPP export impacts; this was also observed in the gateway summary 

results.  

4.2.3. Domestic Summaries 

The preliminary study presented separate summaries for the domestic freight flows between 

provinces by rail and truck. Two tables were created for each mode. The first table contained the 

domestic summary results for the forecasted export growth measured in yearly tonnes from 2015 

to 2035 and the second table showed the results for the additional export impacts generated by the 

implementation of the CPTPP.  

The repeated simulations generated 168 (6 x 4 x 7) tables of results for each mode and forecasted 

scenario (no CPTPP and implemented CPTPP). The domestic summaries were affected by the 

variation introduced in all the sub-models as they are created using the results of the output of the 
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third sub-model (tj,k,d). The same analyses described in Section 4.2 were applied to the domestic 

summary results.  

4.2.3.1. Domestic Movements by Rail 

Descriptive statistics were calculated for the results of the repeated simulations regarding export 

trade growth between 2015-2035.  Table 28 shows the means and Table 29 shows the COVs of 

the 168 tables created. As in the gateway summary analysis, the red colours represent COVs values 

indicating high variance (COV>1) and the yellow to green colours indicate low variance (COV<1). 

Finally, Table 30 shows the results of the CI analysis. 

The COVs for the domestic summary of the rail mode can be seen in Table 29. There are values 

that are quite large in comparison to most other values. COV values over 5 were calculated for 

various exports (absolute values) from Prince Edward Island to other provinces. However, the 

movements mentioned in the major findings exhibit very low variance. If these types of results are 

used only for major findings, it seems that the variation is not affecting the domestic movements 

that have significantly large forecasted export growth from 2015 to 2035 with a few exceptions 

(e.g., exports from Quebec to itself and Alberta). Another notable result is the consistently low 

variance of the results for both absolute and relative export growth of movements to Ontario from 

other provinces. This means that after the three sources of variation are introduced, the movements 

of freight to Ontario for export are consistent.   

CIs were constructed for all values. Then, the base case values were compared to the ranges of the 

CIs. Table 30 shows the results of the CI analysis directly on the base case values. Essentially, the 

table depicts the domestic summary for the rail mode obtained in the base study with colour coding 

illustrating the values that are within the 95% CIs. Green indicates that the CI analysis did not 

yield sufficient statistical evidence at the 95% confidence level to show that the base case value 

was not within the expected range of the mean; red indicates the opposite. A grey colour is added 

indicating the values that contained all zeros. If the mean of the output is zero, then the COV is 

not a number, as the mean is in the denominator of the COV formula (see Equation 12). The 

fractions of outputs that were within the CIs were calculated for the 99% 95%, and 90% confidence 

levels. The results were 48.6%, 31.4% and 25.7% for the absolute growth outputs (in yearly 

tonnage) and 49.2%, 40.0%, and 35.4% for the relative growth outputs (in percentage) for 99% 

95%, and 90% confidence levels, respectively. The percentages are low, but they are higher than 

the results for the gateway summaries. 

The results of the CI analysis yielded mostly low percentages. The percentages resulting from the 

comparison of the base case to the repeated simulation outputs were close to 50% for both the 

absolute and relative forecasted export growth outputs at the 99% level of confidence. However, 

they were low for the other two confidence levels. These results are in line with the trends observed 

in the gateway summaries. The base case seems to yield values that are more extreme than the 

central tendencies of the repeated simulation observations. It is also interesting to note that the 

base case absolute results for the movements to British Columbia from six of the provinces were 

within their respective CIs. 
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Table 28 Mean Values for Forecasted Export Tonnage Growth – Domestic Summary (Rail) 

  Province of Export 
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British Columbia 14,987,924 3,594 73,854 14,876 252,324 101,477 1,775 3,498 0 0 

Alberta 5,834,020 42,843 205,396 235,332 750,073 515,660 1,123 15,024 0 0 

Saskatchewan 9,690,422 27,939 4,591 261,446 724,044 824,172 5,458 49,294 0 0 

Manitoba 1,276,708 1,926 814 5,680 108,160 405,884 761 16,905 0 0 

Ontario 912,445 12,135 2,913 30,889 307,086 1,924,006 12,522 94,545 0 0 

Quebec 317,161 1,974 1,424 3,276 351,845 1,571,573 6,671 65,189 130 0 

New Brunswick 2,713 12 17 563 18,704 17,954 984,935 12,344 0 0 

Nova Scotia 718 34 2 26 23,509 6,242 602,810 5,879,045 0 0 

Newfoundland and Labrador 0 0 0 0 0 21,427,190 0 0 17 0 

Prince Edward Island  0 0 0 0 0 0 0 0 0 0 

Percentage [%] 
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British Columbia 41 7 4 8 10 22 13 60     

Alberta 32 6 16 6 6 22 5 24     

Saskatchewan 47 3 14 18 15 26 28 36     

Manitoba 43 6 9 12 15 36 14 36     

Ontario 49 18 11 18 15 41 23 37     

Quebec 53 24 9 8 17 53 12 51 62   

New Brunswick 39 10 13 10 7 14 50 65     

Nova Scotia 42 18   16 17 11 14 18     

Newfoundland and Labrador           83         

Prince Edward Island                      
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Table 29 COVs for Forecasted Export Tonnage Growth - Domestic Summary (Rail) 

  Province of Export 
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British Columbia 0.088 0.431 0.359 0.468 0.220 0.216 0.506 0.461   7.223 

Alberta 0.111 0.829 0.241 0.457 0.117 0.831 0.791 0.670     

Saskatchewan 0.088 0.487 0.527 0.226 0.086 0.137 1.367 0.493     

Manitoba 0.531 0.615 0.695 0.386 0.283 0.915 0.705 0.875     

Ontario 0.384 0.686 0.284 0.231 0.291 1.409 0.641 0.315   6.454 

Quebec 0.262 1.634 0.763 0.350 0.097 1.072 0.793 0.331 1.585 5.078 

New Brunswick 0.713 0.626 0.766 1.259 0.188 0.716 1.624 1.127     

Nova Scotia 1.248 0.941 0.942 0.964 0.281 0.453 2.033 0.820     

Newfoundland and Labrador           0.369     2.667   

Prince Edward Island                      

Coefficient of Variation for Relative Growth [-] 
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British Columbia 0.129 0.250 0.240 0.123 0.136 0.099 0.624 0.103     

Alberta 0.166 0.683 0.256 0.421 0.103 0.598 0.475 0.573     

Saskatchewan 0.050 0.117 0.332 0.087 0.082 0.090 0.705 0.262     

Manitoba 0.362 1.008 0.341 0.172 0.259 0.241 0.338 0.239     

Ontario 0.122 0.644 0.167 0.088 0.152 0.510 0.430 0.200     

Quebec 0.158 0.699 0.101 0.198 0.089 0.186 0.418 0.316 0.583   

New Brunswick 0.254 0.448 0.338 0.405 0.195 0.542 0.296 0.344     

Nova Scotia 0.565 0.291   0.331 0.131 0.124 1.339 0.370     

Newfoundland and Labrador           0.134         

Prince Edward Island                      
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Table 30 Base Case Values for Forecasted Export Tonnage Growth - Domestic Summary (Rail) 

  Province of Export 
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British Columbia 16,382,114 2,491 55,290 11,168 246,276 103,708 2,647 1,746 0 0 

Alberta 4,878,928 139,441 166,265 138,152 828,940 389,924 1,239 5,121 0 0 

Saskatchewan 11,077,173 38,680 2,612 209,499 737,516 881,017 9,426 32,041 0 0 

Manitoba 1,014,174 1,341 552 3,957 89,614 252,994 521 1,776 0 0 

Ontario 981,845 4,476 2,480 24,914 247,105 8,913,317 11,719 109,604 0 0 

Quebec 314,792 1,054 2,648 3,909 351,071 5,491,679 2,739 68,113 40 0 

New Brunswick 3,463 13 11 210 21,821 18,815 622,816 389 0 0 

Nova Scotia 492 54 4 10 15,946 3,116 4,735,206 17,572,602 0 0 

Newfoundland and Labrador 0 0 0 0 0 16,043,738 0 0 0 0 

Prince Edward Island  0 0 0 0 0 0 0 0 0 0 

Percentage [%] 
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British Columbia 37 7 4 9 9 21 9 58     

Alberta 25 25 10 3 6 12 5 41     

Saskatchewan 51 3 15 18 14 24 19 42     

Manitoba 39 3 15 14 14 38 14 30     

Ontario 42 11 11 18 13 95 25 29     

Quebec 51 20 8 8 16 56 8 36 49   

New Brunswick 57 10 10 10 8 9 66 63     

Nova Scotia 28 21 24 23 16 12 56 22     

Newfoundland and Labrador           79     46   

Prince Edward Island                      
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Some major findings from the preliminary study can be concluded using the mean data and some 

are different. The preliminary study concluded that the largest impacts due to forecasted absolute 

growth were seen in exports carried by rail to British Columbia from itself and from Saskatchewan 

on the west coast. On the east coast, the largest increase in exports was seen in the movements 

from Nova Scotia to itself and movements from Newfoundland and Labrador to Quebec. In central 

Canada, exports due to absolute trade growth are largest for movements to Quebec from itself and 

Ontario. The mean values also showed the same conclusions. However, the mean forecasted export 

growth yearly tonnages are lower than the base case values for these domestic movements, except 

for the exports from Newfoundland and Labrador to Quebec which were higher. Lastly, the base 

case indicated that the highest forecasted relative growth was seen in movements from Ontario 

shipped via rail to Quebec, a 95% increase. However, this value was much lower in the mean 

outputs (41%) and was not the highest.     

The analyses were repeated for the domestic summary of the additional export impacts caused by 

implementing the CPTPP from 2015-2035 for the domestic rail mode. The results are presented in 

Table 31, Table 32, and Table 33.  

The dispersion of the results varies largely. A high number of COV values indicate low variance; 

although, these are higher than the dispersion values observed in the gateway summary analysis 

(see Table 20). However, there are two domestic movements that exhibit extreme values of 

dispersion. The COVs of the additional impacts on exports from British Columbia to Nova Scotia 

and Quebec to Newfoundland and Labrador via rail are 76.6 and 56.5, respectively. These values 

indicate extremely high variances. One explanation for this behavior lies in the signs of the results. 

The domestic trade flows presented can be negative, zero, or positive depending on the additional 

impact of the CPTPP on that movement (i.e., trade flows can decrease, stay the same, or increase 

after the CPTPP is introduced, when compared to the forecasted growth only scenario). In the case 

of those extreme dispersions, negative and positive values may be present, making the variation 

very large. Interestingly, the variance is small for the relative additional export growth seen in rail 

shipments to Ontario from most of the provinces (except shipments with relative additional export 

values averaging zero).  

The CI analysis yielded similar percentages for the additional export results as the forecasted 

growth results. The results were 48.6%, 31.4% and 25.7% for the 99%, 95%, and 90% confidence 

levels, respectively. At the 95% confidence level, there was enough statistical evidence to prove 

that ~69% of the base case results are not within the expected range of the central tendency of the 

repeated simulation observations. This is lower than the result of the gateway summary analysis 

(~88%) although the domestic movements have an extra source of uncertainty (recall the domestic 

shares varied over 7 CFAF years of data).  
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Table 31 Mean Values for Additional CPTPP Export Tonnage Impact – Domestic Summary (Rail) 
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British Columbia 30,978 -57 -1,652 -393 -6,760 -1,280 -48 -1 0 0

Alberta 124,309 308 -1,779 -3,072 -11,664 -6,746 -39 -166 0 0

Saskatchewan 19,814 -454 -79 -3,561 -17,285 -33,041 -60 -2,261 0 0

Manitoba 14,079 -26 -30 -135 -3,153 -7,402 -20 -480 0 0

Ontario 246,321 -176 -75 -467 -3,055 -8,558 -129 -58 0 0

Quebec 14,996 -11 -49 -94 -5,222 -2,606 -77 219 0 0

New Brunswick 217 0 0 -12 -497 -251 -2,482 -58 0 0

Nova Scotia -1 -1 0 -1 -329 -120 -3,111 -31,500 0 0

Newfoundland and Labrador 0 0 0 0 0 -30,243 0 0 0 0

Prince Edward Island 0 0 0 0 0 0 0 0 0 0

Province of Export
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Table 32 COVs for Additional CPTPP Export Tonnage Impact – Domestic Summary (Rail) 
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British Columbia 0.306 0.494 0.334 0.532 0.190 0.191 0.540 73.580 7.223

Alberta 0.224 3.978 0.246 0.378 0.137 0.542 0.995 0.869

Saskatchewan 0.984 0.499 0.593 0.357 0.144 0.153 0.695 0.438

Manitoba 0.698 0.553 0.924 0.811 0.340 0.202 0.480 0.801

Ontario 0.224 0.415 0.511 0.337 0.221 0.514 0.551 6.601 6.454

Quebec 0.234 2.777 0.672 0.727 0.100 1.357 0.261 1.720 56.517 4.826

New Brunswick 1.734 4.360 0.843 1.306 0.187 0.602 1.233 1.133

Nova Scotia 9.836 1.917 0.754 0.998 0.347 0.683 1.060 0.649

Newfoundland and Labrador 0.290 2.462

Prince Edward Island 
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Table 33 Base Case Values for Additional CPTPP Export Tonnage Impact - Domestic Summary (Rail) 
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British Columbia 35,961 -42 -1,225 -296 -7,302 -1,484 -78 -3 0 0

Alberta 142,483 3,970 -1,553 -2,008 -13,485 -9,529 -116 -28 0 0

Saskatchewan -1,012 -633 -25 -2,963 -20,546 -39,794 -146 -1,907 0 0

Manitoba 7,355 -21 -8 -23 -2,433 -6,021 -16 -81 0 0

Ontario 285,847 -107 -50 -406 -2,433 -14,221 -110 -119 0 0

Quebec 12,663 -13 -92 -147 -5,858 17,466 -58 -146 0 0

New Brunswick -10 3 0 -6 -662 -416 -1,476 -1 0 0

Nova Scotia 1 0 0 0 -244 -66 -10,018 -54,954 0 0

Newfoundland and Labrador 0 0 0 0 0 -24,953 0 0 0 0

Prince Edward Island 0 0 0 0 0 0 0 0 0 0

Province of Export
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The major conclusions were the same using the base case outputs and the mean outputs of the 

repeated simulations. In both scenarios, the largest additional impacts on exports were seen in the 

domestic movements to British Columbia from Ontario and from Alberta (smaller impact) via rail. 

The outputs from the base case were larger than those from the repeated simulation but they were 

close. It can also be concluded, using both set of results, that trade diversion occurred as freight 

shipped to Quebec and Ontario for export from almost all other provinces decreased. The reason 

for the agreement between the major conclusions of both sets of results was already explained in 

the disaggregated analysis. From the second to third sub-models, over 190 million supply chains 

were aggregated into 363 domestic movements. This large aggregation generates better results for 

the domestic movement summary even as a new source of uncertainty is introduced. 

4.2.3.2. Domestic Movements by Truck 

Descriptive statistics were calculated for the 168 sets of results generated through repeated 

simulations for forecasted export trade growth between 2015-2035. Table 34 and Table 35 show 

the means the COVs calculated. Table 35 is colour coded as previously described with red 

indication high variance (COV>1), and yellow-green indicating low variance (COV<1), and grey 

indicating the values that contained all zeros.  

The COVs for the truck movements were smaller than those of the rail movements (Table 29). 

Similar to the results for rail, the shipments to Ontario for export from all provinces exhibited low 

variance. The instances of high variance were mostly seen in the absolute export growth results of 

movements to and from the provinces of Newfoundland and Labrador and Prince Edward Island. 

This may be the result of lower traffic of commodities into those provinces as they are smaller in 

size. Once again, most movements exhibited low variance (COV<1) for both relative and absolute 

export growth results. 

As before, CIs were constructed, and the base case values were compared to the ranges of the CIs. 

The results are presented in Table 36. On the table, green indicates that the CI analysis did not 

yield sufficient statistical evidence to show that the base case value was not within the expected 

range on average at the 95% confidence level. Red indicates the opposite and grey depicts the 

values for which the mean was zero. The ranges of the CIs were compared to the base case outputs. 

The resulting percentages refer to the fractions of outputs that were within the CIs for the 99% 

95%, and 90% confidence levels. The results were 45.5%, 35.4% and 21.2% for the absolute 

growth outputs and 40.9%, 30.7%, and 22.7% for the relative growth outputs for 99% 95%, and 

90% confidence levels, respectively. These percentages are very similar to the ones obtained for 

the domestic summary of the rail mode.  

The results of the CI analysis are similar to the rail movements. They yielded mostly low 

percentages except for the results for the absolute growth values which were close to close to 50% 

at the 99% confidence level. The other percentages were low. The base case data seem to yield 

values that are outside of the expected central tendency results obtained from the total available 

data, a trend seen throughout this case study. Nevertheless, as in all the other aggregated results, 

this did not largely affect the conclusions of the major findings.  
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Table 34 Mean Values for Forecasted Export Tonnage Growth – Domestic Summary (Truck) 

  Province of Export 
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British Columbia 20,791,806 9,001 58,134 10,724 67,350 19,151 322 2,446 48 0 

Alberta 1,365,962 1,718,177 458,559 79,785 115,092 161,893 137 10,854 396 0 

Saskatchewan 76,452 151,737 257,002 191,383 26,717 16,163 350 419 1 0 

Manitoba 305,527 7,090 8,979 347,226 82,134 54,925 381 9,754 18 36 

Ontario 574,353 9,611 3,671 25,349 7,277,898 3,635,603 46,214 128,425 251,863 17,116 

Quebec 98,356 1,972 643 1,306 1,340,419 24,453,180 27,917 163,767 2,444 19 

New Brunswick 2,015 14 20 1,060 34,415 80,618 5,838,139 367,072 1,430 441 

Nova Scotia 39,050 20 2 18 44,519 22,017 121,066 2,269,993 43,174 0 

Newfoundland and Labrador 6,309 15 1 1 1,746 12,582 5,825 277,730 24,959,881 0 

Prince Edward Island  536 1 1 -4 5,840 4,825 14,356 18,872 379 8,597 

Percentage [%] 
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British Columbia 34 6 9 9 9 24 14 59 41   

Alberta 31 4 6 9 15 42 19 45 27   

Saskatchewan 39 3 8 11 11 28 21 46     

Manitoba 68 5 7 10 23 50 19 86     

Ontario 56 22 10 16 12 41 32 38 34 37 

Quebec 45 29 8 8 16 57 15 45 16 48 

New Brunswick 33 12 12 10 9 14 29 61 12   

Nova Scotia 33 13 23 12 17 12 14 24 26   

Newfoundland and Labrador 50 23     12 21 9 30 49   

Prince Edward Island  37 4   3 23 29 9 30 44 25 
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Table 35 COVs for Forecasted Export Tonnage Growth - Domestic Summary (Truck) 

  Province of Export 
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P
ro

v
in

ce
 o

f 
O

ri
g

in
 

British Columbia 0.206 0.308 0.297 0.524 0.308 0.285 0.654 0.798 1.958 1.400 

Alberta 0.184 0.249 0.276 0.286 0.313 1.626 0.686 0.466 1.051 1.438 

Saskatchewan 0.403 0.131 0.257 0.238 0.316 0.804 4.041 1.464 2.256 2.602 

Manitoba 1.047 0.270 0.189 0.112 0.317 0.446 0.801 0.847 1.195 2.450 

Ontario 0.634 0.962 0.375 0.254 0.091 1.164 0.840 0.506 2.678 2.585 

Quebec 0.303 1.891 0.987 0.430 0.102 0.232 0.430 0.335 0.767 1.606 

New Brunswick 0.933 0.422 0.800 1.195 0.162 0.664 1.076 0.429 0.454 0.823 

Nova Scotia 2.965 1.002 0.919 0.741 0.228 0.337 1.113 0.771 2.500 2.233 

Newfoundland and Labrador 3.382 2.281 2.240 2.267 0.277 1.344 0.469 0.680 1.009   

Prince Edward Island  0.698 7.723 3.173 3.740 0.406 0.704 0.128 0.228 1.666 0.253 

Coefficient of Variation for Relative Growth [-] 
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British Columbia 0.381 0.216 0.129 0.049 0.029 0.198 0.442 0.355 0.457   

Alberta 0.209 0.207 0.278 0.248 0.131 0.634 0.556 0.209 0.946   

Saskatchewan 0.211 0.052 0.141 0.145 0.309 0.097 0.639 0.227     

Manitoba 0.311 0.539 0.091 0.046 0.326 0.141 0.571 0.276     

Ontario 0.203 0.684 0.157 0.084 0.106 0.454 0.411 0.224 0.696 0.502 

Quebec 0.199 0.855 0.167 0.403 0.126 0.137 0.330 0.453 0.468 0.660 

New Brunswick 0.301 0.316 0.400 0.357 0.139 0.642 0.568 0.139 1.502   

Nova Scotia 0.587 0.554 0.398 0.353 0.117 0.152 0.582 0.256 0.980   

Newfoundland and Labrador 0.479 0.872     0.135 0.674 0.218 0.577 0.315   

Prince Edward Island  0.397 2.414   1.733 0.258 0.186 0.091 0.127 0.585 0.065 
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Table 36 Base Case Values for Forecasted Export Tonnage Growth - Domestic Summary (Truck) 

  Province of Export 
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British Columbia 20,388,789 6,527 101,175 8,009 128,465 21,387 220 858 4 0 

Alberta 1,305,402 3,072,699 510,969 59,757 138,326 60,420 212 7,324 53 0 

Saskatchewan 139,518 133,076 283,229 275,880 27,385 13,649 27 34 1 0 

Manitoba 74,511 10,874 8,330 354,230 77,381 16,485 521 3,085 12 0 

Ontario 2,191,367 2,370 2,868 31,287 8,360,433 18,400,476 48,676 160,085 283 6 

Quebec 148,269 613 769 1,475 1,307,327 20,673,155 15,680 158,577 706 0 

New Brunswick 456 25 33 177 31,790 75,926 24,338,083 127,750 745 0 

Nova Scotia 538,371 27 1 6 38,116 15,096 289,929 3,088,346 37 0 

Newfoundland and Labrador 936 8 6 0 2,687 16,025 4,052 366,517 73,673,326 0 

Prince Edward Island  796 -2 11 0 5,856 4,804 13,651 16,204 2 4,387 

Percentage [%] 
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British Columbia 23 6 9 9 9 25 10 40 43 65 

Alberta 23 6 4 8 13 31 10 40 68 45 

Saskatchewan 35 3 9 13 11 27 21 37 53   

Manitoba 37 3 8 10 20 43 15 62 50   

Ontario 97 10 9 16 10 92 41 12 7 1 

Quebec 39 12 8 5 14 48 12 16 15 8 

New Brunswick 19 11 23 11 10 9 62 55 7   

Nova Scotia 6 10 24 10 16 12 37 27 36   

Newfoundland and Labrador 53 14 14   9 18 9 54 64   

Prince Edward Island  50 -1 23 -2 28 20 10 30 39 23 
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Like the rail results, some of the major findings of the base case are confirmed with the results of 

the mean outputs and some are not. Both sets of outputs demonstrated larger forecasted export 

growth on movements carried by truck than rail. Moreover, the largest forecasted absolute export 

growth in Western Canada was in exports produced in and transported via truck to British 

Columbia for export according to both results. In both cases, the largest absolute export growth in 

Eastern Canada was the exports produced in and shipped via truck to Newfoundland and Labrador. 

Although, the latter value was over 70 million tonnes in the base case, and it much lower in the 

mean results (over 20 million tonnes). For Central Canada, shipments from Ontario and Quebec 

to Quebec were found to have the largest forecasted growth in the base case. However, in the 

simulated results, shipments from Ontario to itself experienced larger export growth (over 7 

million tonnes) on average than shipments from Ontario to Quebec (over 3 million tonnes). This 

is a reasonable deviation as the results for the movements from Ontario to Quebec exhibited high 

variance. On average, the highest relative export growth was seen in truck shipments from New 

Brunswick to Nova Scotia (61%), but in the base case this was seen in truck shipments from 

Ontario to British Columbia (97% in base case, 56% on average). Similarly, exports from Ontario 

to Quebec exhibited a large relative growth in the base case (92%) but it was not as extreme in the 

mean results (56%).  

The additional export impacts of implementing the CPTPP from 2015-2035 on domestic truck 

movements were analyzed using the same procedure. The results are presented in Table 37, Table 

38, and Table 39. 

As in the forecasted growth results, the dispersion values generally indicated low variance except 

for most shipments within the eastern provinces (see Table 37). However, the dispersion values 

are higher overall than the ones observed in the forecasted growth results. Interestingly, the 

additional export impact for shipments from Newfoundland to Ontario had the highest coefficient 

of variation (~37); the trend in all the previous domestic summary results was that all COVs for 

the movements to Ontario from most of the provinces exhibited low variance (see Table 29, Table 

32, and Table 35).   

The CI analysis yielded slightly higher percentages for the additional impact results than the 

forecasted export growth results. The results were 49.5%, 38.4% and 27.3% for the 99%, 95%, 

and 90% confidence levels, respectively. These values confirm the trend seen throughout the 

analysis of the aggregated results. The base case data seem to yield values that are more extreme 

than the central tendency of the simulated outputs.  

The major finding of the base case is confirmed using the mean outputs for the additional impacts 

on exports of the CPTPP. Both results see an increase in shipments to British Columbia from itself 

and Alberta. However, the magnitudes are switched with the impacts to shipments from Alberta 

being lower than those from British Columbia on average. In both cases, the trend of trade 

dispersion is seen in shipments to Ontario and Quebec, a behaviour also seen in the rail shipments.  
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Table 37 Mean Values for Additional CPTPP Export Tonnage Impact – Domestic Summary (Truck) 
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British Columbia 122,918 -117 -1,619 -305 -2,023 -209 -6 -7 -1 0

Alberta 99,908 -4,830 -6,960 -2,424 -2,105 -865 -3 -88 -6 0

Saskatchewan 2,065 -3,016 -8,010 -5,437 -578 -589 -3 -2 0 0

Manitoba 11,386 -202 -491 -11,341 -806 -505 -7 -23 0 -3

Ontario 66,035 -124 -135 -529 -101,692 -12,921 -426 55 -427 -106

Quebec 13,490 -16 -27 -49 -22,531 -59,466 -535 666 -60 0

New Brunswick 267 0 0 -22 -806 -1,422 -17,985 2,827 -7 -32

Nova Scotia -603 0 0 -1 -624 -333 -1,516 -9,721 -100 0

Newfoundland and Labrador -81 1 0 0 1 -115 -122 60 -51,802 0

Prince Edward Island 21 -3 0 -4 -87 -57 -1,172 749 -3 -693

Province of Export
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Table 38 COVs for Additional CPTPP Export Tonnage Impact – Domestic Summary (Truck) 
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British Columbia 0.256 0.960 0.289 0.547 0.314 0.390 0.641 2.864 2.478 2.883

Alberta 0.205 3.478 0.282 0.303 0.337 1.051 0.953 0.794 1.174 1.539

Saskatchewan 0.424 0.178 0.127 0.308 0.343 0.909 2.004 1.424 4.243 2.602

Manitoba 0.261 0.348 0.153 0.126 0.201 0.450 0.709 1.153 1.566 2.450

Ontario 0.412 0.505 0.459 0.270 0.115 0.485 0.879 10.306 2.720 2.614

Quebec 0.289 1.475 0.698 1.232 0.060 0.628 0.242 1.470 0.906 1.539

New Brunswick 1.555 5.463 0.791 1.210 0.140 0.236 0.620 0.582 3.230 0.827

Nova Scotia 3.060 3.764 0.683 0.736 0.278 0.832 0.316 0.917 1.799 2.141

Newfoundland and Labrador 4.162 2.334 2.240 2.417 37.360 1.036 0.355 29.422 0.931

Prince Edward Island 1.033 0.891 1.670 2.180 0.505 1.088 0.214 0.514 1.911 0.229
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[-]
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Table 39 Base Case Values for Additional CPTPP Export Tonnage Impact – Domestic Summary (Truck) 
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British Columbia 112,614 -146 -2,665 -271 -3,962 -241 -6 -2 0 0

Alberta 119,397 43,455 -8,294 -2,651 -2,946 -1,231 -11 -77 0 0

Saskatchewan 2,774 -3,318 -8,998 -9,261 -583 -577 0 1 0 0

Manitoba 12,960 -319 -433 -11,914 -825 -152 -15 -9 0 0

Ontario 42,467 -81 -134 -706 -105,374 -32,294 -433 -1,436 -7 5

Quebec 11,597 -15 -30 -88 -24,311 25,334 -421 -520 -13 0

New Brunswick 29 6 0 -4 -729 -1,694 -49,789 3,968 -7 0

Nova Scotia -8,550 0 0 0 -538 -251 -1,510 -12,548 0 0

Newfoundland and Labrador -2 0 0 0 -55 -260 -105 -395 -150,537 0

Prince Edward Island -9 -4 0 0 -80 -155 -902 721 0 -391

Province of Export
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Overall, there are contradictions between the base case and the simulation results on some of the 

major findings for the domestic summaries. This occurs more often in these results than in the gate 

summary results. This is an expected observation as the domestic summaries include uncertainty 

from all three sources (supply chain shares, sector code aggregations, and domestic shares) 

whereas the gate summaries only include the uncertainty of the first two sources. However, there 

are still major conclusions that are consistent with the base case and the dispersion indicates low 

variance in general. This was also expected as the domestic results are highly aggregated.  

4.3. Targeted Analyses  

The targeted analyses were conducted to explore two aspects of this research. The first is to 

formally explore the assumption of normality throughout the sub-models and present a detailed 

statistical analysis for a single supply chain in the freight model. The second is to compare the 

uncertainty of analyzing a regular trade growth forecast versus analyzing the impacts of an FTA 

on trade (exports) using the same freight models. The US was selected for the analysis of export 

growth alone since it is Canada’s largest trade partner, and thus consistent forecast results for this 

trade partner are important. For the FTA analysis, forecasted exports for the CPTPP signatories 

were aggregated so that it includes the countries of Australia, Chile, Japan, Malaysia, Mexico, 

Peru, New Zealand, Singapore, and Vietnam. Brunei was not included because it was not uniquely 

identified in the regions of the CGE economic model forecasts.  

The procedure for the targeted analysis is the same as the one for the disaggregated outputs with 

the addition of graphical normality assumption tests. After the freight model is put through the 

repeated simulations described in Section 3.3.3, the first step is to calculate descriptive statistics 

for the outputs of each sub-model. The second step is to check the normality assumptions needed 

to use the student t-test statistic. The last step is to construct confidence intervals (CIs) for base 

case comparisons.  

4.3.1. US Results  

Canada and the US have the largest trading partnership in the world (Government of Canada, 

2021). One of the major trading sectors between the countries is the automobile industry. The CGE 

forecast uniquely identified automotive as one of its industries. Thus, the targeted analysis 

considered the automotive sector as the commodity of interest (i).  

The rest of the supply chain, meaning subnational region of origin (j), subnational region of 

destination (k), international mode of transport (m), port of clearance (n), and domestic mode of 

transportation (d), were chosen based on the forecasted CGE results by selecting the highest 

forecasted yearly tonnage in 2035 (along with a check performed using the raw CSBA export 

data). The identified supply chain was: automobile exports (i), produced in Ontario (j), exported 

from Ontario (k) to the US (l) via international road mode (m), through the Windsor Ambassador 

Bridge (n). The domestic mode of transport was rail (d). 

Descriptive statistics were used to create Figure 26. The COVs did not vary greatly between 

forecasts (i.e., between the CGE results for 2015, 2035, and 2035 after the CPTPP) thus the figure 
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shows an example of the results using the CGE forecasts for 2035 – the similarity of COVs for the 

three export forecasts was observed and explained in the disaggregated results (see Section 4.1).  

Figure 26 shows that the dispersion increases from the first to the second sub-model and then 

decreases by the third sub-model. The dispersion values indicate very low variance (COV<1) for 

all the sub-model outputs. This behaviour is opposite to the one observed when averaging the 

disaggregated outputs for all supply chains (see Figure 17), where the outputs of all sub-models 

exhibited high variance with the third being closer to 1. This means that the freight model with 

added uncertainty generates better results (less dispersion) for all the sub-model outputs of this 

supply chain than the results it generates on average. Unlike in the averaged disaggregated outputs, 

the dispersion of the third sub-model outputs is not lower than the dispersion of the first sub-model 

outputs. Moreover, the uncertainty introduced by varying the HS aggregation schemes in the 

second sub-model seem to have more effect on this supply chain (i.e., steeper slope between first 

and second sub-model results) than on average without raising the dispersion to high variance. The 

smaller dispersion can be explained by the fact that the US is a major trading partner. There are 

over 190 million different supply chains for the first two sub-models. Several of these supply 

chains are not highly utilized, meaning that there are multiple zeros. Any exports growth is more 

evident from year to year on these less utilized supply chains. However, exports to the US are more 

consistently large over the years because it is Canada’s major trading partner, hence the lower 

dispersion for the targeted results when compared to the dispersion on average.  

 

Figure 26 US Targeted Analysis COVs for Each Sub-model (2035 CGE Forecast) 

The assumption of normality was checked before creating the confidence intervals. This was done 

graphically using normal probability plots and using the Shapiro-Wilk (SW) test. As previously 

mentioned, the sample means of the population being analyzed need to be normally distributed to 
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use the t-factor as the multiplier to create confidence intervals. It is helpful that for large enough 

sample sizes the central limit theorem (CLT) can be used to prove that, on repeated random 

sampling of a population, the sample means are normally distribution. However, the less normal 

the original population is, the higher the sample size needs to be for the CLT to apply. Typically, 

a sample of size of 30 is used as the minimum. However, this number was empirically determined 

using the extreme case of exponentially distributed data. For data that are closer to normality, the 

sample size can be smaller for the CLT to apply.  

In this study, it was determined that the outputs of the second and third sub-models met the criteria 

for the CLT to apply but the outputs of the first did not. The assumption had to be checked for the 

outputs of the first sub-model because if the sample observations are normally distributed then its 

sample means are as well. The outputs of the first sub-model were checked for normality using 

NPPs and the SW test to see if the results of the graphical method matched the results of the 

statistical test. 

Figure 27 shows the NPP for the trade values (outputs of the first sub-model) for all the CGE 

forecasts. The results for this supply chain seem normally distributed because the values on the 

NPP generally follow a straight line for all forecasts.  

 

Figure 27 NPP for the Outputs of First Sub-Model (US) 

The set up of the SW test is presented below:  

H0: sample is normally distributed 

H1: sample is not normally distributed 

α : 0.05 (significance level) 
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Using Python, the W-value was calculated and compared to the critical value. The p-value of the 

results was 0.866. The p-value is higher than the significance level. This means that the test fails 

to reject the H0 and the distribution output of the first sub-model for this supply chain is normally 

distributed. There is not enough statistical evidence to reject the H0 even at a significance level of 

0.1. These results are in accordance with the graphical results. Thus, it is safe to conclude that the 

sample mean is also normally distributed, and CIs can be constructed.  

All the calculated results are tabulated in Table 40 for the output of the first sub-model 

(zautomobile,Ontario,Ontario,US,road,Windsor Ambassador Bridge) in yearly 2015 Canadian dollars, in Table 41 for 

the output of the second sub-model (tautomobile,Ontario,Ontario,US,road,Windsor Ambassador Bridge), and Table 42 

for the output of the third sub-model (tOntario,Ontario,rail), both in yearly tonnes. Note that the tables 

include the results of the analysis for this supply chain using the CGE forecasts that include the 

CPTPP impacts in 2035 labelled simply as CPTPP. 

Table 40 Results of the First Sub-Model for a Single Supply Chain (US) 

Forecast Year 2015 2035 CPTPP 

Base 15,173,423 20,813,894 18,676,944 

Average 16,550,278 20,356,845 20,371,714 

COV 0.050 0.050 0.050 

90% CI 
Upper 17,230,441 21,193,445 21,208,925 

Lower 15,870,115 19,520,245 19,534,502 

95% CI 
Upper 17,417,956 21,424,089 21,439,738 

Lower 15,682,600 19,289,600 19,303,689 

99% CI 
Upper 17,911,294 22,030,895 22,046,986 

Lower 15,189,262 18,682,795 18,696,441 

Table 41 Results of the Second Sub-Model for a Single Supply Chain (US) 

Forecast Year 2015 2035 CPTPP 

Base 1,053,507 1,295,813 1,296,760 

Average 973,534 1,197,447 1,198,322 

COV 0.080 0.080 0.080 

90% CI 
Upper 1,000,761 1,230,936 1,231,835 

Lower 946,307 1,163,958 1,164,808 

95% CI 
Upper 1,006,397 1,237,869 1,238,773 

Lower 940,671 1,157,025 1,157,870 

99% CI 
Upper 1,018,132 1,252,302 1,253,217 

Lower 928,936 1,142,591 1,143,426 
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Table 42 Results of the Third Sub-Model for a Single Supply Chain (US) 

Forecast Year 2015 2035 CPTPP 

Base 1,309,386 1,610,545 1,611,721 

Average 1,338,626 1,646,510 1,647,713 

COV 0.069 0.069 0.069 

90% CI 
Upper 1,350,473 1,661,083 1,662,296 

Lower 1,326,778 1,631,938 1,633,130 

95% CI 
Upper 1,352,767 1,663,904 1,665,119 

Lower 1,324,485 1,629,116 1,630,306 

99% CI 
Upper 1,357,289 1,669,466 1,670,686 

Lower 1,319,963 1,623,554 1,624,740 

The CIs were calculated for the 99%, 95%, and 90% confidence levels. After comparing the ranges 

to the base case outputs, only the base case output for the first sub-model that used the CGE 2035 

export forecasts without the CPTPP impacts was within the range of the CI at all confidence levels 

(green shaded). The base case resulted in outputs that are outside of the expected central tendency 

of the results after uncertainty is introduced. As seen throughout Chapter 4, the base case values 

tend to be more extreme than the expected range of the central tendency of the simulated outputs. 

This was also the case for this specific supply chain, and it can be easily confirmed by visually 

inspecting the mean values and comparing them to the base case outputs. The first sub-model value 

for the base case is over a million 2015 Canadian dollars off when compared to the mean value. 

The yearly tonnages for the second sub-model are one order of magnitude away from the mean 

value. The base case value for the third sub-model is close to the mean value. However, as 

explained in Section 4.2.1, the dispersion indicates that the observations have a very low standard 

deviation which makes the CIs narrower.  

For this supply chain, similar conclusions cannot be obtained using the mean and base case outputs 

despite the better dispersion results unless the modeller is only using the outputs of the third sub-

model. As explained before, the outputs of the base case greatly differed from the mean outputs 

for the first two sub-models. This is confirmed by the CI analysis and a visual inspection of the 

means. Ultimately, even with the smaller dispersion, the base case results were too extreme when 

compared to the mean outputs simulated after introducing the three sources of input uncertainty.  

4.3.2. CPTPP Countries Results  

The main objective of the preliminary study was to analyze the effects of the CPTPP on Canada’s 

trade infrastructure using the freight model. Therefore, the second targeted analysis focuses on the 

countries that are signatories of the CPTPP. Nine of the eleven CPTPP countries were included in 

this targeted analysis (excluding Canada). Brunei was not exclusively defined in the CGE model 

thus it could not be added without adding non-CPTPP countries to these results.  

Defining this supply chain was different than with the US targeted analysis. First, outputs of the 

nine CPTPP countries were aggregated for all sub-models to obtain the results for one 

representative country (l) for the CPTPP signatories. Then, the supply chain for this representative 
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country with the highest forecasted yearly tonnage in the results for the 2035 forecast that included 

the CPTPP impacts was selected. The resulting supply chain was food products (i), produced in 

Ontario (j), shipped via rail (d) to British Columbia (k), exported to CPTPP representative country 

(l), exported using international mode water (m), through the Vancouver Marine and Rail port of 

clearance (n). 

After calculating the descriptive statistics, Figure 28 was created. Interestingly, the COVs varied 

between forecasts (i.e., between the CGE results for 2015, 2035, and 2035 after the CPTPP) for 

this supply chain. This is different from the trends seen in the disaggregated results (Section 4.1) 

and in the US targeted analysis (Section 4.3.1), where the results did not vary between CGE 

forecasts. Unlike the US supply chain results, the figure shows that the dispersion increases at 

every sub-model for all CGE forecasts. Moreover, for the results using 2015 and 2035 CGE 

forecasts, the differences of the dispersions between the outputs of the first and second sub-models 

is smaller (i.e., less sloped lines) than the differences between the outputs of the second and first 

sub-models (i.e., more sloped lines). These results also follow different trends than those observed 

on the disaggregated averaged results (see Figure 16). The results using the 2035 CGE forecasts 

after CPTPP implementation follow a different trend than those using the other two CGE forecasts. 

This indicates that the uncertainty from the different aggregation schemes of the SCTG codes 

introduced in the second sub-model caused higher dispersion for the results of the freight model 

using the CGE forecasts that include the CPTPP policy shocks than when the other forecasts were 

used. This also suggests that there are dispersion inconsistences for some supply chains between 

results of different CGE forecasts (2015, 2035, and 2035 with CPTPP), although the mean COVs 

presented in the disaggregated results (see Figure 16) are consistent between CGE forecasts. 

 

Figure 28 CPTPP Targeted Analysis COVs for Each Sub-model  
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The dispersion values indicate low variance (COV<1) for the first and second sub-model outputs 

but indicate high variance (COV>1) for the outputs of the third sub-model for results using the 

2015 and 2035 CGE forecasts. In contrast, they indicate high variance for the outputs of the second 

sub-model for results using the 2035 CGE forecasts that included CPTPP impacts. The lower 

dispersion of the first two sub-models’ outputs is harder to justify in this case. One explanation is 

the aggregation of the countries: Australia, Japan and Mexico (CPTPP signatories) are already 

large trading partners of Canada. Thus, the same effect that is seen with the US results can be 

affecting the dispersion of the CPTPP results after the aggregation of the CPTPP countries.  

Once again, the assumption of normality for the outputs of the first sub-model was tested before 

creating the confidence intervals. Figure 29 shows that it is safe to conclude that the outputs follow 

a normal distribution as the observations generally follow a straight line for the results using all 

CGE forecasts. The SW test confirmed this conclusion for the same set up as the one presented in 

the US targeted analysis. The test yielded a p-value of 0.260 which is much higher than a 

significance level of 0.05 or even 0.1. This means that there is insufficient evidence to reject the 

H0 and the data are normally distributed.  

 

Figure 29 NPP for the Outputs of First Sub-Model (CPTPP) 

The results are tabulated in Table 43 for the output of the first sub-model 

(zfood_products,Ontario,British_Columbia,CPTPP_countries,water,Vacouver-Marine_and_rail) in yearly 2015 Canadian 

dollars, in Table 44 for the output of the second sub-model 

(tfood_products,Ontario,British_Columbia,CPTPP_countries,water,Vacouver-Marine_and_rail), and Table 45 for the output of 

the third sub-model (tOntario,British_Columbia,rail), both in yearly tonnes.   
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Table 43 Results of the First Sub-Model for a Single Supply Chain (CPTPP) 

Forecast Year 2015 2035 CPTPP 

Base 25,800 38,002 38,344 

Mean 17,931 25,704 25,935 

COV 0.341 0.359 0.359 

90% CI 
Upper 22,963 33,295 33,601 

Lower 12,899 18,114 18,269 

95% CI 
Upper 24,351 35,388 35,715 

Lower 11,512 16,021 16,156 

99% CI 
Upper 28,000 40,893 41,275 

Lower 7,862 10,516 10,595 

Table 44 Results of the Second Sub-Model for a Single Supply Chain (CPTPP) 

Forecast Year 2015 2035 CPTPP 

Base 255,333 352,089 4,041,251 

Mean 105,178 142,973 926,414 

COV 0.614 0.616 1.044 

90% CI 
Upper 127,770 173,778 1,264,930 

Lower 82,585 112,167 587,898 

95% CI 
Upper 132,447 180,155 1,335,006 

Lower 77,908 105,790 517,823 

99% CI 
Upper 142,185 193,432 1,480,906 

Lower 68,170 92,513 371,922 

Table 45 Results of the Third Sub-Model for a Single Supply Chain (CPTPP) 

Forecast Year 2015 2035 CPTPP 

Base 93,812 126,062 126,933 

Mean 22,013 29,393 29,588 

COV 1.163 1.171 1.172 

90% CI 
Upper 25,280 33,787 34,013 

Lower 18,746 24,999 25,164 

95% CI 
Upper 25,913 34,638 34,869 

Lower 18,113 24,149 24,307 

99% CI 
Upper 27,160 36,315 36,558 

Lower 16,866 22,472 22,618 

None of the base case outputs were within the ranges of the CIs for the 99%, 95%, and 90% 

confidence levels. A visual inspection of the tables showed that all the base case values were higher 

than the mean outputs of the repeated simulation for all sub-models and all CGE forecasts. Some 

of the base case values were orders of magnitudes higher than the mean outputs. In particular, the 

base case trade quantity (output of second sub-model) was over 4 million yearly tonnes while the 

same value was only over 900 thousand for the mean trade quantity. This further confirms the 
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trend that the base case data tend to yield more extreme results than the expected central tendency 

of the repeated simulation results.  

Both targeted analyses showed that similar conclusions could not be obtained using the mean and 

base case outputs for these supply chains. The dispersion exhibited by both analyses was different 

with the results of the US targeted analysis demonstrating very low variance for all sub-models 

and the results for the CPTPP targeted analysis showing dispersions closer to one and above one 

(outputs of third sub-model). Moreover, both analyses showed poor results in their CI analyses.  

4.4. Summary of Case Study Major Findings  

In general, the base case data generated results that tended to be more extreme than the mean of 

the simulated population after the sources of uncertainty were introduced. This was evident 

through the construction of the confidence intervals for the disaggregated results (Section 4.1), for 

the aggregated results (Section 4.2), and even more obvious for both single supply chains 

examined in the targeted analyses (Section 4.3). The fractions of total outputs, for outputs of all 

sub-models, were not greater than 50% for any confidence level (99%, 95%, 90%) for all of the 

type of results studied. This means that, in general, regardless of aggregation or type of output 

studied, the base case freight model tends to yield outputs that fall outside of the expected range 

of the central tendency of the outputs created using repeated simulations when adding the three 

input sources of uncertainty.  

The results of the dispersion were more varied. The disaggregated results showed that on average 

the dispersion of the outputs of all three sub-models indicate high variance (COV>1). However, 

for the outputs of the last sub-model over 50% of the observed COVs indicated low variance. For 

these results, the dispersion of the disaggregated outputs increased from the first to the second sub-

model and decreased from the second to the third on average. This behaviour was expected, as 

sources of uncertainty are introduced at each sub-model, increasing the mean dispersion, but the 

supply chains are highly aggregated from the second to the third sub-model lowering mean 

dispersion. Interestingly, the targeted analyses, which used the results for two disaggregated singly 

supply chains, yielded COV values that indicated low variance for the first two sub-models and a 

similar result to the mean COV of the disaggregated results for the third sub-model. This suggests 

that the freight model performs better, in terms of dispersion, for these two supply chains than it 

performs on average after the input uncertainty is introduced. This was true for results generated 

using all the CGE forecasts except for the CPTPP supply chain that used the results of the CGE 

forecast for 2035 including CPTPP export impacts. For the aggregated gateways and domestic 

summaries, the dispersion generally indicated low variance with a few exceptions and even fewer 

cases with extremely high dispersion (see Table 32). The dispersion was generally lower in the 

gateway summaries than in the domestic summaries. This was expected as the gateway summary 

results are more aggregated than the domestic summary results. In addition, the domestic summary 

results are affected by all three sources of uncertainty (supply chain shares’ base year, aggregation 

scheme for SCTG codes for value-weight ratios, and domestic mode shares’ base year), whereas 

the gateway summaries are affected only by the first two.  
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The results for the outputs of the aggregated ports of clearance were promising. Visual 

comparisons showed that a decent number of ports identified in the top ten by the base case outputs 

were also identified by the mean outputs of the repeated simulations. The RREwa values revealed 

the importance of considerations selecting base cases for these aggregated port of clearance results, 

if all available data are not used and averaged, since the resulting top ten lists may vary greatly.  

In general, most of the same major conclusions could be confirmed using the mean results as in 

the preliminary study’s base case. There were a few exceptions. Despite the poor results of the CIs 

analysis and high variance of the disaggregated outputs, the results were still able to produce 

similar conclusions to the base case for the most part. This is in part due to the aggregation of the 

outputs needed to infer the major conclusions. However, there are a few major conclusions that 

were different. Thus, the freight model was sensitive to the input uncertainty even after highly 

aggregating the outputs.  

The targeted analyses yielded differences between the US single supply chain and the CPTPP 

signatories’ single supply. The dispersion results for the US targeted analysis indicate very low 

variance for all sub-models, while the results for the CPTPP targeted analysis indicate low variance 

(however the COVs were closer to 1) for the outputs of the first two sub-models and high variance 

for the third sub-model outputs. This may be because the US and some of the CPTPP countries are 

already large Canadian trade partners. More utilized supply chains likely exhibit less variation 

from dataset to dataset because they are already utilized. However, the CPTPP also includes 

countries that are not already large Canadian trade partners. This may explain the higher dispersion 

observed for the CPTPP targeted analysis in the outputs of the second sub-model (trade quantities 

in yearly tonnages) when using the results of the CGE forecast that includes the impacts of the 

CPTPP. The increase in dispersion captures the shifts in the amounts of commodities moving 

through certain (less utilized) supply chains.  

Lastly, this thesis also briefly demonstrated the importance of checking the assumption of 

normality when utilizing parametric statistical tests. The results of the CI analysis changed 

drastically when comparing the outputs where the normality assumption was not checked (Figure 

20) versus the outputs when it was (Figure 21) at the 95% and 90% confidence levels.  
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Chapter 5. Conclusions and Recommendations 

This thesis developed and implemented a framework to analyze the effects and propagation of 

input uncertainty on the uncertainty of the outputs in commodity-based freight demand models.  

The first objective was to review the literature on freight demand modelling to identify and classify 

research and practical efforts on available modelling techniques. The second objective was to 

review the methodologies used in uncertainty analysis of transportation demand models (passenger 

and freight). The third objective was to develop a framework to study and quantify input 

uncertainty in commodity-based freight demand models. The last objective was to quantify the 

propagation of uncertainty due to inputs on the model developed by Bachmann (2017) and 

Jahangiriesmaili et al. (2018) to evaluate the freight impacts of FTAs in Canada using the CPTPP 

as a case study. 

The first two objectives were fulfilled by reviewing the literature and the following conclusions 

were drawn. There was disagreement in the literature on the terminology used to describe and 

categorize freight demand models; however, it was concluded that the terminology based on the 

unit of reference for demand generation was the most widely used. The literature also confirmed 

that the most widely used type of freight demand model in practice is the commodity-based model. 

This was less apparent in the Canadian review than in the United States review. However, the 

Canadian state-of-practice review was not comprehensive due to the limited information available 

publicly. Lastly, two important gaps were identified in the literature review regarding uncertainty 

analysis in freight demand models. First, there was no formal approach specified studying the 

uncertainty in freight demand models, and only one ad-hoc study by Westing et al. (2016). Second, 

there was no analysis studying the propagation of uncertainty through successive sub-models in 

freight demand models. An example of this type of analysis on a passenger demand model was 

found in Zhao and Kockelman  (2002).  

The framework developed (objective three) consisted of five steps based on best practices 

identified through the literature and knowledge of statistical analyses. The framework was 

developed specifically to study the uncertainty due to inputs on outputs of commodity-based 

freight demand models. Only input uncertainty was considered, as supposed to also considering 

model uncertainty, because the literature has shown that input uncertainty is often a greater 

contributor to uncertainty of the outputs than model uncertainty  (de Jong et al., 2007; Rasouli & 

Timmermans, 2012). Moreover, the same or similar datasets are used as inputs for multiple 

commodity-based freight demand models, whereas uncertainty due to model 

specification/calibration is more specific to the development of each model. In the first step, the 

sources of input uncertainty, their related outputs, and available data are specified. In the second 

step, the distributions, or the forms of the variation for the sources of uncertainty are identified. In 

the third step, repeated simulations are used to generate a set of outputs after introducing the 

variations in the sources of uncertainty. Finally, in the last two steps, the uncertainty of the outputs 

is quantified and analyzed.  

The fourth objective was to apply the framework to a case study. Three sources of input uncertainty 

were identified with their respective outputs and the available data. The first source of uncertainty 

was the supply chain shares calculated using CBSA export data. There were 6 years of data 
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available (2010-2015). The second source of uncertainty was the SCTG sector code aggregation 

used to calculate the value-weight ratios. Four aggregation schemes were used for the level of 

sectoral detail by SCTG code (5-digit, 4-digit, 3-digit, and 2-digit). The last source of uncertainty 

was the domestic mode shares calculated using CFAF data. There were 7 years of data available 

(2011-2017). Due to the successive nature of the sub-models, the first sub-model output was 

affected only by the first source of uncertainty, the second was affected by both the first and second 

source of uncertainty, and the third was affected by all three. The simulations were ran accordingly 

using all available data and the rest of the framework was applied.  

The case study yields interesting and important findings for freight modellers. In the disaggregated 

outputs, all sub-model outputs exhibit high variance (COV>1) on average, with the COVs of the 

domestic movements being close to one, as they are highly aggregated in comparison to the outputs 

of the first two sub-models. Most major conclusions using the aggregated results agree between 

the illustrative base case and the simulated outputs despite the tendency to high variances (COV>1 

on average) observed on the disaggregated results and poor results of the CI analysis. The 

framework also reveals that specific movements where the results of the base case may not be 

highly accurate (e.g., the aggregate domestic movements via truck from Maritime provinces to 

Western provinces in the results using CGE forecasts for 2035 including CPTPP impacts). The 

analysis on the ports of clearance revealed the importance of considerations selecting base cases 

for these results, if all available data are not used, since the resulting top ten lists may vary greatly. 

In conclusion, the framework generates insight on the accuracy of the case study model, and it 

highlights the specific instances where the modeller needs to be more cautious of the results when 

using only point data, as in the illustrative base case. All major conclusions are summarized below: 

• In general, the base case data generated results that tended to be more extreme than the 

mean of the simulated population after the sources of uncertainty were introduced.  

• The results of the dispersion were more varied with a tendency to high variances in the 

disaggregated results and lower variances in the aggregated results.  

• The results for the outputs of the aggregated ports of clearance showed some consistency 

between averaged results and base case but the poor rank error results highlight the 

importance of carefully choosing a base case since the top ten ranked ports vary greatly 

between simulation runs.  

• In general, most of the same major conclusions could be confirmed using the mean results 

as in the preliminary study’s base case with a few exceptions.  

• The targeted analyses yielded differences between the US single supply chain and the 

CPTPP signatories’ single supply likely due to the less utilized supply chains (small 

Canadian trade partners) included in the latter.  

• It is important to check the assumption of normality when utilizing parametric statistical 

tests.  
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5.1. Limitations and Future Research 

The limitations of this study are mainly based on the scope boundaries. First the scope did not 

include uncertainty due to model specification/estimation. Therefore, it is assumed that the model 

to which the framework is applied has been perfectly specified and estimated. However, often, 

there are several assumptions within the process of model development. These assumptions are 

likely to induce some additional error. Second, the scope did not include the study of uncertainty 

in activity-based models. Activity-based models are different from trip-based and commodity-

based models in that they are stochastic. For this reason, the propagation of their uncertainty 

deserves its own framework. Moreover, the literature shows a greater focus on quantifying the 

effects of stochastic simulation error as opposed to input uncertainty or other forms of model 

uncertainty (i.e., specification and estimation) (Castiglione et al., 2003; Cools et al., 2011; Gibb & 

Bowman, 2007; Lawe et al., 2009). It is also important to note that multiple authors in the literature 

concluded that travel demand modelling is trending towards adopting more activity-based 

modelling techniques (Chow et al., 2010; Liedtke & Schepperle, 2004; National Cooperative 

Highway Research Program, 2008; Nuzzolo et al., 2013; Wisetjindawat et al., 2012). 

Other limitations and possible future research topics were found in the unexplored gaps of the 

literature. First, a similar study can be conducted using different, more systematic, variations 

instead of Monte Carlo simulation such as factorial designs, probabilistic designs, etc. Second, a 

similar study can be conducted testing the assumptions of the probability distributions for inputs. 

For example, simulating results assuming other distributions than normal or multivariate normal 

and comparing the results. Third, the use of nonparametric statistical tests can also be explored 

and compared to their parametric equivalents. Forth, a similar study can be conducted using a more 

educated approach to selecting variables (inputs) to vary in the repeated simulations (i.e., which 

variables affect the outputs the most based on practical/outside experience and knowledge). Last, 

in the context of this specific work, a next step could be using a sensitivity analysis to explore 

which of the three sources of uncertainty explored affect the outputs the most.  
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Appendix A – 2035 Forecast Mean COVs for the Outputs of Each Sub-model  

Table A. 1 Naming Convention for Appendix A Tables 

No. Country of Export (l) Commodity/Sector (i) Subnational Region O-D (j,k) 

1 EU28 Rice British Columbia  

2 USA Wheat & Cereals Alberta 

3 Australia Fruit & Vegetables Saskatchewan 

4 Rest of Southeast Asia Oil Seeds & Vegetable Oils Manitoba 

5 Chile Sugar Ontario 

6 Japan Other Farming Quebec 

7 Malyasia Dairy New Brunswick  

8 Mexico Forestry Nova Scotia 

9 New Zealand Fishing Newfoundland/Labrador 

10 Peru Fossil Fuels Prince Edward Is. 

11 Singapore Mineral Products 
Yukon, Northwest Territories, 

Nunavut 

12 Vietnam Beef   

13 China Pork & Poultry   

14 Korea Food Products   

15 India Beverages & Tobacco   

16 Thailand Textiles & Apparel   

17 Philippines Leather Products   

18 Indonesia Wood Products   

19 Colombia 
Chemical, Rubber & 

Plastics 
  

20 Central America (Costa Rica, Panama) Metals & Metal Products   

21 Hong Kong Automotive   

22 Other EFTA (Iceland, Leichtenstein) Transport Equipment   

23 Israel Electronic Equipment   

24 Pakistan Machinery & Equipment   

25 Other South America (Paraguay and Uruguay  Other Manufactures   

26 Switzerland Other Services   

27 Norway Construction1   

28 Turkey Trade1   

29 Taiwan Transport1   

30 Kenya Communication1   

31 Tanzania Financial Services1   

32 Uganda Business Services   

33 Rwanda Recreation   

34 Rest of East Africa     

35 Ethiopia     

36 Mozambique     

37 SACU     

38 Other TFTA     

39 ROW     
1Service industries are omitted from this analysis as there were no records, such as CBSA, 

capturing their shares. 
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Table A. 2 2035 Forecast Mean COVs for the Outputs (sijklmn) of the First Sub-model Averaged Over (j,k,m,n) 

l,i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 261 32 33 

1 1.8 1.7 1.7 1.8 1.6 1.6 1.8 1.7 1.7 1.7 1.7 1.8 1.8 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.6 1.7 1.7 1.7 1.6 2.0 1.6 1.7 

2 1.5 1.4 1.2 1.3 1.3 1.2 1.5 1.3 1.3 1.2 1.2 1.4 1.3 1.1 1.3 1.3 1.3 1.0 1.0 1.2 1.2 1.4 1.3 1.2 1.3 1.6 1.7 1.5 

3 2.2 1.6 1.8 1.7 1.8 1.7 1.7 1.9 1.9 1.5 1.7 1.7 1.8 1.6 1.8 1.7 1.8 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 2.1 2.2 1.7 

4 2.2 2 1.9 1.4 2.2 2.1  2.2 1.8 2.0 2.0 2.2 2.2 1.3 2.2 1.8 1.9 1.9 1.8 1.8 1.8 2.0 1.7 1.7 1.7 1.6 2.2  

5 1.4 1.7 1.7 1.8 2.0 1.7 1.9 1.2 1.6 1.8 1.9 1.8 1.8 1.7 2.1 1.8 1.8 1.8 1.7 1.7 1.8 1.8 1.8 1.7 1.8 2.2 2.2 2.1 

6 2.2 1.9 1.7 1.6 1.7 1.6 1.9 1.5 1.6 1.6 1.8 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.8 1.7 1.7 1.6 1.6 1.7 1.9 1.6 1.9 

7 1.4 1.6 1.7 1.7 2.2 1.6 1.9 1.8 1.5 1.7 1.8 1.6 1.8 1.7 1.7 1.8 1.7 1.7 1.7 1.7 1.9 1.9 1.6 1.7 1.8 2.2 2.2 1.7 

8  1.7 1.7 1.7 1.8 1.7 1.7 2.0 2.2 1.7 1.8 1.7 1.8 1.7 1.9 1.8 1.7 1.7 1.7 1.7 1.7 1.7 1.8 1.7 1.8 2.2 2.0 1.9 

9  2.1 1.7 1.6 1.8 1.7 1.9 2.1 1.5 1.9 1.7 1.8 1.8 1.6 1.8 1.7 1.7 1.8 1.6 1.8 1.7 1.8 1.7 1.7 1.7 2.2 1.8 1.8 

10  1.8 1.6 1.6 2.2 1.4 1.9 1.8 1.0 1.8 1.9 2.0 1.9 1.6 2.0 1.8 1.8 1.8 1.7 1.7 1.9 1.9 1.9 1.8 1.8 2.0 2.2 1.4 

11  1.4 1.9 1.8 1.6 1.7 1.6 2.1 1.7 1.9 1.8 1.7 1.6 1.7 1.6 1.8 1.7 1.7 1.8 1.8 1.7 1.7 1.7 1.7 1.7 1.7 2.1 1.8 

12 2.2 1.6 2.0 1.8 2.2 1.9 1.8 2.0 1.9 1.9 1.8 1.7 1.7 1.6 1.9 1.8 2.0 1.7 1.7 1.7 1.8 1.8 1.7 1.7 1.8 1.5 2.2  

13 2.2 1.8 1.8 1.8 1.7 1.8 1.8 1.5 1.7 1.5 1.7 1.6 1.7 1.7 1.8 1.7 1.7 1.7 1.7 1.7 1.8 1.7 1.7 1.7 1.7 1.9 2.0 1.7 

14 2.2 2.0 1.7 1.7 1.6 1.7 1.8 1.7 1.7 1.5 1.8 1.7 1.5 1.7 1.6 1.8 1.7 1.8 1.7 1.7 1.7 1.8 1.7 1.7 1.7 1.9 1.5 1.7 

15 2.2 2.1 1.7 1.9 1.7 1.7 1.9 2.0 2.2 1.9 1.7 1.0 1.8 1.7 1.7 1.8 1.8 1.7 1.7 1.8 1.7 1.8 1.7 1.7 1.8 2.0 2.0 2.0 

16 1.6 1.6 1.7 1.8 1.6 1.7 1.8 2.1 1.9 1.6 1.7 1.4 1.9 1.7 1.7 1.8 1.8 1.7 1.6 1.7 1.7 1.8 1.7 1.6 1.7 2.0  2.0 

17 1.0 1.4 1.6 1.7 2.1 2.0 1.7 2.0 2.0 1.6 1.8 1.6 1.7 1.6 1.7 1.9 1.9 1.7 1.7 1.8 1.7 1.8 1.7 1.7 1.8 2.2 2.0 2.1 

18  1.7 1.8 1.8 1.8 2.0 1.9 2.0 1.6 1.8 1.9 2.0 1.7 1.6 2.1 1.8 1.8 1.7 1.8 1.8 2.0 1.7 1.7 1.7 1.8 2.2 2.2 1.9 

19  1.6 1.7 1.8 2.2 1.8 1.9 1.8 1.6 1.8 1.7 1.8 1.7 1.6 1.7 1.8 1.7 1.7 1.7 1.7 1.7 1.8 1.8 1.7 1.7 2.2 2.2 2.0 

20 2.2 1.7 1.7 1.6 2.2 1.8 1.9 1.9 0.0 1.7 1.8 1.8 1.8 1.7 1.8 1.8 1.8 1.7 1.6 1.9 1.7 1.9 1.8 1.8 1.8 1.5 2.0 2.0 

21 2.2 1.9 1.9 1.7 1.5 1.7 1.6 1.9 1.7 1.9 1.8 1.7 1.6 1.7 1.8 1.7 1.7 1.7 1.5 1.8 1.7 1.7 1.6 1.7 1.7 1.9 1.0 1.7 

22  2.0 1.7 1.8 1.8 2.0 1.1 2.2 1.6 2.1 1.8  2.0 1.7 2.2 1.8 1.8 1.8 1.7 1.7 1.9 1.9 1.7 1.7 1.7 2.2  2.2 

23 2.2 1.7 1.6 1.9 1.5 1.8 2.2 1.9 1.2 1.6 1.9  1.8 1.6 1.7 1.7 1.9 1.8 1.7 1.8 1.8 1.9 1.7 1.6 1.7 2.2 0.9 1.8 

24 2.2 2.0 1.8 1.8  1.9 2.1 1.9 1.0 1.9 1.9  2.0 1.7  1.8 1.8 1.7 1.7 1.8 1.8 1.7 1.6 1.7 1.8 2.2  1.0 

25  1.7 1.6 1.7 2.2 1.4 1.8 0.7  1.9 1.8 1.9 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.7 1.9 1.8 1.8 1.8 2.2 2.2 2.0 

26 2.2 1.7 1.8 1.7 1.5 1.7 2.2 1.7 1.8 1.7 1.9 1.7 1.4 1.7 1.7 1.7 1.7 1.8 1.7 1.8 1.8 1.7 1.7 1.7 1.7 2.2 1.1 1.9 

27  2.0 1.9 1.8 1.8 1.8 1.0 2.2 1.8 1.6 1.8  1.9 1.5 1.8 1.8 1.8 1.7 1.8 1.8 1.8 1.8 1.7 1.7 1.6  1.8 1.9 

28 2.2 1.9 1.8 1.9 1.6 1.5 1.8 2.1 2.2 1.7 1.7 2.2 1.9 1.8 1.6 1.7 1.8 1.7 1.6 1.8 1.6 1.8 1.6 1.7 1.7  2.2 2.0 

29 2.2 1.8 1.7 1.7 1.4 1.8 1.8 1.7 1.7 1.6 1.6 1.6 1.7 1.6 1.7 1.7 1.7 1.8 1.6 1.7 1.8 1.7 1.7 1.7 1.7 1.9 1.5 1.9 

30 2.2 1.6 1.1 1.4 2.2 1.1    2.1 2.0  1.5 1.9 2.2 1.9 1.8 1.9 1.8 1.9 1.9 1.8 1.7 1.8 1.9   1.8 

31  1.5 1.8 2.2  1.0   2.2 2.1 1.7 2.2 2.2 1.4 2.0 1.8 1.9 1.9 1.8 1.9 1.8 1.9 1.9 1.8 1.9 2.2   

32  1.8 1.8 2.2  1.3 2.2 2.2   2.1  2.2 1.7 2.2 2.0 2.0 2.0 1.9 1.9 2.0 1.9 1.9 1.9 1.9 2.2   
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l,i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 261 32 33 

33  2.1 2.2   1.4 2.2    2.2 2.2 2.2 2.2  2.2 1.7 1.9 1.9 2.0 1.9 1.9 1.8 2.0 2.1   2.2 

34  1.6 1.9 2.2  1.6 1.6 2.2 1.8 2.0 1.9 1.9 1.9 1.9 2.2 1.8 1.9 1.9 1.8 1.8 1.7 1.8 1.8 1.8 2.0 2.2 2.2 2.2 

35   1.4        2.2  2.2   2.1 2.1 2.1 1.9 1.9 1.9 1.9 1.8 1.8 2.0    

36  1.6 2.2   1.0    2.2 2.1 1.5 1.8 2.2 2.2 1.7 1.8 2.0 1.9 1.9 2.0 1.9 1.8 1.9 2.0    

37 2.2 1.9 1.8 1.7 2.0 1.8 1.9 2.1 1.8 1.8 2.0 1.9 1.8 1.7 1.9 1.8 1.8 1.8 1.7 1.8 1.8 1.9 1.7 1.7 1.8 2.0 1.6 1.9 

38 1.4 1.9 1.7 1.9 2.1 1.8 1.8 1.4 1.5 1.9 1.9 1.7 1.8 1.6 1.8 1.8 1.8 1.7 1.8 1.8 1.7 1.8 1.8 1.7 1.9 2.2 1.8 2.0 

39 1.6 1.7 1.7 1.8 1.7 1.8 1.8 1.7 1.8 1.7 1.7 1.7 1.7 1.6 1.7 1.7 1.8 1.7 1.6 1.7 1.7 1.8 1.7 1.7 1.7 1.9 2.0 1.9 
1Service sectors (27-31) are not shown as these values are nan (not a number) since they all have a value of zero in the model outputs 

(due to lack of records on service sector movements to create shares). 
2Grey boxes show nan values which means that the average of the commodity flows was zero for these supply chains. 
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Table A. 3 2035 Forecast Mean COVs for the Outputs (tijklmn) of the Second Sub-model Averaged Over (j,k,m,n) 

l,i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 261 32 33 

1 2.0 1.8 1.9 1.8 1.6 2.2 1.9 2.2 1.8 1.8 2.2 1.8 1.8 1.8 1.9 1.9 1.8 1.8 1.8 1.9 1.7 2.1 2.1 1.8 1.9 2.3 2.0 2.2 

2 1.7 1.5 1.4 1.3 1.4 1.5 1.6 1.6 1.6 1.3 1.6 1.5 1.4 1.2 1.3 1.4 1.4 1.1 1.1 1.3 1.3 1.7 1.8 1.3 1.3 1.9 2.3 2.0 

3 2.4 1.6 2.0 1.7 1.8 2.2 1.8 2.2 2.4 1.6 2.2 1.7 1.8 1.8 1.9 2.0 1.9 1.8 1.8 1.9 1.8 2.1 2.2 1.8 1.9 2.5 2.5 2.2 

4 2.4 2 2.1 1.4 2.3 2.7  2.6 2.0 2.0 2.6 2.3 2.3 1.4 2.5 2.0 2.0 2.1 1.9 2.1 1.9 2.3 2.2 1.9 1.9 1.9 2.3  

5 1.6 1.8 1.9 1.8 2.0 2.1 2.1 1.5 1.8 1.9 2.2 1.9 1.8 1.8 2.2 2.0 1.8 2.0 1.8 1.9 1.9 2.2 2.4 1.8 2.0 2.6 2.6 2.9 

6 2.4 1.9 2.0 1.6 1.7 1.8 2.0 1.8 1.8 1.9 2.3 1.6 1.7 1.9 1.9 2.0 1.8 1.8 1.7 2.0 1.9 2.0 2.2 1.8 2.0 2.3 2.6 2.4 

7 1.6 1.6 1.8 1.7 2.2 2.2 2.0 2.1 1.8 2.0 2.3 1.7 1.9 1.9 2.0 2.0 1.8 1.8 1.8 1.8 2.0 2.3 2.3 1.8 2.1 2.6 2.3 2.2 

8  1.8 1.8 1.7 1.9 2.1 1.8 2.2 2.9 1.8 2.2 1.7 1.8 1.9 2.0 1.9 1.8 1.8 1.8 1.9 1.8 2.0 2.2 1.8 2.0 2.6 2.4 2.4 

9  2.1 2.0 1.6 1.9 2.3 2.0 2.4 2.0 2.0 2.2 1.8 1.8 1.7 1.9 2.0 1.8 1.9 1.7 2.0 1.9 2.1 2.3 1.8 2.0 2.6 1.9 2.3 

10  1.8 1.7 1.7 2.3 1.8 2.0 2.2 1.2 1.9 2.3 2.1 1.9 1.8 2.1 2.0 1.9 1.9 1.8 1.9 2.0 2.3 2.6 1.9 1.9 2.3 2.3 2.2 

11  1.5 2.3 1.8 1.6 2.2 1.8 2.5 1.9 2.0 2.3 1.8 1.7 1.9 1.8 2.1 1.8 1.8 1.9 2.0 1.9 2.2 2.2 1.8 2.0 2.0 2.4 2.4 

12 2.4 1.6 2.4 1.8 2.3 2.3 1.9 2.2 2.1 2.0 2.4 1.7 1.8 1.8 2.1 1.9 2.0 1.9 1.8 1.9 1.8 2.1 2.2 1.8 2.1 1.8 2.3  

13 2.4 1.8 2.1 1.8 1.7 2.2 1.9 1.6 1.9 1.7 2.3 1.6 1.7 1.9 2.0 1.9 1.8 1.8 1.8 1.9 1.9 2.2 2.2 1.8 2.0 2.2 2.7 2.1 

14 2.4 2.0 1.9 1.7 1.7 2.1 1.9 1.9 1.9 1.7 2.2 1.7 1.6 1.8 1.7 2.1 1.8 1.9 1.8 1.9 1.8 2.2 2.2 1.8 2.0 2.3 1.8 2.1 

15 2.4 2.1 1.9 1.9 1.7 2.1 1.9 2.1 3.2 1.9 2.3 1.2 1.9 2.0 1.7 2.0 1.9 1.8 1.8 2.0 1.9 2.3 2.2 1.8 2.1 2.4 2.1 2.5 

16 1.8 1.6 1.9 1.9 1.6 2.1 1.9 2.5 2.1 1.8 2.1 1.4 2.0 2.0 1.9 1.9 1.9 1.8 1.7 1.9 1.8 2.2 2.2 1.7 2.1 2.3  2.7 

17 1.1 1.4 1.8 1.7 2.1 2.3 1.7 2.5 2.1 1.7 2.3 1.6 1.7 1.7 1.8 2.1 1.9 1.8 1.8 2.1 1.8 2.2 2.3 1.8 2.1 2.6 2.8 2.6 

18  1.7 2.0 1.8 1.9 2.3 2.0 2.1 1.8 1.9 2.2 2.0 1.8 1.8 2.3 2.0 1.8 1.8 1.8 2.0 2.1 2.3 2.3 1.8 2.1 2.6 2.3 2.6 

19  1.6 1.8 1.8 2.3 2.1 2.0 2.5 1.9 1.9 2.1 1.8 1.7 1.8 1.9 1.9 1.8 1.8 1.7 1.9 1.9 2.3 2.3 1.8 1.9 2.6 2.3 2.7 

20 2.4 1.7 1.8 1.7 2.3 2.1 2.0 2.3 0.4 1.9 2.1 1.9 1.8 1.8 1.9 2.0 1.8 1.8 1.7 2.1 1.9 2.1 2.2 1.9 2.0 1.8 2.5 2.5 

21 2.4 1.9 2.4 1.7 1.6 2.2 1.8 2.4 1.9 2.0 2.4 1.8 1.7 1.8 2.0 1.9 1.8 1.8 1.6 2.1 1.8 1.9 2.2 1.8 2.0 2.2 1.1 2.2 

22  2.0 1.9 1.9 1.9 2.6 1.4 2.5 1.7 2.1 2.3  2.0 1.8 2.4 2.0 1.9 1.9 1.9 1.9 2.0 2.3 2.2 1.8 2.0 2.6  2.8 

23 2.4 1.8 1.7 1.9 1.6 2.3 2.3 2.1 1.4 1.7 2.4  1.9 1.8 1.8 1.9 2.0 1.9 1.8 2.0 2.0 2.3 2.2 1.8 2.1 2.6 1.5 2.3 

24 2.3 2.0 1.9 1.7  2.4 2.1 1.9 1.2 2.0 2.4  2.0 1.8  1.9 1.9 1.8 1.8 2.0 1.9 2.2 2.1 1.8 2.1 2.6  1.4 

25  1.8 1.7 1.6 2.3 1.9 1.9 1.7  2.1 2.3 2.0 1.8 2.0 2.0 2.0 1.8 2.0 1.9 2.0 1.8 2.3 2.3 1.9 2.1 2.6 2.3 2.6 

26 2.3 1.8 1.9 1.8 1.6 2.1 2.3 2.3 2.0 1.9 2.4 1.8 1.4 1.9 1.9 2.0 1.8 1.9 1.8 2.1 1.9 2.1 2.2 1.8 2.0 2.6 1.4 2.4 

27  2.0 2.2 1.8 1.9 2.3 1.0 2.7 2.0 1.7 2.3  1.9 1.7 1.9 2.0 1.8 1.8 1.8 2.1 1.9 2.0 2.2 1.9 1.9  1.9 2.4 

28 2.4 1.9 2.0 2.0 1.7 2.0 1.9 2.3 2.4 1.9 2.2 2.3 1.9 2.1 1.7 1.9 1.9 1.8 1.7 2.0 1.7 2.2 2.1 1.8 1.9  3.6 2.6 

29 2.4 1.9 2.1 1.7 1.5 2.2 1.9 1.9 1.8 1.8 2.1 1.6 1.7 1.8 1.9 2.0 1.8 1.9 1.7 2.0 1.9 2.0 2.3 1.8 1.9 2.2 2.6 2.4 

30 2.4 1.6 1.2 1.4 2.3 1.4    2.2 2.6  1.5 1.9 2.4 2.1 1.9 2.0 1.9 2.0 2.0 2.2 2.3 1.9 2.2   2.7 

31  1.5 1.9 2.3  1.7   2.5 2.3 2.1 2.3 2.3 1.7 2.0 1.9 2.0 2.0 1.9 2.2 1.9 2.4 2.5 1.9 2.2 2.6   

32  1.8 1.9 2.3  1.9 2.4 2.6   2.6  2.3 1.8 2.3 2.1 2.0 2.1 2.0 2.1 2.2 2.3 2.5 1.9 2.1 2.6   
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l,i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 261 32 33 

33  2.1 2.8   1.6 2.3    2.9 2.3 2.3 2.5  2.3 1.7 2.0 2.0 2.2 2.0 2.3 2.4 2.1 2.3   2.8 

34  1.6 1.9 2.3  2.1 1.7 2.3 2.0 2.1 2.6 2.0 1.9 2.0 2.3 2.0 2.0 2.1 1.9 2.0 1.9 2.2 2.4 1.9 2.3 2.6 2.3 2.8 

35   1.4        2.5  2.3   2.4 2.2 2.2 2.0 2.1 2.0 2.4 2.4 1.9 2.4    

36  1.6 2.3   1.2    2.4 2.7 1.5 1.8 2.4 2.5 1.8 1.9 2.2 2.0 2.0 2.0 2.3 2.3 1.9 2.2    

37 2.4 1.9 2.0 1.7 2.0 2.4 2.1 2.4 1.9 2.0 2.4 1.9 1.8 1.9 2.0 2.0 1.9 1.9 1.8 2.0 1.9 2.4 2.2 1.8 2.1 2.4 1.7 2.5 

38 1.6 1.9 1.8 1.9 2.1 2.4 1.9 1.6 1.6 2.0 2.3 1.7 1.8 1.9 2.0 2.0 1.9 1.8 1.9 2.0 1.9 2.2 2.3 1.8 2.1 2.6 2.2 2.5 

39 1.8 1.7 1.9 1.9 1.8 2.2 1.9 2.1 2.0 1.8 2.1 1.7 1.8 1.7 1.8 1.9 1.8 1.8 1.7 1.9 1.8 2.1 2.2 1.8 1.9 2.2 2.4 2.4 
1Service sectors (27-31) are not shown as these values are nan (not a number) since they all have a value of zero in the model outputs 

(due to lack of records on service sector movements to create shares). 
2Grey boxes show nan values which means that the average of the commodity flows was zero for these supply chains. 

Table A. 4 2035 Forecast Mean COVs for the Outputs (tjkd) of the Third Sub-model Averaged Over (d) 

j,k 1 2 3 4 5 6 7 8 9 10 11 

1 0.2 0.7 0.4 0.5 0.2 0.3 1.0 0.5 1 4.3 1.3 

2 0.2 0.2 0.4 0.4 0.2 0.7 0.8 0.5   0.8 

3 0.2 0.4 0.4 0.2 0.3 0.5 2.1 1.0   2.4 

4 0.5 0.6 0.6 0.3 0.2 0.5 0.9 0.8    

5 0.4 0.5 0.5 0.2 0.2 0.8 1.1 0.6  4.5 1.5 

6 0.3 1.0 0.8 0.5 0.1 0.6 0.4 0.6 1.1 3.2 1.5 

7 0.9 0.6 0.8 1.2 0.3 0.4 1.1 0.7    

8 2.0 1.2 0.8 1.0 0.3 0.4 0.8 0.7    

9      0.6   1.7   

10            

11 2.0 2.0   2.1      2.1 
1Grey boxes show nan values which means that the average of the commodity flows was zero for these supply chains. 

 


