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Abstract

The COVID-19 pandemic caused disruptions to global supply chains and the uncer-

tainty surrounding its progression has created challenges in distributing critical supplies

such as personal protective equipment (PPE). We consider the problem of distributing

PPE during the COVID-19 pandemic by acquiring distribution and storage capacity from

independent carriers for timely and efficiently delivery to health regions. First, a priority-

based distribution model is presented that prioritizes health regions by pandemic sever-

ity where priorities are based on COVID-19 case counts. Then, we propose a two-stage

stochastic model with recourse to examine PPE distribution with uncertain demand. In

the first stage, capacity acquisition decisions are made along with an initial distribution

plan. Once the pandemic severity unveils, changes to the distribution plan are made in the

second stage. The stochastic model is solved using Benders decomposition and approxi-

mated using sample average approximation. Benders decomposition and sample average

approximation produce similar results with an optimality gap of less than 1%. Benders

decomposition requires about 20 minutes to solve, while sample average approximation

requires almost an hour. We test on the Ontario health regions network and use the On-

tario healthcare worker and COVID-19 data to predict future PPE demand using 1024

scenarios. Comparing the results with actual COVID-19 realizations, we found that the

stochastic model provides sufficient PPE to satisfy demand at all regions. Furthermore,

only minimum supply is rerouted in the second stage and existing inventory is used to

satisfy demand increases where possible. When supply is more spread out amongst the

regions, the proportion of demand received at high-priority regions is more balanced, and

in the event of supply disturbances, distribution centres are used to stockpile PPE for time

periods with low supply.
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Chapter 1

Introduction

The recent COVID-19 pandemic caused an increase in demand for personal protective

equipment (PPE) around the world. PPE is critical for reducing the transmission of the

virus and for protecting individuals who work in high-risk settings, such as healthcare work-

ers (U.S. Food and Drug Administration, 2020). For many countries, including Canada,

increased demand and insufficient stockpiles led to severe PPE shortages for healthcare

workers and forced some healthcare workers to reuse single-use PPE (Warren, 2020). An

observational study shows that front-line healthcare workers are at an increased risk of test-

ing positive for COVID-19 and that having adequate supplies of PPE available is critical to

protecting healthcare workers during large spikes in COVID-19 hospitalizations (Nguyen

et al., 2020).

The process of reopening schools and businesses will also require an increase in demand

for PPE (Flanagan, 2020). Many Canadian communities and businesses have adopted

mandatory face mask laws (Chung, 2020) and are encouraging the use of hand sani-

tizer(Chiu, 2020). For example, the Ontario Government has mandated the use of masks

in most non-residential indoor settings, such as schools (Ministry of Health, 2021). The
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Ontario Ministry of Education has mandated that all students in Grades 1 to 12 must

wear a mask and that all teachers and school staff must wear a medical-grade mask as

well as eye protection when in the school building. (Ministry of Education, 2021). Such

regulations emphasize the importance of quickly distributing PPE across the province.

Early on in the pandemic, several countries, including China, had export bans in

place, restricting the global flow of PPE and raw materials. With about half of global

pre-pandemic mask production located in China, such bans contributed to global supply

shortages and disruptions (Park et al., 2020). Before the pandemic, having PPE stockpiles

was seen as a poor business decision for both businesses and countries as they can be ex-

pensive to maintain (Feinmann, 2020). An audit of Canada’s National Stockpile System

in 2010 found that large proportions of Canada’s existing stockpiled PPE supplies had

expired and as of July 2020, had still not been adequately replaced (Laing and Westervelt,

2020). According to Collis and Ungerman (2020), the pandemic may influence how com-

panies and governments operate in the future as societies will prioritize PPE stockpiles

and robust global supply chains to prepare for another eventual pandemic. The safety of

front-line healthcare workers, the safety of economic reopening, and preparation for another

pandemic highlight the importance of robust supply chains for PPE distribution.

Governments around the world are pursuing other PPE supply options (Dyer, 2020) as

the importance of having adequate PPE in COVID-19 hotspots is recognized. In response

to the PPE shortage, the Government of Canada has established an online hub to connect

buyers and sellers of PPE (Government of Canada, 2020b). The hub links PPE buyers

to provincial and territorial directories of suppliers. The hub also provides access to a

contingency supply of PPE to be used for essential service emergencies. For PPE sellers,

the hub makes finished products and related materials available to buyers. The hub also

provides product specifications and requirements for organizations that are beginning to
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manufacture PPE to accommodate the increase in demand.

As Alicke et al. (2020) describe, companies and governments should review supply chain

practices to better deal with the COVID-19 pandemic and to better prepare for future dis-

tribution interruptions. With increased PPE demand and dynamic supply, government

distribution networks are at risk of being overwhelmed during the pandemic. To alleviate

some of the pressure faced by public supply chains, governments can collaborate with pri-

vate carriers. For example, Polygenis (2020) describes how public and private partnerships

are used in some Canadian provinces to improve the distribution of the annual influenza

vaccines. Integration between public and private supply chains allows for governments to

ensure equitable vaccine distribution without having to invest in expanded supply chain

infrastructure. Polygenis (2020) believes that similar partnerships will be required to pro-

vide all Canadians with access to COVID-19 vaccines due to the large number of vaccines

needed and the vaccines’ frozen storage requirements.

Collaborating with private carriers can help reduce the pandemic’s impact on sup-

ply chains. Such collaborations can assist by increasing the speed and capacity of the

distribution networks. For example, Fedex Express Canada and Innomar Strategies Inc.

have partnered with the Government of Canada to provide warehouse capacity and trans-

portation to provincial and territorial authorities to assist with vaccine distribution and

administration (Government of Canada, 2020a). Similarly, the Government of Ontario has

set up Supply Ontario (Ministry of Government and Consumer Services, 2021), which is an

agency that allows the provincial government to purchase supplies as a single organization

and ensures that supplies are available across the province. Supply Ontario works with

partners in numerous sectors to avoid pandemic-related disruptions for PPE and other

critical equipment as well as to have a long-term sustainable supply chain. Partnerships

between governments and private carriers provide the dual goal of satisfying PPE demand
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and providing economic benefit.

This work provides a set of models to distribute PPE under different conditions. The

first model allows for distribution with sufficient supply and known demand. The second

model considers PPE distribution with insufficient supply in which PPE must be prioritized

by severity. The third model considers PPE distribution under uncertain PPE demand.

We provide deterministic and stochastic programming models in which warehouse and

transportation capacity can be acquired from independent carriers to assist with distribu-

tion. We consider PPE distribution in the events of supply shortages and with uncertain

demand. The stochastic programming model is solved using Benders decomposition and

approximated using sample average approximation.

The remainder of this thesis is as follows. A literature review is provided in Chapter 2.

Chapter 3 describes the problem and the mathematical models used to solve the problem.

Chapter 4 presents the data used to test the models. Numerical testing is given in Chapter

5 and conclusions are presented in Chapter 6.
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Chapter 2

Literature Review

2.1 Supply Chain Responses to Humanitarian Crises

The COVID-19 pandemic has impacted supply chains around the world. Being a humani-

tarian crisis, we review the literature on supply chain responses to the COVID-19 pandemic

as well as to previous humanitarian crises. Patel et al. (2017) review the PPE supply chain

responses in the United States from the H1N1 and the Ebola outbreaks. The authors

suggest many improvements including using commercial supply chains to distribute PPE

stockpiles. Tomasini and Van Wassenhove (2009) and Cozzolino et al. (2017) use case

studies to discuss the role that the private sector can have in humanitarian logistics such

as providing distribution for assets during a crisis. Pettit and Beresford (2009) perform

a detailed literature review on supply chain capacity increases due to the collaboration of

commercial organizations during humanitarian crises. The authors describe how coordi-

nation of collaboration is much more difficult in the middle of a crisis than before a crisis

and consider the applicability of ten supply chain critical success factors to humanitarian

relief efforts. Jahre and Jensen (2010) conduct an interpretative case study on the use of

5



clusters and inter-cluster coordination to ensure that capacity is met during emergencies.

Hoek (2020) conducts a review of news feeds, seminars, and interviews to identify research

opportunities for more resilient supply chains. The author suggests creating decision mod-

els that consider global sourcing and model responsiveness instead of only cost. Such a

model could be used for distribution of PPE to high-priority regions. Ivanov and Dolgui

(2020) use an ecological model to argue that intertwined supply networks improve a supply

chain’s ability to survive and recover from challenging environments such as the COVID-19

pandemic. Rowan and Laffey (2020) use a case study to explore the efficacy of addressing

the PPE supply chain shortage using reprocessing of products. Geng et al. (2020) propose

an evolution model to reduce supply chain network vulnerability resulting from cascading

failure. The authors use three classifications of supply chain criticality to balance efficiency

and vulnerability. Case studies are used to illustrate how the model improves supply chain

resilience.

Research has also been done in assessing the risk of viral transmission. Castro et al.

(2017) use Zika virus transmission rates with a Markov branch process model to estimate

the risk of Zika virus outbreaks in Texas. The authors use Poisson processes to model

infections by transmission and by introduction rates to the region. Javan et al. (2020) use

the framework provided by Castro et al. (2017) to estimate the COVID-19 risk for the

United States by county.

We now review research on existing network models that are used for new product

demand as we consider companies with available capacity being used for PPE distribution.

Chauhan et al. (2004) develop an analytical tool for supply chain design that can be used

to provide a strategy for new market opportunities by creating a heuristic approach to

a mixed integer programming problem that incorporates the production and distribution

of a new product in an existing supply chain. The problem is to select providers and
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producers in a three-echelon system with deterministic demand. Nodes have limited pro-

duction and transportation capacities, however capacity can be increased by introducing

new resources. Similarly, Chauhan et al. (2006) develop a decomposition-based solution

approach for a mixed integer linear programming problem that uses idle supply chain ca-

pacities for producing and transporting a new product with deterministic demand. Amini

and Li (2011) develop a mixed-integer nonlinear programming problem for a similar sit-

uation and compared the results using seven heuristic policies for methods of product

diffusion. The authors find that hybrid models, which consider both product manufac-

turing and distribution, outperform non-hybrid models. Pan and Nagi (2010) develop a

similar mathematical model for the manufacturing and distribution of a new product with

uncertain demand, where individual companies are selected for production and logistics

nodes. A shortest path heuristic is developed to provide an upper bound. Brandenburg

(2015) develop a mixed-integer linear programming model for supply chain design for a new

product with uncertain demand that considers both environmental and economic factors.

The author finds that decentralized supply chain designs enable carbon emission reduction

without affecting supply chain performance and that by increasing the focus of economic

optimization, demand uncertainties negatively impact the environmental impact.

2.2 Two-Stage Stochastic Programming with Recourse

Multi-stage stochastic programming has been studied extensively. Such stochastic models

usually focus on making initial decisions, then modifying the decisions as new information

becomes available. Bai et al. (2014) present a two-stage stochastic model to satisfy uncer-

tain customer demand that allows for vehicle rerouting. In the first stage, the network is

created without knowing customer demand. In the second stage, once demand is known,
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additional trucks can be added or removed from routes to satisfy the demand. Zanjani

et al. (2009) present a two-stage stochastic model with recourse for sawmill production

planning. The authors use a hybrid scenario tree to account for demand and yield uncer-

tainty. The amount production and inventory of product and raw material can be changed

in the second stage as more information regarding yield and demand realizations becomes

available. Özaltın et al. (2018) propose a bilevel multistage stochastic mixed integer pro-

gram to maximize influenza vaccine coverage as well as manufacturers’ profits. A scenario

tree is used to model uncertainty in the proportions of cases from each virus strain in each

stage. The authors create a branch-and-price solution algorithm and provide a heuristic

to be used as a decision aid tool for the United States Food and Drug Administration.

Stochastic programming has often been studied for logistics planning during disas-

ter responses. Barbarosoǧlu and Arda (2004) propose a two-stage stochastic model for

transportation planning of first-aid commodities during earthquake responses in Istanbul,

Turkey. Random parameters consist of supply, arc capacity and demand. Döyen et al.

(2012) propose a two-stage stochastic programming model for logistics planning in a hu-

manitarian relief situation in which demand, warehouse capacity, and transportation time

is uncertain. Decisions must be made regarding the locations of rescue centres, the amounts

of inventory, the amounts distributed, and the shortage of each commodity at each location.

The deterministic equivalent model is solved using a heuristic method based on Lagrangian

relaxation for up to 25 scenarios. Mete and Zabinsky (2010) present a two-stage stochastic

programming model for medical supply storage and distribution during disaster manage-

ment. Demand amounts and transportation conditions can be affected by the disaster

and are unknown. A penalty, which varies by hospital location, is included for unfulfilled

demand during the second stage. This can place a priority on satisfying the demand at

particular locations. Alem et al. (2016) propose a two-stage stochastic network flow model
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for rapidly supplying humanitarian aid to disaster victims. The authors consider supply,

demand, available financial budget, number of vehicles available for transportation, and

amount of usable pre-positioned aid to be unknown.

For our problem, a two-stage stochastic programming with recourse is used to plan

for PPE distribution under uncertain demand and thus we provide a review. A two-stage

stochastic model with recourse is a mathematical model in which operational decisions

are made during the first stage, random events occur and then new operational decisions

are made in the second stage to account for the randomness that occurred between stages

(Hoppe, 2007). For a general formulation, we denote x ∈ Rn1 , x ≥ 0 as the first-stage

decision variables, where x is subject to constraints Ax ≤ b, A ∈ Rm1×n1 , b ∈ Rm1 .

We let s be the possible scenarios that can happen during the random event and µs be

the probability of scenario s occurring. The second-stage decision variables are y ∈ Rn2 ,

y ≥ 0, which depend on the realizations of the random events. We let Ts ∈ Rm2×n1 and

Ws ∈ Rm2×n2 denote realizations of second-stage parameter values. The second stage is

subject to the following constraints: Wsy+Tsx = hs, where hs ∈ Rm2 . We let c ∈ Rn1 and

q ∈ Rn2 be the costs associated with the first-stage and second-stage decision variables,

respectively.

An example two-stage stochastic model with recourse is as follows:

min cTx+Q (x) (2.1)

s.t. Ax ≤ b,

x ≥ 0,
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where

Q (x) :=
∑
s

µsQs (x)

and Qs (x), the recourse function for scenario s, is given by:

Qs (x) := min{qTs y | Wsy + Tsx = hs}.

Sample average approximation (SAA) is the main method we use to solve the two-

stage stochastic program with recourse, for which we provide a review. For stochastic

programs with a large number of scenarios, SAA approximates a solution by generating

several independent random samples, each with fewer scenarios than the original problem.

In order to approximate a solution to problem (2.1), which we will call the true problem,

we define the following as the SAA problem (Verweij et al., 2003):

zN = min
x
cTx+

1

N

N∑
s=1

Qs (x) . (2.2)

We generate M independent samples of scenarios, each of size N . For each sample, we solve

the associated SAA problem to find M objective values: z1N , z
2
N , . . . , z

M
N and M candidate

solutions: x̂1N , x̂
2
N , . . . , x̂

M
N . We define zN to be the average objective value:

zN =
1

M

M∑
m=1

zmN . (2.3)

The expected value of the average objective value is less than or equal to the optimal

objective value of the true problem (Norkin et al., 1998). Thus, zN is an estimate of the

lower bound of the true problem. Given a feasible solution of the true problem, x̂, an
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estimate for the upper bound of problem (2.1) is provided by

ẑN ′ (x̂) = cT x̂+
1

N ′

N ′∑
n=1

Qn (x̂) (2.4)

where N ′ is a random sample independent of the samples used to generate the feasible

solution such that N ′ > N (Verweij et al., 2003). Then, we let the estimated optimal

solution of problem (2.1) be the candidate solution from the M SAA problems with the

smallest estimated objective value. Thus, we set

x̂∗ = arg min
{
ẑN ′ (x̂)

∣∣ x̂ ∈ { x̂1, x̂2, . . . , x̂M } } . (2.5)

The quality of the solution is measured using the optimality gap:

ẑN ′ (x̂∗)− zN . (2.6)

A summary of SAA is provided in Algorithm 1.

Algorithm 1: Sample Average Approximation

for Each of the M independent samples of N scenarios do

Solve the SAA problem (2.2) using Benders decomposition;

end

Set the lower bound to be the average of all optimal objective values from the M

SAA problems;

Let x̂ be the optimal solution to the SAA problem with the smallest optimal

objective value;

Create an independent random sample of size N ′, where N ′ > N ;

Set the upper bound to be ẑN ′ (x̂) = cT x̂+ 1
N ′

∑N ′

n=1Qn (x̂);

11



Each SAA problem (2.2) is solved using Benders decomposition, for which we provide

a review (Luedtke, 2016). Benders decomposition is an iterative solution method which

begins with a small subset of the constraints and adds new constraints to the subset

with each iteration. We use the assumption of relatively complete recourse, in which for

every feasible first-stage solution, there exists a feasible second-stage solution. For Benders

decomposition, we write the two-stage stochastic model with recourse (2.1) as follows:

min cTx+
S∑
s=1

µsθs (2.7)

s.t. Ax ≤ b,

θs ≥ Qs (x) s = 1, . . . , S

x ≥ 0.

The corresponding recourse function, given x̄, is:

Qs (x) = min
y

qTs y (2.8)

s.t. Wsy = hs − Tsx̄,

y ≥ 0,

and its dual is :

max
π

(hs − Tsx)T π (2.9)

s.t. W T
s π ≤ q.
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From problem (2.7), notice that

θs ≥ Qs (x) ⇐⇒ θs ≥ max
π

{
πT (hs − Tsx) : πTWs ≤ qs

}
⇐⇒ θs ≥ max

{
(πs)T (hs − Tsx) : πs ∈ XP s

}
⇐⇒ θs ≥ (πs)T (hs − Tsx) , πs ∈ XP s (2.10)

where XP s is the set of all extreme points of the dual (2.9) with realizations for scenario

s. From (2.7) and (2.10), we get the Benders reformulation:

min cTx+
S∑
s=1

µsθs

s.t. Ax ≤ b,

θs ≥ πT (hs − Tsx) s = 1, . . . , S; πs ∈ XP s (2.11)

x ≥ 0.

Constraints (2.11) are called the Benders optimality cuts. At each iteration t of Benders

decomposition, a Master Problem, with a subset of the optimality cuts, is solved:

zMP = min cTx+
S∑
s=1

µsθs (2.12)

s.t. Ax ≤ b,

θs ≥ (πs)T (hs − Tsx) s = 1, . . . , S; πs ∈ V s,t

x ≥ 0

where V s,t ⊆ XP s. From the master problem (2.12), we obtain a solution
(
x̂t, θ̂t

)
. Then

13



for each scenario s, solve the second-stage subproblem:

Qs

(
x̂t
)

= min
y

{
qTs y : Wsy = hs − Tsx̂t

}
= max

π

{
πT
(
hs − Tsx̂t

)
: πTWs = qs

}
and let π̂s be the optimal dual solution. For each scenario, if the value of the second-

stage recourse function is less than the optimal objective value of the subproblem (i.e.

θ̂ts < Qs (x̂t)), then add the optimal dual variable values to the subset of extreme points

V s,t and repeat the algorithm. A lower bound is provided by the master problem objective

value. An upper bound is provided by the scenario subproblems:

UB = cT x̂t +
S∑
s=1

µsQs

(
x̂t
)
. (2.13)

If the upper and lower bounds are equal, the algorithm stops and the optimal solution is

found. The Benders decomposition algorithm is summarized in Algorithm 2.

If the relatively complete recourse assumption is not used, feasibility cuts need to be

added for all scenarios in which the subproblem is infeasible. The feasibility cuts have the

form:

(r̂s)T
(
h− Tsx̂t

)
≤ 0 (2.14)

where r̂s is an extreme ray of the dual subproblem.

Scenario trees are a method of modelling uncertainty across multiple decision making

stages and are often used to model scenarios in multi-stage stochastic programming. As

described by Zanjani et al. (2009), scenario tree nodes represent states of the system at

which new information is available to make decisions. Arcs represent events which can

occur before the next stage. Each arc has an associated probability which corresponds to
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the probability of using that path to arrive at the next stage. The probability of arriving

at a node is the product of the probabilities of all preceding arcs on the path that led to

the node. An individual scenario is represented by a path from the first stage to the last

stage. All node probabilities at each stage must sum to 1.

Algorithm 2: Benders Decomposition

for Scenario s = 1, 2, . . . , S do
Solve subproblem (2.8) correspinding to x̂0;
Let π̂s be the optimal dual solution;
Set V s,t=1 = { π̂s };

end
for t = 1, 2, . . . do

Solve the Master Problem (2.12) with the set of constraints corresponding to

V s,t and obtain a solution
(
x̂t, θ̂t

)
;

Set the lower bound (LB) to be the Master Problem objective value;
for Scenario s = 1, 2, . . . , S do

Solve the scenario subproblem for x̂t and obtain π̂s to be the optimal dual
solution;

Set UB = cT x̂t +
S∑
s=1

µsQs

(
x̂t
)
;

if θ̂t < Qs (x̂t) then
Set V s,t+1 ← V s,t ∪ { π̂s };

end

end
if LB ≥ UB − ε then

Stop;
end

end
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Chapter 3

Problem Definition

We will address the problem of PPE distribution during the COVID-19 pandemic by acquir-

ing route and distribution centre capacity from participating carriers in order to satisfy

PPE demand at the nodes (indexed by i, j, k = 1, . . . , J). We assume the government

controls all PPE distribution and is the entity acquiring capacity. An example network,

shown in Figure 3.1, depicts two carriers, with index r = 1, . . . , R, having capacity on

certain routes in the network. The route capacities available from each carrier in product

units are given by hrij and the cost to acquire one product unit of capacity from carrier r

for route (i− j) is crij. It is assumed that the government will pay the same unit cost, wij,

on route i−j regardless of the carrier. The model could handle different costs by not using

wij, and having the government pay a unit cost of crij along route i− j for carrier r. Thus,

wij = max
r

{
crij
}
∀i, j. The warehouse capacities available from carrier r at location j

are given by `rj with fixed cost f ri . Available routes for each carrier are provided by the

binary parameters urij, where urij = 1 indicates that carrier r serves route i− j. Locations

with available warehouse capacity for each carrier are provided by the binary parameters

vrj , where vrj = 1 indicates that carrier r has available storage capacity at location j. To
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model the problem, the following binary decision variables are used:

xrij =

1, if capacity on route (i− j) is acquired from carrier r, and

0, otherwise,

zrj =

1, if warehouse capacity at location j is acquired from carrier r, and

0, otherwise.

Figure 3.1: Network Diagram

PPE products, indexed by p = 1, . . . , P , need to be distributed to demand nodes i, j, k =
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1, . . . , J , in time periods t = 1, . . . , T , in order to satisfy demand dpti from available supply

gpti . The amount of PPE distributed along route (i− j) is represented by decision variables

αptij . PPE inventory, which is represented by the decision variables Iptj , can be stored

using acquired warehouse capacities. Distribution and inventory decisions are subject to

maximum route capacities, hrij, and warehouse capacities, `ri . The parameters and decision

variables are summarized in Table 3.1. Under sufficient supply, the capacity acquisition

and PPE distribution model is:

[DET ] :

min
∑
i

∑
j

∑
r

wijh
r
ijx

r
ij +
∑
j

∑
r

f rj z
r
j (3.1)

s.t. xrij ≤ urij i, j = 1, . . . , J ; r = 1, . . . , R (3.2)

zrj ≤ vrj j = 1, . . . , J ; r = 1, . . . , R (3.3)∑
p

αptij ≤
∑
r

hrijx
r
ij i, j = 1, . . . , J ; r = 1, . . . , R (3.4)

∑
i

αptij + I
p(t−1)
j + gptj = dptj +

∑
k

αptjk + Iptj

j = 1, . . . , J ; p = 1, . . . , P ; t = 2, . . . , T (3.5)∑
i

αptij + gptj = dptj +
∑
k

αptjk + Iptj

j = 1, . . . , J ; p = 1, . . . , P ; t = 1 (3.6)∑
p

Iptj ≤
∑
r

`rjz
r
j j = 1, . . . , J ; t = 1, . . . , T (3.7)

xrij, z
r
j ∈ {0, 1} i, j = 1, . . . , J ; r = 1, . . . , R (3.8)

αptij , I
pt
j ≥ 0 i, j = 1, . . . , J ; p = 1, . . . , P ; t = 1, . . . , T. (3.9)
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The objective function (3.1) minimizes the total cost of satisfying all demand within the

network. The first term of the objective function represents the of acquiring route capacity

from carriers. The product wijh
r
ij denotes the cost of transporting the required PPE from

location i to location j using carrier r. The binary decision variable xrij represents whether

route capacity as been acquired. The second term of the objective function represents the

cost of acquiring warehouse capacity in the network. Constraints (3.2) ensure that route

capacity cannot be acquired from a carrier unless the carrier has capacity along the route.

Constraints (3.3) ensure that storage capacity at a location cannot be acquired from a

carrier unless the carrier has warehouse capacity available at that location. Constraints

(3.2) and (3.3) are included for completeness, however these constraints are not needed in

implementation as xij variables corresponding to urij = 0 and vrj = 0 are simply removed.

Constraints (3.4) ensure that products cannot be distributed along a route unless capacity

along the route has been acquired and that the amount of product distributed on a route

does not exceed the acquired capacity for each carrier. If route capacity is acquired on

a particular route, then xrij = 1 and the amount of product distributed on that route

must not exceed the available capacity. If route capacity is not acquired on a route,

then xrij = 0 and no product can be distributed on that route. Constraints (3.5) and

(3.6) ensure that incoming PPE is equivalent to the outgoing PPE at each node for each

time period. Incoming PPE consists of incoming distribution, previous inventory and

supply. Outgoing PPE consists of demand, outgoing distribution, and current inventory.

Constraints (3.6) consider only the first time period and specify that nodes do not start

with any inventory, while Constraints (3.5) consider all remaining time periods. Thus for

the first time period, incoming PPE at a location consists only of incoming distribution and

supply at the location. Constraints (3.7) ensure that inventory cannot be stored at a node
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unless warehouse capacity has been acquired and that the inventory does not exceed the

capacity at the warehouse. If distribution centre capacity has been acquired at a particular

location, then zrj = 1 and the amount of inventory stored at the location must not exceed

the available capacity. If distribution centre capacity has not been acquired at a location,

then zrj = 0 and no PPE can be stored as inventory at the location. Constraints (3.8)

ensure that xrij and zrj decision variables are binary and Constraints (3.9) specify that the

αptij and Iptj decision variables are continuous and non-negative.

The following sections extend the previous models under different settings. Section

3.1 considers the PPE supply shortage case where PPE distribution must be prioritized.

Section 3.2 considers the uncertain demand case due to varying COVID-19 risk levels.

3.1 Insufficient Supply

The problem can be extended to consider a situation in which there is insufficient supply

to satisfy demand at all nodes in the network. In this case, the available PPE must be

distributed among the nodes in an equitable way to prevent some nodes from receiving

their full demand while other nodes receive no demand. The amount of PPE a location

receives should reflect demand as well as the severity of the COVID-19 pandemic at the

location. For example, a node with a lot of COVID-19 cases should require more PPE

than a node with fewer cases.

To model this problem extension, nodes are assigned priorities (qi) which reflect their

need for PPE. A term is added to the objective function which emphasizes distribution to

locations with high demand and high priority. The variable ρptj represents the proportion

of the demand for product p received at location j during time period t. The scalar τ is a
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Table 3.1: Summary of Notation

Indices
i, j, k network nodes
r carriers
p products
t times
s scenarios

Parameters

gtpi supply of product p from node i at time t

dtpi demand for product p at node i at time t
`ri capacity of warehouse for carrier r at node i
crij cost that carrier r charges for one product unit of capacity on route (i− j)
wij cost the government pays to acquire on product unit of capacity on route (i− j)
fri fixed cost to acquire warehouse capacity from carrier r at node i
hrij route capacity per product unit per time period for carrier r along route (i− j)
urij = 1 if carrier r has route capacity available along route (i− j); and 0 otherwise

vri = 1 if carrier r has warehouse capacity available at node i; and 0 otherwise
qi priority of destination city i
µs probability of second-stage scenario s occurring

dptsk demand for product p of node k for time period t during scenario s
γij unit cost of increasing distribution on route (i− j) during the second stage
ϕij unit cost recovered from decreasing distribution along route (i− j) during the second stage

Decision Variables
xrij = 1 if capacity is acquired on route (i− j) from carrier r; and 0 otherwise

zri = 1 if warehouse capacity is acquired from carrier r at location i; and 0 otherwise

αtp
ij amount of product p being shipped on route (i− j) for time period t as decided during the first stage

Ipti inventory of product p stored at node i at time period t

mpts
ij the increase in distribution of product p on route (i− j) in time period t for scenario s

nptsij the decrease in distribution of product p on route (i− j) in time period t for scenario s

Iptsi the amount of inventory stored at location i for product p for time period t for scenario s
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weight parameter which ensures that the third term is large enough to impact the objective

function. The priority model for insufficient supply is as follows:

[PRI] :

min
∑
i

∑
j

∑
r

wijh
r
ijx

r
ij +
∑
j

∑
r

f rj z
r
j +
∑
j

∑
p

∑
t

τ

qjρ
pt
j d

pt
j

(3.10)

s.t. xrij ≤ urij i, j = 1, . . . , J ; p = r, . . . , R (3.11)

zrj ≤ vrj j = 1, . . . , J ; r = 1, . . . , R (3.12)∑
p

αptij ≤
∑
r

hrijx
r
ij i, j = 1, . . . , J ; r = 1, . . . , R (3.13)

∑
i

αptij + I
p(t−1)
j + gptj = ρptj d

pt
j +

∑
k

αptjk + Iptj

j = 1, . . . , J ; p = 1, . . . , P ; t = 2, . . . , T (3.14)∑
i

αptij + gptj = ρptj d
pt
j +

∑
k

αptjk + Iptj

j = 1, . . . , J ; p = 1, . . . , P ; t = 1 (3.15)∑
p

Iptj ≤
∑
r

`rjz
r
j j = 1, . . . , J ; t = 1, . . . , T (3.16)

ρptj ≤ 1 j = 1 . . . , J ; p = 1, . . . , P ; t = 1, . . . , T (3.17)

xrij, z
r
j ∈ {0, 1} i, j = 1, . . . , J ; r = 1, . . . , R (3.18)

αptij , I
pt
j , ρ

pt
j ≥ 0 i, j = 1, . . . , J ; p = 1, . . . , P ; t = 1, . . . , T. (3.19)

The objective function (3.10) minimizes the total cost of acquiring route and warehouse

capacity and maximizes the proportion of each location’s demand received. The value of

the third term will decrease as a higher proportion of demand is received. The decrease
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will be larger for nodes with large demand and high priority values, thus encouraging the

distribution of PPE to such nodes. In order to be solved by optimization software, such as

Gurobi, the model is reformulated as follows:

[PRI2] :

min
∑
i

∑
j

∑
r

wijh
r
ijx

r
ij +
∑
j

∑
r

f rj z
r
j +
∑
j

∑
p

∑
t

τ

qjd
pt
j

Y pt
j (3.20)

s.t. xrij ≤ urij i, j = 1, . . . , J ; r = 1, . . . , R (3.21)

zrj ≤ vrj j = 1, . . . , J ; r = 1, . . . , R (3.22)∑
p

αptij ≤
∑
r

hrijx
r
ij i, j = 1, . . . , J ; r = 1, . . . , R (3.23)

∑
i

αptij + I
p(t−1)
j + gptj = ρptj d

pt
j +

∑
k

αptjk + Iptj

j = 1, . . . , J ; p = 1, . . . , P ; t = 1, . . . , T (3.24)∑
i

αptij + gptj = ρptj d
pt
j +

∑
k

αptjk + Iptj

j = 1, . . . , J ; p = 1, . . . , P ; t = 0 (3.25)∑
p

Iptj ≤
∑
r

`rjz
r
j j = 1, . . . , J ; t = 1, . . . , T (3.26)

ρptj ≤ 1 j = 1 . . . , J ; p = 1, . . . , P ; t = 1, . . . , T (3.27)

Y pt
j ρ

pt
j ≥ 1 j = 1, . . . , J ; p = 1 . . . , P ; t = 1 . . . , T (3.28)

xrij, z
r
j ∈ {0, 1} i, j = 1, . . . , J ; r = 1, . . . , R (3.29)

αptij , I
pt
j , ρ

pt
j ≥ 0 i, j = 1, . . . , J ; p = 1, . . . , P ; t = 1, . . . , T. (3.30)

The variable Y pt
j is added in place of

1

ρptj
and Constraints (3.28) are added to restrict Y pt

j .
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By including the new variable in the objective function, the objective function becomes

linear. Even though Constraints (3.28) are non-linear, [PRI2] is a second-order cone

program, which can be solved directly with optimization software.

3.2 Pandemic Uncertainty

The problem can also be extended to incorporate uncertain demand. This uncertainty is

due to unknown future COVID-19 risk levels at different locations. As the severity of the

COVID-19 pandemic increases, more PPE is required for healthcare workers and for the

population to combat the virus. This extension is modelled as a two-stage stochastic model

with recourse. Decisions for route and warehouse capacity acquisitions as well as for initial

distribution are made in the first stage. Then, once a scenario s with known demand dptsk

is realized, the distribution decisions can be modified in the second stage. Each scenario

is realized with probability µs. Second stage decision variables consist of increases and

decreases to the amount of PPE being distributed and of inventory quantities, which are

represented by mpts
ij , nptsjk , and Iptsi , respectively.

The variables mpt
ijs and nptjks allow for PPE rerouting. Depending on the scenario re-

alization, PPE may have to be added or removed from a route in order to accomodate

for the changes in demand. Should a unit of demand be added to the route during the

second stage, the unit transportation cost is γij. Should a unit of demand be removed

from the route during the second stage, the unit cost recovered is ϕij. It is assumed that

γij ≥ wij ∀i, j and φij ≤ wij ∀i, j . These assumptions imply that the cost to distribute

product is greater if the decision is made last-minute as opposed to in advance and that

not all costs will be recovered if a removal decision is made last-minute. The two-stage

stochastic model with recourse is as follows:
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[STOCH] :

min
∑
i

∑
j

∑
r

wijh
r
ijx

r
ij +
∑
j

∑
r

f rj z
r
j +
∑
s

µsQs

(
xrij, z

r
j , α

pt
ij

)
(3.31)

s.t. xrij ≤ urij i, j = 1, . . . , J ; r = 1, . . . , R (3.32)

zrj ≤ vrj j = 1, . . . , J ; r = 1, . . . , R (3.33)∑
p

αptij ≤
∑
r

hrijx
r
ij i, j = 1, . . . , J ; t = 1, . . . , T (3.34)

∑
i

αptij + I
p(t−1)
j + gptj = dptj +

∑
k

αptjk + Iptj

j = 1, . . . , J ; p = 1, . . . , P ; t = 2, . . . , T (3.35)∑
i

αptij + gptj = dptj +
∑
k

αptjk + Iptj

j = 1, . . . , J ; p = 1, . . . , P ; t = 1 (3.36)∑
p

Iptj ≤
∑
r

`rjz
r
j j = 1, . . . , J ; t = 1, . . . , T (3.37)

xrij, z
r
j ∈ {0, 1} i, j = 1, . . . , J ; r = 1, . . . , R (3.38)

αptij , I
pt
j ≥ 0 i, j = 1, . . . , J ; p = 1, . . . , P ; t = 1, . . . , T (3.39)
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where

Qs

(
xrij, z

r
j , α

pt
ij

)
= min

∑
i

∑
j

∑
p

∑
t

(
γijm

pts
ij − ϕijn

pts
ij

)
(3.40)

s.t.
∑
p

(
αptij +mpts

ij − n
pts
ij

)
≤
∑
r

hrijx
r
ij

i, j = 1, . . . , J ; t = 1, . . . , T (3.41)∑
i

(
αptij +mpts

ij − n
pts
ij

)
+ I

p(t−1)s
js + gptj

= dptsj +
∑
k

(
αptjk +mpts

jk − n
pts
jk

)
+ Iptsj

j = 1, . . . , J ; p = 1, . . . , P ; t = 2, . . . , T (3.42)∑
i

(
αptij +mpts

ij − n
pts
ij

)
+ gptj

= dptsj +
∑
k

(
αptjk +mpts

jk − n
pts
jk

)
+ Iptsj

j = 1, . . . , J ; p = 1, . . . , P ; t = 1 (3.43)∑
p

Iptsj ≤
∑
r

`rjz
r
j j = 1, . . . , J ; t = 1, . . . , T (3.44)

nptsij ≤ αptij i, j = 1, . . . , J ; p = 1, . . . , P ; t = 1, . . . , T (3.45)

mpts
ij , n

pts
ij , I

pts
i ≥ 0 i, j = 1, . . . , J ; p = 1, . . . , P ;

t = 1, . . . , T ; s = 1, . . . , S. (3.46)

The objective function (3.31) minimizes the total cost of acquiring route and warehouse

capacity as well as the expected cost of rerouting the PPE distribution for all scenarios

during the second stage, Qs

(
xrij, z

r
j , α

pt
ij

)
. The second-stage objective (3.40) minimizes the
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cost of changing the distribution for a scenario s. Constraints (3.41) and ensure that prod-

uct cannot be distributed unless route capacity has been acquired and that the amount

of product distributed does not exceed the route capacity. The amount of product dis-

tributed consists of the first-stage amount (αptij ), the second-stage increase (mpts
ij ) and the

second-stage decrease (nptsij ). Constraints (3.42) ensure that the incoming PPE is equiv-

alent to the outgoing PPE at each node for each time period after second-stage changes.

Incoming PPE consists of incoming distribution, previous inventory and supply. Outgoing

PPE consists of node demand, outgoing distribution, and current inventory. Constraints

(3.43) explicitly say that nodes cannot start with any inventory. Constraints (3.44) ensure

that the amounts of PPE stored as inventory after the second-stage changes do not exceed

the acquired storage capacity. Constraints (3.45) ensure that we do not remove more PPE

of each type than we initially assigned to each route during each time period. Constraints

(3.46) ensure that the second-stage decision variables are continuous and non-negative.

In the following section, we derive a Benders decomposition approach to solve the

two-stage stochastic program with recourse.

3.2.1 Benders Decomposition

For fixed first-stage decisions, namely the capacity acquired
(
x̄rij, z̄

r
j

)
and the initial distri-

bution and inventory allocation ᾱptij and Īptj , the second stage decisions are:
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[SP (s)] : Qs

(
x̄rij, z̄

r
j , ᾱ

pt
ij

)
=

min
∑
i

∑
j

∑
p

∑
t

(
γijm

pts
ij − ϕijn

pts
ij

)
(3.47)

s.t.
∑
p

(
mpts
ij − n

pts
ij

)
≤
∑
r

hrijx̄
r
ij −

∑
p

ᾱptij

i, j = 1, . . . , J ; t = 1, . . . , T −→ π1ts
ij (3.48)∑

i

(
mpts
ij − n

pts
ij

)
−
∑
k

(
mpts
jk − n

pts
jk

)
+ I

p(t−1)s
j − Iptsj

= dptsj − g
pt
j +

∑
k

ᾱptjk −
∑
i

ᾱptij

j = 1, . . . , J ; p = 1, . . . , P ; t = 2, . . . , T −→ π2pts
j (3.49)∑

i

(
mpts
ij − n

pts
ij

)
−
∑
k

(
mpts
jk − n

pts
jk

)
− Iptsj

= dptsj − g
pt
j +

∑
k

ᾱptjk −
∑
i

ᾱptij

j = 1, . . . , J ; p = 1, . . . , P ; t = 1 −→ π3ps
j (3.50)∑

p

Iptjs ≤
∑
r

`rj z̄
r
j j = 1, . . . , J ; t = 1, . . . , T −→ π4ts

j (3.51)

nptsij ≤ ᾱptij i, j = 1, . . . , J ; p = 1, . . . , P, t = 1, . . . , T −→ π5pts
ij (3.52)

mpts
ij , n

pts
ij , I

pts
i ≥ 0 i, j = 1, . . . , J ; p = 1, . . . , P ;

t = 1, . . . , T ; s = 1, . . . , S. (3.53)

This is referred to as the Benders primal subproblem. We note that it is not decom-
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posable by time period t due to Constraints (3.49) and (3.50). The dual of [SP (s)] is:

[DSP (s)] :

max
∑
i

∑
j

∑
t

(∑
r

hrijx̄
r
ij −

∑
p

ᾱptij

)
π1ts
ij

+
∑
j

∑
p

∑
t

(
dptjs − g

pt
j +

∑
k

ᾱptjk −
∑
i

ᾱptij

)
π2pts
j

+
∑
j

∑
p

(
dp,t=1
js − gp,t=1

j +
∑
k

ᾱp,t=1
jk −

∑
i

ᾱp,t=1
ij

)
π3ps
j

+
∑
j

∑
t

∑
r

(
`rj z̄

r
j

)
π4ts
j +

∑
i

∑
j

∑
p

∑
t

ᾱptijπ
5pts
ij (3.54)

s.t. π ∈ FSπ (3.55)

where π =
(
π1ts
ij , π

2pts
j , π3ps

j , π4ts
j , π5pts

ij

)
are the dual variables corresponding to Constraints

(3.48) - (3.52) and FSπ is the feasible set of [DSP (s)] that is not written explicitly for

ease of exposition.

The combined first-stage and [SP (s)] solutions provide a feasible solution and an upper

bound on the optimal objective of [STOCH]. Benders cuts based on [DSP (s)] are added

to the following master problem:

[BMP ] :

min
∑
i

∑
j

∑
r

wijh
r
ijx

r
ij +
∑
j

∑
r

f rj z
r
j +
∑
s

µsθs (3.56)

s.t. xrij ≤ urij i, j = 1, . . . , J ; r = 1, . . . , R (3.57)

zrj ≤ vrj j = 1, . . . , J ; r = 1, . . . , R (3.58)
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∑
p

αptij ≤
∑
r

hrijx
r
ij i, j = 1, . . . , J ; t = 1, . . . , T (3.59)

∑
i

αptij + I
p(t−1)
j + gptj = dptj +

∑
k

αptjk + Iptj

j = 1, . . . , J ; p = 1, . . . , P ; t = 2, . . . , T (3.60)∑
i

αptij + gptj = dptj +
∑
k

αptjk + Iptj

j = 1, . . . , J ; p = 1, . . . , P ; t = 1 (3.61)∑
p

Iptj ≤
∑
r

`rjz
r
j j = 1, . . . , J ; t = 1, . . . , T (3.62)

θbs ≥
∑
i

∑
j

∑
t

(∑
r

hrijx
r
ij −

∑
p

αptij

)
π1tsb
ij

+
∑
j

∑
p

∑
t

(
dptsj − g

pt
j +

∑
k

αptjk −
∑
i

αptij

)
π2ptsb
j

+
∑
j

∑
p

(
dp,t=1,s
j − gp,t=1

j +
∑
k

αp,t=1
jk −

∑
i

αp,t=1
ij

)
π3psb
j

+
∑
j

∑
t

∑
r

(
`rjz

r
j

)
π4tsb
j +

∑
i

∑
j

∑
p

∑
t

αptijπ
5ptsb
ij

b ∈ Bs; s = 1, . . . , S (3.63)

0 ≥
∑
i

∑
j

∑
t

(∑
r

hrijx
r
ij −

∑
p

αptij

)
π1tsb
ij

+
∑
j

∑
p

∑
t

(
dptsj − g

pt
j +

∑
k

αptjk −
∑
i

αptij

)
π2ptsb
j

+
∑
j

∑
p

(
dp,t=1,s
j − gp,t=1

j +
∑
k

αp,t=1
jk −

∑
i

αp,t=1
ij

)
π3psb
j

+
∑
j

∑
t

∑
r

(
`rjz

r
j

)
π4tsb
j +

∑
i

∑
j

∑
p

∑
t

αptijπ
5ptsb
ij

b ∈ Es; s = 1, . . . , S (3.64)
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xrij, z
r
j ∈ {0, 1} i, j = 1, . . . , J ; r = 1, . . . , R (3.65)

αptij ≥ 0 i, j = 1, . . . , J ; p = 1, . . . , P ; t = 1, . . . , T. (3.66)

For the Benders master problem, we begin with the first-stage problem from [STOCH]

and we add the sets of constraints (3.63) and (3.64). Constraints (3.63) are the optimality

cuts, where Bs is the set of extreme point dual solutions of FSπ for scenario s. Constraints

(3.64) are the feasibility cuts where Es is the set of extreme rays of the dual feasible region

of FSπ for scenario s.

For iteration T of the Benders decomposition algorithm, the upper bound is:

UBT =
∑
i

∑
j

∑
r

wijh
r
ijx̄

r
ij +

∑
j

∑
r

f rj z̄
r
j +

∑
s

µs
∑
i

∑
j

∑
p

∑
t

(
γijm̄

pts
ij − ϕijn̄

pts
ij

)
where x̄rij and z̄rj are the Benders Master Problem solution and m̄pts

ij and n̄ptsij are the solu-

tions to the subproblems. The best upper bound is provided by UB = min
{
UB,UBT

}
.

The lower bound is the objective of the relaxed master problem [BMP ] at iteration T .

3.2.2 Sample Average Approximation

Two-stage stochastic models with recourse can be approximated using sample average

approximation. The true problem [STOCH] can be approximated by solving the SAA

problem M times. Each SAA problem will be solved with an independent random sample
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of scenarios of size N . The SAA problem for each of the M samples is:

[SAA] :

ZMn = min
∑
i

∑
j

∑
r

wijh
r
ijx

r
ij +
∑
j

∑
r

f rj z
r
j +

1

N

N∑
n=1

Qn

(
xrij, z

r
j , α

pt
ij

)
s.t. xrij ≤ urij i, j = 1, . . . , J ; r = 1, . . . , R (3.67)

zrj ≤ vrj j = 1, . . . , J ; r = 1, . . . , R (3.68)∑
p

αptij ≤
∑
r

hrijx
r
ij i, j = 1, . . . , J ; t = 1, . . . , T (3.69)

∑
i

αptij + I
p(t−1)
j + gptj = dptj +

∑
k

αptjk + Iptj

j = 1, . . . , J ; p = 1, . . . , P ; t = 2, . . . , T (3.70)∑
i

αptij + gptj = dptj +
∑
k

αptjk + Iptj

j = 1, . . . , J ; p = 1, . . . , P ; t = 1 (3.71)∑
p

Iptj ≤
∑
r

`rjz
r
j j = 1, . . . , J ; t = 1, . . . , T (3.72)

xrij, z
r
j ∈ {0, 1} i, j = 1, . . . , J ; r = 1, . . . , R (3.73)

αptij , I
pt
j ≥ 0 i, j = 1, . . . , J ; p = 1, . . . , P ; t = 1, . . . , T. (3.74)

An estimate of the lower bound is given by:

ZN =
1

M

M∑
m=1

zMn . (3.75)

.
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For a given feasible first-stage solution
(
x̄rij, z̄

r
ij, ᾱ

pt
ij

)
, an estimate of the upper bound is

given by:

Z̄N ′
(
x̄rij, z̄

r
ij, ᾱ

pt
ij

)
=
∑
i

∑
j

∑
r

wijh
r
ijx̄

r
ij +
∑
j

∑
r

f rj z̄
r
j +

1

N ′

N ′∑
n=1

Qn

(
x̄rij, z̄

r
j , ᾱ

pt
ij

)
. (3.76)

Chapter 4 describes the data used to test the above models. In Chapter 5, we provide

numerical testing.
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Chapter 4

Data

The proposed framework will be applied to the province of Ontario, where the nodes are

the provincial health regions. The Ontario health regions are given in Figures 4.1 and 4.2.

We consider two types of PPE: surgical masks and surgical gowns and a single box of either

type of PPE is considered to have the same dimensions. Thus, a box of 50 surgical masks

and a box of 20 surgical gowns are each considered to be one unit.

Demand for each health region was calculated based on the number of healthcare work-

ers in each region according to the 2016 Census (Statistics Canada, 2020). The census

data includes people in all health occupations such as physicians, nurses, technicians, op-

tometrists, dentists, etc. It is assumed that healthcare workers use four masks and four

gowns per day. Weekly demand for a health region, in number of boxes of PPE, was

calculated as follows:

Weekly demand

=
(# of healthcare workers) (PPE usage per person per day) (5 work days per week)

(# of items per box)
.
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Figure 4.1: Southern Ontario Health Regions
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Figure 4.2: Northern Ontario Health Regions
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Table 4.1 shows the number of healthcare workers by health region and the weekly demand

for masks and gowns.

The total amount of supply available in the network was estimated to be almost double

the total demand. We assume that supply is available from four health regions. The City of

Ottawa Health Unit, Sudbury and District Health Unit, The City of Toronto Health Unit,

and Windsor-Essex County Health Unit all produce their own supply of masks and gowns.

We assume that Windsor also receives large shipments of masks from the United States

and that Ottawa also receives large shipments of gowns each time period from Quebec.

The supply available from each health region during each time period is shown in Table

4.2.

During the peak of the COVID-19 outbreak in New York City during the Spring of

2020, weekly PPE deliveries were being made to hospitals (Greater New York Hospital

Association, 2020). Thus, we will consider the duration of a time period to be a week. In

the numerical testing, we consider four total time periods or approximately one month.

According to Cerasis Inc. (2015), a standard freight trailer can hold 26 pallets, where a

standard pallet is 48in by 40in (Freight Quote by C.H. Robinson, 2020). Since a box of sur-

gical masks has dimensions 7.5in by 4.25in by 4in (North American Rescue, 2020), a pallet

can hold approximately 972 product units and a transport truck can hold approximately

25, 272 product units.

According to Hooper and Murray (2018) the 2017 average truck transportation cost in

the United States was $1.691 USD/mile, which equates to approximately $1.33 CAD/km.

After adjusting for Canadian inflation (Statista, 2021), the average truck transportation

cost would be $1.42 CAD/km in 2021. For the test cases, two different carriers are used

(Carrier A and Carrier B), however the cost per km for each carrier is considered to be the
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Table 4.1: Weekly Demand per Health Region
Health Region Healthcare

Workers
Mask
Demand

Gown
Demand

The District of Algoma 4,475 1,790 4,475
Brant County 4,340 1,736 4,340
Chatham-Kent 3,580 1,432 3,580
Durham Regional 20,795 8,318 20,795
Eastern Ontario 6,760 2,704 6,760
Elgin-St. Thomas 3,150 1,260 3,150
Grey Bruce 5,915 2,366 5,915
Haldimand-Norfolk 3,765 1,506 3,765
Haliburton, Kawartha,
Pine Ridge District

5,820 2,328 5,820

Halton Regional 16,530 6,612 16,530
City of Hamilton 21,745 8,698 21,745
Hastings and Prince
Edward Counties

5,260 2,104 5,260

Huron County 1,775 710 1,775
Kingston, Frontenac and Lennox
and Addington

9,350 3,740 9,350

Lambton 4,640 1,856 4,640
Leeds, Grenville and
Lanark District

6,085 2,434 6,085

Middlesex-London 20,040 8,016 20,040
Niagara Regional Area 15,885 6,354 15,885
North Bay Parry Sound District 4,880 1,952 4,880
Northwestern 2,595 1,038 2,595
City of Ottawa 32,880 13,152 32,880
Oxford County 3,465 1,386 3,465
Peel Regional 37,400 14,960 37,400
Perth District 2,535 1,014 2,535
Peterborough County-City 5,375 2,150 5,375
Porcupine 3,055 1,222 3,055
Renfrew County and District 4,005 1,602 4,005
Simcoe Muskoka District 18,780 7,512 18,780
Sudbury and District 8,400 3,360 8,400
Thunder Bay District 6,795 2,718 6,795
Timiskaming 1,170 468 1,170
City of Toronto 84,365 33,746 84,365
Waterloo 16,020 6,408 16,020
Wellington-Dufferin-Guelph 8,970 3,588 8,970
Windsor-Essex County 15,260 6,104 15,260
York Regional 31,190 12,476 31,190

Total 447,050 178,820 447,050
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Table 4.2: PPE Supply per Time Period
Health Region Mask Supply per

Time Period
Gown Supply per
Time Period

City of Ottawa 12,400 662,300
Sudbury and District 10,400 22,600
City of Toronto 37,400 115,900
Windsor-Essex County 247,500 26,600

Total 307,700 827,400

same. The test cases also assume that there is route capacity available from each carrier

on each route (i.e. urij = 1 ∀i, j, r). The cost to acquire one PPE unit of capacity on route

i− j (wij) is calculated by

(truckload cost/km) (road distance between i and j)

25, 272 product units per truck
.

Road distances are calculated using Google Maps (2021) and are provided in Tables A.1,

A.2, A.3, A.4, A.5, and A.6. The wij values are provided in Tables A.7, A.8, A.9, A.10,

A.11, and A.12. The capacity for route i − j per time period from carrier r (hrij) is

considered to be the demand per time period for health region j. For example, the District

of Algoma Health Region requires a total of 6, 265 units of demand per time period. Thus,

hri,j = 6, 265 ∀i, r, where j = Algoma.

For the test cases, it is assumed that there is storage capacity available to be acquired

from each carrier at each health region (i.e. vrj = 1 ∀j, r). At each health region, we

estimate that Carrier A has storage capacity of 1, 550 cubic feet available from its existing

network for $43, 000 per month. We estimate that Carrier B has 3, 250 cubic feet of storage

capacity available from its existing network for $88, 000 per month at each health region.

Since a box of masks measures 7.5in by 4.25in by 4in and a box of surgical masks and a

box of medical gowns are considered to have the same dimensions, Carrier A has storage

capacity for 21, 000 PPE units at each health region and Carrier B has 44, 000 units of
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storage capacity available at each health region.

The cost required to distribute an additional unit of PPE during the second stage of the

stochastic model is set to $0.25 for all routes (i.e. γij = 0.25 ∀i, j). This is approximately

double the maximum unit distribution cost between health regions. Thus, it is more

expensive to distribute a unit of PPE along a route during the second stage compared to

the first stage. The cost recovered from removing a unit of PPE from a route during the

second stage is assumed to be negligible and is set to $0 for all routes (i.e. ϕij = 0 ∀i, j).

4.1 Priority Values

A health region’s priority corresponds to its need for PPE, which we will attempt to

evaluate based on the total number of COVID cases, the number of COVID-related deaths,

and the population density. Population density was included as places with high population

density tend to have a higher rate of COVID-19 transmission (Rocklöv and Sjödin, 2020).

The COVID-19 case and death counts used in the priority model are accurate as of June

22, 2020. Population density data is taken from the 2016 Census (Statistics Canada, 2020).

Some health units contain a large area of land with only one major city. As a result,

population density can become skewed. For example, Sault Ste. Marie is part of The Dis-

trict of Algoma Health Unit, which covers a large area of 41, 267km2 and has a much lower

population density (2.7people/km2) than the city of Sault Ste. Marie (97people/km2).

Because of the large difference in population density, Sault Ste. Marie was considered to

be its own destination city and the remaining area of The District of Algoma Health Unit

as well as all COVID cases in the area were disregarded. This approach was also applied to

the cities of Barrie, Greater Sudbury, Guelph, London, Mississauga, Ottawa, and Thunder

Bay.
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The set of Quebec Health Regions was used as a training data set with Quebec COVID-

19 data taken from Quebec.ca (2021). For each predictor (total COVID-19 cases, total

COVID-19-related deaths, and population density), the Quebec health regions were ranked

in ascending order. The set of average rankings was then scaled so that the largest value

in the set was 20. The scaled averages were considered to be the priority values for the

training set and they were used as the dependent variable when determining the regression

formulas. The Quebec regions and the scaled priority values are shown in Table 4.3.

Using the statistical computing software, R, seven linear regression models are obtained

using different combinations of the predictors. The coefficient of determination, R2, can

be used to determine the quality of the model. However, as more parameters are added to

the model, R2 can never decrease. As Kutner et al. (2005) suggest, the adjusted coefficient

of multiple determination, R2
a,P is an alternative used for model selection which takes the

number of parameters into account.

The parameters used for the seven different linear regression models and the corre-

sponding R2
a,P values are shown in Table 4.4. For each regression model, only the included

parameters are used to calculate the average ranks. For example, for the model that con-

siders only COVID-19 cases and COVID-19-related deaths as predictors, only the number

of cases and the number of deaths are considered for the average rank.

Table 4.4: Parameters Used for Regression Models
COVID-19 Cases COVID-19 Deaths Population Density R2

a,P
0.41

0.30

0.29

0.59

0.42

0.28

0.66
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Table 4.3: Quebec COVID-19 Data (accurate as of June 22, 2020)

Health Regions
COVID-19

Cases (rank)
COVID-19

Deaths (rank)
Population

Density (rank)
Average

Rank
Scaled

Average

Region de l’Abitibi-
Temiscamingue

172 (6) 4 (6) 2.5 (4) 5.33̄ 5.93

Region de l’Estrie 959 (11) 25 (9) 37.1 (13) 11 12.22̄

Region de
l’Outaouais

576 (10) 33 (11) 12.4 (10) 10.22̄ 11.48

Region de la
Capitale-Nationale

1806 (12) 171 (12) 38.8 (14) 12.66̄ 14.07

Region de la
Chaudiere-Appalaches

514 (9) 8 (7) 27.9 (11) 9 10

Region de la
Cote-Nord

119 (5) 0 (1) 0.4 (3) 3 3.33̄

Region de la
Gaspesie - Iles-de-
la-Madeline

187 (7) 9 (7) 4.4 (7) 7.33̄ 18.15

Region de la
Mauricie et du
Centre-du-Quebec

2041 (13) 210 (15) 11.9 (9) 12.33̄ 13.70

Region de la
Monteregie

7750 (17) 557 (16) 157.3 (16) 16.33̄ 18.15

Region de la
Lanaudiere

4150 (15) 206 (14) 39.8 (15) 14.66̄ 16.30

Region de Laval 5750 (16) 659 (17) 1710.9 (17) 16.66̄ 18.52

Region de Montreal 27, 057 (18) 3329 (18) 3889.8 (18) 18 20

Region des
Laurentides

3312 (14) 178 (13) 28.4 (12) 13 14.44̄

Region du
Bas-Saint-Laurent

56 (4) 2 (5) 8.9 (8) 5.66̄ 6.30

Region du
Nord-du-Quebec

8 (1) 0 (1) 0.05 (2) 1.33̄ 1.48

Region du Nunavik 17 (3) 0 (1) 0.03 (1) 1.66̄ 1.85

Region du
Saguenay -
Lac-Saint-Jean

330 (8) 26 (10) 2.8 (5) 7.66̄ 8.52

Region des Terres-
Cries-de-la-Baie-
James

10 (2) 0 (1) 3.1 (6) 3 3.33̄
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The model with all three parameters has the highest adjusted coefficient value. The

summary table for this regression model is shown in Table 4.5.

Table 4.5: Priority Regression Summary
Coefficients Estimate p-value
(Intercept) 6.68312 2.46e−05
Case Count 0.004344 0.000953
Death Count -0.038329 0.003977
Population Density 0.006191 0.105239

Since the population density parameter is not significant, it is removed in Table 4.6.

Table 4.6: Priority Regression Summary Without Population Density
Coefficient Estimate p-value
(Intercept) 7.0043989 1.83e−05
Case Count 0.0035217 0.00284
Death Count -0.0242457 0.00914

We find that both remaining predictors are significant. However, Table 4.7 shows the

correlation between all three original predictors and we see that the three predictors are

highly correlated.

Table 4.7: Correlation Between Priority Predictors
Case Count Death Count Population Density

Case Count 1.00 0.99 0.93
Death Count 0.99 1.00 0.96
Population Density 0.93 0.96 1.00

Thus, there is multicollinearity in both regression models and we will use the COVID-19

case counts as the only predictor. The resulting linear regression formula is

priority = 8.7379083 + (0.0005969 ∗ cases). (4.1)
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The regression table from R is shown in Table 4.8.

Table 4.8: Priority Regression Summary Without Population Density and Death Count
Coefficients Estimate p-value
(Intercept) 8.7379083 2.45e−06
Case Count 0.004344 0.00395

The Ontario Health Region priorities as calculated by the regression formula are shown

in Tables 4.9 and 4.10. The τ parameter was set to max
ij
{ wij } (i.e. τ = 0.13).

4.2 Pandemic Uncertainty

The two-stage stochastic model with recourse considers the possibility of increased pan-

demic severity happening in some regions. The Government of Ontario has five risk cat-

egories for COVID-19 public health measures: Prevent, Protect, Restrict, Control, and

Lockdown (Ontario.ca, 2020a). Ontario health regions are assigned categories based on

the number of COVID-19 cases. People in Lockdown regions are most at-risk of infection

and people in Prevent regions are at the lowest risk of infection. The higher-risk categories

also have more business restrictions and require more PPE.

According to Public Health Ontario (2020), two weeks of decreasing COVID-19 cases in

a region are required for the region to improve to the next category. Public Health Ontario

(2020) also describes the United States Center for Disease Control (CDC) conditions for

being classified as a high-risk country. A high-risk country is defined as one which has

more than 500 new daily cases and a daily incidence rate of more than three new cases per

100, 000 people.

The test cases combine and modify Public Health Ontario’s and the CDC’s conditions
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Table 4.9: Ontario Health Region Priorities, Part 1*

Health Regions
COVID-19

Cases
COVID-19

Deaths
Population

Density
Priority

COVID-19
Data Source

Barrie 174 14 219.4 8.72 simcoemuskokahealth.org
Brant County
Health Unit

121 4 119.5 8.69 bchu.org

Chatham-Kent
Health Unit

157 1 14.3 8.71 ckphu.com

City of Hamilton
Health Unit

802 43 544.9 9.09 hamilton.ca

City of Toronto
Health Unit

13856 1039 4334.4 16.88 toronto.ca

Durham Regional
Health Unit

1671 180 255.9 9.61 app.powerbi.com

Elgin-St.Thomas Health
Unit

39 1.90 47.3 8.64 swpublichealth.ca

Greater Sudbury 61 1.82 42 8.65 phsd.ca
Grey Bruce Health
Unit

106 0 18.8 8.69 publichealthgreybruce.on.ca

Guelph 198 11 256.1 8.73 wdgpublichealth.ca
Haldimand-Norfolk
Health Unit

445 32 38.4 8.88 hnhu.org

Haliburton et al.
Health Unit

189 32 19.8 8.73 hkpr.on.ca

Halton Regional
Health Unit

798 25 568.9 9.09 halton.ca

Hastings and Prince
Edward Counties
Health Unit

43 5 22.5 8.64 hpepublichealth.ca

Huron County
Health Unit

13 0 17.4 8.62 hpph.ca

Kingston et al.
Health Unit

64 0 29.2 8.65 kflaph.ca

Lambton Health Unit 285 25 42.2 8.79 lambtonpublichealth.ca
Leeds et al. Health
Unit

352 52 26.4 8.83 healthunit.org

London 566 53.15 185.6 8.95 healthunit.com
*COVID-19 Data Accurate as of June 22, 2020.
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http://www.simcoemuskokahealth.org/MicroSites/Media/Health%20Stats/Instant%20Atlas/HealthMAPS_COVID_Dashboard20200626/index.html
https://www.bchu.org/ServicesWeProvide/InfectiousDiseases/Pages/coronavirus.aspx
https://ckphu.com/current-situation-in-chatham-kent/
https://www.hamilton.ca/coronavirus
https://www.toronto.ca/home/covid-19/covid-19-latest-city-of-toronto-news/covid-19-status-of-cases-in-toronto/
https://app.powerbi.com/view?r=eyJrIjoiMjU2MmEzM2QtNDliNS00ZmIxLWI5MzYtOTU0NTI1YmU5MjQ2IiwidCI6IjUyZDdjOWMyLWQ1NDktNDFiNi05YjFmLTlkYTE5OGRjM2YxNiJ9
https://www.swpublichealth.ca/content/community-update-novel-coronavirus-covid-19
https://www.phsd.ca/health-topics-programs/diseases-infections/coronavirus/current-status-covid-19
https://www.publichealthgreybruce.on.ca/Portals/0/Topics/InfectiousDiseases/COVID19/Situation%20Reports/June2020_Situation_Report.pdf
https://www.wdgpublichealth.ca/your-health/covid-19-information-public/status-cases-wdg
https://hnhu.org/health-topic/coronavirus-covid-19/
https://www.hkpr.on.ca
https://www.halton.ca/For-Residents/Immunizations-Preventable-Disease/Diseases-Infections/New-Coronavirus#01
https://hpepublichealth.ca/covid-19-cases/
https://www.hpph.ca/en/health-matters/covid-19-in-huron-and-perth.aspx
https://www.kflaph.ca/en/healthy-living/status-of-cases-in-kfla.aspx
https://lambtonpublichealth.ca/2019-novel-coronavirus/summary-of-covid-19-cases-in-lambton-county/
https://healthunit.org/wp-content/uploads/Weekly_LGLDHU_COVID-19_Surveillance_Report_June_21_2020.pdf
https://www.healthunit.com/covid-19-cases-middlesex-london


Table 4.10: Ontario Health Region Priorities, Part 2*

Health Regions
COVID-19

Cases
COVID-19

Deaths
Population

Density
Priority

COVID-19
Data Source

Mississauga 2564 216 2467.6 10.14 peelregion.ca
Niagara Regional
Area Health Unit

741 61 241.5 9.06 stcatharinesstandard.ca

North Bay
Parry Sound
District Health Unit

30 1 7.3 8.63 myhealthunit.ca

Northwestern
Health Unit

30 0 0.4 8.63 nwhu.on.ca

Ottawa 2056 260 272.5 9.84 ottawapublichealth.ca
Oxford County
Health Unit

43 2.10 54.4 8.64 swpublichealth.ca

Perth District
Health Unit

41 5 34.6 8.64 hpph.ca

Peterborough County-
City Health Unit

95 2 35.9 8.67 peterboroughpublichealth.ca

Porcupine
Health Unit

67 8 0.3 8.66 porcupinehu.on.ca

Renfrew County and
District Health Unit

25 1 6.9 8.63 rcdhu.com

Sault Ste. Marie 19 0 97 8.63 algomapublichealth.com
The Eastern Ontario
Health Unit

163 11 38.2 8.71 eohu.ca

Thunder Bay Region 66 0.73 47.6 8.65 tbdhu.com
Timiskaming
Health Unit

18 0 2.3 8.63 timiskaminghu.com

Waterloo Health Unit 1258 115 390.9 9.37 regionofwaterloo.ca
Windsor-Essex County
Health Unit

1329 68 215.5 9.41 wechu.org

York Regional
Health Unit

2857 236 629.9 10.32 york.ca

*COVID-19 Data Accurate as of June 22, 2020.
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https://www.peelregion.ca/coronavirus/case-status/
https://www.stcatharinesstandard.ca/news-story/9907932-covid-19-in-niagara-the-latest/
https://www.myhealthunit.ca/en/health-topics/covid-19-cases.asp
https://www.nwhu.on.ca/covid19/Pages/regional-COVID-19-results.aspx
https://www.ottawapublichealth.ca/en/reports-research-and-statistics/daily-covid19-dashboard.aspx
https://www.swpublichealth.ca/content/community-update-novel-coronavirus-covid-19
https://www.hpph.ca/en/health-matters/covid-19-in-huron-and-perth.aspx
https://www.peterboroughpublichealth.ca/your-health/diseases-infections-immunization/diseases-and-infections/novel-coronavirus-2019-ncov/local-covid-19-status/
https://www.porcupinehu.on.ca/en/your-health/infectious-diseases/novel-coronavirus/
https://www.rcdhu.com/novel-coronavirus-covid-19-2/
http://www.algomapublichealth.com/disease-and-illness/infectious-diseases/novel-coronavirus/current-status-covid-19/
https://eohu.ca/en/covid/covid-19-status-update-for-eohu-region
https://www.tbdhu.com/coviddata
http://www.timiskaminghu.com/90484/covid-19#Current%20Situation
https://www.regionofwaterloo.ca/en/health-and-wellness/positive-cases-in-waterloo-region.aspx
https://www.wechu.org/cv/local-updates
https://www.york.ca/wps/portal/yorkhome/health/yr/covid-19/covid19inyorkregion/!ut/p/z1/tVPLcpswFP2WLFhiXQQY0Z1KXAOJH03iFxuPDOKRGuFg2cR_X5G6M22ncdpJYCF0pXOPzj26QhFaokiwY5ExWVSCbVW8ivrrgA4D37-BcGIRDyhMaIgdAgPXQIsXALzyUUDRv-RfAESX6ecoQtEuLhK0solNXNO1dZfhRLewy3XCYldPDHfjYmBqN23RsZA7maPVqV7HlZBcSA1OVf1NBXtZyMPLQl6VXI2cbWWuQVwdi0Q33PPMcAvRZtQ8Uzah8K0ilYu4HnmjTEllMtcLkVZo-ZP0PPuDVOUUj09PEVWCW5XPEi0_TPGi9eFXzcN7YkEwDx06NyZgBeYZgLHV9w0PQvAnBIIvztS-Jr4BN_gMuHA1ypZsW21-dBEVG5Oo-mue8prXvUOtlnMpd_tPGmjQNE3vyA5ZzkQvZhoI3uw18Cbz4LqtYcoyruKEp-ywlT223z3_jTSv9sql37nQSnWY8-rt3GG0OBa8QTNR1aXSev-fDeXD-QSHeNSnQ5jCw8yBrwPHIv3b0fT2znjnCW8U0DG92Sm9A93S427pP8acMADPoO0rNAcmUBx45LMZkvG4W-_H3Xo_7tb7cbd9P3-vObtyNiuJaW8fTyYU03JBJGke0jwr16OBaV_-0aur7-Wg7J0!/dz/d5/L2dBISEvZ0FBIS9nQSEh/#.XvDZly-z3RY


for COVID-19 risk. We consider a region to be at high-risk for transmissibility if it has

an average incidence rate of greater than three over the past week and if the number of

new COVID-19 cases has increased in the past week. The condition of having more than

500 new cases, as recommended by the CDC, was not used because we are dealing with

individual Ontario health regions and that recommendation was made for entire countries.

For example, a health region is said to be at high-risk at time t for our model if the

incidence at time t − 1 is greater than three and if the number of cases in the region has

increased from time periods t − 2 to t − 1. If the high-risk conditions are not met, the

region is considered to be at low-risk for transmissibility. A region’s risk level remains

constant for all time periods. Thus, a region in high-risk during the first time period will

be at high-risk for all time periods in the model.

To determine the probability that a region would be at high-risk for the next time

period, logistic regression was used to predict high-risk occurrence in the next time period

from the region’s incidence rate during the current time period. For each week between

October 15, 2020 and November 11, 2020, the week’s high-risk outcome and the previous

week’s average incidence rates were used in the regression calculations. Daily COVID-

19 case count data for Huron County Health Unit and Perth District Health Unit was

presented together, thus the two health regions were combined into one health region

for the logistic regression calculations. The same applies for the Oxford County and the

Elgin-St. Thomas health units. Daily COVID-19 case counts used in the stochastic model

were obtained from Ontario.ca (2020b) and were taken on November 11, 2020. The daily

numbers of new COVID-19 cases by health region are provided in Tables A.13, A.14,

A.15, A.16, A.17, A.18, A.19, A.20, A.21, A.22, A.23, and A.24. Population data used to

calculate incidence rates was obtained from the 2016 Census (Statistics Canada, 2020) on

November 15, 2020. The health region populations are given in Table A.25.
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The logistic regression formula obtained from R is:

p̂ =
exp(−3.6164 + 0.6752X)

1 + exp(−3.6164 + 0.6752X)
(4.2)

where p̂ is the probability that a region will be in high-risk during the next time period,

and X is the region’s average daily incidence rate during the current time period. The

regression table from R is shown in Table 4.11. From the p-values, we can see that the

predictor is significant. The high-risk probabilities for each health region are shown in

Table 4.12.

Table 4.11: Pandemic Progression Regression Table
Estimate p-value

(Intercept) -3.6164 1.58e−11
Previous Week’s Incidence Rate 0.6752 1.99e−08

There are 36 health regions in Ontario, as shown in Figures 4.1 and 4.2. To simplify the

model, health regions were grouped together based on geographic location and high-risk

probability to form clusters. All health regions within a cluster are considered to have the

same COVID-19 risk level. For example, if a cluster is at high-risk of COVID-19 trans-

mission, all health regions within the cluster are at high-risk of COVID-19 transmission.

Durham Regional Health Unit and Windsor-Essex County Health Unit and District Health

Unit do not have similar high-risk probabilities as other health units which are geograph-

ically near them. As such, Durham and Windsor-Essex each formed its own cluster. To

calculate the high-risk probabilities for each cluster, aggregate COVID-19 incidence rates

were used with logistic regression. The logistic regression formula for the health region

clusters is:

p̂ =
exp(−3.7778 + 0.6561X)

1 + exp(−3.7778 + 0.6561X)
(4.3)
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Table 4.12: Health Region High-Risk Probabilities
Health Unit High-Risk

Probability for
November 12-18

Peel Regional Health Unit > 99%
City of Toronto Health Unit > 99%
York Regional Health Unit 96%
City of Hamilton Health Unit 83%
Halton Region Health Department 81%
Niagara Regional Area Health Unit 70%
Waterloo Health Unit 67%
Durham Regional Health Unit 54%
Huron County-Perth District Health Unit 53%
City of Ottawa Health Unit 51%
Windsor-Essex County Health Unit 44%
Wellington-Dufferin-Guelph Health Unit 35%
Brant County Health Unit 33%
Eastern Ontario Health Unit 29%
Middlesex-London Health Unit 29%
Sudbury & District Health Unit 28%
Simcoe Muskoka District Health Unit 18%
Oxford County - Elgin-St. Thomas Health Unit 17%
Chatham-Kent Health Unit 16%
Haldimand-Norfolk Health Unit 13%
Thunder Bay District Health Unit 11%
Grey Bruce Health Unit 8%
The District of Algoma Public Health Unit 7%
Northwestern Health Unit 6%
Leeds et al. District Health Unit 5%
Peterborough County-City Health Unit 5%
Kingston et al. Health Unit 5%
Renfrew County and District Health Unit 5%
Lambton Health Unit 4%
North Bay Parry Sound District Health Unit 4%
Porcupine Health Unit 4%
Haliburton et al. Health Unit 3%
Hastings and Prince Edward Counties Health Unit 3%
Timiskaming Health Unit 3%

49



where p̂ is the expected probability that a cluster will be in high-risk during the next time

period, and X is the cluster’s incidence rate from the current time period. The regression

table from R is shown in Table 4.13. From the p-values, we can see that the predictor is

significant. We note that the pandemic progression predictions could also be done using a

Susceptible-Infected-Removed (SIR) model. We will use this regression model to predict

the high-risk probabilities for the time period of November 12-18, 2020. A region’s risk level

for November 12-18 remains the same for all time periods in the stochastic program. The

resulting eleven clusters, their high-risk probabilities for November 12-18 and the health

regions they comprise are shown in Table 4.14. A map of the health region clusters is given

in Figure 4.3.

Table 4.13: Pandemic Progression by Cluster Regression Table
Estimate p-value

(Intercept) -3.7778 0.000126
Previous Week’s Incidence Rate 0.6561 0.000908

As Martin-Olalla (2020) notes, large COVID-19 outbreaks occurring in neighbouring

regions are independent events. Thus, we will consider the risk levels at each cluster to

be independent of one another. We will model high-risk uncertainty with a two-stage

scenario tree as shown in Figure 4.4. Each leaf node in the tree represents a scenario

in which a different combination of clusters are at high-risk of COVID-19 transmission.

Since the eleven Ontario health region clusters can be classified as either in high-risk

or in low-risk, we would have 211 = 2048 scenarios. To reduce the number of scenar-

ios, the demand for all clusters with high-risk probabilities of greater than 99% or less

than 1% are considered to be deterministic. Clusters with high-risk probabilities greater

than 99% are considered certain to be at high-risk. Clusters with high-risk probabil-

ities less than 1% are considered certain to be at low-risk. Only the GTA fits this

criteria. Thus, the GTA is considered to have a high-risk probability of 100% for the
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Table 4.14: Health Region Clusters
Cluster High-Risk

Probability
for
Nov 12-18

Health
Region 1

Health
Region 2

Health
Region 3

Health
Region 4

Health
Region 5

Greater
Toronto
Area (GTA)

> 99% City of
Toronto

York
Regional

Peel
Regional

GTA
Suburbs

74% City of
Hamilton

Halton
Regional

Niagara
Regional
Area

Durham 48% Durham
Regional

Central
Ontario

46% Waterloo Huron
County

Perth
District

Wellington-
Dufferin-
Guelph

Brant
County

Eastern
Ontario

41% City of
Ottawa

Eastern
Ontario

Windsor-
Essex

38% Windsor-
Essex
County

Southern
Ontario

16% Middlesex-
London

Oxford
County

Elgin - St.
Thomas

Chatham-
Kent

Lambton

Georgian
Bay

12% Simcoe-
Muskoka
District

Grey Bruce

North
Shore

8% Sudbury
and District

District of
Algoma

Renfrew
County and
District

North
Bay
Parry
Sound
District

Timiskaming

Northern
Ontario

6% Thunder
Bay District

Northwestern Porcupine

Peterborough 4% Leeds et
al.

Peterborough
County-City

Kingston et
al.

Haliburton
et al.

Hastings
and
Prince
Edward
Counties
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Figure 4.3: Health Region Clusters Map

next time period. This leaves 210 = 1024 scenarios remaining. To find the probabil-

ity of each scenario, the probabilities of each cluster being in the desired risk-level are

multiplied together. For example, the probability of the scenario where the GTA Sub-

urbs cluster is at high risk and all other groups (other than the GTA) are at low-risk is

(0.74) (1− 0.48) (0.46) (1− 0.41) (1− 0.38) (1− 0.16) (1− 0.12) (1− 0.8) (1− 0.6) (1− 0.4)

= 0.048.

According to an international study conducted by Tabah et al. (2020), 4% of surgical

masks are being washed or reused in healthcare settings. Similarly, 11% of full sleeve

waterproof gowns are being washed or reused. When a region is in high-risk, mask demand

will be increased by 4% and gown demand will be increased by 11%. The weekly PPE
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Figure 4.4: COVID-19 High-Risk Scenario Tree. There are 1024 different combinations of
scenarios that can occur.

demand for each health region during high-risk time periods is shown in Table 4.15.
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Table 4.15: Weekly Demand for Health Regions During High-Risk Time Periods
Health Region High-Risk Mask

Demand
High-Risk Gown
Demand

The District of Algoma 1,862 4,967
Brant County 1,805 4,817
Chatham-Kent 1,489 3,974
Durham Regional 8,651 23,082
Eastern Ontario 2,812 7,504
Elgin-St. Thomas 1,310 3,497
Grey Bruce 2,461 6,566
Haldimand-Norfolk 1,566 4,179
Haliburton, Kawartha,
Pine Ridge District

2,421 6,460

Halton Regional 6,876 18,348
City of Hamilton 9,046 24,137
Hastings and Prince
Edward Counties

2,188 5,839

Huron County 738 1,970
Kingston, Frontenac and
Lennox and Addington

3,890 10,379

Lambton 1,930 5,150
Leeds, Grenville and
Lanark District

2,531 6,754

Middlesex-London 8,337 22,244
Niagara Regional Area 6,608 17,632
North Bay Parry Sound District 2,030 5,417
Northwestern 1,080 2,880
City of Ottawa 13,678 36,497
Oxford County 1,441 3,846
Peel Regional 15,558 41,514
Perth District 1,055 2,814
Peterborough County-City 2,236 5,966
Porcupine 1,271 3,391
Renfrew County and District 1,666 4,446
Simcoe Muskoka District 7,812 20,846
Sudbury and District 3,494 9,324
Thunder Bay District 2,827 7,542
Timiskaming 487 1,299
City of Toronto 35,096 93,645
Waterloo 6,664 17,782
Wellington-Dufferin-Guelph 3,732 9,957
Windsor-Essex County 6,348 16,939
York Regional 12,975 34,621

Total 185,973 496,226
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Chapter 5

Numerical Testing

The proposed models were compared using the data described in the previous chapter. All

tests were conducted using Python 3.8 with Gurobi 9 and were executed on MacOS i7 with

16GB RAM. The two-stage stochastic model with recourse is approximated with sample

average approximation and solved with the same parameters using Benders decomposition.

The Benders decomposition algorithm was allowed to run until the optimality gap was

within 1% for a maximum run time of one hour. For the sample average approximation

algorithm, we used M = 10 samples each of size N = 10. Each SAA problem within

the sample average approximation algorithm, was solved using Benders decomposition and

was allowed to solve for a maximum of five minutes. When solving the second stage in

the final sample average approximation step (2.4), a sample size of N ′ = 20 was used. For

comparison, the priority model was also solved using the same parameters and was allowed

to solve for one hour. Table 5.1 compares the solutions of the three models.

All three models solved to within 0.31% of optimality. The solutions obtained from Ben-

ders decomposition and sample average approximation are very similar and the first-stage
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Table 5.1: Method Comparison
Benders SAA Priority

Solution Time (min) 23 56 60
Gap 0.31% 0.06% 0.25%

Objective Value 4,141,708 4,146,894 4,127,139

solutions are identical. All stochastic model results presented are the Benders decomposi-

tion solutions. Figures 5.1 and 5.2 show the first-stage distribution of mask supply, where

thicker lines indicate more units of PPE being distributed than thinner lines. Since, the

majority of mask supply originates from Windsor, large quantities of masks are trans-

ported from Windsor to other Southern Ontario locations (such as Hamilton, London, and

Waterloo) before being distributed to the rest of the province. For example, masks arrive

in Timiskaming using the following path: Windsor → Hamilton → Peel → Simcoe →

Timiskaming. Figures 5.3 and 5.4 show the gown distribution from the sample average

approximation solution. Similarly to most of the mask supply coming from Windsor, the

majority of gown supply originates in Ottawa. From Ottawa, the large quantities of gown

supply are distributed to the rest of the province.

Warehouse capacity is acquired at every location and often from both carriers. Acquir-

ing capacity at such a large number of warehouses is due to the excess supply available and

the relatively small capacity available at each warehouse compared with the total demand.

We will denote the scenario that is most likely to occur as Scenario A. This scenario

occurs with probability 4.8% and considers the GTA and the GTA Suburbs as high-risk

COVID-19 clusters. All remaining health region clusters are at low-risk. Table 5.2 shows

the change in demand and in PPE received for high-risk health regions between the first

stage of the stochastic program and Scenario A. The values in Table 5.2 represent the

combined PPE units between all products and time periods, however the change in PPE
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Figure 5.1: Mask Distribution during the First Stage

Figure 5.2: Southern Ontario Mask Distribution during the First Stage
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Figure 5.3: Gown Distribution during the First Stage

Figure 5.4: Southern Ontario Gown Distribution during the First Stage
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received does not include inventory amounts. Even though six health regions have increased

demand during this scenario, only three regions (Peel, York, and Hamilton) receive all or

more than the extra demand from distribution. And only York receives slightly more PPE

than demand, thus close to the minimum amount of demand necessary is rerouted during

the second stage. Regions whose increased distribution from rerouting is less than the

increase in demand satisfy this extra demand using existing inventory.

Table 5.2: PPE Changes Under Scenario A
Health
Region
Cluster

Health
Regions

Demand Increase
Between First Stage
and Second Stage
Scenario A

Total Change in PPE
Received Between
First Stage and
Scenario A

GTA

Peel 18,852 18,852
Toronto 42,524 21,506
York 15,724 16,536

GTA Suburbs

Halton 8,336 -555
Hamilton 10,960 10,960
Niagara 8,012 -10,695

The two-stage stochastic model with recourse was solved directly to verify the results

obtained from Benders decomposition and sample average approximation. For small test

cases, the solutions matched. For the test cases shown in this chapter, the stochastic

program could not be solved directly due to a lack of memory.

The priority model generated similar results to the first stage of the stochastic program.

Since there is excess supply, all demand at each region is fulfilled (i.e. ρpti = 1 ∀i, p, t).

5.1 Pandemic Severity Becomes Known

The two-stage stochastic model with recourse considers 1024 potential scenarios to handle

the pandemic uncertainty. We make predictions regarding which regions are at high-risk

59



for COVID-19 infection and which regions are at low-risk for the week of November 12 -

November 18, 2020. Looking back, we now know the actual severity of the pandemic for

this time period. Using our high-risk definition of: an incidence rate greater than three

over the past week and an increasing case count from the prior week, we calculate that

five health region clusters would have been at high-risk during the week of November 12 -

November 18, 2020 as shown in Table 5.3.

As shown in Table 5.4, the sum of net incoming PPE across all time periods at each

health region matches or exceeds the required demand for the realized scenario. Net

incoming PPE consists of the outgoing distributed PPE subtracted from the sum of the

supply and incoming PPE distribution. For a scenario s, the formula to calculate net

incoming PPE for each health region j and for each product p is as follows:

∑
t

∑
i

(
αptij +mpts

ij − n
pts
ij

)
−
∑
t

∑
k

(
αptjk +mpts

jk − n
pts
jk

)
+
∑
t

gptj (5.1)

Excess PPE is stored as inventory using acquired warehouse capacity. Thus, our two-stage

stochastic model with recourse is able to completely satisfy the demand given by the actual

pandemic severity level.

Table 5.3: Actual Risk Levels of Health Region Groupings Risk Levels for Nov 12 - Nov
18, 2020

High-Risk Clusters
during Nov 12 - Nov 18

Low-Risk Clusters
during Nov 12 - Nov 18

GTA GTA Suburbs
Durham Southern Ontario

Windsor-Essex Eastern Ontario
Central Ontario North Shore
Georgian Bay Peterborough

Northern Ontario
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Table 5.4: PPE Received for Second-Stage Realization
Health
Region

Risk
Level

Required
Mask
Demand

Net
Incoming
Masks

Excess
Masks

Required
Gown
Demand

Net
Incoming
Gowns

Excess
Gowns

Algoma Low 7,160 7,160 0 17,900 82,900 65,000
Brant High 7,224 42,252 35,028 19,272 27,700 8,428
Chatham Low 5,728 70,728 65,000 14,320 14,320 0
Durham High 34,604 34,604 0 92,332 157,332 65,000
Eastern Low 10,816 10,816 0 27,040 90,223 63,183
Elgin Low 5,040 68,870 63,830 12,600 12,600 0
GreyBruce High 9,844 18,046 8,202 26,264 59,919 33,655
Haldimand Low 6,024 45,968 39,944 15,060 19,116 4,056
Haliburton Low 9,312 9,312 0 23,280 88,280 65,000
Halton Low 26,448 26,448 0 66,120 118,860 52,740
Hamilton Low 34,792 34,792 0 86,980 102,236 15,256
Hastings Low 8,416 8,416 0 21,040 81,792 60,752
Huron High 2,956 32,268 29,312 7,884 16,437 8,553
Kingston Low 14,960 14,960 0 37,400 102,400 65,000
Lambton Low 7,424 72,424 65,000 18,560 18,560 0
Leeds Low 9,736 9,736 0 24,340 84,561 60,221
Middlesex Low 32,064 97,064 65,000 80,160 80,160 0
Niagara Low 25,416 25,416 0 63,540 127,460 63,920
NorthBay Low 7,808 7,808 0 19,520 40,520 21,000
Northwestern Low 4,152 4,152 0 10,380 54,380 44,000
Ottawa Low 52,608 52,608 0 131,520 196,520 65,000
Oxford Low 5,544 10,366 4,822 13,860 30,038 16,178
Peel High 62,236 62,236 0 166,056 231,056 65,000
Perth High 4,220 46,428 42,208 11,256 30,952 19,696
Peterborough Low 8,600 8,600 0 21,500 86,500 65,000
Porcupine Low 4,888 4,888 0 12,220 52,648 40,428
Renfrew Low 6,408 6,408 0 16,020 64,771 48,751
Simcoe High 31,252 31,252 0 83,384 148,384 65,000
Sudbury Low 13,440 13,440 0 33,600 98,600 65,000
Thunderbay Low 10,872 10,872 0 27,180 71,180 44,000
Timiskaming Low 1,872 1,872 0 4,680 25,680 21,000
Toronto High 140,384 140,384 0 374,584 435,557 60,973
Waterloo High 26,660 42,978 16,318 71,132 99,670 28,538
Wellington High 14,928 14,928 0 39,828 100,002 60,174
Windsor High 25,396 90,396 65,000 67,756 67,756 0
York High 51,904 51,904 0 138,484 190,530 52,046
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5.2 Priority Value Sensitivity Analysis

In order to test how PPE is distributed given insufficient supply to satisfy all demand,

test cases are performed with the priority model using reduced supply values, as provided

in Table 5.5. With the reduced supply, no warehouse capacity is acquired as there is no

excess PPE to be stored as inventory. Figure 5.5 shows the priority value for each health

region and Figure 5.6 shows the total amount of PPE received and the total demand

across all products and time periods for each health region. The amount of PPE received

is calculated as the outgoing PPE distribution subtracted from the sum of the PPE supply

and the incoming PPE distribution. Despite receiving significantly more PPE than any

other region and having the largest priority value, Toronto does not necessarily receive a

large proportion of its demand.

Figure 5.5: Health Region Priority Values

Figure 5.7 shows the average proportion of mask demand received for each health region

across all time periods. The same proportions are mapped in Figures 5.8 and 5.9, where

larger circles represent larger proportions of demand received. Many health regions receive

all or a large proportion of their demand, however, Toronto has the largest priority value
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Figure 5.6: Total PPE Received by Health Region

and receives only 60% of its demand.

Figure 5.10 shows the average proportion of gown demand received for each health

region across all time periods and Figures 5.11 and 5.12 show the maps of the same pro-

portions. Many health regions with large priority values receive very small proportions of

their gown demand. For example, York and Peel have the second and third largest priority

values, respectively, however they each only receive 2% of their demand. Toronto, with by

far the largest priority value, receives only 58% of its demand.

Table 5.5: Reduced PPE Supply
Health Region Mask Supply Gown Supply

Ottawa 42,400 96,200
Sudbury 9,300 21,600
Toronto 20,200 48,900
Windsor 86,200 76,500

Total 158,160 190,218
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Figure 5.7: Average Proportion of Mask Demand Received Across all Time Periods

Figure 5.8: Map of Average Proportion of Mask Demand Received Across all Time Periods
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Figure 5.9: Map of Average Proportion of Mask Demand Received Across all Time Periods
in Southern Ontario

Figure 5.10: Average Proportion of Gown Demand Received Across all Time Periods
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Figure 5.11: Map of Average Proportion of Gown Demand Received Across all Time
Periods

Figure 5.12: Map of Average Proportion of Gown Demand Received Across all Time
Periods in Southern Ontario
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In order to encourage high-priority regions to receive larger proportions of their demand,

we normalize the priority values between ranges with larger upper bounds. Increasing the

upper bound of the priority range as well as increasing the length of the priority value range

will place a greater emphasis on supplying PPE to high-priority regions. Larger priority

values will increase the denominator in the third term of the priority model objective

function (3.10). By normalizing the priority values into such ranges, we would expect

high-priority regions to receive larger proportions of their demand than low-priority regions.

However, with priorities normalized in the range 1-100,000, results were very similar to the

solution obtained using the original priority values. Table 5.6 compares the proportions of

demand received in the regions with the largest priority values: Toronto, York, and Peel.

The increased priority values does not make a large impact on the mask demand. For

gown demand, the increased priority values increase the York and Peel proportions to 20%

and 17%, respectively. Toronto, however, actually receives a lower proportion of its gown

demand given the higher priority values.

Table 5.6: Proportion of Demand Received for Toronto, York, and Peel with the Original
Insufficient Supply Data

Health
Region

Product Proportion of Demand
Received with Original
Priority Values

Proportion of Demand
Received with Priority
Values Between
1-100,000

Toronto
Mask 0.60 0.60
Gown 0.58 0.28

York
Mask 0.97 1.00
Gown 0.02 0.20

Peel
Mask 1.00 0.98
Gown 0.02 0.17

For comparison, we tested the priority model with supply spread more evenly between

the health regions, as shown in Table 5.7. Table 5.8 presents the proportions of demand

received in Toronto, York, and Peel for the original and normalized priority values given
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the new supply data. With supply spread more evenly around the province, each of the

three large health regions receive at least 22% of their demand for each product. Having

supply spread out throughout the province encourages a more even distribution of PPE

than when supply is concentrated at a few locations. Similarly to previous test cases,

larger priority values do not significantly impact the proportion of demand received at

high-priority regions.

5.3 Supply Disturbances

We consider a disturbance in the available PPE supply where there is no supply in the

network during the third time period. Supply during the other three time periods remains

the same. When running this test case, we found that 21, 000 PPE units of warehouse

capacity were acquired in Ottawa. As Table 5.9 shows, the model incrementally built

up the amount of inventory at the Ottawa warehouse, which is used to supply the entire

province during the third time period. All acquired warehouse capacity is used after the

second time period. Since the Ottawa warehouse capacity cannot store enough inventory

to satisfy all demand in the province, on average only 9.7% of demand is satisfied during

the third time period.

5.4 Increased Route Capacity

We consider two settings in which larger route capacities are available. We define Setting

A to be the test case with the original route capacity values. For Setting B, we consider

the available route capacity for Carrier B to be double the destination demand for each

route. For example, the District of Algoma Health Region requires a total of 6, 265 units of

68



Table 5.7: Supply per Time Period Spread Throughout the Network
Product Mask Supply Gown Supply
Algoma 300 21,500
Brant 300 700

Chatham-Kent 300 700
Durham 300 700
Eastern 300 700
Elgin 300 700

Grey Bruce 300 700
Haldimand 300 700
Haliburton 300 700

Halton 300 700
Hamilton 9,300 21,500
Hastings 300 700
Huron 300 700

Kingston 300 700
Lambton 300 700

Leeds 300 700
Middlesex 300 700
Niagara 300 700

North Bay 300 700
Northwestern 300 700

Ottawa 30,400 76,200
Oxford 300 700

Peel 9,300 41,500
Perth 300 700

Peterborough 300 700
Porcupine 300 700
Renfrew 300 700
Simcoe 300 700

Sudbury 9,300 21,500
Thunder Bay 9,300 700
Timiskaming 300 700

Toronto 20,200 35,800
Waterloo 300 700

Wellington 300 700
Windsor 26,100 12,500

York 300 700

Total 122,600 250,800
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Table 5.8: Proportion of Demand Received for Toronto, York, and Peel with the More
Evenly Spread Supply Data

Health
Region

Product Proportion of Demand
Received with Original
Priority Values

Proportion of Demand
Received with Priority
Values Between
1-100,000

Toronto
Mask 0.30 0.30
Gown 0.22 0.22

York
Mask 0.82 0.82
Gown 0.58 0.58

Peel
Mask 0.44 0.44
Gown 0.82 0.82

Table 5.9: Inventory Stored at Ottawa Warehouse
Time
Period

Amount of Mask
Inventory in
Ottawa Warehouse

Amount of Gown
Inventory in
Ottawa Warehouse

1 5,240 5,261
2 10,477 10,523
3 0 0
4 2,134 7,488
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demand per time period. Thus, hri,j = 12, 530 ∀i, where j = Algoma, r = Carrier B. The

Carrier A route capacities remain unchanged. Setting C considers the available capacity

for both carriers to be double the destination demand for each route. Table 5.10 compares

the total route capacity acquired from each carrier as well as the recourse objective value

for each setting.

5.4.1 Increased Carrier B Capacity

For Setting B, only Carrier B has double the available route capacity and Benders decom-

position solves to a gap of 0.08% in about 22 minutes. From Table 5.10, we see that the

total capacity acquired from Carrier A increases while the total capacity acquired from

Carrier B decreases. Since the increased Carrier B route capacity also increases the cost

to acquire route the capacity, Carrier A capacity will be acquired where possible. We also

notice that the recourse objective value decreases with this increased capacity. This is due

to larger route capacities allowing for more direct rerouting of PPE.

5.4.2 Increased Capacity for Both Carriers

For Setting C, all routes for both carriers have double the available capacity and the

Benders decomposition algorithm solves to an optimality gap of 0.23% in about 24 minutes.

Table 5.10 shows that the capacity acquisition decisions no longer favour Carrier A. Since

the route acquisition costs for each carrier are identical, Carrier B capacity is acquired by

default and Carrier A capacity is only acquired when there is not enough from Carrier B.

The Setting C recourse objective value is also smaller than the Setting A recourse function

value. This indicates that savings are achieved from economies of scale by distributing

PPE in larger shipments. The recourse value for Setting C is greater that for Setting B as
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Setting B allows for either large or small route capacities to be acquired. The government

is not forced to acquire large route capacities in all cases.

Table 5.10: Change in Route Capacity Acquired Under Different Capacity Settings
Setting Total Carrier A

Route Capacity
Acquired

Total Carrier B
Route Capacity
Acquired

Recourse
Objective
Value

Setting A:
Initial Capacities

515,198 1,057,156 12,653

Setting B:
Increased Capacities
for Carrier B Only

831,598 636,702 3,377

Setting C:
Increased Capacities
for Both Carriers

221,086 1,854,910 9,656
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Chapter 6

Conclusion

In this thesis, we studied the problem of distributing PPE during the COVID-19 pandemic

by acquiring route and storage capacity from independent carriers. We presented a deter-

ministic model which prioritized distribution based on pandemic risk level in the event of

insufficient supply. In addition, we proposed a two-stage stochastic model with recourse

for PPE distribution under uncertain demand.

The stochastic model was approximated using sample average approximation and solved

using Benders decomposition on test cases of Ontario health units and with 1, 024 scenarios.

Both algorithms had an optimality gap of less than 0.31%. Benders decomposition solved

for all 1, 024 scenarios in approximately 20 minutes, while sample average approximation

solved using M = 20 samples each of size N = 20 in approximately one hour. When

comparing the stochastic model solution with the actual demand values once they became

known, the stochastic model is able to satisfy demand at all locations. The net PPE

received at each location was greater than the location’s demand. Only the minimum

amount of necessary supply is rerouted in the second stage to satisfy demand increases,

which are often met from stored inventory.
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Regardless of whether supply was concentrated at a few locations or spread throughout

the network, the priority values in the priority model did not have a large impact on

distribution. However, a larger range for priority values did increase the amount of demand

received for locations that receive very small proportions of demand. If supply is more

spread out throughout the network, the proportion of demand received at each location

is more balanced and high priority regions received at least 22% of their demand. In the

event of supply disturbances, warehouse capacity is acquired to stockpile demand for time

periods without supply. Having multiple options for sizes of route capacities decreases the

required rerouting costs.

Potential future research based on the priority model could explore adjusting the pri-

ority in between time periods to reflect the amount of PPE received during the previous

time period. For example, a location which does not receive very much PPE during a time

period could have its priority increased for the next time period. Future work regarding

the stochastic model could explore uncertainty in supply or expand the stochastic model

to be multi-stage.
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J. Rocklöv and H. Sjödin. High population densities catalyse the spread of COVID-19.

Journal of Travel Medicine, 27(3), 03 2020. ISSN 1708-8305. doi: 10.1093/jtm/taaa038.

URL https://doi.org/10.1093/jtm/taaa038. taaa038.

N. J. Rowan and J. G. Laffey. Challenges and solutions for addressing critical short-

age of supply chain for personal and protective equipment (ppe) arising from coro-

navirus disease (covid19) pandemic – case study from the republic of ireland. Sci-

ence of The Total Environment, 725:138532, 2020. ISSN 0048-9697. doi: https:

//doi.org/10.1016/j.scitotenv.2020.138532. URL https://www.sciencedirect.com/

science/article/pii/S0048969720320453.

Statista. Canada: Inflation rate from 1986 to 2026, 2021. URL https://www.statista.

com/statistics/271247/inflation-rate-in-canada/.

Statistics Canada. Census profile, 2016 census, 2020. URL https://www12.statcan.gc.

ca/census-recensement/2016/dp-pd/prof/index.cfm?Lang=E.

83

https://www.mckesson.ca/documents/59196/0/McKesson+Canada+Whitepaper+-+COVID-19+Vaccine+Supply+Chain+Readiness.pdf/e2e85307-662f-0ffe-0a60-7cf120802cd6
https://www.mckesson.ca/documents/59196/0/McKesson+Canada+Whitepaper+-+COVID-19+Vaccine+Supply+Chain+Readiness.pdf/e2e85307-662f-0ffe-0a60-7cf120802cd6
https://www.mckesson.ca/documents/59196/0/McKesson+Canada+Whitepaper+-+COVID-19+Vaccine+Supply+Chain+Readiness.pdf/e2e85307-662f-0ffe-0a60-7cf120802cd6
https://www.publichealthontario.ca/-/media/documents/ncov/ipac/2020/09/community-based-health-care-workers-interpreting-local-epi.pdf?la=en
https://www.publichealthontario.ca/-/media/documents/ncov/ipac/2020/09/community-based-health-care-workers-interpreting-local-epi.pdf?la=en
https://www.publichealthontario.ca/-/media/documents/ncov/ipac/2020/09/community-based-health-care-workers-interpreting-local-epi.pdf?la=en
https://www.publichealthontario.ca/-/media/documents/ncov/ipac/report-covid-19-universal-mask-use-health-care-settings.pdf?la=en
https://www.publichealthontario.ca/-/media/documents/ncov/ipac/report-covid-19-universal-mask-use-health-care-settings.pdf?la=en
https://doi.org/10.1093/jtm/taaa038
https://www.sciencedirect.com/science/article/pii/S0048969720320453
https://www.sciencedirect.com/science/article/pii/S0048969720320453
https://www.statista.com/statistics/271247/inflation-rate-in-canada/
https://www.statista.com/statistics/271247/inflation-rate-in-canada/
https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof/index.cfm?Lang=E
https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof/index.cfm?Lang=E


A. Tabah, M. Ramanan, K. B. Laupland, N. Buetti, A. Cortegiani, J. Mellinghoff, A. Con-

way Morris, L. Camporota, N. Zappella, M. Elhadi, P. Povoa, K. Amrein, G. Vi-

dal, L. Derde, M. Bassetti, G. Francois, N. Ssi yan kai, and J. J. De Waele. Per-

sonal protective equipment and intensive care unit healthcare worker safety in the

covid-19 era (ppe-safe): An international survey. Journal of Critical Care, 59:70–

75, 2020. ISSN 0883-9441. doi: https://doi.org/10.1016/j.jcrc.2020.06.005. URL

https://www.sciencedirect.com/science/article/pii/S088394412030592X.

The Canadian Press. Military, health officials doing a practice run of coronavirus

vaccine rollout, 2020. URL https://www.ctvnews.ca/health/coronavirus/

military-health-officials-doing-a-practice-run-of-coronavirus-vaccine-rollout-1.

5220085.

R. M. Tomasini and L. N. Van Wassenhove. From preparedness to partnerships: case

study research on humanitarian logistics. International Transactions in Operational

Research, 16(5):549–559, 2009. doi: https://doi.org/10.1111/j.1475-3995.2009.00697.

x. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1475-3995.2009.

00697.x.

U.S. Food and Drug Administration. Personal protective equip-

ment for infection control, 2020. URL https://www.fda.

gov/medical-devices/general-hospital-devices-and-supplies/

personal-protective-equipment-infection-control.

B. Verweij, S. Ahmed, A. J. Kleywegt, G. Nemhauser, and A. Shapiro. The sample

average approximation method applied to stochastic routing problems: A computational

study. Computational Optimization and Applications, 24(2-3):289, Feb 2003. URL

http://search.proquest.com.proxy.lib.uwaterloo.ca/scholarly-journals/

84

https://www.sciencedirect.com/science/article/pii/S088394412030592X
https://www.ctvnews.ca/health/coronavirus/military-health-officials-doing-a-practice-run-of-coronavirus-vaccine-rollout-1.5220085
https://www.ctvnews.ca/health/coronavirus/military-health-officials-doing-a-practice-run-of-coronavirus-vaccine-rollout-1.5220085
https://www.ctvnews.ca/health/coronavirus/military-health-officials-doing-a-practice-run-of-coronavirus-vaccine-rollout-1.5220085
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1475-3995.2009.00697.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1475-3995.2009.00697.x
https://www.fda.gov/medical-devices/general-hospital-devices-and-supplies/personal-protective-equipment-infection-control
https://www.fda.gov/medical-devices/general-hospital-devices-and-supplies/personal-protective-equipment-infection-control
https://www.fda.gov/medical-devices/general-hospital-devices-and-supplies/personal-protective-equipment-infection-control
http://search.proquest.com.proxy.lib.uwaterloo.ca/scholarly-journals/sample-average-approximation-method-applied/docview/215644679/se-2?accountid=14906
http://search.proquest.com.proxy.lib.uwaterloo.ca/scholarly-journals/sample-average-approximation-method-applied/docview/215644679/se-2?accountid=14906


sample-average-approximation-method-applied/docview/215644679/se-2?

accountid=14906. Copyright - Copyright Kluwer Academic Publishers Feb/Mar 2003;

Last updated - 2014-08-30.

M. Warren. Health-care workers at two toronto hospitals told they’ll soon be reusing decon-

taminated n95 masks, 2020. URL https://www.thestar.com/news/gta/2020/04/10/

health-care-workers-at-two-toronto-hospitals-told-theyll-soon-be-reusing-decontaminated-n95-masks.

html.

M.K. Zanjani, M. Nourelfath, and D. Ait-Kadi. A multi-stage stochastic programming

approach for production planning with uncertainty in the quality of raw materials and

demand. Interuniversity Research Centre on Enterprise Networks, Logistics and Trans-

portation, 2009.

85

http://search.proquest.com.proxy.lib.uwaterloo.ca/scholarly-journals/sample-average-approximation-method-applied/docview/215644679/se-2?accountid=14906
http://search.proquest.com.proxy.lib.uwaterloo.ca/scholarly-journals/sample-average-approximation-method-applied/docview/215644679/se-2?accountid=14906
http://search.proquest.com.proxy.lib.uwaterloo.ca/scholarly-journals/sample-average-approximation-method-applied/docview/215644679/se-2?accountid=14906
https://www.thestar.com/news/gta/2020/04/10/health-care-workers-at-two-toronto-hospitals-told-theyll-soon-be-reusing-decontaminated-n95-masks.html
https://www.thestar.com/news/gta/2020/04/10/health-care-workers-at-two-toronto-hospitals-told-theyll-soon-be-reusing-decontaminated-n95-masks.html
https://www.thestar.com/news/gta/2020/04/10/health-care-workers-at-two-toronto-hospitals-told-theyll-soon-be-reusing-decontaminated-n95-masks.html


APPENDICES

86



Appendix A

Tables

87



Table A.1: Road Distance Between Health Regions, Part 1
Algoma Brant Chatham Durham Eastern Elgin

Algoma 0 771 948 677 892 856
Brant 771 0 195 163 539 104

Chatham 948 195 0 339 715 110
Durham 677 163 339 0 380 251
Eastern 892 539 715 380 0 624
Elgin 856 104 110 251 624 0

GreyBruce 671 194 306 234 610 242
Haldimand 813 42 185 206 582 79
Haliburton 784 220 396 61 322 305

Halton 723 54 240 116 492 150
Hamilton 734 41 228 126 502 137
Hastings 854 290 466 131 257 375
Huron 776 167 175 271 647 129

Kingston 930 365 541 206 183 451
Lambton 945 192 76 337 713 115

Leeds 879 441 617 282 102 526
Middlesex 846 94 114 239 615 27
Niagara 777 106 284 170 546 193

NorthBay 436 429 602 305 458 515
Northwestern 1169 1933 2111 1841 2026 2020

Ottawa 793 552 677 393 103 599
Oxford 794 44 155 186 562 64

Peel 689 88 271 82 458 181
Perth 801 80 182 194 570 92

Peterborough 695 241 413 82 355 327
Porcupine 438 790 948 666 819 875
Renfrew 649 489 661 352 248 574
Simcoe 591 183 355 139 516 268

Sudbury 309 473 645 379 584 558
Thunderbay 705 1472 1647 1380 1563 1560
Timiskaming 617 671 846 547 700 756

Toronto 698 105 292 61 437 201
Waterloo 765 55 216 158 534 125

Wellington 745 50 220 138 514 129
Windsor 1023 271 82 416 792 187

York 657 121 297 68 444 206
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Table A.2: Road Distance Between Health Regions, Part 2
GreyBruce Haldimand Haliburton Halton Hamilton Hastings

Algoma 671 813 784 723 734 854
Brant 194 42 220 54 41 290

Chatham 306 185 396 240 228 466
Durham 234 206 61 116 126 131
Eastern 610 582 322 492 502 257
Elgin 242 79 305 150 137 375

GreyBruce 0 225 291 205 186 361
Haldimand 225 0 262 96 83 332
Haliburton 291 262 0 173 184 75

Halton 205 96 173 0 19 242
Hamilton 186 83 184 19 0 253
Hastings 361 332 75 242 253 0
Huron 131 174 328 190 184 398

Kingston 436 408 150 317 329 83
Lambton 257 203 394 240 227 465

Leeds 512 483 226 393 405 158
Middlesex 204 104 296 142 128 366
Niagara 259 110 227 55 55 298

NorthBay 352 472 371 381 398 393
Northwestern 1835 1977 1949 1887 1900 2019

Ottawa 585 556 337 504 516 230
Oxford 179 60 243 93 79 314

Peel 167 130 139 40 52 210
Perth 150 98 251 114 107 321

Peterborough 312 283 57 193 205 106
Porcupine 676 832 732 742 739 754
Renfrew 463 531 296 441 453 227
Simcoe 118 225 197 135 146 267

Sudbury 372 515 447 425 436 557
Thunderbay 1371 1514 1485 1424 1437 1556
Timiskaming 594 713 613 623 634 635

Toronto 190 147 118 57 69 189
Waterloo 145 77 215 77 71 285

Wellington 135 94 195 53 47 265
Windsor 395 263 473 319 305 543

York 175 163 125 73 85 196
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Table A.3: Road Distance Between Health Regions, Part 3
Huron Kingston Lambton Leeds Middlesex Niagara

Algoma 776 930 945 879 846 777
Brant 167 365 192 441 94 106

Chatham 175 541 76 617 114 284
Durham 271 206 337 282 239 170
Eastern 647 183 713 102 615 546
Elgin 129 451 115 526 27 193

GreyBruce 131 436 257 512 204 259
Haldimand 174 408 203 483 104 110
Haliburton 328 150 394 226 296 227

Halton 190 317 240 393 142 55
Hamilton 184 329 227 405 128 55
Hastings 398 83 465 158 366 298
Huron 0 471 126 547 100 239

Kingston 471 0 539 86 441 372
Lambton 126 539 0 615 101 282

Leeds 547 86 615 0 515 446
Middlesex 100 441 101 515 0 184
Niagara 239 372 282 446 184 0

NorthBay 451 448 603 443 505 436
Northwestern 1940 2016 2109 2011 2011 1942

Ottawa 620 197 726 114 590 521
Oxford 120 388 153 462 55 145

Peel 201 284 270 358 172 95
Perth 73 396 140 470 61 166

Peterborough 347 181 415 255 317 248
Porcupine 781 808 950 803 852 783
Renfrew 595 242 663 232 565 496
Simcoe 205 342 357 416 259 190

Sudbury 478 631 647 569 549 480
Thunderbay 1477 1553 1646 1548 1548 1479
Timiskaming 692 689 845 684 747 678

Toronto 225 263 290 337 192 112
Waterloo 113 360 214 434 116 130

Wellington 147 340 218 414 120 105
Windsor 266 618 156 692 191 371

York 227 270 295 344 197 128
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Table A.4: Road Distance Between Health Regions, Part 4
NorthBay Northwestern Ottawa Oxford Peel Perth

Algoma 436 1169 793 794 689 801
Brant 429 1933 552 44 88 80

Chatham 602 2111 677 155 271 182
Durham 305 1841 393 186 82 194
Eastern 458 2026 103 562 458 570
Elgin 515 2020 599 64 181 92

GreyBruce 352 1835 585 179 167 150
Haldimand 472 1977 556 60 130 98
Haliburton 371 1949 337 243 139 251

Halton 381 1887 504 93 40 114
Hamilton 398 1900 516 79 52 107
Hastings 393 2019 230 314 210 321
Huron 451 1940 620 120 201 73

Kingston 448 2016 197 388 284 396
Lambton 603 2109 726 153 270 140

Leeds 443 2011 114 462 358 470
Middlesex 505 2011 590 55 172 61
Niagara 436 1942 521 145 95 166

NorthBay 0 1569 359 452 348 460
Northwestern 1569 0 1927 1957 1853 1965

Ottawa 359 1927 0 523 422 530
Oxford 452 1957 523 0 118 38

Peel 348 1853 422 118 0 127
Perth 460 1965 530 38 127 0

Peterborough 321 1858 271 261 159 267
Porcupine 362 1245 718 810 708 816
Renfrew 214 1783 147 509 407 515
Simcoe 249 1754 412 203 101 209

Sudbury 127 1472 483 493 391 499
Thunderbay 1106 489 1462 1492 1390 1498
Timiskaming 243 1348 598 691 589 697

Toronto 357 1862 411 143 28 149
Waterloo 424 1929 494 63 91 46

Wellington 404 1909 474 68 71 74
Windsor 682 2187 752 232 349 253

York 315 1820 392 141 40 148
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Table A.5: Road Distance Between Health Regions, Part 5
Peterborough Porcupine Renfrew Simcoe Sudbury Thunderbay

Algoma 695 438 649 591 309 705
Brant 241 790 489 183 473 1472

Chatham 413 948 661 355 645 1647
Durham 82 666 352 139 379 1380
Eastern 355 819 248 516 584 1563
Elgin 327 875 574 268 558 1560

GreyBruce 312 676 463 118 372 1371
Haldimand 283 832 531 225 515 1514
Haliburton 57 732 296 197 447 1485

Halton 193 742 441 135 425 1424
Hamilton 205 739 453 146 436 1437
Hastings 106 754 227 267 557 1556
Huron 347 781 595 205 478 1477

Kingston 181 808 242 342 631 1553
Lambton 415 950 663 357 647 1646

Leeds 255 803 232 416 569 1548
Middlesex 317 852 565 259 549 1548
Niagara 248 783 496 190 480 1479

NorthBay 321 362 214 249 127 1106
Northwestern 1858 1245 1783 1754 1472 489

Ottawa 271 718 147 412 483 1462
Oxford 261 810 509 203 493 1492

Peel 159 708 407 101 391 1390
Perth 267 816 515 209 499 1498

Peterborough 0 681 246 201 396 1395
Porcupine 681 0 574 595 294 782
Renfrew 246 574 0 360 340 1319
Simcoe 201 595 360 0 292 1291

Sudbury 396 294 340 292 0 1007
Thunderbay 1395 782 1319 1291 1007 0
Timiskaming 562 140 455 490 308 879

Toronto 139 703 408 111 400 1393
Waterloo 231 766 479 174 463 1456

Wellington 211 746 459 154 443 1436
Windsor 489 1024 737 432 721 1714

York 129 661 377 69 358 1351
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Table A.6: Road Distance Between Health Regions, Part 6
Timiskaming Toronto Waterloo Wellington Windsor York

Algoma 617 698 765 745 1023 657
Brant 671 105 55 50 271 121

Chatham 846 292 216 220 82 297
Durham 547 61 158 138 416 68
Eastern 700 437 534 514 792 444
Elgin 756 201 125 129 187 206

GreyBruce 594 190 145 135 395 175
Haldimand 713 147 77 94 263 163
Haliburton 613 118 215 195 473 125

Halton 623 57 77 53 319 73
Hamilton 634 69 71 47 305 85
Hastings 635 189 285 265 543 196
Huron 692 225 113 147 266 227

Kingston 689 263 360 340 618 270
Lambton 845 290 214 218 156 295

Leeds 684 337 434 414 692 344
Middlesex 747 192 116 120 191 197
Niagara 678 112 130 105 371 128

NorthBay 243 357 424 404 682 315
Northwestern 1348 1862 1929 1909 2187 1820

Ottawa 598 411 494 474 752 392
Oxford 691 143 63 68 232 141

Peel 589 28 91 71 349 40
Perth 697 149 46 74 253 148

Peterborough 562 139 231 211 489 129
Porcupine 140 703 766 746 1024 661
Renfrew 455 408 479 459 737 377
Simcoe 490 111 174 154 432 69

Sudbury 308 400 463 443 721 358
Thunderbay 879 1393 1456 1436 1714 1351
Timiskaming 0 598 662 641 920 557

Toronto 598 0 113 93 369 42
Waterloo 662 113 0 28 291 111

Wellington 641 93 28 0 297 94
Windsor 920 369 291 297 0 371

York 557 42 111 94 371 0
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Table A.7: Unit Cost to Acquire Route Capacity Between Health Regions, Part 1
Algoma Brant Chatham Durham Eastern Elgin

Algoma 0.000 0.043 0.053 0.038 0.050 0.048
Brant 0.043 0.000 0.011 0.009 0.030 0.006

Chatham 0.053 0.011 0.000 0.019 0.040 0.006
Durham 0.038 0.009 0.019 0.000 0.021 0.014
Eastern 0.050 0.030 0.040 0.021 0.000 0.035
Elgin 0.048 0.006 0.006 0.014 0.035 0.000

GreyBruce 0.038 0.011 0.017 0.013 0.034 0.014
Haldimand 0.046 0.002 0.010 0.012 0.033 0.004
Haliburton 0.044 0.012 0.022 0.003 0.018 0.017

Halton 0.041 0.003 0.013 0.007 0.028 0.008
Hamilton 0.041 0.002 0.013 0.007 0.028 0.008
Hastings 0.048 0.016 0.026 0.007 0.014 0.021
Huron 0.044 0.009 0.010 0.015 0.036 0.007

Kingston 0.052 0.021 0.030 0.012 0.010 0.025
Lambton 0.053 0.011 0.004 0.019 0.040 0.006

Leeds 0.049 0.025 0.035 0.016 0.006 0.030
Middlesex 0.048 0.005 0.006 0.013 0.035 0.002
Niagara 0.044 0.006 0.016 0.010 0.031 0.011

NorthBay 0.025 0.024 0.034 0.017 0.026 0.029
Northwestern 0.066 0.109 0.119 0.103 0.114 0.114

Ottawa 0.045 0.031 0.038 0.022 0.006 0.034
Oxford 0.045 0.002 0.009 0.010 0.032 0.004

Peel 0.039 0.005 0.015 0.005 0.026 0.010
Perth 0.045 0.004 0.010 0.011 0.032 0.005

Peterborough 0.039 0.014 0.023 0.005 0.020 0.018
Porcupine 0.025 0.044 0.053 0.037 0.046 0.049
Renfrew 0.036 0.027 0.037 0.020 0.014 0.032
Simcoe 0.033 0.010 0.020 0.008 0.029 0.015

Sudbury 0.017 0.027 0.036 0.021 0.033 0.031
Thunderbay 0.040 0.083 0.093 0.078 0.088 0.088
Timiskaming 0.035 0.038 0.048 0.031 0.039 0.042

Toronto 0.039 0.006 0.016 0.003 0.025 0.011
Waterloo 0.043 0.003 0.012 0.009 0.030 0.007

Wellington 0.042 0.003 0.012 0.008 0.029 0.007
Windsor 0.057 0.015 0.005 0.023 0.045 0.011

York 0.037 0.007 0.017 0.004 0.025 0.012
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Table A.8: Unit Cost to Acquire Route Capacity Between Health Regions, Part 2
GreyBruce Haldimand Haliburton Halton Hamilton Hastings

Algoma 0.038 0.046 0.044 0.041 0.041 0.048
Brant 0.011 0.002 0.012 0.003 0.002 0.016

Chatham 0.017 0.010 0.022 0.013 0.013 0.026
Durham 0.013 0.012 0.003 0.007 0.007 0.007
Eastern 0.034 0.033 0.018 0.028 0.028 0.014
Elgin 0.014 0.004 0.017 0.008 0.008 0.021

GreyBruce 0.000 0.013 0.016 0.012 0.010 0.020
Haldimand 0.013 0.000 0.015 0.005 0.005 0.019
Haliburton 0.016 0.015 0.000 0.010 0.010 0.004

Halton 0.012 0.005 0.010 0.000 0.001 0.014
Hamilton 0.010 0.005 0.010 0.001 0.000 0.014
Hastings 0.020 0.019 0.004 0.014 0.014 0.000
Huron 0.007 0.010 0.018 0.011 0.010 0.022

Kingston 0.025 0.023 0.008 0.018 0.018 0.005
Lambton 0.014 0.011 0.022 0.013 0.013 0.026

Leeds 0.029 0.027 0.013 0.022 0.023 0.009
Middlesex 0.011 0.006 0.017 0.008 0.007 0.021
Niagara 0.015 0.006 0.013 0.003 0.003 0.017

NorthBay 0.020 0.027 0.021 0.021 0.022 0.022
Northwestern 0.103 0.111 0.110 0.106 0.107 0.113

Ottawa 0.033 0.031 0.019 0.028 0.029 0.013
Oxford 0.010 0.003 0.014 0.005 0.004 0.018

Peel 0.009 0.007 0.008 0.002 0.003 0.012
Perth 0.008 0.006 0.014 0.006 0.006 0.018

Peterborough 0.018 0.016 0.003 0.011 0.012 0.006
Porcupine 0.038 0.047 0.041 0.042 0.042 0.042
Renfrew 0.026 0.030 0.017 0.025 0.025 0.013
Simcoe 0.007 0.013 0.011 0.008 0.008 0.015

Sudbury 0.021 0.029 0.025 0.024 0.025 0.031
Thunderbay 0.077 0.085 0.083 0.080 0.081 0.087
Timiskaming 0.033 0.040 0.034 0.035 0.036 0.036

Toronto 0.011 0.008 0.007 0.003 0.004 0.011
Waterloo 0.008 0.004 0.012 0.004 0.004 0.016

Wellington 0.008 0.005 0.011 0.003 0.003 0.015
Windsor 0.022 0.015 0.027 0.018 0.017 0.031

York 0.010 0.009 0.007 0.004 0.005 0.011
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Table A.9: Unit Cost to Acquire Route Capacity Between Health Regions, Part 3
Huron Kingston Lambton Leeds Middlesex Niagara

Algoma 0.044 0.052 0.053 0.049 0.048 0.044
Brant 0.009 0.021 0.011 0.025 0.005 0.006

Chatham 0.010 0.030 0.004 0.035 0.006 0.016
Durham 0.015 0.012 0.019 0.016 0.013 0.010
Eastern 0.036 0.010 0.040 0.006 0.035 0.031
Elgin 0.007 0.025 0.006 0.030 0.002 0.011

GreyBruce 0.007 0.025 0.014 0.029 0.011 0.015
Haldimand 0.010 0.023 0.011 0.027 0.006 0.006
Haliburton 0.018 0.008 0.022 0.013 0.017 0.013

Halton 0.011 0.018 0.013 0.022 0.008 0.003
Hamilton 0.010 0.018 0.013 0.023 0.007 0.003
Hastings 0.022 0.005 0.026 0.009 0.021 0.017
Huron 0.000 0.026 0.007 0.031 0.006 0.013

Kingston 0.026 0.000 0.030 0.005 0.025 0.021
Lambton 0.007 0.030 0.000 0.035 0.006 0.016

Leeds 0.031 0.005 0.035 0.000 0.029 0.025
Middlesex 0.006 0.025 0.006 0.029 0.000 0.010
Niagara 0.013 0.021 0.016 0.025 0.010 0.000

NorthBay 0.025 0.025 0.034 0.025 0.028 0.025
Northwestern 0.109 0.113 0.119 0.113 0.113 0.109

Ottawa 0.035 0.011 0.041 0.006 0.033 0.029
Oxford 0.007 0.022 0.009 0.026 0.003 0.008

Peel 0.011 0.016 0.015 0.020 0.010 0.005
Perth 0.004 0.022 0.008 0.026 0.003 0.009

Peterborough 0.020 0.010 0.023 0.014 0.018 0.014
Porcupine 0.044 0.045 0.053 0.045 0.048 0.044
Renfrew 0.033 0.014 0.037 0.013 0.032 0.028
Simcoe 0.012 0.019 0.020 0.023 0.015 0.011

Sudbury 0.027 0.035 0.036 0.032 0.031 0.027
Thunderbay 0.083 0.087 0.093 0.087 0.087 0.083
Timiskaming 0.039 0.039 0.047 0.038 0.042 0.038

Toronto 0.013 0.015 0.016 0.019 0.011 0.006
Waterloo 0.006 0.020 0.012 0.024 0.007 0.007

Wellington 0.008 0.019 0.012 0.023 0.007 0.006
Windsor 0.015 0.035 0.009 0.039 0.011 0.021

York 0.013 0.015 0.017 0.019 0.011 0.007
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Table A.10: Unit Cost to Acquire Route Capacity Between Health Regions, Part 4
NorthBay Northwestern Ottawa Oxford Peel Perth

Algoma 0.025 0.066 0.045 0.045 0.039 0.045
Brant 0.024 0.109 0.031 0.002 0.005 0.004

Chatham 0.034 0.119 0.038 0.009 0.015 0.010
Durham 0.017 0.103 0.022 0.010 0.005 0.011
Eastern 0.026 0.114 0.006 0.032 0.026 0.032
Elgin 0.029 0.114 0.034 0.004 0.010 0.005

GreyBruce 0.020 0.103 0.033 0.010 0.009 0.008
Haldimand 0.027 0.111 0.031 0.003 0.007 0.006
Haliburton 0.021 0.110 0.019 0.014 0.008 0.014

Halton 0.021 0.106 0.028 0.005 0.002 0.006
Hamilton 0.022 0.107 0.029 0.004 0.003 0.006
Hastings 0.022 0.113 0.013 0.018 0.012 0.018
Huron 0.025 0.109 0.035 0.007 0.011 0.004

Kingston 0.025 0.113 0.011 0.022 0.016 0.022
Lambton 0.034 0.119 0.041 0.009 0.015 0.008

Leeds 0.025 0.113 0.006 0.026 0.020 0.026
Middlesex 0.028 0.113 0.033 0.003 0.010 0.003
Niagara 0.025 0.109 0.029 0.008 0.005 0.009

NorthBay 0.000 0.088 0.020 0.025 0.020 0.026
Northwestern 0.088 0.000 0.108 0.110 0.104 0.110

Ottawa 0.020 0.108 0.000 0.029 0.024 0.030
Oxford 0.025 0.110 0.029 0.000 0.007 0.002

Peel 0.020 0.104 0.024 0.007 0.000 0.007
Perth 0.026 0.110 0.030 0.002 0.007 0.000

Peterborough 0.018 0.104 0.015 0.015 0.009 0.015
Porcupine 0.020 0.070 0.040 0.046 0.040 0.046
Renfrew 0.012 0.100 0.008 0.029 0.023 0.029
Simcoe 0.014 0.099 0.023 0.011 0.006 0.012

Sudbury 0.007 0.083 0.027 0.028 0.022 0.028
Thunderbay 0.062 0.027 0.082 0.084 0.078 0.084
Timiskaming 0.014 0.076 0.034 0.039 0.033 0.039

Toronto 0.020 0.105 0.023 0.008 0.002 0.008
Waterloo 0.024 0.108 0.028 0.004 0.005 0.003

Wellington 0.023 0.107 0.027 0.004 0.004 0.004
Windsor 0.038 0.123 0.042 0.013 0.020 0.014

York 0.018 0.102 0.022 0.008 0.002 0.008

97



Table A.11: Unit Cost to Acquire Route Capacity Between Health Regions, Part 5
Peterborough Porcupine Renfrew Simcoe Sudbury Thunderbay

Algoma 0.039 0.025 0.036 0.033 0.017 0.040
Brant 0.014 0.044 0.027 0.010 0.027 0.083

Chatham 0.023 0.053 0.037 0.020 0.036 0.093
Durham 0.005 0.037 0.020 0.008 0.021 0.078
Eastern 0.020 0.046 0.014 0.029 0.033 0.088
Elgin 0.018 0.049 0.032 0.015 0.031 0.088

GreyBruce 0.018 0.038 0.026 0.007 0.021 0.077
Haldimand 0.016 0.047 0.030 0.013 0.029 0.085
Haliburton 0.003 0.041 0.017 0.011 0.025 0.083

Halton 0.011 0.042 0.025 0.008 0.024 0.080
Hamilton 0.012 0.042 0.025 0.008 0.025 0.081
Hastings 0.006 0.042 0.013 0.015 0.031 0.087
Huron 0.020 0.044 0.033 0.012 0.027 0.083

Kingston 0.010 0.045 0.014 0.019 0.035 0.087
Lambton 0.023 0.053 0.037 0.020 0.036 0.093

Leeds 0.014 0.045 0.013 0.023 0.032 0.087
Middlesex 0.018 0.048 0.032 0.015 0.031 0.087
Niagara 0.014 0.044 0.028 0.011 0.027 0.083

NorthBay 0.018 0.020 0.012 0.014 0.007 0.062
Northwestern 0.104 0.070 0.100 0.099 0.083 0.027

Ottawa 0.015 0.040 0.008 0.023 0.027 0.082
Oxford 0.015 0.046 0.029 0.011 0.028 0.084

Peel 0.009 0.040 0.023 0.006 0.022 0.078
Perth 0.015 0.046 0.029 0.012 0.028 0.084

Peterborough 0.000 0.038 0.014 0.011 0.022 0.078
Porcupine 0.038 0.000 0.032 0.033 0.017 0.044
Renfrew 0.014 0.032 0.000 0.020 0.019 0.074
Simcoe 0.011 0.033 0.020 0.000 0.016 0.073

Sudbury 0.022 0.017 0.019 0.016 0.000 0.057
Thunderbay 0.078 0.044 0.074 0.073 0.057 0.000
Timiskaming 0.032 0.008 0.026 0.028 0.017 0.049

Toronto 0.008 0.040 0.023 0.006 0.022 0.078
Waterloo 0.013 0.043 0.027 0.010 0.026 0.082

Wellington 0.012 0.042 0.026 0.009 0.025 0.081
Windsor 0.027 0.058 0.041 0.024 0.041 0.096

York 0.007 0.037 0.021 0.004 0.020 0.076

98



Table A.12: Unit Cost to Acquire Route Capacity Between Health Regions, Part 6
Timiskaming Toronto Waterloo Wellington Windsor York

Algoma 0.035 0.039 0.043 0.042 0.057 0.037
Brant 0.038 0.006 0.003 0.003 0.015 0.007

Chatham 0.048 0.016 0.012 0.012 0.005 0.017
Durham 0.031 0.003 0.009 0.008 0.023 0.004
Eastern 0.039 0.025 0.030 0.029 0.045 0.025
Elgin 0.042 0.011 0.007 0.007 0.011 0.012

GreyBruce 0.033 0.011 0.008 0.008 0.022 0.010
Haldimand 0.040 0.008 0.004 0.005 0.015 0.009
Haliburton 0.034 0.007 0.012 0.011 0.027 0.007

Halton 0.035 0.003 0.004 0.003 0.018 0.004
Hamilton 0.036 0.004 0.004 0.003 0.017 0.005
Hastings 0.036 0.011 0.016 0.015 0.031 0.011
Huron 0.039 0.013 0.006 0.008 0.015 0.013

Kingston 0.039 0.015 0.020 0.019 0.035 0.015
Lambton 0.047 0.016 0.012 0.012 0.009 0.017

Leeds 0.038 0.019 0.024 0.023 0.039 0.019
Middlesex 0.042 0.011 0.007 0.007 0.011 0.011
Niagara 0.038 0.006 0.007 0.006 0.021 0.007

NorthBay 0.014 0.020 0.024 0.023 0.038 0.018
Northwestern 0.076 0.105 0.108 0.107 0.123 0.102

Ottawa 0.034 0.023 0.028 0.027 0.042 0.022
Oxford 0.039 0.008 0.004 0.004 0.013 0.008

Peel 0.033 0.002 0.005 0.004 0.020 0.002
Perth 0.039 0.008 0.003 0.004 0.014 0.008

Peterborough 0.032 0.008 0.013 0.012 0.027 0.007
Porcupine 0.008 0.040 0.043 0.042 0.058 0.037
Renfrew 0.026 0.023 0.027 0.026 0.041 0.021
Simcoe 0.028 0.006 0.010 0.009 0.024 0.004

Sudbury 0.017 0.022 0.026 0.025 0.041 0.020
Thunderbay 0.049 0.078 0.082 0.081 0.096 0.076
Timiskaming 0.000 0.034 0.037 0.036 0.052 0.031

Toronto 0.034 0.000 0.006 0.005 0.021 0.002
Waterloo 0.037 0.006 0.000 0.002 0.016 0.006

Wellington 0.036 0.005 0.002 0.000 0.017 0.005
Windsor 0.052 0.021 0.016 0.017 0.000 0.021

York 0.031 0.002 0.006 0.005 0.021 0.000
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Table A.13: Daily COVID-19 Cases by Ontario health Region, Part 1
Date Algoma Brant Chatham Durham Eastern GreyBruce
1-Oct-20 0 0 0 15 6 2
2-Oct-20 1 1 2 12 3 3
3-Oct-20 0 2 1 12 8 1
4-Oct-20 0 4 0 12 15 1
5-Oct-20 1 1 0 14 9 2
6-Oct-20 2 0 0 13 3 0
7-Oct-20 0 3 0 31 4 0
8-Oct-20 0 2 0 20 7 0
9-Oct-20 2 6 0 39 7 2

10-Oct-20 0 3 0 11 4 0
11-Oct-20 0 2 0 12 4 2
12-Oct-20 0 5 0 23 11 0
13-Oct-20 0 7 0 42 23 2
14-Oct-20 0 10 0 29 28 0
15-Oct-20 0 6 0 33 9 1
16-Oct-20 0 7 1 33 6 1
17-Oct-20 0 1 0 26 17 1
18-Oct-20 1 4 1 30 13 3
19-Oct-20 0 11 4 36 0 0
20-Oct-20 0 5 6 24 15 1
21-Oct-20 0 2 5 42 9 0
22-Oct-20 1 7 2 51 52 4
23-Oct-20 0 5 1 34 22 1
24-Oct-20 0 1 10 39 13 1
25-Oct-20 1 12 1 47 9 1
26-Oct-20 1 6 1 27 1 0
27-Oct-20 0 5 1 25 4 0
28-Oct-20 0 6 5 32 25 0
29-Oct-20 0 5 2 18 15 5
30-Oct-20 0 8 3 32 6 1
31-Oct-20 1 16 1 23 12 0
1-Nov-20 0 6 2 63 7 0
2-Nov-20 2 14 1 64 5 0
3-Nov-20 0 7 0 25 9 1
4-Nov-20 1 2 3 25 17 2
5-Nov-20 0 16 0 34 12 1
6-Nov-20 0 11 2 41 5 2
7-Nov-20 1 3 3 35 7 5
8-Nov-20 8 5 0 23 7 1
9-Nov-20 1 5 1 52 9 2
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Table A.14: Daily COVID-19 Cases by Ontario health Region, Part 2
Date Algoma Brant Chatham Durham Eastern GreyBruce
10-Nov-20 1 3 14 58 3 0
11-Nov-20 0 3 1 32 8 7
12-Nov-20 0 3 13 61 12 7
13-Nov-20 0 10 3 41 4 2
14-Nov-20 0 11 1 64 5 5
15-Nov-20 0 4 4 62 5 5
16-Nov-20 1 9 7 45 9 10
17-Nov-20 0 9 6 69 5 2
18-Nov-20 0 3 3 40 2 2
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Table A.15: Daily COVID-19 Cases by Ontario health Region, Part 3
Date Haldimand Haliburton Halton Hamilton Hastings Huron-Perth
1-Oct-20 0 1 12 7 1 0
2-Oct-20 1 0 29 12 2 0
3-Oct-20 1 1 17 5 1 3
4-Oct-20 0 1 24 13 0 0
5-Oct-20 2 1 20 21 0 1
6-Oct-20 0 1 34 19 0 0
7-Oct-20 2 0 26 22 0 1
8-Oct-20 0 0 56 24 0 1
9-Oct-20 1 0 43 53 2 0

10-Oct-20 2 0 34 31 1 2
11-Oct-20 1 1 20 21 0 2
12-Oct-20 0 0 32 25 0 0
13-Oct-20 1 0 28 30 1 0
14-Oct-20 0 0 44 21 0 0
15-Oct-20 2 0 19 14 1 1
16-Oct-20 1 0 41 15 1 1
17-Oct-20 1 0 26 20 1 0
18-Oct-20 1 1 34 35 0 0
19-Oct-20 1 0 33 19 0 1
20-Oct-20 1 0 20 25 3 0
21-Oct-20 1 0 30 17 2 0
22-Oct-20 2 1 29 14 1 1
23-Oct-20 4 2 22 14 2 0
24-Oct-20 9 0 37 36 1 1
25-Oct-20 6 0 19 21 0 0
26-Oct-20 3 1 17 20 0 0
27-Oct-20 2 0 38 22 1 0
28-Oct-20 2 0 22 17 0 3
29-Oct-20 2 2 42 30 1 2
30-Oct-20 2 1 23 37 1 5
31-Oct-20 1 1 22 35 1 2
1-Nov-20 1 0 49 31 0 1
2-Nov-20 1 0 59 30 0 0
3-Nov-20 4 1 48 27 0 1
4-Nov-20 4 1 43 42 2 6
5-Nov-20 3 2 49 53 1 6
6-Nov-20 5 0 52 49 0 4
7-Nov-20 6 1 54 55 0 5
8-Nov-20 3 1 53 56 0 9
9-Nov-20 1 1 45 39 0 17
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Table A.16: Daily COVID-19 Cases by Ontario health Region, Part 4
Date Haldimand Haliburton Halton Hamilton Hastings Huron-Perth
10-Nov-20 2 0 44 42 0 8
11-Nov-20 0 0 21 16 0 4
12-Nov-20 3 0 54 30 0 10
13-Nov-20 2 3 55 43 3 9
14-Nov-20 2 4 54 34 2 10
15-Nov-20 5 0 54 31 4 6
16-Nov-20 7 2 46 35 3 4
17-Nov-20 0 3 58 19 0 2
18-Nov-20 5 1 63 46 0 1
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Table A.17: Daily COVID-19 Cases by Ontario health Region, Part 5
Date Kingston Lambton Leeds Middlesex Niagara NorthBay
1-Oct-20 7 1 2 2 12 0
2-Oct-20 0 0 5 5 9 0
3-Oct-20 4 0 1 7 15 0
4-Oct-20 1 0 0 7 9 0
5-Oct-20 7 0 3 10 16 0
6-Oct-20 1 0 1 16 10 0
7-Oct-20 0 0 1 5 6 0
8-Oct-20 2 0 0 19 10 1
9-Oct-20 5 0 2 3 14 0

10-Oct-20 3 0 2 20 9 0
11-Oct-20 0 1 0 25 15 0
12-Oct-20 0 2 1 5 1 0
13-Oct-20 0 0 2 5 12 1
14-Oct-20 0 3 3 8 8 0
15-Oct-20 2 7 0 5 5 1
16-Oct-20 0 2 5 8 7 0
17-Oct-20 0 0 1 4 8 1
18-Oct-20 0 2 0 11 16 1
19-Oct-20 2 1 3 6 14 1
20-Oct-20 0 0 3 9 10 1
21-Oct-20 2 0 2 11 11 0
22-Oct-20 2 1 3 10 9 0
23-Oct-20 0 1 4 4 10 0
24-Oct-20 1 1 4 9 23 0
25-Oct-20 2 1 1 14 4 0
26-Oct-20 0 0 4 2 8 0
27-Oct-20 2 0 4 1 12 0
28-Oct-20 0 0 5 16 22 0
29-Oct-20 1 0 1 5 19 0
30-Oct-20 0 1 0 5 29 0
31-Oct-20 0 1 2 8 24 0
1-Nov-20 1 0 0 1 22 0
2-Nov-20 0 2 0 8 37 0
3-Nov-20 0 1 0 13 20 0
4-Nov-20 0 0 3 4 12 1
5-Nov-20 3 2 0 26 36 1
6-Nov-20 1 0 2 13 28 0
7-Nov-20 0 3 4 36 21 0
8-Nov-20 5 0 0 19 22 2
9-Nov-20 1 1 4 10 61 0
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Table A.18: Daily COVID-19 Cases by Ontario health Region, Part 6
Date Kingston Lambton Leeds Middlesex Niagara NorthBay
10-Nov-20 3 0 1 14 26 3
11-Nov-20 1 0 1 21 15 0
12-Nov-20 2 0 2 23 27 3
13-Nov-20 6 1 3 2 12 2
14-Nov-20 10 3 2 19 19 0
15-Nov-20 6 2 0 29 23 0
16-Nov-20 3 1 1 5 19 0
17-Nov-20 5 0 1 3 27 0
18-Nov-20 3 3 1 2 9 2
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Table A.19: Daily COVID-19 Cases by Ontario health Region, Part 7
Date Northwestern Ottawa Peel Peterborough Porcupine Waterloo
1-Oct-20 9 107 86 4 1 9
2-Oct-20 1 115 116 4 0 18
3-Oct-20 0 65 91 0 0 14
4-Oct-20 0 77 100 0 0 21
5-Oct-20 0 83 86 2 1 14
6-Oct-20 0 139 141 0 0 15
7-Oct-20 0 173 124 0 0 12
8-Oct-20 1 87 104 0 0 14
9-Oct-20 0 96 136 0 1 21

10-Oct-20 0 68 149 0 0 9
11-Oct-20 1 142 147 0 0 14
12-Oct-20 0 65 150 0 1 14
13-Oct-20 0 74 172 0 0 22
14-Oct-20 1 84 147 1 1 7
15-Oct-20 0 107 129 1 0 14
16-Oct-20 0 78 145 1 1 15
17-Oct-20 0 64 129 2 1 11
18-Oct-20 0 74 181 0 1 11
19-Oct-20 0 70 147 1 0 12
20-Oct-20 0 46 156 0 1 13
21-Oct-20 3 69 159 4 0 9
22-Oct-20 0 88 198 0 1 17
23-Oct-20 1 93 228 0 0 15
24-Oct-20 0 63 222 0 2 17
25-Oct-20 0 69 216 4 0 5
26-Oct-20 0 77 160 2 0 4
27-Oct-20 0 61 158 0 1 13
28-Oct-20 0 94 242 0 0 12
29-Oct-20 0 65 212 2 2 18
30-Oct-20 0 123 323 0 0 24
31-Oct-20 0 83 204 1 1 20
1-Nov-20 1 51 294 0 0 19
2-Nov-20 1 56 262 1 0 15
3-Nov-20 1 38 231 1 0 26
4-Nov-20 1 54 209 0 0 24
5-Nov-20 0 46 310 3 0 30
6-Nov-20 1 82 337 0 1 33
7-Nov-20 1 76 292 2 0 31
8-Nov-20 0 48 348 0 1 40
9-Nov-20 1 32 418 1 0 40
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Table A.20: Daily COVID-19 Cases by Ontario health Region, Part 8
Date Northwestern Ottawa Peel Peterborough Porcupine Waterloo
10-Nov-20 0 53 418 5 1 53
11-Nov-20 3 49 250 0 0 28
12-Nov-20 3 91 448 4 1 58
13-Nov-20 2 41 440 1 0 43
14-Nov-20 0 77 497 5 0 67
15-Nov-20 1 62 308 3 1 48
16-Nov-20 0 51 392 6 1 67
17-Nov-20 0 11 256 1 0 42
18-Nov-20 3 22 463 0 1 54
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Table A.21: Daily COVID-19 Cases by Ontario health Region, Part 9
Date Renfrew Simcoe Oxford-Elgin-St. Thomas Sudbury ThunderBay
1-Oct-20 0 11 0 0 0
2-Oct-20 1 10 0 0 0
3-Oct-20 2 5 1 0 0
4-Oct-20 1 11 0 0 0
5-Oct-20 1 23 0 0 0
6-Oct-20 4 19 1 1 0
7-Oct-20 1 26 0 0 0
8-Oct-20 0 18 0 1 0
9-Oct-20 2 17 1 0 2

10-Oct-20 1 21 3 0 0
11-Oct-20 1 12 0 0 0
12-Oct-20 0 8 1 1 0
13-Oct-20 1 15 4 0 0
14-Oct-20 1 8 5 0 0
15-Oct-20 4 14 2 0 0
16-Oct-20 1 8 2 1 0
17-Oct-20 3 25 2 0 0
18-Oct-20 1 10 5 0 0
19-Oct-20 0 21 3 0 0
20-Oct-20 2 11 0 4 0
21-Oct-20 1 18 5 1 0
22-Oct-20 1 12 0 2 5
23-Oct-20 9 13 2 4 1
24-Oct-20 1 27 1 1 0
25-Oct-20 0 18 2 0 0
26-Oct-20 0 18 1 2 0
27-Oct-20 2 13 1 0 0
28-Oct-20 0 24 6 0 0
29-Oct-20 6 18 1 0 0
30-Oct-20 1 24 2 0 2
31-Oct-20 2 29 3 3 0
1-Nov-20 3 20 22 1 0
2-Nov-20 0 18 14 1 0
3-Nov-20 1 19 3 1 0
4-Nov-20 0 12 2 2 0
5-Nov-20 1 18 5 12 1
6-Nov-20 2 18 2 18 10
7-Nov-20 2 9 2 3 8
8-Nov-20 1 21 8 8 1
9-Nov-20 0 15 3 5 3
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Table A.22: Daily COVID-19 Cases by Ontario health Region, Part 10
Date Renfrew Simcoe Oxford-Elgin-St. Thomas Sudbury ThunderBay
10-Nov-20 0 28 18 6 1
11-Nov-20 1 13 7 4 0
12-Nov-20 0 20 14 8 1
13-Nov-20 0 27 3 6 2
14-Nov-20 2 34 9 5 5
15-Nov-20 1 26 13 6 4
16-Nov-20 6 35 10 1 4
17-Nov-20 0 19 6 1 9
18-Nov-20 0 25 14 1 20
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Table A.23: Daily COVID-19 Cases by Ontario health Region, Part 11
Date Timiskaming Toronto Wellington Windsor York
1-Oct-20 0 284 3 2 41
2-Oct-20 0 266 2 1 43
3-Oct-20 0 253 0 7 61
4-Oct-20 0 216 6 5 45
5-Oct-20 0 180 6 15 67
6-Oct-20 0 269 8 3 78
7-Oct-20 0 327 4 3 73
8-Oct-20 0 313 12 8 63
9-Oct-20 0 238 10 8 85

10-Oct-20 0 223 7 3 84
11-Oct-20 0 328 6 17 41
12-Oct-20 0 194 5 2 57
13-Oct-20 0 294 5 2 81
14-Oct-20 0 346 5 2 129
15-Oct-20 0 289 11 12 54
16-Oct-20 0 216 11 5 101
17-Oct-20 0 233 3 2 101
18-Oct-20 0 306 1 7 109
19-Oct-20 0 286 6 3 68
20-Oct-20 0 348 3 1 67
21-Oct-20 0 303 12 6 100
22-Oct-20 0 356 14 2 117
23-Oct-20 0 330 14 6 105
24-Oct-20 0 295 5 8 123
25-Oct-20 0 336 8 4 91
26-Oct-20 0 300 3 14 113
27-Oct-20 0 387 11 4 96
28-Oct-20 0 277 4 8 87
29-Oct-20 0 298 3 8 128
30-Oct-20 0 339 14 9 67
31-Oct-20 0 310 3 12 116
1-Nov-20 0 405 8 10 87
2-Nov-20 0 298 6 3 65
3-Nov-20 0 325 5 3 83
4-Nov-20 0 305 10 8 79
5-Nov-20 0 412 24 15 132
6-Nov-20 0 450 8 8 115
7-Nov-20 0 373 16 29 119
8-Nov-20 0 504 15 20 84
9-Nov-20 0 409 9 3 122
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Table A.24: Daily COVID-19 Cases by Ontario health Region, Part 12
Date Timiskaming Toronto Wellington Windsor York
10-Nov-20 0 514 12 24 178
11-Nov-20 0 100 10 23 105
12-Nov-20 0 472 14 39 155
13-Nov-20 0 440 19 17 155
14-Nov-20 0 456 5 44 130
15-Nov-20 0 364 24 23 125
16-Nov-20 1 508 14 14 170
17-Nov-20 0 569 22 16 94
18-Nov-20 0 410 23 17 178
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Table A.25: Ontario Population by Health Regions
Health Region Population
The District of Algoma 111,060
Brant County 152,029
Chatham-Kent 105,303
Durham Regional 699,641
Eastern Ontario 179,454
Grey Bruce 154,672
Haldimand-Norfolk 113,098
Haliburton, Kawartha, Pine Ridge 185,663
Halton Regional 605,475
City of Hamilton 576,272
Hastings and Prince Edward Counties 144,779
Huron Perth 136,672
Kingston Frontenac and Lennox & Addington 206,768
Lambton 115,985
Leeds Grenville and Lanark District 153,598
Middlesex-London 492,971
Niagara Region 450,816
North Bay Parry Sound District 128,804
Northwestern 74,771
City of Ottawa 1,019,693
Oxford-Elgin-St. Thomas 209,238
Peel 1,553,076
Peterborough County-City 144,237
Porcupine 90,540
Renfrew County and District 106,578
Simcoe Muskoka District 562,142
Sudbury and District 202,681
Thunder Bay District 154,444
Timiskaming 33,389
City of Toronto 2,987,513
Waterloo 571,232
Wellington-Dufferin-Guelph 304,193
Windsor-Essex County 348,836
York Regional 1,200,761
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